id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
11392807
# -*- coding: utf-8 -*- """ Created on Wed Oct 9 18:20:41 2019 @author: <EMAIL> """ from .sunrise import * from .terminator import *
StarcoderdataPython
3412660
<gh_stars>10-100 import sys import tqdm import json import rdflib from rdflib import Namespace from rdflib.namespace import RDF, RDFS, OWL oboInOwl = Namespace('http://www.geneontology.org/formats/oboInOwl#') def owl_to_json(owl_file, json_file): ent_dict = dict() g = rdflib.Graph() g.parse(owl_file) for s in tqdm.tqdm(g.subjects(RDF.type, OWL.Class)): labels = list(g.objects(s, RDFS.label)) all_labels = [str(l) for l in labels] synonyms = list(g.objects(s, oboInOwl['hasExactSynonym'])) all_labels += [str(s) for s in synonyms] if all_labels: ent_dict[s] = all_labels with open(json_file, 'wb') as f: f.write(json.dumps(ent_dict).encode('utf-8')) if __name__ == '__main__': owl_file = sys.argv[1] output_path = sys.argv[2] owl_to_json(owl_file, output_path)
StarcoderdataPython
9787451
from flask import Flask, render_template, request, jsonify from ruamel import yaml import mysql.connector as my import os import shutil # 設定読み込み(config.ymlが存在しなければconfig.yml.sampleをコピーする) sampleConfigPath = "config.yml.sample" configPath = "config.yml" if not os.path.exists(configPath): shutil.copyfile(sampleConfigPath, configPath) print(f"{configPath} was created from {sampleConfigPath}") with open(configPath) as f: config = yaml.safe_load(f) app = Flask(__name__) @app.route('/') def hello(): props ={} return render_template("./index.html", props=props) @app.route('/search') def search(): query: str = request.args.get("query") sort: str = request.args.get("sort") cfg = config["db"] con = my.connect( host=cfg["host"], database=cfg["name"], user=cfg["user"], password=cfg["pass"]) try: cur = con.cursor() try: q: str = "select id, org, title, description, width, height, " \ "type, url, embeddable, thumbUrl, indexText, viewCount, likeCount, "\ "publishedAt from contents" \ " where LOWER(indexText) like %s" if sort == "viewCount": q += " order by viewCount desc" elif sort == "likeCount": q += " order by likeCount desc" else: q += " order by publishedAt desc" cur.execute(q, ("%" + query.lower() + "%",)) result = list() for r in cur: result.append({"id": r[0], "org": r[1], "title": r[2], "description": r[3], "width": r[4], "height": r[5], "type": r[6], "url": r[7], "embeddable": r[8] != 0, "thumbUrl": r[9], "indexText": r[10], "viewCount": r[11], "likeCount": r[12], "publishedAt": r[13].strftime("%Y-%m-%d")}) return jsonify(result) finally: cur.close() finally: con.close() if __name__ == "__main__": cfg = config["server"] app.run(host=cfg["host"], port=cfg["port"], debug=cfg["debug"])
StarcoderdataPython
1934584
#!/usr/bin/env python3 from pgmpy.base import UndirectedGraph from pgmpy.tests import help_functions as hf import unittest class TestUndirectedGraphCreation(unittest.TestCase): def setUp(self): self.graph = UndirectedGraph() def test_class_init_without_data(self): self.assertIsInstance(self.graph, UndirectedGraph) def test_class_init_with_data_string(self): self.G = UndirectedGraph([('a', 'b'), ('b', 'c')]) self.assertListEqual(sorted(self.G.nodes()), ['a', 'b', 'c']) self.assertListEqual(hf.recursive_sorted(self.G.edges()), [['a', 'b'], ['b', 'c']]) def test_add_node_string(self): self.graph.add_node('a') self.assertListEqual(self.graph.nodes(), ['a']) def test_add_node_nonstring(self): self.graph.add_node(1) self.assertListEqual(self.graph.nodes(), [1]) def test_add_nodes_from_string(self): self.graph.add_nodes_from(['a', 'b', 'c', 'd']) self.assertListEqual(sorted(self.graph.nodes()), ['a', 'b', 'c', 'd']) def test_add_nodes_from_non_string(self): self.graph.add_nodes_from([1, 2, 3, 4]) def test_add_edge_string(self): self.graph.add_edge('d', 'e') self.assertListEqual(sorted(self.graph.nodes()), ['d', 'e']) self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [['d', 'e']]) self.graph.add_nodes_from(['a', 'b', 'c']) self.graph.add_edge('a', 'b') self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [['a', 'b'], ['d', 'e']]) def test_add_edge_nonstring(self): self.graph.add_edge(1, 2) def test_add_edges_from_string(self): self.graph.add_edges_from([('a', 'b'), ('b', 'c')]) self.assertListEqual(sorted(self.graph.nodes()), ['a', 'b', 'c']) self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [['a', 'b'], ['b', 'c']]) self.graph.add_nodes_from(['d', 'e', 'f']) self.graph.add_edges_from([('d', 'e'), ('e', 'f')]) self.assertListEqual(sorted(self.graph.nodes()), ['a', 'b', 'c', 'd', 'e', 'f']) self.assertListEqual(hf.recursive_sorted(self.graph.edges()), hf.recursive_sorted([('a', 'b'), ('b', 'c'), ('d', 'e'), ('e', 'f')])) def test_add_edges_from_nonstring(self): self.graph.add_edges_from([(1, 2), (2, 3)]) def test_number_of_neighbors(self): self.graph.add_edges_from([('a', 'b'), ('b', 'c')]) self.assertEqual(len(self.graph.neighbors('b')), 2) def tearDown(self): del self.graph
StarcoderdataPython
3392164
"""Fix whitespace issues.""" import os import re import argparse def find_files(top, exts): """Return a list of file paths with one of the given extensions. Args: top (str): The top level directory to search in. exts (tuple): a tuple of extensions to search for. Returns: a list of matching file paths. """ return [os.path.join(dirpath, name) for dirpath, dirnames, filenames in os.walk(top) for name in filenames if name.endswith(exts)] def trim(top, exts): """Trim whitespace from files. Args: top (str): The top level directory to operate in. exts (tuple): A tuple of extensions to process. """ files = find_files(top, exts) for item in files: lines = [] with open(item, 'r') as f: for line in f: lines.append(re.sub(r'[ \t]+$', '', line)) with open(item, 'w') as f: f.writelines(lines) def tabs2spaces(top, exts, n=2): """Convert tabs to spaces in a set of files. Ignores tabs enclosed in quotes. Args: top (str): The top level directory to operate in. exts (tuple): A tuple of extensions to process. n (optional): The number of spaces to replace each tab with. Default is 2. """ files = find_files(top, exts) for item in files: lines = [] with open(item, 'r') as f: for line in f: lines.append(re.sub(r'\t', ' ' * n, line)) with open(item, 'w') as f: f.writelines(lines) def spaces2tabs(top, exts): """Raise an exception. All in good fun.""" raise Exception('Nope!') def main(): """CLI hook.""" parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('f') parser.add_argument('top') parser.add_argument('-n') parser.add_argument('exts', nargs=argparse.REMAINDER) args = vars(parser.parse_args()) args['exts'] = tuple(args['exts']) FNMAP = { 'trim': trim, 'tabs2spaces': tabs2spaces } fn = FNMAP[args['f']] if args['n']: fn(args['top'], args['exts'], args['n']) else: fn(args['top'], args['exts']) if __name__ == '__main__': main()
StarcoderdataPython
3456705
# -*- coding:utf-8 -*- """ @author: Alden @email: <EMAIL> @date: 2018/4/3 @version: 1.0.0.0 """ class Solution(object): def myAtoi(self, str): """ :type str: str :rtype: int """ res = 0 is_positive = None for i, v in enumerate(str): if res == 0: if v == " " and is_positive is None: continue elif v == "+" and is_positive is None: is_positive = True elif v == "-" and is_positive is None: is_positive = False elif v.isdigit(): res += int(v) else: return 0 else: if v.isdigit(): res = res * 10 + int(v) else: break is_positive = True if is_positive is None else is_positive res = res if is_positive else res * -1 if res > 2 ** 31 - 1: res = 2 ** 31 - 1 elif res < -1 * 2 ** 31: res = -1 * 2 ** 31 return res if __name__ == "__main__": s = Solution() print s.myAtoi(" 01") print s.myAtoi(" -11") print s.myAtoi(" 2147483648") print s.myAtoi(" a2147483648") print s.myAtoi("+-2") print s.myAtoi(" +0 123")
StarcoderdataPython
1606448
# -*- coding: UTF-8 -* ''' @author: sintrb ''' """ PrintOnline Server. This module refer to SimpleHTTPServer """ __version__ = "0.0.3" import BaseHTTPServer import SocketServer import json import os import shutil import socket import sys import urlparse import cgi import re import inspect import tempfile try: from cStringIO import StringIO except ImportError: from StringIO import StringIO reload(sys) sys.setdefaultencoding("utf-8") libdir = os.path.dirname(__file__) if not libdir: libdir = os.getcwd() options = { 'tempdir':os.path.join(tempfile.gettempdir(), 'printonlie'), 'bind':'0.0.0.0', 'port':8000 } class ApiException(Exception): def __init__(self, res): self.res = res def ex(e, c=-1): return ApiException({"code":c, "msg":e}) def get_printers(): try: import win32print return [{'name':d[2]} for d in win32print.EnumPrinters(win32print.PRINTER_ENUM_LOCAL)] except: return [] def get_files(): d = options['tempdir'] if os.path.exists(d) and os.path.isdir(d): arr = [] for f in os.listdir(options['tempdir']): if os.path.isfile(os.path.join(options['tempdir'], f)): try: arr.append({ 'name':u'%s' % f.decode('windows-1252'), 'st_mtime':os.stat(os.path.join(d, f)).st_mtime }) except Exception, e: print e arr.sort(key=lambda x:x['st_mtime']) return arr else: return [] def del_file(f): d = options['tempdir'] if os.path.exists(d) and os.path.isdir(d) and os.path.exists(os.path.join(d, f)): os.remove(os.path.join(d, f)) def set_file(name, fp): d = options['tempdir'] if not os.path.exists(d): os.makedirs(d) fn = os.path.join(d, name) with open(fn, 'wb') as f: f.write(fp.read()) def print_file(filename, printername): import win32api, win32print printername = win32print.GetDefaultPrinter() device = '/d:"%s"' % printername os.chdir(options['tempdir']) # win32api.ShellExecute(0, "print", filename, device, options['tempdir'], 0) # return True try: win32api.ShellExecute(0, "print", filename, device, options['tempdir'], 0) return True except Exception, e: print e return False class PrintOnlineRequestHandler(BaseHTTPServer.BaseHTTPRequestHandler): server_version = "PrintOnline/" + __version__ protocol_version = "HTTP/1.1" editortmpl = '' def check_auth(self): if not options.get('auth'): return True au = self.headers.getheader('authorization') if au and len(au) > 6 and au.endswith(options.get('auth')): return True f = StringIO() f.write('<center><h2>401 Unauthorized</h2></center>') self.send_response(401, "Unauthorized") self.send_header("Content-Type", "text/html") self.send_header("Content-Length", str(f.tell())) self.send_header("WWW-Authenticate", 'Basic realm="%s"' % (options.get('realm') or self.server_version)) self.send_header('Connection', 'close') self.end_headers() f.seek(0) shutil.copyfileobj(f, self.wfile) return False def api_printers(self): return get_printers() def api_files(self): return get_files() def api_update(self): return { 'files':self.api_files(), 'printers':self.api_printers() } def api_print(self, filename, printername): return {'ok':print_file(filename, printername)} def do_POST(self): if not self.check_auth(): return f = StringIO() contenttype = 'text/html' statuscode = 200 form = cgi.FieldStorage( fp=self.rfile, headers=self.headers, environ={'REQUEST_METHOD':'POST', 'CONTENT_TYPE':self.headers['Content-Type'], }) uploadfile = form['file'] filename = uploadfile.filename set_file(filename, uploadfile.file) res = { 'name':filename } f.write(json.dumps(res)) self.send_response(statuscode) self.send_header("Content-type", contenttype) self.send_header("Content-Length", str(f.tell())) self.send_header('Connection', 'close') self.end_headers() f.seek(0) shutil.copyfileobj(f, self.wfile) def do_GET(self): if not self.check_auth(): return self.path = self.path.replace('..', '') url = urlparse.urlparse(self.path) contenttype = 'text/html' statuscode = 200 f = StringIO() # print url if url.path.startswith('/api/'): try: from urllib import unquote contenttype = 'text/json' apiname = 'api_%s' % (url.path.replace('/api/', '')) if not hasattr(self, apiname): raise ex('not such api: %s' % apiname) param = dict([(r[0], unquote(r[1]).replace('+', ' ')) for r in re.findall('([^&^=]+)=([^&^=]*)', url.query)]) apifunc = getattr(self, apiname) argspec = inspect.getargspec(apifunc) kvargs = {} funcagrs = argspec.args defaults = argspec.defaults if defaults: for i, v in enumerate(funcagrs[-len(defaults):]): kvargs[v] = defaults[i] if len(funcagrs): param['_param'] = param argslen = len(funcagrs) - (len(defaults) if defaults else 0) - 1 missargs = [] for i, k in enumerate(funcagrs[1:]): if k in param: kvargs[k] = param[k] elif i < argslen: missargs.append(k) if missargs: raise ex('need argments: %s' % (', '.join(missargs))) data = apifunc(**kvargs) res = {'data':data, 'code':0} except ApiException, e: res = e.res f.write(json.dumps(res)) else: filepath = os.path.join(libdir, url.path.strip('/') or 'index.html') tfilepath = os.path.join(options['tempdir'], url.path.strip('/')) if os.path.exists(filepath) and os.path.isfile(filepath): f.write(open(filepath, 'rb').read()) elif os.path.exists(tfilepath) and os.path.isfile(tfilepath): f.write(open(tfilepath, 'rb').read()) contenttype = None else: print os.path.join(options['tempdir'], url.path.strip('/')) statuscode = 404 f.write("404 not found") self.send_response(statuscode) if contenttype: self.send_header("Content-type", contenttype) self.send_header("Content-Length", str(f.tell())) self.send_header('Connection', 'close') self.end_headers() f.seek(0) shutil.copyfileobj(f, self.wfile) class ThreadingHTTPServer(SocketServer.ThreadingTCPServer): allow_reuse_address = 1 # Seems to make sense in testing environment def server_bind(self): """Override server_bind to store the server name.""" SocketServer.TCPServer.server_bind(self) host, port = self.socket.getsockname()[:2] self.server_name = socket.getfqdn(host) self.server_port = port def start(): port = options['port'] if 'port' in options else 8000 server_address = (options['bind'], port) httpd = ThreadingHTTPServer(server_address, PrintOnlineRequestHandler) sa = httpd.socket.getsockname() print "Temp Directory: %s" % options.get('tempdir') print "Serving HTTP on", sa[0], "port", sa[1], "..." httpd.serve_forever() def config(argv): import getopt opts, args = getopt.getopt(argv, "u:p:r:ht:") for opt, arg in opts: if opt == '-u': options['username'] = arg elif opt == '-p': options['password'] = arg elif opt == '-r': options['realm'] = arg elif opt == '-t': options['tempdir'] = arg elif opt == '-h': print 'Usage: python -m PrintOnline [-u username] [-p password] [-r realm] [-t tempdir] [bindaddress:port | port]' print 'Report bugs to <<EMAIL>>' exit() if options.get('username') and options.get('password'): import base64 options['auth'] = base64.b64encode('%s:%s' % (options.get('username'), options.get('password'))) if len(args) > 0: bp = args[0] if ':' in bp: options['bind'] = bp[0:bp.index(':')] options['port'] = int(bp[bp.index(':') + 1:]) else: options['bind'] = '0.0.0.0' options['port'] = int(bp) def main(): config(sys.argv[1:]) start() def test(): config(sys.argv[1:]) print get_files() if __name__ == '__main__': # test() main()
StarcoderdataPython
6617769
import luigi import os import pandas as pd from db import extract from db import sql from forecast import util import shutil import luigi.contrib.hadoop from sqlalchemy import create_engine from pysandag.database import get_connection_string from pysandag import database from db import log class IncPopulation(luigi.Task): econ_id = luigi.Parameter() dem_id = luigi.Parameter() def requires(self): return None def output(self): return luigi.LocalTarget('temp/data.h5') def run(self): engine = create_engine(get_connection_string("model_config.yml", 'output_database')) db_connection_string = database.get_connection_string('model_config.yml', 'in_db') sql_in_engine = create_engine(db_connection_string) in_query = getattr(sql, 'max_run_id') db_run_id = pd.read_sql(in_query, engine, index_col=None) # db_run_id = log.new_run(name='inc_run_log', run_id=db_run_id['max'].iloc[0]) run_id = pd.Series([db_run_id['id'].iloc[0]]) run_id.to_hdf('temp/data.h5', 'run_id', mode='a') dem_sim_rates = extract.create_df('dem_sim_rates', 'dem_sim_rates_table', rate_id=self.dem_id, index=None) dem_sim_rates.to_hdf('temp/data.h5', 'dem_sim_rates', mode='a') econ_sim_rates = extract.create_df('econ_sim_rates', 'econ_sim_rates_table', rate_id=self.econ_id, index=None) econ_sim_rates.to_hdf('temp/data.h5', 'econ_sim_rates', mode='a') tables = util.yaml_to_dict('model_config.yml', 'db_tables') in_query = getattr(sql, 'inc_pop') % (tables['inc_pop_table'], run_id[0]) in_query2 = getattr(sql, 'inc_mil_hh_pop') % (tables['population_table'], dem_sim_rates.base_population_id[0]) pop = pd.read_sql(in_query, engine, index_col=['age', 'race_ethn', 'sex', 'mildep']) pop_mil = pd.read_sql(in_query2, sql_in_engine, index_col=['age', 'race_ethn', 'sex', 'mildep']) pop = pop.join(pop_mil) pop['persons'] = (pop['persons'] - pop['mil_mildep']) pop = pop.reset_index(drop=False) pop = pop[pop['age'] >= 18] pop['age_cat'] = '' pop.loc[pop['age'].isin(list(range(18, 25))), ['age_cat']] = '18_24' pop.loc[pop['age'].isin(list(range(25, 35))), ['age_cat']] = '25_34' pop.loc[pop['age'].isin(list(range(35, 45))), ['age_cat']] = '35_44' pop.loc[pop['age'].isin(list(range(45, 55))), ['age_cat']] = '45_54' pop.loc[pop['age'].isin(list(range(55, 60))), ['age_cat']] = '55_59' pop.loc[pop['age'].isin(list(range(60, 65))), ['age_cat']] = '60_64' pop.loc[pop['age'].isin(list(range(65, 75))), ['age_cat']] = '65_74' pop.loc[pop['age'].isin(list(range(75, 103))), ['age_cat']] = '75_99' pop = pd.DataFrame(pop['persons'].groupby([pop['yr'], pop['age_cat']]).sum()) pop.to_hdf('temp/data.h5', 'pop', mode='a') class IncomeByType(luigi.Task): econ = luigi.Parameter() dem = luigi.Parameter() @property def priority(self): return 3 def requires(self): return IncPopulation(econ_id=self.econ, dem_id=self.dem) def output(self): return luigi.LocalTarget('temp/data.h5') def run(self): engine = create_engine(get_connection_string("model_config.yml", 'output_database')) econ_sim_rates = pd.read_hdf('temp/data.h5', 'econ_sim_rates') pop = pd.read_hdf('temp/data.h5', 'pop') inc_type_rates = extract.create_df('inc_shares', 'inc_shares_table', rate_id=econ_sim_rates.inc1_id[0], index=['yr', 'age_cat']) inc_type_rates = inc_type_rates.join(pop) inc_type_rates['totals'] = (inc_type_rates['income'] * inc_type_rates['persons'] * inc_type_rates['share']) inc_type_rates = inc_type_rates.reset_index(drop=False) inc_type_rates['multiplier'] = 0 aigr_table = extract.create_df('aigr', 'aigr_table', rate_id=econ_sim_rates.aigr_id[0], index=None) inc_type_rates.loc[inc_type_rates['yr'] > 2014, ['multiplier']] = (aigr_table.aigr[0] * (inc_type_rates['yr'] - 2014)) # pow(1.01, mil_wages.index.get_level_values('yr') - 2014) inc_type_rates['totals'] = (inc_type_rates['totals'] + inc_type_rates['totals'] * inc_type_rates['multiplier']) inc_type_rates = pd.DataFrame(inc_type_rates['totals'].groupby([inc_type_rates['yr'], inc_type_rates['income_type']]).sum()) inc_type_rates = inc_type_rates.reset_index(drop=False) inc_type_rates = pd.pivot_table(inc_type_rates, values='totals', index=['yr'], columns=['income_type']) # inc_type_rates.to_hdf('temp/data.h5', 'inc_type_rates', mode='a') inc_type_rates.rename(columns={'intp': 'Interest'}, inplace=True) inc_type_rates.rename(columns={'oip': 'Other'}, inplace=True) inc_type_rates.rename(columns={'pap': 'Public_Assistance'}, inplace=True) inc_type_rates.rename(columns={'retp': 'Retirement'}, inplace=True) inc_type_rates.rename(columns={'ssip': 'Supplemental_Social_Security'}, inplace=True) inc_type_rates.rename(columns={'ssp': 'Social_Security'}, inplace=True) inc_type_rates.rename(columns={'semp': 'Selfemp_Income'}, inplace=True) inc_type_rates = inc_type_rates[['Interest', 'Other', 'Public_Assistance', 'Retirement', 'Supplemental_Social_Security', 'Social_Security', 'Selfemp_Income']] inc_type_rates.to_hdf('temp/data.h5', 'ue_income') run_table = pd.read_hdf('temp/data.h5', 'run_id') run_id = run_table[0] inc_type_rates['run_id'] = run_id inc_type_rates.to_sql(name='non_wage_income', con=engine, schema='defm', if_exists='append', index=True) if __name__ == '__main__': os.makedirs('temp') luigi.run(main_task_cls=IncomeByType, cmdline_args=['--dem=1005', '--econ=1002']) shutil.rmtree('temp')
StarcoderdataPython
249988
<filename>scripts/get_raw_sun_data.py ############ # Compute raw sun data using pvlib # # 2021-09-01 # <NAME> # # The data is about # - 1MB for a 2 of days, for ~2000 sites and takes about ~1 minutes # - 6MB for a 10 of days, for ~2000 sites and takes about ~1 minutes # - 252MB for a 365 of days, for ~2000 sites and takes about ~11 minutes (on a macbook pro) # Decide to just go for one year of data # on 1st Jan 2019 and 2020, the biggest differences was in elevation was 1 degree, # More investigation has been done (link), and happy difference is less than 1 degree, # Therefore, its ok good to use 1 year of data, for all the years ############ import logging import os from datetime import datetime from pathlib import Path import pandas as pd import nowcasting_dataset from nowcasting_dataset.data_sources.gsp.eso import get_gsp_metadata_from_eso from nowcasting_dataset.data_sources.sun.raw_data_load_save import ( get_azimuth_and_elevation, save_to_zarr, ) from nowcasting_dataset.geospatial import lat_lon_to_osgb logging.basicConfig() logging.getLogger().setLevel(logging.DEBUG) logging.getLogger("urllib3").setLevel(logging.WARNING) # set up BUCKET = Path("solar-pv-nowcasting-data") PV_PATH = BUCKET / "PV/PVOutput.org" PV_METADATA_FILENAME = PV_PATH / "UK_PV_metadata.csv" # set up variables local_path = os.path.dirname(nowcasting_dataset.__file__) + "/.." metadata_filename = f"gs://{PV_METADATA_FILENAME}" start_dt = datetime.fromisoformat("2019-01-01 00:00:00.000+00:00") end_dt = datetime.fromisoformat("2020-01-01 00:00:00.000+00:00") datestamps = pd.date_range(start=start_dt, end=end_dt, freq="5T") # PV metadata pv_metadata = pd.read_csv(metadata_filename, index_col="system_id") pv_metadata = pv_metadata.dropna(subset=["longitude", "latitude"]) pv_metadata["location_x"], pv_metadata["location_y"] = lat_lon_to_osgb( pv_metadata["latitude"], pv_metadata["longitude"] ) pv_x = pv_metadata["location_x"] pv_y = pv_metadata["location_y"] # GSP Metadata gsp_metadata = get_gsp_metadata_from_eso() gsp_metadata = gsp_metadata.dropna(subset=["centroid_lon", "centroid_lat"]) gsp_x = gsp_metadata["centroid_x"] gsp_y = gsp_metadata["centroid_y"] # join all sites together x_centers = list(pv_x.values) + list(gsp_x.values) y_centers = list(pv_y.values) + list(gsp_y.values) # make d azimuth, elevation = get_azimuth_and_elevation( x_centers=x_centers, y_centers=y_centers, datestamps=datestamps ) azimuth = azimuth.astype(int) elevation = elevation.astype(int) # save it locally and in the cloud, just in case when saving in the cloud it fails save_to_zarr(azimuth=azimuth, elevation=elevation, filename="./sun.zarr") save_to_zarr( azimuth=azimuth, elevation=elevation, filename="gs://solar-pv-nowcasting-data/Sun/v0/sun.zarr/" ) # This has been uploaded to 'gs://solar-pv-nowcasting-data/Sun/v0'
StarcoderdataPython
123445
<reponame>imranq2/SparkAutoMapper.FHIR from __future__ import annotations from typing import Optional, TYPE_CHECKING, Union from spark_auto_mapper_fhir.fhir_types.date_time import FhirDateTime from spark_auto_mapper_fhir.fhir_types.list import FhirList from spark_auto_mapper_fhir.fhir_types.string import FhirString from spark_auto_mapper_fhir.extensions.extension_base import ExtensionBase from spark_auto_mapper_fhir.base_types.fhir_backbone_element_base import ( FhirBackboneElementBase, ) if TYPE_CHECKING: pass # id_ (string) # extension (Extension) # modifierExtension (Extension) # collector (Reference) from spark_auto_mapper_fhir.complex_types.reference import Reference # Imports for References for collector from spark_auto_mapper_fhir.resources.practitioner import Practitioner from spark_auto_mapper_fhir.resources.practitioner_role import PractitionerRole # collectedDateTime (dateTime) # collectedPeriod (Period) from spark_auto_mapper_fhir.complex_types.period import Period # duration (Duration) from spark_auto_mapper_fhir.complex_types.duration import Duration # quantity (Quantity) from spark_auto_mapper_fhir.complex_types.quantity import Quantity # method (CodeableConcept) from spark_auto_mapper_fhir.complex_types.codeable_concept import CodeableConcept # End Import for References for method # Import for CodeableConcept for method from spark_auto_mapper_fhir.value_sets.fhir_specimen_collection_method import ( FHIRSpecimenCollectionMethodCode, ) # End Import for CodeableConcept for method # bodySite (CodeableConcept) # End Import for References for bodySite # Import for CodeableConcept for bodySite from spark_auto_mapper_fhir.value_sets.snomedct_body_structures import ( SNOMEDCTBodyStructuresCode, ) # End Import for CodeableConcept for bodySite # fastingStatusCodeableConcept (CodeableConcept) # End Import for References for fastingStatusCodeableConcept # Import for CodeableConcept for fastingStatusCodeableConcept from spark_auto_mapper_fhir.value_sets.v2_0916 import V2_0916 # End Import for CodeableConcept for fastingStatusCodeableConcept # fastingStatusDuration (Duration) # This file is auto-generated by generate_classes so do not edit manually # noinspection PyPep8Naming class SpecimenCollection(FhirBackboneElementBase): """ Specimen.Collection A sample to be used for analysis. """ # noinspection PyPep8Naming def __init__( self, *, id_: Optional[FhirString] = None, extension: Optional[FhirList[ExtensionBase]] = None, modifierExtension: Optional[FhirList[ExtensionBase]] = None, collector: Optional[Reference[Union[Practitioner, PractitionerRole]]] = None, collectedDateTime: Optional[FhirDateTime] = None, collectedPeriod: Optional[Period] = None, duration: Optional[Duration] = None, quantity: Optional[Quantity] = None, method: Optional[CodeableConcept[FHIRSpecimenCollectionMethodCode]] = None, bodySite: Optional[CodeableConcept[SNOMEDCTBodyStructuresCode]] = None, fastingStatusCodeableConcept: Optional[CodeableConcept[V2_0916]] = None, fastingStatusDuration: Optional[Duration] = None, ) -> None: """ A sample to be used for analysis. :param id_: None :param extension: May be used to represent additional information that is not part of the basic definition of the element. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. :param modifierExtension: May be used to represent additional information that is not part of the basic definition of the element and that modifies the understanding of the element in which it is contained and/or the understanding of the containing element's descendants. Usually modifier elements provide negation or qualification. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. Applications processing a resource are required to check for modifier extensions. Modifier extensions SHALL NOT change the meaning of any elements on Resource or DomainResource (including cannot change the meaning of modifierExtension itself). :param collector: Person who collected the specimen. :param collectedDateTime: None :param collectedPeriod: None :param duration: The span of time over which the collection of a specimen occurred. :param quantity: The quantity of specimen collected; for instance the volume of a blood sample, or the physical measurement of an anatomic pathology sample. :param method: A coded value specifying the technique that is used to perform the procedure. :param bodySite: Anatomical location from which the specimen was collected (if subject is a patient). This is the target site. This element is not used for environmental specimens. :param fastingStatusCodeableConcept: None :param fastingStatusDuration: None """ super().__init__( id_=id_, extension=extension, modifierExtension=modifierExtension, collector=collector, collectedDateTime=collectedDateTime, collectedPeriod=collectedPeriod, duration=duration, quantity=quantity, method=method, bodySite=bodySite, fastingStatusCodeableConcept=fastingStatusCodeableConcept, fastingStatusDuration=fastingStatusDuration, )
StarcoderdataPython
1792173
''' meetings_member - handling for meetings member ==================================================================================== ''' # standard from datetime import date, datetime from traceback import format_exc, format_exception_only from urllib.parse import urlencode # pypi from flask import request, flash, jsonify, current_app, url_for, g, redirect from flask_security import current_user, logout_user, login_user from flask.views import MethodView from dominate.tags import div, h1, p, b from dominate.util import raw # homegrown from . import bp from ...model import db from ...model import LocalInterest, LocalUser, Invite, ActionItem, Motion, MotionVote from ...model import invite_response_all, INVITE_RESPONSE_ATTENDING, INVITE_RESPONSE_NO_RESPONSE, action_all from ...model import motionvote_all, MOTIONVOTE_KEY_URLARG, INVITE_KEY_URLARG from ...version import __docversion__ from ...meeting_evotes import get_evotes, generateevotes from .meetings_common import MemberStatusReportBase, ActionItemsBase, MotionVotesBase, MotionsBase from .meetings_common import motions_childelementargs, invite_statusreport from .meetings_common import meeting_has_option, MEETING_OPTION_RSVP, MEETING_OPTION_HASSTATUSREPORTS from .viewhelpers import localuser2user, user2localuser from loutilities.tables import get_request_data from loutilities.user.roles import ROLE_SUPER_ADMIN, ROLE_MEETINGS_ADMIN, ROLE_MEETINGS_MEMBER from loutilities.user.tables import DbCrudApiInterestsRolePermissions from loutilities.timeu import asctime from loutilities.filters import filtercontainerdiv, filterdiv, yadcfoption from loutilities.flask.user.views import SelectInterestsView isodate = asctime('%Y-%m-%d') displaytime = asctime('%Y-%m-%d %H:%M') class ParameterError(Exception): pass adminguide = 'https://members.readthedocs.io/en/{docversion}/meetings-member-guide.html'.format(docversion=__docversion__) MEETINGS_MEMBER_ROLES = [ROLE_SUPER_ADMIN, ROLE_MEETINGS_ADMIN, ROLE_MEETINGS_MEMBER] ########################################################################################## # memberstatusreport endpoint ########################################################################################## def get_invite_response(dbrow): invite = dbrow.invite return invite.response class MemberStatusReportView(MemberStatusReportBase): # remove auth_required() decorator decorators = [] def permission(self): invitekey = request.args.get(INVITE_KEY_URLARG, None) if invitekey: permitted = True invite = Invite.query.filter_by(invitekey=invitekey).one() user = localuser2user(invite.user) self.meeting = invite.meeting self.interest = self.meeting.interest if current_user != user: # log out and in automatically # see https://flask-security-too.readthedocs.io/en/stable/api.html#flask_security.login_user logout_user() login_user(user) db.session.commit() flash('you have been automatically logged in as {}'.format(current_user.name)) # at this point, if current_user has the target user (may have been changed by invitekey) # check role permissions, permitted = True (from above) unless determined otherwise roles_accepted = [ROLE_SUPER_ADMIN, ROLE_MEETINGS_ADMIN, ROLE_MEETINGS_MEMBER] allowed = False for role in roles_accepted: if current_user.has_role(role): allowed = True break if not allowed: permitted = False # no invitekey, not permitted else: permitted = False return permitted def init(self): # redirect to rsvp page if necessary meeting = self.get_meeting() if meeting.has_meeting_option(MEETING_OPTION_RSVP) and not meeting.has_meeting_option(MEETING_OPTION_HASSTATUSREPORTS): args = urlencode(request.args) return redirect('{}?{}'.format(url_for('admin.rsvp', interest=g.interest), args)) def beforequery(self): # set user based on invite key invite = self.get_invite() self.theuser = localuser2user(invite.user) super().beforequery() self.queryparams['meeting_id'] = self.meeting.id self.queryparams['invite_id'] = invite.id def get_invite(self): meeting = self.get_meeting() invite = Invite.query.filter_by(meeting_id=meeting.id, user_id=user2localuser(current_user).id).one_or_none() if not invite: raise ParameterError('no invitation found for this meeting/user combination') return invite def format_pretablehtml(self): meeting = self.get_meeting() html = div() with html: self.custom_wording() self.instructions() h1('{} - {} - {}'.format(meeting.date, meeting.purpose, current_user.name), _class='TextCenter') return html.render() memberstatusreport_view = MemberStatusReportView( templateargs={'adminguide': adminguide}, pagename=lambda: 'My {}'.format(invite_statusreport().title()), endpoint='admin.memberstatusreport', endpointvalues={'interest': '<interest>'}, rule='/<interest>/memberstatusreport', ) memberstatusreport_view.register() ########################################################################################## # mymeetings endpoint ########################################################################################## class MyMeetingsView(DbCrudApiInterestsRolePermissions): def beforequery(self): self.queryparams['user'] = user2localuser(current_user) def mymeetings_attended(row): if meeting_has_option(row.meeting, MEETING_OPTION_RSVP): today = date.today() if row.meeting.date >= today: return '' else: return 'yes' if row.attended else 'no' else: return '' mymeetings_dbattrs = 'id,interest_id,meeting.purpose,meeting.date,response,attended,' \ 'invitekey,meeting.gs_agenda,meeting.gs_status,meeting.gs_minutes'.split(',') mymeetings_formfields = 'rowid,interest_id,purpose,date,response,attended,' \ 'invitekey,gs_agenda,gs_status,gs_minutes'.split(',') mymeetings_dbmapping = dict(zip(mymeetings_dbattrs, mymeetings_formfields)) mymeetings_formmapping = dict(zip(mymeetings_formfields, mymeetings_dbattrs)) mymeetings_formmapping['date'] = lambda row: isodate.dt2asc(row.meeting.date) mymeetings_formmapping['response'] = lambda row: row.response if meeting_has_option(row.meeting, MEETING_OPTION_RSVP) else '' mymeetings_formmapping['attended'] = mymeetings_attended mymeetings_formmapping['gs_agenda'] = lambda row: row.meeting.gs_agenda if row.meeting.gs_agenda else '' mymeetings_formmapping['gs_status'] = lambda row: row.meeting.gs_status if row.meeting.gs_status else '' mymeetings_formmapping['gs_minutes'] = lambda row: row.meeting.gs_minutes if row.meeting.gs_minutes else '' mymeetings_formmapping['meetingtype'] = lambda row: row.meeting.meetingtype.meetingtype mymeetings_formmapping['location'] = lambda row: row.meeting.location if row.meeting.location else '' # connects with beforetables.js meetings_statusreportwording(), the function parameter to googledoc() for gs_status mymeetings_formmapping['statusreportwording'] = lambda row: row.meeting.meetingtype.statusreportwording # connects with beforetables.js mystatus_statusreport() and the attr parameter to googledoc() for gs_status mymeetings_formmapping['hideviewicon'] = lambda row: not (meeting_has_option(row.meeting, MEETING_OPTION_RSVP) or meeting_has_option(row.meeting, MEETING_OPTION_HASSTATUSREPORTS)) mymeetings_view = MyMeetingsView( roles_accepted=[ROLE_SUPER_ADMIN, ROLE_MEETINGS_ADMIN, ROLE_MEETINGS_MEMBER], local_interest_model=LocalInterest, app=bp, # use blueprint instead of app db=db, model=Invite, version_id_col='version_id', # optimistic concurrency control template='datatables.jinja2', templateargs={'adminguide': adminguide}, pagename='My Meetings', endpoint='admin.mymeetings', endpointvalues={'interest': '<interest>'}, rule='/<interest>/mymeetings', dbmapping=mymeetings_dbmapping, formmapping=mymeetings_formmapping, checkrequired=True, clientcolumns=[ {'data': '', # needs to be '' else get exception converting options from meetings render_template # TypeError: '<' not supported between instances of 'str' and 'NoneType' 'name': 'view-control', 'className': 'view-control shrink-to-fit', 'orderable': False, 'defaultContent': '', 'label': '', 'type': 'hidden', # only affects editor modal 'title': 'View', # see mymeetings_formmapping['disableview'] to known when view icon is disabled 'render': {'eval': 'render_icon("fas fa-eye", "hideviewicon")'}, }, {'data': 'date', 'name': 'date', 'label': 'Meeting Date', 'type': 'readonly' }, {'data': 'meetingtype', 'name': 'meetingtype', 'label': 'Meeting Type', 'type': 'readonly' }, {'data': 'purpose', 'name': 'purpose', 'label': 'Meeting Purpose', 'type': 'readonly' }, {'data': 'location', 'name': 'location', 'label': 'Location', 'type': 'readonly' }, {'data': 'response', 'name': 'response', 'label': 'RSVP', 'type': 'readonly' }, {'data': 'attended', 'name': 'attended', 'label': 'Attended', 'className': 'TextCenter', 'type': 'readonly', }, {'data': 'gs_agenda', 'name': 'gs_agenda', 'label': 'Agenda', 'type': 'googledoc', 'opts': {'text': 'Agenda'}, 'render': {'eval': '$.fn.dataTable.render.googledoc( "Agenda" )'}, }, {'data': 'gs_status', 'name': 'gs_status', 'label': 'Status Report', 'type': 'googledoc', 'opts': {'text': 'Status Report'}, 'render': {'eval': '$.fn.dataTable.render.googledoc( meetings_statusreportwording )'}, }, {'data': 'gs_minutes', 'name': 'gs_minutes_fdr', 'label': 'Minutes', 'type': 'googledoc', 'opts': {'text': 'Minutes'}, 'render': {'eval': '$.fn.dataTable.render.googledoc( "Minutes" )'}, }, {'data': 'invitekey', 'name': 'invitekey', 'label': 'My Status Report', 'type': 'hidden', 'dt': {'visible': False}, }, ], idSrc='rowid', buttons=[ { 'extend': 'edit', 'name': 'view-status', 'text': 'My Status Report', 'action': {'eval': 'mystatus_statusreport'}, 'className': 'Hidden', }, 'csv', ], dtoptions={ 'scrollCollapse': True, 'scrollX': True, 'scrollXInner': "100%", 'scrollY': True, 'order': [['date:name', 'desc']], }, ) mymeetings_view.register() ########################################################################################## # myactionitems endpoint ########################################################################################## class MyActionItemsView(DbCrudApiInterestsRolePermissions): def beforequery(self): self.queryparams['assignee'] = user2localuser(current_user) myactionitems_dbattrs = 'id,interest_id,action,status,comments,meeting.date,agendaitem.title,agendaitem.agendaitem,update_time,updated_by'.split(',') myactionitems_formfields = 'rowid,interest_id,action,status,comments,date,agendatitle,agendatext,update_time,updated_by'.split(',') myactionitems_dbmapping = dict(zip(myactionitems_dbattrs, myactionitems_formfields)) myactionitems_formmapping = dict(zip(myactionitems_formfields, myactionitems_dbattrs)) myactionitems_formmapping['date'] = lambda row: isodate.dt2asc(row.meeting.date) if row.meeting else '' # todo: should this be in tables.py? but see https://github.com/louking/loutilities/issues/25 myactionitems_dbmapping['meeting.date'] = '__readonly__' myactionitems_dbmapping['agendaitem.title'] = '__readonly__' myactionitems_dbmapping['agendaitem.agendaitem'] = '__readonly__' myactionitems_formmapping['update_time'] = lambda row: displaytime.dt2asc(row.update_time) myactionitems_dbmapping['update_time'] = lambda form: datetime.now() myactionitems_formmapping['updated_by'] = lambda row: LocalUser.query.filter_by(id=row.updated_by).one().name myactionitems_dbmapping['updated_by'] = lambda form: user2localuser(current_user).id agendaitems_filters = filtercontainerdiv() agendaitems_filters += filterdiv('agendaitems-external-filter-status', 'Status') agendaitems_yadcf_options = [ yadcfoption('status:name', 'agendaitems-external-filter-status', 'multi_select', placeholder='Select statuses', width='200px'), ] myactionitems_view = MyActionItemsView( roles_accepted=[ROLE_SUPER_ADMIN, ROLE_MEETINGS_ADMIN, ROLE_MEETINGS_MEMBER], local_interest_model=LocalInterest, app=bp, # use blueprint instead of app db=db, model=ActionItem, version_id_col='version_id', # optimistic concurrency control template='datatables.jinja2', templateargs={'adminguide': adminguide}, pretablehtml=agendaitems_filters.render(), yadcfoptions=agendaitems_yadcf_options, pagename='My Action Items', endpoint='admin.myactionitems', endpointvalues={'interest': '<interest>'}, rule='/<interest>/myactionitems', dbmapping=myactionitems_dbmapping, formmapping=myactionitems_formmapping, checkrequired=True, clientcolumns=[ {'data': 'date', 'name': 'date', 'label': 'Meeting Date', 'type': 'readonly' }, {'data': 'action', 'name': 'action', 'label': 'Action', 'type': 'readonly' }, {'data': 'agendatitle', 'name': 'agendatitle', 'label': 'Agenda Item', 'type': 'readonly', 'dt': {'visible': False}, }, {'data': 'agendatext', 'name': 'agendatext', 'label': '', 'type': 'display', 'dt': {'visible': False}, }, {'data': 'status', 'name': 'status', 'label': 'Status', 'type': 'select2', 'options': action_all, }, {'data': 'comments', 'name': 'comments', 'label': 'Progress / Resolution', 'type': 'ckeditorClassic', 'fieldInfo': 'record your progress or how this was resolved', 'dt': {'visible': False}, }, {'data': 'update_time', 'name': 'update_time', 'label': 'Last Update', 'type': 'hidden', }, {'data': 'updated_by', 'name': 'updated_by', 'label': 'Updated By', 'type': 'hidden', }, ], idSrc='rowid', buttons=[ 'editRefresh', 'csv', ], dtoptions={ 'scrollCollapse': True, 'scrollX': True, 'scrollXInner': "100%", 'scrollY': True, 'order': [['date:name', 'desc']], }, ) myactionitems_view.register() ########################################################################################## # mymotionvotes endpoint ########################################################################################## class MyMotionVotesView(DbCrudApiInterestsRolePermissions): def beforequery(self): self.queryparams['user'] = user2localuser(current_user) mymotionvotes_dbattrs = 'id,interest_id,meeting.purpose,meeting.date,motion.motion,vote,motionvotekey'.split(',') mymotionvotes_formfields = 'rowid,interest_id,purpose,date,motion,vote,motionvotekey'.split(',') mymotionvotes_dbmapping = dict(zip(mymotionvotes_dbattrs, mymotionvotes_formfields)) mymotionvotes_formmapping = dict(zip(mymotionvotes_formfields, mymotionvotes_dbattrs)) mymotionvotes_formmapping['date'] = lambda row: isodate.dt2asc(row.meeting.date) mymotionvotes_view = MyMotionVotesView( roles_accepted=[ROLE_SUPER_ADMIN, ROLE_MEETINGS_ADMIN, ROLE_MEETINGS_MEMBER], local_interest_model=LocalInterest, app=bp, # use blueprint instead of app db=db, model=MotionVote, version_id_col='version_id', # optimistic concurrency control template='datatables.jinja2', templateargs={'adminguide': adminguide}, pagename='My Motion Votes', endpoint='admin.mymotionvotes', endpointvalues={'interest': '<interest>'}, rule='/<interest>/mymotionvotes', dbmapping=mymotionvotes_dbmapping, formmapping=mymotionvotes_formmapping, checkrequired=True, clientcolumns=[ {'data': '', # needs to be '' else get exception converting options from meetings render_template # TypeError: '<' not supported between instances of 'str' and 'NoneType' 'name': 'view-control', 'className': 'view-control shrink-to-fit', 'orderable': False, 'defaultContent': '', 'label': '', 'type': 'hidden', # only affects editor modal 'title': 'View', 'render': {'eval': 'render_icon("fas fa-eye")'}, }, {'data': 'date', 'name': 'date', 'label': 'Meeting Date', 'type': 'readonly' }, {'data': 'purpose', 'name': 'purpose', 'label': 'Meeting Purpose', 'type': 'readonly' }, {'data': 'motion', 'name': 'motion', 'label': 'Motion', 'type': 'readonly' }, {'data': 'vote', 'name': 'vote', 'label': 'Vote', 'type': 'readonly', }, {'data': 'motionvotekey', 'name': 'motionvotekey', 'label': 'My Motion Vote', 'type': 'hidden', 'dt': {'visible': False}, }, ], idSrc='rowid', buttons=lambda: [ { 'extend': 'edit', 'name': 'view-motionvote', 'text': 'View Motion Vote', 'action': {'eval': 'mymotionvote_motionvote("{}")'.format(url_for('admin.motionvote', interest=g.interest))}, 'className': 'Hidden', }, 'csv', ], dtoptions={ 'scrollCollapse': True, 'scrollX': True, 'scrollXInner': "100%", 'scrollY': True, 'order': [['date:name', 'desc']], }, ) mymotionvotes_view.register() ########################################################################################## # memberactionitems endpoint ########################################################################################### class MemberActionItemsView(ActionItemsBase): pass memberactionitems_view = MemberActionItemsView( roles_accepted=[ROLE_SUPER_ADMIN, ROLE_MEETINGS_ADMIN, ROLE_MEETINGS_MEMBER], pagename='Action Items', templateargs={'adminguide': adminguide}, endpoint='admin.memberactionitems', rule='/<interest>/memberactionitems', buttons=[ 'csv' ], ) memberactionitems_view.register() ########################################################################################## # membermotionsvote endpoint ########################################################################################### class MemberMotionVotesView(MotionVotesBase): pass membermotionvotes_view = MemberMotionVotesView( roles_accepted=[ROLE_SUPER_ADMIN, ROLE_MEETINGS_ADMIN, ROLE_MEETINGS_MEMBER], pagename='Motion Votes', templateargs={'adminguide': adminguide}, endpoint='admin.membermotionvotes', rule='/<interest>/membermotionvotes', buttons=[ 'csv' ], ) membermotionvotes_view.register() ########################################################################################## # membermotions endpoint ########################################################################################### class MemberMotionsView(MotionsBase): pass membermotions_view = MemberMotionsView( roles_accepted=[ROLE_SUPER_ADMIN, ROLE_MEETINGS_ADMIN, ROLE_MEETINGS_MEMBER], pagename='Motions', templateargs={'adminguide': adminguide}, endpoint='admin.membermotions', rule='/<interest>/membermotions', buttons=[ 'csv' ], childrowoptions={ 'template': 'motion-child-row.njk', 'showeditor': False, 'group': 'interest', 'groupselector': '#metanav-select-interest', 'childelementargs': motions_childelementargs.get_childelementargs({ 'motionvotes': membermotionvotes_view, }), }, ) membermotions_view.register() ########################################################################################## # mymeetingrsvp api endpoint ########################################################################################## class MyMeetingRsvpApi(MethodView): def __init__(self): self.roles_accepted = [ROLE_SUPER_ADMIN, ROLE_MEETINGS_ADMIN, ROLE_MEETINGS_MEMBER] def permission(self): ''' determine if current user is permitted to use the view ''' # adapted from loutilities.tables.DbCrudApiRolePermissions allowed = False # must have invitekey query arg if request.args.get(INVITE_KEY_URLARG, False): for role in self.roles_accepted: if current_user.has_role(role): allowed = True break return allowed def get(self): try: invitekey = request.args[INVITE_KEY_URLARG] invite = Invite.query.filter_by(invitekey=invitekey).one() options = [r for r in invite_response_all # copy if no response yet, or (if a response) anything but no response if invite.response == INVITE_RESPONSE_NO_RESPONSE or r != INVITE_RESPONSE_NO_RESPONSE] return jsonify(status='success', response=invite.response, options=options) except Exception as e: exc = ''.join(format_exception_only(type(e), e)) output_result = {'status' : 'fail', 'error': 'exception occurred:\n{}'.format(exc)} # roll back database updates and close transaction db.session.rollback() current_app.logger.error(format_exc()) return jsonify(output_result) def post(self): try: # verify user can write the data, otherwise abort (adapted from loutilities.tables._editormethod) if not self.permission(): db.session.rollback() cause = 'operation not permitted for user' return jsonify(error=cause) invitekey = request.args[INVITE_KEY_URLARG] response = request.form['response'] invite = Invite.query.filter_by(invitekey=invitekey).one() invite.response = response invite.attended = response == INVITE_RESPONSE_ATTENDING db.session.commit() output_result = {'status' : 'success'} return jsonify(output_result) except Exception as e: exc = ''.join(format_exception_only(type(e), e)) output_result = {'status' : 'fail', 'error': 'exception occurred:\n{}'.format(exc)} # roll back database updates and close transaction db.session.rollback() current_app.logger.error(format_exc()) return jsonify(output_result) bp.add_url_rule('/<interest>/_mymeetingrsvp/rest', view_func=MyMeetingRsvpApi.as_view('_mymeetingrsvp'), methods=['GET', 'POST']) ########################################################################################## # motionvote endpoint ########################################################################################### class MotionVoteView(SelectInterestsView): # remove auth_required() decorator decorators = [] def permission(self): motionvotekey = request.args.get(MOTIONVOTE_KEY_URLARG, None) if motionvotekey: permitted = True motionvote = MotionVote.query.filter_by(motionvotekey=motionvotekey).one() user = localuser2user(motionvote.user) if current_user != user: # log out and in automatically # see https://flask-security-too.readthedocs.io/en/stable/api.html#flask_security.login_user logout_user() login_user(user) db.session.commit() flash('you have been automatically logged in as {}'.format(current_user.name)) # at this point, if current_user has the target user (may have been changed by invitekey) # check role permissions, permitted = True (from above) unless determined otherwise roles_accepted = [ROLE_SUPER_ADMIN, ROLE_MEETINGS_ADMIN, ROLE_MEETINGS_MEMBER] allowed = False for role in roles_accepted: if current_user.has_role(role): allowed = True break if not allowed: permitted = False # no motionvotekey, not permitted else: permitted = False return permitted def setdisplayonly(self): motionvotekey = request.args.get(MOTIONVOTE_KEY_URLARG) motionvote = MotionVote.query.filter_by(motionvotekey=motionvotekey).one() today = date.today() meetingdate = motionvote.meeting.date return today > meetingdate def getval(self): motionvotekey = request.args.get(MOTIONVOTE_KEY_URLARG) motionvote = MotionVote.query.filter_by(motionvotekey=motionvotekey).one() return '"{}"'.format(motionvote.vote) def putval(self, val): motionvotekey = request.args.get(MOTIONVOTE_KEY_URLARG) motionvote = MotionVote.query.filter_by(motionvotekey=motionvotekey).one() motionvote.vote = val db.session.commit() def motionvote_preselecthtml(): motionvotekey = request.args.get(MOTIONVOTE_KEY_URLARG) motionvote = MotionVote.query.filter_by(motionvotekey=motionvotekey).one() meeting = motionvote.meeting motion = motionvote.motion user = motionvote.user html = div() with html: h1('{} {}: {}\'s Vote'.format(meeting.date, meeting.purpose, user.name)) p(b('Motion')) with div(style='margin-left: 1em;'): raw(motion.motion) if motion.comments: raw(motion.comments) return html.render() motionvote_view = MotionVoteView( roles_accepted=[ROLE_SUPER_ADMIN, ROLE_MEETINGS_ADMIN], local_interest_model=LocalInterest, app=bp, pagename='motion vote', displayonly=lambda: motionvote_view.setdisplayonly(), templateargs={'adminguide': adminguide}, endpoint='admin.motionvote', endpointvalues={'interest': '<interest>'}, preselecthtml=motionvote_preselecthtml, rule='<interest>/motionvote', selectlabel='Vote', select2options={ 'width': '200px', 'data': motionvote_all }, ) motionvote_view.register() ######################################################################################### # motionvote api endpoint ######################################################################################### class MotionVoteApi(MethodView): def __init__(self): self.roles_accepted = [ROLE_SUPER_ADMIN, ROLE_MEETINGS_ADMIN, ROLE_MEETINGS_MEMBER] def permission(self): ''' determine if current user is permitted to use the view ''' # adapted from loutilities.tables.DbCrudApiRolePermissions allowed = False # must have meeting_id query arg if request.args.get('motion_id', False): for role in self.roles_accepted: if current_user.has_role(role): allowed = True break return allowed def get(self): try: # verify user can write the data, otherwise abort (adapted from loutilities.tables._editormethod) if not self.permission(): db.session.rollback() cause = 'operation not permitted for user' return jsonify(error=cause) motion_id = request.args['motion_id'] tolist = get_evotes(motion_id) # set defaults motion = Motion.query.filter_by(id=motion_id).one() from_email = motion.meeting.organizer.email subject = '[{} {}] Motion eVote Request'.format( motion.meeting.purpose, motion.meeting.date) message = '' return jsonify(from_email=from_email, subject=subject, message=message, tolist=tolist) except Exception as e: exc = ''.join(format_exception_only(type(e), e)) output_result = {'status': 'fail', 'error': 'exception occurred:<br>{}'.format(exc)} # roll back database updates and close transaction db.session.rollback() current_app.logger.error(format_exc()) return jsonify(output_result) def post(self): try: # verify user can write the data, otherwise abort (adapted from loutilities.tables._editormethod) if not self.permission(): db.session.rollback() cause = 'operation not permitted for user' return jsonify(error=cause) # there should be one 'id' in this form data, 'keyless' requestdata = get_request_data(request.form) motion_id = request.args['motion_id'] from_email = requestdata['keyless']['from_email'] subject = requestdata['keyless']['subject'] message = requestdata['keyless']['message'] generateevotes(motion_id, from_email, subject, message) self._responsedata = [] db.session.commit() return jsonify(self._responsedata) except Exception as e: exc = ''.join(format_exception_only(type(e), e)) output_result = {'status' : 'fail', 'error': 'exception occurred:<br>{}'.format(exc)} # roll back database updates and close transaction db.session.rollback() current_app.logger.error(format_exc()) return jsonify(output_result) bp.add_url_rule('/<interest>/_motionvote/rest', view_func=MotionVoteApi.as_view('_motionvote'), methods=['GET', 'POST']) ########################################################################################## # rsvp endpoint ########################################################################################### class RsvpView(SelectInterestsView): # remove auth_required() decorator decorators = [] def permission(self): invitekey = request.args.get(INVITE_KEY_URLARG, None) if invitekey: permitted = True invite = Invite.query.filter_by(invitekey=invitekey).one() user = localuser2user(invite.user) if current_user != user: # log out and in automatically # see https://flask-security-too.readthedocs.io/en/stable/api.html#flask_security.login_user logout_user() login_user(user) db.session.commit() flash('you have been automatically logged in as {}'.format(current_user.name)) # at this point, if current_user has the target user (may have been changed by invitekey) # check role permissions, permitted = True (from above) unless determined otherwise roles_accepted = MEETINGS_MEMBER_ROLES allowed = False for role in roles_accepted: if current_user.has_role(role): allowed = True break if not allowed: permitted = False # no rsvpkey, not permitted else: permitted = False return permitted def setdisplayonly(self): invitekey = request.args.get(INVITE_KEY_URLARG) invite = Invite.query.filter_by(invitekey=invitekey).one() today = date.today() meetingdate = invite.meeting.date return today > meetingdate def getval(self): invitekey = request.args.get(INVITE_KEY_URLARG) invite = Invite.query.filter_by(invitekey=invitekey).one() return '"{}"'.format(invite.response) def putval(self, val): invitekey = request.args.get(INVITE_KEY_URLARG) invite = Invite.query.filter_by(invitekey=invitekey).one() invite.response = val db.session.commit() def rsvp_preselecthtml(): invitekey = request.args.get(INVITE_KEY_URLARG) invite = Invite.query.filter_by(invitekey=invitekey).one() meeting = invite.meeting user = invite.user html = div() with html: h1('{} {}: {}\'s RSVP'.format(meeting.date, meeting.purpose, user.name)) return html.render() rsvp_view = RsvpView( local_interest_model=LocalInterest, app=bp, pagename='rsvp', displayonly=lambda: rsvp_view.setdisplayonly(), templateargs={'adminguide': adminguide}, endpoint='admin.rsvp', endpointvalues={'interest': '<interest>'}, preselecthtml=rsvp_preselecthtml, rule='<interest>/rsvp', selectlabel='RSVP', select2options={ 'width': '200px', 'data': invite_response_all }, ) rsvp_view.register()
StarcoderdataPython
82473
import maya from .get_posts import get_posts def get_posts_for_dates(site_url, start_date, end_date): # get the posts posts_all = [] posts_selected = [] pages_tried_max = 100 done = False for i in list(range(1, pages_tried_max + 1)): if done is True: continue try: posts = get_posts(site_url, page_number=i) posts_all.extend(posts) except Exception as exc: done = True for post in posts_all: post_date = maya.when(post["date"], timezone="UTC") if post_date >= start_date and post_date <= end_date: posts_selected.append(post) return posts_selected
StarcoderdataPython
5081543
<gh_stars>0 import os import pandas as pd from get_traces import load_traces, get_traces from highlights_state_selection import compute_states_importance, highlights from get_trajectories import get_trajectory_images, create_video, trajectories_by_importance, states_to_trajectories def create_highlights(args): """ load pre-trained agent from RL-Zoo. retrieve execution traces and states. Obtain trajectories and create highlights video. """ """RL-Zoo""" if args.load_traces: traces, states = load_traces(args) else: traces, states = get_traces(args) """HIGHLIGHTS""" data = { 'state': list(states.keys()), 'q_values': [x.observed_actions for x in states.values()] } q_values_df = pd.DataFrame(data) """importance by state""" q_values_df = compute_states_importance(q_values_df, compare_to=args.state_importance) highlights_df = q_values_df state_importance_dict = dict(zip(highlights_df["state"], highlights_df["importance"])) """get highlights""" if args.trajectory_importance == "single_state": """highlights importance by single state importance""" summary_states = highlights(highlights_df, traces, args.summary_traj_budget, args.context_length, args.minimum_gap) summary_trajectories = states_to_trajectories(summary_states, state_importance_dict) else: """highlights importance by trajectory""" summary_trajectories = trajectories_by_importance(args.trajectory_importance, traces, args.context_length, args.load_traces, args.trajectories_file, state_importance_dict, args.similarity_limit, args.summary_traj_budget) if args.verbose: print('HIGHLIGHTS obtained') """make video""" dir_name = os.path.join(args.video_dir, args.algo, args.state_importance + "_state_importance", args.trajectory_importance) get_trajectory_images(summary_trajectories, states, dir_name) create_video(dir_name) if args.verbose: print("HIGHLIGHTS Video Obtained") return def get_multiple_highlights(args): # environments = ['SeaquestNoFrameskip-v4', 'MsPacmanNoFrameskip-v4'] algos = ['a2c', 'ppo2', 'acktr', 'dqn'] state_importance = ["second", "worst"] trajectory_importance = ["avg", "max_minus_avg", "avg_delta", "max_min", "single_state"] args.verbose = False print("Starting Experiments:") # for env in environments: # print(f"\tEnvironment: {env}") for algo in algos: print(f"\t\tAlgorithm: {algo}") args.algo = algo args.traces_file = os.path.join(args.stt_dir, args.algo, "Traces:" + args.file_name) args.state_file = os.path.join(args.stt_dir, args.algo, "States:" + args.file_name) args.trajectories_file = os.path.join(args.stt_dir, args.algo, "Trajectories:" + args.file_name) for s_i in state_importance: args.load_traces = False # need to save new trajectories print(f"\t\t\tState Importance: {s_i}") args.state_importance = s_i for t_i in trajectory_importance: print(f"\t\t\t\tTrajectory Importance: {t_i}") args.trajectory_importance = t_i create_highlights(args) print(f"\t\t\t\t....Completed") args.load_traces = True # use saved trajectories print("Experiments Completed")
StarcoderdataPython
6664265
#!/usr/bin/python # # Sigma Control API DUT (sniffer_get_field_value) # Copyright (c) 2014, Qualcomm Atheros, Inc. # All Rights Reserved. # Licensed under the Clear BSD license. See README for more details. import sys import subprocess import tshark for arg in sys.argv: if arg.startswith("FileName="): filename = arg.split("=", 1)[1] elif arg.startswith("SrcMac="): srcmac = arg.split("=", 1)[1] elif arg.startswith("FrameName="): framename = arg.split("=", 1)[1].lower() elif arg.startswith("FieldName="): fieldname = arg.split("=", 1)[1].lower() frame_filters = tshark.tshark_framenames() if framename not in frame_filters: print "errorCode,Unsupported FrameName" sys.exit() fields = tshark.tshark_fieldnames() if fieldname not in fields: print "errorCode,Unsupported FieldName" sys.exit() cmd = ['tshark', '-r', filename, '-c', '1', '-R', 'wlan.sa==' + srcmac + " and " + frame_filters[framename], '-Tfields', '-e', fields[fieldname]] tshark = subprocess.Popen(cmd, stdout=subprocess.PIPE) data = tshark.stdout.read().rstrip() result = "SUCCESS" if len(data) > 0 else "FAIL" print "CheckResult,%s,ReturnValue,%s" % (result, data)
