id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
9765797
<gh_stars>1-10 """mp_notice Revision ID: cf266bf19ef3 Revises: <PASSWORD> Create Date: 2019-05-04 22:42:02.845137 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'cf266bf19ef3' down_revision = '<PASSWORD>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('likecomment', sa.Column('id', sa.Integer(), nullable=False), sa.Column('comment_id', sa.Integer(), nullable=True), sa.Column('user_id', sa.String(length=32), nullable=True), sa.Column('time', sa.DATETIME(), nullable=True), sa.ForeignKeyConstraint(['comment_id'], ['article1.id'], ), sa.ForeignKeyConstraint(['user_id'], ['role1.uuid'], ), sa.PrimaryKeyConstraint('id') ) op.add_column('role1', sa.Column('last_reply_read_time', sa.DATETIME(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('role1', 'last_reply_read_time') op.drop_table('likecomment') # ### end Alembic commands ###
StarcoderdataPython
191726
# Generated by Django 3.1.8 on 2021-04-14 06:57 import datetime from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('listings', '0003_auto_20210412_0924'), ] operations = [ migrations.CreateModel( name='Contact', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('listing', models.CharField(max_length=255)), ('name', models.CharField(max_length=100)), ('email', models.CharField(max_length=100)), ('phone', models.CharField(max_length=50)), ('message', models.TextField(blank=True)), ('contact_date', models.DateTimeField(blank=True, default=datetime.datetime.now)), ('listing_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='listings.listing')), ('user_id', models.ForeignKey(blank=True, on_delete=django.db.models.deletion.DO_NOTHING, to=settings.AUTH_USER_MODEL)), ], ), ]
StarcoderdataPython
8073188
<gh_stars>1-10 import bisect import collections from datetime import timedelta Update = collections.namedtuple("Update", ["timestamp", "value"]) class TimeSeries: def __init__(self): """An object that manages TimeSeries that include a timestamp and value. Attributes: series (Update): The chronological record of updates to the instance. """ self.series = [] def __getitem__(self, index): return self.series[index] def update(self, timestamp, value): """Updates the TimeSeries instance's series with a new entry. Args: timestamp (datetime.datetime): The timestamp of the update. value (int) The value of the update. """ bisect.insort_left(self.series, Update(timestamp, value)) def get_closing_price(self, on_date): """Returns a given dates closing price. This is the stock's last price from an update on the date or the closing price for the previous day if an update has not occurred. Args: on_date (datetime.datetime): The on_date being checked for a closing price. Raises: ValueError: If stock has not had any updates. Returns: Closing price if it exists, executes self.closing_price(previous day) if not. """ if self.series: date_history = [update for update in self.series if update.timestamp.date() == on_date.date()] return date_history[-1].value if date_history else self.get_closing_price(on_date - timedelta(days=1)) else: raise ValueError("stock has not had any updates") def has_sufficient_update_history(self, on_date, num_of_days): """Checks for sufficient update history data from a given date backwards with a given number of days. Args: on_date (datetime.datetime): The date on which the cross over signal is to be checked. num_of_days (int): The number of days of history. Returns: True if there is sufficient data, False if not. """ earliest_date = on_date.date() - timedelta(days=num_of_days) return earliest_date < self.series[0].timestamp.date()
StarcoderdataPython
9702002
''' Collection of localised thin multipole maps. For formulae see e.g. SIXTRACK: SixTrack Physics Manual <NAME> and <NAME> August 18, 2015 or, likewise, A Symplectic Six-Dimensional Thin-Lens Formalism for Tracking <NAME>, <NAME> April 5, 1995 @authors: <NAME> @date: 23/03/2016 ''' from math import factorial from PyHEADTAIL.general.element import Element class ThinQuadrupole(Element): '''Thin quadrupolar map.''' def __init__(self, k1l, *args, **kwargs): '''Arguments: - k1l: normalised strength times the length of the quadrupole magnet [1/m] ''' self.kL = k1l def track(self, beam): beam.xp -= self.kL * beam.x beam.yp += self.kL * beam.y class ThinSkewQuadrupole(Element): '''Thin skew quadrupolar map.''' def __init__(self, k1sl, *args, **kwargs): '''Arguments: - k1sl: normalised strength times the length of the skew quadrupole magnet [1/m] ''' self.kL = k1sl def track(self, beam): beam.xp += self.kL * beam.y beam.yp += self.kL * beam.x class ThinSextupole(Element): '''Thin sextupolar map.''' def __init__(self, k2l, *args, **kwargs): '''Arguments: - k2l: normalised strength times the length of the sextupole magnet [1/m^2] ''' self.kL = k2l def track(self, beam): beam.xp -= 0.5 * self.kL * (beam.x*beam.x - beam.y*beam.y) beam.yp += self.kL * beam.x * beam.y class ThinOctupole(Element): '''Thin octupolar map.''' def __init__(self, k3l, *args, **kwargs): '''Arguments: - k3l: normalised strength times the length of the octupole magnet [1/m^3] ''' self.kL = k3l self.kL6 = k3l / 6. def track(self, beam): beam.xp -= self.kL6 * (beam.x*beam.x*beam.x - 3*beam.x*beam.y*beam.y) beam.yp -= self.kL6 * (beam.y*beam.y*beam.y - 3*beam.x*beam.x*beam.y) class ThinMultipole(Element): '''Implements the Horner scheme to efficiently calculate the polynomials for any order multipole maps. ''' def __init__(self, knl, ksl=[], *args, **kwargs): '''MAD style counting of of normal and skew multipole strengths: [dipolar, quadrupolar, sextupolar, octupolar, ...] components. Arguments: - knl: list of normalised normal strengths times the length of the multipole magnet [1/m^order] in ascending order Optional arguments: - ksl: list of normalised skew strengths times the length of the multipole magnet [1/m^order] in ascending order N.B.: If knl and ksl have different lengths, zeros are appended until they are equally long. ''' newlen = max(len(knl), len(ksl)) knl = list(knl) + [0] * (newlen - len(knl)) ksl = list(ksl) + [0] * (newlen - len(ksl)) self.knl = knl self.ksl = ksl def track(self, beam): dxp, dyp = self.ctaylor(beam.x, beam.y, self.knl, self.ksl) beam.xp -= dxp beam.yp += dyp @staticmethod def ctaylor(x, y, kn, ks): '''Efficient Horner scheme.''' dpx = kn[-1] dpy = ks[-1] nn = list(range(1, len(kn) + 1)) for n, kkn, kks in list(zip(nn, kn, ks))[-2::-1]: dpxi = (dpx*x - dpy*y) / float(n) dpyi = (dpx*y + dpy*x) / float(n) dpx = kkn + dpxi dpy = kks + dpyi return dpx, dpy @staticmethod def ztaylor(x, y, kn, ks): '''Same as ctaylor but using complex numbers, slower but more readable -- added for the sake of clarity. ''' z = (x + 1j*y) res = 0 for n, (kkn, kks) in enumerate(zip(kn, ks)): res += (kkn + 1j*kks) * z**n / factorial(n) return res.real, res.imag
StarcoderdataPython
5060059
<gh_stars>1-10 from util import time_it @time_it def linear_search(numbers_list, number_to_find): for index, element in enumerate(numbers_list): if element == number_to_find: return index return -1 if __name__ == '__main__': numbers_list = [12, 15, 17, 19, 21, 24, 45, 67] number_to_find = 21 index = linear_search(numbers_list, number_to_find) print(f"Number found at index {index} using linear search")
StarcoderdataPython
9704362
import pytest import sqlite3 import os @pytest.fixture(scope='module') def sqlite_connection(): # TODO: setup test instance of db then destory after dbname = 'data/test_data.db' # TODO: check if db does not exist before continuing db = sqlite3.connect(dbname) sql_create_photos_table = """ CREATE TABLE IF NOT EXISTS `photos` ( `objectID` TEXT NOT NULL UNIQUE, `url` TEXT, `thumb` TEXT, `title` TEXT, `desc` TEXT, `taken` TEXT, `CRC` TEXT, PRIMARY KEY(`objectID`) ); """ sql_create_photo_record = """ INSERT INTO `photos` ( `objectID`, `url`, `thumb`, `title`, `desc`, `taken`, `CRC`) VALUES ( "96de6a68-4fc2-411c-91a3-52ae37879481", "https://s3-ap-southeast-2.amazonaws.com/flaskgallery-photos/600.png", "https://s3-ap-southeast-2.amazonaws.com/flaskgallery-photos/300.png", "Photo #1", "This is a description of the photograph", "2018-01-01", "0x784DD132" ); """ c = db.cursor() c.execute(sql_create_photos_table) db.commit() c.execute(sql_create_photo_record) db.commit() db.close() yield dbname os.remove('data/test_data.db') @pytest.fixture(scope='module') def jsonfile_connection(): dbname = 'data/test_data.json' return dbname
StarcoderdataPython
1603982
from encargoapi import app from encargoapi.auth import auth from encargoapi.config import db from encargoapi.user.model import User from flask import ( abort, g, jsonify, request, url_for, ) @app.route('/api/v1.0/users', methods = ['GET']) def user(): return jsonify({'users': 'ok'}) @app.route('/api/v1.0/users', methods = ['POST']) def create_user(): username = request.json.get('username') password = request.json.get('password') if username is None or password is None: abort(400) # missing arguments if User.query.filter_by(username = username).first() is not None: abort(400) # existing user user = User(username = username) user.hash_password(password) db.session.add(user) db.session.commit() return jsonify( { 'id':user.id, 'username':user.username, } ), 201, {'Location': url_for('get_user', user = user, _external = True)} @app.route('/api/v1.0/resource') @auth.login_required def get_resource(): return jsonify({ 'data': 'Hello, {}!'.format(g.user.username) }) @app.route('/api/v1.0/user', methods=['GET']) @auth.login_required def get_user(): return jsonify({ 'user': { 'id': g.user.id, 'username': g.user.username, } })
StarcoderdataPython
8128434
<gh_stars>1-10 # coding: utf-8 # ---------------------------------------------------------------------------- # <copyright company="Aspose" file="deconvolution_filter_properties.py"> # Copyright (c) 2018-2020 Aspose Pty Ltd. All rights reserved. # </copyright> # <summary> # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # </summary> # ---------------------------------------------------------------------------- import pprint import re import six from asposeimagingcloud.models.filter_properties_base import FilterPropertiesBase class DeconvolutionFilterProperties(FilterPropertiesBase): """Deconvolution Filter Options, abstract class """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'snr': 'float', 'brightness': 'float', 'grayscale': 'bool', 'is_partial_loaded': 'bool' } attribute_map = { 'snr': 'Snr', 'brightness': 'Brightness', 'grayscale': 'Grayscale', 'is_partial_loaded': 'IsPartialLoaded' } def __init__(self, snr=None, brightness=None, grayscale=None, is_partial_loaded=None): """DeconvolutionFilterProperties - a model defined in Swagger""" super(DeconvolutionFilterProperties, self).__init__() self._snr = None self._brightness = None self._grayscale = None self._is_partial_loaded = None if snr is not None: self.snr = snr if brightness is not None: self.brightness = brightness if grayscale is not None: self.grayscale = grayscale if is_partial_loaded is not None: self.is_partial_loaded = is_partial_loaded @property def snr(self): """Gets the snr of this DeconvolutionFilterProperties. Gets or sets the SNR(signal-to-noise ratio) recommended range 0.002 - 0.009, default value = 0.007 :return: The snr of this DeconvolutionFilterProperties. :rtype: float """ return self._snr @snr.setter def snr(self, snr): """Sets the snr of this DeconvolutionFilterProperties. Gets or sets the SNR(signal-to-noise ratio) recommended range 0.002 - 0.009, default value = 0.007 :param snr: The snr of this DeconvolutionFilterProperties. :type: float """ if snr is None: raise ValueError("Invalid value for `snr`, must not be `None`") self._snr = snr @property def brightness(self): """Gets the brightness of this DeconvolutionFilterProperties. Gets or sets the brightness. recommended range 1 - 1.5 default value = 1.15 :return: The brightness of this DeconvolutionFilterProperties. :rtype: float """ return self._brightness @brightness.setter def brightness(self, brightness): """Sets the brightness of this DeconvolutionFilterProperties. Gets or sets the brightness. recommended range 1 - 1.5 default value = 1.15 :param brightness: The brightness of this DeconvolutionFilterProperties. :type: float """ if brightness is None: raise ValueError("Invalid value for `brightness`, must not be `None`") self._brightness = brightness @property def grayscale(self): """Gets the grayscale of this DeconvolutionFilterProperties. Gets or sets a value indicating whether this DeconvolutionFilterProperties is grayscale. Return grayscale mode or RGB mode. :return: The grayscale of this DeconvolutionFilterProperties. :rtype: bool """ return self._grayscale @grayscale.setter def grayscale(self, grayscale): """Sets the grayscale of this DeconvolutionFilterProperties. Gets or sets a value indicating whether this DeconvolutionFilterProperties is grayscale. Return grayscale mode or RGB mode. :param grayscale: The grayscale of this DeconvolutionFilterProperties. :type: bool """ if grayscale is None: raise ValueError("Invalid value for `grayscale`, must not be `None`") self._grayscale = grayscale @property def is_partial_loaded(self): """Gets the is_partial_loaded of this DeconvolutionFilterProperties. Gets a value indicating whether this instance is partial loaded. :return: The is_partial_loaded of this DeconvolutionFilterProperties. :rtype: bool """ return self._is_partial_loaded @is_partial_loaded.setter def is_partial_loaded(self, is_partial_loaded): """Sets the is_partial_loaded of this DeconvolutionFilterProperties. Gets a value indicating whether this instance is partial loaded. :param is_partial_loaded: The is_partial_loaded of this DeconvolutionFilterProperties. :type: bool """ if is_partial_loaded is None: raise ValueError("Invalid value for `is_partial_loaded`, must not be `None`") self._is_partial_loaded = is_partial_loaded def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DeconvolutionFilterProperties): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
StarcoderdataPython
1858009
<reponame>featureoverload/upgrade-marshmallow from marshmallow import Schema from marshmallow import fields def NoneEmptyString(**kwargs): # noqa return fields.String(**kwargs) class FooSchema(Schema): name = NoneEmptyString(title='foo name', description="foo name")
StarcoderdataPython
1928729
<reponame>josephquang97/pymemapi import sqlite3 from PyMemAPI import __version__ from PyMemAPI import Memrise, SQLite, Course from PyMemAPI.exception import LoginError, InvalidSeperateElement, AddBulkError, AddLevelError, InputOutOfRange, LanguageError import unittest from pytest import MonkeyPatch # Test version def test_version(): assert __version__ == "0.1.0" # Test Memrise features CLIENT = Memrise() COURSE: Course class TestMemrise(unittest.TestCase): def setUp(self): self.monkeypatch = MonkeyPatch() def test_login_fail(self): with self.assertRaises(LoginError): CLIENT.login("testingerror", "nopassword") def test_select_course(self): user = {"Enter username: ":"dummy_user", "Enter password: ":"<PASSWORD>"} # self.monkeypatch.setattr("builtins.input", lambda msg: user[msg]) # self.monkeypatch.setattr("getpass.getpass", lambda msg: user[msg]) success = CLIENT.login("dummy_user","testing2022") if success is True: responses = {"Make your choice: ": "1"} self.monkeypatch.setattr("builtins.input", lambda msg : responses[msg]) global COURSE COURSE = CLIENT.select_course() COURSE.delete_all_level() assert COURSE.name == "Testing Course" else: assert success # Unit test for Course class TestCourse(unittest.TestCase): def test_addlevel_with_bulk(self): global COURSE success = COURSE.add_level_with_bulk("Test Level", "Hello\tXinChao", "\t") self.assertEqual(success, True) def test_delete_level(self): global COURSE level_id, headers = COURSE.add_level() success = COURSE.delete_level(level_id) self.assertEqual(success, True) def test_move_level(self): global COURSE success = COURSE.move_level(1,2) self.assertEqual(1,1) def test_update_external_language(self): global COURSE COURSE._update_audio_external("en") self.assertEqual(1,1) # Test the Exceptions class TestException(unittest.TestCase): def setUp(self): self.monkeypatch = MonkeyPatch() # When the seperate item is different from "tab" or "comma". def test_InvalidSeperateElement(self): global COURSE with self.assertRaises(InvalidSeperateElement): success = COURSE.add_level_with_bulk("Test Level", "Hello\tXinChao", "a") # When the user requests unsupport languages generate audio -> Handled # This testcase will failed in Linux def test_LanguageError(self): global COURSE responses = { "Choose the voice number 1: ": "1", "Enter the number of voices you wish: ": "1", } self.monkeypatch.setattr("builtins.input", lambda msg : responses[msg]) COURSE.update_audio("unvalid language") # Raise Exception for Coverage def test_AddLevelException(self): with self.assertRaises(AddLevelError): raise AddLevelError(id="1",message="Test") # Raise Exception for Coverage def test_AddBulkException(self): with self.assertRaises(AddBulkError): raise AddBulkError(id="1",message="Test") def test_InputOutOfRangeException(self): with self.assertRaises(InputOutOfRange): responses = {"Make your choice: ": "99"} self.monkeypatch.setattr("builtins.input", lambda msg : responses[msg]) CLIENT.select_course() def test_TypeError(self): global COURSE success = COURSE.add_level_with_bulk("Test Level", "Hello\tXinChao", "\t") level = (COURSE.levels())[0] word = (level.get_words())[0] with self.assertRaises(TypeError): word.upload_audio(1) # Test SQLite # This case test for Windows def test_sync_database(db_conn,cmd): cur: sqlite3.Cursor = db_conn.cursor() cur.executescript(cmd) cur.close() db_conn.commit() global COURSE COURSE.sync_database("./course/course.db") level = (COURSE.levels())[-1] assert (level.name=="I can't say for sure") def test_remove_audio(): global COURSE level = (COURSE.levels())[-1] words = level.get_words() for word in words: word.remove_audio() word.upload_audio("./audio/audio.mp3") with open("./audio/audio.mp3","rb") as fp: audio = fp.read() word.upload_audio(audio) assert (1==1) class TestSQLite(unittest.TestCase): def test_SQLite_topic_to_bulk(self): with self.assertRaises(Exception): db = SQLite("./course/course.db") db.update_ipas() db.update_trans(src="en",dest="vi") db.topic_to_bulk(1,external=True) db.conn.close() def test_SQLite_topic_to_bulk2(self): db = SQLite("./course/course.db") bulk = db.topic_to_bulk(1,external=True,language="en") self.assertIsInstance(bulk,str) def test_ExceptionLanguageError(self): with self.assertRaises(LanguageError): db = SQLite("./course/course.db") db.topic_to_bulk(1,external=True,language="fr") db.conn.close()
StarcoderdataPython
8104775
# Date Imports from datetime import date # AGAGD Models Imports import agagd_core.models as agagd_models # AGAGD Django Tables Imports from agagd_core.tables.beta import ( GamesTable, PlayersInformationTable, PlayersOpponentTable, PlayersTournamentTable, ) # Django Imports from django.core.exceptions import ObjectDoesNotExist from django.db.models import Q from django.shortcuts import render # Django Tables 2 Imports from django_tables2 import RequestConfig def players_profile(request, player_id): player = agagd_models.Member.objects.get(member_id=player_id) player_games = agagd_models.Game.objects.filter( Q(pin_player_1__exact=player_id) | Q(pin_player_2__exact=player_id) ).order_by("-game_date") player_rating = agagd_models.Players.objects.filter( Q(pin_player__exact=player_id) ).values("pin_player", "rating", "sigma") # compute additional tables for opponents & tournament info. here # TODO: refactor this into something nicer. opponent_data = {} tourney_data = {} for game in player_games: try: t_dat = tourney_data.get(game.tournament_code.pk, {}) t_dat["tournament"] = game.tournament_code t_dat["won"] = t_dat.get("won", 0) t_dat["lost"] = t_dat.get("lost", 0) # Set default game_date to None game_date = None # Check for 0000-00-00 dates if game.game_date != u"0000-00-00": game_date = game.game_date t_dat["date"] = t_dat.get("date", game_date) op = game.player_other_than(player) opp_dat = opponent_data.get(op, {}) opp_dat["opponent"] = op opp_dat["total"] = opp_dat.get("total", 0) + 1 opp_dat["won"] = opp_dat.get("won", 0) opp_dat["lost"] = opp_dat.get("lost", 0) if game.won_by(player): opp_dat["won"] += 1 t_dat["won"] += 1 else: opp_dat["lost"] += 1 t_dat["lost"] += 1 opponent_data[op] = opp_dat tourney_data[game.tournament_code.pk] = t_dat except ObjectDoesNotExist: print("failing game_id: %s" % game.pk) opp_table = PlayersOpponentTable(opponent_data.values()) RequestConfig(request, paginate={"per_page": 10}).configure(opp_table) t_table = PlayersTournamentTable( tourney_data.values(), sorted( tourney_data.values(), key=lambda d: d.get("date", date.today()) or date.today(), reverse=True, ), prefix="ts_played", ) RequestConfig(request, paginate={"per_page": 10}).configure(t_table) player_games_table = GamesTable( player_games.values( "game_date", "handicap", "pin_player_1", "pin_player_2", "tournament_code", "result", ) ) player_information_dict = player.__dict__ player_information_dict["rating"] = player_rating[0]["rating"] players_information_table = PlayersInformationTable([player_information_dict]) return render( request, "beta.player_profile.html", { "page_title": "Player Profile | {}".format(player.full_name), "player": player, "player_rating": player_rating[0], "player_games_table": player_games_table, "players_information_table": players_information_table, "player_opponents_table": opp_table, "player_tournaments_table": t_table, }, )
StarcoderdataPython
3473737
from typing import List, Optional from django.shortcuts import reverse from iamheadless_publisher_site.pydantic_models import BaseItemContentsPydanticModel, BaseItemDataPydanticModel, BaseItemPydanticModel from .conf import settings from .urls import urlpatterns class FlatPageContentPydanticModel(BaseItemContentsPydanticModel): title: str slug: str language: str content: Optional[str] seo_keywords: Optional[str] seo_description: Optional[str] class FlatPageDataPydanticModel(BaseItemDataPydanticModel): contents: List[FlatPageContentPydanticModel] class FlatPagePydanticModel(BaseItemPydanticModel): _content_model = FlatPageContentPydanticModel _data_model = FlatPageDataPydanticModel _display_name_plural = 'flat pages' _display_name_singular = 'flat page' _item_type = 'flat_page' _searchable = True _browsable = True _urlpatterns = urlpatterns data: FlatPageDataPydanticModel def get_item_url(self, language): data = self.get_display_data(language) slug = self._content_model.get_slug(data) return reverse( settings.URLNAME_FLATPAGE, kwargs={ 'language': language, 'slug': slug, } ) @property def CONTENTS(self): return self.dict()['data']['contents']
StarcoderdataPython
179327
<gh_stars>1-10 from . import (control, demo, demographics, epi, interventions, timings, matrices)
StarcoderdataPython
5056501
""" Some helper functions for workspace stuff """ import logging import re import biokbase import biokbase.workspace from biokbase.workspace import client as WorkspaceClient g_log = logging.getLogger(__name__) # regex for parsing out workspace_id and object_id from # a "ws.{workspace}.{object}" string ws_regex = re.compile('^ws\.(?P<wsid>\d+)\.obj\.(?P<objid>\d+)') # regex for parsing out a user_id from a token user_id_regex = re.compile('^un=(?P<user_id>\w+)\|') # Exception for a malformed workspace ID see regex above class BadWorkspaceID(Exception): pass # Exception for a workspace object not found see regex above class BadWorkspaceID(Exception): pass class PermissionsError(WorkspaceClient.ServerError): """Raised if user does not have permission to access the workspace. """ @staticmethod def is_permissions_error(err): """Try to guess if the error string is a permission-denied error for the narrative (i.e. the workspace the narrative is in). """ pat = re.compile("\s*[Uu]ser \w+ may not \w+ workspace.*") return pat.match(err) is not None def __init__(self, name=None, code=None, message=None, **kw): WorkspaceClient.ServerError.__init__(self, name, code, message, **kw) # List of fields returned by the list_workspace_objects function list_ws_obj_fields = ['id','type','moddate','instance','command', 'lastmodifier','owner','workspace','ref','chsum', 'metadata','objid'] # The list_workspace_objects method has been deprecated, the # list_objects method is the current primary method for fetching # objects, and has a different field list list_objects_fields = ['objid', 'name', 'type', 'save_date', 'ver', 'saved_by', 'wsid', 'workspace', 'chsum', 'size', 'meta'] obj_field = dict(zip(list_objects_fields,range(len(list_objects_fields)))) # object type for a project tag object ws_tag_type = 'KBaseNarrative.Metadata' # object type for a project tag object ws_narrative_type = 'KBaseNarrative.Narrative' # object name for project tag ws_tag = {'project' : '_project'} def get_wsobj_meta(wsclient, objtype=ws_narrative_type, ws_id=None): """ Takes an initialized workspace client. Defaults to searching for Narrative types in any workspace that the token has at least read access to. If the ws field is specified then it will return the workspace metadata for only the workspace specified Returns a dictionary of object descriptions - the key is a workspace id of the form "ws.{workspace_id}.obj.{object_id}" and the values are dictionaries keyed on the list_ws_obj_field list above. Raises: PermissionsError, if access is denied """ try: if ws_id is None: res = wsclient.list_objects({'type' : objtype, 'includeMetadata' : 1}) else: res = wsclient.list_objects({'type' : objtype, 'includeMetadata' : 1, 'ids' : [ws_id] }) except WorkspaceClient.ServerError, err: if PermissionsError.is_permissions_error(err.message): raise PermissionsError(name=err.name, code=err.code, message=err.message, data=err.data) my_narratives = {} for obj in res: my_narratives["ws.%s.obj.%s" % (obj[obj_field['wsid']],obj[obj_field['objid']])] = dict(zip(list_objects_fields,obj)) return my_narratives def get_wsid(wsclient, workspace): """ When given a workspace name, returns the numeric ws_id """ try: ws_meta = wsclient.get_workspace_info({'workspace' : workspace}); except WorkspaceClient.ServerError, e: if e.message.find('not found') >= 0 or e.message.find('No workspace with name') >= 0: return(None) else: raise e return( ws_meta[0]) def alter_workspace_metadata(wsclient, ref, new_metadata={}, ws_id=None): """ This is just a wrapper for the workspace get_objects call. Takes an initialized workspace client and a workspace ID of the form "ws.{ws_id}.obj.{object id}" and returns the following: { 'data' : {actual data contained in the object}, 'metadata' : { a dictionary version of the object metadata }, ... all the fields that are normally returned in a ws ObjectData type } if type is not specified then an extra lookup for object metadata is required, this can be shortcut by passing in the object type """ if ws_id is None and ref is not None: match = ws_regex.match(ref) if not match: raise BadWorkspaceID("%s does not match workspace ID format ws.{workspace id}.obj.{object id}" % ws_id) ws_id = match.group(1) elif ws_id is None and ref is None: raise BadWorkspaceID("No workspace id or object reference given!") wsclient.alter_workspace_metadata({'wsi':{'id':ws_id}, 'new':new_metadata}) def get_wsobj(wsclient, ws_id, objtype=None): """ This is just a wrapper for the workspace get_objects call. Takes an initialized workspace client and a workspace ID of the form "ws.{ws_id}.obj.{object id}" and returns the following: { 'data' : {actual data contained in the object}, 'metadata' : { a dictionary version of the object metadata }, ... all the fields that are normally returned in a ws ObjectData type } if type is not specified then an extra lookup for object metadata is required, this can be shortcut by passing in the object type """ match = ws_regex.match( ws_id) if not match: raise BadWorkspaceID("%s does not match workspace ID format ws.{workspace id}.obj.{object id}" % ws_id) ws = match.group(1) objid = match.group(2) objs = wsclient.get_objects([dict( wsid=ws, objid=objid)]) if len(objs) < 1: raise BadWorkspaceID( "%s could not be found" % ws_id) elif len(objs) > 1: raise BadWorkspaceID( "%s non-unique! Weird!!!" % ws_id) res=objs[0] res['metadata'] = dict(zip(list_objects_fields,objs[0]['info'])) return res def delete_wsobj(wsclient, wsid, objid): """ Given a workspace client, and numeric workspace id and object id, delete it returns true on success, false otherwise """ try: wsclient.delete_objects( [{ 'wsid' : wsid, 'objid' : objid }] ) except WorkspaceClient.ServerError, e: raise e # return False return True # Write an object to the workspace, takes the workspace id, an object of the # type workspace.ObjectSaveData # typedef structure { # type_string type; # UnspecifiedObject data; # obj_name name; # obj_id objid; # usermeta meta; # list<ProvenanceAction> provenance; # boolean hidden; # } ObjectSaveData; def rename_wsobj(wsclient, identity, new_name): """ Given an object's identity, change that object's name. """ try: obj_info = wsclient.rename_object({ 'obj' : identity, 'new_name' : new_name }) except WorkspaceClient.ServerError, e: raise e return dict(zip(list_objects_fields, obj_info)) def put_wsobj(wsclient, ws_id, obj): try: ws_meta = wsclient.save_objects({ 'id' : ws_id, 'objects' : [obj] }) except: raise return dict(zip(list_objects_fields,ws_meta[0])) # Tag a workspace as a project, if there is an error, let it propagate up def check_project_tag(wsclient, ws_id): try: tag = wsclient.get_object_info( [{ 'wsid' : ws_id, 'name' : ws_tag['project'] }], 0); except WorkspaceClient.ServerError, e: # If it is a not found error, create it, otherwise reraise if e.message.find('not found') >= 0 or e.message.find('No object with name') >= 0: obj_save_data = { 'name' : ws_tag['project'], 'type' :ws_tag_type, 'data' : { 'description' : 'Tag! You\'re a project!'}, 'meta' : {}, 'provenance' : [], 'hidden' : 1} ws_meta = wsclient.save_objects( { 'id' : ws_id, 'objects' : [obj_save_data]}); else: raise e return True def get_user_id(wsclient): """Grab the userid from the token in the wsclient object This is a pretty brittle way to do things, and will need to be changed, eventually. """ try: token = wsclient._headers.get('AUTHORIZATION', None) if token is None: g_log.error("auth.error No 'AUTHORIZATION' key found " "in client headers: '{}'" .format(wsclient._headers)) return None match = user_id_regex.match(token) if match: return match.group(1) else: return None except Exception, e: g_log.error("Cannot get userid: {}".format(e)) raise e def check_homews(wsclient, user_id = None): """ Helper routine to make sure that the user's home workspace is built. Putting it here so that when/if it changes we only have a single place to change things. Takes a wsclient, and if it is authenticated, extracts the user_id from the token and will check for the existence of the home workspace and create it if necessary. Will pass along any exceptions. Will also make sure that it is tagged with a workspace_meta object named "_project" returns the workspace name and workspace id as a tuple Note that parsing the token from the wsclient object is brittle and should be changed! """ if user_id is None: user_id = get_user_id(wsclient) try: homews = "%s:home" % user_id workspace_identity = { 'workspace' : homews } ws_meta = wsclient.get_workspace_info( workspace_identity) except WorkspaceClient.ServerError, e: # If it is a not found error, create it, otherwise reraise if e.message.find('not found') >= 0 or e.message.find('No workspace with name') >= 0: ws_meta = wsclient.create_workspace({ 'workspace' : homews, 'globalread' : 'n', 'description' : 'User home workspace'}) elif e.message.find('deleted') >= 0: wsclient.undelete_workspace( { 'workspace' : homews}) ws_meta = wsclient.get_workspace_info( workspace_identity) else: raise e if ws_meta: # check_project_tag(wsclient, ws_meta[0]) # return the textual name and the numeric ws_id return ws_meta[1],ws_meta[0] else: raise Exception('Unable to find or create or undelete home workspace: %s' % homews)
StarcoderdataPython
12802768
import copy from typing import Optional, Collection, Any, Dict, Tuple from causalpy.bayesian_graphs.scm import ( SCM, NoiseGenerator, Assignment, IdentityAssignment, MaxAssignment, SignSqrtAssignment, SinAssignment, ) import networkx as nx import pandas as pd import numpy as np class SumAssignment(Assignment): def __init__(self, *assignments, offset: float = 0.0): super().__init__() self.assignment = assignments self.offset = offset self.coefficients = np.ones(len(assignments)) def __call__(self, noise, *args, **kwargs): args = self.parse_call_input(*args, **kwargs) return noise + self.coefficients @ args + self.offset def __len__(self): return len(self.coefficients) def function_str(self, variable_names: Optional[Collection[str]] = None): rep = "N" var_strs = [ f"{assignment.function_str([var])}" for assignment, var in zip(self.assignment, variable_names[1:]) ] if var_strs: rep += f" + {' + '.join(var_strs)}" return rep class ProductAssignment(Assignment): def __init__(self, *assignments, offset: float = 0.0): super().__init__() self.assignment = assignments self.offset = offset self.coefficients = np.ones(len(assignments)) def __call__(self, noise, *args, **kwargs): args = self.parse_call_input(*args, **kwargs) out = noise + self.offset if args: out += np.prod(args, axis=0) return out def __len__(self): return len(self.coefficients) def function_str(self, variable_names: Optional[Collection[str]] = None): rep = "N" var_strs = [ f"{assignment.function_str([var])}" for assignment, var in zip(self.assignment, variable_names[1:]) ] if var_strs: rep += f" + {' * '.join(var_strs)}" return rep class HeinzeData: _possible_values_ = dict( sample_size=[100, 200, 500, 2000, 5000], target=[f"X_{i}" for i in range(6)], noise_df=[2, 3, 5, 10, 20, 50, 100], multiplicative=[True, False], shift=[True, False], meanshift=[0, 0.1, 0.2, 0.5, 1, 2, 5, 10], strength=[0, 0.1, 0.2, 0.5, 1, 2, 5, 10], mechanism=[ IdentityAssignment, MaxAssignment, SignSqrtAssignment, SinAssignment, ], interventions=["all", "rand", "close"], ) def __init__( self, config: Optional[Dict[str, Any]] = None, seed: Optional[int] = None ): self.seed = seed self.rng = np.random.default_rng(self.seed) self.config = ( self.draw_config() if config is None else self.verify_config(config) ) self.scm = self.get_scm() self.intervention_values = dict() def verify_config(self, config: Dict[str, Any]): for key in config.keys(): if config[key] not in self._possible_values_[key]: raise ValueError( f"Value '{config[key]}' of key '{key}' not within range of allowed values." ) return config def draw_config(self): rng = np.random.default_rng(self.seed) poss_vals = self._possible_values_ config = dict() # uniform draws for param in self._possible_values_.keys(): config[param] = rng.choice(poss_vals[param]) return config def get_scm(self, noise_seed: Optional[int] = None): config = self.config assignment_map = dict() def get_seed(i): if noise_seed is not None: return noise_seed + i return None binary_op_assignment = ( ProductAssignment if config["multiplicative"] else SumAssignment ) mechanism = config["mechanism"] coeffs = dict() coeffs[(0, 1)] = 1 coeffs[(0, 2)] = 1 coeffs[(1, 2)] = -1 coeffs[(2, 3)] = -1 coeffs[(3, 5)] = -1 coeffs[(2, 5)] = 1 coeffs[(4, 5)] = 1 df = config["noise_df"] assignment_map["X_0"] = ( [], binary_op_assignment(), NoiseGenerator("standard_t", df=df, seed=get_seed(0)), ) assignment_map["X_1"] = ( ["X_0"], binary_op_assignment(mechanism(coefficient=coeffs[0, 1])), NoiseGenerator("standard_t", df=df, seed=get_seed(1)), ) assignment_map["X_2"] = ( ["X_0", "X_1"], binary_op_assignment( mechanism(coefficient=coeffs[0, 2]), mechanism(coefficient=coeffs[1, 2]) ), NoiseGenerator("standard_t", df=df, seed=get_seed(2)), ) assignment_map["X_3"] = ( ["X_2"], binary_op_assignment(mechanism(coefficient=coeffs[2, 3])), NoiseGenerator("standard_t", df=df, seed=get_seed(3)), ) assignment_map["X_4"] = ( [], binary_op_assignment(), NoiseGenerator("standard_t", df=df, seed=get_seed(4)), ) assignment_map["X_5"] = ( ["X_3", "X_2", "X_4"], binary_op_assignment( mechanism(coefficient=coeffs[3, 5]), mechanism(coefficient=coeffs[2, 5]), mechanism(coefficient=coeffs[4, 5]), ), NoiseGenerator("standard_t", df=df, seed=get_seed(5)), ) return SCM(assignment_map) def set_intervention_values(self, intervention_number: int = 1): try: return self.intervention_values[intervention_number] except KeyError: config = self.config interv_setting = config["interventions"] target = config["target"] meanshift = config["meanshift"] scale = config["strength"] if interv_setting == "all": variables = [var for var in self.scm.graph.nodes if var != target] values = ( self.rng.standard_t(size=len(variables), df=config["noise_df"]) * scale + meanshift ) elif interv_setting == "rand": parents = list(self.scm[target][0]) descendants = list( nx.algorithms.dag.descendants(self.scm.graph, target) ) parent = [self.rng.choice(parents)] if parents else [] descendant = [self.rng.choice(descendants)] if descendants else [] variables = parent + descendant values = ( self.rng.standard_t(size=len(variables), df=config["noise_df"]) * scale + meanshift ) else: parents = list(self.scm[target][0]) children = list(self.scm.graph.successors(target)) parent = [self.rng.choice(parents)] if parents else [] child = [self.rng.choice(children)] if children else [] variables = parent + child values = ( self.rng.standard_t(size=len(variables), df=config["noise_df"]) * scale + meanshift ) self.intervention_values[intervention_number] = variables, values def set_intervention(self, intervention_number: int): variables, values = self.intervention_values[intervention_number] if self.config["shift"]: new_assignments = { var: {"assignment": copy.deepcopy(self.scm[var][1]["assignment"])} for var in variables } for (var, items), value in zip(new_assignments.items(), values): items["assignment"].coefficient = value self.scm.intervention(interventions=new_assignments) else: self.scm.do_intervention(variables, values) def sample(self) -> Tuple[pd.DataFrame, str, np.ndarray]: self.set_intervention_values(1) self.set_intervention_values(2) sample_size = self.config["sample_size"] obs = [self.scm.sample(sample_size)] envs = [0] * sample_size vars = sorted(self.scm.get_variables()) for i in range(1, 3): self.set_intervention(i) obs.append(self.scm.sample(sample_size)[vars]) self.scm.undo_intervention() envs += [i] * sample_size obs = pd.concat(obs, sort=True) envs = np.array(envs) return obs, self.config["target"], envs
