id
stringlengths 1
8
| text
stringlengths 6
1.05M
| dataset_id
stringclasses 1
value |
---|---|---|
9650342
|
import os
import torch.utils.data
import numpy as np
import torch.nn as nn
import torch.utils.data
import torch.optim as optim
import matplotlib.pyplot as plt
import DataPreprocessing as DP
from training import training
from Network import MLP, CNN, CNN2
DP.gpu_setting(gpu_num=0)
# hyper-parameter setting
learning_rate = 1e-5
batchSize = 20
start_epoch = 0
num_epoch = 50
# file path
datapath = os.getcwd()
# Picture memory
# datatype = './PM_PSD_24H/'
# Location memory
datatype='./LM_PSD_24H/'
# 1D
x_datapath = 'x_data/'
y_datapath = 'y_data/'
# 2D mesh (only CNN)
# x_datapath = 'x_2Ddata/'
# y_datapath = 'y_2Ddata/'
x_filepath = datapath + datatype + x_datapath
y_filepath = datapath + datatype + y_datapath
x_filelist = os.listdir(x_filepath)
y_filelist = os.listdir(y_filepath)
# sort
x_filelist.sort()
y_filelist.sort()
# file load
x_data = []
y_data = []
for i in range(len(x_filelist)):
x_data.append(DP.preprocess_data(x_filepath, x_filelist[i]))
y_data.append(DP.load_header(y_filepath, y_filelist[i]))
acc_mean = []
kappa_mean = []
conf_matrix_kappa_max = []
for fold in range(len(x_data)):
[trainx, trainy, testx, testy] = DP.split_train_test(x_data, y_data, fold)
# CNN
trainx = np.transpose(trainx, (3, 2, 0, 1))
testx = np.transpose(testx, (3, 2, 0, 1))
# MLP
trainx = np.transpose(trainx, (1, 0))
testx = np.transpose(testx, (1, 0))
trainx = torch.FloatTensor(trainx).cuda()
testx = torch.FloatTensor(testx).cuda()
trainy = torch.LongTensor(trainy).cuda()
testy = torch.LongTensor(testy).cuda()
train = torch.utils.data.TensorDataset(trainx, trainy)
test = torch.utils.data.TensorDataset(testx, testy)
# batch iterator
trainloader = torch.utils.data.DataLoader(train, batch_size=batchSize, shuffle=True)
testloader = torch.utils.data.DataLoader(test, batch_size=batchSize, shuffle=False)
# model define
net = CNN(2) # outputsize
net.cuda()
# loss define (cross-entropy)
criterion = nn.CrossEntropyLoss()
# Optimizer define
optimizer = optim.SGD(net.parameters(), lr=learning_rate, weight_decay=1e-9)
# scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epoch)
setting = {'net': net,
'trainloader': trainloader,
'testloader': testloader,
'optimizer': optimizer,
# 'scheduler': scheduler,
'loss': criterion,
'max_epoch': num_epoch,
'fold': fold
}
[training_losses, kappa_epoch, test_losses, acc_epoch, conf_matrix_all] = training(setting)
# loss
plt.figure()
plt.plot(training_losses, label='Training loss')
plt.plot(test_losses, label='Test loss')
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend(frameon=False)
plt.savefig(datatype+'results_MLP/Training'+str(fold)+'.png')
plt.close()
# Acc
plt.figure()
plt.plot(acc_epoch, label='Val Accuracy/Epochs')
plt.legend("")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.legend(frameon=False)
plt.savefig(datatype+'results_MLP/Acc'+str(fold)+'.png')
plt.close()
# kappa
plt.figure()
plt.plot(kappa_epoch, label='Val Kappa Score/Epochs')
plt.legend("")
plt.xlabel("Epochs")
plt.ylabel("Kappa Score")
plt.legend(frameon=False)
plt.savefig(datatype+'results_MLP/Kappa'+str(fold)+'.png')
plt.close()
print('[MAX Accuracy] %.3f(%d), [MAX Kappa] %.3f(%d)' % (np.max(acc_epoch), np.argmax(acc_epoch), np.max(kappa_epoch), np.argmax(kappa_epoch)))
# acc / kappa
acc_mean.append(np.max(acc_epoch))
kappa_mean.append(np.max(kappa_epoch))
# confusion matrix
conf_matrix_kappa_max.append(conf_matrix_all[np.argmax(kappa_epoch)])
# average accuracy
Acc_avg = np.mean(acc_mean)
Acc_std = np.std(acc_mean)
# kappa accuracy
kappa_avg = np.mean(kappa_mean)
kappa_std = np.std(kappa_mean)
# confusion matrix
conf_max = sum(conf_matrix_kappa_max)
print(conf_max)
print(conf_max.astype('float') / conf_max.sum(1)[:, None])
print('[Average Acc] %.3f(%.3f), [Average Kappa] %.3f(%.3f)' % (Acc_avg, Acc_std, kappa_avg, kappa_std))
|
StarcoderdataPython
|
146482
|
# import only necessary functions from modules to reduce load
from fdtd_venv import fdtd_mod as fdtd
from numpy import arange, array, where
from matplotlib.pyplot import subplot, plot, xlabel, ylabel, legend, title, suptitle, show, ylim, figure
from scipy.optimize import curve_fit
from os import path
from sys import argv
from time import time
def fit_func(x, a, b, c):
return a*x**2 + b*x + c
start_time = time()
animate = False
run_time = 400
saveStuff = False
results = True
transmit_detectors = 32
# grid
grid = fdtd.Grid(shape=(200, 15.5e-6, 1), grid_spacing=77.5e-9)
if saveStuff:
grid.save_simulation(argv[1] if len(argv) > 1 else None)
# objects
# source
#grid[15, 99, 0] = fdtd.PointSource(period = 1550e-9 / (3e8), name="source1")
grid[15, 100, 0] = fdtd.PointSource(period = 1550e-9 / (3e8), name="source2")
# detectors
#grid[80:200, 80:120, 0] = fdtd.BlockDetector(name="BlockDetector")
#grid[80:200, 100, 0] = fdtd.LineDetector(name="LineDetectorVert")
grid[19, 75:125, 0] = fdtd.LineDetector(name="LineDetectorHorIncident")
for i in range(transmit_detectors):
grid[30+5*i, 75:125, 0] = fdtd.LineDetector(name="LineDetectorHorEmergent_"+str(30+5*i))
# x boundaries
grid[0:10, :, :] = fdtd.PML(name="pml_xlow")
grid[-10:, :, :] = fdtd.PML(name="pml_xhigh")
# y boundaries
grid[:, 0:10, :] = fdtd.PML(name="pml_ylow")
grid[:, -10:, :] = fdtd.PML(name="pml_yhigh")
# Saving grid geometry
if saveStuff:
with open(path.join("./fdtd_output", grid.folder, "grid.txt"), "w") as f:
f.write(str(grid))
wavelength = 3e8/grid.source.frequency
wavelengthUnits = wavelength/grid.grid_spacing
GD = array([grid.x, grid.y, grid.z])
gridRange = [arange(x/grid.grid_spacing) for x in GD]
objectRange = array([[gridRange[0][x.x], gridRange[1][x.y], gridRange[2][x.z]] for x in grid.objects]).T
f.write("\n\nGrid details (in wavelength scale):")
f.write("\n\tGrid dimensions: ")
f.write(str(GD/wavelength))
f.write("\n\tSource dimensions: ")
f.write(str(array([grid.source.x[-1] - grid.source.x[0] + 1, grid.source.y[-1] - grid.source.y[0] + 1, grid.source.z[-1] - grid.source.z[0] + 1])/wavelengthUnits))
f.write("\n\tObject dimensions: ")
f.write(str([(max(map(max, x)) - min(map(min, x)) + 1)/wavelengthUnits for x in objectRange]))
if animate:
if run_time > 0:
for i in range(run_time):
grid.run(total_time=1)
if saveStuff:
grid.visualize(z=0, animate=True, index=i, save=True, folder=grid.folder)
else:
grid.visualize(z=0, animate=True)
if saveStuff:
grid.generate_video(delete_frames=True)
grid.save_data()
else:
if run_time > 0:
grid.run(total_time=run_time)
if saveStuff:
grid.visualize(z=0, show=True, index=0, save=True, folder=grid.folder)
grid.save_data()
else:
grid.visualize(z=0, show=True)
if results:
phase_profile_incident = []
phase_profile_emergent = [[] for j in range(transmit_detectors)] # number of trasmit side detectors
det_vals_incident = array(grid.detectors[0].detector_values()['E'][-grid.sources[0].period:])
det_vals_emergent = [array(grid.detectors[i].detector_values()['E'][-grid.sources[0].period:]) for i in range(1, len(phase_profile_emergent)+1)]
for i in range(len(grid.detectors[0].x)):
period_phase = grid.sources[0].period - where(det_vals_incident[:, i, 2] == max(det_vals_incident[:, i, 2]))[-1][-1]
phase_profile_incident.append(((grid.sources[0].period/4 + period_phase)/grid.sources[0].period)%1)
for j in range(len(phase_profile_emergent)):
period_phase = grid.sources[0].period - where(det_vals_emergent[j][:, i, 2] == max(det_vals_emergent[j][:, i, 2]))[-1][-1]
phase_profile_emergent[j].append(((grid.sources[0].period/4 + period_phase)/grid.sources[0].period)%1)
xdata = array([x for x in range(-25, 25)])
#phase_difference = (-array(phase_profile_emergent) + array(phase_profile_incident) + 2*pi)%(2*pi)
#popt, _ = curve_fit(fit_func, xdata, phase_difference)
figure(num="phase_profile")
plot(xdata/grid.sources[0].period, phase_profile_incident, label="Incident phase")
for j in range(len(phase_profile_emergent)):
plot(xdata/grid.sources[0].period, phase_profile_emergent[j], label="Emergent phase"+str(j))
#plot(xdata/grid.sources[0].period, phase_difference, label="Phase difference")
#plot(xdata/grid.sources[0].period, fit_func(xdata, *popt), label="Curve-fit for Phase difference")
for j in range(len(phase_profile_emergent)):
popt, _ = curve_fit(fit_func, xdata, phase_profile_emergent[j])
plot(xdata/grid.sources[0].period, fit_func(xdata, *popt), label="Curve-fit for Phase in detector"+str(j))
#print(popt)
xlabel("x/lambda")
ylabel("phase/2pi")
legend()
#title("Curve-fit Phase difference: %5.6f*x**2 + %5.6f*x + %5.6f" % tuple(popt))
show()
figure(num="phase_profile_curve_fit")
for j in range(len(phase_profile_emergent)):
if j%4 == 0:
subplot(2, 4, j/4+1)
title("Detectors %1i to %2i" % tuple([j, j+3]))
xlabel("x/lambda")
ylabel("phase/2pi")
ylim(0, 1)
popt, _ = curve_fit(fit_func, xdata, phase_profile_emergent[j])
plot(xdata/grid.sources[0].period, fit_func(xdata, *popt), label="Curve-fit for Phase in detector"+str(j))
print(popt)
#legend()
suptitle("Curve-fiting (Consecutive order of detectors in each plot, blue: 1, orange: 2, green: 3, red: 4)")
show()
figure(num="phase_bent")
plot([x for x in range(30, 30+5*len(phase_profile_emergent), 5)], [detector[len(detector)//2] - detector[0] for detector in phase_profile_emergent], label="Phase profile 'bent'")
plot([x for x in range(30, 30+5*len(phase_profile_emergent), 5)], [0 for x in range(len(phase_profile_emergent))], label="Zero line")
xlabel("detector position")
title("Measure of 'bent' of different phase profiles as difference of phases at mid and at end of each detector")
legend()
show()
end_time = time()
print("Runtime:", end_time-start_time)
|
StarcoderdataPython
|
11203870
|
import tensorflow as tf
import numpy as np
import datetime as time
# class for the core of the architecture
class GNN:
def __init__(self, net, input_dim, output_dim, state_dim, max_it=50, optimizer=tf.train.AdamOptimizer, learning_rate=0.01, threshold=0.01, graph_based=False,
param=str(time.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')), config=None, tensorboard=False, mask_flag=False):
"""
create GNN instance. Feed this parameters:
:net: Net instance - it contains state network, output network, initialized weights, loss function and metric;
:input_dim: dimension of the input
:output_dim: dimension of the output
:state_dim: dimension for the state
:max_it: maximum number of iteration of the state convergence procedure
:optimizer: optimizer instance
:learning_rate: learning rate value
:threshold: value to establish the state convergence
:graph_based: flag to denote a graph based problem
:param: name of the experiment
:config: ConfigProto protocol buffer object, to set configuration options for a session
:tensorboard: boolean flag to activate tensorboard
"""
np.random.seed(0)
tf.set_random_seed(0)
self.tensorboard = tensorboard
self.max_iter = max_it
self.net = net
self.optimizer = optimizer(learning_rate, name="optim")
self.state_threshold = threshold
self.input_dim = input_dim
self.output_dim = output_dim
self.state_dim = state_dim
self.graph_based = graph_based
self.mask_flag = mask_flag
self.build()
self.session = tf.Session(config=config)
#self.session = tf.Session()
self.session.run(tf.global_variables_initializer())
self.init_l = tf.local_variables_initializer()
# parameter to monitor the learning via tensorboard and to save the model
if self.tensorboard:
self.merged_all = tf.summary.merge_all(key='always')
self.merged_train = tf.summary.merge_all(key='train')
self.merged_val = tf.summary.merge_all(key='val')
self.writer = tf.summary.FileWriter('tmp/' + param, self.session.graph)
# self.saver = tf.train.Saver()
# self.save_path = "tmp/" + param + "saves/model.ckpt"
def VariableState(self):
'''Define placeholders for input, output, state, state_old, arch-node conversion matrix'''
# placeholder for input and output
self.comp_inp = tf.placeholder(tf.float32, shape=(None, self.input_dim), name="input")
self.y = tf.placeholder(tf.float32, shape=(None, self.output_dim), name="target")
if self.mask_flag:
self.mask = tf.placeholder(tf.float32, name="mask")
# state(t) & state(t-1)
self.state = tf.placeholder(tf.float32, shape=(None, self.state_dim), name="state")
self.state_old = tf.placeholder(tf.float32, shape=(None, self.state_dim), name="old_state")
# arch-node conversion matrix
self.ArcNode = tf.sparse_placeholder(tf.float32, name="ArcNode")
# node-graph conversion matrix
if self.graph_based:
self.NodeGraph = tf.sparse_placeholder(tf.float32, name="NodeGraph")
else:
self.NodeGraph = tf.placeholder(tf.float32, name="NodeGraph")
def build(self):
'''build the architecture, setting variable, loss, training'''
# network
self.VariableState()
self.loss_op = self.Loop()
# loss
with tf.variable_scope('loss'):
if self.mask_flag:
self.loss = self.net.Loss(self.loss_op[0], self.y, mask=self.mask)
self.val_loss = self.net.Loss(self.loss_op[0], self.y, mask=self.mask)
else:
self.loss = self.net.Loss(self.loss_op[0], self.y)
# val loss
self.val_loss = self.net.Loss(self.loss_op[0], self.y)
if self.tensorboard:
self.summ_loss = tf.summary.scalar('loss', self.loss, collections=['train'])
self.summ_val_loss = tf.summary.scalar('val_loss', self.val_loss, collections=['val'])
# optimizer
with tf.variable_scope('train'):
self.grads = self.optimizer.compute_gradients(self.loss)
self.train_op = self.optimizer.apply_gradients(self.grads, name='train_op')
if self.tensorboard:
for index, grad in enumerate(self.grads):
tf.summary.histogram("{}-grad".format(self.grads[index][1].name), self.grads[index],
collections=['always'])
# metrics
with tf.variable_scope('metrics'):
if self.mask_flag:
self.metrics = self.net.Metric(self.y, self.loss_op[0], mask=self.mask)
else:
self.metrics = self.net.Metric(self.y, self.loss_op[0])
# val metric
with tf.variable_scope('val_metric'):
if self.mask_flag:
self.val_met = self.net.Metric(self.y, self.loss_op[0], mask=self.mask)
else:
self.val_met = self.net.Metric(self.y, self.loss_op[0])
if self.tensorboard:
self.summ_val_met = tf.summary.scalar('val_metric', self.val_met, collections=['always'])
def convergence(self, a, state, old_state, k):
with tf.variable_scope('Convergence'):
# body of the while cicle used to iteratively calculate state
# assign current state to old state
old_state = state
# grub states of neighboring node
gat = tf.gather(old_state, tf.cast(a[:, 1], tf.int32))
# slice to consider only label of the node and that of it's neighbor
# sl = tf.slice(a, [0, 1], [tf.shape(a)[0], tf.shape(a)[1] - 1])
# equivalent code
sl = a[:, 2:]
# concat with retrieved state
inp = tf.concat([sl, gat], axis=1)
# evaluate next state and multiply by the arch-node conversion matrix to obtain per-node states
layer1 = self.net.netSt(inp)
state = tf.sparse_tensor_dense_matmul(self.ArcNode, layer1)
# update the iteration counter
k = k + 1
return a, state, old_state, k
def condition(self, a, state, old_state, k):
# evaluate condition on the convergence of the state
with tf.variable_scope('condition'):
# evaluate distance by state(t) and state(t-1)
outDistance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(state, old_state)), 1) + 0.00000000001)
# vector showing item converged or not (given a certain threshold)
checkDistanceVec = tf.greater(outDistance, self.state_threshold)
c1 = tf.reduce_any(checkDistanceVec)
c2 = tf.less(k, self.max_iter)
return tf.logical_and(c1, c2)
def Loop(self):
# call to loop for the state computation and compute the output
# compute state
with tf.variable_scope('Loop'):
k = tf.constant(0)
res, st, old_st, num = tf.while_loop(self.condition, self.convergence,
[self.comp_inp, self.state, self.state_old, k])
if self.tensorboard:
self.summ_iter = tf.summary.scalar('iteration', num, collections=['always'])
if self.graph_based:
# stf = tf.transpose(tf.matmul(tf.transpose(st), self.NodeGraph))
stf = tf.sparse_tensor_dense_matmul(self.NodeGraph, st)
else:
stf = st
out = self.net.netOut(stf)
return out, num
def Train(self, inputs, ArcNode, target, step, nodegraph=0.0, mask=None):
''' train methods: has to receive the inputs, arch-node matrix conversion, target,
and optionally nodegraph indicator '''
# Creating a SparseTEnsor with the feeded ArcNode Matrix
arcnode_ = tf.SparseTensorValue(indices=ArcNode.indices, values=ArcNode.values,
dense_shape=ArcNode.dense_shape)
if self.graph_based:
nodegraph = tf.SparseTensorValue(indices=nodegraph.indices, values=nodegraph.values,
dense_shape=nodegraph.dense_shape)
if self.mask_flag:
fd = {self.NodeGraph: nodegraph, self.comp_inp: inputs,
self.state: np.zeros((ArcNode.dense_shape[0], self.state_dim)),
self.state_old: np.ones((ArcNode.dense_shape[0], self.state_dim)),
self.ArcNode: arcnode_, self.y: target, self.mask: mask}
else:
fd = {self.NodeGraph: nodegraph, self.comp_inp: inputs, self.state: np.zeros((ArcNode.dense_shape[0], self.state_dim)),
self.state_old: np.ones((ArcNode.dense_shape[0], self.state_dim)),
self.ArcNode: arcnode_, self.y: target}
if self.tensorboard:
_, loss, loop, merge_all, merge_tr = self.session.run(
[self.train_op, self.loss, self.loss_op, self.merged_all, self.merged_train],
feed_dict=fd)
if step % 100 == 0:
self.writer.add_summary(merge_all, step)
self.writer.add_summary(merge_tr, step)
else:
_, loss, loop = self.session.run(
[self.train_op, self.loss, self.loss_op],
feed_dict=fd)
return loss, loop[1]
def Validate(self, inptVal, arcnodeVal, targetVal, step, nodegraph=0.0, mask=None):
""" Takes care of the validation of the model - it outputs, regarding the set given as input,
the loss value, the accuracy (custom defined in the Net file), the number of iteration
in the convergence procedure """
arcnode_ = tf.SparseTensorValue(indices=arcnodeVal.indices, values=arcnodeVal.values,
dense_shape=arcnodeVal.dense_shape)
if self.graph_based:
nodegraph = tf.SparseTensorValue(indices=nodegraph.indices, values=nodegraph.values,
dense_shape=nodegraph.dense_shape)
if self.mask_flag:
fd_val = {self.NodeGraph: nodegraph, self.comp_inp: inptVal,
self.state: np.zeros((arcnodeVal.dense_shape[0], self.state_dim)),
self.state_old: np.ones((arcnodeVal.dense_shape[0], self.state_dim)),
self.ArcNode: arcnode_,
self.y: targetVal,
self.mask: mask}
else:
fd_val = {self.NodeGraph: nodegraph, self.comp_inp: inptVal,
self.state: np.zeros((arcnodeVal.dense_shape[0], self.state_dim)),
self.state_old: np.ones((arcnodeVal.dense_shape[0], self.state_dim)),
self.ArcNode: arcnode_,
self.y: targetVal}
if self.tensorboard:
loss_val, loop, merge_all, merge_val, metr = self.session.run(
[self.val_loss, self.loss_op, self.merged_all, self.merged_val, self.metrics], feed_dict=fd_val)
self.writer.add_summary(merge_all, step)
self.writer.add_summary(merge_val, step)
else:
loss_val, loop, metr = self.session.run(
[self.val_loss, self.loss_op, self.metrics], feed_dict=fd_val)
return loss_val, metr, loop[1]
def Evaluate(self, inputs, st, st_old, ArcNode, target):
'''evaluate method with initialized state -- not used for the moment: has to receive the inputs,
initialization for state(t) and state(t-1),
arch-node matrix conversion, target -- gives as output the accuracy on the set given as input'''
arcnode_ = tf.SparseTensorValue(indices=ArcNode.indices, values=ArcNode.values,
dense_shape=ArcNode.dense_shape)
fd = {self.comp_inp: inputs, self.state: st, self.state_old: st_old,
self.ArcNode: arcnode_, self.y: target}
_ = self.session.run([self.init_l])
met = self.session.run([self.metrics], feed_dict=fd)
return met
def Evaluate(self, inputs, ArcNode, target, nodegraph=0.0):
'''evaluate methods: has to receive the inputs, arch-node matrix conversion, target
-- gives as output the accuracy on the set given as input'''
arcnode_ = tf.SparseTensorValue(indices=ArcNode.indices, values=ArcNode.values,
dense_shape=ArcNode.dense_shape)
if self.graph_based:
nodegraph = tf.SparseTensorValue(indices=nodegraph.indices, values=nodegraph.values,
dense_shape=nodegraph.dense_shape)
fd = {self.NodeGraph: nodegraph, self.comp_inp: inputs, self.state: np.zeros((ArcNode.dense_shape[0], self.state_dim)),
self.state_old: np.ones((ArcNode.dense_shape[0], self.state_dim)),
self.ArcNode: arcnode_, self.y: target}
_ = self.session.run([self.init_l])
met = self.session.run([self.metrics], feed_dict=fd)
return met
def Predict(self, inputs, st, st_old, ArcNode):
''' predict methods with initialized state -- not used for the moment:: has to receive the inputs,
initialization for state(t) and state(t-1),
arch-node matrix conversion -- gives as output the output values of the output function (all the nodes output
for all the graphs (if node-based) or a single output for each graph (if graph based) '''
arcnode_ = tf.SparseTensorValue(indices=ArcNode.indices, values=ArcNode.values,
dense_shape=ArcNode.dense_shape)
fd = {self.comp_inp: inputs, self.state: st, self.state_old: st_old,
self.ArcNode: arcnode_}
pr = self.session.run([self.loss_op], feed_dict=fd)
return pr[0]
def Predict(self, inputs, ArcNode, nodegraph=0.0):
''' predict methods: has to receive the inputs, arch-node matrix conversion -- gives as output the output
values of the output function (all the nodes output
for all the graphs (if node-based) or a single output for each graph (if graph based) '''
arcnode_ = tf.SparseTensorValue(indices=ArcNode.indices, values=ArcNode.values,
dense_shape=ArcNode.dense_shape)
fd = {self.comp_inp: inputs, self.state: np.zeros((ArcNode.dense_shape[0], self.state_dim)),
self.state_old: np.ones((ArcNode.dense_shape[0], self.state_dim)),
self.ArcNode: arcnode_}
pr = self.session.run([self.loss_op], feed_dict=fd)
return pr[0]
|
StarcoderdataPython
|
6471431
|
# coding: utf-8
"""
Main window creation code.
"""
import sys
import gi
gi.require_version('Adw', '1')
gi.require_version('Gtk', '4.0')
from gi.repository import Adw, Gtk, Gio, GObject
from .views.assistant import AssistantContent # noqa: F401
from .views.skills import SkillsContent # noqa: F401
from .views.preferences import LapelPreferences
from .daemon import start_daemon, get_daemon
@Gtk.Template(resource_path='/org/dithernet/lapel/ui/window.ui')
class LapelWindow(Adw.ApplicationWindow):
"""Main window for the program."""
__gtype_name__ = 'LapelWindow'
content_stack = Gtk.Template.Child()
skill_search_button = Gtk.Template.Child()
assistant_page = Gtk.Template.Child()
no_connection = Gtk.Template.Child()
no_connection_status = Gtk.Template.Child()
skills_content = Gtk.Template.Child()
view_switcher = Gtk.Template.Child()
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.daemon = get_daemon()
self.daemon.client.on('error', self.handle_error)
self.daemon.client.on('mycroft.ready', self.ready)
self.no_connection.hide()
self.daemon.refresh_skills()
self.content_stack.connect('notify::visible-child', self.show_search_icon)
self.skill_search_button.bind_property(
'active',
self.skills_content.search_bar, 'search-mode-enabled',
flags=GObject.BindingFlags.BIDIRECTIONAL | GObject.BindingFlags.SYNC_CREATE
)
def show_search_icon(self, *args):
"""
Shows/hides the search icon based on whether the skill list is shown or not.
"""
if self.content_stack.get_visible_child_name() == 'skills':
vadjust = self.skills_content.skills_list.get_vadjustment()
vadjust.set_value(vadjust.get_lower())
self.skill_search_button.set_visible(True)
else:
self.skills_content.selection.set_selected(0)
self.skill_search_button.set_visible(False)
self.skill_search_button.set_active(False)
def handle_error(self, error):
"""Handles errors."""
print(error)
self.no_connection.show()
self.no_connection.set_reveal_child(True)
self.assistant_page.get_child().content_flap.set_reveal_flap(False)
self.view_switcher.set_sensitive(False)
def ready(self, *args):
"""Recovers after an error."""
self.no_connection.set_receives_default(False)
self.no_connection.set_reveal_child(False)
self.no_connection.hide()
self.view_switcher.set_sensitive(True)
self.daemon.refresh_skills()
@Gtk.Template(resource_path='/org/dithernet/lapel/ui/about.ui')
class AboutDialog(Gtk.AboutDialog):
"""Main about dialog for Assistant."""
__gtype_name__ = 'AboutDialog'
def __init__(self, parent):
Gtk.AboutDialog.__init__(self)
self.props.version = "0.1.0"
self.set_transient_for(parent)
class Application(Adw.Application):
def __init__(self):
super().__init__(
application_id='org.dithernet.lapel',
flags=Gio.ApplicationFlags.FLAGS_NONE,
resource_base_path='/org/dithernet/lapel/'
)
start_daemon()
def do_activate(self):
win = self.props.active_window
if not win:
win = LapelWindow(application=self)
self.create_action('about', self.on_about_action)
self.create_action('preferences', self.on_preferences_action)
win.present()
def on_about_action(self, widget, _):
about = AboutDialog(self.props.active_window)
about.present()
def on_preferences_action(self, widget, _):
preferences = LapelPreferences()
preferences.present()
def create_action(self, name, callback):
"""Add an action and connect it to a callback."""
action = Gio.SimpleAction.new(name, None)
action.connect("activate", callback)
self.add_action(action)
def main(version):
app = Application()
return app.run(sys.argv)
|
StarcoderdataPython
|
11349669
|
<reponame>djfurman/aws_alb_serverless_status<filename>alb_response/responder.py
import json as py_json
from http import HTTPStatus
def alb_response(
http_status, data=None, json=None, headers=None, is_base64_encoded=False
):
response_headers = {}
status_code = HTTPStatus(http_status)
status_description = build_status_description(int(status_code))
if json:
response_headers["content-type"] = "application/json"
if headers is not None:
response_headers.update(headers)
if isinstance(json, str):
payload = json
else:
payload = py_json.dumps(json)
else:
payload = data
if headers is None:
response_headers["content-type"] = "text/plain"
else:
response_headers.update(headers)
response = {
"isBase64Encoded": is_base64_encoded,
"statusCode": int(http_status),
"statusDescription": status_description,
"headers": response_headers
}
if payload:
response["body"] = payload
return response
def build_status_description(status_code):
"""Creates the strange format of status description required by the AWS ALB feature for serverless applications
Arguments:
status_code {int} -- http status code
Returns:
str -- AWS ALB compliant status description
"""
status = HTTPStatus(status_code)
return f"{int(status)} {str(status).split('.')[1].replace('_', ' ')}"
|
StarcoderdataPython
|
6664487
|
<filename>monorun/core/__init__.py
from .bbox_3d import *
from .evaluation import *
from .visualizer import *
|
StarcoderdataPython
|
3509259
|
# -*- coding: utf-8 -*-
"""
GUI from tkinter
逻辑层
"""
# 设置GUI
root = Tk()
w = Label(root, text = "Guess Number Game")
w.pack()
# 欢迎消息
mb.showinfo("Welcome", "Welcome to Guess Number Game")
# 处理信息
number = 59
while True:
# 让用户输入信息:
guess = dl.askinteger("Number", "What's your guess?")
if guess == number:
output = 'Bingo! you guessed it right, but you do not win any prizes!'
mb.showinfo("Hint: ", output)
break
elif guess < number:
output = 'No, the number is a higer than that'
mb.showinfo("Hint: ", output)
else:
output = 'No, the number is a lower than that'
mb.showinfo("Hint: ", output)
print('Done')
|
StarcoderdataPython
|
1711976
|
"""Loads All Image Resources"""
import os
import glob
from PySide6 import QtGui # pylint: disable=no-name-in-module # GitHub Actions cant import Qt modules
class ImageManager:
"""Loads Image Files
Attributes:
images (Dict{str: QtGui.QPixmap}): Dictionary of QPixmap objects
"""
def __init__(self):
self.images = {}
def load_images(self):
"""Recusively loads all Images in resources/"""
resource_folder = os.path.dirname(os.path.abspath(__file__))
for item in glob.glob(os.path.join(resource_folder, '**', '*'),
recursive=True):
filename, ext = os.path.splitext(os.path.basename(item))
if ext in ['.png', '.jpg']:
self.images[filename] = QtGui.QPixmap(item)
def get_image(self, name):
"""Get Image Object for selected filename"""
return self.images.get(name, QtGui.QPixmap())
|
StarcoderdataPython
|
3576155
|
<filename>run.py
import cv2
def mail():
import time
import smtplib
from email.message import EmailMessage
Address = "27-17-43/1, Sector 12, <NAME>"
msg = EmailMessage()
msg["Subject"] = "Fire Outbreak Detected"
msg["From"] = "<EMAIL>"
msg["To"] = "<EMAIL>"
msg.set_content(f"I'm FireDetectionSys,\nData:\nAddress - {Address}\nTime - {time.ctime()}")
with smtplib.SMTP_SSL("smtp.gmail.com", 465) as smtp:
smtp.login("<EMAIL>", "<PASSWORD>")
smtp.send_message(msg)
smtp.close()
def alarm():
from playsound import playsound
print("Fire Detected")
playsound("Alert.mp3")
def shutdown():
import time
import sys
print("System Shutting Down in ETA: 3s")
time.sleep(1)
print("1...")
time.sleep(1)
print("2...")
time.sleep(1)
print("3...")
time.sleep(1)
print("Shutting Down...")
sys.exit()
if __name__ == '__main__':
firedetector = cv2.CascadeClassifier('FDSys.xml')
capture = cv2.VideoCapture(0, cv2.CAP_DSHOW)
capture.set(3,640)
capture.set(4,480)
while (True):
ret, frame = capture.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
fire = firedetector.detectMultiScale(frame, 1.2, 5)
for (x,y,w,h) in fire:
cv2.destroyAllWindows()
alarm()
mail()
shutdown()
cv2.imshow('window', frame)
if cv2.waitKey(1) == ord('q'):
break
|
StarcoderdataPython
|
5094589
|
<gh_stars>0
import calendar
from datetime import datetime, timedelta
WEEKDAY_NAME_LIST = list(calendar.day_name)
def add_time(start_time, duration, start_day_name=None):
# Parsing "start_time" parameter's hours and miniutes values and,
# creating datetime obj with those data.
parsed_start_datetime = datetime.strptime(start_time, "%I:%M %p")
current_datetime = datetime.now()
start_datetime = current_datetime.replace(
hour=parsed_start_datetime.hour,
minute=parsed_start_datetime.minute,
second=0,
microsecond=0,
)
# Manually parsing "duration" param's hours and miniutes values and,
# creating timedelta obj with those data.
duration_hours, duration_minutes = duration.split(":")
duration_delta = timedelta(
hours=int(duration_hours),
minutes=int(duration_minutes),
)
# New datetime object witch point to future date. (According to provided duration.)
future_datetime = start_datetime + duration_delta
# Calculating how many days to future date.
duration_diff_as_days = duration_delta.days
if duration_delta.days > 0 and duration_delta.seconds > 0:
# When there is some days + hours available.
duration_diff_as_days = duration_delta.days + 1
# Custom string, that show in how many days, future day occur.
custom_duration_representation = ""
if duration_diff_as_days == 0 and start_datetime.day != future_datetime.day:
# When there is no 24 Hour difference, But hour difference pass above 12:00 PM which makes it next day.
custom_duration_representation = " (next day)"
elif duration_diff_as_days == 1:
custom_duration_representation = " (next day)"
elif duration_diff_as_days > 1:
custom_duration_representation = (
f" ({duration_diff_as_days} days later)"
)
# When custom start date is proviced (If not default is considered today),
# in here we calculate in which week day name, future day will be.
if start_day_name is not None:
start_day_index = WEEKDAY_NAME_LIST.index(start_day_name.title())
future_day_index = (start_day_index + duration_diff_as_days) % 7
custom_duration_representation = (
", "
+ WEEKDAY_NAME_LIST[future_day_index]
+ custom_duration_representation
)
# Formatting future date in certain format.
return future_datetime.strftime(
f"%-I:%M %p{custom_duration_representation}"
)
|
StarcoderdataPython
|
1672975
|
<reponame>ersilia-os/ersilia-automl-chem
from setuptools import setup, find_packages
with open("README.md", "r", encoding="utf8") as fh:
long_description = fh.read()
with open("requirements.txt") as f:
install_requires = f.read().splitlines()
install_requires += [
"melloddy_tuner @ git+git://github.com/melloddy/MELLODDY-TUNER#egg=melloddy_tuner"
]
setup(
name="zairachem",
version="0.0.1",
author="<NAME>",
author_email="<EMAIL>",
url="https://github.com/ersilia-os/zaira-chem",
description="Automated QSAR modeling for chemistry",
long_description=long_description,
long_description_content_type="text/markdown",
license="MIT",
python_requires=">=3.7",
install_requires=install_requires,
packages=find_packages(exclude=("utilities")),
entry_points={"console_scripts": ["zairachem=zairachem.cli:cli"]},
classifiers=[
"Programming Language :: Python :: 3.7",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
keywords="qsar machine-learning chemistry computer-aided-drug-design",
project_urls={"Source Code": "https://github.com/ersilia-os/zaira-chem"},
include_package_data=True,
)
|
StarcoderdataPython
|
11360977
|
<filename>marsyas-vamp/marsyas/src/qt5apps/MarGrid2/test-send-osc-to-margrid.py
#!/usr/bin/python
import osc
def myTest():
""" a simple function that creates the necesary sockets and enters an endless
loop sending and receiving OSC
"""
osc.init()
import time
i = 0
while 1:
i = i % 4
print i
osc.sendMsg("/x0", [i], "127.0.0.1", 9005)
osc.sendMsg("/y0", [i+1], "127.0.0.1", 9005)
osc.sendMsg("/x1", [i+2], "127.0.0.1", 9005)
osc.sendMsg("/y1", [i+3], "127.0.0.1", 9005)
osc.sendMsg("/update", [1], "127.0.0.1", 9005)
bundle = osc.createBundle()
time.sleep(1)
i += 1
osc.dontListen()
if __name__ == '__main__': myTest()
|
StarcoderdataPython
|
3361069
|
<reponame>BillyDoo/scrumboard<gh_stars>0
# Generated by Django 2.2 on 2019-04-17 13:42
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('scrumboard', '0001_initial'),
]
operations = [
migrations.RemoveField(
model_name='card',
name='story_points',
),
]
|
StarcoderdataPython
|
11336555
|
"""
Copyright 2022 RPANBot
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from nextcord import Colour, Embed, Message
from typing import Union
from utils.settings import Settings
class RPANEmbed(Embed):
def __init__(
self,
title: str,
description: str = "",
url: str = "",
colour: Union[int, Colour] = 0x00688B,
fields: dict = None,
thumbnail: str = None,
user=None,
footer_text: str = None,
bot=None,
message: Message = None,
) -> None:
"""
Generates a standard bot embed.
:param title: The embed's title.
:param description: The embed's description.
:param url: The URL permalink used in the title.
:param colour: The colour of the embed.
:param fields: The embed's fields (given as a dict).
:param thumbnail: The thumbnail that the embed should use.
:param user: The user who has requested a command (if any).
:param footer_text: Text that should be used in the embed's footer.
:param bot: The bot instance. This is used to get the custom prefix.
:param message: The message. This is used to get the custom prefix.
:return: An embed generated to the specifications.
"""
if fields is None:
fields = {}
if not isinstance(colour, Colour):
colour = Colour(colour)
super().__init__(
title=title,
description=description,
url=url,
colour=colour,
)
for key, value in fields.items():
self.add_field(name=key, value=value)
if thumbnail:
self.set_thumbnail(url=thumbnail)
if user:
requested_by_text = f"Requested by {user}"
if footer_text:
footer_text = requested_by_text + " ● " + footer_text
else:
footer_text = requested_by_text
if footer_text:
if message:
self.set_footer(text=f"{footer_text} ● {Settings().links.site}")
else:
self.set_footer(text=footer_text)
else:
if message:
self.set_footer(text=f"{Settings().links.site}")
|
StarcoderdataPython
|
6647695
|
<reponame>mithro/chromium-infra
# Copyright 2016 The Chromium Authors. All rights reserved.
# Use of this source code is govered by a BSD-style
# license that can be found in the LICENSE file or at
# https://developers.google.com/open-source/licenses/bsd
"""View objects to help display users and groups in UI templates."""
import logging
class GroupView(object):
"""Class to make it easier to display user group metadata."""
def __init__(self, name, num_members, group_settings, group_id):
self.name = name
self.num_members = num_members
self.who_can_view_members = str(group_settings.who_can_view_members)
self.group_id = group_id
self.detail_url = '/g/%s/' % group_id
|
StarcoderdataPython
|
6690865
|
class ShaderNodeLightFalloff:
pass
|
StarcoderdataPython
|
3294173
|
<filename>triplinker/chat/views/all_views.py
# This module is needed to pass all functions(views) to the app's urls module.
# !Triplinker modules:
# Current app modules.
from chat.views.dialog_views.views import *
from chat.views.group_chat_views.views import *
|
StarcoderdataPython
|
9647310
|
"""
mbed CMSIS-DAP debugger
Copyright (c) 2006-2013 ARM Limited
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from ...flash.flash import Flash
from ...coresight.coresight_target import CoreSightTarget
from ...core.memory_map import (FlashRegion, RamRegion, MemoryMap)
from ...debug.svd.loader import SVDFile
import logging
FLASH_ALGO = { 'load_address' : 0x10000000,
'instructions' : [
0xE00ABE00, 0x062D780D, 0x24084068, 0xD3000040, 0x1E644058, 0x1C49D1FA, 0x2A001E52, 0x4770D1F2,
0x47700b00, 0x2200483b, 0x21016302, 0x63426341, 0x63816341, 0x20024937, 0x70083940, 0x47704610,
0x47702000, 0xb08bb5f0, 0x25002032, 0x466a260f, 0xa905c261, 0x460f4c30, 0x47a04668, 0x28009805,
0x2034d10a, 0xc1614669, 0x9003482c, 0x46684639, 0x980547a0, 0xd0002800, 0xb00b2001, 0xb570bdf0,
0x0b04b08a, 0xa9052032, 0x4d239000, 0x460e9401, 0x46689402, 0x980547a8, 0xd10b2800, 0x90002034,
0x9003481e, 0x94029401, 0x46684631, 0x980547a8, 0xd0002800, 0xb00a2001, 0xb5f0bd70, 0x0b004604,
0x460eb08b, 0x91002132, 0x90029001, 0x4f12a905, 0x46684615, 0x47b8910a, 0x28009805, 0x2033d117,
0x02360a36, 0xc1714669, 0x9004480c, 0x990a4668, 0x980547b8, 0xd10a2800, 0x46692038, 0x4807c171,
0x46689004, 0x47b8990a, 0x28009805, 0x2001d0b5, 0x0000e7b3, 0x40048040, 0x1fff1ff1, 0x00002ee0,
0x00000000,
],
'pc_init' : 0x10000025,
'pc_eraseAll' : 0x10000045,
'pc_erase_sector' : 0x1000007F,
'pc_program_page' : 0x100000BB,
'static_base' : 0x10000120,
'begin_data' : 0x10000400, # Analyzer uses a max of 1 KB data (256 pages * 4 bytes / page)
# disable double buffering, no enought RAM
'begin_stack' : 0x10001800,
'min_program_length' : 256,
'analyzer_supported' : True,
'analyzer_address' : 0x10001800 # Analyzer 0x10001800..0x10001E00
};
class LPC11U35(CoreSightTarget):
VENDOR = "NXP"
MEMORY_MAP = MemoryMap(
FlashRegion( start=0x00000000, length=0x00010000, blocksize=0x1000, is_boot_memory=True,
algo=FLASH_ALGO),
RamRegion(name='sram1', start=0x10000000, length=0x2000),
RamRegion(name='sram2', start=0x20000000, length=0x0800)
)
def __init__(self, link):
super(LPC11U35, self).__init__(link, self.MEMORY_MAP)
self._svd_location = SVDFile.from_builtin("LPC11Uxx_v7.svd")
def reset_stop_on_reset(self, software_reset=None, map_to_user=True):
super(LPC11U35, self).reset_stop_on_reset(software_reset)
# Remap to use flash and set SP and SP accordingly
if map_to_user:
self.write_memory(0x40048000, 0x2, 32)
sp = self.read_memory(0x0)
pc = self.read_memory(0x4)
self.write_core_register('sp', sp)
self.write_core_register('pc', pc)
|
StarcoderdataPython
|
3565840
|
from typing import Optional, Union, Iterable, Sequence, Callable
from torch import Tensor
from torch.nn import ModuleList
from ..neko_module import NekoModule
from ..layer import Linear
from ..util import generate_inf_seq, ModuleFactory, compose
class MLP(NekoModule):
"""
The MLP module is a sequential module with multiple linear layers.
The activation, normalization and dropout are only applied to hidden layers.
Args:
neurons (``Sequence[int]``): The list of neurons for the MLP.
bias (``bool | Iterable[bool]``, optional): The bias option of Linear layers. Default ``True``.
build_activation (``() -> Module | Iterable[() -> Module]``, optional): The activation builder for linear
layers. Specify single module builder will apply to all linear layers except the final one.
Default ``None``.
build_normalization (``() -> Module | Iterable[() -> Module]``, optional): The normalization builder for linear
layers. Specify single module builder will apply to all linear layers except the final one.
Default ``None``.
normalization_after_activation (``bool``, optional): Set True then applying normalization after activation.
Default ``False``.
dropout_rate (``float``, optional): The dropout rate for this linear layer. 0 means no dropout applied.
Default ``0``.
Attributes:
layers (:class:`~torch.nn.ModuleList`): The module list of :class:`~tensorneko.layer.Linear` layers.
Examples:
Create a MLP module with 4 layers, with neurons 768 -> 1024 -> 512 -> 10.
Contains ReLU, BatchNorm and 0.5 Dropout.
.. code-block:: python
mlp = tensorneko.module.MLP(
neurons=[784, 1024, 512, 10],
build_activation=torch.nn.ReLU,
build_normalization=[
lambda: torch.nn.BatchNorm1d(1024),
lambda: torch.nn.BatchNorm1d(512)
],
dropout_rate=0.5
)
"""
def __init__(self, neurons: Sequence[int], bias: Union[bool, Iterable[bool]] = True,
build_activation: Optional[Union[ModuleFactory, Iterable[ModuleFactory]]] = None,
build_normalization: Optional[Union[ModuleFactory, Iterable[ModuleFactory]]] = None,
normalization_after_activation: bool = False, dropout_rate: float = 0.