StarcoderdataPython
5081081
<gh_stars>1-10 """ Report Utility Generates and saves a CT machine's report based off of audit data. """ import logging from ctqa import logutil # Explicitly disabling matplotlib to prevent log spam logging.getLogger('matplotlib').setLevel(logging.WARNING) import matplotlib # Using simplified mpl backend due to exclusive png creation matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.dates as mdates from matplotlib.pyplot import figure import datetime import numpy as np import json import os, sys from ctqa import datautil from ctqa import profileutil from ctqa import notifications #Logger init logger = logging.getLogger(logutil.MAIN_LOG_NAME) def generateReport(dataPath, config, title, upperlimit, lowerlimit, report_type="daily"): """ Retrieves audit data from the data path, organizes a site's data into a displayable format, and creates a PNG graph at the passed save location. """ logger.debug("Generating report: " + title) # Config variable assignment savelocation = config.get("ReportLocation") forecastdays = config.get("DaysToForecast") if report_type == "daily": graphdays = config.get("DailyReportDaysToGraph") else: graphdays = config.get("WeeklyReportDaysToGraph") # Getting data jsonData = datautil.load(dataPath) if jsonData == -1: print('Unable to load json data') return -1 # Selecting center roi data and organizing centerrois = [] centerdates = [] for date in jsonData['Homogeneity'].keys(): try: centerrois.append(jsonData['Homogeneity'][date]['CENTER']['MEAN']) centerdates.append(mdates.datestr2num(date)) except KeyError as e: logger.error("Unable to find key when parsing Homogeneity data", exc_info=True) # Loop through collected dates and omit any submitted before now - graphdays ago temprois = [] tempdates = [] datenow = mdates.date2num(datetime.datetime.now()) for i in range(0, len(centerdates)): if centerdates[i] > (datenow - graphdays): temprois.append(centerrois[i]) tempdates.append(centerdates[i]) centerrois = temprois centerdates = tempdates months = mdates.MonthLocator() # every month days = mdates.WeekdayLocator() monthsFmt = mdates.DateFormatter('%Y-%m') axes = plt.subplot() plt.plot_date(x=centerdates, y=centerrois, fmt='o', label='Center ROI Means', zorder=10) axes.xaxis.set_major_locator(months) axes.xaxis.set_major_formatter(monthsFmt) axes.xaxis.set_minor_locator(days) # Setting axis bounds plt.xlim((datenow - graphdays, datenow + forecastdays + 5)) # Calibration levels plt.axhline(upperlimit, color='red', linewidth=1, label='Control Limits') plt.axhline(lowerlimit, color='red', linewidth=1) # Warning levels plt.axhline(upperlimit/2, color='orange', linewidth=1) plt.axhline(lowerlimit/2, color='orange', linewidth=1) # Center line plt.axhline(0, color='black', linewidth=1) # Adding axes labels plt.xlabel("Date") plt.ylabel("ROI Mean Values") # Rotating x-axis 45 degrees plt.xticks(rotation=45) # Setting image size fig = plt.gcf() # Dimensions for image defined in inches fig.set_size_inches(8,5,forward=True) # foward=True => Propagates changes to gui window # Gathering points taken in the last month lastdates = [] lastrois = [] for i in range(0, len(centerdates)): if centerdates[i] > (datenow - 30): lastdates.append(centerdates[i]) lastrois.append(centerrois[i]) # Fitting regression for decalibration prediction if we have enough data # Aiming for at least 3 points of data in the last month. forecastend = None if len(lastdates) > 2: # Fitting linear polynomial fit = np.polyfit(lastdates, lastrois, 1) # Fitting to dates/rois to a single degree polynomial # Plotting best fit line with a two week forecast forecasttime = lastdates[(len(lastdates)-1)] + forecastdays forecaststart = (lastdates[0]*fit[0]) + fit[1] forecastend = (forecasttime*fit[0]) + fit[1] # y = mx + b # Starting plot at the first value in lastdates plt.plot_date(x=[lastdates[0], forecasttime], y=[forecaststart, forecastend], label='Forecast Trend', fmt="--o", zorder=5) # Creating legend handles, labels = axes.get_legend_handles_labels() strdates = list(jsonData["Homogeneity"].keys()) if len(strdates) >= 1: # Creating blank rectangle for date holder blankrectangle = matplotlib.patches.Rectangle((0, 0), 1, 1, fc="w", fill=False, edgecolor='none', linewidth=0) handles.append(blankrectangle) # Getting last point date as string strdates.sort() lastdatepoint = strdates[len(strdates)-1] lastdatepoint = "Last Point: %s/%s/%s" % (lastdatepoint[0:4], lastdatepoint[4:6], lastdatepoint[6:8]) labels.append(lastdatepoint) axes.legend(handles, labels) # Title plt.title(title) # Packing layout plt.tight_layout() # Setting location for export to reports folder, local to executable file = title + '.png' loc = os.path.abspath(savelocation) # Ensuring the save location exists os.makedirs(loc, exist_ok=True) file_loc = os.path.join(loc, file) # Saving png image to savelocation plt.savefig(file_loc, dpi=300) # Clearing plot. MUST DO THIS UNLESS YOU WANT THE OLD PLOT TO REMAIN FOR ANOTHER RUN plt.close() return forecastend def regenerateReports(dataPath, config, profiles, report_type="daily"): """Finds all data folders and updates reports based on existing data""" # Getting report names and paths to the data pathitems = os.listdir(dataPath) subnames = [] for item in pathitems: itempath = os.path.join(dataPath, item) if os.path.isdir(itempath): subnames.append(item) # Generating reports for site in subnames: # Put together data.json location sitepath = os.path.join(dataPath, site) # Getting site profile stats siteprofile = profiles[site] upperlimit = siteprofile.get("UpperHomogeneityLimit") lowerlimit = siteprofile.get("LowerHomogeneityLimit") # Generating daily or weekly reports sitesplit = site.split("-") shortitle = sitesplit[3] + '-' + sitesplit[2] + '-' + sitesplit[0] if report_type == "daily": # Get title from site name title = 'DAILY-' + shortitle # Create report generateReport(sitepath, config, title, upperlimit, lowerlimit) elif report_type == "weekly": # Get title from site name title = 'WEEKLY-' + shortitle # Create report generateReport(sitepath, config, title, upperlimit, lowerlimit, report_type="weekly")
StarcoderdataPython
5041019
<reponame>navikt/dakan-api-graph from typing import Dict from typing import List from pydantic import BaseModel class Node(BaseModel): id: str label: str properties: dict class NodeResponse(Dict): id: str label: str type: str properties: dict class PagedNodes(Dict): page: int total_pages: int has_next_page: bool max_items_per_page: int total_items: int data: List[Node]
StarcoderdataPython
8146205
import glob import os import gin import MinkowskiEngine as ME import open3d as o3d from src.data.base_loader import * from src.data.transforms import * from src.utils.file import read_trajectory @gin.configurable() class ThreeDMatchPairDatasetBase(PairDataset): OVERLAP_RATIO = None DATA_FILES = None def __init__( self, root, phase, voxel_size=0.05, transform=None, rotation_range=360, random_rotation=True, seed=0, ): PairDataset.__init__( self, root, phase, voxel_size, transform, rotation_range, random_rotation, seed, ) logging.info(f"Loading the subset {phase} from {root}") subset_names = open(self.DATA_FILES[phase]).read().split() for name in subset_names: fname = name + "*%.2f.txt" % self.OVERLAP_RATIO fnames_txt = glob.glob(root + "/" + fname) assert ( len(fnames_txt) > 0 ), f"Make sure that the path {root} has data {fname}" for fname_txt in fnames_txt: with open(fname_txt) as f: content = f.readlines() fnames = [x.strip().split() for x in content] for fname in fnames: self.files.append([fname[0], fname[1]]) logging.info(f"Loaded {len(self.files)} pairs") def __getitem__(self, idx): file0 = os.path.join(self.root, self.files[idx][0]) file1 = os.path.join(self.root, self.files[idx][1]) data0 = np.load(file0) data1 = np.load(file1) xyz0 = data0["pcd"] xyz1 = data1["pcd"] if self.random_rotation: T0 = sample_random_trans(xyz0, self.randg, self.rotation_range) T1 = sample_random_trans(xyz1, self.randg, self.rotation_range) trans = T1 @ np.linalg.inv(T0) xyz0 = self.apply_transform(xyz0, T0) xyz1 = self.apply_transform(xyz1, T1) else: trans = np.identity(4) # Voxelization xyz0_th = torch.from_numpy(xyz0) xyz1_th = torch.from_numpy(xyz1) _, sel0 = ME.utils.sparse_quantize(xyz0_th / self.voxel_size, return_index=True) _, sel1 = ME.utils.sparse_quantize(xyz1_th / self.voxel_size, return_index=True) # Get features npts0 = len(sel0) npts1 = len(sel1) feats_train0, feats_train1 = [], [] xyz0_th = xyz0_th[sel0] xyz1_th = xyz1_th[sel1] feats_train0.append(torch.ones((npts0, 1))) feats_train1.append(torch.ones((npts1, 1))) F0 = torch.cat(feats_train0, 1) F1 = torch.cat(feats_train1, 1) C0 = torch.floor(xyz0_th / self.voxel_size) C1 = torch.floor(xyz1_th / self.voxel_size) if self.transform: C0, F0 = self.transform(C0, F0) C1, F1 = self.transform(C1, F1) extra_package = {"idx": idx, "file0": file0, "file1": file1} return ( xyz0_th.float(), xyz1_th.float(), C0.int(), C1.int(), F0.float(), F1.float(), trans, extra_package, ) @gin.configurable() class ThreeDMatchPairDataset03(ThreeDMatchPairDatasetBase): OVERLAP_RATIO = 0.3 DATA_FILES = { "train": "./datasets/splits/train_3dmatch.txt", "val": "./datasets/splits/val_3dmatch.txt", "test": "./datasets/splits/test_3dmatch.txt", } @gin.configurable() class ThreeDMatchPairDataset05(ThreeDMatchPairDataset03): OVERLAP_RATIO = 0.5 @gin.configurable() class ThreeDMatchPairDataset07(ThreeDMatchPairDataset03): OVERLAP_RATIO = 0.7 @gin.configurable() class ThreeDMatchTestDataset: """3DMatch test dataset""" DATA_FILES = {"test": "./datasets/splits/test_3dmatch.txt"} CONFIG_ROOT = "./datasets/config/3DMatch" TE_THRESH = 30 RE_THRESH = 15 def __init__(self, root): self.root = root subset_names = open(self.DATA_FILES["test"]).read().split() self.subset_names = subset_names self.files = [] for sname in subset_names: traj_file = os.path.join(self.CONFIG_ROOT, sname, "gt.log") assert os.path.exists(traj_file) traj = read_trajectory(traj_file) for ctraj in traj: i = ctraj.metadata[0] j = ctraj.metadata[1] T_gt = ctraj.pose self.files.append((sname, i, j, T_gt)) logging.info(f"Loaded {self.__class__.__name__} with {len(self.files)} data") def __len__(self): return len(self.files) def __getitem__(self, idx): sname, i, j, T_gt = self.files[idx] file0 = os.path.join(self.root, sname, f"cloud_bin_{i}.ply") file1 = os.path.join(self.root, sname, f"cloud_bin_{j}.ply") pcd0 = o3d.io.read_point_cloud(file0) pcd1 = o3d.io.read_point_cloud(file1) xyz0 = np.asarray(pcd0.points).astype(np.float32) xyz1 = np.asarray(pcd1.points).astype(np.float32) return sname, xyz0, xyz1, T_gt class ThreeDLoMatchTestDataset(ThreeDMatchTestDataset): """3DLoMatch test dataset""" SPLIT_FILES = {"test": "./datasets/splits/test_3dmatch.txt"} CONFIG_ROOT = "./datasets/config/3DLoMatch"
StarcoderdataPython
3503982
<reponame>twisted/quotient from nevow.livetrial.testcase import TestCase from nevow.athena import expose from nevow.tags import div, directive from nevow.loaders import stan from axiom.store import Store from xquotient.spam import Filter, HamFilterFragment class PostiniConfigurationTestCase(TestCase): """ Tests for configuring Postini-related behavior. """ jsClass = u'Quotient.Test.PostiniConfigurationTestCase' def setUp(self): self.store = Store() self.filter = Filter(store=self.store) self.widget = HamFilterFragment(self.filter) self.widget.setFragmentParent(self) return self.widget; expose(setUp) def checkConfiguration(self): """ Test that postini filtering has been turned on and that the threshhold has been set to 5.0. """ self.failUnless(self.filter.usePostiniScore) self.assertEquals(self.filter.postiniThreshhold, 5.0) expose(checkConfiguration)
StarcoderdataPython
6547964
<gh_stars>10-100 from hana_ml.algorithms.pal.naive_bayes import NaiveBayes from hana_automl.algorithms.base_algo import BaseAlgorithm class NBayesCls(BaseAlgorithm): def __init__(self): super(NBayesCls, self).__init__() self.title = "NaiveBayesClassifier" self.params_range = { "alpha": (1e-2, 100), "discretization": (0, 1), } def set_params(self, **params): params["discretization"] = ["no", "supervised"][round(params["discretization"])] # self.model = UnifiedClassification(func='NaiveBayes', **params) self.tuned_params = params self.model = NaiveBayes(**params) def optunatune(self, trial): alpha = trial.suggest_float("alpha", 1e-2, 100, log=True) discretization = trial.suggest_categorical( "discretization", ["no", "supervised"] ) # model = UnifiedClassification(func='NaiveBayes', alpha=alpha, discretization=discretization) model = NaiveBayes(alpha=alpha, discretization=discretization) self.model = model
StarcoderdataPython
3592584
<gh_stars>0 import os class Config(object): API_ID = int(os.environ.get("API_ID")) API_HASH = os.environ.get("API_HASH") BOT_TOKEN = os.environ.get("BOT_TOKEN") DATABASE_URL = os.environ.get("DATABASE_URL") UPDATES_CHANNEL = os.environ.get("UPDATES_CHANNEL", None) BIN_CHANNEL = int(os.environ.get("BIN_CHANNEL"))
StarcoderdataPython
1959948
# SPDX-License-Identifier: MIT # Copyright (c) 2019 Akumatic # # https://adventofcode.com/2019/day/8 def readFile() -> str: with open(f"{__file__.rstrip('code.py')}input.txt", "r") as f: return f.read()[:-1] def getLayers(input: str, width: int, height: int) -> list: layers = [] for i in range(0, len(input), width*height): layers.append([input[i+width*x:i+width*(x+1)] for x in range(height)]) return layers def getPicture(layers: list) -> str: width, height = len(layers[0][0]), len(layers[0]) return "\n".join(["".join([getColor(layers, w, h) for w in range(width)]) for h in range(height)]) def getColor(layers: list, w: int, h: int) -> str: for layer in layers: if layer[h][w] != "2": return layer[h][w] return "2" def part1(layers: list) -> int: min, minLayer = None, None for layer in layers: cnt = sum([l.count("0") for l in layer]) if min is None or cnt < min: min, minLayer = cnt, layer return sum([l.count("1") for l in minLayer]) * sum([l.count("2") for l in minLayer]) def part2(layers: list) -> str: picture = getPicture(layers) return f"\n{picture.replace('0', ' ').replace('1', 'X')}" def test(): assert getLayers("123456789012",3,2) == [["123","456"],["789","012"]] assert getPicture(getLayers("0222112222120000",2,2)) == "01\n10" if __name__ == "__main__": test() vals = getLayers(readFile(), 25, 6) print(f"Part 1: {part1(vals)}") print(f"Part 2: {part2(vals)}")
StarcoderdataPython
1778472
import os import sys import imp import numpy as np import warnings warnings.filterwarnings("ignore") # Test for Torch def torch(test_models, model_path, img_path): results_o, results_d, op_sets = dict(), dict(), dict() from PIL import Image import torch import torchvision.models as models from torchvision import transforms from torch.autograd import Variable # Torch to IR from ox.pytorch.pytorch_parser import PytorchParser for model in test_models: if 'inception' in model: image_size = 299 else: image_size = 224 image = Image.open(img_path) transformation = transforms.Compose([ transforms.Resize((image_size, image_size)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) image_tensor = transformation(image).float() image_tensor = image_tensor.unsqueeze_(0) x = Variable(image_tensor) inputshape = [3, image_size, image_size] arch_filename = os.path.join(model_path, 'PyTorch', model+'.pth') # test model if 'resnet50' in model: model_eval = models.resnet50() elif 'inception' in model: from models.torch import inception model_eval = inception.inceptionresnetv2(pretrained=False) elif 'shufflenet' in model: from models.torch import shufflenet model_eval = shufflenet.shufflenet() elif 'fcn' in model: from models.torch import fcn model_eval = fcn.FCNs() elif 'lstm' in model: from models.torch import lstm model_eval = lstm.Lstm() model_eval.eval() predict = model_eval(x).data.numpy() preds = np.squeeze(predict) print('\033[1;31;40m') print(' Result of', model, ': ', np.argmax(preds)) print('\033[0m') results_o[model] = preds torch.save(model_eval, arch_filename) # convert IR_filename = os.path.join(model_path, 'IR', model+'_torch') parser = PytorchParser(arch_filename, inputshape) ops = parser.run(IR_filename) op_sets[model] = ops del parser del PytorchParser # IR to Torch from ox.pytorch.pytorch_emitter import PytorchEmitter for model in test_models: if 'inception' in model: image_size = 299 else: image_size = 224 image = Image.open(img_path) transformation = transforms.Compose([ transforms.Resize((image_size, image_size)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) image_tensor = transformation(image).float() image_tensor = image_tensor.unsqueeze_(0) x = Variable(image_tensor) inputshape = [3, image_size, image_size] arch_filename = os.path.join(model_path, 'IR', model+'_torch.pb') weight_filename = os.path.join(model_path, 'IR', model+'_torch.npy') converted_file = os.path.join(model_path, 'PyTorch', model+'_ox') emitter = PytorchEmitter((arch_filename, weight_filename)) emitter.run(converted_file + '.py', converted_file + '.npy', 'test') model_converted = imp.load_source('PytorchModel', converted_file + '.py').KitModel(converted_file + '.npy') model_converted.eval() predict = model_converted(x).data.numpy() preds = np.squeeze(predict) print('\033[1;31;40m') print(' Result of ', model+'_ox : ', np.argmax(preds)) print('\033[0m') results_d[model] = np.mean(np.power(results_o[model] - preds, 2)) del emitter del PytorchEmitter return results_d, op_sets # Test for Tensorflow def tensorflow(test_models, model_path, img_path): results_o, results_d, op_sets = dict(), dict(), dict() import tensorflow as tf from PIL import Image image = Image.open(img_path) # Tensorflow to IR from ox.tensorflow.tensorflow_parser import TensorflowParser for model in test_models: arch_filename = os.path.join(model_path, 'tensorflow', model, model+'.ckpt.meta') weight_filename = os.path.join(model_path, 'tensorflow', model, model+'.ckpt') # test model if 'resnet50' in model: img = np.array(image.resize((299, 299), Image.ANTIALIAS)) x = np.expand_dims(img, axis=0) from models.tf import resnet50 preds = resnet50.test(x, model_path) elif 'inception' in model: img = np.array(image.resize((224, 224), Image.ANTIALIAS)) x = np.expand_dims(img, axis=0) from models.tf import inception_v3 preds = inception_v3.test(x, model_path) elif 'shufflenet' in model: img = np.array(image.resize((224, 224), Image.ANTIALIAS)) x = np.expand_dims(img, axis=0) from models.tf import shufflenet preds = shufflenet.test(x, model_path) elif 'fcn' in model: img = np.array(image.resize((224, 224), Image.ANTIALIAS)) x = np.expand_dims(img, axis=0) from models.tf import fcn preds = fcn.test(x, model_path) elif 'lstm' in model: img = np.array(image.resize((224, 224), Image.ANTIALIAS)) x = np.expand_dims(img, axis=0) from models.tf import lstm preds = lstm.test(x, model_path) print('\033[1;31;40m') print(' Result of', model, ': ', np.argmax(preds)) print('\033[0m') preds = np.squeeze(preds) if 'fcn' in model: preds = np.array(preds).astype(np.int32) results_o[model] = preds import tensorflow.contrib.keras as keras keras.backend.clear_session() # parser IR_filename = os.path.join(model_path, 'IR', model+'_tf') parser = TensorflowParser(arch_filename, weight_filename, ["OX_output"]) ops = parser.run(IR_filename) op_sets[model] = ops del parser del TensorflowParser # IR to Tensorflow from ox.tensorflow.tensorflow_emitter import TensorflowEmitter for model in test_models: arch_filename = os.path.join(model_path, 'IR', model+'_tf.pb') weight_filename = os.path.join(model_path, 'IR', model+'_tf.npy') converted_file = os.path.join(model_path, 'tensorflow', model, model+'_ox') emitter = TensorflowEmitter((arch_filename, weight_filename)) emitter.run(converted_file + '.py', None, 'test') # test model if 'resnet' in model: img = image.resize((299, 299), Image.ANTIALIAS) else: img = image.resize((224, 224), Image.ANTIALIAS) img = np.array(img) x = np.expand_dims(img, axis=0) if 'lstm' in model: x = np.reshape(x, (-1, 224 * 224 * 3)) model_converted = imp.load_source('TFModel', converted_file + '.py').KitModel(weight_filename) input_tf, model_tf = model_converted with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) predict = sess.run(model_tf, feed_dict = {input_tf : x}) del model_converted del sys.modules['TFModel'] preds = np.squeeze(predict) if 'fcn' in model: preds = np.array(preds).astype(np.int32) print('\033[1;31;40m') print(' Result of ', model+'_ox : ', np.argmax(preds)) print('\033[0m') results_d[model] = np.mean(np.power(results_o[model] - preds, 2)) del emitter del TensorflowEmitter return results_d, op_sets def mk_dirs(path): if not os.path.exists(path): os.makedirs(path) return True return False if __name__=='__main__': test_models = ['resnet50', 'inception_v3', 'shufflenet', 'fcn', 'lstm'] model_path = './../models' img_path = os.path.join('./', 'elephant.jpg') # mkdirs mk_dirs(os.path.join(model_path, 'IR')) mk_dirs(os.path.join(model_path, 'tensorflow')) mk_dirs(os.path.join(model_path, 'PyTorch')) tf_err, tf_op_sets = tensorflow(test_models, model_path, img_path) torch_err, torch_op_sets = torch(test_models, model_path, img_path) for model in test_models: print('Model: {}'.format(model)) print('- Error: tf ({}) | torch ({})'.format(tf_err[model], torch_err[model])) print('- TF Ops: {}'.format(tf_op_sets[model])) print('- Torch Ops: {}'.format(torch_op_sets[model])) print('\n')
StarcoderdataPython
9643583
""" Experimental code for reading Cozmo animations in .bin format. Cozmo animations are stored in files/cozmo/cozmo_resources/assets/animations inside the Cozmo mobile application. Animation data structures are declared in FlatBuffers format in files/cozmo/cozmo_resources/config/cozmo_anim.fbs . """ from typing import List, Tuple from PIL import Image, ImageDraw from . import CozmoAnim from . import protocol_encoder from . import lights __all__ = [ "AnimClip", "load_anim_clips", ] class AnimKeyframe(object): def __init__(self): self.pkts = [] self.record_heading = False self.face_animation = None self.event_id = None # DEVICE_AUDIO_TRIGGER / ENERGY_DRAINCUBE_END / TAPPED_BLOCK class AnimEye(object): def __init__(self, center: Tuple[float, float] = (10.0, 0.0), radius: Tuple[float, float] = (1.22, 0.9), unknown4: float = 0.0, curv1: Tuple[float, float, float, float] = (0.5, 0.5, 0.5, 0.5), curv2: Tuple[float, float, float, float] = (0.5, 0.5, 0.5, 0.5), unknown13: Tuple[float, float, float, float, float, float] = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0)): self.center = center self.radius = radius self.unknown4 = unknown4 self.curv1 = curv1 self.curv2 = curv2 self.unknown13 = unknown13 class AnimFace(object): def __init__(self, angle: float = 0.0, center: Tuple[float, float] = (0.0, 0.0), scale: Tuple[float, float] = (0.0, 0.0), left_eye: AnimEye = AnimEye(), right_eye: AnimEye = AnimEye()): self.angle = angle self.center = center self.scale = scale self.left_eye = left_eye self.right_eye = right_eye class AnimClip(object): def __init__(self, name: str): self.name = name self.keyframes = {} def add_message(self, trigger_time: int, pkt: protocol_encoder.Packet) -> None: if trigger_time not in self.keyframes: self.keyframes[trigger_time] = [] self.keyframes[trigger_time].append(pkt) def record_heading(self, trigger_time: int) -> None: # TODO pass def face_animation(self, trigger_time: int, name: str) -> None: # TODO pass def event(self, trigger_time: int, event_id: str) -> None: # TODO pass def face(self, trigger_time: int, face: AnimFace) -> None: # TODO pass def render_face(face: AnimFace) -> None: CX = 63 CY = 31 SX = 2.25 SY = 2.25 RX = 15 RY = 20 im = Image.new("1", (128, 64), color=(0)) draw = ImageDraw.Draw(im) # draw.line((0, 0) + im.size, fill=128) # draw.line((0, im.size[1], im.size[0], 0), fill=128) for eye in (face.left_eye, face.right_eye): x1 = CX + SX * eye.center[0] - RX * eye.radius[0] y1 = CY + SY * eye.center[1] - RY * eye.radius[1] x2 = CX + SX * eye.center[0] + RX * eye.radius[0] y2 = CY + SY * eye.center[1] + RY * eye.radius[1] draw.ellipse(xy=((x1, y1), (x2, y2)), fill=1, outline=1, width=1) im.show() pass def load_anim_clip(fbclip: CozmoAnim.AnimClip) -> AnimClip: """ Convert a single Cozmo FlatBuffers animation clip into a PyCozmo AnimClip object. """ clip = AnimClip(fbclip.Name().decode("utf-8")) fbkfs = fbclip.Keyframes() # Convert HeadAngle key frames to messages for i in range(fbkfs.HeadAngleKeyFrameLength()): fbkf = fbkfs.HeadAngleKeyFrame(i) # FIXME: Why can duration be larger than 255? pkt = protocol_encoder.AnimHead(duration_ms=min(fbkf.DurationTimeMs(), 255), variability_deg=fbkf.AngleVariabilityDeg(), angle_deg=fbkf.AngleDeg()) trigger_time = fbkf.TriggerTimeMs() clip.add_message(trigger_time, pkt) # Convert LiftHeight key frames to messages for i in range(fbkfs.LiftHeightKeyFrameLength()): fbkf = fbkfs.LiftHeightKeyFrame(i) # FIXME: Why can duration be larger than 255? pkt = protocol_encoder.AnimLift(duration_ms=min(fbkf.DurationTimeMs(), 255), variability_mm=fbkf.HeightVariabilityMm(), height_mm=fbkf.HeightMm()) trigger_time = fbkf.TriggerTimeMs() clip.add_message(trigger_time, pkt) # Convert RecordHeading key frames to messages for i in range(fbkfs.RecordHeadingKeyFrameLength()): fbkf = fbkfs.RecordHeadingKeyFrame(i) trigger_time = fbkf.TriggerTimeMs() clip.record_heading(trigger_time) # Convert TurnToRecordedHeading key frames to messages for i in range(fbkfs.TurnToRecordedHeadingKeyFrameLength()): fbkf = fbkfs.TurnToRecordedHeadingKeyFrame(i) # TODO trigger_time = fbkf.TriggerTimeMs() duration_ms = fbkf.DurationTimeMs() offset_deg = fbkf.OffsetDeg() speed_degPerSec = fbkf.SpeedDegPerSec() accel_degPerSec2 = fbkf.AccelDegPerSec2() decel_degPerSec2 = fbkf.DecelDegPerSec2() tolerance_deg = fbkf.ToleranceDeg() numHalfRevs = fbkf.NumHalfRevs() useShortestDir = fbkf.UseShortestDir() # Convert BodyMotion key frames to messages for i in range(fbkfs.BodyMotionKeyFrameLength()): fbkf = fbkfs.BodyMotionKeyFrame(i) trigger_time = fbkf.TriggerTimeMs() # FIXME: What to do with duration? duration_ms = fbkf.DurationTimeMs() radius_mm = fbkf.RadiusMm().decode("utf-8") try: radius_mm = float(radius_mm) except ValueError: pass pkt = protocol_encoder.AnimBody(speed=fbkf.Speed(), unknown1=32767) clip.add_message(trigger_time, pkt) # Convert BackpackLights key frames to messages for i in range(fbkfs.BackpackLightsKeyFrameLength()): fbkf = fbkfs.BackpackLightsKeyFrame(i) trigger_time = fbkf.TriggerTimeMs() # FIXME: What to do with duration? duration_ms = fbkf.DurationTimeMs() assert fbkf.LeftLength() == 4 left = lights.Color(rgb=(fbkf.Left(0), fbkf.Left(1), fbkf.Left(2))) assert fbkf.FrontLength() == 4 front = lights.Color(rgb=(fbkf.Front(0), fbkf.Front(1), fbkf.Front(2))) assert fbkf.MiddleLength() == 4 middle = lights.Color(rgb=(fbkf.Middle(0), fbkf.Middle(1), fbkf.Middle(2))) assert fbkf.BackLength() == 4 back = lights.Color(rgb=(fbkf.Back(0), fbkf.Back(1), fbkf.Back(2))) assert fbkf.RightLength() == 4 right = lights.Color(rgb=(fbkf.Right(0), fbkf.Right(1), fbkf.Right(2))) pkt = protocol_encoder.AnimBackpackLights(colors=(left.to_int16(), front.to_int16(), middle.to_int16(), back.to_int16(), right.to_int16())) clip.add_message(trigger_time, pkt) # Convert FaceAnimation key frames to messages for i in range(fbkfs.FaceAnimationKeyFrameLength()): fbkf = fbkfs.FaceAnimationKeyFrame(i) trigger_time = fbkf.TriggerTimeMs() name = fbkf.AnimName().decode("utf-8") clip.face_animation(trigger_time, name) # Convert ProceduralFace key frames to messages for i in range(fbkfs.ProceduralFaceKeyFrameLength()): fbkf = fbkfs.ProceduralFaceKeyFrame(i) # TODO trigger_time = fbkf.TriggerTimeMs() assert fbkf.LeftEyeLength() == 19 left_eye = AnimEye(center=(fbkf.LeftEye(0), fbkf.LeftEye(1)), radius=(fbkf.LeftEye(2), fbkf.LeftEye(3)), unknown4=fbkf.LeftEye(4), curv1=(fbkf.LeftEye(5), fbkf.LeftEye(6), fbkf.LeftEye(7), fbkf.LeftEye(8)), curv2=(fbkf.LeftEye(9), fbkf.LeftEye(10), fbkf.LeftEye(11), fbkf.LeftEye(12)), unknown13=(fbkf.LeftEye(13), fbkf.LeftEye(14), fbkf.LeftEye(15), fbkf.LeftEye(16), fbkf.LeftEye(17), fbkf.LeftEye(18))) assert fbkf.RightEyeLength() == 19 right_eye = AnimEye(center=(fbkf.RightEye(0), fbkf.RightEye(1)), radius=(fbkf.RightEye(2), fbkf.RightEye(3)), unknown4=fbkf.RightEye(4), curv1=(fbkf.RightEye(5), fbkf.RightEye(6), fbkf.RightEye(7), fbkf.RightEye(8)), curv2=(fbkf.RightEye(9), fbkf.RightEye(10), fbkf.RightEye(11), fbkf.RightEye(12)), unknown13=(fbkf.RightEye(13), fbkf.RightEye(14), fbkf.RightEye(15), fbkf.RightEye(16), fbkf.RightEye(17), fbkf.RightEye(18))) face = AnimFace(angle=fbkf.FaceAngle(), center=(fbkf.FaceCenterX(), fbkf.FaceCenterY()), scale=(fbkf.FaceScaleX(), fbkf.FaceScaleY()), left_eye=left_eye, right_eye=right_eye) clip.face(trigger_time, face) render_face(face) # Convert RobotAudio key frames to messages for i in range(fbkfs.RobotAudioKeyFrameLength()): fbkf = fbkfs.RobotAudioKeyFrame(i) # TODO trigger_time = fbkf.TriggerTimeMs() audio_event_ids = [] for j in range(fbkf.AudioEventIdLength()): audio_event_ids.append(fbkf.AudioEventId(j)) volume = fbkf.Volume() probabilities = [] for j in range(fbkf.ProbabilityLength()): probabilities.append(fbkf.Probability(j)) has_alts = fbkf.HasAlts() # Convert Event key frames to messages for i in range(fbkfs.EventKeyFrameLength()): fbkf = fbkfs.EventKeyFrame(i) trigger_time = fbkf.TriggerTimeMs() event_id = fbkf.EventId().decode("utf-8") clip.event(trigger_time, event_id) return clip def load_anim_clips(fspec: str) -> List[AnimClip]: """ Load one or more animation clips from a .bin file in Cozmo FlatBuffers format. """ with open(fspec, "rb") as f: buf = f.read() fbclips = CozmoAnim.AnimClips.AnimClips.GetRootAsAnimClips(buf, 0) clips = [] for i in range(fbclips.ClipsLength()): clip = load_anim_clip(fbclips.Clips(i)) clips.append(clip) return clips
StarcoderdataPython
6412395
Ambiente = { '1': '1 - Produccion', '2': '2 - Pruebas', } TipoDocumento = { '11': '11 - Registro civil', '12': '12 - Tarjeta de identidad', '13': '13 - Cédula de ciudadanía', '21': '21 - Tarjeta de extranjería', '22': '22 - Cédula de extranjería', '31': '31 - NIT', '41': '41 - Pasaporte', '42': '42 - Documento de identificación extranjero', '47': '47 - PEP', '50': '50 - NIT de otro país', '91': '91 - NUIP * ', } class Dianbase(): @classmethod def compute_check_digit(cls, rut: str, identification_type: str) -> str: """ @param rut(str): Rut without check digit @param identification_type(str): Identification type @return result(str): Return the check digit of the rut """ result = 0 if identification_type == '31': factor = [3, 7, 13, 17, 19, 23, 29, 37, 41, 43, 47, 53, 59, 67, 71] rut_ajustado=str(rut).rjust( 15, '0') total = sum(int(rut_ajustado[14-i]) * factor[i] for i in range(14)) % 11 if total > 1: result = 11 - total else: result = total else: result = 0 return result
StarcoderdataPython
5148087
import os from ..discretization.modeltime import ModelTime from ..discretization.structuredgrid import StructuredGrid from ..mbase import BaseModel from ..modflow import Modflow from ..mt3d import Mt3dms from ..pakbase import Package from .swtvdf import SeawatVdf from .swtvsc import SeawatVsc class SeawatList(Package): """ List Package class """ def __init__(self, model, extension="list", listunit=7): super().__init__(model, extension, "LIST", listunit) return def __repr__(self): return "List package class" def write_file(self): # Not implemented for list class return class Seawat(BaseModel): """ SEAWAT Model Class. Parameters ---------- modelname : str, default "swttest" Name of model. This string will be used to name the SEAWAT input that are created with write_model. namefile_ext : str, default "nam" Extension for the namefile. modflowmodel : Modflow, default None Instance of a Modflow object. mt3dmodel : Mt3dms, default None Instance of a Mt3dms object. version : str, default "seawat" Version of SEAWAT to use. Valid versions are "seawat" (default). exe_name : str, default "swtv4" The name of the executable to use. structured : bool, default True Specify if model grid is structured (default) or unstructured. listunit : int, default 2 Unit number for the list file. model_ws : str, default "." Model workspace. Directory name to create model data sets. Default is the present working directory. external_path : str, optional Location for external files. verbose : bool, default False Print additional information to the screen. load : bool, default True Load model. silent : int, default 0 Silent option. Attributes ---------- Methods ------- See Also -------- Notes ----- Examples -------- >>> import flopy >>> m = flopy.seawat.swt.Seawat() """ def __init__( self, modelname="swttest", namefile_ext="nam", modflowmodel=None, mt3dmodel=None, version="seawat", exe_name="swtv4", structured=True, listunit=2, model_ws=".", external_path=None, verbose=False, load=True, silent=0, ): super().__init__( modelname, namefile_ext, exe_name, model_ws, structured=structured, verbose=verbose, ) # Set attributes self.version_types = {"seawat": "SEAWAT"} self.set_version(version) self.lst = SeawatList(self, listunit=listunit) self.glo = None self._mf = None self._mt = None # If a MODFLOW model was passed in, then add its packages self.mf = self if modflowmodel is not None: for p in modflowmodel.packagelist: self.packagelist.append(p) self._modelgrid = modflowmodel.modelgrid else: modflowmodel = Modflow() # If a MT3D model was passed in, then add its packages if mt3dmodel is not None: for p in mt3dmodel.packagelist: self.packagelist.append(p) else: mt3dmodel = Mt3dms() # external option stuff self.array_free_format = False self.array_format = "mt3d" self.external_fnames = [] self.external_units = [] self.external_binflag = [] self.external = False self.load = load # the starting external data unit number self._next_ext_unit = 3000 if external_path is not None: assert ( model_ws == "." ), "ERROR: external cannot be used with model_ws" # external_path = os.path.join(model_ws, external_path) if os.path.exists(external_path): print(f"Note: external_path {external_path} already exists") # assert os.path.exists(external_path),'external_path does not exist' else: os.mkdir(external_path) self.external = True self.external_path = external_path self.verbose = verbose self.silent = silent # Create a dictionary to map package with package object. # This is used for loading models. self.mfnam_packages = {} for k, v in modflowmodel.mfnam_packages.items(): self.mfnam_packages[k] = v for k, v in mt3dmodel.mfnam_packages.items(): self.mfnam_packages[k] = v self.mfnam_packages["vdf"] = SeawatVdf self.mfnam_packages["vsc"] = SeawatVsc return @property def modeltime(self): # build model time data_frame = { "perlen": self.dis.perlen.array, "nstp": self.dis.nstp.array, "tsmult": self.dis.tsmult.array, } self._model_time = ModelTime( data_frame, self.dis.itmuni_dict[self.dis.itmuni], self.dis.start_datetime, self.dis.steady.array, ) return self._model_time @property def modelgrid(self): if not self._mg_resync: return self._modelgrid if self.has_package("bas6"): ibound = self.bas6.ibound.array else: ibound = None # build grid # self.dis should exist if modflow model passed self._modelgrid = StructuredGrid( self.dis.delc.array, self.dis.delr.array, self.dis.top.array, self.dis.botm.array, idomain=ibound, lenuni=self.dis.lenuni, proj4=self._modelgrid.proj4, epsg=self._modelgrid.epsg, xoff=self._modelgrid.xoffset, yoff=self._modelgrid.yoffset, angrot=self._modelgrid.angrot, nlay=self.dis.nlay, ) # resolve offsets xoff = self._modelgrid.xoffset if xoff is None: if self._xul is not None: xoff = self._modelgrid._xul_to_xll(self._xul) else: xoff = 0.0 yoff = self._modelgrid.yoffset if yoff is None: if self._yul is not None: yoff = self._modelgrid._yul_to_yll(self._yul) else: yoff = 0.0 self._modelgrid.set_coord_info( xoff, yoff, self._modelgrid.angrot, self._modelgrid.epsg, self._modelgrid.proj4, ) self._mg_resync = not self._modelgrid.is_complete return self._modelgrid @property def nlay(self): if self.dis: return self.dis.nlay else: return 0 @property def nrow(self): if self.dis: return self.dis.nrow else: return 0 @property def ncol(self): if self.dis: return self.dis.ncol else: return 0 @property def nper(self): if self.dis: return self.dis.nper else: return 0 @property def nrow_ncol_nlay_nper(self): dis = self.get_package("DIS") if dis: return dis.nrow, dis.ncol, dis.nlay, dis.nper else: return 0, 0, 0, 0 def get_nrow_ncol_nlay_nper(self): return self.nrow_ncol_nlay_nper def get_ifrefm(self): bas = self.get_package("BAS6") if bas: return bas.ifrefm else: return False @property def ncomp(self): if self.btn: return self.btn.ncomp else: return 1 @property def mcomp(self): if self.btn: return self.btn.mcomp else: return 1 def _set_name(self, value): # Overrides BaseModel's setter for name property super()._set_name(value) # for i in range(len(self.lst.extension)): # self.lst.file_name[i] = self.name + '.' + self.lst.extension[i] # return def change_model_ws(self, new_pth=None, reset_external=False): # if hasattr(self,"_mf"): if self._mf is not None: self._mf.change_model_ws( new_pth=new_pth, reset_external=reset_external ) # if hasattr(self,"_mt"): if self._mt is not None: self._mt.change_model_ws( new_pth=new_pth, reset_external=reset_external ) super().change_model_ws(new_pth=new_pth, reset_external=reset_external) def write_name_file(self): """ Write the name file Returns ------- None """ # open and write header fn_path = os.path.join(self.model_ws, self.namefile) f_nam = open(fn_path, "w") f_nam.write(f"{self.heading}\n") # Write global file entry if self.glo is not None: if self.glo.unit_number[0] > 0: f_nam.write( "{:14s} {:5d} {}\n".format( self.glo.name[0], self.glo.unit_number[0], self.glo.file_name[0], ) ) # Write list file entry f_nam.write( "{:14s} {:5d} {}\n".format( self.lst.name[0], self.lst.unit_number[0], self.lst.file_name[0], ) ) # Write SEAWAT entries and close f_nam.write(str(self.get_name_file_entries())) if self._mf is not None: # write the external files for b, u, f in zip( self._mf.external_binflag, self._mf.external_units, self._mf.external_fnames, ): tag = "DATA" if b: tag = "DATA(BINARY)" f_nam.write(f"{tag:14s} {u:5d} {f}\n") # write the output files for u, f, b in zip( self._mf.output_units, self._mf.output_fnames, self._mf.output_binflag, ): if u == 0: continue if b: f_nam.write(f"DATA(BINARY) {u:5d} {f} REPLACE\n") else: f_nam.write(f"DATA {u:5d} {f}\n") if self._mt is not None: # write the external files for b, u, f in zip( self._mt.external_binflag, self._mt.external_units, self._mt.external_fnames, ): tag = "DATA" if b: tag = "DATA(BINARY)" f_nam.write(f"{tag:14s} {u:5d} {f}\n") # write the output files for u, f, b in zip( self._mt.output_units, self._mt.output_fnames, self._mt.output_binflag, ): if u == 0: continue if b: f_nam.write(f"DATA(BINARY) {u:5d} {f} REPLACE\n") else: f_nam.write(f"DATA {u:5d} {f}\n") # write the external files for b, u, f in zip( self.external_binflag, self.external_units, self.external_fnames ): tag = "DATA" if b: tag = "DATA(BINARY)" f_nam.write(f"{tag:14s} {u:5d} {f}\n") # write the output files for u, f, b in zip( self.output_units, self.output_fnames, self.output_binflag ): if u == 0: continue if b: f_nam.write(f"DATA(BINARY) {u:5d} {f} REPLACE\n") else: f_nam.write(f"DATA {u:5d} {f}\n") f_nam.close() return @classmethod def load( cls, f, version="seawat", exe_name="swtv4", verbose=False, model_ws=".", load_only=None, ): """ Load an existing model. Parameters ---------- f : str Path to SEAWAT name file to load. version : str, default "seawat" Version of SEAWAT to use. Valid versions are "seawat" (default). exe_name : str, default "swtv4" The name of the executable to use. verbose : bool, default False Print additional information to the screen. model_ws : str, default "." Model workspace. Directory name to create model data sets. Default is the present working directory. load_only : list of str, optional Packages to load (e.g. ["lpf", "adv"]). Default None means that all packages will be loaded. Returns ------- flopy.seawat.swt.Seawat Examples -------- >>> import flopy >>> m = flopy.seawat.swt.Seawat.load(f) """ # test if name file is passed with extension (i.e., is a valid file) if os.path.isfile(os.path.join(model_ws, f)): modelname = f.rpartition(".")[0] else: modelname = f # create instance of a seawat model and load modflow and mt3dms models ms = cls( modelname=modelname, namefile_ext="nam", modflowmodel=None, mt3dmodel=None, version=version, exe_name=exe_name, model_ws=model_ws, verbose=verbose, ) mf = Modflow.load( f, version="mf2k", exe_name=None, verbose=verbose, model_ws=model_ws, load_only=load_only, forgive=False, check=False, ) mt = Mt3dms.load( f, version="mt3dms", exe_name=None, verbose=verbose, model_ws=model_ws, forgive=False, ) # set listing and global files using mf objects ms.lst = mf.lst ms.glo = mf.glo for p in mf.packagelist: p.parent = ms ms.add_package(p) ms._mt = None if mt is not None: for p in mt.packagelist: p.parent = ms ms.add_package(p) mt.external_units = [] mt.external_binflag = [] mt.external_fnames = [] ms._mt = mt ms._mf = mf # return model object return ms
StarcoderdataPython
8125198
<filename>Toby/network.py import keras import tensorflow as tf from keras import Input, Model from keras.layers import ( Dense, Reshape, Flatten, LeakyReLU, LayerNormalization, Dropout, BatchNormalization ) def build_generator(latent_space, n_var, n_features=2,use_bias=False): model = tf.keras.Sequential() model.add(Dense(15, input_shape=(latent_space,), activation='relu', use_bias=use_bias)) model.add(BatchNormalization()) model.add(Dense(20, activation='relu')) # 10 model.add(BatchNormalization()) model.add(Dense((20), activation='relu')) # 25 model.add(BatchNormalization()) model.add(Dense(n_features, activation="tanh", use_bias=use_bias)) return model def build_critic(n_var, use_bias=False): model = tf.keras.Sequential() model.add(Dense(25, input_shape=(n_var,), use_bias=use_bias)) # model.add(LayerNormalization()) model.add(LeakyReLU()) model.add(Dropout(0.3)) model.add(Dense(50)) model.add(LeakyReLU()) model.add(Dropout(0.3)) model.add(Dense(50)) model.add(LeakyReLU()) model.add(Dropout(0.3)) model.add(Flatten()) model.add(Dense(1)) return model # 15, 5, 5 (generator for circle) #3d dip data. # def build_generator(latent_space, n_var): # # model = tf.keras.Sequential() # model.add(Dense(n_var*15, input_shape=(latent_space,), use_bias=True)) # model.add(BatchNormalization()) # model.add(LeakyReLU()) # model.add(Dense(n_var*5, use_bias=True)) # model.add(BatchNormalization()) # model.add(LeakyReLU()) # model.add(Dense(n_var*5, use_bias=True)) # model.add(Dense(n_var, activation="tanh", use_bias=True)) # # return model # # def build_critic(n_var): # # model = tf.keras.Sequential() # model.add(Dense(n_var*5, use_bias=True)) # model.add(LayerNormalization()) # model.add(LeakyReLU()) # model.add(Dropout(0.2)) # model.add(Dense(n_var*15)) # model.add(LayerNormalization()) # model.add(LeakyReLU()) # model.add(Flatten()) # model.add(Dense(1)) # # return model
StarcoderdataPython
1604048
print(100 - (int(input())%100))
StarcoderdataPython
6646865
<filename>pyimgsaliency/saliency_mbd.py<gh_stars>0 import math import copy # import sys # import operator # import networkx as nx # import matplotlib.pyplot as plt import numpy as np import bottleneck as bn from scipy.spatial.distance import cdist from skimage.io import imread as skimage_imread from skimage.util import img_as_float from skimage.color import rgb2lab from numba import jit import numexpr as ne # from skimage.segmentation import slic # from scipy.optimize import minimize # import pdb @jit def _raster_scan(img, l, u, d): # called by mbd method n_rows = len(img) n_cols = len(img[0]) for x in range(1, n_rows - 1): for y in range(1, n_cols - 1): ix = img[x][y] d_ = d[x][y] u1 = u[x - 1][y] l1 = l[x - 1][y] u2 = u[x][y - 1] l2 = l[x][y - 1] b1 = max(u1, ix) - min(l1, ix) b2 = max(u2, ix) - min(l2, ix) if d_ <= b1 and d_ <= b2: continue elif b1 < d_ and b1 <= b2: d[x][y] = b1 u[x][y] = max(u1, ix) l[x][y] = min(l1, ix) else: d[x][y] = b2 u[x][y] = max(u2, ix) l[x][y] = min(l2, ix) @jit def _raster_scan_inv(img, l, u, d): # called by mbd method n_rows = len(img) n_cols = len(img[0]) for x in range(n_rows - 2, 1, -1): for y in range(n_cols - 2, 1, -1): ix = img[x][y] d_ = d[x][y] u1 = u[x + 1][y] l1 = l[x + 1][y] u2 = u[x][y + 1] l2 = l[x][y + 1] b1 = max(u1, ix) - min(l1, ix) b2 = max(u2, ix) - min(l2, ix) if d_ <= b1 and d_ <= b2: continue elif b1 < d_ and b1 <= b2: d[x][y] = b1 u[x][y] = max(u1, ix) l[x][y] = min(l1, ix) else: d[x][y] = b2 u[x][y] = max(u2, ix) l[x][y] = min(l2, ix) @jit def mbd(img, num_iters): if len(img.shape) != 2: print('did not get 2d np array to fast mbd') return None if img.shape[0] <= 3 or img.shape[1] <= 3: print('image is too small') return None # l = np.copy(img) # u = np.copy(img) d = np.full_like(img, fill_value=np.inf) d[(0, -1), :] = 0 d[:, (0, -1)] = 0 # unfortunately, iterating over numpy arrays is very slow img_list = img.tolist() l_list = copy.deepcopy(img_list) u_list = copy.deepcopy(img_list) d_list = d.tolist() for x in range(num_iters): if x % 2 == 1: _raster_scan(img_list, l_list, u_list, d_list) else: _raster_scan_inv(img_list, l_list, u_list, d_list) return np.array(d_list) def get_saliency_mbd(img, method='b', border_thickness_percent=0.1): """ Generate saliency map via minimum barrier detection. Source: <NAME>, <NAME>, <NAME>, <NAME>, <NAME> and <NAME>. "Minimum Barrier Salient Object Detection at 80 FPS." :param img: either ndarray, image path string or lists of them. :param method: string, 'b' for background map :param border_thickness_percent: float, 10% in the paper :return: ndarray representation of the mdb saliency map """ # convert input to an interable of ndarrays if isinstance(img, str): img_list = (skimage_imread(img), ) elif isinstance(img, list): if isinstance(img[0], str): img_list = [skimage_imread(im) for im in img] else: img_list = img else: img_list = (img, ) result = [] for img in img_list: img_mean = np.mean(img, axis=2) sal = mbd(img_mean, 3) if 'b' == method: # get the background map # paper uses 30px for an image of size 300px, so we use 10% n_rows, n_cols = img.shape[:2] img_size = math.sqrt(n_rows * n_cols) border_thickness = int(img_size * border_thickness_percent) img_lab = img_as_float(rgb2lab(img)) px_left = img_lab[:border_thickness, :, :] px_right = img_lab[n_rows - border_thickness - 1:-1, :, :] px_top = img_lab[:, :border_thickness, :] px_bottom = img_lab[:, n_cols - border_thickness - 1:-1, :] px_mean_left = np.mean(px_left, axis=(0, 1)) px_mean_right = np.mean(px_right, axis=(0, 1)) px_mean_top = np.mean(px_top, axis=(0, 1)) px_mean_bottom = np.mean(px_bottom, axis=(0, 1)) px_left = px_left.reshape((n_cols * border_thickness, 3)) px_right = px_right.reshape((n_cols * border_thickness, 3)) px_top = px_top.reshape((n_rows * border_thickness, 3)) px_bottom = px_bottom.reshape((n_rows * border_thickness, 3)) cov_left = np.cov(px_left.T) cov_right = np.cov(px_right.T) cov_top = np.cov(px_top.T) cov_bottom = np.cov(px_bottom.T) cov_left = np.linalg.inv(cov_left + np.eye(cov_left.shape[1]) * 1e-12) cov_right = np.linalg.inv(cov_right + np.eye(cov_right.shape[1]) * 1e-12) cov_top = np.linalg.inv(cov_top + np.eye(cov_top.shape[1]) * 1e-12) cov_bottom = np.linalg.inv(cov_bottom + np.eye(cov_bottom.shape[1]) * 1e-12) img_lab_unrolled = img_lab.reshape(img_lab.shape[0] * img_lab.shape[1], 3) img_lab_shape = img_lab.shape[:2] px_mean_left_2 = np.zeros((1, 3)) px_mean_left_2[0, :] = px_mean_left u_left = cdist(img_lab_unrolled, px_mean_left_2, metric='mahalanobis', VI=cov_left) u_left = u_left.reshape(img_lab_shape) px_mean_right_2 = np.zeros((1, 3)) px_mean_right_2[0, :] = px_mean_right u_right = cdist(img_lab_unrolled, px_mean_right_2, metric='mahalanobis', VI=cov_right) u_right = u_right.reshape(img_lab_shape) px_mean_top_2 = np.zeros((1, 3)) px_mean_top_2[0, :] = px_mean_top u_top = cdist(img_lab_unrolled, px_mean_top_2, metric='mahalanobis', VI=cov_top) u_top = u_top.reshape(img_lab_shape) px_mean_bottom_2 = np.zeros((1, 3)) px_mean_bottom_2[0, :] = px_mean_bottom u_bottom = cdist(img_lab_unrolled, px_mean_bottom_2, metric='mahalanobis', VI=cov_bottom) u_bottom = u_bottom.reshape(img_lab_shape) u_left_max = bn.nanmax(u_left) if 0 != u_left_max: u_left /= u_left_max u_right_max = bn.nanmax(u_right) if 0 != u_right_max: u_right /= u_right_max u_top_max = bn.nanmax(u_top) if 0 != u_top_max: u_top /= u_top_max u_bottom_max = bn.nanmax(u_bottom) if 0 != u_bottom_max: u_bottom /= u_bottom_max u_max = np.maximum.reduce([u_left, u_right, u_top, u_bottom]) u_final = ne.evaluate('(u_left + u_right + u_top + u_bottom) - u_max') sal_max = bn.nanmax(sal) if 0 != sal_max: sal /= sal_max u_final_max = bn.nanmax(u_final) if 0 != u_final_max: sal += u_final / u_final_max else: sal += u_final # postprocessing # # apply centeredness map # s = np.mean(sal) # alpha = 50.0 # delta = alpha * math.sqrt(s) xv, yv = np.meshgrid(np.arange(sal.shape[1]), np.arange(sal.shape[0])) w2, h2 = np.array(sal.shape) / 2 sal_max = bn.nanmax(sal) if 0 != sal_max: sal /= sal_max sal = ne.evaluate('(1 - sqrt((xv - h2)**2 + (yv - w2)**2) / sqrt(w2**2 + h2**2)) * sal') # # increase bg/fg contrast sal_max = bn.nanmax(sal) if 0 != sal_max: sal /= sal_max sal = ne.evaluate('255.0 / (1 + exp(-10 * (sal - 0.5)))') result.append(sal) if len(result) is 1: return result[0] return result
StarcoderdataPython
8013500
print("ece"<"csam")
StarcoderdataPython
8071490
#!/usr/bin/env python # USAGE # python real_time_object_detection.py import sys import configparser import time import numpy as np import imutils import cv2 import paho.mqtt.client as mqttClient ### Gather configuration parameters def gather_arg(): conf_par = configparser.ConfigParser() try: conf_par.read('credentials.ini') host= conf_par.get('camera', 'host') broker = conf_par.get('mqtt', 'broker') port = conf_par.getint('mqtt', 'port') prototxt = conf_par.get('ssd', 'prototxt') model = conf_par.get('ssd', 'model') conf = conf_par.getfloat('ssd', 'conf') except: print('Missing credentials or input file!') sys.exit(2) return host, broker, port, prototxt, model, conf ### connect to MQTT Broker ### def on_connect(client, userdata, flags, rc): if rc == 0: print("Connected to broker") global Connected #Use global variable Connected = True #Signal connection else: print("Connection failed") (host, broker, port, prototxt, model, conf) = gather_arg() Connected = False #global variable for the state of the connection client = mqttClient.Client("Python") #create new instance client.on_connect= on_connect #attach function to callback client.connect(broker, port=port) #connect to broker client.loop_start() #start the loop while Connected != True: #Wait for connection time.sleep(1.0) # initialize the list of class labels MobileNet SSD was trained to # detect, then generate a set of bounding box colors for each class CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) # load our serialized model from disk print("[INFO] loading model...") #net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"]) net = cv2.dnn.readNetFromCaffe(prototxt, model) # initialize the video stream, allow the cammera sensor to warmup, print("[INFO] starting video stream...") #if args["source"] == "webcam": #vs = cv2.VideoCapture('rtsp://192.168.128.29:9000/live') vs = cv2.VideoCapture(host) time.sleep(2.0) detected_objects = [] # loop over the frames from the video stream while True: # grab the frame from the threaded video stream and resize it # to have a maximum width of 400 pixels #if args["source"] == "webcam": #ret, frame = vs.read() ret, frame = vs.read() #else: #imgResp=urlopen(url) #imgNp=np.array(bytearray(imgResp.read()),dtype=np.uint8) #frame=cv2.imdecode(imgNp,-1) frame = imutils.resize(frame, width=800) # grab the frame dimensions and convert it to a blob (h, w) = frame.shape[:2] blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 0.007843, (300, 300), 127.5) # pass the blob through the network and obtain the detections and # predictions net.setInput(blob) detections = net.forward() # loop over the detections for i in np.arange(0, detections.shape[2]): # extract the confidence (i.e., probability) associated with # the prediction confidence = detections[0, 0, i, 2] # filter out weak detections by ensuring the `confidence` is # greater than the minimum confidence if confidence > conf: # extract the index of the class label from the # `detections`, then compute the (x, y)-coordinates of # the bounding box for the object idx = int(detections[0, 0, i, 1]) box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") # draw the prediction on the frame label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100) print(label) client.publish("python/test",label) detected_objects.append(label) cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2) y = startY - 15 if startY - 15 > 15 else startY + 15 cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) # show the output frame cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF # if the `q` key was pressed, break from the loop if key == ord("q"): break #cleanup cv2.destroyAllWindows()
StarcoderdataPython
6588842
# -*- coding: utf-8 -*-: from django.test import TestCase from django_dynamic_fixture import G from django.contrib.auth.models import User from resrc.tests.factories import UserFactory from resrc.userprofile.models import Profile from resrc.utils.templatetags.profile import profile from resrc.utils.templatetags.gravatar import gravatar class TemplateTagsTests(TestCase): def test_profile_none(self): '''Test the output of profile templatetag if profile does not exist''' user = G(User) self.assertEqual(None, profile(user)) def test_profile_existing(self): '''Test the output of profile templatetag if profile does exist''' user = G(User) p = G(Profile, user=user) self.assertEqual(p, profile(user)) def test_gravatar_default(self): user = UserFactory() user.save() p = G(Profile, user=user) p.email = '<EMAIL>' p.save() self.assertEqual(gravatar(p.email), \ '<img src="http://www.gravatar.com/avatar.php?size=80&gravatar_id=0d4907cea9d97688aa7a5e722d742f71" alt="gravatar" />') self.assertEqual(gravatar(p.email, 80, 'Hello'), \ '<img src="http://www.gravatar.com/avatar.php?size=80&gravatar_id=0d4907cea9d97688aa7a5e722d742f71" alt="gravatar for Hello" />')
StarcoderdataPython
12853098
from django import forms from crispy_forms.helper import FormHelper from crispy_forms.layout import Submit from django.utils.translation import ugettext_lazy as _ from .models import Ride class RideForm(forms.ModelForm): date = forms.DateField( label=_('Date'), widget=forms.DateInput(format=('%Y-%m-%d'),attrs={ 'class': 'form-control input-group-alternative', 'type': 'date' }) ) time = forms.TimeField( label=_('Time'), required=False, input_formats=['%H:%M'], widget=forms.TimeInput(format=('%H:%M'), attrs={ 'class': 'form-control input-group-alternative', 'type': 'time' }) ) description = forms.CharField( label=_('Description'), required=False, help_text=_('Write here any additional information.'), widget=forms.Textarea(attrs={ 'class': 'form-control input-group-alternative', }) ) class Meta: model = Ride fields = ('date', 'time', 'origin', 'destination', 'seats', 'price', 'description') def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_method = 'post' self.helper.add_input( Submit('submit', _('Save Ride'), css_class='btn-block')) for visible in self.visible_fields(): visible.field.widget.attrs['class'] = 'input-group-alternative'
StarcoderdataPython
1689682
import os, copy, cProfile, pstats, io import numpy as np import gdspy as gp import gds_tools as gdst def profile(fnc): """A decorator that uses cProfile to profile a function""" def inner(*args, **kwargs): pr = cProfile.Profile() pr.enable() retval = fnc(*args, **kwargs) pr.disable() s = io.StringIO() sortby = 'cumulative' ps = pstats.Stats(pr, stream=s).sort_stats(sortby) ps.print_stats() print(s.getvalue()) return retval return inner def RotMat(rad): #========================== # Generate rotation matrix \\ #========================================================================= # Arguments: rad : radians to rotate about origin || #========================================================================= return np.matrix([[np.cos(rad), -np.sin(rad)], [np.sin(rad), np.cos(rad)]]) def VecRot(rad, vec, origin = (0, 0)): #========================= # Perform vector rotation \\ #========================================================================= # Arguments: rad : radians to rotate about origin || # vec : input vector (2-x-n list) || #========================================================================= return (RotMat(rad).dot(np.array(vec) - np.array(origin)) + np.array(origin)).tolist()[0] def instruction_parse(s, args = None): #============================ # Simple instructions parser \\ #========================================================================= # Parses a string and converts it to a dictionary. || # || # Arguments: s : input strung || # args : dictionary with keys for variable placement || #========================================================================= if args: for a in args: s = s.replace('{'+a+'}', str(args[a])) dic = {} key = '' val = '' pos = 'key' for i, c in enumerate(s): if c == ' ' or c == '\n' or c == '\t': # ignore whitespace continue elif c == ':': pos = 'val' elif c != ':' and c != ',' and pos == 'key': key += c elif c != ':' and c != ',' and pos == 'val': val += c elif c == ',': True # do nothing else: print('Error: unknown parameter, could not parse.') return False if c == ',' or (i + 1) == len(s): val = eval(val.replace('pi', str(np.pi))) dic[key] = float(val) key = '' val = '' pos = 'key' if (i + 1) == len(s): break return dic def flatten(objectlist, endpoints, endpoint_dims, layer = 0): #=========================== # FLatten a list of objects \\ #========================================================================= # Flattening will cause all objects in the objectlist to be placed in || # one single layer and remove boundaries between them if there are any. || # All layer information will become lost! If you just want to combine || # structures while keeping layer information, use cluster() || # || # Arguments: objectlist : list of objects (GDStructure) || # endpoints : dictionary of new endpoints || # endpoint_dims : dictionary of new endpoint sizes || #========================================================================= # Define function to allow for recursive walk through list and pick out all # compound structures def stacker(inlist): outlist = [] for i in inlist: if i.compound: outlist += [i] + stacker(i.compound) else: outlist += [i] return outlist objectlist = stacker(objectlist) ends = copy.deepcopy(endpoints) epsz = copy.deepcopy(endpoint_dims) objs = [] for i in objectlist: objs.append(i.structure) return gdst.classes.GDStructure(gp.boolean(objs, None, 'or', layer = layer), ends, epsz) def lattice(cell, repeat, spacing): #============================ # Generate a crystal lattice \\ #========================================================================= # Arguments: cell : unit cell as gdspy Cell object || # repeat : (n_x, n_y) vector with amount of cells || # spacing : sapce between unit cells || #========================================================================= array = gp.CellArray(cell, repeat[0], repeat[1], spacing) ends = {'A': (0, spacing[1] * repeat[1] / 2), 'B': (spacing[0] * (repeat[0] - 1) / 2, spacing[1] * (repeat[1] - 1/2))} epsz = {'A': 0, 'B': 0} return gdst.classes.GDStructure(array, ends, epsz) def lattice_cutter(lattice, objectlist, mode = 'and', layer = 0): #===================================== # Cut a lattice up using boolean \\ #========================================================================= # Arguments: lattice : output of lattice() function || # objectlist : list of objects that intersect lattice || # (optional) mode : what boolean operation to apply || # (optional) layer : layer to put resulting structure on || #========================================================================= if type(objectlist) is not type([]): objectlist = [objectlist] for i in objectlist: if i.compound: lattice = lattice_cutter(lattice, i.compound) lattice.structure = gp.boolean(lattice.structure, i.structure, mode, layer = layer) return lattice def add(cell, elements, signal_from = None): #================================ # Add structures to a gdspy cell \\ #========================================================================= # Arguments: cell : gdspy cell object || # elements : list of GDStructure objects || #========================================================================= if not isinstance(signal_from, list): signal_from = [signal_from] if elements not in signal_from: signal_from.append(elements) if not isinstance(elements, list): elements = [elements] for element in elements: if isinstance(element, list): gdst.add(cell, element) else: if isinstance(element, gdst.classes.GDSComponent): for polygon in element.polygons: cell.add(polygon) for previous_component in element.previous: if previous_component not in signal_from and element.previous: signal_from.append(previous_component) gdst.add(cell, previous_component, signal_from = signal_from) for next_component in element.next: if next_component not in signal_from and element.next: signal_from.append(next_component) gdst.add(cell, next_component, signal_from = signal_from) else: cell.add(element) def mirror(p): #============================ # Mirror points about y-axis \\ #========================================================================= # Arguments: p : list of (x, y) points || #========================================================================= for i, val in enumerate(p): p[i] = (-val[0], val[1]) return p def symm_coords(points, mirror_x = True, mirror_y = True): if not isinstance(points, list): points = [points] output_points = copy.deepcopy(points) if mirror_y: for i, val in enumerate(points): output_points.append((-val[0], val[1])) if mirror_x: for i, val in enumerate(points): output_points.append((val[0], -val[1])) if mirror_x and mirror_y: for i, val in enumerate(points): output_points.append((-val[0], -val[1])) return output_points def save(cell, filename, unit = 1e-6, precision = 1e-9): #===================== # Save cell to a file \\ #========================================================================= # Arguments: cell : gdspy cell object or a list of cells || # filename : filename to write to (relative path) || #========================================================================= writer = gp.GdsWriter(filename, unit = unit, precision = precision) if type(cell) == type([]): for cell_item in cell: writer.write_cell(cell_item) else: writer.write_cell(cell) return writer.close() def biquadratic_func(x): return x ** 2 * (2 - x ** 2) def rotate_reference_cell(reference, angle, center = (0, 0)): dx = np.cos(angle) * (reference.origin[0] - center[0]) - np.sin(angle) * (reference.origin[1] - center[1]) + center[0] dy = np.sin(angle) * (reference.origin[0] - center[0]) + np.cos(angle) * (reference.origin[1] - center[1]) + center[1] angle_deg = np.degrees(angle) reference.rotation += angle_deg reference.translate(dx - reference.origin[0], dy - reference.origin[1]) def inside(points, cellref, dist, nop = 3, precision = 0.001): #===================== # Save cell to a file \\ #========================================================================= # Arguments: points : list of points to check || # cellref : gdspy cell reference object || # dist : distance from points to search || # nop : number of probe points within dist || # precision : gdspy.inside precision parameter || #========================================================================= # Force uneven if nop % 2 == 0: nop += 1 search_ps = [] for p in points: px = np.linspace(p[0] - dist/2, p[0] + dist/2, nop) py = np.linspace(p[1] - dist/2, p[1] + dist/2, nop) search_ps.append([[i, j] for i in px for j in py]) return gp.inside(search_ps, cellref, precision = precision) def convert_to_dxf(filename): print("-- Converting to DXF --") # Convert GDS to DXF with Klayout os.system('/Applications/klayout.app/Contents/MacOS/klayout -zz -rd input="{}.gds" -rd output="{}.dxf" -r convert.rb'.format(filename, filename)) def bounding_box_center(object): bounding_box = object.get_bounding_box() bounding_box_x = (bounding_box[1][0] + bounding_box[0][0]) / 2 bounding_box_y = (bounding_box[1][1] + bounding_box[0][1]) / 2 return (bounding_box_x, bounding_box_y) def file_path_name(file_path_name_ext): filename = os.path.basename(file_path_name_ext) filepath = file_path_name_ext.replace(filename, "") filename = filename.replace(".py","") return filepath + filename