StarcoderdataPython
1916449
from unittest import result from pytesseract import Output import pytesseract import cv2 image = cv2.imread("images_0.jpg") x = 0 y = 0 w = 1080 h = 800 image = image[y: y+h,x: x+w] rgb = cv2.cvtColor(image,cv2.COLOR_BGR2RGB) results = pytesseract.image_to_data(rgb,output_type=Output.DICT,lang='chi_tra',config='--psm 11') print(results['text'])
StarcoderdataPython
3495041
class CAPostalCode: __slots__ = ['postal_code', 'city', 'place_names', 'province'] def __init__( self, postal_code, city, place_names, province ): self.postal_code = postal_code self.city = city self.place_names = place_names self.province = province
StarcoderdataPython
1820263
<filename>aioupbit/v1/__init__.py from __future__ import annotations from .aiohttp_client import * from .client import * from .constants import * from .values import * RestClient = AioHTTPRestClient
StarcoderdataPython
8092003
<gh_stars>10-100 import hoomd # Initialize the simulation. device = hoomd.device.CPU() sim = hoomd.Simulation(device=device) sim.create_state_from_gsd(filename='random.gsd') # Set the operations for a Lennard-Jones particle simulation. integrator = hoomd.md.Integrator(dt=0.005) cell = hoomd.md.nlist.Cell() lj = hoomd.md.pair.LJ(nlist=cell) lj.params[('A', 'A')] = dict(epsilon=1, sigma=1) lj.r_cut[('A', 'A')] = 2.5 integrator.forces.append(lj) nvt = hoomd.md.methods.NVT(kT=1.5, filter=hoomd.filter.All(), tau=1.0) integrator.methods.append(nvt) sim.operations.integrator = integrator # Instantiate a ThermodyanmicQuantities object to compute kinetic energy. thermodynamic_properties = hoomd.md.compute.ThermodynamicQuantities( filter=hoomd.filter.All()) sim.operations.computes.append(thermodynamic_properties) # Run the simulation. sim.run(1000) # Access the system kinetic energy on all ranks. kinetic_energy = thermodynamic_properties.kinetic_energy # Print the kinetic energy only on rank 0. if device.communicator.rank == 0: print(kinetic_energy)
StarcoderdataPython
313159
#! /usr/bin/env python """ Run this either with $ python -m paderbox.utils.strip_solution name_template.ipynb name_solution.ipynb or directly with $ paderbox.strip_solution name_template.ipynb name_solution.ipynb """ import re from pathlib import Path import fire import nbformat CODE_MAGIC_WORD = '# REPLACE' LATEX_MAGIC_WORD = '% REPLACE' def code_replace(source, cell_type='code'): """ Args: source: solution code cell_type: 'code', 'markdown' or 'raw' Returns: template code >>> code_replace('return 1. / (1 + np.exp(-x)) # REPLACE return ???') 'return ???' >>> print(code_replace( ... '''b = 1 ... a = 1. / (1 + np.exp(-x)) # REPLACE ... return 1. / (1 + np.exp(-x)) # REPLACE return ???''' ... )) b = 1 return ??? >>> print(code_replace( ... '''b = 1 ... a = 1. / (1 + np.exp(-x)) # REPLACE a = ... return 1. / (1 + np.exp(-x)) # REPLACE return ???''' ... )) b = 1 a = return ??? """ if cell_type in ['code', 'markdown']: MAGIC_WORD = { 'code': CODE_MAGIC_WORD, 'markdown': LATEX_MAGIC_WORD, }[cell_type] if MAGIC_WORD in source: new_source_lines = [] for line in source.split('\n'): if MAGIC_WORD in line: solution, template = line.split(MAGIC_WORD) # Remove leading whitespaces template = template.lstrip(' ') if template == '': continue whitespace = re.search('( *)', line).group(1) new_source_lines.append(whitespace + template.lstrip(' ')) else: new_source_lines.append(line) source = '\n'.join(new_source_lines) elif cell_type in ['raw']: pass else: raise TypeError(cell_type, source) return source def nb_replace(old_path, new_path, force=False, strip_output=False): """Remove the solution from a Jupyter notebook. python -m paderbox.utils.strip_solution _solution.ipynb _template.ipynb python -m paderbox.utils.strip_solution _solution.ipynb _template.ipynb --force python -m paderbox.utils.strip_solution _solution.ipynb _template.ipynb --strip-output python -m paderbox.utils.strip_solution _solution.ipynb _template.ipynb --force --strip-output Args: old_path: The input notebook with the ending `_solution.ipynb`. new_path: The output notebook with the ending `_template.ipynb`. force: If enabled allow to overwrite the an existing output notebook. strip_output: Whether to use nbstripout.strip_output to remove output cells from the notebook. For example, assume the following line is in a notebook: x = 10 # REPLACE x = ??? The result will then be: x = ??? The following example y = 42 # REPLACE y = # TODO q = 328 # REPLACE z = y * q # REPLACE will result in (Without an replacement the line will be deleted) y = # TODO In Markdown cells this code will search for the string `% REPLACE` instead of `# REPLACE`. Suggestion: Generate 4 files for the students: The solution and the generated template, where this function removed the solution. For both files you could generate an HTML preview, so they can view them without an jupyter server. The solution should contain executed cells, while the template shouldn't. Suggestion to produce all 4 files: $ name=<solutionNotebookPrefix> $ python -m paderbox.utils.strip_solution ${name}_solution.ipynb build/${name}_template.ipynb --force --strip-output $ jupyter nbconvert --to html build/${name}_template.ipynb $ cat ${name}_solution.ipynb | nbstripout > build/${name}_solution.ipynb $ jupyter nbconvert --execute --allow-errors --to html build/${name}_solution.ipynb """ old_path = Path(old_path) new_path = Path(new_path) assert old_path != new_path, (old_path, new_path) assert old_path.is_file(), f'{old_path} is not a file.' assert old_path.name.endswith('_solution.ipynb'), old_path assert new_path.name.endswith('_template.ipynb'), new_path if not force and new_path.is_file(): raise FileExistsError(f'{new_path} already exists.') nb = nbformat.read(str(old_path), nbformat.NO_CONVERT) replacements = 0 for _, cell in enumerate(nb['cells']): cell_source = code_replace(cell['source'], cell['cell_type']) if cell_source != cell['source']: replacements += 1 cell['source'] = cell_source if strip_output: import nbstripout nb = nbstripout.strip_output(nb, keep_count=False, keep_output=False) print(f'Replaced {replacements} lines of code.') nbformat.write(nb, str(new_path), nbformat.NO_CONVERT) def entry_point(): """Used by Fire library to create a source script.""" fire.Fire(nb_replace) if __name__ == '__main__': fire.Fire(nb_replace)
StarcoderdataPython
4920451
<reponame>kagemeka/atcoder-submissions import sys import typing import numba as nb import numpy as np @nb.njit def enumerate_fx() -> np.ndarray: a = np.array([1]) for _ in range(12): b = [] for x in a: for i in range(10): b.append(x * i) a = np.unique(np.array(b)) return a @nb.njit def f(x: int) -> int: p = 1 while x: x, r = divmod(x, 10) p *= r return p @nb.njit((nb.i8, nb.i8), cache=True) def solve(n: int, b: int) -> typing.NoReturn: cands = enumerate_fx() + b cnt = 0 for x in cands: cnt += 1 <= x <= n and x - f(x) == b print(cnt) def main() -> typing.NoReturn: n, b = map(int, input().split()) solve(n, b) main()
StarcoderdataPython
1928464
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2011 <NAME> <EMAIL> # import logging log = logging.getLogger('view') from PyQt4 import QtGui, QtCore, QtOpenGL from PyQt4.Qt import Qt from .. import model LINE_SIZE = 512 PAGE_SIZE = 4096 # LINE_SIZE=512*4 # PAGE_SIZE=4096*16 class MemoryMappingScene(QtGui.QGraphicsScene): ''' Binds a MemoryHandler mapping to a QGraphicsScene ''' def __init__(self, mapping, parent=None): QtGui.QGraphicsScene.__init__(self, parent) self.mapping = mapping class MemoryMappingView(QtGui.QGraphicsView): ''' We need to define our own QGraphicsView to play with. zoom-able QGraphicsView. from http://www.qtcentre.org/wiki/index.php?title=QGraphicsView:_Smooth_Panning_and_Zooming ''' # Holds the current centerpoint for the view, used for panning and zooming CurrentCenterPoint = QtCore.QPointF() # From panning the view LastPanPoint = QtCore.QPoint() def __init__(self, parent=None): QtGui.QGraphicsView.__init__(self, parent) self.setRenderHints( QtGui.QPainter.Antialiasing | QtGui.QPainter.SmoothPixmapTransform) # opengl ? ! # self.setViewport(QtOpenGL.QGLWidget(QtOpenGL.QGLFormat(QtOpenGL.QGL.SampleBuffers))) # self.setCursor(Qt.OpenHandCursor) self.setCursor(Qt.ArrowCursor) self.SetCenter( QtCore.QPointF( 0.0, 0.0)) # A modified version of centerOn(), handles special cases def loadMapping(self, mapping): # Set-up the scene scene = MemoryMappingScene(mapping, parent=self) self.setScene(scene) self.mapping = mapping # Set-up the view if mapping: # Populate the scene # self._debugFill(scene) self.drawPages(mapping) self.setSceneRect(0, 0, LINE_SIZE, (len(mapping) // LINE_SIZE) + 1) # draw a square around self.scene().addRect( 0, 0, LINE_SIZE, (len(mapping) // LINE_SIZE) + 1, QtGui.QPen( Qt.SolidLine)) log.debug( 'set sceneRect to %d,%d' % (LINE_SIZE, (len(mapping) // LINE_SIZE) + 1)) else: self.setSceneRect(0, 0, LINE_SIZE, LINE_SIZE) self.SetCenter( QtCore.QPointF( 0.0, 0.0)) # A modified version of centerOn(), handles special cases return def drawPages(self, mapping): ''' draw a page delimitor every PAGE_SIZE ''' pageSize = PAGE_SIZE # 15 is the mapping's size//PAGE_SIZE for y in xrange( PAGE_SIZE // LINE_SIZE, (len(mapping) // LINE_SIZE) - 1, PAGE_SIZE // LINE_SIZE): self.scene().addLine(0, y, LINE_SIZE, y, QtGui.QPen(Qt.DotLine)) def _debugFill(self, scene): for x in xrange(0, LINE_SIZE, 25): for y in xrange(0, LINE_SIZE, 25): if (x % 100 == 0)and (y % 100 == 0): scene.addRect(x, y, 2, 2) pointString = QtCore.QString() stream = QtCore.QTextStream(pointString) stream << "(" << x << "," << y << ")" item = scene.addText(pointString) item.setPos(x, y) else: scene.addRect(x, y, 1, 1) def GetScene(self): return self.scene() def GetCenter(self): return self.CurrentCenterPoint ''' * Sets the current centerpoint. Also updates the scene's center point. * Unlike centerOn, which has no way of getting the floating point center * back, SetCenter() stores the center point. It also handles the special * sidebar case. This function will claim the centerPoint to sceneRec ie. * the centerPoint must be within the sceneRec. ''' # Set the current centerpoint in the def SetCenter(self, centerPoint): # Get the rectangle of the visible area in scene coords visibleArea = self.mapToScene(self.rect()).boundingRect() # Get the scene area sceneBounds = self.sceneRect() boundX = visibleArea.width() / 2.0 boundY = visibleArea.height() / 2.0 boundWidth = sceneBounds.width() - 2.0 * boundX boundHeight = sceneBounds.height() - 2.0 * boundY # The max boundary that the centerPoint can be to bounds = QtCore.QRectF(boundX, boundY, boundWidth, boundHeight) if (bounds.contains(centerPoint)): # We are within the bounds self.CurrentCenterPoint = centerPoint else: # We need to clamp or use the center of the screen if(visibleArea.contains(sceneBounds)): # Use the center of scene ie. we can see the whole scene self.CurrentCenterPoint = sceneBounds.center() else: self.CurrentCenterPoint = centerPoint # We need to clamp the center. The centerPoint is too large if(centerPoint.x() > bounds.x() + bounds.width()): self.CurrentCenterPoint.setX(bounds.x() + bounds.width()) elif (centerPoint.x() < bounds.x()): self.CurrentCenterPoint.setX(bounds.x()) if(centerPoint.y() > bounds.y() + bounds.height()): self.CurrentCenterPoint.setY(bounds.y() + bounds.height()) elif (centerPoint.y() < bounds.y()): self.CurrentCenterPoint.setY(bounds.y()) # Update the scrollbars self.centerOn(self.CurrentCenterPoint) return ''' * Handles when the mouse button is pressed ''' def mousePressEvent(self, event): ''' todo wierd, quand pointers et nullwords sont affiches, on ne peut plus selecter le pointer.. ca tombe sur l'itemgroup des null words. ''' # For panning the view self.LastPanPoint = event.pos() self.setCursor(Qt.ClosedHandCursor) item = self.itemAt(event.pos()) log.debug('Mouse press on ' + str(item)) if item is None: return item.setSelected(True) pitem = item.parentItem() if pitem is None: # no parent item, that must be lonely.... if self.mapping: # read mapping value addr = event.pos().y() * LINE_SIZE + event.pos().x() value = self.mapping.read_word(self.mapping.start + addr) log.debug('@0x%x: 0x%x' % (self.mapping.start + addr, value)) else: # parent item, check for haystack types log.debug('Mouse press on parent item ' + str(pitem)) if hasattr(pitem, 'value') and model.isRegistered(pitem.value): log.debug('showing info for %s' % (pitem)) # update info view self.parent().showInfo(pitem) elif hasattr(pitem, 'onSelect'): # print status for pointers and nulls log.debug('running parent onSelect') pitem.onSelect() elif hasattr(item, 'onSelect'): log.debug('running item onSelect') pitem.onSelect() else: log.debug('%s has no onSelect method' % item) return ''' * Handles when the mouse button is released ''' def mouseReleaseEvent(self, event): # self.setCursor(Qt.OpenHandCursor) self.setCursor(Qt.ArrowCursor) self.LastPanPoint = QtCore.QPoint() return ''' *Handles the mouse move event ''' def mouseMoveEvent(self, event): if (not self.LastPanPoint.isNull()): # Get how much we panned delta = self.mapToScene( self.LastPanPoint) - self.mapToScene(event.pos()) self.LastPanPoint = event.pos() # Update the center ie. do the pan self.SetCenter(self.GetCenter() + delta) return ''' * Zoom the view in and out. ''' def wheelEvent(self, event): # Get the position of the mouse before scaling, in scene coords pointBeforeScale = QtCore.QPointF(self.mapToScene(event.pos())) # Get the original screen centerpoint # CurrentCenterPoint; //(visRect.center()); screenCenter = self.GetCenter() # Scale the view ie. do the zoom scaleFactor = 1.15 # How fast we zoom if(event.delta() > 0): # Zoom in self.scale(scaleFactor, scaleFactor) else: # Zooming out self.scale(1.0 / scaleFactor, 1.0 / scaleFactor) # Get the position after scaling, in scene coords pointAfterScale = QtCore.QPointF(self.mapToScene(event.pos())) # Get the offset of how the screen moved offset = pointBeforeScale - pointAfterScale # Adjust to the new center for correct zooming newCenter = screenCenter + offset self.SetCenter(newCenter) # QPointF return ''' * Need to update the center so there is no jolt in the * interaction after resizing the widget. ''' def resizeEvent(self, event): # Get the rectangle of the visible area in scene coords visibleArea = self.mapToScene(self.rect()).boundingRect() self.SetCenter(visibleArea.center()) # Call the subclass resize so the scrollbars are updated correctly super(QtGui.QGraphicsView, self).resizeEvent(event) return
StarcoderdataPython
3431912
<gh_stars>1-10 import os import requests import json import threading import copy import common from habitica import Habitica from datetime import datetime, timezone, timedelta import leancloud from leancloud import LeanCloudError from lc.api import LC # 提供不背单词基本操作 class GitHub(object): """docstring for GitHub""" # 单例模式加锁 _instance_lock = threading.Lock() def __init__(self): env_list = ['GITHUB_USERNAME', 'GITHUB_SECRET'] all_right, no_env = common.check_env(env_list) if not all_right: raise Exception("未设置必要环境变量 %s" % no_env) if not hasattr(self, 'habit_name'): self.habit_name = LC().get_habit_name_by_project_name("GitHub") if not hasattr(self, 'habit_id'): self.habit_id = Habitica().get_habitica_habit_id_by_name(self.habit_name) if not hasattr(self, 'secret'): self.secret = os.getenv("GITHUB_SECRET") if not hasattr(self, 'username'): self.username = os.getenv("GITHUB_USERNAME") if not hasattr(self, 'headers'): self.headers= { "Accept" : "application/vnd.github.v3+json" } # 单例模式实现 def __new__(cls, *args, **kwargs): if not hasattr(cls, '_instance'): with GitHub._instance_lock: if not hasattr(cls, '_instance'): GitHub._instance = super().__new__(cls) return GitHub._instance # 读取 GitHub 当天的数据并解析获取正式数据 def read_github_data(self, github_json): res = [] for item in github_json: if item['type'] != 'PushEvent': continue data = { 'pushId' : item['payload']['push_id'], 'date' : common.get_china_now(), 'repo' : item['repo']['name'], 'size' : item['payload']['size'], 'commits' : item['payload']['commits'], } res.append(data) return res # 获取 GitHub 最近的数据(默认30条) def get_github_data(self): url = "https://api.github.com/users/PriateXYF/events" github_res = requests.get(url, auth=(self.username, self.secret), headers=self.headers) github_json = json.loads(github_res.text) return github_json # 获取在 leancloud 的最近50条 GitHub 数据 def get_latest_lc_data(self, limit = 50): # now = datetime.utcnow().replace(tzinfo=timezone.utc).astimezone(timezone(timedelta(hours=0))) - timedelta(days=days) query = leancloud.Query('GitHub') query.descending('date') # query.greater_than_or_equal_to('date', now) query.limit(limit) lc_list = None try: lc_list = query.find() except LeanCloudError as e: if e.code == 101: return [] data_list = [] for item in lc_list: data = { 'id' : item.id, 'pushId' : item.get('pushId'), 'date' : item.get('data'), 'repo' : item.get('repo'), 'size' : item.get('size'), 'commits' : item.get('commits'), 'oldUser' : item.get('oldUser'), 'newUser' : item.get('newUser'), 'diffUser' : item.get('diffUser'), 'info' : item.get('info'), } data_list.append(data) return data_list # 获取leancloud数据 def get_lc_data(self, page = 0): query = leancloud.Query('GitHub') query.descending('date') query.limit(10) query.skip(page * 10) lc_list = None try: lc_list = query.find() except LeanCloudError as e: if e.code == 101: return [] data_list = [] for item in lc_list: data = { 'id' : item.id, 'pushId' : item.get('pushId'), 'date' : item.get('date'), 'repo' : item.get('repo'), 'size' : item.get('size'), 'commits' : item.get('commits'), 'oldUser' : item.get('oldUser'), 'newUser' : item.get('newUser'), 'diffUser' : item.get('diffUser'), 'info' : item.get('info'), } data_list.append(data) return data_list def set_lc_data(self, github_data, OldUser, NewUser, DiffUser): now = common.get_china_now() TodayGitHub = leancloud.Object.extend('GitHub') today_github = TodayGitHub() today_github.set('pushId', github_data['pushId']) today_github.set('repo', github_data['repo']) today_github.set('size', github_data['size']) today_github.set('commits', github_data['commits']) today_github.set('oldUser', OldUser.toJSON()) today_github.set('newUser', NewUser.toJSON()) today_github.set('diffUser', DiffUser.toJSON()) today_github.set('info', DiffUser.get_diff_info()) today_github.set('date', now) today_github.save() # 获取已完成habit与现有的差异 def get_today_lc_diff(self): github_data_list = self.get_github_data() github_data_list = self.read_github_data(github_data_list) latest_lc_data_list = self.get_latest_lc_data() res_list = [] # print(GitHub_data) for github_data in github_data_list: flag = False for lc_data in latest_lc_data_list: # 如果 lc 中已有数据 跳过 if lc_data['pushId'] == github_data['pushId']: flag = True break if flag: continue res_list.append(github_data) return res_list # 每日导出数据到habitica def habitica_daily_export(self): today_diff_list = self.get_today_lc_diff() hc = Habitica() OldUser = hc.get_habitica_user() NewUser = copy.copy(OldUser) TrueOldUser = copy.copy(OldUser) res = "你还没有新的GiHub提交哦 ! Coding Now!" if len(today_diff_list) != 0: for github_data in today_diff_list: for temp in github_data['commits']: NewUser = hc.do_habitica_habit_by_id(self.habit_id) DiffUser = NewUser - OldUser self.set_lc_data(github_data, OldUser, NewUser, DiffUser) OldUser = NewUser DiffUser = NewUser - TrueOldUser common.send_push_plus("你的 GitHub 已导入 Habitica !", DiffUser.get_diff_info()) res = DiffUser.get_diff_info() return res, len(today_diff_list)
StarcoderdataPython
5034126
from atgql.pyutils.did_you_mean import did_you_mean def test_does_accept_an_empty_list(): assert did_you_mean([]) == '' def test_handles_single_suggestion(): assert did_you_mean(['A']) == ' Did you mean "A"?' def test_handles_two_suggestions(): assert did_you_mean(['A', 'B']) == ' Did you mean "A" or "B"?' def test_handles_multiple_suggestions(): assert did_you_mean(['A', 'B', 'C']) == ' Did you mean "A", "B", or "C"?' def test_limits_to_five_suggestions(): assert ( did_you_mean(['A', 'B', 'C', 'D', 'E', 'F']) == ' Did you mean "A", "B", "C", "D", or "E"?' ) def test_adds_sub_message(): assert did_you_mean('the letter', ['A']) == ' Did you mean the letter "A"?'
StarcoderdataPython
4934171
#!/usr/bin/env python import torch class RobotModel(object): def __init__(self, dofs, nlinks, wksp_dim, state_dim, sphere_radii = [], batch_size=1, num_traj_states=1, use_cuda=False): self.use_cuda = torch.cuda.is_available() if use_cuda else False self.device = torch.device('cuda') if self.use_cuda else torch.device('cpu') self.dofs =dofs self.nlinks =nlinks self.wksp_dim =wksp_dim self.state_dim =state_dim self.sphere_radii =sphere_radii self.batch_size = batch_size self.num_traj_states = num_traj_states def forward_kinematics(self, pose_config, vel_config=None): return NotImplementedError def get_sphere_centers(self, pose_config): return NotImplementedError def get_sphere_radii(self): return self.sphere_radii
StarcoderdataPython
5190488
<reponame>marcottelab/NuevoTx<gh_stars>0 #!/usr/bin/env python3 import gzip import sys #filename_fa = 'Karsenia_koreana.prot.select.2021_07.fa' #filename_bp = 'Karsenia_koreana.prot.select.2021_07.MODtree_ens100_2021_05.dmnd_bp_tbl6.gz' #sp_code = 'KARKO' filename_fa = sys.argv[1] filename_bp = sys.argv[2] sp_code = sys.argv[3] q_best = dict() t_best = dict() gencode_best = dict() final_list = dict() seq_list = dict() f_fa = open(filename_fa, 'r') if filename_fa.endswith('.gz'): f_fa = gzip.open(filename_fa, 'rt') for line in f_fa: if line.startswith('>'): tmp_h = line.strip().lstrip('>') tmp_h_id = tmp_h.split()[0] seq_list[tmp_h_id] = {'h': tmp_h, 'seq': ''} else: seq_list[tmp_h_id]['seq'] += line.strip() f_fa.close() f_bp = open(filename_bp, 'rt') if filename_bp.endswith('.gz'): f_bp = gzip.open(filename_bp, 'rt') for line in f_bp: tokens = line.strip().split("\t") q_id = tokens[0] t_id = tokens[1] tmp_bits = float(tokens[-1]) if q_id not in q_best: q_best[q_id] = {'t_id': t_id, 'bits': tmp_bits} elif q_best[q_id]['bits'] < tmp_bits: q_best[q_id] = {'t_id': t_id, 'bits': tmp_bits} if t_id not in t_best: t_best[t_id] = {'q_id': q_id, 'bits': tmp_bits} elif t_best[t_id]['bits'] < tmp_bits: t_best[t_id] = {'q_id': q_id, 'bits': tmp_bits} if t_id.find('-GENCODE') >= 0: if t_id not in gencode_best: gencode_best[t_id] = {'q_id': q_id, 'bits': tmp_bits} elif gencode_best[t_id]['bits'] < tmp_bits: gencode_best[t_id] = {'q_id': q_id, 'bits': tmp_bits} f_bp.close() def is_good_name(tmp_name): if tmp_name.upper() == 'NOTAVAIL': return False if tmp_name.find('SI_DKEY') >= 0: return False if sum(c.isdigit() for c in tmp_name) > 4: if tmp_name.startswith('ZNF') or tmp_name.startswith('SLC'): return True else: #print("Wrong name", tmp_name) return False return True for tmp_q_id, tmp_q in q_best.items(): tmp_t = tmp_q['t_id'] family_id = tmp_t.split('|')[0] family_class = tmp_t.split('|')[-1] gene_name = tmp_t.split('|')[2].upper() if not is_good_name(gene_name): gene_name = 'NotAvail' if family_class in ['IG', 'OR']: final_list[tmp_q_id] = '%s|%s|%s|%s|%s' % (family_id, sp_code, gene_name, tmp_q_id, family_class) elif family_class.startswith('single_'): final_list[tmp_q_id] = '%s|%s|%s|%s|%s' % (family_id, sp_code, gene_name, tmp_q_id, family_class) elif family_class == 'noname': final_list[tmp_q_id] = '%s|%s|%s|%s|%s' % (family_id, sp_code, gene_name, tmp_q_id, family_class) sys.stderr.write('Prefilter: %d \n' % len(final_list)) name_best = dict() name_list = dict() for tmp_t_id, tmp_t in gencode_best.items(): tmp_name = tmp_t_id.split('|')[2].upper() tmp_q_id = tmp_t['q_id'] tmp_bits = tmp_t['bits'] if tmp_q_id in final_list: continue if is_good_name(tmp_name): if tmp_name not in name_best: name_list[tmp_name] = [] name_best[tmp_name] = {'q_id': tmp_q_id, 't_id': tmp_t_id, 'bits': tmp_bits} if name_best[tmp_name]['bits'] < tmp_bits: name_best[tmp_name] = {'q_id': tmp_q_id, 't_id': tmp_t_id, 'bits': tmp_bits} for tmp_name in name_best.keys(): tmp_q_id = name_best[tmp_name]['q_id'] tmp_t_id = name_best[tmp_name]['t_id'] family_id = tmp_t_id.split('|')[0] family_class = tmp_t_id.split('|')[-1] final_list[tmp_q_id] = '%s|%s|%s|%s|%s' % (family_id, sp_code, tmp_name, tmp_q_id, family_class) sys.stderr.write('Prefilter+Named: %d \n' % len(final_list)) final_family_list = [x.split('|')[0] for x in final_list.values()] for tmp_q_id, tmp_q in q_best.items(): tmp_t_id = tmp_q['t_id'] family_id = tmp_q['t_id'].split('|')[0] family_class = tmp_q['t_id'].split('|')[-1] if family_id not in final_family_list: tmp_name = tmp_t_id.split('|')[2].upper() if not is_good_name(tmp_name): tmp_name = 'NotAvail' final_list[tmp_q_id] = '%s|%s|%s|%s|%s' % (family_id, sp_code, tmp_name, tmp_q_id, family_class) sys.stderr.write('Prefilter+Named+Draft: %d \n' % len(final_list)) last_idx = 0 print("#tx_ID\tprot_ID\tfamily_ID\tfamily_class\tgene_name\torig_ID\tExtra") for tmp_old_h, tmp_new_h in final_list.items(): last_idx += 1 tx_id = 'AB%sT%07d' % (sp_code, last_idx) prot_id = 'AB%sP%07d' % (sp_code, last_idx) new_tokens = tmp_new_h.split('|') family_id = new_tokens[0] gene_name = new_tokens[2] old_id = new_tokens[3] family_class = new_tokens[4] tmp_extra = seq_list[tmp_old_h]['h'].replace(tmp_old_h, '') print("%s\t%s\t%s\t%s\t%s\t%s\t%s" % (tx_id, prot_id, family_id, family_class, gene_name, tmp_old_h, tmp_extra)) #tmp_seq = seq_list[tmp_old_h]['seq'] #print(">%s %s\n%s" % (tmp_new_h, tmp_extra, tmp_seq))
StarcoderdataPython
1893925
from ctypes import sizeof # https://www.csie.ntu.edu.tw/~b03902082/codebrowser/pbrt/include/asm-generic/ioctl.h.html # and # https://stackoverflow.com/questions/20500947/what-is-the-equivalent-of-the-c-ior-function-in-python _IOC_NRBITS = 8 _IOC_TYPEBITS = 8 _IOC_SIZEBITS = 14 _IOC_DIRBITS = 2 _IOC_NRSHIFT = 0 _IOC_TYPESHIFT = _IOC_NRSHIFT + _IOC_NRBITS _IOC_SIZESHIFT = _IOC_TYPESHIFT + _IOC_TYPEBITS _IOC_DIRSHIFT = _IOC_SIZESHIFT + _IOC_SIZEBITS _IOC_NONE = 0 _IOC_WRITE = 1 _IOC_READ = 2 def _IOC(direction, type_, nr, size): return ( (direction << _IOC_DIRSHIFT) | (ord(type_) << _IOC_TYPESHIFT) | (nr << _IOC_NRSHIFT) | (size << _IOC_SIZESHIFT) ) def _IO(g, n): return _IOC(_IOC_NONE, g, n, 0) def _IOR(g, n, t): return _IOC(_IOC_READ, g, n, sizeof(t)) def _IOW(g, n, t): return _IOC(_IOC_WRITE, g, n, sizeof(t)) def _IOWR(g, n, t): return _IOC(_IOC_READ | _IOC_WRITE, g, n, sizeof(t))
StarcoderdataPython
4990382
<reponame>DaerusX/jupyterlab-data-visualization<gh_stars>1-10 # Thisdataframes=Nonethon script. # Press Shift+F10 to execute it or replace it with your code. # Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings. from datavalidator.handlers.statistics_handler import StatisticsHandler from datavalidator.handlers.convert_handler import ConvertHandler def data_visualize(dataframes): proto = StatisticsHandler().ProtoFromDataFrames(dataframes) ConvertHandler().data_convert(proto)
StarcoderdataPython
9722543
# Copyright 2016, <NAME>, mailto:<EMAIL> # # Python tests originally created or extracted from other peoples work. The # parts were too small to be protected. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function def simple_comparisons(x, y): if 'a' <= x <= y <= 'z': print("One") if 'a' <= x <= 'z': print("Two") if 'a' <= x > 'z': print("Three") print("Simple comparisons:") simple_comparisons('c', 'd') def side_effect(): print("<side_effect>") return 7 def side_effect_comparisons(): print("Should have side effect:") print(1 < side_effect() < 9) print("Should not have side effect due to short circuit:") print(3 < 2 < side_effect() < 9) print("Check for expected side effects only:") side_effect_comparisons() def function_torture_is(): a = (1, 2, 3) for x in a: for y in a: for z in a: print(x, y, z, ':', x is y is z, x is not y is not z) function_torture_is() print("Check if lambda can have expression chains:", end = "") def function_lambda_with_chain(): a = (1, 2, 3) x = lambda x : x[0] < x[1] < x[2] print("lambda result is", x(a)) function_lambda_with_chain() print("Check if generators can have expression chains:", end = "") def generator_function_with_chain(): x = (1, 2, 3) yield x[0] < x[1] < x[2] print(list(generator_function_with_chain())) print("Check if list contractions can have expression chains:", end = "") def contraction_with_chain(): return [ x[0] < x[1] < x[2] for x in [(1, 2, 3) ] ] print(contraction_with_chain()) print("Check if generator expressions can have expression chains:", end = "") def genexpr_with_chain(): return ( x[0] < x[1] < x[2] for x in [(1, 2, 3) ] ) print(list(genexpr_with_chain())) print("Check if class bodies can have expression chains:", end = "") class class_with_chain: x = (1, 2, 3) print(x[0] < x[1] < x[2]) x = (1, 2, 3) print(x[0] < x[1] < x[2]) class CustomOps(int): def __lt__(self, other): print("enter <", self, other) return True def __gt__(self, other): print("enter >", self, other) return False print("Custom ops, to enforce chain eval order and short circuit:", end = "") print(CustomOps(7) < CustomOps(8) > CustomOps(6)) print("Custom ops, doing short circuit:", end = "") print(CustomOps(8) > CustomOps(7) < CustomOps(6)) def inOperatorChain(): print("In operator chains:") print(3 in [3,4] in [[3,4]]) print(3 in [3,4] not in [[3,4]]) if 3 in [3,4] in [[3,4]]: print("Yes") else: print("No") if 3 in [3,4] not in [[3,4]]: print("Yes") else: print("No") inOperatorChain() # Make sure the values are called and order is correct: class A(object): def __init__(self, name, value): self.name = name self.value = value def __repr__(self): return "<Value %s %d>" % (self.name, self.value) def __lt__(self, other): print("less than called for:", self, other, self.value, other.value, self.value < other.value) if self.value < other.value: print("good") return 7 else: print("bad") return 0 a = A('a',1) b = A('b',2) c = A('c',0) print(a < b < c) print('*' * 80) a = A('a',2) b = A('b',1) c = A('c',0) print(a < b < c)
StarcoderdataPython
8057569
import logging import time import requests import six.moves.urllib.parse as urlparse from .. import SSS_VERSION from .. import SSS_FORMAT from .. import ACTION_PREFIX from .. import client from ..common import constants from ..common import exceptions from ..common import serializer from ..common import utils from ..i18n import _ from datetime import datetime _logger = logging.getLogger(__name__) def exception_handler_v10(status_code, error_content): """Exception handler for API v1.0 client. This routine generates the appropriate SSS exception according to the contents of the response body. :param status_code: HTTP error status code :param error_content: deserialized body of error response """ error_dict = None if isinstance(error_content, dict): error_dict = error_content.get('SSSError') # Find real error type bad_err_error_flag = False if error_dict: # If SSS key is found, it will definitely contain # a 'message' and 'type' keys? try: error_type = error_dict['type'] error_message = error_dict['message'] if error_dict['detail']: error_message += "\n" + error_dict['detail'] except Exception: bad_err_error_flag = True if not bad_err_error_flag: # If corresponding exception is defined, use it. client_exc = getattr(exceptions, '%sClient' % error_type, None) # Otherwise look up per status-code client exception if not client_exc: client_exc = exceptions.HTTP_EXCEPTION_MAP.get(status_code) if client_exc: raise client_exc(message=error_message, status_code=status_code) else: raise exceptions.SSSClientException( status_code=status_code, message=error_message) else: raise exceptions.SSSClientException(status_code=status_code, message=error_dict) else: message = None if isinstance(error_content, dict): message = error_content.get('message') if message: raise exceptions.SSSClientException(status_code=status_code, message=message) # If we end up here the exception was not a neutron error msg = "%s-%s" % (status_code, error_content) raise exceptions.SSSClientException(status_code=status_code, message=msg) class APIParamsCall(object): """A Decorator to add support for format and tenant overriding and filters. """ def __init__(self, function): self.function = function def __get__(self, instance, owner): def with_params(*args, **kwargs): _format = instance.format if 'format' in kwargs: instance.format = kwargs['format'] ret = self.function(instance, *args, **kwargs) instance.format = _format return ret return with_params class ClientBase(object): """Client for the OpenStack SSS v1.0 API. :param string username: Username for authentication. (optional) :param string user_id: User ID for authentication. (optional) :param string password: Password for authentication. (optional) :param string token: Token for authentication. (optional) :param string tenant_name: Tenant name. (optional) :param string tenant_id: Tenant id. (optional) :param string auth_strategy: 'keystone' by default, 'noauth' for no authentication against keystone. (optional) :param string auth_url: Keystone service endpoint for authorization. :param string service_type: Network service type to pull from the keystone catalog (e.g. 'network') (optional) :param string endpoint_type: Network service endpoint type to pull from the keystone catalog (e.g. 'publicURL', 'internalURL', or 'adminURL') (optional) :param string region_name: Name of a region to select when choosing an endpoint from the service catalog. :param string endpoint_url: A user-supplied endpoint URL for the neutron service. Lazy-authentication is possible for API service calls if endpoint is set at instantiation.(optional) :param integer timeout: Allows customization of the timeout for client http requests. (optional) :param bool insecure: SSL certificate validation. (optional) :param bool log_credentials: Allow for logging of passwords or not. Defaults to False. (optional) :param string ca_cert: SSL CA bundle file to use. (optional) :param integer retries: How many times idempotent (GET, PUT, DELETE) requests to SSS server should be retried if they fail (default: 0). :param bool raise_errors: If True then exceptions caused by connection failure are propagated to the caller. (default: True) :param session: Keystone client auth session to use. (optional) :param auth: Keystone auth plugin to use. (optional) Example:: from sssclient.v1_0 import client sss = client.Client(username=USER, password=<PASSWORD>, tenant_name=TENANT_NAME, auth_url=KEYSTONE_URL) nets = sss.list_networks() ... """ # API has no way to report plurals, so we have to hard code them # This variable should be overridden by a child class. EXTED_PLURALS = {} def __init__(self, **kwargs): """Initialize a new client for the SSS v1.0 API.""" super(ClientBase, self).__init__() self.retries = kwargs.pop('retries', 0) self.raise_errors = kwargs.pop('raise_errors', True) self.httpclient = client.construct_http_client(**kwargs) self.version = SSS_VERSION self.format = SSS_FORMAT self.action_prefix = ACTION_PREFIX self.retry_interval = 1 def _handle_fault_response(self, status_code, response_body): # Create exception with HTTP status code and message _logger.debug("Error message: %s", response_body) # Add deserialized error message to exception arguments try: des_error_body = self.deserialize(response_body, status_code) except Exception: # If unable to deserialized body it is probably not a # SSS error des_error_body = {'message': response_body} # Raise the appropriate exception exception_handler_v10(status_code, des_error_body) def do_request(self, method, action, body=None, headers=None, params=None): # Add format and tenant_id # action += ".