):
super().__init__()
n_features = neurons[1:]
if type(bias) is bool:
bias = generate_inf_seq([bias])
if isinstance(build_activation, Callable) or build_activation is None:
build_activation = generate_inf_seq([build_activation])
if isinstance(build_normalization, Callable) or build_normalization is None:
build_normalization = generate_inf_seq([build_normalization])
self.layers: ModuleList[Linear] = ModuleList(
[Linear(neurons[i], neurons[i + 1], bias[i], build_activation[i], build_normalization[i],
normalization_after_activation, dropout_rate
) for i in range(len(n_features) - 1)
] + [
Linear(neurons[-2], neurons[-1], bias[len(neurons) - 2])
]
)
def forward(self, x: Tensor) -> Tensor:
f = compose(self.layers)
return f(x)
|
StarcoderdataPython
|
6440283
|
<gh_stars>0
import sys
import time
import os
import subprocess
import string
import random
import jk_utils
import jk_mounting
from .AbstractBackupConnector import AbstractBackupConnector
from .ThaniyaIO import ThaniyaIO
from .ThaniyaBackupContext import ThaniyaBackupContext
from .utils.temp import writeTempFile
class BackupConnector_CIFSMount(AbstractBackupConnector):
SMB_CLIENT_PATH = "/usr/bin/smbclient"
MOUNT_PATH = "/bin/mount"
SUDO_PATH = "/usr/bin/sudo"
UMOUNT_PATH = "/bin/umount"
def __init__(self):
self.__targetDirPath = None
self.__bIsMounted = False
#
def initialize(self, ctx:ThaniyaBackupContext, targetDirPath:str, nExpectedNumberOfBytesToWrite:int, parameters:dict):
self.__targetDirPath = targetDirPath
self._cifs_hostAddress = parameters.get("cifs_hostAddress")
self._cifs_login = parameters.get("cifs_login")
self._cifs_password = parameters.get("cifs_password")
#self._cifs_port = parameters.get("cifs_port", 445)
self._cifs_version = parameters.get("cifs_version")
self._cifs_shareName = parameters.get("cifs_shareName")
self._mountCIFS(
self.__targetDirPath,
self._cifs_hostAddress,
#self._cifs_port,
self._cifs_shareName,
self._cifs_login,
self._cifs_password,
self._cifs_version)
self.__bIsMounted = True
#
def deinitialize(self, ctx:ThaniyaBackupContext, bError:bool, statsContainer:dict):
if self.__bIsMounted:
# let's do 5 unmount attempts.
for i in range(0, 4):
time.sleep(1)
try:
self._umount(self.__targetDirPath)
return
except Exception as ee:
pass
time.sleep(1)
self._umount(self.__targetDirPath)
#
@property
def isReady(self) -> bool:
return self.__bIsMounted
#
@property
def targetDirPath(self) -> str:
return self.__targetDirPath
#
def dump(self):
print("BackupConnector_CIFSMount")
#for key in [ "_sessionID",
# "mountPoint" ]:
# print("\t" + key, "=", getattr(self, key))
#
def _mountCIFS(self,
localDirPath:str,
cifsHostAddress:str,
#cifsPort:int,
cifsShareName:str,
cifsLogin:str,
cifsPassword:str,
cifsVersion:str) -> bool:
assert isinstance(localDirPath, str)
assert os.path.isdir(localDirPath)
localDirPath = os.path.abspath(localDirPath)
mounter = jk_mounting.Mounter()
mip = mounter.getMountInfoByMountPoint(localDirPath)
if mip is not None:
raise Exception("Directory " + repr(localDirPath) + " already used by mount!")
credentialFilePath = writeTempFile("rw-------",
"username=" + cifsLogin + "\npassword=" + cifsPassword + "\n"
)
try:
options = [
"user=",
cifsLogin,
",credentials=",
credentialFilePath,
",rw",
]
if cifsVersion:
options.append(",vers=")
options.append(cifsVersion)
cmd = [
BackupConnector_CIFSMount.MOUNT_PATH,
"-t", "cifs",
"-o", "".join(options),
"//" + cifsHostAddress + "/" + cifsShareName,
localDirPath,
]
# print(" ".join(cmd))
p = subprocess.Popen(cmd, shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE)
p.stdin.write((cifsPassword + "\n").encode("utf-8"))
(stdout, stderr) = p.communicate(timeout=3)
if p.returncode != 0:
returnCode1 = p.returncode
stdOutData1 = stdout.decode("utf-8")
stdErrData1 = stderr.decode("utf-8")
print("Mount attempt 1:")
print("\tcmd =", cmd)
print("\treturnCode =", returnCode1)
print("\tstdOutData =", repr(stdOutData1))
print("\tstdErrData =", repr(stdErrData1))
raise Exception("Failed to mount device!")
return False
else:
return True
finally:
try:
os.unlink(credentialFilePath)
except:
pass
#
def _umount(self, localDirPath:str, throwExceptionOnError:bool = True) -> bool:
assert isinstance(localDirPath, str)
assert isinstance(throwExceptionOnError, bool)
cmd = [
BackupConnector_CIFSMount.UMOUNT_PATH,
localDirPath,
]
p = subprocess.Popen(cmd, shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
(stdout, stderr) = p.communicate(timeout=10)
if p.returncode != 0:
returnCode = p.returncode
stdOutData = stdout.decode("utf-8")
stdErrData = stderr.decode("utf-8")
print("Unmount attempt:")
print("\treturnCode =", returnCode)
print("\tstdOutData =", repr(stdOutData))
print("\tstdErrData =", repr(stdErrData))
if throwExceptionOnError:
raise Exception("Failed to umount device!")
return False
else:
return True
#
#
|
StarcoderdataPython
|
12853024
|
import common.assertions as assertions
def run(cfg):
assertions.validateAdminPassword(cfg)
|
StarcoderdataPython
|
9799461
|
<gh_stars>100-1000
# coding: utf-8
from __future__ import print_function
import os
# os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152
# os.environ["CUDA_VISIBLE_DEVICES"]="1"
from six.moves import xrange
import os
import tensorflow as tf
import numpy as np
import tensorflow.contrib.layers as ly
from tensorflow.examples.tutorials.mnist import input_data
from functools import partial
from lib.deform_conv_op import deform_conv_op
def lrelu(x, leak=0.3, name="lrelu"):
with tf.variable_scope(name):
f1 = 0.5 * (1 + leak)
f2 = 0.5 * (1 - leak)
return f1 * x + f2 * abs(x)
def deform_conv_2d(img, num_outputs, kernel_size=3, stride=2,
normalizer_fn=ly.batch_norm, activation_fn=lrelu, name=''):
img_shape = img.shape.as_list()
assert(len(img_shape) == 4)
N, C, H, W = img_shape
with tf.variable_scope('deform_conv' + '_' + name):
offset = ly.conv2d(img, num_outputs=2 * kernel_size**2, kernel_size=3,
stride=2, activation_fn=None, data_format='NCHW')
kernel = tf.get_variable(name='d_kernel', shape=(num_outputs, C, kernel_size, kernel_size),
initializer=tf.random_normal_initializer(0, 0.02))
res = deform_conv_op(img, filter=kernel, offset=offset, rates=[1, 1, 1, 1], padding='SAME',
strides=[1, 1, stride, stride], num_groups=1, deformable_group=1)
if normalizer_fn is not None:
res = normalizer_fn(res)
if activation_fn is not None:
res = activation_fn(res)
return res
batch_size = 64
z_dim = 128
learning_rate_ger = 5e-5
learning_rate_dis = 5e-5
device = '/gpu:0'
# update Citers times of critic in one iter(unless i < 25 or i % 500 == 0,
# i is iterstep)
Citers = 5
# the upper bound and lower bound of parameters in critic
clamp_lower = -0.01
clamp_upper = 0.01
# whether to use adam for parameter update, if the flag is set False, use tf.train.RMSPropOptimizer
# as recommended in paper
is_adam = False
# whether to use SVHN or MNIST, set false and MNIST is used
dataset_type = "mnist"
# img size
s = 32
channel = 1
# 'gp' for gp WGAN and 'regular' for vanilla
mode = 'regular'
# if 'gp' is chosen the corresponding lambda must be filled
lam = 10.
s2, s4, s8, s16 = int(s / 2), int(s / 4), int(s / 8), int(s / 16)
# hidden layer size if mlp is chosen, ignore if otherwise
ngf = 64
ndf = 64
# directory to store log, including loss and grad_norm of generator and critic
log_dir = './log_wgan'
ckpt_dir = './ckpt_wgan'
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
# max iter step, note the one step indicates that a Citers updates of
# critic and one update of generator
max_iter_step = 20000
# In[5]:
def generator_conv(z):
train = ly.fully_connected(
z, 4 * 4 * 512, activation_fn=lrelu, normalizer_fn=ly.batch_norm)
train = tf.reshape(train, (-1, 4, 4, 512))
train = ly.conv2d_transpose(train, 256, 3, stride=2,
activation_fn=tf.nn.relu, normalizer_fn=ly.batch_norm, padding='SAME', weights_initializer=tf.random_normal_initializer(0, 0.02))
train = ly.conv2d_transpose(train, 128, 3, stride=2,
activation_fn=tf.nn.relu, normalizer_fn=ly.batch_norm, padding='SAME', weights_initializer=tf.random_normal_initializer(0, 0.02))
train = ly.conv2d_transpose(train, 64, 3, stride=2,
activation_fn=tf.nn.relu, normalizer_fn=ly.batch_norm, padding='SAME', weights_initializer=tf.random_normal_initializer(0, 0.02))
train = ly.conv2d_transpose(train, 1, 3, stride=1,
activation_fn=tf.nn.tanh, padding='SAME', weights_initializer=tf.random_normal_initializer(0, 0.02))
print(train.name)
return train
# In[7]:
def critic_conv(img, reuse=False):
with tf.variable_scope('critic') as scope:
if reuse:
scope.reuse_variables()
size = 64
img = tf.transpose(img, [0, 3, 1, 2])
img = deform_conv_2d(img, num_outputs=size, kernel_size=3,
stride=2, activation_fn=lrelu, name='conv3')
img = deform_conv_2d(img, num_outputs=size * 2, kernel_size=3,
stride=2, activation_fn=lrelu, normalizer_fn=ly.batch_norm, name='conv4')
img = ly.conv2d(img, num_outputs=size * 4, kernel_size=3,
stride=2, activation_fn=lrelu, normalizer_fn=ly.batch_norm, data_format="NCHW")
img = ly.conv2d(img, num_outputs=size * 8, kernel_size=3,
stride=2, activation_fn=lrelu, normalizer_fn=ly.batch_norm, data_format="NCHW")
logit = ly.fully_connected(tf.reshape(
img, [batch_size, -1]), 1, activation_fn=None)
return logit
# In[9]:
def build_graph():
# z = tf.placeholder(tf.float32, shape=(batch_size, z_dim))
noise_dist = tf.contrib.distributions.Normal(0., 1.)
z = noise_dist.sample((batch_size, z_dim))
generator = generator_mlp if is_mlp else generator_conv
critic = critic_mlp if is_mlp else critic_conv
with tf.variable_scope('generator'):
train = generator(z)
real_data = tf.placeholder(
dtype=tf.float32, shape=(batch_size, s, s, channel))
print(real_data.shape)
print(train.shape)
true_logit = critic(real_data)
fake_logit = critic(train, reuse=True)
c_loss = tf.reduce_mean(fake_logit - true_logit)
if mode is 'gp':
alpha_dist = tf.contrib.distributions.Uniform(low=0., high=1.)
alpha = alpha_dist.sample((batch_size, 1, 1, 1))
interpolated = real_data + alpha * (train - real_data)
inte_logit = critic(interpolated, reuse=True)
gradients = tf.gradients(inte_logit, [interpolated, ])[0]
grad_l2 = tf.sqrt(tf.reduce_sum(tf.square(gradients), axis=[1, 2, 3]))
gradient_penalty = tf.reduce_mean((grad_l2 - 1)**2)
gp_loss_sum = tf.summary.scalar("gp_loss", gradient_penalty)
grad = tf.summary.scalar("grad_norm", tf.nn.l2_loss(gradients))
c_loss += lam * gradient_penalty
g_loss = tf.reduce_mean(-fake_logit)
g_loss_sum = tf.summary.scalar("g_loss", g_loss)
c_loss_sum = tf.summary.scalar("c_loss", c_loss)
img_sum = tf.summary.image("img", train, max_outputs=10)
theta_g = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope='generator')
theta_c = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope='critic')
counter_g = tf.Variable(trainable=False, initial_value=0, dtype=tf.int32)
opt_g = ly.optimize_loss(loss=g_loss, learning_rate=learning_rate_ger,
optimizer=partial(
tf.train.AdamOptimizer, beta1=0.5, beta2=0.9) if is_adam is True else tf.train.RMSPropOptimizer,
variables=theta_g, global_step=counter_g,
summaries=['gradient_norm'], clip_gradients=100.)
counter_c = tf.Variable(trainable=False, initial_value=0, dtype=tf.int32)
opt_c = ly.optimize_loss(loss=c_loss, learning_rate=learning_rate_dis,
optimizer=partial(
tf.train.AdamOptimizer, beta1=0.5, beta2=0.9) if is_adam is True else tf.train.RMSPropOptimizer,
variables=theta_c, global_step=counter_c,
summaries=['gradient_norm'], clip_gradients=100.)
if mode is 'regular':
clipped_var_c = [tf.assign(var, tf.clip_by_value(
var, clamp_lower, clamp_upper)) for var in theta_c]
# merge the clip operations on critic variables
with tf.control_dependencies([opt_c]):
opt_c = tf.tuple(clipped_var_c)
if not mode in ['gp', 'regular']:
raise(NotImplementedError('Only two modes'))
return opt_g, opt_c, real_data
# In[ ]:
def main():
dataset = input_data.read_data_sets('MNIST_data', one_hot=True)
with tf.device(device):
opt_g, opt_c, real_data = build_graph()
merged_all = tf.summary.merge_all()
saver = tf.train.Saver()
config = tf.ConfigProto(allow_soft_placement=True,
log_device_placement=True)
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.8
def next_feed_dict():
train_img = dataset.train.next_batch(batch_size)[0]
train_img = 2 * train_img - 1
train_img = np.reshape(train_img, (-1, 28, 28))
npad = ((0, 0), (2, 2), (2, 2))
train_img = np.pad(train_img, pad_width=npad,
mode='constant', constant_values=-1)
train_img = np.expand_dims(train_img, -1)
feed_dict = {real_data: train_img}
return feed_dict
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
for i in range(max_iter_step):
if i < 25 or i % 500 == 0:
citers = 100
else:
citers = Citers
for j in range(citers):
feed_dict = next_feed_dict()
if i % 100 == 99 and j == 0:
run_options = tf.RunOptions(
trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
_, merged = sess.run([opt_c, merged_all], feed_dict=feed_dict,
options=run_options, run_metadata=run_metadata)
summary_writer.add_summary(merged, i)
summary_writer.add_run_metadata(
run_metadata, 'critic_metadata {}'.format(i), i)
else:
sess.run(opt_c, feed_dict=feed_dict)
feed_dict = next_feed_dict()
if i % 100 == 99:
_, merged = sess.run([opt_g, merged_all], feed_dict=feed_dict,
options=run_options, run_metadata=run_metadata)
summary_writer.add_summary(merged, i)
summary_writer.add_run_metadata(
run_metadata, 'generator_metadata {}'.format(i), i)
else:
sess.run(opt_g, feed_dict=feed_dict)
if i % 1000 == 999:
saver.save(sess, os.path.join(
ckpt_dir, "model.ckpt"), global_step=i)
main()
|
StarcoderdataPython
|
4963667
|
import boto3
import pytest
from tests.helper_functions import set_boto_credentials # pylint: disable=unused-import
from tests.sagemaker.mock import mock_sagemaker
@pytest.fixture
def sagemaker_client():
return boto3.client("sagemaker", region_name="us-west-2")
def create_sagemaker_model(sagemaker_client, model_name):
return sagemaker_client.create_model(
ExecutionRoleArn='arn:aws:iam::012345678910:role/sample-role',
ModelName=model_name,
PrimaryContainer={
'Image': '012345678910.dkr.ecr.us-west-2.amazonaws.com/sample-container',
}
)
def create_endpoint_config(sagemaker_client, endpoint_config_name, model_name):
return sagemaker_client.create_endpoint_config(
EndpointConfigName=endpoint_config_name,
ProductionVariants=[
{
'VariantName': 'sample-variant',
'ModelName': model_name,
'InitialInstanceCount': 1,
'InstanceType': 'ml.m4.xlarge',
'InitialVariantWeight': 1.0,
},
],
)
@mock_sagemaker
def test_created_model_is_listed_by_list_models_function(sagemaker_client):
model_name = "sample-model"
create_sagemaker_model(
sagemaker_client=sagemaker_client, model_name=model_name)
models_response = sagemaker_client.list_models()
assert "Models" in models_response
models = models_response["Models"]
assert all(["ModelName" in model for model in models])
assert model_name in [model["ModelName"] for model in models]
@mock_sagemaker
def test_create_model_returns_arn_containing_model_name(sagemaker_client):
model_name = "sample-model"
model_create_response = create_sagemaker_model(
sagemaker_client=sagemaker_client, model_name=model_name)
assert "ModelArn" in model_create_response
assert model_name in model_create_response["ModelArn"]
@mock_sagemaker
def test_creating_model_with_name_already_in_use_raises_exception(sagemaker_client):
model_name = "sample-model-name"
create_sagemaker_model(sagemaker_client=sagemaker_client, model_name=model_name)
with pytest.raises(ValueError):
create_sagemaker_model(sagemaker_client=sagemaker_client, model_name=model_name)
@mock_sagemaker
def test_all_models_are_listed_after_creating_many_models(sagemaker_client):
model_names = []
for i in range(100):
model_name = "sample-model-{idx}".format(idx=i)
model_names.append(model_name)
create_sagemaker_model(sagemaker_client=sagemaker_client, model_name=model_name)
listed_models = sagemaker_client.list_models()["Models"]
listed_model_names = [model["ModelName"] for model in listed_models]
for model_name in model_names:
assert model_name in listed_model_names
@mock_sagemaker
def test_describe_model_response_contains_expected_attributes(sagemaker_client):
model_name = "sample-model"
execution_role_arn = "arn:aws:iam::012345678910:role/sample-role"
primary_container = {
"Image": "012345678910.dkr.ecr.us-west-2.amazonaws.com/sample-container",
}
sagemaker_client.create_model(
ModelName=model_name,
ExecutionRoleArn=execution_role_arn,
PrimaryContainer=primary_container,
)
describe_model_response = sagemaker_client.describe_model(ModelName=model_name)
assert "CreationTime" in describe_model_response
assert "ModelArn" in describe_model_response
assert "ExecutionRoleArn" in describe_model_response
assert describe_model_response["ExecutionRoleArn"] == execution_role_arn
assert "ModelName" in describe_model_response
assert describe_model_response["ModelName"] == model_name
assert "PrimaryContainer" in describe_model_response
assert describe_model_response["PrimaryContainer"] == primary_container
@mock_sagemaker
def test_describe_model_throws_exception_for_nonexistent_model(sagemaker_client):
with pytest.raises(ValueError):
sagemaker_client.describe_model(ModelName="nonexistent-model")
@mock_sagemaker
def test_model_is_no_longer_listed_after_deletion(sagemaker_client):
model_name = "sample-model-name"
create_sagemaker_model(sagemaker_client=sagemaker_client, model_name=model_name)
sagemaker_client.delete_model(ModelName=model_name)
listed_models = sagemaker_client.list_models()["Models"]
listed_model_names = [model["ModelName"] for model in listed_models]
assert model_name not in listed_model_names
@mock_sagemaker
def test_created_endpoint_config_is_listed_by_list_endpoints_function(sagemaker_client):
model_name = "sample-model"
create_sagemaker_model(sagemaker_client=sagemaker_client, model_name=model_name)
endpoint_config_name = "sample-config"
create_endpoint_config(
sagemaker_client=sagemaker_client,
endpoint_config_name=endpoint_config_name,
model_name=model_name)
endpoint_configs_response = sagemaker_client.list_endpoint_configs()
assert "EndpointConfigs" in endpoint_configs_response
endpoint_configs = endpoint_configs_response["EndpointConfigs"]
assert all([
"EndpointConfigName" in endpoint_config for endpoint_config in endpoint_configs])
assert endpoint_config_name in [
endpoint_config["EndpointConfigName"] for endpoint_config in endpoint_configs
]
@mock_sagemaker
def test_create_endpoint_config_returns_arn_containing_config_name(
sagemaker_client):
model_name = "sample-model"
create_sagemaker_model(sagemaker_client=sagemaker_client, model_name=model_name)
endpoint_config_name = "sample-config"
create_config_response = create_endpoint_config(
sagemaker_client=sagemaker_client,
endpoint_config_name=endpoint_config_name,
model_name=model_name)
assert "EndpointConfigArn" in create_config_response
assert endpoint_config_name in create_config_response["EndpointConfigArn"]
@mock_sagemaker
def test_creating_endpoint_config_with_name_already_in_use_raises_exception(sagemaker_client):
model_name = "sample-model"
create_sagemaker_model(sagemaker_client=sagemaker_client, model_name=model_name)
endpoint_config_name = "sample-config"
create_endpoint_config(
sagemaker_client=sagemaker_client,
endpoint_config_name=endpoint_config_name,
model_name=model_name)
with pytest.raises(ValueError):
create_endpoint_config(
sagemaker_client=sagemaker_client,
endpoint_config_name=endpoint_config_name,
model_name=model_name)
@mock_sagemaker
def test_all_endpoint_configs_are_listed_after_creating_many_configs(sagemaker_client):
model_name = "sample-model"
create_sagemaker_model(sagemaker_client=sagemaker_client, model_name=model_name)
endpoint_config_names = []
for i in range(100):
endpoint_config_name = "sample-config-{idx}".format(idx=i)
endpoint_config_names.append(endpoint_config_name)
create_endpoint_config(
sagemaker_client=sagemaker_client,
endpoint_config_name=endpoint_config_name,
model_name=model_name)
listed_endpoint_configs = sagemaker_client.list_endpoint_configs()["EndpointConfigs"]
listed_endpoint_config_names = [
endpoint_config["EndpointConfigName"]
for endpoint_config in listed_endpoint_configs]
for endpoint_config_name in endpoint_config_names:
assert endpoint_config_name in listed_endpoint_config_names
@mock_sagemaker
def test_describe_endpoint_config_response_contains_expected_attributes(sagemaker_client):
model_name = "sample-model"
create_sagemaker_model(sagemaker_client=sagemaker_client, model_name=model_name)
endpoint_config_name = "sample-config"
production_variants = [
{
'VariantName': 'sample-variant',
'ModelName': model_name,
'InitialInstanceCount': 1,
'InstanceType': 'ml.m4.xlarge',
'InitialVariantWeight': 1.0,
},
]
sagemaker_client.create_endpoint_config(
EndpointConfigName=endpoint_config_name,
ProductionVariants=production_variants,
)
describe_endpoint_config_response = sagemaker_client.describe_endpoint_config(
EndpointConfigName=endpoint_config_name)
assert "CreationTime" in describe_endpoint_config_response
assert "EndpointConfigArn" in describe_endpoint_config_response
assert "EndpointConfigName" in describe_endpoint_config_response
assert describe_endpoint_config_response["EndpointConfigName"] == endpoint_config_name
assert "ProductionVariants" in describe_endpoint_config_response
assert describe_endpoint_config_response["ProductionVariants"] == production_variants
@mock_sagemaker
def test_describe_endpoint_config_throws_exception_for_nonexistent_config(sagemaker_client):
with pytest.raises(ValueError):
sagemaker_client.describe_endpoint_config(EndpointConfigName="nonexistent-config")
@mock_sagemaker
def test_endpoint_config_is_no_longer_listed_after_deletion(sagemaker_client):
model_name = "sample-model-name"
create_sagemaker_model(sagemaker_client=sagemaker_client, model_name=model_name)
endpoint_config_name = "sample-config"
create_endpoint_config(
sagemaker_client=sagemaker_client,
endpoint_config_name=endpoint_config_name,
model_name=model_name)
sagemaker_client.delete_endpoint_config(EndpointConfigName=endpoint_config_name)
listed_endpoint_configs = sagemaker_client.list_endpoint_configs()["EndpointConfigs"]
listed_endpoint_config_names = [
endpoint_config["EndpointConfigName"] for endpoint_config in listed_endpoint_configs
]
assert endpoint_config_name not in listed_endpoint_config_names
@mock_sagemaker
def test_created_endpoint_is_listed_by_list_endpoints_function(sagemaker_client):
model_name = "sample-model"
create_sagemaker_model(sagemaker_client=sagemaker_client, model_name=model_name)
endpoint_config_name = "sample-config"
create_endpoint_config(
sagemaker_client=sagemaker_client,
endpoint_config_name=endpoint_config_name,
model_name=model_name)
endpoint_name = "sample-endpoint"
sagemaker_client.create_endpoint(
EndpointConfigName=endpoint_config_name,
EndpointName=endpoint_name,
Tags=[
{
"Key": "Some Key",
"Value": "Some Value",
},
],
)
endpoints_response = sagemaker_client.list_endpoints()
assert "Endpoints" in endpoints_response
endpoints = endpoints_response["Endpoints"]
assert all(["EndpointName" in endpoint for endpoint in endpoints])
assert endpoint_name in [endpoint["EndpointName"] for endpoint in endpoints]
@mock_sagemaker
def test_create_endpoint_returns_arn_containing_endpoint_name(
sagemaker_client):
model_name = "sample-model"
create_sagemaker_model(sagemaker_client=sagemaker_client, model_name=model_name)
endpoint_config_name = "sample-config"
create_endpoint_config(
sagemaker_client=sagemaker_client,
endpoint_config_name=endpoint_config_name,
model_name=model_name)
endpoint_name = "sample-endpoint"
create_endpoint_response = sagemaker_client.create_endpoint(
EndpointConfigName=endpoint_config_name,
EndpointName=endpoint_name,
Tags=[
{
"Key": "Some Key",
"Value": "Some Value",
},
],
)
assert "EndpointArn" in create_endpoint_response
assert endpoint_name in create_endpoint_response["EndpointArn"]
@mock_sagemaker
def test_creating_endpoint_with_name_already_in_use_raises_exception(sagemaker_client):
model_name = "sample-model"
create_sagemaker_model(sagemaker_client=sagemaker_client, model_name=model_name)
endpoint_config_name = "sample-config"
create_endpoint_config(
sagemaker_client=sagemaker_client,
endpoint_config_name=endpoint_config_name,
model_name=model_name)
endpoint_name = "sample-endpoint"
sagemaker_client.create_endpoint(
EndpointConfigName=endpoint_config_name,
EndpointName=endpoint_name,
Tags=[
{
"Key": "Some Key",
"Value": "Some Value",
},
],
)
with pytest.raises(ValueError):
sagemaker_client.create_endpoint(
EndpointConfigName=endpoint_config_name,
EndpointName=endpoint_name,
Tags=[
{
"Key": "Some Key",
"Value": "Some Value",
},
],
)
@mock_sagemaker
def test_all_endpoint_are_listed_after_creating_many_endpoints(sagemaker_client):
model_name = "sample-model"
create_sagemaker_model(sagemaker_client=sagemaker_client, model_name=model_name)
endpoint_config_name = "sample-config"
create_endpoint_config(
sagemaker_client=sagemaker_client,
endpoint_config_name=endpoint_config_name,
model_name=model_name)
endpoint_names = []
for i in range(100):
endpoint_name = "sample-endpoint-{idx}".format(idx=i)
endpoint_names.append(endpoint_name)
sagemaker_client.create_endpoint(
EndpointConfigName=endpoint_config_name,
EndpointName=endpoint_name,
Tags=[
{
"Key": "Some Key",
"Value": "Some Value",
},
],
)
listed_endpoints = sagemaker_client.list_endpoints()["Endpoints"]
listed_endpoint_names = [endpoint["EndpointName"] for endpoint in listed_endpoints]
for endpoint_name in endpoint_names:
assert endpoint_name in listed_endpoint_names
@mock_sagemaker
def test_describe_endpoint_response_contains_expected_attributes(sagemaker_client):
model_name = "sample-model"
create_sagemaker_model(sagemaker_client=sagemaker_client, model_name=model_name)
endpoint_config_name = "sample-config"
production_variants = [
{
'VariantName': 'sample-variant',
'ModelName': model_name,
'InitialInstanceCount': 1,
'InstanceType': 'ml.m4.xlarge',
'InitialVariantWeight': 1.0,
},
]
sagemaker_client.create_endpoint_config(
EndpointConfigName=endpoint_config_name,
ProductionVariants=production_variants,
)
endpoint_name = "sample-endpoint"
sagemaker_client.create_endpoint(
EndpointName=endpoint_name,
EndpointConfigName=endpoint_config_name,
)
describe_endpoint_response = sagemaker_client.describe_endpoint(EndpointName=endpoint_name)
assert "CreationTime" in describe_endpoint_response
assert "LastModifiedTime" in describe_endpoint_response
assert "EndpointArn" in describe_endpoint_response
assert "EndpointStatus" in describe_endpoint_response
assert "ProductionVariants" in describe_endpoint_response
@mock_sagemaker
def test_describe_endpoint_throws_exception_for_nonexistent_endpoint(sagemaker_client):
with pytest.raises(ValueError):
sagemaker_client.describe_endpoint(EndpointName="nonexistent-endpoint")
@mock_sagemaker
def test_endpoint_is_no_longer_listed_after_deletion(sagemaker_client):
model_name = "sample-model-name"
create_sagemaker_model(sagemaker_client=sagemaker_client, model_name=model_name)
endpoint_config_name = "sample-config"
create_endpoint_config(
sagemaker_client=sagemaker_client,
endpoint_config_name=endpoint_config_name,
model_name=model_name)
endpoint_name = "sample-endpoint"
sagemaker_client.create_endpoint(
EndpointConfigName=endpoint_config_name,
EndpointName=endpoint_name,
)
sagemaker_client.delete_endpoint(EndpointName=endpoint_name)
listed_endpoints = sagemaker_client.list_endpoints()["Endpoints"]
listed_endpoint_names = [endpoint["EndpointName"] for endpoint in listed_endpoints]
assert endpoint_name not in listed_endpoint_names
@mock_sagemaker
def test_update_endpoint_modifies_config_correctly(sagemaker_client):
model_name = "sample-model-name"
create_sagemaker_model(sagemaker_client=sagemaker_client, model_name=model_name)
first_endpoint_config_name = "sample-config-1"
create_endpoint_config(
sagemaker_client=sagemaker_client,
endpoint_config_name=first_endpoint_config_name,
model_name=model_name)
second_endpoint_config_name = "sample-config-2"
create_endpoint_config(
sagemaker_client=sagemaker_client,
endpoint_config_name=second_endpoint_config_name,
model_name=model_name)
endpoint_name = "sample-endpoint"
sagemaker_client.create_endpoint(
EndpointConfigName=first_endpoint_config_name,
EndpointName=endpoint_name,
)
first_describe_endpoint_response = sagemaker_client.describe_endpoint(
EndpointName=endpoint_name)
assert first_describe_endpoint_response["EndpointConfigName"] == first_endpoint_config_name
sagemaker_client.update_endpoint(
EndpointName=endpoint_name, EndpointConfigName=second_endpoint_config_name)
second_describe_endpoint_response = sagemaker_client.describe_endpoint(
EndpointName=endpoint_name)
assert second_describe_endpoint_response["EndpointConfigName"] == second_endpoint_config_name
@mock_sagemaker
def test_update_endpoint_with_nonexistent_config_throws_exception(sagemaker_client):
model_name = "sample-model-name"
create_sagemaker_model(sagemaker_client=sagemaker_client, model_name=model_name)
endpoint_config_name = "sample-config"
create_endpoint_config(
sagemaker_client=sagemaker_client,
endpoint_config_name=endpoint_config_name,
model_name=model_name)
endpoint_name = "sample-endpoint"
sagemaker_client.create_endpoint(
EndpointConfigName=endpoint_config_name,
EndpointName=endpoint_name,
)
with pytest.raises(ValueError):
sagemaker_client.update_endpoint(
EndpointName=endpoint_name, EndpointConfigName="nonexistent-config")
|
StarcoderdataPython
|
5145260
|
<filename>string concordinate.py
a=str(input("Enter the first string: \n"))
b=str(input("Enter the second string; \n"))
print(a+" "+b)
|
StarcoderdataPython
|
1966911
|
import random
import heapq
import datetime
import networkx as nx
import math
import argparse
import matplotlib.pyplot as plt
import time
import pickle
import numpy as np
import operator
save_dir = '../datasets/Flickr/'
dimension = 4
nodeDic = {}
edgeDic = {}
degree = []
G = pickle.load(open(save_dir+'Small_Final_SubG.G', 'rb'))
nodeDic = pickle.load(open(save_dir+'Small_nodeFeatures.dic', 'rb'))
for u in G.nodes():
for v in G[u]:
edgeDic[(u,v)] = np.outer(nodeDic[u][1], nodeDic[v][0]).reshape(-1)
pickle.dump(edgeDic, open(save_dir+'Small_edgeFeatures.dic', "wb" ))
|
StarcoderdataPython
|
1638589
|
import cv2
import numpy as np
before = cv2.imread('2.png')
b, g, r = cv2.split(before)
np.multiply(b, 1.5, out=b, casting="unsafe")
np.multiply(g, .75, out=g, casting="unsafe")
np.multiply(r, 1.25, out=r, casting="unsafe")
after = cv2.merge([b, g, r])
cv2.imshow('before', before)
cv2.imshow('after', after)
cv2.waitKey()
|
StarcoderdataPython
|
6418362
|
import copy
import itertools
from django import template
register = template.Library()
def previous_current_next(items):
"""
From http://www.wordaligned.org/articles/zippy-triples-served-with-python
Creates an iterator which returns (previous, current, next) triples,
with ``None`` filling in when there is no previous or next
available.
"""
extend = itertools.chain([None], items, [None])
previous, current, next = itertools.tee(extend, 3)
try:
current.next()
next.next()
next.next()
except StopIteration:
pass
return itertools.izip(previous, current, next)
<EMAIL>
def tree_structure(forums):
structure = {}
for previous, current, next in previous_current_next(forums):
if previous:
structure['new_level'] = previous.level < current.level
else:
structure['new_level'] = True
if next:
structure['closed_levels'] = range(current.level, next.level, -1)
else:
structure['closed_levels'] = range(current.level, -1, -1)
yield current, copy.deepcopy(structure)
register.filter(tree_structure)
#<EMAIL>.inclusion_tag('forum/render_forum_list.html')
def render_forum_list(forum_list):
return {'forum_list': forum_list}
register.inclusion_tag('forum/render_forum_list.html')(render_forum_list)
#@<EMAIL>.inclusion_tag('forum/render_reply_form.html')
def render_reply_form(thread, form):
return {'thread': thread, 'form': form}
register.inclusion_tag('forum/render_reply_form.html')(render_reply_form)
#@<EMAIL>.inclusion_tag('forum/render_parent_list.html')
def render_parent_list(parent_list):
return {'parent_list': parent_list}
register.inclusion_tag('forum/render_parent_list.html')(render_parent_list)
|
StarcoderdataPython
|
1604846
|
<gh_stars>1-10
import base64
import json
import platform
import sys
import uuid
from typing import Dict, List
import attr
import requests
from .version import __version__
@attr.s
class DbtRpcClient(object):
host: str = attr.ib(default="0.0.0.0")
port: int = attr.ib(validator=attr.validators.instance_of(int), default=8580)
jsonrpc_version: str = attr.ib(validator=attr.validators.instance_of(str), default="2.0")
url: str = attr.ib(init=False)
def __attrs_post_init__(self):
self.url = f"http://{self.host}:{self.port}/jsonrpc"
@staticmethod
def _construct_user_agent() -> str:
'''Constructs a standard User Agent string to be used in headers for HTTP requests.'''
client = f"dbt-rpc-client/{__version__}"
python_version = f"Python/{sys.version_info.major}.{sys.version_info.minor}.{sys.version_info.micro}"
system_info = f"{platform.system()}/{platform.release()}"
user_agent = " ".join([python_version, client, system_info])
return user_agent
def _construct_headers(self) -> Dict:
'''Constructs a standard set of headers for HTTP requests.'''
headers = requests.utils.default_headers()
headers["User-Agent"] = self._construct_user_agent()
headers["Content-Type"] = "application/json"
headers["Accept"] = "application/json"
return headers
def _post(self, data: str = None) -> requests.Response:
'''Constructs a standard way of making a POST request to the dbt RPC server.'''
headers = self._construct_headers()
response = requests.post(self.url, headers=headers, data=data)
response.raise_for_status()
return response
def _default_request(self, method: str) -> Dict:
data = {
"jsonrpc": self.jsonrpc_version,
"method": method,
"id": str(uuid.uuid1()),
"params": {}
}
return data
def _selection(self, *, models: List[str] = None, select: List[str] = None, exclude: List[str] = None) -> Dict:
params = {}
if models is not None:
params["models"] = ' '.join(set(models))
if select is not None:
params["select"] = ' '.join(set(select))
if exclude is not None:
params["exclude"] = ' '.join(set(exclude))
return params
def status(self) -> requests.Response:
data = self._default_request(method='status')
return self._post(data=json.dumps(data))
def poll(self, *, request_token: str, logs: bool = False, logs_start: int = 0) -> requests.Response:
data = self._default_request(method='poll')
data["params"] = {
"request_token": request_token,
"logs": logs,
"logs_start": logs_start
}
return self._post(data=json.dumps(data))
def ps(self, *, completed: bool = False) -> requests.Response:
'Lists running and completed processes executed by the RPC server.'
data = self._default_request(method='ps')
data["params"] = {
"completed": completed
}
return self._post(data=json.dumps(data))
def kill(self, *, task_id: str) -> requests.Response:
'Terminates a running RPC task.'
data = self._default_request(method='kill')
data["params"] = {
"task_id": task_id
}
return self._post(data=json.dumps(data))
def cli(self, *, cli_args: str, **kwargs) -> requests.Response:
'Terminates a running RPC task.'
data = self._default_request(method='cli_args')
data["params"] = {
"cli_args": cli_args
}
if kwargs is not None:
data["params"]["task_tags"] = kwargs
return self._post(data=json.dumps(data))
def compile(self, *, models: List[str] = None, exclude: List[str] = None, **kwargs) -> requests.Response:
'Runs a dbt compile command.'
data = self._default_request(method='compile')
data["params"].update(self._selection(models=models, exclude=exclude))
if kwargs is not None:
data["params"]["task_tags"] = kwargs
return self._post(data=json.dumps(data))
def run(self, *, models: List[str] = None, exclude: List[str] = None, **kwargs) -> requests.Response:
'Runs a dbt run command.'
data = self._default_request(method='run')
data["params"].update(self._selection(models=models, exclude=exclude))
if kwargs is not None:
data["params"]["task_tags"] = kwargs
return self._post(data=json.dumps(data))
def snapshot(self, *, select: List[str] = None, exclude: List[str] = None, **kwargs) -> requests.Response:
'Runs a dbt snapshot command.'
data = self._default_request(method='snapshot')
data["params"].update(self._selection(select=select, exclude=exclude))
if kwargs is not None:
data["params"]["task_tags"] = kwargs
return self._post(data=json.dumps(data))
def test(self, *, models: List[str] = None, exclude: List[str] = None, data: bool = True, schema: bool = True, **kwargs) -> requests.Response:
payload = self._default_request(method='test')
payload["params"] = {
"data": data,
"schema": schema
}
payload["params"].update(self._selection(models=models, exclude=exclude))
if kwargs is not None:
payload["params"]["task_tags"] = kwargs
return self._post(data=json.dumps(payload))
def seed(self, *, show: bool = False, **kwargs) -> requests.Response:
data = self._default_request(method='seed')
data["params"] = {
"show": show
}
if kwargs is not None:
data["params"]["task_tags"] = kwargs
return self._post(data=json.dumps(data))
def generate_docs(self, *, models: List[str] = None, exclude: List[str] = None, compile: bool = False, **kwargs) -> requests.Response:
data = self._default_request(method='docs.generate')
data["params"] = {
"compile": compile
}
data["params"].update(self._selection(models=models, exclude=exclude))
if kwargs is not None:
data["params"]["task_tags"] = kwargs
return self._post(data=json.dumps(data))
def run_operation(self, *, macro: str) -> requests.Response:
data = self._default_request(method='run-operation')
data["params"] = {
"macro": macro
}
return self._post(data=json.dumps(data))
def compile_sql(self, *, sql: str, name: str, timeout: int = 60) -> requests.Response:
data = self._default_request(method='compile_sql')
data["params"] = {
"sql": str(base64.b64encode(bytes(sql, 'utf-8'))),
"timeout": timeout,
"name": name
}
return self._post(data=json.dumps(data))
def run_sql(self, *, sql: str, name: str, timeout: int = 60) -> requests.Response:
data = self._default_request(method='run_sql')
data["params"] = {
"sql": str(base64.b64encode(bytes(sql, 'utf-8'))),
"timeout": timeout,
"name": name
}
return self._post(data=json.dumps(data))
|
StarcoderdataPython
|
4854806
|
# Copyright 2015 Huawei Technologies Co., Ltd.
# All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
from neutron_lib.plugins.ml2 import api
from tricircle.common import constants
class LocalTypeDriver(api.TypeDriver):
def get_type(self):
return constants.NT_LOCAL
def initialize(self):
pass
def is_partial_segment(self, segment):
return False
def validate_provider_segment(self, segment):
pass
def reserve_provider_segment(self, context, segment):
return segment
def allocate_tenant_segment(self, context):
return {api.NETWORK_TYPE: constants.NT_LOCAL}
def release_segment(self, context, segment):
pass
def get_mtu(self, physical):
pass
|
StarcoderdataPython
|
1873492
|
from pydantic import BaseModel, Field, validator
class RegistrationModel(BaseModel):
login: str = Field(min_length=6)
password: str = Field(min_length=8)
@validator("login")
def validate_login(cls, login: str) -> str:
assert " " not in login, "No spaces allowed in login"
return login
class BaseUserModel(BaseModel):
id: str
login: str
class UserModel(BaseUserModel):
followers: int
follows: int
|
StarcoderdataPython
|
8015076
|
<reponame>Algue-Rythme/GAT-Skim-Gram
import warnings
import numpy as np
import pygsp as gsp
from pygsp import graphs, filters, reduction
import scipy as sp
from scipy import sparse
from sortedcontainers import SortedList
from loukas_coarsening.maxWeightMatching import maxWeightMatching
import loukas_coarsening.graph_utils as graph_utils
try:
import matplotlib
import matplotlib.pylab as plt
from mpl_toolkits.mplot3d import Axes3D
except ImportError:
warnings.warn('Warning: plotting functions unavailable')
def coarsen(G, K=10, r=0.5, max_levels=20, method='variation_edges', algorithm='greedy', Uk=None, lk=None, max_level_r=0.99):
"""
This function provides a common interface for coarsening algorithms that contract subgraphs
Parameters
----------
G : pygsp Graph
K : int
The size of the subspace we are interested in preserving.
r : float between (0,1)
The desired reduction defined as 1 - n/N.
Returns
-------
C : np.array of size n x N
The coarsening matrix.
Gc : pygsp Graph
The smaller graph.
Call : list of np.arrays
Coarsening matrices for each level
Gall : list of (n_levels+1) pygsp Graphs
All graphs involved in the multilevel coarsening
Example
-------
C, Gc, Call, Gall = coarsen(G, K=10, r=0.8)
"""
r = np.clip(r, 0, 0.999)
N = G.N
#TODO(lbethune): fix this heuristic
K = max(1, min(K, N - 2))
n, n_target = N, max(2, np.ceil((1-r)*N))
C = sp.sparse.eye(N, format='csc')
Gc = G
Call, Gall = [], []
Gall.append(G)
iC = None
for level in range(1,max_levels+1):
if n <= n_target:
break
G = Gc
# how much more we need to reduce the current graph
r_cur = np.clip(1-n_target/n, 0.0, max_level_r)
if 'variation' in method:
if level == 1:
if (Uk is not None) and (lk is not None) and (len(lk)>= K):
mask = lk<1e-10; lk[mask] = 1; lsinv = lk**(-0.5); lsinv[mask] = 0
B = Uk[:,:K] @ np.diag(lsinv[:K])
else:
offset = 2*np.max(G.dw)
T = offset*sp.sparse.eye(G.N, format='csc') - G.L
lk, Uk = sp.sparse.linalg.eigsh(T, k=K, which='LM', tol=1e-5)
lk = (offset-lk)[::-1]
Uk = Uk[:,::-1]
mask = lk<1e-10;
lk[mask] = 1
lsinv = lk**(-1/2)
lsinv[mask] = 0
B = Uk @ np.diag(lsinv)
A = B
else:
B = iC.dot(B)
d, V = np.linalg.eig(B.T @ (G.L).dot(B))
mask = np.isclose(d, np.zeros(shape=d.shape))
d[mask] = 1
dinvsqrt = d**(-1/2)
dinvsqrt[mask] = 0
A = B @ np.diag(dinvsqrt) @ V
if method == 'variation_edges':
coarsening_list = contract_variation_edges(G, K=K, A=A, r=r_cur, algorithm=algorithm)
else:
coarsening_list = contract_variation_linear(G, K=K, A=A, r=r_cur, mode=method)
else:
weights = get_proximity_measure(G, method, K=K)
if algorithm == 'optimal':
# the edge-weight should be light at proximal edges
weights = -weights
if 'rss' not in method: weights -= min(weights)
coarsening_list = matching_optimal(G, weights=weights, r=r_cur)
elif algorithm == 'greedy':
coarsening_list = matching_greedy(G, weights=weights, r=r_cur)
iC = get_coarsening_matrix(G, coarsening_list)
if iC.shape[1] - iC.shape[0] <= 2: break # avoid too many levels for so few nodes
C = iC.dot(C)
Call.append(iC)
Wc = graph_utils.zero_diag(coarsen_matrix(G.W, iC)) # coarsen and remove self-loops
Wc = (Wc + Wc.T) / 2 # this is only needed to avoid pygsp complaining for tiny errors
if not hasattr(G, 'coords'):
Gc = gsp.graphs.Graph(Wc)
else:
Gc = gsp.graphs.Graph(Wc, coords=coarsen_vector(G.coords, iC))
Gall.append(Gc)
n = Gc.N
return C, Gc, Call, Gall
################################################################################
# General coarsening utility functions
################################################################################
def coarsen_vector(x, C):
return (C.power(2)).dot(x)
def lift_vector(x, C):
#Pinv = C.T; Pinv[Pinv>0] = 1
D = sp.sparse.diags(np.array(1/np.sum(C,0))[0])
Pinv = (C.dot(D)).T
return Pinv.dot(x)
def coarsen_matrix(W, C):
#Pinv = C.T; #Pinv[Pinv>0] = 1
D = sp.sparse.diags(np.array(1/np.sum(C,0))[0])
Pinv = (C.dot(D)).T
return (Pinv.T).dot(W.dot(Pinv))
def lift_matrix(W, C):
P = C.power(2)
return (P.T).dot(W.dot(P))
def get_coarsening_matrix(G, partitioning):
"""
This function should be called in order to build the coarsening matrix C.
Parameters
----------
G : the graph to be coarsened
partitioning : a list of subgraphs to be contracted
Returns
-------
C : the new coarsening matrix
Example
-------
C = contract(gsp.graphs.sensor(20),[0,1]) ??
"""
#C = np.eye(G.N)
C = sp.sparse.eye(G.N, format='lil')
rows_to_delete = []
for subgraph in partitioning:
nc = len(subgraph)
# add v_j's to v_i's row
C[subgraph[0],subgraph] = 1/np.sqrt(nc) #np.ones((1,nc))/np.sqrt(nc)
rows_to_delete.extend(subgraph[1:])
# delete vertices
#C = np.delete(C,rows_to_delete,0)
C.rows = np.delete(C.rows, rows_to_delete)
C.data = np.delete(C.data, rows_to_delete)
C._shape = (G.N - len(rows_to_delete), G.N)
C = sp.sparse.csc_matrix(C)
# check that this is a projection matrix
#assert sp.sparse.linalg.norm( ((C.T).dot(C))**2 - ((C.T).dot(C)) , ord='fro') < 1e-5
return C
def coarsening_quality(G, C, kmax=30, Uk=None, lk=None):
"""
Measures how good is a coarsening.
Parameters
----------
G : pygsp Graph
C : np.array(n,N)
The coarsening matrix
kmax : int
Until which eigenvalue we are interested in.