StarcoderdataPython
1970573
<reponame>nik-panekin/olx_scraper<filename>utils/tor_proxy.py import subprocess import time import requests TOR_EXECUTABLE_PATH = 'C:/Tor/Tor/tor.exe' TOR_SOCKS_PROXIES = { 'http': 'socks5://127.0.0.1:9050', 'https': 'socks5://127.0.0.1:9050' } TOR_STARTUP_TIME = 15 HTTP_BIN_HOST = 'https://httpbin.org/' class TorProxy(): def __init__(self, executable_path: str=TOR_EXECUTABLE_PATH): self.executable_path = executable_path self.process = None def __del__(self): self.terminate() def restart(self, wait: bool=False) -> bool: self.terminate() self.process = subprocess.Popen(args=[self.executable_path], stdout=subprocess.PIPE, stderr=subprocess.PIPE) if wait: time.sleep(TOR_STARTUP_TIME) def is_running(self) -> bool: return self.process != None and self.process.poll() == None def terminate(self): if self.is_running(): self.process.terminate() def test_ok(self) -> bool: if self.is_running(): try: r = requests.get(HTTP_BIN_HOST, proxies=TOR_SOCKS_PROXIES) except requests.exceptions.RequestException: return False if r.status_code != requests.codes.ok: return False return True return False def get_output(self) -> str: if self.process != None and self.process.poll() != None: return self.process.stdout.read().decode('ascii', 'ignore') else: return None
StarcoderdataPython
1639645
<reponame>KVSlab/vascularManipulationToolkit<filename>morphman/common/vmtk_wrapper.py ## Copyright (c) <NAME>, <NAME>. All rights reserved. ## See LICENSE file for details. ## This software is distributed WITHOUT ANY WARRANTY; without even ## the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ## PURPOSE. See the above copyright notices for more information. from os import path from vmtk import vtkvmtk, vmtkscripts # Global array names from morphman.common.vtk_wrapper import read_polydata, write_polydata radiusArrayName = 'MaximumInscribedSphereRadius' surfaceNormalsArrayName = 'SurfaceNormalArray' parallelTransportNormalsArrayName = 'ParallelTransportNormals' groupIDsArrayName = "GroupIds" abscissasArrayName = 'Abscissas' blankingArrayName = 'Blanking' branchClippingArrayName = 'BranchClippingArray' def vmtk_smooth_centerline(centerlines, num_iter, smooth_factor): """ Wrapper for vmtkCenterlineSmoothing. Smooth centerlines with a moving average filter. Args: centerlines (vtkPolyDat): Centerline to be smoothed. num_iter (int): Number of smoothing iterations. smooth_factor (float): Smoothing factor Returns: vtkPolyData: Smoothed version of input centerline """ centerline_smoothing = vmtkscripts.vmtkCenterlineSmoothing() centerline_smoothing.Centerlines = centerlines centerline_smoothing.SetNumberOfSmoothingIterations = num_iter centerline_smoothing.SetSmoothingFactor = smooth_factor centerline_smoothing.Execute() centerlines_smoothed = centerline_smoothing.Centerlines return centerlines_smoothed def vmtk_compute_centerlines(end_point, inlet, method, outlet, pole_ids, resampling_step, surface, voronoi, flip_normals=False, cap_displacement=None, delaunay_tolerance=None, simplify_voronoi=False): """ Wrapper for vmtkCenterlines. compute centerlines from a branching tubular surface. Seed points can be interactively selected on the surface, or specified as the barycenters of the open boundaries of the surface. Args: end_point (int): Toggle append open profile barycenters to centerlines surface (vktPolyData): Surface model voronoi (vtkPolyData): Voronoi diagram based on previous centerlines (Optional) inlet (ndarray): List of source point coordinates method (str): Seed point selection method outlet (ndarray): List of target point coordinates pole_ids (ndarray): Pole ID list of Voronoi diagram (Optional) resampling_step (float): Resampling step flip_normals (float): Flip normals after outward normal computation cap_displacement (float): Displacement of the center points of caps at open profiles along their normals delaunay_tolerance (float): Tolerance for evaluating coincident points during Delaunay tessellation simplify_voronoi (bool): Toggle simplification of Voronoi diagram Returns: """ centerlines = vmtkscripts.vmtkCenterlines() centerlines.Surface = surface centerlines.SeedSelectorName = method centerlines.AppendEndPoints = end_point centerlines.Resampling = 1 centerlines.ResamplingStepLength = resampling_step centerlines.SourcePoints = inlet centerlines.TargetPoints = outlet if voronoi is not None and pole_ids is not None: centerlines.VoronoiDiagram = voronoi centerlines.PoleIds = pole_ids if flip_normals: centerlines.FlipNormals = 1 if cap_displacement is not None: centerlines.CapDisplacement = cap_displacement if delaunay_tolerance is not None: centerlines.DelaunayTolerance = delaunay_tolerance if simplify_voronoi: centerlines.SimplifyVoronoi = 1 centerlines.Execute() centerlines_output = centerlines.Centerlines return centerlines, centerlines_output def vmtk_compute_centerline_sections(surface, centerlines): """ Wrapper for vmtk centerline sections. Args: surface (vtkPolyData): Surface to meassure area. centerlines (vtkPolyData): centerline to measure along. Returns: line (vtkPolyData): centerline with the attributes centerline_sections_area (vtkPolyData): sections along the centerline """ centerline_sections = vtkvmtk.vtkvmtkPolyDataCenterlineSections() centerline_sections.SetInputData(surface) centerline_sections.SetCenterlines(centerlines) centerline_sections.SetCenterlineSectionAreaArrayName('CenterlineSectionArea') centerline_sections.SetCenterlineSectionMinSizeArrayName('CenterlineSectionMinSize') centerline_sections.SetCenterlineSectionMaxSizeArrayName('CenterlineSectionMaxSize') centerline_sections.SetCenterlineSectionShapeArrayName('CenterlineSectionShape') centerline_sections.SetCenterlineSectionClosedArrayName('CenterlineSectionClosed') centerline_sections.Update() centerlines_sections_area = centerline_sections.GetOutput() line = centerline_sections.GetCenterlines() return line, centerlines_sections_area def vmtk_compute_geometric_features(centerlines, smooth, outputsmoothed=False, factor=1.0, iterations=100): """Wrapper for vmtk centerline geometry. Args: centerlines (vtkPolyData): Line to compute centerline geometry from. smooth (bool): Turn on and off smoothing before computing the geometric features. outputsmoothed (bool): Turn on and off the smoothed centerline. factor (float): Smoothing factor. iterations (int): Number of iterations. Returns: line (vtkPolyData): Line with geometry. """ geometry = vmtkscripts.vmtkCenterlineGeometry() geometry.Centerlines = centerlines if smooth: geometry.LineSmoothing = 1 geometry.OutputSmoothedLines = outputsmoothed geometry.SmoothingFactor = factor geometry.NumberOfSmoothingIterations = iterations geometry.FernetTangentArrayName = "FernetTangent" geometry.FernetNormalArrayName = "FernetNormal" geometry.FrenetBinormalArrayName = "FernetBiNormal" geometry.CurvatureArrayName = "Curvature" geometry.TorsionArrayName = "Torsion" geometry.TortuosityArrayName = "Tortuosity" geometry.Execute() return geometry.Centerlines def vmtk_compute_centerline_attributes(centerlines): """ Wrapper for centerline attributes. Args: centerlines (vtkPolyData): Line to investigate. Returns: line (vtkPolyData): Line with centerline atributes. """ attributes = vmtkscripts.vmtkCenterlineAttributes() attributes.Centerlines = centerlines attributes.NormalsArrayName = parallelTransportNormalsArrayName attributes.AbscissaArrayName = abscissasArrayName attributes.Execute() centerlines = attributes.Centerlines return centerlines def vmtk_resample_centerline(centerlines, length): """Wrapper for vmtkcenterlineresampling Args: centerlines (vtkPolyData): line to resample. length (float): resampling step. Returns: line (vtkPolyData): Resampled line. """ resampler = vmtkscripts.vmtkCenterlineResampling() resampler.Centerlines = centerlines resampler.Length = length resampler.Execute() resampled_centerline = resampler.Centerlines return resampled_centerline def vmtk_cap_polydata(surface, boundary_ids=None, displacement=0.0, in_plane_displacement=0.0): """Wrapper for vmtkCapPolyData. Close holes in a surface model. Args: in_plane_displacement (float): Displacement of boundary baricenters, at section plane relative to the radius displacement (float): Displacement of boundary baricenters along boundary normals relative to the radius. boundary_ids (ndarray): Set ids of the boundaries to cap. surface (vtkPolyData): Surface to be capped. Returns: surface (vtkPolyData): Capped surface. """ surface_capper = vtkvmtk.vtkvmtkCapPolyData() surface_capper.SetInputData(surface) surface_capper.SetDisplacement(displacement) surface_capper.SetInPlaneDisplacement(in_plane_displacement) if boundary_ids is not None: surface_capper.SetBoundaryIds(boundary_ids) surface_capper.Update() return surface_capper.GetOutput() def vmtk_smooth_surface(surface, method, iterations=800, passband=1.0, relaxation=0.01, normalize_coordinates=True, smooth_boundary=True): """Wrapper for a vmtksurfacesmoothing. Args: smooth_boundary (bool): Toggle allow change of position of boundary points normalize_coordinates (bool): Normalization of coordinates prior to filtering, minimize spurious translation effects (Taubin only) surface (vtkPolyData): Input surface to be smoothed. method (str): Smoothing method. iterations (int): Number of iterations. passband (float): The passband for Taubin smoothing. relaxation (float): The relaxation for laplace smoothing. Returns: surface (vtkPolyData): The smoothed surface. """ smoother = vmtkscripts.vmtkSurfaceSmoothing() smoother.Surface = surface smoother.NumberOfIterations = iterations if method == "laplace": smoother.RelaxationFactor = relaxation elif method == "taubin": smoother.PassBand = passband if not normalize_coordinates: smoother.NormalizeCoordinates = 0 if not smooth_boundary: smoother.BoundarySmoothing = 0 smoother.Method = method smoother.Execute() surface = smoother.Surface return surface def vmtk_compute_voronoi_diagram(surface, filename, simplify_voronoi=False, cap_displacement=None, flip_normals=False, check_non_manifold=False, delaunay_tolerance=0.001, subresolution_factor=1.0): """ Wrapper for vmtkDelanayVoronoi. Creates a surface model's coresponding voronoi diagram. Args: subresolution_factor (float): Factor for removal of subresolution tetrahedra flip_normals (bool): Flip normals after outward normal computation. cap_displacement (float): Displacement of the center points of caps at open profiles along their normals simplify_voronoi (bool): Use alternative algorith for compute Voronoi diagram, reducing quality, improving speed check_non_manifold (bool): Check the surface for non-manifold edges delaunay_tolerance (float): Tolerance for evaluating coincident points during Delaunay tessellation surface (vtkPolyData): Surface model filename (str): Path where voronoi diagram is stored Returns: new_voronoi (vtkPolyData): Voronoi diagram """ if path.isfile(filename): return read_polydata(filename) voronoi = vmtkscripts.vmtkDelaunayVoronoi() voronoi.Surface = surface voronoi.RemoveSubresolutionTetrahedra = 1 voronoi.DelaunayTolerance = delaunay_tolerance voronoi.SubresolutionFactor = subresolution_factor if simplify_voronoi: voronoi.SimplifyVoronoi = 1 if cap_displacement is not None: voronoi.CapDisplacement = cap_displacement if flip_normals: voronoi.FlipNormals = 1 if check_non_manifold: voronoi.CheckNonManifold = 1 voronoi.Execute() new_voronoi = voronoi.VoronoiDiagram write_polydata(new_voronoi, filename) return new_voronoi def vmtk_polyball_modeller(voronoi_diagram, poly_ball_size): """ Wrapper for vtkvmtkPolyBallModeller. Create an image where a polyball or polyball line are evaluated as a function. Args: voronoi_diagram (vtkPolyData): Input Voronoi diagram representing surface model poly_ball_size (list): Resolution of output Returns: vtkvmtkPolyBallModeller: Image where polyballs have been evaluated over a Voronoi diagram """ modeller = vtkvmtk.vtkvmtkPolyBallModeller() modeller.SetInputData(voronoi_diagram) modeller.SetRadiusArrayName(radiusArrayName) modeller.UsePolyBallLineOff() modeller.SetSampleDimensions(poly_ball_size) modeller.Update() return modeller def vmtk_surface_connectivity(surface, method="largest", clean_output=True, closest_point=None): """ Wrapper for vmtkSurfaceConnectivity. Extract the largest connected region, the closest point-connected region or the scalar-connected region from a surface Args: surface (vtkPolyData): Surface model method (str): Connectivity method, either 'largest' or 'closest' clean_output (bool): Clean the unused points in the output closest_point (ndarray): Coordinates of the closest point Returns: vmtkSurfaceConnectivity: Filter for extracting largest connected region """ connector = vmtkscripts.vmtkSurfaceConnectivity() connector.Surface = surface connector.Method = method if clean_output: connector.CleanOutput = 1 if closest_point is not None: connector.ClosestPoint = closest_point connector.Execute() return connector def vmtk_branch_clipper(centerlines, surface, clip_value=0.0, inside_out=False, use_radius_information=True, interactive=False): """ Wrapper for vmtkBranchClipper. Divide a surface in relation to its split and grouped centerlines. Args: centerlines (vtkPolyData): Input centerlines surface (vtkPolyData): Input surface model clip_value (float): inside_out (bool): Get the inverse of the branch clipper output. use_radius_information (bool): To use MISR info for clipping branches. interactive (bool): Use interactive mode, requires user input. Returns: vmtkBranchClipper: Branch clipper used to divide a surface into regions. """ clipper = vmtkscripts.vmtkBranchClipper() clipper.Surface = surface clipper.Centerlines = centerlines clipper.ClipValue = clip_value clipper.RadiusArrayName = radiusArrayName clipper.GroupIdsArrayName = groupIDsArrayName clipper.BlankingArrayName = blankingArrayName if inside_out: clipper.InsideOut = 1 if not use_radius_information: clipper.UseRadiusInformation = 0 if interactive: clipper.Interactive = 1 clipper.Execute() return clipper def vmtk_endpoint_extractor(centerlines, number_of_end_point_spheres, number_of_gap_spheres=1): """ Wrapper for vmtkEndpointExtractor. Find the endpoints of a split and grouped centerline Args: centerlines (vtkPolyData): Input centerlines. number_of_end_point_spheres (float): Number of spheres to skip at endpoint number_of_gap_spheres (float): Number of spheres to skip per gap. Returns: vmtkEndpointExtractor: Endpoint extractor based on centerline """ extractor = vmtkscripts.vmtkEndpointExtractor() extractor.Centerlines = centerlines extractor.RadiusArrayName = radiusArrayName extractor.GroupIdsArrayName = groupIDsArrayName extractor.BlankingArrayName = branchClippingArrayName extractor.NumberOfEndPointSpheres = number_of_end_point_spheres extractor.NumberOfGapSpheres = number_of_gap_spheres extractor.Execute() return extractor def vmtk_compute_surface_normals(surface, auto_orient_normals=True, orient_normals=True, compute_cell_normals=False, flip_normals=False): """ Wrapper for vmtkSurfaceNormals. Computes the normals of the input surface. Args: surface (vtkPolyData): Input surface model auto_orient_normals (bool): Try to auto orient normals outwards orient_normals (bool): Try to orient normals so that neighboring points have similar orientations compute_cell_normals (bool): Compute cell normals instead of point normals flip_normals (bool): Flip normals after computing them Returns: vtkPolyData: Surface model with computed normals """ surface_normals = vmtkscripts.vmtkSurfaceNormals() surface_normals.Surface = surface surface_normals.NormalsArrayName = surfaceNormalsArrayName if not auto_orient_normals: surface_normals.AutoOrientNormals = 0 if not orient_normals: surface_normals.Consistency = 0 if compute_cell_normals: surface_normals.ComputeCellNormals = 1 if flip_normals: surface_normals.FlipNormals = 1 surface_normals.Execute() surface_with_normals = surface_normals.Surface return surface_with_normals def vmtk_compute_branch_extractor(centerlines): """ Wrapper for vmtkBranchExtractor. Split and group centerlines along branches: Args: centerlines (vtkPolyData): Line to split into branches. Returns: vtkPolyData: Split centerline. """ brancher = vmtkscripts.vmtkBranchExtractor() brancher.Centerlines = centerlines brancher.RadiusArrayName = radiusArrayName brancher.Execute() centerlines_branched = brancher.Centerlines return centerlines_branched def vmtk_surface_curvature(surface, curvature_type="mean", absolute=False, median_filtering=False, curvature_on_boundaries=False, bounded_reciporcal=False, epsilon=1.0, offset=0.0): """Wrapper for vmtksurfacecurvature Args: surface (vtkPolyData): The input surface curvature_type (str): The type of surface curvature to compute (mean | gaussian | maximum | minimum) absolute (bool): Output the avsolute value of the curvature median_filtering (bool): Output curvature after median filtering to suppress numerical noise speckles curvature_on_boundaries (bool): Turn on/off curvature on boundaries bounded_reciporcal (bool): Output bounded reciprocal of the curvature epsilon (float): Bounded reciprocal epsilon at the denominator offset (float): Offset curvature by the specified value Returns: surface (vtkPolydata): Input surface with an point data array with curvature values """ curvature = vmtkscripts.vmtkSurfaceCurvature() curvature.Surface = surface curvature.CurvatureType = curvature_type if absolute: curvature.AbsoluteCurvature = 1 else: curvature.AbsoluteCurvature = 0 if median_filtering: curvature.MedianFiltering = 1 else: curvature.MedianFiltering = 0 if curvature_on_boundaries: curvature.CurvatureOnBoundaries = 1 else: curvature.CurvatureOnBoundaries = 0 if bounded_reciporcal: curvature.BoundedReciporcal = 1 else: curvature.BoundedReciporcal = 0 curvature.Epsilon = epsilon curvature.Offset = offset curvature.Execute() return curvature.Surface def vmtk_surface_distance(surface1, surface2, distance_array_name="Distance", distance_vectors_array_name="", signed_distance_array_name="", flip_normals=False): """ Compute the pointwise minimum distance of the input surface from a reference surface Args: surface1 (vtkPolyData): Input surface surface2 (vtkPolyData): Reference surface distance_array_name (str): Name of distance array distance_vectors_array_name (str): Name of distance array (of vectors) signed_distance_array_name (str): Name of distance arrays signed as positive or negative flip_normals (bool): Flip normals relative to reference surface Returns: surface (vtkPoyData): Output surface with distance info """ distance = vmtkscripts.vmtkSurfaceDistance() distance.Surface = surface1 distance.ReferenceSurface = surface2 distance.DistanceArrayName = distance_array_name distance.DistanceVectorsArrayname = distance_vectors_array_name distance.SignedDistanceArrayName = signed_distance_array_name if flip_normals: distance.FlipNormals = 1 else: distance.FlipNormals = 0 distance.Execute() return distance.Surface
StarcoderdataPython
6498146
# This file is part of the pyMOR project (http://www.pymor.org). # Copyright 2013-2017 pyMOR developers and contributors. All rights reserved. # License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) from pymor.core.interfaces import ImmutableInterface from pymor.discretizations.basic import DiscretizationBase from pymor.operators.mpi import mpi_wrap_operator from pymor.tools import mpi from pymor.vectorarrays.mpi import MPIVectorSpace, _register_local_space class MPIDiscretization(DiscretizationBase): """Wrapper class for MPI distributed |Discretizations|. Given a single-rank implementation of a |Discretization|, this wrapper class uses the event loop from :mod:`pymor.tools.mpi` to allow an MPI distributed usage of the |Discretization|. The underlying implementation needs to be MPI aware. In particular, the discretization's :meth:`~pymor.discretizations.interfaces.DiscretizationInterface.solve` method has to perform an MPI parallel solve of the discretization. Note that this class is not intended to be instantiated directly. Instead, you should use :func:`mpi_wrap_discretization`. Parameters ---------- obj_id :class:`~pymor.tools.mpi.ObjectId` of the local |Discretization| on each rank. operators Dictionary of all |Operators| contained in the discretization, wrapped for use on rank 0. Use :func:`mpi_wrap_discretization` to automatically wrap all operators of a given MPI-aware |Discretization|. products See `operators`. pickle_local_spaces See :class:`~pymor.operators.mpi.MPIOperator`. space_type See :class:`~pymor.operators.mpi.MPIOperator`. """ def __init__(self, obj_id, operators, products=None, pickle_local_spaces=True, space_type=MPIVectorSpace): d = mpi.get_object(obj_id) visualizer = MPIVisualizer(obj_id) super().__init__(operators=operators, products=products, visualizer=visualizer, cache_region=None, name=d.name) self.obj_id = obj_id local_spaces = mpi.call(_MPIDiscretization_get_local_spaces, obj_id, pickle_local_spaces) if all(ls == local_spaces[0] for ls in local_spaces): local_spaces = (local_spaces[0],) self.solution_space = space_type(local_spaces) self.build_parameter_type(d) self.parameter_space = d.parameter_space def _solve(self, mu=None): return self.solution_space.make_array( mpi.call(mpi.method_call_manage, self.obj_id, 'solve', mu=mu) ) def __del__(self): mpi.call(mpi.remove_object, self.obj_id) def _MPIDiscretization_get_local_spaces(self, pickle_local_spaces): self = mpi.get_object(self) local_space = self.solution_space if not pickle_local_spaces: local_space = _register_local_space(local_space) local_spaces = mpi.comm.gather(local_space, root=0) if mpi.rank0: return tuple(local_spaces) class MPIVisualizer(ImmutableInterface): def __init__(self, d_obj_id): self.d_obj_id = d_obj_id def visualize(self, U, d, **kwargs): if isinstance(U, tuple): U = tuple(u.obj_id for u in U) else: U = U.obj_id mpi.call(_MPIVisualizer_visualize, self.d_obj_id, U, **kwargs) def _MPIVisualizer_visualize(d, U, **kwargs): d = mpi.get_object(d) if isinstance(U, tuple): U = tuple(mpi.get_object(u) for u in U) else: U = mpi.get_object(U) d.visualize(U, **kwargs) def mpi_wrap_discretization(local_discretizations, use_with=False, with_apply2=False, pickle_local_spaces=True, space_type=MPIVectorSpace): """Wrap MPI distributed local |Discretizations| to a global |Discretization| on rank 0. Given MPI distributed local |Discretizations| referred to by the :class:`~pymor.tools.mpi.ObjectId` `local_discretizations`, return a new |Discretization| which manages these distributed discretizations from rank 0. This is done by first wrapping all |Operators| of the |Discretization| using :func:`~pymor.operators.mpi.mpi_wrap_operator`. Alternatively, `local_discretizations` can be a callable (with no arguments) which is then called on each rank to instantiate the local |Discretizations|. When `use_with` is `False`, an :class:`MPIDiscretization` is instantiated with the wrapped operators. A call to :meth:`~pymor.discretizations.interfaces.DiscretizationInterface.solve` will then use an MPI parallel call to the :meth:`~pymor.discretizations.interfaces.DiscretizationInterface.solve` methods of the wrapped local |Discretizations| to obtain the solution. This is usually what you want when the actual solve is performed by an implementation in the external solver. When `use_with` is `True`, :meth:`~pymor.core.interfaces.ImmutableInterface.with_` is called on the local |Discretization| on rank 0, to obtain a new |Discretization| with the wrapped MPI |Operators|. This is mainly useful when the local discretizations are generic |Discretizations| as in :mod:`pymor.discretizations.basic` and :meth:`~pymor.discretizations.interfaces.DiscretizationInterface.solve` is implemented directly in pyMOR via operations on the contained |Operators|. Parameters ---------- local_discretizations :class:`~pymor.tools.mpi.ObjectId` of the local |Discretizations| on each rank or a callable generating the |Discretizations|. use_with See above. with_apply2 See :class:`~pymor.operators.mpi.MPIOperator`. pickle_local_spaces See :class:`~pymor.operators.mpi.MPIOperator`. space_type See :class:`~pymor.operators.mpi.MPIOperator`. """ if not isinstance(local_discretizations, mpi.ObjectId): local_discretizations = mpi.call(mpi.function_call_manage, local_discretizations) operators, products = mpi.call(_mpi_wrap_discretization_manage_operators, local_discretizations) operators = {k: mpi_wrap_operator(v, with_apply2=with_apply2, pickle_local_spaces=pickle_local_spaces, space_type=space_type) if v else None for k, v in operators.items()} products = {k: mpi_wrap_operator(v, with_apply2=with_apply2, pickle_local_spaces=pickle_local_spaces, space_type=space_type) if v else None for k, v in products.items()} if use_with: d = mpi.get_object(local_discretizations) visualizer = MPIVisualizer(local_discretizations) return d.with_(operators=operators, products=products, visualizer=visualizer, cache_region=None) else: return MPIDiscretization(local_discretizations, operators, products, pickle_local_spaces=pickle_local_spaces, space_type=space_type) def _mpi_wrap_discretization_manage_operators(obj_id): d = mpi.get_object(obj_id) operators = {k: mpi.manage_object(v) if v else None for k, v in sorted(d.operators.items())} products = {k: mpi.manage_object(v) if v else None for k, v in sorted(d.products.items())} if d.products else {} if mpi.rank0: return operators, products
StarcoderdataPython
143037
'''Define the user model''' from sqlalchemy import Column, Integer, String from .base import Base class User(Base): '''User Table''' __tablename__ = 'user' id = Column(Integer, primary_key=True) display_name = Column(String(100), nullable=True) username = Column(String(300), nullable=False, index=True) email = Column(String(254), unique=True)
StarcoderdataPython
3428917
<reponame>cuis15/FCFL import numpy as np import argparse from utils import concave_fun_eval, create_pf, circle_points from hco_search import hco_search import matplotlib.pyplot as plt from latex_utils import latexify parser = argparse.ArgumentParser() parser.add_argument('--n', type = int, default=20, help="the batch size for the unbiased model") parser.add_argument('--m', type = int, default=20, help="the batch size for the predicted model") parser.add_argument('--eps0', type = float, default=0.6, help="max_epoch for unbiased_moe") parser.add_argument('--eps1', type = float, default=1e-4, help="max_epoch for predictor") parser.add_argument('--eps2', type = float, default=1e-4, help="iteras for printing the loss info") parser.add_argument('--para_delta', type = float, default=0.1, help="max_epoch for unbiased_moe") parser.add_argument('--lr_delta', type = float, default=0.01, help="max_epoch for predictor") parser.add_argument('--step_size', type = float, default=0.005, help="iteras for printing the loss info") parser.add_argument('--max_iters', type = int, default=700, help="iteras for printing the loss info") parser.add_argument('--grad_tol', type = float, default=1e-4, help="iteras for printing the loss info") parser.add_argument('--store_xs', type = bool, default=False, help="iteras for printing the loss info") args = parser.parse_args() def case1_satisfyingMCF(): n = args.n # dim of solution space m = args.m # dim of objective space ##construct x0 x0 = np.zeros(n) x0[range(0, n, 2)] = -0.2 x0[range(1, n, 2)] = -0.2 eps_set = [0.8, 0.6, 0.4, 0.2] color_set = ["c", "g", "orange", "b"] latexify(fig_width=2.2, fig_height=1.8) l0, _ = concave_fun_eval(x0) max_iters = args.max_iters relax = True pf = create_pf() fig = plt.figure() fig.subplots_adjust(left=.12, bottom=.12, right=.9, top=.9) label = 'Pareto\nFront' if relax else '' plt.plot(pf[:, 0], pf[:, 1], lw=2.0, c='k', label=label) label = r'$l(\theta^0)$' plt.scatter([l0[0]], [l0[1]], c='r', s=40) plt.annotate(label, xy = (l0[0]+0.03, l0[1]), xytext = (l0[0]+0.03, l0[1])) for idx, eps0 in enumerate(eps_set): if eps0 == 0.2: eps_plot = np.array([[ i*0.1 * 0.903, 0.2] for i in range(11)]) plt.plot(eps_plot[:,0], eps_plot[:,1], color = "gray", label = r'$\epsilon$', lw=1, ls='--') elif eps0 == 0.4: eps_plot = np.array([[ i*0.1 * 0.807, 0.4] for i in range(11)]) plt.plot(eps_plot[:,0], eps_plot[:,1], color = "gray", lw=1, ls='--') elif eps0 == 0.6: eps_plot = np.array([[ i*0.1* 0.652, 0.6] for i in range(11)]) plt.plot(eps_plot[:,0], eps_plot[:,1], color = "gray", lw=1, ls='--') elif eps0 == 0.8: eps_plot = np.array([[ i*0.1 * 0.412, 0.8] for i in range(11)]) plt.plot(eps_plot[:,0], eps_plot[:,1], color = "gray", lw=1, ls='--') else: print("error eps0") exit() c = color_set[idx] _, res = hco_search(concave_fun_eval, x=x0, deltas = [0.5, 0.5], para_delta = 0.5, lr_delta = args.lr_delta, relax=False, eps=[eps0, args.eps1, args.eps2], max_iters=max_iters, n_dim=args.n, step_size=args.step_size, grad_tol=args.grad_tol, store_xs=args.store_xs) ls = res['ls'] alpha = 1.0 zorder = 1 # plt.plot(ls[:, 0], ls[:, 1], c=c, lw=2.0, alpha=alpha, zorder=zorder) plt.plot(ls[:, 0], ls[:, 1], c=c, lw=2.0) print(ls[-1]) plt.scatter(ls[[-1], 0], ls[[-1], 1], c=c, s=40) plt.xlabel(r'$l_1$') plt.ylabel(r'$l_2$', rotation = "horizontal") plt.legend(loc='lower left', handletextpad=0.3, framealpha=0.9) ax = plt.gca() ax.xaxis.set_label_coords(1.05, -0.02) ax.yaxis.set_label_coords(-0.02, 1.02) ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') plt.savefig('figures/satifying' + '.pdf') plt.close() def case2_violatingMCF(): n = args.n # dim of solution space m = args.m # dim of objective space ##construct x0 x0 = np.zeros(n) x0[range(0, n, 2)] = 0.3 x0[range(1, n, 2)] = -0.3 eps_set = [0.2, 0.4, 0.6, 0.8] color_set = ["c", "g", "orange", "b"] latexify(fig_width=2.2, fig_height=1.8) l0, _ = concave_fun_eval(x0) max_iters = args.max_iters relax = True pf = create_pf() fig = plt.figure() fig.subplots_adjust(left=.12, bottom=.12, right=.9, top=.9) label = 'Pareto\nFront' if relax else '' plt.plot(pf[:, 0], pf[:, 1], lw=2.0, c='k', label=label) label = r'$l(\theta^0)$' plt.scatter([l0[0]], [l0[1]], c='r', s=40) plt.annotate(label, xy = (l0[0]+0.03, l0[1]), xytext = (l0[0]+0.03, l0[1])) for idx, eps0 in enumerate(eps_set): if eps0 == 0.2: eps_plot = np.array([[ i*0.1 * 0.903, 0.2] for i in range(11)]) plt.plot(eps_plot[:,0], eps_plot[:,1], color = "gray", label = r'$\epsilon$', lw=1, ls='--') elif eps0 == 0.4: eps_plot = np.array([[ i*0.1 * 0.807, 0.4] for i in range(11)]) plt.plot(eps_plot[:,0], eps_plot[:,1], color = "gray", lw=1, ls='--') elif eps0 == 0.6: eps_plot = np.array([[ i*0.1* 0.652, 0.6] for i in range(11)]) plt.plot(eps_plot[:,0], eps_plot[:,1], color = "gray", lw=1, ls='--') elif eps0 == 0.8: eps_plot = np.array([[ i*0.1 * 0.412, 0.8] for i in range(11)]) plt.plot(eps_plot[:,0], eps_plot[:,1], color = "gray", lw=1, ls='--') else: print("error eps0") exit() c = color_set[idx] _, res = hco_search(concave_fun_eval, x=x0, deltas = [0.5, 0.5], para_delta = 0.5, lr_delta = args.lr_delta, relax=False, eps=[eps0, args.eps1, args.eps2], max_iters=max_iters, n_dim=args.n, step_size=args.step_size, grad_tol=args.grad_tol, store_xs=args.store_xs) ls = res['ls'] alpha = 1.0 zorder = 1 plt.plot(ls[:, 0], ls[:, 1], c=c, lw=2.0, alpha=alpha, zorder=zorder) print(ls[-1]) plt.scatter(ls[[-1], 0], ls[[-1], 1], c=c, s=40) plt.xlabel(r'$l_1$') plt.ylabel(r'$l_2$', rotation = "horizontal") plt.legend(loc='lower left', handletextpad=0.3, framealpha=0.9) ax = plt.gca() ax.xaxis.set_label_coords(1.05, -0.02) ax.yaxis.set_label_coords(-0.02, 1.02) ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') plt.savefig('figures/violating' + '.pdf') plt.close() if __name__ == '__main__': case1_satisfyingMCF() case2_violatingMCF()
StarcoderdataPython
1697337
<reponame>Weiqi97/LilyPadz from flask import Flask, request, render_template from lilypadz.model.clustering import get_all_clustering_result, \ get_one_clustering_result from lilypadz.model.small_series import get_ss_for_one_toad, \ get_ss_for_multiple_toads, get_ss_for_one_toad_sight, \ get_ss_for_multiple_toads_sight # Set up the flask app with desired parameters. app = Flask( __name__, static_folder="static", template_folder="templates" ) @app.route('/') def index(): return render_template( "index.html" ) @app.route("/small_series", methods=["POST"]) def small_series(): options = request.json if not options["sight"]: if options["compare"]: return get_ss_for_multiple_toads( names=options["toads"].split("!"), variable=options["variable"].split("!") ) else: return get_ss_for_one_toad( name=options["toad"], variable=options["variable"].split("!") ) else: if options["compare"]: return get_ss_for_multiple_toads_sight( names=options["toads"].split("!"), variable=options["variable"].split("!") ) else: return get_ss_for_one_toad_sight( name=options["toad"], variable=options["variable"].split("!") ) @app.route("/cluster", methods=["POST"]) def cluster(): options = request.json if not options["sight"]: if options["compare"]: return get_all_clustering_result( n_clusters=int(options["num_cluster"]), names=options["toads"].split("!"), variable=options["variable"].split("!") ) else: return get_one_clustering_result( n_clusters=int(options["num_cluster"]), name=options["toad"], variable=options["variable"].split("!") ) else: if options["compare"]: return get_all_clustering_result( n_clusters=int(options["num_cluster"]), names=options["toads"].split("!"), variable=options["variable"].split("!") ) else: return get_one_clustering_result( n_clusters=int(options["num_cluster"]), name=options["toad"], variable=options["variable"].split("!") ) @app.route('/upload', methods=['POST']) def upload_file(): # Get the file from flask. file = request.files["file"] # Save the file to proper location file.save("lilypadz/data/dummy") # Return a dummy message to front end. return "GOOD"
StarcoderdataPython
3432349
from utils.db.mongo_orm import * class Role(Model): class Meta: database = db collection = 'role' # Fields _id = ObjectIdField() name = StringField(unique=True) description = StringField() def __str__(self): return "name:{} - description:{}".format(self.name, self.description) if __name__ == "__main__": pass
StarcoderdataPython
11390852
# -*- coding: utf-8 -*- """Implementation of the ``AbstractRepositoryBackend`` using the ``disk-objectstore`` as the backend.""" import contextlib import shutil from typing import BinaryIO, Iterable, Iterator, List, Optional, Tuple from disk_objectstore import Container from aiida.common.lang import type_check from .abstract import AbstractRepositoryBackend __all__ = ('DiskObjectStoreRepositoryBackend',) class DiskObjectStoreRepositoryBackend(AbstractRepositoryBackend): """Implementation of the ``AbstractRepositoryBackend`` using the ``disk-object-store`` as the backend.""" def __init__(self, container): type_check(container, Container) self._container = container def __str__(self) -> str: """Return the string representation of this repository.""" if self.is_initialised: return f'DiskObjectStoreRepository: {self.container.container_id} | {self.container.get_folder()}' return 'DiskObjectStoreRepository: <uninitialised>' @property def uuid(self) -> Optional[str]: """Return the unique identifier of the repository.""" if not self.is_initialised: return None return self.container.container_id @property def key_format(self) -> Optional[str]: return self.container.hash_type def initialise(self, **kwargs) -> None: """Initialise the repository if it hasn't already been initialised. :param kwargs: parameters for the initialisation. """ self.container.init_container(**kwargs) @property def is_initialised(self) -> bool: """Return whether the repository has been initialised.""" return self.container.is_initialised @property def container(self) -> Container: return self._container def erase(self): """Delete the repository itself and all its contents.""" try: shutil.rmtree(self.container.get_folder()) except FileNotFoundError: pass def _put_object_from_filelike(self, handle: BinaryIO) -> str: """Store the byte contents of a file in the repository. :param handle: filelike object with the byte content to be stored. :return: the generated fully qualified identifier for the object within the repository. :raises TypeError: if the handle is not a byte stream. """ return self.container.add_streamed_object(handle) def has_objects(self, keys: List[str]) -> List[bool]: return self.container.has_objects(keys) @contextlib.contextmanager def open(self, key: str) -> Iterator[BinaryIO]: """Open a file handle to an object stored under the given key. .. note:: this should only be used to open a handle to read an existing file. To write a new file use the method ``put_object_from_filelike`` instead. :param key: fully qualified identifier for the object within the repository. :return: yield a byte stream object. :raise FileNotFoundError: if the file does not exist. :raise OSError: if the file could not be opened. """ super().open(key) with self.container.get_object_stream(key) as handle: yield handle # type: ignore[misc] def iter_object_streams(self, keys: List[str]) -> Iterator[Tuple[str, BinaryIO]]: with self.container.get_objects_stream_and_meta(keys) as triplets: for key, stream, _ in triplets: assert stream is not None yield key, stream # type: ignore[misc] def delete_objects(self, keys: List[str]) -> None: super().delete_objects(keys) self.container.delete_objects(keys) def list_objects(self) -> Iterable[str]: return self.container.list_all_objects() def get_object_hash(self, key: str) -> str: """Return the SHA-256 hash of an object stored under the given key. .. important:: A SHA-256 hash should always be returned, to ensure consistency across different repository implementations. :param key: fully qualified identifier for the object within the repository. :raise FileNotFoundError: if the file does not exist. """ if not self.has_object(key): raise FileNotFoundError(key) if self.container.hash_type != 'sha256': return super().get_object_hash(key) return key
StarcoderdataPython
6639036
<reponame>Hopson97/AppleFall import graphics as gfx import common import vector import tiles import apple as appleF import math import drawer def createAndroid(window): '''Creates the Android sprite (based on Dr. <NAME>'s code)''' coords = drawer.loadSpriteVerticies("android") body = gfx.Polygon(coords) head = gfx.Circle(gfx.Point(30, 20), 20) eye1 = gfx.Circle(gfx.Point(22, 7), 4) eye2 = gfx.Circle(gfx.Point(37, 7), 4) droidParts = [body, head, eye1, eye2] eyes = [eye1, eye2] for part in droidParts: if part in eyes: colour = "white" else: colour = "green" part.setFill(colour) part.setOutline(colour) part.move(500, tiles.BASE_HEIGHT - 45) part.draw(window) return droidParts def handleInput(key, velocity): '''Says it on the tin''' acceleration = 1.25 if key == "a": if (velocity > 0): velocity = -velocity / 2 velocity -= acceleration elif key == "d": if (velocity < 0): velocity = -velocity / 2 velocity += acceleration return velocity def clampVelocity(velX): clamp = 10 if (velX > clamp): return clamp elif (velX < -clamp): return -clamp else: return velX def movePlayer(sprite, amount): for part in sprite: part.move(amount, 0) def tryCollideMissingTiles(playerVel, minIndex, maxIndex, isTilesActive): '''Collides player with any tiles that might be missing''' if playerVel < 0: #moving left if not isTilesActive[minIndex]: playerVel = 0.5 elif playerVel > 0: if not isTilesActive[maxIndex]: playerVel = -0.5 return playerVel def tryCollideWindowEdges(playerVel, minX, maxX): '''Collides player with window edges''' if minX < 0: playerVel = 0.5 elif maxX > common.WINDOW_WIDTH: playerVel = -0.5 return playerVel def tryCollideEdges(playerVel, minX, maxX, isTilesActive): '''Collides player with the X-edges of the window, as well as inactive tiles''' tileIndexMin = math.floor((minX + 15) / tiles.TILE_SIZE) tileIndexMax = math.ceil ((maxX - 15) / tiles.TILE_SIZE) - 1 playerVel = tryCollideMissingTiles(playerVel, tileIndexMin, tileIndexMax, isTilesActive) playerVel = tryCollideWindowEdges (playerVel, minX, maxX) return playerVel * 0.91 #apply velocity dampening def isTochingApple(apple, minX): '''Returns True if the player is touching an apple''' appleX = apple.getCenter().x appleY = apple.getCenter().y return vector.distance(minX + 30, tiles.BASE_HEIGHT - 20, appleX, appleY) < appleF.DIAMETER def shouldFireProjectile(window): '''Returns true on mouse click (which is > 10px away from last click)''' mousePoint = window.checkMouse() if mousePoint != None: x1 = shouldFireProjectile.oldPos.x x2 = mousePoint.x y1 = shouldFireProjectile.oldPos.y y2 = mousePoint.y if vector.distance(x1, y1, x2, y2) > 10: shouldFireProjectile.oldPos = mousePoint return True, mousePoint return False, shouldFireProjectile.oldPos shouldFireProjectile.oldPos = gfx.Point(-100, -100)
StarcoderdataPython
6415220
########## 6.8.7. Kernel Qui-quadrado ########## # O kernel qui-quadrado é uma escolha muito popular para treinar SVMs não lineares em aplicações de visão computacional. Ele pode ser calculado usando chi2_kernel e depois passado para um SVC com kernel="precomputed": from sklearn.svm import SVC from sklearn.metrics.pairwise import chi2_kernel X = [[0, 1], [1, 0], [.2, .8], [.7, .3]] y = [0, 1, 0, 1] K = chi2_kernel(X, gamma=.5) K #array([[1. , 0.36787944, 0.89483932, 0.58364548], # [0.36787944, 1. , 0.51341712, 0.83822343], # [0.89483932, 0.51341712, 1. , 0.7768366 ], # [0.58364548, 0.83822343, 0.7768366 , 1. ]]) svm = SVC(kernel='precomputed').fit(K, y) svm.predict(K) #array([0, 1, 0, 1]) # Ele também pode ser usado diretamente como o argumento do kernel: svm = SVC(kernel=chi2_kernel).fit(X, y) svm.predict(X) #array([0, 1, 0, 1]) # O núcleo qui-quadrado é dado por # k(x, y) = \exp \left (-\gamma \sum_i \frac{(x[i] - y[i]) ^ 2}{x[i] + y[i]} \right ) # Os dados são assumidos como não negativos e geralmente são normalizados para ter uma norma L1 de um. A normalização é racionalizada com a conexão com a distância qui-quadrado, que é uma distância entre distribuições de probabilidade discretas. # O núcleo qui quadrado é mais comumente usado em histogramas (sacos) de palavras visuais. ## Referências: ## <NAME>. and <NAME>. and <NAME>. and <NAME>. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 (https://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf)
StarcoderdataPython
351837
import os import tempfile import unittest import shutil from typing import Dict from atcodertools.client.atcoder import AtCoderClient from atcodertools.client.models.contest import Contest from atcodertools.client.models.problem import Problem from atcodertools.common.language import CPP from atcodertools.tools import submit RESOURCE_DIR = os.path.join( os.path.dirname(os.path.abspath(__file__)), "./resources/test_atcoder_client_mock/") class MockResponse: def __init__(self, text=None, url=None): self.text = text self.url = url @classmethod def response_from(cls, filename): with open(filename, 'r') as f: return MockResponse(text=f.read()) def fake_resp(filename: str): return MockResponse.response_from(os.path.join(RESOURCE_DIR, filename)) def create_fake_request_func(get_url_to_resp: Dict[str, MockResponse] = None, post_url_to_resp: Dict[str, MockResponse] = None, ): def func(url, method="GET", **kwargs): if method == "GET": return get_url_to_resp.get(url) return post_url_to_resp.get(url) return func def restore_client_after_run(func): def test_decorated(*args, **kwargs): client = AtCoderClient() prev = client._request func(*args, **kwargs) client._request = prev return test_decorated class TestAtCoderClientMock(unittest.TestCase): def setUp(self): self.temp_dir = tempfile.mkdtemp() self.client = AtCoderClient() @restore_client_after_run def test_download_submission_list(self): contest = Contest("arc001") self.client._request = create_fake_request_func( { contest.get_my_submissions_url(1): fake_resp("my_submissions/1.html"), contest.get_my_submissions_url(2): fake_resp("my_submissions/2.html"), contest.get_my_submissions_url(3): fake_resp("my_submissions/3.html"), contest.get_my_submissions_url(4): fake_resp("my_submissions/4.html") } ) submissions = self.client.download_submission_list(Contest("arc001")) submission_ids = [x.submission_id for x in submissions] self.assertEqual(50, len(submission_ids)) self.assertEqual(sorted(submission_ids, reverse=True), submission_ids) @restore_client_after_run def test_submit_source_code(self): contest = Contest("arc001") problem = Problem(contest, "A", "arc001_1") self.client._request = create_fake_request_func( {contest.get_submit_url(): fake_resp("submit/after_get.html")}, {contest.get_submit_url(): fake_resp("submit/after_post.html")} ) # test two patterns (str, Language object) for parameter lang for lang in [CPP, "C++14 (GCC 5.4.1)"]: submission = self.client.submit_source_code( contest, problem, lang, "x") self.assertEqual(13269587, submission.submission_id) self.assertEqual("arc001_1", submission.problem_id) @restore_client_after_run def test_login_success(self): self.client._request = create_fake_request_func( post_url_to_resp={ "https://atcoder.jp/login": fake_resp("after_login.html") } ) def fake_supplier(): return "@@@ invalid user name @@@", "@@@ password @@@" self.client.login(credential_supplier=fake_supplier, use_local_session_cache=False) @restore_client_after_run def test_check_logging_in_success(self): setting_url = "https://atcoder.jp/home" self.client._request = create_fake_request_func( {setting_url: fake_resp("after_login.html")}, ) self.assertTrue(self.client.check_logging_in()) @restore_client_after_run def test_check_logging_in_fail(self): setting_url = "https://atcoder.jp/home" self.client._request = create_fake_request_func( {setting_url: fake_resp("before_login.html")} ) self.assertFalse(self.client.check_logging_in()) @restore_client_after_run def test_exec_on_submit(self): global submitted_source_code submitted_source_code = None def create_fake_request_func_for_source(get_url_to_resp: Dict[str, MockResponse] = None, post_url_to_resp: Dict[str, MockResponse] = None, ): global submitted_source_code def func(url, method="GET", **kwargs): global submitted_source_code if method == "GET": return get_url_to_resp.get(url) submitted_source_code = kwargs["data"]['sourceCode'] return post_url_to_resp.get(url) return func contest = Contest("abc215") self.client._request = create_fake_request_func_for_source( {contest.get_submit_url(): fake_resp("submit/after_get.html")}, {contest.get_submit_url(): fake_resp("submit/after_post.html")} ) test_dir = os.path.join(self.temp_dir, "exec_on_submit") shutil.copytree(os.path.join(RESOURCE_DIR, "exec_on_submit"), test_dir) config_path = os.path.join(test_dir, "config.toml") submit.main('', ["--dir", test_dir, "--config", config_path, "-f", "-u"], client=self.client) self.assertTrue(os.path.exists(os.path.join( test_dir, "exec_before_submit_is_completed"))) self.assertEqual(submitted_source_code, "Kyuuridenamida\n") self.assertTrue(os.path.exists(os.path.join( test_dir, "exec_after_submit_is_completed"))) if __name__ == "__main__": unittest.main()
StarcoderdataPython
1931444
def findDecision(obj): #obj[0]: Driving_to, obj[1]: Passanger, obj[2]: Weather, obj[3]: Temperature, obj[4]: Time, obj[5]: Coupon, obj[6]: Coupon_validity, obj[7]: Gender, obj[8]: Age, obj[9]: Maritalstatus, obj[10]: Children, obj[11]: Education, obj[12]: Occupation, obj[13]: Income, obj[14]: Bar, obj[15]: Coffeehouse, obj[16]: Carryaway, obj[17]: Restaurantlessthan20, obj[18]: Restaurant20to50, obj[19]: Direction_same, obj[20]: Distance # {"feature": "Coupon", "instances": 204, "metric_value": 0.9822, "depth": 1} if obj[5]>1: # {"feature": "Coffeehouse", "instances": 148, "metric_value": 0.9291, "depth": 2} if obj[15]>1.0: # {"feature": "Education", "instances": 74, "metric_value": 0.7273, "depth": 3} if obj[11]<=2: # {"feature": "Time", "instances": 59, "metric_value": 0.5726, "depth": 4} if obj[4]>0: # {"feature": "Carryaway", "instances": 43, "metric_value": 0.6931, "depth": 5} if obj[16]<=3.0: # {"feature": "Children", "instances": 38, "metric_value": 0.5618, "depth": 6} if obj[10]<=0: # {"feature": "Maritalstatus", "instances": 25, "metric_value": 0.7219, "depth": 7} if obj[9]>0: # {"feature": "Income", "instances": 20, "metric_value": 0.469, "depth": 8} if obj[13]>3: return 'True' elif obj[13]<=3: # {"feature": "Driving_to", "instances": 8, "metric_value": 0.8113, "depth": 9} if obj[0]<=0: # {"feature": "Temperature", "instances": 4, "metric_value": 1.0, "depth": 10} if obj[3]>55: return 'False' elif obj[3]<=55: return 'True' else: return 'True' elif obj[0]>0: return 'True' else: return 'True' else: return 'True' elif obj[9]<=0: # {"feature": "Income", "instances": 5, "metric_value": 0.971, "depth": 8} if obj[13]<=4: # {"feature": "Age", "instances": 3, "metric_value": 0.9183, "depth": 9} if obj[8]<=2: return 'True' elif obj[8]>2: return 'False' else: return 'False' elif obj[13]>4: return 'False' else: return 'False' else: return 'False' elif obj[10]>0: return 'True' else: return 'True' elif obj[16]>3.0: # {"feature": "Driving_to", "instances": 5, "metric_value": 0.971, "depth": 6} if obj[0]>0: return 'False' elif obj[0]<=0: return 'True' else: return 'True' else: return 'False' elif obj[4]<=0: return 'True' else: return 'True' elif obj[11]>2: # {"feature": "Coupon_validity", "instances": 15, "metric_value": 0.9968, "depth": 4} if obj[6]>0: # {"feature": "Age", "instances": 9, "metric_value": 0.7642, "depth": 5} if obj[8]<=3: return 'False' elif obj[8]>3: return 'True' else: return 'True' elif obj[6]<=0: return 'True' else: return 'True' else: return 'True' elif obj[15]<=1.0: # {"feature": "Occupation", "instances": 74, "metric_value": 0.9995, "depth": 3} if obj[12]>2: # {"feature": "Passanger", "instances": 63, "metric_value": 0.9911, "depth": 4} if obj[1]<=1: # {"feature": "Restaurantlessthan20", "instances": 48, "metric_value": 0.9377, "depth": 5} if obj[17]<=2.0: # {"feature": "Coupon_validity", "instances": 40, "metric_value": 0.9837, "depth": 6} if obj[6]<=0: # {"feature": "Time", "instances": 21, "metric_value": 0.9852, "depth": 7} if obj[4]>0: # {"feature": "Education", "instances": 18, "metric_value": 1.0, "depth": 8} if obj[11]<=2: # {"feature": "Restaurant20to50", "instances": 16, "metric_value": 0.9887, "depth": 9} if obj[18]<=1.0: # {"feature": "Bar", "instances": 14, "metric_value": 0.9403, "depth": 10} if obj[14]<=2.0: # {"feature": "Income", "instances": 13, "metric_value": 0.8905, "depth": 11} if obj[13]<=4: # {"feature": "Direction_same", "instances": 10, "metric_value": 0.971, "depth": 12} if obj[19]<=0: # {"feature": "Age", "instances": 6, "metric_value": 0.65, "depth": 13} if obj[8]>0: return 'False' elif obj[8]<=0: # {"feature": "Weather", "instances": 2, "metric_value": 1.0, "depth": 14} if obj[2]>0: return 'True' elif obj[2]<=0: return 'False' else: return 'False' else: return 'True' elif obj[19]>0: # {"feature": "Maritalstatus", "instances": 4, "metric_value": 0.8113, "depth": 13} if obj[9]<=0: return 'True' elif obj[9]>0: return 'False' else: return 'False' else: return 'True' elif obj[13]>4: return 'False' else: return 'False' elif obj[14]>2.0: return 'True' else: return 'True' elif obj[18]>1.0: return 'True' else: return 'True' elif obj[11]>2: return 'True' else: return 'True' elif obj[4]<=0: return 'True' else: return 'True' elif obj[6]>0: # {"feature": "Income", "instances": 19, "metric_value": 0.8315, "depth": 7} if obj[13]>0: # {"feature": "Maritalstatus", "instances": 17, "metric_value": 0.6723, "depth": 8} if obj[9]<=2: # {"feature": "Bar", "instances": 16, "metric_value": 0.5436, "depth": 9} if obj[14]<=1.0: return 'False' elif obj[14]>1.0: # {"feature": "Education", "instances": 5, "metric_value": 0.971, "depth": 10} if obj[11]>0: # {"feature": "Driving_to", "instances": 3, "metric_value": 0.9183, "depth": 11} if obj[0]<=1: # {"feature": "Weather", "instances": 2, "metric_value": 1.0, "depth": 12} if obj[2]<=0: return 'True' elif obj[2]>0: return 'False' else: return 'False' elif obj[0]>1: return 'True' else: return 'True' elif obj[11]<=0: return 'False' else: return 'False' else: return 'False' elif obj[9]>2: return 'True' else: return 'True' elif obj[13]<=0: return 'True' else: return 'True' else: return 'False' elif obj[17]>2.0: return 'False' else: return 'False' elif obj[1]>1: # {"feature": "Age", "instances": 15, "metric_value": 0.8366, "depth": 5} if obj[8]>3: # {"feature": "Time", "instances": 8, "metric_value": 1.0, "depth": 6} if obj[4]<=2: # {"feature": "Restaurantlessthan20", "instances": 6, "metric_value": 0.9183, "depth": 7} if obj[17]>2.0: # {"feature": "Gender", "instances": 3, "metric_value": 0.9183, "depth": 8} if obj[7]<=0: return 'True' elif obj[7]>0: return 'False' else: return 'False' elif obj[17]<=2.0: return 'False' else: return 'False' elif obj[4]>2: return 'True' else: return 'True' elif obj[8]<=3: return 'True' else: return 'True' else: return 'True' elif obj[12]<=2: # {"feature": "Carryaway", "instances": 11, "metric_value": 0.4395, "depth": 4} if obj[16]<=3.0: return 'True' elif obj[16]>3.0: # {"feature": "Passanger", "instances": 2, "metric_value": 1.0, "depth": 5} if obj[1]>1: return 'False' elif obj[1]<=1: return 'True' else: return 'True' else: return 'False' else: return 'True' else: return 'True' elif obj[5]<=1: # {"feature": "Bar", "instances": 56, "metric_value": 0.9544, "depth": 2} if obj[14]>0.0: # {"feature": "Restaurant20to50", "instances": 32, "metric_value": 0.9972, "depth": 3} if obj[18]<=2.0: # {"feature": "Income", "instances": 28, "metric_value": 0.9963, "depth": 4} if obj[13]>0: # {"feature": "Restaurantlessthan20", "instances": 26, "metric_value": 0.9829, "depth": 5} if obj[17]<=3.0: # {"feature": "Driving_to", "instances": 22, "metric_value": 1.0, "depth": 6} if obj[0]<=1: # {"feature": "Education", "instances": 14, "metric_value": 0.9403, "depth": 7} if obj[11]<=2: # {"feature": "Time", "instances": 10, "metric_value": 1.0, "depth": 8} if obj[4]<=3: # {"feature": "Weather", "instances": 7, "metric_value": 0.8631, "depth": 9} if obj[2]<=0: return 'False' elif obj[2]>0: # {"feature": "Age", "instances": 3, "metric_value": 0.9183, "depth": 10} if obj[8]>1: return 'True' elif obj[8]<=1: return 'False' else: return 'False' else: return 'True' elif obj[4]>3: return 'True' else: return 'True' elif obj[11]>2: return 'False' else: return 'False' elif obj[0]>1: # {"feature": "Occupation", "instances": 8, "metric_value": 0.8113, "depth": 7} if obj[12]<=7: # {"feature": "Time", "instances": 4, "metric_value": 1.0, "depth": 8} if obj[4]<=0: # {"feature": "Age", "instances": 3, "metric_value": 0.9183, "depth": 9} if obj[8]>2: return 'True' elif obj[8]<=2: return 'False' else: return 'False' elif obj[4]>0: return 'False' else: return 'False' elif obj[12]>7: return 'True' else: return 'True' else: return 'True' elif obj[17]>3.0: return 'False' else: return 'False' elif obj[13]<=0: return 'True' else: return 'True' elif obj[18]>2.0: return 'True' else: return 'True' elif obj[14]<=0.0: # {"feature": "Coffeehouse", "instances": 24, "metric_value": 0.65, "depth": 3} if obj[15]>0.0: # {"feature": "Education", "instances": 18, "metric_value": 0.3095, "depth": 4} if obj[11]<=3: return 'False' elif obj[11]>3: # {"feature": "Coupon_validity", "instances": 4, "metric_value": 0.8113, "depth": 5} if obj[6]<=0: return 'False' elif obj[6]>0: return 'True' else: return 'True' else: return 'False' elif obj[15]<=0.0: # {"feature": "Passanger", "instances": 6, "metric_value": 1.0, "depth": 4} if obj[1]<=1: # {"feature": "Time", "instances": 4, "metric_value": 0.8113, "depth": 5} if obj[4]<=3: return 'False' elif obj[4]>3: return 'True' else: return 'True' elif obj[1]>1: return 'True' else: return 'True' else: return 'True' else: return 'False' else: return 'False'
StarcoderdataPython
3436053
from django.urls import path from . import views app_name = "upload" urlpatterns = [path("", views.image_upload, name="image_upload")]
StarcoderdataPython
11279288
<gh_stars>1-10 from django.core.management.base import BaseCommand, CommandError from cablegate.cable.models import Cable, CableMetadata class Command(BaseCommand): #args = '<poll_id poll_id ...>' #help = 'Closes the specified poll for voting' def handle(self, *args, **options): for cable in Cable.objects.filter(cablemetadata=None): meta = CableMetadata() meta.cable_id = cable.id meta.save() # Update cache meta.get_words_count() meta.get_words_freqdist() self.stdout.write('Done\n')
StarcoderdataPython
224808
<reponame>dwxrycb123/Akina3 import nonebot from database.mysql import * from database.tables import * from models.model import * from config import * @nonebot.scheduler.scheduled_job('cron', day='*') async def clear_command_times(): record = await table_user_command_times.select_record('TRUE') for item in record: await table_user_command_times.update_record(CMD_TIMES, item) print('command times cleared!')