%s" % self.format if ACTION_PREFIX: action = self.action_prefix + action # action = self.action_prefix + action if type(params) is dict and params: params = utils.safe_encode_dict(params) action += '?' + urlparse.urlencode(params, doseq=1) if body: body = self.serialize(body) resp, replybody = self.httpclient.do_request( action, method, body=body, content_type=self.content_type()) status_code = resp.status_code if status_code in (requests.codes.ok, requests.codes.created, requests.codes.accepted, requests.codes.no_content): return self.deserialize(replybody, status_code) else: if not replybody: replybody = resp.reason self._handle_fault_response(status_code, replybody) def get_auth_info(self): return self.httpclient.get_auth_info() def serialize(self, data): """Serializes a dictionary into either XML or JSON. A dictionary with a single key can be passed and it can contain any structure. """ if data is None: return None elif type(data) is dict: return serializer.Serializer( self.get_attr_metadata()).serialize(data, self.content_type()) else: raise Exception(_("Unable to serialize object of type = '%s'") % type(data)) def deserialize(self, data, status_code): """Deserializes an XML or JSON string into a dictionary.""" if status_code == 204: return data return serializer.Serializer(self.get_attr_metadata()).deserialize( data, self.content_type())['body'] def get_attr_metadata(self): if self.format == 'json': return {} old_request_format = self.format self.format = 'json' exts = self.list_extensions()['extensions'] self.format = old_request_format ns = dict([(ext['alias'], ext['namespace']) for ext in exts]) self.EXTED_PLURALS.update(constants.PLURALS) return {'plurals': self.EXTED_PLURALS, 'xmlns': constants.XML_NS_V20, constants.EXT_NS: ns} def content_type(self, _format=None): """Returns the mime-type for either 'xml' or 'json'. Defaults to the currently set format. """ _format = _format or self.format return "application/%s" % (_format) def retry_request(self, method, action, body=None, headers=None, params=None): """Call do_request with the default retry configuration. Only idempotent requests should retry failed connection attempts. :raises: ConnectionFailed if the maximum # of retries is exceeded """ max_attempts = self.retries + 1 for i in range(max_attempts): try: return self.do_request(method, action, body=body, headers=headers, params=params) except exceptions.ConnectionFailed: # Exception has already been logged by do_request() if i < self.retries: _logger.debug('Retrying connection to BHEC and Colocation service') time.sleep(self.retry_interval) elif self.raise_errors: raise if self.retries: msg = (_("Failed to connect to SSS server after %d attempts") % max_attempts) else: msg = _("Failed to connect SSS server") raise exceptions.ConnectionFailed(reason=msg) def delete(self, action, body=None, headers=None, params=None): return self.retry_request("DELETE", action, body=body, headers=headers, params=params) def get(self, action, body=None, headers=None, params=None): return self.retry_request("GET", action, body=body, headers=headers, params=params) def post(self, action, body=None, headers=None, params=None): # Do not retry POST requests to avoid the orphan objects problem. return self.do_request("POST", action, body=body, headers=headers, params=params) def put(self, action, body=None, headers=None, params=None): return self.retry_request("PUT", action, body=body, headers=headers, params=params) def list(self, collection, path, retrieve_all=True, **params): if retrieve_all: res = [] for r in self._pagination(collection, path, **params): res.extend(r[collection]) return {collection: res} else: return self._pagination(collection, path, **params) def _pagination(self, collection, path, **params): if params.get('page_reverse', False): linkrel = 'previous' else: linkrel = 'next' next = True while next: res = self.get(path, params=params) yield res next = False try: for link in res['%s_links' % collection]: if link['rel'] == linkrel: query_str = urlparse.urlparse(link['href']).query params = urlparse.parse_qs(query_str) next = True break except KeyError: break class Client(ClientBase): # # Users # user_singular_path = "/users/%s" # {user_id} for Show, Update and Delete user_list_path = "/users" # for List user_create_path = "/users" # for Create @APIParamsCall def list_users(self, **_params): """Fetches a list of all Users of a certain contract_id in SSS.""" return self.get(self.user_list_path, params=_params) @APIParamsCall def show_user(self, user_id, **_params): """Fetche information of a certain user_id in SSS.""" return self.get(self.user_singular_path % (user_id), params=_params) #@APIParamsCall #def update_user(self, body=None, user_id="", *args, **_params): # """Update information of a certain user_id in SSS.""" # return self.put(self.user_singular_path % (user_id), body=body) @APIParamsCall def delete_user(self, user_id, **_params): """Deletes a certain user in SSS.""" return self.delete(self.user_singular_path % (user_id), params=_params) @APIParamsCall def create_user(self, body=None, *args, **_params): """Creates a certain user in SSS..""" return self.post(self.user_create_path, body=body) # # Tenants # tenant_singular_path = "/tenants/%s" # {user_id} for Show, Update and Delete tenant_list_path = "/tenants" # for List tenant_create_path = "/tenants" # for Create @APIParamsCall def list_tenants(self, **_params): """Fetches a list of all Tenants of a certain contract_id in SSS.""" return self.get(self.tenant_list_path, params=_params) @APIParamsCall def show_tenant(self, tenant_id, **_params): """Fetche information of a certain tenant_id in SSS.""" return self.get(self.tenant_singular_path % (tenant_id), params=_params) @APIParamsCall def delete_tenant(self, tenant_id, **_params): """Deletes a certain tenant in SSS.""" return self.delete(self.tenant_singular_path % (tenant_id), params=_params) @APIParamsCall def create_tenant(self, body=None, *args, **_params): """Creates a certain tenant in SSS..""" return self.post(self.tenant_create_path, body=body) # # Roles # role_create_path = "/roles" # for Create role_delete_path = "/roles/tenants/%s/users/%s" # {tenant_id}, {user_id} for Delete @APIParamsCall def delete_role(self, tenant_id, user_id, **params): """Deletes a certain role in SSS.""" return self.delete(self.role_delete_path % (tenant_id, user_id)) @APIParamsCall def create_role(self, body=None, *args, **_params): """Creates a certain role in SSS..""" return self.post(self.role_create_path, body=body) # # API Keypair # api_keypair_path = "/keys/%s" # {user_id} for Update @APIParamsCall def set_api_keypair(self, user_id, *args, **_params): """Sets a certain API keypair in SSS.""" return self.put(self.api_keypair_path % (user_id)) # # Channel # channel_path = "/channels?get_contracts=%s" # {user_id} for Update @APIParamsCall def list_channels(self, get_contracts, *args, **_params): """List channels in SSS.""" return self.get(self.channel_path % (get_contracts)) # # Contract # contract_show_path = "/contracts/%s" # {contract_id} for Show, Delete contract_list_path = "/contracts?channel_id=%s" # {channel_id} for List contract_create_path = "/contracts" # for Create billing_show_path = "/contracts/%s/billing/%s" # for Show with_target_contract = "%s/target_contract/%s" # for Show billing of each contract @APIParamsCall def list_contracts(self, channel_id, **_params): """Fetches a list of all contracts of a certain channel_id in SSS.""" return self.get(self.contract_list_path %(channel_id), params=_params) @APIParamsCall def show_contract(self, contract_id, **_params): """Fetches information of a certain contract_id in SSS.""" return self.get(self.contract_show_path % (contract_id), params=_params) @APIParamsCall def delete_contract(self, contract_id, **params): """Deletes a certain contract in SSS.""" return self.delete(self.contract_show_path % (contract_id)) @APIParamsCall def create_contract(self, body=None, *args, **_params): """Creates a certain contract in SSS..""" return self.post(self.contract_create_path, body=body) @APIParamsCall def show_billing(self, contract_id, target_month, **_params): """Fetches information of a certain contract_id in SSS.""" billing_action = self.billing_show_path % (contract_id, target_month) return self.get(billing_action, params=_params) # # IAM Endpoints # iam_group_list_path = "/iam/groups" iam_group_create_path = "/iam/groups" iam_group_delete_path = "/iam/groups/%s" iam_group_attach_role_path = "/iam/groups/%s/roles/%s" iam_group_attach_user_path = "/iam/groups/%s/users/%s" iam_group_detach_role_path = "/iam/groups/%s/roles/%s" iam_group_detach_user_path = "/iam/groups/%s/users/%s" iam_role_list_path = "/iam/roles" iam_role_create_path = "/iam/roles" iam_role_show_path = "/iam/roles/%s" iam_role_delete_path = "/iam/roles/%s" iam_user_list_path = "/iam/groups/%s/users" @APIParamsCall def iam_group_list(self, contract_id=None): url = self.iam_group_list_path if contract_id: url += "?contract_id=" + contract_id return self.get(url) @APIParamsCall def iam_group_create(self, iam_group_name=None, contract_id=None, description=None): body = {"iam_group_name":iam_group_name, "contract_id":contract_id, "description":description} return self.post(self.iam_group_create_path, body=body) @APIParamsCall def iam_group_delete(self, iam_group_id=None): return self.delete(self.iam_group_delete_path % (iam_group_id)) @APIParamsCall def iam_group_attach_user(self, iam_group_id=None, iam_user_id=None): return self.put(self.iam_group_attach_user_path % (iam_group_id,iam_user_id)) @APIParamsCall def iam_group_detach_user(self, iam_group_id=None, iam_user_id=None): return self.delete(self.iam_group_detach_user_path % (iam_group_id,iam_user_id)) @APIParamsCall def iam_group_attach_role(self, iam_group_id=None, iam_role_id=None): return self.put(self.iam_group_attach_role_path % (iam_group_id,iam_role_id)) @APIParamsCall def iam_group_detach_role(self, iam_group_id=None, iam_role_id=None): return self.delete(self.iam_group_attach_role_path % (iam_group_id,iam_role_id)) @APIParamsCall def iam_role_list(self, contract_id=None): url = self.iam_role_list_path if contract_id: url += "?contract_id=" + contract_id return self.get(url) def iam_role_show(self, iam_role_id=None): return self.get(self.iam_role_show_path % (iam_role_id)) @APIParamsCall def iam_role_create(self, iam_role_name=None, contract_id=None, description=None, resources=None): body = {"iam_role_name":iam_role_name, "contract_id":contract_id, "description":description, "resources":resources} return self.post(self.iam_role_create_path, body=body) @APIParamsCall def iam_role_delete(self, iam_role_id=None): return self.delete(self.iam_role_delete_path % (iam_role_id)) @APIParamsCall def iam_user_list(self, iam_group_id=None): return self.get(self.iam_user_list_path % (iam_group_id))
StarcoderdataPython
4945236
<gh_stars>1-10 #adata.pubsub ''' Publisher Subscriber framework ''' import wx import traceback from wx.lib.pubsub import pub '''Send message alias ''' publish = pub.sendMessage def echo(text, color=None, lf=True, marker=None, icon=None): # no optional **kwargs '''The Adata console print function sends a pubsub:app.echo message. Top window's OnEcho method is suscribed to the channel. ''' style = None if color is not None: style = "fore:#%s,bold" % color pub.sendMessage('app.echo', text = text, style = style, lf = lf, marker = marker, icon = icon ) def excepthook (etype, value, tb) : '''The application error handler. Send error details to subscribed consoles. :param etype: Exception type :type etype: type :param value: Exception value :type value: Exception :param tb: Traceback :type tb: ``traceback`` ''' echo(" %s: %s" % (value.__class__.__name__, value), "ff5555", lf=False, marker="error", icon='red_arrow') echo("", icon='red_back') for x in traceback.format_tb(tb): if "code.py" in x: continue if "codeop.py" in x: continue if 'File "<input>"' in x: continue echo( x , "dddddd", lf=False, icon='dots') where="" if hasattr(value, "filename"): where += " %s" % value.filename if hasattr(value, "lineno"): where += " #%s" % value.lineno if where!="": echo("%s" % where,"888888") class Output(): '''Standard output like class using echo. ''' def write(self, line): echo(line) def flush(self): pass def subscribe(topic): ''' TODO: Create a subscription decorator for this topic ''' app = wx.GetApp() def subscribe_decorator(function): ''' Subscribe to the topic. Beware args ''' pub.subscribe(function, topic) return function return subscribe_decorator
StarcoderdataPython
8084979
import sys import json version_list = sys.argv[1:] if __name__ == '__main__': version_list.sort( key=lambda v: [int(u) for u in v.split('.')], reverse=True ) version_list = [f'v{version}' for version in version_list] version_list.insert(0, 'latest') print(json.dumps(version_list))
StarcoderdataPython
4830711
import os import cv2 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import argparse import segmentation_models_v1 as sm sm.set_framework('tf.keras') from unet_std import unet # standard unet architecture from helper_function import plot_deeply_history, plot_history, save_history from helper_function import precision, recall, f1_score from sklearn.metrics import confusion_matrix from helper_function import plot_history_for_callback, save_history_for_callback def str2bool(value): return value.lower() == 'true' def generate_folder(folder_name): if not os.path.exists(folder_name): os.system('mkdir -p {}'.format(folder_name)) parser = argparse.ArgumentParser() parser.add_argument("--docker", type=str2bool, default = True) parser.add_argument("--gpu", type=str, default = '0') parser.add_argument("--epoch", type=int, default = 2) parser.add_argument("--batch", type=int, default = 2) parser.add_argument("--dataset", type=str, default = 'live_dead') parser.add_argument("--lr", type=float, default = 1e-3) parser.add_argument("--train", type=int, default = None) parser.add_argument("--loss", type=str, default = 'focal+dice') args = parser.parse_args() print(args) model_name = 'unet-set-{}-lr-{}-train-{}-loss-{}-bt-{}-ep-{}'.format(args.dataset, args.lr,\ args.train, args.loss, args.batch, args.epoch) print(model_name) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu if args.dataset == 'live_dead': val_dim = 832 test_dim = val_dim train_image_set = 'train_images2' val_image_set = 'val_images2' test_image_set = 'test_images2' DATA_DIR = '/data/datasets/{}'.format(args.dataset) if args.docker else './data/{}'.format(args.dataset) x_train_dir = os.path.join(DATA_DIR, train_image_set) y_train_dir = os.path.join(DATA_DIR, 'train_masks') x_valid_dir = os.path.join(DATA_DIR, val_image_set) y_valid_dir = os.path.join(DATA_DIR, 'val_masks') x_test_dir = os.path.join(DATA_DIR, test_image_set) y_test_dir = os.path.join(DATA_DIR, 'test_masks') print(x_train_dir); print(x_valid_dir); print(x_test_dir) # classes for data loading class Dataset: """ Args: images_dir (str): path to images folder masks_dir (str): path to segmentation masks folder class_values (list): values of classes to extract from segmentation mask """ CLASSES = ['bk', 'live', 'inter', 'dead'] def __init__( self, images_dir, masks_dir, classes=None, nb_data=None, augmentation=None, preprocessing=None, ): id_list = os.listdir(images_dir) if nb_data ==None: self.ids = id_list else: self.ids = id_list[:int(min(nb_data,len(id_list)))] self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids] self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids] print(len(self.images_fps)); print(len(self.masks_fps)) self.class_values = [self.CLASSES.index(cls.lower()) for cls in classes] self.augmentation = augmentation self.preprocessing = preprocessing def __getitem__(self, i): # read data image = cv2.imread(self.images_fps[i]) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) mask = cv2.imread(self.masks_fps[i], 0) masks = [(mask == v) for v in self.class_values] mask = np.stack(masks, axis=-1).astype('float') # add background if mask is not binary if mask.shape[-1] != 1: background = 1 - mask.sum(axis=-1, keepdims=True) mask = np.concatenate((mask, background), axis=-1) return image, mask def __len__(self): return len(self.ids) class Dataloder(tf.keras.utils.Sequence): """Load data from dataset and form batches Args: dataset: instance of Dataset class for image loading and preprocessing. batch_size: Integet number of images in batch. shuffle: Boolean, if `True` shuffle image indexes each epoch. """ def __init__(self, dataset, batch_size=1, shuffle=False): self.dataset = dataset self.batch_size = batch_size self.shuffle = shuffle self.indexes = np.arange(len(dataset)) self.on_epoch_end() def __getitem__(self, i): # collect batch data start = i * self.batch_size stop = (i + 1) * self.batch_size data = [] for j in range(start, stop): data.append(self.dataset[j]) # transpose list of lists batch = [np.stack(samples, axis=0) for samples in zip(*data)] return (batch[0], batch[1]) def __len__(self): """Denotes the number of batches per epoch""" return len(self.indexes) // self.batch_size def on_epoch_end(self): """Callback function to shuffle indexes each epoch""" if self.shuffle: self.indexes = np.random.permutation(self.indexes) BATCH_SIZE = args.batch CLASSES = ['live', 'inter', 'dead'] LR = args.lr EPOCHS = args.epoch n_classes = (len(CLASSES) + 1) #create model model = unet(classes=n_classes, activation='softmax') # define optomizer optim = tf.keras.optimizers.Adam(LR) class_weights = [1,1,1,1] # Segmentation models losses can be combined together by '+' and scaled by integer or float factor # set class weights for dice_loss (car: 1.; pedestrian: 2.; background: 0.5;) if args.loss =='focal+dice': dice_loss = sm.losses.DiceLoss(class_weights=np.array(class_weights)) focal_loss = sm.losses.CategoricalFocalLoss() total_loss = dice_loss + focal_loss elif args.loss =='dice': total_loss = sm.losses.DiceLoss(class_weights=np.array(class_weights)) elif args.loss == 'focal': total_loss = sm.losses.CategoricalFocalLoss() elif args.loss == 'ce': total_loss = sm.losses.CategoricalCELoss() elif args.loss == 'wce': # weighted wce (live, injured, dead, bk) #ratios: 0.01 , 0.056, 0.004, 0.929 class_weights = [100., 17.86, 250., 1.08] total_loss = sm.losses.CategoricalCELoss(class_weights=np.array(class_weights)) metrics = [sm.metrics.IOUScore(threshold=0.5), sm.metrics.FScore(threshold=0.5)] # compile keras model with defined optimozer, loss and metrics model.compile(optimizer=optim, loss=total_loss, metrics = metrics) # Dataset for train images train_dataset = Dataset( x_train_dir, y_train_dir, classes=CLASSES, nb_data=args.train ) # Dataset for validation images valid_dataset = Dataset( x_valid_dir, y_valid_dir, classes=CLASSES ) train_dataloader = Dataloder(train_dataset, batch_size=BATCH_SIZE, shuffle=True) valid_dataloader = Dataloder(valid_dataset, batch_size=1, shuffle=False) print(train_dataloader[0][0].shape) # check shapes for errors assert train_dataloader[0][0].shape == (BATCH_SIZE, val_dim, val_dim, 3) assert train_dataloader[0][1].shape == (BATCH_SIZE, val_dim, val_dim, n_classes) model_folder = '/data/natcom_models/std_unet/{}'.format(model_name) if args.docker else './models/natcom_models/std_unet/{}'.format(model_name) generate_folder(model_folder) def concat_tile(im_list_2d): return cv2.vconcat([cv2.hconcat(im_list_h) for im_list_h in im_list_2d]) def save_images(file_name, vols): shp = vols.shape ls, lx, ly, lc = shp sx, sy = int(lx/256), int(ly/256) vols = vols[:,::sx,::sy,:] slice_list, rows = [], [] for si in range(vols.shape[0]): slice = vols[si,:,:,:] rows.append(slice) if si%4 == 3 and not si == vols.shape[0]-1: slice_list.append(rows) rows = [] save_img = concat_tile(slice_list) cv2.imwrite(file_name, save_img) def map2rgb(maps): shp = maps.shape rgb_maps = np.zeros((shp[0], shp[1], shp[2], 3), dtype=np.uint8) rgb_maps[:,:,:,0] = np.uint8((maps==0)*255) rgb_maps[:,:,:,1] = np.uint8((maps==1)*255) rgb_maps[:,:,:,2] = np.uint8((maps==2)*255) return rgb_maps class HistoryPrintCallback(tf.keras.callbacks.Callback): def __init__(self): super(HistoryPrintCallback, self).__init__() self.history = {} def on_epoch_end(self, epoch, logs=None): if logs: for key in logs.keys(): if epoch == 0: self.history[key] = [] self.history[key].append(logs[key]) if epoch%5 == 0: plot_history_for_callback(model_folder+'/train_history.png', self.history) save_history_for_callback(model_folder, self.history) gt_vols, pr_vols = [],[] for i in range(0, len(valid_dataset),int(len(valid_dataset)/36)): gt_vols.append(valid_dataloader[i][1]) pr_vols.append(self.model.predict(valid_dataloader[i])) gt_vols = np.concatenate(gt_vols, axis = 0); gt_map = map2rgb(np.argmax(gt_vols,axis =-1)) pr_vols = np.concatenate(pr_vols, axis = 0); pr_map = map2rgb(np.argmax(pr_vols,axis =-1)) if epoch == 0: save_images(model_folder+'/ground_truth.png'.format(epoch), gt_map) save_images(model_folder+'/pr-{}.png'.format(epoch), pr_map) # define callbacks for learning rate scheduling and best checkpoints saving callbacks = [ tf.keras.callbacks.ModelCheckpoint(model_folder+'/best_model-{epoch:03d}.h5', save_weights_only=True, save_best_only=True, mode='min'), HistoryPrintCallback(), ] # train model history = model.fit_generator( train_dataloader, steps_per_epoch=len(train_dataloader), epochs=EPOCHS, callbacks=callbacks, validation_data=valid_dataloader, validation_steps=len(valid_dataloader), )
StarcoderdataPython
1674895
<reponame>fxjung/obsidian_tools import typer import logging import asyncio from pathlib import Path from obsidian_tools.watch import main formatter = logging.Formatter("%(asctime)s:%(levelname)s:%(name)s: %(message)s") ch = logging.StreamHandler() ch.setFormatter(formatter) logging.getLogger("").setLevel(logging.WARNING) logging.getLogger("").addHandler(ch) log = logging.getLogger(__name__) app = typer.Typer() @app.command() def watch( target: Path = typer.Argument( ..., exists=True, file_okay=True, dir_okay=False, writable=True, readable=True, resolve_path=True, ) ): asyncio.run(main(target)) @app.callback(invoke_without_command=True) def main_cli(ctx: typer.Context, debug: bool = typer.Option(False)): if debug: logging.getLogger("").setLevel(logging.DEBUG) if ctx.invoked_subcommand is not None: return print("Welcome to obsidian-tools") app()
StarcoderdataPython
11335418
<reponame>Izocel/PythonBookHero import os import sys from typing import * from mysql.connector.connection import * from getpass import getpass import hashlib from datetime import datetime # Variables globales BD_CONNECTION = {} BD_CONFIG = {} CURSEUR = {} BASETABLE = '' def get_config(key:str = '') -> Any: global BD_CONFIG if(key == ''): return BD_CONFIG else: return BD_CONFIG[key] def disconnect_from_mysql() -> bool: global BD_CONNECTION global BD_CONFIG global CURSEUR CURSEUR.reset() CURSEUR.close() CURSEUR = {} BD_CONNECTION.disconnect() BD_CONNECTION = {} BD_CONFIG = {} print("\n La session SQL est terminée") return True ####-####-####-#### MySQL App Connection ####-####-####-#### def connect_to_mysql(config_input:dict = {}, autocommit:bool = False, max_retry:int = 5) -> CursorBase: global BD_CONNECTION global BD_CONFIG global CURSEUR max_retry = 1 if(max_retry == 0) else max_retry max_retry = abs(max_retry) max_retry = min(max_retry, 15) for x in range(max_retry): if( type(BD_CONNECTION) is not MySQLConnection ): BD_CONFIG = { 'host' : config_input['host'], 'user' : config_input['user'], 'password' : config_input['password'], 'database' : config_input['database'], 'autocommit': autocommit } BD_CONNECTION = MySQLConnection() BD_CONNECTION.connect(**BD_CONFIG) config_warning(BD_CONNECTION) BD_CONFIG['database'] = 'python_book_hero' CURSEUR = BD_CONNECTION.cursor() print("\n La session SQL est établie") return CURSEUR def config_warning( connection ) -> None: autocommit = connection.autocommit if( autocommit == False): print("\n\n'Autocommit' est: " + str(autocommit) ) print("Les transactions ne seront pas automatiquement soumissent au LGBD...") print("Des confirmations vous seront demandées lors d'insertions/suppressions/modifications.\n") else: print("\n\n!!!!! Attention 'Autocommit' est: " + str(autocommit) + " !!!!!") print("Les transactions seront automatiquement soumissent au LGBD...\n") def show_databases_querry() -> str: querry = "SHOW DATABASES;" return querry def show_tables_querry(database) -> str: querry = "SHOW TABLES FROM " + database return querry def select_data_querry(table:str, fields:str = '*', where:str = '', order:str = '', group:str = '', limit:str = '') -> str: querry = "SELECT "+ fields + " FROM " + table if(where != ''): querry += " " + where if(order != ''): querry += " " + order if(group != ''): querry += " " + group if(limit != ''): querry += " " + limit return querry def select_colum_name_type_querry(table, database) -> str: querry = "SELECT COLUMN_NAME,COLUMN_TYPE FROM INFORMATION_SCHEMA.COLUMNS " querry +="WHERE TABLE_SCHEMA='" + database +"' AND TABLE_NAME='" + table + "';" return querry def CURSEUR_name_and_type(CURSEUR, table, database) -> Dict[str,Any]: tpye_and_colum_querry = select_colum_name_type_querry(table, database) CURSEUR.execute(tpye_and_colum_querry) table_resultat = [] table_type = [] table_col = [] for(col, col_type) in CURSEUR: col_type_format = str(col_type).replace("'", '').replace("b", '') table_resultat.append( (col, col_type_format) ) table_type.append(col_type_format) table_col.append(col) return {'querry': tpye_and_colum_querry, 'results': table_resultat, 'types': table_type, 'names': table_col} def insertion_querry(table:str, inserts = [[]], champs = []) -> Dict[str,Any]: querry = "INSERT INTO " + table champsConcat = ' (' for champ in champs: champsConcat += champ if(champ == champs[len(champs)-1]): champsConcat += ')' continue champsConcat += ", " typeValeurString = '(' x = 0 valeursSql = [] for valeurs in inserts: tempValeur = [] for valeur in valeurs: tempValeur.append(valeur) if( x == 0): typeValeurString += "%s" if(valeur == valeurs[len(valeurs)-1]): typeValeurString += ')' continue typeValeurString += ", " valeursSql.append(tuple(tempValeur)) x += 1 if(champ): querry += champsConcat if(valeur): querry += " VALUES " + typeValeurString return { 'sql': querry, 'val' : valeursSql } def update_querry(table :str, updates :list[list], champs :list, conds_list :list[list]) -> Dict[str,Any]: querry = "UPDATE " + table + " SET " champsConcat = '' for champ in champs: champsConcat += champ if(champ == champs[len(champs)-1]): champsConcat += " = %s " continue champsConcat += " = %s, " valeursSql = [] for valeurs in updates: tempValeur = [] for valeur in valeurs: tempValeur.append(valeur) condString = '' if(len(conds_list) == 2): for valeurs in conds_list['cond_valeurs']: for valeur in valeurs: tempValeur.append(valeur) for champ in conds_list['cond_champs']: condString += champ + " = %s AND " valeursSql.append(tuple(tempValeur)) if(champ): querry += champsConcat if(condString != ''): querry += "WHERE " + condString[0:len(condString)-5] return { 'sql': querry, 'val' : valeursSql } def convert_string_to_sql_type(input_str: str, sql_type_str: str) -> str: if( sql_type_str.startswith("char") ): return input_str if( sql_type_str.startswith("varchar") ): return input_str if( sql_type_str.startswith("int") ): return int(input_str) if( sql_type_str.startswith("float") ): return float(input_str) if( sql_type_str.startswith("double") ): return round(float(input_str),2) if( sql_type_str.startswith("year") ): return int(input_str) if( sql_type_str.startswith("date") ): return input_str if( sql_type_str.startswith("time") ): return input_str if( sql_type_str.startswith("time", 4) ): return input_str if( sql_type_str.startswith("stamp", 4) ): return input_str pass def dataTypeStringNotation(value: Any) -> str: percent_char = chr(37) if(type(value) is str): return percent_char + 's' if(type(value) == int): return percent_char + 'i' if(type(value) is float): return percent_char + 'f' return '' def fetch_CURSEUR(CURSEUR, print_me = False) -> List[List[Any]]: if(print_me == True): print("\n") table = [] for results_row in CURSEUR: table_row = [] for results in results_row: table_row.append(results) if(print_me == True): print(table_row) table.append(table_row) CURSEUR.reset() return table def hash_sha2_data(datalist:list[str] = [], hash_length:int = 256) -> List[str]: hashes = [] if hash_length == 224: for clear_str in datalist: string = clear_str encoded = string.encode() result = hashlib.sha224(encoded) hashes.append(result.hexdigest()) elif hash_length == 384: for clear_str in datalist: string = clear_str encoded = string.encode() result = hashlib.sha384(encoded) hashes.append(result.hexdigest()) elif hash_length == 512: for clear_str in datalist: string = clear_str encoded = string.encode() result = hashlib.sha512(encoded) hashes.append(result.hexdigest()) else: # sha256 if hash_length not supported for clear_str in datalist: string = clear_str encoded = string.encode() result = hashlib.sha256(encoded) hashes.append(result.hexdigest()) return hashes
StarcoderdataPython
11301832
from random import randint def get_random_hex_color(): """Generates and returns a random hex color.""" color = '#' + ''.join(['{:02X}'.format(randint(0, 255)) for _ in range(3)]) return color
StarcoderdataPython
1756828
<gh_stars>1-10 import numpy as np import cv2 import matplotlib.pyplot as plt import matplotlib.image as mpimg from camera_calibration import calib, undistort from threshold import get_combined_gradients, get_combined_hls, combine_grad_hls from line import Line, get_perspective_transform, get_lane_lines_img, illustrate_driving_lane, illustrate_info_panel, illustrate_driving_lane_with_topdownview from moviepy.editor import VideoFileClip import logging logging.basicConfig(filename='test.log', level=logging.DEBUG, format='%(asctime)s:%(levelname)s:%(message)s') #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # Select desired input name/type # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# #input_type = "image" #input_type = 'image' input_type = 'video' #input_type = 'frame_by_frame' #input_name = 'test_images/calibration1.jpg' input_name = 'project_video.mp4' #input_name = 'challenge_video.mp4' #input_name = 'harder_challenge_video.mp4' # If input_type is `image`, select whether you'd like to save intermediate images or not. save_img = True left_line = Line() right_line = Line() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # Tune Parameters for different inputs # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# th_sobelx, th_sobely, th_mag, th_dir = (35, 100), (30, 255), (30, 255), (0.7, 1.3) th_h, th_l, th_s = (10, 100), (0, 60), (85, 255) # camera matrix & distortion coefficient mtx, dist = calib() def pipeline(frame): # Correcting for Distortion undist_img = undistort(frame, mtx, dist) # resize video undist_img = cv2.resize(undist_img, None, fx=1 / 2, fy=1 / 2, interpolation=cv2.INTER_AREA) rows, cols = undist_img.shape[:2] combined_gradient = get_combined_gradients(undist_img, th_sobelx, th_sobely, th_mag, th_dir) combined_hls = get_combined_hls(undist_img, th_h, th_l, th_s) combined_result = combine_grad_hls(combined_gradient, combined_hls) c_rows, c_cols = combined_result.shape[:2] s_LTop2, s_RTop2 = [c_cols / 2 - 24, 5], [c_cols / 2 + 24, 5] s_LBot2, s_RBot2 = [110, c_rows], [c_cols - 110, c_rows] src = np.float32([s_LBot2, s_LTop2, s_RTop2, s_RBot2]) dst = np.float32([(170, 720), (170, 0), (550, 0), (550, 720)]) warp_img, M, Minv = get_perspective_transform(combined_result, src, dst, (720, 720)) searching_img = get_lane_lines_img(warp_img, left_line, right_line) w_comb_result, w_color_result = illustrate_driving_lane(searching_img, left_line, right_line) # Drawing the lines back down onto the road color_result = cv2.warpPerspective(w_color_result, Minv, (c_cols, c_rows)) lane_color = np.zeros_like(undist_img) lane_color[220:rows - 12, 0:cols] = color_result # Combine the result with the original image result = cv2.addWeighted(undist_img, 1, lane_color, 0.3, 0) info_panel, birdeye_view_panel = np.zeros_like(result), np.zeros_like(result) info_panel[5:110, 5:325] = (255, 255, 255) birdeye_view_panel[5:110, cols-111:cols-6] = (255, 255, 255) info_panel = cv2.addWeighted(result, 1, info_panel, 0.2, 0) birdeye_view_panel = cv2.addWeighted(info_panel, 1, birdeye_view_panel, 0.2, 0) road_map = illustrate_driving_lane_with_topdownview(w_color_result, left_line, right_line) birdeye_view_panel[10:105, cols-106:cols-11] = road_map birdeye_view_panel = illustrate_info_panel(birdeye_view_panel, left_line, right_line) return birdeye_view_panel cap = cv2.VideoCapture(input_name) if (cap.isOpened()== False): print("Error opening video stream or file") while(cap.isOpened()): ret, frame = cap.read() frame = pipeline(frame) if ret == True: cv2.imshow('Frame',frame) if cv2.waitKey(25) & 0xFF == ord('q'): break else: break cap.release() cv2.destroyAllWindows() file_video = input_name if input_type == 'video': white_output = "./output_videos/video_out_1.mp4" frame = VideoFileClip(file_video) white_clip = frame.fl_image(pipeline) #white_clip.write_videofile(white_output, audio=False) logging.debug("This file is ran and outputs are generated",file_video)
StarcoderdataPython
5100986
import logging class NullHandler(logging.Handler): def emit(self, record): pass log = logging.getLogger('coapUri') log.setLevel(logging.ERROR) log.addHandler(NullHandler()) import re from . import coapUtils as u from . import coapOption as o from . import coapException as e from . import coapDefines as d def uri2options(uri): ''' \brief Converts a coap URI into a list of CoAP options. Examples: calling this function with uri="coap://[aaaa::1]:1234/test1/test2" returns ( 'fc00:e968:6179::de52:7100', 1234, ( [Uri-Path('test1'), Uri-Path('test2')], ), ) Calling this function with uri="http://[aaaa::1]/test1/test2" raises a coapMalformattedUri. \param[in] uri A string representing a CoAP URI. \raises coapMalformattedUri When the string passed in the uri parameter is not a valid CoAP URI. \return A tuple with the following elements; - at index 0, the destination IP address or host name (a string). - at index 1, the UDP port, possibly default CoAP port if none is explicitly specified.. - at index 2, a tuple of CoAP options, i.e. (sub-)instances of the #coapOption objects. ''' options = [] log.debug('uri : {0}'.format(uri)) # scheme if not uri.startswith(d.COAP_SCHEME): raise e.coapMalformattedUri('does not start with {0}'.format(d.COAP_SCHEME)) # remove scheme uri = uri.split(d.COAP_SCHEME,1)[1] # host and port host = None port = None hostPort = uri.split('/')[0] if (not host) or (not port): # try format [fc00:e968:6179::de52:7100]:1244 m = re.match('\[([0-9a-fA-F:]+)\]:([0-9]+)',hostPort) if m: host = m.group(1) port = int(m.group(2)) if (not host) or (not port): # try format [aaaa::1] m = re.match('\[([0-9a-fA-F:]+)\]',hostPort) if m: host = m.group(1) port = d.DEFAULT_UDP_PORT if (not host) or (not port): # try formats: # 172.16.58.3:1234 m = re.match('([0-9.]+):([0-9]+)',hostPort) if m: host = '::ffff:{0}'.format(m.group(1)) port = int(m.group(2)) if (not host) or (not port): # try formats: # www.example.com:1234 m = re.match('([0-9a-zA.\-\_]+):([0-9]+)',hostPort) if m: host = m.group(1) port = int(m.group(2)) if (not host) or (not port): # try formats: # 172.16.58.3 m = re.match('([0-9.]+)',hostPort) if m: host = '::ffff:{0}'.format(m.group(1)) port = d.DEFAULT_UDP_PORT if (not host) or (not port): # try formats: # www.example.com m = re.match('([0-9a-zA-Z.\-\_]+)', hostPort) if m: host = m.group(1) port = d.DEFAULT_UDP_PORT if (not host) or (not port): raise e.coapMalformattedUri('invalid host and port {0}'.format(hostPort)) # log log.debug('host : {0}'.format(host)) log.debug('port : {0}'.format(port)) # remove hostPort uri = uri.split(hostPort,1)[1] # Uri-path paths = [p for p in uri.split('?')[0].split('/') if p] log.debug('paths : {0}'.format(paths)) for p in paths: options += [o.UriPath(path=p)] # Uri-query if len(uri.split('?'))>1: queries = [q for q in uri.split('?')[1].split('&') if q] log.debug('queries : {0}'.format(queries)) raise NotImplementedError() host=host.lower() host=u.trimAddress(host) return (host,port,options) def options2path(options): returnVal = [] for option in options: if isinstance(option,o.UriPath): returnVal += [option.path] returnVal = '/'.join(returnVal) return returnVal
StarcoderdataPython
11321702
<reponame>sa-y-an/retro from django.http.response import HttpResponse from django.shortcuts import render from .classifier import nn_predictions def home(request) : return render(request, 'home/home.html') def about(request) : return render(request, 'home/about.html') # modalities def eda(request): if request.method == 'POST' : path = request.FILES['myfile'] # this is my file ac_class, confidence_score, secs = nn_predictions(path,'EDA') print(path) print('here .....................') print(ac_class, confidence_score) return render(request, 'home/eda.html',{ "class" : ac_class, "score" : confidence_score , "path" :path , "time" : secs } ) else : return render(request, 'home/eda.html') def emg(request) : if request.method == 'POST' : path = request.FILES['myfile'] # this is my file ac_class, confidence_score, secs = nn_predictions(path,'EMG') print(path) print('here .....................') print(ac_class, confidence_score) return render(request, 'home/emg.html',{ "class" : ac_class, "score" : confidence_score, "path" :path , "time" : secs } ) else : return render(request, 'home/emg.html') def ecg(request) : if request.method == 'POST' : path = request.FILES['myfile'] # this is my file ac_class, confidence_score, secs = nn_predictions(path,'ECG') print(path) print('here .....................') print(ac_class, confidence_score) return render(request, 'home/ecg.html',{ "class" : ac_class, "score" : confidence_score , "path" :path, "time" : secs } ) else : return render(request, 'home/ecg.html') def resp(request) : if request.method == 'POST' : path = request.FILES['myfile'] # this is my file ac_class, confidence_score, secs = nn_predictions(path,'Resp') print(path) print('here .....................') print(ac_class, confidence_score) return render(request, 'home/resp.html',{ "class" : ac_class, "score" : confidence_score , "path" :path , "time" : secs } ) else : return render(request, 'home/resp.html') def temp(request) : if request.method == 'POST' : path = request.FILES['myfile'] # this is my file ac_class, confidence_score, secs = nn_predictions(path,'Temp') print(path) print('here .....................') print(ac_class, confidence_score) return render(request, 'home/temp.html',{ "class" : ac_class, "score" : confidence_score, "path" :path, "time" : secs } ) else : return render(request, 'home/temp.html')