Returns
-------
metric : dictionary
Contains all relevant metrics for coarsening quality:
* error_eigenvalue : np.array(kmax)
* error_subspace : np.array(kmax)
* error_sintheta : np.array(kmax)
* angle_matrix : np.array(kmax)
* rss constants : np.array(kmax)
as well as some general properties of Gc:
* r : int
reduction ratio
* m : int
number of edges
"""
N = G.N
I = np.eye(N)
if (Uk is not None) and (lk is not None) and (len(lk)>= kmax):
U, l = Uk, lk
elif hasattr(G, 'U'):
U, l = G.U, G.e
else:
l, U = sp.sparse.linalg.eigsh(G.L, k=kmax, which='SM', tol=1e-3)
l[0] = 1; linv = l**(-0.5); linv[0] = 0 # l[0] = 0 # avoids divide by 0
# below here, everything is C specific
n = C.shape[0]
Pi = C.T @ C
S = graph_utils.get_S(G).T
Lc = C.dot((G.L).dot(C.T))
Lp = Pi @ G.L @ Pi
if kmax>n/2:
[Uc,lc] = graph_utils.eig(Lc.toarray())
else:
lc, Uc = sp.sparse.linalg.eigsh(Lc, k=kmax, which='SM', tol=1e-3)
if not sp.sparse.issparse(Lc): print('warning: Lc should be sparse.')
metrics = {'r': 1 - n / N, 'm': int((Lc.nnz-n)/2)}
kmax = np.clip(kmax, 1, n)
# eigenvalue relative error
metrics['error_eigenvalue'] = np.abs(l[:kmax] - lc[:kmax]) / l[:kmax]
metrics['error_eigenvalue'][0] = 0
# angles between eigenspaces
metrics['angle_matrix'] = U.T @ C.T @ Uc
# rss constants
# metrics['rss'] = np.diag(U.T @ Lp @ U)/l - 1
# metrics['rss'][0] = 0
# other errors
kmax = np.clip(kmax, 2, n)
error_subspace = np.zeros(kmax)
error_subspace_bound = np.zeros(kmax)
error_sintheta = np.zeros(kmax)
M = S @ Pi @ U @ np.diag(linv)
# M_bound = S @ (I - Pi) @ U @ np.diag(linv)
for kIdx in range(1,kmax):
error_subspace[kIdx] = np.abs(np.linalg.norm( M[:,:kIdx + 1], ord=2)-1)
# error_subspace_bound[kIdx] = np.linalg.norm( M_bound[:,:kIdx + 1], ord=2)
error_sintheta[kIdx] = np.linalg.norm(metrics['angle_matrix'][0:kIdx+1,kIdx+1:], ord='fro')**2
metrics['error_subspace'] = error_subspace
#metrics['error_subspace_bound'] = error_subspace_bound
metrics['error_sintheta'] = error_sintheta
return metrics
def plot_coarsening(Gall, Call, size=3, edge_width=0.8, node_size=20, alpha=0.55, title='', monochrom=False):
"""
Plot a (hierarchical) coarsening
Parameters
----------
G_all : list of pygsp Graphs
Call : list of np.arrays
Returns
-------
fig : matplotlib figure
"""
# colors signify the size of a coarsened subgraph ('k' is 1, 'g' is 2, 'b' is 3, and so on)
colors = ['k', 'g', 'b', 'r', 'y']
if monochrom:
colors = ['b']*len(colors)
n_levels = len(Gall)-1
if n_levels == 0: return None
fig = plt.figure(figsize=(n_levels*size*3, size*2))
for level in range(n_levels):
G = Gall[level]
edges = np.array(G.get_edge_list()[0:2])
Gc = Gall[level+1]
# Lc = C.dot(G.L.dot(C.T))
# Wc = sp.sparse.diags(Lc.diagonal(), 0) - Lc;
# Wc = (Wc + Wc.T) / 2
# Gc = gsp.graphs.Graph(Wc, coords=(C.power(2)).dot(G.coords))
edges_c = np.array(Gc.get_edge_list()[0:2])
C = Call[level]
C = C.toarray()
if G.coords.shape[1] == 2:
ax = fig.add_subplot(1, n_levels+1, level+1)
ax.axis('off')
ax.set_title(f'{title} | level = {level}, N = {G.N}')
[x,y] = G.coords.T
for eIdx in range(0, edges.shape[1]):
ax.plot(x[edges[:,eIdx]], y[edges[:,eIdx]], color='k', alpha=alpha, lineWidth=edge_width)
for i in range(Gc.N):
subgraph = np.arange(G.N)[C[i,:] > 0]
ax.scatter(x[subgraph], y[subgraph], c = colors[np.clip(len(subgraph)-1,0,4)], s = node_size*len(subgraph), alpha=alpha)
elif G.coords.shape[1] == 3:
ax = fig.add_subplot(1, n_levels+1, level+1, projection='3d')
ax.axis('off')
[x,y,z] = G.coords.T
for eIdx in range(0, edges.shape[1]):
ax.plot(x[edges[:,eIdx]], y[edges[:,eIdx]], zs=z[edges[:,eIdx]], color='k', alpha=alpha, lineWidth=edge_width)
for i in range(Gc.N):
subgraph = np.arange(G.N)[C[i,:] > 0]
ax.scatter(x[subgraph], y[subgraph], z[subgraph], c=colors[np.clip(len(subgraph)-1,0,4)], s=node_size*len(subgraph), alpha=alpha)
# the final graph
Gc = Gall[-1]
edges_c = np.array(Gc.get_edge_list()[0:2])
if G.coords.shape[1] == 2:
ax = fig.add_subplot(1, n_levels+1, n_levels+1)
ax.axis('off')
[x,y] = Gc.coords.T
ax.scatter(x, y, c = 'k', s = node_size, alpha=alpha)
for eIdx in range(0, edges_c.shape[1]):
ax.plot(x[edges_c[:,eIdx]], y[edges_c[:,eIdx]], color='k', alpha=alpha, lineWidth=edge_width)
elif G.coords.shape[1] == 3:
ax = fig.add_subplot(1, n_levels+1, n_levels+1, projection='3d')
ax.axis('off')
[x,y,z] = Gc.coords.T
ax.scatter(x, y, z, c = 'k', s = node_size, alpha=alpha)
for eIdx in range(0, edges_c.shape[1]):
ax.plot(x[edges_c[:,eIdx]], y[edges_c[:,eIdx]], z[edges_c[:,eIdx]], color='k', alpha=alpha, lineWidth=edge_width)
ax.set_title(f'{title} | level = {n_levels}, n = {Gc.N}')
fig.tight_layout()
return fig
################################################################################
# Variation-based contraction algorithms
################################################################################
def contract_variation_edges(G, A=None, K=10, r=0.5, algorithm='greedy'):
"""
Sequential contraction with local variation and edge-based families.
This is a specialized implementation for the edge-based family, that works
slightly faster than the contract_variation() function, which works for
any family.
See contract_variation() for documentation.
"""
N, deg, M = G.N, G.dw, G.Ne
ones = np.ones(2)
Pibot = np.eye(2) - np.outer(ones, ones) / 2
# cost function for the edge
def subgraph_cost(G, A, edge):
edge, w = edge[:2].astype(np.int), edge[2]
deg_new = 2*deg[edge] - w
L = np.array([[deg_new[0],-w], [-w,deg_new[1]]])
B = Pibot @ A[edge,:]
return np.linalg.norm(B.T @ L @ B)
# cost function for the edge
def subgraph_cost_old(G, A, edge):
w = G.W[edge[0], edge[1]]
deg_new = 2*deg[edge] - w
L = np.array([[deg_new[0],-w], [-w,deg_new[1]]])
B = Pibot @ A[edge,:]
return np.linalg.norm(B.T @ L @ B)
#edges = np.array(G.get_edge_list()[0:2])
edges = np.array(G.get_edge_list())
weights = np.array([subgraph_cost(G, A, edges[:,e]) for e in range(M)])
#weights = np.zeros(M)
#for e in range(M):
# weights[e] = subgraph_cost_old(G, A, edges[:,e])
if algorithm == 'optimal':
# identify the minimum weight matching
coarsening_list = matching_optimal(G, weights=weights, r=r)
elif algorithm == 'greedy':
# find a heavy weight matching
coarsening_list = matching_greedy(G, weights=-weights, r=r)
return coarsening_list
def contract_variation_linear(G, A=None, K=10, r=0.5, mode='neighborhood'):
"""
Sequential contraction with local variation and general families.
This is an implemmentation that improves running speed,
at the expense of being more greedy (and thus having slightly larger error).
See contract_variation() for documentation.
"""
N, deg, W_lil = G.N, G.dw, G.W.tolil()
# The following is correct only for a single level of coarsening.
# Normally, A should be passed as an argument.
if A is None:
lk, Uk = sp.sparse.linalg.eigsh(G.L, k=K, which='SM', tol=1e-3) # this is not optimized!
lk[0] = 1
lsinv = lk**(-0.5)
lsinv[0] = 0
lk[0] = 0
D_lsinv = np.diag(lsinv)
A = Uk @ D_lsinv
# cost function for the subgraph induced by nodes array
def subgraph_cost(nodes):
nc = len(nodes)
ones = np.ones(nc)
W = W_lil[nodes,:][:,nodes]#.tocsc()
L = np.diag(2*deg[nodes] - W.dot(ones)) - W
B = (np.eye(nc) - np.outer(ones, ones) / nc ) @ A[nodes,:]
unnormalized_cost = np.linalg.norm(B.T @ L @ B)
return unnormalized_cost / (nc-1) if nc != 1 else 0.
class CandidateSet:
def __init__(self, candidate_list):
self.set = candidate_list
self.cost = subgraph_cost(candidate_list)
def __lt__(self, other):
return self.cost < other.cost
family = []
W_bool = G.A + sp.sparse.eye(G.N, dtype=np.bool, format='csr')
if 'neighborhood' in mode:
for i in range(N):
#i_set = G.A[i,:].indices # get_neighbors(G, i)
#i_set = np.append(i_set, i)
i_set = W_bool[i,:].indices
family.append(CandidateSet(i_set))
if 'cliques' in mode:
import networkx as nx
Gnx = nx.from_scipy_sparse_matrix(G.W)
for clique in nx.find_cliques(Gnx):
family.append(CandidateSet(np.array(clique)))
else:
if 'edges' in mode:
edges = np.array(G.get_edge_list()[0:2])
for e in range(0,edges.shape[1]):
family.append(CandidateSet(edges[:,e]))
if 'triangles' in mode:
triangles = set([])
edges = np.array(G.get_edge_list()[0:2])
for e in range(0,edges.shape[1]):
[u,v] = edges[:,e]
for w in range(G.N):
if G.W[u,w] > 0 and G.W[v,w] > 0:
triangles.add(frozenset([u,v,w]))
triangles = list(map(lambda x: np.array(list(x)), triangles))
for triangle in triangles:
family.append(CandidateSet(triangle))
family = SortedList(family)
marked = np.zeros(G.N, dtype=np.bool)
# ----------------------------------------------------------------------------
# Construct a (minimum weight) independent set.
# ----------------------------------------------------------------------------
coarsening_list = []
#n, n_target = N, (1-r)*N
n_reduce = np.floor(r*N) # how many nodes do we need to reduce/eliminate?
while len(family) > 0:
i_cset = family.pop(index=0)
i_set = i_cset.set
# check if marked
i_marked = marked[i_set]
if not any(i_marked):
n_gain = len(i_set) - 1
if n_gain > n_reduce: continue # this helps avoid over-reducing
# all vertices are unmarked: add i_set to the coarsening list
marked[i_set] = True
coarsening_list.append(i_set)
#n -= len(i_set) - 1
n_reduce -= n_gain
#if n <= n_target: break
if n_reduce <= 0: break
# may be worth to keep this set
else:
i_set = i_set[~i_marked]
if len(i_set) > 1:
# todo1: check whether to add to coarsening_list before adding to family
# todo2: currently this will also select contraction sets that are disconnected
# should we eliminate those?
i_cset.set = i_set
i_cset.cost = subgraph_cost(i_set)
family.add(i_cset)
return coarsening_list
################################################################################
# Edge-based contraction algorithms
################################################################################
def get_proximity_measure(G, name, K=10):
N = G.N
W = G.W #np.array(G.W.toarray(), dtype=np.float32)
deg = G.dw #np.sum(W, axis=0)
edges = np.array(G.get_edge_list()[0:2])
weights = np.array(G.get_edge_list()[2])
M = edges.shape[1]
num_vectors = K #int(1*K*np.log(K))
if 'lanczos' in name:
l_lan, X_lan = sp.sparse.linalg.eigsh(G.L, k=K, which='SM', tol=1e-2)
elif 'cheby' in name:
X_cheby = generate_test_vectors(G, num_vectors=num_vectors, method='Chebychev', lambda_cut = G.e[K+1])
elif 'JC' in name:
X_jc = generate_test_vectors(G, num_vectors=num_vectors, method='JC', iterations=20)
elif 'GS' in name:
X_gs = generate_test_vectors(G, num_vectors=num_vectors, method='GS', iterations=1)
if 'expected' in name:
X = X_lan
assert not np.isnan(X).any()
assert X.shape[0] == N
K = X.shape[1]
proximity = np.zeros(M, dtype=np.float32)
# heuristic for mutligrid
if name == 'heavy_edge':
wmax = np.array(np.max(G.W, 0).todense())[0] + 1e-5
for e in range(0,M):
proximity[e] = weights[e] / max(wmax[edges[:,e]]) # select edges with large proximity
return proximity
# heuristic for mutligrid
elif name == 'algebraic_JC':
proximity += np.Inf
for e in range(0,M):
i,j = edges[:,e]
for kIdx in range(num_vectors):
xk = X_jc[:,kIdx]
proximity[e] = min(proximity[e], 1 / max(np.abs(xk[i]-xk[j])**2, 1e-6) ) # select edges with large proximity
return proximity
# heuristic for mutligrid
elif name == 'affinity_GS':
c = np.zeros((N,N))
for e in range(0,M):
i,j = edges[:,e]
c[i,j] = (X_gs[i,:] @ X_gs[j,:].T)**2 / ( (X_gs[i,:] @ X_gs[i,:].T)**2 * (X_gs[j,:] @ X_gs[j,:].T)**2 ) # select
c += c.T
c -= np.diag(np.diag(c))
for e in range(0,M):
i,j = edges[:,e]
proximity[e] = c[i,j] / ( max(c[i,:]) * max(c[j,:]) )
return proximity
for e in range(0,M):
i,j = edges[:,e]
if name == 'heavy_edge_degree':
proximity[e] = deg[i] + deg[j] + 2*G.W[i,j] # select edges with large proximity
# loose as little information as possible (custom)
elif 'min_expected_loss' in name:
for kIdx in range(1,K):
xk = X[:,kIdx]
proximity[e] = sum([proximity[e], (xk[i]-xk[j])**2 ] ) # select edges with small proximity
# loose as little gradient information as possible (custom)
elif name == 'min_expected_gradient_loss':
for kIdx in range(1,K):
xk = X[:,kIdx]
proximity[e] = sum([proximity[e], (xk[i]-xk[j])**2 * (deg[i] + deg[j] + 2*G.W[i,j]) ] ) # select edges with small proximity
# relaxation ensuring that K first eigenspaces are aligned (custom)
elif name == 'rss':
for kIdx in range(1,K):
xk = G.U[:,kIdx]
lk = G.e[kIdx]
proximity[e] = sum([proximity[e], (xk[i]-xk[j])**2 * ((deg[i] + deg[j] + 2*G.W[i,j])/4) / lk ] ) # select edges with small proximity
# fast relaxation ensuring that K first eigenspaces are aligned (custom)
elif name == 'rss_lanczos':
for kIdx in range(1,K):
xk = X_lan[:,kIdx]
lk = l_lan[kIdx]
proximity[e] = sum( [proximity[e], (xk[i]-xk[j])**2 * ((deg[i] + deg[j] + 2*G.W[i,j])/4 - 0.5*(lk + lk)) / lk ] ) # select edges with small proximity
# approximate relaxation ensuring that K first eigenspaces are aligned (custom)
elif name == 'rss_cheby':
for kIdx in range(num_vectors):
xk = X_cheby[:,kIdx]
lk = xk.T @ G.L @ xk
proximity[e] = sum( [proximity[e], ( (xk[i]-xk[j])**2 * ((deg[i] + deg[j] + 2*G.W[i,j])/4 - 0*lk ) / lk )] ) # select edges with small proximity
# heuristic for mutligrid (algebraic multigrid)
elif name == 'algebraic_GS':
proximity[e] = np.Inf
for kIdx in range(num_vectors):
xk = X_gs[:,kIdx]
proximity[e] = min(proximity[e], 1 / max(np.abs(xk[i]-xk[j])**2, 1e-6) ) # select edges with large proximity
if ('rss' in name) or ('expected' in name): proximity = -proximity
return proximity
def generate_test_vectors(G, num_vectors=10, method = 'Gauss-Seidel', iterations=5, lambda_cut=0.1):
L = G.L
N = G.N
X = np.random.randn(N, num_vectors) / np.sqrt(N)
if method == 'GS' or method == 'Gauss-Seidel':
L_upper = sp.sparse.triu(L, 1, format='csc')
L_lower_diag = sp.sparse.triu(L, 0, format='csc').T
for j in range(num_vectors):
x = X[:,j]
for _ in range(iterations):
x = - sp.sparse.linalg.spsolve_triangular(L_lower_diag, L_upper @ x)
X[:,j] = x
return X
if method == 'JC' or method == 'Jacobi':
deg = G.dw.astype(np.float)
D = sp.sparse.diags(deg,0)
deginv = deg**(-1)
deginv[deginv == np.Inf] = 0
Dinv = sp.sparse.diags(deginv,0)
M = Dinv.dot(D-L)
for j in range(num_vectors):
x = X[:,j]
for _ in range(iterations):
x = 0.5 * x + 0.5 * M.dot(x)
X[:,j] = x
return X
elif method == 'Chebychev':
f = filters.Filter(G, lambda x : ((x <= lambda_cut)*1).astype(np.float32))
return f.filter(X, method='chebyshev', order=50)
else:
raise ValueError
def matching_optimal(G, weights, r=0.4):
"""
Generates a matching optimally with the objective of minimizing the total
weight of all edges in the matching.
Parameters
----------
G : pygsp graph
weights : np.array(M)
a weight for each edge
ratio : float
The desired dimensionality reduction (ratio = 1 - n/N)
Notes:
* The complexity of this is O(N^3)
* Depending on G, the algorithm might fail to return ratios>0.3
"""
N = G.N
# the edge set
edges = G.get_edge_list()
edges = np.array(edges[0:2])
M = edges.shape[1]
max_weight = 1*np.max(weights)
# prepare the input for the minimum weight matching problem
edge_list = []
for edgeIdx in range(M):
[i,j] = edges[:,edgeIdx]
if i==j: continue
edge_list.append( (i, j, max_weight-weights[edgeIdx]) )
assert min(weights) >= 0
# solve it
tmp = np.array(maxWeightMatching(edge_list))
# format output
m = tmp.shape[0]
matching = np.zeros((m,2), dtype=int)
matching[:,0] = range(m)
matching[:,1] = tmp
# remove null edges and duplicates
idx = np.where(tmp!=-1)[0]
matching = matching[idx,:]
idx = np.where(matching[:,0] > matching[:,1])[0]
matching = matching[idx,:]
assert matching.shape[0] >= 1
# if the returned matching is larger than what is requested, select the min weight subset of it
matched_weights = np.zeros(matching.shape[0])
for mIdx in range(matching.shape[0]):
i = matching[mIdx,0]
j = matching[mIdx,1]
eIdx = [e for e,t in enumerate(edges[:,:].T) if ((t==[i,j]).all() or (t==[j,i]).all()) ]
matched_weights[mIdx] = weights[eIdx]
keep = min(int(np.ceil(r*N)), matching.shape[0])
if keep < matching.shape[0]:
idx = np.argpartition(matched_weights, keep)
idx = idx[0:keep]
matching = matching[idx,:]
return matching
def matching_greedy(G, weights, r=0.4):
"""
Generates a matching greedily by selecting at each iteration the edge
with the largest weight and then removing all adjacent edges from the
candidate set.
Parameters
----------
G : pygsp graph
weights : np.array(M)
a weight for each edge
r : float
The desired dimensionality reduction (r = 1 - n/N)
Notes:
* The complexity of this is O(M)
* Depending on G, the algorithm might fail to return ratios>0.3
"""
N = G.N
# the edge set
edges = np.array(G.get_edge_list()[0:2])
M = edges.shape[1]
idx = np.argsort(-weights)
# idx = np.argsort(weights)[::-1]
edges = edges[:,idx]
# the candidate edge set
candidate_edges = edges.T.tolist()
# the matching edge set (this is a list of arrays)
matching = []
# which vertices have been selected
marked = np.zeros(N, dtype=np.bool)
n, n_target = N, (1-r)*N
while len(candidate_edges) > 0:
# pop a candidate edge
[i,j] = candidate_edges.pop(0)
# check if marked
if any(marked[[i,j]]): continue
marked[[i,j]] = True
n -= 1
# add it to the matching
matching.append(np.array([i,j]))
# termination condition
if n <= n_target: break
return np.array(matching)
##############################################################################
# Sparsification and Kron reduction
# Most of the code has been adapted from the PyGSP implementation.
##############################################################################
def kron_coarsening(G, r=0.5, m=None):
if not hasattr(G, 'coords'):
G.set_coordinates(np.random.rand(G.N,2)) # needed by kron
n_target = np.floor((1-r)*G.N)
levels = int(np.ceil(np.log2(G.N/n_target)))
Gs = my_graph_multiresolution(G, levels, r=r, sparsify=False, sparsify_eps=None, reduction_method='kron', reg_eps=0.01)
Gk = Gs[-1]
# sparsify to a target number of edges m
if m is not None:
M = Gk.Ne #int(Gk.W.nnz/2)
epsilon = min(10/np.sqrt(G.N),.3) #1 - m/M
Gc = graph_sparsify(Gk, epsilon, maxiter=10)
Gc.mr = Gk.mr
else:
Gc = Gk
return Gc, Gs[0]
def kron_quality(G, Gc, kmax=30, Uk=None, lk=None):
N, n = G.N, Gc.N
keep_inds = Gc.mr['idx']
metrics = {'r': 1 - n / N, 'm': int(Gc.W.nnz/2), 'failed':False}
kmax = np.clip(kmax, 1, n)
if (Uk is not None) and (lk is not None) and (len(lk)>= kmax):
U, l = Uk, lk
elif hasattr(G, 'U'):
U, l = G.U, G.e
else:
l, U = sp.sparse.linalg.eigsh(G.L, k=kmax, which='SM', tol=1e-3)
l[0] = 1; linv = l**(-0.5); linv[0] = 0 # avoids divide by 0
C = np.eye(N); C = C[keep_inds,:]
L = G.L.toarray()
try:
Phi = np.linalg.pinv(L + 0.01*np.eye(N))
Cinv = (Phi @ C.T) @ np.linalg.pinv(C @ Phi @ C.T)
if kmax>n/2:
[Uc,lc] = graph_utils.eig(Gc.L.toarray())
else:
lc, Uc = sp.sparse.linalg.eigsh(Gc.L, k=kmax, which='SM', tol=1e-3)
# eigenvalue relative error
metrics['error_eigenvalue'] = np.abs(l[:kmax] - lc[:kmax]) / l[:kmax]
metrics['error_eigenvalue'][0] = 0
# TODO : angles between eigenspaces
# metrics['angle_matrix'] = U.T @ C.T @ Uc
# other errors
kmax = np.clip(kmax, 2, n)
error_subspace = np.zeros(kmax)
error_sintheta = np.zeros(kmax)
# M = (Lsqrtm - sp.linalg.sqrtm(Cinv @ Gc.L.dot(C))) @ U @ np.diag(linv) # is this correct?
M = U - sp.linalg.sqrtm(Cinv @ Gc.L.dot(C)) @ U @ np.diag(linv) # is this correct?
for kIdx in range(0, kmax):
error_subspace[kIdx] = np.abs(np.linalg.norm(M[:,:kIdx + 1], ord=2)-1)
metrics['error_subspace'] = error_subspace
metrics['error_sintheta'] = error_sintheta
except:
metrics['failed'] = True
return metrics
def kron_interpolate(G, Gc, x):
return np.squeeze(reduction.interpolate(G, x, Gc.mr['idx']))
def my_graph_multiresolution(G, levels, r=0.5, sparsify=True, sparsify_eps=None,
downsampling_method='largest_eigenvector',
reduction_method='kron', compute_full_eigen=False,
reg_eps=0.005):
r"""Compute a pyramid of graphs (by Kron reduction).
'graph_multiresolution(G,levels)' computes a multiresolution of
graph by repeatedly downsampling and performing graph reduction. The
default downsampling method is the largest eigenvector method based on
the polarity of the components of the eigenvector associated with the
largest graph Laplacian eigenvalue. The default graph reduction method
is Kron reduction followed by a graph sparsification step.
*param* is a structure of optional parameters.
Parameters
----------
G : Graph structure
The graph to reduce.
levels : int
Number of level of decomposition
lambd : float
Stability parameter. It adds self loop to the graph to give the
algorithm some stability (default = 0.025). [UNUSED?!]
sparsify : bool
To perform a spectral sparsification step immediately after
the graph reduction (default is True).
sparsify_eps : float
Parameter epsilon used in the spectral sparsification
(default is min(10/sqrt(G.N),.3)).
downsampling_method: string
The graph downsampling method (default is 'largest_eigenvector').
reduction_method : string
The graph reduction method (default is 'kron')
compute_full_eigen : bool
To also compute the graph Laplacian eigenvalues and eigenvectors
for every graph in the multiresolution sequence (default is False).
reg_eps : float
The regularized graph Laplacian is :math:`\bar{L}=L+\epsilon I`.
A smaller epsilon may lead to better regularization, but will also
require a higher order Chebyshev approximation. (default is 0.005)
Returns
-------
Gs : list
A list of graph layers.
Examples
--------
>>> from pygsp import reduction
>>> levels = 5
>>> G = graphs.Sensor(N=512)
>>> G.compute_fourier_basis()
>>> Gs = reduction.graph_multiresolution(G, levels, sparsify=False)
>>> for idx in range(levels):
... Gs[idx].plotting['plot_name'] = 'Reduction level: {}'.format(idx)
... Gs[idx].plot()
"""
if sparsify_eps is None:
sparsify_eps = min(10. / np.sqrt(G.N), 0.3)
if compute_full_eigen:
G.compute_fourier_basis()
else:
G.estimate_lmax()
Gs = [G]
Gs[0].mr = {'idx': np.arange(G.N), 'orig_idx': np.arange(G.N)}
n_target = int(np.floor(G.N * (1-r)))
for i in range(levels):
if downsampling_method == 'largest_eigenvector':
if hasattr(Gs[i], '_U'):
V = Gs[i].U[:, -1]
else:
V = sp.sparse.linalg.eigs(Gs[i].L, 1)[1][:, 0]
V *= np.sign(V[0])
n = max(int(Gs[i].N/2), n_target)
ind = np.argsort(V) # np.nonzero(V >= 0)[0]
ind = np.flip(ind,0)
ind = ind[:n]
else:
raise NotImplementedError('Unknown graph downsampling method.')
if reduction_method == 'kron':
Gs.append(reduction.kron_reduction(Gs[i], ind))
else:
raise NotImplementedError('Unknown graph reduction method.')
if sparsify and Gs[i+1].N > 2:
Gs[i+1] = reduction.graph_sparsify(Gs[i+1], min(max(sparsify_eps, 2. / np.sqrt(Gs[i+1].N)), 1.))
if Gs[i+1].is_directed():
W = (Gs[i+1].W + Gs[i+1].W.T)/2
Gs[i+1] = graphs.Graph(W, coords=Gs[i+1].coords)
if compute_full_eigen:
Gs[i+1].compute_fourier_basis()
else:
Gs[i+1].estimate_lmax()
Gs[i+1].mr = {'idx': ind, 'orig_idx': Gs[i].mr['orig_idx'][ind], 'level': i}
L_reg = Gs[i].L + reg_eps * sparse.eye(Gs[i].N)
Gs[i].mr['K_reg'] = reduction.kron_reduction(L_reg, ind)
Gs[i].mr['green_kernel'] = filters.Filter(Gs[i], lambda x: 1./(reg_eps + x))
return Gs
def graph_sparsify(M, epsilon, maxiter=10):
from pygsp import utils
from scipy import stats
# Test the input parameters
if isinstance(M, graphs.Graph):
if not M.lap_type == 'combinatorial':
raise NotImplementedError
L = M.L
else:
L = M
N = np.shape(L)[0]
if not 1./np.sqrt(N) <= epsilon < 1:
raise ValueError('GRAPH_SPARSIFY: Epsilon out of required range')
# Not sparse
resistance_distances = utils.resistance_distance(L).toarray()
# Get the Weight matrix
if isinstance(M, graphs.Graph):
W = M.W
else:
W = np.diag(L.diagonal()) - L.toarray()
W[W < 1e-10] = 0
W = sparse.coo_matrix(W)
W.data[W.data < 1e-10] = 0
W = W.tocsc()
W.eliminate_zeros()
start_nodes, end_nodes, weights = sparse.find(sparse.tril(W))
# Calculate the new weights.
weights = np.maximum(0, weights)
Re = np.maximum(0, resistance_distances[start_nodes, end_nodes])
Pe = weights * Re + 1e-4
Pe = Pe / np.sum(Pe)
for _ in range(maxiter):
# Rudelson, 1996 Random Vectors in the Isotropic Position
# (too hard to figure out actual C0)
C0 = 1 / 30.
# Rudelson and Vershynin, 2007, Thm. 3.1
C = 4 * C0
q = round(N * np.log(N) * 9 * C**2 / (epsilon**2))
results = stats.rv_discrete(values=(np.arange(np.shape(Pe)[0]), Pe)).rvs(size=int(q))
spin_counts = stats.itemfreq(results).astype(int)
per_spin_weights = weights / (q * Pe)
counts = np.zeros(np.shape(weights)[0])
counts[spin_counts[:, 0]] = spin_counts[:, 1]
new_weights = counts * per_spin_weights
sparserW = sparse.csc_matrix((new_weights, (start_nodes, end_nodes)),
shape=(N, N))
sparserW = sparserW + sparserW.T
sparserL = sparse.diags(sparserW.diagonal(), 0) - sparserW
# if graphs.Graph(W=sparserW).is_connected():
# break
# elif i == maxiter - 1:
# print('Despite attempts to reduce epsilon, sparsified graph is disconnected')
# else:
# epsilon -= (epsilon - 1/np.sqrt(N)) / 2.
if isinstance(M, graphs.Graph):
sparserW = sparse.diags(sparserL.diagonal(), 0) - sparserL
if not M.is_directed():
sparserW = (sparserW + sparserW.T) / 2.
Mnew = graphs.Graph(W=sparserW)
#M.copy_graph_attributes(Mnew)
else:
Mnew = sparse.lil_matrix(sparserL)
return Mnew
##############################################################################
|
StarcoderdataPython
|
8105612
|
<reponame>mateuszmidor/sla_dashboard_webapp
from __future__ import annotations
import logging
from dataclasses import dataclass
from typing import Dict, Generator
from domain.geo import Coordinates
from domain.types import IP, AgentID
logger = logging.getLogger(__name__)
@dataclass
class Agent:
id: AgentID = AgentID()
ip: IP = IP()
name: str = ""
alias: str = ""
coords: Coordinates = Coordinates()
class Agents:
def __init__(self) -> None:
self._agents: Dict[AgentID, Agent] = {}
self._agents_by_name: Dict[str, Agent] = {}
def equals(self, other: Agents) -> bool:
return sorted(self._agents.keys()) == sorted(other._agents.keys())
def get_by_id(self, agent_id: AgentID) -> Agent:
return self._agents.get(agent_id, Agent())
def get_by_name(self, name: str) -> Agent:
return self._agents_by_name.get(name, Agent())
def insert(self, agent: Agent) -> None:
self._agents[agent.id] = agent
existing = self._agents_by_name.get(agent.name)
if existing:
logger.warning("Duplicate agent name '%s' (ids: %s %s)", agent.name, existing.id, agent.id)
_dedup_name = "{agent.name} [{agent.id}]"
del self._agents_by_name[existing.name]
existing.name = _dedup_name.format(agent=existing)
self._agents_by_name[existing.name] = existing
agent.name = _dedup_name.format(agent=agent)
self._agents_by_name[agent.name] = agent
logger.debug("adding agent: id: %s name: %s alias: %s", agent.id, agent.name, agent.alias)
def remove(self, agent: Agent):
try:
del self._agents[agent.id]
except KeyError:
logger.warning("Agent id: %s name: %s was not in dict by id", agent.id, agent.name)
try:
del self._agents_by_name[agent.name]
except KeyError:
logger.warning("Agent id: %s name: %s was not in dict by name", agent.id, agent.name)
def all(self, reverse: bool = False) -> Generator[Agent, None, None]:
for n in sorted(self._agents_by_name.keys(), key=lambda x: x.lower(), reverse=reverse):
yield self._agents_by_name[n]
def update_names_aliases(self, src: Agents) -> None:
"""
Update agent names and aliases based on row data while preserving other existing agent attributes
NOTE: This is an ugly hack that should be removed as soon as Kentik API becomes little bit more consistent
"""
logger.debug("update_names_aliases: src_agents: %d", src.count)
for src_agent in src.all():
agent = self.get_by_id(src_agent.id)
logger.debug("Updating agent id: %s (old name: %s new name: %s)", agent.id, agent.name, src_agent.name)
if agent.id == AgentID():
agent = src_agent
logging.warning("Agent %s (name: %s) was not in cache", agent.id, agent.name)
self.insert(agent)
else:
# We need to preserve other attributes retrieved from AgentsList, so we cannot simply replace the
# existing agent. However, we need to delete it from the cache and re-insert it in order to
# keep dictionary by name in sync
self.remove(agent)
agent.name = src_agent.name
agent.alias = src_agent.alias
self.insert(agent)
@property
def count(self) -> int:
return len(self._agents)
|
StarcoderdataPython
|
262071
|
# -*- coding: utf-8 -*-
import module
import fields
class FanActuator(module.Base):
update_rate = 10
public_name = 'Ventilateur'
class fan(fields.actuator.Fan, fields.syntax.Boolean, fields.io.Readable,
fields.persistant.Volatile, fields.Base):
public_name = 'État du ventilateur'
class speed(fields.syntax.BoundNumeric,
fields.io.Readable,
fields.io.Writable,
fields.persistant.Volatile,
fields.Base):
lower_bound = 1
upper_bound = 3
public_name = 'Vitesse du ventilateur'
init_value = 1
|
StarcoderdataPython
|
281642
|
from django.urls import path, include
from . import views
urlpatterns = [
path('location/', views.find_ahj_location, name='location'),
path('address/', views.find_ahj_address, name='address')
]
|
StarcoderdataPython
|
6691890
|
import os
os.environ['NO_ET'] = '1'
|
StarcoderdataPython
|
25751
|
<reponame>mbatchkarov/dc_evaluation
__author__ = 'mmb28'
import sys
sys.path.append('.')
sys.path.append('..')
sys.path.append('../..')
|
StarcoderdataPython
|
3416021
|
import os
from Game import Game
class LoadGame(Game):
def __init__(self, gamefolder):
self.gamefolder = os.path.abspath(gamefolder)
file = open(os.path.join(gamefolder, "sales"))
self.releaseplayers = int(file.readline().rstrip("\n").split(": ")[1])
file.close()
file = open(os.path.join(gamefolder, "imagelinks"))
self.gameid = int(file.readline().rstrip("\n"))
file.close()
self.stats = self.readstats()
self.players = self.releaseplayers
|
StarcoderdataPython
|
6588883
|
<filename>src/real_time.py
import threading
import time
from tkinter import *
from tkinter import ttk, messagebox
from tkinter.font import Font
import numpy
import seaborn as sns
import mne
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from pylsl import StreamInlet, resolve_stream
# https://labstreaminglayer.readthedocs.io/
LABELS = ['A', 'B', 'C']
model_path = '../data/models/EEGNet_labels_3_accuracy_0.4166666567325592'
class Application(Tk):
def __init__(self):
Tk.__init__(self)
self.title("Serinity - Lab Streaming Layer")
self.geometry("600x400")
self.iconphoto(False, PhotoImage(file='../public/brain.png'))
self.columnconfigure(0, weight=1)
self.rowconfigure(0, weight=1)
self._start_predict = False
self._mainframe = None
self._state = 0
self.font = Font(family='Helvetica', size=10)
self.init_theme()
self.init_loading()
try:
self._thread = threading.Thread(target=self.init_lsl)
self._thread.start()
finally:
return
if self._state == 0:
self._progress_bar.stop()
self._progress_bar["mode"] = "determinate"
self._progress_bar["value"] = 100
self._label["text"] = "An error as occured"
else:
self.input_button["text"] = "An error as occured"
self.input_button["state"] = "disabled"
def predict(self, data, model):
data = tf.convert_to_tensor(data)
probabilities = model.predict(tf.expand_dims(tf.expand_dims(tf.transpose(data[-500:, :32]), 0), 3))
predicted_indices = tf.argmax(probabilities, 1)
return str(tf.gather(LABELS, predicted_indices).numpy()[0].decode('UTF-8'))
def init_lsl(self):
print("looking for an EEG stream...")
model = tf.keras.models.load_model(model_path)
streams = resolve_stream('type', 'EEG')
inlet = StreamInlet(streams[0])
print("EEG stream located !")
self.init_main_widget()
data = []
while True:
sample, timestamp = inlet.pull_sample()
data.append(sample)
if len(data) > 500:
self.input_button["state"] = "normal"
if self._start_predict:
prediction = self.predict(data, model)
self.letter_label["text"] = prediction
self.sentences_label["text"] += prediction
if len(self.sentences_label["text"]) % 30 == 0:
self.sentences_label["text"] += "\n"
self._start_predict = False
self.input_button["state"] = "disabled"
data = []
def callback(self):
self._start_predict = True
def callback_reset_button(self):
self.sentences_label["text"] = ""
self.letter_label["text"] = ""
def init_main_widget(self):
self._mainframe.destroy()
self._state = 1
self._mainframe = ttk.Frame(self, borderwidth=10, relief="ridge")
mainframe = self._mainframe
mainframe.grid(column=0, row=0)
self.input_button = ttk.Button(mainframe, command=self.callback, text="Predict")
self.input_button.grid(row=3, pady=20)
self.input_button["state"] = "disabled"
self.reset_button = ttk.Button(mainframe, command=self.callback_reset_button, text="Reset")
self.reset_button.grid(row=4)
sentences_label_frame = ttk.LabelFrame(mainframe, text="Thought", labelanchor=N)
sentences_label_frame.grid(row=2, padx=20, pady=25)
self.sentences_label = ttk.Label(sentences_label_frame, text="", font=self.font)
self.sentences_label.grid(column=0, padx=20, pady=10)
self.letter_label = ttk.Label(sentences_label_frame, text="", font=Font(family='Helvetica', size=16, weight='bold'))
self.letter_label.grid(row=1, padx=20, pady=10)
def init_loading(self):
self._mainframe = ttk.Frame(self, borderwidth=10, relief="ridge")
mainframe = self._mainframe
mainframe.grid(column=0, row=0)
self._label = ttk.Label(mainframe, text="Looking for an EEG stream", font=self.font)
self._label.grid(row=1)
self._progress_bar = ttk.Progressbar(mainframe, mode="indeterminate")
self._progress_bar.grid(row=2)
self._progress_bar.start(10)
def init_theme(self):
pass
if __name__ == '__main__':
Application().mainloop()
|
StarcoderdataPython
|
1919344
|
import numpy as np
import itertools
# example from wikipedia
#a = [[-1,1],[3,2],[2,3],[-1,0],[0,-1]]
#b = [1,12,12,0,0]
# example from http://web.mit.edu/16.410/www/lectures_fall04/L18-19-IP-BB.pdf
a = [[6,3,5,2], [0,0,1,1], [-1,0,1,0], [0,-1,0,1], [1,0,0,0], [0,1,0,0],
[0,0,1,0], [0,0,0,1], [-1,0,0,0], [0,-1,0,0], [0,0,-1,0], [0,0,0,-1]]
b = [10, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0]
n = len(a)
k = len(a[0])
for s in itertools.combinations(range(n),k):
aa = []
bb = []
for x in s:
aa.append(a[x])
bb.append(b[x])
aaa = np.array(aa)
bbb = np.array(bb)
try:
x = np.linalg.solve(aaa,bbb)
good = True
for i in range(n):
t = 0
for j in range(k):
t += x[j] * a[i][j]
if t > b[i]:
good = False
if good:
print(s,aa,bb,x)
except:
pass
|
StarcoderdataPython
|
3359710
|
<filename>pyfeat/estimator/tram.py
r"""
======================
TRAM estimator wrapper
======================
.. moduleauthor:: <NAME> <<EMAIL>>
"""
import pytram as pt
import numpy as np
class TRAM( object ):
r"""
I am the TRAM wrapper
"""
def __init__( self, C_K_ij, b_K_x, M_x, N_K_i ):
r"""
Initialize the TRAM object
Parameters
----------
C_K_ij : numpy.ndarray( shape=(T,M,M), dtype=numpy.intc )
transition counts between the M discrete Markov states for each of the T thermodynamic ensembles
b_K_x : numpy.ndarray( shape=(T,samples), dtype=numpy.float )
all samples for biases at thermodynamic state K
M_x : numpy.ndarray( shape=(samples), dtype=numpy.intc )
trajectory of Markov states sampled
N_K_i : numpy.ndarray( shape=(T,M), dtype=numpy.intc )
total number of counts from simulation at T in M discrete Markov state (bin)
"""
try:
self._tram_obj = pt.TRAM( C_K_ij, b_K_x, M_x, N_K_i )
except AttributeError, e:
raise NotImplementedError( "The TRAM estimator is not yet implemented in the pytram package" )
def sc_iteration( self , maxiter=100, ftol=1.0E-5, verbose=False ):
r"""
sc_iteration function
Parameters
----------
maxiter : int
maximum number of self-consistent-iteration steps
ftol : float (> 0.0)
convergence criterion based on the max relative change in an self-consistent-iteration step
verbose : boolean
Be loud and noisy
"""
self._tram_obj.sc_iteration( maxiter=maxiter, ftol=ftol, verbose=verbose )
@property
def pi_i( self ):
return self._tram_obj.pi_i
@property
def pi_K_i( self ):
return self._tram_obj.pi_K_i
@property
def f_K( self ):
return self._tram_obj.f_K
@property
def f_K_i( self ):
return -np.log( self.pi_K_i )
@property
def f_i( self ):
return -np.log( self.pi_i )
@property
def citation( self ):
return self._tram_obj.citation
def cite( self, pre="" ):
self._tram_obj.cite( pre=pre )
|
StarcoderdataPython
|
9633886
|
from likeapp.views import LikeSet
from rest_framework.routers import DefaultRouter
router = DefaultRouter()
router.register(r'', LikeSet)
urlpatterns = router.urls
app_name = 'likeapp'
|
StarcoderdataPython
|
8063755
|
# -*- coding: utf-8 -*-
"""
#Handling Missing Values in Pandas
* Tutorial: https://news.towardsai.net/hmv
* Github https://github.com/towardsai/tutorials/tree/master/pandas
"""
#Import Required Libraries:
import pandas as pd
#Raw data in form of dictionary:
info = {"Person":["Alan","Berta","Charlie","Danielle","Euler",pd.NA], #Name of Person.
"Age":[32,45,35,28,30,pd.NA], #Age of Person.
"Degree":["CS",pd.NA,pd.NA,pd.NA,"Physics",pd.NA], #Major.
"Country":["USA","Mexico","USA",pd.NA,"USA",pd.NA], #Country of study.
"Books":[10,pd.NA,30,pd.NA,50,60], #Books owned.
"Batch Size":[200,100,50,200,50,pd.NA] #Batch Size.
}
#Converting the raw data into DataFrame:
data = pd.DataFrame(info)
#Printing the DataFrame:
data
#Replacing all missing values with 0:
data.fillna(value=0)
#Replacing values:
#Values to be used for specific column:
values = {"Person":"---", "Age":0, "Degree":"---","Books":0,"Batch Size":0}
#Replacing the values:
data.fillna(value=values)
#Using method="ffill":
data.fillna(method="ffill")
#Using method="pad":
#Same as method="ffill"
data.fillna(method="pad")
#Using method="ffill":
#Using axis=0 (Default)
data.fillna(method="ffill", axis=0)
#Using method="ffill":
#Using axis=1
data.fillna(method="ffill", axis=1)
#Using method="bfill":
data.fillna(method="bfill")
#Using method="backfill":
#Same as method="bfill"
data.fillna(method="backfill")
#Using method="bfill":
#Using axis=0 (Default)
data.fillna(method="bfill",axis=0)
#Using method="bfill":
#Using axis=1:
data.fillna(method="bfill",axis=1)
#Using method="ffill":
#Using axis=0:
#Using limit=1:
data.fillna(method="ffill",axis=0, limit=1)
#Using method="ffill":
#Using axis=1:
#Using limit=1:
data.fillna(method="ffill",axis=1, limit=1)
#Using method="bfill":
#Using axis=0:
#Using limit=1:
data.fillna(method="bfill",axis=0, limit=1)
#Using method="bfill":
#Using axis=1:
#Using limit=1:
data.fillna(method="bfill",axis=1, limit=1)
#Import Required Libraries:
import pandas as pd
#Raw data in form of dictionary:
info = {"Age":[32.0,45.0,35.0,28.0,30.0,40.0],
"Books":[10.0,pd.NA,30.0,40.0,50.0,60.0],
"Batch Size":[200,100,50,200,50,300]
}
#Converting the raw data into DataFrame:
data = pd.DataFrame(info)
#Printing the DataFrame:
data
data.dtypes
a = data.fillna(0,downcast="infer")
a
a.dtypes
#Inplace=True will make changes in the original DataFrame.
#It will return nothing.
data.fillna(value=0,inplace=True)
data
#Import Required Libraries:
import pandas as pd
#Raw data in form of dictionary:
info = {"Person":["Alan","Berta","Charlie","Danielle","Euler",pd.NA], #Name of Person.
"Age":[32,45,35,28,30,pd.NA], #Age of Person.
"Degree":["CS",pd.NA,pd.NA,pd.NA,"Physics",pd.NA], #Major.
"Country":["USA","Mexico","USA",pd.NA,"USA",pd.NA], #Country of study.
"Books":[10,pd.NA,30,pd.NA,50,60], #Books owned.
"Batch Size":[200,100,50,200,50,pd.NA] #Batch Size.
}
#Converting the raw data into DataFrame:
data = pd.DataFrame(info)
#Printing the DataFrame:
data
#Using pd.DataFrame.bfill():
data.bfill()
#Using pd.DataFrame.backfill():
data.backfill()
#Using pd.DataFrame.ffill():
data.ffill()
#Using pd.DataFrame.pad():
data.pad()
|
StarcoderdataPython
|
4870240
|
<gh_stars>10-100
"""This module contains functions for conversion of coordinates and file formats"""
# dependencies
from astropy.coordinates import SkyCoord
from astropy.table import Table
from astropy.io import fits
from astropy import units as u
import pandas as pd
def to_deg(coordinates):
"""Convert J2000 coordinates to degrees.
Parameters
----------
coordinates : str
J2000 coordinates
Returns
-------
tuple
(ra, dec) in degrees
"""
# using SkyCoord function from astropy to convert HMS to degrees
converted_coords = SkyCoord(coordinates, unit=(u.hourangle, u.deg))
# using string manipulation to extract coordinates from SkyCoord object
coordinates = tuple(
map(float, str(converted_coords).split("deg")[1].strip(">,\n, ),(").split(", "))
)
return coordinates
def extract_coords(filename):
"""Extract J2000 coordinates from filename or filepath
Parameters
----------
filename : str
name or path of file
Returns
-------
str
J2000 coordinates
"""
# in case path is entered as argument
filename = filename.split("/")[-1] if "/" in filename else filename
# to check whether declination is positive or negative
plus_minus = "+" if "+" in filename else "-"
# extracting right acesnsion (ra) and declination(dec) from filename
filename = filename.split("_")[0].strip("J").split(plus_minus)
ra_extracted = [
"".join(filename[0][0:2]),
"".join(filename[0][2:4]),
"".join(filename[0][4:]),
]
dec_extracted = [
"".join(filename[1][0:2]),
"".join(filename[1][2:4]),
"".join(filename[1][4:]),
]
coordinates = " ".join(ra_extracted) + " " + plus_minus + " ".join(dec_extracted)
# return coordinates as a string in HH MM SS.SSS format
return coordinates
def header_check(file):
"""Checks whether the file has a header or not.
Parameters
----------
file : str
Filename or filepath of file to check
Returns
-------
int
1 if header is present 0 if not
"""
with open(file, "r", encoding="utf-8") as to_check:
result = to_check.read(1).isalpha()
return int(result)
def txt_to_df(file, header):
"""Converts TXT lightcurve file to Pandas DataFrame.
Parameters
----------
file : str
Filename or filepath
header : int
To skip header if present.
Returns
-------
pandas.core.frame.DataFrame
Lightcurve as a DataFrame
"""
cols = [
"TIME_BIN",
"TIME_MIN",
"TIME",
"TIME_MAX",
"COUNTS",
"STAT_ERR",
"AREA",
"EXPOSURE",
"COUNT_RATE",
"COUNT_RATE_ERR",
]
dataframe = pd.read_csv(file, skiprows=header, names=cols, sep=" ")
return dataframe
def fits_to_df(file):
"""Converts FITS lightcurve file to Pandas DataFrame.