StarcoderdataPython
8067142
#!/usr/bin/env python Copyright = """ Copyright 2020 © <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. @Author : <NAME> @Copyright: <NAME> & <NAME> © Copyright 2020 @INPIREDBYGF: <NAME> <3 """ import datetime import hashlib class Block: def __init__(self, previous_block_hash, data, timestamp): self.previous_block_hash = previous_block_hash self.data = data self.timestamp = timestamp self.hash = self.get_hash() @staticmethod def create_genesis_block(): return Block("0", "0", datetime.datetime.now()) def get_hash(self): header_bin = (str(self.previous_block_hash) + str(self.data) + str(self.timestamp)) inner_hash = hashlib.sha256(header_bin.encode()).hexdigest().encode() outer_hash = hashlib.sha256(inner_hash).hexdigest() return outer_hash
StarcoderdataPython
9657815
from collections import defaultdict, deque, Counter from itertools import combinations, combinations_with_replacement, permutations from functools import reduce import math # import numpy as np from operator import add, delitem, mul, itemgetter, attrgetter import re DS = [[-1, 0], [1, 0], [0, 1], [0, -1]] DS8 = DS + [[-1, -1], [1, -1], [-1, 1], [1, 1]] def arounds_inside(x, y, diagonals, w, h): ret = [] for dx, dy in DS8 if diagonals else DS: ret.append((x + dx, y + dy)) CHALLENGE_DAY = "12" REAL = [10, 7] SAMPLE_EXPECTED = 739785 if SAMPLE_EXPECTED: SAMPLE = [4, 8] die = 1 rolls = 0 def solve(raw): spots = raw # Debug here to make sure parsing is good. scores = [0, 0] global die global rolls die = 1 rolls = 0 def roll(): global die global rolls ret = die die += 1 rolls += 1 if die > 100: die = 1 return ret def play(pi, scores): move = roll() + roll() + roll() next = ((spots[pi] - 1) + move) % 10 + 1 spots[pi] = next scores[pi] += next while True: for pi in [0, 1]: play(pi, scores) # print(pi, scores) if scores[pi] >= 1000: return rolls * scores[(pi + 1) % 2] return ret if SAMPLE_EXPECTED != None: sample = solve(SAMPLE) if sample != SAMPLE_EXPECTED: print("SAMPLE FAILED: ", sample, " != ", SAMPLE_EXPECTED) assert sample == SAMPLE_EXPECTED print("\n*** SAMPLE PASSED ***\n") else: print("Skipping sample") solved = solve(REAL) assert 874698 < solved print(solved)
StarcoderdataPython
4821784
from flask import current_app from app.default.default_values import types_sales from sqlalchemy.orm import Session from app.models.types_sales.type_sale import TypeSaleModel def default_types_sales(): try: session: Session = current_app.db.session types_sales_found = TypeSaleModel.query.all() if not types_sales_found: type_sales_list = [] for type in types_sales: type_sales_list.append(TypeSaleModel(**type)) session.add_all(type_sales_list) session.commit() except Exception as e: raise e
StarcoderdataPython
11353757
# checking for already existing files import os # downloading/extracting mnist data import gzip from tqdm import tqdm # visualising progress import numpy as np # loading data from buffer from fetch.ml import Layer, Variable, Session from fetch.ml import CrossEntropyLoss import matplotlib.pyplot as plt import line_profiler DO_PLOTTING = 0 def plot_weights(layers): for layer in layers: plt.hist(layer.weights().data()) plt.show() plt.close() class MLearner(): def __init__(self): self.data_url = 'http://yann.lecun.com/exdb/mnist/' self.x_tr_filename = 'train-images-idx3-ubyte.gz' self.y_tr_filename = 'train-labels-idx1-ubyte.gz' self.x_te_filename = 't10k-images-idx3-ubyte.gz' self.y_te_filename = 't10k-labels-idx1-ubyte.gz' self.training_size = 2000 self.validation_size = 50 self.n_epochs = 30 self.batch_size = 50 self.alpha = 0.2 self.mnist_input_size = 784 # pixels in 28 * 28 mnist images self.net = [10] # size of hidden layers self.mnist_output_size = 10 # 10 possible characters to recognise self.has_biases = True self.activation_fn = 'Sigmoid' # LeakyRelu might be good? self.layers = [] self.sess = None self.initialise_network() self.X_batch = self.sess.Variable([self.batch_size, 784], "X_batch") self.Y_batch = self.sess.Variable([self.batch_size, 10], "Y_batch") def initialise_network(self): self.sess = Session() # definition of the network layers # for i in range(len(self.layers)): # self.net.append(self.layers[i]) self.net.append(self.mnist_output_size) self.layers.append( self.sess.Layer( self.mnist_input_size, self.net[0], self.activation_fn, "input_layer")) if len(self.net) > 2: for i in range(len(self.net) - 2): self.layers.append( self.sess.Layer( self.net[i], self.net[i + 1], self.activation_fn, "layer_" + str(i + 1))) self.layers.append( self.sess.Layer( self.net[-1], self.mnist_output_size, self.activation_fn, "output_layer")) # switch off biases (since we didn't bother with them for the numpy # example) if not(self.has_biases): for cur_layer in self.layers: cur_layer.BiasesSetup(False) # copy preinitialised numpy weights over into our layers weights = np.load('weights.npy') for i in range(len(weights)): self.layers[i].weights().FromNumpy(weights[i]) # for j in range(len(weights[i])): # self.layers[i].weights().Set(i, j, weights[i][j]) if DO_PLOTTING: plot_weights(self.layers) self.y_pred = self.layers[-1].Output() return def load_data(self, one_hot=True, reshape=None): x_tr = self.load_images( self.x_tr_filename, self.training_size, "X_train") y_tr = self.load_labels( self.y_tr_filename, self.training_size, "Y_train") x_te = self.load_images( self.x_te_filename, self.validation_size, "X_test") y_te = self.load_labels( self.y_te_filename, self.validation_size, "Y_test") if one_hot: y_tr_onehot = Session.Zeroes( self.sess, [y_tr.size(), self.mnist_output_size]) y_te_onehot = Session.Zeroes( self.sess, [y_te.size(), self.mnist_output_size]) for i in range(y_tr.size()): y_tr_onehot[i, int(y_tr[i])] = 1 for i in range(y_te.size()): y_te_onehot[i, int(y_te[i])] = 1 self.y_tr = y_tr_onehot self.y_te = y_te_onehot else: self.y_tr = y_tr self.y_te = y_te if reshape: x_tr, x_te = [x.reshape(*reshape) for x in (x_tr, x_te)] self.x_tr = x_tr self.x_te = x_te def load_images(self, filename, data_size, name): self.download(filename) with gzip.open(filename, 'rb') as f: data = np.frombuffer(f.read(), np.uint8, offset=16) data = data.reshape(-1, 28 * 28) / 256 nd_data = self.sess.Variable([data_size, 784], name) nd_data.FromNumpy(data[:data_size, :]) return nd_data def load_labels(self, filename, data_size, name): self.download(filename) with gzip.open(filename, 'rb') as f: data = np.frombuffer(f.read(), np.uint8, offset=8) data.reshape(np.shape(data)[0], -1) nd_data = self.sess.Variable([data_size, 1], name) nd_data.FromNumpy(data[:data_size].reshape(data_size, -1)) # nd_data = Layer(data_size, 1, self.sess) # nd_data.data().FromNumpy(data[:data_size].reshape(data_size, -1)) # return nd_data return nd_data def download(self, filename): if not os.path.exists(filename): from urllib.request import urlretrieve print("Downloading %s" % filename) urlretrieve(self.data_url + filename, filename) return # feed forward pass of a network # take X input and the network (defined as a list of weights) # no biases? def feed_forward(self, X): a = [X] activate = True for idx in range(len(self.layers)): if (idx == (len(self.layers) - 1)): activate = False a.append(self.layers[idx].Forward(a[-1], activate)) return a def calculate_loss(self, X, Y): loss = CrossEntropyLoss(X, Y, self.sess) return loss def do_one_pred(self): return self.sess.Predict(self.X_batch, self.layers[-1].Output()) def predict(self): n_samples = self.y_te.shape()[0] preds = [] if (self.batch_size < n_samples): for cur_rep in range(0, n_samples, self.batch_size): self.assign_batch(self.x_te, self.y_te, cur_rep) preds.append(self.do_one_pred()) elif (self.batch_size > self.y_te.shape()[0]): print("not implemented prediction padding yet") raise NotImplementedError else: self.assign_batch(self.x_te, self.y_te, 0) preds.append(self.do_one_pred()) return preds @profile def assign_batch(self, x, y, cur_rep): self.X_batch.SetRange( [[cur_rep, cur_rep + self.batch_size, 1], [0, 784, 1]], x) self.Y_batch.SetRange( [[cur_rep, cur_rep + self.batch_size, 1], [0, 10, 1]], y) return def print_accuracy(self, cur_pred): max_pred = [] for item in cur_pred: max_pred.extend(item.ArgMax(1)) gt = self.y_te.data().ArgMax(1) sum_acc = 0 for i in range(self.y_te.shape()[0]): sum_acc += (gt[i] == max_pred[i]) sum_acc /= (self.y_te.data().size() / 10) print("\taccuracy: ", sum_acc) return @profile def train(self): self.sess.SetInput(self.layers[0], self.X_batch) for i in range(len(self.layers) - 1): self.sess.SetInput(self.layers[i + 1], self.layers[i].Output()) # loss calculation self.loss = self.calculate_loss(self.layers[-1].Output(), self.Y_batch) # epochs for i in range(self.n_epochs): print("epoch ", i, ": ") # training batches for j in tqdm(range(0, self.x_tr.shape()[0], self.batch_size)): # # assign fresh data batch self.assign_batch(self.x_tr, self.y_tr, j) # # loss calculation # loss = self.calculate_loss(self.layers[-1].Output(), self.Y_batch) # back propagate self.sess.BackProp(self.X_batch, self.loss, self.alpha, 1) sum_loss = 0 for i in range(self.loss.size()): sum_loss += self.loss.data()[i] # # print("\n") # # for j in range(1): # # sys.stdout.write('{:0.13f}'.format(loss.data()[i]) + "\t") print("sumloss: " + str(sum_loss)) cur_pred = self.predict() self.print_accuracy(cur_pred) return
StarcoderdataPython
5043008
<reponame>yuzhounaut/SpaceM from . import FIJIcalls, manipulations __all__ = [FIJIcalls, manipulations]
StarcoderdataPython
1916351
<gh_stars>1-10 import nltk.chat.eliza as el import nltk.chat.iesha as ie import nltk.chat.suntsu as sun import nltk.chat.zen as zen import nltk.chat.rude as rude from chatterbot import ChatBot from chatterbot.training.trainers import ChatterBotCorpusTrainer from chatterbot.utils import clean from nltk.chat import util from chatbot import chatbot import sys, download, os MODEL_PATH = "./save/model-try_1/model.ckpt" MODEL_URL = "https://www.dropbox.com/s/hyxoj49uw0g4dn8/model.ckpt?dl=0" nltk_bot_lookup = {"Sun Tsu": sun.suntsu_chat, "Eliza": el.eliza_chat, "*iesha*": ie.iesha_chat, "Chad": rude.rude_chat, "Zen Master": zen.zen_chat} class Bot: def __init__(self, bot_name="eliza"): if bot_name.lower() == "sun": self._bot = util.Chat(sun.pairs, sun.reflections) self._greetings = "Welcome, my child. Do you seek enlightenment?" self._name = "<NAME>" elif bot_name.lower() == "iesha": self._bot = util.Chat(ie.pairs, ie.reflections) self._greetings = "hi!! i'm iesha! who r u??!" self._name = "*iesha*" elif bot_name.lower() == "zen": self._bot = util.Chat(zen.responses, zen.reflections) self._greetings = "Look beyond mere words and letters - look into your mind" self._name = "Zen Master" elif bot_name.lower() == "rude": self._bot = util.Chat(rude.pairs, rude.reflections) self._greetings = "Wow, I look real fresh today. Hey!" self._name = "Chad" elif bot_name.lower() == "eliza": self._bot = util.Chat(el.pairs, el.reflections) self._greetings = "Hello. How are you feeling today?" self._name = "Eliza" elif bot_name.lower() == "deepqa": if not os.path.isfile(MODEL_PATH) or os.path.getsize(download.MODEL_PATH) != 154616514: self._bot = util.Chat(el.pairs, el.reflections) self._greetings = "I am not ready yet. Reload me in 5 minutes." self._name = "Jessica" else: self._bot = chatbot.Chatbot() self._bot.main(['--modelTag', 'try_1', '--test', 'daemon', '--rootDir', '.']) self._greetings = "Hi. I currently only understand sentences with < 10 words." self._name = "Jessica" else: self._corpus_path = "CopyCat.db" self._bot = ChatBot(bot_name, storage_adapter="chatterbot.adapters.storage.JsonDatabaseAdapter", logic_adapters=["chatterbot.adapters.logic.ClosestMatchAdapter"], input_adapter="chatterbot.adapters.input.VariableInputTypeAdapter", output_adapter="chatterbot.adapters.output.OutputFormatAdapter", database=self._corpus_path) self._bot.set_trainer(ChatterBotCorpusTrainer) self._name = bot_name self._greetings = "You are speaking to " + bot_name + "." def respond(self, query): query = clean.clean(clean.clean_whitespace(query)) if self._name in nltk_bot_lookup.keys(): return self._bot.respond(query) elif not os.path.isfile(MODEL_PATH) or os.path.getsize(download.MODEL_PATH) != 154616514: return str(self._greetings) else: return str(self._bot.get_response(query)) def greet(self): return self._greetings def setup(self, corpus="chatterbot.corpus.english"): if self._name not in nltk_bot_lookup.keys() and self._name != "Jessica": self._bot.train(corpus) def name(self): return self._name def location(self): return self._corpus_path def main(): """Speak to an NLTK ChatBot through CLI.""" try: bot_type = sys.argv.pop() except IndexError: raise IndexError("No bot type specified.") if bot_type.lower() in nltk_bot_lookup.keys(): print("Hi, you are chatting to NLTK's {0} Chatbot.\n" "Simply press Ctrl-D to exit.\n".format(bot_type)) nltk_bot_lookup.get(bot_type)() # init NLTK-bot if __name__ == '__main__': main()
StarcoderdataPython
12864054
import json import os import subprocess import sys TEST_FILENAME = "tmp_py_file" TEST_FOLDER = "clone_tests" TESTS = [ ("clone!( => move || {})", "If you have nothing to clone, no need to use this macro!"), ("clone!(|| {})", "If you have nothing to clone, no need to use this macro!"), ("clone!(|a, b| {})", "If you have nothing to clone, no need to use this macro!"), ("clone!(@strong self => move |x| {})", "Can't use `self` as variable name. Try storing it in a temporary variable or rename it using `as`."), ("clone!(@strong self.v => move |x| {})", "Field accesses are not allowed as is, you must rename it!"), ("clone!(@weak v => @default-return false, || {})", "Closure needs to be \"moved\" so please add `move` before closure"), ("clone!(@weak v => @default-return false, |bla| {})", "Closure needs to be \"moved\" so please add `move` before closure"), ("clone!(@weak v => default-return false, move || {})", "Missing `@` before `default-return`"), ("clone!(@weak v => @default-return false move || {})", "Missing comma after `@default-return`'s value"), ("clone!(@yolo v => move || {})", "Unknown keyword, only `weak` and `strong` are allowed"), ("clone!(v => move || {})", "You need to specify if this is a weak or a strong clone."), ] def convert_to_string(s): if s.__class__.__name__ == 'bytes': return s.decode('utf-8') return s def exec_command(command): child = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = child.communicate() return (child.returncode == 0, convert_to_string(stdout), convert_to_string(stderr)) def run_test(code, expected_str): with open("{}/{}.rs".format(TEST_FOLDER, TEST_FILENAME), 'w') as f: f.write('extern crate glib;use glib::clone;use std::rc::Rc;fn main(){{let v = Rc::new(1);{};}}'.format(code)) code, stdout, stderr = exec_command([ "bash", "-c", "cd {} && cargo build --message-format json".format(TEST_FOLDER), ]) os.remove("{}/{}.rs".format(TEST_FOLDER, TEST_FILENAME)) if code is True: return "This isn't supposed to compile!" parts = stdout.split('}\n{') compiler_message = None for (pos, part) in enumerate(parts): try: if pos > 0: part = "{" + part if pos + 1 < len(parts): part += "}" x = json.loads(part) if (x["reason"] != "compiler-message" or x["message"]["message"] == "aborting due to previous error"): continue compiler_message = x["message"]["message"] break except Exception: continue if compiler_message is None: return "Weird issue: no compiler-message found..." if expected_str not in compiler_message: return "`{}` not found in `{}`".format(expected_str, compiler_message) return None def run_tests(): print("About to start the tests on the clone! macro.") print("It might be slow to run the first one since cargo has to build dependencies...") print("") errors = 0 with open('{}/Cargo.toml'.format(TEST_FOLDER), 'w') as f: f.write("""[package] name = "test" version = "0.0.1" authors = ["gtk-rs developers"] [dependencies] glib = {{ path = ".." }} [[bin]] name = "{0}" path = "{0}.rs" """.format(TEST_FILENAME)) for (code, expected_str) in TESTS: sys.stdout.write('Running `{}`...'.format(code)) sys.stdout.flush() err = run_test(code, expected_str) if err is not None: print(" FAILED\n{}".format(err)) errors += 1 else: print(" OK") print("Ran {} tests, got {} failure{}".format(len(TESTS), errors, "s" if errors > 1 else "")) os.remove("{}/Cargo.toml".format(TEST_FOLDER)) os.remove("{}/Cargo.lock".format(TEST_FOLDER)) exec_command(['bash', '-c', 'rm -r {}/target'.format(TEST_FOLDER)]) return errors if __name__ == "__main__": sys.exit(run_tests())
StarcoderdataPython
5031005
<gh_stars>0 # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os YOUR_PROJECT_ID = os.environ['GOOGLE_CLOUD_PROJECT'] # [START bigquery_ibis_connect] import ibis conn = ibis.bigquery.connect( project_id=YOUR_PROJECT_ID, dataset_id='bigquery-public-data.stackoverflow') # [END bigquery_ibis_connect] # [START bigquery_ibis_table] table = conn.table('posts_questions') print(table) # BigQueryTable[table] # name: bigquery-public-data.stackoverflow.posts_questions # schema: # id : int64 # title : string # body : string # accepted_answer_id : int64 # answer_count : int64 # comment_count : int64 # community_owned_date : timestamp # creation_date : timestamp # favorite_count : int64 # last_activity_date : timestamp # last_edit_date : timestamp # last_editor_display_name : string # last_editor_user_id : int64 # owner_display_name : string # owner_user_id : int64 # post_type_id : int64 # score : int64 # tags : string # view_count : int64 # [END bigquery_ibis_table] # [START bigquery_ibis_table_not_exist] try: doesnt_exist = conn.table('doesnt_exist') except Exception as exp: print(str(exp)) # Not found: Table bigquery-public-data:stackoverflow.doesnt_exist # [END bigquery_ibis_table_not_exist] # [START bigquery_ibis_table_cross_project] reddit_posts_table = conn.table('2018_05', database='fh-bigquery.reddit_posts') # [END bigquery_ibis_table_cross_project] # [START bigquery_ibis_type_error] try: table.answer_count.upper() except AttributeError as exp: print(str(exp)) # 'IntegerColumn' object has no attribute 'upper' # [END bigquery_ibis_type_error] # [START bigquery_ibis_projection] projection = table['creation_date', 'answer_count'] # [END bigquery_ibis_projection] # [START bigquery_ibis_transform_timestamp] projection = projection.mutate(year=projection.creation_date.year()) # [END bigquery_ibis_transform_timestamp] # [START bigquery_ibis_transform_integer] has_answer_boolean = projection.answer_count > 0 # [END bigquery_ibis_transform_integer] # [START bigquery_ibis_transform_boolean] has_answer_int = has_answer_boolean.ifelse(1, 0) # [END bigquery_ibis_transform_boolean] # [START bigquery_ibis_aggregate] total_questions = projection.count() percentage_answered = has_answer_int.mean() * 100 # [END bigquery_ibis_aggregate] # [START bigquery_ibis_group_by] expression = projection.groupby('year').aggregate( total_questions=total_questions, percentage_answered=percentage_answered, ).sort_by(ibis.desc(projection.year)) # [END bigquery_ibis_group_by] print('\nExecuting query:') # [START bigquery_ibis_execute] print(expression.execute()) # year total_questions percentage_answered # 0 2018 997508 66.776307 # 1 2017 2318405 75.898732 # 2 2016 2226478 84.193197 # 3 2015 2219791 86.170365 # 4 2014 2164895 88.356987 # 5 2013 2060753 91.533241 # 6 2012 1645498 94.510659 # 7 2011 1200601 97.149261 # 8 2010 694410 99.060497 # 9 2009 343879 99.655402 # 10 2008 58399 99.871573 # [END bigquery_ibis_execute] print('\nThe previous query used the following SQL:') # [START bigquery_ibis_compile] print(expression.compile()) # SELECT `year`, count(*) AS `total_questions`, # (IEEE_DIVIDE(sum(CASE WHEN `answer_count` > 0 THEN 1 ELSE 0 END), count(*))) * 100 AS `percentage_answered` # FROM ( # SELECT `creation_date`, `answer_count`, # EXTRACT(year from `creation_date`) AS `year` # FROM `bigquery-public-data.stackoverflow.posts_questions` # ) t0 # GROUP BY 1 # ORDER BY `year` DESC # [END bigquery_ibis_compile] # print('\nExecuting UDF query:') # [START bigquery_ibis_udf] # @ibis.bigquery.udf(['double'], 'double') # def example_udf(value): # return value + 1.0 # # test_column = ibis.literal(1, type='double') # expression = example_udf(test_column) # # print(conn.execute(expression)) # [END bigquery_ibis_udf] print('\nExecuting join query:') # [START bigquery_ibis_joins] edu_table = conn.table( 'international_education', database='bigquery-public-data.world_bank_intl_education') edu_table = edu_table['value', 'year', 'country_code', 'indicator_code'] country_table = conn.table( 'country_code_iso', database='bigquery-public-data.utility_us') country_table = country_table['country_name', 'alpha_3_code'] expression = edu_table.join( country_table, [edu_table.country_code == country_table.alpha_3_code]) print(conn.execute( expression[edu_table.year == 2016] # Adult literacy rate. [edu_table.indicator_code == 'SE.ADT.LITR.ZS'] .sort_by([ibis.desc(edu_table.value)]) .limit(20) )) # [END bigquery_ibis_joins]
StarcoderdataPython
5007902
# Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base Handler class.""" import json import logging import os import urlparse import webapp2 from google.appengine.api import modules from lib.crud import crud_handler class RequestHandler(webapp2.RequestHandler): """Base Handler class with useful utility methods.""" def Respond(self, msg, status=200, *args): logging.info(msg, *args) self.response.write(msg % args) self.response.status = status def BadRequest(self, msg, *args): self.Respond(msg, 400, *args) def NotFound(self, msg, *args): self.Respond(msg, 404, *args) def Error(self, msg, *args): self.Responsd(msg, 500, *args) def SendJson(self, json_dict, pretty_print=False, include_prefix=True): """Send a json dict as a response.""" if include_prefix: self.response.write(crud_handler.JSON_PREFIX) if pretty_print: self.response.write( json.dumps(json_dict, indent=2, separators=(',', ': '), default=crud_handler.JsonPrinter)) else: self.response.write( json.dumps(json_dict, default=crud_handler.JsonPrinter)) def GetModuleUrl(self, module=None, url=None): """Get the url for the current page but on the given module.""" url_parts = list(urlparse.urlsplit(url or self.request.url)) url_parts[1] = modules.get_hostname(module=module) # If we're on https we need to replace version.backend.datapipeline # with version-dot-backend-dot-datapipeline if url_parts[0] == 'https': hostname_parts = url_parts[1].rsplit('.', 2) hostname_parts[0] = hostname_parts[0].replace('.', '-dot-') url_parts[1] = '.'.join(hostname_parts) return str(urlparse.urlunsplit(url_parts)) def OpenResource(self, path): """Open up a file that is included with this app engine deployment. NOTE: you cannot open a file that has been pushed as a static file. Args: path: the path relative to the app/ directory to open. Returns: a file object to the opened file (don't forget to use 'with'). """ base_dir = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) file_name = os.path.join(base_dir, path) return open(file_name)
StarcoderdataPython
4947908
<reponame>wgslr/agh-compilation-theory #!/usr/bin/python from collections import defaultdict from copy import copy import AST allowed_operations = defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: ""))) allowed_operations["+"]["int"]["int"] = "int" allowed_operations["+"]["float"]["int"] = "float" allowed_operations["+"]["int"]["float"] = "float" allowed_operations["+"]["vector"]["vector"] = "vector" allowed_operations["+"]["matrix"]["matrix"] = "matrix" allowed_operations["-"]["int"]["int"] = "int" allowed_operations["-"]["float"]["int"] = "float" allowed_operations["-"]["int"]["float"] = "float" allowed_operations["-"]["vector"]["vector"] = "vector" allowed_operations["-"]["matrix"]["matrix"] = "matrix" allowed_operations["*"]["int"]["int"] = "int" allowed_operations["*"]["float"]["int"] = "float" allowed_operations["*"]["int"]["float"] = "float" allowed_operations["*"]["vector"]["vector"] = "vector" allowed_operations["*"]["matrix"]["matrix"] = "matrix" allowed_operations["*"]["vector"]["int"] = "vector" allowed_operations["*"]["int"]["vector"] = "vector" allowed_operations["*"]["matrix"]["int"] = "matrix" allowed_operations["*"]["int"]["matrix"] = "matrix" allowed_operations["*"]["vector"]["float"] = "vector" allowed_operations["*"]["float"]["vector"] = "vector" allowed_operations["*"]["matrix"]["float"] = "matrix" allowed_operations["*"]["float"]["matrix"] = "matrix" allowed_operations["/"]["int"]["int"] = "float" allowed_operations["/"]["float"]["int"] = "float" allowed_operations["/"]["int"]["float"] = "float" allowed_operations["/"]["vector"]["int"] = "vector" allowed_operations["/"]["int"]["vector"] = "vector" allowed_operations["/"]["matrix"]["int"] = "matrix" allowed_operations["/"]["int"]["matrix"] = "matrix" allowed_operations["/"]["vector"]["int"] = "vector" allowed_operations["/"]["matrix"]["int"] = "matrix" allowed_operations["/"]["vector"]["float"] = "vector" allowed_operations["/"]["matrix"]["float"] = "matrix" allowed_operations[".+"]["matrix"]["int"] = "matrix" allowed_operations[".+"]["matrix"]["float"] = "matrix" allowed_operations[".+"]["vector"]["int"] = "vector" allowed_operations[".+"]["vector"]["float"] = "vector" allowed_operations[".-"]["matrix"]["int"] = "matrix" allowed_operations[".-"]["matrix"]["float"] = "matrix" allowed_operations[".-"]["vector"]["int"] = "vector" allowed_operations[".-"]["vector"]["float"] = "vector" allowed_operations[".*"]["matrix"]["int"] = "matrix" allowed_operations[".*"]["matrix"]["float"] = "matrix" allowed_operations[".*"]["vector"]["int"] = "vector" allowed_operations[".*"]["vector"]["float"] = "vector" allowed_operations["./"]["matrix"]["int"] = "matrix" allowed_operations["./"]["matrix"]["float"] = "matrix" allowed_operations["./"]["vector"]["int"] = "vector" allowed_operations["./"]["vector"]["float"] = "vector" op_to_string = { '+': 'ADD', '-': 'SUB', '*': 'MUL', '/': 'DIV', } class NodeVisitor(object): loop = 0 variables = defaultdict(lambda: None) def visit(self, node): method = 'visit_' + node.__class__.__name__ visitor = getattr(self, method) return visitor(node) class TypeChecker(NodeVisitor): def visit_Instructions(self, node): # print("visit_Instructions") for n in node.nodes: self.visit(n) def visit_FlowKeyword(self, node): # print("visit_Flowkeyword") if self.loop == 0: TypeChecker.print_error(node, "flow keyword {} outside loop".format(node.keyword)) def visit_Print(self, node): # print("visit_Print") pass def visit_Return(self, node): # print("visit_Return") pass def visit_String(self, node): # print("visit_String") pass def visit_Matrix(self, node): size1 = len(node.elements) sizes = map(lambda x: len(x.elements), node.elements) size2 = min(sizes) if all(map(lambda x: x == size2, sizes)): return self.Variable("matrix", [size1, size2]) else: TypeChecker.print_error(node, "vectors with different sizes in matrix initialization") return None def visit_Vector(self, node): # print("visit_Vector") return self.Variable("vector", [len(node.elements)]) def visit_Reference(self, node): # print("visit_Reference") v = self.variables[node.name.name] if not v: TypeChecker.print_error(node, "undefined variable {}".format(node.name.name)) return None if len(node.coords) > len(v.size): TypeChecker.print_error(node, "to many dimensions in vector reference") return None error = False for coord, size in zip(node.coords, v.size): if isinstance(coord, AST.IntNum) and coord.value >= size: TypeChecker.print_error(node, "reference {} is over vector size {}".format(coord.value, size)) error = True if error: return None if len(v.size) - len(node.coords) == 0: return TypeChecker.Variable("float") else: return TypeChecker.Variable("vector", [v.size[-1]]) def visit_FunctionCall(self, node): # print("visit_FunctionCall") arguments = node.arguments if len(arguments) == 1: arguments = [arguments[0], arguments[0]] return TypeChecker.Variable("matrix", map(lambda x: x.value, arguments)) def visit_While(self, node): # print("visit_While") self.loop += 1 self.visit(node.body) self.loop -= 1 def visit_For(self, node): # print("visit_For") self.loop += 1 self.visit(node.body) self.loop -= 1 def visit_Range(self, node): # print("visit_Range") pass def visit_Variable(self, node): # print("visit_Variable") return self.variables[node.name] def visit_If(self, node): # print("visit_if") pass def visit_BinExpr(self, node): # print("visit_BinExpr") var1 = self.visit(node.left) var2 = self.visit(node.right) if not var1: TypeChecker.print_error(node, "undefined variable {}".format(node.left.name)) return None if not var2: TypeChecker.print_error(node, "undefined variable {}".format(node.right.name)) return None op = node.op newtype = allowed_operations[op[0]][var1.type][var2.type] if newtype: new_var = copy(var1) new_var.type = newtype return new_var else: TypeChecker.print_error(node, "cannot {} {} and {}".format(op_to_string[op], var1.type, var2.type)) return None def visit_ArithmeticOperation(self, node): # print("visit_ArithmeticOperation") return self.visit_BinExpr(node) def visit_Assignment(self, node): # print("visit_Assignment") var1 = self.visit(node.left) var2 = self.visit(node.right) if not var2: return None name = node.left.name op = node.op if op == "=": self.variables[name] = self.Variable(var2.type, var2.size, name) else: if not var1: TypeChecker.print_error(node, "undefined variable {}".format(name)) return None newtype = allowed_operations[op[0]][var1.type][var2.type] if newtype: self.variables[name] = self.Variable(newtype, var2.size, name) else: TypeChecker.print_error(node, "cannot assign {} to {}".format(var2.type, var1.type)) def visit_IntNum(self, node): # print("visit_IntNum") return self.Variable("int") def visit_FloatNum(self, node): # print("visit_FloatNum") return self.Variable("float") def visit_UnaryExpr(self, node): # print("visit_UnaryExpr") pass def visit_Comparison(self, node): # print("visit_Comparison") pass def visit_Error(self, node): # print("visit_Error") pass @staticmethod def print_error(node, error): print("Error in line {}: {}".format(node.lineno, error)) class Variable(object): def __init__(self, type, size=[], name=""): self.type = type self.size = size self.name = name def __str__(self): return 'Variable {}: {}, {}'.format(self.name, self.type, self.size)
StarcoderdataPython
11213330
# # linter.py # Linter for SublimeLinter3, a code checking framework for Sublime Text 3 # # Written by <NAME> # Copyright (c) 2015 <NAME> # # License: MIT # """This module exports the Scalastyle plugin class.""" from os import path from SublimeLinter.lint import Linter, util class Scalastyle(Linter): """Provides an interface to scalastyle.""" syntax = 'scala' executable = 'java' cmd = None config_file = ('--config', 'scalastyle-config.xml') regex = ( r'^(?:(?P<error>error)|(?P<warning>warning))' r'(?: file=(?P<file>.+?))' r'(?: message=(?P<message>.+?))' r'(?: line=(?P<line>\d+))?' r'(?: column=(?P<col>\d+))?$' ) multiline = False line_col_base = (1, 0) tempfile_suffix = 'scala' error_stream = util.STREAM_BOTH word_re = r'^(\w+|([\'"]).+?\2)' defaults = { 'jar_file': '' } inline_settings = None inline_overrides = None comment_re = None def cmd(self): """Return the command line to execute.""" jar_file = self.get_jarfile_path() return [self.executable_path, '-jar', jar_file] def get_jarfile_path(self): """ Return the absolute path to the scalastyle jar file. Expand user shortcut (~) and environment variables. """ settings = self.get_view_settings() jar_file = settings.get('jar_file') # Expand user directory shortcuts jar_file = path.expanduser(jar_file) # Expand environment variables jar_file = path.expandvars(jar_file) # Get canonical path jar_file = path.realpath(jar_file) return jar_file def split_match(self, match): """ Return the components of the match. We override this method so that errors with no line number can be displayed. """ match, line, col, error, warning, message, near = super().split_match(match) if line is None and message: line = 0 return match, line, col, error, warning, message, near
StarcoderdataPython
1770944
<filename>shim/shim.py from helper import log, status, settings, sequence from abc import abstractmethod, ABCMeta from ctypes import * import os EXTENSION_NAME = "some extension" class Shim(metaclass=ABCMeta): def __init__(self): lib = cdll.LoadLibrary(os.path.dirname(__file__) + "/main.so") self.status = status.Status(lib) self.sequence = sequence.Sequence(lib) self.settings = settings.Settings(lib) self.log = log.Log(lib) """ Install calls """ def pre_install(self): self.log.info("BEGIN Install Extension: %s"%(EXTENSION_NAME)) self.status.transitioning("BEGIN Install Extension: %s"%(EXTENSION_NAME), "BEGIN Install Extension: %s"%(EXTENSION_NAME)) @abstractmethod def install(self): pass def post_install(self): self.log.info("END Install Extension %s"%(EXTENSION_NAME)) self.status.transitioning("END Install Extension: %s"%(EXTENSION_NAME), "END Install Extension: %s"%(EXTENSION_NAME)) """ Enable calls """ def pre_enable(self): shouldProcess = self.sequence.check_sequence_number() self.log.info("BEGIN Enable Extension: %s"%(EXTENSION_NAME)) self.status.transitioning("BEGIN Enable Extension: %s"%(EXTENSION_NAME), "BEGIN Enable Extension: %s"%(EXTENSION_NAME)) # Get settings to return back to the user to use in application logic self.settings = self.settings.get_settings() @abstractmethod def enable(self): pass def post_enable(self): self.log.info("END Enable Extension: %s"%(EXTENSION_NAME)) self.status.success("END Enable Extension: %s"%(EXTENSION_NAME), "END Enable Extension: %s"%(EXTENSION_NAME)) """ Disable calls """ def pre_disable(self): self.log.info("BEGIN Disable Extension: %s"%(EXTENSION_NAME)) self.status.transitioning("BEGIN Disable Extension: %s"%(EXTENSION_NAME), "BEGIN Disable Extension: %s"%(EXTENSION_NAME)) @abstractmethod def disable(self): pass def post_disable(self): self.log.info("END Disable Extension %s"%(EXTENSION_NAME)) self.status.success("END Disable Extension: %s"%(EXTENSION_NAME), "END Disable Extension: %s"%(EXTENSION_NAME)) """ Uninstall calls """ def pre_uninstall(self): self.log.info("BEGIN Uninstall Extension: %s"%(EXTENSION_NAME)) self.status.transitioning("BEGIN Uninstall Extension: %s"%(EXTENSION_NAME), "BEGIN Uninstall Extensions: %s"%(EXTENSION_NAME)) @abstractmethod def uninstall(self): pass def post_uinstall(self): self.log.info("END Uninstall Extension: %s"%(EXTENSION_NAME)) self.status.transitioning("END Uninstall Extension: %s"%(EXTENSION_NAME), "END Uninstall Extension: %s"%(EXTENSION_NAME)) def on_timeout(self): self.log.error("Extension install took to long for Extension: %s"%(EXTENSION_NAME)) self.status.error("Enabling failed for extension: %s"%(EXTENSION_NAME), "failed installing %s"%(EXTENSION_NAME))
StarcoderdataPython
37480
<gh_stars>0 import numpy as np import matplotlib.pyplot as plt import random if __name__ == '__main__': ones = np.ones(30, dtype=np.uint8) print(ones) doubled = [x * 2 for x in ones] doubled = ones * 2 print(doubled) negatives = ones - doubled print(negatives) y = np.random.rand(30) y *= 20 print(y) x = range(0, 30) print(x) plt.plot(x, y, 'r') plt.xlabel("nombre de personnes") plt.ylabel("une information associée") plt.title("ma graphe") plt.savefig("mafig.png") plt.show()
StarcoderdataPython
9708562
<reponame>JPGarzonE/curso-de-python<gh_stars>0 def main(): print("C A L C U L A D O R A D E F A C T O R I A L") numero = int( input("¿Cuál es tu numero? ") ) resultado = factorial(numero) print("El factorial de {} es {}".format(numero, resultado)) def factorial(numero): if numero == 1 : return 1 else: return numero * factorial(numero-1) if __name__ == "__main__": main()
StarcoderdataPython
1778509
<filename>openprocurement/search/update_orgs.py # -*- coding: utf-8 -*- import os import sys import fcntl import signal import logging.config from datetime import datetime, timedelta from ConfigParser import ConfigParser from openprocurement.search.version import __version__ from openprocurement.search.engine import IndexEngine, logger from openprocurement.search.index.orgs import OrgsIndex from openprocurement.search.source.orgs import OrgsSource from openprocurement.search.source.tender import TenderSource from openprocurement.search.source.ocds import OcdsSource from openprocurement.search.source.plan import PlanSource from openprocurement.search.source.auction import AuctionSource from openprocurement.search.utils import decode_bool_values, chage_process_user_group engine = type('engine', (), {})() def sigterm_handler(signo, frame): logger.warning("Signal received %d", signo) engine.should_exit = True signal.alarm(2) sys.exit(0) class IndexOrgsEngine(IndexEngine): def __init__(self, config, update_config): self.patch_engine_config(config, update_config) super(IndexOrgsEngine, self).__init__(config) self.orgs_map = {} def patch_engine_config(self, config, update_config): config['slave_mode'] = None config['start_wait'] = 0 config['tender_fast_client'] = False config['plan_fast_client'] = False config['auction_fast_client'] = False config['tender_preload'] = int(1e6) config['plan_preload'] = int(1e6) config['ocds_preload'] = int(1e6) config['auction_preload'] = int(1e6) # update skip_until update_days = update_config.get('update_days') or 30 date = datetime.now() - timedelta(days=int(update_days)) date = date.strftime("%Y-%m-%d") logger.info("Patch config: update_days = %s -> skip_until = %s", update_days, date) config['auction_skip_until'] = date config['tender_skip_until'] = date config['plan_skip_until'] = date config['ocds_skip_until'] = date def process_entity(self, entity): code = None try: code = entity['identifier']['id'] if not code: raise ValueError("No code") if type(code) != str: code = str(code) if len(code) < 5 or len(code) > 15: raise ValueError("Bad code") except (KeyError, TypeError, ValueError): return False try: self.index_by_type('org', entity) except Exception as e: logger.exception("Can't index %s: %s", code, str(e)) if code in self.orgs_map: self.orgs_map[code] += 1 else: self.orgs_map[code] = 1 return True def process_source(self, source): logger.info("Process source [%s]", source.doc_type) source.client_user_agent += " update_orgs" items_list = True items_count = 0 flush_count = 0 while True: if self.should_exit: break try: save_count = items_count items_list = source.items() for meta in items_list: if self.should_exit: break items_count += 1 item = source.get(meta) entity = source.procuring_entity(item) if entity: self.process_entity(entity) # log progress if items_count % 100 == 0: logger.info("[%s] Processed %d last %s orgs_found %d", source.doc_type, items_count, meta.get('dateModified'), len(self.orgs_map)) # flush orgs_map each 10k if items_count - flush_count > 10000: flush_count = items_count self.flush_orgs_map() except Exception as e: logger.exception("Can't process_source: %s", str(e)) break # prevent stop by skip_until before first 100 processed if items_count < 100 and getattr(source, 'last_skipped', None): logger.info("[%s] Processed %d last_skipped %s", source.doc_type, items_count, source.last_skipped) continue elif items_count - save_count < 5: break # flush orgs ranks self.flush_orgs_map() def flush_orgs_map(self): index_name = self.get_current_indexes() logger.info("[%s] Flush orgs to index", index_name) if not index_name: return iter_count = 0 update_count = 0 orgs_index = self.index_list[0] orgs_index.process(allow_reindex=False) doc_type = orgs_index.source.doc_type map_len = len(self.orgs_map) error_count = 0 for code, rank in self.orgs_map.iteritems(): if self.should_exit: break iter_count += 1 if iter_count % 1000 == 0: logger.info("[%s] Updated %d / %d orgs %d%%", index_name, update_count, iter_count, int(100 * iter_count / map_len)) # dont update rare companies if rank < 10: continue # get item meta = {'id': code, 'doc_type': doc_type} found = self.get_item(index_name, meta) # if not found - ignore, but warn if not found: logger.warning("[%s] Code %s not found", index_name, str(code)) continue # if rank not changed - ignore if found['_source']['rank'] == rank: continue item = { 'meta': { 'id': found['_id'], 'doc_type': found['_type'], 'version': found['_version'] + 1, }, 'data': found['_source'], } item['data']['rank'] = rank try: self.index_item(index_name, item) update_count += 1 except Exception as e: logger.error("Fail index %s: %s", str(item), str(e)) error_count += 1 if error_count > 100: logger.exception("%s", str(e)) break # final info logger.info("[%s] Updated %d / %d orgs %d%%", index_name, update_count, iter_count, int(100.0 * iter_count / map_len)) def main(): if len(sys.argv) < 2 or '-h' in sys.argv: print("Usage: update_orgs etc/search.ini [custom_index_names]") sys.exit(1) parser = ConfigParser() parser.read(sys.argv[1]) config = dict(parser.items('search_engine')) config = decode_bool_values(config) uo_config = dict(parser.items('update_orgs')) if len(sys.argv) > 2: config['index_names'] = sys.argv[2] logging.config.fileConfig(sys.argv[1]) logger.info("Starting openprocurement.search.update_orgs v%s", __version__) logger.info("Copyright (c) 2015-2018 <NAME> <<EMAIL>>") # try get exclusive lock to prevent second start lock_filename = uo_config.get('pidfile') or 'update_orgs.pid' lock_file = open(lock_filename, "w") fcntl.lockf(lock_file, fcntl.LOCK_EX + fcntl.LOCK_NB) lock_file.write(str(os.getpid()) + "\n") lock_file.flush() signal.signal(signal.SIGTERM, sigterm_handler) # signal.signal(signal.SIGINT, sigterm_handler) try: chage_process_user_group(config) except Exception as e: logger.error("Can't change process user: %s", str(e)) try: global engine engine = IndexOrgsEngine(config, uo_config) source = OrgsSource(config) index = OrgsIndex(engine, source, config) # manualy reset and prevent second reset on first process_source source.reset() index.last_current_index = index.current_index if config.get('tender_api_url', None): source = TenderSource(config) engine.process_source(source) if config.get('ocds_dir', None): source = OcdsSource(config) engine.process_source(source) if config.get('plan_api_url', None): source = PlanSource(config) engine.process_source(source) if config.get('auction_api_url', None): source = AuctionSource(config) engine.process_source(source) engine.flush_orgs_map() except Exception as e: logger.exception("Exception: %s", str(e)) finally: lock_file.close() os.remove(lock_filename) logger.info("Shutdown") return 0 if __name__ == "__main__": main()
StarcoderdataPython
11389262
<reponame>kamoljan/amazon-personalize-samples import json import boto3 import base64 def lambda_handler(event, context): # TODO implement #### Attach Policy to S3 Bucket s3 = boto3.client("s3") policy = { "Version": "2012-10-17", "Id": "PersonalizeS3BucketAccessPolicy", "Statement": [ { "Sid": "PersonalizeS3BucketAccessPolicy", "Effect": "Allow", "Principal": { "Service": "personalize.amazonaws.com" }, "Action": [ "s3:GetObject", "s3:ListBucket" ], "Resource": [ "arn:aws:s3:::{}".format(event['bucket']), "arn:aws:s3:::{}/*".format(event['bucket']) ] } ] } s3.put_bucket_policy(Bucket=event['bucket'], Policy=json.dumps(policy)) #### Create Personalize Role iam = boto3.client("iam") role_name = "PersonalizeRole" assume_role_policy_document = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "Service": "personalize.amazonaws.com" }, "Action": "sts:AssumeRole" } ] } create_role_response = iam.create_role( RoleName = role_name, AssumeRolePolicyDocument = json.dumps(assume_role_policy_document) ) # AmazonPersonalizeFullAccess provides access to any S3 bucket with a name that includes "personalize" or "Personalize" # if you would like to use a bucket with a different name, please consider creating and attaching a new policy # that provides read access to your bucket or attaching the AmazonS3ReadOnlyAccess policy to the role policy_arn = "arn:aws:iam::aws:policy/service-role/AmazonPersonalizeFullAccess" iam.attach_role_policy( RoleName = role_name, PolicyArn = policy_arn ) time.sleep(60) # wait for a minute to allow IAM role policy attachment to propagate role_arn = create_role_response["Role"]["Arn"] print(role_arn) return { 'statusCode': 200, 'role_arn':role_arn #'body': json.dumps('Hello from Lambda!') }
StarcoderdataPython
3271988
from skmultiflow.evaluation.metrics import metrics import numpy as np from skmultiflow.core.base_object import BaseObject from skmultiflow.core.utils.data_structures import FastBuffer, FastComplexBuffer, ConfusionMatrix, MOLConfusionMatrix from skmultiflow.core.utils.validation import check_weights class ClassificationMeasurements(BaseObject): """ ClassificationMeasurements Class used to keep updated statistics about a classifier, in order to be able to provide, at any given moment, any relevant metric about that classifier. It combines a ConfusionMatrix object, with some additional statistics, to compute a range of performance metrics. In order to keep statistics updated, the class won't require lots of information, but two: the predictions and true labels. At any given moment, it can compute the following statistics: performance, kappa, kappa_t, kappa_m, majority_class and error rate. Parameters ---------- targets: list A list containing the possible labels. dtype: data type (Default: numpy.int64) The data type of the existing labels. Examples -------- """ def __init__(self, targets=None, dtype=np.int64): super().__init__() if targets is not None: self.n_targets = len(targets) else: self.n_targets = 0 self.confusion_matrix = ConfusionMatrix(self.n_targets, dtype) self.last_true_label = None self.last_prediction = None self.sample_count = 0 self.majority_classifier = 0 self.correct_no_change = 0 self.targets = targets def reset(self, targets=None): if targets is not None: self.n_targets = len(targets) else: self.n_targets = 0 self.sample_count = 0 self.majority_classifier = 0 self.correct_no_change = 0 self.confusion_matrix.restart(self.n_targets) def add_result(self, sample, prediction, weight=1.0): """ add_result Updates its statistics with the results of a prediction. Parameters ---------- sample: int The true label. prediction: int The classifier's prediction """ check_weights(weight) true_y = self._get_target_index(sample, True) pred = self._get_target_index(prediction, True) self.confusion_matrix.update(true_y, pred) self.sample_count += weight if self.get_majority_class() == sample: self.majority_classifier = self.majority_classifier + weight if self.last_true_label == sample: self.correct_no_change = self.correct_no_change + weight self.last_true_label = sample self.last_prediction = prediction def get_last(self): return self.last_true_label, self.last_prediction def get_majority_class(self): """ get_majority_class Computes the true majority class. Returns ------- int Returns the true majority class. """ if (self.n_targets is None) or (self.n_targets == 0): return False majority_class = 0 max_prob = 0.0 for i in range(self.n_targets): sum = 0.0 for j in range(self.n_targets): sum += self.confusion_matrix.value_at(i, j) sum = sum / self.sample_count if sum > max_prob: max_prob = sum majority_class = i return majority_class def get_performance(self): """ get_performance Computes the performance. Returns ------- float Returns the performance. """ sum_value = 0.0 n, _ = self.confusion_matrix.shape() for i in range(n): sum_value += self.confusion_matrix.value_at(i, i) try: return sum_value / self.sample_count except ZeroDivisionError: return 0.0 def get_incorrectly_classified_ratio(self): return 1.0 - self.get_performance() def _get_target_index(self, target, add = False): """ _get_target_index Computes the index of an element in the self.targets list. Also reshapes the ConfusionMatrix and adds new found targets if add is True. Parameters ---------- target: int A class label. add: bool Either to add new found labels to the targets list or not. Returns ------- int The target index in the self.targets list. """ if (self.targets is None) and add: self.targets = [] self.targets.append(target) self.n_targets = len(self.targets) self.confusion_matrix.reshape(len(self.targets), len(self.targets)) elif (self.targets is None) and (not add): return None if ((target not in self.targets) and (add)): self.targets.append(target) self.n_targets = len(self.targets) self.confusion_matrix.reshape(len(self.targets), len(self.targets)) for i in range(len(self.targets)): if self.targets[i] == target: return i return None def get_kappa(self): """ get_kappa Computes the Cohen's kappa coefficient. Returns ------- float Returns the Cohen's kappa coefficient. """ p0 = self.get_performance() pc = 0.0 n, l = self.confusion_matrix.shape() for i in range(n): row = self.confusion_matrix.row(i) column = self.confusion_matrix.column(i) sum_row = np.sum(row) / self.sample_count sum_column = np.sum(column) / self.sample_count pc += sum_row * sum_column if pc == 1: return 1 return (p0 - pc) / (1.0 - pc) def get_kappa_t(self): """ get_kappa_t Computes the Cohen's kappa T coefficient. This measures the temporal correlation between samples. Returns ------- float Returns the Cohen's kappa T coefficient. """ p0 = self.get_performance() if self.sample_count != 0: pc = self.correct_no_change / self.sample_count else: pc =0 if pc == 1: return 1 return (p0 - pc) / (1.0 - pc) def get_kappa_m(self): """ get_kappa_t Computes the Cohen's kappa M coefficient. Returns ------- float Returns the Cohen's kappa M coefficient. """ p0 = self.get_performance() if self.sample_count != 0: pc = self.majority_classifier / self.sample_count else: pc = 0 if pc == 1: return 1 return (p0 - pc) / (1.0 - pc) @property def _matrix(self): return self.confusion_matrix._matrix def get_info(self): return 'ClassificationMeasurements: targets: ' + str(self.targets) + \ ' - sample_count: ' + str(self.sample_count) + \ ' - performance: ' + str(self.get_performance()) + \ ' - kappa: ' + str(self.get_kappa()) + \ ' - kappa_t: ' + str(self.get_kappa_t()) + \ ' - kappa_m: ' + str(self.get_kappa_m()) + \ ' - majority_class: ' + str(self.get_majority_class()) def get_class_type(self): return 'collection' class WindowClassificationMeasurements(BaseObject): """ WindowClassificationMeasurements This class will maintain a fixed sized window of the newest information about one classifier. It can provide, as requested, any of the relevant current metrics about the classifier, measured inside the window. To keep track of statistics inside a window, the class will use a ConfusionMatrix object, alongside FastBuffers, to simulate fixed sized windows of the important classifier's attributes. Its functionalities are somewhat similar to those of the ClassificationMeasurements class. The difference is that the statistics kept by this class are local, or partial, while the statistics kept by the ClassificationMeasurements class are global. At any given moment, it can compute the following statistics: performance, kappa, kappa_t, kappa_m, majority_class and error rate. Parameters ---------- targets: list A list containing the possible labels. dtype: data type (Default: numpy.int64) The data type of the existing labels. window_size: int (Default: 200) The width of the window. Determines how many samples the object can see. Examples -------- """ def __init__(self, targets=None, dtype=np.int64, window_size=200): super().__init__() if targets is not None: self.n_targets = len(targets) else: self.n_targets = 0 self.confusion_matrix = ConfusionMatrix(self.n_targets, dtype) self.last_class = None self.targets = targets self.window_size = window_size self.true_labels = FastBuffer(window_size) self.predictions = FastBuffer(window_size) self.temp = 0 self.last_prediction = None self.last_true_label = None self.majority_classifier = 0 self.correct_no_change = 0 self.majority_classifier_correction = FastBuffer(window_size) self.correct_no_change_correction = FastBuffer(window_size) def reset(self, targets=None): if targets is not None: self.n_targets = len(targets) else: self.n_targets = 0 self.majority_classifier = 0 self.correct_no_change = 0 self.confusion_matrix.restart(self.n_targets) self.majority_classifier_correction = FastBuffer(self.window_size) self.correct_no_change_correction = FastBuffer(self.window_size) def add_result(self, sample, prediction): """ add_result Updates its statistics with the results of a prediction. If needed it will remove samples from the observation window. Parameters ---------- sample: int The true label. prediction: int The classifier's prediction """ true_y = self._get_target_index(sample, True) pred = self._get_target_index(prediction, True) old_true = self.true_labels.add_element(np.array([sample])) old_predict = self.predictions.add_element(np.array([prediction])) # Verify if its needed to decrease the count of any label # pair in the confusion matrix if (old_true is not None) and (old_predict is not None): self.temp += 1 error = self.confusion_matrix.remove(self._get_target_index(old_true[0]), self._get_target_index(old_predict[0])) self.correct_no_change += self.correct_no_change_correction.peek() self.majority_classifier += self.majority_classifier_correction.peek() # Verify if its needed to decrease the majority_classifier count if (self.get_majority_class() == sample) and (self.get_majority_class() is not None): self.majority_classifier += 1 self.majority_classifier_correction.add_element([-1]) else: self.majority_classifier_correction.add_element([0]) # Verify if its needed to decrease the correct_no_change if (self.last_true_label == sample) and (self.last_true_label is not None): self.correct_no_change += 1 self.correct_no_change_correction.add_element([-1]) else: self.correct_no_change_correction.add_element([0]) self.confusion_matrix.update(true_y, pred) self.last_true_label = sample self.last_prediction = prediction def get_last(self): return self.last_true_label, self.last_prediction def get_majority_class(self): """ get_majority_class Computes the window/local true majority class. Returns ------- int Returns the true window/local majority class. """ if (self.n_targets is None) or (self.n_targets == 0): return None majority_class = 0 max_prob = 0.0 for i in range(self.n_targets): sum = 0.0 for j in range(self.n_targets): sum += self.confusion_matrix.value_at(i, j) sum = sum / self.true_labels.get_current_size() if sum > max_prob: max_prob = sum majority_class = i return majority_class def get_performance(self): """ get_performance Computes the window/local performance. Returns ------- float Returns the window/local performance. """ sum_value = 0.0 n, _ = self.confusion_matrix.shape() for i in range(n): sum_value += self.confusion_matrix.value_at(i, i) try: return sum_value / self.true_labels.get_current_size() except ZeroDivisionError: return 0.0 def get_incorrectly_classified_ratio(self): return 1.0 - self.get_performance() def _get_target_index(self, target, add=False): """ _get_target_index Computes the index of an element in the self.targets list. Also reshapes the ConfusionMatrix and adds new found targets if add is True. Parameters ---------- target: int A class label. add: bool Either to add new found labels to the targets list or not. Returns ------- int The target index in the self.targets list. """ if (self.targets is None) and add: self.targets = [] self.targets.append(target) self.n_targets = len(self.targets) self.confusion_matrix.reshape(len(self.targets), len(self.targets)) elif (self.targets is None) and (not add): return None if ((target not in self.targets) and (add)): self.targets.append(target) self.n_targets = len(self.targets) self.confusion_matrix.reshape(len(self.targets), len(self.targets)) for i in range(len(self.targets)): if self.targets[i] == target: return i return None def get_kappa(self): """ get_kappa Computes the window/local Cohen's kappa coefficient. Returns ------- float Returns the window/local Cohen's kappa coefficient. """ p0 = self.get_performance() pc = 0.0 n, l = self.confusion_matrix.shape() for i in range(n): row = self.confusion_matrix.row(i) column = self.confusion_matrix.column(i) sum_row = np.sum(row) / self.true_labels.get_current_size() sum_column = np.sum(column) / self.true_labels.get_current_size() pc += sum_row * sum_column if pc == 1: return 1 return (p0 - pc) / (1.0 - pc) def get_kappa_t(self): """ get_kappa_t Computes the window/local Cohen's kappa T coefficient. This measures the temporal correlation between samples. Returns ------- float Returns the window/local Cohen's kappa T coefficient. """ p0 = self.get_performance() if self._sample_count != 0: pc = self.correct_no_change / self._sample_count else: pc =0 if pc == 1: return 1 return (p0 - pc) / (1.0 - pc) def get_kappa_m(self): """ get_kappa_t Computes the window/local Cohen's kappa M coefficient. Returns ------- float Returns the window/local Cohen's kappa M coefficient. """ p0 = self.get_performance() if self._sample_count != 0: pc = self.majority_classifier / self._sample_count else: pc = 0 if pc == 1: return 1 return (p0 - pc) / (1.0 - pc) @property def _matrix(self): return self.confusion_matrix._matrix @property def _sample_count(self): return self.true_labels.get_current_size() def get_class_type(self): return 'collection' def get_info(self): return 'ClassificationMeasurements: targets: ' + str(self.targets) + \ ' - sample_count: ' + str(self._sample_count) + \ ' - window_size: ' + str(self.window_size) + \ ' - performance: ' + str(self.get_performance()) + \ ' - kappa: ' + str(self.get_kappa()) + \ ' - kappa_t: ' + str(self.get_kappa_t()) + \ ' - kappa_m: ' + str(self.get_kappa_m()) + \ ' - majority_class: ' + str(self.get_majority_class()) class MultiOutputMeasurements(BaseObject): """ MultiOutputMeasurements This class will keep updated statistics about a multi output classifier, using a confusion matrix adapted to multi output problems, the MOLConfusionMatrix, alongside other of the classifier's relevant attributes. The performance metrics for multi output tasks are different from those used for normal classification tasks. Thus, the statistics provided by this class are different from those provided by the ClassificationMeasurements and from the WindowClassificationMeasurements. At any given moment, it can compute the following statistics: hamming_loss, hamming_score, exact_match and j_index. Parameters ---------- targets: list A list containing the possible labels. dtype: data type (Default: numpy.int64) The data type of the existing labels. Examples -------- """ def __init__(self, targets=None, dtype=np.int64): super().__init__() if targets is not None: self.n_targets = len(targets) else: self.n_targets = 0 self.confusion_matrix = MOLConfusionMatrix(self.n_targets, dtype) self.last_true_label = None self.last_prediction = None self.sample_count = 0 self.targets = targets self.exact_match_count = 0 self.j_sum = 0 def reset(self, targets=None): if targets is not None: self.n_targets = len(targets) else: self.n_targets = 0 self.sample_count = 0 self.confusion_matrix.restart(self.n_targets) self.exact_match_count = 0 self.j_sum = 0 pass def add_result(self, sample, prediction): """ add_result Updates its statistics with the results of a prediction. Adds the result to the MOLConfusionMatrix and update exact_matches and j-index sum counts. Parameters ---------- sample: int The true label. prediction: int The classifier's prediction """ self.last_true_label = sample self.last_prediction = prediction m = 0 if hasattr(sample, 'size'): m = sample.size elif hasattr(sample, 'append'): m = len(sample) self.n_targets = m equal = True for i in range(m): self.confusion_matrix.update(i, sample[i], prediction[i]) # update exact_match count if sample[i] != prediction[i]: equal = False # update exact_match if equal: self.exact_match_count += 1 # update j_index count inter = sum((sample * prediction) > 0) * 1. union = sum((sample + prediction) > 0) * 1. if union > 0: self.j_sum += inter / union elif np.sum(sample) == 0: self.j_sum += 1 self.sample_count += 1 def get_last(self): return self.last_true_label, self.last_prediction def get_hamming_loss(self): """ get_hamming_loss Computes the Hamming loss, which is the complement of the hamming score metric. Returns ------- float The hamming loss. """ return 1.0 - self.get_hamming_score() def get_hamming_score(self): """ get_hamming_score Computes the hamming score, defined as the number of correctly classified labels divided by the total number of labels classified. Returns ------- float The hamming score. """ try: return self.confusion_matrix.get_sum_main_diagonal() / (self.sample_count * self.n_targets) except ZeroDivisionError: return 0.0 def get_exact_match(self): """ get_exact_match Computes the exact match metric. This is the most strict multi output metric, defined as the number of samples that have all their labels correctly classified, divided by the total number of samples. Returns ------- float Returns the exact match metric. """ return self.exact_match_count / self.sample_count def get_j_index(self): """ get_j_index Computes the Jaccard index, also known as the intersection over union metric. It is calculated by dividing the number of correctly classified labels by the union of predicted and true labels. Returns ------- float The Jaccard index. """ return self.j_sum / self.sample_count def get_total_sum(self): return self.confusion_matrix.get_total_sum() @property def _matrix(self): return self.confusion_matrix._matrix @property def _sample_count(self): return self.sample_count def get_info(self): return 'MultiOutputMeasurements: targets: ' + str(self.targets) + \ ' - sample_count: ' + str(self._sample_count) + \ ' - hamming_loss: ' + str(self.get_hamming_loss()) + \ ' - hamming_score: ' + str(self.get_hamming_score()) + \ ' - exact_match: ' + str(self.get_exact_match()) + \ ' - j_index: ' + str(self.get_j_index()) def get_class_type(self): return 'collection' class WindowMultiOutputMeasurements(BaseObject): """ MultiOutputMeasurements This class will maintain a fixed sized window of the newest information about one classifier. It can provide, as requested, any of the relevant current metrics about the classifier, measured inside the window. This class will keep updated statistics about a multi output classifier, using a confusion matrix adapted to multi output problems, the MOLConfusionMatrix, alongside other of the classifier's relevant attributes stored in ComplexFastBuffer objects, which will simulate fixed sized windows. Its functionalities are somewhat similar to those of the MultiOutputMeasurements class. The difference is that the statistics kept by this class are local, or partial, while the statistics kept by the MultiOutputMeasurements class are global. At any given moment, it can compute the following statistics: hamming_loss, hamming_score, exact_match and j_index. Parameters ---------- targets: list A list containing the possible labels. dtype: data type (Default: numpy.int64) The data type of the existing labels. window_size: int (Default: 200) The width of the window. Determines how many samples the object can see. Examples -------- """ def __init__(self, targets=None, dtype=np.int64, window_size=200): super().__init__() if targets is not None: self.n_targets = len(targets) else: self.n_targets = 0 self.confusion_matrix = MOLConfusionMatrix(self.n_targets, dtype) self.last_true_label = None self.last_prediction = None self.targets = targets self.window_size = window_size self.true_labels = FastComplexBuffer(window_size, self.n_targets) self.predictions = FastComplexBuffer(window_size, self.n_targets) def reset(self, targets=None): if targets is not None: self.n_targets = len(targets) else: self.n_targets = 0 self.confusion_matrix.restart(self.n_targets) self.exact_match_count = 0 self.j_sum = 0 self.true_labels = FastComplexBuffer(self.window_size, self.n_targets) self.predictions = FastComplexBuffer(self.window_size, self.n_targets) def add_result(self, sample, prediction): """ add_result Updates its statistics with the results of a prediction. Adds the result to the MOLConfusionMatrix, and updates the ComplexFastBuffer objects. Parameters ---------- sample: int The true label. prediction: int The classifier's prediction """ self.last_true_label = sample self.last_prediction = prediction m = 0 if hasattr(sample, 'size'): m = sample.size elif hasattr(sample, 'append'): m = len(sample) self.n_targets = m for i in range(m): self.confusion_matrix.update(i, sample[i], prediction[i]) old_true = self.true_labels.add_element(sample) old_predict = self.predictions.add_element(prediction) if (old_true is not None) and (old_predict is not None): for i in range(m): error = self.confusion_matrix.remove(old_true[0][i], old_predict[0][i]) def get_last(self): return self.last_true_label, self.last_prediction def get_hamming_loss(self): """ get_hamming_loss Computes the window/local Hamming loss, which is the complement of the hamming score metric. Returns ------- float The window/local hamming loss. """ return 1.0 - self.get_hamming_score() def get_hamming_score(self): """ get_hamming_score Computes the window/local hamming score, defined as the number of correctly classified labels divided by the total number of labels classified. Returns ------- float The window/local hamming score. """ return metrics.hamming_score(self.true_labels.get_queue(), self.predictions.get_queue()) def get_exact_match(self): """ get_exact_match Computes the window/local exact match metric. This is the most strict multi output metric, defined as the number of samples that have all their labels correctly classified, divided by the total number of samples. Returns ------- float Returns the window/local exact match metric. """ return metrics.exact_match(self.true_labels.get_queue(), self.predictions.get_queue()) def get_j_index(self): """ get_j_index Computes the window/local Jaccard index, also known as the intersection over union metric. It is calculated by dividing the number of correctly classified labels by the union of predicted and true labels. Returns ------- float The window/local Jaccard index. """ return metrics.j_index(self.true_labels.get_queue(), self.predictions.get_queue()) def get_total_sum(self): return self.confusion_matrix.get_total_sum() @property def _matrix(self): return self.confusion_matrix._matrix @property def _sample_count(self): return self.true_labels.get_current_size() def get_info(self): return 'WindowMultiOutputMeasurements: targets: ' + str(self.targets) + \ ' - sample_count: ' + str(self._sample_count) + \ ' - hamming_loss: ' + str(self.get_hamming_loss()) + \ ' - hamming_score: ' + str(self.get_hamming_score()) + \ ' - exact_match: ' + str(self.get_exact_match()) + \ ' - j_index: ' + str(self.get_j_index()) def get_class_type(self): return 'collection' class RegressionMeasurements(BaseObject): """ RegressionMeasurements This class is used to keep updated statistics over a regression learner in a regression problem context. It will keep track of global metrics, that can be provided at any moment. The relevant metrics kept by an instance of this class are: MSE (mean square error) and MAE (mean absolute error). """ def __init__(self): super().__init__() self.total_square_error = 0.0 self.average_error = 0.0 self.sample_count = 0 self.last_true_label = None self.last_prediction = None def reset(self): self.total_square_error = 0.0 self.average_error = 0.0 self.sample_count = 0 self.last_true_label = None self.last_prediction = None def add_result(self, sample, prediction): """ add_result Use the true label and the prediction to update the statistics. Parameters ---------- sample: int The true label. prediction: int The classifier's prediction """ self.last_true_label = sample self.last_prediction = prediction self.total_square_error += (sample - prediction) * (sample - prediction) self.average_error += np.absolute(sample-prediction) self.sample_count += 1 def get_mean_square_error(self): """ get_mean_square_error Computes the mean square error. Returns ------- float Returns the mean square error. """ if self.sample_count == 0: return 0.0 else: return self.total_square_error / self.sample_count def get_average_error(self): """ get_average_error Computes the mean absolute error. Returns ------- float Returns the mean absolute error. """ if self.sample_count == 0: return 0.0 else: return self.average_error / self.sample_count def get_last(self): return self.last_true_label, self.last_prediction @property def _sample_count(self): return self.sample_count def get_class_type(self): return 'collection' def get_info(self): return 'RegressionMeasurements: sample_count: ' + str(self._sample_count) + \ ' - mean_square_error: ' + str(self.get_mean_square_error()) + \ ' - mean_absolute_error: ' + str(self.get_average_error()) class WindowRegressionMeasurements(BaseObject): """ WindowRegressionMeasurements This class is used to keep updated statistics over a regression learner in a regression problem context inside a fixed sized window. It uses FastBuffer objects to simulate the fixed sized windows. It will keep track of partial metrics, that can be provided at any moment. The relevant metrics kept by an instance of this class are: MSE (mean square error) and MAE (mean absolute error). """ def __init__(self, window_size=200): super().__init__() self.total_square_error = 0.0 self.average_error = 0.0 self.last_true_label = None self.last_prediction = None self.total_square_error_correction = FastBuffer(window_size) self.average_error_correction = FastBuffer(window_size) self.window_size = window_size def reset(self): self.total_square_error = 0.0 self.average_error = 0.0 self.last_true_label = None self.last_prediction = None self.total_square_error_correction = FastBuffer(self.window_size) self.average_error_correction = FastBuffer(self.window_size) def add_result(self, sample, prediction): """ add_result Use the true label and the prediction to update the statistics. Parameters ---------- sample: int The true label. prediction: int The classifier's prediction """ self.last_true_label = sample self.last_prediction = prediction self.total_square_error += (sample - prediction) * (sample - prediction) self.average_error += np.absolute(sample-prediction) old_square = self.total_square_error_correction.add_element(np.array([-1*((sample - prediction) * (sample - prediction))])) old_average = self.average_error_correction.add_element(np.array([-1*(np.absolute(sample-prediction))])) if (old_square is not None) and (old_average is not None): self.total_square_error += old_square[0] self.average_error += old_average[0] def get_mean_square_error(self): """ get_mean_square_error Computes the window/local mean square error. Returns ------- float Returns the window/local mean square error. """ if self._sample_count == 0: return 0.0 else: return self.total_square_error / self._sample_count def get_average_error(self): """ get_average_error Computes the window/local mean absolute error. Returns ------- float Returns the window/local mean absolute error. """ if self._sample_count == 0: return 0.0 else: return self.average_error / self._sample_count def get_last(self): return self.last_true_label, self.last_prediction @property def _sample_count(self): return self.total_square_error_correction.get_current_size() def get_class_type(self): return 'collection' def get_info(self): return 'RegressionMeasurements: sample_count: ' + str(self._sample_count) + \ ' - mean_square_error: ' + str(self.get_mean_square_error()) + \ ' - mean_absolute_error: ' + str(self.get_average_error())