StarcoderdataPython
3254750
<reponame>Rogdham/bigxml<filename>src/bigxml/handle_mgr.py from bigxml.handler_creator import create_handler from bigxml.utils import last_item_or_none class HandleMgr: _handle = None def iter_from(self, *handlers): if not self._handle: raise RuntimeError("No handle to use") handler = create_handler(*handlers) return self._handle(handler) # pylint: disable=not-callable def return_from(self, *handlers): return last_item_or_none(self.iter_from(*handlers))
StarcoderdataPython
3210926
<filename>reconstrcut_tldrQ_highlights.py import json highlited_file = '/disk1/sajad/datasets/reddit/tldr-9+/highlights-test/' with open('/disk1/sajad/datasets/reddit/tldr-9+/test.json') as fR: for l in fR: ent = json.loads(l.strip()) src = ent['document'].replace('</s><s> ', '') summary = ent['summary'] to_be_written = f'{src.strip()}\n@highlights\n{summary.strip()}' with open(highlited_file + ent['id'].replace('.json', ''), mode='w') as fW: fW.write(to_be_written)
StarcoderdataPython
1736738
# Copyright(C) 2011,2012,2013 by Abe developers. # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Affero General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see # <http://www.gnu.org/licenses/gpl.html>. def looks_like_json(val): return val[:1] in ('"', '[', '{') or val in ('true', 'false', 'null') def parse_argv(argv, conf={}, config_name='config', strict=False): arg_dict = conf.copy() args = lambda var: arg_dict[var] args.func_dict = arg_dict i = 0 while i < len(argv): arg = argv[i] if arg == '--': i += 1 break if arg[:2] != '--': break # Strip leading "--" to form a config variable. # --var=val and --var val are the same. --var+=val is different. split = arg[2:].split('=', 1) adding = False if len(split) == 1: var = split[0] if i + 1 < len(argv) and argv[i + 1][:2] != '--': i += 1 val = argv[i] else: val = True else: var, val = split if var[-1:] == '+': var = var[:-1] adding = True if val is not True and looks_like_json(val): val = parse_json(val) var = var.replace('-', '_') if var == config_name: _include(set(), val, arg_dict, config_name, strict) elif var not in conf: break elif adding: add(arg_dict, var, val) else: arg_dict[var] = val i += 1 return args, argv[i:] def include(filename, conf={}, config_name='config', strict=False): _include(set(), filename, conf, config_name, strict) return conf class _Reader: __slots__ = ['fp', 'lineno', 'line'] def __init__(rdr, fp): rdr.fp = fp rdr.lineno = 1 rdr.line = rdr.fp.read(1) def eof(rdr): return rdr.line == '' def getc(rdr): if rdr.eof(): return '' ret = rdr.line[-1] if ret == '\n': rdr.lineno += 1 rdr.line = '' c = rdr.fp.read(1) if c == '': rdr.line = '' rdr.line += c return ret def peek(rdr): if rdr.eof(): return '' return rdr.line[-1] def _readline(rdr): ret = rdr.fp.readline() rdr.line += ret return ret def readline(rdr): ret = rdr.peek() + rdr._readline() rdr.getc() # Consume the newline if not at EOF. return ret def get_error_context(rdr, e): e.lineno = rdr.lineno if not rdr.eof(): e.offset = len(rdr.line) if rdr.peek() != '\n': rdr._readline() e.text = rdr.line def _include(seen, filename, conf, config_name, strict): if filename in seen: raise Exception('Config file recursion') with open(filename) as fp: rdr = _Reader(fp) try: entries = read(rdr) except SyntaxError, e: if e.filename is None: e.filename = filename if e.lineno is None: rdr.get_error_context(e) raise for var, val, additive in entries: var = var.replace('-', '_') if var == config_name: import os _include(seen | set(filename), os.path.join(os.path.dirname(filename), val), conf, config_name, strict) elif var not in conf: if strict: raise ValueError( "Unknown parameter `%s' in %s" % (var, filename)) elif additive and conf[var] is not None: add(conf, var, val) else: conf[var] = val return def read(rdr): """ Read name-value pairs from file and return the results as a list of triples: (name, value, additive) where "additive" is true if "+=" occurred between name and value. "NAME=VALUE" and "NAME VALUE" are equivalent. Whitespace around names and values is ignored, as are lines starting with '#' and empty lines. Values may be JSON strings, arrays, or objects. A value that does not start with '"' or '{' or '[' and is not a boolean is read as a one-line string. A line with just "NAME" stores True as the value. """ entries = [] def store(name, value, additive): entries.append((name, value, additive)) def skipspace(rdr): while rdr.peek() in (' ', '\t', '\r'): rdr.getc() while True: skipspace(rdr) if rdr.eof(): break if rdr.peek() == '\n': rdr.getc() continue if rdr.peek() == '#': rdr.readline() continue name = '' while rdr.peek() not in (' ', '\t', '\r', '\n', '=', '+', ''): name += rdr.getc() if rdr.peek() not in ('=', '+'): skipspace(rdr) if rdr.peek() in ('\n', ''): store(name, True, False) continue additive = False if rdr.peek() in ('=', '+'): if rdr.peek() == '+': rdr.getc() if rdr.peek() != '=': raise SyntaxError("'+' without '='") additive = True rdr.getc() skipspace(rdr) if rdr.peek() in ('"', '[', '{'): js = scan_json(rdr) try: store(name, parse_json(js), additive) except ValueError, e: raise wrap_json_error(rdr, js, e) continue # Unquoted, one-line string. value = '' while rdr.peek() not in ('\n', ''): value += rdr.getc() value = value.strip() # Booleans and null. if value == 'true': value = True elif value == 'false': value = False elif value == 'null': value = None store(name, value, additive) return entries def add(conf, var, val): if var not in conf: conf[var] = val return if isinstance(val, dict) and isinstance(conf[var], dict): conf[var].update(val) return if not isinstance(conf[var], list): conf[var] = [conf[var]] if isinstance(val, list): conf[var] += val else: conf[var].append(val) # Scan to end of JSON object. Grrr, why can't json.py do this without # reading all of fp? def _scan_json_string(rdr): ret = rdr.getc() # '"' while True: c = rdr.getc() if c == '': raise SyntaxError('End of file in JSON string') # Accept raw control characters for readability. if c == '\n': c = '\\n' if c == '\r': c = '\\r' if c == '\t': c = '\\t' ret += c if c == '"': return ret if c == '\\': ret += rdr.getc() def _scan_json_nonstring(rdr): # Assume we are at a number or true|false|null. # Scan the token. ret = '' while rdr.peek() != '' and rdr.peek() in '-+0123456789.eEtrufalsn': ret += rdr.getc() return ret def _scan_json_space(rdr): # Scan whitespace including "," and ":". Strip comments for good measure. ret = '' while not rdr.eof() and rdr.peek() in ' \t\r\n,:#': c = rdr.getc() if c == '#': c = rdr.readline() and '\n' ret += c return ret def _scan_json_compound(rdr): # Scan a JSON array or object. ret = rdr.getc() if ret == '{': end = '}' if ret == '[': end = ']' ret += _scan_json_space(rdr) if rdr.peek() == end: return ret + rdr.getc() while True: if rdr.eof(): raise SyntaxError('End of file in JSON value') ret += scan_json(rdr) ret += _scan_json_space(rdr) if rdr.peek() == end: return ret + rdr.getc() def scan_json(rdr): # Scan a JSON value. c = rdr.peek() if c == '"': return _scan_json_string(rdr) if c in ('[', '{'): return _scan_json_compound(rdr) ret = _scan_json_nonstring(rdr) if ret == '': raise SyntaxError('Invalid JSON') return ret def parse_json(js): import json return json.loads(js) def wrap_json_error(rdr, js, e): import re match = re.search(r'(.*): line (\d+) column (\d+)', e.message, re.DOTALL) if match: e = SyntaxError(match.group(1)) json_lineno = int(match.group(2)) e.lineno = rdr.lineno - js.count('\n') + json_lineno - 1 e.text = js.split('\n')[json_lineno - 1] e.offset = int(match.group(3)) if json_lineno == 1 and json_line1_column_bug(): e.offset += 1 return e def json_line1_column_bug(): ret = False try: parse_json("{:") except ValueError, e: if "column 1" in e.message: ret = True finally: return ret
StarcoderdataPython
363604
"""The config show command.""" import sys from putio_cli.commands.config import Config class Show(Config): """ show command to print configuration file Usage: putio-cli config show """ def run(self): try: cfgfile = open(self.cfgfilename, 'r') except IOError: sys.exit( 'Config file does not exist, please use template subcommand first') print cfgfile.read() cfgfile.close()
StarcoderdataPython
391178
""" DESCRIPTORS: local ang global descriptors for a rectangular (part of an) image. """ __autor__ = '<NAME>'
StarcoderdataPython
1764639
import time import numpy as np import tensorflow as tf from data import num_labels def accuracy(predictions, labels): return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0]) def train_model_in_batches(model, datasets, steps, dropout_keep_prob, load_model = False): batch_size = model.batch_size start_time = time.time() steps_to_training_accuracies = {} steps_to_validation_predictions = {} with tf.Session(graph=model.graph) as session: model.session = session # Save the session for future visualisation use. init_op = tf.initialize_all_variables() #saver = tf.train.Saver() session.run(init_op) # All variables must be initialised before the saver potentionally restores the checkpoint below. print("Initialized") model_name = 'model' if load_model: ckpt = tf.train.get_checkpoint_state("./") if ckpt and ckpt.model_checkpoint_path: model.saver.restore(session, ckpt.model_checkpoint_path) print("model loaded") else: raise Error("No checkpoint.") learning_check_step = 500 minimum_validation_step_size = 1000 validation_step_size = int(max(steps / 100, minimum_validation_step_size)) save_step_size = 50000 untrained_validation_accuracy = (100 / num_labels) * 1.2 premature_stop_steps_minimum = 3000 for step in range(steps): offset = (step * batch_size) % (datasets.train_labels.shape[0] - batch_size) batch_data = datasets.train_dataset[offset:(offset + batch_size), :, :, :] batch_labels = datasets.train_labels[offset:(offset + batch_size), :] feed_dict = { model.tf_train_dataset: batch_data, model.tf_train_labels : batch_labels, model.dropout_keep_probability: dropout_keep_prob } _, l, predictions = session.run( [model.optimizer, model.loss, model.train_prediction], feed_dict=feed_dict) if (step % validation_step_size == 0) or step == learning_check_step: training_accuracy = accuracy(predictions, batch_labels) steps_to_training_accuracies[step] = training_accuracy validation_predictions = eval_predictions(session, model, datasets.valid_dataset, datasets.valid_labels) #print "validation_predictions shape: ", validation_predictions.shape, " valid_labels shape: ", datasets.valid_labels.shape steps_to_validation_predictions[step] = validation_predictions valdiation_accuracy = accuracy(validation_predictions, datasets.valid_labels) print("step:", step, "minibatch loss:", l, "minibatch accuracy: %.1f%%" % training_accuracy, "validation accuracy: %.1f%%" % valdiation_accuracy) if valdiation_accuracy < untrained_validation_accuracy and step >= premature_stop_steps_minimum: print("Premature stop due to low validation accuracy.") return steps_to_training_accuracies, steps_to_validation_predictions if step % save_step_size == 0: save_path = model.saver.save(session, "./%s.ckpt" % model_name, global_step=model.global_step) save_path = model.saver.save(session, "./%s.ckpt" % model_name, global_step=model.global_step) test_predictions = eval_predictions(session, model, datasets.test_dataset, datasets.test_labels) print("Test accuracy at step %s: %.1f%%\n" % (step, accuracy(test_predictions, datasets.test_labels))) seconds_in_an_hour = 60 * 60 print("Elapsed time: %s hours" % ((time.time() - start_time) / seconds_in_an_hour)) return steps_to_training_accuracies, steps_to_validation_predictions def eval_predictions(session, model, dataset, labels): dataset_size = dataset.shape[0] batch_size = model.eval_batch_size #print "dataset_size: ", dataset_size, " batch_size: ", batch_size if dataset_size % batch_size != 0: raise "batch_size must be a multiple of dataset_size." predictions = np.ndarray(shape=(dataset_size, num_labels), dtype=np.float32) steps = dataset_size // batch_size #print "steps: ", steps for step in range(steps): offset = (step * batch_size) #print "offset ", offset batch_data = dataset[offset:(offset + batch_size), :, :, :] feed_dict = { model.eval_dataset: batch_data, } #predictions[offset:offset+batch_size, :] = model.eval_prediction.eval(feed_dict) predictions[offset:offset+batch_size, :] = session.run(model.eval_prediction, feed_dict=feed_dict) return predictions
StarcoderdataPython
11242793
<gh_stars>0 #45 What color is square ? # Asking for number and letter x = input("Enter the letter : ") y = int(input("Enter the number : ")) #Assuming a1 as black if x == "a" or x == "c" or x == "e" or x == "g": if y % 2 == 0: z = "White" else: z = "Black" if x == "b" or x == "d" or x == "f" or x == "h": if y % 2 == 0: z = "Black" else: z = "White" print(z)
StarcoderdataPython
1712801
def find_record_dimension(d): """Find the record dimension (i.e. time) in a netCDF4 Dataset.""" for dim in d.dimensions: if d.dimensions[dim].isunlimited(): return dim return None
StarcoderdataPython
81692
# Input: arr[] = {1, 20, 2, 10} # Output: 72 def single_rotation(arr,l): temp=arr[0] for i in range(l-1): arr[i]=arr[i+1] arr[l-1]=temp def sum_calculate(arr,l): sum=0 for i in range(l): sum=sum+arr[i]*(i) return sum def max_finder(arr,l): max=arr[0] for i in range(l): if max<arr[i]: max=arr[i] maximum=max for i in range(l): if max == arr[i]: temp=i index=temp+1 for j in range(index): single_rotation(arr,len(arr)) arr=[10, 1, 2, 3, 4, 5, 6, 7, 8, 9] max_finder(arr,len(arr)) result=sum_calculate(arr,len(arr)) print("Max sum is: "+ str(result)) #optimized approach # '''Python program to find maximum value of Sum(i*arr[i])''' # # returns max possible value of Sum(i*arr[i]) # def maxSum(arr): # # stores sum of arr[i] # arrSum = 0 # # stores sum of i*arr[i] # currVal = 0 # n = len(arr) # for i in range(0, n): # arrSum = arrSum + arr[i] # currVal = currVal + (i*arr[i]) # # initialize result # maxVal = currVal # # try all rotations one by one and find the maximum # # rotation sum # for j in range(1, n): # currVal = currVal + arrSum-n*arr[n-j] # if currVal > maxVal: # maxVal = currVal # # return result # return maxVal # # test maxsum(arr) function # arr = [10, 1, 2, 3, 4, 5, 6, 7, 8, 9] # print("Max sum is: ", maxSum(arr))
StarcoderdataPython
11368550
from .hyper import register_hyper_optlib def convert_param_to_skopt(param, name): from skopt.space import Real, Integer, Categorical if param['type'] == 'BOOL': return Categorical([False, True], name=name) if param['type'] == 'INT': return Integer(low=param['min'], high=param['max'], name=name) if param['type'] == 'STRING': return Categorical(param['options'], name=name) if param['type'] == 'FLOAT': return Real(low=param['min'], high=param['max'], name=name) if param['type'] == 'FLOAT_EXP': return Real(low=param['min'], high=param['max'], base=10, prior='log-uniform', name=name) else: raise ValueError("Didn't understand space {}.".format(param)) def get_methods_space(methods): from skopt.space import Categorical return [Categorical(methods)] def convert_to_skopt_space(method, space): return [ convert_param_to_skopt(param, name=name) for name, param in space[method].items() ] def skopt_init_optimizers( self, methods, space, sampler='et', method_sampler='et', sampler_opts=None, method_sampler_opts=None, ): """Initialize the ``skopt`` optimizer. Parameters ---------- space : dict[str, dict[str, dict]] The search space. sampler : str, optional The regressor to use to optimize each method's search space, see https://scikit-optimize.github.io/stable/modules/generated/skopt.Optimizer.html#skopt.Optimizer . method_sampler : str, optional Meta-optimizer to use to select which overall method to use. """ from skopt.optimizer import Optimizer sampler_opts = {} if sampler_opts is None else dict(sampler_opts) method_sampler_opts = ({} if method_sampler_opts is None else dict(method_sampler_opts)) if method_sampler is None: method_sampler = sampler self._method_chooser = Optimizer( get_methods_space(methods), base_estimator=method_sampler, **method_sampler_opts ) skopt_spaces = { m: convert_to_skopt_space(m, space) for m in methods } self._param_names = { m: [p.name for p in skopt_spaces[m]] for m in methods } self._optimizers = { m: Optimizer(skopt_spaces[m], base_estimator=sampler, **sampler_opts) for m in methods } def skopt_get_setting(self): """Find the next parameters to test. """ # params = self._optimizer.ask() # return params import warnings with warnings.catch_warnings(): warnings.filterwarnings("ignore", module='skopt') warnings.filterwarnings("ignore", module='sklearn') method = self._method_chooser.ask() params = self._optimizers[method[0]].ask() names = self._param_names[method[0]] return { 'method_token': method, 'method': method[0], 'params_token': params, 'params': dict(zip(names, params)), } def skopt_report_result(self, setting, trial, score): """Report the result of a trial to the ``chocolate`` optimizer. """ import warnings with warnings.catch_warnings(): warnings.filterwarnings("ignore", module='skopt') warnings.filterwarnings("ignore", module='sklearn') self._method_chooser.tell( setting['method_token'], score) self._optimizers[setting['method']].tell( setting['params_token'], score) register_hyper_optlib( 'skopt', skopt_init_optimizers, skopt_get_setting, skopt_report_result, )
StarcoderdataPython
11368864
from django.db import models from questao.models import Questao class Resposta(models.Model): texto = models.TextField(max_length=255) questao = models.ForeignKey(Questao,related_name="respostas" ,on_delete=models.CASCADE) correta = models.BooleanField(default=False) def __str__(self): return '{id:%d,texto:%s}'% (self.id,self.texto)
StarcoderdataPython
6462865
import pytest from dsp_be.logic.config import Config from dsp_be.logic.factory import Factory from dsp_be.logic.planet import Planet from dsp_be.logic.stack import Stack @pytest.fixture def jupiter(): return Planet( name="Earth", resources={"fire_ice": 0.04, "hydrogen": 0.85}, exports=[], imports=[], star=None, ) @pytest.fixture def veins_utilization_two(): return Config(veins_utilization=2) @pytest.fixture def orbital_collector(jupiter, veins_utilization_two): return Factory( name="Collector #1", machine_name="orbital_collector", recipe_name="orbital_collector", count=40, planet=jupiter, config=veins_utilization_two, ) def test_orbital_collector(jupiter, orbital_collector): print(jupiter.production()) assert jupiter.production() == Stack( products={ "deuterium": 0.0, "hydrogen": pytest.approx(196.4, 0.01), "fire_ice": pytest.approx(9.24, 0.01), } ) if __name__ == "__main__": import sys sys.exit(pytest.main(["-vv"]))
StarcoderdataPython
4915839
import torch.nn as nn import torch from detection.ResUnet import CRAFT import detection.craft_utils as craft_utils from recognition.model import TRBA import data_utils from config import config from torch.autograd import Variable class CRAFTS(nn.Module) : def __init__(self, cfg, std_cfg, str_cfg, device) : super().__init__() self.cfg = cfg self.std_cfg = std_cfg self.str_cfg = str_cfg self.device = device self.detection_model = CRAFT(input_channel = 3, n_classes = self.std_cfg.NUM_CLASSES) self.recognition_model = TRBA(self.str_cfg) def forward(self, x, padding, converter, word_bboxes_batch, words_batch, words_length_batch) : std_out, feature = self.detection_model(x) STR_inputs = torch.cat([std_out[:,:2,:,:], feature], axis = 1).permute(0,2,3,1).cpu().detach().numpy() STD_batch_size = STR_inputs.shape[0] ## TRAIN if self.cfg.training : feature_batch, text_batch, length_batch = [], [], [] for i in range(STD_batch_size) : STR_input = STR_inputs[i] word_bboxes = word_bboxes_batch[i] words = words_batch[i] words_length = words_length_batch[i] decoded_words = converter.decode(words, words_length) for word_bbox, word, decoded_word, word_length in zip(word_bboxes, words, decoded_words, words_length) : if word_length != 1 : cropFeature, _ = data_utils.crop_image_by_bbox(STR_input, word_bbox, decoded_word) feature_batch.append(cropFeature) text_batch.append(word.unsqueeze(0)) length_batch.append(word_length.unsqueeze(0)) pad_batch = padding(feature_batch).to(self.device) cropped_batch = Variable(pad_batch.type(torch.FloatTensor)).to(self.device) text_batch = Variable(torch.cat(text_batch).type(torch.LongTensor)).to(self.device) length_batch = Variable(torch.cat(length_batch).type(torch.IntTensor)).to(self.device) if self.str_cfg.ViTSTR : preds = self.recognition_model(cropped_batch, text_batch) target = text_batch else : preds = self.recognition_model(cropped_batch, text_batch[:, :-1]) # align with Attention.forward target = text_batch[:, 1:] return std_out, preds, target, length_batch ## TEST else : assert std_out.shape[0] == 1 # 무조건 한장씩?? score_text = std_out[0,0,:,:].cpu().data.numpy() score_link = std_out[0,1,:,:].cpu().data.numpy() boxes, polys = data_utils.getDetBoxes(score_text, score_link, self.std_cfg.TEXT_THRESHOLD, self.std_cfg.LINK_THRESHOLD, self.std_cfg.LOW_TEXT, poly = self.std_cfg.POLY) feature_batch = [] STR_input = STR_inputs[0] for box in boxes : cropFeature, _ = data_utils.crop_image_by_bbox(STR_input, box, '') feature_batch.append(cropFeature) pad_batch = padding(feature_batch).to(self.device) batch_size = pad_batch.shape[0] length_for_pred = torch.IntTensor([self.str_cfg.batch_max_length] * batch_size).to(self.device) if self.str_cfg.ViTSTR : text_for_pred = torch.LongTensor(batch_size, self.str_cfg.batch_max_length + 2).fill_(0).to(self.device) preds = self.recognition_model(pad_batch, text_for_pred, is_train = False) else : text_for_pred = torch.LongTensor(batch_size, self.str_cfg.batch_max_length + 1).fill_(0) preds = self.recognition_model(pad_batch, text_for_pred, is_train = False).to(self.device) _, preds_index = preds.max(2) preds_str = converter.decode(preds_index, length_for_pred) end_token = '[s]' if end_token is not None : if self.str_cfg.ViTSTR : preds_str = [pred[1:pred.find(end_token)] for pred in preds_str] else : preds_str = [pred[:pred.find(end_token)] for pred in preds_str] return std_out, boxes, polys, preds_str
StarcoderdataPython
62479
<gh_stars>0 def print_num(n): """Print a number with proper formatting depending on int/float""" if float(n).is_integer(): return print(int(n)) else: return print(n)
StarcoderdataPython
1896767
<reponame>paullewallencom/javascript-978-1-8495-1034-9 urlpatterns = patterns(u'', (ur'^$', directory.views.homepage), (ur'^accounts/login/$', u'django.contrib.auth.views.login'), (ur'^admin/', include(admin.site.urls)), (ur'^ajax/check_login', directory.views.ajax_check_login), (ur'^ajax/delete', directory.views.ajax_delete), (ur'^ajax/download/(Email|Entity|Phone|Status|Tag|URL)', directory.views.ajax_download_model), (ur'^ajax/login', directory.views.ajax_login_request), (ur'^ajax/new/Entity', directory.views.new_Entity), (ur'^ajax/profile/(\d+)', directory.views.ajax_profile), (ur'^ajax/saveimage/(\d+)', directory.views.saveimage), (ur'^ajax/save', directory.views.save), (ur'^ajax/search', directory.views.ajax_search), (ur'^(create/Entity)', directory.views.redirect), (ur'^(create/Location)', directory.views.redirect), (ur'^manage/Entity/?(\d*)', directory.views.modelform_Entity), (ur'^manage/Location/?(\d*)', directory.views.modelform_Location), (ur'^profile/images/(\d+)', directory.views.image), (ur'^profile/(new)$', directory.views.profile_new), (ur'^profile/(\d+)$', directory.views.profile_existing), )
StarcoderdataPython
8085733
<gh_stars>1-10 from tensorflow.keras.layers import Dense, Conv2D, BatchNormalization, LeakyReLU, Add, AveragePooling2D, ReLU, MaxPool2D from Model.layers import SpectralNormalization import tensorflow as tf #via https://github.com/manicman1999/Keras-BiGAN/blob/master/bigan.py def up_res_block(input, filters, gen_kernel_size, kernel_init): skip = up_sample(input) skip = conv_spectral_norm(skip, filters, gen_kernel_size, 1, kernel_init, False, pad_type='zero') output = BatchNormalization()(input) output = ReLU()(output) output = up_sample(output) output = conv_spectral_norm(output,filters, gen_kernel_size, 1, kernel_init, False) output = BatchNormalization()(output) output = ReLU()(output) output = conv_spectral_norm(output, filters,gen_kernel_size,1,kernel_init, True) output = Add()([output, skip]) return output #via https://github.com/taki0112/Self-Attention-GAN-Tensorflow/blob/master/ops.py def down_res_block(input, filters, disc_kernel_size, kernel_init): skip = conv_spectral_norm(input, filters, disc_kernel_size, 1,kernel_init,True, pad_type='zero') skip = AveragePooling2D()(skip) output = LeakyReLU(0.2)(input) output = conv_spectral_norm(output, filters, disc_kernel_size, 1, kernel_init, True) output = LeakyReLU(0.2)(output) output = conv_spectral_norm(output, filters, disc_kernel_size, 1, kernel_init, True) output = AveragePooling2D()(output) output = Add()([output, skip]) return output def dense_spectral_norm(input,filters,bias): spectralDense = SpectralNormalization( Dense(filters,use_bias=bias) ) return spectralDense(input) def conv_spectral_norm(input, filters, kernel_size, stride, kernel_init, bias, pad_type='reflect'): spectralConv = SpectralNormalization( Conv2D(filters, kernel_size = (kernel_size,kernel_size), strides = (stride,stride), padding = "same", data_format = "channels_last", kernel_initializer = kernel_init, use_bias=bias) ) return spectralConv(input) def up_sample(input): _, h, w, _ = input.get_shape().as_list() new_size = [h * 2, w * 2] return tf.image.resize(input, size=new_size, method='nearest') def down_sample(input): return AveragePooling2D(input, pool_size=(2,2), strides = (2,2)) def hw_flatten(x) : return tf.reshape(x, shape=[tf.shape(x)[0], -1, tf.shape(x)[-1]])
StarcoderdataPython
269326
# -*- coding: utf-8 -*- # @Author: <NAME> # @Date: 2016-03-17 17:06:04 # @Last Modified by: <NAME> # @Last Modified time: 2016-04-07 07:21:56 import os import json import numpy as np import networkx as nx from .SecondaryStructure import SecondaryStructure as SS from .Form import Form from .FormMotif import FormMotif class FormFabric(object): # _DEPTH = 7.1 _DEPTH = 9.1 _DEPTH_VAR = 1.1 # _WIDTH = {"H": 9.0, "E": 4.3, "C": 4.3, "X": 4.3} _WIDTH = {"H": 10.0, "E": 4.8, "C": 4.8, "X": 4.8} _WIDTH_VAR = {"H": 0.7, "E": 0.2, "C": 0.4, "X": 0.3} def __init__(self): self._id = None self._desc = None self._layers = [] self._motif = None self.forms = [] self.Estandard = 8 def build(self, identifier, filename): self._id = identifier data = {} with open(filename) as fd: data = json.loads(''.join([l.strip() for l in fd])) if "motif" in data: p1 = os.path.dirname(os.path.abspath(filename)) p2 = os.path.abspath(data["motif"]["pdb_file"]) data["motif"]["pdb_file"] = os.path.relpath(p2, p1) self._process(data) def dump(self, outdir = os.path.join(os.getcwd(), 'forms')): outdir = os.path.join(outdir, self._id) if not os.path.isdir(outdir): os.makedirs(outdir) for x in range(len(self.forms)): ident = "{0}_{1:06d}".format(self._id, x + 1) finaldir = os.path.join(outdir, ident) if not os.path.isdir(finaldir): os.mkdir(finaldir) identf = os.path.join(finaldir, "info.md") fasta = os.path.join(finaldir, "fasta.fa") psipred = os.path.join(finaldir, "psipred.ss2") constrs = os.path.join(finaldir, "constraints.cst") targetl = os.path.join(finaldir, "target.loop") tmplatl = os.path.join(finaldir, "template.loop") comndfl = os.path.join(finaldir, "run.command") with open(identf, "w") as fd: fd.write(str(self.forms[x])) with open(fasta, "w") as fd: fd.write(self.forms[x].to_fasta(self._id)) with open(psipred, "w") as fd: fd.write(self.forms[x].to_psipred_ss()) with open(constrs, "w") as fd: fd.write(self.forms[x].to_file_constraint()) with open(targetl, "w") as fd: fd.write(self._motif.to_target_loops()) with open(tmplatl, "w") as fd: fd.write(self._motif.to_tmpl_loops(self.forms[x])) if not os.path.isfile(comndfl): with open(comndfl, "w") as fd: fd.write(self._motif.to_command(targetl, tmplatl, fasta, psipred, constrs, ident, self.forms[x], comndfl)) def print_structures(self): for x in self._layers: for y in x: print y def reset(self): self._id = None self._desc = None self._layers = None self.forms = [] def _process(self, description): self._desc = description self._motif = FormMotif(description["motif"]) maxL = {"H": 0, "E": 0, "C": 0, "X": 0} for x in range(len(self._desc["layers"])): self._layers.append([]) for y in range(len(self._desc["layers"][x])): ss = SS(self._desc["layers"][x][y], x+1, y+1) self._layers[-1].append(ss) if ss.length > maxL[ss.type]: maxL[ss.type] = ss.length self._apply_lengths(maxL) self._place_xz() self._create_forms() def _create_forms( self ): i = 1 G = self._create_graph() path_length = len( G.nodes() )-1 self.forms = [] for node in G.nodes(): for path in self._find_paths(G, node, path_length): f = Form(path) if not f.matches_desc(): continue f.make_structure_sequence() self.forms.append(f) i += 1 def _create_graph( self ): G = nx.Graph() for x in self._layers: for sse1 in x: for sse2 in x: if sse1 < sse2: G.add_edge( sse1 , sse2, object=SS ) for lyr1 in range(len(self._layers)): for lyr2 in range(len(self._layers)): if abs(lyr1 - lyr2) == 1: # Only consecutive layers for sse1 in self._layers[lyr1]: for sse2 in self._layers[lyr2]: G.add_edge( sse1 , sse2, object=SS ) return G def _find_paths( self, G, u, n ): if n == 0: return [[u]] paths = [[u]+path for neighbor in G.neighbors(u) for path in self._find_paths(G, neighbor, n-1) if u not in path] return paths def _place_xz(self): r = np.random.random_sample() for x in range(len(self._layers)): dvar = float(self._DEPTH_VAR * r) - (self._DEPTH_VAR / 2.0) z = float((self._DEPTH + dvar) * x) last = 0 for y in range(len(self._layers[x])): self._layers[x][y].set_z(z) tp = self._layers[x][y].type wvar = (self._WIDTH_VAR[tp] * r) - (self._WIDTH_VAR[tp] / 2.0) xp = last + self._WIDTH[tp] + wvar last = xp self._layers[x][y].set_x(xp) def _apply_lengths(self, lengths): if lengths["H"] == 0 and lengths["E"] == 0 and lengths["C"] == 0: lengths["E"] = self.Estandard if lengths["H"] != 0: if lengths["E"] == 0: lengths["E"] = int(lengths["H"]/2.0) if lengths["C"] == 0: lengths["C"] = int(lengths["H"]/2.0) if lengths["E"] != 0: if lengths["H"] == 0: lengths["H"] = int(lengths["E"] * 2.0) if lengths["C"] == 0: lengths["C"] = int(lengths["E"] * 2.0) if lengths["C"] != 0: if lengths["H"] == 0: lengths["H"] = int(lengths["C"] * 2.0) if lengths["E"] == 0: lengths["E"] = int(lengths["C"] * 2.0) for x in self._layers: for y in x: if y.length == 0: y.length = lengths[y.type]
StarcoderdataPython
1933358
<reponame>radiusoss/constructor<filename>constructor/conda_interface.py # -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals import json from os.path import join import sys try: from conda import __version__ as CONDA_INTERFACE_VERSION conda_interface_type = 'conda' except ImportError: raise RuntimeError("Conda must be installed for python interpreter\n" "with sys.prefix: %s" % sys.prefix) if conda_interface_type == 'conda': CONDA_MAJOR_MINOR = tuple(int(x) for x in CONDA_INTERFACE_VERSION.split('.')[:2]) from conda.base.context import context cc_platform = context.subdir from conda.exports import fetch_index as _fetch_index, cache_fn_url as _cache_fn_url from conda.exports import Resolve, NoPackagesFound from conda.exports import default_prefix from conda.exports import linked_data from conda.exports import download as _download from conda.models.channel import prioritize_channels def fetch_index(channel_urls): return _fetch_index(prioritize_channels(channel_urls)) def fetch_pkg(pkginfo, download_dir): pkg_url = pkginfo['url'] assert pkg_url _download(pkg_url, join(download_dir, pkginfo['fn'])) def write_repodata(cache_dir, url): if CONDA_MAJOR_MINOR >= (4, 5): from conda.core.subdir_data import fetch_repodata_remote_request raw_repodata_str = fetch_repodata_remote_request(url, None, None) repodata_filename = _cache_fn_url(url) with open(join(cache_dir, repodata_filename), 'w') as fh: fh.write(raw_repodata_str) elif CONDA_MAJOR_MINOR >= (4, 4): from conda.core.repodata import fetch_repodata_remote_request raw_repodata_str = fetch_repodata_remote_request(url, None, None) repodata_filename = _cache_fn_url(url) with open(join(cache_dir, repodata_filename), 'w') as fh: fh.write(raw_repodata_str) elif CONDA_MAJOR_MINOR >= (4, 3): from conda.core.repodata import fetch_repodata_remote_request repodata_obj = fetch_repodata_remote_request(None, url, None, None) raw_repodata_str = json.dumps(repodata_obj) repodata_filename = _cache_fn_url(url) with open(join(cache_dir, repodata_filename), 'w') as fh: fh.write(raw_repodata_str) else: raise NotImplementedError("unsupported version of conda: %s" % CONDA_INTERFACE_VERSION) cc_platform = cc_platform fetch_index, fetch_pkg = fetch_index, fetch_pkg Resolve, NoPackagesFound = Resolve, NoPackagesFound default_prefix = default_prefix linked_data = linked_data
StarcoderdataPython
82924