Parameters
----------
file : str
Filename or filepath
Returns
-------
pandas.core.frame.DataFrame
Lightcurve as a DataFrame
"""
# list of columns
cols = "TIME_BIN TIME_MIN TIME TIME_MAX COUNTS STAT_ERR AREA EXPOSURE COUNT_RATE COUNT_RATE_ERR"
cols = cols.split(" ")
# accessing fits data
hdu_list = fits.open(file, memmap=True)
evt_data = Table(hdu_list[1].data)
# initialising DataFrame
dataframe = pd.DataFrame()
# writing to dataframe
for col in cols:
dataframe[col] = list(evt_data[col])
return dataframe
|
StarcoderdataPython
|
11359782
|
<filename>src/sniffmypacketsv2/transforms/session_2_ipaddr.py
#!/usr/bin/env python
from common.dbconnect import mongo_connect
from common.entities import pcapFile
from canari.framework import configure
from canari.maltego.entities import IPv4Address
from canari.maltego.message import UIMessage
from canari.config import config
__author__ = 'catalyst256'
__copyright__ = 'Copyright 2014, sniffmypacketsv2 Project'
__credits__ = []
__license__ = 'GPL'
__version__ = '0.1'
__maintainer__ = 'catalyst256'
__email__ = '<EMAIL>'
__status__ = 'Development'
__all__ = [
'dotransform'
]
@configure(
label='Return IPv4 Address(s)',
description='Return IPv4 Addresses from Session ID',
uuids=['sniffMyPacketsv2.v2.session_2_ipaddr'],
inputs=[('[SmP] - Sessions', pcapFile)],
debug=True
)
def dotransform(request, response):
pcap = request.value
usedb = config['working/usedb']
# Check to see if we are using the database or not
if usedb == 0:
return response + UIMessage('No database support configured, check your config file')
else:
pass
x = mongo_connect()
ipaddr = []
try:
r = x.STREAMS.find({"File Name": pcap}).count()
if r > 0:
p = x.STREAMS.find({"File Name": pcap}, {"Packet.Source IP": 1, "Packet.Destination IP": 1, "_id": 0})
for i in p:
sip = i['Packet']['Source IP']
dip = i['Packet']['Destination IP']
ipaddr.append(sip)
ipaddr.append(dip)
else:
return response + UIMessage('This needs to be run from a TCP/UDP stream')
except Exception as e:
return response + UIMessage(str(e))
for t in ipaddr:
e = IPv4Address(t)
response += e
return response
|
StarcoderdataPython
|
6601793
|
"""
Django settings for password_generator project.
Generated by 'django-admin startproject' using Django 2.2.7.
For more information on this file, see
https://docs.djangoproject.com/en/2.2/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/2.2/ref/settings/
"""
import os
from dotenv import load_dotenv
# Build paths inside the project like this: os.path.join(BASE_DIR, ...)
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
load_dotenv(dotenv_path=BASE_DIR)
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = os.getenv('SECRET_KEY')
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = os.getenv('DJANGO_DEBUG')
ALLOWED_HOSTS = os.getenv('DJANGO_ALLOWED_HOSTS')
# Application definition
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'django.contrib.gis',
'django.contrib.postgres',
'health_check',
'rest_framework_swagger',
'health_check.db', # stock Django health checkers
'django_filters',
'rest_framework',
'jet',
'jet.dashboard',
'api',
]
JET_SIDE_MENU_COMPACT = True
JET_CHANGE_FORM_SIBLING_LINKS = True
MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
]
ROOT_URLCONF = 'password_generator.urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
WSGI_APPLICATION = 'password_generator.wsgi.application'
# Database
# https://docs.djangoproject.com/en/2.2/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': os.getenv('default_engine'),
'NAME': os.getenv('default_name'),
'USER': os.getenv('default_user'),
'PASSWORD': os.getenv('default_password'),
'HOST': os.getenv('default_host'),
'PORT': os.getenv('default_port', default=5432)
}
}
# Password validation
# https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = [
{
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},
]
# Internationalization
# https://docs.djangoproject.com/en/2.2/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/2.2/howto/static-files/
# PROJECT_DIR = os.path.dirname(os.path.abspath(__file__))
# STATIC_ROOT = os.path.join(PROJECT_DIR, 'static')
STATIC_URL = '/static/'
REST_FRAMEWORK = {
'DEFAULT_AUTHENTICATION_CLASSES': (
'rest_framework.authentication.TokenAuthentication',
'rest_framework.authentication.SessionAuthentication',
),
'DEFAULT_PERMISSION_CLASSES': [
# 'rest_framework.permissions.DjangoModelPermissions',
'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly'
# 'rest_framework.permissions.IsAdminUser',
# 'rest_framework.permissions.IsAuthenticated',
],
'DEFAULT_RENDERER_CLASSES': (
'rest_framework.renderers.JSONRenderer',
),
'DEFAULT_PARSER_CLASSES': (
'rest_framework.parsers.JSONParser',
),
'DEFAULT_FILTER_BACKENDS': (
'django_filters.rest_framework.DjangoFilterBackend',
),
'DEFAULT_PAGINATION_CLASS': 'api.pagination.StandardResultsSetPagination',
'PAGE_SIZE': 100,
'DEFAULT_SCHEMA_CLASS': 'rest_framework.schemas.coreapi.AutoSchema'
}
REST_FRAMEWORK_DOCS = {
'HIDE_DOCS': False
}
HEALTH_CHECK = {
'DISK_USAGE_MAX': 90, # percent
'MEMORY_MIN': 100, # in MB
}
|
StarcoderdataPython
|
6572602
|
<gh_stars>0
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
import grpc
from chirpstack_api.as_pb.external.api import gateway_pb2 as chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2
from google.protobuf import empty_pb2 as google_dot_protobuf_dot_empty__pb2
class GatewayServiceStub(object):
"""GatewayService is the service managing the gateways.
"""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Create = channel.unary_unary(
'/api.GatewayService/Create',
request_serializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.CreateGatewayRequest.SerializeToString,
response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString,
)
self.Get = channel.unary_unary(
'/api.GatewayService/Get',
request_serializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.GetGatewayRequest.SerializeToString,
response_deserializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.GetGatewayResponse.FromString,
)
self.Update = channel.unary_unary(
'/api.GatewayService/Update',
request_serializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.UpdateGatewayRequest.SerializeToString,
response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString,
)
self.Delete = channel.unary_unary(
'/api.GatewayService/Delete',
request_serializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.DeleteGatewayRequest.SerializeToString,
response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString,
)
self.List = channel.unary_unary(
'/api.GatewayService/List',
request_serializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.ListGatewayRequest.SerializeToString,
response_deserializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.ListGatewayResponse.FromString,
)
self.GetStats = channel.unary_unary(
'/api.GatewayService/GetStats',
request_serializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.GetGatewayStatsRequest.SerializeToString,
response_deserializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.GetGatewayStatsResponse.FromString,
)
self.GetLastPing = channel.unary_unary(
'/api.GatewayService/GetLastPing',
request_serializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.GetLastPingRequest.SerializeToString,
response_deserializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.GetLastPingResponse.FromString,
)
self.StreamFrameLogs = channel.unary_stream(
'/api.GatewayService/StreamFrameLogs',
request_serializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.StreamGatewayFrameLogsRequest.SerializeToString,
response_deserializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.StreamGatewayFrameLogsResponse.FromString,
)
class GatewayServiceServicer(object):
"""GatewayService is the service managing the gateways.
"""
def Create(self, request, context):
"""Create creates the given gateway.
"""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Get(self, request, context):
"""Get returns the gateway for the requested mac address.
"""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Update(self, request, context):
"""Update updates the gateway matching the given mac address.
"""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Delete(self, request, context):
"""Delete deletes the gateway matching the given mac address.
"""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def List(self, request, context):
"""List lists the gateways.
"""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GetStats(self, request, context):
"""GetStats lists the gateway stats given the query parameters.
"""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GetLastPing(self, request, context):
"""GetLastPing returns the last emitted ping and gateways receiving this ping.
"""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def StreamFrameLogs(self, request, context):
"""StreamFrameLogs streams the uplink and downlink frame-logs for the given gateway ID.
Notes:
* These are the raw LoRaWAN frames and this endpoint is intended for debugging only.
* This endpoint does not work from a web-browser.
"""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_GatewayServiceServicer_to_server(servicer, server):
rpc_method_handlers = {
'Create': grpc.unary_unary_rpc_method_handler(
servicer.Create,
request_deserializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.CreateGatewayRequest.FromString,
response_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString,
),
'Get': grpc.unary_unary_rpc_method_handler(
servicer.Get,
request_deserializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.GetGatewayRequest.FromString,
response_serializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.GetGatewayResponse.SerializeToString,
),
'Update': grpc.unary_unary_rpc_method_handler(
servicer.Update,
request_deserializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.UpdateGatewayRequest.FromString,
response_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString,
),
'Delete': grpc.unary_unary_rpc_method_handler(
servicer.Delete,
request_deserializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.DeleteGatewayRequest.FromString,
response_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString,
),
'List': grpc.unary_unary_rpc_method_handler(
servicer.List,
request_deserializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.ListGatewayRequest.FromString,
response_serializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.ListGatewayResponse.SerializeToString,
),
'GetStats': grpc.unary_unary_rpc_method_handler(
servicer.GetStats,
request_deserializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.GetGatewayStatsRequest.FromString,
response_serializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.GetGatewayStatsResponse.SerializeToString,
),
'GetLastPing': grpc.unary_unary_rpc_method_handler(
servicer.GetLastPing,
request_deserializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.GetLastPingRequest.FromString,
response_serializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.GetLastPingResponse.SerializeToString,
),
'StreamFrameLogs': grpc.unary_stream_rpc_method_handler(
servicer.StreamFrameLogs,
request_deserializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.StreamGatewayFrameLogsRequest.FromString,
response_serializer=chirpstack__api_dot_as__pb_dot_external_dot_api_dot_gateway__pb2.StreamGatewayFrameLogsResponse.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'api.GatewayService', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
|
StarcoderdataPython
|
9625114
|
<filename>position/models.py
# position/models.py
# Brought to you by We Vote. Be good.
# -*- coding: UTF-8 -*-
# Diagrams here: https://docs.google.com/drawings/d/1DsPnl97GKe9f14h41RPeZDssDUztRETGkXGaolXCeyo/edit
from django.db import models
from election_office_measure.models import CandidateCampaign, MeasureCampaign
from exception.models import handle_exception, handle_exception_silently, handle_record_found_more_than_one_exception,\
handle_record_not_found_exception, handle_record_not_saved_exception
from organization.models import Organization
from twitter.models import TwitterUser
from django.contrib.auth.models import User
# from voter.models import Voter # Replace User with this once we have figured out User -> Voter object linking
SUPPORT = 'SUPPORT'
STILL_DECIDING = 'STILL_DECIDING'
NO_STANCE = 'NO_STANCE'
INFORMATION_ONLY = 'INFO_ONLY'
OPPOSE = 'OPPOSE'
POSITION_CHOICES = (
# ('SUPPORT_STRONG', 'Strong Supports'), # I do not believe we will be offering 'SUPPORT_STRONG' as an option
(SUPPORT, 'Supports'),
(STILL_DECIDING, 'Still deciding'),
(NO_STANCE, 'No stance'),
(INFORMATION_ONLY, 'Information only'),
(OPPOSE, 'Opposes'),
# ('OPPOSE_STRONG', 'Strongly Opposes'), # I do not believe we will be offering 'OPPOSE_STRONG' as an option
)
class PositionEntered(models.Model):
"""
Any position entered by any person gets its own PositionEntered entry. We then
generate Position entries that get used to display an particular org's position.
"""
# We are relying on built-in Python id field
# The id for the generated position that this PositionEntered entry influences
position_id = models.BigIntegerField(null=True, blank=True)
date_entered = models.DateTimeField(verbose_name='date entered', null=True)
# The organization this position is for
organization_id = models.BigIntegerField(null=True, blank=True)
# The voter expressing the opinion
voter_id = models.BigIntegerField(null=True, blank=True)
# The election this position is for
election_id = models.BigIntegerField(verbose_name='election id', null=True, blank=True)
# The unique We Vote id of the tweet that is the source of the position
tweet_source_id = models.BigIntegerField(null=True, blank=True)
# This is the voter / authenticated user who entered the position for an organization
# (NOT the voter expressing opinion)
voter_entering_position = models.ForeignKey(
User, verbose_name='authenticated user who entered position', null=True, blank=True)
# The Twitter user account that generated this position
twitter_user_entered_position = models.ForeignKey(TwitterUser, null=True, verbose_name='')
# This is the candidate/politician that the position refers to.
# Either candidate_campaign is filled OR measure_campaign, but not both
# candidate_campaign = models.ForeignKey(
# CandidateCampaign, verbose_name='candidate campaign', null=True, blank=True,
# related_name='positionentered_candidate')
candidate_campaign_id = models.BigIntegerField(verbose_name='id of candidate_campaign', null=True, blank=True)
# Useful for queries based on Politicians -- not the main table we use for ballot display though
politician_id = models.BigIntegerField(verbose_name='', null=True, blank=True)
# This is the measure/initiative/proposition that the position refers to.
# Either measure_campaign is filled OR candidate_campaign, but not both
# measure_campaign = models.ForeignKey(
# MeasureCampaign, verbose_name='measure campaign', null=True, blank=True, related_name='positionentered_measure')
measure_campaign_id = models.BigIntegerField(verbose_name='id of measure_campaign', null=True, blank=True)
# Strategic denormalization - this is redundant but will make generating the voter guide easier.
# geo = models.ForeignKey(Geo, null=True, related_name='pos_geo')
# issue = models.ForeignKey(Issue, null=True, blank=True, related_name='')
stance = models.CharField(max_length=15, choices=POSITION_CHOICES, default=NO_STANCE) # supporting/opposing
statement_text = models.TextField(null=True, blank=True,)
statement_html = models.TextField(null=True, blank=True,)
# A link to any location with more information about this position
more_info_url = models.URLField(blank=True, null=True, verbose_name='url with more info about this position')
# Did this position come from a web scraper?
from_scraper = models.BooleanField(default=False)
# Was this position certified by an official with the organization?
organization_certified = models.BooleanField(default=False)
# Was this position certified by an official We Vote volunteer?
volunteer_certified = models.BooleanField(default=False)
# link = models.URLField(null=True, blank=True,)
# link_title = models.TextField(null=True, blank=True, max_length=128)
# link_site = models.TextField(null=True, blank=True, max_length=64)
# link_txt = models.TextField(null=True, blank=True)
# link_img = models.URLField(null=True, blank=True)
# Set this to True after getting all the link details (title, txt, img etc)
# details_loaded = models.BooleanField(default=False)
# video_embed = models.URLField(null=True, blank=True)
# spam_flag = models.BooleanField(default=False)
# abuse_flag = models.BooleanField(default=False)
# orig_json = models.TextField(blank=True)
def __unicode__(self):
return self.stance
class Meta:
ordering = ('date_entered',)
def is_support(self):
if self.stance == SUPPORT:
return True
return False
def is_oppose(self):
if self.stance == OPPOSE:
return True
return False
def is_no_stance(self):
if self.stance == NO_STANCE:
return True
return False
def is_information_only(self):
if self.stance == INFORMATION_ONLY:
return True
return False
def is_still_deciding(self):
if self.stance == STILL_DECIDING:
return True
return False
def candidate_campaign(self):
try:
candidate_campaign = CandidateCampaign.objects.get(id=self.candidate_campaign_id)
except CandidateCampaign.MultipleObjectsReturned as e:
handle_record_found_more_than_one_exception(e)
print "position.candidate_campaign Found multiple"
return None
except CandidateCampaign.DoesNotExist as e:
handle_exception_silently(e)
print "position.candidate_campaign did not find"
return None
return candidate_campaign
def organization(self):
try:
organization = Organization.objects.get(id=self.organization_id)
except Organization.MultipleObjectsReturned as e:
handle_record_found_more_than_one_exception(e)
print "position.candidate_campaign Found multiple"
return None
except Organization.DoesNotExist as e:
handle_exception_silently(e)
print "position.candidate_campaign did not find"
return None
return organization
class Position(models.Model):
"""
This is a table of data generated from PositionEntered. Not all fields copied over from PositionEntered
"""
# We are relying on built-in Python id field
# The PositionEntered entry that was copied into this entry based on verification rules
position_entered_id = models.BigIntegerField(null=True, blank=True)
date_entered = models.DateTimeField(verbose_name='date entered', null=True)
# The organization this position is for
organization_id = models.BigIntegerField(null=True, blank=True)
# The election this position is for
election_id = models.BigIntegerField(verbose_name='election id', null=True, blank=True)
candidate_campaign = models.ForeignKey(
CandidateCampaign, verbose_name='candidate campaign', null=True, blank=True, related_name='position_candidate')
# Useful for queries based on Politicians -- not the main table we use for ballot display though
politician_id = models.BigIntegerField(verbose_name='', null=True, blank=True)
# This is the measure/initiative/proposition that the position refers to.
# Either measure_campaign is filled OR candidate_campaign, but not both
measure_campaign = models.ForeignKey(
MeasureCampaign, verbose_name='measure campaign', null=True, blank=True, related_name='position_measure')
stance = models.CharField(max_length=15, choices=POSITION_CHOICES) # supporting/opposing
statement_text = models.TextField(null=True, blank=True,)
statement_html = models.TextField(null=True, blank=True,)
# A link to any location with more information about this position
more_info_url = models.URLField(blank=True, null=True, verbose_name='url with more info about this position')
def __unicode__(self):
return self.name
class Meta:
ordering = ('date_entered',)
# def display_ballot_item_name(self):
# """
# Organization supports 'ballot_item_name' (which could be a campaign name, or measure name
# :return:
# """
# # Try to retrieve the candidate_campaign
# if candidate_campaign.id:
class PositionListForCandidateCampaign(models.Model):
"""
A way to retrieve all of the positions stated about this CandidateCampaign
"""
# candidate_campaign = models.ForeignKey(
# CandidateCampaign, null=False, blank=False, verbose_name='candidate campaign')
# position = models.ForeignKey(
# PositionEntered, null=False, blank=False, verbose_name='position about candidate')
def retrieve_all_positions_for_candidate_campaign(self, candidate_campaign_id, stance_we_are_looking_for):
# TODO Error check stance_we_are_looking_for
# Retrieve the support positions for this candidate_campaign_id
organization_position_list_found = False
try:
organization_position_list = PositionEntered.objects.order_by('date_entered')
organization_position_list = organization_position_list.filter(candidate_campaign_id=candidate_campaign_id)
# SUPPORT, STILL_DECIDING, INFORMATION_ONLY, NO_STANCE, OPPOSE
organization_position_list = organization_position_list.filter(stance=stance_we_are_looking_for)
# organization_position_list = organization_position_list.filter(election_id=election_id)
if len(organization_position_list):
organization_position_list_found = True
except Exception as e:
handle_record_not_found_exception(e)
if organization_position_list_found:
return organization_position_list
else:
organization_position_list = {}
return organization_position_list
def calculate_positions_followed_by_voter(
self, all_positions_list_for_candidate_campaign, organizations_followed_by_voter):
"""
We need a list of positions that were made by an organization that this voter follows
:param all_positions_list_for_candidate_campaign:
:param organizations_followed_by_voter:
:return:
"""
this_voter_id = 1
positions_followed_by_voter = []
# Only return the positions if they are from organizations the voter follows
for position in all_positions_list_for_candidate_campaign:
if position.voter_id == this_voter_id: # TODO DALE Is this the right way to do this?
positions_followed_by_voter.append(position)
elif position.organization_id in organizations_followed_by_voter:
print "position {position_id} followed by voter (org {org_id})".format(
position_id=position.id, org_id=position.organization_id)
positions_followed_by_voter.append(position)
return positions_followed_by_voter
def calculate_positions_not_followed_by_voter(
self, all_positions_list_for_candidate_campaign, organizations_followed_by_voter):
"""
We need a list of positions that were made by an organization that this voter follows
:param all_positions_list_for_candidate_campaign:
:param organizations_followed_by_voter:
:return:
"""
positions_not_followed_by_voter = []
# Only return the positions if they are from organizations the voter follows
for position in all_positions_list_for_candidate_campaign:
# Some positions are for individual voters, so we want to filter those out
if position.organization_id \
and position.organization_id not in organizations_followed_by_voter:
print "position {position_id} NOT followed by voter (org {org_id})".format(
position_id=position.id, org_id=position.organization_id)
positions_not_followed_by_voter.append(position)
return positions_not_followed_by_voter
class PositionEnteredManager(models.Model):
def __unicode__(self):
return "PositionEnteredManager"
def retrieve_organization_candidate_campaign_position(self, organization_id, candidate_campaign_id):
"""
Find a position based on the organization_id & candidate_campaign_id
:param organization_id:
:param candidate_campaign_id:
:return:
"""
position_id = 0
voter_id = 0
measure_campaign_id = 0
position_entered_manager = PositionEnteredManager()
return position_entered_manager.retrieve_position(
position_id, organization_id, voter_id, candidate_campaign_id, measure_campaign_id)
def retrieve_voter_candidate_campaign_position(self, voter_id, candidate_campaign_id):
organization_id = 0
position_id = 0
measure_campaign_id = 0
position_entered_manager = PositionEnteredManager()
return position_entered_manager.retrieve_position(
position_id, organization_id, voter_id, candidate_campaign_id, measure_campaign_id)
def retrieve_position_from_id(self, position_id):
organization_id = 0
voter_id = 0
candidate_campaign_id = 0
measure_campaign_id = 0
position_entered_manager = PositionEnteredManager()
return position_entered_manager.retrieve_position(
position_id, organization_id, voter_id, candidate_campaign_id, measure_campaign_id)
def retrieve_position(self, position_id, organization_id, voter_id, candidate_campaign_id, measure_campaign_id):
error_result = False
exception_does_not_exist = False
exception_multiple_object_returned = False
position_on_stage = PositionEntered()
try:
if position_id > 0:
position_on_stage = PositionEntered.objects.get(id=position_id)
position_id = position_on_stage.id
elif organization_id > 0 and candidate_campaign_id > 0:
position_on_stage = PositionEntered.objects.get(
organization_id=organization_id, candidate_campaign_id=candidate_campaign_id)
# If still here, we found an existing position
position_id = position_on_stage.id
elif organization_id > 0 and measure_campaign_id > 0:
position_on_stage = PositionEntered.objects.get(
organization_id=organization_id, measure_campaign_id=measure_campaign_id)
position_id = position_on_stage.id
elif voter_id > 0 and candidate_campaign_id > 0:
position_on_stage = PositionEntered.objects.get(
voter_id=voter_id, candidate_campaign_id=candidate_campaign_id)
position_id = position_on_stage.id
elif voter_id > 0 and measure_campaign_id > 0:
position_on_stage = PositionEntered.objects.get(
voter_id=voter_id, measure_campaign_id=measure_campaign_id)
position_id = position_on_stage.id
except PositionEntered.MultipleObjectsReturned as e:
handle_record_found_more_than_one_exception(e)
error_result = True
exception_multiple_object_returned = True
except PositionEntered.DoesNotExist as e:
handle_exception_silently(e)
error_result = True
exception_does_not_exist = True
results = {
'error_result': error_result,
'DoesNotExist': exception_does_not_exist,
'MultipleObjectsReturned': exception_multiple_object_returned,
'position_found': True if position_id > 0 else False,
'position_id': position_id,
'position': position_on_stage,
'is_support': position_on_stage.is_support(),
'is_oppose': position_on_stage.is_oppose(),
'is_no_stance': position_on_stage.is_no_stance(),
'is_information_only': position_on_stage.is_information_only(),
'is_still_deciding': position_on_stage.is_still_deciding(),
}
return results
def toggle_on_voter_support_for_candidate_campaign(self, voter_id, candidate_campaign_id):
stance = SUPPORT
position_entered_manager = PositionEnteredManager()
return position_entered_manager.toggle_on_voter_position_for_candidate_campaign(
voter_id, candidate_campaign_id, stance)
def toggle_off_voter_support_for_candidate_campaign(self, voter_id, candidate_campaign_id):
stance = NO_STANCE
position_entered_manager = PositionEnteredManager()
return position_entered_manager.toggle_on_voter_position_for_candidate_campaign(
voter_id, candidate_campaign_id, stance)
def toggle_on_voter_oppose_for_candidate_campaign(self, voter_id, candidate_campaign_id):
stance = OPPOSE
position_entered_manager = PositionEnteredManager()
return position_entered_manager.toggle_on_voter_position_for_candidate_campaign(
voter_id, candidate_campaign_id, stance)
def toggle_off_voter_oppose_for_candidate_campaign(self, voter_id, candidate_campaign_id):
stance = NO_STANCE
position_entered_manager = PositionEnteredManager()
return position_entered_manager.toggle_on_voter_position_for_candidate_campaign(
voter_id, candidate_campaign_id, stance)
def toggle_on_voter_position_for_candidate_campaign(self, voter_id, candidate_campaign_id, stance):
# Does a position from this voter already exist?
position_entered_manager = PositionEnteredManager()
results = position_entered_manager.retrieve_voter_candidate_campaign_position(voter_id, candidate_campaign_id)
voter_position_on_stage_found = False
position_id = 0
if results['position_found']:
print "yay!"
voter_position_on_stage = results['position']
# Update this position with new values
try:
voter_position_on_stage.stance = stance
# voter_position_on_stage.statement_text = statement_text
voter_position_on_stage.save()
position_id = voter_position_on_stage.id
voter_position_on_stage_found = True
except Exception as e:
handle_record_not_saved_exception(e)
elif results['MultipleObjectsReturned']:
print "delete all but one and take it over?"
elif results['DoesNotExist']:
try:
# Create new
voter_position_on_stage = PositionEntered(
voter_id=voter_id,
candidate_campaign_id=candidate_campaign_id,
stance=stance,
# statement_text=statement_text,
)
voter_position_on_stage.save()
position_id = voter_position_on_stage.id
voter_position_on_stage_found = True
except Exception as e:
handle_record_not_saved_exception(e)
results = {
'success': True if voter_position_on_stage_found else False,
'position_id': position_id,
'position': voter_position_on_stage,
}
return results
|
StarcoderdataPython
|
4883274
|
def repeatedString(s, n):
L = len(s)
return (s.count('a') * (n//L) + s[:n % L].count('a'))
x = "abc"
n = 8
print(repeatedString("abc", 89))
|
StarcoderdataPython
|
179644
|
import os, os.path, sys, wx, stat, shutil
import subprocess as sp
import traceback as tb
opj = os.path.join
global FILES_DIR, THUMB_DIR
MPLAYER_DIR = "mplayer" # change if needed
CONVERT_DIR = "convert" # imagemagick's convert
wx.InitAllImageHandlers()
def __GetThumbName(fullPath, fileType):
fileSize = os.stat(fullPath).st_size
(root, ext) = os.path.splitext( os.path.basename(fullPath) )
thumbName = root+str(fileSize)+ext #construct the thumb name
# video files have .jpg tacked onto the end
thumbName += ".jpg"
return opj( THUMB_DIR, thumbName )
### change the permission of the settings file to allow everyone to write to it
def __SetWritePermissions(*files):
for filePath in files:
try:
flags = stat.S_IWUSR | stat.S_IRUSR | stat.S_IWGRP | stat.S_IRGRP | stat.S_IROTH
os.chmod(filePath, flags)
except:
print str(sys.exc_info()[0])+" "+str(sys.exc_info()[1])+" "+str(sys.exc_info()[2])
def makeVideoThumb(fullPath, thumbPath):
print "\n", 80*"-", "\ncreating video thumbnail with command: "
# must create two frames because of mplayer bug
createCmd = MPLAYER_DIR+" -vo jpeg -quiet -frames 2 -ss 5 "+ fullPath
print createCmd
try:
sp.check_call(createCmd.split())
except:
print "".join(tb.format_exception(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2]))
# delete one of them
try:
os.remove("00000001.jpg")
except:
print "".join(tb.format_exception(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2]))
# resize it to 300x300
try:
im = wx.Image("00000002.jpg") # read the original image
if im.Ok(): #the image may be corrupted...
im.Rescale(300, 300) # resize it
im.SaveFile("00000002.jpg", wx.BITMAP_TYPE_JPEG) # save it back to a file
except:
print "".join(tb.format_exception(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2]))
# rename the right one
try:
shutil.move("00000002.jpg", thumbPath)
except:
print "".join(tb.format_exception(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2]))
def makePDFThumb(fullPath, thumbPath):
print "\n", 80*"-", "\ncreating PDF thumbnail with command: "
createCmd = CONVERT_DIR+" -thumbnail 300x300 "+fullPath+"[0] "+thumbPath
print createCmd
try:
sp.check_call(createCmd.split())
except:
print "".join(tb.format_exception(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2]))
def makeImageThumb(fullPath, thumbPath):
def __GetWxBitmapType(name):
ext = os.path.splitext(name)[1]
ext = ext.lower()
if ext==".jpg": return wx.BITMAP_TYPE_JPEG
elif ext==".png": return wx.BITMAP_TYPE_PNG
elif ext==".bmp": return wx.BITMAP_TYPE_BMP
elif ext==".gif": return wx.BITMAP_TYPE_GIF
elif ext==".pcx": return wx.BITMAP_TYPE_PCX
elif ext==".pnm": return wx.BITMAP_TYPE_PNM
elif ext==".tif": return wx.BITMAP_TYPE_TIF
elif ext==".tiff": return wx.BITMAP_TYPE_TIF
elif ext==".xpm": return wx.BITMAP_TYPE_XPM
elif ext==".ico": return wx.BITMAP_TYPE_ICO
elif ext==".cur": return wx.BITMAP_TYPE_CUR
else:
return False
try:
wxImageType = __GetWxBitmapType(os.path.basename(fullPath))
if wxImageType: # some types just cant be saved by wxPython
# write the thumb but name it with a filename and filesize so that they are unique
#thumbPath = __GetThumbName(fullPath, "image")
im = wx.Image(fullPath) # read the original image
if im.Ok(): #the image may be corrupted...
im.Rescale(300, 300) # resize it
im.SaveFile(thumbPath, wx.BITMAP_TYPE_JPEG) # save it back to a file
except:
print "".join(tb.format_exception(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2]))
def makeThumbnail(fullPath, fileType, thumbPath):
if not os.path.exists(thumbPath):
if fileType == "image":
makeImageThumb(fullPath, thumbPath)
elif fileType == "video":
makeVideoThumb(fullPath, thumbPath)
elif fileType == "pdf":
makePDFThumb(fullPath, thumbPath)
else:
print "\nERROR:Don't know how to make thumbnail for:", fileType
if os.path.exists(thumbPath):
__SetWritePermissions(thumbPath)
def main():
for d in os.listdir(FILES_DIR):
if d=="image" or d=="video" or d=="pdf":
for root, dirs, files in os.walk(opj(FILES_DIR, d)):
for f in files:
fullPath = opj(root, f)
thumbPath = __GetThumbName(fullPath, d)
if not os.path.exists(thumbPath):
makeThumbnail(fullPath, d, thumbPath)
if __name__ == '__main__':
import sys, os
global FILES_DIR, THUMB_DIR
if len(sys.argv) < 2:
print "USAGE: python makeThumbs.py path_to_file_library"
else:
FILES_DIR = sys.argv[1]
if os.path.exists(FILES_DIR):
THUMB_DIR = opj(FILES_DIR, "thumbnails")
main()
else:
print "Given directory doesn't exist... exiting"
|
StarcoderdataPython
|
3454122
|
import pandas as pd
import numpy as np
from scipy import stats
from ast import literal_eval
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.metrics.pairwise import linear_kernel, cosine_similarity
from surprise import Reader, Dataset, SVD, evaluate
from imdbToId import converter
# Configuring database
import MySQLdb
db = MySQLdb.connect(host="localhost", # your host, usually localhost
user="udolf", # your username
password="<PASSWORD>", # your password
db="recommendme") # name of the data base
gen_md = pd.read_csv('data/gen_md.csv')
# Main recommendation part for the
class recommendMe():
def __init__(self):
pass
'''
This will return movies intially to the guest who is not logged in or haven't rated a single
movie
'''
def build_chart(genre, percentile=0.85):
movieDb = gen_md[gen_md['genre'] == genre]
vote_counts = movieDb[movieDb['vote_count'].notnull()]['vote_count'].astype('int')
vote_averages = movieDb[movieDb['vote_average'].notnull()]['vote_average'].astype('int')
C = vote_averages.mean()
m = vote_counts.quantile(percentile)
qualified = movieDb[(movieDb['vote_count'] >= m) & (movieDb['vote_count'].notnull()) & (movieDb['vote_average'].notnull())][['title','vote_count','vote_average','popularity','imdb_id']]
qualified['vote_count'] = qualified['vote_count'].astype('int')
qualified['vote_average'] = qualified['vote_average'].astype('int')
qualified['wr'] = qualified.apply(lambda x: (x['vote_count']/(x['vote_count']+m) * x['vote_average']) + (m/(m+x['vote_count']) * C), axis=1)
qualified = qualified.sort_values('wr', ascending=False).head(250)
return qualified.head(7)
'''
This will return movies that are top of their genre but not rated by the user
'''
def build_chartP(genre,userId, percentile=0.85):
cur = db.cursor()
result = cur.execute('SELECT * FROM ratings WHERE userId = %s',[userId])
imdbIdsRatedAlready = []
if(result > 0):
data = cur.fetchall()
for singleR in data:
imdbIdsRatedAlready.append(singleR[3])
cur.close()
print(imdbIdsRatedAlready)
movieDb = gen_md[gen_md['genre'] == genre]
vote_counts = movieDb[movieDb['vote_count'].notnull()]['vote_count'].astype('int')
vote_averages = movieDb[movieDb['vote_average'].notnull()]['vote_average'].astype('int')
C = vote_averages.mean()
m = vote_counts.quantile(percentile)
qualified = movieDb[(movieDb['vote_count'] >= m) & (movieDb['vote_count'].notnull()) & (movieDb['vote_average'].notnull())][['title','vote_count','vote_average','popularity','imdb_id']]
qualified['vote_count'] = qualified['vote_count'].astype('int')
qualified['vote_average'] = qualified['vote_average'].astype('int')
qualified['wr'] = qualified.apply(lambda x: (x['vote_count']/(x['vote_count']+m) * x['vote_average']) + (m/(m+x['vote_count']) * C), axis=1)
qualified = qualified.sort_values('wr', ascending=False).head(250)
qualified = qualified[~qualified.imdb_id.isin(imdbIdsRatedAlready)]
return qualified.head(8)
''' This function will take user id,5 movie and 5 rating from the database that are
recently added and add them to the rating dataset that will be used for training the model
'''
def svdRecommender(userList,movieIdList,ratingList):
# Adding the data form the user
mat = []
for i in range(len(ratingList)):
temp = []
temp.append(userList[i])
temp.append(movieIdList[i])
temp.append(ratingList[i])
mat.append(temp)
ratings_small = pd.read_csv('data/ratings_small.csv')
newData = pd.DataFrame(mat,columns = ['userId','movieId','rating'])
ratings_small = ratings_small.append(newData,ignore_index = True)
ratings_small.to_csv('ratings_small.csv',index = False)
# Getting the recommended movies after the training
movies = recommendMe.recommender(userList[0])
return movies
''' This function will take the user id and perform the svd decompostion from the rating data
and after training, the trained model will we used to recommend the rating for all the
movies for the user and we will remove the movies which are already rated by the user
'''
def recommender(user):
cur = db.cursor()
# Getting the movies already rated by the user
result = cur.execute('SELECT * FROM ratings WHERE userId = %s',[user])
imdbIdsRatedAlready = []
if(result > 0):
data = cur.fetchall()
for singleR in data:
imdbIdsRatedAlready.append(singleR[3])
cur.close()
print(imdbIdsRatedAlready)
ratings = pd.read_csv('data/ratings_small.csv')
dataFrame = ratings['movieId'].unique()
movies = pd.DataFrame([dataFrame],['movieId']).transpose()
# Performing the training by using surprise package
reader = Reader()
data = Dataset.load_from_df(ratings[['userId', 'movieId', 'rating']], reader)
data.split(n_folds=2)
svd = SVD()
evaluate(svd, data, measures=['RMSE', 'MAE'])
trainset = data.build_full_trainset()
svd.fit(trainset)
# Performing the prediction for each movie according to the user
movies['est'] = movies['movieId'].apply(lambda x : svd.predict(int(user),x).est)
movies = movies.sort_values('est', ascending=False)
movies = converter.convertToimdbId(list(movies.head(100)['movieId']))
# Removing movies already rated by user
print(movies)
movies = movies[~movies.imdbId.isin(imdbIdsRatedAlready)]
movies['imdbId'].values
return movies
|
StarcoderdataPython
|
11214941
|
from keras.layers import Dense, Merge
from keras.models import Sequential
from keras.optimizers import RMSprop
from keras.regularizers import l2
from objectives import cca_loss
def create_model(layer_sizes1, layer_sizes2, input_size1, input_size2,
learning_rate, reg_par, outdim_size, use_all_singular_values):
"""
builds the whole model
the structure of each sub-network is defined in build_mlp_net,
and it can easily get substituted with a more efficient and powerful network like CNN
"""
view1_model = build_mlp_net(layer_sizes1, input_size1, reg_par)
view2_model = build_mlp_net(layer_sizes2, input_size2, reg_par)
model = Sequential()
model.add(Merge([view1_model, view2_model], mode='concat'))
model_optimizer = RMSprop(lr=learning_rate)
model.compile(loss=cca_loss(outdim_size, use_all_singular_values), optimizer=model_optimizer)
return model
def build_mlp_net(layer_sizes, input_size, reg_par):
model = Sequential()
for l_id, ls in enumerate(layer_sizes):
if l_id == 0:
input_dim = input_size
else:
input_dim = []
if l_id == len(layer_sizes)-1:
activation = 'linear'
else:
activation = 'sigmoid'
model.add(Dense(ls, input_dim=input_dim,
activation=activation,
kernel_regularizer=l2(reg_par)))
return model
|
StarcoderdataPython
|
11335910
|
<gh_stars>0
from convertmask import baseDecorate
import copy
import datetime
import os
import random
import xml.etree.ElementTree as ET
from xml.etree.ElementTree import Element
import cv2
import numpy as np
import skimage
from convertmask.utils.auglib.optional.resize import resize_img
from convertmask.utils.img2xml.processor_multiObj import img2xml_multiobj
from convertmask.utils.methods.logger import logger
from convertmask.utils.xml2yolo.xml2yolo import convert as x2yVert
from convertmask.utils.yolo2xml.yolo2xml import convert as y2xVert
from skimage import io
from .resize import resizeScript
def getBoxes(front: int, root1: Element, root2: Element, root3: Element,
root4: Element, imgShape: tuple, heightFactor: float,
widthFactor: float):
root1_ = copy.deepcopy(root1)
root2_ = copy.deepcopy(root2)
root3_ = copy.deepcopy(root3)
root4_ = copy.deepcopy(root4)
if front == 1:
# 1
# 2
for o in root2_.iter('object'):
box = o.find('bndbox')
xmin = float(box.find('xmin').text)
ymin = float(box.find('ymin').text)
xmax = float(box.find('xmax').text)
ymax = float(box.find('ymax').text)
# if ymin >= heightFactor * imgShape[0] or xmax <= imgShape[1] * (
# 1 - widthFactor):
if xmax <= imgShape[1] * (1 - widthFactor):
box.find('xmin').text = str(0)
box.find('xmax').text = str(0)
box.find('ymin').text = str(0)
box.find('ymax').text = str(0)
else:
# if ymin < heightFactor * imgShape[0]:
# if ymax > heightFactor * imgShape[0]:
# box.find('ymax').text = str(int(heightFactor *
# imgShape[0]))
if xmax > imgShape[1] * (1 - widthFactor):
if xmin < imgShape[1] * (1 - widthFactor):
box.find('xmin').text = str(
int(imgShape[1] * (1 - widthFactor)))
# 3
for o in root3_.iter('object'):
box = o.find('bndbox')
xmin = float(box.find('xmin').text)
ymin = float(box.find('ymin').text)
xmax = float(box.find('xmax').text)
ymax = float(box.find('ymax').text)
# if ymax <= (1-heightFactor) * imgShape[
# 0] or xmin >= widthFactor * imgShape[1]:
if ymax <= (1 - heightFactor) * imgShape[0]:
box.find('xmin').text = str(0)
box.find('xmax').text = str(0)
box.find('ymin').text = str(0)
box.find('ymax').text = str(0)
else:
if ymax > imgShape[0] * (1 - heightFactor):
if ymin < imgShape[0] * (1 - heightFactor):
box.find('ymin').text = str(
int(imgShape[0] * (1 - heightFactor)))
# if xmin < widthFactor * imgShape[1]:
# if xmax > widthFactor * imgShape[1]:
# box.find('xmax').text = str(int(widthFactor * imgShape[1]))
# 4
for o in root4_.iter('object'):
box = o.find('bndbox')
xmin = float(box.find('xmin').text)
ymin = float(box.find('ymin').text)
xmax = float(box.find('xmax').text)
ymax = float(box.find('ymax').text)
if xmax <= imgShape[1] * (1 - widthFactor) or ymax <= imgShape[
0] * (1 - heightFactor):
box.find('xmin').text = str(0)
box.find('xmax').text = str(0)
box.find('ymin').text = str(0)
box.find('ymax').text = str(0)
else:
if ymax > imgShape[0] * (1 - heightFactor):
if ymin < imgShape[0] * (1 - heightFactor):
box.find('ymin').text = str(
int(imgShape[0] * (1 - heightFactor)))
if xmax > imgShape[1] * (1 - widthFactor):
if xmin < imgShape[1] * (1 - widthFactor):
box.find('xmin').text = str(
int(imgShape[1] * (1 - widthFactor)))
if front == 2:
# 1
for o in root1_.iter('object'):
box = o.find('bndbox')
xmin = float(box.find('xmin').text)
ymin = float(box.find('ymin').text)
xmax = float(box.find('xmax').text)
ymax = float(box.find('ymax').text)
if ymin >= (1 - heightFactor
) * imgShape[0] or xmin >= widthFactor * imgShape[1]:
box.find('xmin').text = str(0)
box.find('xmax').text = str(0)
box.find('ymin').text = str(0)
box.find('ymax').text = str(0)
else:
if ymin < (1 - heightFactor) * imgShape[0]:
if ymax > (1 - heightFactor) * imgShape[0]:
box.find('ymax').text = str(
int((1 - heightFactor) * imgShape[0]))
if xmin < widthFactor * imgShape[1]:
if xmax > widthFactor * imgShape[1]:
box.find('xmax').text = str(
int(widthFactor * imgShape[1]))
# 2
# 3
for o in root3_.iter('object'):
box = o.find('bndbox')
xmin = float(box.find('xmin').text)
ymin = float(box.find('ymin').text)
xmax = float(box.find('xmax').text)
ymax = float(box.find('ymax').text)
# if ymax <= (1-heightFactor) * imgShape[
# 0] or xmin >= widthFactor * imgShape[1]:
if ymax <= (1 - heightFactor) * imgShape[0]:
box.find('xmin').text = str(0)
box.find('xmax').text = str(0)
box.find('ymin').text = str(0)
box.find('ymax').text = str(0)
else:
if ymax > imgShape[0] * (1 - heightFactor):
if ymin < imgShape[0] * (1 - heightFactor):
box.find('ymin').text = str(
int(imgShape[0] * (1 - heightFactor)))
# if xmin < widthFactor * imgShape[1]:
# if xmax > widthFactor * imgShape[1]:
# box.find('xmax').text = str(int(widthFactor * imgShape[1]))
# 4
for o in root4_.iter('object'):
box = o.find('bndbox')
xmin = float(box.find('xmin').text)
ymin = float(box.find('ymin').text)
xmax = float(box.find('xmax').text)
ymax = float(box.find('ymax').text)
if xmax <= imgShape[1] * (1 - widthFactor) or ymax <= imgShape[
0] * (1 - heightFactor):
box.find('xmin').text = str(0)
box.find('xmax').text = str(0)
box.find('ymin').text = str(0)
box.find('ymax').text = str(0)
else:
if ymax > imgShape[0] * (1 - heightFactor):
if ymin < imgShape[0] * (1 - heightFactor):
box.find('ymin').text = str(
int(imgShape[0] * (1 - heightFactor)))
if xmax > imgShape[1] * (1 - widthFactor):
if xmin < imgShape[1] * (1 - widthFactor):
box.find('xmin').text = str(
int(imgShape[1] * (1 - widthFactor)))
if front == 3:
# 1
for o in root1_.iter('object'):
box = o.find('bndbox')
xmin = float(box.find('xmin').text)
ymin = float(box.find('ymin').text)
xmax = float(box.find('xmax').text)
ymax = float(box.find('ymax').text)
if ymin >= heightFactor * imgShape[0] or xmin >= (
1 - widthFactor) * imgShape[1]:
box.find('xmin').text = str(0)
box.find('xmax').text = str(0)
box.find('ymin').text = str(0)
box.find('ymax').text = str(0)
else:
if ymin < heightFactor * imgShape[0]:
if ymax > heightFactor * imgShape[0]:
box.find('ymax').text = str(
int(heightFactor * imgShape[0]))
if xmin < widthFactor * (1 - imgShape[1]):
if xmax > widthFactor * (1 - imgShape[1]):
box.find('xmax').text = str(
int(widthFactor * (1 - imgShape[1])))
# 2
for o in root2_.iter('object'):
box = o.find('bndbox')
xmin = float(box.find('xmin').text)
ymin = float(box.find('ymin').text)
xmax = float(box.find('xmax').text)
ymax = float(box.find('ymax').text)
# if ymin >= heightFactor * imgShape[0] or xmax <= imgShape[1] * (
# 1 - widthFactor):
if xmax <= imgShape[1] * (1 - widthFactor):
box.find('xmin').text = str(0)
box.find('xmax').text = str(0)
box.find('ymin').text = str(0)
box.find('ymax').text = str(0)
else:
# if ymin < heightFactor * imgShape[0]:
# if ymax > heightFactor * imgShape[0]:
# box.find('ymax').text = str(int(heightFactor *
# imgShape[0]))
if xmax > imgShape[1] * (1 - widthFactor):
if xmin < imgShape[1] * (1 - widthFactor):
box.find('xmin').text = str(
int(imgShape[1] * (1 - widthFactor)))
# 3
# 4
for o in root4_.iter('object'):
box = o.find('bndbox')
xmin = float(box.find('xmin').text)
ymin = float(box.find('ymin').text)
xmax = float(box.find('xmax').text)
ymax = float(box.find('ymax').text)
if xmax <= imgShape[1] * (1 - widthFactor) or ymax <= imgShape[
0] * (1 - heightFactor):
box.find('xmin').text = str(0)
box.find('xmax').text = str(0)
box.find('ymin').text = str(0)
box.find('ymax').text = str(0)
else:
if ymax > imgShape[0] * (1 - heightFactor):
if ymin < imgShape[0] * (1 - heightFactor):
box.find('ymin').text = str(
int(imgShape[0] * (1 - heightFactor)))
if xmax > imgShape[1] * (1 - widthFactor):
if xmin < imgShape[1] * (1 - widthFactor):
box.find('xmin').text = str(
int(imgShape[1] * (1 - widthFactor)))
if front == 4:
# 1
for o in root1_.iter('object'):
box = o.find('bndbox')
xmin = float(box.find('xmin').text)
ymin = float(box.find('ymin').text)
xmax = float(box.find('xmax').text)
ymax = float(box.find('ymax').text)
if ymin >= heightFactor * imgShape[
0] or xmin >= widthFactor * imgShape[1]:
box.find('xmin').text = str(0)
box.find('xmax').text = str(0)
box.find('ymin').text = str(0)
box.find('ymax').text = str(0)
else:
if ymin < heightFactor * imgShape[0]:
if ymax > heightFactor * imgShape[0]:
box.find('ymax').text = str(
int(heightFactor * imgShape[0]))
if xmin < widthFactor * imgShape[1]:
if xmax > widthFactor * imgShape[1]:
box.find('xmax').text = str(
int(widthFactor * imgShape[1]))
# 2
for o in root2_.iter('object'):
box = o.find('bndbox')
xmin = float(box.find('xmin').text)
ymin = float(box.find('ymin').text)
xmax = float(box.find('xmax').text)
ymax = float(box.find('ymax').text)
# if ymin >= heightFactor * imgShape[0] or xmax <= imgShape[1] * (
# 1 - widthFactor):
if xmax <= imgShape[
1] * widthFactor or ymin >= heightFactor * imgShape[0]:
box.find('xmin').text = str(0)
box.find('xmax').text = str(0)
box.find('ymin').text = str(0)
box.find('ymax').text = str(0)
else:
if ymin < heightFactor * imgShape[0]:
if ymax > heightFactor * imgShape[0]:
box.find('ymax').text = str(
int(heightFactor * imgShape[0]))
if xmax > imgShape[1] * widthFactor:
if xmin < imgShape[1] * widthFactor:
box.find('xmin').text = str(
int(imgShape[1] * widthFactor))
# 3
for o in root3_.iter('object'):
box = o.find('bndbox')
xmin = float(box.find('xmin').text)
ymin = float(box.find('ymin').text)
xmax = float(box.find('xmax').text)
ymax = float(box.find('ymax').text)
# if ymax <= (1-heightFactor) * imgShape[
# 0] or xmin >= widthFactor * imgShape[1]:
if ymax <= heightFactor * imgShape[
0] or xmin >= widthFactor * imgShape[1]:
box.find('xmin').text = str(0)
box.find('xmax').text = str(0)
box.find('ymin').text = str(0)
box.find('ymax').text = str(0)
else:
if ymax > imgShape[0] * heightFactor:
if ymin < imgShape[0] * heightFactor:
box.find('ymin').text = str(
int(imgShape[0] * heightFactor))
if xmin < widthFactor * imgShape[1]:
if xmax > widthFactor * imgShape[1]:
box.find('xmax').text = str(
int(widthFactor * imgShape[1]))
# 4
return root1_, root2_, root3_, root4_
def getMeanSize(imgs: list):
height = []
width = []
for i in imgs:
height.append(i.shape[0])
width.append(i.shape[1])
return int(np.mean(height)), int(np.mean(width))
def getName(xmls: list):
s = str(datetime.datetime.now())
for i in xmls:
s += i
return str(abs(hash(s)))
def mosiacScript(imgs: list, xmls: list, savePath: str, flag=False):
heightFactor = random.uniform(0.3, 0.7)
widthFactor = random.uniform(0.3, 0.7)
if not type(imgs) is list or not type(xmls) is list:
logger.error('Input must be list!')