StarcoderdataPython
4997416
<gh_stars>0 ''' Date: 2021-07-17 11:50:52 LastEditors: Liuliang LastEditTime: 2021-07-17 14:30:11 Description: ''' from collections import Iterable,Iterator,Generator # #1实现了__iter__方法就是iterable # # class IterObj: # # def __iter__(self): # # # 这里简单地返回自身 # # # 但实际情况可能不会这么写 # # # 而是通过内置的可迭代对象来实现 # # # 下文的列子中将会展示 # # return self # class IterObj: # def __init__(self): # self.a = [3, 5, 7, 11, 13, 17, 19] # def __iter__(self): # return iter(self.a) # it = IterObj() # print(isinstance(it, Iterable)) # true # print(isinstance(it, Iterator)) # false # print(isinstance(it, Generator)) # false # #2 常见的可迭代对象 # # 在Python中有哪些常见的可迭代对象呢? # # 1集合或序列类型(如list、tuple、set、dict、str) # # 2文件对象 # # 3在类中定义了__iter__()方法的对象,可以被认为是 Iterable对象,但自定义的可迭代对象要能在for循环中正确使用,就需要保证__iter__()实现必须是正确的(即可以通过内置iter()函数转成Iterator对象。关于Iterator下文还会说明,这里留下一个坑,只是记住iter()函数是能够将一个可迭代对象转成迭代器对象,然后在for中使用) # # 4在类中实现了如果只实现__getitem__()的对象可以通过iter()函数转化成迭代器但其本身不是可迭代对象。所以当一个对象能够在for循环中运行,但不一定是Iterable对象。 # print(isinstance([], Iterable)) # true list 是可迭代的 # print(isinstance({}, Iterable)) # true 字典是可迭代的 # print(isinstance((), Iterable)) # true 元组是可迭代的 # print(isinstance(set(), Iterable)) # true set是可迭代的 # print(isinstance('', Iterable)) # true 字符串是可迭代的 # import os # currPath = os.path.dirname(os.path.abspath(__file__)) # with open(currPath+'/test.py') as file: # print(isinstance(file, Iterable)) # true # for i in it: # print(i) # class IterObj: # # def __init__(self): # # self.a = [3, 5, 7, 11, 13, 17, 19] # # def __getitem__(self, i): # # return self.a[i] # # it = IterObj() # # print(isinstance(it, Iterable)) # false # # print(isinstance(it, Iterator)) # false # # print(isinstance(it, Generator)) #false # # print(hasattr(it, "__iter__")) # false # # print(iter(it)) # <iterator object at 0x10b231278> # # # print(isinstance(iter(it), Iterator)) # # for i in it: # # print(i) # 将打印出3、5、7、11、13、17、19 # class IterObj: # def __init__(self): # self.a = [3, 5, 7, 11, 13, 17, 19] # self.n = len(self.a) # self.i = 0 # def __iter__(self): # return iter(self.a) # def __next__(self): # while self.i < self.n: # v = self.a[self.i] # self.i += 1 # return v # else: # self.i = 0 # raise StopIteration() # it = IterObj() # print(isinstance(it, Iterable)) # true # print(isinstance(it, Iterator)) # true # print(isinstance(it, Generator)) # false # print(hasattr(it, "__iter__")) # true # print(hasattr(it, "__next__")) # true # print(isinstance([], Iterator)) # false # print(isinstance({}, Iterator)) # false # print(isinstance((), Iterator)) # false # print(isinstance(set(), Iterator)) # false # print(isinstance('', Iterator)) # false # print(next(it)) # print(next(it)) # # 3 Generator # #.1 列表生成器 # g = (x*2 for x in range(10)) # print(g) # print(isinstance(g, Iterable)) # true # print(isinstance(g, Iterator)) # true # print(isinstance(g, Generator)) # true # print(hasattr(g, "__iter__")) # true # print(hasattr(g, "__next__")) # true # print(next(g)) # 0 # print(next(g)) # 2 # print(next(g)) # #.2使用yield定义生成器函数 # def gen(): # for i in range(10): # yield i def producer(c): n = 0 while n < 5: n += 1 print('producer {}'.format(n)) r = c.send(n) print('consumer return {}'.format(r)) def consumer(): r = '' while True: n = yield r if not n: return print('consumer {} '.format(n)) r = 'ok' if __name__ == '__main__': c = consumer() next(c) # 启动consumer producer(c)
StarcoderdataPython
5003949
# -*- coding: utf-8 -*- """ Dropbox file system and targets. """ __all__ = ["DropboxFileSystem", "DropboxTarget", "DropboxFileTarget", "DropboxDirectoryTarget"] import logging import six from law.config import Config from law.target.remote import ( RemoteFileSystem, RemoteTarget, RemoteFileTarget, RemoteDirectoryTarget, ) logger = logging.getLogger(__name__) class DropboxFileSystem(RemoteFileSystem): default_instance = None def __init__(self, config=None, base=None, app_key=None, app_secret=None, access_token=None, **kwargs): # default configs kwargs.setdefault("retries", 1) kwargs.setdefault("retry_delay", 5) kwargs.setdefault("transfer_config", {"checksum_check": False}) kwargs.setdefault("validate_copy", False) kwargs.setdefault("cache_config", {}) kwargs.setdefault("permissions", False) # prepare the gfal options # resolution order: config, key+secret+token, default dropbox fs section cfg = Config.instance() if not config and not app_key and not app_secret and not access_token: config = cfg.get("target", "default_dropbox_fs") if config and cfg.has_section(config): # load options from the config opts = {attr: cfg.get_default(config, attr) for attr in ("app_key", "app_secret", "access_token")} if base is None: base = cfg.get_default(config, "base") # loop through items and load optional configs cache_prefix = "cache_" others = ("retries", "retry_delay", "validate_copy", "atomic_contexts", "permissions") for key, value in cfg.items(config): if not value: continue if key.startswith(cache_prefix): kwargs["cache_config"][key[len(cache_prefix):]] = value elif key in others: kwargs[key] = value elif app_key and app_secret and access_token: opts = {"app_key": app_key, "app_secret": app_secret, "access_token": access_token} else: raise Exception("invalid arguments, set either config, app_key+app_secret+access_token " "or the target.default_dropbox_fs option in your law config") # base is mandatory if base is None: raise Exception("no base directory set") # special dropbox options gfal_options = { "integer": [("DROPBOX", "OAUTH", 2)], "string": [("DROPBOX", key.upper(), str(value)) for key, value in opts.items()], } base_url = "dropbox://dropbox.com/" + base.strip("/") RemoteFileSystem.__init__(self, base_url, gfal_options=gfal_options, **kwargs) # try to set the default fs instance try: DropboxFileSystem.default_instance = DropboxFileSystem() logger.debug("created default DropboxFileSystem instance '{}'".format( DropboxFileSystem.default_instance)) except Exception as e: logger.debug("could not create default DropboxFileSystem instance: {}".format(e)) class DropboxTarget(RemoteTarget): def __init__(self, path, fs=DropboxFileSystem.default_instance, **kwargs): """ __init__(path, fs=DropboxFileSystem.default_instance, **kwargs) """ if isinstance(fs, six.string_types): fs = DropboxFileSystem(fs) RemoteTarget.__init__(self, path, fs, **kwargs) class DropboxFileTarget(DropboxTarget, RemoteFileTarget): pass class DropboxDirectoryTarget(DropboxTarget, RemoteDirectoryTarget): pass DropboxTarget.file_class = DropboxFileTarget DropboxTarget.directory_class = DropboxDirectoryTarget
StarcoderdataPython
5147874
<reponame>li-phone/DetectionCompetition from tqdm import tqdm import glob import xml.etree.ElementTree as ET import os import json import numpy as np import random import pandas as pd try: from pandas import json_normalize except: from pandas.io.json import json_normalize def convert(size, box): dw = 1. / (size[0]) dh = 1. / (size[1]) x = (box[0] + box[2]) / 2.0 - 1 y = (box[1] + box[3]) / 2.0 - 1 w = box[2] - box[0] h = box[3] - box[1] x = x * dw w = w * dw y = y * dh h = h * dh return (x, y, w, h) def coco2yolo(ann_file, img_dir, save_dir): if not os.path.exists(save_dir): os.makedirs(save_dir) from pycocotools.coco import COCO coco = COCO(ann_file) img_ids = coco.getImgIds() targets = [] for img_id in tqdm(img_ids): image_info = coco.loadImgs(img_id)[0] ann_ids = coco.getAnnIds(imgIds=img_id) annotations = coco.loadAnns(ann_ids) img_path = os.path.join(img_dir, image_info['file_name']) if not os.path.exists(img_path): print(img_path, "not exists") continue file_name = os.path.join(save_dir, '{}.txt'.format(image_info['file_name'].split('.')[0])) with open(file_name, 'w') as fp: for ann in annotations: bb = ann['bbox'] bb[2] += bb[0] bb[3] += bb[1] img_w = image_info['width'] img_h = image_info['height'] bb[2] = min(bb[2], img_w) bb[3] = min(bb[3], img_h) bb = convert((img_w, img_h), bb) cls_id = int(ann['category_id']) - 1 fp.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') targets.append(dict(img=img_path, target=file_name)) return coco, targets def parse_args(): import argparse parser = argparse.ArgumentParser(description='coco2yolo') parser.add_argument('--coco', default='/home/liphone/undone-work/data/detection/garbage_huawei/annotations/instance_train.json', help='coco') parser.add_argument('--img_dir', default='/home/liphone/undone-work/data/detection/garbage_huawei/images', help='img_dir') parser.add_argument('--save_dir', default='/home/liphone/undone-work/data/detection/garbage_huawei/yolo', help='save_dir') parser.add_argument('--frac', default=0.8, type=float, help='frac') parser.add_argument('--random_state', default=666, help='random_state') args = parser.parse_args() return args def main(): args = parse_args() coco, targets = coco2yolo(args.coco, args.img_dir, os.path.join(args.save_dir, 'labels')) categories = json_normalize(coco.dataset['categories']) categories['name'].to_csv(os.path.join(args.save_dir, 'label_list.txt'), index=False, header=False) targets = json_normalize(targets) targets = targets.sample(frac=1., random_state=args.random_state) train_samples = targets.sample(frac=args.frac, random_state=args.random_state) val_samples = targets.drop(train_samples.index) targets.to_csv(os.path.join(args.save_dir, 'trainval.txt'), index=False, header=False) train_samples.to_csv(os.path.join(args.save_dir, 'train.txt'), index=False, header=False) val_samples.to_csv(os.path.join(args.save_dir, 'val.txt'), index=False, header=False) if __name__ == "__main__": main()
StarcoderdataPython
9631589
import os from flask import Flask,jsonify,request,render_template,redirect from heart_sound import predict from werkzeug.utils import secure_filename app = Flask(__name__) ## __name__= current file name (main) @app.route("/", methods = ["GET", "POST"]) ## page name def index(): prediction = "" if request.method == "POST": print("FORM DATA RECEIVED") if "file" not in request.files: return redirect(request.url) file = request.files["file"] if file.filename == "": return redirect(request.url) if file: app.config['Audio_UPLOADS'] = "" file = request.files['file'] filename = secure_filename(file.filename) file.save(os.path.join(app.config["Audio_UPLOADS"], filename)) actual_file = filename prediction = predict(actual_file) print(prediction) return render_template('index.html', prediction=prediction) app.run(debug=False, threaded = True)
StarcoderdataPython
1924537
<filename>Ayoubsprogramm1.py print("Mooooooin Meister!") topf = "Lego set" print(topf) print("Hallo ich programmiere gerade. Wer kann das auch?°,,,,°") print("-------------------------------------------------------")
StarcoderdataPython
9798412
<reponame>brandongk-ubco/wrinkler import torchvision from .AugmentedDataset import AugmentedDataset dataset_path = "/mnt/e/datasets/voc/" train_data = torchvision.datasets.VOCSegmentation(dataset_path, image_set='train') val_data = torchvision.datasets.VOCSegmentation(dataset_path, image_set='trainval') class VOCAugmentedDataset(AugmentedDataset): def __getitem__(self, idx): image, mask = super().__getitem__(idx) mask[mask > 0] = 1. return image, mask
StarcoderdataPython
11307727
<gh_stars>1-10 import torch import numpy as np from collections import deque import time # if you have pre loaded weights in place. Set eps_start=0 def dqn(env, agent, WEIGHTS_PATH, brain_name, n_episodes=2000, eps_start=1, eps_end=0.01, eps_decay=0.993): """Deep Q-Learning. Params ====== n_episodes (int): maximum number of training episodes max_t (int): maximum number of timesteps per episode eps_start (float): starting value of epsilon, for epsilon-greedy action selection eps_end (float): minimum value of epsilon eps_decay (float): multiplicative factor (per episode) for decreasing epsilon """ scores = [] # track episode scores yellow_bananas = [] # track episode yellow bananas blue_bananas = [] # track episode blue bananas steps = [] # track episode steps epsilons = [] # track episode epsilons scores_window = deque(maxlen=100) # last 100 scores eps = eps_start # initialize epsilon for i_episode in range(1, n_episodes + 1): env_info = env.reset(train_mode=True)[brain_name] # reset the environment state = env_info.vector_observations[0] # get the current state score = 0 # initialize the score n_steps = 0 # initialize steps n_yellow_bananas = 0 n_blue_bananas = 0 while True: action = agent.act(state, eps) env_info = env.step(action)[brain_name] # send the action to the environment next_state = env_info.vector_observations[0] # get the next state reward = env_info.rewards[0] # get the reward done = env_info.local_done[0] # see if episode has finished score += reward # update the score n_steps += 1 if reward == -1: n_blue_bananas += 1 if reward == 1: n_yellow_bananas += 1 agent.step(state, action, reward, next_state, done) state = next_state # roll over the state to next time step if done: # exit loop if episode finished break # append performance metrics to lists scores_window.append(score) scores.append(score) steps.append(n_steps) yellow_bananas.append(n_yellow_bananas) blue_bananas.append(n_blue_bananas) epsilons.append(eps) eps = max(eps_end, eps_decay * eps) # decrease epsilon # track training episodes and save weight file checkpoints if i_episode % 100 == 0: print('\rEpisode {}\tAverage Score: {:.2f}\tEpsilon: {:.4f}'.format(i_episode, np.mean(scores_window), eps)) weights_file_name = WEIGHTS_PATH + 'checkpoint_episode_' + str(i_episode) + '.pth' torch.save(agent.qnetwork_local.state_dict(), weights_file_name) if np.mean(scores_window) >= 13.0: print('\nEnvironment solved in {:d} episodes!\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_window))) # save trained model weights with a timestamp weights_file_name = WEIGHTS_PATH + 'checkpoint_solved' + str(int(round(time.time(), 0))) + '.pth' torch.save(agent.qnetwork_local.state_dict(), weights_file_name) break return scores, steps, yellow_bananas, blue_bananas, epsilons
StarcoderdataPython
3385211
<reponame>ThomasThoren/geographic-data """ topo2geojson.py Convert topojson to geojson Example Usage: python topo2geojson.py data.topojson data.geojson The topojson tested here was created using the mbostock topojson CLI created with --spherical coords and --properties turned on Author: <NAME> (http://github.com/perrygeo) Thanks to @sgillies for the topojson geometry logic requires: https://github.com/sgillies/topojson/blob/master/topojson.py Next steps: how can this be generalized to a robust CLI converter? """ import json import sys from topojson import geometry from shapely.geometry import asShape topojson_path = sys.argv[1] geojson_path = sys.argv[2] with open(topojson_path, 'r') as fh: f = fh.read() topology = json.loads(f) # file can be renamed, the first 'object' is more reliable layername = topology['objects'].keys()[0] features = topology['objects'][layername]['geometries'] scale = topology['transform']['scale'] trans = topology['transform']['translate'] with open(geojson_path, 'w') as dest: fc = {'type': "FeatureCollection", 'features': []} for id, tf in enumerate(features): f = {'id': id, 'type': "Feature"} f['properties'] = tf['properties'].copy() # print tf geommap = geometry(tf, topology['arcs'], scale, trans) geom = asShape(geommap).buffer(0) assert geom.is_valid f['geometry'] = geom.__geo_interface__ fc['features'].append(f) dest.write(json.dumps(fc))
StarcoderdataPython
4894775
<gh_stars>100-1000 import numpy as np import time from collections import defaultdict, OrderedDict from future.utils import viewitems from .base import Base from .to_float import to_float __all__ = [ "Simple", "TNT", "Timer", "Maximum", "Minimum", "Average", "Sum" ] class Simple(Base): def __init__(self, time_indexing=None, plotter=None, plot_title=None, plot_legend=None): super(Simple, self).__init__(time_indexing, plotter, plot_title, plot_legend) def reset(self): self._val = 0. return self def _update(self, val, n=None): self._val = to_float(val) def state_dict_extra(self, state): state['val'] = self._val def load_state_dict_extra(self, state): self._val = to_float(state['val']) @property def value(self): return self._val def __repr__(self): repr_ = "Simple({time_indexing}, {plotter}, '{plot_title}', '{plot_legend}')" repr_ = repr_.format(time_indexing=self._time_indexing, plotter=None, plot_title=self._plot_title, plot_legend=self._plot_legend) return repr_ class TNT(Base): def __init__(self, tnt_meter, time_indexing=None, plotter=None, plot_title=None, plot_legend=None): super(TNT, self).__init__(time_indexing, plotter, plot_title, plot_legend) self._tnt_meter = tnt_meter def reset(self): self._tnt_meter.reset() return self def _update(self, *args, **kwargs): self._tnt_meter.add(*args, **kwargs) @property def value(self): return self._tnt_meter.value() def __repr__(self): repr_ = "TNT({tnt_meter}, {time_indexing}, {plotter}, '{plot_title}', '{plot_legend}')" repr_ = repr_.format(tnt_meter=repr(self._tnt_meter), time_indexing=self._time_indexing, plotter=None, plot_title=self._plot_title, plot_legend=self._plot_legend) return repr_ class Timer(Base): def __init__(self, plotter=None, plot_title=None, plot_legend=None): super(Timer, self).__init__(False, plotter, plot_title, plot_legend) def reset(self): self.start = time.time() self.current = self.start return self def _update(self, current_time=None): if current_time is not None: self.current = to_float(current_time) else: self.current = time.time() @property def value(self): return self.current - self.start def state_dict_extra(self, state): state['start'] = self.start state['current'] = self.current def load_state_dict_extra(self, state): self.start = state['start'] self.current = state['current'] def __repr__(self): repr_ = "Timer({plotter}, '{plot_title}', '{plot_legend}')" repr_ = repr_.format(plotter=None, plot_title=self._plot_title, plot_legend=self._plot_legend) return repr_ class Maximum(Base): def __init__(self, time_indexing=None, plotter=None, plot_title=None, plot_legend=None): super(Maximum, self).__init__(time_indexing, plotter, plot_title, plot_legend) def reset(self): self._val = -np.inf self.hooks_on_new_max = () return self def _update(self, val, n=None): val = to_float(val) if val > self._val: self._val = val for hook in self.hooks_on_new_max: hook() def hook_on_new_max(self, hook): self.hooks_on_new_max += (hook,) def state_dict_extra(self, state): state['val'] = self._val def load_state_dict_extra(self, state): self._val = to_float(state['val']) @property def value(self): return self._val def __repr__(self): repr_ = "Maximum({time_indexing}, {plotter}, '{plot_title}', '{plot_legend}')" repr_ = repr_.format(time_indexing=self._time_indexing, plotter=None, plot_title=self._plot_title, plot_legend=self._plot_legend) return repr_ class Minimum(Base): def __init__(self, time_indexing=None, plotter=None, plot_title=None, plot_legend=None): super(Minimum, self).__init__(time_indexing, plotter, plot_title, plot_legend) def reset(self): self._val = np.inf self.hooks_on_new_min = () return self def _update(self, val, n=None): val = to_float(val) if val < self._val: self._val = val for hook in self.hooks_on_new_min: hook() def hook_on_new_min(self, hook): self.hooks_on_new_min += (hook,) def state_dict_extra(self, state): state['val'] = self._val def load_state_dict_extra(self, state): self._val = to_float(state['val']) @property def value(self): return self._val def __repr__(self): repr_ = "Minimum({time_indexing}, {plotter}, '{plot_title}', '{plot_legend}')" repr_ = repr_.format(time_indexing=self._time_indexing, plotter=None, plot_title=self._plot_title, plot_legend=self._plot_legend) return repr_ class Accumulator_(Base): """ Credits to the authors of pytorch/tnt for this. """ def __init__(self, time_indexing, plotter=None, plot_title=None, plot_legend=None): super(Accumulator_, self).__init__(time_indexing, plotter, plot_title, plot_legend) def reset(self): self._avg = 0 self._total_weight = 0 return self def _update(self, val, weighting=1): val, weighting = to_float(val), to_float(weighting) assert weighting > 0 r = self._total_weight / (weighting + self._total_weight) self._avg = r * self._avg + (1 - r) * val self._total_weight += weighting def state_dict_extra(self, state): state['avg'] = self._avg state['total_weight'] = self._total_weight def load_state_dict_extra(self, state): self._avg = state['avg'] self._total_weight = state['total_weight'] @property def value(self): raise NotImplementedError("Accumulator should be subclassed") class Average(Accumulator_): def __init__(self, time_indexing=None, plotter=None, plot_title=None, plot_legend=None): super(Average, self).__init__(time_indexing, plotter, plot_title, plot_legend) @property def value(self): return self._avg def __repr__(self): repr_ = "Average({time_indexing}, {plotter}, '{plot_title}', '{plot_legend}')" repr_ = repr_.format(time_indexing=self._time_indexing, plotter=None, plot_title=self._plot_title, plot_legend=self._plot_legend) return repr_ class Sum(Accumulator_): def __init__(self, time_indexing=None, plotter=None, plot_title=None, plot_legend=None): super(Sum, self).__init__(time_indexing, plotter, plot_title, plot_legend) @property def value(self): return self._avg * self._total_weight def __repr__(self): repr_ = "Sum({time_indexing}, {plotter}, '{plot_title}', '{plot_legend}')" repr_ = repr_.format(time_indexing=self._time_indexing, plotter=None, plot_title=self._plot_title, plot_legend=self._plot_legend) return repr_
StarcoderdataPython
40150
<filename>tests/test_utils.py import argparse import distutils.spawn import os import subprocess import pytest from pytest import mark from pytest_benchmark.utils import clonefunc from pytest_benchmark.utils import get_commit_info from pytest_benchmark.utils import get_project_name from pytest_benchmark.utils import parse_columns from pytest_benchmark.utils import parse_elasticsearch_storage from pytest_benchmark.utils import parse_warmup pytest_plugins = 'pytester', f1 = lambda a: a # noqa def f2(a): return a @mark.parametrize('f', [f1, f2]) def test_clonefunc(f): assert clonefunc(f)(1) == f(1) assert clonefunc(f)(1) == f(1) def test_clonefunc_not_function(): assert clonefunc(1) == 1 @pytest.yield_fixture(params=(True, False)) def crazytestdir(request, testdir): if request.param: testdir.tmpdir.join('foo', 'bar').ensure(dir=1).chdir() yield testdir @pytest.fixture(params=('git', 'hg')) def scm(request, testdir): scm = request.param if not distutils.spawn.find_executable(scm): pytest.skip("%r not availabe on $PATH") subprocess.check_call([scm, 'init', '.']) if scm == 'git': subprocess.check_call('git config user.email <EMAIL>'.split()) subprocess.check_call('git config user.name you'.split()) else: testdir.tmpdir.join('.hg', 'hgrc').write(""" [ui] username = you <<EMAIL>> """) return scm def test_get_commit_info(scm, crazytestdir): with open('test_get_commit_info.py', 'w') as fh: fh.write('asdf') subprocess.check_call([scm, 'add', 'test_get_commit_info.py']) subprocess.check_call([scm, 'commit', '-m', 'asdf']) out = get_commit_info() branch = 'master' if scm == 'git' else 'default' assert out['branch'] == branch assert out.get('dirty') is False assert 'id' in out with open('test_get_commit_info.py', 'w') as fh: fh.write('sadf') out = get_commit_info() assert out.get('dirty') is True assert 'id' in out def test_missing_scm_bins(scm, crazytestdir, monkeypatch): with open('test_get_commit_info.py', 'w') as fh: fh.write('asdf') subprocess.check_call([scm, 'add', 'test_get_commit_info.py']) subprocess.check_call([scm, 'commit', '-m', 'asdf']) monkeypatch.setenv('PATH', os.getcwd()) out = get_commit_info() assert 'No such file or directory' in out['error'] def test_get_branch_info(scm, testdir): # make an initial commit testdir.tmpdir.join('foo.txt').ensure(file=True) subprocess.check_call([scm, 'add', 'foo.txt']) subprocess.check_call([scm, 'commit', '-m', 'added foo.txt']) branch = get_commit_info()['branch'] expected = 'master' if scm == 'git' else 'default' assert branch == expected # # switch to a branch if scm == 'git': subprocess.check_call(['git', 'checkout', '-b', 'mybranch']) else: subprocess.check_call(['hg', 'branch', 'mybranch']) branch = get_commit_info()['branch'] assert branch == 'mybranch' # # git only: test detached head if scm == 'git': subprocess.check_call(['git', 'commit', '--allow-empty', '-m', '...']) subprocess.check_call(['git', 'commit', '--allow-empty', '-m', '...']) subprocess.check_call(['git', 'checkout', 'HEAD~1']) assert get_commit_info()['branch'] == '(detached head)' def test_no_branch_info(testdir): assert get_commit_info()['branch'] == '(unknown)' def test_commit_info_error(testdir): testdir.mkdir('.git') info = get_commit_info() assert info['branch'].lower() == '(unknown)'.lower() assert info['error'].lower() == 'CalledProcessError(128, ' \ '\'fatal: Not a git repository (or any of the parent directories): .git\\n\')'.lower() def test_parse_warmup(): assert parse_warmup('yes') is True assert parse_warmup('on') is True assert parse_warmup('true') is True assert parse_warmup('off') is False assert parse_warmup('off') is False assert parse_warmup('no') is False assert parse_warmup('') is True assert parse_warmup('auto') in [True, False] def test_parse_columns(): assert parse_columns('min,max') == ['min', 'max'] assert parse_columns('MIN, max ') == ['min', 'max'] with pytest.raises(argparse.ArgumentTypeError): parse_columns('min,max,x') @mark.parametrize('scm', [None, 'git', 'hg']) @mark.parametrize('set_remote', [ False, 'https://example.com/pytest_benchmark_repo', 'https://example.com/pytest_benchmark_repo.git', 'c:\\foo\\bar\\pytest_benchmark_repo.git' '<EMAIL>:pytest_benchmark_repo.git']) def test_get_project_name(scm, set_remote, testdir): if scm is None: assert get_project_name().startswith("test_get_project_name") return if not distutils.spawn.find_executable(scm): pytest.skip("%r not availabe on $PATH") subprocess.check_call([scm, 'init', '.']) if scm == 'git' and set_remote: subprocess.check_call(['git', 'config', 'remote.origin.url', set_remote]) elif scm == 'hg' and set_remote: set_remote = set_remote.replace('.git', '') set_remote = set_remote.replace('.com:', '/') testdir.tmpdir.join('.hg', 'hgrc').write( "[ui]\n" "username = you <<EMAIL>>\n" "[paths]\n" "default = %s\n" % set_remote) if set_remote: assert get_project_name() == "pytest_benchmark_repo" else: # use directory name if remote branch is not set assert get_project_name().startswith("test_get_project_name") @mark.parametrize('scm', ['git', 'hg']) def test_get_project_name_broken(scm, testdir): testdir.tmpdir.join('.' + scm).ensure(dir=1) assert get_project_name() in ['test_get_project_name_broken0', 'test_get_project_name_broken1'] def test_get_project_name_fallback(testdir, capfd): testdir.tmpdir.ensure('.hg', dir=1) project_name = get_project_name() assert project_name.startswith("test_get_project_name_fallback") assert capfd.readouterr() == ('', '') def test_get_project_name_fallback_broken_hgrc(testdir, capfd): testdir.tmpdir.ensure('.hg', 'hgrc').write('[paths]\ndefault = /') project_name = get_project_name() assert project_name.startswith("test_get_project_name_fallback") assert capfd.readouterr() == ('', '') def test_parse_elasticsearch_storage(): benchdir = os.path.basename(os.getcwd()) assert parse_elasticsearch_storage("http://localhost:9200") == ( ["http://localhost:9200"], "benchmark", "benchmark", benchdir) assert parse_elasticsearch_storage("http://localhost:9200/benchmark2") == ( ["http://localhost:9200"], "benchmark2", "benchmark", benchdir) assert parse_elasticsearch_storage("http://localhost:9200/benchmark2/benchmark2") == ( ["http://localhost:9200"], "benchmark2", "benchmark2", benchdir) assert parse_elasticsearch_storage("http://host1:9200,host2:9200") == ( ["http://host1:9200", "http://host2:9200"], "benchmark", "benchmark", benchdir) assert parse_elasticsearch_storage("http://host1:9200,host2:9200/benchmark2") == ( ["http://host1:9200", "http://host2:9200"], "benchmark2", "benchmark", benchdir) assert parse_elasticsearch_storage("http://localhost:9200/benchmark2/benchmark2?project_name=project_name") == ( ["http://localhost:9200"], "benchmark2", "benchmark2", "project_name")
StarcoderdataPython
217955
<gh_stars>0 import os from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import * from libs.threading import * import time import pickle from libs.ustr import ustr from libs.utils import * from libs.namedImage import * class FolderImagesSource(): def __init__(self, foldername): self._folder_name = foldername self._names_list = [] def GetStorageName(self): return self._folder_name def GetNames(self): self._names_list = [] if os.path.exists(self._folder_name) and os.path.isdir(self._folder_name): extensions = ['.%s' % fmt.data().decode("ascii").lower() for fmt in QImageReader.supportedImageFormats()] for root, dirs, files in os.walk(self._folder_name): for file in files: if file.lower().endswith(tuple(extensions)): self._names_list.append(file) natural_sort(self._names_list, key=lambda x: x.lower()) return self._names_list def GetImage(self, filename): relative_path = os.path.join(self._folder_name, filename) path = ustr(os.path.abspath(relative_path)) if os.path.exists(path) and os.path.isfile(path): img = NamedImage(filename) res = img.FromFile(path) return res, img return False, None def GetIndex(self, filename): basename = os.path.basename(filename) res = 0 if basename in self._names_list: res = self._names_list.index(basename) return res
StarcoderdataPython
12862481
<reponame>parag-hub/arrayfire-python #!/usr/bin/env python ####################################################### # Copyright (c) 2018, ArrayFire # All rights reserved. # # This file is distributed under 3-clause BSD license. # The complete license agreement can be obtained at: # http://arrayfire.com/licenses/BSD-3-Clause ######################################################## from time import time import arrayfire as af import os import sys def draw_corners(img, x, y, draw_len): # Draw vertical line of (draw_len * 2 + 1) pixels centered on the corner # Set only the first channel to 1 (green lines) xmin = max(0, x - draw_len) xmax = min(img.dims()[1], x + draw_len) img[y, xmin : xmax, 0] = 0.0 img[y, xmin : xmax, 1] = 1.0 img[y, xmin : xmax, 2] = 0.0 # Draw vertical line of (draw_len * 2 + 1) pixels centered on the corner # Set only the first channel to 1 (green lines) ymin = max(0, y - draw_len) ymax = min(img.dims()[0], y + draw_len) img[ymin : ymax, x, 0] = 0.0 img[ymin : ymax, x, 1] = 1.0 img[ymin : ymax, x, 2] = 0.0 return img def harris_demo(console): root_path = os.path.dirname(os.path.abspath(__file__)) file_path = root_path if console: file_path += "/../../assets/examples/images/square.png" else: file_path += "/../../assets/examples/images/man.jpg" img_color = af.load_image(file_path, True); img = af.color_space(img_color, af.CSPACE.GRAY, af.CSPACE.RGB) img_color /= 255.0 ix, iy = af.gradient(img) ixx = ix * ix ixy = ix * iy iyy = iy * iy # Compute a Gaussian kernel with standard deviation of 1.0 and length of 5 pixels # These values can be changed to use a smaller or larger window gauss_filt = af.gaussian_kernel(5, 5, 1.0, 1.0) # Filter second order derivatives ixx = af.convolve(ixx, gauss_filt) ixy = af.convolve(ixy, gauss_filt) iyy = af.convolve(iyy, gauss_filt) # Calculate trace itr = ixx + iyy # Calculate determinant idet = ixx * iyy - ixy * ixy # Calculate Harris response response = idet - 0.04 * (itr * itr) # Get maximum response for each 3x3 neighborhood mask = af.constant(1, 3, 3) max_resp = af.dilate(response, mask) # Discard responses that are not greater than threshold corners = response > 1e5 corners = corners * response # Discard responses that are not equal to maximum neighborhood response, # scale them to original value corners = (corners == max_resp) * corners # Copy device array to python list on host corners_list = corners.to_list() draw_len = 3 good_corners = 0 for x in range(img_color.dims()[1]): for y in range(img_color.dims()[0]): if corners_list[x][y] > 1e5: img_color = draw_corners(img_color, x, y, draw_len) good_corners += 1 print("Corners found: {}".format(good_corners)) if not console: # Previews color image with green crosshairs wnd = af.Window(512, 512, "Harris Feature Detector") while not wnd.close(): wnd.image(img_color) else: idx = af.where(corners) corners_x = idx / float(corners.dims()[0]) corners_y = idx % float(corners.dims()[0]) print(corners_x) print(corners_y) if __name__ == "__main__": if (len(sys.argv) > 1): af.set_device(int(sys.argv[1])) console = (sys.argv[2] == '-') if len(sys.argv) > 2 else False af.info() print("** ArrayFire Harris Corner Detector Demo **\n") harris_demo(console)
StarcoderdataPython
6554046
import command_system import db import commands.st3ch1 as st3ch1 import commands.st4_1ch0 as st4_1ch0 def next(vk_id, body): candidates = db.get_candidates(vk_id) cand_keys = [] for num, keys in enumerate(candidates): if keys[8]: fullname = keys[0].lower() + ' ' + keys[1].lower() + ' ' + keys[2].lower() fullname = fullname.strip() vars = [fullname] vars.append(str(num + 1) + '. ' + fullname) vars.append(str(num + 1)) vars.append(str(num + 1) + '.') vars.append(keys[0].lower()) vars.append(num) cand_keys.append(vars) choice = None for cand in cand_keys: if body in cand: choice = cand[5] break if choice is None: return None, None db.make_choice(vk_id, candidates[choice][7]) candidates = db.get_candidates(vk_id) choosen = [] not_choosen = [] for num, cand in enumerate(candidates): fullname = cand[0] + ' ' + cand[1] + ' ' + cand[2] fullname = fullname.strip() if cand[8]: choosen.append(str(num + 1) + '. ' + fullname) else: not_choosen.append(str(num + 1) + '. ' + fullname) if choosen == []: return st3ch1.next(vk_id, '1') if not_choosen == []: return st4_1ch0.next(vk_id, '0') msg = 'Вы выбрали кандидатов:\n' for cand in choosen: msg += cand + '\n' msg += '\nВы также можете проголосовать и за других кандидатов:\n' for cand in not_choosen: msg += cand + '\n' msg += '\nДля этого выберите кого-то из оставшихся кандидатов, либо отправьте его номер.\n\n' msg += 'Чтобы отменить выбор кандидата, нажмите на кнопку с ним повторно или отправьте его номер.\n\n' msg += 'Для того, чтобы завершить голосование, выберите соответствующий вариант, либо отправьте 0' return msg, '4.1' command_0 = command_system.Command(['4.1.1']) command_0.description = 'Голосование' command_0.process = next
StarcoderdataPython
357759
<reponame>konnase/DI-engine<gh_stars>1-10 import pytest import numpy as np import gym from easydict import EasyDict from dizoo.atari.envs import AtariMultiDiscreteEnv @pytest.mark.unittest class TestAtariMultiDiscreteEnv: def test_pong(self): env_num = 3 cfg = {'env_id': 'PongNoFrameskip-v4', 'frame_stack': 4, 'is_train': True, 'multi_env_num': env_num} cfg = EasyDict(cfg) pong_env = AtariMultiDiscreteEnv(cfg) pong_env.seed(0) obs = pong_env.reset() assert obs.shape == (cfg.frame_stack * env_num, 84, 84) act_dim = pong_env.info().act_space.shape[0] while True: random_action = [np.random.choice(range(act_dim), size=(1, )) for _ in range(env_num)] timestep = pong_env.step(random_action) assert timestep.obs.shape == (cfg.frame_stack * env_num, 84, 84) assert timestep.reward.shape == (1, ) assert isinstance(timestep, list) if timestep.done: assert 'final_eval_reward' in timestep.info, timestep.info break print(pong_env.info(), 'final_eval_reward: {}'.format(timestep.info['final_eval_reward'])) pong_env.close()
StarcoderdataPython
9793707
""" This module is only responsible for the type of GUI. """ # -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'usbadc10gui/design.ui' # # Created by: PyQt5 UI code generator 5.15.2 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets from qwt import QwtPlot class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(1224, 596) self.centralwidget = QtWidgets.QWidget(MainWindow) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.centralwidget.sizePolicy().hasHeightForWidth()) self.centralwidget.setSizePolicy(sizePolicy) self.centralwidget.setMinimumSize(QtCore.QSize(0, 0)) self.centralwidget.setObjectName("centralwidget") self.horizontalLayout_2 = QtWidgets.QHBoxLayout(self.centralwidget) self.horizontalLayout_2.setContentsMargins(-1, 0, -1, -1) self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.horizontalLayout_4 = QtWidgets.QHBoxLayout() self.horizontalLayout_4.setObjectName("horizontalLayout_4") self.verticalLayout = QtWidgets.QVBoxLayout() self.verticalLayout.setSizeConstraint(QtWidgets.QLayout.SetFixedSize) self.verticalLayout.setContentsMargins(-1, -1, -1, 0) self.verticalLayout.setObjectName("verticalLayout") self.b_1_blue = QtWidgets.QCheckBox(self.centralwidget) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(0, 0, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(133, 133, 133)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) self.b_1_blue.setPalette(palette) font = QtGui.QFont() font.setFamily("Noto Sans") self.b_1_blue.setFont(font) self.b_1_blue.setChecked(True) self.b_1_blue.setObjectName("b_1_blue") self.verticalLayout.addWidget(self.b_1_blue) self.b_2_green = QtWidgets.QCheckBox(self.centralwidget) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(0, 170, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 170, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(133, 133, 133)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) self.b_2_green.setPalette(palette) self.b_2_green.setChecked(True) self.b_2_green.setObjectName("b_2_green") self.verticalLayout.addWidget(self.b_2_green) self.b_3_red = QtWidgets.QCheckBox(self.centralwidget) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(133, 133, 133)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) self.b_3_red.setPalette(palette) self.b_3_red.setChecked(True) self.b_3_red.setObjectName("b_3_red") self.verticalLayout.addWidget(self.b_3_red) self.b_4_black = QtWidgets.QCheckBox(self.centralwidget) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(133, 133, 133)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) self.b_4_black.setPalette(palette) self.b_4_black.setChecked(True) self.b_4_black.setObjectName("b_4_black") self.verticalLayout.addWidget(self.b_4_black) self.b_5_orange = QtWidgets.QCheckBox(self.centralwidget) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(133, 133, 133)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) self.b_5_orange.setPalette(palette) self.b_5_orange.setChecked(True) self.b_5_orange.setTristate(False) self.b_5_orange.setObjectName("b_5_orange") self.verticalLayout.addWidget(self.b_5_orange) self.b_6_blue_light = QtWidgets.QCheckBox(self.centralwidget) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(0, 170, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 170, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(133, 133, 133)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) self.b_6_blue_light.setPalette(palette) self.b_6_blue_light.setChecked(True) self.b_6_blue_light.setObjectName("b_6_blue_light") self.verticalLayout.addWidget(self.b_6_blue_light) self.b_7_green_light = QtWidgets.QCheckBox(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.b_7_green_light.sizePolicy().hasHeightForWidth()) self.b_7_green_light.setSizePolicy(sizePolicy) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(0, 255, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 255, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(133, 133, 133)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) self.b_7_green_light.setPalette(palette) self.b_7_green_light.setChecked(True) self.b_7_green_light.setObjectName("b_7_green_light") self.verticalLayout.addWidget(self.b_7_green_light) self.b_8_pig = QtWidgets.QCheckBox(self.centralwidget) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 170, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 170, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(133, 133, 133)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) self.b_8_pig.setPalette(palette) self.b_8_pig.setChecked(True) self.b_8_pig.setObjectName("b_8_pig") self.verticalLayout.addWidget(self.b_8_pig) self.b_9_gray = QtWidgets.QCheckBox(self.centralwidget) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(111, 111, 111)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(111, 111, 111)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(133, 133, 133)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) self.b_9_gray.setPalette(palette) self.b_9_gray.setChecked(True) self.b_9_gray.setObjectName("b_9_gray") self.verticalLayout.addWidget(self.b_9_gray) self.b_10_brown = QtWidgets.QCheckBox(self.centralwidget) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(170, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(170, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(133, 133, 133)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) self.b_10_brown.setPalette(palette) self.b_10_brown.setChecked(True) self.b_10_brown.setObjectName("b_10_brown") self.verticalLayout.addWidget(self.b_10_brown) self.horizontalLayout_4.addLayout(self.verticalLayout) self.graphWidget = QwtPlot(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.graphWidget.sizePolicy().hasHeightForWidth()) self.graphWidget.setSizePolicy(sizePolicy) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) self.graphWidget.setCanvasBackground(brush) # self.graphWidget.setAutoReplot(False) self.graphWidget.setObjectName("graphWidget") self.horizontalLayout_4.addWidget(self.graphWidget) self.verticalLayout_2 = QtWidgets.QVBoxLayout() self.verticalLayout_2.setSizeConstraint(QtWidgets.QLayout.SetDefaultConstraint) self.verticalLayout_2.setObjectName("verticalLayout_2") self.start_stop = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.start_stop.sizePolicy().hasHeightForWidth()) self.start_stop.setSizePolicy(sizePolicy) self.start_stop.setObjectName("start_stop") self.verticalLayout_2.addWidget(self.start_stop) self.start_stop_recording = QtWidgets.QPushButton(self.centralwidget) self.start_stop_recording.setObjectName("start_stop_recording") self.verticalLayout_2.addWidget(self.start_stop_recording) self.size_of_data_txt = QtWidgets.QLabel(self.centralwidget) self.size_of_data_txt.setObjectName("size_of_data_txt") self.verticalLayout_2.addWidget(self.size_of_data_txt) self.size_of_data_out = QtWidgets.QLabel(self.centralwidget) self.size_of_data_out.setText("") self.size_of_data_out.setObjectName("size_of_data_out") self.verticalLayout_2.addWidget(self.size_of_data_out) self.save_button = QtWidgets.QPushButton(self.centralwidget) self.save_button.setObjectName("save_button") self.verticalLayout_2.addWidget(self.save_button) self.line = QtWidgets.QFrame(self.centralwidget) self.line.setFrameShape(QtWidgets.QFrame.HLine) self.line.setFrameShadow(QtWidgets.QFrame.Sunken) self.line.setObjectName("line") self.verticalLayout_2.addWidget(self.line) self.device_label = QtWidgets.QLabel(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.device_label.sizePolicy().hasHeightForWidth()) self.device_label.setSizePolicy(sizePolicy) self.device_label.setObjectName("device_label") self.verticalLayout_2.addWidget(self.device_label) self.comboBox_ports = QtWidgets.QComboBox(self.centralwidget) self.comboBox_ports.setEditable(True) self.comboBox_ports.setObjectName("comboBox_ports") self.verticalLayout_2.addWidget(self.comboBox_ports) self.horizontalLayout_3 = QtWidgets.QHBoxLayout() self.horizontalLayout_3.setObjectName("horizontalLayout_3") self.connect_button = QtWidgets.QPushButton(self.centralwidget) self.connect_button.setObjectName("connect_button") self.horizontalLayout_3.addWidget(self.connect_button) self.disconnect_button = QtWidgets.QPushButton(self.centralwidget) self.disconnect_button.setObjectName("disconnect_button") self.horizontalLayout_3.addWidget(self.disconnect_button) self.verticalLayout_2.addLayout(self.horizontalLayout_3) self.rescan_botton = QtWidgets.QPushButton(self.centralwidget) self.rescan_botton.setObjectName("rescan_botton") self.verticalLayout_2.addWidget(self.rescan_botton) self.period = QtWidgets.QLabel(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.period.sizePolicy().hasHeightForWidth()) self.period.setSizePolicy(sizePolicy) self.period.setObjectName("period") self.verticalLayout_2.addWidget(self.period) self.comboBox_period_val = QtWidgets.QComboBox(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.comboBox_period_val.sizePolicy().hasHeightForWidth()) self.comboBox_period_val.setSizePolicy(sizePolicy) self.comboBox_period_val.setInputMethodHints(QtCore.Qt.ImhLatinOnly) self.comboBox_period_val.setEditable(False) self.comboBox_period_val.setMaxVisibleItems(10) self.comboBox_period_val.setObjectName("comboBox_period_val") self.comboBox_period_val.addItem("") self.comboBox_period_val.addItem("") self.comboBox_period_val.addItem("") self.comboBox_period_val.addItem("") self.comboBox_period_val.addItem("") self.comboBox_period_val.addItem("") self.comboBox_period_val.addItem("") self.comboBox_period_val.addItem("") self.comboBox_period_val.addItem("") self.comboBox_period_val.addItem("") self.comboBox_period_val.addItem("") self.comboBox_period_val.addItem("") self.comboBox_period_val.addItem("") self.comboBox_period_val.addItem("") self.verticalLayout_2.addWidget(self.comboBox_period_val) spacerItem = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.verticalLayout_2.addItem(spacerItem) self.horizontalLayout_4.addLayout(self.verticalLayout_2) self.horizontalLayout_2.addLayout(self.horizontalLayout_4) MainWindow.setCentralWidget(self.centralwidget) self.menuBar = QtWidgets.QMenuBar(MainWindow) self.menuBar.setGeometry(QtCore.QRect(0, 0, 1224, 29)) self.menuBar.setObjectName("menuBar") self.menuFILE = QtWidgets.QMenu(self.menuBar) self.menuFILE.setObjectName("menuFILE") self.menuTOOLS = QtWidgets.QMenu(self.menuBar) self.menuTOOLS.setObjectName("menuTOOLS") self.menuABOUT = QtWidgets.QMenu(self.menuBar) self.menuABOUT.setObjectName("menuABOUT") self.menuVIEW = QtWidgets.QMenu(self.menuBar) self.menuVIEW.setObjectName("menuVIEW") self.menuChannels_2 = QtWidgets.QMenu(self.menuVIEW) self.menuChannels_2.setObjectName("menuChannels_2") MainWindow.setMenuBar(self.menuBar) self.actionConnect = QtWidgets.QAction(MainWindow) self.actionConnect.setObjectName("actionConnect") self.actionDisconnect = QtWidgets.QAction(MainWindow) self.actionDisconnect.setObjectName("actionDisconnect") self.actionStart_Stop_getting_data = QtWidgets.QAction(MainWindow) self.actionStart_Stop_getting_data.setObjectName("actionStart_Stop_getting_data") self.actionStart_stop_recording = QtWidgets.QAction(MainWindow) self.actionStart_stop_recording.setObjectName("actionStart_stop_recording") self.actionSave = QtWidgets.QAction(MainWindow) self.actionSave.setObjectName("actionSave") self.actionOut = QtWidgets.QAction(MainWindow) self.actionOut.setObjectName("actionOut") self.actionThis_Application = QtWidgets.QAction(MainWindow) self.actionThis_Application.setObjectName("actionThis_Application") self.action1_Blue = QtWidgets.QAction(MainWindow) self.action1_Blue.setCheckable(True) self.action1_Blue.setChecked(True) self.action1_Blue.setObjectName("action1_Blue") self.action2_Green = QtWidgets.QAction(MainWindow) self.action2_Green.setCheckable(True) self.action2_Green.setChecked(True) self.action2_Green.setObjectName("action2_Green") self.action3_Red = QtWidgets.QAction(MainWindow) self.action3_Red.setCheckable(True) self.action3_Red.setChecked(True) self.action3_Red.setObjectName("action3_Red") self.action4_Black = QtWidgets.QAction(MainWindow) self.action4_Black.setCheckable(True) self.action4_Black.setChecked(True) self.action4_Black.setObjectName("action4_Black") self.action5_Orange = QtWidgets.QAction(MainWindow) self.action5_Orange.setCheckable(True) self.action5_Orange.setChecked(True) self.action5_Orange.setObjectName("action5_Orange") self.action6_Blue_Light = QtWidgets.QAction(MainWindow) self.action6_Blue_Light.setCheckable(True) self.action6_Blue_Light.setChecked(True) self.action6_Blue_Light.setObjectName("action6_Blue_Light") self.action7_Green_Light = QtWidgets.QAction(MainWindow) self.action7_Green_Light.setCheckable(True) self.action7_Green_Light.setChecked(True) self.action7_Green_Light.setObjectName("action7_Green_Light") self.action8_Pig = QtWidgets.QAction(MainWindow) self.action8_Pig.setCheckable(True) self.action8_Pig.setChecked(True) self.action8_Pig.setObjectName("action8_Pig") self.action9_Gray = QtWidgets.QAction(MainWindow) self.action9_Gray.setCheckable(True) self.action9_Gray.setChecked(True) self.action9_Gray.setObjectName("action9_Gray") self.action10_Brown = QtWidgets.QAction(MainWindow) self.action10_Brown.setCheckable(True) self.action10_Brown.setChecked(True) self.action10_Brown.setObjectName("action10_Brown") self.actionRescan = QtWidgets.QAction(MainWindow) self.actionRescan.setObjectName("actionRescan") self.menuFILE.addAction(self.actionSave) self.menuFILE.addSeparator() self.menuFILE.addAction(self.actionOut) self.menuTOOLS.addAction(self.actionConnect) self.menuTOOLS.addAction(self.actionDisconnect) self.menuTOOLS.addAction(self.actionStart_Stop_getting_data) self.menuTOOLS.addAction(self.actionStart_stop_recording) self.menuTOOLS.addAction(self.actionRescan) self.menuABOUT.addAction(self.actionThis_Application) self.menuChannels_2.addAction(self.action1_Blue) self.menuChannels_2.addAction(self.action2_Green) self.menuChannels_2.addAction(self.action3_Red) self.menuChannels_2.addAction(self.action4_Black) self.menuChannels_2.addAction(self.action5_Orange) self.menuChannels_2.addAction(self.action6_Blue_Light) self.menuChannels_2.addAction(self.action7_Green_Light) self.menuChannels_2.addAction(self.action8_Pig) self.menuChannels_2.addAction(self.action9_Gray) self.menuChannels_2.addAction(self.action10_Brown) self.menuVIEW.addAction(self.menuChannels_2.menuAction()) self.menuBar.addAction(self.menuFILE.menuAction()) self.menuBar.addAction(self.menuVIEW.menuAction()) self.menuBar.addAction(self.menuTOOLS.menuAction()) self.menuBar.addAction(self.menuABOUT.menuAction()) self.retranslateUi(MainWindow) self.comboBox_period_val.setCurrentIndex(5) self.actionOut.triggered.connect(MainWindow.close) self.action1_Blue.triggered.connect(self.b_1_blue.toggle) self.action2_Green.triggered.connect(self.b_2_green.toggle) self.action3_Red.triggered.connect(self.b_3_red.toggle) self.action4_Black.triggered.connect(self.b_4_black.toggle) self.action10_Brown.triggered.connect(self.b_10_brown.toggle) self.action9_Gray.triggered.connect(self.b_9_gray.toggle) self.action8_Pig.triggered.connect(self.b_8_pig.toggle) self.action7_Green_Light.triggered.connect(self.b_7_green_light.toggle) self.action6_Blue_Light.triggered.connect(self.b_6_blue_light.toggle) self.action5_Orange.triggered.connect(self.b_5_orange.toggle) self.actionSave.triggered.connect(self.save_button.click) self.actionStart_Stop_getting_data.triggered.connect(self.start_stop.click) self.actionStart_stop_recording.triggered.connect(self.start_stop_recording.click) self.actionConnect.triggered.connect(self.connect_button.click) self.actionDisconnect.triggered.connect(self.disconnect_button.click) self.b_1_blue.clicked.connect(self.action1_Blue.toggle) self.b_2_green.clicked.connect(self.action2_Green.toggle) self.b_3_red.clicked.connect(self.action3_Red.toggle) self.b_4_black.clicked.connect(self.action4_Black.toggle) self.b_5_orange.clicked.connect(self.action5_Orange.toggle) self.b_6_blue_light.clicked.connect(self.action6_Blue_Light.toggle) self.b_7_green_light.clicked.connect(self.action7_Green_Light.toggle) self.b_9_gray.clicked.connect(self.action9_Gray.toggle) self.b_10_brown.clicked.connect(self.action10_Brown.toggle) self.b_8_pig.clicked.connect(self.action8_Pig.toggle) self.actionRescan.triggered.connect(self.rescan_botton.click) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "UALab")) self.b_1_blue.setText(_translate("MainWindow", "ADC1")) self.b_2_green.setText(_translate("MainWindow", "ADC2")) self.b_3_red.setText(_translate("MainWindow", "ADC3")) self.b_4_black.setText(_translate("MainWindow", "ADC4")) self.b_5_orange.setText(_translate("MainWindow", "ADC5")) self.b_6_blue_light.setText(_translate("MainWindow", "ADC6")) self.b_7_green_light.setText(_translate("MainWindow", "ADC7")) self.b_8_pig.setText(_translate("MainWindow", "ADC8")) self.b_9_gray.setText(_translate("MainWindow", "ADC9")) self.b_10_brown.setText(_translate("MainWindow", "ADC10")) self.start_stop.setText(_translate("MainWindow", "Start/Stop getting data")) self.start_stop_recording.setText(_translate("MainWindow", "Start/stop recording")) self.size_of_data_txt.setText(_translate("MainWindow", "Size of data in RAM")) self.save_button.setText(_translate("MainWindow", "Save")) self.device_label.setText(_translate("MainWindow", "Enter device address")) self.connect_button.setText(_translate("MainWindow", "Connect")) self.disconnect_button.setText(_translate("MainWindow", "Disconnect")) self.rescan_botton.setText(_translate("MainWindow", "Rescan")) self.period.setText(_translate("MainWindow", "Period")) self.comboBox_period_val.setCurrentText(_translate("MainWindow", "200 ms")) self.comboBox_period_val.setItemText(0, _translate("MainWindow", "<1 ms")) self.comboBox_period_val.setItemText(1, _translate("MainWindow", "10 ms")) self.comboBox_period_val.setItemText(2, _translate("MainWindow", "20 ms")) self.comboBox_period_val.setItemText(3, _translate("MainWindow", "50 ms")) self.comboBox_period_val.setItemText(4, _translate("MainWindow", "100 ms")) self.comboBox_period_val.setItemText(5, _translate("MainWindow", "200 ms")) self.comboBox_period_val.setItemText(6, _translate("MainWindow", "500 ms")) self.comboBox_period_val.setItemText(7, _translate("MainWindow", "1 s")) self.comboBox_period_val.setItemText(8, _translate("MainWindow", "5 s")) self.comboBox_period_val.setItemText(9, _translate("MainWindow", "10 s")) self.comboBox_period_val.setItemText(10, _translate("MainWindow", "1 m")) self.comboBox_period_val.setItemText(11, _translate("MainWindow", "5 m")) self.comboBox_period_val.setItemText(12, _translate("MainWindow", "10 m")) self.comboBox_period_val.setItemText(13, _translate("MainWindow", "30 m")) self.menuFILE.setTitle(_translate("MainWindow", "File")) self.menuTOOLS.setTitle(_translate("MainWindow", "Tools")) self.menuABOUT.setTitle(_translate("MainWindow", "About")) self.menuVIEW.setTitle(_translate("MainWindow", "View")) self.menuChannels_2.setTitle(_translate("MainWindow", "Channels")) self.actionConnect.setText(_translate("MainWindow", "Connect")) self.actionConnect.setShortcut(_translate("MainWindow", "Ctrl+K")) self.actionDisconnect.setText(_translate("MainWindow", "Disconnect")) self.actionDisconnect.setShortcut(_translate("MainWindow", "Ctrl+D")) self.actionStart_Stop_getting_data.setText(_translate("MainWindow", "Start/Stop getting data")) self.actionStart_stop_recording.setText(_translate("MainWindow", "Start/stop recording")) self.actionStart_stop_recording.setShortcut(_translate("MainWindow", "Space")) self.actionSave.setText(_translate("MainWindow", "Save ...")) self.actionSave.setShortcut(_translate("MainWindow", "Ctrl+S")) self.actionOut.setText(_translate("MainWindow", "Exit")) self.actionOut.setShortcut(_translate("MainWindow", "Ctrl+Q")) self.actionThis_Application.setText(_translate("MainWindow", "This Application")) self.action1_Blue.setText(_translate("MainWindow", "ADC1")) self.action1_Blue.setShortcut(_translate("MainWindow", "Ctrl+1")) self.action2_Green.setText(_translate("MainWindow", "ADC2")) self.action2_Green.setShortcut(_translate("MainWindow", "Ctrl+2")) self.action3_Red.setText(_translate("MainWindow", "ADC3")) self.action3_Red.setShortcut(_translate("MainWindow", "Ctrl+3")) self.action4_Black.setText(_translate("MainWindow", "ADC4")) self.action4_Black.setShortcut(_translate("MainWindow", "Ctrl+4")) self.action5_Orange.setText(_translate("MainWindow", "ADC5")) self.action5_Orange.setShortcut(_translate("MainWindow", "Ctrl+5")) self.action6_Blue_Light.setText(_translate("MainWindow", "ADC6")) self.action6_Blue_Light.setShortcut(_translate("MainWindow", "Ctrl+6")) self.action7_Green_Light.setText(_translate("MainWindow", "ADC7")) self.action7_Green_Light.setShortcut(_translate("MainWindow", "Ctrl+7")) self.action8_Pig.setText(_translate("MainWindow", "ADC8")) self.action8_Pig.setShortcut(_translate("MainWindow", "Ctrl+8")) self.action9_Gray.setText(_translate("MainWindow", "ADC9")) self.action9_Gray.setShortcut(_translate("MainWindow", "Ctrl+9")) self.action10_Brown.setText(_translate("MainWindow", "ADC10")) self.action10_Brown.setShortcut(_translate("MainWindow", "Ctrl+0")) self.actionRescan.setText(_translate("MainWindow", "Rescan")) self.actionRescan.setShortcut(_translate("MainWindow", "Ctrl+R"))
StarcoderdataPython
3458196
<reponame>brunocvs7/dstools import pandas as pd import numpy as np from sklearn.metrics import recall_score, precision_score, f1_score import matplotlib.pyplot as plt def eval_thresh(y_real, y_proba): ''' Check the metrics varying the classification threshold Parameters: y_real (np.array): An array containing the ground truth labels y_proba (np.array): An array containing the probabilities of label equal 1 Returns: df_metrics (pd.DataFrame): A pandas dataframe containing the thresholds and metrics associated ''' recall_score_thresh = [] precision_score_thresh = [] f1_score_thresh = [] q_rate = [] tx = len(y_real) for thresh in np.arange(0,1,0.05): y_thresh = [1 if x >= thresh else 0 for x in y_proba] q_rate.append(np.sum(y_thresh)/tx) recall_score_thresh.append(recall_score(y_real, y_thresh)) precision_score_thresh.append(precision_score(y_real, y_thresh)) f1_score_thresh.append(f1_score(y_real, y_thresh)) dict_metrics = {'threshold':np.arange(0,1,0.05),'recall_score':recall_score_thresh,\ 'precision_score':precision_score_thresh,'f1_score':f1_score_thresh, 'queue_rate':q_rate} df_metrics = pd.DataFrame(dict_metrics) return df_metrics def plot_metrics(df): ''' plot metrics calculated by the function eval_thresh Parameters: df (pandas.dataframe): A data frame that is the result of eval_thresh function Returns: None ''' plt.plot(df['threshold'],df['recall_score'], '-.') plt.plot(df['threshold'],df['precision_score'], '-.') plt.plot(df['threshold'],df['f1_score'],'-.') plt.plot(df['threshold'],df['queue_rate'],'-.') plt.legend(['recall','precision','f1_score', 'queue_rate']) plt.xlabel("Threshold") plt.ylabel("Metric") display(plt.show())
StarcoderdataPython
4819458