<filename>third_party/OpenFace/model_training/ce-clm_training/cen_training/train_cen.py from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.optimizers import SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax from keras.constraints import max_norm, non_neg from keras.callbacks import ModelCheckpoint, Callback import numpy import scipy from scipy import io from itertools import product import pickle import time import uuid import os import h5py import sys from keras.models import model_from_json from keras.models import model_from_yaml from keras.models import load_model import keras.backend as K from datetime import datetime import argparse logfile = None final_results = [] def log(message): with open(logfile, 'a') as f: f.write("{}\n".format(message)) def log_init(folder, filename): if not os.path.exists(folder): os.mkdir(folder) global logfile logfile = os.path.join(folder, filename) with open(logfile, 'a') as f: f.write("----------------------\n") f.write("{}\n".format(datetime.now().strftime("%b/%d/%y %H:%M:%S"))) def put_in_format(samples, training_samples_size): samples=samples.reshape(samples.shape[0]/training_samples_size, training_samples_size,samples.shape[1]) return numpy.squeeze(samples); def read_data(folder, scale, view, lm): folder = os.path.join(folder) print("--------------------------------------------------------------") try: #reading from h5 h5_file = os.path.join(folder, str(lm), 'data' + scale + '_' + view + '.mat') print('loading patches from ' + h5_file) dataset = h5py.File(h5_file, 'r'); print("Landmark " + str(lm)) except: print("Landmark " + str(lm) + ' not found!') print("--------------------------------------------------------------") sys.exit() train_data = put_in_format(numpy.array(dataset['samples_train']),81) train_labels = put_in_format(numpy.array(dataset['labels_train']).T,81) test_data = put_in_format(numpy.array(dataset['samples_test']),81) test_labels = put_in_format(numpy.array(dataset['labels_test']).T,81) train_data_dnn = train_data.reshape([train_data.shape[0]*train_data.shape[1],122]) train_labels_dnn = train_labels.reshape([train_labels.shape[0]*train_labels.shape[1],1]) test_data_dnn = test_data.reshape([test_data.shape[0]*test_data.shape[1],122]) test_labels_dnn = test_labels.reshape([test_labels.shape[0]*test_labels.shape[1],1]) print(train_data_dnn.shape) print(train_labels_dnn.shape) print(test_data_dnn.shape) print(test_labels_dnn.shape) return train_data_dnn.astype('float32'), train_labels_dnn.flatten().astype('float32'), test_data_dnn.astype('float32'), test_labels_dnn.flatten().astype('float32') def read_data_menpo(folder, scale, view, lm): train_file = "menpo_train_data{}_{}_{}.mat".format(scale, view, lm) valid_file = "menpo_valid_data{}_{}_{}.mat".format(scale, view, lm) print("training file: {}".format(train_file)) print("validation file: {}".format(valid_file)) print("--------------------------------------------------------------") try: #reading from h5 train = h5py.File(os.path.join(folder, train_file), 'r') valid = h5py.File(os.path.join(folder, valid_file), 'r') print("Landmark " + str(lm)) except: print("Landmark " + str(lm) + 'not found!') print("--------------------------------------------------------------") sys.exit() train_data = put_in_format(numpy.array(train['samples']),81) train_labels = put_in_format(numpy.array(train['labels']).T,81) train_data_dnn = train_data.reshape([train_data.shape[0]*train_data.shape[1],122]) train_labels_dnn = train_labels.reshape([train_labels.shape[0]*train_labels.shape[1],1]) print(train_data_dnn.shape) print(train_labels_dnn.shape) if 'samples' in valid: valid_data=put_in_format(numpy.array(valid['samples']),81) valid_labels=put_in_format(numpy.array(valid['labels']).T,81) valid_data_dnn = valid_data.reshape([valid_data.shape[0]*valid_data.shape[1],122]) valid_labels_dnn = valid_labels.reshape([valid_labels.shape[0]*valid_labels.shape[1],1]) print(valid_data_dnn.shape) print(valid_labels_dnn.shape) return train_data_dnn.astype('float32'), train_labels_dnn.flatten().astype('float32'), valid_data_dnn.astype('float32'), valid_labels_dnn.astype('float32') else: print("No validation data") return train_data_dnn.astype('float32'), train_labels_dnn.flatten().astype('float32'), None, None train.close() valid.close() def model_half(): model = Sequential() model.add(Dense(300, input_dim=122, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(100, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(50, activation='sigmoid')) model.add(Dropout(0.3)) model.add(Dense(1, kernel_constraint=non_neg(), activation='sigmoid')) return model def model_300(): model = Sequential() model.add(Dense(300, input_dim=122, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(200, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(100, activation='sigmoid')) model.add(Dropout(0.3)) model.add(Dense(1, kernel_constraint=non_neg(), activation='sigmoid')) return model def arch4(): model = Sequential() model.add(Dense(500, input_dim=122, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(200, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(100, activation='sigmoid')) model.add(Dropout(0.3)) model.add(Dense(1, kernel_constraint=non_neg(), activation='sigmoid')) return model def arch6(): model = Sequential() model.add(Dense(50, input_dim=122, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(20, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(10, activation='sigmoid')) model.add(Dropout(0.3)) model.add(Dense(1, kernel_constraint=non_neg(), activation='sigmoid')) return model def arch6a(): model = Sequential() model.add(Dense(50, input_dim=122, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(200, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(100, activation='sigmoid')) model.add(Dropout(0.3)) model.add(Dense(1, kernel_constraint=non_neg(), activation='sigmoid')) return model def arch7(): model = Sequential() model.add(Dense(128, input_dim=122, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(32, activation='sigmoid')) model.add(Dropout(0.3)) model.add(Dense(1, kernel_constraint=non_neg(), activation='sigmoid')) return model def arch7a(): model = Sequential() model.add(Dense(100, input_dim=122, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(40, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(20, activation='sigmoid')) model.add(Dropout(0.3)) model.add(Dense(1, kernel_constraint=non_neg(), activation='sigmoid')) return model def arch7b(): model = Sequential() model.add(Dense(150, input_dim=122, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(60, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(30, activation='sigmoid')) model.add(Dropout(0.3)) model.add(Dense(1, kernel_constraint=non_neg(), activation='sigmoid')) return model def arch7c(): model = Sequential() model.add(Dense(200, input_dim=122, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(80, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(40, activation='sigmoid')) model.add(Dropout(0.3)) model.add(Dense(1, kernel_constraint=non_neg(), activation='sigmoid')) return model def arch8(): model = Sequential() model.add(Dense(512, input_dim=122, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(32, activation='sigmoid')) model.add(Dropout(0.3)) model.add(Dense(1, kernel_constraint=non_neg(), activation='sigmoid')) return model def arch9(): model = Sequential() model.add(Dense(500, input_dim=122, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(200, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(10, activation='sigmoid')) model.add(Dropout(0.3)) model.add(Dense(1, kernel_constraint=non_neg(), activation='sigmoid')) return model def find_last(epoch_src, acc_file, dataset): filename = os.path.join(epoch_src, acc_file) if not os.path.exists(filename): print("{} not found!".format(filename)) sys.exit() results = pickle.load(open(filename, 'r')) print("starting from epoch {}".format(len(results['corr']))) filename = '{}_epoch_{}.h5'.format(dataset, len(results['corr']) - 1) print("loading from {}".format(filename)) return os.path.join(epoch_src, filename), len(results['corr']) def load_old_model(epoch_src, acc_file, dataset): # load pre-trained model to continue training filename = None start_epoch = 0 if acc_file is not None: filename, start_epoch = find_last(epoch_src, acc_file, dataset) return filename, start_epoch def build_model(model_fn, model_file=None): if model_file is not None: model = load_model(model_file) print(model.get_config()) return model model = model_fn() optimizers=[] optimizers.append(SGD(lr=.1, momentum=0.1, decay=0.0)) optimizers.append(RMSprop(lr=0.001,rho=0.9, epsilon=1e-06)) optimizers.append(Adagrad(lr=0.01, epsilon=1e-06)) optimizers.append(Adadelta(lr=1.0, rho=0.95, epsilon=1e-06)) #this is the optimizer that is used - Adam #you can change the lr parameter #initial: 2 lr = 0.0001/2 log("Learning rate for Adam: {}".format(lr)) optimizers.append(Adam(lr=lr, beta_1=0.9, beta_2=0.999, epsilon=1e-08)) optimizers.append(Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08)) model.compile(loss='mean_squared_error', optimizer=optimizers[4]) return model corrs = [] class EpochCallback(Callback): def __init__(self, valid_data, valid_labels): self.valid_data = valid_data self.valid_labels = valid_labels def on_epoch_end(self, epoch, logs={}): prediction = self.model.predict(self.valid_data, batch_size=4096) coeff = numpy.corrcoef(prediction.flatten(), self.valid_labels.flatten())[0, 1] print("RMSE: {}\tCorr: {}".format(numpy.sqrt(logs['val_loss']), coeff ** 2)) global corrs corrs.append(coeff ** 2) # TODO: make symbolic def corr(y_true, y_pred): return K.constant((numpy.corrcoef(y_true.flatten(), y_pred.flatten())[0, 1]) ** 2) def get_best(history, corrs): history = history.history print("Keys: {}".format(history.keys())) best_mse = None best_corr = None for i, (mse, corr) in enumerate(zip(history['val_loss'], corrs)): if best_mse is None or mse < best_mse[1]: best_mse = (i, mse) if best_corr is None or corr > best_corr[1]: best_corr = (i, corr) return best_mse, best_corr MODELS = { 'model_half': model_half, 'model_300': model_300, 'arch4': arch4, 'arch6': arch6, 'arch7': arch7, 'arch8': arch8, 'arch6a': arch6a, 'arch7a': arch7a, 'arch7b': arch7b, 'arch7c': arch7c, 'arch9': arch9 } if __name__=='__main__': parser = argparse.ArgumentParser() parser.add_argument('mat_src', type=str) parser.add_argument('model', type=str, choices=MODELS.keys()) parser.add_argument('scale', type=str, help="scale of image") parser.add_argument('view', type=str, help="view of image") parser.add_argument('lm', type=int, help="landmark number") parser.add_argument('minibatch', type=int, help="size of minibatch") parser.add_argument('results_dir', type=str, help="location to save model epochs") parser.add_argument('dataset', choices=['general', 'menpo'], help='dataset to train on') parser.add_argument('--acc_file', type=str, default=None, help='if this option is set, resume training of model based on last epoch in this file (in results_dir)') parser.add_argument('--num_epochs', type=int, default=25, help='number of epochs to train model') parser.add_argument('--outfile', type=str, default='accuracies.txt', help='file to save training history to (in results_dir)') args = parser.parse_args() logfile = "{}_{}_{}.log".format(args.scale, args.view, args.lm) log_init('./logs', logfile) log("""Loading data from: {} Model: {}\nScale: {}\t View: {}\tLM: {}\nMinibatch size: {} Results saved to: {}\nDataset: {}\nFile to resume from: {} # of epochs: {} Training history saved to: {}""".format(args.mat_src, args.model, args.scale, args.view, args.lm, args.minibatch, args.results_dir, args.dataset, args.acc_file, args.num_epochs, args.outfile)) if not os.path.isdir(args.mat_src): print("Error, mat source {} does not exist".format(args.mat_src)) sys.exit() model_folder = os.path.join(os.path.abspath(os.path.dirname(__file__)), args.results_dir, args.model) if not os.path.isdir(model_folder): os.makedirs(model_folder) outfolder = os.path.join(model_folder, "{}_{}_{}_{}".format(args.scale, args.view, args.lm, args.minibatch)) if not os.path.isdir(outfolder): os.mkdir(outfolder) filename, start_epoch = load_old_model(outfolder, args.acc_file, args.dataset) model = build_model(MODELS[args.model], model_file=filename) if args.dataset == 'general': train_data, train_labels, valid_data, valid_labels = read_data(args.mat_src, args.scale, args.view, args.lm) elif args.dataset == 'menpo': train_data, train_labels, valid_data, valid_labels = read_data_menpo(args.mat_src, args.scale, args.view, args.lm) callbacks = [ EpochCallback(valid_data, valid_labels), ModelCheckpoint(os.path.join(outfolder, args.dataset + "_epoch_{epoch}.h5"), verbose=1) ] history = model.fit(train_data, train_labels, verbose=1, epochs=args.num_epochs+start_epoch, batch_size=args.minibatch, validation_data=(valid_data, valid_labels), callbacks=callbacks, initial_epoch=start_epoch) (mse_index, bestMSE), bestCorr = get_best(history, corrs) log("Number of epochs run: {}".format(args.num_epochs)) log("Best RMSE {}.\t Best Corr: {}.".format((mse_index, numpy.sqrt(bestMSE)), bestCorr)) # append new training stats to old ones, if continuing old_data = None if args.acc_file is not None: with open(os.path.join(outfolder, args.acc_file), 'r') as g: old_data = pickle.load(g) with open(os.path.join(outfolder, args.outfile), 'w') as f: rmses = list(numpy.sqrt(history.history['val_loss'])) if old_data is not None: rmses = old_data['rmse'] + rmses corrs = old_data['corr'] + corrs results = {'rmse': rmses, 'corr': corrs} pickle.dump(results, f) log("Successfully trained\n--------------------")
StarcoderdataPython
3498640
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Feb 27 21:07:59 2018 @author: JSen """ import numpy as np import matplotlib.pyplot as plt from numpy import loadtxt, load import os from scipy import optimize from scipy.optimize import minimize from sklearn import linear_model import scipy.io as spio import random os.chdir('/Users/JSen/Documents/bias_variance/') #load training data data = spio.loadmat('ex5data1.mat') #X 5000x400 y 5000x1 X = data['X'] y = data['y'] Xval = data['Xval'] yval = data['yval'] Xtest = data['Xtest'] ytest = data['ytest'] plt.plot(X, y, 'rx') plt.xlabel('Change in water level (x)') plt.ylabel('Water flowing out of the dam (y)') plt.show() def linearRegCostFunction(theta, X, y, lambda_coe): m = len(y) J = 0 h = np.dot(X, theta) theta_1 = theta.copy() # theta_1 = theta_1.reshape(-1, 1) theta_1[0] = 0 #theta0 should not be regularized! J = 1/(2*m) * np.sum((h-y)**2) + lambda_coe/(2*m) * np.sum(theta_1**2) return J def linearRegGradientFunction(theta, X, y, lambda_coe): m = len(y) theta = theta.reshape(-1, 1) h = np.dot(X, theta) theta_1 = theta.copy() theta_1[0] = 0 grad = np.dot(X.T, h-y)/m + lambda_coe/m * theta_1 return grad.ravel() def test(X, y): theta = np.array([[1], [1]]) X = np.hstack((np.ones((X.shape[0], 1)), X)) cost = linearRegCostFunction(theta, X, y, 1) grad = linearRegGradientFunction(theta, X, y, 1) print(f'cost:{cost}, gradient:{grad}') test(X, y) def feature_normalization(X): X_norm = X column_mean = np.mean(X_norm, axis=0) # print('mean=', column_mean) column_std = np.std(X_norm, axis=0) # print('std=',column_std) X_norm = X_norm - column_mean X_norm = X_norm / column_std return column_mean.reshape(1, -1), column_std.reshape(1, -1), X_norm #means, stds, X_norm = feature_normalization(X) def feature_normalization_with_mu(X, mu, sigma): mu = mu.reshape(1, -1) sigma = sigma.reshape(1, -1) X_norm = X X_norm = X_norm - mu X_norm = X_norm / sigma return X_norm def trainLinearReg(X, y, lambda_coe): # X = np.hstack((np.ones((X.shape[0],1)), X)) initial_theta = np.ones((X.shape[1])) '''注意:此处使用Newton-CG方法,才可以得到和课程中一样的结果,只使用cg方法时,包含10个以上的样本不收敛''' result = optimize.minimize(linearRegCostFunction, initial_theta, method='Newton-CG' ,jac=linearRegGradientFunction, args=(X, y, lambda_coe), options={'maxiter':200, 'disp':True}) return result['x'] #和上面代码等价的 # res = optimize.fmin_ncg(linearRegCostFunction, initial_theta, fprime=linearRegGradientFunction, args=(X, y, lambda_coe), maxiter=200) # return res res = trainLinearReg(X, y, 0) def plotData(X, y, theta): plt.plot(X, y, 'ro') plt.xlabel('Change in water level (x)') plt.ylabel('Water flowing out of the dam (y)') plt.hold(True) X_t = np.hstack((np.ones((X.shape[0],1)), X)) y_t = np.dot(X_t, theta.reshape(-1,1)) plt.plot(X, y_t, 'g-') plt.hold(False) plt.show() #plotData(X, y, res) def learningCurve(X, y, Xval, yval, lambda_coe): m = len(y) error_train = np.zeros((m, 1)) error_val = np.zeros((m, 1)) for i in range(1, m+1): # i=2 subX = X[:i, :] X_t = np.hstack((np.ones((subX.shape[0], 1)), subX)) y_t = y[:i, :] theta = trainLinearReg(X_t, y_t, 0) theta = theta.reshape(-1, 1) train_loss = linearRegCostFunction(theta, X_t, y_t, 0) #最小二乘法 X_val_t = np.hstack((np.ones((Xval.shape[0], 1)), Xval)) val_loss = linearRegCostFunction(theta, X_val_t, yval, 0) error_train[i-1] = train_loss error_val[i-1] = val_loss return error_train, error_val lambda_coe = 0 train_error, val_error = learningCurve(X, y, Xval, yval, lambda_coe) def plotLearningCurve(train_error, val_error): # for i in range(len(train_error)): # print(f'{i} {train_error[i]} {val_error[i]}') m = len(y) plt.plot(list(range(1,m+1)), train_error, list(range(1,m+1)), val_error) plt.title('Learning curve for linear regression') plt.legend(['Train', 'Cross Validation']) plt.xlabel('Number of training examples') plt.ylabel('Error') plt.axis([0, 13, 0, 150]) plt.show() plotLearningCurve(train_error, val_error) def polyFeatures(X: np.ndarray, p: int): X_t = X.copy() for i in range(2,p+1, 1): X_t = np.hstack((X_t, X**i)) return X_t X_2 = polyFeatures(X, 3)
StarcoderdataPython
11390747
<reponame>tefra/xsdata-w3c-tests<gh_stars>1-10 from output.models.nist_data.list_pkg.float_pkg.schema_instance.nistschema_sv_iv_list_float_max_length_5_xsd.nistschema_sv_iv_list_float_max_length_5 import NistschemaSvIvListFloatMaxLength5 __all__ = [ "NistschemaSvIvListFloatMaxLength5", ]
StarcoderdataPython
114423
<reponame>haru-works/Resize_image<filename>resize_images.py import os from glob import glob from PIL import Image import argparse import datetime #現在時間取得用 dt_now = datetime.datetime.now() #------------------------------------------------------------------------ # 画像リサイズ処理 #------------------------------------------------------------------------ def resize_images(images_dir, image_save_dir, image_size_h,image_size_w): # 保存先フォルダ生成 os.makedirs(image_save_dir, exist_ok=True) # 画像ファイルパス読込 img_paths = glob(os.path.join(images_dir, '*.png')) # 画像ファイルパスループ for img_path in img_paths: # 画像オープン image = Image.open(img_path) # RGB変換 rgb_im = image.convert('RGB') # オリジナル画像サイズ取得 iw, ih = image.size # リサイズサイズ取得 w, h = (image_size_w,image_size_h) # 倍率設定 scale = min(w/iw, h/ih) # リサイズサイズ再計算 nw = int(iw*scale) nh = int(ih*scale) # リサイズ実行 rgb_im = rgb_im.resize((nw,nh), Image.BICUBIC) # 背景生成 back_im = Image.new("RGB", (image_size_w,image_size_h), color=(128,128,128)) back_im.paste(rgb_im, ((w-nw)//2, (h-nh)//2)) # 保存用パス生成&保存 save_path = os.path.join(image_save_dir, os.path.basename(img_path)) end_index = save_path.rfind('.') save_path = save_path[0:end_index] + "_" + dt_now.strftime('%Y%m%d%H%M%S') + '.png' print('save',save_path) back_im.save(save_path,format='PNG') #------------------------------------------------------------------------ # メイン処理 #------------------------------------------------------------------------ def _main(): # 引数指定 parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS) ''' Command line options ''' parser.add_argument( '--input', type=str, help='path to images_dir' ) parser.add_argument( '--output', type=str, help='path to resize_dir ' ) parser.add_argument( '--h', type=int, help='resize height' ) parser.add_argument( '--w', type=int, help='resize witdh' ) ARGS = parser.parse_args() #入力ディレクトリ images_dir = ARGS.input #出力ディレクトリ image_save_dir = ARGS.output # ディレクトリが存在しない場合、ディレクトリを作成する if not os.path.exists(image_save_dir): os.mkdir(image_save_dir) # リサイズサイズ設定 image_size_h = ARGS.h image_size_w = ARGS.w # 処理実行 resize_images(images_dir=images_dir, image_save_dir=image_save_dir,image_size_h=image_size_h,image_size_w=image_size_w) if __name__ == '__main__': _main()
StarcoderdataPython
1702664
<reponame>mbaak/Eskapade-Spark """Project: Eskapade - A python-based package for data analysis. Class: SparkHistogrammarFiller Created: 2017/06/09 Description: Algorithm to fill histogrammar sparse-bin histograms from a Spark dataframe. It is possible to do cleaning of these histograms by rejecting certain keys or removing inconsistent data types. Timestamp columns are converted to nanoseconds before the binning is applied. Authors: KPMG Advanced Analytics & Big Data team, Amstelveen, The Netherlands Redistribution and use in source and binary forms, with or without modification, are permitted according to the terms listed in the file LICENSE. """ import histogrammar as hg import histogrammar.sparksql import numpy as np import pandas as pd import pyspark from pyspark.sql.functions import col as sparkcol from eskapade.analysis.histogram_filling import HistogramFillerBase from eskapade.analysis import HistogrammarFiller from eskapade.analysis.links.hist_filler import hgr_convert_bool_to_str, hgr_fix_contentType, get_n_bins class SparkHistogrammarFiller(HistogrammarFiller): """Fill histogrammar sparse-bin histograms with Spark. Algorithm to fill histogrammar style sparse-bin and category histograms with Spark. It is possible to do after-filling cleaning of these histograms by rejecting certain keys or removing inconsistent data types. Timestamp columns are converted to nanoseconds before the binning is applied. Final histograms are stored in the datastore. Example is available in: tutorials/esk605_hgr_filler_plotter.py. """ def __init__(self, **kwargs): """Initialize link instance. Store and do basic check on the attributes of link HistogrammarFiller. :param str name: name of link :param str read_key: key of input data to read from data store :param str store_key: key of output data to store histograms in data store :param list columns: colums to pick up from input data (default is all columns) :param dict bin_specs: dictionaries used for rebinning numeric or timestamp columns Example bin_specs dictionary is: >>> bin_specs = {'x': {'bin_width': 1, 'bin_offset': 0}, >>> 'y': {'bin_edges': [0, 2, 3, 4, 5, 7, 8]}} :param dict var_dtype: dict of datatypes of the columns to study from dataframe (if not provided, try to determine datatypes directy from dataframe) :param dict quantity: dictionary of lambda functions of how to pars certain columns Example quantity dictionary is: >>> quantity = {'y': lambda x: x} :param bool store_at_finalize: store histograms in datastore at finalize(), not at execute() (useful when looping over datasets, default is False) :param drop_keys dict: dictionary used for dropping specific keys from bins dictionaries of histograms Example drop_keys dictionary is: >>> drop_keys = {'x': [1, 4, 8, 19], >>> 'y': ['apple', 'pear', 'tomato'], >>> 'x:y': [(1, 'apple'), (19, 'tomato')]} """ # initialize Link, pass name from kwargs if 'name' not in kwargs: kwargs['name'] = 'SparkHistogrammarFiller' HistogrammarFiller.__init__(self, **kwargs) self._unit_timestamp_specs = {'bin_width': float(pd.Timedelta(days=7).value), 'bin_offset': float(pd.Timestamp('2017-01-02').value)} def fill_histogram(self, idf, columns): """Fill input histogram with column(s) of input dataframe. :param idf: input data frame used for filling histogram :param list columns: histogram column(s) """ name = ':'.join(columns) if name not in self._hists: # create an (empty) histogram of right type self._hists[name] = self.construct_empty_hist(idf, columns) hist = self._hists[name] # do the actual filling hist.fill.sparksql(idf) # remove specific keys from histogram before merging, if so requested hist.bins = self.drop_requested_keys(name, hist.bins) self._hists[name] = hist def construct_empty_hist(self, df, columns): """Create an (empty) histogram of right type. Create a multi-dim histogram by iterating through the columns in reverse order and passing a single-dim hist as input to the next column. :param df: input dataframe :param list columns: histogram columns :returns: created histogram :rtype: histogrammar.Count """ hist = hg.Count() # create a multi-dim histogram by iterating through the columns in reverse order # and passing a single-dim hist as input to the next column revcols = list(reversed(columns)) for idx,col in enumerate(revcols): # histogram type depends on the data type dt = np.dtype(self.var_dtype[col]) is_number = isinstance(dt.type(), np.number) is_timestamp = isinstance(dt.type(), np.datetime64) if is_number or is_timestamp: # numbers and timestamps are put in a sparse binned histogram specs = self.var_bin_specs(columns, columns.index(col)) hist = hg.SparselyBin(binWidth=specs['bin_width'], origin=specs['bin_offset'], quantity=df[col], value=hist) else: # string and boolians are treated as categories hist = hg.Categorize(quantity=df[col], value=hist) # decorators; adding them here doesn't seem to work! #selected_cols = revcols[:idx+1] #hist.datatype = [self.var_dtype[col] for col in reversed(selected_cols)] # FIXME stick data types and number of dimension to histogram dta = [self.var_dtype[col] for col in columns] hist.datatype = dta[0] if len(columns) == 1 else dta hist.n_dim = len(columns) return hist def assert_dataframe(self, df): """Check that input data is a filled Spark data frame. :param df: input Spark data frame """ if not isinstance(df, pyspark.sql.dataframe.DataFrame): raise TypeError('Retrieved object not of type Spark DataFrame.') # assert df.count() > 0, 'input dataframe is empty' def get_all_columns(self, data): """Retrieve all columns / keys from input data. :param data: input data sample (pandas dataframe or dict) :returns: list of columns :rtype: list """ if not isinstance(data, pyspark.sql.dataframe.DataFrame): raise TypeError('Retrieved object not of type Spark DataFrame.') return sorted(data.columns) def get_data_type(self, df, col): """Get data type of dataframe column. :param df: input data frame :param str col: column """ if col not in df.columns: raise KeyError('Column "{0:s}" not in input dataframe.'.format(col)) dt = dict(df.dtypes)[col] # spark conversions to numpy or python equivalent if dt == 'string': dt = 'str' elif dt == 'timestamp': dt = np.datetime64 elif dt == 'boolean': dt = bool return np.dtype(dt) def process_columns(self, df): """Process columns before histogram filling. Specifically, in this case convert timestamp columns to nanoseconds :param df: input data frame :returns: output data frame with converted timestamp columns :rtype: DataFrame """ # make alias df for value counting (used below) idf = df.alias('') # timestamp variables are converted here to ns since 1970-1-1 # histogrammar does not yet support long integers, so convert timestamps to float #epoch = (sparkcol("ts").cast("bigint") * 1000000000).cast("bigint") for col in self.dt_cols: self.logger.debug('Converting column "{col}" of type "{type}" to nanosec.', col=col, type=self.var_dtype[col]) to_ns = (sparkcol(col).cast("float") * 1e9).cast("float") idf = idf.withColumn(col, to_ns) hg.sparksql.addMethods(idf) return idf def process_and_store(self): """Process and store spark-based histogram objects.""" # if quantity refers to a spark df, the histogram cannot be pickled, # b/c we cannot pickle a spark df. # HACK: patch the quantity pickle bug here before storage into the datastore # Also patch: contentType and keys of sub-histograms for name, hist in self._hists.items(): hgr_patch_histogram(hist) hist.n_bins = get_n_bins(hist) # put hists in datastore as normal HistogramFillerBase.process_and_store(self) def hgr_patch_histogram(hist): """Apply set of patches to histogrammer histogram. :param hist: histogrammar histogram to patch up. """ hgr_reset_quantity(hist, new_quantity=unit_func) hgr_fix_contentType(hist) hgr_convert_bool_to_str(hist) def unit_func(x): """Dummy quantity function for histogrammar objects :param x: value :returns: the same value """ return x # name needed for hist.toJson() unit_func.name = 'unit_func' def hgr_reset_quantity(hist, new_quantity=unit_func): """Reset quantity attribute of histogrammar histogram. If quantity refers to a Spark df the histogram cannot be pickled, b/c we cannot pickle a Spark df. Here we reset the quantity of a (filled) histogram to a neutral lambda function. :param hist: histogrammar histogram to reset quantity of. :param new_quantity: new quantity function to reset hist.quantity to. default is lambda x: x. """ # nothing left to reset? if isinstance(hist, hg.Count): return # reset quantity if hasattr(hist, 'quantity'): hist.quantity = new_quantity # 1. loop through bins if hasattr(hist, 'bins'): for h in hist.bins.values(): hgr_reset_quantity(h, new_quantity) # 2. loop through values elif hasattr(hist, 'values'): for h in hist.values: hgr_reset_quantity(h, new_quantity) # 3. process attributes if present if hasattr(hist, 'value'): hgr_reset_quantity(hist.value, new_quantity) if hasattr(hist, 'underflow'): hgr_reset_quantity(hist.underflow, new_quantity) if hasattr(hist, 'overflow'): hgr_reset_quantity(hist.overflow, new_quantity) if hasattr(hist, 'nanflow'): hgr_reset_quantity(hist.nanflow, new_quantity)
StarcoderdataPython
6417557
#!/usr/bin/env python # # Example pipeline to run Fastqc on one or more Fastq files # but ignoring any with zero reads import os import argparse from bcftbx.FASTQFile import nreads from auto_process_ngs.pipeliner import PipelineTask from auto_process_ngs.pipeliner import PipelineFunctionTask from auto_process_ngs.pipeliner import PipelineCommandWrapper from auto_process_ngs.pipeliner import Pipeline class RunFastqc(PipelineTask): # Run Fastqc on multiple files def init(self,fastqs,out_dir): # Inputs: # - fastqs: list of input Fastq files # - out_dir: where to put the Fastqc outputs # Outputs: # - files: list of output Fastqc HTML files self.add_output('files',list()) def setup(self): if not os.path.exists(self.args.out_dir): os.mkdir(self.args.out_dir) for fq in self.args.fastqs: self.add_cmd( PipelineCommandWrapper("Run FastQC", "fastqc", "-o",self.args.out_dir, fq)) def finish(self): for fq in self.args.fastqs: if fq.endswith(".gz"): fq = os.path.splitext(fq)[0] out_file = os.path.join( self.args.out_dir, os.path.splitext( os.path.basename(fq))[0]+"_fastqc.html") if not os.path.exists(out_file): self.fail(message="Missing output file: %s" % out_file) else: self.output.files.append(out_file) class FilterEmptyFastqs(PipelineFunctionTask): # Filter Fastq files based on read count def init(self,fastqs): self.add_output('fastqs',list()) def setup(self): for fq in self.args.fastqs: self.add_call("Filter out empty fastqs", self.filter_empty_fastqs,fq) def filter_empty_fastqs(self,*fastqs): filtered_fastqs = list() for fq in fastqs: if nreads(fq) > 0: print("%s" % fq) filtered_fastqs.append(fq) return filtered_fastqs def finish(self): for result in self.result(): for fq in result: self.output.fastqs.append(fq) if __name__ == "__main__": # Command line p = argparse.ArgumentParser() p.add_argument("fastqs",nargs='+',metavar="FASTQ") args = p.parse_args() # Make and run a pipeline ppl = Pipeline() filter_empty_fastqs = FilterEmptyFastqs("Filter empty Fastqs", args.fastqs) run_fastqc = RunFastqc("Run Fastqc", filter_empty_fastqs.output.fastqs, os.getcwd()) ppl.add_task(filter_empty_fastqs) ppl.add_task(run_fastqc,requires=(filter_empty_fastqs,)) ppl.run() print(run_fastqc.output())
StarcoderdataPython
188981
<gh_stars>0 import os import transform as trans import numpy as np from glob import glob import argparse def transformObj(inputFile, R, T, outSuffix='-aligned'): parDir, filename = os.path.split(inputFile) name, ext = os.path.splitext(filename) outFile = os.path.join(parDir, name + outSuffix + ext) lines = [] with open(inputFile) as fInput: lines = fInput.readlines() print('transform v and vn...\n') for i in range(len(lines)): line = lines[i] if len(line) > 0 and line[0:2] == 'v ': line_parts = line.split(' ') vert = np.array([float(line_parts[1]), float(line_parts[2]), float(line_parts[3])]) outVert = R.dot(vert) + T outLine = 'v %f %f %f\n' % (outVert[0], outVert[1], outVert[2]) lines[i] = outLine elif len(line) > 0 and line[0:2] == 'vn': line_parts = line.split(' ') norm = np.array([float(line_parts[1]), float(line_parts[2]), float(line_parts[3])]) outNorm = R.dot(norm) outLine = 'vn %f %f %f\n' % (outNorm[0], outNorm[1], outNorm[2]) lines[i] = outLine else: continue print('write back to file...\n') with open(outFile, 'w') as fOutput: for line in lines: fOutput.write('%s' % line) print('done.\n') def trasformPlyVC(inputFile, R, T, outSuffix='-aligned', outputFile=None): parDir, filename = os.path.split(inputFile) name, ext = os.path.splitext(filename) outFile = os.path.join(parDir, name + outSuffix + ext) if not(outputFile==None): outFile = outputFile lines = [] with open(inputFile) as fInput: lines = fInput.readlines() print('transform v\n') # find numVerts and idxEndHeader numVerts = 0 idxEndHeader = 0 for i in range(len(lines)): line = lines[i].strip(' ') if len(line) >= 14 and line[0:14] == 'element vertex': line_parts = line.split(' ') numVerts = int(line_parts[2]) elif len(line) >= 10 and line[0:10] == 'end_header': idxEndHeader = i break else: continue for i in range(numVerts): idxInLines = idxEndHeader + 1 + i line = lines[idxInLines].strip(' \n') line_parts = line.split(' ') vert = np.array([float(line_parts[0]), float(line_parts[1]), float(line_parts[2])]) outVert = R.dot(vert) + T if len(line_parts)==6: color = np.array([int(line_parts[3]), int(line_parts[4]), int(line_parts[5])]) outLine = '%f %f %f %u %u %u\n' % (outVert[0], outVert[1], outVert[2], color[0], color[1], color[2]) elif len(line_parts)==7: color = np.array([int(line_parts[3]), int(line_parts[4]), int(line_parts[5]), int(line_parts[6])]) outLine = '%f %f %f %u %u %u %u\n' % (outVert[0], outVert[1], outVert[2], color[0], color[1], color[2], color[3]) else: print('wrong ply file.\n') return lines[idxInLines] = outLine print('write back to file...\n') with open(outFile, 'w') as fOutput: for line in lines: fOutput.write('%s' % line) print('done.\n') def parseArgs(): parser = argparse.ArgumentParser() parser.add_argument('--plyFile', type=str, required=True, help="暂时只支持ascii格式的ply文件,且无法向信息") parser.add_argument('--rtFile', type=str, required=True, help="txt文件,第一行是行主序的旋转矩阵,第二行是平移向量,数字间以空格隔开") parser.add_argument('--outSuffix', default='_aligned') parser.add_argument('--outputFile', default=None, type=str) args = parser.parse_args() return args def main(): args = parseArgs() R, T = trans.readRT(args.rtFile) trasformPlyVC(args.plyFile, R, T, outSuffix=args.outSuffix, outputFile=args.outputFile) if __name__=='__main__': main()
StarcoderdataPython
1896456
<gh_stars>0 from dotenv import load_dotenv, find_dotenv from libs.google_auth_utils import get_credentials load_dotenv(find_dotenv()) def main(): # Set the access scopes (Docs: https://developers.google.com/identity/protocols/oauth2/scopes) SCOPES = ['https://www.googleapis.com/auth/spreadsheets.readonly'] # Call anytime a function needs to access a user's Google resource creds = get_credentials(SCOPES) #print(vars(creds)) print(f'Scopes:\n{creds.scopes}\n') print(f'Token expiration:\n{creds.expiry}') return if __name__ == '__main__': main()
StarcoderdataPython
9771137
<filename>dijkstra.py #!/usr/bin/env python # -*- coding: utf-8 -*- import math def dijkstra(weights): num_nodes = len(weights) # 重みの合計の暫定値と確定値 sum_tmp = [math.inf for _ in range(num_nodes)] sum_fixed = [0 for _ in range(num_nodes)] # 仮のルートと確定のルート route_tmp = [[] for _ in range(num_nodes)] route_fixed = [[] for _ in range(num_nodes)] # 経路のスタートは1 route_tmp[0] = [1] route_fixed[0] = [1] min_idx = 0 # ゴールの重みの合計の確定値が出るまで繰り返す while not sum_fixed[-1]: for i in range(num_nodes): # 経路が存在し、重みの合計の暫定の値より小さければ更新 if weights[min_idx][i] != 0 and sum_fixed[min_idx] + weights[min_idx][i] < sum_tmp[i]: sum_tmp[i] = sum_fixed[min_idx] + weights[min_idx][i] route_tmp[i] = route_fixed[min_idx] + [i+1] # 暫定の重みの合計が最小のノードの重みの合計、ルートを確定にする。 min_idx = sum_tmp.index(min(sum_tmp)) sum_fixed[min_idx] = sum_tmp[min_idx] route_fixed[min_idx] = route_tmp[min_idx] # 確定にしたノードの重みの合計の暫定値を inf に戻す sum_tmp[min_idx] = math.inf return route_fixed[-1], sum_fixed[-1] def main(): weight_matrix = [[0,50,80,0,0],[0,0,20,15,0],[0,0,0,10,15],[0,0,0,0,30],[0,0,0,0,0]] route, weight_sum = dijkstra(weight_matrix) print("Route : ", route) print("Sum Weights : ", weight_sum) if __name__ == '__main__': main()
StarcoderdataPython
6615242
<filename>websubsub/views.py import json import logging from collections import defaultdict from datetime import timedelta from django.conf import settings from django.http import HttpResponse from django.utils.decorators import classonlymethod from django.utils.timezone import now from rest_framework.views import APIView # TODO: can we live without drf dependency? from rest_framework.response import Response from rest_framework.status import HTTP_400_BAD_REQUEST from .models import Subscription from . import tasks logger = logging.getLogger('websubsub.views') class WssView(APIView): """ Generic websub callback processing. Usage: Create a celery task that will accept incoming data, then in your urls.py: >>> from websubsub.views import WssView >>> from .tasks import news_task, reports_task >>> >>> urlpatterns = [ >>> path('/websubcallback/news/<uuid:id>', WssView.as_view(news_task), name='webnews') >>> path('/websubcallback/reports/<uuid:id>', WssView.as_view(reports_task), name='webreports') >>> ] """ handler_task = None @classonlymethod def as_view(cls, handler_task, **kwargs): kwargs['handler_task'] = handler_task return super().as_view(**kwargs) def get(self, request, *args, **kwargs): """ Hub sends GET request to callback url to verify subscription/unsubscription or to inform about subscription denial. """ if 'hub.topic' not in request.GET: logger.error(f'{request.path}: GET request is missing hub.topic') return Response('Missing hub.topic', status=HTTP_400_BAD_REQUEST) mode = request.GET.get('hub.mode', None) if mode not in ['subscribe', 'unsubscribe', 'denied']: logger.error(f'{request.path}: GET request received unknown hub.mode "{mode}"') return Response('Missing or unknown hub.mode', status=HTTP_400_BAD_REQUEST) id = args[0] if args else list(kwargs.values())[0] try: ssn = Subscription.objects.get(id=id) except Subscription.DoesNotExist: logger.error( f'Received unwanted subscription {id} "{mode}" request with' f' topic {request.GET["hub.topic"]} !' ) return Response('Unwanted subscription', status=HTTP_400_BAD_REQUEST) if mode == 'subscribe': return self.on_subscribe(request, ssn) elif mode == 'unsubscribe': return self.on_unsubscribe(request, ssn) elif mode == 'denied': return self.on_denied(request, ssn) def on_subscribe(self, request, ssn): """ The subscriber MUST confirm that the hub.topic corresponds to a pending subscription or unsubscription that it wishes to carry out. If so, the subscriber MUST respond with an HTTP success (2xx) code with a response body equal to the hub.challenge parameter. If the subscriber does not agree with the action, the subscriber MUST respond with a 404 "Not Found" response. Hubs MAY make the hub.lease_seconds equal to the value the subscriber passed in their subscription request but MAY change the value depending on the hub's policies. To sustain a subscription, the subscriber MUST re-request the subscription on the hub before hub.lease_seconds seconds has elapsed. Hubs MUST enforce lease expirations, and MUST NOT issue perpetual lease durations. """ if 'hub.challenge' not in request.GET: logger.error(f'Missing hub.challenge in subscription verification {ssn.pk}!') tasks.save.delay( pk = ssn.pk, subscribe_status = 'verifyerror', verifyerror_count = ssn.verifyerror_count + 1 ) return Response('Missing hub.challenge', status=HTTP_400_BAD_REQUEST) if not request.GET.get('hub.lease_seconds', '').isdigit(): logger.error(f'Missing integer hub.lease_seconds in subscription verification {ssn.pk}!') tasks.save.delay( pk = ssn.pk, subscribe_status = 'verifyerror', verifyerror_count = ssn.verifyerror_count + 1 ) return Response('hub.lease_seconds required and must be integer', status=HTTP_400_BAD_REQUEST) if ssn.unsubscribe_status is not None: logger.error(f'Subscription {ssn.pk} received subscription verification request,' f' but its was explicitly unsubscribed before.') return Response('Unsubscribed') tasks.save.delay( pk = ssn.pk, subscribe_status = 'verified', lease_expiration_time = now() + timedelta(seconds=int(request.GET['hub.lease_seconds'])), connerror_count = 0, huberror_count = 0, verifyerror_count = 0, verifytimeout_count = 0 ) logger.info(f'Got {ssn.pk} subscribe confirmation from hub.') return HttpResponse(request.GET['hub.challenge']) def on_unsubscribe(self, request, ssn): if 'hub.challenge' not in request.GET: logger.error(f'Missing hub.challenge in unsubscription verification {ssn.pk}!') tasks.save.delay( pk = ssn.pk, unsubscribe_status = 'verifyerror', verifyerror_count = ssn.verifyerror_count + 1 ) return Response('Missing hub.challenge', status=HTTP_400_BAD_REQUEST) tasks.save.delay( pk = ssn.pk, unsubscribe_status = 'verified', #lease_expiration_time = None, # TODO: should we reset it? connerror_count = 0, huberror_count = 0, verifyerror_count = 0, verifytimeout_count = 0 ) logger.info(f'Got {ssn.pk} unsubscribe confirmation from hub.') return HttpResponse(request.GET['hub.challenge']) def on_denied(self, request, ssn): """ TODO If (and when), the subscription is denied, the hub MUST inform the subscriber by sending an HTTP GET request to the subscriber's callback URL as given in the subscription request. This request has the following query string arguments appended: hub.mode - REQUIRED. The literal string "denied". hub.topic -REQUIRED. The topic URL given in the corresponding subscription request. hub.reason -OPTIONAL. The hub may include a reason for which the subscription has been denied. Hubs may provide an additional HTTP Location header to indicate that the subscriber may retry subscribing to a different hub.topic. This allows for limited distribution to specific groups or users in the context of social web applications. The subscription MAY be denied by the hub at any point (even if it was previously accepted). The Subscriber SHOULD then consider that the subscription is not possible anymore. """ if not ssn: logger.error(f'Received denial on unwanted subscription with ' f'topic {request.GET["hub.topic"]}!') return Response('Unwanted subscription') logger.error(f'Hub denied subscription {ssn.pk}!') tasks.save.delay(pk=ssn.pk, subscribe_status='denied') return Response('') def post(self, request, *args, **kwargs): """ The subscriber's callback URL MUST return an HTTP 2xx response code to indicate a success. The subscriber's callback URL MAY return an HTTP 410 code to indicate that the subscription has been deleted, and the hub MAY terminate the subscription if it receives that code as a response. The hub MUST consider all other subscriber response codes as failures Subscribers SHOULD respond to notifications as quickly as possible; their success response code SHOULD only indicate receipt of the message, not acknowledgment that it was successfully processed by the subscriber. """ id = args[0] if args else list(kwargs.values())[0] try: ssn = Subscription.objects.get(id=id) except Subscription.DoesNotExist: logger.error( f'Received unwanted subscription {id} POST request! Sending status ' '410 back to hub.' ) return Response('Unwanted subscription', status=410) ssn.update(time_last_event_received=now()) self.handler_task.delay(request.data) return Response('') # TODO