return
# imgs
if len(imgs) == 0:
logger.error('None image found!')
return
if len(imgs) == 1:
for _ in range(0, 3):
imgs.append(imgs[0])
if len(imgs) == 2:
for _ in range(0, 2):
imgs.append(imgs[0])
if len(imgs) == 3:
for _ in range(0, 1):
imgs.append(imgs[0])
# xmls
if len(xmls) == 0:
logger.error('None xml found!')
return
if len(xmls) == 1:
for _ in range(0, 3):
xmls.append(xmls[0])
if len(xmls) == 2:
for _ in range(0, 2):
xmls.append(xmls[0])
if len(xmls) == 3:
for _ in range(0, 1):
xmls.append(xmls[0])
imgname = getName(xmls)
folder = savePath
mHeight, mWidth = getMeanSize(imgs)
mosiacImg = mosiac_img(imgs, heightFactor, widthFactor)
objs = []
imgshape = mosiacImg.shape
for idx in range(len(xmls)):
in_file = open(xmls[idx])
tree = ET.parse(in_file)
root = tree.getroot()
for o in root.iter('object'):
obj = dict()
name = o.find('name').text
difficult = 0
xmlbox = o.find('bndbox')
b = (float(xmlbox.find('xmin').text),
float(xmlbox.find('xmax').text),
float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = x2yVert((mWidth, mHeight), b)
x, y, w, h = bb[0], bb[1], bb[2], bb[3]
if idx == 0:
bbox = y2xVert(
(imgshape[1] * widthFactor, imgshape[0] * heightFactor), x,
y, w, h)
elif idx == 1:
bbox = y2xVert((imgshape[1] *
(1 - widthFactor), imgshape[0] * heightFactor),
x, y, w, h)
bbox[0] = bbox[0] + int(widthFactor * imgshape[1])
bbox[1] = bbox[1] + int(widthFactor * imgshape[1])
elif idx == 2:
bbox = y2xVert((imgshape[1] * widthFactor, imgshape[0] *
(1 - heightFactor)), x, y, w, h)
bbox[2] = bbox[2] + int(heightFactor * imgshape[0])
bbox[3] = bbox[3] + int(heightFactor * imgshape[0])
else:
bbox = y2xVert((imgshape[1] * (1 - widthFactor), imgshape[0] *
(1 - heightFactor)), x, y, w, h)
bbox[0] = bbox[0] + int(widthFactor * imgshape[1])
bbox[2] = bbox[2] + int(heightFactor * imgshape[0])
bbox[1] = bbox[1] + int(widthFactor * imgshape[1])
bbox[3] = bbox[3] + int(heightFactor * imgshape[0])
tmp = dict()
tmp['xmin'] = str(int(bbox[0]))
tmp['ymin'] = str(int(bbox[2]))
tmp['xmax'] = str(int(bbox[1]))
tmp['ymax'] = str(int(bbox[3]))
obj['name'] = name
obj['difficult'] = difficult
obj['bndbox'] = tmp
del tmp
objs.append(obj)
tmpPath = savePath + os.sep + imgname + '.xml'
filepath = tmpPath.replace('.xml', '.jpg')
filename = imgname + '.jpg'
img2xml_multiobj(tmpPath, tmpPath, folder, filename, filepath, imgshape[1],
imgshape[0], objs)
logger.info('Saved to {}.'.format(tmpPath))
if flag:
skimage.io.imsave(filepath, mosiacImg)
@baseDecorate()
def mosiac_img(imgs: list, heightFactor=0.5, widthFactor=0.5):
if not type(imgs) is list:
logger.error('Input must be a list!')
return
if len(imgs) == 0:
logger.error('None image found!')
return
if len(imgs) == 1:
for _ in range(0, 3):
imgs.append(imgs[0])
if len(imgs) == 2:
for _ in range(0, 2):
imgs.append(imgs[0])
if len(imgs) == 3:
for _ in range(0, 1):
imgs.append(imgs[0])
mHeight, mWidth = getMeanSize(imgs)
img_left_top = resize_img(
np.array(skimage.transform.resize(imgs[0], (mHeight, mWidth)) *
255).astype(np.uint8), heightFactor, widthFactor)
img_right_top = resize_img(
np.array(skimage.transform.resize(imgs[1], (mHeight, mWidth)) *
255).astype(np.uint8), heightFactor, 1 - widthFactor)
img_left_bottom = resize_img(
np.array(skimage.transform.resize(imgs[2], (mHeight, mWidth)) *
255).astype(np.uint8), 1 - heightFactor, widthFactor)
img_right_bottom = resize_img(
np.array(skimage.transform.resize(imgs[3], (mHeight, mWidth)) *
255).astype(np.uint8), 1 - heightFactor, 1 - widthFactor)
h1 = np.hstack((img_left_top, img_right_top))
h2 = np.hstack((img_left_bottom, img_right_bottom))
return np.vstack((h1, h2))
def mosiac_img_no_reshape(imgs: list, heightFactor=0.5, widthFactor=0.5):
assert type(imgs) is list and len(
imgs) == 4, "input must be a list[str_or_ndarray] with length=4"
img1, img2, img3, img4 = imgs[0], imgs[1], imgs[2], imgs[3]
if isinstance(img1, str):
img1 = io.imread(img1)
if isinstance(img2, str):
img2 = io.imread(img2)
if isinstance(img3, str):
img3 = io.imread(img3)
if isinstance(img4, str):
img4 = io.imread(img4)
imgShape1 = img1.shape
img2 = cv2.resize(img2, (imgShape1[1], imgShape1[0]),
interpolation=cv2.INTER_CUBIC)
img3 = cv2.resize(img3, (imgShape1[1], imgShape1[0]),
interpolation=cv2.INTER_CUBIC)
img4 = cv2.resize(img4, (imgShape1[1], imgShape1[0]),
interpolation=cv2.INTER_CUBIC)
if heightFactor < 0.5:
heightFactor = 1 - heightFactor
if widthFactor < 0.5:
widthFactor = 1 - widthFactor
maskImg = np.zeros(
(int(imgShape1[0] / heightFactor), int(imgShape1[1] / widthFactor), 3))
front = random.randint(0, 3)
maskShape = maskImg.shape
res = []
if front == 0:
maskImg[maskShape[0] - imgShape1[0]:,
maskShape[1] - imgShape1[1]:] = img4
maskImg[0:imgShape1[0], maskShape[1] - imgShape1[1]:] = img2
maskImg[maskShape[0] - imgShape1[0]:, 0:imgShape1[1]] = img3
maskImg[0:imgShape1[0], 0:imgShape1[1]] = img1
res = [1, 4, 2, 3]
if front == 1:
maskImg[maskShape[0] - imgShape1[0]:,
maskShape[1] - imgShape1[1]:] = img4
maskImg[maskShape[0] - imgShape1[0]:, 0:imgShape1[1]] = img3
maskImg[0:imgShape1[0], 0:imgShape1[1]] = img1
maskImg[0:imgShape1[0], maskShape[1] - imgShape1[1]:] = img2
res = [2, 4, 3, 1]
if front == 2:
maskImg[maskShape[0] - imgShape1[0]:,
maskShape[1] - imgShape1[1]:] = img4
maskImg[0:imgShape1[0], maskShape[1] - imgShape1[1]:] = img2
maskImg[0:imgShape1[0], 0:imgShape1[1]] = img1
maskImg[maskShape[0] - imgShape1[0]:, 0:imgShape1[1]] = img3
res = [3, 4, 2, 1]
if front == 3:
maskImg[0:imgShape1[0], 0:imgShape1[1]] = img1
maskImg[0:imgShape1[0], maskShape[1] - imgShape1[1]:] = img2
maskImg[maskShape[0] - imgShape1[0]:, 0:imgShape1[1]] = img3
maskImg[maskShape[0] - imgShape1[0]:,
maskShape[1] - imgShape1[1]:] = img4
res = [4, 1, 2, 3]
return maskImg.astype(np.uint8), res, heightFactor, widthFactor
def mosiacScript_no_reshape(imgs: list, xmls: list, savePath: str, flag=False):
heightFactor = random.uniform(0.25, 0.5) # Originally it is (0.1, 0.5), i think 0.1 is too extreme
widthFactor = random.uniform(0.25, 0.5)
img1, img2, img3, img4 = imgs[0], imgs[1], imgs[2], imgs[3]
if not type(imgs) is list or not type(xmls) is list:
logger.error('Input must be list!')
return
imgname = getName(xmls)
folder = savePath
mosiacImg, res, _, _ = mosiac_img_no_reshape(imgs, heightFactor,
widthFactor)
front = res[0]
heightFactor = min(heightFactor, 1 - heightFactor)
widthFactor = min(widthFactor, 1 - widthFactor)
tree1 = ET.parse(xmls[0])
tree2 = resizeScript(img2,
xmls[1],
heightFactor=img1.shape[0] / img2.shape[0],
widthFactor=img1.shape[1] / img2.shape[1],
flag=False)
tree3 = resizeScript(img3,
xmls[2],
heightFactor=img1.shape[0] / img3.shape[0],
widthFactor=img1.shape[1] / img3.shape[1],
flag=False)
tree4 = resizeScript(img4,
xmls[3],
heightFactor=img1.shape[0] / img4.shape[0],
widthFactor=img1.shape[1] / img4.shape[1],
flag=False)
root1 = tree1.getroot()
root2 = tree2.getroot()
for box in root2.iter('bndbox'):
xmin = float(box.find('xmin').text)
ymin = float(box.find('ymin').text)
xmax = float(box.find('xmax').text)
ymax = float(box.find('ymax').text)
box.find('xmin').text = str(
int(xmin + widthFactor * mosiacImg.shape[1]))
box.find('xmax').text = str(
int(xmax + widthFactor * mosiacImg.shape[1]))
root3 = tree3.getroot()
for box in root3.iter('bndbox'):
xmin = float(box.find('xmin').text)
ymin = float(box.find('ymin').text)
xmax = float(box.find('xmax').text)
ymax = float(box.find('ymax').text)
box.find('ymin').text = str(
int(ymin + heightFactor * mosiacImg.shape[0]))
box.find('ymax').text = str(
int(ymax + heightFactor * mosiacImg.shape[0]))
root4 = tree4.getroot()
for box in root4.iter('bndbox'):
xmin = float(box.find('xmin').text)
ymin = float(box.find('ymin').text)
xmax = float(box.find('xmax').text)
ymax = float(box.find('ymax').text)
box.find('xmin').text = str(
int(xmin + widthFactor * mosiacImg.shape[1]))
box.find('xmax').text = str(
int(xmax + widthFactor * mosiacImg.shape[1]))
box.find('ymin').text = str(
int(ymin + heightFactor * mosiacImg.shape[0]))
box.find('ymax').text = str(
int(ymax + heightFactor * mosiacImg.shape[0]))
boxes = []
r1, r2, r3, r4 = getBoxes(front,
root1,
root2,
root3,
root4,
mosiacImg.shape,
heightFactor=heightFactor,
widthFactor=widthFactor)
for box in r1.iter('object'):
boxes.append(box)
for box in r2.iter('object'):
boxes.append(box)
for box in r3.iter('object'):
boxes.append(box)
for box in r4.iter('object'):
boxes.append(box)
# print(len(boxes))
imgshape = mosiacImg.shape
objs = []
for o in boxes:
obj = dict()
name = o.find('name').text
difficult = 0
xmlbox = o.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text),
float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
tmp = dict()
tmp['xmin'] = str(int(b[0]))
tmp['ymin'] = str(int(b[2]))
tmp['xmax'] = str(int(b[1]))
tmp['ymax'] = str(int(b[3]))
# print(tmp)
if not (int(tmp['xmin']) == 0 and int(tmp['xmax']) == 0
and int(tmp['ymin']) == 0 and int(tmp['ymax']) == 0):
obj['name'] = name
obj['difficult'] = difficult
obj['bndbox'] = tmp
objs.append(obj)
del tmp
# print(len(objs))
tmpPath = savePath + os.sep + imgname + '.xml'
filepath = tmpPath.replace('.xml', '.jpg')
filename = imgname + '.jpg'
img2xml_multiobj(tmpPath, tmpPath, folder, filename, filepath, imgshape[1],
imgshape[0], objs)
logger.info('Saved to {}.'.format(tmpPath))
if flag:
skimage.io.imsave(filepath, mosiacImg)
|
StarcoderdataPython
|
8061708
|
empty_dictionary = {}
print(empty_dictionary)
empty_dictionary["key1"] = 20
print(empty_dictionary)
|
StarcoderdataPython
|
398761
|
<reponame>Healthedata1/Flask-PL
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Generated from FHIR 4.0.0-a53ec6ee1b (http://hl7.org/fhir/StructureDefinition/Invoice) on 2019-05-07.
# 2019, SMART Health IT.
from . import domainresource
class Invoice(domainresource.DomainResource):
""" Invoice containing ChargeItems from an Account.
Invoice containing collected ChargeItems from an Account with calculated
individual and total price for Billing purpose.
"""
resource_type = "Invoice"
def __init__(self, jsondict=None, strict=True):
""" Initialize all valid properties.
:raises: FHIRValidationError on validation errors, unless strict is False
:param dict jsondict: A JSON dictionary to use for initialization
:param bool strict: If True (the default), invalid variables will raise a TypeError
"""
self.account = None
""" Account that is being balanced.
Type `FHIRReference` (represented as `dict` in JSON). """
self.cancelledReason = None
""" Reason for cancellation of this Invoice.
Type `str`. """
self.date = None
""" Invoice date / posting date.
Type `FHIRDate` (represented as `str` in JSON). """
self.identifier = None
""" Business Identifier for item.
List of `Identifier` items (represented as `dict` in JSON). """
self.issuer = None
""" Issuing Organization of Invoice.
Type `FHIRReference` (represented as `dict` in JSON). """
self.lineItem = None
""" Line items of this Invoice.
List of `InvoiceLineItem` items (represented as `dict` in JSON). """
self.note = None
""" Comments made about the invoice.
List of `Annotation` items (represented as `dict` in JSON). """
self.participant = None
""" Participant in creation of this Invoice.
List of `InvoiceParticipant` items (represented as `dict` in JSON). """
self.paymentTerms = None
""" Payment details.
Type `str`. """
self.recipient = None
""" Recipient of this invoice.
Type `FHIRReference` (represented as `dict` in JSON). """
self.status = None
""" draft | issued | balanced | cancelled | entered-in-error.
Type `str`. """
self.subject = None
""" Recipient(s) of goods and services.
Type `FHIRReference` (represented as `dict` in JSON). """
self.totalGross = None
""" Gross total of this Invoice.
Type `Money` (represented as `dict` in JSON). """
self.totalNet = None
""" Net total of this Invoice.
Type `Money` (represented as `dict` in JSON). """
self.totalPriceComponent = None
""" Components of Invoice total.
List of `InvoiceLineItemPriceComponent` items (represented as `dict` in JSON). """
self.type = None
""" Type of Invoice.
Type `CodeableConcept` (represented as `dict` in JSON). """
super(Invoice, self).__init__(jsondict=jsondict, strict=strict)
def elementProperties(self):
js = super(Invoice, self).elementProperties()
js.extend([
("account", "account", fhirreference.FHIRReference, False, None, False),
("cancelledReason", "cancelledReason", str, False, None, False),
("date", "date", fhirdate.FHIRDate, False, None, False),
("identifier", "identifier", identifier.Identifier, True, None, False),
("issuer", "issuer", fhirreference.FHIRReference, False, None, False),
("lineItem", "lineItem", InvoiceLineItem, True, None, False),
("note", "note", annotation.Annotation, True, None, False),
("participant", "participant", InvoiceParticipant, True, None, False),
("paymentTerms", "paymentTerms", str, False, None, False),
("recipient", "recipient", fhirreference.FHIRReference, False, None, False),
("status", "status", str, False, None, True),
("subject", "subject", fhirreference.FHIRReference, False, None, False),
("totalGross", "totalGross", money.Money, False, None, False),
("totalNet", "totalNet", money.Money, False, None, False),
("totalPriceComponent", "totalPriceComponent", InvoiceLineItemPriceComponent, True, None, False),
("type", "type", codeableconcept.CodeableConcept, False, None, False),
])
return js
from . import backboneelement
class InvoiceLineItem(backboneelement.BackboneElement):
""" Line items of this Invoice.
Each line item represents one charge for goods and services rendered.
Details such as date, code and amount are found in the referenced
ChargeItem resource.
"""
resource_type = "InvoiceLineItem"
def __init__(self, jsondict=None, strict=True):
""" Initialize all valid properties.
:raises: FHIRValidationError on validation errors, unless strict is False
:param dict jsondict: A JSON dictionary to use for initialization
:param bool strict: If True (the default), invalid variables will raise a TypeError
"""
self.chargeItemCodeableConcept = None
""" Reference to ChargeItem containing details of this line item or an
inline billing code.
Type `CodeableConcept` (represented as `dict` in JSON). """
self.chargeItemReference = None
""" Reference to ChargeItem containing details of this line item or an
inline billing code.
Type `FHIRReference` (represented as `dict` in JSON). """
self.priceComponent = None
""" Components of total line item price.
List of `InvoiceLineItemPriceComponent` items (represented as `dict` in JSON). """
self.sequence = None
""" Sequence number of line item.
Type `int`. """
super(InvoiceLineItem, self).__init__(jsondict=jsondict, strict=strict)
def elementProperties(self):
js = super(InvoiceLineItem, self).elementProperties()
js.extend([
("chargeItemCodeableConcept", "chargeItemCodeableConcept", codeableconcept.CodeableConcept, False, "chargeItem", True),
("chargeItemReference", "chargeItemReference", fhirreference.FHIRReference, False, "chargeItem", True),
("priceComponent", "priceComponent", InvoiceLineItemPriceComponent, True, None, False),
("sequence", "sequence", int, False, None, False),
])
return js
class InvoiceLineItemPriceComponent(backboneelement.BackboneElement):
""" Components of total line item price.
The price for a ChargeItem may be calculated as a base price with
surcharges/deductions that apply in certain conditions. A
ChargeItemDefinition resource that defines the prices, factors and
conditions that apply to a billing code is currently under development. The
priceComponent element can be used to offer transparency to the recipient
of the Invoice as to how the prices have been calculated.
"""
resource_type = "InvoiceLineItemPriceComponent"
def __init__(self, jsondict=None, strict=True):
""" Initialize all valid properties.
:raises: FHIRValidationError on validation errors, unless strict is False
:param dict jsondict: A JSON dictionary to use for initialization
:param bool strict: If True (the default), invalid variables will raise a TypeError
"""
self.amount = None
""" Monetary amount associated with this component.
Type `Money` (represented as `dict` in JSON). """
self.code = None
""" Code identifying the specific component.
Type `CodeableConcept` (represented as `dict` in JSON). """
self.factor = None
""" Factor used for calculating this component.
Type `float`. """
self.type = None
""" base | surcharge | deduction | discount | tax | informational.
Type `str`. """
super(InvoiceLineItemPriceComponent, self).__init__(jsondict=jsondict, strict=strict)
def elementProperties(self):
js = super(InvoiceLineItemPriceComponent, self).elementProperties()
js.extend([
("amount", "amount", money.Money, False, None, False),
("code", "code", codeableconcept.CodeableConcept, False, None, False),
("factor", "factor", float, False, None, False),
("type", "type", str, False, None, True),
])
return js
class InvoiceParticipant(backboneelement.BackboneElement):
""" Participant in creation of this Invoice.
Indicates who or what performed or participated in the charged service.
"""
resource_type = "InvoiceParticipant"
def __init__(self, jsondict=None, strict=True):
""" Initialize all valid properties.
:raises: FHIRValidationError on validation errors, unless strict is False
:param dict jsondict: A JSON dictionary to use for initialization
:param bool strict: If True (the default), invalid variables will raise a TypeError
"""
self.actor = None
""" Individual who was involved.
Type `FHIRReference` (represented as `dict` in JSON). """
self.role = None
""" Type of involvement in creation of this Invoice.
Type `CodeableConcept` (represented as `dict` in JSON). """
super(InvoiceParticipant, self).__init__(jsondict=jsondict, strict=strict)
def elementProperties(self):
js = super(InvoiceParticipant, self).elementProperties()
js.extend([
("actor", "actor", fhirreference.FHIRReference, False, None, True),
("role", "role", codeableconcept.CodeableConcept, False, None, False),
])
return js
import sys
try:
from . import annotation
except ImportError:
annotation = sys.modules[__package__ + '.annotation']
try:
from . import codeableconcept
except ImportError:
codeableconcept = sys.modules[__package__ + '.codeableconcept']
try:
from . import fhirdate
except ImportError:
fhirdate = sys.modules[__package__ + '.fhirdate']
try:
from . import fhirreference
except ImportError:
fhirreference = sys.modules[__package__ + '.fhirreference']
try:
from . import identifier
except ImportError:
identifier = sys.modules[__package__ + '.identifier']
try:
from . import money
except ImportError:
money = sys.modules[__package__ + '.money']
|
StarcoderdataPython
|
5016806
|
#!usr/bin/env python
import os
import sys
######################################
# Command-line arguments
######################################
print(sys.argv)
# python reading_data.py first,second,3 ==> ['reading_data.py', 'first,second,3']
# python reading_data.py first, second, 3 ==> ['reading_data.py', 'first,', 'second,', '3']
# python reading_data.py first second 3 ==> ['reading_data.py', 'first', 'second', '3']
######################################
# Exit status
######################################
filename=sys.argv[1]
if not os.path.exists(filename):
with open(filename,"w") as f:
f.write("New file created\n")
else:
print("Error: file {} already exists".format(filename))
sys.exit(1)
######################################
# Environment variables
######################################
print("HOME:",os.environ.get("HOME","")) # dictionary.get() ==> if None then return 2nd parameter
print("SHELL:",os.environ.get("SHELL",""))
print("FRUIT:",os.environ.get("FRUIT",""))
######################################
# input()
######################################
name=input("Please enter name: ")
getal=int(input("Please enter number: "))
print("Hello,",name, "number:",getal)
# In Python2: use raw_input() instead of input(). input() == eval(raw_input(x))
######################################
# STD streams
######################################
data=input("This is STDIN: ")
print("Write to STDOUT: "+data)
print("Generate error to STDERR: "+ data +1) # Concatenate string + int raises Type error
|
StarcoderdataPython
|
1653331
|
#!python
import logging
import sys
import traceback
from PyQt5.QtWidgets import QApplication
from hdfinspect.display.view import HDFInspectMain
def initialise_logging(default_level=logging.DEBUG):
global _log_formatter
_log_formatter = logging.Formatter(
"%(asctime)s [%(name)s:L%(lineno)d] %(levelname)s: %(message)s")
# Add a very verbose logging level
logging.addLevelName(5, 'TRACE')
# Capture all warnings
logging.captureWarnings(True)
# Remove default handlers
root_logger = logging.getLogger()
root_logger.handlers = []
# Stdout handler
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(_log_formatter)
root_logger.addHandler(console_handler)
# Default log level
root_logger.setLevel(default_level)
# Don't ever print all the debug logging from Qt
logging.getLogger('PyQt5').setLevel(logging.INFO)
def main():
initialise_logging(logging.DEBUG)
log = logging.getLogger(__name__)
sys.excepthook = lambda exc_type, exc_value, exc_traceback: log.error(
"".join(traceback.format_exception(exc_type, exc_value, exc_traceback)))
app = QApplication(sys.argv)
view = HDFInspectMain()
view.show()
sys.exit(app.exec_())
if __name__ == "__main__":
main()
|
StarcoderdataPython
|
11209324
|
#!/usr/bin/env bash
#SBATCH --job-name=mlcommons-science-earthquake-a100
#SBATCH --output=mlcommons-science-earthquake-a100.out
#SBATCH --error=mlcommons-science-earthquake-a100.err
#SBATCH --partition=gpu
#SBATCH --cpus-per-task=6
#SBATCH --mem=32G
#SBATCH --time=06:00:00
#SBATCH --gres=gpu:a100:1
#SBATCH --account=ds6011-sp22-002
# record top ond gpustat output
# ./sampleTop2.sh thf2bn ${SLURM_JOB_ID} 10 &
GPU_TYPE="a100"
PYTHON_VERSION="3.10.2"
RESOURCE_DIR="/project/ds6011-sp22-002"
# BASE=/scratch/$USER/${GPU_TYPE}
BASE=${RESOURCE_DIR}/$USER/${GPU_TYPE}
HOME=${BASE}
REV="mar2022"
VARIANT="-gregor"
echo "Working in <$(pwd)>"
echo "Base directory in <${BASE}>"
echo "Overridden home in <${HOME}>"
echo "Revision: <${REV}>"
echo "Variant: <${VARIANT}>"
echo "Python: <${PYTHON_VERSION}>"
echo "GPU: <${GPU_TYPE}>"
module load cuda cudnn
nvidia-smi
mkdir -p ${BASE}
cd ${BASE}
if [ ! -e "${BASE}/.local/python/${PYTHON_VESRION}" ] ; then
tar Jxvf "${RESOURCE_DIR}/python-${PYTHON_VERSION}.tar.xz" -C "${BASE}"
fi
export LD_LIBRARY_PATH=${BASE}/.local/ssl/lib:$LD_LIBRARY_PATH
echo "Python setup"
if [ ! -e "${BASE}/ENV3/bin/activate" ]; then
${BASE}/.local/python/${PYTHON_VERSION}/bin/python3.10 -m venv ${BASE}/ENV3
fi
echo "ENV3 Setup"
source ${BASE}/ENV3/bin/activate
python -m pip install -U pip wheel papermill
if [ ! -e "${BASE}/mlcommons-data-earthquake" ]; then
git clone https://github.com/laszewsk/mlcommons-data-earthquake.git "${BASE}/mlcommons-data-earthquake"
else
(cd ${BASE}/mlcommons-data-earthquake ; \
git fetch origin ; \
git checkout main ; \
git reset --hard origin/main ; \
git clean -d --force)
fi
if [ ! -e "${BASE}/mlcommons" ]; then
git clone https://github.com/laszewsk/mlcommons.git "${BASE}/mlcommons"
else
(cd ${BASE}/mlcommons ; \
git fetch origin ; \
git checkout main ; \
git reset --hard origin/main ; \
git clean -d --force)
fi
if [ ! -e ${BASE}/mlcommons/benchmarks/earthquake/data/EarthquakeDec2020 ]; then
tar Jxvf ${BASE}/mlcommons-data-earthquake/data.tar.xz \
-C ${BASE}/mlcommons/benchmarks/earthquake
mkdir -p ${BASE}/mlcommons/benchmarks/earthquake/data/EarthquakeDec2020/outputs
fi
(cd ${BASE}/mlcommons/benchmarks/earthquake/${REV} && \
python -m pip install -r requirements.txt)
# prg >> xyz.out &
(cd ${BASE}/mlcommons/benchmarks/earthquake/${REV} && \
cp "FFFFWNPFEARTHQ_newTFTv29${VARIANT}.ipynb" FFFFWNPFEARTHQ_newTFTv29-$USER.ipynb)
(cd mlcommons/benchmarks/earthquake/mar2022 && \
papermill FFFFWNPFEARTHQ_newTFTv29-$USER.ipynb FFFFWNPFEARTHQ_newTFTv29-$USER-$GPU_TYPE.ipynb --no-progress-bar --log-output --log-level INFO)
|
StarcoderdataPython
|
4916421
|
#!/usr/bin/env python
# _*_coding:utf-8_*_
from sqlalchemy import *
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship
from handlers.base import engine
BaseModel = declarative_base()
# 新建表
def init_db():
BaseModel.metadata.create_all(engine)
# 删除表
def drop_db():
BaseModel.metadata.drop_all(engine)
# ---------------------------------------公司----------------------------------------------------
# 多对多 用户组--设备组
userGroup_deviceGroup = Table('userGroup_deviceGroup', BaseModel.metadata,
Column('userGroup_id', ForeignKey('userGroup.id'), primary_key=True),
Column('deviceGroup_id', ForeignKey('deviceGroup.id'), primary_key=True)
)
# 多对多 用户组--资源组
userGroup_resGroup = Table('userGroup_resGroup', BaseModel.metadata,
Column('userGroup_id', ForeignKey('userGroup.id'), primary_key=True),
Column('resGroup_id', ForeignKey('resGroup.id'), primary_key=True)
)
# 公司表
class Company(BaseModel):
__tablename__ = 'company'
id = Column(Integer, Sequence('company_id_seq'), primary_key=True) # id
code = Column(String(11), unique=True, nullable=True) # 公司编码
name = Column(String(32)) # 公司名称
address = Column(String(64)) # 公司地址
parent = Column(String(11)) # 公司母公司
data = Column(DATE) # 新建时间
user_group = relationship("UserGroup", backref="company") # 对应的用户组
user = relationship("User", backref="company") # 对应的用户
devices = relationship("Device", backref="company") # 对应的设备
device_time_switch = relationship("DeviceTimeSwitch", backref="company") # 对应的定时开关机表
device_week = relationship("DeviceWeek", backref="company") # 对应的定时开关每周
device_day = relationship("DeviceDay", backref="company") # 对应的定时开关机每天
device_group = relationship("DeviceGroup", backref="company") # 对应的设备组
resources_group = relationship("ResGroup", backref="company") # 对应的资源组
res_text = relationship("ResText", backref="company") # 对应的文字资源
res_image = relationship("ResImage", backref="company") # 对应的图片资源
res_video = relationship("ResVideo", backref="company") # 对应的视频资源
my_task = relationship("MyTask", backref="company") # 对应的任务
# ---------------------------------------用户----------------------------------------------------
# 多对多 用户--用户组
user_userGroup = Table('user_userGroup', BaseModel.metadata,
Column('user_id', ForeignKey('user.id'), primary_key=True),
Column('userGroup_id', ForeignKey('userGroup.id'), primary_key=True)
)
# 用户组表
class UserGroup(BaseModel):
__tablename__ = 'userGroup'
id = Column(Integer, Sequence('userGroup_id_seq'), primary_key=True) # id
name = Column(String(32)) # 用户组名称
company_id = Column(Integer, ForeignKey('company.id')) # 外键 公司
user = relationship('User', secondary=user_userGroup, back_populates='userGroup')
deviceGroup = relationship('DeviceGroup', secondary=userGroup_deviceGroup, back_populates='userGroup')
resGroup = relationship('ResGroup', secondary=userGroup_resGroup, back_populates='userGroup')
# 用户表
class User(BaseModel):
__tablename__ = 'user'
id = Column(Integer, Sequence('user_id_seq'), primary_key=True) # id
username = Column(String(32)) # 用户名
password = Column(CHAR(64)) # 密码
email = Column(String(32)) # 邮箱
is_active = Column(BOOLEAN) # 是否激活
is_admin = Column(BOOLEAN) # 是否管理员
data = Column(DATE) # 新建时间
tell_phone = Column(CHAR(11)) # 电话号码
my_task = relationship("MyTask", backref="user") # 对应的任务
company_id = Column(Integer, ForeignKey('company.id')) # 外键 公司
userGroup = relationship('UserGroup', secondary=user_userGroup, back_populates='user')
# ---------------------------------------设备----------------------------------------------------
# 设备分屏数量
class DeviceScreenNumber(BaseModel):
__tablename__ = 'deviceScreenNumber'
id = Column(Integer, Sequence('deviceScreenNumber_id_seq'), primary_key=True) # id
name = Column(String(32)) # 设备分屏名称
value = Column(String(32)) # 设备分屏值
# 设备组表
class DeviceGroup(BaseModel):
__tablename__ = 'deviceGroup'
id = Column(Integer, Sequence('deviceGroup_id_seq'), primary_key=True) # id
name = Column(String(32)) # 设备组名称
company_id = Column(Integer, ForeignKey('company.id')) # 外键 公司
device_time_switch_id = Column(Integer, ForeignKey('device_timeSwitch.id')) # 外键 公司
resGroup_id = Column(Integer, ForeignKey('resGroup.id')) # 外键 资源组
device = relationship("Device", backref="deviceGroup") # 对应设备
userGroup = relationship('UserGroup', secondary=userGroup_deviceGroup, back_populates='deviceGroup')
# 设备表
class Device(BaseModel):
__tablename__ = 'device'
device_id = Column(String(64), primary_key=True) # 设备id
device_id_s = Column(CHAR(6)) # 设备预留码
device_name = Column(String(32)) # 设备名称
status = Column(String(16)) # 设备状态 是否审核
ip = Column(String(64)) # 服务器ip
port = Column(String(6)) # 服务器端口号
data = Column(DATE) # 新建时间
device_audio = Column(String(16)) # 设备音量
model = Column(String(32)) # 设备型号
board_model = Column(String(32)) # 主板型号
screen_size = Column(String(32)) # 屏幕尺寸
screen_resolution = Column(String(32)) # 屏幕分辨率
screen_number = Column(String(32)) # 分屏数量
cpu_model = Column(String(32)) # cpu型号
cpu_num = Column(String(32)) # cpu数量
ram_model = Column(String(32)) # 内存型号
ram_size = Column(String(32)) # 内存大小
mac_address = Column(String(32)) # mac地址
power_type = Column(String(32)) # 供电形式 1、电源 2、电池 3、电源+电池
voltage = Column(String(32)) # 供电电压
power_consumption = Column(String(32)) # 耗电量
device_position = Column(String(32)) # 设备安装位置
is_horn = Column(String(16)) # 是否有喇叭
device_use = Column(String(32)) # 设备用途
ad_environment = Column(String(32)) # 广告机安装环境
manufacturer = Column(String(32)) # 广告机生产商
company_id = Column(Integer, ForeignKey('company.id')) # 外键 公司
deviceGroup_id = Column(Integer, ForeignKey('deviceGroup.id')) # 外键 设备组
# ---------------------------------------资源----------------------------------------------------
# 多对多 文字资源--资源组
resText_resGroup = Table('resText_resGroup', BaseModel.metadata,
Column('resText_id', ForeignKey('resText.id'), primary_key=True),
Column('resGroup_id', ForeignKey('resGroup.id'), primary_key=True)
)
# 多对多 图片资源--资源组
resImage_resGroup = Table('resImage_resGroup', BaseModel.metadata,
Column('resImage_id', ForeignKey('resImage.id'), primary_key=True),
Column('resGroup_id', ForeignKey('resGroup.id'), primary_key=True)
)
# 多对多 视频资源--资源组
resVideo_resGroup = Table('resVideo_resGroup', BaseModel.metadata,
Column('resVideo_id', ForeignKey('resVideo.id'), primary_key=True),
Column('resGroup_id', ForeignKey('resGroup.id'), primary_key=True)
)
# 多对多 网站资源--资源组
resWeb_resGroup = Table('resWeb_resGroup', BaseModel.metadata,
Column('resWeb_id', ForeignKey('resWeb.id'), primary_key=True),
Column('resGroup_id', ForeignKey('resGroup.id'), primary_key=True)
)
# 资源组表
class ResGroup(BaseModel):
__tablename__ = 'resGroup'
id = Column(Integer, Sequence('resGroup_id_seq'), primary_key=True) # id
name = Column(String(32)) # 资源组名称
data = Column(DATE) # 新建时间
company_id = Column(Integer, ForeignKey('company.id')) # 外键 公司
resText = relationship('ResText', secondary=resText_resGroup, back_populates='resGroup')
resImage = relationship('ResImage', secondary=resImage_resGroup, back_populates='resGroup')
resVideo = relationship('ResVideo', secondary=resVideo_resGroup, back_populates='resGroup')
resWeb = relationship('ResWeb', secondary=resWeb_resGroup, back_populates='resGroup')
userGroup = relationship('UserGroup', secondary=userGroup_resGroup, back_populates='resGroup')
deviceGroup = relationship("DeviceGroup", backref="resGroup") # 对应的设备组
# 文字资源表
class ResText(BaseModel):
__tablename__ = 'resText'
id = Column(Integer, Sequence('resText_id_seq'), primary_key=True) # 资源id
name = Column(String(32)) # 资源名称
content = Column(String(255)) # 资源内容
memo = Column(String(255)) # 资源备注
data = Column(DATE) # 资源新建时间
is_able = Column(String(16)) # 是否审批通过
company_id = Column(Integer, ForeignKey('company.id')) # 外键 公司
resGroup = relationship('ResGroup', secondary=resText_resGroup, back_populates='resText')
# 图片资源表
class ResImage(BaseModel):
__tablename__ = 'resImage'
id = Column(Integer, Sequence('resImage_id_seq'), primary_key=True) # 资源id
name = Column(String(32)) # 资源名称
path = Column(String(128)) # 资源路径
memo = Column(String(255)) # 资源备注
data = Column(DATE) # 资源新建时间
is_able = Column(String(16)) # 是否审批通过
company_id = Column(Integer, ForeignKey('company.id')) # 外键 公司
resGroup = relationship('ResGroup', secondary=resImage_resGroup, back_populates='resImage')
# 视频资源表
class ResVideo(BaseModel):
__tablename__ = 'resVideo'
id = Column(Integer, Sequence('resVideo_id_seq'), primary_key=True) # 资源id
name = Column(String(32)) # 资源名称
path = Column(String(128)) # 资源路径
memo = Column(String(255)) # 资源备注
data = Column(DATE) # 资源新建时间
is_able = Column(String(16)) # 是否审批通过
company_id = Column(Integer, ForeignKey('company.id')) # 外键 公司
resGroup = relationship('ResGroup', secondary=resVideo_resGroup, back_populates='resVideo')
# 网站资源
class ResWeb(BaseModel):
__tablename__ = 'resWeb'
id = Column(Integer, Sequence('resWeb_id_seq'), primary_key=True) # 资源id
name = Column(String(32)) # 资源名称
content = Column(String(128)) # 资源内容
memo = Column(String(255)) # 资源备注
data = Column(DATE) # 资源新建时间
is_able = Column(String(16)) # 是否审批通过
company_id = Column(Integer, ForeignKey('company.id')) # 外键 公司
resGroup = relationship('ResGroup', secondary=resWeb_resGroup, back_populates='resWeb')
# ---------------------------------------定时器表----------------------------------------------------
# 定时开关机表
class DeviceTimeSwitch(BaseModel):
__tablename__ = 'device_timeSwitch'
id = Column(Integer, Sequence('device_timeSwitch_id_seq'), primary_key=True) # id
name = Column(String(32)) # 名称
company_id = Column(Integer, ForeignKey('company.id')) # 外键 公司
device_week = relationship("DeviceWeek", backref="device_timeSwitch", cascade="delete, delete-orphan", single_parent=True) # 对应的定时开关每周
device_group = relationship("DeviceGroup", backref="device_timeSwitch") # 对应的设备组
# 定时开关机--周(单位/天)
class DeviceWeek(BaseModel):
__tablename__ = 'device_week'
id = Column(Integer, Sequence('device_week_id_seq'), primary_key=True) # id
name = Column(String(32)) # 资源名称
device_timeSwitch_id = Column(Integer, ForeignKey('device_timeSwitch.id')) # 外键 定时开关机表
company_id = Column(Integer, ForeignKey('company.id')) # 外键 公司
device_day = relationship("DeviceDay", backref="device_week", cascade="delete, delete-orphan", single_parent=True) # 对应的定时开关机每天
# 定时开关机--天(单位/小时)
class DeviceDay(BaseModel):
__tablename__ = 'device_day'
id = Column(Integer, Sequence('device_day_id_seq'), primary_key=True) # id
name = Column(String(32)) # 资源名称
time = Column(Time) # 时间
screen = Column(String(32)) # 设备屏幕 开,关
device_week_id = Column(Integer, ForeignKey('device_week.id')) # 外键 定时开关机--周
company_id = Column(Integer, ForeignKey('company.id')) # 外键 公司
# 任务
class MyTask(BaseModel):
__tablename__ = 'my_task'
id = Column(Integer, Sequence('my_task_id_seq'), primary_key=True) # id
name = Column(String(32)) # 任务名称
time = Column(DateTime) # 时间
type = Column(String(16)) # 任务类型
user_id = Column(Integer, ForeignKey('user.id')) # 外键 用户
company_id = Column(Integer, ForeignKey('company.id')) # 外键 公司
my_task_content = relationship("MyTaskContent", backref="my_task", cascade="delete, delete-orphan", single_parent=True) # 对应的任务内容
# 任务内容
class MyTaskContent(BaseModel):
__tablename__ = 'my_task_content'
id = Column(Integer, Sequence('my_task_content_id_seq'), primary_key=True) # id
device_id = Column(String(64)) # 设备id
from_user = Column(String(32)) # 用户名
memo = Column(String(255)) # 备注
new_time = Column(DateTime) # 新建时间
send_time = Column(DateTime) # 发送时间
send_data = Column(Text) # 发送的数据
request_data = Column(Text) # 返回的数据
request_time = Column(DateTime) # 返回的时间
my_task_id = Column(Integer, ForeignKey('my_task.id')) # 外键 任务
# drop_db()
# init_db()
|
StarcoderdataPython
|
8012189
|
"""
Python program to determine whether someone
has diabetes or not.