<gh_stars>0 # This file was automatically generated by SWIG (http://www.swig.org). # Version 2.0.12 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. """ IDA Plugin SDK API wrapper: entry """ from sys import version_info if version_info >= (2,6,0): def swig_import_helper(): from os.path import dirname import imp fp = None try: fp, pathname, description = imp.find_module('_ida_entry', [dirname(__file__)]) except ImportError: import _ida_entry return _ida_entry if fp is not None: try: _mod = imp.load_module('_ida_entry', fp, pathname, description) finally: fp.close() return _mod _ida_entry = swig_import_helper() del swig_import_helper else: import _ida_entry del version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. def _swig_setattr_nondynamic(self,class_type,name,value,static=1): if (name == "thisown"): return self.this.own(value) if (name == "this"): if type(value).__name__ == 'SwigPyObject': self.__dict__[name] = value return method = class_type.__swig_setmethods__.get(name,None) if method: return method(self,value) if (not static): self.__dict__[name] = value else: raise AttributeError("You cannot add attributes to %s" % self) def _swig_setattr(self,class_type,name,value): return _swig_setattr_nondynamic(self,class_type,name,value,0) def _swig_getattr(self,class_type,name): if (name == "thisown"): return self.this.own() method = class_type.__swig_getmethods__.get(name,None) if method: return method(self) raise AttributeError(name) def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) try: _object = object _newclass = 1 except AttributeError: class _object : pass _newclass = 0 def _swig_setattr_nondynamic_method(set): def set_attr(self,name,value): if (name == "thisown"): return self.this.own(value) if hasattr(self,name) or (name == "this"): set(self,name,value) else: raise AttributeError("You cannot add attributes to %s" % self) return set_attr try: import weakref weakref_proxy = weakref.proxy except: weakref_proxy = lambda x: x import ida_idaapi import sys _BC695 = sys.modules["__main__"].IDAPYTHON_COMPAT_695_API if _BC695: def bc695redef(func): ida_idaapi._BC695.replace_fun(func) return func def get_entry_qty(*args): """ get_entry_qty() -> size_t Get number of entry points. """ return _ida_entry.get_entry_qty(*args) AEF_UTF8 = _ida_entry.AEF_UTF8 """ the name is given in UTF-8 (default) """ AEF_IDBENC = _ida_entry.AEF_IDBENC """ the name is given in the IDB encoding; non-ASCII bytes will be decoded accordingly Specifying AEF_IDBENC also implies AEF_NODUMMY """ AEF_NODUMMY = _ida_entry.AEF_NODUMMY """ it begins with a dummy suffix. See also AEF_IDBENC automatically prepend the name with '_' if """ def add_entry(*args): """ add_entry(ord, ea, name, makecode, flags=0x0) -> bool Add an entry point to the list of entry points. @param ord: ordinal number if ordinal number is equal to 'ea' then ordinal is not used (C++: uval_t) @param ea: linear address (C++: ea_t) @param name: name of entry point. If the specified location already has a name, the old name will be appended to the regular comment. If name == NULL, then the old name will be retained. (C++: const char *) @param makecode: should the kernel convert bytes at the entry point to instruction(s) (C++: bool) @param flags: See AEF_* (C++: int) @return: success (currently always true) """ return _ida_entry.add_entry(*args) def get_entry_ordinal(*args): """ get_entry_ordinal(idx) -> uval_t Get ordinal number of an entry point. @param idx: internal number of entry point. Should be in the range 0.. get_entry_qty() -1 (C++: size_t) @return: ordinal number or 0. """ return _ida_entry.get_entry_ordinal(*args) def get_entry(*args): """ get_entry(ord) -> ea_t Get entry point address by its ordinal @param ord: ordinal number of entry point (C++: uval_t) @return: address or BADADDR """ return _ida_entry.get_entry(*args) def get_entry_name(*args): """ get_entry_name(ord) -> ssize_t Get name of the entry point by its ordinal. @param ord: ordinal number of entry point (C++: uval_t) @return: size of entry name or -1 """ return _ida_entry.get_entry_name(*args) def rename_entry(*args): """ rename_entry(ord, name, flags=0x0) -> bool Rename entry point. @param ord: ordinal number of the entry point (C++: uval_t) @param name: name of entry point. If the specified location already has a name, the old name will be appended to a repeatable comment. (C++: const char *) @param flags: See AEF_* (C++: int) @return: success """ return _ida_entry.rename_entry(*args) def set_entry_forwarder(*args): """ set_entry_forwarder(ord, name, flags=0x0) -> bool Set forwarder name for ordinal. @param ord: ordinal number of the entry point (C++: uval_t) @param name: forwarder name for entry point. (C++: const char *) @param flags: See AEF_* (C++: int) @return: success """ return _ida_entry.set_entry_forwarder(*args) def get_entry_forwarder(*args): """ get_entry_forwarder(ord) -> ssize_t Get forwarder name for the entry point by its ordinal. @param ord: ordinal number of entry point (C++: uval_t) @return: size of entry forwarder name or -1 """ return _ida_entry.get_entry_forwarder(*args)
StarcoderdataPython
4808343
from tools.general import load_input_list def resolve_bsp(bsp_code, low_char, high_char): lower = 0 upper = 2 ** len(bsp_code) - 1 for c in bsp_code: mid = (lower + upper) // 2 if c == high_char: lower = mid + 1 elif c == low_char: upper = mid else: raise ValueError(f"Invalid character '{c}'") return lower def seat_id(bp_code): row = resolve_bsp(bp_code[:7], 'F', 'B') col = resolve_bsp(bp_code[7:], 'L', 'R') return (8 * row) + col taken_seats = sorted(seat_id(s) for s in load_input_list("day5.txt").split('\n')) print(f"Part 1 => {taken_seats[-1]}") prev = taken_seats[0] for s in taken_seats[1:]: if s - prev == 2: print(f"Part 2 => {s - 1}") break prev = s
StarcoderdataPython
3243121
<filename>twitter/util.py """ Internal utility functions. `htmlentitydecode` came from here: http://wiki.python.org/moin/EscapingHtml """ import re from htmlentitydefs import name2codepoint def htmlentitydecode(s): return re.sub( '&(%s);' % '|'.join(name2codepoint), lambda m: unichr(name2codepoint[m.group(1)]), s) __all__ = ["htmlentitydecode"]
StarcoderdataPython
9642459
<gh_stars>10-100 import math from src.objs import * # src -> https://stackoverflow.com/a/14822210 #: Convert bytes into human-readable size def convertSize(byte): if byte == 0: return "0B" size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB") i = int(math.floor(math.log(byte, 1024))) p = math.pow(1024, i) s = round(byte / p, 2) return "%s %s" % (s, size_name[i]) #: Convert seconds into human-readable time def convertTime(seconds): if seconds == 0: return "0 Sec" size_name = ("Sec", "Min", "Hrs") i = int(math.floor(math.log(seconds, 60))) p = math.pow(60, i) s = round(seconds / p, 2) return "%s %s" % (s, size_name[i])
StarcoderdataPython
11311893
# problem 16 # Power digit sum """ 2**15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of the number 2**1000? """ val = 2 ** 1000 summation = sum(int(i) for i in str(val)) print(summation)
StarcoderdataPython
4853580
<gh_stars>1-10 """ 给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符。 示例 1: 输入: "sea", "eat" 输出: 2 解释: 第一步将"sea"变为"ea",第二步将"eat"变为"ea" 说明: 给定单词的长度不超过500。 给定单词中的字符只含有小写字母。 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/delete-operation-for-two-strings 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 """ class Solution: def minDistance(self, word1: str, word2: str) -> int: if word2 == word1: return 0 _len1, _len2 = len(word1) + 1, len(word2) + 1 # 最长公共子序列 dp = [[0 for _ in range(_len2)] for _ in range(_len1)] for i in range(_len1): for j in range(_len2): if i == 0 or j == 0: continue if word1[i - 1] == word2[j - 1]: dp[i][j] = dp[i - 1][j - 1] + 1 # 字符相同 子长度+1 else: dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) # 最长 max 字符不同 要删除 word1删除dp[i - 1][j] 或 word2删除dp[i][j-1] return len(word1) + len(word2) - 2 * dp[-1][-1] def minDistance2(self, word1: str, word2: str) -> int: if word2 == word1: return 0 _len1, _len2 = len(word1) + 1, len(word2) + 1 dp = [[0 for _ in range(_len2)] for _ in range(_len1)] for i in range(_len1): for j in range(_len2): if i == 0 or j == 0: dp[i][j] = i + j # 边界值 删除word1 i 或 word2 j elif word1[i - 1] == word2[j - 1]: dp[i][j] = dp[i - 1][j - 1] # 字符相同 不删除 else: dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1]) # 最少删除min 字符不同 要删除 word1删除dp[i - 1][j] 或 word2删除dp[i][j-1] return dp[-1][-1] def minDistance3(self, word1: str, word2: str) -> int: if word2 == word1: return 0 _len1, _len2 = len(word1) + 1, len(word2) + 1 dp, temp = [0 for _ in range(_len2)], [0 for _ in range(_len2)] # dp = [[0 for _ in range(_len2)] for _ in range(_len1)] # dp2[i-1][k] = dp[k] 即dp=dp2[i-1] dp2[i][k] = temp[k-1] 即temp = dp2[i] for i in range(_len1): for j in range(_len2): temp[j] = 0 if i == 0 or j == 0: temp[j] = i + j # 边界值 删除word1 i 或 word2 j elif word1[i - 1] == word2[j - 1]: temp[j] = dp[j - 1] # 字符相同 不删除 else: temp[j] = 1 + min(dp[j], temp[j - 1]) # 最少删除min 字符不同 要删除 word1删除dp[i - 1][j] 或 word2删除dp[i][j-1] dp, temp = temp, dp return dp[-1] print(Solution().minDistance3("", "a"))
StarcoderdataPython
4989791
<gh_stars>0 """Builder Design Pattern (Made in Python 3.4.3) http://en.wikipedia.org/wiki/Builder_pattern This is my interpretation of the builder pattern for Python 3. Very simple. But also kinda cool! I use the lambda expression. This way you can design a builder to only be able to change certain properties later on. One could even create builders of builders this way. Neat! Combine with factories as well I suppose! """ class Composition: def __init__(self, c1, c2, name="default"): self.name = name self.c1 = c1 self.c2 = c2 def run(self): print(self.name, "is running:") for i in range(self.c2.n): print(self.c1.names) class Component1: def __init__(self, *args): self.names = args class Component2: def __init__(self, n): self.n = n if __name__ == "__main__": # Client code: builder0 = lambda name: Composition( Component1("Knatte", "Fnatte", "Tjatte"), Component2(2), name=name ) builder1 = lambda: Composition( Component1("Tripp", "Trapp", "Trull"), Component2(3) ) builder2 = lambda i: Composition( Component1("Snipp", "Snapp", "Slut"), Component2(i) ) ob0 = builder0("Kalle") ob1 = builder0("Kajsa") ob2 = builder0("Pluto") ob3 = builder1() ob4 = builder1() ob5 = builder2(7) ob0.run() ob1.run() ob2.run() ob3.run() ob4.run() ob5.run()
StarcoderdataPython
9622311
<reponame>vishalbelsare/GraphFlow-1 import enum import numpy as np def L1norm(r1, r2): return np.sum(abs(r1 - r2)) class PageRankLanguage(enum.Enum): PYTHON = 0 CYTHON = 1 FORTRAN = 2 from . import hits from . import pagerank from . import simvoltage
StarcoderdataPython
3539441
<reponame>mroll/manticore<gh_stars>0 ''' Symbolic EVM implementation based on the yellow paper: http://gavwood.com/paper.pdf ''' import random import copy import inspect from functools import wraps from ..utils.helpers import issymbolic, memoized from ..platforms.platform import * from ..core.smtlib import solver, TooManySolutions, Expression, Bool, BitVec, Array, Operators, Constant, BitVecConstant, ConstraintSet, \ SolverException from ..core.state import ForkState, TerminateState from ..utils.event import Eventful from ..core.smtlib.visitors import pretty_print, arithmetic_simplifier, translate_to_smtlib from ..core.state import Concretize, TerminateState import logging import sys from collections import namedtuple if sys.version_info < (3, 6): import sha3 logger = logging.getLogger(__name__) # Auxiliar constants and functions TT256 = 2 ** 256 TT256M1 = 2 ** 256 - 1 TT255 = 2 ** 255 TOOHIGHMEM = 0x1000 PendingTransaction = namedtuple("PendingTransaction", ['type', 'address', 'origin', 'price', 'data', 'caller', 'value', 'bytecode', 'header']) def ceil32(x): return Operators.ITEBV(256, (x % 32) == 0, x, x + 32 - (x % 32)) def to_signed(i): return Operators.ITEBV(256, i < TT255, i, i - TT256) class Transaction(object): __slots__ = 'sort', 'address', 'origin', 'price', 'data', 'caller', 'value', 'return_data', 'result' def __init__(self, sort, address, origin, price, data, caller, value, return_data, result): self.sort = sort self.address = address self.origin = origin self.price = price self.data = data self.caller = caller self.value = value self.return_data = return_data self.result = result def __reduce__(self): ''' Implements serialization/pickle ''' return (self.__class__, (self.sort, self.address, self.origin, self.price, self.data, self.caller, self.value, self.return_data, self.result)) def __str__(self): return 'Transaction(%s, from=0x%x, to=0x%x, value=%r, data=%r..)' % (self.sort, self.caller, self.address, self.value, self.data) class EVMLog(): def __init__(self, address, memlog, topics): self.address = address self.memlog = memlog self.topics = topics class EVMMemory(object): def __init__(self, constraints, address_size=256, value_size=8, *args, **kwargs): ''' A symbolic memory manager for EVM. This is internally used to provide memory to an Ethereum Virtual Machine. It maps address_size bits wide bitvectors to value_size wide bitvectors. Normally BitVec(256) -> BitVec(8) Example use:: cs = ConstraintSet() mem = EVMMemory(cs) mem[16] = 0x41 assert (mem.allocated == 1) assert (mem[16] == 0x41) :param constraints: a set of constraints :type constraints: ConstraintSet :param address_size: address bit width :param values_size: value bit width ''' assert isinstance(constraints, (ConstraintSet, type(None))) self._constraints = constraints self._symbols = {} self._memory = {} self._address_size = address_size self._value_size = value_size self._allocated = 0 def __copy__(self): ''' Makes a copy of itself ''' new_mem = EVMMemory(self._constraints, self._address_size, self._value_size) new_mem._memory = dict(self._memory) new_mem._symbols = dict(self._symbols) return new_mem def __reduce__(self): ''' Implements serialization/pickle ''' return (self.__class__, (self._constraints, self._address_size, self._value_size), { '_symbols': self._symbols, '_memory': self._memory, '_allocated': self._allocated}) @property def constraints(self): return self._constraints @constraints.setter def constraints(self, constraints): self._constraints = constraints def _get_size(self, index): ''' Calculates the size of a slice :param index: a slice :type index: slice ''' size = index.stop - index.start if isinstance(size, BitVec): size = arithmetic_simplifier(size) else: size = BitVecConstant(self._address_size, size) assert isinstance(size, BitVecConstant) return size.value def __getitem__(self, index): if isinstance(index, slice): size = self._get_size(index) return self.read(index.start, size) else: return self.read(index, 1)[0] def __setitem__(self, index, value): if isinstance(index, slice): size = self._get_size(index) assert len(value) == size for i in xrange(size): self.write(index.start + i, [value[i]]) else: self.write(index, [value]) def __delitem__(self, index): def delete(offset): if offset in self.memory: del self._memory[offset] if offset in self._symbol: del self._symbols[offset] if isinstance(index, slice): for offset in xrange(index.start, index.end): delete(offset) else: delete(index) def __contains__(self, offset): return offset in self._memory or \ offset in self._symbols def items(self): offsets = set(self._symbols.keys() + self._memory.keys()) return [(x, self[x]) for x in offsets] def get(self, offset, default=0): result = self.read(offset, 1) if not result: return default return result[0] def __getitem__(self, index): if isinstance(index, slice): size = self._get_size(index) return self.read(index.start, size) else: return self.read(index, 1)[0] def __repr__(self): return self.__str__() def __str__(self): m = {} for key in self._memory.keys(): c = self.read(key, 1)[0] if issymbolic(c): m[key] = '?' else: m[key] = hex(c) return str(m) def __len__(self): return self._allocated @property def allocated(self): return self._allocated def _allocate(self, address): ''' Allocate more memory ''' new_max = ceil32(address) // 32 self._allocated = Operators.ITEBV(256, self._allocated < new_max, new_max, self._allocated) def _concrete_read(self, address): return self._memory.get(address, 0) def _concrete_write(self, address, value): assert not issymbolic(address) assert not issymbolic(value) assert value & ~(pow(2, self._value_size) - 1) == 0, "Not the correct size for a value" self._memory[address] = value def read(self, address, size): ''' Read size items from address. Address can by a symbolic value. The result is a sequence the requested size. Resultant items can by symbolic. :param address: Where to read from :param size: How many items :rtype: list ''' assert not issymbolic(size) self._allocate(address + size) if issymbolic(address): address = arithmetic_simplifier(address) assert solver.check(self.constraints) logger.debug('Reading %d items from symbolic offset %s', size, address) try: solutions = solver.get_all_values(self.constraints, address, maxcnt=0x1000) # if more than 0x3000 exception except TooManySolutions as e: m, M = solver.minmax(self.constraints, address) logger.debug('Got TooManySolutions on a symbolic read. Range [%x, %x]. Not crashing!', m, M) logger.info('INCOMPLETE Result! Using the sampled solutions we have as result') condition = False for base in e.solutions: condition = Operators.OR(address == base, condition) raise ForkState('address too high', condition) # So here we have all potential solutions of symbolic address (complete set) assert len(solutions) > 0 condition = False for base in solutions: condition = Operators.OR(address == base, condition) result = [] # consider size ==1 to read following code for offset in range(size): # Given ALL solutions for the symbolic address for base in solutions: addr_value = base + offset item = self._concrete_read(addr_value) if addr_value in self._symbols: for condition, value in self._symbols[addr_value]: item = Operators.ITEBV(self._value_size, condition, value, item) if len(result) > offset: result[offset] = Operators.ITEBV(self._value_size, address == base, item, result[offset]) else: result.append(item) assert len(result) == offset + 1 return result else: result = [] for i in range(size): result.append(self._concrete_read(address + i)) for offset in range(size): if address + offset in self._symbols: for condition, value in self._symbols[address + offset]: if condition is True: result[offset] = value else: result[offset] = Operators.ITEBV(self._value_size, condition, value, result[offset]) return result def write(self, address, value): ''' Write a value at address. :param address: The address at which to write :type address: int or long or Expression :param value: Bytes to write :type value: tuple or list ''' size = len(value) self._allocate(address + size) if issymbolic(address): solutions = solver.get_all_values(self.constraints, address, maxcnt=0x1000) # if more than 0x3000 exception for offset in xrange(size): for base in solutions: condition = base == address self._symbols.setdefault(base + offset, []).append((condition, value[offset])) else: for offset in xrange(size): if issymbolic(value[offset]): self._symbols[address + offset] = [(True, value[offset])] else: # overwrite all previous items if address + offset in self._symbols: del self._symbols[address + offset] self._concrete_write(address + offset, value[offset]) class EVMAsm(object): ''' EVM Instruction factory Example use:: >>> from manticore.platforms.evm import EVMAsm >>> EVMAsm.disassemble_one('\\x60\\x10') Instruction(0x60, 'PUSH', 1, 0, 1, 0, 'Place 1 byte item on stack.', 16, 0) >>> EVMAsm.assemble_one('PUSH1 0x10') Instruction(0x60, 'PUSH', 1, 0, 1, 0, 'Place 1 byte item on stack.', 16, 0) >>> tuple(EVMAsm.disassemble_all('\\x30\\x31')) (Instruction(0x30, 'ADDRESS', 0, 0, 1, 2, 'Get address of currently executing account.', None, 0), Instruction(0x31, 'BALANCE', 0, 1, 1, 20, 'Get balance of the given account.', None, 1)) >>> tuple(EVMAsm.assemble_all('ADDRESS\\nBALANCE')) (Instruction(0x30, 'ADDRESS', 0, 0, 1, 2, 'Get address of currently executing account.', None, 0), Instruction(0x31, 'BALANCE', 0, 1, 1, 20, 'Get balance of the given account.', None, 1)) >>> EVMAsm.assemble_hex( ... """PUSH1 0x60 ... BLOCKHASH ... MSTORE ... PUSH1 0x2 ... PUSH2 0x100 ... """ ... ) '0x606040526002610100' >>> EVMAsm.disassemble_hex('0x606040526002610100') 'PUSH1 0x60\\nBLOCKHASH\\nMSTORE\\nPUSH1 0x2\\nPUSH2 0x100' ''' class Instruction(object): def __init__(self, opcode, name, operand_size, pops, pushes, fee, description, operand=None, offset=0): ''' This represents an EVM instruction. EVMAsm will create this for you. :param opcode: the opcode value :param name: instruction name :param operand_size: immediate operand size in bytes :param pops: number of items popped from the stack :param pushes: number of items pushed into the stack :param fee: gas fee for the instruction :param description: textual description of the instruction :param operand: optional immediate operand :param offset: optional offset of this instruction in the program Example use:: instruction = EVMAsm.assemble_one('PUSH1 0x10') print 'Instruction: %s'% instruction print '\tdescription:', instruction.description print '\tgroup:', instruction.group print '\taddress:', instruction.offset print '\tsize:', instruction.size print '\thas_operand:', instruction.has_operand print '\toperand_size:', instruction.operand_size print '\toperand:', instruction.operand print '\tsemantics:', instruction.semantics print '\tpops:', instruction.pops print '\tpushes:', instruction.pushes print '\tbytes:', '0x'+instruction.bytes.encode('hex') print '\twrites to stack:', instruction.writes_to_stack print '\treads from stack:', instruction.reads_from_stack print '\twrites to memory:', instruction.writes_to_memory print '\treads from memory:', instruction.reads_from_memory print '\twrites to storage:', instruction.writes_to_storage print '\treads from storage:', instruction.reads_from_storage print '\tis terminator', instruction.is_terminator ''' self._opcode = opcode self._name = name self._operand_size = operand_size self._pops = pops self._pushes = pushes self._fee = fee self._description = description self._operand = operand # Immediate operand if any if operand_size != 0 and operand is not None: mask = (1 << operand_size * 8) - 1 if ~mask & operand: raise ValueError("operand should be %d bits long" % (operand_size * 8)) self._offset = offset def __eq__(self, other): ''' Instructions are equal if all features match ''' return self._opcode == other._opcode and\ self._name == other._name and\ self._operand == other._operand and\ self._operand_size == other._operand_size and\ self._pops == other._pops and\ self._pushes == other._pushes and\ self._fee == other._fee and\ self._offset == other._offset and\ self._description == other._description def __repr__(self): output = 'Instruction(0x%x, %r, %d, %d, %d, %d, %r, %r, %r)' % (self._opcode, self._name, self._operand_size, self._pops, self._pushes, self._fee, self._description, self._operand, self._offset) return output def __str__(self): output = self.name + (' 0x%x' % self.operand if self.has_operand else '') return output @property def opcode(self): ''' The opcode as an integer ''' return self._opcode @property def name(self): ''' The instruction name/mnemonic ''' if self._name == 'PUSH': return 'PUSH%d' % self.operand_size elif self._name == 'DUP': return 'DUP%d' % self.pops elif self._name == 'SWAP': return 'SWAP%d' % (self.pops - 1) elif self._name == 'LOG': return 'LOG%d' % (self.pops - 2) return self._name def parse_operand(self, buf): ''' Parses an operand from buf :param buf: a buffer :type buf: iterator/generator/string ''' buf = iter(buf) try: operand = 0 for _ in range(self.operand_size): operand <<= 8 operand |= ord(next(buf)) self._operand = operand except StopIteration: raise Exception("Not enough data for decoding") @property def operand_size(self): ''' The immediate operand size ''' return self._operand_size @property def has_operand(self): ''' True if the instruction uses an immediate operand''' return self.operand_size > 0 @property def operand(self): ''' The immediate operand ''' return self._operand @property def pops(self): '''Number words popped from the stack''' return self._pops @property def pushes(self): '''Number words pushed to the stack''' return self._pushes @property def size(self): ''' Size of the encoded instruction ''' return self._operand_size + 1 @property def fee(self): ''' The basic gas fee of the instruction ''' return self._fee @property def semantics(self): ''' Canonical semantics ''' return self._name @property def description(self): ''' Coloquial description of the instruction ''' return self._description @property def bytes(self): ''' Encoded instruction ''' bytes = [] bytes.append(chr(self._opcode)) for offset in reversed(xrange(self.operand_size)): c = (self.operand >> offset * 8) & 0xff bytes.append(chr(c)) return ''.join(bytes) @property def offset(self): '''Location in the program (optional)''' return self._offset @property def group(self): '''Instruction classification as per the yellow paper''' classes = { 0: 'Stop and Arithmetic Operations', 1: 'Comparison & Bitwise Logic Operations', 2: 'SHA3', 3: 'Environmental Information', 4: 'Block Information', 5: 'Stack, Memory, Storage and Flow Operations', 6: 'Push Operations', 7: 'Push Operations', 8: 'Duplication Operations', 9: 'Exchange Operations', 0xa: 'Logging Operations', 0xf: 'System operations' } return classes.get(self.opcode >> 4, 'Invalid instruction') @property def uses_stack(self): ''' True if the instruction reads/writes from/to the stack ''' return self.reads_from_stack or self.writes_to_stack @property def reads_from_stack(self): ''' True if the instruction reads from stack ''' return self.pops > 0 @property def writes_to_stack(self): ''' True if the instruction writes to the stack ''' return self.pushes > 0 @property def reads_from_memory(self): ''' True if the instruction reads from memory ''' return self.semantics in ('MLOAD', 'CREATE', 'CALL', 'CALLCODE', 'RETURN', 'DELEGATECALL', 'REVERT') @property def writes_to_memory(self): ''' True if the instruction writes to memory ''' return self.semantics in ('MSTORE', 'MSTORE8', 'CALLDATACOPY', 'CODECOPY', 'EXTCODECOPY') @property def reads_from_memory(self): ''' True if the instruction reads from memory ''' return self.semantics in ('MLOAD', 'CREATE', 'CALL', 'CALLCODE', 'RETURN', 'DELEGATECALL', 'REVERT') @property def writes_to_storage(self): ''' True if the instruction writes to the storage ''' return self.semantics in ('SSTORE') @property def reads_from_storage(self): ''' True if the instruction reads from the storage ''' return self.semantics in ('SLOAD') @property def is_terminator(self): ''' True if the instruction is a basic block terminator ''' return self.semantics in ('RETURN', 'STOP', 'INVALID', 'JUMP', 'JUMPI', 'SELFDESTRUCT', 'REVERT') @property def is_branch(self): ''' True if the instruction is a jump''' return self.semantics in ('JUMP', 'JUMPI') @property def is_environmental(self): ''' True if the instruction access enviromental data ''' return self.group == 'Environmental Information' @property def is_system(self): ''' True if the instruction is a system operation ''' return self.group == 'System operations' @property def uses_block_info(self): ''' True if the instruction access block information''' return self.group == 'Block Information' @property def is_arithmetic(self): ''' True if the instruction is an arithmetic operation ''' return self.semantics in ('ADD', 'MUL', 'SUB', 'DIV', 'SDIV', 'MOD', 'SMOD', 'ADDMOD', 'MULMOD', 'EXP', 'SIGNEXTEND') # from http://gavwood.com/paper.pdf _table = { # opcode: (name, immediate_operand_size, pops, pushes, gas, description) 0x00: ('STOP', 0, 0, 0, 0, 'Halts execution.'), 0x01: ('ADD', 0, 2, 1, 3, 'Addition operation.'), 0x02: ('MUL', 0, 2, 1, 5, 'Multiplication operation.'), 0x03: ('SUB', 0, 2, 1, 3, 'Subtraction operation.'), 0x04: ('DIV', 0, 2, 1, 5, 'Integer division operation.'), 0x05: ('SDIV', 0, 2, 1, 5, 'Signed integer division operation (truncated).'), 0x06: ('MOD', 0, 2, 1, 5, 'Modulo remainder operation.'), 0x07: ('SMOD', 0, 2, 1, 5, 'Signed modulo remainder operation.'), 0x08: ('ADDMOD', 0, 3, 1, 8, 'Modulo addition operation.'), 0x09: ('MULMOD', 0, 3, 1, 8, 'Modulo multiplication operation.'), 0x0a: ('EXP', 0, 2, 1, 10, 'Exponential operation.'), 0x0b: ('SIGNEXTEND', 0, 2, 1, 5, "Extend length of two's complement signed integer."), 0x10: ('LT', 0, 2, 1, 3, 'Less-than comparision.'), 0x11: ('GT', 0, 2, 1, 3, 'Greater-than comparision.'), 0x12: ('SLT', 0, 2, 1, 3, 'Signed less-than comparision.'), 0x13: ('SGT', 0, 2, 1, 3, 'Signed greater-than comparision.'), 0x14: ('EQ', 0, 2, 1, 3, 'Equality comparision.'), 0x15: ('ISZERO', 0, 1, 1, 3, 'Simple not operator.'), 0x16: ('AND', 0, 2, 1, 3, 'Bitwise AND operation.'), 0x17: ('OR', 0, 2, 1, 3, 'Bitwise OR operation.'), 0x18: ('XOR', 0, 2, 1, 3, 'Bitwise XOR operation.'), 0x19: ('NOT', 0, 1, 1, 3, 'Bitwise NOT operation.'), 0x1a: ('BYTE', 0, 2, 1, 3, 'Retrieve single byte from word.'), 0x20: ('SHA3', 0, 2, 1, 30, 'Compute Keccak-256 hash.'), 0x30: ('ADDRESS', 0, 0, 1, 2, 'Get address of currently executing account .'), 0x31: ('BALANCE', 0, 1, 1, 20, 'Get balance of the given account.'), 0x32: ('ORIGIN', 0, 0, 1, 2, 'Get execution origination address.'), 0x33: ('CALLER', 0, 0, 1, 2, 'Get caller address.'), 0x34: ('CALLVALUE', 0, 0, 1, 2, 'Get deposited value by the instruction/transaction responsible for this execution.'), 0x35: ('CALLDATALOAD', 0, 1, 1, 3, 'Get input data of current environment.'), 0x36: ('CALLDATASIZE', 0, 0, 1, 2, 'Get size of input data in current environment.'), 0x37: ('CALLDATACOPY', 0, 3, 0, 3, 'Copy input data in current environment to memory.'), 0x38: ('CODESIZE', 0, 0, 1, 2, 'Get size of code running in current environment.'), 0x39: ('CODECOPY', 0, 3, 0, 3, 'Copy code running in current environment to memory.'), 0x3a: ('GASPRICE', 0, 0, 1, 2, 'Get price of gas in current environment.'), 0x3b: ('EXTCODESIZE', 0, 1, 1, 20, "Get size of an account's code."), 0x3c: ('EXTCODECOPY', 0, 4, 0, 20, "Copy an account's code to memory."), 0x40: ('BLOCKHASH', 0, 1, 1, 20, 'Get the hash of one of the 256 most recent complete blocks.'), 0x41: ('COINBASE', 0, 0, 1, 2, "Get the block's beneficiary address."), 0x42: ('TIMESTAMP', 0, 0, 1, 2, "Get the block's timestamp."), 0x43: ('NUMBER', 0, 0, 1, 2, "Get the block's number."), 0x44: ('DIFFICULTY', 0, 0, 1, 2, "Get the block's difficulty."), 0x45: ('GASLIMIT', 0, 0, 1, 2, "Get the block's gas limit."), 0x50: ('POP', 0, 1, 0, 2, 'Remove item from stack.'), 0x51: ('MLOAD', 0, 1, 1, 3, 'Load word from memory.'), 0x52: ('MSTORE', 0, 2, 0, 3, 'Save word to memory.'), 0x53: ('MSTORE8', 0, 2, 0, 3, 'Save byte to memory.'), 0x54: ('SLOAD', 0, 1, 1, 50, 'Load word from storage.'), 0x55: ('SSTORE', 0, 2, 0, 0, 'Save word to storage.'), 0x56: ('JUMP', 0, 1, 0, 8, 'Alter the program counter.'), 0x57: ('JUMPI', 0, 2, 0, 10, 'Conditionally alter the program counter.'), 0x58: ('GETPC', 0, 0, 1, 2, 'Get the value of the program counter prior to the increment.'), 0x59: ('MSIZE', 0, 0, 1, 2, 'Get the size of active memory in bytes.'), 0x5a: ('GAS', 0, 0, 1, 2, 'Get the amount of available gas, including the corresponding reduction the amount of available gas.'), 0x5b: ('JUMPDEST', 0, 0, 0, 1, 'Mark a valid destination for jumps.'), 0x60: ('PUSH', 1, 0, 1, 0, 'Place 1 byte item on stack.'), 0x61: ('PUSH', 2, 0, 1, 0, 'Place 2-byte item on stack.'), 0x62: ('PUSH', 3, 0, 1, 0, 'Place 3-byte item on stack.'), 0x63: ('PUSH', 4, 0, 1, 0, 'Place 4-byte item on stack.'), 0x64: ('PUSH', 5, 0, 1, 0, 'Place 5-byte item on stack.'), 0x65: ('PUSH', 6, 0, 1, 0, 'Place 6-byte item on stack.'), 0x66: ('PUSH', 7, 0, 1, 0, 'Place 7-byte item on stack.'), 0x67: ('PUSH', 8, 0, 1, 0, 'Place 8-byte item on stack.'), 0x68: ('PUSH', 9, 0, 1, 0, 'Place 9-byte item on stack.'), 0x69: ('PUSH', 10, 0, 1, 0, 'Place 10-byte item on stack.'), 0x6a: ('PUSH', 11, 0, 1, 0, 'Place 11-byte item on stack.'), 0x6b: ('PUSH', 12, 0, 1, 0, 'Place 12-byte item on stack.'), 0x6c: ('PUSH', 13, 0, 1, 0, 'Place 13-byte item on stack.'), 0x6d: ('PUSH', 14, 0, 1, 0, 'Place 14-byte item on stack.'), 0x6e: ('PUSH', 15, 0, 1, 0, 'Place 15-byte item on stack.'), 0x6f: ('PUSH', 16, 0, 1, 0, 'Place 16-byte item on stack.'), 0x70: ('PUSH', 17, 0, 1, 0, 'Place 17-byte item on stack.'), 0x71: ('PUSH', 18, 0, 1, 0, 'Place 18-byte item on stack.'), 0x72: ('PUSH', 19, 0, 1, 0, 'Place 19-byte item on stack.'), 0x73: ('PUSH', 20, 0, 1, 0, 'Place 20-byte item on stack.'), 0x74: ('PUSH', 21, 0, 1, 0, 'Place 21-byte item on stack.'), 0x75: ('PUSH', 22, 0, 1, 0, 'Place 22-byte item on stack.'), 0x76: ('PUSH', 23, 0, 1, 0, 'Place 23-byte item on stack.'), 0x77: ('PUSH', 24, 0, 1, 0, 'Place 24-byte item on stack.'), 0x78: ('PUSH', 25, 0, 1, 0, 'Place 25-byte item on stack.'), 0x79: ('PUSH', 26, 0, 1, 0, 'Place 26-byte item on stack.'), 0x7a: ('PUSH', 27, 0, 1, 0, 'Place 27-byte item on stack.'), 0x7b: ('PUSH', 28, 0, 1, 0, 'Place 28-byte item on stack.'), 0x7c: ('PUSH', 29, 0, 1, 0, 'Place 29-byte item on stack.'), 0x7d: ('PUSH', 30, 0, 1, 0, 'Place 30-byte item on stack.'), 0x7e: ('PUSH', 31, 0, 1, 0, 'Place 31-byte item on stack.'), 0x7f: ('PUSH', 32, 0, 1, 0, 'Place 32-byte (full word) item on stack.'), 0x80: ('DUP', 0, 1, 2, 3, 'Duplicate 1st stack item.'), 0x81: ('DUP', 0, 2, 3, 3, 'Duplicate 2nd stack item.'), 0x82: ('DUP', 0, 3, 4, 3, 'Duplicate 3rd stack item.'), 0x83: ('DUP', 0, 4, 5, 3, 'Duplicate 4th stack item.'), 0x84: ('DUP', 0, 5, 6, 3, 'Duplicate 5th stack item.'), 0x85: ('DUP', 0, 6, 7, 3, 'Duplicate 6th stack item.'), 0x86: ('DUP', 0, 7, 8, 3, 'Duplicate 7th stack item.'), 0x87: ('DUP', 0, 8, 9, 3, 'Duplicate 8th stack item.'), 0x88: ('DUP', 0, 9, 10, 3, 'Duplicate 9th stack item.'), 0x89: ('DUP', 0, 10, 11, 3, 'Duplicate 10th stack item.'), 0x8a: ('DUP', 0, 11, 12, 3, 'Duplicate 11th stack item.'), 0x8b: ('DUP', 0, 12, 13, 3, 'Duplicate 12th stack item.'), 0x8c: ('DUP', 0, 13, 14, 3, 'Duplicate 13th stack item.'), 0x8d: ('DUP', 0, 14, 15, 3, 'Duplicate 14th stack item.'), 0x8e: ('DUP', 0, 15, 16, 3, 'Duplicate 15th stack item.'), 0x8f: ('DUP', 0, 16, 17, 3, 'Duplicate 16th stack item.'), 0x90: ('SWAP', 0, 2, 2, 3, 'Exchange 1st and 2nd stack items.'), 0x91: ('SWAP', 0, 3, 3, 3, 'Exchange 1st and 3rd stack items.'), 0x92: ('SWAP', 0, 4, 4, 3, 'Exchange 1st and 4th stack items.'), 0x93: ('SWAP', 0, 5, 5, 3, 'Exchange 1st and 5th stack items.'), 0x94: ('SWAP', 0, 6, 6, 3, 'Exchange 1st and 6th stack items.'), 0x95: ('SWAP', 0, 7, 7, 3, 'Exchange 1st and 7th stack items.'), 0x96: ('SWAP', 0, 8, 8, 3, 'Exchange 1st and 8th stack items.'), 0x97: ('SWAP', 0, 9, 9, 3, 'Exchange 1st and 9th stack items.'), 0x98: ('SWAP', 0, 10, 10, 3, 'Exchange 1st and 10th stack items.'), 0x99: ('SWAP', 0, 11, 11, 3, 'Exchange 1st and 11th stack items.'), 0x9a: ('SWAP', 0, 12, 12, 3, 'Exchange 1st and 12th stack items.'), 0x9b: ('SWAP', 0, 13, 13, 3, 'Exchange 1st and 13th stack items.'), 0x9c: ('SWAP', 0, 14, 14, 3, 'Exchange 1st and 14th stack items.'), 0x9d: ('SWAP', 0, 15, 15, 3, 'Exchange 1st and 15th stack items.'), 0x9e: ('SWAP', 0, 16, 16, 3, 'Exchange 1st and 16th stack items.'), 0x9f: ('SWAP', 0, 17, 17, 3, 'Exchange 1st and 17th stack items.'), 0xa0: ('LOG', 0, 2, 0, 375, 'Append log record with no topics.'), 0xa1: ('LOG', 0, 3, 0, 750, 'Append log record with one topic.'), 0xa2: ('LOG', 0, 4, 0, 1125, 'Append log record with two topics.'), 0xa3: ('LOG', 0, 5, 0, 1500, 'Append log record with three topics.'), 0xa4: ('LOG', 0, 6, 0, 1875, 'Append log record with four topics.'), 0xf0: ('CREATE', 0, 3, 1, 32000, 'Create a new account with associated code.'), 0xf1: ('CALL', 0, 7, 1, 40, 'Message-call into an account.'), 0xf2: ('CALLCODE', 0, 7, 1, 40, "Message-call into this account with alternative account's code."), 0xf3: ('RETURN', 0, 2, 0, 0, 'Halt execution returning output data.'), 0xf4: ('DELEGATECALL', 0, 6, 1, 40, "Message-call into this account with an alternative account's code, but persisting into this account with an alternative account's code."), 0xf5: ('BREAKPOINT', 0, 0, 0, 40, 'Not in yellow paper FIXME'), 0xf6: ('RNGSEED', 0, 1, 1, 0, 'Not in yellow paper FIXME'), 0xf7: ('SSIZEEXT', 0, 2, 1, 0, 'Not in yellow paper FIXME'), 0xf8: ('SLOADBYTES', 0, 3, 0, 0, 'Not in yellow paper FIXME'), 0xf9: ('SSTOREBYTES', 0, 3, 0, 0, 'Not in yellow paper FIXME'), 0xfa: ('SSIZE', 0, 1, 1, 40, 'Not in yellow paper FIXME'), 0xfb: ('STATEROOT', 0, 1, 1, 0, 'Not in yellow paper FIXME'), 0xfc: ('TXEXECGAS', 0, 0, 1, 0, 'Not in yellow paper FIXME'), 0xfd: ('REVERT', 0, 2, 0, 0, 'Stop execution and revert state changes, without consuming all provided gas and providing a reason.'), 0xfe: ('INVALID', 0, 0, 0, 0, 'Designated invalid instruction.'), 0xff: ('SELFDESTRUCT', 0, 1, 0, 5000, 'Halt execution and register account for later deletion.') } @staticmethod @memoized def _get_reverse_table(): ''' Build an internal table used in the assembler ''' reverse_table = {} for (opcode, (name, immediate_operand_size, pops, pushes, gas, description)) in EVMAsm._table.items(): mnemonic = name if name == 'PUSH': mnemonic = '%s%d' % (name, (opcode & 0x1f) + 1) elif name in ('SWAP', 'LOG', 'DUP'): mnemonic = '%s%d' % (name, (opcode & 0xf) + 1) reverse_table[mnemonic] = opcode, name, immediate_operand_size, pops, pushes, gas, description return reverse_table @staticmethod def assemble_one(assembler, offset=0): ''' Assemble one EVM instruction from its textual representation. :param assembler: assembler code for one instruction :param offset: offset of the instruction in the bytecode (optional) :return: An Instruction object Example use:: >>> print evm.EVMAsm.assemble_one('LT') ''' try: _reverse_table = EVMAsm._get_reverse_table() assembler = assembler.strip().split(' ') opcode, name, operand_size, pops, pushes, gas, description = _reverse_table[assembler[0].upper()] if operand_size > 0: assert len(assembler) == 2 operand = int(assembler[1], 0) else: assert len(assembler) == 1 operand = None return EVMAsm.Instruction(opcode, name, operand_size, pops, pushes, gas, description, operand=operand, offset=offset) except BaseException: raise Exception("Something wrong at offset %d" % offset) @staticmethod def assemble_all(assembler, offset=0): ''' Assemble a sequence of textual representation of EVM instructions :param assembler: assembler code for any number of instructions :param offset: offset of the first instruction in the bytecode(optional) :return: An generator of Instruction objects Example use:: >>> evm.EVMAsm.encode_one("""PUSH1 0x60 PUSH1 0x40 MSTORE PUSH1 0x2 PUSH2 0x108 PUSH1 0x0 POP SSTORE PUSH1 0x40 MLOAD """) ''' if isinstance(assembler, str): assembler = assembler.split('\n') assembler = iter(assembler) for line in assembler: if not line.strip(): continue instr = EVMAsm.assemble_one(line, offset=offset) yield instr offset += instr.size @staticmethod def disassemble_one(bytecode, offset=0): ''' Decode a single instruction from a bytecode :param bytecode: the bytecode stream :param offset: offset of the instruction in the bytecode(optional) :type bytecode: iterator/sequence/str :return: an Instruction object Example use:: >>> print EVMAsm.assemble_one('PUSH1 0x10') ''' bytecode = iter(bytecode) opcode = ord(next(bytecode)) invalid = ('INVALID', 0, 0, 0, 0, 'Unknown opcode') name, operand_size, pops, pushes, gas, description = EVMAsm._table.get(opcode, invalid) instruction = EVMAsm.Instruction(opcode, name, operand_size, pops, pushes, gas, description, offset=offset) if instruction.has_operand: instruction.parse_operand(bytecode) return instruction @staticmethod def disassemble_all(bytecode, offset=0): ''' Decode all instructions in bytecode :param bytecode: an evm bytecode (binary) :param offset: offset of the first instruction in the bytecode(optional) :type bytecode: iterator/sequence/str :return: An generator of Instruction objects Example use:: >>> for inst in EVMAsm.decode_all(bytecode): ... print inst ... PUSH1 0x60 PUSH1 0x40 MSTORE PUSH1 0x2 PUSH2 0x108 PUSH1 0x0 POP SSTORE PUSH1 0x40 MLOAD ''' bytecode = iter(bytecode) while True: instr = EVMAsm.disassemble_one(bytecode, offset=offset) offset += instr.size yield instr @staticmethod def disassemble(bytecode, offset=0): ''' Disassemble an EVM bytecode :param bytecode: binary representation of an evm bytecode (hexadecimal) :param offset: offset of the first instruction in the bytecode(optional) :type bytecode: str :return: the text representation of the aseembler code Example use:: >>> EVMAsm.disassemble("\x60\x60\x60\x40\x52\x60\x02\x61\x01\x00") ... PUSH1 0x60 BLOCKHASH MSTORE PUSH1 0x2 PUSH2 0x100 ''' return '\n'.join(map(str, EVMAsm.disassemble_all(bytecode, offset=offset))) @staticmethod def assemble(asmcode, offset=0): ''' Assemble an EVM program :param asmcode: an evm assembler program :param offset: offset of the first instruction in the bytecode(optional) :type asmcode: str :return: the hex representation of the bytecode Example use:: >>> EVMAsm.assemble( """PUSH1 0x60 BLOCKHASH MSTORE PUSH1 0x2 PUSH2 0x100 """ ) ... "\x60\x60\x60\x40\x52\x60\x02\x61\x01\x00" ''' return ''.join(map(lambda x: x.bytes, EVMAsm.assemble_all(asmcode, offset=offset))) @staticmethod def disassemble_hex(bytecode, offset=0): ''' Disassemble an EVM bytecode :param bytecode: canonical representation of an evm bytecode (hexadecimal) :param int offset: offset of the first instruction in the bytecode(optional) :type bytecode: str :return: the text representation of the aseembler code Example use:: >>> EVMAsm.disassemble_hex("0x6060604052600261010") ... PUSH1 0x60 BLOCKHASH MSTORE PUSH1 0x2 PUSH2 0x100 ''' if bytecode.startswith('0x'): bytecode = bytecode[2:] bytecode = bytecode.decode('hex') return EVMAsm.disassemble(bytecode, offset=offset) @staticmethod def assemble_hex(asmcode, offset=0): ''' Assemble an EVM program :param asmcode: an evm assembler program :param offset: offset of the first instruction in the bytecode(optional) :type asmcode: str :return: the hex representation of the bytecode Example use:: >>> EVMAsm.assemble_hex( """PUSH1 0x60 BLOCKHASH MSTORE PUSH1 0x2 PUSH2 0x100 """ ) ... "0x6060604052600261010" ''' return '0x' + EVMAsm.assemble(asmcode, offset=offset).encode('hex') # Exceptions... class EVMException(Exception): pass class EVMInstructionException(EVMException): pass class ConcretizeStack(EVMException): ''' Raised when a symbolic memory cell needs to be concretized. ''' def __init__(self, pos, expression=None, policy='MINMAX'): self.message = "Concretizing evm stack item {}".format(pos) self.pos = pos self.expression = expression self.policy = policy class StackOverflow(EVMException): ''' Attemped to push more than 1024 items ''' class StackUnderflow(EVMException): ''' Attemped to popo from an empty stack ''' class InvalidOpcode(EVMException): ''' Trying to execute invalid opcode ''' class Call(EVMInstructionException): def __init__(self, gas, to, value, data, out_offset=None, out_size=None): self.gas = gas self.to = to self.value = value self.data = data self.out_offset = out_offset self.out_size = out_size def __reduce__(self): return (self.__class__, (self.gas, self.to, self.value, self.data, self.out_offset, self.out_size)) class Create(Call): def __init__(self, value, bytecode): super(Create, self).__init__(gas=None, to=None, value=value, data=bytecode) class DelegateCall(Call): pass class Stop(EVMInstructionException): ''' Program reached a STOP instruction ''' class Return(EVMInstructionException): ''' Program reached a RETURN instruction ''' def __init__(self, data): self.data = data def __reduce__(self): return (self.__class__, (self.data,)) class Revert(EVMInstructionException): ''' Program reached a RETURN instruction ''' def __init__(self, data): self.data = data def __reduce__(self): return (self.__class__, (self.data,)) class SelfDestruct(EVMInstructionException): ''' Program reached a RETURN instruction ''' def __init__(self, to): self.to = to class NotEnoughGas(EVMException): ''' Not enough gas for operation ''' class Sha3(EVMException): def __init__(self, data): self.data = data def __reduce__(self): return (self.__class__, (self.data, )) def concretized_args(**policies): """ Make sure an EVM instruction has all of its arguments concretized according to provided policies. Example decoration: @concretized_args(size='ONE', address='') def LOG(self, address, size, *topics): ... The above will make sure that the |size| parameter to LOG is Concretized when symbolic according to the 'ONE' policy and concretize |address| with the default policy. :param policies: A kwargs list of argument names and their respective policies. Provide None or '' as policy to use default. :return: A function decorator """ def concretizer(func): @wraps(func) def wrapper(*args, **kwargs): spec = inspect.getargspec(func) for arg, policy in policies.items(): assert arg in spec.args, "Concretizer argument not found in wrapped function." # index is 0-indexed, but ConcretizeStack is 1-indexed. However, this is correct # since implementation method is always a bound method (self is param 0) index = spec.args.index(arg) if issymbolic(args[index]): if policy: raise ConcretizeStack(index, policy=policy) else: raise ConcretizeStack(index) return func(*args, **kwargs) return wrapper return concretizer class EVM(Eventful): '''Machine State. The machine state is defined as the tuple (g, pc, m, i, s) which are the gas available, the program counter pc , the memory contents, the active number of words in memory (counting continuously from position 0), and the stack contents. The memory contents are a series of zeroes of bitsize 256 ''' _published_events = {'evm_execute_instruction', 'evm_read_storage', 'evm_write_storage', 'evm_read_memory', 'evm_write_memory', 'evm_read_code', 'decode_instruction', 'execute_instruction', 'concrete_sha3', 'symbolic_sha3'} def __init__(self, constraints, address, origin, price, data, caller, value, code, header, global_storage=None, depth=0, gas=1000000000, **kwargs): ''' Builds a Ethereum Virtual Machine instance :param memory: the initial memory :param address: the address of the account which owns the code that is executing. :param origin: the sender address of the transaction that originated this execution. A 160-bit code used for identifying Accounts. :param price: the price of gas in the transaction that originated this execution. :param data: the byte array that is the input data to this execution :param caller: the address of the account which caused the code to be executing. A 160-bit code used for identifying Accounts :param value: the value, in Wei, passed to this account as part of the same procedure as execution. One Ether is defined as being 10**18 Wei. :param bytecode: the byte array that is the machine code to be executed. :param header: the block header of the present block. :param depth: the depth of the present message-call or contract-creation (i.e. the number of CALLs or CREATEs being executed at present). :param gas: gas budget for this transaction. ''' super(EVM, self).__init__(**kwargs) self._constraints = constraints self.last_exception = None self.memory = EVMMemory(constraints) self.address = address self.origin = origin # always an account with empty associated code self.caller = caller # address of the account that is directly responsible for this execution self.data = data self.price = price # This is gas price specified by the originating transaction self.value = value self.depth = depth self.bytecode = code self.suicides = set() self.logs = [] #FIXME parse decode and mark invalid instructions #self.invalid = set() assert 'coinbase' in header assert 'gaslimit' in header assert 'difficulty' in header assert 'timestamp' in header assert 'number' in header self.header = header # Machine state self.pc = 0 self.stack = [] self._gas = gas self.global_storage = global_storage self.allocated = 0 @property def constraints(self): return self._constraints @constraints.setter def constraints(self, constraints): self._constraints = constraints self.memory.constraints = constraints @property def gas(self): return self._gas def __getstate__(self): state = super(EVM, self).__getstate__() state['memory'] = self.memory state['global_storage'] = self.global_storage state['constraints'] = self.constraints state['last_exception'] = self.last_exception state['address'] = self.address state['origin'] = self.origin state['caller'] = self.caller state['data'] = self.data state['price'] = self.price state['value'] = self.value state['depth'] = self.depth state['bytecode'] = self.bytecode state['header'] = self.header state['pc'] = self.pc state['stack'] = self.stack state['gas'] = self._gas state['allocated'] = self.allocated state['suicides'] = self.suicides state['logs'] = self.logs return state def __setstate__(self, state): self._gas = state['gas'] self.memory = state['memory'] self.logs = state['logs'] self.global_storage = state['global_storage'] self.constraints = state['constraints'] self.last_exception = state['last_exception'] self.address = state['address'] self.origin = state['origin'] self.caller = state['caller'] self.data = state['data'] self.price = state['price'] self.value = state['value'] self.depth = state['depth'] self.bytecode = state['bytecode'] self.header = state['header'] self.pc = state['pc'] self.stack = state['stack'] self.allocated = state['allocated'] self.suicides = state['suicides'] super(EVM, self).__setstate__(state) # Memory related def _allocate(self, address): if address > self.memory._allocated: GMEMORY = 3 GQUADRATICMEMDENOM = 512 # 1 gas per 512 quadwords old_size = ceil32(self.memory._allocated) // 32 old_totalfee = old_size * GMEMORY + old_size ** 2 // GQUADRATICMEMDENOM new_size = ceil32(address) // 32 increased = new_size - old_size fee = increased * GMEMORY + increased**2 // GQUADRATICMEMDENOM self._consume(fee) def _store(self, address, value): # CHECK ADDRESS IS A 256 BIT INT OR BITVEC # CHECK VALUE IS A 256 BIT INT OR BITVEC self._allocate(address) self.memory.write(address, [value]) self._publish('did_evm_write_memory', address, value) def _load(self, address): self._allocate(address) value = self.memory.read(address, 1)[0] value = arithmetic_simplifier(value) if isinstance(value, Constant) and not value.taint: value = value.value self._publish('did_evm_read_memory', address, value) return value @staticmethod def check256int(value): assert True def read_code(self, address, size=1): ''' Read size byte from bytecode. If less than size bytes are available result will be pad with \x00 ''' assert address < len(self.bytecode) value = self.bytecode[address:address + size] if len(value) < size: value += '\x00' * (size - len(value)) # pad with null (spec) return value def disassemble(self): return EVMAsm.disassemble(self.bytecode) @property def PC(self): return self.pc @property def instruction(self): ''' Current instruction pointed by self.pc ''' # FIXME check if pc points to invalid instruction # if self.pc >= len(self.bytecode): # return InvalidOpcode('Code out of range') # if self.pc in self.invalid: # raise InvalidOpcode('Opcode inside a PUSH immediate') def getcode(): for byte in self.bytecode[self.pc:]: yield byte while True: yield '\x00' return EVMAsm.disassemble_one(getcode()) # auxiliar funcs # Stack related def _push(self, value): ''' ITEM0 ITEM1 ITEM2 sp-> {empty} ''' assert isinstance(value, (int, long)) or isinstance(value, BitVec) and value.size == 256 if len(self.stack) >= 1024: raise StackOverflow() self.stack.append(value & TT256M1) def _pop(self): if len(self.stack) == 0: raise StackUnderflow() return self.stack.pop() def _consume(self, fee): assert fee >= 0 if self._gas < fee: logger.debug("Not enough gas for instruction") raise NotEnoughGas() self._gas -= fee # Execute an instruction from current pc def execute(self): if issymbolic(self.pc): expression = self.pc def setstate(state, value): state.platform.current.pc = value raise Concretize("Concretice PC", expression=expression, setstate=setstate, policy='ALL') self._publish('will_decode_instruction', self.pc) last_pc = self.pc current = self.instruction # Consume some gas self._consume(current.fee) implementation = getattr(self, current.semantics, None) if implementation is None: raise TerminateState("Instruction not implemented %s" % current.semantics, testcase=True) # Get arguments (imm, pop) arguments = [] if self.instruction.has_operand: arguments.append(current.operand) for _ in range(current.pops): arguments.append(self._pop()) # simplify stack arguments for i in range(len(arguments)): if isinstance(arguments[i], Expression): arguments[i] = arithmetic_simplifier(arguments[i]) if isinstance(arguments[i], Constant): arguments[i] = arguments[i].value self._publish('will_execute_instruction', self.pc, current) self._publish('will_evm_execute_instruction', current, arguments) last_pc = self.pc result = None try: result = implementation(*arguments) self._emit_did_execute_signals(current, arguments, result, last_pc) except ConcretizeStack as ex: for arg in reversed(arguments): self._push(arg) def setstate(state, value): self.stack[-ex.pos] = value raise Concretize("Concretice Stack Variable", expression=self.stack[-ex.pos], setstate=setstate, policy=ex.policy) except EVMException as e: self.last_exception = e # Technically, this is not the right place to emit these events because the # instruction hasn't executed yet; it executes in the EVM platform class (EVMWorld). # However, when I tried that, in the event handlers, `state.platform.current` # ends up being None, which caused issues. So, as a pragmatic solution, we emit # the event before technically executing the instruction. if isinstance(e, EVMInstructionException): self._emit_did_execute_signals(current, arguments, result, last_pc) raise # Check result (push) if current.pushes > 1: assert len(result) == current.pushes for value in reversed(result): self._push(value) elif current.pushes == 1: self._push(result) else: assert current.pushes == 0 assert result is None if current.semantics not in ('JUMP', 'JUMPI'): # advance pc pointer self.pc += self.instruction.size def _emit_did_execute_signals(self, current, arguments, result, last_pc): self._publish('did_evm_execute_instruction', current, arguments, result) self._publish('did_execute_instruction', last_pc, self.pc, current) # INSTRUCTIONS def INVALID(self): '''Halts execution''' raise InvalidOpcode() ########################################################################## # Stop and Arithmetic Operations # All arithmetic is modulo 256 unless otherwise noted. def STOP(self): ''' Halts execution ''' raise Stop() def ADD(self, a, b): ''' Addition operation ''' return a + b def MUL(self, a, b): ''' Multiplication operation ''' return a * b def SUB(self, a, b): ''' Subtraction operation ''' return a - b def DIV(self, a, b): '''Integer division operation''' try: result = Operators.UDIV(a, b) except ZeroDivisionError: result = 0 return Operators.ITEBV(256, b == 0, 0, result) def SDIV(self, a, b): '''Signed integer division operation (truncated)''' s0, s1 = to_signed(a), to_signed(b) try: result = (abs(s0) // abs(s1) * (-1 if s0 * s1 < 0 else 1)) except ZeroDivisionError: result = 0 return Operators.ITEBV(256, b == 0, 0, result) def MOD(self, a, b): '''Modulo remainder operation''' try: result = Operators.ITEBV(256, b == 0, 0, a % b) except ZeroDivisionError: result = 0 return result def SMOD(self, a, b): '''Signed modulo remainder operation''' s0, s1 = to_signed(a), to_signed(b) sign = Operators.ITEBV(256, s0 < 0, -1, 1) try: result = abs(s0) % abs(s1) * sign except ZeroDivisionError: result = 0 return Operators.ITEBV(256, s1 == 0, 0, result) def ADDMOD(self, a, b, c): '''Modulo addition operation''' try: result = Operators.ITEBV(256, c == 0, 0, (a + b) % c) except ZeroDivisionError: result = 0 return result def MULMOD(self, a, b, c): '''Modulo addition operation''' try: result = Operators.ITEBV(256, c == 0, 0, (a * b) % c) except ZeroDivisionError: result = 0 return result def EXP(self, base, exponent): ''' Exponential operation The zero-th power of zero 0^0 is defined to be one ''' # fixme integer bitvec EXP_SUPPLEMENTAL_GAS = 50 # cost of EXP exponent per byte def nbytes(e): for i in range(32): if e >> (i * 8) == 0: return i return 32 self._consume(EXP_SUPPLEMENTAL_GAS * nbytes(exponent)) return pow(base, exponent, TT256) def SIGNEXTEND(self, size, value): '''Extend length of two's complement signed integer''' # FIXME maybe use Operators.SEXTEND testbit = Operators.ITEBV(256, size <= 31, size * 8 + 7, 257) result1 = (value | (TT256 - (1 << testbit))) result2 = (value & ((1 << testbit) - 1)) result = Operators.ITEBV(256, (value & (1 << testbit)) != 0, result1, result2) return Operators.ITEBV(256, size <= 31, result, value) ########################################################################## # Comparison & Bitwise Logic Operations def LT(self, a, b): '''Less-than comparision''' return Operators.ITEBV(256, Operators.ULT(a, b), 1, 0) def GT(self, a, b): '''Greater-than comparision''' return Operators.ITEBV(256, Operators.UGT(a, b), 1, 0) def SLT(self, a, b): '''Signed less-than comparision''' # http://gavwood.com/paper.pdf s0, s1 = to_signed(a), to_signed(b) return Operators.ITEBV(256, s0 < s1, 1, 0) def SGT(self, a, b): '''Signed greater-than comparision''' # http://gavwood.com/paper.pdf s0, s1 = to_signed(a), to_signed(b) return Operators.ITEBV(256, s0 > s1, 1, 0) def EQ(self, a, b): '''Equality comparision''' return Operators.ITEBV(256, a == b, 1, 0) def ISZERO(self, a): '''Simple not operator''' return Operators.ITEBV(256, a == 0, 1, 0) def AND(self, a, b): '''Bitwise AND operation''' return a & b def OR(self, a, b): '''Bitwise OR operation''' return a | b def XOR(self, a, b): '''Bitwise XOR operation''' return a ^ b def NOT(self, a): '''Bitwise NOT operation''' return ~a def BYTE(self, offset, value): '''Retrieve single byte from word''' offset = Operators.ITEBV(256, offset < 32, (31 - offset) * 8, 256) return Operators.ZEXTEND(Operators.EXTRACT(value, offset, 8), 256) def SHA3(self, start, size): '''Compute Keccak-256 hash''' GSHA3WORD = 6 # Cost of SHA3 per word # read memory from start to end # calculate hash on it/ maybe remember in some structure where that hash came from # http://gavwood.com/paper.pdf if size: self._consume(GSHA3WORD * (ceil32(size) // 32)) data = self.read_buffer(start, size) if any(map(issymbolic, data)): raise Sha3(data) buf = ''.join(data) value = sha3.keccak_256(buf).hexdigest() value = int('0x' + value, 0) self._publish('on_concrete_sha3', buf, value) logger.info("Found a concrete SHA3 example %r -> %x", buf, value) return value ########################################################################## # Environmental Information def ADDRESS(self): '''Get address of currently executing account ''' return self.address def BALANCE(self, account): '''Get balance of the given account''' BALANCE_SUPPLEMENTAL_GAS = 380 self._consume(BALANCE_SUPPLEMENTAL_GAS) if account & TT256M1 not in self.global_storage: return 0 value = self.global_storage[account & TT256M1]['balance'] if value is None: return 0 return value def ORIGIN(self): '''Get execution origination address''' return self.origin def CALLER(self): '''Get caller address''' return Operators.ZEXTEND(self.caller, 256) def CALLVALUE(self): '''Get deposited value by the instruction/transaction responsible for this execution''' return self.value def CALLDATALOAD(self, offset): '''Get input data of current environment''' # FIXME concretize offset? # if issymbolic(offset): # self._constraints.add(Operators.ULE(offset, len(self.data)+32)) #self._constraints.add(0 == offset%32) # raise ConcretizeStack(3, expression=offset, policy='ALL') bytes = list(self.data[offset:offset + 32]) bytes += list('\x00' * (32 - len(bytes))) bytes = map(Operators.ORD, bytes) value = Operators.CONCAT(256, *bytes) return value def CALLDATASIZE(self): '''Get size of input data in current environment''' return len(self.data) def CALLDATACOPY(self, mem_offset, data_offset, size): '''Copy input data in current environment to memory''' GCOPY = 3 # cost to copy one 32 byte word self._consume(GCOPY * ceil32(size) // 32) # FIXME put zero if not enough data if issymbolic(size) or issymbolic(data_offset): #self._constraints.add(Operators.ULE(data_offset, len(self.data))) self._constraints.add(Operators.ULE(size + data_offset, len(self.data) + (32 - len(self.data) % 32))) if issymbolic(size): raise ConcretizeStack(3, policy='ALL') for i in range(size): c = Operators.ITEBV(8, data_offset + i < len(self.data), Operators.ORD(self.data[data_offset + i]), 0) self._store(mem_offset + i, c) def CODESIZE(self): '''Get size of code running in current environment''' return len(self.bytecode) @concretized_args(size='') def CODECOPY(self, mem_offset, code_offset, size): '''Copy code running in current environment to memory''' GCOPY = 3 # cost to copy one 32 byte word self._consume(GCOPY * ceil32(size) // 32) for i in range(size): if code_offset + i >= len(self.bytecode): self._store(mem_offset + i, 0) else: self._store(mem_offset + i, Operators.ORD(self.bytecode[code_offset + i])) self._publish('did_evm_read_code', code_offset, size) def GASPRICE(self): '''Get price of gas in current environment''' return self.price def EXTCODESIZE(self, account): '''Get size of an account's code''' # FIXME if not account & TT256M1 in self.global_storage: return 0 return len(self.global_storage[account & TT256M1]['code']) def EXTCODECOPY(self, account, address, offset, size): '''Copy an account's code to memory''' # FIXME STOP! if not enough data if not account & TT256M1 in self.global_storage: return extbytecode = self.global_storage[account & TT256M1]['code'] GCOPY = 3 # cost to copy one 32 byte word self._consume(GCOPY * ceil32(len(extbytecode)) // 32) for i in range(size): if offset + i < len(extbytecode): self._store(address + i, extbytecode[offset + i]) else: self._store(address + i, 0) ########################################################################## # Block Information def BLOCKHASH(self, a): '''Get the hash of one of the 256 most recent complete blocks''' # We are not maintaining an actual -block-chain- so we just generate # some hashes for each virtual block value = sha3.keccak_256(repr(a) + 'NONCE').hexdigest() value = int('0x' + value, 0) # 0 is left on the stack if the looked for block number is greater than the current block number # or more than 256 blocks behind the current block. value = Operators.ITEBV(256, Operators.OR(a > self.header['number'], a < max(0, self.header['number'] - 256)), 0, value) return value def COINBASE(self): '''Get the block's beneficiary address''' return self.header['coinbase'] def TIMESTAMP(self): '''Get the block's timestamp''' return self.header['timestamp'] def NUMBER(self): '''Get the block's number''' return self.header['number'] def DIFFICULTY(self): '''Get the block's difficulty''' return self.header['difficulty'] def GASLIMIT(self): '''Get the block's gas limit''' return self.header['gaslimit'] ########################################################################## # Stack, Memory, Storage and Flow Operations def POP(self, a): '''Remove item from stack''' # Items are automatically removed from stack # by the instruction distpatcher def MLOAD(self, address): '''Load word from memory''' bytes = [] for offset in xrange(32): bytes.append(self._load(address + offset)) return Operators.CONCAT(256, *bytes) def MSTORE(self, address, value): '''Save word to memory''' for offset in xrange(32): self._store(address + offset, Operators.EXTRACT(value, (31 - offset) * 8, 8)) def MSTORE8(self, address, value): '''Save byte to memory''' self._store(address, Operators.EXTRACT(value, 0, 8)) def SLOAD(self, offset): '''Load word from storage''' self._publish('will_evm_read_storage', offset) value = self.global_storage[self.address]['storage'].get(offset, 0) self._publish('did_evm_read_storage', offset, value) return value def SSTORE(self, offset, value): '''Save word to storage''' self._publish('will_evm_write_storage', offset, value) self.global_storage[self.address]['storage'][offset] = value if value is 0: del self.global_storage[self.address]['storage'][offset] self._publish('did_evm_write_storage', offset, value) def JUMP(self, dest): '''Alter the program counter''' self.pc = dest # TODO check for JUMPDEST on next iter? def JUMPI(self, dest, cond): '''Conditionally alter the program counter''' self.pc = Operators.ITEBV(256, cond != 0, dest, self.pc + self.instruction.size) assert self.bytecode[dest] == '\x5b', "Must be jmpdest instruction" # fixme what if dest == self.pc + self.instruction.size? def GETPC(self): '''Get the value of the program counter prior to the increment''' return self.pc def MSIZE(self): '''Get the size of active memory in bytes''' return self.memory._allocated * 32 def GAS(self): '''Get the amount of available gas, including the corresponding reduction the amount of available gas''' #fixme calculate gas consumption return self._gas def JUMPDEST(self): '''Mark a valid destination for jumps''' ########################################################################## # Push Operations def PUSH(self, value): '''Place 1 to 32 bytes item on stack''' return value ########################################################################## # Duplication Operations def DUP(self, *operands): '''Duplicate stack item''' return (operands[-1],) + operands ########################################################################## # Exchange Operations def SWAP(self, *operands): '''Exchange 1st and 2nd stack items''' a = operands[0] b = operands[-1] return (b,) + operands[1:-1] + (a,) ########################################################################## # Logging Operations @concretized_args(size='ONE') def LOG(self, address, size, *topics): memlog = self.read_buffer(address, size) self.logs.append(EVMLog(self.address, memlog, topics)) logger.info('LOG %r %r', memlog, topics) ########################################################################## # System operations def read_buffer(self, offset, size): if size: self._allocate(offset + size) data = [] for i in xrange(size): data.append(self._load(offset+i)) data = map(Operators.CHR, data) if any(map(issymbolic, data)): data_symb = self._constraints.new_array(index_bits=256, index_max=len(data)) for i in range(len(data)): data_symb[i] = Operators.ORD(data[i]) data = data_symb else: data = ''.join(data) return data def write_buffer(self, offset, buf): for i, c in enumerate(buf): self._store(offset+i, Operators.ORD(c)) def CREATE(self, value, offset, size): '''Create a new account with associated code''' code = self.read_buffer(offset, size) raise Create(value, code) @concretized_args(in_offset='SAMPLED', in_size='SAMPLED') def CALL(self, gas, to, value, in_offset, in_size, out_offset, out_size): '''Message-call into an account''' data = self.read_buffer(in_offset, in_size) raise Call(gas, to, value, data, out_offset, out_size) def CALLCODE(self, gas, to, value, in_offset, in_size, out_offset, out_size): '''Message-call into this account with alternative account's code''' data = self.read_buffer(in_offset, in_size) raise Call(gas, self.address, value, data, out_offset, out_size) def RETURN(self, offset, size): '''Halt execution returning output data''' data = self.read_buffer(offset, size) raise Return(data) def DELEGATECALL(self, gas, to, in_offset, in_size, out_offset, out_size): '''Message-call into this account with an alternative account's code, but persisting into this account with an alternative account's code''' value = 0 data = self.read_buffer(in_offset, in_size) raise Call(gas, self.address, value, data, out_offset, out_size) def REVERT(self, offset, size): data = self.read_buffer(offset, size) raise Revert(data) def SELFDESTRUCT(self, to): '''Halt execution and register account for later deletion''' raise SelfDestruct(to) def __str__(self): def hexdump(src, length=16): FILTER = ''.join([(len(repr(chr(x))) == 3) and chr(x) or '.' for x in range(256)]) lines = [] for c in xrange(0, len(src), length): chars = src[c:c + length] def p(x): if issymbolic(x): return '??' else: return "%02x" % x hex = ' '.join([p(x) for x in chars]) def p1(x): if issymbolic(x): return '.' else: return "%s" % ((x <= 127 and FILTER[x]) or '.') printable = ''.join([p1(x) for x in chars]) lines.append("%04x %-*s %s" % (c, length * 3, hex, printable)) return lines m = [] if len(self.memory._memory.keys()): for i in range(max([0] + self.memory._memory.keys()) + 1): c = self.memory.read(i, 1)[0] m.append(c) hd = hexdump(m) result = ['-' * 147] if issymbolic(self.pc): result.append('<Symbolic PC>') else: result.append('0x%04x: %s %s %s\n' % (self.pc, self.instruction.name, self.instruction.has_operand and '0x%x' % self.instruction.operand or '', self.instruction.description)) result.append('Stack Memory') sp = 0 for i in list(reversed(self.stack))[:10]: r = '' if issymbolic(i): r = '%s %r' % (sp == 0 and 'top> ' or ' ', i) else: r = '%s 0x%064x' % (sp == 0 and 'top> ' or ' ', i) sp += 1 h = '' try: h = hd[sp - 1] except BaseException: pass r += ' ' * (75 - len(r)) + h result.append(r) for i in range(sp, len(hd)): r = ' ' * 75 + hd[i] result.append(r) result = [hex(self.address) + ": " + x for x in result] return '\n'.join(result) ################################################################################ ################################################################################ ################################################################################ ################################################################################ class EVMWorld(Platform): _published_events = {'evm_read_storage', 'evm_write_storage', 'evm_read_code', 'decode_instruction', 'execute_instruction', 'concrete_sha3', 'symbolic_sha3'} def __init__(self, constraints, storage=None, **kwargs): super(EVMWorld, self).