StarcoderdataPython
9628712
import math r1 = 2.49/2 r2 = 2.15/2 r3 = 0.32/2 r4 = 0.263/2 r5 = 0.077/2 r6 = 0.691/2 chang1 = 0.926821 kuan1 = 0.540230 chang2 = 0.507058 kuan2 = 0.224489 chang3 = 0.829926 kuan3 = 0.106065 chang4 = 0.587294 kuan4 = 0.602596 chang_daa = 0.476477 kuan_daa = 1.015017 chang_da = 1.015017 kuan_da = 0.182756 height1 = 0.413597 height2 = 0.790418 num_floors = 12 num_windows = 730 def yuan(r): return r*r*math.pi yuanhuan = yuan(r1)/2 - yuan(r2)/2 dayuan = yuan(r3)/2 zhongyuan = yuan(r4)/2 xiaoyuan = yuan(r5)/2 banyuan = yuan(r6)/2 max_width = 3.654645 max_length = 2.588481 window_width = 0.051671 window_height = 0.03725 factor = 1.91846/window_height ju1 = chang1 * kuan1 kon1 = chang2 * kuan2 ju2 = chang3 * kuan3 ju3 = chang4 * kuan4 da_lou = chang_daa * kuan_daa da_ju = chang_da * kuan_da lou1 = ((ju1 + yuanhuan - kon1 + ju2 + ju3 + zhongyuan*3 + xiaoyuan * 2 + dayuan*2)*2 + banyuan + da_ju + da_lou) * height1 lou2 = da_lou * height2 volume = lou1 + lou2 real_volume = volume * factor * factor * factor print("num_floors:", num_floors) print("num_windows:", num_windows) print("max_width:", max_width * factor) print("max_length:", max_length * factor) print("max_height:", (height1 + height2) * factor) print("volume:", real_volume) print("window height:", window_height * factor) print("window width:", window_width * factor) print("window square:", num_windows * window_height * window_width * factor * factor)
StarcoderdataPython
1627099
<gh_stars>0 from flask import render_template, request, redirect, url_for, abort, flash, session, g, send_from_directory from flask.globals import session as session_obj from flask_login import login_user, login_required, logout_user, current_user from sqlalchemy.orm import exc from sqlalchemy import and_ import json, os, time, smtplib, bcrypt, hashlib from collections import OrderedDict from app import * from random import choice from string import ascii_uppercase from logger import logger from db.samplev2 import generate_sample_db from werkzeug.utils import secure_filename from grader.grader import get_predicted_grade, genGrade # General Function def process_student_data(db_session, course_id, student_id): course = db_session.query(Course). \ filter_by(id=course_id).one() scores = db_session.query(Score). \ filter(Score.student_id == student_id). \ filter(Score.course_id == course_id). \ filter(Score.course_id == MaxScore.course_id). \ filter(Score.name == MaxScore.name). \ order_by(MaxScore.priority.asc()).all() max_scores = db_session.query(MaxScore). \ filter_by(course_id=course_id). \ order_by(MaxScore.priority.asc()).all() student = db_session.query(Student). \ filter_by(id=student_id).one() course_total = db_session.query(MaxScore.maxscore).filter_by(course_id=course_id, name='Total').one()[0] average_query_unsorted = db_session.query(Score.name, func.avg(Score.score).label('Sums')). \ filter_by(course_id=course_id). \ group_by(Score.name). \ subquery() average_query_sorted = db_session.query(average_query_unsorted.c.name, average_query_unsorted.c.Sums.label('average')). \ filter(average_query_unsorted.c.name == MaxScore.name). \ filter(MaxScore.course_id == course_id). \ order_by(MaxScore.priority.asc()). \ all() course_averages = OrderedDict(average_query_sorted) # Course Average Pre processing for key in course_averages: course_averages[key] = round(course_averages[key], 2) # Get Mid Term Average and Final Average try: course_final_average = course_averages['Total'] except KeyError: course_final_average = 'Average Pending' try: course_mid_term_average = course_averages['Mid Term Total'] except KeyError: course_mid_term_average = 'Average Pending' logger(course_mid_term_average=course_mid_term_average, course_final_average=course_final_average) # Scores with Total in their score name are stripped scores_actual_json = json.dumps( [scores[i].score for i in range(len(scores)) if 'tal' not in str(scores[i].name).lower()]) scores_percentages = json.dumps( [round(float(scores[i].score) * 100 / float(max_scores[i].maxscore), 2) for i in range(len(scores)) if 'tal' not in str(scores[i].name).lower()]) scores_names = json.dumps([i.name for i in scores if 'tal' not in str(i.name).lower()]) scores_distribution_percentages = json.dumps([i.maxscore for i in max_scores if 'tal' not in str(i.name).lower()]) course_averages_for_plot = json.dumps(course_averages) return scores, \ course, \ scores_distribution_percentages, \ course_total, \ student, \ scores_names, \ scores_percentages, \ scores_actual_json, \ course_averages, \ course_averages_for_plot, \ course_mid_term_average, \ course_final_average def get_grading(db_session, course_id): maxscore_by_subject = db_session.query(MaxScore).filter_by(course_id=course_id).all() score_names = [i.name for i in maxscore_by_subject] name = score_names[-1] maximum_scores_unsorted = db_session.query(Score.name, func.max(Score.score).label('Maxs')). \ filter_by(course_id=course_id). \ group_by(Score.name). \ subquery() maximum_scores_sorted = db_session.query(maximum_scores_unsorted.c.name, maximum_scores_unsorted.c.Maxs.label('Maximum')). \ filter(maximum_scores_unsorted.c.name == MaxScore.name). \ filter(MaxScore.course_id == course_id). \ order_by(MaxScore.priority.asc()). \ all() minimum_scores_unsorted = db_session.query(Score.name, func.min(Score.score).label('Mins')). \ filter_by(course_id=course_id). \ group_by(Score.name). \ subquery() minimum_scores_sorted = db_session.query(minimum_scores_unsorted.c.name, minimum_scores_unsorted.c.Mins.label('Minimum')). \ filter(minimum_scores_unsorted.c.name == MaxScore.name). \ filter(MaxScore.course_id == course_id). \ order_by(MaxScore.priority.asc()). \ all() course_total = db_session.query(MaxScore.maxscore).filter_by(course_id=course_id, name=name).one()[0] average_query_unsorted = db_session.query(Score.name, func.avg(Score.score).label('Sums')). \ filter_by(course_id=course_id). \ group_by(Score.name). \ subquery() average_query_sorted = db_session.query(average_query_unsorted.c.name, average_query_unsorted.c.Sums.label('average')). \ filter(average_query_unsorted.c.name == MaxScore.name). \ filter(MaxScore.course_id == course_id). \ order_by(MaxScore.priority.asc()). \ all() course_averages = OrderedDict(average_query_sorted) course_maximums = OrderedDict(maximum_scores_sorted) course_minimums = OrderedDict(minimum_scores_sorted) # Course Maximum Preprocessing for key in course_maximums: course_maximums[key] = round(course_maximums[key], 2) try: course_final_maximum = float(course_maximums[name]) except KeyError: course_final_maximum = 'Maximum Pending' # Course Minimum Preprocessing for key in course_minimums: course_minimums[key] = round(course_minimums[key], 2) try: course_final_minimum = float(course_minimums[name]) except KeyError: course_final_minimum = 'Minimum Pending' # Course Average Pre processing for key in course_averages: course_averages[key] = round(course_averages[key], 2) # Get Mid Term Average and Final Average try: course_final_average = course_averages[name] except KeyError: course_final_average = 'Average Pending' course_maximum, a, a_minus, b, b_minus, c, c_minus = get_predicted_grade(course_final_average, course_final_minimum, course_final_maximum) return course_maximum, a, a_minus, b, b_minus, c, c_minus def get_last_column(db_session, course_id): maxscore_by_subject = db_session.query(MaxScore).filter_by(course_id=course_id).all() score_names = [i.name for i in maxscore_by_subject] name = score_names[-1] course_total = db_session.query(MaxScore.maxscore).filter_by(course_id=course_id, name=name).one()[0] return name, course_total """ Views Start Here """ @app.before_request def make_session_permanent(): """ Session timeout is defined as 15 minutes and timeout is after inactivity """ session.permanent = True app.permanent_session_lifetime = datetime.timedelta(minutes=15) session.modified = True g.user = current_user def login_prepocess(db_session, user_credentials): """ This pre processor is used to identify if a user exists in the faculty or the student table :param db_session: Database session for the db :param user_credentials: User credentials of the user logging in """ session_obj['userid'] = user_credentials.id.encode('utf-8') session_obj['isAdmin'] = db_session.query(AuthStore.isAdmin).filter_by(id=session_obj['userid']).one()[0] try: session_obj['isSuper'] = db_session.query(Admin.isSuper).filter_by(id=session_obj['userid']).one()[0] except exc.NoResultFound: session_obj['isSuper'] = False # Check is user is faculty or student isStudent = False isFaculty = False try: db_session.query(Student).filter_by(id=session_obj['userid']).one() isStudent = True except exc.NoResultFound: pass try: db_session.query(Faculty).filter_by(id=session_obj['userid']).one() isFaculty = True except exc.NoResultFound: pass session_obj['isStudent'] = isStudent session_obj['isFaculty'] = isFaculty @app.route('/', methods=['GET', 'POST']) def getHomePage(): if request.method == 'GET': return render_template('homepage.html') elif request.method == 'POST': db_session = DBSession() ''' Password can either be an existing password or a token to be used for password resets ''' userid = request.form['bits-id'].encode('utf-8') password = request.form['password'].encode('<PASSWORD>') logger(userid=userid, password=password) try: user_credentials = db_session.query(AuthStore).filter_by(id=userid).one() user_credential_salt = user_credentials.salt.encode('utf-8') user_credential_phash = user_credentials.phash.encode('utf-8') user_credential_token_hash = user_credentials.tokenHash logger(Password=password, Salt=user_credential_salt, Phash_DB=user_credential_phash, Phash_gen=bcrypt.hashpw(password, user_credential_salt)) if bcrypt.hashpw(password, user_credential_phash) == user_credential_phash: login_user(user_credentials) login_prepocess(db_session, user_credentials) return redirect(url_for('getCourses')) elif user_credential_token_hash is not None: sha256object = hashlib.sha256(password) tokenHash_obtained = sha256object.hexdigest() token_existence_time = str(db_session.query(func.now()).scalar() - user_credentials.tokenTimeStamp) logger(tokenHash_actual=user_credential_token_hash, tokenHash_obtain=tokenHash_obtained, token_existence_time=token_existence_time) # Handle token expiry and validity if tokenHash_obtained == user_credential_token_hash: if TOKEN_LIFETIME > token_existence_time: login_user(user_credentials) login_prepocess(db_session, user_credentials) return redirect(url_for('getDashboard')) else: error = "Token Expired! Get new token" return render_template('homepage.html', error=error) else: error = "Wrong username or Password!" return render_template('homepage.html', error=error) except exc.NoResultFound: error = "No such user exists!" return render_template('homepage.html', error=error) finally: db_session.close() @login_required @app.route('/logout') def logout(): logout_user() return redirect(url_for('getHomePage')) @celery.task def upload_async(upload_file_filename_secure): """ Celery task to upload files and populate database asynchronously :param upload_file_filename_secure: Secure file name to load filename :return: """ with app.app_context(): print "Started" db_session = DBSession() path = os.path.join(app.config['UPLOAD_FOLDER'], upload_file_filename_secure) course_id, course_name_unformatted, semester, year = upload_file_filename_secure.split('_') course_name = " ".join(course_name_unformatted.split('.')) logger(year=year) year, _ = year.split('.') logger(year=year) print "The path is: " + path while not os.path.exists(path): print "Waiting for file to be visible" time.sleep(1) if os.path.isfile(path): print "Now the file is available" generate_sample_db(path, course_id, course_name, semester, year, db_session) else: raise ValueError("%s isn't a file!" % path) db_session.close() print "Finished" @login_required @app.route('/upload', methods=['GET', 'POST']) def upload(): if request.method == 'GET': if session_obj['isAdmin']: return render_template('upload.html') else: return redirect(url_for('getHomePage')) elif request.method == 'POST': if session_obj['isAdmin']: if 'file' not in request.files: logger(request=request) print "No file was sent" upload_file = request.files['file'] if upload_file.filename == '': error = "File wasn't selected!" print "File wasn't selected" return render_template('upload.html', error=error) elif upload_file and allowed_file(upload_file.filename): upload_file_filename_secure = secure_filename(upload_file.filename) upload_file.save(os.path.join(app.config['UPLOAD_FOLDER'], upload_file_filename_secure)) print "Uploaded file successfully" flash('Upload Successfull!') upload_async.delay(upload_file_filename_secure) return redirect(url_for('upload')) error = "Incorrect file format was chosen!" return render_template('upload.html', error=error) else: print request.path abort(400) def download(filename): uploads = os.path.join(app.config['UPLOAD_FOLDER'], filename) print uploads return send_from_directory(directory=uploads, filename=filename) @app.route('/grade/<string:course_id>', methods=['GET', 'POST']) @login_required def grade(course_id): if request.method == 'GET': if session_obj['isAdmin']: db_session = DBSession() a_max, a, a_minus, b, b_minus, c, c_minus = get_grading(db_session, course_id=course_id) course_data = db_session.query(Course).filter_by(id=course_id).one() course_name = course_data.name course_name = '.'.join(course_name.split(' ')) filename = course_id + '_' + course_name + '_' + course_data.semester + '_' + course_data.year + '.csv' logger(filename=filename) db_session.close() return render_template('grade.html', course_id=course_id, a_max=a_max, a_min=a, a_minus_max=a, a_minus_min=a_minus, b_max=a_minus, b_min=b, b_minus_max=b, b_minus_min=b_minus, c_max=b_minus, c_min=c, c_minus_max=c, c_minus_min=c_minus, filename=filename) else: return redirect(url_for('getHomePage')) elif request.method == 'POST': print request.form if session_obj['isAdmin']: a_max = float(request.form['A_max']) a_min = float(request.form['A_min']) a_minus_max = float(request.form['A-_max']) a_minus_min = float(request.form['A-_min']) b_max = float(request.form['B_max']) b_min = float(request.form['B_min']) b_minus_max = float(request.form['B-_max']) b_minus_min = float(request.form['B-_min']) c_max = float(request.form['C_max']) c_min = float(request.form['C_min']) c_minus_max = float(request.form['C-_max']) c_minus_min = float(request.form['C-_min']) db_session = DBSession() course_data = db_session.query(Course).filter_by(id=course_id).one() course_name = course_data.name course_name = '.'.join(course_name.split(' ')) filename = course_id + '_' + course_name + '_' + course_data.semester + '_' + course_data.year + '.csv' logger(filename=filename) name, total = get_last_column(db_session, course_id) column = name + '-' + str(total) genGrade(filename=filename, column=column, a_min=a_min, a_minus_min=a_minus_min, b_min=b_min, b_minus_min=b_minus_min, c_min=c_min, db_session=db_session) db_session.close() uploads = os.path.join(app.config['UPLOAD_FOLDER']) print uploads return send_from_directory(directory=uploads, filename=filename, as_attachment=True) else: print request.path abort(400) @app.route('/courses') @login_required def getCourses(): db_session = DBSession() try: # If session is not created by an admin user then load student courses else load all courses if not session_obj['isAdmin']: course_ids = db_session.query(Score.course_id).filter_by(student_id=session_obj['user_id']).distinct() courses = db_session.query(Course).filter(Course.id.in_(course_ids)).all() return render_template('courses.html', courses=courses, user_id=session_obj['userid'], admin=False, super=False) elif session_obj['isSuper']: courses = db_session.query(Course).all() return render_template('courses.html', courses=courses, user_id=session_obj['userid'], admin=True, super=True) elif session_obj['isAdmin']: courses = db_session.query(Course).all() return render_template('courses.html', courses=courses, user_id=session_obj['userid'], admin=True, super=False) except exc.NoResultFound: return render_template('courses.html') finally: db_session.close() # Need this for admin only @app.route('/courses/<string:course_id>') @login_required def getStudentsByCourse(course_id): if session_obj['isAdmin']: db_session = DBSession() students = db_session.query(Student).filter( and_(Student.id == Score.student_id, Score.course_id == Course.id, Course.id == course_id)).all() db_session.close() return render_template('students.html', students=students, course_id=course_id) else: # If not a admin raise a 404 Not Found abort(404) @app.route('/courses/<string:course_id>/<string:student_id>') @login_required def getScoresByStudent(course_id, student_id): db_session = DBSession() scores, \ course, \ scores_distribution_percentages, \ course_total, \ student, \ scores_names, \ scores_percentages, \ scores_actual_json, \ course_averages, \ course_averages_for_plot, \ course_mid_term_average, course_final_average = process_student_data(db_session, course_id, student_id) db_session.close() return render_template('studentScore.html', scores=scores, course=course, max_scores=scores_distribution_percentages, course_total=course_total, student=student, x_=scores_names, y_percentages=scores_percentages, y_actual=scores_actual_json, course_averages=course_averages, course_averages_for_plot=course_averages_for_plot, course_mid_term_average=course_mid_term_average, course_final_average=course_final_average, isAdmin=session_obj['isAdmin']) @app.route('/predictions') @login_required def getPredictions(): return "<h1>Predictions</h1>" @app.route('/admins') @login_required def getAllAdmins(): if request.method == 'GET': if session_obj['isSuper']: db_session = DBSession() admins = db_session.query(Admin).all() users_non_admin = db_session.query(AuthStore.id).filter_by(isAdmin=False) students_non_admin = db_session.query(Student).filter(Student.id.in_(users_non_admin)).all() faculty_non_admin = db_session.query(Faculty).filter(Faculty.id.in_(users_non_admin)).all() db_session.close() return render_template('admins.html', admins=admins, students=students_non_admin, faculty=faculty_non_admin) else: abort(404) @app.route('/admins/grant/<string:admin_id>', methods=['GET', 'POST']) @login_required def grantAdminPermissions(admin_id): logger(method='Grant', admin_id=admin_id) if admin_id is not session_obj['userid']: db_session = DBSession() admin_credentials_status = db_session.query(AuthStore).filter_by(id=admin_id).first() admin_credentials_status.isAdmin = True new_admin = None is_student = False try: new_admin = db_session.query(Student).filter_by(id=admin_id).one() is_student = True print "Success!" except exc.NoResultFound: print "Doesn't belong to Student table!" if not is_student: try: new_admin = db_session.query(Faculty).filter_by(id=admin_id).one() print "Success" except exc.NoResultFound: print "Doesn't belong to Faculty table!" if new_admin: db_session.add(Admin(id=new_admin.id, name=new_admin.name, gender=new_admin.gender, isSuper=False)) db_session.commit() db_session.close() return redirect(url_for('getAllAdmins')) else: flash("Invalid Permission upgrade request!") return redirect(url_for('getAllAdmins')) @app.route('/admins/revoke/<string:admin_id>', methods=['GET', 'POST']) @login_required def revokeAdminPermissions(admin_id): logger(method='Revoke', admin_id=admin_id) if admin_id is not session_obj['userid']: db_session = DBSession() admin_credentials_status = db_session.query(AuthStore).filter_by(id=admin_id).one() admin_details = db_session.query(Admin).filter_by(id=admin_id).one() if admin_details.isSuper is False: admin_credentials_status.isAdmin = False # Remove Admin from system only if not a superuser db_session.delete(admin_details) db_session.commit() else: flash("Removal of Superuser is disallowed!") db_session.close() return redirect(url_for('getAllAdmins')) db_session.close() return redirect(url_for('getAllAdmins')) else: flash("Can't revoke permissions of user in session!") return redirect(url_for('getAllAdmins')) @login_required @app.route('/dashboard', methods=['GET', 'POST']) def getDashboard(): if request.method == 'GET': db_session = DBSession() user = None if session_obj['isStudent']: user = db_session.query(Student).filter_by(id=session_obj['userid']).one() elif session_obj['isFaculty']: user = db_session.query(Faculty).filter_by(id=session_obj['userid']).one() db_session.close() if user: return render_template('dashboard.html', user=user) else: abort(404) else: # Process new password and change user password new_password = request.form['password'].encode('utf-8') if len(new_password) >= 6: db_session = DBSession() user_salt_new = bcrypt.gensalt() user_phash_new = bcrypt.hashpw(new_password, user_salt_new) user_credentials = db_session.query(AuthStore).filter_by(id=session_obj['userid']).one() user_credentials.salt = user_salt_new user_credentials.phash = user_phash_new user_credentials.tokenHash = None db_session.commit() db_session.close() flash("Password Successfully Changed!") else: flash("Password must have more than 6 characters") return redirect(url_for('getDashboard')) @app.route('/forgotpassword', methods=['GET', 'POST']) def forgotPassword(): if request.method == 'GET': return render_template('forgotpassword.html') elif request.method == 'POST': user_id = request.form['user-id'].encode('utf-8') ''' Store newly SHA256 hash of the generated token in the column token hash ''' db_session = DBSession() user_credentials = db_session.query(AuthStore).filter_by(id=user_id).one() token = ''.join([choice(ascii_uppercase) for i in range(16)]) logger(new_password=token) sha256object = hashlib.sha256(token) tokenHash = sha256object.hexdigest() logger(tokenHash=tokenHash) user_credentials.tokenHash = tokenHash user_credentials.tokenTimeStamp = func.now() user_email = "" if session_obj['isStudent']: user = db_session.query(Student).filter_by(id=user_id).one() user_email = user.email elif session_obj['isFaculty']: user = db_session.query(Faculty).filter_by(id=user_id).one() user_email = user.email db_session.commit() db_session.close() # Send Mail Task to Celery if user_email and '@' in user_email: sendmail.delay(user_email, user_id, token) else: flash('Default Recovery Email not set!') return redirect(url_for('forgotPassword')) return redirect(url_for('forgotPassword')) @login_required @app.route('/dashboard/recoverymail', methods=['GET', 'POST']) def passwordRecoveryMail(): if request.method == 'POST': db_session = DBSession() password_recovery_mail = request.form['email'].encode('utf-8') logger(password_recovery_mail=password_recovery_mail) if session_obj['isStudent'] and '@' in password_recovery_mail: user = db_session.query(Student).filter_by(id=session_obj['userid']).one() user.email = password_recovery_mail db_session.commit() elif session_obj['isFaculty'] and '@' in password_recovery_mail: user = db_session.query(Faculty).filter_by(id=session_obj['userid']).one() user.email = password_recovery_mail db_session.commit() db_session.close() return redirect(url_for('getDashboard')) @celery.task def sendmail(user_mail, user_id, new_password): # Set as environment variables gmail_user = '<EMAIL>' gmail_password = '<PASSWORD>' # Mail Send sent_from = gmail_user to = user_mail subject = 'Forgot Password for Grade Predictor and Analyzer' body = 'Your new password for ' + user_id + ' is ' + new_password + '\n - Admin' email_text = """Subject: %s\n%s\n""" % (subject, body) logger(message=email_text) try: server = smtplib.SMTP('smtp.gmail.com', 587) server.ehlo() server.starttls() server.login(gmail_user, gmail_password) server.sendmail(sent_from, to, email_text) server.close() logger(email="Email Sent Succesfully!") except: logger(email="Something went wrong!") @login_required @app.route('/courses/<string:course_id>/metrics') def getCourseMetrics(course_id): db_session = DBSession() course = db_session.query(Course).filter_by(id=course_id).one() maxscore_by_subject = db_session.query(MaxScore).filter_by(course_id=course.id).all() score_names = [i.name for i in maxscore_by_subject] max_scores = [i.maxscore for i in maxscore_by_subject] list_scores_by_test_type = [] size_of_score_names = len(score_names) for i in range(size_of_score_names): score_query = db_session.query(Score).filter_by(course_id=course_id, name=score_names[i]).all() list_scores_by_test_type.append([(float(j.score) / float(max_scores[i])) * 100 for j in score_query]) db_session.close() return render_template('metrics.html', course_id=course_id, max_score=max_scores, scores=list_scores_by_test_type, names=score_names) @login_required @app.route('/courses/<string:course_id>/<string:student_id>/<string:test_name>/edit', methods=['POST']) def editMarks(student_id, course_id, test_name): db_session = DBSession() if session_obj['isAdmin']: updated_score = request.form['update-score'].encode('utf-8') max_score = db_session.query(MaxScore).filter_by(course_id=course_id, name=test_name).one() # Max score check if float(updated_score) <= max_score: score = db_session.query(Score).filter_by(course_id=course_id, student_id=student_id, name=test_name).one() diff = float(updated_score) - score.score # Total and Mid Term Total Update try: mid_term_total_priority = \ db_session.query(MaxScore.priority).filter_by(course_id=course_id, name='Mid Term Total').one()[0] final_total_priority = \ db_session.query(MaxScore.priority).filter_by(course_id=course_id, name='Total').one()[0] mid_term_total = db_session.query(Score).filter_by(course_id=course_id, student_id=student_id, name='Mid Term Total').one() final_total = db_session.query(Score).filter_by(course_id=course_id, student_id=student_id, name='Total').one() logger(total=final_total) if max_score.priority < mid_term_total_priority: mid_term_total.score += diff final_total.score += diff db_session.commit() elif mid_term_total_priority < max_score.priority < final_total_priority: final_total.score += diff db_session.commit() except: pass score.score = updated_score db_session.commit() scores, \ course, \ scores_distribution_percentages, \ course_total, \ student, \ scores_names, \ scores_percentages, \ scores_actual_json, \ course_averages, \ course_averages_for_plot, \ course_mid_term_average, course_final_average = process_student_data(db_session, course_id, student_id) db_session.close() return render_template('studentScore.html', scores=scores, course=course, max_scores=scores_distribution_percentages, course_total=course_total, student=student, x_=scores_names, y_percentages=scores_percentages, y_actual=scores_actual_json, course_averages=course_averages, course_averages_for_plot=course_averages_for_plot, course_mid_term_average=course_mid_term_average, course_final_average=course_final_average, isAdmin=session_obj['isAdmin'])
StarcoderdataPython
6602002
import os from office365.sharepoint.client_context import ClientContext from settings import settings cert_settings = { 'client_id': '51d03106-4726-442c-86db-70b32fa7547f', 'thumbprint': "6B36FBFC86FB1C019EB6496494B9195E6D179DDB", 'certificate_path': '{0}/selfsigncert.pem'.format(os.path.dirname(__file__)) } ctx = ClientContext(settings['url']).with_client_certificate(settings.get('tenant'), cert_settings['client_id'], cert_settings['thumbprint'], cert_settings['certificate_path']) current_web = ctx.web.get().execute_query() print("{0}".format(current_web.url))
StarcoderdataPython
6460002
# coding=utf-8 from flask import Flask, g, render_template, current_app, request, redirect, abort, url_for from jinja2.utils import Markup from werkzeug.routing import BaseConverter, ValidationError from werkzeug.datastructures import MultiDict from contextlib import contextmanager from collections import namedtuple, OrderedDict import sys import re import sqlite3 import urllib import datetime import bisect sqlite3.register_converter('book', int) app = Flask(__name__, static_folder='res', template_folder='tmpl') @app.template_filter('classes') def filter_classes(v): if not v: return u'' return Markup(u' class="%s"') % u' '.join(v) @app.template_filter('book') def filter_book(v): return mappings.books[v] @app.template_filter('htmltext') def filter_htmltext(s, meta=None, keywords=None): if not s: return u'' slower = s.lower() if meta is not None: extra = bytes(meta).split('\xff') markup = map(ord, extra[0]) assert len(markup) == len(s) or len(markup) == len(s) + 1 else: extra = [] markup = [0] * len(s) kwmark = [None] * len(s) # flags: # * 127 (bit mask) # 0 -- normal # 1 -- italicized (artificial text in KJV) # 2 -- Capitalized # 3 -- UPPERCASED # * 128 (bit mask) -- will fetch the annotation from the extra *before* this # * 255 -- separators for markup # add pseudo keyword marks for query highlighting # marks are added in reverse, so the earlier keyword overwrites others. for k, keyword in list(enumerate(keywords or ()))[::-1]: keyword = keyword.lower() pos = -1 while True: pos = slower.find(keyword, pos+1) if pos < 0: break for i in xrange(pos, pos+len(keyword)): kwmark[i] = k ss = [] cur = [] prevstyle = 0 prevmark = None nextann = 1 # since extra[0] == markup (if any) lastflags = None if len(markup) > len(s): # there are len(s)+1 positions where annotated text can go lastflags = markup.pop() assert (lastflags & 127) == 0 # annotated text only for ch, flags, mark in zip(s, markup, kwmark) + [(u'', lastflags, None)]: flags = flags or 0 style = flags & 127 if flags & 128: ss.append(Markup().join(cur)) ss.append(Markup('<small>%s</small>') % extra[nextann].decode('utf-8')) cur = [] nextann += 1 if not ch or (style, mark) != (prevstyle, prevmark): ss.append(Markup().join(cur)) cur = [] closing = [] opening = [] cascade = False if cascade or mark != prevmark: if prevmark is not None: closing.append(Markup('</mark>')) if mark is not None: opening.append(Markup('<mark class="keyword%d">' % mark)) cascade = True if cascade or style != prevstyle: if prevstyle: closing.append(Markup(('', '</i>', '</em>', '</strong>', '</small>')[prevstyle])) if style: opening.append(Markup(('', '<i>', '<em>', '<strong>', '<small>')[style])) cascade = True prevstyle = style prevmark = mark ss.extend(closing[::-1]) ss.extend(opening) cur.append(ch) return Markup().join(ss) class Entry(sqlite3.Row): def __init__(self, *args, **kwargs): sqlite3.Row.__init__(self, *args, **kwargs) self._primary_field = None def __getattr__(self, name): try: return self[name] except KeyError: raise AttributeError(name) def set_primary(self, name): assert name in self.keys() self._primary_field = name return self def __unicode__(self): if self._primary_field: return unicode(self[self._primary_field]) else: return sqlite3.Row.__unicode__(self) def __str__(self): if self._primary_field: return str(self[self._primary_field]) else: return sqlite3.Row.__str__(self) @contextmanager def database(): db = sqlite3.connect('db/bible.db', detect_types=sqlite3.PARSE_COLNAMES) db.row_factory = Entry try: yield db finally: db.close() # a universal cache for immutable data class Mappings(object): def __init__(self): self.reload() def normalize(self, s): if not isinstance(s, (str, unicode)): s = str(s) return u''.join(s.split()).upper() def reload(self): with database() as db: self.books = [] self.bookaliases = {} self.versions = {} self.versionaliases = {} self.blessedversions = {} # book: (minchapter, maxchapter) self.chapterranges = {} # (book,verse): (minverse, maxverse, deltaindex, deltaordinal) self.verseranges = {} # lexicographical_code: [(minordinal, maxordinal), ...] dailyranges = {} for row in db.execute('select * from books order by book;'): assert len(self.books) == row['book'] row.set_primary('code') self.books.append(row) self.bookaliases[row['book']] = row for row in db.execute('select * from bookaliases;'): self.bookaliases[row['alias']] = self.books[row['book']], row['lang'] for row in db.execute('select * from versions;'): row.set_primary('version') self.versions[row['version']] = row self.versionaliases[self.normalize(row['version'])] = row if row['blessed']: self.blessedversions[row['lang']] = row for row in db.execute('select * from versionaliases;'): self.versionaliases[row['alias']] = self.versions[row['version']] for row in db.execute('''select book, min(chapter) as minchapter, max(chapter) as maxchapter from verses group by book;'''): self.chapterranges[row['book']] = \ (row['minchapter'], row['maxchapter']) for row in db.execute('''select book, chapter, min(verse) as minverse, max(verse) as maxverse, min("index") as minindex, max("index") as maxindex, min(ordinal) as minordinal, max(ordinal) as maxordinal from verses group by book, chapter;'''): assert (row['maxverse'] - row['minverse'] == row['maxindex'] - row['minindex'] == row['maxordinal'] - row['minordinal']) self.verseranges[row['book'], row['chapter']] = \ (row['minverse'], row['maxverse'], row['minindex'] - row['minverse'], row['minordinal'] - row['minverse']) for row in db.execute('''select code, v1.book as book1, v1.chapter as chapter1, v1.verse as verse1, v2.book as book2, v2.chapter as chapter2, v2.verse as verse2 from topics inner join verses v1 on v1.ordinal = ordinal1 inner join verses v2 on v2.ordinal = ordinal2 where kind = ?;''', ('daily',)): bcv1 = (row['book1'], row['chapter1'], row['verse1']) bcv2 = (row['book2'], row['chapter2'], row['verse2']) dailyranges.setdefault(row['code'], []).append((bcv1, bcv2)) for ranges in dailyranges.values(): ranges.sort() self.dailyranges = sorted(dailyranges.items()) # TODO self.DEFAULT_VER = self.blessedversions['ko']['version'] self.DEFAULT_VER_PER_LANG = { 'ko': self.blessedversions['ko']['version'], 'en': self.blessedversions['en']['version'], } def find_book_by_alias(self, alias): return self.bookaliases[self.normalize(alias)][0] def find_book_and_lang_by_alias(self, alias): return self.bookaliases[self.normalize(alias)] def find_version_by_alias(self, alias): return self.versionaliases[self.normalize(alias)] def get_recent_daily(self, code): # XXX a hack to locate the entry next to the today's entry index = bisect.bisect_right(self.dailyranges, (code + unichr(sys.maxunicode),)) assert index <= 0 or self.dailyranges[index-1][0] <= code assert index >= len(self.dailyranges) or self.dailyranges[index][0] > code return Daily(index-1) def to_ordinal(self, (b,c,v)): try: minord = self.minordinals[b,c] maxord = self.maxordinals[b,c] except KeyError: raise ValueError('invalid book-chapter-verse pair') ord = minord + (v - 1) if not (minord <= ord <= maxord): raise ValueError('invalid book-chapter-verse pair') return ord mappings = Mappings() @app.context_processor def inject_mappings(): return { 'debug': app.debug, 'mappings': mappings, 'build_query_suffix': build_query_suffix, } _triple = namedtuple('triple', 'book chapter verse index ordinal') class triple(_triple): def __new__(cls, book, chapter, verse): try: minchapter, maxchapter = mappings.chapterranges[book] except KeyError: raise ValueError('invalid book') if chapter == '$': chapter = maxchapter elif chapter <= 0: chapter = minchapter try: minverse, maxverse, deltaindex, deltaordinal = mappings.verseranges[book, chapter] except KeyError: raise ValueError('invalid chapter') if verse == '$': verse = maxverse elif verse <= 0: verse = minverse if not (minverse <= verse <= maxverse): raise ValueError('invalid verse') index = deltaindex + verse ordinal = deltaordinal + verse return _triple.