"""
#taking inputs
glucose_conc = int(input("Enter your glucose concentration: "))
#main working tree
if glucose_conc < 100:
bMi = int(input("Enter your BMI: "))
if bMi < 30:
Age = int(input("Enter your Age: "))
if Age < 31:
if glucose_conc < 127:
print("Patient is not diabetic")
else:
blood_pressure = int(input("Enter blood pressure: "))
if blood_pressure >= 61:
print("Patient is diabetic")
else:
print("Patient is not Diabetic")
else:
diab_pedi = int(input("Enter your diabetes pedigree: "))
if diab_pedi <1:
if Age > 49:
skin_thik = int(input("Enter your skin thickness: "))
if skin_thik > 27:
print("Patient is diabetic.")
else:
print("Pateint is not diabetic")
else:
print("Patient is not diabetic")
else:
print("Paitent is diabetic")
elif glucose_conc > 167:
print("Patient is diabetic")
else:
no_of_times_admiited = int("Enter the number of times admitted: ")
if no_of_times_admiited > 0:
print("Patient is diabetic")
else:
hr2_serum_ins = int(input("Enter number of mLs taken: "))
if hr2_serum_ins > 138:
bMi = int(input("Enter your BMI: "))
if bMi > 31:
print("Patient is diabetics")
else:
print("Patient is not diabetic")
else:
print("Patient is not diabetic")
|
StarcoderdataPython
|
3226349
|
<reponame>IvLabs/udacity-self-driving-car<gh_stars>10-100
#parsing command line arguments
import argparse
#decoding camera images
import base64
#for frametimestamp saving
from datetime import datetime
#reading and writing files
import os
#high level file operations
import shutil
#matrix math
import numpy as np
#real-time server
import socketio
#concurrent networking
import eventlet
#web server gateway interface
import eventlet.wsgi
#image manipulation
from PIL import Image
#web framework
from flask import Flask
#input output
from io import BytesIO
#load our saved model
import tflearn
from tflearn.layers.conv import conv_2d
from tflearn.layers.core import fully_connected, input_data, flatten
from tflearn.layers.normalization import batch_normalization
from tflearn.layers.estimator import regression
#helper class
import utils
#model
#model
# X_train=X_train.reshape([-1,66,200,3])
# Y_train=Y_train.reshape([-1,1])
#input layer
network=input_data(shape=[None,66,200,3], name='input')
#convolutional layers
network=conv_2d(network, 24, activation='elu', strides=2, filter_size=5)
# network=batch_normalization(network)
network=conv_2d(network, 36, activation='elu', strides=2, filter_size=5)
# network=batch_normalization(network)
network=conv_2d(network, 48, activation='elu', strides=2, filter_size=5)
# network=batch_normalization(network)
network=conv_2d(network, 64, activation='elu', filter_size=3)
# network=batch_normalization(network)
network=conv_2d(network, 64, activation='elu', filter_size=3)
# network=batch_normalization(network)
#fully connected layers
network=fully_connected(network, 100, activation='elu')
# network=batch_normalization(network)
network=fully_connected(network, 50, activation='elu')
# network=batch_normalization(network)
network=fully_connected(network, 10, activation='elu')
# network=batch_normalization(network)
network=fully_connected(network, 1)
network=regression(network,optimizer='adam', learning_rate=0.0001, loss='mean_square', name='targets')
model=tflearn.DNN(network)
#initialize our server
sio = socketio.Server()
#our flask (web) app
app = Flask(__name__)
#init our model and image array as empty
prev_image_array = None
#set min/max speed for our autonomous car
MAX_SPEED = 25
MIN_SPEED = 10
#and a speed limit
speed_limit = MAX_SPEED
#registering event handler for the server
@sio.on('telemetry')
def telemetry(sid, data):
if data:
# The current steering angle of the car
steering_angle = float(data["steering_angle"])
# The current throttle of the car, how hard to push peddle
throttle = float(data["throttle"])
# The current speed of the car
speed = float(data["speed"])
# The current image from the center camera of the car
image = Image.open(BytesIO(base64.b64decode(data["image"])))
try:
image = np.asarray(image) # from PIL image to numpy array
image = utils.preprocess(image) # apply the preprocessing
image = np.array([image]) # the model expects 4D array
image=image.reshape([-1,66,200,3])
# predict the steering angle for the image
steering_angle = float(model.predict(image))
# lower the throttle as the speed increases
# if the speed is above the current speed limit, we are on a downhill.
# make sure we slow down first and then go back to the original max speed.
global speed_limit
if speed > speed_limit:
speed_limit = MIN_SPEED # slow down
else:
speed_limit = MAX_SPEED
throttle = 1.0 - steering_angle**2 - (speed/speed_limit)**2
print('{} {} {}'.format(steering_angle, throttle, speed))
send_control(steering_angle, throttle)
except Exception as e:
print(e)
# save frame
if args.image_folder != '':
timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H_%M_%S_%f')[:-3]
image_filename = os.path.join(args.image_folder, timestamp)
image.save('{}.jpg'.format(image_filename))
else:
sio.emit('manual', data={}, skip_sid=True)
@sio.on('connect')
def connect(sid, environ):
print("connect ", sid)
send_control(0, 0)
def send_control(steering_angle, throttle):
sio.emit(
"steer",
data={
'steering_angle': steering_angle.__str__(),
'throttle': throttle.__str__()
},
skip_sid=True)
if __name__ == '__main__':
#load model
model.load("autonomous-driving-car.tflearn")
app = socketio.Middleware(sio, app)
# deploy as an eventlet WSGI server
eventlet.wsgi.server(eventlet.listen(('', 4567)), app)
|
StarcoderdataPython
|
9708190
|
import csv
from django.core.management.base import BaseCommand
from operaQuizbot.helpers import facebook_get_json
from operaQuizbot.models import FacebookPage, OperaCategory
class Command(BaseCommand):
help = "Adds the operas from a CSV file."
def add_arguments(self, parser):
pass
def handle(self, *args, **options):
with open('operaQuizbot/management/commands/fbpages.csv', 'r') as f:
# Open the opera categories CSV
dr = csv.DictReader(f, dialect='excel')
dr = [x for x in dr]
for x in dr:
print(x)
for row in dr:
if row['name']:
res = facebook_get_json('search', params={"type": "page",
"q": row['name']})
print(res)
page, _ = FacebookPage.objects.get_or_create(facebook_id=res["data"][0]["id"], name=res["data"][0]["name"])
categories = row['categories'].split("/")
categories = [OperaCategory.objects.get_or_create(name=x)[0] for x in categories]
for x in categories:
x.save()
page.categories.add(x)
self.stdout.write(self.style.SUCCESS("Imported the Facebook Pages!"))
|
StarcoderdataPython
|
8088523
|
import numpy as np
import pandas as pd
from ploomber.testing import pandas as pd_t
def test_nulls_in_columns(tmp_directory):
df = pd.DataFrame({'x': np.random.rand(10), 'y': np.random.rand(10)})
df.to_csv('data.csv', index=False)
assert not pd_t.nulls_in_columns(['x', 'y'], 'data.csv')
df = pd.DataFrame({'x': np.random.rand(10), 'y': np.random.rand(10)})
df.iloc[0, 0] = np.nan
df.to_csv('data.csv', index=False)
assert pd_t.nulls_in_columns(['x', 'y'], 'data.csv')
def test_distinct_values_in_column(tmp_directory):
df = pd.DataFrame({'x': range(5)})
df.to_csv('data.csv', index=False)
assert pd_t.distinct_values_in_column('x', 'data.csv') == set(range(5))
def test_duplicates_in_column(tmp_directory):
df = pd.DataFrame({'x': np.random.randint(0, 5, size=10)})
df.to_csv('data.csv', index=False)
assert pd_t.duplicates_in_column('x', 'data.csv')
df = pd.DataFrame({'x': range(10)})
df.to_csv('data.csv', index=False)
assert not pd_t.duplicates_in_column('x', 'data.csv')
def test_range_in_column(tmp_directory):
df = pd.DataFrame({'x': range(5)})
df.to_csv('data.csv', index=False)
assert pd_t.range_in_column('x', 'data.csv') == (0, 4)
|
StarcoderdataPython
|
4801656
|
<filename>usaspending_api/broker/helpers/delete_fabs_transactions.py
import logging
from usaspending_api.common.helpers.timing_helpers import timer
from usaspending_api.broker.helpers.delete_stale_fabs import delete_stale_fabs
from usaspending_api.broker.helpers.store_deleted_fabs import store_deleted_fabs
logger = logging.getLogger("console")
def delete_fabs_transactions(ids_to_delete, do_not_log_deletions):
"""
ids_to_delete are afa_generated_unique ids
"""
if ids_to_delete:
if do_not_log_deletions is False:
store_deleted_fabs(ids_to_delete)
with timer("deleting stale FABS data", logger.info):
update_award_ids = delete_stale_fabs(ids_to_delete)
else:
update_award_ids = []
logger.info("Nothing to delete...")
return update_award_ids
|
StarcoderdataPython
|
5032012
|
<reponame>psavery/HPCCloud
import os, time
from wslink import register as exportRpc
from paraview import simple, servermanager
from paraview.web import protocols as pv_protocols
from vtkmodules.vtkCommonCore import vtkUnsignedCharArray, vtkCollection
from vtkmodules.vtkCommonDataModel import vtkImageData
from vtkmodules.vtkPVClientServerCoreRendering import vtkPVRenderView
from vtkmodules.vtkPVServerManagerRendering import vtkSMPVRepresentationProxy, vtkSMTransferFunctionProxy, vtkSMTransferFunctionManager
from vtkmodules.vtkWebCore import vtkDataEncoder
class ParaViewLite(pv_protocols.ParaViewWebProtocol):
def __init__(self, **kwargs):
super(pv_protocols.ParaViewWebProtocol, self).__init__()
self.lineContext = None
@exportRpc("paraview.lite.proxy.name")
def getProxyName(self, pid):
proxy = self.mapIdToProxy(pid)
if not proxy:
return {
'id': pid,
'error': 'No proxy for id %s' % pid,
}
return {
'id': pid,
'group': proxy.GetXMLGroup(),
'name': proxy.GetXMLName(),
'label': proxy.GetXMLLabel(),
}
@exportRpc("paraview.lite.camera.get")
def getCamera(self, viewId):
view = self.getView(viewId)
bounds = [-1, 1, -1, 1, -1, 1]
if view and view.GetClientSideView().GetClassName() == 'vtkPVRenderView':
rr = view.GetClientSideView().GetRenderer()
bounds = rr.ComputeVisiblePropBounds()
return {
'id': viewId,
'bounds': bounds,
'position': tuple(view.CameraPosition),
'viewUp': tuple(view.CameraViewUp),
'focalPoint': tuple(view.CameraFocalPoint),
'centerOfRotation': tuple(view.CenterOfRotation),
}
@exportRpc("paraview.lite.lut.get")
def getLookupTableForArrayName(self, name, numSamples = 255):
lutProxy = simple.GetColorTransferFunction(name)
lut = lutProxy.GetClientSideObject()
dataRange = lut.GetRange()
delta = (dataRange[1] - dataRange[0]) / float(numSamples)
colorArray = vtkUnsignedCharArray()
colorArray.SetNumberOfComponents(3)
colorArray.SetNumberOfTuples(numSamples)
rgb = [ 0, 0, 0 ]
for i in range(numSamples):
lut.GetColor(dataRange[0] + float(i) * delta, rgb)
r = int(round(rgb[0] * 255))
g = int(round(rgb[1] * 255))
b = int(round(rgb[2] * 255))
colorArray.SetTuple3(i, r, g, b)
# Add the color array to an image data
imgData = vtkImageData()
imgData.SetDimensions(numSamples, 1, 1)
aIdx = imgData.GetPointData().SetScalars(colorArray)
# Use the vtk data encoder to base-64 encode the image as png, using no compression
encoder = vtkDataEncoder()
# two calls in a row crash on Windows - bald timing hack to avoid the crash.
time.sleep(0.01);
b64Str = encoder.EncodeAsBase64Jpg(imgData, 100)
return { 'image': 'data:image/jpg;base64,' + b64Str, 'range': dataRange, 'name': name }
@exportRpc("paraview.lite.lut.range.update")
def updateLookupTableRange(self, arrayName, dataRange):
lutProxy = simple.GetColorTransferFunction(arrayName)
vtkSMTransferFunctionProxy.RescaleTransferFunction(lutProxy.SMProxy, dataRange[0], dataRange[1], False)
self.getApplication().InvokeEvent('UpdateEvent')
@exportRpc("paraview.lite.lut.preset")
def getLookupTablePreset(self, presetName, numSamples = 512):
lutProxy = simple.GetColorTransferFunction('__PRESET__')
lutProxy.ApplyPreset(presetName, True)
lut = lutProxy.GetClientSideObject()
dataRange = lut.GetRange()
delta = (dataRange[1] - dataRange[0]) / float(numSamples)
colorArray = vtkUnsignedCharArray()
colorArray.SetNumberOfComponents(3)
colorArray.SetNumberOfTuples(numSamples)
rgb = [ 0, 0, 0 ]
for i in range(numSamples):
lut.GetColor(dataRange[0] + float(i) * delta, rgb)
r = int(round(rgb[0] * 255))
g = int(round(rgb[1] * 255))
b = int(round(rgb[2] * 255))
colorArray.SetTuple3(i, r, g, b)
# Add the color array to an image data
imgData = vtkImageData()
imgData.SetDimensions(numSamples, 1, 1)
aIdx = imgData.GetPointData().SetScalars(colorArray)
# Use the vtk data encoder to base-64 encode the image as png, using no compression
encoder = vtkDataEncoder()
# two calls in a row crash on Windows - bald timing hack to avoid the crash.
time.sleep(0.01);
b64Str = encoder.EncodeAsBase64Jpg(imgData, 100)
return { 'name': presetName, 'image': 'data:image/jpg;base64,' + b64Str }
@exportRpc("paraview.lite.lut.set.preset")
def applyPreset(self, arrayName, presetName):
lutProxy = simple.GetColorTransferFunction(arrayName)
lutProxy.ApplyPreset(presetName, True)
self.getApplication().InvokeEvent('UpdateEvent')
@exportRpc("paraview.lite.context.line.set")
def updateLineContext(self, visible = False, p1 = [0, 0, 0], p2 = [1, 1, 1]):
if not self.lineContext:
self.lineContext = servermanager.extended_sources.HighResolutionLineSource(Resolution=2, Point1=p1, Point2=p2)
self.lineRepresentation = simple.Show(self.lineContext)
self.lineRepresentation.Visibility = 1 if visible else 0
self.lineContext.Point1 = p1
self.lineContext.Point2 = p2
self.getApplication().InvokeEvent('UpdateEvent')
return self.lineContext.GetGlobalIDAsString()
|
StarcoderdataPython
|
6527458
|
# encoding: utf-8
# pylint: disable=C0103
# pylint: disable=too-many-arguments
"""
Clustering
==========
Clustering and manifold learning
--------------------------------
.. autosummary::
:toctree: generated/
rhythmic_patterns
manifold_learning
"""
from sklearn import cluster
from sklearn import manifold
__all__ = ['rhythmic_patterns', 'manifold_learning']
def rhythmic_patterns(data, n_clusters=4, method='kmeans'):
"""Clustering of rhythmic patterns from feature map.
Parameters
----------
data : np.ndarray
feature map
n_clusters : int
number of clusters
method : str
clustering method
Returns
-------
c_labs : np.ndarray
cluster labels for each data point
c_centroids : np.ndarray
cluster centroids
c_method : sklearn.cluster
sklearn cluster method object
Notes
--------
Based on the feature map clustering analysis introduced in [1].
References
--------
.. [1] Rocamora, <NAME>
"Tools for detection and classification of piano drum patterns from candombe recordings."
9th Conference on Interdisciplinary Musicology (CIM),
Berlin, Germany. 2014.
See Also
--------
sklearn.cluster.KMeans
"""
if method == 'kmeans':
# initialize k-means algorithm
c_method = cluster.KMeans(n_clusters=n_clusters, init='k-means++', n_init=10)
# cluster data using k-means
c_method.fit(data)
# cluster centroids
c_centroids = c_method.cluster_centers_
# predict cluster for each data point
c_labs = c_method.predict(data)
else:
raise AttributeError("Clustering method not implemented.")
return c_labs, c_centroids, c_method
def manifold_learning(data, method='isomap', n_neighbors=7, n_components=3):
"""Manifold learning for dimensionality reduction of rhythmic patterns data.
Parameters
----------
data : np.array
feature map
method : (check)
(check)
n_neighbors : int
number of neighbors for each dat point
n_components : int
number of coordinates for the manifold
Returns
-------
embedding : np.array
lower-dimensional embedding of the data
Notes
--------
Based on the dimensionality reduction for rhythmic patterns introduced in [1].
References
--------
.. [1] Rocamora, Jure, Biscainho
"Tools for detection and classification of piano drum patterns from candombe recordings."
9th Conference on Interdisciplinary Musicology (CIM),
Berlin, Germany. 2014.
"""
if method == 'isomap':
# fit manifold from data using isomap algorithm
method = manifold.Isomap(n_neighbors=n_neighbors, n_components=n_components).fit(data)
# transform data to low-dimension representation
embedding = method.transform(data)
else:
raise AttributeError("Manifold learning method not implemented.")
return embedding
|
StarcoderdataPython
|
320264
|
"""
Sponge Knowledge Base
Processors metadata
"""
from org.openksavi.sponge.examples import PowerEchoMetadataAction
class UpperEchoAction(Action):
def onConfigure(self):
self.withFeatures({"visibility":False})
def onCall(self, text):
return None
def onLoad():
sponge.enableJava(PowerEchoMetadataAction)
|
StarcoderdataPython
|
9622763
|
<gh_stars>0
"""
Purpose:
Mapquest Helpers
This library is used to wrap mapquest API calls and handle authentication
"""
# Python Library Imports
import logging
import os
import re
import requests
###
# Properties
###
mapquest_api_headers = {
"accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",
"accept-encoding": "gzip, deflate, sdch, br",
"accept-language": "en-US,en;q=0.9",
"cache-control": "no-cache",
"pragma": "no-cache",
"referer": "http://www.mapquestapi.com/",
"upgrade-insecure-requests": "1",
"user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.86 Safari/537.36",
}
###
# Mapquest Helpers
###
def get_mapquest_api_key(public_key_file="~/.mapquest/public_key.txt"):
"""
Purpose:
Get the mapquest API from the environment
Args:
public_key_file (String): filename of the public key token file
Return:
mapquest_api_key (String): MapQuest public key
"""
public_key_file = os.path.expanduser(public_key_file)
try:
with open(public_key_file, "r") as public_key_file_obj:
mapquest_api_key = public_key_file_obj.read().strip("\n")
except Exception as err:
raise Exception(f"Failed to Get Public Key for Mapquest: {public_key_file}")
return mapquest_api_key
def get_directions_between_two_addresses(mapquest_api_key, address_1, address_2):
"""
Purpose:
Get directions between two addresses
Leverages Mapquest API:
https://developer.mapquest.com/documentation/directions-api/route/get/
Args:
address_1 (String): Address to use as start point of travel
address_2 (String): Address to use as end destination of travel
Return:
directions (Dict): Dict of the directions between the two locations
"""
mapquest_direcions_url = (
f"http://www.mapquestapi.com/directions/v2/route?key={mapquest_api_key}"
f"&from={address_1}&to={address_2}"
)
logging.info(f"Fetching Directions: {mapquest_direcions_url}")
mapquest_direcions_response = requests.get(
mapquest_direcions_url, headers=mapquest_api_headers
)
if mapquest_direcions_response.status_code == 200:
raw_mapquest_direcions = mapquest_direcions_response.json()
else:
logging.error(
"Got Failure Response from Indeed.com: "
f"{mapquest_direcions_response.status_code}"
)
raw_mapquest_direcions = {}
return raw_mapquest_direcions
|
StarcoderdataPython
|
3410362
|
# Generated by Django 3.0.7 on 2020-06-23 01:31
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('draft', '0002_auto_20200612_0522'),
]
operations = [
migrations.RenameField(
model_name='draft',
old_name='abstract',
new_name='description',
),
]
|
StarcoderdataPython
|
5093312
|
<reponame>vilhelmprytz/Kanmail<filename>kanmail/version.py
import json
from functools import lru_cache
from os import path
from typing import Dict
from kanmail.settings.constants import CLIENT_ROOT
@lru_cache(maxsize=1)
def get_version_data() -> Dict[str, str]:
version_filename = path.join(CLIENT_ROOT, 'static', 'dist', 'version.json')
if not path.exists(version_filename):
return {
'version': '0.0.0dev',
'channel': 'alpha',
}
with open(version_filename, 'r') as f:
version_data = f.read()
return json.loads(version_data)
def get_version() -> str:
version_data = get_version_data()
return version_data['version']
|
StarcoderdataPython
|
197107
|
# -*- coding: utf-8 -*-
from django.test import TestCase, RequestFactory
from django.test.utils import override_settings
from django.urls import reverse
from django.contrib.auth.models import AnonymousUser
from django.http import HttpResponseRedirect, HttpResponse
from django.conf import settings
from .. import middleware
from . import utils as test_utils
class XForwardedForMiddlewareTests(TestCase):
def test_meta(self):
"""
Should add remote addr to request meta data
"""
req = RequestFactory().get('/')
req.META['REMOTE_ADDR'] = ''
self.assertEqual(req.META['REMOTE_ADDR'], '')
http_x_fwd_for = 'evil.ip, foo.ip, org.ip'
req.META['HTTP_X_FORWARDED_FOR'] = http_x_fwd_for
self.assertEqual(req.META['HTTP_X_FORWARDED_FOR'], http_x_fwd_for)
self.assertIsNone(
middleware.XForwardedForMiddleware(lambda req: HttpResponse(status=500))
.process_request(req))
self.assertEqual(req.META['HTTP_X_FORWARDED_FOR'], http_x_fwd_for)
self.assertEqual(req.META['REMOTE_ADDR'], 'org.ip')
def test_meta_weird_format(self):
"""
Should add remote addr to request meta data
"""
req = RequestFactory().get('/')
req.META['REMOTE_ADDR'] = ''
self.assertEqual(req.META['REMOTE_ADDR'], '')
http_x_fwd_for = 'evil.ip, foo.ip,,bar.ip, baz.ip, org.ip '
req.META['HTTP_X_FORWARDED_FOR'] = http_x_fwd_for
self.assertEqual(req.META['HTTP_X_FORWARDED_FOR'], http_x_fwd_for)
self.assertIsNone(
middleware.XForwardedForMiddleware(lambda req: HttpResponse(status=500))
.process_request(req))
self.assertEqual(req.META['HTTP_X_FORWARDED_FOR'], http_x_fwd_for)
self.assertEqual(req.META['REMOTE_ADDR'], 'org.ip')
MIDDLEWARE_WITH_X_FWD = settings.MIDDLEWARE[:]
if 'spirit.core.middleware.XForwardedForMiddleware' not in settings.MIDDLEWARE:
MIDDLEWARE_WITH_X_FWD.append('spirit.core.middleware.XForwardedForMiddleware')
@override_settings(MIDDLEWARE=MIDDLEWARE_WITH_X_FWD)
def test_on_client(self):
"""
Should be called on a request
"""
class XForwardedForMiddlewareMock(middleware.XForwardedForMiddleware):
_mock_calls = []
def process_request(self, request):
self._mock_calls.append(request)
return super(XForwardedForMiddlewareMock, self).process_request(request)
org_mid, middleware.XForwardedForMiddleware = (
middleware.XForwardedForMiddleware, XForwardedForMiddlewareMock)
try:
self.client.get(
reverse('spirit:index'),
HTTP_X_FORWARDED_FOR='evil.ip, org.ip')
finally:
middleware.XForwardedForMiddleware = org_mid
self.assertEqual(len(XForwardedForMiddlewareMock._mock_calls), 1)
self.assertEqual(
XForwardedForMiddlewareMock._mock_calls[0].META['REMOTE_ADDR'],
'org.ip')
class PrivateForumMiddlewareTests(TestCase):
def setUp(self):
test_utils.cache_clear()
self.user = test_utils.create_user()
@override_settings(ST_PRIVATE_FORUM=True)
def test_anonym_user(self):
"""
Should restrict the URL
"""
req = RequestFactory().get(reverse('spirit:index'))
req.user = AnonymousUser()
resp = (
middleware.PrivateForumMiddleware(lambda req: HttpResponse(status=500))
.process_request(req))
self.assertIsInstance(resp, HttpResponseRedirect)
self.assertEqual(
resp['Location'],
reverse(settings.LOGIN_URL) + '?next=/')
@override_settings(ST_PRIVATE_FORUM=False)
def test_anonym_user_non_private(self):
"""
Should not restrict the URL
"""
req = RequestFactory().get(reverse('spirit:index'))
req.user = AnonymousUser()
self.assertIsNone(
middleware.PrivateForumMiddleware(lambda req: HttpResponse(status=500))
.process_request(req))
@override_settings(ST_PRIVATE_FORUM=True)
def test_authenticated_user(self):
"""
Should not restrict authenticated users
"""
req = RequestFactory().get(reverse('spirit:index'))
req.user = self.user
self.assertTrue(self.user.is_authenticated)
self.assertIsNone(
middleware.PrivateForumMiddleware(lambda req: HttpResponse(status=500))
.process_request(req))
@override_settings(ST_PRIVATE_FORUM=False)
def test_authenticated_user_not_private(self):
"""
Should not restrict authenticated users
"""
req = RequestFactory().get(reverse('spirit:index'))
req.user = self.user
self.assertTrue(self.user.is_authenticated)
self.assertIsNone(
middleware.PrivateForumMiddleware(lambda req: HttpResponse(status=500))
.process_request(req))
@override_settings(ST_PRIVATE_FORUM=True)
def test_auth_paths(self):
"""
Should not restrict auth paths
"""
req = RequestFactory().get(reverse('spirit:index'))
req.user = AnonymousUser()
self.assertIsInstance(
middleware.PrivateForumMiddleware(lambda req: HttpResponse(status=500))
.process_request(req),
HttpResponseRedirect)
req = RequestFactory().get(reverse('spirit:user:auth:login'))
req.user = AnonymousUser()
self.assertIsNone(
middleware.PrivateForumMiddleware(lambda req: HttpResponse(status=500))
.process_request(req))
req = RequestFactory().get(reverse('spirit:user:auth:register'))
req.user = AnonymousUser()
self.assertIsNone(
middleware.PrivateForumMiddleware(lambda req: HttpResponse(status=500))
.process_request(req))
req = RequestFactory().get(reverse('spirit:user:auth:logout'))
req.user = AnonymousUser()
self.assertIsNone(
middleware.PrivateForumMiddleware(lambda req: HttpResponse(status=500))
.process_request(req))
req = RequestFactory().get(reverse('spirit:user:auth:resend-activation'))
req.user = AnonymousUser()
self.assertIsNone(
middleware.PrivateForumMiddleware(lambda req: HttpResponse(status=500))
.process_request(req))
@override_settings(ST_PRIVATE_FORUM=True)
def test_not_spirit(self):
"""
Should not restrict other apps URLs
"""
req = RequestFactory().get(reverse('spirit:index'))
req.user = AnonymousUser()
self.assertIsInstance(
middleware.PrivateForumMiddleware(lambda req: HttpResponse(status=500))
.process_request(req),
HttpResponseRedirect)
req = RequestFactory().get(reverse('admin:index'))
req.user = AnonymousUser()
self.assertIsNone(
middleware.PrivateForumMiddleware(lambda req: HttpResponse(status=500))
.process_request(req))
req = RequestFactory().get(reverse('admin:index'))
req.user = self.user
self.assertIsNone(
middleware.PrivateForumMiddleware(lambda req: HttpResponse(status=500))
.process_request(req))
@override_settings(ST_PRIVATE_FORUM=True)
def test_on_client(self):
"""
Should be called on a request
"""
response = self.client.get(reverse('spirit:index'))
self.assertEqual(response.status_code, 302)
self.assertIsInstance(response, HttpResponseRedirect)
self.assertTrue(
reverse(settings.LOGIN_URL) + '?next=/' in response['Location'])
test_utils.login(self)
self.assertEqual(
self.client.get(reverse('spirit:index')).status_code, 200)
@override_settings(ST_PRIVATE_FORUM=False)
def test_on_client_not_private(self):
"""
Should be called on a request
"""
self.assertEqual(
self.client.get(reverse('spirit:index')).status_code, 200)
@override_settings(ST_PRIVATE_FORUM=True)
def test_restrict_apps(self):
"""
Should restrict the URLs
"""
url_names = [
'spirit:topic:index-active',
'spirit:topic:private:index',
'spirit:category:index']
for url_name in url_names:
url = reverse(url_name)
req = RequestFactory().get(url)
req.user = AnonymousUser()
resp = (
middleware.PrivateForumMiddleware(lambda req: HttpResponse(status=500))
.process_request(req))
self.assertIsInstance(resp, HttpResponseRedirect)
self.assertEqual(
resp['Location'],
reverse(settings.LOGIN_URL) + '?next=' + url)
|
StarcoderdataPython
|
1886792
|
__all__ = [
"cimac_id_to_cimac_participant_id",
"get_property",
"identity",
"MetadataModel",
"with_default_session",
]
from functools import wraps
from typing import Any, Dict, Optional, Tuple
from flask import current_app
from sqlalchemy.orm import Session
from ...config.db import BaseModel
# some simple functions to handle common process_as cases
# the parameters for all process_as functions are
# value : Any, context : dict[Column, Any]
identity = lambda v, _: v
cimac_id_to_cimac_participant_id = lambda cimac_id, _: cimac_id[:7]
# this is a special-case handler, where any property in context
# can be retrieved by using get_property(< key >) as a process_as function
# # created to get the `object_url` of files after GCS URI formatting
get_property = lambda prop: lambda _, context: (
[v for k, v in context.items() if k.name == prop] + [None]
)[0]
def with_default_session(f):
"""
For some `f` expecting a database session instance as a keyword argument,
set the default value of the session keyword argument to the current app's
database driver's session. We need to do this in a decorator rather than
inline in the function definition because the current app is only available
once the app is running and an application context has been pushed.
"""
@wraps(f)
def wrapped(*args, **kwargs):
if "session" not in kwargs:
kwargs["session"] = current_app.extensions["sqlalchemy"].db.session
return f(*args, **kwargs)
return wrapped
class MetadataModel(BaseModel):
__abstract__ = True
def primary_key_values(self) -> Optional[Tuple[Any]]:
"""
Returns a tuple of the values of the primary key values
Special value None if all of the pk columns are None
"""
pk_map = self.primary_key_map()
return tuple(pk_map.values()) if pk_map is not None else None
def primary_key_map(self) -> Optional[Dict[str, Any]]:
"""
Returns a dict of Column: value for any primary key column.
Special value None if all of the pk columns are None
"""
from .utils import _all_bases
columns_to_check = [c for c in self.__table__.columns]
for c in _all_bases(type(self)):
if hasattr(c, "__table__"):
columns_to_check.extend(c.__table__.columns)
primary_key_values = {}
for column in columns_to_check:
if column.primary_key:
value = getattr(self, column.name)
primary_key_values[column] = value
if all(v is None for v in primary_key_values.values()):
return None # special value
return primary_key_values
def unique_field_values(self) -> Optional[Tuple[Any]]:
"""
Returns a tuple of all values that are uniquely constrained (pk or unique).
Special value None if all of the unique columns are None
"""
from .utils import _all_bases
columns_to_check = [c for c in self.__table__.columns]
for c in _all_bases(type(self)):
if hasattr(c, "__table__"):
columns_to_check.extend(c.__table__.columns)
unique_field_values = []
for column in columns_to_check:
# column.primary_key == True for 1+ column guaranteed
if column.unique or column.primary_key:
value = getattr(self, column.name)
unique_field_values.append(value)
if all(v is None for v in unique_field_values):
return None # special value
return tuple(unique_field_values)
def merge(self, other):
"""Merge column values from other into self, raising an error on conflicts between non-null fields."""
if self.__class__ != other.__class__:
raise Exception(
f"cannot merge {self.__class__} instance with {other.__class__} instance"
)
# also need to handle columns for all superclasses
from .utils import _all_bases
for column in self.__table__.columns + [
c
for b in _all_bases(type(self))
if hasattr(b, "__table__")
for c in b.__table__.columns
]:
if hasattr(self, column.name):
current = getattr(self, column.name)
incoming = getattr(other, column.name)
if current is None:
setattr(self, column.name, incoming)
elif incoming is not None and current != incoming:
pks = {
col.name: value for col, value in self.primary_key_map().items()
}
raise Exception(
f"found conflicting values for {self.__class__.__name__} {pks} for {column.name} : {current}!={incoming}"
)
def to_dict(self) -> Dict[str, Any]:
"""Returns a dict of all non-null columns (by name) and their values"""
# avoid circular imports
from .utils import _all_bases
columns_to_check = [c for c in type(self).__table__.columns]
for b in _all_bases(type(self)):
if hasattr(b, "__table__"):
columns_to_check.extend(b.__table__.columns)
ret = {
c.name: getattr(self, c.name)
for c in columns_to_check
if hasattr(self, c.name)
}
ret = {k: v for k, v in ret.items() if v is not None}
return ret
@classmethod
@with_default_session
def get_by_id(cls, *id, session: Session):
"""
Returns an instance of this class with given the primary keys if it exists
Special value None if no instance in the table matches the given values
"""
with current_app.app_context():
ret = session.query(cls).get(id)
return ret
|
StarcoderdataPython
|
4841771
|
# <NAME>
#This code integrates the 2 bhr files, but for those which don't have similar sameAs linke, but similar URI.
#the sameAs links are integrated into the new file
#30/04/2018
#Ver. 01
import rdflib
from rdflib import Namespace, URIRef, Graph , Literal
from SPARQLWrapper import SPARQLWrapper2, XML , RDF , JSON
from rdflib.namespace import RDF, FOAF , SKOS ,RDFS
import os
os.chdir('C:\Users\Maral\Desktop')
#sparql = SPARQLWrapper2("http://localhost:3030/Datasets/sparql")
foaf = Namespace("http://xmlns.com/foaf/0.1/")
skos = Namespace("http://www.w3.org/2004/02/skos/core#")
gndo = Namespace("http://d-nb.info/standards/elementset/gnd#")
jl = Namespace("http://data.judaicalink.org/ontology/")
owl = Namespace ("http://www.w3.org/2002/07/owl#")
edm = Namespace("http://www.europeana.eu/schemas/edm/")
dc = Namespace ("http://purl.org/dc/elements/1.1/")
graph= Graph()
graph.parse('C:\\Users\\Maral\\Desktop\\bhr-new-enrich.rdf', format="turtle")
dicsame = {}
spar= """
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX gndo: <http://d-nb.info/standards/elementset/gnd#>
PREFIX pro: <http://purl.org/hpi/patchr#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX edm: <http://www.europeana.eu/schemas/edm/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dblp: <http://dblp.org/rdf/schema-2015-01-26#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX dbpedia: <http://dbpedia.org/resource/>
SELECT ?x ?desc ?abst #?pub
where {
?x a foaf:Person.
?x jl:describedAt ?desc.
?x jl:hasAbstract ?abst.
#?x jl:hasPublication ?pub
#?x owl:sameAs ?same.
}
"""
results = graph.query(spar)
graph2= Graph()
#graph2.parse('C:\\Users\\Maral\\Desktop\\bhr-final-02.ttl', format="turtle")
graph2.parse('C:\\Users\\Maral\\Desktop\\bhr-final-03.ttl', format="turtle")
graph2.bind('foaf',foaf)
graph2.bind('skos',skos)
graph2.bind('owl',owl)
graph2.bind('jl',jl)
spar2= """
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX gndo: <http://d-nb.info/standards/elementset/gnd#>
PREFIX pro: <http://purl.org/hpi/patchr#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX edm: <http://www.europeana.eu/schemas/edm/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dblp: <http://dblp.org/rdf/schema-2015-01-26#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX dbpedia: <http://dbpedia.org/resource/>
SELECT ?x
where {
?x a foaf:Person.
}
"""
results2 = graph2.query(spar2)
for item2 in results2:
#print item2
uri2org=item2[0]
uri2 = uri2org.strip().lower()
for item in results:
uriorg = item[0]
uri = item[0].strip().lower()
desc = item[1].value
abst = item[2].value
#pub = item[3].value
#print item
if uri2 == uri:
graph2.add((URIRef(uri2org) , jl.describedAt , Literal(desc)))
graph2.add((URIRef(uri2org) , jl.hasAbstract , Literal(abst)))
#graph2.add((URIRef(uri2org) , jl.hasPublication , Literal(pub)))
#graph2.serialize(destination='bhr-final-03.ttl', format="turtle")
graph2.serialize(destination='bhr-final-04.ttl', format="turtle")
|
StarcoderdataPython
|
6575177
|
<reponame>bcho/cached-property
# -*- coding: utf-8 -*-
"""
test_threaded_cache_property.py
----------------------------------
Tests for `cached-property` module, threaded_cache_property.
"""
from time import sleep
from threading import Thread, Lock
import unittest
from cached_property import threaded_cached_property
class TestCachedProperty(unittest.TestCase):
def test_cached_property(self):
class Check(object):
def __init__(self):
self.total1 = 0
self.total2 = 0
@property
def add_control(self):
self.total1 += 1
return self.total1
@threaded_cached_property
def add_cached(self):
self.total2 += 1
return self.total2
c = Check()
# The control shows that we can continue to add 1.
self.assertEqual(c.add_control, 1)
self.assertEqual(c.add_control, 2)
# The cached version demonstrates how nothing new is added
self.assertEqual(c.add_cached, 1)
self.assertEqual(c.add_cached, 1)
def test_reset_cached_property(self):
class Check(object):
def __init__(self):
self.total = 0
@threaded_cached_property
def add_cached(self):
self.total += 1
return self.total
c = Check()
# Run standard cache assertion
self.assertEqual(c.add_cached, 1)
self.assertEqual(c.add_cached, 1)
# Reset the cache.
del c.add_cached
self.assertEqual(c.add_cached, 2)
self.assertEqual(c.add_cached, 2)
def test_none_cached_property(self):
class Check(object):
def __init__(self):
self.total = None
@threaded_cached_property
def add_cached(self):
return self.total
c = Check()
# Run standard cache assertion
self.assertEqual(c.add_cached, None)
class TestThreadingIssues(unittest.TestCase):
def test_threads(self):
""" How well does this implementation work with threads?"""
class Check(object):
def __init__(self):
self.total = 0
self.lock = Lock()
@threaded_cached_property
def add_cached(self):
sleep(1)
# Need to guard this since += isn't atomic.
with self.lock:
self.total += 1
return self.total
c = Check()
threads = []
for x in range(10):
thread = Thread(target=lambda: c.add_cached)
thread.start()
threads.append(thread)
for thread in threads:
thread.join()
self.assertEqual(c.add_cached, 1)
|
StarcoderdataPython
|
135752
|
n1 = int (input())
s1 = set(map(int,input().split()))
n2 = int (input())
s2 = set(map(int,input().split()))
print(len(s1.intersection(s2)))
|
StarcoderdataPython
|
6587014
|
<reponame>risk-frontiers/OasisIntegration
import struct
import sqlite3
import os
import logging
import complex_model.DefaultSettings as DS
import time
"""
Implementation of ktool item/coverage/loss bin stream conversion tool including
complex item data serialized with msgpack.
"""
_DEBUG = DS.RF_DEBUG_MODE
if "RF_DEBUG_MODE" in os.environ:
if isinstance(os.environ["RF_DEBUG_MODE"], str) and os.environ["RF_DEBUG_MODE"].lower() == "true":
_DEBUG = True
logging.basicConfig(level=logging.DEBUG if _DEBUG else logging.INFO,
filename=DS.WORKER_LOG_FILE,
format='[%(asctime)s: %(levelname)s/%(filename)s] %(message)s')
SUPPORTED_GUL_STREAMS = {"item": (1, 1), "coverage": (1, 2), "loss": (2, 1)}
DEFAULT_GUL_STREAM = SUPPORTED_GUL_STREAMS["loss"]
def gulcalc_sqlite_fp_to_bin(working_dir, db_fp, output, num_sample, stream_id=DEFAULT_GUL_STREAM,
oasis_event_batch=None):
"""This transforms a sqlite result table (rf format) into oasis loss binary stream
:param working_dir: working directory
:param db_fp: path to the sqlite database
:param output: output stream where results will be written to
:param num_sample: number of samples in result
:param stream_id: item, coverage or loss stream id
:param oasis_event_batch: event batch id attached to this process
:return: OASIS compliant item or coverage binary stream
"""
start = time.time()
logging.info("STARTED: Transforming sqlite losses into gulcalc item/loss binary stream for oasis_event_batch "
+ str(oasis_event_batch))
gulcalc_create_header(output, num_sample, stream_id)
con = sqlite3.connect(db_fp)
cur = con.cursor()
cur.execute("SELECT count(*) FROM event_batches")
num_partial = cur.fetchone()[0]
cur.execute("SELECT batch_id FROM event_batches ORDER BY batch_id")
add_first_separator = False
rc = 0
for batch_id in cur.fetchall():
logging.info("RUNNING: Streaming partial loss " + str(1 + int(batch_id[0])) + "/" + str(num_partial)
+ " for oasis_event_batch " + str(oasis_event_batch))
batch_res_fp = os.path.join(working_dir, "oasis_loss_{0}.db".format(batch_id[0]))
batch_res_con = sqlite3.connect(batch_res_fp)
rc = rc + gulcalc_sqlite_to_bin(batch_res_con, output, add_first_separator)
add_first_separator = True
con.close()
hours, rem = divmod(time.time() - start, 3600)
minutes, seconds = divmod(rem, 60)
exec_time = "{:0>2}:{:0>2}:{:05.2f}".format(int(hours), int(minutes), seconds)
logging.info("COMPLETED: Successfully generated losses as gulcalc binary stream for event batch "
+ str(oasis_event_batch) + ": " + str(rc) + " rows were streamed in " + exec_time)
def cursor_iterator(cursor, batchsize=100000):
"""An iterator that uses fetchmany to keep memory usage down
:param cursor: a sqlite db cursor
:param batchsize: size of the batch to be fetched
:return: a generator constructed from fetchmany
"""
while True:
results = cursor.fetchmany(batchsize)
if not results:
break
for result in results:
yield result
def gulcalc_create_header(output, num_sample, stream_id=DEFAULT_GUL_STREAM):
if stream_id not in list(SUPPORTED_GUL_STREAMS.values()) or not num_sample > 0:
return
stream_id = (stream_id[0] << 24) | stream_id[1]
output.write(struct.pack('i', stream_id))
output.write(struct.pack('i', num_sample))
def gulcalc_sqlite_to_bin(con, output, add_first_separator):
"""This transforms a sqlite result table (rf format) into oasis loss binary stream
:param con: sqlite connection to result batch
:param output: output stream where results will be written to
:param add_first_separator: boolean flag to add separator 0/0 for second, third, ... batches
:return: OASIS compliant item or coverage binary stream
"""
cur = con.cursor()
cur.execute("SELECT event_id, loc_id, sample_id, loss FROM oasis_loss ORDER BY event_id, loc_id, sample_id")
last_key = (0, 0)
rc = 0
for row in cursor_iterator(cur):
current_key = (int(row[0]), int(row[1]))
if not last_key == current_key:
if not last_key == (0, 0) or add_first_separator:
output.write(struct.pack('Q', 0)) # sidx/loss 0/0 as separator
output.write(struct.pack('II', current_key[0], current_key[1]))
last_key = (int(row[0]), int(row[1]))
output.write(struct.pack('if', int(row[2]), float(row[3])))
rc = rc + 1
return rc
if __name__ == "__main__":
import sys
if len(sys.argv) <= 1:
print("missing working directory")
else:
working_directory = sys.argv[1]
debug_output = sys.stdout.buffer
samples = 1
if len(sys.argv) > 2:
debug_output = open(sys.argv[2], 'w+b')
if len(sys.argv) > 3:
samples = int(sys.argv[2])
stream = (2, 1)
if len(sys.argv) > 4:
stream = int(sys.argv[3])
db_path = os.path.join(working_directory, 'riskfrontiersdbAUS_v2_6.db')
gulcalc_sqlite_fp_to_bin(working_directory, db_path, debug_output, samples, stream)
|
StarcoderdataPython
|
5190506
|
import re
import os
from scrapy.spider import BaseSpider
from scrapy.selector import HtmlXPathSelector
from scrapy.http import Request, HtmlResponse
from scrapy.utils.response import get_base_url
from scrapy.utils.url import urljoin_rfc
from urllib import urlencode
import csv
from product_spiders.items import Product, ProductLoaderWithNameStrip as ProductLoader
from scrapy import log
HERE = os.path.abspath(os.path.dirname(__file__))
REP = [',', '.', ':', '-', '&', '?', '(', ')', '/', '"', '+', '[', ']']
def normalized_name(name):
name = name.replace("'", '')
for r in REP:
name = name.replace(r, ' ')
name = ' '.join(name.split()).strip()
name = '-'.join(name.split())
return name
class KalahariSpider(BaseSpider):
name = 'kalahari.com'
allowed_domains = ['kalahari.com']
def start_requests(self):
with open(os.path.join(HERE, 'products.csv')) as f:
reader = csv.DictReader(f)
for row in reader:
sku = row['ProdCode']
prod_id = row['k_sku']
name = normalized_name(row['Title'])
url = 'http://www.kalahari.com/home/%s/%s.aspx'
url = url % (name, prod_id)
yield Request(url, meta={'sku': sku, 'url': url})
def parse(self, response):
if '500.html' in response.url:
retries = response.meta.get('retries', 0)
if retries < 3:
yield Request(response.meta['url'], dont_filter=True, meta={'sku': response.meta['sku'],
'retries': retries + 1})
hxs = HtmlXPathSelector(response)
if hxs.select('//p[@class="stock_status" and text()="Out of stock"]'):
return
loader = ProductLoader(item=Product(), response=response)
loader.add_xpath('name', '//h1[@class="page_heading"]/text()')
loader.add_value('url', response.url)
loader.add_xpath('price', '//tr[@class="our_price"]//td[@class="amount"]/text()')
loader.add_xpath('price', '//span[@class="price"]/text()')
loader.add_value('sku', response.meta['sku'])
yield loader.load_item()
|
StarcoderdataPython
|
4923580
|
import os
import sys
import numpy as np
import open3d as o3d
import torch
import smplx
def update_render_cam(cam_param, trans):
### NOTE: trans is the trans relative to the world coordinate!!!
cam_R = np.transpose(trans[:-1, :-1])
cam_T = -trans[:-1, -1:]
cam_T = np.matmul(cam_R, cam_T) #!!!!!! T is applied in the rotated coord
cam_aux = np.array([[0,0,0,1]])
mat = np.concatenate([cam_R, cam_T],axis=-1)
mat = np.concatenate([mat, cam_aux],axis=0)
cam_param.extrinsic = mat
return cam_param
def create_lineset(x_range, y_range, z_range):
gp_lines = o3d.geometry.LineSet()
gp_pcd = o3d.geometry.PointCloud()
points = np.stack(np.meshgrid(x_range, y_range, z_range), axis=-1)
lines = []
for ii in range( x_range.shape[0]-1):
for jj in range(y_range.shape[0]-1):
lines.append(np.array([ii*x_range.shape[0]+jj, ii*x_range.shape[0]+jj+1]))
lines.append(np.array([ii*x_range.shape[0]+jj, ii*x_range.shape[0]+jj+y_range.shape[0]]))
points = np.reshape(points, [-1,3])
colors = np.random.rand(len(lines), 3)*0.5+0.5
gp_lines.points = o3d.utility.Vector3dVector(points)
gp_lines.colors = o3d.utility.Vector3dVector(colors)
gp_lines.lines = o3d.utility.Vector2iVector(np.stack(lines,axis=0))
gp_pcd.points = o3d.utility.Vector3dVector(points)
return gp_lines, gp_pcd
def color_hex2rgb(hex):
h = hex.lstrip('#')
return np.array( tuple(int(h[i:i+2], 16) for i in (0, 2, 4)) )/255
def get_body_model(type, gender, batch_size,device='cpu'):
'''
type: smpl, smplx smplh and others. Refer to smplx tutorial
gender: male, female, neutral
batch_size: an positive integar
'''
body_model_path = '/home/yzhang/body_models/VPoser'
body_model = smplx.create(body_model_path, model_type=type,
gender=gender, ext='npz',
num_pca_comps=12,
create_global_orient=True,
create_body_pose=True,
create_betas=True,
create_left_hand_pose=True,
create_right_hand_pose=True,
create_expression=True,
create_jaw_pose=True,
create_leye_pose=True,
create_reye_pose=True,
create_transl=True,
batch_size=batch_size
)
if device == 'cuda':
return body_model.cuda()
else:
return body_model
|
StarcoderdataPython
|
302897
|
# -*- coding: UTF-8 -*-
class CustomBaseException(Exception):
def __init__(self, prefix: str, arg: str, code: int, addition=""):
self._prefix = prefix
self._arg = arg
self._code = code
self._addition = addition
def __str__(self):
if not self._prefix == "":
string = "{0}: "
else:
string = ""
string += "{1} 。CODE: {2}"
string = string.format(self._prefix, self._arg, str(self._code))
if not self._addition == "":
string += "\nADDITION:\n{0}".format(self._addition)
return string
class NoArgumentException(CustomBaseException):
def __init__(self, arg: str):
self._prefix = "不完整的命令行参数"
self._arg = arg
self._code = 10
self._addition = ""
class UnknownArgumentException(CustomBaseException):
def __init__(self, arg: str):
self._prefix = "未知的命令行参数"
self._arg = arg
self._code = 11
self._addition = ""
class AnotherException(CustomBaseException):
def __init__(self, addition: str):
self._prefix = ""
self._arg = "其它类型的错误."
self._code = 5
self._addition = addition
class InvalidCompoundException(CustomBaseException):
def __init__(self, arg: str):
self._prefix = "无效的参数组合"
self._arg = arg
self._code = 12
self._addition = ""
class InvalidPathException(CustomBaseException):
def __init__(self, target: str, arg: str):
self._prefix = "无效的{0}目录".format(target)
self._arg = arg
self._code = 13
self._addition = ""
class CannotCreatePathException(CustomBaseException):
def __init__(self, target: str, addition: str):
self._prefix = "无法创建的目录或文件"
self._arg = target
self._code = 14
self._addition = addition
class LoginFailedException(CustomBaseException):
def __init__(self, arg: str):
self._prefix = "登陆失败"
self._arg = arg
self._code = 21
self._addition = ""
class NoValidFileWarning(CustomBaseException):
def __init__(self, url=""):
self._prefix = ""
self._arg = "未找到有效文件"
if url:
self._arg += "。请自行前往论坛查看"
else:
self._arg += "。请检查是否有缓存/下载目录的读写权限或目录是否存在"
self._code = 101
self._addition = url
class WatchdogTimeoutWarning(CustomBaseException):
def __init__(self):
self._prefix = ""
self._arg = "文件监听等待超时"
self._code = 102
self._addition = ""
|
StarcoderdataPython
|
4944571
|
queries = {
"postgresql": {
"table": """
SELECT
c.relname as "Name",
CASE c.relkind WHEN 'r' THEN 'table' WHEN 'v' THEN 'view' WHEN 'm' THEN 'materialized view' WHEN 'i' THEN 'index' WHEN 'S' THEN 'sequence' WHEN 's' THEN 'special' WHEN 'f' THEN 'foreign table' WHEN 'p' THEN 'partitioned table' WHEN 'I' THEN 'partitioned index' END as "Type",
pg_catalog.pg_size_pretty(pg_catalog.pg_table_size(c.oid)) as "Size",
fields.fields
FROM pg_catalog.pg_class c
JOIN
(SELECT a.attrelid, string_agg(a.attname::text, ', ') fields
FROM (select * from pg_catalog.pg_attribute order by attnum) a
WHERE a.attnum > 0 AND NOT a.attisdropped
group by 1) fields on c.oid = fields.attrelid
LEFT JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace
WHERE c.relkind IN ('r','p','v','m','S','f','')
AND n.nspname <> 'pg_catalog'
AND n.nspname <> 'information_schema'
AND n.nspname !~ '^pg_toast'
AND pg_catalog.pg_table_is_visible(c.oid)
ORDER BY 1,2;
""",
"field": """
WITH getoid as (
SELECT c.oid
FROM pg_catalog.pg_class c
LEFT JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace
WHERE c.relname = %s
AND pg_catalog.pg_table_is_visible(c.oid)
)
SELECT a.attname "Field",
pg_catalog.format_type(a.atttypid, a.atttypmod) "Type",
pg_catalog.col_description(a.attrelid, a.attnum) "Description"
FROM pg_catalog.pg_attribute a
WHERE a.attrelid in (select oid from getoid) AND a.attnum > 0 AND NOT a.attisdropped
ORDER BY a.attnum;
""",
},
"sqlite": {
"table": """
SELECT
name, sql
FROM
sqlite_master
WHERE
name NOT LIKE 'sqlite_%';
""",
"field": """
SELECT name, upper(case when type = '' then 'TEXT' else type end) type FROM PRAGMA_TABLE_INFO(?)