__init__(path="NOPATH", **kwargs) self._global_storage = {} if storage is None else storage self._constraints = constraints self._callstack = [] self._deleted_address = set() self._logs = list() self._sha3 = {} self._pending_transaction = None self._transactions = list() self._internal_transactions = list() def __getstate__(self): state = super(EVMWorld, self).__getstate__() state['sha3'] = self._sha3 state['pending_transaction'] = self._pending_transaction state['logs'] = self._logs state['storage'] = self._global_storage state['constraints'] = self._constraints state['callstack'] = self._callstack state['deleted_address'] = self._deleted_address state['transactions'] = self._transactions state['internal_transactions'] = self._internal_transactions return state def __setstate__(self, state): super(EVMWorld, self).__setstate__(state) self._sha3 = state['sha3'] self._pending_transaction = state['pending_transaction'] self._logs = state['logs'] self._global_storage = state['storage'] self._constraints = state['constraints'] self._callstack = state['callstack'] self._deleted_address = state['deleted_address'] self._transactions = state['transactions'] self._internal_transactions = state['internal_transactions'] self._do_events() def _do_events(self): if self.current is not None: self.forward_events_from(self.current) self.subscribe('on_concrete_sha3', self._concrete_sha3_callback) def _concrete_sha3_callback(self, buf, value): if buf in self._sha3: assert self._sha3[buf] == value self._sha3[buf] = value def __getitem__(self, index): assert isinstance(index, (int, long)) return self.storage[index] def __str__(self): return "WORLD:" + str(self._global_storage) @property def logs(self): return self._logs @property def constraints(self): return self._constraints @property def transactions(self): return self._transactions @property def internal_transactions(self): number_of_transactions = len(self._transactions) for _ in range(len(self._internal_transactions), number_of_transactions): self._internal_transactions.append([]) return self._internal_transactions @property def all_transactions(self): txs = [] for tx in self._transactions: txs.append(tx) for txi in self.internal_transactions[self._transactions.index(tx)]: txs.append(txi) return txs @property def last_return_data(self): return self.transactions[-1].return_data @constraints.setter def constraints(self, constraints): self._constraints = constraints for addr in self.storage: if isinstance(self.storage[addr]['storage'], EVMMemory): self.storage[addr]['storage'].constraints = constraints if self.current: self.current.constraints = constraints @property def current(self): try: return self._callstack[-1] except IndexError: return None @property def accounts(self): return self.storage.keys() @property def normal_accounts(self): accs = [] for address in self.accounts: if len(self.get_code(address)) == 0: accs.append(address) return accs @property def contract_accounts(self): accs = [] for address in self.accounts: if len(self.get_code(address)) > 0: accs.append(address) return accs @property def deleted_addresses(self): return self._deleted_address @property def storage(self): if self.depth: return self.current.global_storage else: return self._global_storage def set_storage_data(self, address, offset, value): self.storage[address]['storage'][offset] = value def get_storage_data(self, address, offset): return self.storage[address]['storage'].get(offset) def get_storage_items(self, address): return self.storage[address]['storage'].items() def has_storage(self, address): return len(self.storage[address]['storage'].items()) != 0 def set_balance(self, address, value): self.storage[int(address)]['balance'] = value def get_balance(self, address): return self.storage[address]['balance'] def add_to_balance(self, address, value): self.storage[address]['balance'] += value def get_code(self, address): return self.storage[address]['code'] def set_code(self, address, data): self.storage[address]['code'] = data def has_code(self, address): return len(self.storage[address]['code']) > 0 def log(self, address, topic, data): self.logs.append((address, data, topics)) logger.info('LOG %r %r', memlog, topics) def log_storage(self, addr): pass def add_refund(self, value): pass def block_prevhash(self): return 0 def block_coinbase(self): return 0 def block_timestamp(self): return 0 def block_number(self): return 0 def block_difficulty(self): return 0 def block_gas_limit(self): return 0 def tx_origin(self): return self.current_vm.origin def tx_gasprice(self): return 0 # CALLSTACK def _push_vm(self, vm): # Storage address -> account(value, local_storage) vm.global_storage = self.storage vm.global_storage[vm.address]['storage'] = copy.copy(self.storage[vm.address]['storage']) if self.depth: self.current.constraints = None # MAKE A DEEP COPY OF THE SPECIFIC ACCOUNT self._callstack.append(vm) self.current.depth = self.depth self.current.constraints = self.constraints # self.forward_events_from(self.current) self._do_events() if self.depth > 1024: while self.depth > 0: self._pop_vm(rollback=True) raise TerminateState("Maximum call depth limit is reached", testcase=True) def _pop_vm(self, rollback=False): vm = self._callstack.pop() assert self.constraints == vm.constraints if self.current: self.current.constraints = vm.constraints if not rollback: if self.depth: self.current.global_storage = vm.global_storage self.current.logs += vm.logs self.current.suicides = self.current.suicides.union(vm.suicides) else: self._global_storage = vm.global_storage self._deleted_address = self._deleted_address.union(vm.suicides) self._logs += vm.logs for address in self._deleted_address: del self.storage[address] return vm @property def depth(self): return len(self._callstack) def new_address(self): ''' create a fresh 160bit address ''' new_address = random.randint(100, pow(2, 160)) if new_address in self._global_storage.keys(): return self.new_address() return new_address def execute(self): self._process_pending_transaction() try: if self.current is None: raise TerminateState("Trying to execute an empty transaction", testcase=False) self.current.execute() except Create as ex: self.CREATE(ex.value, ex.data) except Call as ex: self.CALL(ex.gas, ex.to, ex.value, ex.data) except Stop as ex: self.STOP() except Return as ex: self.RETURN(ex.data) except Revert as ex: self.REVERT(ex.data) except SelfDestruct as ex: self.SELFDESTRUCT(ex.to) except Sha3 as ex: self.HASH(ex.data) except EVMException as e: self.THROW() except Exception: raise def run(self): try: while True: self.execute() except TerminateState as e: if self.depth == 0 and e.message == 'RETURN': return self.last_return raise e def create_account(self, address=None, balance=0, code='', storage=None): ''' code is the runtime code ''' storage = {} if storage is None else storage if address is None: address = self.new_address() assert address not in self.storage.keys(), 'The account already exists' self.storage[address] = {} self.storage[address]['nonce'] = 0 self.storage[address]['balance'] = balance self.storage[address]['storage'] = storage self.storage[address]['code'] = code return address def create_contract(self, origin=None, price=0, address=None, caller=None, balance=0, init='', run=False, header=None): assert len(init) > 0 ''' The way that the Solidity compiler expects the constructor arguments to be passed is by appending the arguments to the byte code produced by the Solidity compiler. The arguments are formatted as defined in the Ethereum ABI2. The arguments are then copied from the init byte array to the EVM memory through the CODECOPY opcode with appropriate values on the stack. This is done when the byte code in the init byte array is actually run on the network. ''' assert self._pending_transaction is None if caller is None and origin is not None: caller = origin if origin is None and caller is not None: origin = caller assert caller == origin if header is None: header = {'timestamp': 0, 'number': 0, 'coinbase': 0, 'gaslimit': 0, 'difficulty': 0 } assert not issymbolic(address) assert not issymbolic(origin) address = self.create_account(address, 0) self.storage[address]['storage'] = EVMMemory(self.constraints, 256, 256) self._pending_transaction = PendingTransaction('Create', address, origin, price, '', origin, balance, ''.join(init), header) if run: assert False # run initialization code # Assert everything is concrete? assert not issymbolic(origin) assert not issymbolic(address) assert self.storage[origin]['balance'] >= balance runtime = self.run() self.storage[address]['code'] = ''.join(runtime) return address def CREATE(self, value, bytecode): origin = self.current.origin caller = self.current.address price = self.current.price self.create_contract(origin, price, address=None, balance=value, init=bytecode, run=False) self._process_pending_transaction() def transaction(self, address, origin=None, price=0, data='', caller=None, value=0, header=None, run=False): assert self._pending_transaction is None if caller is None and origin is not None: caller = origin if origin is None and caller is not None: origin = caller if address not in self.accounts or\ caller not in self.accounts or \ origin != caller and origin not in self.accounts: raise TerminateState('Account does not exist %x' % address, testcase=True) if header is None: header = {'timestamp': 0, 'number': 0, 'coinbase': 0, 'gaslimit': 0, 'difficulty': 0 } if any([isinstance(data[i], Expression) for i in range(len(data))]): data_symb = self._constraints.new_array(index_bits=256, index_max=len(data)) for i in range(len(data)): data_symb[i] = Operators.ORD(data[i]) data = data_symb else: data = ''.join(data) bytecode = self.get_code(address) self._pending_transaction = PendingTransaction('Call', address, origin, price, data, caller, value, bytecode, header) if run: assert self.depth == 0 assert not issymbolic(caller) assert not issymbolic(address) assert self.get_balance(caller) >= value # run contract # Assert everything is concrete? try: return self.run() except TerminateState: # FIXME better use of exceptions! pass def _process_pending_transaction(self): if self._pending_transaction is None: return assert self.current is None or self.current.last_exception is not None ty, address, origin, price, data, caller, value, bytecode, header = self._pending_transaction src_balance = self.get_balance(caller) # from dst_balance = self.get_balance(address) # to # discarding absurd amount of ether (no ether overflow) self.constraints.add(src_balance + value >= src_balance) failed = False if self.depth > 1024: failed = True if not failed: enough_balance = src_balance >= value if issymbolic(enough_balance): enough_balance_solutions = solver.get_all_values(self._constraints, enough_balance) if set(enough_balance_solutions) == set([True, False]): raise Concretize('Forking on available funds', expression=src_balance < value, setstate=lambda a, b: None, policy='ALL') if set(enough_balance_solutions) == set([False]): failed = True else: if not enough_balance: failed = True self._pending_transaction = None if ty == 'Create': data = bytecode is_human_tx = (self.depth == 0) if failed: if is_human_tx: # human transaction tx = Transaction(ty, address, origin, price, data, caller, value, 'TXERROR', None) self._transactions.append(tx) raise TerminateState('TXERROR') else: self.current._push(0) return # Here we have enoug funds and room in the callstack self.storage[address]['balance'] += value self.storage[caller]['balance'] -= value new_vm = EVM(self._constraints, address, origin, price, data, caller, value, bytecode, header, global_storage=self.storage) self._push_vm(new_vm) tx = Transaction(ty, address, origin, price, data, caller, value, None, None) if is_human_tx: # handle human transactions if ty == 'Create': self.current.last_exception = Create(None, None) elif ty == 'Call': self.current.last_exception = Call(None, None, None, None) self._transactions.append(tx) else: n = len(self._transactions) if len(self._internal_transactions) <= n: for _ in xrange(n-len(self._internal_transactions)+1): self._internal_transactions.append([]) self._internal_transactions[n].append(tx) def CALL(self, gas, to, value, data): address = to origin = self.current.origin caller = self.current.address price = self.current.price depth = self.depth + 1 bytecode = self.get_code(to) self.transaction(address, origin, price, data, caller, value) self._process_pending_transaction() def RETURN(self, data): prev_vm = self._pop_vm() # current VM changed! if self.depth == 0: tx = self._transactions[-1] tx.return_data = data tx.result = 'RETURN' raise TerminateState("RETURN", testcase=True) last_ex = self.current.last_exception self.current.last_exception = None assert isinstance(last_ex, (Call, Create)) if isinstance(last_ex, Create): self.current._push(prev_vm.address) self.set_code(prev_vm.address, data) else: size = min(last_ex.out_size, len(data)) self.current.write_buffer(last_ex.out_offset, data[:size]) self.current._push(1) # we are still on the CALL/CREATE self.current.pc += self.current.instruction.size def STOP(self): prev_vm = self._pop_vm(rollback=False) if self.depth == 0: tx = self._transactions[-1] tx.return_data = None tx.result = 'STOP' raise TerminateState("STOP", testcase=True) self.current.last_exception = None self.current._push(1) # we are still on the CALL/CREATE self.current.pc += self.current.instruction.size def THROW(self): prev_vm = self._pop_vm(rollback=True) # revert balance on CALL fail self.storage[prev_vm.caller]['balance'] += prev_vm.value self.storage[prev_vm.address]['balance'] -= prev_vm.value if self.depth == 0: tx = self._transactions[-1] tx.return_data = None tx.result = 'THROW' raise TerminateState("THROW", testcase=True) self.current.last_exception = None self.current._push(0) # we are still on the CALL/CREATE self.current.pc += self.current.instruction.size def REVERT(self, data): prev_vm = self._pop_vm(rollback=True) # revert balance on CALL fail self.storage[prev_vm.caller]['balance'] += prev_vm.value self.storage[prev_vm.address]['balance'] -= prev_vm.value if self.depth == 0: tx = self._transactions[-1] tx.return_data = data tx.result = 'REVERT' raise TerminateState("REVERT", testcase=True) self.current.last_exception = None # we are still on the CALL/CREATE self.current.pc += self.current.instruction.size def SELFDESTRUCT(self, recipient): # This may create a user account recipient = Operators.EXTRACT(recipient, 0, 160) address = self.current.address if recipient not in self.storage.keys(): self.create_account(address=recipient, balance=0, code='', storage=None) self.storage[recipient]['balance'] += self.storage[address]['balance'] self.storage[address]['balance'] = 0 self.current.suicides.add(address) prev_vm = self._pop_vm(rollback=False) if self.depth == 0: tx = self._transactions[-1] tx.result = 'SELFDESTRUCT' raise TerminateState("SELFDESTRUCT", testcase=True) def HASH(self, data): def compare_buffers(a, b): if len(a) != len(b): return False cond = True for i in range(len(a)): cond = Operators.AND(a[i] == b[i], cond) if cond is False: return False return cond assert any(map(issymbolic, data)) logger.info("SHA3 Searching over %d known hashes", len(self._sha3)) logger.info("SHA3 TODO save this state for future explorations with more known hashes") # Broadcast the signal self._publish('on_symbolic_sha3', data, self._sha3.items()) results = [] # If know_hashes is true then there is a _known_ solution for the hash known_hashes = False for key, value in self._sha3.items(): assert not any(map(issymbolic, key)) cond = compare_buffers(key, data) if solver.can_be_true(self._constraints, cond): results.append((cond, value)) known_hashes = Operators.OR(cond, known_hashes) # results contains all the possible and known solutions # If known_hashes can be False then data can take at least one concrete # value of which we do not know a hash for. # Calculate the sha3 of one extra example solution and add this as a # potential result # This is an incomplete result: # Intead of choosing one single extra concrete solution we should save # the state and when a new sha3 example is found load it back and try # the new concretization for sha3. with self._constraints as temp_cs: if solver.can_be_true(temp_cs, Operators.NOT(known_hashes)): temp_cs.add(Operators.NOT(known_hashes)) # a_buffer is different from all strings we know a hash for a_buffer = solver.get_value(temp_cs, data) cond = compare_buffers(a_buffer, data) # Get the sha3 for a_buffer a_value = int(sha3.keccak_256(a_buffer).hexdigest(), 16) # add the new sha3 pair to the known_hashes and result self._publish('on_concrete_sha3', a_buffer, a_value) results.append((cond, a_value)) known_hashes = Operators.OR(cond, known_hashes) if solver.can_be_true(self._constraints, known_hashes): self._constraints.add(known_hashes) value = 0 # never used for cond, sha in results: value = Operators.ITEBV(256, cond, sha, value) else: raise TerminateState("Unknown hash") self.current._push(value) self.current.pc += self.current.instruction.size
StarcoderdataPython
8140694
<reponame>filwaitman/rest-api-lib-creator import requests from .datastructures import Meta, NoContent, UnhandledResponse from .utils import add_querystring_to_url class ListMixin(object): list_expected_status_code = 200 list_url = None @classmethod def get_list_url(cls): if cls.list_url: return cls.list_url.format(base_api_url=cls.get_base_api_url()) return cls.get_base_api_url() @classmethod def list(cls, **kwargs): url = add_querystring_to_url(cls.get_list_url(), **kwargs) response = cls.request(requests.get, url) if response.status_code != cls.list_expected_status_code: return UnhandledResponse(meta=Meta(response)) return cls.prepare_response(response, cls, many=True) class CreateMixin(object): create_payload_mode = 'data' # 'data or 'json create_expected_status_code = 201 create_url = None @classmethod def get_create_url(cls): if cls.create_url: return cls.create_url.format(base_api_url=cls.get_base_api_url()) return cls.get_base_api_url() @classmethod def create(cls, **kwargs): outer_kwargs = {cls.create_payload_mode: kwargs} response = cls.request(requests.post, cls.get_create_url(), **outer_kwargs) if response.status_code != cls.create_expected_status_code: return UnhandledResponse(meta=Meta(response)) return cls.prepare_response(response, cls) def save(self): if not(self._existing_instance): return self.create(**self._changed_data) return self.update(self.get_identifier(), **self._changed_data) class RetrieveMixin(object): retrieve_expected_status_code = 200 retrieve_url = None @classmethod def get_retrieve_url(cls, identifier): if cls.retrieve_url: return cls.retrieve_url.format(base_api_url=cls.get_base_api_url(), identifier=identifier) return cls.get_instance_url(identifier) @classmethod def retrieve(cls, identifier): response = cls.request(requests.get, cls.get_retrieve_url(identifier)) if response.status_code != cls.retrieve_expected_status_code: return UnhandledResponse(meta=Meta(response)) return cls.prepare_response(response, cls) class UpdateMixin(object): update_payload_mode = 'data' # 'data or 'json update_expected_status_code = 200 update_url = None @classmethod def get_update_url(cls, identifier): if cls.update_url: return cls.update_url.format(base_api_url=cls.get_base_api_url(), identifier=identifier) return cls.get_instance_url(identifier) @classmethod def update(cls, identifier, **kwargs): outer_kwargs = {cls.update_payload_mode: kwargs} response = cls.request(requests.patch, cls.get_update_url(identifier), **outer_kwargs) if response.status_code != cls.update_expected_status_code: return UnhandledResponse(meta=Meta(response)) return cls.prepare_response(response, cls) def save(self): if not(self._existing_instance): return self.create(**self._changed_data) return self.update(self.get_identifier(), **self._changed_data) class DeleteMixin(object): delete_expected_status_code = 204 delete_url = None @classmethod def get_delete_url(cls, identifier): if cls.delete_url: return cls.delete_url.format(base_api_url=cls.get_base_api_url(), identifier=identifier) return cls.get_instance_url(identifier) @classmethod def delete(cls, identifier): response = cls.request(requests.delete, cls.get_delete_url(identifier)) if response.status_code != cls.delete_expected_status_code or (response.status_code != 204): return UnhandledResponse(meta=Meta(response)) return NoContent(meta=Meta(response)) def destroy(self): return self.delete(self.get_identifier())
StarcoderdataPython
187820
<filename>main.py # -*- coding: utf-8 -*- from flask import Flask import yagmail import logging import sys from flask import request reload(sys) sys.setdefaultencoding('utf-8') # change here mail_user = "yourmail" mail_pass = "<PASSWORD>" smtp_host = "smtp.163.com" smtp_port = '994' # end change app = Flask(__name__) @app.route("/send", methods=["POST"]) def send(): logging.info(request.form['content']) lines = str(request.form['content']).split("||") content = dict() for line in lines: content[line.split("=")[0]] = line.split("=")[1] user = content["user"] subject = content.get("subject", "send by my self mail service.") content = content["content"] if user is None or user == '': logging.error("user is empty! %s" % request.form['content']) return # new instance ever once for smtp server may drop the connection yag = yagmail.SMTP(user=mail_user, password=<PASSWORD>, host=smtp_host, port=smtp_port) yag.send(to=user, subject=subject, contents=content) return "send mail successfully!" if __name__ == '__main__': app.run(port=5555)
StarcoderdataPython
3294158
<gh_stars>10-100 ''' Authors: <NAME>, <NAME> ''' from ReLERNN.imports import * class SequenceBatchGenerator(tf.keras.utils.Sequence): ''' This class, SequenceBatchGenerator, extends tf.keras.utils.Sequence. So as to multithread the batch preparation in tandum with network training for maximum effeciency on the hardware provided. It generated batches of genotype matrices from a given .trees directory (which is generated most effeciently from the Simulator class) which have been prepped according to the given parameters. It also offers a range of data prepping heuristics as well as normalizing the targets. def __getitem__(self, idx): def __data_generation(self, batchTreeIndices): ''' #Initialize the member variables which largely determine the data prepping heuristics #in addition to the .trees directory containing the data from which to generate the batches def __init__(self, treesDirectory, targetNormalization = 'zscore', batchSize=64, maxLen=None, frameWidth=0, center=False, shuffleInds=False, sortInds=False, ancVal = -1, padVal = -1, derVal = 1, realLinePos = True, posPadVal = 0, shuffleExamples = True, splitFLAG = False, seqD = None, maf = None, hotspots = False, seed = None ): self.treesDirectory = treesDirectory self.targetNormalization = targetNormalization infoFilename = os.path.join(self.treesDirectory,"info.p") self.infoDir = pickle.load(open(infoFilename,"rb")) self.batch_size = batchSize self.maxLen = maxLen self.frameWidth = frameWidth self.center = center self.shuffleInds = shuffleInds self.sortInds=sortInds self.ancVal = ancVal self.padVal = padVal self.derVal = derVal self.realLinePos = realLinePos self.posPadVal = posPadVal self.indices = np.arange(self.infoDir["numReps"]) self.shuffleExamples = shuffleExamples self.splitFLAG = splitFLAG self.seqD = seqD self.maf = maf self.hotspots = hotspots self.seed = seed if self.seed: os.environ['PYTHONHASHSEED']=str(self.seed) random.seed(self.seed) np.random.seed(self.seed) if(targetNormalization != None): if self.hotspots: self.normalizedTargets = self.normalizeTargetsBinaryClass() else: self.normalizedTargets = self.normalizeTargets() if(shuffleExamples): np.random.shuffle(self.indices) def sort_min_diff(self,amat): '''this function takes in a SNP matrix with indv on rows and returns the same matrix with indvs sorted by genetic similarity. this problem is NP, so here we use a nearest neighbors approx. it's not perfect, but it's fast and generally performs ok. assumes your input matrix is a numpy array''' mb = NearestNeighbors(len(amat), metric='manhattan').fit(amat) v = mb.kneighbors(amat) smallest = np.argmin(v[0].sum(axis=1)) return amat[v[1][smallest]] def pad_HapsPos(self,haplotypes,positions,maxSNPs=None,frameWidth=0,center=False): ''' pads the haplotype and positions tensors to be uniform with the largest tensor ''' haps = haplotypes pos = positions #Normalize the shape of all haplotype vectors with padding for i in range(len(haps)): numSNPs = haps[i].shape[0] paddingLen = maxSNPs - numSNPs if(center): prior = paddingLen // 2 post = paddingLen - prior haps[i] = np.pad(haps[i],((prior,post),(0,0)),"constant",constant_values=2.0) pos[i] = np.pad(pos[i],(prior,post),"constant",constant_values=-1.0) else: if(paddingLen < 0): haps[i] = np.pad(haps[i],((0,0),(0,0)),"constant",constant_values=2.0)[:paddingLen] pos[i] = np.pad(pos[i],(0,0),"constant",constant_values=-1.0)[:paddingLen] else: haps[i] = np.pad(haps[i],((0,paddingLen),(0,0)),"constant",constant_values=2.0) pos[i] = np.pad(pos[i],(0,paddingLen),"constant",constant_values=-1.0) haps = np.array(haps,dtype='float32') pos = np.array(pos,dtype='float32') if(frameWidth): fw = frameWidth haps = np.pad(haps,((0,0),(fw,fw),(fw,fw)),"constant",constant_values=2.0) pos = np.pad(pos,((0,0),(fw,fw)),"constant",constant_values=-1.0) return haps,pos def padAlleleFqs(self,haplotypes,positions,maxSNPs=None,frameWidth=0,center=False): ''' convert haps to allele frequencies, normalize, and pad the haplotype and positions tensors to be uniform with the largest tensor ''' haps = haplotypes positions = positions fqs, pos = [], [] # Resample to sequencing depth and convert to allele frequencies for i in range(len(haps)): tmp_freqs = [] tmp_pos = [] fqs_list = haps[i].tolist() for j in range(len(fqs_list)): if self.seqD != -9: ## Resample z = resample(fqs_list[j], n_samples=self.seqD, replace=True) raw_freq = round(np.count_nonzero(z)/float(len(z)),3) if self.maf <= raw_freq < 1.0: tmp_freqs.append(raw_freq) tmp_pos.append(positions[i][j]) else: ## Don't resample raw_freq = round(np.count_nonzero(fqs_list[j])/float(len(fqs_list[j])),3) tmp_freqs.append(raw_freq) tmp_pos.append(positions[i][j]) fqs.append(np.array(tmp_freqs)) pos.append(np.array(tmp_pos)) # Normalize fqs = self.normalizeAlleleFqs(fqs) # Pad for i in range(len(fqs)): numSNPs = fqs[i].shape[0] paddingLen = maxSNPs - numSNPs if(center): prior = paddingLen // 2 post = paddingLen - prior fqs[i] = np.pad(fqs[i],(prior,post),"constant",constant_values=-1.0) pos[i] = np.pad(pos[i],(prior,post),"constant",constant_values=-1.0) else: if(paddingLen < 0): fqs[i] = np.pad(fqs[i],(0,0),"constant",constant_values=-1.0)[:paddingLen] pos[i] = np.pad(pos[i],(0,0),"constant",constant_values=-1.0)[:paddingLen] else: fqs[i] = np.pad(fqs[i],(0,paddingLen),"constant",constant_values=-1.0) pos[i] = np.pad(pos[i],(0,paddingLen),"constant",constant_values=-1.0) fqs = np.array(fqs,dtype='float32') pos = np.array(pos,dtype='float32') if(frameWidth): fw = frameWidth fqs = np.pad(fqs,((0,0),(fw,fw)),"constant",constant_values=-1.0) pos = np.pad(pos,((0,0),(fw,fw)),"constant",constant_values=-1.0) return fqs,pos def normalizeTargets(self): ''' We want to normalize all targets. ''' norm = self.targetNormalization nTargets = copy.deepcopy(self.infoDir['rho']) if(norm == 'zscore'): tar_mean = np.mean(nTargets,axis=0) tar_sd = np.std(nTargets,axis=0) nTargets -= tar_mean nTargets = np.divide(nTargets,tar_sd,out=np.zeros_like(nTargets),where=tar_sd!=0) elif(norm == 'divstd'): tar_sd = np.std(nTargets,axis=0) nTargets = np.divide(nTargets,tar_sd,out=np.zeros_like(nTargets),where=tar_sd!=0) return nTargets def normalizeTargetsBinaryClass(self): ''' We want to normalize all targets. ''' norm = self.targetNormalization nTargets = copy.deepcopy(self.infoDir['hotWin']) nTargets[nTargets<5] = 0 nTargets[nTargets>=5] = 1 return nTargets.astype(np.uint8) def normalizeAlleleFqs(self, fqs): ''' normalize the allele frequencies for the batch ''' norm = self.targetNormalization if(norm == 'zscore'): allVals = np.concatenate([a.flatten() for a in fqs]) fqs_mean = np.mean(allVals) fqs_sd = np.std(allVals) for i in range(len(fqs)): fqs[i] = np.subtract(fqs[i],fqs_mean) fqs[i] = np.divide(fqs[i],fqs_sd,out=np.zeros_like(fqs[i]),where=fqs_sd!=0) elif(norm == 'divstd'): allVals = np.concatenate([a.flatten() for a in fqs]) fqs_sd = np.std(allVals) for i in range(len(fqs)): fqs[i] = np.divide(fqs[i],fqs_sd,out=np.zeros_like(fqs[i]),where=fqs_sd!=0) return fqs def on_epoch_end(self): if(self.shuffleExamples): np.random.shuffle(self.indices) def __len__(self): return int(np.floor(self.infoDir["numReps"]/self.batch_size)) def __getitem__(self, idx): indices = self.indices[idx*self.batch_size:(idx+1)*self.batch_size] X, y = self.__data_generation(indices) return X,y def shuffleIndividuals(self,x): t = np.arange(x.shape[1]) np.random.shuffle(t) return x[:,t] def __data_generation(self, batchTreeIndices): haps = [] pos = [] for treeIndex in batchTreeIndices: Hfilepath = os.path.join(self.treesDirectory,str(treeIndex) + "_haps.npy") Pfilepath = os.path.join(self.treesDirectory,str(treeIndex) + "_pos.npy") H = np.load(Hfilepath) P = np.load(Pfilepath) haps.append(H) pos.append(P) respectiveNormalizedTargets = [[t] for t in self.normalizedTargets[batchTreeIndices]] targets = np.array(respectiveNormalizedTargets) if(self.realLinePos): for p in range(len(pos)): pos[p] = pos[p] / self.infoDir["ChromosomeLength"] if(self.sortInds): for i in range(len(haps)): haps[i] = np.transpose(self.sort_min_diff(np.transpose(haps[i]))) if(self.shuffleInds): for i in range(len(haps)): haps[i] = self.shuffleIndividuals(haps[i]) if self.seqD: # simulate pool-sequencing if(self.maxLen != None): # convert the haps to allele frequecies and then pad haps,pos = self.padAlleleFqs(haps,pos, maxSNPs=self.maxLen, frameWidth=self.frameWidth, center=self.center) haps=np.where(haps == -1.0, self.posPadVal,haps) pos=np.where(pos == -1.0, self.posPadVal,pos) z = np.stack((haps,pos), axis=-1) return z, targets else: if(self.maxLen != None): # pad haps,pos = self.pad_HapsPos(haps,pos, maxSNPs=self.maxLen, frameWidth=self.frameWidth, center=self.center) pos=np.where(pos == -1.0, self.posPadVal,pos) haps=np.where(haps < 1.0, self.ancVal, haps) haps=np.where(haps > 1.0, self.padVal, haps) haps=np.where(haps == 1.0, self.derVal, haps) return [haps,pos], targets class VCFBatchGenerator(tf.keras.utils.Sequence): """Basically same as SequenceBatchGenerator Class except for VCF files""" def __init__(self, INFO, CHROM, winLen, numWins, IDs, GT, POS, batchSize=64, maxLen=None, frameWidth=0, center=False, sortInds=False, ancVal = -1, padVal = -1, derVal = 1, realLinePos = True, posPadVal = 0, phase=None, seed=None ): self.INFO=INFO self.CHROM=CHROM self.winLen=winLen self.numWins=numWins self.indices=np.arange(self.numWins) self.IDs=IDs self.GT=GT self.POS=POS self.batch_size = batchSize self.maxLen = maxLen self.frameWidth = frameWidth self.center = center self.sortInds=sortInds self.ancVal = ancVal self.padVal = padVal self.derVal = derVal self.realLinePos = realLinePos self.posPadVal = posPadVal self.phase=phase self.seed=seed if self.seed: os.environ['PYTHONHASHSEED']=str(self.seed) random.seed(self.seed) np.random.seed(self.seed) def pad_HapsPosVCF(self,haplotypes,positions,maxSNPs=None,frameWidth=0,center=False): ''' pads the haplotype and positions tensors to be uniform with the largest tensor ''' haps = haplotypes pos = positions nSNPs=[] #Normalize the shape of all haplotype vectors with padding for i in range(len(haps)): numSNPs = haps[i].shape[0] nSNPs.append(numSNPs) paddingLen = maxSNPs - numSNPs if(center): prior = paddingLen // 2 post = paddingLen - prior haps[i] = np.pad(haps[i],((prior,post),(0,0)),"constant",constant_values=2.0) pos[i] = np.pad(pos[i],(prior,post),"constant",constant_values=-1.0) else: haps[i] = np.pad(haps[i],((0,paddingLen),(0,0)),"constant",constant_values=2.0) pos[i] = np.pad(pos[i],(0,paddingLen),"constant",constant_values=-1.0) haps = np.array(haps,dtype='float32') pos = np.array(pos,dtype='float32') if(frameWidth): fw = frameWidth haps = np.pad(haps,((0,0),(fw,fw),(fw,fw)),"constant",constant_values=2.0) pos = np.pad(pos,((0,0),(fw,fw)),"constant",constant_values=-1.0) return haps,pos,nSNPs def __getitem__(self, idx): indices = self.indices[idx*self.batch_size:(idx+1)*self.batch_size] X, nSNPs = self.__data_generation(indices) return X, self.CHROM, self.winLen, self.INFO, nSNPs def __data_generation(self, indices): if self.seed: os.environ['PYTHONHASHSEED']=str(self.seed) random.seed(self.seed) np.random.seed(self.seed) #def __getitem__(self, idx): genos=self.GT GT=self.GT.to_haplotypes() diploid_check=[] for n in range(1,len(genos[0]),2): GTB=GT[:,n:n+1] if np.unique(GTB).shape[0] == 1 and np.unique(GTB)[0] == -1: diploid_check.append(0) else: diploid_check.append(1) break if 1 in diploid_check: GT=np.array(GT) else: GT=GT[:,::2] #Select only the first of the genotypes GT = np.where(GT == -1, 2, GT) # Code missing data as 2, these will ultimately end up being transformed to the pad value if not self.phase: np.random.shuffle(np.transpose(GT)) haps,pos=[],[] for i in indices: haps.append(GT[self.IDs[i][0]:self.IDs[i][1]]) pos.append(self.POS[self.IDs[i][0]:self.IDs[i][1]]) if(self.realLinePos): for i in range(len(pos)): pos[i] = (pos[i]-(self.winLen*indices[i])) / self.winLen if(self.sortInds): for i in range(len(haps)): haps[i] = np.transpose(sort_min_diff(np.transpose(haps[i]))) if(self.maxLen != None): haps,pos,nSNPs = self.pad_HapsPosVCF(haps,pos, maxSNPs=self.maxLen, frameWidth=self.frameWidth, center=self.center) pos=np.where(pos == -1.0, self.posPadVal,pos) haps=np.where(haps < 1.0, self.ancVal, haps) haps=np.where(haps > 1.0, self.padVal, haps) haps=np.where(haps == 1.0, self.derVal, haps) return [haps,pos], nSNPs class POOLBatchGenerator(tf.keras.utils.Sequence): """Basically same as SequenceBatchGenerator Class except for POOL files""" def __init__(self, INFO, CHROM, winLen, numWins, IDs, GT, POS, batchSize=64, maxLen=None, frameWidth=0, center=False, sortInds=False, ancVal = -1, padVal = -1, derVal = 1, realLinePos = True, posPadVal = 0, normType = 'zscore', seed = None ): self.INFO=INFO self.normType = normType self.CHROM=CHROM self.winLen=winLen self.numWins=numWins self.indices=np.arange(self.numWins) self.IDs=IDs self.GT=GT self.POS=POS self.batch_size = batchSize self.maxLen = maxLen self.frameWidth = frameWidth self.center = center self.sortInds=sortInds self.ancVal = ancVal self.padVal = padVal self.derVal = derVal self.realLinePos = realLinePos self.posPadVal = posPadVal self.seed = seed if self.seed: os.environ['PYTHONHASHSEED']=str(self.seed) random.seed(self.seed) np.random.seed(self.seed) def padFqs(self,haplotypes,positions,maxSNPs=None,frameWidth=0,center=False): ''' normalize, and pad the haplotype and positions tensors to be uniform with the largest tensor ''' fqs = haplotypes pos = positions # Normalize fqs = self.normalizeAlleleFqs(fqs) nSNPs=[] # Pad for i in range(len(fqs)): numSNPs = fqs[i].shape[0] nSNPs.append(numSNPs) paddingLen = maxSNPs - numSNPs if(center): prior = paddingLen // 2 post = paddingLen - prior fqs[i] = np.pad(fqs[i],(prior,post),"constant",constant_values=-1.0) pos[i] = np.pad(pos[i],(prior,post),"constant",constant_values=-1.0) else: if(paddingLen < 0): fqs[i] = np.pad(fqs[i],(0,0),"constant",constant_values=-1.0)[:paddingLen] pos[i] = np.pad(pos[i],(0,0),"constant",constant_values=-1.0)[:paddingLen] else: fqs[i] = np.pad(fqs[i],(0,paddingLen),"constant",constant_values=-1.0) pos[i] = np.pad(pos[i],(0,paddingLen),"constant",constant_values=-1.0) fqs = np.array(fqs,dtype='float32') pos = np.array(pos,dtype='float32') if(frameWidth): fw = frameWidth fqs = np.pad(fqs,((0,0),(fw,fw)),"constant",constant_values=-1.0) pos = np.pad(pos,((0,0),(fw,fw)),"constant",constant_values=-1.0) return fqs,pos,nSNPs def normalizeAlleleFqs(self, fqs): ''' normalize the allele frequencies for the batch ''' norm = self.normType if(norm == 'zscore'): allVals = np.concatenate([a.flatten() for a in fqs]) fqs_mean = np.mean(allVals) fqs_sd = np.std(allVals) for i in range(len(fqs)): fqs[i] = np.subtract(fqs[i],fqs_mean) fqs[i] = np.divide(fqs[i],fqs_sd,out=np.zeros_like(fqs[i]),where=fqs_sd!=0) elif(norm == 'divstd'): allVals = np.concatenate([a.flatten() for a in fqs]) fqs_sd = np.std(allVals) for i in range(len(fqs)): fqs[i] = np.divide(fqs[i],fqs_sd,out=np.zeros_like(fqs[i]),where=fqs_sd!=0) return fqs def __getitem__(self, idx): indices = self.indices[idx*self.batch_size:(idx+1)*self.batch_size] X, nSNPs = self.__data_generation(indices) return X, self.CHROM, self.winLen, self.INFO, nSNPs def __data_generation(self, indices): if self.seed: os.environ['PYTHONHASHSEED']=str(self.seed) random.seed(self.seed) np.random.seed(self.seed) GT=self.GT haps,pos=[],[] for i in indices: haps.append(GT[self.IDs[i][0]:self.IDs[i][1]]) pos.append(self.POS[self.IDs[i][0]:self.IDs[i][1]]) if(self.realLinePos): for i in range(len(pos)): pos[i] = (pos[i]-(self.winLen*indices[i])) / self.winLen if(self.sortInds): for i in range(len(haps)): haps[i] = np.transpose(sort_min_diff(np.transpose(haps[i]))) # pad the allele freqs and positions if(self.maxLen != None): haps,pos,nSNPs = self.padFqs(haps,pos, maxSNPs=self.maxLen, frameWidth=self.frameWidth, center=self.center) haps=np.where(haps == -1.0, self.posPadVal,haps) pos=np.where(pos == -1.0, self.posPadVal,pos) np.set_printoptions(threshold=sys.maxsize) z = np.stack((haps,pos), axis=-1) return z, nSNPs
StarcoderdataPython
5051840
# -*- coding: utf-8 -*- """Tests for Coastal Blue Carbon Functions.""" import unittest import os import shutil import csv import logging import tempfile import functools import copy import pprint import numpy from osgeo import gdal import pygeoprocessing.testing as pygeotest from natcap.invest import utils REGRESSION_DATA = os.path.join( os.path.dirname(__file__), '..', 'data', 'invest-test-data', 'coastal_blue_carbon') LOGGER = logging.getLogger(__name__) lulc_lookup_list = \ [['lulc-class', 'code', 'is_coastal_blue_carbon_habitat'], ['n', '0', 'False'], ['x', '1', 'True'], ['y', '2', 'True'], ['z', '3', 'True']] lulc_lookup_list_unreadable = \ [['lulc-class', 'code', 'is_coastal_blue_carbon_habitat'], ['n', '0', ''], ['x', '1', 'True'], ['y', '2', 'True'], ['z', '3', 'True']] lulc_lookup_list_no_ones = \ [['lulc-class', 'code', 'is_coastal_blue_carbon_habitat'], ['n', '0', 'False'], ['y', '2', 'True'], ['z', '3', 'True']] lulc_transition_matrix_list = \ [['lulc-class', 'n', 'x', 'y', 'z'], ['n', 'NCC', 'accum', 'accum', 'accum'], ['x', 'med-impact-disturb', 'accum', 'accum', 'accum'], ['y', 'med-impact-disturb', 'accum', 'accum', 'accum'], ['z', 'med-impact-disturb', 'accum', 'accum', 'accum']] carbon_pool_initial_list = \ [['code', 'lulc-class', 'biomass', 'soil', 'litter'], ['0', 'n', '0', '0', '0'], ['1', 'x', '5', '5', '0.5'], ['2', 'y', '10', '10', '0.5'], ['3', 'z', '20', '20', '0.5']] carbon_pool_transient_list = \ [['code', 'lulc-class', 'biomass-half-life', 'biomass-med-impact-disturb', 'biomass-yearly-accumulation', 'soil-half-life', 'soil-med-impact-disturb', 'soil-yearly-accumulation'], ['0', 'n', '0', '0', '0', '0', '0', '0'], ['1', 'x', '1', '0.5', '1', '1', '0.5', '1.1'], ['2', 'y', '1', '0.5', '2', '1', '0.5', '2.1'], ['3', 'z', '1', '0.5', '1', '1', '0.5', '1.1']] price_table_list = \ [['year', 'price'], [2000, 20]] NODATA_INT = -9999 def _read_array(raster_path): """"Read raster as array.""" ds = gdal.Open(raster_path) band = ds.GetRasterBand(1) a = band.ReadAsArray() ds = None return a def _create_table(uri, rows_list): """Create csv file from list of lists.""" with open(uri, 'wb') as f: writer = csv.writer(f) writer.writerows(rows_list) return uri def _create_workspace(): """Create workspace directory.""" return tempfile.mkdtemp() def _get_args(workspace, num_transitions=2, valuation=True): """Create and return arguments for CBC main model. Parameters: workspace(string): A path to a folder on disk. Generated inputs will be saved to this directory. num_transitions=2 (int): The number of transitions to synthesize. valuation=True (bool): Whether to include parameters related to valuation in the args dict. Returns: args (dict): main model arguments. """ band_matrices = [numpy.ones((2, 2))] band_matrices_two = [numpy.ones((2, 2)) * 2] band_matrices_with_nodata = [numpy.ones((2, 2))] band_matrices_with_nodata[0][0][0] = NODATA_INT srs = pygeotest.sampledata.SRS_WILLAMETTE lulc_lookup_uri = _create_table( os.path.join(workspace, 'lulc_lookup.csv'), lulc_lookup_list) lulc_transition_matrix_uri = _create_table( os.path.join(workspace, 'lulc_transition_matrix.csv'), lulc_transition_matrix_list) carbon_pool_initial_uri = _create_table( os.path.join(workspace, 'carbon_pool_initial.csv'), carbon_pool_initial_list) carbon_pool_transient_uri = _create_table( os.path.join(workspace, 'carbon_pool_transient.csv'), carbon_pool_transient_list) raster_0_uri = pygeotest.create_raster_on_disk( band_matrices, srs.origin, srs.projection, NODATA_INT, srs.pixel_size(100), datatype=gdal.GDT_Int32, filename=os.path.join(workspace, 'raster_0.tif')) raster_1_uri = pygeotest.create_raster_on_disk( band_matrices_with_nodata, srs.origin, srs.projection, NODATA_INT, srs.pixel_size(100), datatype=gdal.GDT_Int32, filename=os.path.join(workspace, 'raster_1.tif')) raster_2_uri = pygeotest.create_raster_on_disk( band_matrices_two, srs.origin, srs.projection, NODATA_INT, srs.pixel_size(100), datatype=gdal.GDT_Int32, filename=os.path.join(workspace, 'raster_2.tif')) possible_transitions = [raster_1_uri, raster_2_uri] possible_transition_years = [2000, 2005] args = { 'workspace_dir': os.path.join(workspace, 'workspace'), 'results_suffix': 'test', 'lulc_lookup_uri': lulc_lookup_uri, 'lulc_transition_matrix_uri': lulc_transition_matrix_uri, 'lulc_baseline_map_uri': raster_0_uri, 'lulc_baseline_year': 1995, 'lulc_transition_maps_list': possible_transitions[:num_transitions+1], 'lulc_transition_years_list': possible_transition_years[:num_transitions+1], 'analysis_year': 2010, 'carbon_pool_initial_uri': carbon_pool_initial_uri, 'carbon_pool_transient_uri': carbon_pool_transient_uri, 'do_economic_analysis': False, } utils.make_directories([args['workspace_dir']]) if valuation: args.update({ 'do_economic_analysis': True, 'do_price_table': False, 'price': 2., 'inflation_rate': 5., 'price_table_uri': None, 'discount_rate': 2. }) return args def _get_preprocessor_args(args_choice, workspace): """Create and return arguments for preprocessor model. Args: args_choice (int): which arguments to return workspace (string): The path to a workspace directory. Returns: args (dict): preprocessor arguments """ band_matrices_zeros = [numpy.zeros((2, 2))] band_matrices_ones = [numpy.ones((2, 3))] # tests alignment band_matrices_nodata = [numpy.ones((2, 2)) * NODATA_INT] srs = pygeotest.sampledata.SRS_WILLAMETTE lulc_lookup_uri = _create_table( os.path.join(workspace, 'lulc_lookup.csv'), lulc_lookup_list) raster_0_uri = pygeotest.create_raster_on_disk( band_matrices_ones, srs.origin, srs.projection, NODATA_INT, srs.pixel_size(100), datatype=gdal.GDT_Int32, filename=os.path.join(workspace, 'raster_0.tif')) raster_1_uri = pygeotest.create_raster_on_disk( band_matrices_ones, srs.origin, srs.projection, NODATA_INT, srs.pixel_size(100), datatype=gdal.GDT_Int32, filename=os.path.join(workspace, 'raster_1.tif')) raster_2_uri = pygeotest.create_raster_on_disk( band_matrices_ones, srs.origin, srs.projection, NODATA_INT, srs.pixel_size(100), datatype=gdal.GDT_Int32, filename=os.path.join(workspace, 'raster_2.tif')) raster_3_uri = pygeotest.create_raster_on_disk( band_matrices_zeros, srs.origin, srs.projection, NODATA_INT, srs.pixel_size(100), datatype=gdal.GDT_Int32, filename=os.path.join(workspace, 'raster_3.tif')) raster_4_uri = pygeotest.create_raster_on_disk( band_matrices_zeros, srs.origin, srs.projection, -1, srs.pixel_size(100), datatype=gdal.GDT_Int32, filename=os.path.join(workspace, 'raster_4.tif')) raster_nodata_uri = pygeotest.create_raster_on_disk( band_matrices_nodata, srs.origin, srs.projection, NODATA_INT, srs.pixel_size(100), datatype=gdal.GDT_Int32, filename=os.path.join(workspace, 'raster_4.tif')) args = { 'workspace_dir': os.path.join(workspace, 'workspace'), 'results_suffix': 'test', 'lulc_lookup_uri': lulc_lookup_uri, 'lulc_snapshot_list': [raster_0_uri, raster_1_uri, raster_2_uri] } args2 = { 'workspace_dir': os.path.join(workspace, 'workspace'), 'results_suffix': 'test', 'lulc_lookup_uri': lulc_lookup_uri, 'lulc_snapshot_list': [raster_0_uri, raster_1_uri, raster_3_uri] } args3 = { 'workspace_dir': os.path.join(workspace, 'workspace'), 'results_suffix': 'test', 'lulc_lookup_uri': lulc_lookup_uri, 'lulc_snapshot_list': [raster_0_uri, raster_nodata_uri, raster_3_uri] } args4 = { 'workspace_dir': os.path.join(workspace, 'workspace'), 'results_suffix': 'test', 'lulc_lookup_uri': lulc_lookup_uri, 'lulc_snapshot_list': [raster_0_uri, raster_nodata_uri, raster_4_uri] } if args_choice == 1: return args elif args_choice == 2: return args2 elif args_choice == 3: return args3 else: return args4 class TestPreprocessor(unittest.TestCase): """Test Coastal Blue Carbon preprocessor library functions.""" def setUp(self): """Create a temp directory for the workspace.""" self.workspace_dir = tempfile.mkdtemp() def tearDown(self): """Remove workspace.""" shutil.rmtree(self.workspace_dir) def test_create_carbon_pool_transient_table_template(self): """Coastal Blue Carbon: Test creation of transient table template.""" from natcap.invest.coastal_blue_carbon import preprocessor args = _get_preprocessor_args(1, self.workspace_dir) filepath = os.path.join(self.workspace_dir, 'transient_temp.csv') code_to_lulc_dict = {1: 'one', 2: 'two', 3: 'three'} preprocessor._create_carbon_pool_transient_table_template( filepath, code_to_lulc_dict) transient_dict = utils.build_lookup_from_csv(filepath, 'code') # demonstrate that output table contains all input land cover classes for i in [1, 2, 3]: self.assertTrue(i in transient_dict.keys()) def test_preprocessor_ones(self): """Coastal Blue Carbon: Test entire run of preprocessor (ones). All rasters contain ones. """ from natcap.invest.coastal_blue_carbon import preprocessor args = _get_preprocessor_args(1, self.workspace_dir) preprocessor.execute(args) trans_csv = os.path.join( args['workspace_dir'], 'outputs_preprocessor', 'transitions_test.csv') with open(trans_csv, 'r') as f: lines = f.readlines() # just a regression test. this tests that an output file was # successfully created, and demonstrates that one land class transition # does not occur and the other is set in the right direction. self.assertTrue(lines[2].startswith('x,,accum')) def test_preprocessor_zeros(self): """Coastal Blue Carbon: Test entire run of preprocessor (zeroes). First two rasters contain ones, last contains zeros. """ from natcap.invest.coastal_blue_carbon import preprocessor args2 = _get_preprocessor_args(2, self.workspace_dir) preprocessor.execute(args2) trans_csv = os.path.join( args2['workspace_dir'], 'outputs_preprocessor', 'transitions_test.csv') with open(trans_csv, 'r') as f: lines = f.readlines() # just a regression test. this tests that an output file was # successfully created, and that two particular land class transitions # occur and are set in the right directions. self.assertTrue(lines[2][:].startswith('x,disturb,accum')) def test_preprocessor_nodata(self): """Coastal Blue Carbon: Test run of preprocessor (various values). First raster contains ones, second nodata, third zeros. """ from natcap.invest.coastal_blue_carbon import preprocessor args = _get_preprocessor_args(3, self.workspace_dir) preprocessor.execute(args) trans_csv = os.path.join( args['workspace_dir'], 'outputs_preprocessor', 'transitions_test.csv') with open(trans_csv, 'r') as f: lines = f.readlines() # just a regression test. this tests that an output file was # successfully created, and that two particular land class transitions # occur and are set in the right directions. self.assertTrue(lines[2][:].startswith('x,,')) def test_preprocessor_user_defined_nodata(self): """Coastal Blue Carbon: Test preprocessor with user-defined nodata. First raster contains ones, second nodata, third zeros. """ from natcap.invest.coastal_blue_carbon import preprocessor args = _get_preprocessor_args(4, self.workspace_dir) preprocessor.execute(args) trans_csv = os.path.join( self.workspace_dir, 'workspace', 'outputs_preprocessor', 'transitions_test.csv') with open(trans_csv, 'r') as f: lines = f.readlines() # just a regression test. this tests that an output file was # successfully created, and that two particular land class transitions # occur and are set in the right directions. self.assertTrue(lines[2][:].startswith('x,,')) def test_lookup_parsing_exception(self): """Coastal Blue Carbon: Test lookup table parsing exception.""" from natcap.invest.coastal_blue_carbon import preprocessor args = _get_preprocessor_args(1, self.workspace_dir) _create_table(args['lulc_lookup_uri'], lulc_lookup_list_unreadable) with self.assertRaises(ValueError): preprocessor.execute(args) def test_raster_validation(self): """Coastal Blue Carbon: Test raster validation.""" from natcap.invest.coastal_blue_carbon import preprocessor args = _get_preprocessor_args(1, self.workspace_dir) OTHER_NODATA = -1 srs = pygeotest.sampledata.SRS_WILLAMETTE band_matrices_with_nodata = [numpy.ones((2, 2)) * OTHER_NODATA] raster_wrong_nodata = pygeotest.create_raster_on_disk( band_matrices_with_nodata, srs.origin, srs.projection, OTHER_NODATA, srs.pixel_size(100), datatype=gdal.GDT_Int32, filename=os.path.join( self.workspace_dir, 'raster_wrong_nodata.tif')) args['lulc_snapshot_list'][0] = raster_wrong_nodata with self.assertRaises(ValueError): preprocessor.execute(args) def test_raster_values_not_in_lookup_table(self): """Coastal Blue Carbon: Test raster values not in lookup table.""" from natcap.invest.coastal_blue_carbon import preprocessor args = _get_preprocessor_args(1, self.workspace_dir) _create_table(args['lulc_lookup_uri'], lulc_lookup_list_no_ones) with self.assertRaises(ValueError): preprocessor.execute(args) def test_mark_transition_type(self): """Coastal Blue Carbon: Test mark_transition_type.""" from natcap.invest.coastal_blue_carbon import preprocessor args = _get_preprocessor_args(1, self.workspace_dir) band_matrices_zero = [numpy.zeros((2, 2))] srs = pygeotest.sampledata.SRS_WILLAMETTE raster_zeros = pygeotest.create_raster_on_disk( band_matrices_zero, srs.origin, srs.projection, NODATA_INT, srs.pixel_size(100), datatype=gdal.GDT_Int32, filename=os.path.join( self.workspace_dir, 'raster_1.tif')) args['lulc_snapshot_list'][0] = raster_zeros preprocessor.execute(args) trans_csv = os.path.join( self.workspace_dir, 'workspace', 'outputs_preprocessor', 'transitions_test.csv') with open(trans_csv, 'r') as f: lines = f.readlines() self.assertTrue(lines[1][:].startswith('n,NCC,accum')) def test_mark_transition_type_nodata_check(self): """Coastal Blue Carbon: Test mark_transition_type with nodata check.""" from natcap.invest.coastal_blue_carbon import preprocessor args = _get_preprocessor_args(1, self.workspace_dir) band_matrices_zero = [numpy.zeros((2, 2))] srs = pygeotest.sampledata.SRS_WILLAMETTE raster_zeros = pygeotest.create_raster_on_disk( band_matrices_zero, srs.origin, srs.projection, NODATA_INT, srs.pixel_size(100), datatype=gdal.GDT_Int32, filename=os.path.join( self.workspace_dir, 'raster_1.tif')) args['lulc_snapshot_list'][0] = raster_zeros preprocessor.execute(args) def test_binary(self): """Coastal Blue Carbon: Test preprocessor run against InVEST-Data.""" from natcap.invest.coastal_blue_carbon import preprocessor raster_0_uri = os.path.join( REGRESSION_DATA, 'inputs/GBJC_2010_mean_Resample.tif') raster_1_uri = os.path.join( REGRESSION_DATA, 'inputs/GBJC_2030_mean_Resample.tif') raster_2_uri = os.path.join( REGRESSION_DATA, 'inputs/GBJC_2050_mean_Resample.tif') args = { 'workspace_dir': _create_workspace(), 'results_suffix': '150225', 'lulc_lookup_uri': os.path.join( REGRESSION_DATA, 'inputs', 'lulc_lookup.csv'), 'lulc_snapshot_list': [raster_0_uri, raster_1_uri, raster_2_uri] } preprocessor.execute(args) # walk through all files in the workspace and assert that outputs have # the file suffix. non_suffixed_files = [] for root_dir, dirnames, filenames in os.walk(args['workspace_dir']): for filename in filenames: if not filename.lower().endswith('.txt'): # ignore logfile basename, extension = os.path.splitext(filename) if not basename.endswith('_150225'): path_rel_to_workspace = os.path.relpath( os.path.join(root_dir, filename), self.args['workspace_dir']) non_suffixed_files.append(path_rel_to_workspace) if non_suffixed_files: self.fail('%s files are missing suffixes: %s' % (len(non_suffixed_files), pprint.pformat(non_suffixed_files))) class TestIO(unittest.TestCase): """Test Coastal Blue Carbon io library functions.""" def setUp(self): """Create arguments.""" self.workspace_dir = tempfile.mkdtemp() self.args = _get_args(self.workspace_dir) def tearDown(self): shutil.rmtree(self.workspace_dir) def test_get_inputs(self): """Coastal Blue Carbon: Test get_inputs function in IO module.""" from natcap.invest.coastal_blue_carbon \ import coastal_blue_carbon as cbc d = cbc.get_inputs(self.args) # check several items in the data dictionary to check that the inputs # are properly fetched. self.assertEqual(d['lulc_to_Hb'][0], 0.0) self.assertEqual(d['lulc_to_Hb'][1], 1.0) self.assertEqual(len(d['price_t']), 16) self.assertEqual(len(d['snapshot_years']), 4) self.assertEqual(len(d['transition_years']), 2) def test_get_price_table_exception(self): """Coastal Blue Carbon: Test price table exception.""" from natcap.invest.coastal_blue_carbon \ import coastal_blue_carbon as cbc self.args['price_table_uri'] = os.path.join( self.args['workspace_dir'], 'price.csv') self.args['do_price_table'] = True self.args['price_table_uri'] = _create_table( self.args['price_table_uri'], price_table_list) with self.assertRaises(KeyError): cbc.get_inputs(self.args) def test_chronological_order_exception(self): """Coastal Blue Carbon: Test exception checking chronological order.""" from natcap.invest.coastal_blue_carbon \ import coastal_blue_carbon as cbc self.args['lulc_transition_years_list'] = [2005, 2000] with self.assertRaises(ValueError): cbc.get_inputs(self.args) def test_chronological_order_exception_analysis_year(self): """Coastal Blue Carbon: Test exception checking analysis year order.""" from natcap.invest.coastal_blue_carbon \ import coastal_blue_carbon as cbc self.args['analysis_year'] = 2000 with self.assertRaises(ValueError): cbc.get_inputs(self.args) def test_create_transient_dict(self): """Coastal Blue Carbon: Read transient table.""" from natcap.invest.coastal_blue_carbon \ import coastal_blue_carbon as cbc biomass_transient_dict, soil_transient_dict = \ cbc._create_transient_dict(self.args['carbon_pool_transient_uri']) # check that function can properly parse table of transient carbon pool # values. self.assertTrue(1 in biomass_transient_dict.keys()) self.assertTrue(1 in soil_transient_dict.keys()) def test_get_lulc_trans_to_D_dicts(self): """Coastal Blue Carbon: Read transient table (disturbed).""" from natcap.invest.coastal_blue_carbon \ import coastal_blue_carbon as cbc biomass_transient_dict, soil_transient_dict = \ cbc._create_transient_dict(self.args['carbon_pool_transient_uri']) lulc_transition_uri = self.args['lulc_transition_matrix_uri'] lulc_lookup_uri = self.args['lulc_lookup_uri'] lulc_trans_to_Db, lulc_trans_to_Ds = cbc._get_lulc_trans_to_D_dicts( lulc_transition_uri, lulc_lookup_uri, biomass_transient_dict, soil_transient_dict) # check that function can properly parse table of transient carbon pool # values. self.assertTrue((3.0, 0.0) in lulc_trans_to_Db.keys()) self.assertTrue((3.0, 0.0) in lulc_trans_to_Ds.keys()) class TestModel(unittest.TestCase): """Test Coastal Blue Carbon main model functions.""" def setUp(self): """Create arguments.""" self.workspace_dir = tempfile.mkdtemp() self.args = _get_args(workspace=self.workspace_dir) def tearDown(self): """Remove workspace.""" shutil.rmtree(self.workspace_dir) def test_model_run(self): """Coastal Blue Carbon: Test run function in main model.""" from natcap.invest.coastal_blue_carbon \ import coastal_blue_carbon as cbc self.args['suffix'] = 'xyz' self.args['lulc_baseline_year'] = 2000 self.args['lulc_transition_years_list'] = [2005, 2010] self.args['analysis_year'] = None cbc.execute(self.args) netseq_output_raster = os.path.join( self.args['workspace_dir'], 'outputs_core/total_net_carbon_sequestration_test.tif') npv_output_raster = os.path.join( self.args['workspace_dir'], 'outputs_core/net_present_value_test.tif') netseq_array = _read_array(netseq_output_raster) npv_array = _read_array(npv_output_raster) # (Explanation for why netseq is 31.) # LULC Code: Baseline: 1 --> Year 2000: 1, Year 2005: 2, Year 2010: 2 # Initial Stock from Baseline: 5+5=10 # Sequest: # 2000-->2005: (1+1.1)*5=10.5, 2005-->2010: (2+2.1)*5=20.5 # Total: 10.5 + 20.5 = 31. netseq_test = numpy.array([[cbc.NODATA_FLOAT, 31.], [31., 31.]]) npv_test = numpy.array( [[cbc.NODATA_FLOAT, 60.27801514], [60.27801514, 60.27801514]]) # just a simple regression test. this demonstrates that a NaN value # will properly propagate across the model. the npv raster was chosen # because the values are determined by multiple inputs, and any changes # in those inputs would propagate to this raster. numpy.testing.assert_array_almost_equal( netseq_array, netseq_test, decimal=4) numpy.testing.assert_array_almost_equal( npv_array, npv_test, decimal=4) def test_model_run_2(self): """Coastal Blue Carbon: Test CBC without analysis year.""" from natcap.invest.coastal_blue_carbon \ import coastal_blue_carbon as cbc self.args['analysis_year'] = None self.args['lulc_baseline_year'] = 2000 self.args['lulc_transition_maps_list'] = [self.args['lulc_transition_maps_list'][0]] self.args['lulc_transition_years_list'] = [2005] cbc.execute(self.args) netseq_output_raster = os.path.join( self.args['workspace_dir'], 'outputs_core/total_net_carbon_sequestration_test.tif') netseq_array = _read_array(netseq_output_raster) # (Explanation for why netseq is 10.5.) # LULC Code: Baseline: 1 --> Year 2000: 1, Year 2005: 2 # Initial Stock from Baseline: 5+5=10 # Sequest: # 2000-->2005: (1+1.1)*5=10.5 netseq_test = numpy.array([[cbc.NODATA_FLOAT, 10.5], [10.5, 10.5]]) # just a simple regression test. this demonstrates that a NaN value # will properly propagate across the model. the npv raster was chosen # because the values are determined by multiple inputs, and any changes # in those inputs would propagate to this raster. numpy.testing.assert_array_almost_equal( netseq_array, netseq_test, decimal=4) def test_model_no_valuation(self): """Coastal Blue Carbon: Test main model without valuation.""" from natcap.invest.coastal_blue_carbon \ import coastal_blue_carbon as cbc self.args = _get_args(valuation=False, workspace=self.workspace_dir) self.args['lulc_baseline_year'] = 2000 self.args['lulc_transition_years_list'] = [2005, 2010] self.args['analysis_year'] = None cbc.execute(self.args) netseq_output_raster = os.path.join( self.args['workspace_dir'], 'outputs_core/total_net_carbon_sequestration_test.tif') netseq_array = _read_array(netseq_output_raster) # (Explanation for why netseq is 31.) # LULC Code: Baseline: 1 --> Year 2000: 1, Year 2005: 2, Year 2010: 2 # Initial Stock from Baseline: 5+5=10 # Sequest: # 2000-->2005: (1+1.1)*5=10.5, 2005-->2010: (2+2.1)*5=20.5 # Total: 10.5 + 20.5 = 31. netseq_test = numpy.array([[cbc.NODATA_FLOAT, 31.], [31., 31.]]) # just a simple regression test. this demonstrates that a NaN value # will properly propagate across the model. the npv raster was chosen # because the values are determined by multiple inputs, and any changes # in those inputs would propagate to this raster. numpy.testing.assert_array_almost_equal( netseq_array, netseq_test, decimal=4) def test_binary(self): """Coastal Blue Carbon: Test CBC model against InVEST-Data.""" from natcap.invest.coastal_blue_carbon \ import coastal_blue_carbon as cbc args = { 'workspace_dir': self.args['workspace_dir'], 'carbon_pool_initial_uri': os.path.join( REGRESSION_DATA, 'outputs_preprocessor/carbon_pool_initial_sample.csv'), 'carbon_pool_transient_uri': os.path.join( REGRESSION_DATA, 'outputs_preprocessor/carbon_pool_transient_sample.csv'), 'discount_rate': 6.0, 'do_economic_analysis': True, 'do_price_table': True, 'inflation_rate': 3.0, 'lulc_lookup_uri': os.path.join( REGRESSION_DATA, 'inputs', 'lulc_lookup.csv'), 'lulc_baseline_map_uri': os.path.join( REGRESSION_DATA, 'inputs/GBJC_2010_mean_Resample.tif'), 'lulc_baseline_year': 2010, 'lulc_transition_maps_list': [ os.path.join( REGRESSION_DATA, 'inputs/GBJC_2030_mean_Resample.tif'), os.path.join( REGRESSION_DATA, 'inputs/GBJC_2050_mean_Resample.tif')], 'lulc_transition_years_list': [2030, 2050], 'price_table_uri': os.path.join( REGRESSION_DATA, 'inputs/Price_table_SCC3.csv'), 'lulc_transition_matrix_uri': os.path.join( REGRESSION_DATA, 'outputs_preprocessor/transitions_sample.csv'), 'price': 10.0, 'results_suffix': '150225' } cbc.execute(args) npv_raster = os.path.join( os.path.join( args['workspace_dir'], 'outputs_core/net_present_value_150225.tif')) npv_array = _read_array(npv_raster) # this is just a regression test, but it will capture all values # in the net present value raster. the npv raster was chosen because # the values are determined by multiple inputs, and any changes in # those inputs would propagate to this raster. u = numpy.unique(npv_array) u.sort() a = numpy.array([-76992.05, -40101.57, -34930., -34821.32, 0., 108.68, 6975.94, 7201.22, 7384.99], dtype=numpy.float32) a.sort() numpy.testing.assert_array_almost_equal(u, a, decimal=2) # walk through all files in the workspace and assert that outputs have # the file suffix. non_suffixed_files = [] for root_dir, dirnames, filenames in os.walk(self.args['workspace_dir']): for filename in filenames: if not filename.lower().endswith('.txt'): # ignore logfile basename, extension = os.path.splitext(filename) if not basename.endswith('_150225'): path_rel_to_workspace = os.path.relpath( os.path.join(root_dir, filename), self.args['workspace_dir']) non_suffixed_files.append(path_rel_to_workspace) if non_suffixed_files: self.fail('%s files are missing suffixes: %s' % (len(non_suffixed_files), pprint.pformat(non_suffixed_files))) def test_1_transition_passes(self): """Coastal Blue Carbon: Test model runs with only 1 transition. This is a regression test addressing issue #3572 (see: https://bitbucket.org/natcap/invest/issues/3572) """ from natcap.invest.coastal_blue_carbon \ import coastal_blue_carbon as cbc self.args['lulc_transition_maps_list'] = \ [self.args['lulc_transition_maps_list'][0]] self.args['lulc_transition_years_list'] = \ [self.args['lulc_transition_years_list'][0]] self.args['analysis_year'] = None try: cbc.execute(self.args) except AttributeError as error: LOGGER.exception("Here's the traceback encountered: %s" % error) self.fail('CBC should not crash when only 1 transition provided') class CBCRefactorTest(unittest.TestCase): def setUp(self): self.workspace_dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.workspace_dir) @staticmethod def create_args(workspace, transition_tuples=None, analysis_year=None): """Create a default args dict with the given transition matrices. Arguments: workspace (string): The path to the workspace directory on disk. Files will be saved to this location. transition_tuples (list or None): A list of tuples, where the first element of the tuple is a numpy matrix of the transition values, and the second element of the tuple is the year of the transition. Provided years must be in chronological order. If ``None``, the transition parameters will be ignored. analysis_year (int or None): The year of the final analysis. If provided, it must be greater than the last year within the transition tuples (unless ``transition_tuples`` is None, in which case ``analysis_year`` can be anything greater than 2000, the baseline year). Returns: A dict of the model arguments. """ from pygeoprocessing.testing import sampledata args = { 'workspace_dir': workspace, 'lulc_lookup_uri': os.path.join(workspace, 'lulc_lookup.csv'), 'lulc_transition_matrix_uri': os.path.join(workspace, 'transition_matrix.csv'), 'carbon_pool_initial_uri': os.path.join(workspace, 'carbon_pool_initial.csv'), 'carbon_pool_transient_uri': os.path.join(workspace, 'carbon_pool_transient.csv'), 'lulc_baseline_map_uri': os.path.join(workspace, 'lulc.tif'), 'lulc_baseline_year': 2000, 'do_economic_analysis': False, } _create_table(args['lulc_lookup_uri'], lulc_lookup_list) _create_table( args['lulc_transition_matrix_uri'], lulc_transition_matrix_list) _create_table( args['carbon_pool_initial_uri'], carbon_pool_initial_list) _create_table( args['carbon_pool_transient_uri'], carbon_pool_transient_list) # Only parameters needed are band_matrices and filename make_raster = functools.partial( sampledata.create_raster_on_disk, origin=sampledata.SRS_WILLAMETTE.origin, projection_wkt=sampledata.SRS_WILLAMETTE.projection, nodata=-1, pixel_size=sampledata.SRS_WILLAMETTE.pixel_size(100)) known_matrix_size = None if transition_tuples: args['lulc_transition_maps_list'] = [] args['lulc_transition_years_list'] = [] for band_matrix, transition_year in transition_tuples: known_matrix_size = band_matrix.shape filename = os.path.join(workspace, 'transition_%s.tif' % transition_year) make_raster(band_matrices=[band_matrix], filename=filename) args['lulc_transition_maps_list'].append(filename) args['lulc_transition_years_list'].append(transition_year) # Make the lulc lulc_shape = (10, 10) if not known_matrix_size else known_matrix_size make_raster(band_matrices=[numpy.ones(lulc_shape)], filename=args['lulc_baseline_map_uri']) if analysis_year: args['analysis_year'] = analysis_year return args def test_no_transitions(self): """Coastal Blue Carbon: Verify model can run without transitions.""" from natcap.invest.coastal_blue_carbon \ import coastal_blue_carbon as cbc args = CBCRefactorTest.create_args( workspace=self.workspace_dir, transition_tuples=None, analysis_year=None) cbc.execute(args) def test_no_transitions_with_analysis_year(self): """Coastal Blue Carbon: Model can run w/o trans., w/analysis yr.""" from natcap.invest.coastal_blue_carbon \ import coastal_blue_carbon as cbc args = CBCRefactorTest.create_args( workspace=self.workspace_dir, transition_tuples=None, analysis_year=2010) cbc.execute(args) def test_one_transition(self): """Coastal Blue Carbon: Verify model can run with 1 transition.""" from natcap.invest.coastal_blue_carbon \ import coastal_blue_carbon as cbc transition_tuples = [ (numpy.ones((10, 10)), 2010), ] args = CBCRefactorTest.create_args( workspace=self.workspace_dir, transition_tuples=transition_tuples, analysis_year=None) cbc.execute(args) def test_transient_dict_extraction(self): """Coastal Blue Carbon: Verify extraction of transient dictionary.""" from natcap.invest.coastal_blue_carbon \ import coastal_blue_carbon as cbc transient_file = _create_table( os.path.join(self.workspace_dir, 'transient.csv'), carbon_pool_transient_list[:3]) biomass_dict, soil_dict = cbc._create_transient_dict(transient_file) expected_biomass_dict = { 0: { 'lulc-class': 'n', 'half-life': 0.0, 'med-impact-disturb': 0.0, 'yearly-accumulation': 0.0, }, 1: { 'lulc-class': 'x', 'half-life': 1, 'med-impact-disturb': 0.5, 'yearly-accumulation': 1, } } expected_soil_dict = copy.deepcopy(expected_biomass_dict) expected_soil_dict[1]['yearly-accumulation'] = 1.1 self.assertEqual(biomass_dict, expected_biomass_dict) self.assertEqual(soil_dict, expected_soil_dict)
StarcoderdataPython