__new__(cls, book, chapter, verse, index, ordinal) @property def book_and_chapter(self): return (self.book, self.chapter) @property def min_verse_in_chapter(self): minverse, maxverse, deltaindex, deltaordinal = mappings.verseranges[self.book, self.chapter] return minverse @property def max_verse_in_chapter(self): minverse, maxverse, deltaindex, deltaordinal = mappings.verseranges[self.book, self.chapter] return maxverse class Daily(object): def __init__(self, index): code, ranges = mappings.dailyranges[index] self.index = index self.code = code self.ranges = [(triple(*bcv1), triple(*bcv2)) for bcv1, bcv2 in ranges] self.month, self.day = map(int, code.split('-', 1)) @property def start(self): return self.ranges[0][0] @property def end(self): return self.ranges[-1][1] @property def num_verses(self): return sum(e.ordinal - s.ordinal + 1 for s, e in self.ranges) @property def prev(self): return Daily((self.index - 1) % len(mappings.dailyranges)) @property def next(self): return Daily((self.index + 1) % len(mappings.dailyranges)) class Normalizable(namedtuple('Normalizable', 'before after')): def __str__(self): return str(self.after) def __unicode__(self): return unicode(self.after) def __getattr__(self, name): return getattr(self.after, name) sqlite3.register_adapter(Entry, str) sqlite3.register_adapter(Normalizable, str) class BookConverter(BaseConverter): def to_python(self, value): try: return Normalizable(value, mappings.find_book_by_alias(value)) except KeyError: raise ValidationError() def to_url(self, value): return str(value) class IntOrEndConverter(BaseConverter): regex = r'(?:\d+|\$)' num_convert = int def to_python(self, value): if value != '$': try: value = int(value) except ValueError: raise ValidationError return value def to_url(self, value): if value != '$': value = str(int(value)) return value app.url_map.converters['book'] = BookConverter app.url_map.converters['int_or_end'] = IntOrEndConverter def build_query_suffix(**repl): searching = repl.pop('_searching', False) normalized_version = str(g.version1) + (','+str(g.version2) if g.version2 else '') normalized_cursor = str(g.cursor) if g.cursor is not None else '' newquery = MultiDict(request.args) # unlike others, search may reset `v` (and try to redirect) according to the query, # but if the explicit `v` is set it should NOT alter that. if normalized_version and (searching or normalized_version != mappings.DEFAULT_VER): newquery['v'] = normalized_version else: newquery.poplist('v') if normalized_cursor: newquery['c'] = normalized_cursor else: newquery.poplist('c') kvs = [(k, v.encode('utf-8')) for k, v in newquery.items(multi=True) if k not in repl] kvs += [(k, unicode(v).encode('utf-8')) for k, v in repl.items() if v is not None] newquery = urllib.urlencode(kvs) if newquery: return '?' + newquery else: return '' def normalize_url(self, **kwargs): searching = kwargs.pop('_searching', False) # common parameter `v`: version(s) # v=<v1> or v=<v1>,<v2> orig_version = request.args.get('v', '') v1, _, v2 = orig_version.partition(',') try: g.version1 = mappings.find_version_by_alias(v1) except Exception: g.version1 = mappings.versions[mappings.DEFAULT_VER] try: g.version2 = mappings.find_version_by_alias(v2) if g.version1 == g.version2: g.version2 = None except Exception: g.version2 = None normalized_version = str(g.version1) + (','+str(g.version2) if g.version2 else '') # same caveat to build_query_suffix applies for the searching. if not searching and normalized_version == mappings.DEFAULT_VER: normalized_version = '' # common parameter `c`: cursor # c=<after> or c=<~before> orig_cursor = request.args.get('c', '') try: g.cursor = int(orig_cursor) if len(orig_cursor) <= 6 else None except Exception: g.cursor = None normalized_cursor = str(g.cursor) if g.cursor is not None else '' need_redirect = (orig_version != normalized_version or \ orig_cursor != normalized_cursor) normalized_kwargs = {} for k, v in kwargs.items(): if isinstance(v, Normalizable): after = unicode(v.after).encode('utf-8') before = unicode(v.before).encode('utf-8') normalized_kwargs[k] = after need_redirect = need_redirect or after != before else: normalized_kwargs[k] = str(v).encode('utf-8') if need_redirect: abort(redirect(url_for(self, **normalized_kwargs) + build_query_suffix(_searching=searching))) # when we are not searching, we also parse and store (but do not normalize) `q`. # this is a subset of search query syntax; the search procedure will produce # a reconstructed list of normalized "keywords", and the syntax should match. if not searching: query = request.args.get('q', '').strip() keywords = [] for m in re.findall(ur'(?ui)(?:"([^"]*)"|\'([^\']*)\'|((?:[^\W\d]|[\-\'])+))', query): keyword = m[0] or m[1] or m[2] if keyword: keywords.append(keyword) g.keywords = keywords def render_verses(tmpl, (prevc, verses, nextc), **kwargs): query = kwargs.get('query', None) highlight = kwargs.get('highlight', None) if 'keywords' not in kwargs: kwargs['keywords'] = g.keywords prev = None prevhl = False rows = [] tbodys = [] for verse in verses: hl = highlight(verse['book'], verse['chapter'], verse['verse']) if highlight else False if prevhl != hl: sclasses = [] if prevhl: sclasses.append('highlight') if rows: tbodys.append({'classes': sclasses, 'verses': rows}) rows = [] prevhl = hl text = verse['text'] meta = verse['meta'] prefix = u'' vclasses = [] if (verse['book'], verse['chapter'], verse['verse']-1) == prev: vclasses.append('cont') rows.append({ 'book': mappings.books[verse['book']], 'chapter': verse['chapter'], 'classes': vclasses, 'verse': verse['verse'], 'prefix': prefix, 'text': text, 'meta': meta, 'text2': verse['text2'] if 'text2' in verse.keys() else None, 'meta2': verse['meta2'] if 'meta2' in verse.keys() else None, }) prev = (verse['book'], verse['chapter'], verse['verse']) if rows: sclasses = [] if prevhl: sclasses.append('highlight') tbodys.append({'classes': sclasses, 'verses': rows}) return render_template(tmpl, version1=g.version1, version2=g.version2, sections=tbodys, prevc=prevc, nextc=nextc, **kwargs) def execute_verses_query(db, cursor=None, where='1', args=(), count=100): inverted = False if cursor is not None: if cursor >= 0: where += ' and v.ordinal >= ?' args += (cursor,) else: where += ' and v.ordinal <= ?' args += (~cursor,) inverted = True limit = '' if count: limit = ' limit ?' args += (count,) if g.version2: verses = db.execute(''' select v.book as "book [book]", v.*, d.text as text, d.meta as meta, d2.text as text2, d2.meta as meta2 from verses v left outer join data d on d.version=? and v.ordinal=d.ordinal left outer join data d2 on d2.version=? and v.ordinal=d2.ordinal where ''' + where + ''' order by ordinal ''' + ('desc' if inverted else 'asc') + limit + '''; ''', (g.version1, g.version2) + args) else: verses = db.execute(''' select v.book as "book [book]", v.*, d.text as text, d.meta as meta from verses v left outer join data d on d.version=? and v.ordinal=d.ordinal where ''' + where + ''' order by ordinal ''' + ('desc' if inverted else 'asc') + limit + '''; ''', (g.version1,) + args) verses = verses.fetchall() if inverted: verses.reverse() return verses def adjust_for_cursor(verses, cursor, count): excess = count and len(verses) > count if cursor is None: nextc = verses.pop().ordinal if excess else None # pop first prevc = None elif cursor >= 0: nextc = verses.pop().ordinal if excess else None # pop first prevc = ~(verses[0].ordinal - 1) if verses and verses[0].ordinal > 0 else None else: prevc = ~verses.pop(0).ordinal if excess else None # pop first nextc = verses[-1].ordinal + 1 if verses else None return prevc, verses, nextc def get_verses_unbounded(db, where='1', args=(), count=100, **kwargs): verses = execute_verses_query(db, g.cursor, where=where, args=args, count=count+1 if count else None, **kwargs) return adjust_for_cursor(verses, g.cursor, count) def get_verses_bounded(db, minordinal, maxordinal, where='1', args=(), count=100, **kwargs): verses = execute_verses_query(db, g.cursor, where=where, args=args, count=count+2 if count else None, **kwargs) smaller = [] inrange = [] larger = [] for row in verses: if row['ordinal'] < minordinal: smaller.append(row) elif row['ordinal'] > maxordinal: larger.append(row) else: inrange.append(row) # cursor code expects at most `count+1` verses. # +2 adjustment was only to account for a non-empty `smaller`, so we no longer need that. del inrange[count+1:] # if we have a non-empty `larger`, `inrange` should be the final page. if not larger: prevc, inrange, nextc = adjust_for_cursor(inrange, g.cursor, count) if prevc and ~prevc < minordinal: prevc = None else: prevc = ~(inrange[0].ordinal - 1) if inrange and inrange[0].ordinal > minordinal else None nextc = None return smaller[-1] if smaller else None, (prevc, inrange, nextc), larger[0] if larger else None @app.route('/') def index(): today = datetime.date.today() daily = mappings.get_recent_daily('%02d-%02d' % (today.month, today.day)) return render_template('index.html', query=u'', books=mappings.books, daily=daily) @app.route('/+/about') def about(): return render_template('about.html', query=u'') @app.route('/+/daily/') @app.route('/+/daily/<code>') def daily(code=None): if code is None: today = datetime.date.today() actualcode = '%02d-%02d' % (today.month, today.day) else: if len(code) == 5 and code[:2].isdigit() and code[2] == '-' and code[3:].isdigit(): actualcode = code else: abort(404) normalize_url('.daily', code=actualcode) daily = mappings.get_recent_daily(actualcode) if daily.code != code: return redirect(url_for('.daily', code=daily.code)) with database() as db: where = ' and '.join(['(v.ordinal between ? and ?)'] * len(daily.ranges)) args = tuple(bcv.ordinal for start_end in daily.ranges for bcv in start_end) verses_and_cursors = get_verses_unbounded(db, where, args, count=None) query = u'' # XXX return render_verses('daily.html', verses_and_cursors, query=query, daily=daily) @app.route('/+/daily/list') def daily_list(): today = datetime.date.today() daily = mappings.get_recent_daily('%02d-%02d' % (today.month, today.day)) dailylist = map(Daily, xrange(len(mappings.dailyranges))) return render_template('daily_list.html', query=u'', daily=daily, dailylist=dailylist) @app.route('/search') def search(): query = request.args.get('q', u'').strip() if not query: return redirect('/') normalize_url('.search', _searching=True) # search syntax: # - lexemes are primarily separated (and ordered) by non-letter characters. # - quotes can be used to escape whitespaces. no intra-quotes are accepted. # - any lexeme (including quoted one) can be prefixed by `tag:` to clarify meaning. # - there can only be one occurrence of chapter-verse range spec. # the spec has its own syntax and is not governed by the ordinary separator. # the range spec does not include the ordinary number, so that "1 John" etc. can be parsed. # - a series of untagged unquoted lexemes is concatenated *again* and checked for known tokens. # - any unrecognized token becomes a search keyword. # # example: # "John 3:16" -> book:John, range:3:16 # "John 3 - 4 (KJV/개역)" -> book:John, range:3-4, version:KJV, version:개역 # "John b:3 - 4 (KJV/개역)" -> book:John, book:3, keyword:4, version:KJV, version:개역 # "2 1 John" -> range:2, book:1John # "<NAME> 2 John" -> book:1John, book:2John (probably an error) # "요한 계시록 어린양" -> book:Rev, keyword:어린양 # "요한 keyword:어린양 계시록" -> keyword:요한, keyword:어린양, keyword:계시록 # "'alpha and omega' niv" -> keyword:"alpha and omega", version:NIV TAGS = { u'v': u'version', u'ver': u'version', u'version': u'version', u'q': u'keyword', u'keyword': u'keyword', u'b': u'book', u'book': u'book', # the pseudo-tag "range" is used for chapter and verse ranges } # parse the query into a series of tagged and untagged lexeme lexemes = [] for m in re.findall(ur'(?ui)' # chapter-verse range spec (1:2, 1:2-3:4, 1:2 ~ 4 etc.) ur'(\d+\s*:\s*\d+)(?:\s*[-~]\s*(\d+(?:\s*:\s*\d+)?))?|' # chapter-only range spec (1-2, 1 ~ 2 etc.) # the single number is parsed later ur'(\d+)\s*[-~]\s*(\d+)|' # lexeme with optional tag (foo, v:asdf, "a b c", book:'x y z' etc.) # a row of letters and digits does not mix (e.g. 창15 -> 창, 15) ur'(?:(' + u'|'.join(map(re.escape, TAGS)) + ur'):)?' ur'(?:"([^"]*)"|\'([^\']*)\'|((?:[^\W\d]|[\-\'])+|\d+))', query): if m[0]: chap1, _, verse1 = m[0].partition(u':') chap1 = int(chap1) verse1 = int(verse1) if m[1]: chap2, _, verse2 = m[1].rpartition(u':') chap2 = int(chap2 or chap1) verse2 = int(verse2) else: chap2 = verse2 = None lexemes.append(('range', (chap1, chap2, verse1, verse2))) elif m[2]: chap1 = int(m[2]) if m[3] is not None: chap2 = int(m[3]) else: chap2 = None lexemes.append(('range', (chap1, chap2, None, None))) elif m[4]: lexemes.append((TAGS[m[4]], m[5] or m[6] or m[7])) elif m[5] or m[6]: # quoted untagged lexemes are always keywords lexemes.append(('keyword', m[5] or m[6])) else: # unquoted untagged lexemes are resolved later if not (lexemes and lexemes[-1][0] is None): lexemes.append((None, [])) lexemes[-1][1].append(m[7]) # resolve remaining unquoted untagged lexemes tokens = [] for lexeme in lexemes: if lexeme[0] is None: unquoted = lexeme[1] start = 0 while start < len(unquoted): s = u'' # avoid quadratic complexity, no token is more than 5 words long for i in xrange(start, min(start+5, len(unquoted))): s += unquoted[i] try: book, lang = mappings.find_book_and_lang_by_alias(s) tokens.append(('book', s)) start = i + 1 break except KeyError: pass try: version = mappings.find_version_by_alias(s) if version.blessed: # TODO temporary tokens.append(('version',s)) start = i + 1 break except KeyError: pass else: if unquoted[start].isdigit(): tokens.append(('range', (int(unquoted[start]), None, None, None))) else: tokens.append(('keyword', unquoted[start])) start += 1 else: tokens.append(lexeme) # implied language is used to resolve versions when no other infos are available implied_lang = set() tagged = {} for tag, value in tokens: tagged.setdefault(tag, []).append(value) if tag == 'version': try: version = mappings.find_version_by_alias(s) implied_lang.add(version.lang) except KeyError: pass elif tag == 'book': try: book, lang = mappings.find_book_and_lang_by_alias(s) if lang: implied_lang.add(lang) except KeyError: pass elif tag == 'keyword': if all(u'가' <= c <= u'힣' for c in value): implied_lang.add('ko') elif all(not c.isalpha() or u'a' <= c <= 'z' or u'A' <= c <= u'Z' for c in value): implied_lang.add('en') if len(implied_lang) == 1: implied_lang, = list(implied_lang) else: implied_lang = None # unknown or ambiguous old_version = g.version1, g.version2 if 'version' in tagged: versions = [] seen = set() for s in tagged['version']: try: version = mappings.find_version_by_alias(s) if version.blessed: # TODO temporary if version.version not in seen: seen.add(version.version) versions.append(version) except KeyError: pass g.version1 = versions[0] if len(versions) > 0 else None g.version2 = versions[1] if len(versions) > 1 else None # TODO version3 and later else: # if there is no other version hint but an implied lang, use it if not request.args.get('v') and implied_lang: g.version1 = mappings.versions[mappings.DEFAULT_VER_PER_LANG[implied_lang]] version_updated = (g.version1, g.version2) != old_version if 'book' in tagged: books = [] for s in tagged['book']: try: book = mappings.find_book_by_alias(s) books.append(book) except KeyError: pass if books: book = books[0] # TODO 2 or more books if 'range' in tagged: # TODO check for len(tagged['range']) > 1 chap1, chap2, verse1, verse2 = tagged['range'][0] if verse1: if chap2: assert verse2 url = url_for('.view_verses', book=book, chapter1=chap1, verse1=verse1, chapter2=chap2, verse2=verse2) else: url = url_for('.view_verse', book=book, chapter=chap1, verse=verse1) else: if chap2: url = url_for('.view_chapters', book=book, chapter1=chap1, chapter2=chap2) else: url = url_for('.view_chapter', book=book, chapter=chap1) else: url = url_for('.view_book', book=book) return redirect(url + build_query_suffix(q=None)) keywords = tagged.get('keyword', []) if not keywords: return redirect('/') uniqwords = OrderedDict((w.lower(), w) for w in keywords) # zap duplicates # for reconstructed queries, we need to insert quotes as needed. # we also have to preserve cases while removing duplicates... keywords = uniqwords.keys() query = u' '.join(u'"%s"' % w if w.startswith("'") or any(not c.isalpha() and not c.isdigit() and c != '-' and c != "'" for c in w) else u"'%s'" % w if w.startswith("'") else w for w in uniqwords.values()) # version parameter should be re-normalized if version_updated: return redirect(url_for('.search') + build_query_suffix(q=query, _searching=True)) with database() as db: verses_and_cursors = get_verses_unbounded(db, ' and '.join(['d."text" like ?'] * len(keywords)), tuple('%%%s%%' % keyword for keyword in keywords)) return render_verses('search.html', verses_and_cursors, query=query, keywords=keywords) @app.route('/<book:book>/') def view_book(book): normalize_url('.view_book', book=book) return redirect(url_for('.view_chapter', book=book, chapter=1) + build_query_suffix()) @app.route('/<book:book>/<int_or_end:chapter>') def view_chapter(book, chapter): normalize_url('.view_chapter', book=book, chapter=chapter) try: start = triple(book.book, chapter, 0) end = triple(book.book, chapter, '$') except Exception: abort(404) with database() as db: prev, verses_and_cursors, next = get_verses_bounded(db, start.ordinal, end.ordinal, 'v.ordinal between ? and ?', (start.ordinal-1, end.ordinal+1)) query = u'%s %d' % (book.abbr_ko, start.chapter) return render_verses('chapters.html', verses_and_cursors, query=query, prev=prev, next=next, book=book, chapter1=start.chapter, chapter2=end.chapter) @app.route('/<book:book>/<int_or_end:chapter1>-<int_or_end:chapter2>') def view_chapters(book, chapter1, chapter2): normalize_url('.view_chapters', book=book, chapter1=chapter1, chapter2=chapter2) try: start = triple(book.book, chapter1, 0) end = triple(book.book, chapter2, '$') except Exception: abort(404) if start.ordinal > end.ordinal: return redirect(url_for('.view_chapters', book=book, chapter1=chapter2, chapter2=chapter1)) with database() as db: prev, verses_and_cursors, next = get_verses_bounded(db, start.ordinal, end.ordinal, 'v.ordinal between ? and ?', (start.ordinal-1, end.ordinal+1)) query = u'%s %d-%d' % (book.abbr_ko, start.chapter, end.chapter) return render_verses('chapters.html', verses_and_cursors, query=query, prev=prev, next=next, book=book, chapter1=start.chapter, chapter2=end.chapter) def do_view_verses(book, start, end, query): bcv1 = (start.book, start.chapter, start.verse) bcv2 = (end.book, end.chapter, end.verse) highlight = lambda b,c,v: bcv1 <= (b,c,v) <= bcv2 with database() as db: verses_and_cursors = get_verses_unbounded(db, 'v.book=? and v."index" between ? and ?', (book.book, start.index-5, end.index+5)) return render_verses('verses.html', verses_and_cursors, query=query, highlight=highlight, book=book, chapter1=start.chapter, verse1=start.verse, chapter2=end.chapter, verse2=end.verse) @app.route('/<book:book>/<int_or_end:chapter>.<int_or_end:verse>') def view_verse(book, chapter, verse): normalize_url('.view_verse', book=book, chapter=chapter, verse=verse) try: start = end = triple(book.book, chapter, verse) except Exception: abort(404) query = u'%s %d:%d' % (book.abbr_ko, start.chapter, start.verse) return do_view_verses(book, start, end, query) @app.route('/<book:book>/<int_or_end:chapter1>.<int_or_end:verse1>-<int_or_end:chapter2>.<int_or_end:verse2>') def view_verses(book, chapter1, verse1, chapter2, verse2): normalize_url('.view_verses', book=book, chapter1=chapter1, verse1=verse1, chapter2=chapter2, verse2=verse2) try: start = triple(book.book, chapter1, verse1) end = triple(book.book, chapter2, verse2) except Exception: abort(404) if start.ordinal > end.ordinal: return redirect(url_for('.view_verses', book=book, chapter1=chapter2, verse1=verse2, chapter2=chapter1, verse2=verse1)) if chapter1 == chapter2: query = u'%s %d:%d-%d' % (book.abbr_ko, start.chapter, start.verse, end.verse) else: query = u'%s %d:%d-%d:%d' % (book.abbr_ko, start.chapter, start.verse, end.chapter, end.verse) return do_view_verses(book, start, end, query) @app.before_request def compile_less(): if current_app.debug: import sys, os, os.path, subprocess path = app.static_folder entrypoint = os.path.join(path, 'style.less') combined = os.path.join(path, 'style.css') combinedtime = os.stat(combined).st_mtime if any(os.stat(os.path.join(path, f)).st_mtime > combinedtime for f in os.listdir(path) if f.endswith('.less')): print >>sys.stderr, ' * Recompiling %s' % entrypoint subprocess.call(['lessc', '-x', entrypoint, combined]) if __name__ == '__main__': import os from flask.cli import main os.environ['FLASK_APP'] = __file__ os.environ['FLASK_DEBUG'] = '1' main(as_module=True)
StarcoderdataPython
12836395
<filename>dmlab2d/random_agent.py # Copyright 2019 The DMLab2D Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Random agent for running against DM Lab2D environments.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import json import numpy as np import pygame import dmlab2d from dmlab2d import runfiles_helper def _make_int32_distribution(random, minimum, maximum): def function(): return random.randint(minimum, maximum + 1) return function def _make_float64_distribution(random, minimum, maximum): def function(): return random.uniform(minimum, maximum) return function class PyGameRandomAgent(object): """Random agent works with int32 or float64 bounded actions.""" def __init__(self, action_spec, observation_name, observation_spec, seed, scale): """Create a PyGame agent. Args: action_spec: Environment action spec used to generate random actions. observation_name: Name of observation to render each frame. observation_spec: Environment observation spec for creating PyGame window. seed: Agent seed used for generating random actions. scale: Scales screen. """ self._observation_name = observation_name random = np.random.RandomState(seed) self._actions = [] self._scores = [] self._scale = scale for name, spec in action_spec.items(): if spec.dtype == np.dtype('int32'): self._actions.append( (name, _make_int32_distribution(random, spec.minimum, spec.maximum))) elif spec.dtype == np.dtype('float64'): self._actions.append( (name, _make_float64_distribution(random, spec.minimum, spec.maximum))) else: print("Warning '{}' is not supported".format(spec)) obs_spec = observation_spec[observation_name] self._setup_py_game(obs_spec.shape) def _setup_py_game(self, shape): pygame.init() pygame.display.set_caption('DM Lab2d') self._game_display = pygame.display.set_mode( (int(shape[1] * self._scale), int(shape[0] * self._scale))) def _render_observation(self, observation): obs = np.transpose(observation, (1, 0, 2)) surface = pygame.surfarray.make_surface(obs) rect = surface.get_rect() surf = pygame.transform.scale( surface, (int(rect[2] * self._scale), int(rect[3] * self._scale))) self._game_display.blit(surf, dest=(0, 0)) pygame.display.update() def step(self, timestep): """Renders timestep and returns random actions according to spec.""" self._render_observation(timestep.observation[self._observation_name]) display_score_dirty = False if timestep.reward is not None: if timestep.reward != 0: self._scores[-1] += timestep.reward display_score_dirty = True else: self._scores.append(0) display_score_dirty = True if display_score_dirty: pygame.display.set_caption('%d score' % self._scores[-1]) return {name: gen() for name, gen in self._actions} def print_stats(self): print('Scores: ' + ', '.join(str(score) for score in self._scores)) def _create_environment(args): """Creates an environment. Args: args: See `main()` for description of args. Returns: dmlab2d.Environment with one observation. """ args.settings['levelName'] = args.level_name lab2d = dmlab2d.Lab2d(runfiles_helper.find(), args.settings) return dmlab2d.Environment(lab2d, [args.observation], args.env_seed) def _run(args): """Runs a random agent against an environment rendering the results. Args: args: See `main()` for description of args. """ env = _create_environment(args) agent = PyGameRandomAgent(env.action_spec(), args.observation, env.observation_spec(), args.agent_seed, args.scale) for _ in range(args.num_episodes): timestep = env.reset() # Run single episode. while True: # Query PyGame for early termination. if any(event.type == pygame.QUIT for event in pygame.event.get()): print('Exit early last score may be truncated:') agent.print_stats() return action = agent.step(timestep) timestep = env.step(action) if timestep.last(): # Observe last frame of episode. agent.step(timestep) break # All episodes completed, report per episode. agent.print_stats() def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='clean_up', help='Level name to load') parser.add_argument( '--observation', type=str, default='WORLD.RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') parser.add_argument( '--env_seed', type=int, default=0, help='Environment seed') parser.add_argument('--agent_seed', type=int, default=0, help='Agent seed') parser.add_argument( '--num_episodes', type=int, default=1, help='Number of episodes') parser.add_argument( '--scale', type=float, default=1, help='Scale to render screen') args = parser.parse_args() _run(args) if __name__ == '__main__': main()
StarcoderdataPython
6543189
#!/usr/bin/env python # encoding: utf-8 # <NAME>, 2016 '''Uses Fypp as Fortran preprocessor (.F90 -> .f90).''' import re import os.path from waflib import Configure, Logs, Task, TaskGen, Tools try: import fypp except ImportError: fypp = None Tools.ccroot.USELIB_VARS['fypp'] = set([ 'DEFINES', 'INCLUDES' ]) FYPP_INCPATH_ST = '-I%s' FYPP_DEFINES_ST = '-D%s' FYPP_LINENUM_FLAG = '-n' ################################################################################ # Configure ################################################################################ def configure(conf): fypp_check(conf) fypp_add_user_flags(conf) @Configure.conf def fypp_add_user_flags(conf): '''Import user settings for Fypp.''' conf.add_os_flags('FYPP_FLAGS', dup=False) @Configure.conf def fypp_check(conf): '''Check for Fypp.''' conf.start_msg('Checking for fypp module') if fypp is None: conf.fatal('Python module \'fypp\' could not be imported.') version = fypp.VERSION version_regexp = re.compile(r'^(?P<major>\d+)\.(?P<minor>\d+)'\ '(?:\.(?P<patch>\d+))?$') match = version_regexp.search(version) if not match: conf.fatal('cannot parse fypp version string') version = (match.group('major'), match.group('minor')) conf.env['FYPP_VERSION'] = version conf.end_msg('found (version %s.%s)' % version) ################################################################################ # Build ################################################################################ class fypp_preprocessor(Task.Task): ext_in = [ '.F90' ] ext_out = [ '.f90' ] color = 'CYAN' def keyword(self): return 'Processing' def run(self): opts = fypp.FyppOptions() argparser = fypp.get_option_parser() args = [FYPP_LINENUM_FLAG] args += self.env.FYPP_FLAGS args += [FYPP_DEFINES_ST % ss for ss in self.env['DEFINES']] args += [FYPP_INCPATH_ST % ss for ss in self.env['INCLUDES']] opts = argparser.parse_args(args, namespace=opts) infile = self.inputs[0].abspath() outfile = self.outputs[0].abspath() if Logs.verbose: Logs.debug('runner: fypp.Fypp %r %r %r' % (args, infile, outfile)) tool = fypp.Fypp(opts) tool.process_file(infile, outfile) return 0 def scan(self): parser = FyppIncludeParser(self.generator.includes_nodes) nodes, names = parser.parse(self.inputs[0]) if Logs.verbose: Logs.debug('deps: deps for %r: %r; unresolved: %r' % (self.inputs, nodes, names)) return (nodes, names) TaskGen.feature('fypp')(Tools.ccroot.propagate_uselib_vars) TaskGen.feature('fypp')(Tools.ccroot.apply_incpaths) @TaskGen.extension('.F90') def fypp_preprocess_F90(self, node): 'Preprocess the .F90 files with Fypp.' f90node = node.change_ext('.f90') self.create_task('fypp_preprocessor', node, [ f90node ]) if 'fc' in self.features: self.source.append(f90node) ################################################################################ # Helper routines ################################################################################ class FyppIncludeParser(object): '''Parser for include directives in files preprocessed by Fypp. It can not handle conditional includes. ''' # Include file pattern, opening and closing quoute must be replaced inside. INCLUDE_PATTERN = re.compile(r'^\s*#:include\s*(["\'])(?P<incfile>.+?)\1', re.MULTILINE) def __init__(self, incpaths): '''Initializes the parser. :param quotes: Tuple containing the opening and closing quote sign. :type quotes: tuple ''' # Nodes still to be processed self._waiting = [] # Files we have already processed self._processed = set() # List of dependent nodes self._dependencies = [] # List of unresolved dependencies self._unresolved = set() # Paths to consider when checking for includes self._incpaths = incpaths def parse(self, node): '''Parser the includes in a given node. :return: Tuple with two elements: list of dependent nodes and list of unresolved depencies. ''' self._waiting = [ node, ] # self._waiting is eventually extended during _process() -> iterate while self._waiting: curnode = self._waiting.pop(0) self._process(curnode) return (self._dependencies, list(self._unresolved)) def _process(self, node): incfiles = self._get_include_files(node) for incfile in incfiles: if incfile in self._processed: continue self._processed.add(incfile) incnode = self._find_include_node(node, incfile) if incnode: self._dependencies.append(incnode) self._waiting.append(incnode) else: self._unresolved.add(incfile) def _get_include_files(self, node): txt = node.read() matches = self.INCLUDE_PATTERN.finditer(txt) incs = [ match.group('incfile') for match in matches ] return incs def _find_include_node(self, node, filename): for incpath in self._incpaths: incnode = incpath.find_resource(filename) if incnode: break else: incnode = node.parent.find_resource(filename) return incnode
StarcoderdataPython
8196845
import os from dotenv import load_dotenv import psycopg2 load_dotenv() DB_NAME = os.getenv("DB_NAME", default="OH_NO!") DB_USER = os.getenv("DB_USER", default="OH_NO!") DB_PW = os.getenv("DB_PW", default="<PASSWORD>!") DB_HOST = os.getenv("DB_HOST", default="OH_NO!") CSV_FILEPATH = "titanic.csv" conn = psycopg2.connect(dbname=DB_NAME, user=DB_USER, password=DB_PW, host=DB_HOST) cursor = conn.cursor() def query_execute(cursor, query): cursor.execute(query) return cursor.fetchall() SURVIVOR_NUM = """ SELECT COUNT(survived) FROM titanic_queries WHERE survived = True; """ survivor_count = query_execute(cursor, SURVIVOR_NUM) print(f"There were {survivor_count} survivors from the Titanic") PCLASS_NUM = """ SELECT COUNT(pclass) FROM titanic_queries GROUP BY pclass; """ pclass_count = query_execute(cursor, PCLASS_NUM) print("1, 2, 3:", pclass_count) PCLASS_SORTED_SURVIVORS = """ SELECT COUNT(pclass), COUNT(survived) FROM titanic_queries WHERE survived = true GROUP BY pclass; """ PCLASS_SORTED_DEATHS = """ SELECT COUNT(pclass), COUNT(survived) FROM titanic_queries WHERE survived = false GROUP BY pclass; """ sorted_survivors = query_execute(cursor, PCLASS_SORTED_SURVIVORS) sorted_deaths = query_execute(cursor, PCLASS_SORTED_DEATHS) print("Survivors/Deaths by Class: 1, 2, 3:", sorted_survivors, sorted_deaths) AVERAGE_AGE = """ SELECT AVG(age), survived FROM titanic_queries GROUP BY survived; """ avg_age = query_execute(cursor, AVERAGE_AGE) print(avg_age) conn.commit() cursor.close() conn.close()
StarcoderdataPython
4984283
#!/usr/bin/env python #-*- coding: utf-8 -* # # Copyright 2012 msx.com # by <EMAIL> # 2012-4-14 # # Sputnik DBObject Cache # # ToDoList: # import redis class VectorCache: def __init__(self): pass class ViewCache: def __init__(self): pass class ViewMetadataTable: def __init__(self): pass class DataModifyTable: def __init__(self): pass class SpuDBObjectCache: cache_conf = None redis = None @classmethod def init_dbobject_cache(cls, conf): """ { 'enable' : True, 'db': 8, 'host': 'localhost', 'port': 6379 } """ cls.cache_conf = conf pool = redis.ConnectionPool( host = cls.cache_conf['host'], port = cls.cache_conf['port'], db = cls.cache_conf['db']) cls.redis = redis.Redis(connection_pool=pool) def __init__(self): pass def _get_view(self): pass def _get_view_list(self): pass def _modify(self, type, dbobject): pass def set_cache(self, dbobject): """ set dbobject or dbobject list to cache """ pass def get_cache(self, dbobject): """ get dbobject from cache """ pass def insert_modify(self, dbobject): pass def update_modify(self, dbobject): pass def delete_modify(self, dbobject): pass
StarcoderdataPython
6598190
from __future__ import annotations import itertools import threading import traceback from datetime import datetime, timedelta from time import sleep import keyboard as kb # functions to be run, you can change these! from waiting import wait import foe_desktops from foe_bot_army import processArmy from foe_bot_gold import goldCollector from foe_bot_goods import processGoods from foe_bot_idle import processIdleBuildings from foe_bot_loot import lootCollector2 from foe_bot_social import initSocialProcesses, processSocial from foe_bot_supplies import processSupplies from foe_bot_zoom import zoomOut from foe_control import ydiff1, pressEsc, pressButton from foe_pics import * from foe_pool import initPool from foe_utils import randDur, checkIfPaused, randSleepSec, lock collectGold = True # collect gold from buildings. collectArmy = True # collect gold from buildings. collectSupplies = True # collect supplies from buildings. restartIdleBuildings = True # restart any idle building. collectGoods = True # collect goods from buildings other than supplies and gold. collectSocial = True # automatically aid other people and accept friend requests. doZoomOut = True # automatically zoom out collectGuild = True # collect guild if full doUnstuck = True # reboot if session expired doSwitchBots = True # switch virtual screens to another accounts rebootSomeTime = True # reboot game some times doCollectLoot2 = True # collect in-game loot minimumTimeOnDesktop = 120 # minimum amount of time to spend on one desktop, sec pyautogui.FAILSAFE = False pyautogui.PAUSE = 0 class GameState: games = [] def __init__(self): self.lastRebooted = datetime.now() @classmethod def needToReboot(cls) -> bool: game_state = cls.getCurrentGameState() if game_state is None: return False return game_state.lastRebooted + timedelta(hours=1) < datetime.now() @classmethod def getCurrentGameState(cls) -> GameState: global currentDesktop if currentDesktop == 0 or currentDesktop > len(cls.games) - 1: return None return cls.games[currentDesktop] @classmethod def rebooted(cls): game_state = cls.getCurrentGameState() if game_state is None: return game_state.lastRebooted = datetime.now() def initGamesState(): for i in range(1, foe_desktops.numberOfDesktops): GameState.games.append(GameState()) initGamesState() socialProcesses = [] def processGuild(): guild = findGuild() if guild is None: randSleepSec(60, 120) return else: pressEsc() with lock: checkIfPaused() x = guild.left y = guild.top + guild.height + 1 leftRegion = (x + 3, y, 8, 7) rightRegion = (x + guild.width / 2 + 2, y, 8, 7) leftScreen = pyautogui.screenshot(region=leftRegion) rightScreen = pyautogui.screenshot(region=rightRegion) found = pyautogui.locate(leftScreen, rightScreen, confidence=0.8) if found: logging.info("Found full guild") pyautogui.moveTo(guild.left, guild.top + guild.height + ydiff1, duration=randDur()) pyautogui.click() guildGet = findPic('guildGet') tries = 10 while guildGet is None and tries > 0: tries = tries - 1 randSleepSec(1, 3) guildGet = findPic('guildGet') pressButton(guildGet, False) else: logging.debug("Guild is not full") pressEsc() randSleepSec(60, 180) def reboot(): with lock: checkIfPaused() activateWindow() pyautogui.press('f5') GameState.rebooted() sleep(1) def activateWindow(): pyautogui.moveTo(pyautogui.size().width / 2, 15) pyautogui.click() def unstuck(): if findPic('sessionExpired') is not None: pressButton(findPic('rebootNow'), True) randSleepSec(5, 10) playBtn = findPic('play') if playBtn is not None: pressButton(playBtn, True) worldBtn = findPic('world') if worldBtn is not None: pressButton(worldBtn, True) randSleepSec(5, 10) eventsPanel = findPic('events') if eventsPanel is not None: pressEsc() randSleepSec(5, 10) if findPic('visitUnavailable') is not None: pressButton(findPic('ok'), True) returnToCity = findPic('returnToCity') if returnToCity is not None: pressButton(returnToCity, False) if findPic('cannotHelp') is not None: reboot() randSleepSec(5, 15) currentDesktop = 1 def switchSlave(): windows = foe_desktops.getGameWindows() foe_desktops.hideAll() for window in itertools.cycle(windows): with lock: checkIfPaused() foe_desktops.show(window) initSocialProcesses() sleep(minimumTimeOnDesktop) with lock: foe_desktops.hide(window) def startBot(botFunction, toggle): if not toggle: return botName = botFunction.__name__ logging.info("Starting bot " + botName) thread = threading.Thread(name=botName, target=safeInfiniteLoop, args=(botFunction,)) thread.setDaemon(True) thread.start() return thread def rebooter(): wait(GameState.needToReboot) reboot() def safeInfiniteLoopFactory(func): return lambda: safeInfiniteLoop(func) def safeInfiniteLoop(func): while True: try: logging.info("Bot iteration") checkIfPaused() func() except Exception as e: logging.error(traceback.format_exc()) logging.error(e) if __name__ == "__main__": logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(threadName)s:%(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') if doSwitchBots: foe_desktops.moveToFirstDesktop() startBot(goldCollector, collectGold) startBot(processSupplies, collectSupplies) startBot(processIdleBuildings, restartIdleBuildings) startBot(processGoods, collectGoods) startBot(processSocial, collectSocial) startBot(processArmy, collectArmy) startBot(zoomOut, doZoomOut) startBot(processGuild, collectGuild) startBot(unstuck, doUnstuck) startBot(switchSlave, doSwitchBots) startBot(rebooter, rebootSomeTime) initPool() startBot(lootCollector2, doCollectLoot2) while not kb.is_pressed('end'): sleep(1) logging.info("Bye!")