""",
},
}
|
StarcoderdataPython
|
12810854
|
"""
Quantifies the difference in occurrence of one
(or more mutations) between two sets of
isolates.
TODO:
1. Use DualDataProvider and implement getPoints locally so
have same data plotted as is analyzed
"""
from microbepy.common import constants as cn
from microbepy.common import util
from microbepy.common.range_constraint import RangeConstraint
from microbepy.data import util_data as ud
from microbepy.data import model_data_provider
from microbepy.plot.phenotype_plot import PhenotypePlot
from microbepy.plot.util_plot import PlotParms
from collections import namedtuple
import math
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import numpy as np
import pandas as pd
LOW = 0.0
# Depvar is less than 0
RC_LOW = RangeConstraint(lower=-10, upper=-LOW) # Units of standard deviation
# Depvar is greater than 0
RC_HIGH = RangeConstraint(lower=LOW, upper=10)
######################################
# CLASSES
######################################
# Knobs are the protrusions from points
Knob = namedtuple('Knob', ['angle', 'color'])
Point = namedtuple('Point', ['x', 'y'])
class MutationDifferential(object):
def __init__(self, depvar, mutation_column,
rc_low=RC_LOW,
rc_high=RC_HIGH,
is_median=False,
**kwargs
):
"""
The sets of isolates are specified by a range of values
of the dependent variable.
:param str depvar:
:param str mutation_column:
:param RangeConstraint rc_low: Defines the low isolates
:param RangeConstraint rc_high: Defines the high isolates
:param Boolean is_median: use the median as 0 if True
:param dict **kwargs: arguments to provider
"""
def shiftRC(rc, shift):
return RangeConstraint(rc.lower + shift, rc.upper + shift)
#
self._depvar = depvar
self._mutation_column = mutation_column
self._rc_low = rc_low
self._rc_high = rc_high
if not "constraints" in kwargs:
kwargs["constraints"] = None
self._constraints = kwargs["constraints"]
# Obtain the data
self.provider = model_data_provider.makeTransformedData(
data_cls=model_data_provider.ModelDataDualProvider,
mutation_column=self._mutation_column,
**kwargs)
self.provider.do()
self.df_y = self.provider.df_ys[depvar].rename(
columns={depvar: cn.VALUE})
self.df_X = self.provider.df_X
# Adjust the range constraints if the median is used
if is_median:
median = np.median(self.df_y[cn.VALUE])
self._rc_low = shiftRC(self._rc_low, median)
self._rc_high = shiftRC(self._rc_high, median)
# Mutation counts for low range isolates
self._ser_low, self._tot_low = self._makeCounts(self._rc_low)
# Mutation counts for high range isolates
self._ser_high, self._tot_high = self._makeCounts(self._rc_high)
def _makeCounts(self, range_constraint):
"""
:param RangeConstraint range_constraint:
:return pd.Series, int:
pd.Series: index is mutation; values is count
int: count of isolates
"""
sel = range_constraint.isSatisfiedRows(self.df_y)
df = self.df_X.loc[sel]
return df.sum(axis=0), len(sel)
@staticmethod
def _calcProb(num_low, num_high, tot_low, tot_high):
"""
Caculates the probability of having a mutation
that occurs num_low times in the low isolates and
num_high times in the high isolates.
:param int num_low: Number in low slots
:param int num_high: Number in high slots
:param int tot_low: total low slots
:param int tot_high: total high slots
:return float:
"""
tot = tot_low + tot_high
result = util.nCr(tot_low, num_low)
result *= util.nCr(tot_high, num_high)
result /= 1.0*util.nCr(tot, num_low + num_high)
return result
def _calcSL(self, num_low, num_high):
"""
Calculates the significance level for a mutation
that has num_low mutations in the low isolates in
num_high in the high isolates. Two cases are
considered: (1) The mutation is unusual in its
occurrence in the high isolates; (2) the mutation
is unusual in its absence in the high isolates.
:param int num_low:
:param int num_high:
:return float:
"""
# Significance for mutation present in high
# Find the tail by moving lows to high
prob_tail_high = 0
upper = num_low + 1
for num in range(0, upper):
n_high = num_high + num
if n_high > self._tot_high:
break
n_low = num_low - num
prob_tail_high += MutationDifferential._calcProb(
n_low, n_high, self._tot_low, self._tot_high)
# Find the tail by moving highs
prob_tail_low = 0
upper = num_high + 1
for num in range(0, upper):
n_high = num_high - num
n_low = num_low + num
if n_low > self._tot_low:
break
prob_tail_low += MutationDifferential._calcProb(
n_low, n_high, self._tot_low, self._tot_high)
#
sl = min(prob_tail_high, prob_tail_low)
return sl
def makeDF(self):
"""
A significance level is calculated for preferentially
occurring the in the high (low) set.
:param int num_replications:
:return pd.DataFrame: sorted by increasing value of cn.SIGLVL
indexed by cn.MUTATION
cn.SIGLVL - float significance level
for the occurrence of the mutation being preferentially in the high (low)
group.
cn.VALUE - joint significance level of mutations with
up this mutation in list
cn.COUNT1 - number low
cn.COUNT2 - number high
"""
# Calculate significance levels
sls = [self._calcSL(int(l), int(h)) for l, h
in zip(self._ser_low, self._ser_high)]
# Construct the dataframe
df_result = pd.DataFrame({
cn.MUTATION: self.df_X.columns.tolist(),
cn.COUNT1: self._ser_low,
cn.COUNT2: self._ser_high,
cn.SIGLVL: sls,
})
df_result = df_result.set_index(cn.MUTATION)
df_result = df_result.sort_values(cn.SIGLVL)
# Compute joint significance level
joint_prob = 1
values = []
for _, row in df_result.iterrows():
joint_prob *= (1 - row[cn.SIGLVL])
values.append(1 - joint_prob)
df_result[cn.VALUE] = values
#
return df_result
def scatterKnob(self, is_plot=True, parms=PlotParms(), max_sl=0.1):
"""
Plots isolates in phenotype space with knob marks that indicate
mutations that are statistically significant.
:param boolean is_plot: plot if True
:param PlotParms parms: plot parameters
:param float max_sl:
TODO:
1. Partition graph with dotted line along the cutting axis
2. Legend with mutations
"""
def plotKnob(point, knob, length, y_adjust):
"""
Plots the knob for the point
:param Point point:
:param Knob knob:
:param float length: length of knob
:param float y_adjust: adjust to y because of x, y scales
"""
# find the end point
endy = y_adjust*length * math.sin(
math.radians(knob.angle)) + point.y
endx = length * math.cos(
math.radians(knob.angle)) + point.x
plt.plot([point.x, endx], [point.y, endy],
color=knob.color, linewidth=3)
#
knobs = [
Knob(angle=0, color='r'),
Knob(angle=90, color='g'),
Knob(angle=180, color='b'),
Knob(angle=270, color='y'),
Knob(angle=45, color='m'),
Knob(angle=135, color='k'),
]
num_knobs = len(knobs)
# Construct the base plot
plot = PhenotypePlot(provider=self.provider,
constraints=self._constraints, is_plot=False)
parms.setattr(cn.PLT_XLIM, [-2, 2])
parms.setattr(cn.PLT_YLIM, [-3.5, 3.5])
plot.scatter(colors='kkk', legend=[], parms=parms)
df_point = plot.getPoints()
# Add knobs for significant mutations
df_mutation = self.makeDF() # Significant mutations
df_sig = df_mutation[df_mutation[cn.SIGLVL] < max_sl].copy()
mutations = df_sig.index.tolist()[:num_knobs]
siglvls = ["%1.4f" % s for s in df_sig[cn.SIGLVL]]
#
length = 0.08
y_adjust = parms[cn.PLT_YLIM][1]/(1.0*parms[cn.PLT_XLIM][1])
for idx, mutation in enumerate(mutations):
ser = self.df_X[mutation]
pairs = [i for v,i in zip(ser.tolist(), ser.index.tolist())
if v == 1]
df_isolates = pd.DataFrame(
[r for p,r in df_point.iterrows() if p in pairs]
)
points = [Point(x=r[cn.RATE], y=r[cn.YIELD])
for _, r in df_isolates.iterrows()]
for point in points:
plotKnob(point, knobs[idx], length, y_adjust)
# Add the line dividing the isolates being compared
vals = [self._rc_low.upper, self._rc_high.lower]
if self._depvar == cn.RATE:
xs = vals
ys = parms[cn.PLT_YLIM]
else: # cn.YIELD
ys = vals
xs = parms[cn.PLT_XLIM]
plt.plot(xs, ys, dashes=[10, 5, 20, 5], linewidth=1,
color='black')
# Add the legend
if not cn.PLT_LEGEND in parms.keys():
entries = []
for idx, mutation in enumerate(mutations):
label = "%s (%s)" % (mutations[idx], siglvls[idx])
entries.append(mpatches.Patch(color=knobs[idx].color, label=label))
else:
entries = parms[cn.PLT_LEGEND]
# Position the legend to get it out of view
plt.legend(handles=entries, loc='lower left')
# Show the plot
parms.do(is_plot=is_plot)
|
StarcoderdataPython
|
5097925
|
<reponame>brl0/bripy
from queue import Queue
from threading import Thread
from time import sleep
from bripy.bllb.logging import logger, DBG
def unloadq(q, stop, limit=2000, rest=.1, check=100):
i = limit
loops = 0
results = []
while True and ((i and not stop()) or q.qsize()):
loops += 1
if loops % check == 0:
DBG(i, loops, len(results))
if q.qsize():
x = q.get()
DBG(x)
results.append(x)
i = min(i + 1, limit)
else:
i -= 1
if i % check == 0:
DBG(i)
sleep(rest)
return results
def multiplex(n, q, **kwargs):
""" Convert one queue into several equivalent Queues
>>> q1, q2, q3 = multiplex(3, in_q)
"""
out_queues = [Queue(**kwargs) for i in range(n)]
def f():
while True:
x = q.get()
for out_q in out_queues:
out_q.put(x)
t = Thread(target=f)
t.daemon = True
t.start()
return out_queues
def push(in_q, out_q):
while True:
x = in_q.get()
out_q.put(x)
def merge(*in_qs, **kwargs):
""" Merge multiple queues together
>>> out_q = merge(q1, q2, q3)
"""
out_q = Queue(**kwargs)
threads = [Thread(target=push, args=(q, out_q)) for q in in_qs]
for t in threads:
t.daemon = True
t.start()
return out_q
def iterq(q):
while q.qsize():
yield q.get()
def get_q(q):
results = []
while not q.empty() or q.qsize():
item = q.get()
if item == 'STOP':
DBG('STOP get_q')
q.task_done()
break
DBG(item)
if item:
results.append(item)
q.task_done()
return results
|
StarcoderdataPython
|
1854297
|
# @lc app=leetcode id=640 lang=python3
#
# [640] Solve the Equation
#
# https://leetcode.com/problems/solve-the-equation/description/
#
# algorithms
# Medium (43.07%)
# Likes: 319
# Dislikes: 642
# Total Accepted: 30K
# Total Submissions: 69.5K
# Testcase Example: '"x+5-3+x=6+x-2"'
#
# Solve a given equation and return the value of 'x' in the form of a string
# "x=#value". The equation contains only '+', '-' operation, the variable 'x'
# and its coefficient. You should return "No solution" if there is no solution
# for the equation, or "Infinite solutions" if there are infinite solutions for
# the equation.
#
# If there is exactly one solution for the equation, we ensure that the value
# of 'x' is an integer.
#
#
# Example 1:
# Input: equation = "x+5-3+x=6+x-2"
# Output: "x=2"
# Example 2:
# Input: equation = "x=x"
# Output: "Infinite solutions"
# Example 3:
# Input: equation = "2x=x"
# Output: "x=0"
# Example 4:
# Input: equation = "2x+3x-6x=x+2"
# Output: "x=-1"
# Example 5:
# Input: equation = "x=x+2"
# Output: "No solution"
#
#
# Constraints:
#
#
# 3 <= equation.length <= 1000
# equation has exactly one '='.
# equation consists of integers with an absolute value in the range [0, 100]
# without any leading zeros, and the variable 'x'.
#
#
#
# @lc tags=math
# @lc imports=start
from imports import *
# @lc imports=end
# @lc idea=start
#
# 解方程。
# 简单解析公式字符串。
#
# @lc idea=end
# @lc group=
# @lc rank=
# @lc code=start
class Solution:
def solveEquation(self, equation: str) -> str:
l, r = equation.split('=')
def parse(s):
s += '+'
pre = ''
xn = 0
cn = 0
for c in s:
if c == '+' or c == '-':
if len(pre) != 0:
if pre[-1] == 'x':
pre = pre[:len(pre) - 1]
if len(pre) == 0:
xn += 1
else:
if pre == '+' or pre == '-':
pre += '1'
xn += int(pre)
else:
cn += int(pre)
pre = ''
pre += c
return xn, cn
lxn, lcn = parse(l)
rxn, rcn = parse(r)
xn = lxn - rxn
cn = rcn - lcn
if xn == 0:
if cn == 0:
return "Infinite solutions"
else:
return "No solution"
else:
value = cn // xn
return 'x={}'.format(value)
# @lc code=end
# @lc main=start
if __name__ == '__main__':
print('Example 1:')
print('Input : ')
print('equation = "x+5-3+x=6+x-2"')
print('Exception :')
print('"x=2"')
print('Output :')
print(str(Solution().solveEquation("x+5-3+x=6+x-2")))
print()
print('Example 2:')
print('Input : ')
print('equation = "x=x"')
print('Exception :')
print('"Infinite solutions"')
print('Output :')
print(str(Solution().solveEquation("x=x")))
print()
print('Example 3:')
print('Input : ')
print('equation = "2x=x"')
print('Exception :')
print('"x=0"')
print('Output :')
print(str(Solution().solveEquation("2x=x")))
print()
print('Example 4:')
print('Input : ')
print('equation = "2x+3x-6x=x+2"')
print('Exception :')
print('"x=-1"')
print('Output :')
print(str(Solution().solveEquation("2x+3x-6x=x+2")))
print()
print('Example 5:')
print('Input : ')
print('equation = "x=x+2"')
print('Exception :')
print('"No solution"')
print('Output :')
print(str(Solution().solveEquation("x=x+2")))
print()
pass
# @lc main=end
|
StarcoderdataPython
|
1950993
|
<gh_stars>0
import argparse
import tools.find_mxnet
import mxnet as mx
import os
import sys
from train.train_net import train_net
def parse_args():
parser = argparse.ArgumentParser(description='Train a Single-shot detection network')
parser.add_argument('--dataset', dest='dataset', help='which dataset to use',
default='pascal', type=str)
parser.add_argument('--image-set', dest='image_set', help='train set, can be trainval or train',
default='trainval', type=str)
parser.add_argument('--year', dest='year', help='can be 2007, 2012',
default='2007,2012', type=str)
parser.add_argument('--val-image-set', dest='val_image_set', help='validation set, can be val or test',
default='test', type=str)
parser.add_argument('--val-year', dest='val_year', help='can be 2007, 2010, 2012',
default='2007', type=str)
parser.add_argument('--devkit-path', dest='devkit_path', help='VOCdevkit path',
default=os.path.join(os.getcwd(), 'data', 'VOCdevkit'), type=str)
parser.add_argument('--network', dest='network', type=str, default='vgg16_reduced',
choices=['vgg16_reduced'], help='which network to use')
parser.add_argument('--batch-size', dest='batch_size', type=int, default=32,
help='training batch size')
parser.add_argument('--resume', dest='resume', type=int,
default=-1, help='resume training from epoch n')
parser.add_argument('--finetune', dest='finetune', type=int,
default=-1, help='finetune from epoch n, rename the model before doing this')
parser.add_argument('--pretrained', dest='pretrained', help='pretrained model prefix',
default=os.path.join(os.getcwd(), 'model', 'vgg16_reduced'), type=str)
parser.add_argument('--epoch', dest='epoch', help='epoch of pretrained model',
default=1, type=int)
parser.add_argument('--prefix', dest='prefix', help='new model prefix',
default=os.path.join(os.getcwd(), 'model', 'ssd'), type=str)
parser.add_argument('--gpus', dest='gpus', help='GPU devices to train with',
default='0', type=str)
parser.add_argument('--begin-epoch', dest='begin_epoch', help='begin epoch of training',
default=0, type=int)
parser.add_argument('--end-epoch', dest='end_epoch', help='end epoch of training',
default=1000, type=int)
parser.add_argument('--frequent', dest='frequent', help='frequency of logging',
default=20, type=int)
parser.add_argument('--data-shape', dest='data_shape', type=int, default=300,
help='set image shape')
parser.add_argument('--lr', dest='learning_rate', type=float,
default=0.001, help='learning rate')
parser.add_argument('--momentum', dest='momentum', type=float,
default=0.9, help='momentum')
parser.add_argument('--wd', dest='weight_decay', type=float,
default=0.00005, help='weight decay')
parser.add_argument('--mean-r', dest='mean_r', type=float, default=123,
help='red mean value')
parser.add_argument('--mean-g', dest='mean_g', type=float, default=117,
help='green mean value')
parser.add_argument('--mean-b', dest='mean_b', type=float, default=104,
help='blue mean value')
parser.add_argument('--lr-epoch', dest='lr_refactor_epoch', type=int,
default=1000000, help='refactor learning rate every N epoch')
parser.add_argument('--lr-ratio', dest='lr_refactor_ratio', type=float,
default=0.5, help='ratio to refactor learning rate')
parser.add_argument('--log', dest='log_file', type=str,
default="train.log", help='save training log to file')
parser.add_argument('--monitor', dest='monitor', type=int,
default=0, help='log network parameters every N iters if larger than 0')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
ctx = [mx.gpu(int(i)) for i in args.gpus.split(',')]
ctx = mx.cpu() if not ctx else ctx
# resume
args.prefix = os.path.join(os.getcwd(), 'model', 'ssd')
args.resume = 376
train_net(args.network, args.dataset, args.image_set, args.year,
args.devkit_path, args.batch_size,
args.data_shape, (args.mean_r, args.mean_g, args.mean_b),
args.resume, args.finetune, args.pretrained,
args.epoch, args.prefix, ctx, args.begin_epoch, args.end_epoch,
args.frequent, args.learning_rate, args.momentum, args.weight_decay,
args.val_image_set, args.val_year, args.lr_refactor_epoch,
args.lr_refactor_ratio, args.monitor, args.log_file)
|
StarcoderdataPython
|
5079142
|
<gh_stars>0
import csv
import shutil
import requests
from stationtz import AIRPORT_SOURCE_FILE, MANUAL_STATION_SOURCE_FILE
DATA_SOURCE_URL = 'https://raw.githubusercontent.com/opentraveldata/opentraveldata/master/opentraveldata/optd_por_public.csv'
def create_stations(file, **kwargs):
""" Manually specify stations"""
with open(file, "rt") as f:
reader = csv.DictReader(f)
for row in reader:
assert (row.get("icao_code") or row.get("iata_code")) and row.get("timezone")
print(f"Copying file to {MANUAL_STATION_SOURCE_FILE}")
shutil.copyfile(file, MANUAL_STATION_SOURCE_FILE)
def update_airports(*args, **requests_kwargs):
""" Update the ori_por_public.csv file directly from source.
:param requests_kwargs: any kwargs you would like to pass to the requests.get method
proxy={'http': '', 'https': ''} <- might be useful if you are requesting within proxy server
"""
r = requests.get(DATA_SOURCE_URL, **requests_kwargs)
print(f"Updating {AIRPORT_SOURCE_FILE}")
with open(AIRPORT_SOURCE_FILE, 'wt', encoding='utf-8') as f:
f.write(r.text)
if __name__ == '__main__':
import argparse
scripts = ["update_airports", "create_stations"]
parser = argparse.ArgumentParser(
description="Utility to set data used by this library.")
parser.add_argument("script", help=f"Choose the script to run: {scripts}", type=str)
parser.add_argument("--arg", help=f"Any argument required by the script", type=str)
parser.add_argument("--kwarg", help=f"Any keyword argument used by the script", type=str)
args = parser.parse_args()
if args.script in scripts:
arg = args.arg if args.arg else []
kwarg = {args.kwarg.split("=")[0]: args.kwarg.split("=")[1]} if args.kwarg else {}
eval(args.script)(arg, **kwarg)
else:
raise Exception(f"Valid values for script are: {scripts}")
|
StarcoderdataPython
|
1985228
|
<reponame>AlexandreSoaresValerio/Pycharm
t = int(input('Escolha uma tabuada:'))
for c in range(0, 11):
print('{} x {} = {}'.format(t, c, t*c))
|
StarcoderdataPython
|
6619690
|
<reponame>jwbaldwin/novu-note
from django.test import TestCase
from django.contrib.auth.models import User
from rest_framework.test import APIClient
from rest_framework import status
from django.urls import reverse
from ..models import Note
class ViewTestCase(TestCase):
"""Test suite for the api views."""
def setUp(self):
"""Define the test client and other test variables."""
# Initialize client and force it to use authentication
self.user = User.objects.create(username="nerd")
self.client = APIClient()
self.client.force_authenticate(user=self.user)
# Create a JSON POST request
self.url = reverse('create')
self.sample_note_data = {
'text': 'A new idea!',
'category_tags': ['django', 'testing'],
'creator': self.user.id
}
self.response = self.client.post(
self.url, self.sample_note_data, format='json')
def test_api_can_create_a_note(self):
"""POST: Test the api has note creation capability."""
self.assertEqual(self.response.status_code, status.HTTP_201_CREATED)
self.assertEqual(Note.objects.count(), 1)
self.assertEqual(Note.objects.get().text, self.sample_note_data.get('text'))
self.assertEqual(Note.objects.get().category_tags, self.sample_note_data.get('category_tags'))
def test_api_can_get_a_note(self):
"""GET: Test the api can get a given note."""
note = Note.objects.get()
response = self.client.get(
reverse('details',
kwargs= { 'pk': note.id }),
format="json"
)
self.assertEqual(response.status_code, status.HTTP_200_OK)
self.assertContains(response, note)
def test_api_can_update_note(self):
"""PUT: Test the api can update a given note."""
note = Note.objects.get()
modified_note = {
'text': 'A modified new idea!',
'category_tags': ['rest', 'test'],
'creator': self.user.id
}
response = self.client.put(
reverse('details',
kwargs= { 'pk': note.id }),
modified_note,
format='json'
)
self.assertEqual(response.status_code, status.HTTP_200_OK)
self.assertEqual(Note.objects.get().category_tags, modified_note.get('category_tags'))
def test_api_can_delete_note(self):
"""DELETE: Test the api can delete a note."""
note = Note.objects.get()
response = self.client.delete(
reverse('details',
kwargs={ 'pk': note.id }),
format='json',
follow=True)
self.assertEquals(response.status_code, status.HTTP_204_NO_CONTENT)
self.assertEqual(Note.objects.count(), 0)
|
StarcoderdataPython
|
9704033
|
<filename>emergency_contact/models.py
from django.db import models
from django.core.exceptions import ValidationError
from django.utils.translation import gettext_lazy as _
def validate_telepon(value):
if (not value.isdigit()):
raise ValidationError(
_('%(value)s bukan nomor telepon yang valid'),
params={'value': value},
)
class Daerah(models.Model):
daerah = models.CharField(max_length=15, unique=True, default='')
def __str__(self):
return self.daerah
class RumahSakit(models.Model):
nama = models.CharField(max_length=40, unique=True)
alamat = models.CharField(max_length=60)
telepon = models.CharField(max_length=25, validators=[validate_telepon])
daerah = models.ForeignKey(Daerah, on_delete=models.CASCADE, null=True, default='')
def __str__(self):
return self.nama
|
StarcoderdataPython
|
227068
|
# 形態素の解析結果格納用
class Morph():
def __init__(self, m_id, line):
self.id = 0 # 形態素のid
self.surface = "" # 形態素の表層
self.pos = "" # 品詞,品詞細分類1,品詞細分類2,品詞細分類3
self.pos1 = ""
self.pos2 = ""
self.pos3 = ""
self.pos4 = ""
self.base = "" # 基本形
self.read = "" # 読み
self.cform = "" # 活用形
self.ctype = "" # 活用型
self.ne = "" # 固有表現解析
self.tree = []
self.chunk = None
self.forms = []
self.initMorph(m_id, line)
def initMorph(self, m_id, line):
div1 = line.split("\t")
div2 = div1[1].split(",")
self.id = m_id
self.surface = div1[0]
if div2[0] != "*":
self.pos1 = div2[0]
if div2[1] != "*":
self.pos2 = div2[1]
if div2[2] != "*":
self.pos3 = div2[2]
if div2[3] != "*":
self.pos4 = div2[3]
if div2[4] != "*":
self.cform = div2[4]
if div2[5] != "*":
self.ctype = div2[5]
self.pos = self.getPos()
self.base = div2[6]
if len(div2) >= 8:
self.read = div2[7]
self.ne = div1[2]
def getPos(self):
pos = ""
if self.pos1 != "":
pos = pos + self.pos1
if self.pos2 != "":
pos = pos + "," + self.pos2
if self.pos3 != "":
pos = pos + "," + self.pos3
if self.pos4 != "":
pos = pos + "," + self.pos4
return pos
|
StarcoderdataPython
|
8031694
|
import sys
import tensorflow as tf
from time import time
from src.tftools.shift_layer import ShiftLayer
from src.tftools.scale_layer import ScaleLayer
from src.tftools.rotation_layer import RotationLayer
# from src.tftools.radial_distortion_layer import RDistortionLayer
# from src.tftools.radial_distortion_layer_2 import RDistortionLayer2
# from src.tftools.radial_distortion_layer_3 import RDistortionLayer3
from src.tftools.radial_distortion_complete import RDCompleteLayer
# from src.tftools.shear_layer import ShearLayer
from src.tftools.idx2pixel_layer import Idx2PixelLayer, reset_visible
from src.tftools.idx2pixel_layer_bc import Idx2PixelBCLayer, reset_visible
from src.tftools.transform_metric import ShiftMetrics, ScaleMetrics, RotationMetrics, DistortionMetrics, RDMetrics
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
from src.logging.verbose import Verbose
from src.tftools.optimizer_builder import build_optimizer
from src.config.tools import get_config, get_or_default
import numpy as np
from termcolor import colored
from src.data.ann.input_preprocessor import training_batch_selection, blur_preprocessing
from src.tftools.optimizer_builder import build_refining_optimizer
import datetime
import matplotlib.pyplot as plt
MODEL_FILE = "best_model.tmp.h5"
tf.keras.utils.Progbar(target=None, width=100)
def __train_networks(inputs,
outputs,
reg_layer_data,
optimizer,
refiner,
config,
layers=None,
train_set_size=50000,
batch_size=256,
stages={
"type": "polish",
"epochs": 50
}):
"""
This method builds ANN with all layers - some layers for registration other layers for information gain computation
and processes the training.
:param inputs:
input coordinates (will be randomized)
:param outputs:
output image pixel intensity values
:param reg_layer_data:
first layer data - transformation of coords to pixel intensity value
:param layers:
not used now - this will define IG layers in the future
:param train_set_size:
number of pixels used for training, default is 50k
:param batch_size:
number of pixels computed in one batch
:param epochs:
number of learning epochs
:return:
trained model and training history
"""
Verbose.print('Selecting ' + str(train_set_size) + ' samples randomly for use by algorithm.')
selection = training_batch_selection(train_set_size, reg_layer_data)
indexes = inputs[selection, :]
# define model
print('Adding input layer, width =', indexes.shape[1])
# TODO: revisit shear layer
input_layer = tf.keras.layers.Input(shape=(indexes.shape[1],),
dtype=tf.float32, name='InputLayer')
shift_layer = ShiftLayer(name='ShiftLayer')(input_layer)
scale_layer = ScaleLayer(name='ScaleLayer')(shift_layer)
rotation_layer = RotationLayer(name='RotationLayer')(scale_layer)
radial_distortion_layer = RDCompleteLayer(name='RDistortionLayer')(rotation_layer)
# radial_distortion_layer = RDistortionLayer(name='RDistortionLayer')(rotation_layer)
# radial_distortion_layer_2 = RDistortionLayer2(name='RDistortionLayer2')(radial_distortion_layer)
# radial_distortion_layer_3 = RDistortionLayer3(name='RDistortionLayer3')(radial_distortion_layer_2)
layer = Idx2PixelLayer(visible=reg_layer_data, name='Idx2PixelLayer')(radial_distortion_layer)
# TODO: Add InformationGain layers here when necessary
print('Adding ReLU output layer, width =', outputs.shape[1])
output_layer = tf.keras.layers.ReLU(max_value=1, name='Output', trainable=False)(layer)
model = tf.keras.models.Model(inputs=input_layer, outputs=output_layer)
# compile model
start_time = time()
model.compile(loss='mean_squared_error',
optimizer=optimizer,
metrics=['mean_squared_error']
)
# Set initial transformation as identity
elapsed_time = time() - start_time
print("Compiling model took {:.4f}'s.".format(elapsed_time))
# train model
start_time = time()
tf.compat.v1.keras.backend.get_session().run(tf.compat.v1.global_variables_initializer())
model.layers[1].set_weights([np.array([0, 0])]) # shift
model.layers[2].set_weights([np.array([0, 0])]) # scale
model.layers[3].set_weights([np.array([0])]) # rotation
# model.load_weights(MODEL_FILE)
# TODO: better names for stages
config = get_config()
for stage in stages:
if stage['type'] == 'blur':
output = blur_preprocessing(outputs, reg_layer_data.shape, stage['params'])
__set_train_registration(model, True)
model.compile(loss='mean_squared_error', optimizer=optimizer, metrics=['mean_squared_error'])
elif stage['type'] == 'refine':
output = outputs
__set_train_registration(model, True, target="shift")
model.compile(loss='mean_squared_error', optimizer=refiner, metrics=['mean_squared_error'])
elif stage['type'] == 'polish':
output = outputs
__set_train_registration(model, True)
model.compile(loss='mean_squared_error', optimizer=optimizer, metrics=['mean_squared_error'])
else:
stage_params = stage['type'].split('_')
if stage_params[0] == 'adam':
opt_type = 'optimizer'
opt = build_optimizer(config["train"][opt_type], config["train"]["batch_size"])
elif stage_params[0] == 'sgd':
opt_type = 'refiner'
opt = build_refining_optimizer(config["train"][opt_type])
if stage_params[1] == 'rd':
targ = "rd"
output = outputs
__set_train_registration(model, True, target=targ)
model.compile(loss='mean_squared_error', optimizer=opt, metrics=['mean_squared_error'])
reset_visible(output)
output = output[selection, :]
shift_metric = ShiftMetrics()
scale_metric = ScaleMetrics()
rotation_metric = RotationMetrics()
# distortion_metric = DistortionMetrics()
distortion_metric = RDMetrics()
mcp_save = ModelCheckpoint(MODEL_FILE,
save_best_only=True, monitor='val_loss', mode='min')
checkpoint_filepath = MODEL_FILE
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_filepath,
save_weights_only=True,
monitor='val_loss',
mode='min',
save_best_only=True)
# lr_reduction = ReduceLROnPlateau(monitor='val_loss', factor=0.9, patience=100, verbose=0, mode='auto',
# min_delta=0.0001, cooldown=0, min_lr=0)
log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
callbacks = [shift_metric, scale_metric, rotation_metric, distortion_metric, tensorboard_callback,
model_checkpoint_callback]
history = model.fit(indexes,
output,
epochs=stage['epochs'],
validation_split=0.2,
verbose=1,
callbacks=[shift_metric, scale_metric, rotation_metric, distortion_metric,
model_checkpoint_callback
],
batch_size=batch_size
)
coef_1 = [x[0][0]*config["layer_normalization"]["radial_distortion"] for x in distortion_metric.bias_history]
coef_2 = [x[1][0]*config["layer_normalization"]["radial_distortion_2"] for x in distortion_metric.bias_history]
coef_3 = [x[2][0]*config["layer_normalization"]["radial_distortion_3"] for x in distortion_metric.bias_history]
plt.plot(coef_1, label="1")
plt.plot(coef_2, label="2")
plt.plot(coef_3, label="3")
model.load_weights(checkpoint_filepath)
plt.title("Transformation %f %f %f " % (coef_1[-1], coef_2[-1], coef_3[-1]))
plt.legend()
plt.show()
elapsed_time = time() - start_time
num_epochs = len(history.history['loss'])
print("{:.4f}'s time per epoch. Epochs:".format(elapsed_time / num_epochs), num_epochs, sep="")
print("Total time {:.4f}'s".format(elapsed_time))
# calculate gain and save best model so far
model.load_weights(checkpoint_filepath)
gain = abs(outputs[selection, :] - model.predict(indexes, batch_size=batch_size)) / (outputs.shape[0] *
outputs.shape[1])
information_gain_max = gain.flatten().max()
print('Gain: {:1.4e}'.format(information_gain_max))
return model, history, shift_metric.bias_history
def __set_train_registration(model, value, target="registration"):
"""
For various stages of training registration should not be trainable (we are looking for base mutual setup).
This method allows enabling/disabling of trainability of first three layers of ANN.
:param model: ANN
:param value: boolean
"""
if target == "registration":
model.layers[1].trainable = value
model.layers[2].trainable = value
model.layers[3].trainable = value
model.layers[4].trainable = (not value)
model.layers[5].trainable = (not value)
model.layers[6].trainable = (not value)
model.layers[7].trainable = (not value)
model.layers[8].trainable = (not value)
elif target == "all":
model.layers[1].trainable = value
model.layers[2].trainable = value
model.layers[3].trainable = value
model.layers[4].trainable = value
model.layers[5].trainable = value
model.layers[6].trainable = value
model.layers[7].trainable = value
model.layers[8].trainable = value
elif target == "shift":
model.layers[1].trainable = value
model.layers[2].trainable = not value
model.layers[3].trainable = not value
model.layers[4].trainable = not value
model.layers[5].trainable = not value
model.layers[6].trainable = not value
model.layers[7].trainable = not value
model.layers[8].trainable = not value
elif target == "rd":
model.layers[1].trainable = not value
model.layers[2].trainable = not value
model.layers[3].trainable = not value
model.layers[4].trainable = value
model.layers[5].trainable = value
model.layers[6].trainable = value
def __information_gain(coords,
target,
visible,
optimizer,
refiner,
train_config,
layers=None,
train_set_size: int = 25000,
batch_size=256,
stages={
"type": "polish",
"epochs": 50
}):
if coords.shape[0] != target.shape[0] * visible.shape[1]:
sys.exit("Error: dimension mismatch between 'target' and 'visible'")
if len(target.shape) == 2:
target = target.reshape((target.shape[0], target.shape[1], 1))
if train_set_size is None:
# use the whole image for training, evaluation and test
train_set_size = visible.shape[0] * visible.shape[1]
outputs = target.reshape((target.shape[0] * target.shape[1], target.shape[2]))
# train ANN
model, history, bias_history = __train_networks(coords,
outputs,
reg_layer_data=visible,
optimizer=optimizer,
refiner=refiner,
config=train_config,
layers=layers,
train_set_size=train_set_size,
batch_size=batch_size,
stages=stages
)
# print(model.get_weights())
# model.load_weights(MODEL_FILE)
# print(model.get_weights())
# show output of the first two layers
extrapolation = model.predict(coords, batch_size=batch_size)
extrapolation = extrapolation.reshape(target.shape[0], target.shape[1], 1)
ig = target - extrapolation
return ig, extrapolation, model, bias_history
def run(inputs,
outputs,
visible):
config = get_config()
ig, extrapolation, model, bias_history = \
__information_gain(inputs,
outputs,
visible=visible,
optimizer=build_optimizer(config["train"]["optimizer"], config["train"]["batch_size"]),
refiner=build_refining_optimizer(config["train"]["refiner"]),
train_config=config["train"],
layers=get_or_default("layers", 1),
batch_size=config["train"]["batch_size"],
stages=config["train"]["stages"]
)
# print model summary to stdout
model.summary()
layer_dict = dict([(layer.name, layer) for layer in model.layers])
bias = layer_dict['ShiftLayer'].get_weights()
Verbose.print("Shift: " + colored(str((bias[0])*config["layer_normalization"]["shift"]), "green"), Verbose.always)
bias = layer_dict['RotationLayer'].get_weights()
Verbose.print("Rotation: " + colored(str(bias[0]*config["layer_normalization"]["rotation"]*180/np.pi), "green"), Verbose.always)
bias = layer_dict['ScaleLayer'].get_weights()
Verbose.print("Scale: " + colored(str(bias[0]*config["layer_normalization"]["scale"] + 1), "green"), Verbose.always)
k1 = layer_dict['RDistortionLayer'].get_weights()[0][0] * config["layer_normalization"]["radial_distortion"]
k2 = layer_dict['RDistortionLayer'].get_weights()[1][0] * config["layer_normalization"]["radial_distortion_2"]
k3 = layer_dict['RDistortionLayer'].get_weights()[2][0] * config["layer_normalization"]["radial_distortion_3"]
exp_k1 = -k1
exp_k2 = 3*k1*k1 - k2
exp_k3 = -12*k1*k1*k1 + 8*k1*k2 - k3
Verbose.print("coefs computed: " + colored(str([k1, k2, k3]), "green"), Verbose.always)
# Verbose.print("coefs inverse: " + colored(str([exp_k1, exp_k2, exp_k3]), "green"), Verbose.always)
bias = [k1, k2, k3]
# bias = layer_dict['ShearLayer'].get_weights()
# Verbose.print("Shear: " + colored(str(bias[0]*0.1), "green"), Verbose.always)
return model, bias, bias_history
|
StarcoderdataPython
|
6623067
|
<filename>zdiscord/service/integration/chat/discord/macros/General.py
from zdiscord.service.messaging.Events import IEvent
async def help_msg(help_msg: str,event: IEvent):
await event.context['message_object'].channel.send(help_msg)
|
StarcoderdataPython
|
3566024
|
# -*- coding: utf-8 -*-
"""
The parallel running version of APE.
To run APE in parallel through its API, first get a freq output file from Qchem, then call the .execute. For example:
ape = Parallel_APE(input_file)
ape.execute()
"""
import os
import csv
import time
import shutil
import numpy as np
import subprocess
import rmgpy.constants as constants
from ape.main import APE
#from ape.torsion import HinderedRotor
#from ape.sampling import SolvEig, sampling_along_torsion, sampling_along_vibration
from ape.FitPES import from_sampling_result,cubic_spline_interpolations
from ape.thermo import ThermoJob
from ape.exceptions import InputError, JobError
from parallel_ape.job import ParallelJob
from parallel_ape.PBS import check_job_status, delete_job
class Parallel_APE(APE):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def sampling(self, thresh=0.05, save_result=True, scan_res=10, sampling_mode=None):
xyz_dict = {}
energy_dict = {}
mode_dict = {}
mode = sampling_mode
if mode is None:
raise InputError('No specified sampling mode in parallel APE. Please assign one specific sampling mode number')
if not os.path.exists(self.project_directory):
os.makedirs(self.project_directory)
path = os.path.join(self.project_directory,'output_file', self.name)
if not os.path.exists(path):
os.makedirs(path)
if self.protocol == 'UMVT' and self.n_rotors != 0:
n_vib = self.n_vib
if self.is_QM_MM_INTERFACE:
n_vib -= 6 # due to frustrated translation and rotation
rotor = HinderedRotor(self.symbols, self.cart_coords, self.hessian, self.rotors_dict, self.conformer.mass.value_si, n_vib, self.imaginary_bonds)
projected_hessian = rotor.projectd_hessian()
vib_freq, unweighted_v = SolvEig(projected_hessian, self.conformer.mass.value_si, self.n_vib)
print('Frequencies(cm-1) from projected Hessian:',vib_freq)
if mode-1 in range(self.n_rotors):
if self.is_QM_MM_INTERFACE:
XyzDictOfEachMode, EnergyDictOfEachMode, ModeDictOfEachMode, min_elect = sampling_along_torsion(self.symbols, self.cart_coords, mode, self.internal, self.conformer, rotor, self.rotors_dict, scan_res, path, thresh, self.ncpus, self.charge, self.multiplicity, self.level_of_theory, self.basis, \
self.is_QM_MM_INTERFACE, self.nHcap, self.QM_USER_CONNECT, self.QM_ATOMS, self.force_field_params, self.fixed_molecule_string, self.opt, self.number_of_fixed_atoms)
else:
XyzDictOfEachMode, EnergyDictOfEachMode, ModeDictOfEachMode, min_elect = sampling_along_torsion(self.symbols, self.cart_coords, mode, self.internal, self.conformer, rotor, self.rotors_dict, scan_res, path, thresh, self.ncpus, self.charge, self.multiplicity, self.level_of_theory, self.basis)
elif self.protocol == 'UMN':
vib_freq, unweighted_v = SolvEig(self.hessian, self.conformer.mass.value_si, self.n_vib)
print('Vibrational frequencies of normal modes: ',vib_freq)
if mode-1 in range(self.nmode)[self.n_rotors:]:
vector=unweighted_v[sampling_mode-1-self.n_rotors]
freq = vib_freq[sampling_mode-1-self.n_rotors]
magnitude = np.linalg.norm(vector)
reduced_mass = magnitude ** -2 / constants.amu # in amu
step_size = np.sqrt(constants.hbar / (reduced_mass * constants.amu) / (freq * 2 * np.pi * constants.c * 100)) * 10 ** 10 # in angstrom
normalizes_vector = vector/magnitude
qj = np.matmul(self.internal.B, normalizes_vector)
P = np.ones(self.internal.B.shape[0],dtype=int)
n_rotors = len(self.rotors_dict)
if n_rotors != 0:
P[-n_rotors:] = 0
P = np.diag(P)
qj = P.dot(qj).reshape(-1,)
if self.is_QM_MM_INTERFACE:
XyzDictOfEachMode, EnergyDictOfEachMode, ModeDictOfEachMode, min_elect = sampling_along_vibration(self.symbols, self.cart_coords, mode, self.internal, qj, freq, reduced_mass, step_size, path, thresh, self.ncpus, self.charge, self.multiplicity, self.level_of_theory, self.basis, \
self.is_QM_MM_INTERFACE, self.nHcap, self.QM_USER_CONNECT, self.QM_ATOMS, self.force_field_params, self.fixed_molecule_string, self.opt, self.number_of_fixed_atoms)
else:
XyzDictOfEachMode, EnergyDictOfEachMode, ModeDictOfEachMode, min_elect = sampling_along_vibration(self.symbols, self.cart_coords, mode, self.internal, qj, freq, reduced_mass, step_size, path, thresh, self.ncpus, self.charge, self.multiplicity, self.level_of_theory, self.basis)
xyz_dict[mode] = XyzDictOfEachMode
energy_dict[mode] = EnergyDictOfEachMode
mode_dict[mode] = ModeDictOfEachMode
# add the ground-state energy (including zero-point energy) of the conformer
self.e_elect = min_elect # in Hartree/particle
e0 = self.e_elect * constants.E_h * constants.Na + self.zpe # in J/mol
self.conformer.E0 = (e0, "J/mol")
if save_result:
self.write_samping_result_to_csv_file(self.csv_path, mode_dict, energy_dict)
path = os.path.join(self.project_directory, 'plot', self.name)
if not os.path.exists(path):
os.makedirs(path)
self.write_sampling_displaced_geometries(path, energy_dict, xyz_dict)
return XyzDictOfEachMode, EnergyDictOfEachMode, ModeDictOfEachMode
def run(self):
if not os.path.exists(self.project_directory):
os.makedirs(self.project_directory)
job_dir = os.path.join(self.project_directory,'job')
if not os.path.exists(job_dir):
os.makedirs(job_dir)
job_status_dict = {}
freq_output = self.input_file
ncpus = self.ncpus
protocol = self.protocol
imaginary_bonds_string = ''
if self.imaginary_bonds is not None:
for i, bond in enumerate(self.imaginary_bonds):
imaginary_bonds_string += str(bond[0]) + '-' + str(bond[1])
if i != len(self.imaginary_bonds) - 1:
imaginary_bonds_string += ','
for i in range(self.nmode):
mode = i + 1
submit_filename = 'mode_{}.q.job'.format(mode)
job_path = os.path.join(job_dir,'mode_{}'.format(mode))
job = ParallelJob(job_path=job_path,input_file=freq_output,ncpus=ncpus,protocol=protocol,imaginary_bonds=imaginary_bonds_string)
job.write_submit_file(submit_filename, sampling_mode=mode)
job_status, job_id = job.submit(submit_filename)
job_status_dict[job_id] = job_status
if job_status == 'errored':
for ID in job_status_dict.keys():
delete_job(ID)
raise JobError('The submitting job, whose id is {job_id}, is errored.'.format(job_id=job_id))
# write job status csv to track job progress
csv_job_status_path = os.path.join(self.project_directory,'job.csv')
self.write_job_status_csv(csv_job_status_path, job_status_dict)
# Check jobs' status till every submitted jobs are finished properly.
# Possible status: `done`, `running`, `queue`, `errored`
Job_finished = False
while not Job_finished:
time.sleep(60) # check jobs status every minute
for job_id in job_status_dict.keys():
job_status = check_job_status(job_id)
if job_status_dict[job_id] != job_status:
if job_status == 'done':
mode = sorted(job_status_dict.keys()).index(job_id) + 1
path = os.path.join(self.project_directory, 'plot', self.name, 'mode_{}.txt'.format(mode))
if not os.path.exists(path):
job_status = 'errored'
job_status_dict[job_id] = job_status
# update jobs-tracking csv file
self.write_job_status_csv(csv_job_status_path, job_status_dict)
if job_status == 'errored':
for ID in job_status_dict.keys():
delete_job(ID)
raise JobError('An error appears in {job_id} job'.format(job_id=job_id))
job_status_set = set(job_status_dict.values())
if len(job_status_set) == 1 and job_status_set == {'done'}:
Job_finished = True
#shutil.rmtree(job_dir) # delete the job folder
def write_job_status_csv(self, csv_path, job_status_dict):
with open(csv_path, 'w') as f:
writer = csv.writer(f)
writer.writerow(['mode', 'Job_id', 'status'])
for i, ID in enumerate(sorted(job_status_dict.keys())):
mode = i+1
status = job_status_dict[ID]
writer.writerow([mode, ID, status])
f.close()
def execute(self):
"""
Execute APE in parallel.