9663202
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from collections import OrderedDict import logging import os import six from toscaparser.elements.interfaces import InterfacesDef from toscaparser.functions import GetInput from toscaparser.nodetemplate import NodeTemplate from toscaparser.utils.gettextutils import _ SECTIONS = (TYPE, PROPERTIES, MEDADATA, DEPENDS_ON, UPDATE_POLICY, DELETION_POLICY) = \ ('type', 'properties', 'metadata', 'depends_on', 'update_policy', 'deletion_policy') policy_type = ['tosca.policies.Placement', 'tosca.policies.Scaling', 'tosca.policies.Scaling.Cluster'] log = logging.getLogger('heat-translator') class HotResource(object): '''Base class for TOSCA node type translation to Heat resource type.''' def __init__(self, nodetemplate, name=None, type=None, properties=None, metadata=None, depends_on=None, update_policy=None, deletion_policy=None, csar_dir=None): log.debug(_('Translating TOSCA node type to HOT resource type.')) self.nodetemplate = nodetemplate if name: self.name = name else: self.name = nodetemplate.name self.type = type self.properties = properties or {} self.csar_dir = csar_dir # special case for HOT softwareconfig cwd = os.getcwd() if type == 'OS::Heat::SoftwareConfig': config = self.properties.get('config') if isinstance(config, dict): if self.csar_dir: os.chdir(self.csar_dir) implementation_artifact = os.path.abspath(config.get( 'get_file')) else: implementation_artifact = config.get('get_file') if implementation_artifact: filename, file_extension = os.path.splitext( implementation_artifact) file_extension = file_extension.lower() # artifact_types should be read to find the exact script # type, unfortunately artifact_types doesn't seem to be # supported by the parser if file_extension == '.ansible' \ or file_extension == '.yaml' \ or file_extension == '.yml': self.properties['group'] = 'ansible' if file_extension == '.pp': self.properties['group'] = 'puppet' if self.properties.get('group') is None: self.properties['group'] = 'script' os.chdir(cwd) self.metadata = metadata # The difference between depends_on and depends_on_nodes is # that depends_on defines dependency in the context of the # HOT template and it is used during the template output. # Depends_on_nodes defines the direct dependency between the # tosca nodes and is not used during the output of the # HOT template but for internal processing only. When a tosca # node depends on another node it will be always added to # depends_on_nodes but not always to depends_on. For example # if the source of dependency is a server, the dependency will # be added as properties.get_resource and not depends_on if depends_on: self.depends_on = depends_on self.depends_on_nodes = depends_on else: self.depends_on = [] self.depends_on_nodes = [] self.update_policy = update_policy self.deletion_policy = deletion_policy self.group_dependencies = {} # if hide_resource is set to true, then this resource will not be # generated in the output yaml. self.hide_resource = False def handle_properties(self): # the property can hold a value or the intrinsic function get_input # for value, copy it # for get_input, convert to get_param for prop in self.nodetemplate.get_properties_objects(): pass def handle_life_cycle(self): hot_resources = [] deploy_lookup = {} # TODO(anyone): sequence for life cycle needs to cover different # scenarios and cannot be fixed or hard coded here operations_deploy_sequence = ['create', 'configure', 'start'] operations = HotResource.get_all_operations(self.nodetemplate) # create HotResource for each operation used for deployment: # create, start, configure # ignore the other operations # observe the order: create, start, configure # use the current HotResource for the first operation in this order # hold the original name since it will be changed during # the transformation node_name = self.name reserve_current = 'NONE' for operation in operations_deploy_sequence: if operation in operations.keys(): reserve_current = operation break # create the set of SoftwareDeployment and SoftwareConfig for # the interface operations hosting_server = None if self.nodetemplate.requirements is not None: hosting_server = self._get_hosting_server() sw_deployment_resouce = HOTSoftwareDeploymentResources(hosting_server) server_key = sw_deployment_resouce.server_key servers = sw_deployment_resouce.servers sw_deploy_res = sw_deployment_resouce.software_deployment # hosting_server is None if requirements is None hosting_on_server = hosting_server if hosting_server else None base_type = HotResource.get_base_type_str( self.nodetemplate.type_definition) # if we are on a compute node the host is self if hosting_on_server is None and base_type == 'tosca.nodes.Compute': hosting_on_server = self.name servers = {'get_resource': self.name} cwd = os.getcwd() for operation in operations.values(): if operation.name in operations_deploy_sequence: config_name = node_name + '_' + operation.name + '_config' deploy_name = node_name + '_' + operation.name + '_deploy' if self.csar_dir: os.chdir(self.csar_dir) get_file = os.path.abspath(operation.implementation) else: get_file = operation.implementation hot_resources.append( HotResource(self.nodetemplate, config_name, 'OS::Heat::SoftwareConfig', {'config': {'get_file': get_file}}, csar_dir=self.csar_dir)) if operation.name == reserve_current and \ base_type != 'tosca.nodes.Compute': deploy_resource = self self.name = deploy_name self.type = sw_deploy_res self.properties = {'config': {'get_resource': config_name}, server_key: servers} deploy_lookup[operation] = self else: sd_config = {'config': {'get_resource': config_name}, server_key: servers} deploy_resource = \ HotResource(self.nodetemplate, deploy_name, sw_deploy_res, sd_config, csar_dir=self.csar_dir) hot_resources.append(deploy_resource) deploy_lookup[operation] = deploy_resource lifecycle_inputs = self._get_lifecycle_inputs(operation) if lifecycle_inputs: deploy_resource.properties['input_values'] = \ lifecycle_inputs os.chdir(cwd) # Add dependencies for the set of HOT resources in the sequence defined # in operations_deploy_sequence # TODO(anyone): find some better way to encode this implicit sequence group = {} op_index_min = None op_index_max = -1 for op, hot in deploy_lookup.items(): # position to determine potential preceding nodes op_index = operations_deploy_sequence.index(op.name) if op_index_min is None or op_index < op_index_min: op_index_min = op_index if op_index > op_index_max: op_index_max = op_index for preceding_op_name in \ reversed(operations_deploy_sequence[:op_index]): preceding_hot = deploy_lookup.get( operations.get(preceding_op_name)) if preceding_hot: hot.depends_on.append(preceding_hot) hot.depends_on_nodes.append(preceding_hot) group[preceding_hot] = hot break if op_index_max >= 0: last_deploy = deploy_lookup.get(operations.get( operations_deploy_sequence[op_index_max])) else: last_deploy = None # save this dependency chain in the set of HOT resources self.group_dependencies.update(group) for hot in hot_resources: hot.group_dependencies.update(group) roles_deploy_resource = self._handle_ansiblegalaxy_roles( hot_resources, node_name, servers) # add a dependency to this ansible roles deploy to # the first "classic" deploy generated for this node if roles_deploy_resource and op_index_min: first_deploy = deploy_lookup.get(operations.get( operations_deploy_sequence[op_index_min])) first_deploy.depends_on.append(roles_deploy_resource) first_deploy.depends_on_nodes.append(roles_deploy_resource) return hot_resources, deploy_lookup, last_deploy def _handle_ansiblegalaxy_roles(self, hot_resources, initial_node_name, hosting_on_server): artifacts = self.get_all_artifacts(self.nodetemplate) install_roles_script = '' sw_deployment_resouce = \ HOTSoftwareDeploymentResources(hosting_on_server) server_key = sw_deployment_resouce.server_key sw_deploy_res = sw_deployment_resouce.software_deployment for artifact_name, artifact in artifacts.items(): artifact_type = artifact.get('type', '').lower() if artifact_type == 'tosca.artifacts.ansiblegalaxy.role': role = artifact.get('file', None) if role: install_roles_script += 'ansible-galaxy install ' + role \ + '\n' if install_roles_script: # remove trailing \n install_roles_script = install_roles_script[:-1] # add shebang and | to use literal scalar type (for multiline) install_roles_script = '|\n#!/bin/bash\n' + install_roles_script config_name = initial_node_name + '_install_roles_config' deploy_name = initial_node_name + '_install_roles_deploy' hot_resources.append( HotResource(self.nodetemplate, config_name, 'OS::Heat::SoftwareConfig', {'config': install_roles_script}, csar_dir=self.csar_dir)) sd_config = {'config': {'get_resource': config_name}, server_key: hosting_on_server} deploy_resource = \ HotResource(self.nodetemplate, deploy_name, sw_deploy_res, sd_config, csar_dir=self.csar_dir) hot_resources.append(deploy_resource) return deploy_resource def handle_connectsto(self, tosca_source, tosca_target, hot_source, hot_target, config_location, operation): # The ConnectsTo relationship causes a configuration operation in # the target. # This hot resource is the software config portion in the HOT template # This method adds the matching software deployment with the proper # target server and dependency if config_location == 'target': hosting_server = hot_target._get_hosting_server() hot_depends = hot_target elif config_location == 'source': hosting_server = self._get_hosting_server() hot_depends = hot_source sw_deployment_resouce = HOTSoftwareDeploymentResources(hosting_server) server_key = sw_deployment_resouce.server_key servers = sw_deployment_resouce.servers sw_deploy_res = sw_deployment_resouce.software_deployment deploy_name = tosca_source.name + '_' + tosca_target.name + \ '_connect_deploy' sd_config = {'config': {'get_resource': self.name}, server_key: servers} deploy_resource = \ HotResource(self.nodetemplate, deploy_name, sw_deploy_res, sd_config, depends_on=[hot_depends], csar_dir=self.csar_dir) connect_inputs = self._get_connect_inputs(config_location, operation) if connect_inputs: deploy_resource.properties['input_values'] = connect_inputs return deploy_resource def handle_expansion(self): pass def handle_hosting(self): # handle hosting server for the OS:HEAT::SoftwareDeployment # from the TOSCA nodetemplate, traverse the relationship chain # down to the server sw_deploy_group = \ HOTSoftwareDeploymentResources.HOT_SW_DEPLOYMENT_GROUP_RESOURCE sw_deploy = HOTSoftwareDeploymentResources.HOT_SW_DEPLOYMENT_RESOURCE if self.properties.get('servers') and \ self.properties.get('server'): del self.properties['server'] if self.type == sw_deploy_group or self.type == sw_deploy: # skip if already have hosting # If type is NodeTemplate, look up corresponding HotResrouce host_server = self.properties.get('servers') \ or self.properties.get('server') if host_server is None: raise Exception(_("Internal Error: expecting host " "in software deployment")) elif isinstance(host_server.get('get_resource'), NodeTemplate): self.properties['server']['get_resource'] = \ host_server['get_resource'].name elif isinstance(host_server, dict) and \ not host_server.get('get_resource'): self.properties['servers'] = \ host_server def top_of_chain(self): dependent = self.group_dependencies.get(self) if dependent is None: return self else: return dependent.top_of_chain() # this function allows to provides substacks as external files # those files will be dumped along the output file. # # return a dict of filename-content def extract_substack_templates(self, base_filename, hot_template_version): return {} # this function asks the resource to embed substacks # into the main template, if any. # this is used when the final output is stdout def embed_substack_templates(self, hot_template_version): pass def get_dict_output(self): resource_sections = OrderedDict() resource_sections[TYPE] = self.type if self.properties: resource_sections[PROPERTIES] = self.properties if self.metadata: resource_sections[MEDADATA] = self.metadata if self.depends_on: resource_sections[DEPENDS_ON] = [] for depend in self.depends_on: resource_sections[DEPENDS_ON].append(depend.name) if self.update_policy: resource_sections[UPDATE_POLICY] = self.update_policy if self.deletion_policy: resource_sections[DELETION_POLICY] = self.deletion_policy return {self.name: resource_sections} def _get_lifecycle_inputs(self, operation): # check if this lifecycle operation has input values specified # extract and convert to HOT format if isinstance(operation.value, six.string_types): # the operation has a static string return {} else: # the operation is a dict {'implemenation': xxx, 'input': yyy} inputs = operation.value.get('inputs') deploy_inputs = {} if inputs: for name, value in inputs.items(): deploy_inputs[name] = value return deploy_inputs def _get_connect_inputs(self, config_location, operation): if config_location == 'target': inputs = operation.get('pre_configure_target').get('inputs') elif config_location == 'source': inputs = operation.get('pre_configure_source').get('inputs') deploy_inputs = {} if inputs: for name, value in inputs.items(): deploy_inputs[name] = value return deploy_inputs def _get_hosting_server(self, node_template=None): # find the server that hosts this software by checking the # requirements and following the hosting chain hosting_servers = [] host_exists = False this_node_template = self.nodetemplate \ if node_template is None else node_template for requirement in this_node_template.requirements: for requirement_name, assignment in requirement.items(): for check_node in this_node_template.related_nodes: # check if the capability is Container if isinstance(assignment, dict): node_name = assignment.get('node') else: node_name = assignment if node_name and node_name == check_node.name: if self._is_container_type(requirement_name, check_node): hosting_servers.append(check_node.name) host_exists = True elif check_node.related_nodes and not host_exists: return self._get_hosting_server(check_node) if hosting_servers: return hosting_servers return None def _is_container_type(self, requirement_name, node): # capability is a list of dict # For now just check if it's type tosca.nodes.Compute # TODO(anyone): match up requirement and capability base_type = HotResource.get_base_type_str(node.type_definition) if base_type == 'tosca.nodes.Compute': return True else: return False def get_hot_attribute(self, attribute, args): # this is a place holder and should be implemented by the subclass # if translation is needed for the particular attribute raise Exception(_("No translation in TOSCA type {0} for attribute " "{1}").format(self.nodetemplate.type, attribute)) def get_tosca_props(self): tosca_props = {} for prop in self.nodetemplate.get_properties_objects(): if isinstance(prop.value, GetInput): tosca_props[prop.name] = {'get_param': prop.value.input_name} else: tosca_props[prop.name] = prop.value return tosca_props @staticmethod def get_all_artifacts(nodetemplate): # workaround bug in the parser base_type = HotResource.get_base_type_str(nodetemplate.type_definition) if base_type in policy_type: artifacts = {} else: artifacts = nodetemplate.type_definition.get_value('artifacts', parent=True) if not artifacts: artifacts = {} tpl_artifacts = nodetemplate.entity_tpl.get('artifacts') if tpl_artifacts: artifacts.update(tpl_artifacts) return artifacts @staticmethod def get_all_operations(node): operations = {} for operation in node.interfaces: operations[operation.name] = operation # workaround bug in the parser base_type = HotResource.get_base_type_str(node.type_definition) if base_type in policy_type: return operations node_type = node.type_definition while True: type_operations = HotResource._get_interface_operations_from_type( node_type, node, 'Standard') type_operations.update(operations) operations = type_operations if node_type.parent_type is not None: node_type = node_type.parent_type else: return operations @staticmethod def _get_interface_operations_from_type(node_type, node, lifecycle_name): operations = {} base_type = HotResource.get_base_type_str(node_type) if base_type in policy_type: return operations if node_type.interfaces and lifecycle_name in node_type.interfaces: for name, elems in node_type.interfaces[lifecycle_name].items(): # ignore empty operations (only type) # ignore global interface inputs, # concrete inputs are on the operations themselves if name != 'type' and name != 'inputs': operations[name] = InterfacesDef(node_type, lifecycle_name, node, name, elems) return operations @staticmethod def get_base_type_str(node_type): if isinstance(node_type, six.string_types): return node_type if node_type.parent_type is not None: parent_type_str = None if isinstance(node_type.parent_type, six.string_types): parent_type_str = node_type.parent_type else: parent_type_str = node_type.parent_type.type if parent_type_str and parent_type_str.endswith('.Root'): return node_type.type else: return HotResource.get_base_type_str(node_type.parent_type) return node_type.type class HOTSoftwareDeploymentResources(object): """Provides HOT Software Deployment resources SoftwareDeployment or SoftwareDeploymentGroup Resource """ HOT_SW_DEPLOYMENT_RESOURCE = 'OS::Heat::SoftwareDeployment' HOT_SW_DEPLOYMENT_GROUP_RESOURCE = 'OS::Heat::SoftwareDeploymentGroup' def __init__(self, hosting_server=None): self.software_deployment = self.HOT_SW_DEPLOYMENT_RESOURCE self.software_deployment_group = self.HOT_SW_DEPLOYMENT_GROUP_RESOURCE self.server_key = 'server' self.hosting_server = hosting_server self.servers = {} if hosting_server is not None: if len(self.hosting_server) == 1: if isinstance(hosting_server, list): self.servers['get_resource'] = self.hosting_server[0] else: for server in self.hosting_server: self.servers[server] = {'get_resource': server} self.software_deployment = self.software_deployment_group self.server_key = 'servers'
StarcoderdataPython
1788243
<reponame>Dephilia/poaurk<filename>tests/api_test.py # -*- coding: utf-8 -*- import os import json import unittest # compatible python3 import sys from urllib.parse import parse_qsl from poaurk import PlurkAPI, PlurkOAuth class Test0ConsumerTokenSecret(unittest.TestCase): def setUp(self): pass def teardown(self): pass def test_no_consumer_key(self): with self.assertRaises(ValueError): self.plurk = PlurkAPI() self.plurk.callAPI('/APP/Profile/getPublicProfile', {'user_id': 'dephillia'}) def test_invalid_consumer_key(self): self.plurk = PlurkAPI("token", "secret") r = self.plurk.callAPI('/APP/Profile/getPublicProfile', {'user_id': 'dephillia'}) self.assertIsNone(r) err = self.plurk.error() self.assertEqual(err['code'], 400) self.assertEqual(err['reason'], "BAD REQUEST") self.assertEqual(err['content']['error_text'], "40101:unknown application key") class Test1AccessTokenSecret(unittest.TestCase): def setUp(self): pass def teardown(self): pass def test_invalid_access_key(self): self.plurk = PlurkAPI("key", "secret") self.plurk.authorize("foor", "bar") r = self.plurk.callAPI('/APP/Profile/getOwnProfile') self.assertIsNone(r) err = self.plurk.error() self.assertEqual(err['code'], 400) self.assertEqual(err['reason'], "BAD REQUEST") self.assertEqual(err['content']['error_text'], "40106:invalid access token") @unittest.skipUnless(os.path.isfile("API.keys"), "requires API.keys") class TestThreeLeggedAPI(unittest.TestCase): def setUp(self): self.plurk = PlurkAPI.fromfile('API.keys') if not self.plurk.is_authorized(): raise KeyError("You need to put cunsomer/access key/secret in API.keys") def teardown(self): pass def test_get_ownprofile(self): jdata = self.plurk.callAPI('/APP/Profile/getOwnProfile') self.assertIsInstance(jdata, dict, "Object should be a dict") self.assertGreater(jdata['user_info']['uid'], 0, "Self Uid > 0") def test_upload_lenna(self): jdata = self.plurk.callAPI('/APP/Timeline/uploadPicture', files={"image":"tests/lenna.jpg"}) self.assertIsInstance(jdata, dict, "Object should be a dict") self.assertTrue("full" in jdata, "have key 'full'") self.assertTrue("thumbnail" in jdata, "have key 'thumbnail'") @unittest.skipUnless(os.path.isfile("API.keys"), "requires API.keys") class TestTwoLeggedAPI(unittest.TestCase): def setUp(self): try: file = open('API.keys', 'r+') except IOError: print("You need to put key/secret in API.keys") raise except: print("Unexpected error:", sys.exc_info()[0]) else: data = json.load(file) file.close() self.plurk = PlurkAPI(data["CONSUMER_KEY"], data["CONSUMER_SECRET"]) def teardown(self): pass def test_get_public_profile(self): jdata = self.plurk.callAPI('/APP/Profile/getPublicProfile', {'user_id': 'clsung'}) self.assertIsInstance(jdata, dict, "Object should be a dict") self.assertGreater(jdata['user_info']['uid'], 0, "Self Uid > 0") self.assertEqual(jdata['user_info']['nick_name'], "clsung", "Author's Name ;)") class TestRequestToken(unittest.TestCase): """ Unit test for PlurkOAuth.get_request_token """ def setUp(self): """ Create mock oauth object """ self.mox = mox.Mox() self.oauth = PlurkOAuth("CONSUMER_KEY", "CONSUMER_SECRET") self.oauth_response = \ 'oauth_token_secret=O7WqqqWHA61f4ZE5izQdTQmK&oauth_token=ReqXBFOswcyR&oauth_callback_confirmed=true' # NOQA self.golden_token = dict(parse_qsl(self.oauth_response)) self.mox.StubOutWithMock(PlurkOAuth, 'request') def tearDown(self): self.mox.UnsetStubs() def _200_request(self): return 200, self.oauth_response, "" def test_get_request_token(self): self.oauth.request(mox.IgnoreArg()).AndReturn(self._200_request()) self.mox.ReplayAll() self.oauth.get_request_token() self.assertEqual(self.golden_token, self.oauth.oauth_token) self.mox.VerifyAll() class TestAPIAuth(unittest.TestCase): ''' Unit test for PlurkAPI auth part ''' def setUp(self): self.mox = mox.Mox() self.api = PlurkAPI('CONSUMER_KEY', 'CONSUMER_SECRET') self.oauth_response = \ 'oauth_token_secret=O7WqqqWHA61f4ZE5izQdTQmK&oauth_token=ReqXBFOswcyR&oauth_callback_confirmed=true' # NOQA self.verify_response = \ 'oauth_token_secret=O7WqqqWHA61f4ZE5izQdTQmK&oauth_token=<KEY>' self.golden_token = { 'key': '<KEY>', 'secret': '<KEY>', } self.golden_url = 'https://www.plurk.com/OAuth/authorize?oauth_token=ReqXBFOswcyR' self.mox.StubOutWithMock(PlurkOAuth, 'request') def tearDown(self): self.mox.UnsetStubs() def _200_request(self): return 200, self.oauth_response, "" def _200_verify(self): return 200, self.verify_response, '' def test_set_request_token(self): self.api.set_request_token('<KEY>', '<KEY>') token = self.api.get_request_token() self.assertEqual(self.golden_token, token) self.mox.VerifyAll() def test_get_request_token(self): self.api._oauth.request(mox.IgnoreArg()).AndReturn(self._200_request()) self.mox.ReplayAll() token = self.api.get_request_token() self.assertEqual(self.golden_token, token) self.mox.VerifyAll() def test_get_verifier_url(self): self.api.set_request_token('<KEY>', '<KEY>') url = self.api.get_verifier_url() self.assertEqual(self.golden_url, url) self.mox.VerifyAll() def test_get_access_token(self): self.api._oauth.request(mox.IgnoreArg(), mox.IgnoreArg()).AndReturn(self._200_verify()) self.mox.ReplayAll() self.api.set_request_token('<KEY>', '<KEY>') token = self.api.get_access_token('VERIFIER') self.assertEqual(self.golden_token, token) self.mox.VerifyAll()
StarcoderdataPython
8084655
import unittest import json from unittest.mock import Mock from tests import SAMPLE_BASE_URL, SAMPLE_CLIENT_ID, SAMPLE_CLIENT_SECRET def mock_response(headers, status_code, content='CONTENT', mock_json=None): # initialize mock response response = Mock() # define response content if isinstance(content, dict): response.content = json.dumps(content).encode('utf-8') else: response.content = bytes(content, 'utf-8') # define response headers response.headers = headers # define response status code response.status_code = status_code # define response json if mock_json: response.body = mock_json response.json = Mock( return_value=mock_json ) return response
StarcoderdataPython
3299747
<gh_stars>0 from collections import defaultdict from copy import copy from onegov.core.crypto import random_password from onegov.core.directives import query_form_class from onegov.core.security import Secret from onegov.core.templates import render_template from onegov.form import merge_forms from onegov.org import _, OrgApp from onegov.org.forms import ManageUserForm, NewUserForm from onegov.org.layout import DefaultMailLayout from onegov.org.layout import UserLayout from onegov.org.layout import UserManagementLayout from onegov.core.elements import Link, LinkGroup from onegov.ticket import TicketCollection, Ticket from onegov.user import Auth, User, UserCollection from onegov.user.errors import ExistingUserError from onegov.user.forms import SignupLinkForm from webob.exc import HTTPForbidden from wtforms.validators import Optional @OrgApp.html(model=UserCollection, template='usermanagement.pt', permission=Secret) def view_usermanagement(self, request, layout=None): """ Allows the management of organisation users. """ layout = layout or UserManagementLayout(self, request) users = defaultdict(list) query = self.query().order_by(User.username) for user in query: users[user.role].append(user) filters = {} filters['role'] = [ Link( text=request.translate(title), active=value in self.filters.get('role', ()), url=request.link(self.for_filter(role=value)) ) for title, value in ( (_("Administrator"), 'admin'), (_("Editor"), 'editor'), (_("Member"), 'member'), ) ] filters['active'] = [ Link( text=request.translate(title), active=value in self.filters.get('active', ()), url=request.link(self.for_filter(active=value)) ) for title, value in ( (_("Active"), True), (_("Inactive"), False) ) ] filters['tag'] = [ Link( text=tag, active=tag in self.filters.get('tag', ()), url=request.link(self.for_filter(tag=tag)) ) for tag in self.tags ] filters['source'] = [ Link( text={ 'ldap_kerberos': 'LDAP Kerberos', 'ldap': 'LDAP', 'msal': 'AzureAD', '': '-' }.get(value, value), active=value in self.filters.get('source', ()), url=request.link(self.for_filter(source=value)) ) for value in self.sources + ('', ) ] return { 'layout': layout, 'title': _("User Management"), 'users': users, 'filters': filters } @OrgApp.form( model=UserCollection, template='signup_link.pt', permission=Secret, form=SignupLinkForm, name='signup-link') def handle_create_signup_link(self, request, form, layout=None): link = None if form.submitted(request): auth = Auth(request.app) auth.signup_token = form.signup_token(auth) link = request.link(auth, 'register') layout = layout or UserManagementLayout(self, request) layout.breadcrumbs.append(Link(_("New Signup Link"), '#')) layout.editbar_links = None return { 'layout': layout, 'title': _("New Signup Link"), 'link': link, 'form': form } @OrgApp.html(model=User, template='user.pt', permission=Secret) def view_user(self, request, layout=None): """ Shows all objects owned by the given user. """ layout = layout or UserLayout(self, request) linkgroups = [ fn(request, self) for fn in request.app.config.linkgroup_registry ] linkgroups.sort(key=lambda group: request.translate(group.title)) return { 'layout': layout, 'title': self.title, 'linkgroups': linkgroups } @OrgApp.userlinks() def ticket_links(request, user): tickets = TicketCollection(request.session).query() tickets = tickets.filter_by(user_id=user.id) tickets = tickets.order_by(Ticket.number) tickets = tickets.with_entities( Ticket.id, Ticket.number, Ticket.handler_code) return LinkGroup( title=_("Tickets"), links=[ Link( ticket.number, request.class_link(Ticket, { 'handler_code': ticket.handler_code, 'id': ticket.id }), ) for ticket in tickets ] ) def get_manage_user_form(self, request): userprofile_form = query_form_class(request, self, name='userprofile') assert userprofile_form class OptionalUserprofile(userprofile_form): hooked = False def submitted(self, request): # fields only present on the userprofile_form are made optional # to make sure that we can always change the active/inactive state # of the user and the role the user has if not self.hooked: for name, field in self._fields.items(): if not hasattr(userprofile_form, name): continue if not field.validators: continue # be careful not to change the class itself field.validators = copy(field.validators) field.validators.insert(0, Optional()) self.hooked = True return super().submitted(request) return merge_forms(ManageUserForm, OptionalUserprofile) @OrgApp.form(model=User, template='form.pt', form=get_manage_user_form, permission=Secret, name='edit') def handle_manage_user(self, request, form, layout=None): if self.source: raise HTTPForbidden() # XXX the manage user form doesn't have access to the username # because it can't be edited, so we need to inject it here # for validation purposes (check for a unique yubikey) form.current_username = self.username if not request.app.enable_yubikey: form.delete_field('yubikey') if form.submitted(request): form.populate_obj(self) request.success(_("Your changes were saved")) return request.redirect(request.class_link(UserCollection)) elif not request.POST: form.process(obj=self) layout = layout or UserManagementLayout(self, request) layout.breadcrumbs.append(Link(self.username, '#')) return { 'layout': layout, 'title': self.username, 'form': form } @OrgApp.form(model=UserCollection, template='newuser.pt', form=NewUserForm, name='new', permission=Secret) def handle_new_user(self, request, form, layout=None): if not request.app.enable_yubikey: form.delete_field('yubikey') layout = layout or UserManagementLayout(self, request) layout.breadcrumbs.append(Link(_("New User"), '#')) layout.editbar_links = None if form.submitted(request): password = <PASSWORD>() if form.data.get('yubikey'): second_factor = { 'type': 'yubikey', 'data': form.data['yubikey'][:12] } else: second_factor = None try: user = self.add( username=form.username.data, password=password, role=form.role.data, active=form.active, second_factor=second_factor, ) except ExistingUserError: form.username.errors.append( _("A user with this e-mail address already exists")) else: if form.send_activation_email.data: subject = request.translate( _("An account was created for you") ) content = render_template('mail_new_user.pt', request, { 'user': user, 'org': request.app.org, 'layout': DefaultMailLayout(user, request), 'title': subject }) request.app.send_transactional_email( subject=subject, receivers=(user.username, ), content=content, ) request.info(_("The user was created successfully")) return { 'layout': layout, 'title': _("New User"), 'username': form.username.data, 'password': password, 'sent_email': form.send_activation_email.data } return { 'layout': layout, 'title': _("New User"), 'form': form, 'password': <PASSWORD>, 'sent_email': False }
StarcoderdataPython
11396897
#!/usr/bin/env python # vim: expandtab:tabstop=4:shiftwidth=4 """ This is a script that snapshots all volumes in a given account. The volumes must be tagged like so: snapshot: daily snapshot: weekly Usage: ops-gcp-trim-pd-snapshots.py --keep-hourly 10 --gcp-creds-file /root/.gce/creds.json """ # Ignoring module name # pylint: disable=invalid-name,import-error import json import argparse from openshift_tools.cloud.gcp import gcp_snapshotter # Reason: disable pylint import-error because our libs aren't loaded on jenkins. # Status: temporary until we start testing in a container where our stuff is installed. # pylint: disable=import-error from openshift_tools.monitoring.metric_sender import MetricSender EXPIRED_SNAPSHOTS_KEY = 'gcp.pd.snapshotter.expired_snapshots' DELETED_SNAPSHOTS_KEY = 'gcp.pd.snapshotter.deleted_snapshots' DELETION_ERRORS_KEY = 'gcp.pd.snapshotter.deletion_errors' class TrimmerCli(object): """ Responsible for parsing cli args and running the trimmer. """ def __init__(self): """ initialize the class """ self.args = None self.parse_args() def parse_args(self): """ parse the args from the cli """ parser = argparse.ArgumentParser(description='PD Snapshot Trimmer') parser.add_argument('--keep-hourly', required=True, type=int, help='The number of hourly snapshots to keep. 0 is infinite.') parser.add_argument('--keep-daily', required=True, type=int, help='The number of daily snapshots to keep. 0 is infinite.') parser.add_argument('--keep-weekly', required=True, type=int, help='The number of weekly snapshots to keep. 0 is infinite.') parser.add_argument('--keep-monthly', required=True, type=int, help='The number of monthly snapshots to keep. 0 is infinite.') parser.add_argument('--gcp-creds-file', required=False, help='The gcp credentials file to use.') parser.add_argument('--dry-run', action='store_true', default=False, help='Say what would have been done, but don\'t actually do it.') self.args = parser.parse_args() def main(self): """ main function """ total_expired_snapshots = 0 total_deleted_snapshots = 0 total_deletion_errors = 0 creds = json.loads(open(self.args.gcp_creds_file).read()) regions = gcp_snapshotter.PDSnapshotter.get_supported_regions(creds['project_id'], self.args.gcp_creds_file) for region in regions: print "Region: %s:" % region ss = gcp_snapshotter.PDSnapshotter(creds['project_id'], region['name'], self.args.gcp_creds_file, verbose=True) expired_snapshots, deleted_snapshots, snapshot_deletion_errors = \ ss.trim_snapshots(hourly_backups=self.args.keep_hourly, \ daily_backups=self.args.keep_daily, \ weekly_backups=self.args.keep_weekly, \ monthly_backups=self.args.keep_monthly, \ dry_run=self.args.dry_run) num_deletion_errors = len(snapshot_deletion_errors) total_expired_snapshots += len(expired_snapshots) total_deleted_snapshots += len(deleted_snapshots) total_deletion_errors += num_deletion_errors if num_deletion_errors > 0: print " Snapshot Deletion errors (%d):" % num_deletion_errors for cur_err in snapshot_deletion_errors: print " %s" % cur_err print print " Total number of expired snapshots: %d" % total_expired_snapshots print " Total number of deleted snapshots: %d" % total_deleted_snapshots print "Total number of snapshot deletion errors: %d" % total_deletion_errors print print "Sending results to Zabbix:" if self.args.dry_run: print " *** DRY RUN, NO ACTION TAKEN ***" else: TrimmerCli.report_to_zabbix(total_expired_snapshots, total_deleted_snapshots, total_deletion_errors) @staticmethod def report_to_zabbix(total_expired_snapshots, total_deleted_snapshots, total_deletion_errors): """ Sends the commands exit code to zabbix. """ mts = MetricSender(verbose=True) mts.add_metric({ EXPIRED_SNAPSHOTS_KEY: total_expired_snapshots, DELETED_SNAPSHOTS_KEY: total_deleted_snapshots, DELETION_ERRORS_KEY: total_deletion_errors }) mts.send_metrics() if __name__ == "__main__": TrimmerCli().main()
StarcoderdataPython
9788320
<filename>esmond/cassandra.py #!/usr/bin/env python # encoding: utf-8 """ Cassandra DB interface calls and data encapsulation objects. esmond schema in json-like notation: // regular col family "raw_data" : { "snmp:router_a:FastPollHC:ifHCInOctets:xe-0_2_0:30000:2012" : { "1343955624" : // long column name "16150333739148" // UTF-8 containing JSON for values. } } // supercolumn "base_rates" : { "snmp:router_a:FastPollHC:ifHCInOctets:xe-0_2_0:30000:2012" : { "1343955600" : { // long column name. "val": "123", // string key, counter type value. "is_valid" : "2" // zero or positive non-zero. } } } // supercolumn "rate_aggregations" : { "snmp:router_a:FastPollHC:ifHCInOctets:xe-0_2_0:3600000:2012" : { "1343955600" : { // long column name. "val": "1234", // string key, counter type. "30": "38" // key of the 'non-val' column is freq of the base rate. } // the value of said is the count used in the average. } } // supercolumn "stat_aggregations" : { "snmp:router_a:FastPollHC:ifHCInOctets:xe-0_2_0:86400000:2012" : { "1343955600" : { // long column name. "min": "0", // string keys, long types. "max": "484140" } } } """ # Standard import calendar import datetime import json import logging import os import pprint import sys import time from collections import OrderedDict from esmond.util import get_logger # Third party from pycassa import PycassaLogger from pycassa.pool import ConnectionPool, AllServersUnavailable from pycassa.columnfamily import ColumnFamily, NotFoundException from pycassa.system_manager import * from thrift.transport.TTransport import TTransportException SEEK_BACK_THRESHOLD = 2592000000 # 30 days in ms KEY_DELIMITER = ":" AGG_TYPES = ['average', 'min', 'max', 'raw'] class CassandraException(Exception): """Common base""" pass class ConnectionException(CassandraException): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class CASSANDRA_DB(object): keyspace = 'esmond' raw_cf = 'raw_data' rate_cf = 'base_rates' agg_cf = 'rate_aggregations' stat_cf = 'stat_aggregations' _queue_size = 200 def __init__(self, config, qname=None): """ Class contains all the relevent cassandra logic. This includes: * schema creation, * connection information/pooling, * generating the metadata cache of last val/ts information, * store data/update the rate/aggregaion bins, * and execute queries to return data to the REST interface. """ # Configure logging - if a qname has been passed in, hook # into the persister logger, if not, toss together some fast # console output for devel/testing. if qname: self.log = get_logger("espersistd.%s.cass_db" % qname) else: self.log = logging.getLogger('cassandra_db') self.log.setLevel(logging.DEBUG) format = logging.Formatter('%(name)s [%(levelname)s] %(message)s') handle = logging.StreamHandler() handle.setFormatter(format) self.log.addHandler(handle) # Add pycassa driver logging to existing logger. plog = PycassaLogger() plog.set_logger_name('%s.pycassa' % self.log.name) # Debug level is far too noisy, so just hardcode the pycassa # logger to info level. plog.set_logger_level('info') # Connect to cassandra with SystemManager, do a schema check # and set up schema components if need be. try: sysman = SystemManager(config.cassandra_servers[0]) except TTransportException, e: raise ConnectionException("System Manager can't connect to Cassandra " "at %s - %s" % (config.cassandra_servers[0], e)) # Blow everything away if we're testing - be aware of this and use # with care. Currently just being explictly set in test harness # code but no longer set as a config file option since there could # be unfortunate side effects. if config.db_clear_on_testing: self.log.info('Dropping keyspace %s' % self.keyspace) if self.keyspace in sysman.list_keyspaces(): sysman.drop_keyspace(self.keyspace) time.sleep(3) # Create keyspace _schema_modified = False # Track if schema components are created. if not self.keyspace in sysman.list_keyspaces(): _schema_modified = True self.log.info('Creating keyspace %s' % self.keyspace) sysman.create_keyspace(self.keyspace, SIMPLE_STRATEGY, {'replication_factor': '1'}) time.sleep(3) # Create column families if they don't already exist. # If a new column family is added, make sure to set # _schema_modified = True so it will be propigated. self.log.info('Checking/creating column families') # Raw Data CF if not sysman.get_keyspace_column_families(self.keyspace).has_key(self.raw_cf): _schema_modified = True sysman.create_column_family(self.keyspace, self.raw_cf, super=False, comparator_type=LONG_TYPE, default_validation_class=UTF8_TYPE, key_validation_class=UTF8_TYPE) self.log.info('Created CF: %s' % self.raw_cf) # Base Rate CF if not sysman.get_keyspace_column_families(self.keyspace).has_key(self.rate_cf): _schema_modified = True sysman.create_column_family(self.keyspace, self.rate_cf, super=True, comparator_type=LONG_TYPE, default_validation_class=COUNTER_COLUMN_TYPE, key_validation_class=UTF8_TYPE) self.log.info('Created CF: %s' % self.rate_cf) # Rate aggregation CF if not sysman.get_keyspace_column_families(self.keyspace).has_key(self.agg_cf): _schema_modified = True sysman.create_column_family(self.keyspace, self.agg_cf, super=True, comparator_type=LONG_TYPE, default_validation_class=COUNTER_COLUMN_TYPE, key_validation_class=UTF8_TYPE) self.log.info('Created CF: %s' % self.agg_cf) # Stat aggregation CF if not sysman.get_keyspace_column_families(self.keyspace).has_key(self.stat_cf): _schema_modified = True sysman.create_column_family(self.keyspace, self.stat_cf, super=True, comparator_type=LONG_TYPE, default_validation_class=LONG_TYPE, key_validation_class=UTF8_TYPE) self.log.info('Created CF: %s' % self.stat_cf) sysman.close() self.log.info('Schema check done') # If we just cleared the keyspace/data and there is more than # one server, pause to let schema propigate to the cluster machines. if _schema_modified == True: self.log.info("Waiting for schema to propagate...") time.sleep(10) self.log.info("Done") # Now, set up the ConnectionPool # Read auth information from config file and set up if need be. _creds = {} if config.cassandra_user and config.cassandra_pass: _creds['username'] = config.cassandra_user _creds['password'] = config.cassandra_pass self.log.debug('Connecting with username: %s' % (config.cassandra_user,)) try: self.log.debug('Opening ConnectionPool') self.pool = ConnectionPool(self.keyspace, server_list=config.cassandra_servers, pool_size=10, max_overflow=5, max_retries=10, timeout=30, credentials=_creds) except AllServersUnavailable, e: raise ConnectionException("Couldn't connect to any Cassandra " "at %s - %s" % (config.cassandra_servers, e)) self.log.info('Connected to %s' % config.cassandra_servers) # Define column family connections for the code to use. self.raw_data = ColumnFamily(self.pool, self.raw_cf).batch(self._queue_size) self.rates = ColumnFamily(self.pool, self.rate_cf).batch(self._queue_size) self.aggs = ColumnFamily(self.pool, self.agg_cf).batch(self._queue_size) self.stat_agg = ColumnFamily(self.pool, self.stat_cf).batch(self._queue_size) # Used when a cf needs to be selected on the fly. self.cf_map = { 'raw': self.raw_data, 'rate': self.rates, 'aggs': self.aggs, 'stat': self.stat_agg } # Timing - this turns the database call profiling code on and off. # This is not really meant to be used in production and generally # just spits out statistics at the end of a run of test data. Mostly # useful for timing specific database calls to aid in development. self.profiling = False if config.db_profile_on_testing and os.environ.get("ESMOND_TESTING", False): self.profiling = True self.stats = DatabaseMetrics(profiling=self.profiling) # Class members # Just the dict for the metadata cache. self.metadata_cache = {} def flush(self): """ Calling this will explicity flush all the batches to the server. Generally only used in testing/dev scripts and not in production when the batches will be self-flushing. """ self.log.debug('Flush called') self.raw_data.send() self.rates.send() self.aggs.send() self.stat_agg.send() def close(self): """ Explicitly close the connection pool. """ self.log.debug('Close/dispose called') self.pool.dispose() def set_raw_data(self, raw_data, ttl=None): """ Called by the persister. Writes the raw incoming data to the appropriate column family. The optional TTL option is passed in self.raw_opts and is set up in the constructor. The raw_data arg passes in is an instance of the RawData class defined in this module. """ _kw = {} if ttl: _kw['ttl'] = ttl t = time.time() # Standard column family update. self.raw_data.insert(raw_data.get_key(), {raw_data.ts_to_jstime(): json.dumps(raw_data.val)}, **_kw) if self.profiling: self.stats.raw_insert(time.time() - t) def set_metadata(self, k, meta_d): """ Just does a simple write to the dict being used as metadata. """ self.metadata_cache[k] = meta_d.get_document() def get_metadata(self, raw_data): """ Called by the persister to get the metadata - last value and timestamp - for a given measurement. If a given value is not found (as in when the program is initially started for example) it will look in the raw data as far back as SEEK_BACK_THRESHOLD to find the previous value. If found, This is seeded to the cache and returned. If not, this is presumed to be new, and the cache is seeded with the value that is passed in. The raw_data arg passes in is an instance of the RawData class defined in this module. The return value is a Metadata object, also defined in this module. """ t = time.time() meta_d = None if not self.metadata_cache.has_key(raw_data.get_meta_key()): # Didn't find a value in the metadata cache. First look # back through the raw data for SEEK_BACK_THRESHOLD seconds # to see if we can find the last processed value. ts_max = raw_data.ts_to_jstime() - 1 # -1ms to look at older vals ts_min = ts_max - SEEK_BACK_THRESHOLD ret = self.raw_data._column_family.multiget( self._get_row_keys(raw_data.path, raw_data.freq, ts_min, ts_max), # Note: ts_max and ts_min appear to be reversed here - # that's because this is a reversed range query. column_start=ts_max, column_finish=ts_min, column_count=1, column_reversed=True) if self.profiling: self.stats.meta_fetch((time.time() - t)) if ret: # A previous value was found in the raw data, so we can # seed/return that. key = ret.keys()[-1] ts = ret[key].keys()[0] val = json.loads(ret[key][ts]) meta_d = Metadata(last_update=ts, last_val=val, min_ts=ts, freq=raw_data.freq, path=raw_data.path) self.log.debug('Metadata lookup from raw_data for: %s' % (raw_data.get_meta_key())) else: # No previous value was found (or at least not one in the defined # time range) so seed/return the current value. meta_d = Metadata(last_update=raw_data.ts, last_val=raw_data.val, min_ts=raw_data.ts, freq=raw_data.freq, path=raw_data.path) self.log.debug('Initializing metadata for: %s using %s' % (raw_data.get_meta_key(), raw_data)) self.set_metadata(raw_data.get_meta_key(), meta_d) else: meta_d = Metadata(**self.metadata_cache[raw_data.get_meta_key()]) return meta_d def update_metadata(self, k, metadata): """ Update the metadata cache with a recently updated value. Called by the persister. The metadata arg is a Metadata object defined in this module. """ t = time.time() for i in ['last_val', 'min_ts', 'last_update']: self.metadata_cache[k][i] = getattr(metadata, i) #self.stats.meta_update((time.time() - t)) def update_rate_bin(self, ratebin): """ Called by the persister. This updates a base rate bin in the base rate column family. The ratebin arg is a BaseRateBin object defined in this module. """ t = time.time() # A super column insert. Both val and is_valid are counter types. self.rates.insert(ratebin.get_key(), {ratebin.ts_to_jstime(): {'val': ratebin.val, 'is_valid': ratebin.is_valid}}) if self.profiling: self.stats.baserate_update((time.time() - t)) def update_rate_aggregation(self, raw_data, agg_ts, freq): """ Called by the persister to update the rate aggregation rollups. The args are a RawData object, the "compressed" aggregation timestamp and the frequency of the rollups in seconds. """ t = time.time() agg = AggregationBin( ts=agg_ts, freq=freq, val=raw_data.val, base_freq=raw_data.freq, count=1, min=raw_data.val, max=raw_data.val, path=raw_data.path ) # Super column update. The base rate frequency is stored as the column # name key that is not 'val' - this will be used by the query interface # to generate the averages. Both values are counter types. self.aggs.insert(agg.get_key(), {agg.ts_to_jstime(): {'val': agg.val, str(agg.base_freq): 1}}) if self.profiling: self.stats.aggregation_update((time.time() - t)) def update_stat_aggregation(self, raw_data, agg_ts, freq): """ Called by the persister to update the stat aggregations (ie: min/max). Unlike the other update code, this has to read from the appropriate bin to see if the min or max needs to be updated. The update is done if need be, and the updated boolean is set to true and returned to the calling code to flush the batch if need be. Done that way to flush more than one batch update rather than doing it each time. The args are a RawData object, the "compressed" aggregation timestamp and the frequency of the rollups in seconds. """ updated = False # Create the AggBin object. agg = AggregationBin( ts=agg_ts, freq=freq, val=raw_data.val, base_freq=raw_data.freq, count=1, min=raw_data.val, max=raw_data.val, path=raw_data.path ) t = time.time() ret = None try: # Retrieve the appropriate stat aggregation. ret = self.stat_agg._column_family.get(agg.get_key(), super_column=agg.ts_to_jstime()) except NotFoundException: # Nothing will be found if the rollup bin does not yet exist. pass if self.profiling: self.stats.stat_fetch((time.time() - t)) t = time.time() if not ret: # Bin does not exist, so initialize min and max with the same val. self.stat_agg.insert(agg.get_key(), {agg.ts_to_jstime(): {'min': agg.val, 'max': agg.val}}) updated = True elif agg.val > ret['max']: # Update max. self.stat_agg.insert(agg.get_key(), {agg.ts_to_jstime(): {'max': agg.val}}) updated = True elif agg.val < ret['min']: # Update min. self.stat_agg.insert(agg.get_key(), {agg.ts_to_jstime(): {'min': agg.val}}) updated = True else: pass if self.profiling: self.stats.stat_update((time.time() - t)) return updated def _get_row_keys(self, path, freq, ts_min, ts_max): """ Utility function used by the query interface. Given these values and the starting/stopping timestamp, return a list of row keys (ie: more than one if the query spans years) to be used as the first argument to a multiget cassandra query. """ year_start = datetime.datetime.utcfromtimestamp(float(ts_min)/1000.0).year year_finish = datetime.datetime.utcfromtimestamp(float(ts_max)/1000.0).year key_range = [] if year_start != year_finish: for year in range(year_start, year_finish+1): key_range.append(get_rowkey(path, freq=freq, year=year)) else: key_range.append(get_rowkey(path, freq=freq, year=year_start)) return key_range def check_for_valid_keys(self, path=None, freq=None, ts_min=None, ts_max=None, col_fam='rate'): """ Utility function used to discrete key/set of keys exists. Used by api/etc see if an invalid key is the reason no data is returned. """ found = False keys = self._get_row_keys(path,freq,ts_min,ts_max) for key in keys: try: self.cf_map[col_fam]._column_family.get(key, column_count=1) except NotFoundException: # Key was not found. pass else: # Key was found so mark boolean as good - revisit? found = True return found def query_baserate_timerange(self, path=None, freq=None, ts_min=None, ts_max=None, cf='average'): """ Query interface method to retrieve the base rates (generally average but could be delta as well). """ ret_count = self.rates._column_family.multiget_count( self._get_row_keys(path,freq,ts_min,ts_max), column_start=ts_min, column_finish=ts_max) cols = 0 for i in ret_count.keys(): cols += ret_count[i] ret = self.rates._column_family.multiget( self._get_row_keys(path,freq,ts_min,ts_max), column_start=ts_min, column_finish=ts_max, column_count=cols+5) if cf not in ['average', 'delta']: self.log.error('Not a valid option: %s - defaulting to average' % cf) cf = 'average' # Divisors to return either the average or a delta. value_divisors = { 'average': int(freq/1000), 'delta': 1 } # Just return the results and format elsewhere. results = [] for k,v in ret.items(): for kk,vv in v.items(): results.append({'ts': kk, 'val': float(vv['val']) / value_divisors[cf], 'is_valid': vv['is_valid']}) return results def query_aggregation_timerange(self, path=None, freq=None, ts_min=None, ts_max=None, cf=None): """ Query interface method to retrieve the aggregation rollups - could be average/min/max. Different column families will be queried depending on what value "cf" is set to. """ if cf not in AGG_TYPES: self.log.error('Not a valid option: %s - defaulting to average' % cf) cf = 'average' if cf == 'average' or cf == 'raw': ret_count = self.aggs._column_family.multiget_count( self._get_row_keys(path,freq,ts_min,ts_max), column_start=ts_min, column_finish=ts_max) cols = 0 for i in ret_count.keys(): cols += ret_count[i] # print cols ret = self.aggs._column_family.multiget( self._get_row_keys(path,freq,ts_min,ts_max), column_start=ts_min, column_finish=ts_max, column_count=cols+5) # Just return the results and format elsewhere. results = [] for k,v in ret.items(): for kk,vv in v.items(): ts = kk val = None base_freq = None count = None for kkk in vv.keys(): if kkk == 'val': val = vv[kkk] else: base_freq = kkk count = vv[kkk] ab = AggregationBin(**{'ts': ts, 'val': val,'base_freq': int(base_freq), 'count': count, 'cf': cf}) if cf == 'average': datum = {'ts': ts, 'val': ab.average, 'cf': ab.cf} else: datum = {'ts': ts, 'val': ab.val, 'cf': ab.cf} results.append(datum) elif cf == 'min' or cf == 'max': ret_count = self.stat_agg._column_family.multiget_count( self._get_row_keys(path,freq,ts_min,ts_max), column_start=ts_min, column_finish=ts_max) cols = 0 for i in ret_count.keys(): cols += ret_count[i] ret = self.stat_agg._column_family.multiget( self._get_row_keys(path,freq,ts_min,ts_max), column_start=ts_min, column_finish=ts_max, column_count=cols+5) results = [] for k,v in ret.items(): for kk,vv in v.items(): ts = kk if cf == 'min': results.append({'ts': ts, 'val': vv['min'], 'cf': cf}) else: results.append({'ts': ts, 'val': vv['max'], 'cf': cf}) return results def query_raw_data(self, path=None, freq=None, ts_min=None, ts_max=None): """ Query interface to query the raw data. """ ret_count = self.raw_data._column_family.multiget_count( self._get_row_keys(path,freq,ts_min,ts_max), column_start=ts_min, column_finish=ts_max) cols = 0 for i in ret_count.keys(): cols += ret_count[i] ret = self.raw_data._column_family.multiget( self._get_row_keys(path,freq,ts_min,ts_max), column_start=ts_min, column_finish=ts_max, column_count=cols+5) # Just return the results and format elsewhere. results = [] for k,v in ret.items(): for kk,vv in v.items(): results.append({'ts': kk, 'val': json.loads(vv)}) return results def __del__(self): pass # Stats/timing code for connection class class DatabaseMetrics(object): """ Code to handle calculating timing statistics for discrete database calls in the CASSANDRA_DB module. Generally only used in development to produce statistics when pushing runs of test data through it. """ # List of attributes to generate/method names. _individual_metrics = [ 'raw_insert', 'baserate_update', 'aggregation_update', 'meta_fetch', 'stat_fetch', 'stat_update', ] _all_metrics = _individual_metrics + ['total', 'all'] def __init__(self, profiling=False): self.profiling = profiling if not self.profiling: return # Populate attrs from list. for im in self._individual_metrics: setattr(self, '%s_time' % im, 0) setattr(self, '%s_count' % im, 0) def _increment(self, m, t): """ Actual logic called by named wrapper methods. Increments the time sums and counts for the various db calls. """ setattr(self, '%s_time' % m, getattr(self, '%s_time' % m) + t) setattr(self, '%s_count' % m, getattr(self, '%s_count' % m) + 1) # These are all wrapper methods that call _increment() def raw_insert(self, t): self._increment('raw_insert', t) def baserate_update(self, t): self._increment('baserate_update', t) def aggregation_update(self, t): self._increment('aggregation_update', t) def meta_fetch(self, t): self._increment('meta_fetch', t) def stat_fetch(self, t): self._increment('stat_fetch', t) def stat_update(self, t): self._increment('stat_update', t) def report(self, metric='all'): """ Called at the end of a test harness or other loading dev script. Outputs the various data to the console. """ if not self.profiling: print 'Not profiling' return if metric not in self._all_metrics: print 'bad metric' return s = '' time = count = 0 if metric in self._individual_metrics: datatype, action = metric.split('_') action = action.title() time = getattr(self, '%s_time' % metric) count = getattr(self, '%s_count' % metric) if time: # stop /0 errors s = '%s %s %s data in %.3f (%.3f per sec)' \ % (action, count, datatype, time, (count/time)) if metric.find('total') > -1: s += ' (informational - not in total)' elif metric == 'total': for k,v in self.__dict__.items(): if k.find('total') > -1: # don't double count the agg total numbers continue if k.endswith('_count'): count += v elif k.endswith('_time'): time += v else: pass if time: s = 'Total: %s db transactions in %.3f (%.3f per sec)' \ % (count, time, (count/time)) elif metric == 'all': for m in self._all_metrics: if m == 'all': continue else: self.report(m) if len(s): print s # Data encapsulation objects - these objects wrap the various data # in an object and provide utility methods and properties to convert # timestampes, calculate averages, etc. class DataContainerBase(object): """ Base class for the other encapsulation objects. Mostly provides utility methods for subclasses. """ _doc_properties = [] def __init__(self, path): self.path = path def _handle_date(self,d): """ Return a datetime object given a JavaScript timestamp. """ if type(d) == datetime.datetime: return d else: return datetime.datetime.utcfromtimestamp(float(d)/1000.0) def get_document(self): """ Return a dictionary of the attrs/props in the object. """ doc = {} for k,v in self.__dict__.items(): if k.startswith('_'): continue doc[k] = v for p in self._doc_properties: doc[p] = getattr(self, '%s' % p) return doc def get_key(self): """ Return a cassandra row key based on the contents of the object. """ return get_rowkey(self.path) def ts_to_jstime(self, t='ts'): """ Return an internally represented datetime value as a JavaScript timestamp which is milliseconds since the epoch (Unix timestamp * 1000). Defaults to returning 'ts' property, but can be given an arg to grab a different property/attribute like Metadata.last_update. """ ts = getattr(self, t) return calendar.timegm(ts.utctimetuple()) * 1000 def ts_to_unixtime(self, t='ts'): """ Return an internally represented datetime value as a Unix timestamp. Defaults to returning 'ts' property, but can be given an arg to grab a different property/attribute like Metadata.last_update. """ ts = getattr(self, t) return calendar.timegm(ts.utctimetuple()) class RawData(DataContainerBase): """ Container for raw data rows. Can be instantiated from args when reading from persist queue, or via **kw when reading data back out of Cassandra. """ _doc_properties = ['ts'] def __init__(self, path=None, ts=None, val=None): DataContainerBase.__init__(self, path) self._ts = None self.ts = ts self.val = val def get_key(self): """ Return a cassandra row key based on the contents of the object. We append the year to the row key to limit the size of each row to only one year's worth of data. This is an implementation detail for using Cassandra effectively. """ return get_rowkey(self.path, year=self.ts.year) @property def ts(self): return self._ts @ts.setter def ts(self, value): self._ts = self._handle_date(value) class RawRateData(RawData): """ Container for raw data for rate based rows. """ _doc_properties = ['ts'] def __init__(self, path=None, ts=None, val=None, freq=None): RawData.__init__(self, path, ts, val) self.freq = freq def __unicode__(self): return "<RawRateData/%d: ts=%s, val=%s, path=%s>" % \ (id(self), self.ts, self.val, self.path) def __repr__(self): return "<RawRateData/%d: ts=%s, val=%s, path=%s>" % \ (id(self), self.ts, self.val, self.path) def get_key(self): """ Return a cassandra row key based on the contents of the object. For rate data we add the frequency to the row key before the year, see the RawData.get_key() documentation for details about the year. """ return get_rowkey(self.path, freq=self.freq, year=self.ts.year) def get_meta_key(self): """ Get a "metadata row key" - metadata don't have timestamps/years. Other objects use this to look up entires in the metadata_cache. """ return get_rowkey(self.path, freq=self.freq) @property def min_last_update(self): return self.ts_to_jstime() - self.freq * 40 @property def slot(self): return (self.ts_to_jstime() / self.freq) * self.freq class Metadata(DataContainerBase): """ Container for metadata information. """ _doc_properties = ['min_ts', 'last_update'] def __init__(self, path=None, last_update=None, last_val=None, min_ts=None, freq=None): DataContainerBase.__init__(self, path) self._min_ts = self._last_update = None self.last_update = last_update self.last_val = last_val self.min_ts = min_ts self.freq = freq def __unicode__(self): return "<Metadata/%d: last_update=%s, last_val=%s, min_ts=%s, freq=%s>" % \ (id(self), self.last_update, self.last_val, self.min_ts, self.freq) def __repr__(self): return "<Metadata/%d: last_update=%s, last_val=%s, min_ts=%s, freq=%s>" % \ (id(self), self.last_update, self.last_val, self.min_ts, self.freq) @property def min_ts(self): return self._min_ts @min_ts.setter def min_ts(self, value): self._min_ts = self._handle_date(value) @property def last_update(self): return self._last_update @last_update.setter def last_update(self, value): self._last_update = self._handle_date(value) def refresh_from_raw(self, data): """ Update the internal state of a metadata object from a raw data object. This is called by the persister when calculating base rate deltas to refresh cache with current values after a successful delta is generated. """ if self.min_ts > data.ts: self.min_ts = data.ts self.last_update = data.ts self.last_val = data.val class BaseRateBin(RawRateData): """ Container for base rates. Has 'average' property to return the averages. """ _doc_properties = ['ts'] def __init__(self, path=None, ts=None, val=None, freq=None, is_valid=1): RawRateData.__init__(self, path, ts, val, freq) self.is_valid = is_valid @property def average(self): return self.val / self.freq class AggregationBin(BaseRateBin): """ Container for aggregation rollups. Also has 'average' property to generage averages. """ def __init__(self, path=None, ts=None, val=None, freq=None, base_freq=None, count=None, min=None, max=None, cf=None): BaseRateBin.__init__(self, path, ts, val, freq) self.count = count self.min = min self.max = max self.base_freq = base_freq self.cf = cf @property def average(self): return self.val / (self.count * (self.base_freq/1000.0)) def escape_path(path): escaped = [] for step in path: escaped.append(step.replace(KEY_DELIMITER, "\\%s" % KEY_DELIMITER)) return escaped def get_rowkey(path, freq=None, year=None): """ Given a path and some additional data build the Cassandra row key. The freq and year arguments are used for internal book keeping inside Cassandra. """ appends = [] if freq: appends.append(str(freq)) if year: appends.append(str(year)) return KEY_DELIMITER.join(escape_path(path) + appends) def _split_rowkey(s, escape='\\'): """ Return the elements of the rowkey taking escaping into account. FOR INTERNAL USE ONLY! This returns more than just the path in most instances and needs to be used with specific knowledge of what kind of row key is used. """ indices = [] for i in range(len(s)): if s[i] == KEY_DELIMITER: if i > 0 and s[i-1] != escape: indices.append(i) elif i == 0: indices.append(i) out = [] last = 0 for i in indices: out.append(s[last:i].replace(escape, "")) last = i+1 out.append(s[last:]) return out
StarcoderdataPython