"""
if os.path.exists(self.csv_path):
os.remove(self.csv_path)
self.parse()
self.run()
mode_dict, energy_dict, _ = from_sampling_result(csv_path=self.csv_path)
# Solve SE of 1-D PES and calculate E S G Cp
polynomial_dict = cubic_spline_interpolations(energy_dict,mode_dict)
thermo = ThermoJob(self.conformer, polynomial_dict, mode_dict, energy_dict, T=298.15, P=100000)
if self.is_QM_MM_INTERFACE:
thermo.calcQMMMThermo()
else:
thermo.calcThermo(print_HOhf_result=True, zpe_of_Hohf=self.zpe)
|
StarcoderdataPython
|
1787017
|
<reponame>Element-s/pyisync
#!/usr/bin/python
# -*- coding: utf-8 -*-
'''
Created on 2015-9-14
@author: Elem
'''
import re
import time
import threading
import subprocess
from collections import deque
from pyinotify import WatchManager, ThreadedNotifier, \
ProcessEvent, ExcludeFilter, IN_DELETE, IN_CREATE, \
IN_CLOSE_WRITE, IN_MOVED_FROM, IN_MOVED_TO
from utils import SyncFiles
from common import SyncConf
from isync_logger import logger_init
LOGGER = logger_init('pyisync.sync_utils')
class RetryThread(threading.Thread):
""" sync retry thread
"""
def __init__(self, name, retryq, remote_ip_lst=None,
retry_interval=120, crontab=3600):
""" init func
@param name: thread name
@type name: str
@param retryq: retry cmf queue
@type retryq: Queue
@param retry_interval: retry interval time
@type retry_interval: int
@param crontab: full sync crontab, default 1 hour
@type crontab: int
"""
threading.Thread.__init__(self, name=name)
self.retryq = retryq
if remote_ip_lst is None:
self.remote_ip_lst = []
self.remote_ip_lst = remote_ip_lst
self.retry_interval = retry_interval
self.crontab_interval = crontab
self.crontab_start = int(time.time()) # 定时开始时间
self._stop_event = threading.Event()
self.full_threads = {}
def stop(self):
"""
Stop retry's loop. Join the thread.
"""
LOGGER.info('Thread %s stop', self.name)
self._stop_event.set()
threading.Thread.join(self, 8)
def run(self):
self.loop()
def loop(self):
""" execute sync cmd loop
"""
while not self._stop_event.isSet():
try:
now_time = int(time.time())
if self.retryq.empty():
if now_time - self.crontab_start > self.crontab_interval:
# full sync
self.crontab_start = now_time
LOGGER.info('Start files full sync!peer ip:%s',
str(self.remote_ip_lst))
for remote_ip in self.remote_ip_lst:
full_thread = self.full_threads.get(remote_ip)
if full_thread is not None \
and full_thread.isAlive():
full_thread.stop()
self.full_threads[remote_ip] = None
self.full_threads[remote_ip] = FullSyncThread(remote_ip)
self.full_threads[remote_ip].setDaemon(True)
self.full_threads[remote_ip].start()
time.sleep(0.5)
else:
sync_dict = self.retryq.get(True)
old_time = sync_dict['time']
if now_time - old_time > self.retry_interval:
sync_cmd = sync_dict['time']
process = subprocess.Popen(sync_cmd, shell=True,
stderr=subprocess.PIPE)
retcode = process.wait()
if retcode != 0:
LOGGER.warning('Retry cmd failed:%s', sync_cmd)
LOGGER.warning('execute cmd failed:%s',
process.stderr.read())
self.retryq.task_done()
except Exception, exp:
LOGGER.warning("Retry thead exception: %s", str(exp))
finally:
time.sleep(0.01)
class SyncThreadManager(object):
""" sync thread manager, create and manage sync threads
"""
def __init__(self, thread_num=5, cond=None, eventq=None, retryq=None,
remote_ip_lst=None):
self.threads = []
self.__init_thread_pool(thread_num, cond, eventq,
retryq, remote_ip_lst)
def __init_thread_pool(self, thread_num, cond, eventq, retryq, remote_ip_lst):
""" init thread pool
"""
for i in range(thread_num):
thread_name = "syncthread%d" % i
self.threads.append(SyncThread(thread_name, cond=cond,
eventq=eventq,
retryq=retryq,
remote_ip_lst=remote_ip_lst))
def start_all(self):
""" start all sync threads
"""
for item in self.threads:
item.setDaemon(True)
item.start()
def wait_allcomplete(self):
""" wait all threads finished
"""
for item in self.threads:
if item.isAlive():
item.join()
def stop_all(self):
""" stop all threads
"""
for item in self.threads:
if item.isAlive():
item.stop()
class SyncThread(threading.Thread):
"""
Sync cmd thread ,get event from sync queue.(consumer thread)
When sync failed, insert event into retry queue.
"""
def __init__(self, name, **kwargs):
threading.Thread.__init__(self, name=name)
self.my_init(**kwargs)
def my_init(self, cond=None, eventq=None, retryq=None, remote_ip_lst=None):
"""init vars
@param cond: condition var
@type cond: threading.Condition
@param eventq: event queue
@type eventq: collections.deque
@param retryq: retry queue
@type retryq: Queue.Queue
"""
self.cond = cond
self.eventq = eventq
self.retryq = retryq # 同步重试命令队列
self.remote_ip_lst = remote_ip_lst
self._stop_event = threading.Event()
self.sync_files = SyncFiles()
self.encrypt_set = self.sync_files.encrypt_set
def sync_file(self, event):
"""sync file or directory
@param event: event
@type event: pyinotify.Event
"""
sync_cmds = []
if event.mask & (IN_DELETE | IN_MOVED_FROM):
# get sync delete remote file cmd
for remote_ip in self.remote_ip_lst:
sync_cmd = self.sync_files.combine_del_cmd(remote_ip,
event.pathname,
event.dir)
sync_cmds.append(sync_cmd)
else:
# get sync create or modify file cmd
is_crypt = self.sync_files.is_encrypt_file(event.pathname,
self.encrypt_set)
for remote_ip in self.remote_ip_lst:
sync_cmd = self.sync_files.combine_other_cmd(remote_ip,
event.pathname,
event.dir,
is_crypt)
sync_cmds.append(sync_cmd)
LOGGER.debug('sync_cmds: %s', sync_cmds)
for sync_cmd in sync_cmds:
if sync_cmd:
process = subprocess.Popen(sync_cmd, shell=True,
stderr=subprocess.PIPE)
retcode = process.wait()
if retcode != 0:
LOGGER.warning('sync failed:%s.Insert cmd into retry queue!',
process.stderr.read())
sync_dict = {}
sync_dict['cmd'] = sync_cmd
sync_dict['time'] = int(time.time())
self.retryq.put(sync_dict)
def stop(self):
"""
Stop sync's loop. Join the thread.
"""
LOGGER.info('Thread %s stop', self.name)
self._stop_event.set()
self.cond.acquire()
self.cond.notify_all()
self.cond.release()
threading.Thread.join(self, 8)
def loop(self):
while not self._stop_event.isSet():
self.cond.acquire()
try:
if not self.eventq:
LOGGER.debug("Nothing in queue, sync consumer %s is waiting.",
self.name)
self.cond.wait()
LOGGER.debug("Producer added something to queue and notified"
" the consumer %s", self.name)
else:
event = self.eventq.popleft()
self.cond.notify()
self.sync_file(event)
LOGGER.debug("%s is consuming. %s in the queue is consumed!/n" \
% (self.getName(), event.pathname))
finally:
self.cond.release()
time.sleep(0.01)
LOGGER.info("Thread %s exit monitoring", self.name)
while 1:
self.cond.acquire()
try:
if not self.eventq:
self.cond.notifyAll()
time.sleep(0.5)
break
else:
event = self.eventq.popleft()
self.sync_file(event)
time.sleep(0.01)
LOGGER.debug("%s:%s is consuming. %s in the queue is consumed!/n" \
% (time.ctime(), self.name, event.pathname))
self.cond.notify()
finally:
self.cond.release()
def run(self):
self.loop()
class EventHandler(ProcessEvent):
""" files event's handler
"""
def my_init(self, cond=None, eventq=None, sync_list=None):
"""init func
@param cond: condition var
@type cond: Condition
@param eventq: event queeu
@type eventq: deque
"""
self.cond = cond
self.eventq = eventq
self.sync_list = sync_list
def insert_events(self, event):
"""insert event into queue
@param event: event
@type event: pyinotify.Event
"""
self.cond.acquire()
try:
if event.name is not None and event.name.startswith('.wh..wh.'):
# '.wh..wh.user.1bbc' temp file not insert into queue
return
is_sync = False
for sync_path in self.sync_list:
if event.pathname.startswith(sync_path) \
and event.pathname != (sync_path + '+') \
and event.pathname != (sync_path + '-') \
and event.pathname != (sync_path + '.lock'):
# '+’,'-'和'.lock' temp file,such as:
# /etc/passwd+ or /etc/passwd-,not sync;
# file in sync files list, set is_sync is True
pattern = "^%s\.\d+$" % sync_path
match_obj = re.match(pattern, event.pathname)
if match_obj is None:
# "/etc/group.9869" temp file, not sync
is_sync = True
break
if is_sync:
# filter event
if event.dir and (event.mask & (IN_DELETE | IN_MOVED_FROM)):
eventq_tmp = deque()
eventq_tmp.extend(self.eventq)
dir_path = event.pathname + "/"
for elem in eventq_tmp:
if elem.pathname.startswith(dir_path):
# dir_path is parent, remove its sub file or dir event
LOGGER.debug("insert event pathname:%s, maskname:%s",
elem.pathname, elem.maskname)
self.eventq.remove(elem)
search_distance = 0
is_insert = True
for elem in self.eventq:
search_distance += 1
if search_distance < SyncConf.MAX_SEARCH_LENGTH \
and elem.pathname == event.pathname:
# update event's mask
LOGGER.debug("update event pathname:%s, maskname:%s",
event.pathname, event.maskname)
elem.mask = event.mask
elem.maskname = event.maskname
is_insert = False
break
if is_insert:
# insert into event
if len(self.eventq) == SyncConf.MAX_QUEUE_LENGTH:
self.cond.wait()
LOGGER.debug("insert event pathname:%s, maskname:%s",
event.pathname, event.maskname)
self.eventq.append(event)
self.cond.notify()
finally:
self.cond.release()
def process_event(self, event):
"""process event"""
self.insert_events(event)
def process_IN_CREATE(self, event):
LOGGER.debug("CREATE event:%s", event.pathname)
self.process_event(event)
def process_IN_DELETE(self, event):
LOGGER.debug("DELETE event:%s", event.pathname)
self.process_event(event)
def process_IN_CLOSE_WRITE(self, event):
LOGGER.debug("CLOSE_WRITE event:%s", event.pathname)
self.process_event(event)
def process_IN_MOVED_FROM(self, event):
LOGGER.debug("MOVED_FROM event:%s", event.pathname)
self.process_event(event)
def process_IN_MOVED_TO(self, event):
LOGGER.debug("MOVED_TO event:%s", event.pathname)
self.process_event(event)
def process_default(self, event):
LOGGER.debug('defalut eventmask:%s, pathname:%s' \
% (event.maskname, event.pathname))
class FullSyncThread(threading.Thread):
"""Sync full files thread
"""
def __init__(self, remote_ip, name='FullSyncThread'):
threading.Thread.__init__(self, name=name)
self.remote_ip = remote_ip
self.is_stoped = False
def run(self):
LOGGER.info('Start Full sync thread...')
try:
def full_sync(remote_ip):
LOGGER.debug('Start full sync...')
sync_files = SyncFiles()
sync_files.sync_full_files(remote_ip)
sub_thread = threading.Thread(target=full_sync,
args=(self.remote_ip,))
sub_thread.setDaemon(True)
sub_thread.start()
except Exception, exp:
LOGGER.info('Full sync except')
LOGGER.exception(exp)
while not self.is_stoped:
sub_thread.join(1)
if not sub_thread.is_alive():
break
LOGGER.info('End Full sync thread...')
def stop(self):
LOGGER.info('Thread %s stop', self.name)
self.is_stoped = True
threading.Thread.join(self, 8)
|
StarcoderdataPython
|
8070797
|
""" CLI for Ray Tracer Challenge
"""
def cli():
pass
|
StarcoderdataPython
|
26970
|
<filename>sendmail.py
import smtplib, ssl
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
SMTP_URL = "example.com"
def send_verification_code(recipient, recipient_name, verification_code):
sender_email = "<EMAIL>"
with open('.smtp_passwd') as password_file:
password = password_file.read()
message = MIMEMultipart("alternative")
message["Subject"] = "Email Verification"
message["From"] = sender_email
message["To"] = recipient
# Create the plain-text and HTML version of your message
with open('verification_template.html', 'r') as templateobj:
html = templateobj.read()
html = html.replace('$$name', recipient_name)
html = html.replace('$$verification_code', verification_code)
# Turn these into plain/html MIMEText objects
# part1 = MIMEText(text, "plain")
part2 = MIMEText(html, "html")
# Add HTML/plain-text parts to MIMEMultipart message
# The email client will try to render the last part first
# message.attach(part1)
message.attach(part2)
# Create secure connection with server and send email
context = ssl.create_default_context()
with smtplib.SMTP_SSL(SMTP_URL, 465, context=context) as server:
server.login(sender_email, password)
server.sendmail(
sender_email, recipient, message.as_string()
)
def send_thread_notif(recipient, recipient_name, forum, author, content):
sender_email = "<EMAIL>"
with open('.smtp_passwd') as password_file:
password = password_file.read()
message = MIMEMultipart("alternative")
message["Subject"] = f"New message on {forum}"
message["From"] = sender_email
message["To"] = recipient
# Create the plain-text and HTML version of your message
with open('forum_notif_template.html', 'r') as templateobj:
html = templateobj.read()
html = html.replace('$$name', recipient_name)
html = html.replace('$$forum', forum)
html = html.replace('$$author', author)
html = html.replace('$$content', content)
# Turn these into plain/html MIMEText objects
# part1 = MIMEText(text, "plain")
part2 = MIMEText(html, "html")
# Add HTML/plain-text parts to MIMEMultipart message
# The email client will try to render the last part first
# message.attach(part1)
message.attach(part2)
# Create secure connection with server and send email
context = ssl.create_default_context()
with smtplib.SMTP_SSL(SMTP_URL, 465, context=context) as server:
server.login(sender_email, password)
server.sendmail(
sender_email, recipient, message.as_string()
)
|
StarcoderdataPython
|
11350543
|
<reponame>fullstack-lumberjack/lumberjack<gh_stars>1-10
#!/usr/bin/env python3
import sys
from easy_table import EasyTable
myTable = EasyTable
myTable.setTableCorners("/", "\\", "/", "\\")
myTable.setTableBorder("|", "-")
myTable.setTableInnerStructure("|", "-", "+")
myTable.setColumns(["ID #", "Name", "Age"])
data = [["0","Jeff","31"],["1","Bill", "22"], ["2", "Tim", "33"], ["3", "Timothy", "41"]]
myTable.setData(data)
myTable.displayTable()
|
StarcoderdataPython
|
5043718
|
<reponame>lw0/dfaccto<filename>cfg/tb_streamtest.py<gh_stars>0
Inc('sim.py', abs='sim')
Inc('streamtest.py')
with EntTestbench(
SimPort.Sys('sys', T('Sys', 'dfaccto')),
SimPort.Source('stmSrc', T('LongStream')),
SimPort.Sink('stmBufIn', T('LongStream')),
SimPort.Source('stmBufOut', T('LongStream')),
SimPort.Sink('stmSnk', T('LongStream'))):
Ins('Streamtest', None,
MapPort('sys', S('sys')),
MapPort('stmSrc', S('stmSrc')),
MapPort('stmBufIn', S('stmBufIn')),
MapPort('stmBufOut', S('stmBufOut')),
MapPort('stmSnk', S('stmSnk')))
|
StarcoderdataPython
|
4832330
|
<reponame>daniktl/task-scheduler-put-project<filename>tests/test_machine.py<gh_stars>1-10
from task_scheduler.machine import *
from task_scheduler.task import *
import random
def test_machine_basic(test_machine: Machine):
assert test_machine.speed == 1.2
def test_machine_tasks(test_machine: Machine):
assert test_machine.get_time_available() == 0
task = Task(1, 2, 3)
assert test_machine.check_time_ready(task) == 5.4
test_machine.add_task(task)
assert test_machine.get_time_available() == 5.4
def test_machine_get_tasks(test_machine: Machine, test_tasks: list):
tasks = list(sorted(test_tasks, key=lambda x: x.r_time))
for task in tasks:
test_machine.add_task(task)
assert isinstance(test_machine.get_tasks(id_only=True), list)
assert len(test_machine.get_tasks(id_only=True)) == len(test_tasks)
def test_machine_count_mode_3():
machines_number = 3
tasks_number = 5
# p_times == [4, 5, 6]
# d_time == 7
# w == 8
machines = [Machine(machine_id=i, speed=1) for i in range(machines_number)]
tasks = [Task() for _ in range(tasks_number)]
[task.parse_input(task_id=task_id, input_str="4 5 6 7 8") for task_id, task in enumerate(tasks)]
for machine_id, machine in enumerate(machines):
for task_id, task in enumerate(tasks):
machine.add_task(
task,
p_time=task.p_times[machine_id],
min_start_time=machines[machine_id - 1].get_time_available(task_id) if machine_id else 0)
assert machines[-1].get_time_over_weighted() == 800.0
|
StarcoderdataPython
|
3301031
|
"`fastai.layers` provides essential functions to building and modifying `model` architectures"
from .torch_core import *
__all__ = ['AdaptiveConcatPool2d', 'CrossEntropyFlat', 'Debugger', 'Flatten', 'Lambda', 'PoolFlatten', 'ResizeBatch',
'StdUpsample', 'bn_drop_lin', 'conv2d', 'conv2d_relu', 'conv2d_trans', 'conv_layer', 'get_embedding', 'simple_cnn',
'std_upsample_head', 'trunc_normal_']
class Lambda(nn.Module):
"An easy way to create a pytorch layer for a simple `func`."
def __init__(self, func:LambdaFunc):
"create a layer that simply calls `func` with `x`"
super().__init__()
self.func=func
def forward(self, x): return self.func(x)
def ResizeBatch(*size:int) -> Tensor:
"Layer that resizes x to `size`, good for connecting mismatched layers."
return Lambda(lambda x: x.view((-1,)+size))
def Flatten()->Tensor:
"Flattens `x` to a single dimension, often used at the end of a model."
return Lambda(lambda x: x.view((x.size(0), -1)))
def PoolFlatten()->nn.Sequential:
"Apply `nn.AdaptiveAvgPool2d` to `x` and then flatten the result."
return nn.Sequential(nn.AdaptiveAvgPool2d(1), Flatten())
def bn_drop_lin(n_in:int, n_out:int, bn:bool=True, p:float=0., actn:Optional[nn.Module]=None):
"`n_in`->bn->dropout->linear(`n_in`,`n_out`)->`actn`"
layers = [nn.BatchNorm1d(n_in)] if bn else []
if p != 0: layers.append(nn.Dropout(p))
layers.append(nn.Linear(n_in, n_out))
if actn is not None: layers.append(actn)
return layers
def conv2d(ni:int, nf:int, ks:int=3, stride:int=1, padding:int=None, bias=False) -> nn.Conv2d:
"Create `nn.Conv2d` layer: `ni` inputs, `nf` outputs, `ks` kernel size. `padding` defaults to `k//2`."
if padding is None: padding = ks//2
return nn.Conv2d(ni, nf, kernel_size=ks, stride=stride, padding=padding, bias=bias)
def conv_layer(ni:int, nf:int, ks:int=3, stride:int=1)->nn.Sequential:
"Create Conv2d->BatchNorm2d->LeakyReLu layer: `ni` input, `nf` out filters, `ks` kernel, `stride`:stride."
return nn.Sequential(
nn.Conv2d(ni, nf, kernel_size=ks, bias=False, stride=stride, padding=ks//2),
nn.BatchNorm2d(nf),
nn.LeakyReLU(negative_slope=0.1, inplace=True))
def conv2d_relu(ni:int, nf:int, ks:int=3, stride:int=1, padding:int=None, bn:bool=False,
bias:bool=False) -> nn.Sequential:
"""Create a `conv2d` layer with `nn.ReLU` activation and optional(`bn`) `nn.BatchNorm2d`: `ni` input, `nf` out
filters, `ks` kernel, `stride`:stride, `padding`:padding, `bn`: batch normalization."""
layers = [conv2d(ni, nf, ks=ks, stride=stride, padding=padding, bias=bias), nn.ReLU()]
if bn: layers.append(nn.BatchNorm2d(nf))
return nn.Sequential(*layers)
def conv2d_trans(ni:int, nf:int, ks:int=2, stride:int=2, padding:int=0) -> nn.ConvTranspose2d:
"Create `nn.ConvTranspose2d` layer: `ni` inputs, `nf` outputs, `ks` kernel size, `stride`: stride. `padding` defaults to 0."
return nn.ConvTranspose2d(ni, nf, kernel_size=ks, stride=stride, padding=padding)
class AdaptiveConcatPool2d(nn.Module):
"Layer that concats `AdaptiveAvgPool2d` and `AdaptiveMaxPool2d`."
def __init__(self, sz:Optional[int]=None):
"Output will be 2*sz or 2 if sz is None"
super().__init__()
sz = sz or 1
self.ap,self.mp = nn.AdaptiveAvgPool2d(sz), nn.AdaptiveMaxPool2d(sz)
def forward(self, x): return torch.cat([self.mp(x), self.ap(x)], 1)
class Debugger(nn.Module):
"A module to debug inside a model."
def forward(self,x:Tensor) -> Tensor:
set_trace()
return x
class StdUpsample(nn.Module):
"Increases the dimensionality of our data by applying a transposed convolution layer."
def __init__(self, n_in:int, n_out:int):
super().__init__()
self.conv = conv2d_trans(n_in, n_out)
self.bn = nn.BatchNorm2d(n_out)
def forward(self, x:Tensor) -> Tensor:
return self.bn(F.relu(self.conv(x)))
def std_upsample_head(c, *nfs:Collection[int]) -> Model:
"Create a sequence of upsample layers."
return nn.Sequential(
nn.ReLU(),
*(StdUpsample(nfs[i],nfs[i+1]) for i in range(4)),
conv2d_trans(nfs[-1], c)
)
class CrossEntropyFlat(nn.CrossEntropyLoss):
"Same as `nn.CrossEntropyLoss`, but flattens input and target."
def forward(self, input:Tensor, target:Tensor) -> Rank0Tensor:
n,c,*_ = input.shape
return super().forward(input.view(n, c, -1), target.view(n, -1))
def simple_cnn(actns:Collection[int], kernel_szs:Collection[int]=None,
strides:Collection[int]=None) -> nn.Sequential:
"CNN with `conv2d_relu` layers defined by `actns`, `kernel_szs` and `strides`."
nl = len(actns)-1
kernel_szs = ifnone(kernel_szs, [3]*nl)
strides = ifnone(strides , [2]*nl)
layers = [conv2d_relu(actns[i], actns[i+1], kernel_szs[i], stride=strides[i])
for i in range_of(strides)]
layers.append(PoolFlatten())
return nn.Sequential(*layers)
def trunc_normal_(x:Tensor, mean:float=0., std:float=1.) -> Tensor:
"Truncated normal initialization."
# From https://discuss.pytorch.org/t/implementing-truncated-normal-initializer/4778/12
return x.normal_().fmod_(2).mul_(std).add_(mean)
def get_embedding(ni:int,nf:int) -> Model:
"Create an embedding layer."
emb = nn.Embedding(ni, nf)
# See https://arxiv.org/abs/1711.09160
with torch.no_grad(): trunc_normal_(emb.weight, std=0.01)
return emb
|
StarcoderdataPython
|
166180
|
<reponame>GiantTreeLP/porth-jvm
from jawa.assemble import Label
from jawa.attributes.bootstrap import BootstrapMethod, BootstrapMethodsAttribute
from jawa.constants import MethodHandleKind
from extensions.DeduplicatingClassFile import DeduplicatingClassFile
from jvm.intrinsics import OperandType
from jvm.intrinsics.stack import Stack
cf = DeduplicatingClassFile.create("Test")
cf.attributes.create(BootstrapMethodsAttribute)
def test_aaload():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("anewarray", cf.constants.create_class("java/lang/String"), 1)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[0] == OperandType.Reference
assert stack._stack[1] == OperandType.Integer
stack.update_stack("aaload")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
def test_aastore():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("anewarray", cf.constants.create_class("java/lang/String"), 1)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[0] == OperandType.Reference
assert stack._stack[1] == OperandType.Integer
stack.update_stack("ldc", cf.constants.create_string("Hello, World!"))
assert len(stack._stack) == 3
assert stack._stack[0] == OperandType.Reference
assert stack._stack[1] == OperandType.Integer
assert stack._stack[2] == OperandType.Reference
stack.update_stack("aastore")
assert len(stack._stack) == 0
def test_aconst_null():
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
def test_aload():
stack = Stack()
stack.update_stack("aload")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack = Stack()
stack.update_stack("aload_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack = Stack()
stack.update_stack("aload_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack = Stack()
stack.update_stack("aload_2")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack = Stack()
stack.update_stack("aload_3")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
def test_anewarray():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("anewarray", cf.constants.create_class("java/lang/String"), 1)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
def test_areturn():
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("areturn")
assert len(stack._stack) == 0
def test_arraylength():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("anewarray", cf.constants.create_class("java/lang/String"), 1)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("arraylength")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_astore():
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("astore")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("astore_0")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("astore_1")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("astore_2")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("astore_3")
assert len(stack._stack) == 0
def test_athrow():
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("athrow")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
def test_baload():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("newarray", OperandType.Byte.array_type)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("baload")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Byte
def test_bastore():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("newarray", OperandType.Byte.array_type)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("iconst_0")
assert len(stack._stack) == 3
assert stack._stack[2] == OperandType.Integer
stack.update_stack("bastore")
assert len(stack._stack) == 0
def test_bipush():
stack = Stack()
stack.update_stack("bipush", 1)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_caload():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("newarray", OperandType.Char.array_type)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("caload")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Char
def test_castore():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("newarray", OperandType.Char.array_type)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("iconst_0")
assert len(stack._stack) == 3
assert stack._stack[2] == OperandType.Integer
stack.update_stack("castore")
assert len(stack._stack) == 0
def test_checkcast():
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("checkcast", cf.constants.create_class("java/lang/String"))
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
def test_d2f():
stack = Stack()
stack.update_stack("dconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack.update_stack("d2f")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
def test_d2i():
stack = Stack()
stack.update_stack("dconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack.update_stack("d2i")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_d2l():
stack = Stack()
stack.update_stack("dconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack.update_stack("d2l")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
def test_dadd():
stack = Stack()
stack.update_stack("dconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack.update_stack("dconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Double
stack.update_stack("dadd")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
def test_daload():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("newarray", OperandType.Double.array_type)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("daload")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
def test_dastore():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("newarray", OperandType.Double.array_type)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("dconst_0")
assert len(stack._stack) == 3
assert stack._stack[2] == OperandType.Double
stack.update_stack("dastore")
assert len(stack._stack) == 0
def test_dcmpg():
stack = Stack()
stack.update_stack("dconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack.update_stack("dconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Double
stack.update_stack("dcmpg")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_dcmpl():
stack = Stack()
stack.update_stack("dconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack.update_stack("dconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Double
stack.update_stack("dcmpl")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_dconst():
stack = Stack()
stack.update_stack("dconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack = Stack()
stack.update_stack("dconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
def test_ddiv():
stack = Stack()
stack.update_stack("dconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack.update_stack("dconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Double
stack.update_stack("ddiv")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
def test_dload():
stack = Stack()
stack.update_stack("dload", 0)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack = Stack()
stack.update_stack("dload_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack = Stack()
stack.update_stack("dload_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack = Stack()
stack.update_stack("dload_2")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack = Stack()
stack.update_stack("dload_3")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
def test_dmul():
stack = Stack()
stack.update_stack("dconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack.update_stack("dconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Double
stack.update_stack("dmul")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
def test_dneg():
stack = Stack()
stack.update_stack("dconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack.update_stack("dneg")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
def test_drem():
stack = Stack()
stack.update_stack("dconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack.update_stack("dconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Double
stack.update_stack("drem")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
def test_dreturn():
stack = Stack()
stack.update_stack("dconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack.update_stack("dreturn")
assert len(stack._stack) == 0
def test_dstore():
stack = Stack()
stack.update_stack("dconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack.update_stack("dstore", 0)
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("dconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack.update_stack("dstore_0")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("dconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack.update_stack("dstore_1")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("dconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack.update_stack("dstore_2")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("dconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack.update_stack("dstore_3")
assert len(stack._stack) == 0
def test_dsub():
stack = Stack()
stack.update_stack("dconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
stack.update_stack("dconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Double
stack.update_stack("dsub")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
def test_dup():
stack = Stack()
stack.update_stack("iconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("dup")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
def test_dup_x1():
stack = Stack()
stack.update_stack("iconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("dup_x1")
assert len(stack._stack) == 3
assert stack._stack[0] == OperandType.Integer
assert stack._stack[1] == OperandType.Integer
assert stack._stack[2] == OperandType.Integer
def test_dup_x2():
stack = Stack()
stack.update_stack("iconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("iconst_2")
assert len(stack._stack) == 3
assert stack._stack[2] == OperandType.Integer
stack.update_stack("dup_x2")
assert len(stack._stack) == 4
assert stack._stack[0] == OperandType.Integer
assert stack._stack[1] == OperandType.Integer
assert stack._stack[2] == OperandType.Integer
assert stack._stack[3] == OperandType.Integer
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("dup_x2")
assert len(stack._stack) == 3
assert stack._stack[0] == OperandType.Integer
assert stack._stack[1] == OperandType.Long
assert stack._stack[2] == OperandType.Integer
def test_dup2():
stack = Stack()
stack.update_stack("iconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("dup2")
assert len(stack._stack) == 4
assert stack._stack[0] == OperandType.Integer
assert stack._stack[1] == OperandType.Integer
assert stack._stack[2] == OperandType.Integer
assert stack._stack[3] == OperandType.Integer
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("dup2")
assert len(stack._stack) == 2
assert stack._stack[0] == OperandType.Long
assert stack._stack[1] == OperandType.Long
def test_dup2_x1():
stack = Stack()
stack.update_stack("iconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("iconst_2")
assert len(stack._stack) == 3
assert stack._stack[2] == OperandType.Integer
stack.update_stack("dup2_x1")
assert len(stack._stack) == 5
assert stack._stack[0] == OperandType.Integer
assert stack._stack[1] == OperandType.Integer
assert stack._stack[2] == OperandType.Integer
assert stack._stack[3] == OperandType.Integer
assert stack._stack[4] == OperandType.Integer
stack = Stack()
stack.update_stack("iconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("lconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Long
stack.update_stack("dup2_x1")
assert len(stack._stack) == 3
assert stack._stack[0] == OperandType.Long
assert stack._stack[1] == OperandType.Integer
assert stack._stack[2] == OperandType.Long
def test_dup2_x2():
stack = Stack()
stack.update_stack("iconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("iconst_2")
assert len(stack._stack) == 3
assert stack._stack[2] == OperandType.Integer
stack.update_stack("iconst_3")
assert len(stack._stack) == 4
assert stack._stack[3] == OperandType.Integer
stack.update_stack("dup2_x2")
assert len(stack._stack) == 6
assert stack._stack[0] == OperandType.Integer
assert stack._stack[1] == OperandType.Integer
assert stack._stack[2] == OperandType.Integer
assert stack._stack[3] == OperandType.Integer
assert stack._stack[4] == OperandType.Integer
assert stack._stack[5] == OperandType.Integer
stack = Stack()
stack.update_stack("iconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("lconst_1")
assert len(stack._stack) == 3
assert stack._stack[2] == OperandType.Long
stack.update_stack("dup2_x2")
assert len(stack._stack) == 4
assert stack._stack[0] == OperandType.Long
assert stack._stack[1] == OperandType.Integer
assert stack._stack[2] == OperandType.Integer
assert stack._stack[3] == OperandType.Long
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("iconst_2")
assert len(stack._stack) == 3
assert stack._stack[2] == OperandType.Integer
stack.update_stack("dup2_x2")
assert len(stack._stack) == 5
assert stack._stack[0] == OperandType.Integer
assert stack._stack[1] == OperandType.Integer
assert stack._stack[2] == OperandType.Long
assert stack._stack[3] == OperandType.Integer
assert stack._stack[4] == OperandType.Integer
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("lconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Long
stack.update_stack("dup2_x2")
assert len(stack._stack) == 3
assert stack._stack[0] == OperandType.Long
assert stack._stack[1] == OperandType.Long
assert stack._stack[2] == OperandType.Long
def test_f2d():
stack = Stack()
stack.update_stack("fconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
stack.update_stack("f2d")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
def test_f2i():
stack = Stack()
stack.update_stack("fconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
stack.update_stack("f2i")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_f2l():
stack = Stack()
stack.update_stack("fconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
stack.update_stack("f2l")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
def test_fadd():
stack = Stack()
stack.update_stack("fconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
stack.update_stack("fconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Float
stack.update_stack("fadd")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
def test_faload():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("newarray", OperandType.Float.array_type)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("faload")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
def test_fastore():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("newarray", OperandType.Float.array_type)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("fconst_0")
assert len(stack._stack) == 3
assert stack._stack[2] == OperandType.Float
stack.update_stack("fastore")
assert len(stack._stack) == 0
def test_fcmpg():
stack = Stack()
stack.update_stack("fconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
stack.update_stack("fconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Float
stack.update_stack("fcmpg")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_fcmpl():
stack = Stack()
stack.update_stack("fconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
stack.update_stack("fconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Float
stack.update_stack("fcmpl")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_fconst():
stack = Stack()
stack.update_stack("fconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
stack.update_stack("fconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Float
stack.update_stack("fconst_2")
assert len(stack._stack) == 3
assert stack._stack[2] == OperandType.Float
def test_fdiv():
stack = Stack()
stack.update_stack("fconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
stack.update_stack("fconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Float
stack.update_stack("fdiv")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
def test_fload():
stack = Stack()
stack.update_stack("fload_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
stack.update_stack("fload_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Float
stack.update_stack("fload_2")
assert len(stack._stack) == 3
assert stack._stack[2] == OperandType.Float
stack.update_stack("fload_3")
assert len(stack._stack) == 4
assert stack._stack[3] == OperandType.Float
def test_fmul():
stack = Stack()
stack.update_stack("fconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
stack.update_stack("fconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Float
stack.update_stack("fmul")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
def test_fneg():
stack = Stack()
stack.update_stack("fconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
stack.update_stack("fneg")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
def test_frem():
stack = Stack()
stack.update_stack("fconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
stack.update_stack("fconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Float
stack.update_stack("frem")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
def test_freturn():
stack = Stack()
stack.update_stack("fconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
stack.update_stack("freturn")
assert len(stack._stack) == 0
def test_fstore():
stack = Stack()
stack.update_stack("fconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
stack.update_stack("fstore_0")
assert len(stack._stack) == 0
stack.update_stack("fconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
stack.update_stack("fstore_1")
assert len(stack._stack) == 0
stack.update_stack("fconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
stack.update_stack("fstore_2")
assert len(stack._stack) == 0
stack.update_stack("fconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
stack.update_stack("fstore_3")
assert len(stack._stack) == 0
def test_fsub():
stack = Stack()
stack.update_stack("fconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
stack.update_stack("fconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Float
stack.update_stack("fsub")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
def test_getfield():
stack = Stack()
stack.update_stack("new", cf.constants.create_class("java/lang/String"))
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("getfield", cf.constants.create_field_ref("java/lang/System", "out", "Ljava/io/PrintStream;"))
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
def test_getstatic():
stack = Stack()
stack.update_stack("getstatic", cf.constants.create_field_ref("java/lang/System", "out", "Ljava/io/PrintStream;"))
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
def test_goto():
stack = Stack()
stack.update_stack("goto", Label("label"))
assert len(stack._stack) == 0
def test_goto_w():
stack = Stack()
stack.update_stack("goto_w", Label("label"))
assert len(stack._stack) == 0
def test_i2b():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("i2b")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Byte
def test_i2c():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("i2c")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Char
def test_i2d():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("i2d")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
def test_i2f():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("i2f")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
def test_i2l():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("i2l")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
def test_i2s():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("i2s")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Short
def test_iadd():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("iadd")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_iaload():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("newarray", OperandType.Integer.array_type)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("iaload")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_iand():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("iand")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_iastore():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("newarray", OperandType.Integer.array_type)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 3
assert stack._stack[2] == OperandType.Integer
stack.update_stack("iastore")
assert len(stack._stack) == 0
def test_iconst():
stack = Stack()
stack.update_stack("iconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack = Stack()
stack.update_stack("iconst_2")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack = Stack()
stack.update_stack("iconst_3")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack = Stack()
stack.update_stack("iconst_4")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack = Stack()
stack.update_stack("iconst_5")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_idiv():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("idiv")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_if_acmp():
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("aconst_null")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Reference
stack.update_stack("if_acmpeq")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("aconst_null")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Reference
stack.update_stack("if_acmpne")
assert len(stack._stack) == 0
def test_if_icmp():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("if_icmpeq")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("if_icmpne")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("if_icmplt")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("if_icmpge")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("if_icmpgt")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("if_icmple")
assert len(stack._stack) == 0
def test_if():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("ifne")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("ifeq")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iflt")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("ifge")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("ifgt")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("ifle")
assert len(stack._stack) == 0
def test_ifnonnull():
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("ifnonnull")
assert len(stack._stack) == 0
def test_ifnull():
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("ifnull")
assert len(stack._stack) == 0
def test_iinc():
stack = Stack()
stack.update_stack("iinc", 0, 0)
assert len(stack._stack) == 0
def test_iload():
stack = Stack()
stack.update_stack("iload", 0)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack = Stack()
stack.update_stack("iload_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack = Stack()
stack.update_stack("iload_2")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack = Stack()
stack.update_stack("iload_3")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_imul():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("imul")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_ineg():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("ineg")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_instanceof():
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("instanceof", cf.constants.create_class("java/lang/String"))
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Boolean
def test_invokedynamic():
method_handle = cf.constants.create_method_handle(
MethodHandleKind.INVOKE_STATIC,
"java/lang/invoke/StringConcatFactory",
"makeConcatWithConstants",
"(Ljava/lang/invoke/MethodHandles$Lookup;"
"Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/String;[Ljava/lang/Object;)"
"Ljava/lang/invoke/CallSite;"
)
cf.bootstrap_methods.append(
BootstrapMethod(method_handle.index, (cf.constants.create_string("\1=\1\0").index,)))
make_concat_with_constants = cf.constants.create_invoke_dynamic(
len(cf.bootstrap_methods) - 1,
"makeConcatWithConstants",
"(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String;"
)
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("aconst_null")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Reference
stack.update_stack("invokedynamic", make_concat_with_constants, 0, 0)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
def test_invokeinterface():
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("invokeinterface", cf.constants.create_method_ref(
"java/lang/CharSequence",
"length",
"()I"
), 0)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_invokespecial():
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("invokespecial", cf.constants.create_method_ref(
"java/lang/Object",
"<init>",
"()V"
))
assert len(stack._stack) == 0
def test_invokestatic():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("invokestatic", cf.constants.create_method_ref(
"java/lang/System",
"exit",
"(I)V"
))
assert len(stack._stack) == 0
def test_invokevirtual():
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("invokevirtual", cf.constants.create_method_ref(
"java/lang/Object",
"toString",
"()Ljava/lang/String;"
))
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
def test_ior():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("ior")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_irem():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("irem")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_ireturn():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("ireturn")
assert len(stack._stack) == 0
def test_ishl():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("ishl")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_ishr():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("ishr")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_istore():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("istore", 0)
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("istore_0")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("istore_1")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("istore_2")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("istore_3")
def test_isub():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("isub")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_iushr():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("iushr")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_ixor():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("ixor")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_jsr():
stack = Stack()
stack.update_stack("jsr")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
def test_jsr_w():
stack = Stack()
stack.update_stack("jsr_w")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
def test_l2d():
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("l2d")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
def test_l2f():
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("l2f")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
def test_l2i():
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("l2i")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_ladd():
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("lconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Long
stack.update_stack("ladd")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
def test_laload():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("newarray", OperandType.Long.array_type)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("laload")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
def test_land():
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("lconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Long
stack.update_stack("land")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
def test_lastore():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("newarray", OperandType.Long.array_type)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("lconst_0")
assert len(stack._stack) == 3
assert stack._stack[2] == OperandType.Long
stack.update_stack("lastore")
assert len(stack._stack) == 0
def test_lcmp():
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("lconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Long
stack.update_stack("lcmp")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_lconst():
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack = Stack()
stack.update_stack("lconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
def test_ldc():
stack = Stack()
stack.update_stack("ldc", cf.constants.create_integer(1))
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack = Stack()
stack.update_stack("ldc", cf.constants.create_float(1.0))
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Float
stack = Stack()
stack.update_stack("ldc", cf.constants.create_string("test"))
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack = Stack()
stack.update_stack("ldc", cf.constants.create_class("java/lang/String"))
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
def test_ldc2_w():
stack = Stack()
stack.update_stack("ldc2_w", cf.constants.create_long(1))
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack = Stack()
stack.update_stack("ldc2_w", cf.constants.create_double(1.0))
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Double
def test_ldiv():
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("lconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Long
stack.update_stack("ldiv")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
def test_lload():
stack = Stack()
stack.update_stack("lload", 0)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack = Stack()
stack.update_stack("lload_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack = Stack()
stack.update_stack("lload_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack = Stack()
stack.update_stack("lload_2")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack = Stack()
stack.update_stack("lload_3")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
def test_lmul():
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("lconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Long
stack.update_stack("lmul")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
def test_lneg():
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("lneg")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
def test_lookupswitch():
stack = Stack()
stack.update_stack("iconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("lookupswitch")
assert len(stack._stack) == 0
def test_lor():
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("lconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Long
stack.update_stack("lor")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
def test_lrem():
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("lconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Long
stack.update_stack("lrem")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
def test_lreturn():
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("lreturn")
assert len(stack._stack) == 0
def test_lshl():
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("lshl")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
def test_lshr():
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("lshr")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
def test_lstore():
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("lstore", 0)
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("lstore_0")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("lstore_1")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("lstore_2")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("lstore_3")
assert len(stack._stack) == 0
def test_lsub():
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("lconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Long
stack.update_stack("lsub")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
def test_lushr():
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("lushr")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
def test_lxor():
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("lconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Long
stack.update_stack("lxor")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
def test_monitorenter():
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("monitorenter")
assert len(stack._stack) == 0
def test_monitorexit():
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("monitorexit")
assert len(stack._stack) == 0
def test_multianewarray():
stack = Stack()
stack.update_stack("iconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("multianewarray", cf.constants.create_class("java/lang/String"), 1)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
def test_new():
stack = Stack()
stack.update_stack("new", cf.constants.create_class("java/lang/String"))
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
def test_newarray():
stack = Stack()
stack.update_stack("iconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("newarray", OperandType.Integer.array_type)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
def test_nop():
stack = Stack()
stack.update_stack("nop")
assert len(stack._stack) == 0
def test_pop():
stack = Stack()
stack.update_stack("iconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("pop")
assert len(stack._stack) == 0
def test_pop2():
stack = Stack()
stack.update_stack("iconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("pop2")
assert len(stack._stack) == 0
stack = Stack()
stack.update_stack("lconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Long
stack.update_stack("pop2")
assert len(stack._stack) == 0
def test_putfield():
stack = Stack()
stack.update_stack("aconst_null")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("putfield", cf.constants.create_field_ref("java/lang/String", "value", "I"))
assert len(stack._stack) == 0
def test_putstatic():
stack = Stack()
stack.update_stack("iconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("putstatic", cf.constants.create_field_ref("java/lang/String", "value", "I"))
assert len(stack._stack) == 0
def test_ret():
stack = Stack()
stack.update_stack("ret")
assert len(stack._stack) == 0
def test_return():
stack = Stack()
stack.update_stack("return")
assert len(stack._stack) == 0
def test_saload():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("newarray", OperandType.Short.array_type)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("saload")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Short
def test_sastore():
stack = Stack()
stack.update_stack("iconst_1")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("newarray", OperandType.Short.array_type)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Reference
stack.update_stack("iconst_0")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 3
assert stack._stack[2] == OperandType.Integer
stack.update_stack("sastore")
assert len(stack._stack) == 0
def test_sipush():
stack = Stack()
stack.update_stack("sipush", 1)
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
def test_swap():
stack = Stack()
stack.update_stack("iconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("iconst_1")
assert len(stack._stack) == 2
assert stack._stack[1] == OperandType.Integer
stack.update_stack("swap")
assert len(stack._stack) == 2
assert stack._stack[0] == OperandType.Integer
assert stack._stack[1] == OperandType.Integer
def test_tableswitch():
stack = Stack()
stack.update_stack("iconst_0")
assert len(stack._stack) == 1
assert stack._stack[0] == OperandType.Integer
stack.update_stack("tableswitch", 0, 0, 0, 0)
assert len(stack._stack) == 0
|
StarcoderdataPython
|
5149077
|
<reponame>pbipin/amicable_numbers
"""
Author: <NAME>. (mailto: <EMAIL>)
http://iambipin.com
101010101 10 101010101 10 101 10 101010101
1010101010 10 1010101010 10 1010 10 1010101010
10 101 10 10 101 10 10 01 10 10 101
10 101 10 10 101 10 10 10 10 10 101
1010101010 10 1010101010 10 10 01 10 1010101010
1010101010 10 101010101 10 10 1010 101010101
10 101 10 10 10 10 010 10
10 101 10 10 10 10 10 10
1010101010 10 10 10 10 10 10
101010101 10 10 10 10 10 10 10
Amicable Numbers:
Python program to find amicable numbers within a range. Two numbers are classified as amicable numbers
if the sum of proper divisors of one number is equal to the other number, and vice versa.
For example, 220 and 280 are amicable numbers for the above-mentioned reason.
220 - 1+2+4+5+10+11+20+22+44+55+110 = 284
284 - 1+2+4+71+142 = 220
"""
def amicableNum(i):
"""
Function to create a set of amicable numbers
"""
global amicable
j = 1
sumofdiv = 0
if(i % 2 == 0): #for even numbers
while(j < (i/2)+1):
if(i % j == 0):
sumofdiv += j
j += 1
else: #for odd numbers
while(j < (i/3)+1):
if(i % j == 0):
sumofdiv += j
j += 1
k = 1
ssum = 0
while(k < sumofdiv):
if(sumofdiv % k == 0):
ssum += k
k += 1
if(ssum == i) and (sumofdiv != i): #condition for amicable numbers
amicable.add(i)
amicable.add(sumofdiv)
try:
num = int(input('Enter the number within which amicable numbers are to be found: '))
if(num <= 2):
raise ValueError
indexList = []
amicable = set()
numrange = range(2, num)
for i in range(2, num):
amicableNum(i)
amicList = list(amicable) #conversion from set to list
amicList.sort() #list is sorted
#list slicing(based on even and odd positions of elements) with zip() to convert in to list of
#tuples(for printing as pairs)
amicList = zip(amicList[::2], amicList[1::2])
aster = '*'
print(aster * 60)
print('The pair(s) of amicable numbers within {0} are:' .format(num))
print(*amicList)
print(aster * 60)
except(ValueError):
print('Please enter a valid integer number greater than 2')
|
StarcoderdataPython
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.