StarcoderdataPython
11274463
<filename>app/migration.py from datetime import datetime import requests import pandas as pd import pandas_gbq from config import config_eu, config_us from google.cloud import bigquery from typing import List def operation_refine_city_data_appendbq(project_id:str, destination_tableid:str, newly_arrived: pd.DataFrame, *args, **kwargs): district = pandas_gbq.read_gbq( f""" SELECT district FROM `{project_id}.crime_statistics_polisenapi.dim_district` """, project_id=project_id) details_list = newly_arrived['details'] + ' ' + newly_arrived['summary'] + ' ' + newly_arrived['name'] newly_arrived['location_details'] = [extract_location_details(detail, district=district) for detail in details_list] newly_arrived['location_details'] = newly_arrived['location_details'] + ' ' + newly_arrived['location_name'] + ' ' + 'Sweden' pandas_gbq.to_gbq(newly_arrived, f'crime_statistics_polisenapi.{destination_tableid}', project_id=project_id, if_exists='append') print(f'{newly_arrived.shape[0]} rows added to table: crime_statistics_polisenapi.{destination_tableid}') def move_tables(project_id: str, config_source: dict=config_us, config_destination: dict=config_eu, table_ids:List[str]=['raw', 'cities_refined_en', 'cities_refined','dim_district' ]): source_dataset_id = config_source['dataset_id'] destination_dataset_id = config_destination['dataset_id'] for table_id in table_ids: df = pandas_gbq.read_gbq( f""" SELECT * FROM `{project_id}.{source_dataset_id}.{table_id}` """) pandas_gbq.to_gbq(df, f'{destination_dataset_id}.{table_id}', project_id=project_id, location=config_destination['location'], if_exists='replace') def main(): bq_client = bigquery.Client() project_id = bq_client.project move_tables(project_id=project_id) if __name__=='__main__': main()
StarcoderdataPython
1847642
return "the end" x = 2 + 2
StarcoderdataPython
3538161
<reponame>starkyller/dissertacao<filename>backend/hmobiweb/apps/monitoring_solutions/api/views.py from rest_framework import generics from rest_framework.authentication import TokenAuthentication from rest_framework.permissions import IsAuthenticated from ..models import ( MonitoringCategory, SolutionObjective, Solution, ) from .serializers import ( MonitoringCategorySerializer, SolutionObjectiveSerializer, SolutionSerializer, SolutionDetailSerializer, ) class MonitoringCategoryListAPIView(generics.ListAPIView): """ get: Return a list of all the existing monitoring categories. """ queryset = MonitoringCategory.objects.all() serializer_class = MonitoringCategorySerializer class MonitoringCategoryDetailAPIView(generics.RetrieveAPIView): """ get: Return an existing monitoring category. """ lookup_field = 'slug' queryset = MonitoringCategory.objects.all() serializer_class = MonitoringCategorySerializer class SolutionObjectiveListAPIView(generics.ListAPIView): """ get: Return a list of all the existing solution objectives. """ lookup_field = 'slug' queryset = SolutionObjective.objects.all() serializer_class = SolutionObjectiveSerializer class SolutionObjectiveDetailAPIView(generics.RetrieveAPIView): """ get: Return a existing detailed solution objective. """ lookup_field = 'slug' queryset = SolutionObjective.objects.all() serializer_class = SolutionObjectiveSerializer class SolutionListAPIView(generics.ListAPIView): """ get: Return a list of all the existing solutions. """ queryset = Solution.objects.all() serializer_class = SolutionSerializer class SolutionDetailAPIView(generics.RetrieveAPIView): """ get: Return a detailed solution. """ lookup_field = 'slug' queryset = Solution.objects.all() serializer_class = SolutionDetailSerializer
StarcoderdataPython
4879699
import fileinput from collections import defaultdict from utils import parse_nums, memoize @memoize def resolve(r): if type(rules[r]) == str: return [rules[r]] matches = [] for subrule in rules[r]: submatches = [''] for n in subrule: new = [] for m in resolve(n): for existing in submatches: new.append(existing + m) submatches = new matches.extend(submatches) return matches rules = defaultdict(list) messages = [] for line in fileinput.input(): line = line.strip() nums = parse_nums(line) if nums: parts = line.split(": ")[1].split(" | ") r = nums[0] for p in parts: if '"' in p: rules[r] = p[1] else: rules[r].append([int(x) for x in p.split(' ')]) elif line: messages.append(line) pl = len(resolve(42)[0]) part_1 = 0 part_2 = 0 for line in messages: if line in resolve(0): part_1 += 1 orig_line = line a = 0 b = 0 while line[:pl] in resolve(42): line = line[pl:] a += 1 while line[:pl] in resolve(31): line = line[pl:] b += 1 if a > b and b > 0 and not line: print orig_line part_2 += 1 print "Part 1:", part_1 print "Part 2:", part_2
StarcoderdataPython
8155308
<reponame>yvanlvA/Possible_Web_Server_Frame<filename>WebServer/possible/Context/Cookie.py #_*_ coding:utf-8 _*_ import http.cookies class Cookie(object): def __init__(self): self.sCookie = http.cookies.SimpleCookie() self.reqCookieDic = {} def CookieLoad(self, rewdata): if rewdata == "" or rewdata == None: return cTeList = [] if ';' in rewdata: cTeList = rewdata.split('; ') else: cTeList.append(rewdata) for item in cTeList: key, value = item.split('=') self.reqCookieDic[key] = value def GetCookie(self, key): return self.reqCookieDic.get(key, None) def RetCookie(self): set_cookieList = self.sCookie.output().splitlines() ret = set() for item in set_cookieList: key, value = item.split(': ') ret.add((key, value)) return ret def main(): c = Cookie() #sessionid=88245be7fbf549c13b42075d; check="gAAAAABcpfvM8KrsntMb4jxihY="; user=gAAAAABcpfv7B_pfTcuWFvCPUs60 c.CookieLoad("sessionid=88245be7fbf549c13b42075d; check=gAAAAABcpfvM8KrsntMb4jxihY=; user=gAAAAABcpfv7B_pfTcuWFvCPUs60") print(c.reqCookieDic) print(c.GetCookie("sessionid")) ''' c.sCookie["sessionid"] = "1111111" c.sCookie["sessionid"]["path"] = "/" c.sCookie["222"] = "22222222" c.sCookie["222"]["path"] = "/" c.sCookie["222"]['max-age'] = 123 print(c.RetCookie()) expires # 日期字符串 指定过期时间 path # 匹配路径 comment # 给服务器说明如何使用该Cookie UTF-8 domain # 服务器只向指定的域名发送Cookie max-age # 指定过期秒数 secure # 如果使用该属性,则只有在 Http SSL 安全连接时发送 version # 强制,对应Cookie版本 但没见人用过 :D httponly # cookie中设置了HttpOnly属性,那么通过js脚本将无法读取到cookie信息,这样能有效的防止XSS攻击 from http import cookies c = cookies.SimpleCookie() c["supar"] = "netWork" c["supar"]["path"] = "/" c.output() 'Set-Cookie: supar=netWork; Path=/' c["supar"]["max-age"] = "360" c.output() 'Set-Cookie: supar=netWork; Max-Age=360; Path=/' c["supar"]["domain"] = "yvan.top" c.output() 'Set-Cookie: supar=netWork; Domain=yvan.top; Max-Age=360; Path=/' ''' if __name__ == "__main__": main()
StarcoderdataPython
9618698
# -*- coding: utf-8 -*- # Copyright (C) 2020 - KMEE import os import sys from os import path from xmldiff import main from lxml import etree as etree_ sys.path.append(path.join(path.dirname(__file__), '..', 'nfselib')) from nfselib.ginfes.v3_01 import ( servico_enviar_lote_rps_envio, servico_consultar_nfse_rps_envio, ) def parsexml_(infile, parser=None, keep_signature=False, **kwargs): if parser is None: # Use the lxml ElementTree compatible parser so that, e.g., # we ignore comments. parser = etree_.ETCompatXMLParser() doc = etree_.parse(infile, parser=parser, **kwargs) root = doc.getroot() # remove Signature element before XML comparison if not keep_signature: for child in root: if child.tag in ["{http://www.w3.org/2000/09/xmldsig#}Signature", "{http://www.w3.org/2000/09/xmldsig#}\ ds:Signature"]: root.remove(child) subtree = etree_.ElementTree(root) return subtree def parse(inFilename, supermod): parser = None doc = parsexml_(inFilename, parser) rootNode = doc.getroot() rootTag, rootClass = supermod.get_root_tag(rootNode) rootObj = rootClass.factory() rootObj.build(rootNode) # Enable Python to collect the space used by the DOM. doc = None return rootObj def execute_test(path, servico): for filename in os.listdir(path): subtree = parsexml_('%s/%s' % (path, filename,)) inputfile = 'input.xml' subtree.write(inputfile, encoding='utf-8') obj = parse(inputfile, servico) outputfile = 'output.xml' with open(outputfile, 'w') as f: obj.export(f, 0, namespaceprefix_='') diff = main.diff_files(inputfile, outputfile) print(diff) assert len(diff) == 0 def test_enviar_lote_rps_envio(): xml_path = 'tests/nfse/ginfes/enviar_lote_rps_envio' execute_test(xml_path, servico_enviar_lote_rps_envio) def test_consultar_nfse_rps_envio(): xml_path = 'tests/nfse/ginfes/consultar_nfse_rps_envio' execute_test(xml_path, servico_consultar_nfse_rps_envio)
StarcoderdataPython
5169063
# -*-coding:utf-8-*- import tensorflow as tf import matplotlib.pyplot as plt import numpy as np def int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def image2example(image, label): return tf.train.Example(features=tf.train.Features(feature={ "image/encoded": bytes_feature(image), "image/label": int64_feature(label) })) def image2tfrecord(image_paths, tfrecord_path): with tf.python_io.TFRecordWriter(tfrecord_path) as tf_writer: for idx, ele in enumerate(image_paths): with tf.gfile.Open(ele, "rb") as f: image_raw = f.read() example = image2example(image_raw, idx) tf_writer.write(example.SerializeToString()) def tfrecord2example(): return { "image/encoded": tf.FixedLenFeature([], dtype=tf.string), "image/label": tf.FixedLenFeature([], dtype=tf.int64) } if __name__ == "__main__": image1_path = "../test_image/image1.jpg" image2_path = "../test_image/image2.jpg" tfrecord_path = "../test_image/image1.tfrecords" image2tfrecord([image1_path, image2_path], tfrecord_path) tf_reader = tf.TFRecordReader() """ tf.train.string_input_producer() 输入为文件列表, 记得加 [] 该函数创建输入文件队列, 返回 A queue with the output strings. A `QueueRunner` for the Queue is added to the current `Graph`'s `QUEUE_RUNNER` collection. 然后可以通过 tf.train.batch() tf.train.shuffle_batch() 可以通过 num_threads 指定多个线程同时执行入队操作, tf.train.shuffle_batch() 的入队操作就是数据读取和预处理的过程 多个线程会同时读取一个文件的不同样例并进行预处理 """ file_queue = tf.train.string_input_producer([tfrecord_path]) # key 就是文件的路径名称, 如 "b'../test_image/image1.tfrecords:0'" key, image_raw = tf_reader.read(file_queue) features_map = tfrecord2example() features = tf.parse_single_example(image_raw, features=features_map) label = features["image/label"] image = features["image/encoded"] print('after features["image/encoded"]: ', image.shape) image = tf.image.decode_jpeg(image, channels=3) print("after tf.image.decode_jpeg: ", image.shape) image = tf.image.resize_image_with_crop_or_pad(image, 400, 400) # 使用 tf.train.batch() image 必须有明确的 shape, 所以需要预处理设置 shape image, label = tf.train.batch([image, label], batch_size=2, num_threads=2) with tf.Session() as sess: # print(sess.run([key])) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) for _ in range(1): image, label = sess.run([image, label]) print("label: ", label) print("after sess.run: ", image.shape) for ele in range(1): # 只用有一个位置为-1, # 不能写成 ele = np.reshape(image[ele, :, :, :], [-1, -1, 3]) ele = np.reshape(image[ele, :, :, :], [400, -1, 3]) print(ele.shape) plt.imshow(ele) # plt.axis("off") plt.show() coord.request_stop() coord.join(threads)
StarcoderdataPython
1663609
<reponame>AABur/python-project-lvl2 # -*- coding:utf-8 -*- import pytest from gendiff.loader import GendiffFileError, collect_data @pytest.mark.parametrize( 'file_path', [ ('tests/fixtures/wrong_ext.ttt'), ('tests/fixtures/wrong_json.json'), ('tests/fixtures/wrong_yaml.yaml'), ('file_not_exists'), ], ) def test_wrong_file(file_path): with pytest.raises(GendiffFileError): assert collect_data(file_path)
StarcoderdataPython
6017
# @Time : 2022/1/26 23:07 # @Author : zhaoyu # @Site : # @File : __init__.py.py # @Software: PyCharm # @Note : xx
StarcoderdataPython
1616350
<filename>classify.py<gh_stars>0 import spacy import pandas as pd import numpy as np import math # import random from collections import Counter, defaultdict import sys import re import os import dataManagment as dm nlp = spacy.load('en') import spacy.parts_of_speech as pos_t VERB = 'VERB' nsubj = 'nsubj' dobj = 'dobj' NN = 'NOUN' NNS = 'NNS' ADJ = 'ADJ' sessions = set() # this should be replaced with a entity recognition directions = ["up", "down", "side", "left", "right", "in", "out", "forward", "backward", "north", "south", "east", "west"] def isDirection(text): if text in directions: return True else: return False class Ideas(object): def __init__(self, doc_): self.ideas = [] # start with verbs for word in doc_: if word.pos_ == VERB: self.ideas.append(Idea(word)) for idea in self.ideas: idea.removeBlockWords() idea.sortTokensToArray() def __str__(self): my_string = "" for idea in self.ideas: my_string = "{0} *** {1}".format(my_string, str(idea)) # idea should contain noun chunks i think return my_string class Idea(object): def __init__(self, verb): self.words = set() self.wordsArray=[] self.verb = verb self.words.add(verb) self.addToken(verb) def addToken(self, token): for child in token.children: if child.pos != pos_t.VERB: self.addToken(child) self.words.add(child) def sortTokensToArray(self): self.wordsArray = sorted(self.words, key=lambda Token: Token.i) # run before sort # removed stop words that are not directions def removeBlockWords(self): nonBlockedWords=set() for token in self.words: if notStopWord(token): nonBlockedWords.add(token) self.words = nonBlockedWords def __str__(self): return str(self.wordsArray) # doc = nlp(u"the rain goes up into the clouds and then comes back down") # ideas = Ideas(doc) # print(ideas) def getIntents(text): doc=nlp(text) print("doc") print(doc) conseptsPresent=Ideas(doc) classifications = [] info = {} info['response']=[] info["category"]=[] for idea in conseptsPresent.ideas: # print(idea) classifications.append(classify_baysian(idea.wordsArray, catagories, likelihood)) info['response'].append(str(idea)) info['category'].append(classify_baysian(idea.wordsArray, catagories, likelihood)) # save learning data as JSON for i in range(len(info['response'])): entry = dm.LearingEntry(info['category'], info['response'][i], info['response'][i]) updateLearingFile("Training_test/learning.json" , entry) return(classifications) def read_training_file(fpath): catagories = Counter() likelihood =defaultdict(Counter) training_data = dm.loadData(fpath) for entry in training_data: doc =nlp(entry["phrase"]) catagories[entry["classification"]] += 1 for word in doc: if notStopWord(word): likelihood[entry["classification"]][word.lemma_] +=1 return (catagories, likelihood) def printDict(dict): print(len(dict)) for key, value in dict.items(): print(key, value) def notStopWord(token): return not token.is_stop or isDirection(token.lemma_) # return the class that maxamizes postereor with min probobility def classify_baysian(doc, priors, likelihood): # print("************************************************") # printDict(priors) if len(doc) < 1: return "garbage" min_prob = 1E-9 max_class = (-1E6, '') for catagory in priors: p=priors[catagory] n=float(sum(likelihood[catagory].values())) for token in doc: p = p * max(min_prob,likelihood[catagory][token.lemma_] )/ n if p > max_class[0]: max_class=(p, catagory) return max_class[1] def updateLearingFile(fpath, entry): currentData = dm.loadData(fpath) currentData.append(entry.getJSON()) dm.saveData(fpath, currentData) def is_non_zero_file(fpath): return True if os.path.isfile(fpath) and os.path.getsize(fpath) > 0 else False def train_modle(): training_file = "Training_test/training.json" global catagories global likelihood (catagories, likelihood) = read_training_file(training_file) load_responces("Training_test/nodes.json") def load_responces(fpath): # csvFile = pd.read_csv(filename, low_memory=False, encoding='ISO-8859-1') global nodes nodes = set() loadedNodes = dm.loadData(fpath) for node in loadedNodes: nodes.add(node) for node in nodes: print(node.name) class Session(object): def __init__(self, sessionId,baseNode): self.id=sessionId self.nodesActivated=[] self.sortedNodes= sorted(nodes, key=lambda Node: Node.numberOfCalls) # def nodeAvailible(self, inputContext): # return self.nodesActivated[-1]. def forceNode(self, actionIntent, decition): if "yesno" in actionIntent: print("decition ", decition) if "yes" in decition: print("got here yes!!!!!!!!!!!!!!!!!!!!!!!") if self.activateNode(getNode(self.nodesActivated[-1].yes_force)): return self.getCurrentBOTResponce() else: print("error: could not add forced yes") if "no" in decition: if self.activateNode(getNode(self.nodesActivated[-1].no_force)): return self.getCurrentBOTResponce() else: print("error: could not add forced no") else: if "restart" in decition: self.nodesActivated=[] if self.activateNode(getNode(actionIntent)): return self.getCurrentBOTResponce() else: print("error: could not add foced node") def nextNode(self, intents): # self.nodesActivated # self.wordsArray = sorted(self.words, key=lambda Token: Token.i) for node in self.sortedNodes: #search ordered list of lest used responces if node.name in intents: #if the node is in the list of intents if self.activateNode(node): #try and add the node to current sesstion return self.getCurrentBOTResponce() # if added return responce # for intent in intents: # if self.activateNode(getNode(str(intent))): # return self.getCurrentBOTResponce() # not found return "defalt text responce" def activateNode(self, node): if self.isContextAvailable(node.input_context): self.nodesActivated.append(node) # self.sortedNodes = sorted(self.nodesActivated, key=lambda Token: Token.i self.sortedNodes = sorted(nodes, key=lambda Node: Node.numberOfCalls) for node in self.sortedNodes: print(node.name," ",node.numberOfCalls) return True else: return False def printHistory(self): histString='' for node in self.nodesActivated: histString = "{0} > {1}".format(histString, node.name) print(histString) def getCurrentBOTResponce(self): callResponceIndex = self.nodesActivated[-1].getCallNumberInctement() print(callResponceIndex) return self.nodesActivated[-1].responce[callResponceIndex] def isContextAvailable(self, input_contexts): if len(self.nodesActivated) == 0: #first welcome node return True # if "pass_through" in input_contexts: # if len(self.nodesActivated)<2: # print("not sure how we got here with less then 2 activate nodes") # return self.nodesActivated[-2].isContextAvailableNode(input_contexts) # else: return self.nodesActivated[-1].isContextAvailableNode(input_contexts) def currentContext(self): return self.nodesActivated[-1].output_context class Node(object): # def __init__(self, name, responce,input_context,output_context): def __init__(self, nodeLoadedInfo): # csvFile["category"][i], csvFile["reply"][i], # csvFile["input_context"][i],csvFile["output_context"][i] self.name = nodeLoadedInfo["classification"] self.numberOfCalls=0 input_context = nodeLoadedInfo["input_context"] output_context = nodeLoadedInfo["input_context"] self.responses = [] for responce in nodeLoadedInfo["response"]: self.responses.append(Responce(responce)) # self.yes_force = nodeLoadedInfo["yes_force"] # self.no_force = nodeLoadedInfo["no_force"] # this should indicate if we have gone through them all which it does not right now ******** def getCallNumberInctement(self): currentCallIndex = self.numberOfCalls print(self.responce) self.numberOfCalls = (self.numberOfCalls + 1)%len(self.responce) return currentCallIndex # check def isContextAvailableNode(self, input_contexts): for input_context in input_contexts: if input_context in self.output_context: return True return False # self.availibleNodes=2 class Responce(object): def __init__(self, responceLoaded): self.text = responceLoaded["text"] self.input_context = responceLoaded["input_context"] self.output_context = responceLoaded["output_context"] self.decisions = set() for decision in responceLoaded["decision"]: self.decisions.add(Decision(decision)) class Decision(object): def __init__(self, loadedDecision): self.name = loadedDecision["name"] self.destination = loadedDecision["node"] def getNode(category): for node in nodes: if node.name == category: return node print(category, " is unclasified") for node in nodes: if node.name == "unknown": return node # should never get here return False def startSession(ID, node): session = Session(ID, node) sessions.add(session) return session def getSession(ID): for session in sessions: if ID == session.id: return session # if not found return startSession(ID, getNode("base"))
StarcoderdataPython
11200448
<gh_stars>0 import logging from common.asserts import assert_overflowing from common.components.hero import assert_h1_spacing, assert_subtext_spacing from common.components.para_blocks import * from . import mobile_browser as browser logger = logging.getLogger(__name__) def test_hero_section(browser): section_class = 'fyle-design-system' assert_h1_spacing(browser, section_class, 16) assert_subtext_spacing(browser, section_class, 0) def test_para_block_spacing(browser): assert_para_blocks(browser, para_width=440, image_width=440) def test_page_overflow(browser): assert_overflowing(browser)
StarcoderdataPython
5181209
import pickle as pkl import numpy as np import numpy.linalg as linalg # import scipy.linalg as linalg import scipy.stats as stats import pandas as pd import copy as cp def getPeaksAndBWs(strf,dt=5,df=1/6, discard_thresh=0.05): original_strf= strf strf=np.maximum(original_strf,0) l2_norm_pos = np.sum(strf[:]**2) [u,s,v] = linalg.svd(strf) f1 = u[:,0] t1 = v.T[:,0] abs_max_f1_val = np.max(np.abs(f1)) abs_max_f1_ix = np.argmax(np.abs(f1)) abs_max_t1_val = np.max(np.abs(t1)) abs_max_t1_ix = np.argmax(np.abs(t1)) pos_peaks_ix = np.argwhere(np.abs(t1)>0.1*abs_max_t1_val) if len(pos_peaks_ix)>1: pos_first_peak_ix = pos_peaks_ix[-1] else: pos_first_peak_ix = pos_peaks_ix f_pos_peak = (abs_max_f1_ix)*df f_pos_bw = np.sum(np.abs(f1)>0.5*abs_max_f1_val)*df t_pos_peak = (len(t1) - abs_max_t1_ix)*dt*-1 t_pos_bw = np.sum(np.abs(t1)>0.5*abs_max_t1_val)*dt #Inhibition: strf=np.minimum(original_strf,0) l2_norm_neg = np.sum(strf[:]**2) [u,s,v] = linalg.svd(strf) f1 = u[:,0] t1 = v.T[:,0] abs_max_f1_val = np.max(np.abs(f1)) abs_max_f1_ix = np.argmax(np.abs(f1)) abs_max_t1_val = np.max(np.abs(t1)) abs_max_t1_ix = np.argmax(np.abs(t1)) neg_peaks_ix = np.argwhere(np.abs(t1)>0.1*abs_max_t1_val) if len(neg_peaks_ix)>1: neg_first_peak_ix = neg_peaks_ix[-1] else: neg_first_peak_ix = neg_peaks_ix f_neg_peak = (abs_max_f1_ix)*df f_neg_bw = np.sum(np.abs(f1)>0.5*abs_max_f1_val)*df t_neg_peak = (len(t1) - abs_max_t1_ix)*dt*-1 t_neg_bw = np.sum(np.abs(t1)>0.5*abs_max_t1_val)*dt discard_pos = False discard_neg = False flip_pos_neg = False if l2_norm_neg<discard_thresh*l2_norm_pos: discard_neg = True f_neg_bw = 0 t_neg_bw = 0 elif l2_norm_pos<discard_thresh*l2_norm_neg: discard_pos = True f_pos_bw = 0 t_pos_bw = 0 if (neg_first_peak_ix>pos_first_peak_ix and not discard_neg) or discard_pos: # print('flip_pos_neg = True') flip_pos_neg = True discard_neg = discard_pos f_peak = [f_neg_peak, f_pos_peak] f_bw = [f_neg_bw, f_pos_bw] t_peak = [t_neg_peak, t_pos_peak] t_bw = [t_neg_bw, t_pos_bw] else: f_peak = [f_pos_peak,f_neg_peak] f_bw = [f_pos_bw,f_neg_bw] t_peak = [t_pos_peak,t_neg_peak] t_bw = [t_pos_bw,t_neg_bw] # flags = [flip_pos_neg, discard_neg] return [f_peak,f_bw, t_peak,t_bw, flip_pos_neg, discard_neg] def flip_neg_weights(weights,n_h = 40, dt = 5,dF = 1/6): numweights = weights.shape[0] mf_peak = np.empty([numweights,2]) mf_bw = np.empty([numweights,2]) mt_bw = np.empty([numweights,2]) mt_peak = np.empty([numweights,2]) m_pow = np.empty([numweights, n_h]) flip_pos_neg = np.empty([numweights]) discard_neg = np.empty([numweights]) for ii in np.arange(numweights): #normalize weight so that all are in same range this_weight = weights[ii,:,:] this_weight_norm = this_weight/np.max(np.abs(this_weight[:])) [mf_peak[ii,:],mf_bw[ii,:], mt_peak[ii,:],mt_bw[ii,:], flip_pos_neg[ii], discard_neg[ii]] = getPeaksAndBWs(this_weight_norm,dt,dF) if flip_pos_neg[ii]: this_weight = -this_weight weights[ii,:,:] = this_weight return weights def quantify_strfs(weights,n_h = 40, dt = 5,dF = 1/6): numweights = weights.shape[0] mf_peak = np.empty([numweights,2]) mf_bw = np.empty([numweights,2]) mt_bw = np.empty([numweights,2]) mt_peak = np.empty([numweights,2]) m_pow = np.empty([numweights, n_h]) flip_pos_neg = np.empty([numweights]) discard_neg = np.empty([numweights]) # Get measures for real and model data for ii in np.arange(numweights): #normalize weight so that all are in same range this_weight = cp.deepcopy(weights[ii,:,:]) if np.max(np.abs(this_weight[:]))>0: this_weight /=np.max(np.abs(this_weight[:])) [mf_peak[ii,:],mf_bw[ii,:], mt_peak[ii,:],mt_bw[ii,:], flip_pos_neg[ii], discard_neg[ii]] = getPeaksAndBWs(this_weight,dt,dF) m_pow[ii,:] = np.sum(this_weight**2, axis=0) mf_peak_pos = mf_peak[:,0] mf_bw_pos = mf_bw[:,0] mt_peak_pos = mt_peak[:,0] mt_bw_pos = mt_bw[:,0] mf_peak_neg = mf_peak[np.logical_not(discard_neg),1] mf_bw_neg = mf_bw[:,1] # mf_bw_neg = mf_bw[np.logical_not(discard_neg),1] mt_peak_neg = mt_peak[np.logical_not(discard_neg),1] # mt_bw_neg = mt_bw[np.logical_not(discard_neg),1] mt_bw_neg = mt_bw[:,1] return [mf_peak_pos, mf_peak_neg, mf_bw_pos, mf_bw_neg, mt_peak_pos, mt_peak_neg, mt_bw_pos, mt_bw_neg, m_pow] def add_mean_ks(this_pd): # temp_pd = this_pd.copy() colnames = [] # keys = this_pd.colnames # print(this_pd.keys().unique()) for colname in this_pd.columns: # print(colname) # print(('peak' in colname and 'pos'in colname) ) # if 'ks' in colname: if 'ks' in colname and ('bw' in colname):# or ('peak' in colname and 'pos' in colname)): colnames.append(colname) print(colnames) this_pd['mean_ks'] = 0 # tempp = this_pd[colnames] n_measures = 0 for colname in colnames: # print(this_pd[colname]) this_pd['mean_ks'] += this_pd[colname] n_measures += 1 this_pd['mean_ks'] /= n_measures return this_pd def compare_real_model_distributions(mstrfs, rstrfs, pd_entry): [mf_peak_pos, mf_peak_neg, mf_bw_pos, mf_bw_neg, mt_peak_pos, mt_peak_neg, mt_bw_pos, mt_bw_neg, m_pow] = quantify_strfs(mstrfs) [rf_peak_pos, rf_peak_neg, rf_bw_pos, rf_bw_neg, rt_peak_pos, rt_peak_neg, rt_bw_pos, rt_bw_neg, r_pow] = quantify_strfs(rstrfs, n_h=38) #Exclude any entries where bw=0 mf_ix = [mf_bw_neg>0] #and [mf_bw_pos>0] rf_ix = [rf_bw_neg>0] #and [rf_bw_pos>0] mt_ix = [mt_bw_neg>0] #and [mt_bw_pos>0] rt_ix = [rt_bw_neg>0] #and [rt_bw_pos>0] mf_bw_pos = mf_bw_pos[mf_ix] rf_bw_pos = rf_bw_pos[rf_ix] mt_bw_pos = mt_bw_pos[mt_ix] rt_bw_pos = rt_bw_pos[rt_ix] mf_bw_neg = mf_bw_neg[mf_ix] rf_bw_neg = rf_bw_neg[rf_ix] mt_bw_neg = mt_bw_neg[mt_ix] rt_bw_neg = rt_bw_neg[rt_ix] ks_t_bw = np.zeros([2]) ks_f_bw = np.zeros([2]) ks_t_peak = np.zeros([2]) ks_f_peak = np.zeros([2]) [ks_t_bw[0],p] = stats.ks_2samp(mt_bw_pos,rt_bw_pos) [ks_t_bw[1],p] = stats.ks_2samp(mt_bw_neg,rt_bw_neg) [ks_t_peak[0],p] =stats.ks_2samp((mt_bw_pos-mt_bw_neg)/(mt_bw_pos+mt_bw_neg),(rt_bw_pos-rt_bw_neg)/(rt_bw_pos+rt_bw_neg)) [ks_t_peak[1],p] =stats.ks_2samp((mt_bw_pos-mt_bw_neg),(rt_bw_pos-rt_bw_neg)) # [ks_t_peak[0],p] =stats.ks_2samp((mt_bw_pos-mt_bw_neg),(rt_bw_pos-rt_bw_neg)) # [ks_t_peak[1],p] =stats.ks_2samp((mt_bw_pos-mt_bw_neg),(rt_bw_pos-rt_bw_neg)) # [ks_t_peak[1],p] =stats.ks_2samp(mt_peak_neg,rt_peak_neg) [ks_f_bw[0],p] = stats.ks_2samp(mf_bw_pos,rf_bw_pos) [ks_f_bw[1],p] = stats.ks_2samp(mf_bw_neg,rf_bw_neg) # [ks_f_peak[0],p] = stats.ks_2samp(mf_peak_pos,rf_peak_pos) # [ks_f_peak[1],p] = stats.ks_2samp(mf_peak_neg,rf_peak_neg) [ks_f_peak[0],p] =stats.ks_2samp((mf_bw_pos-mf_bw_neg)/(mf_bw_pos+mf_bw_neg),(rf_bw_pos-rf_bw_neg)/(rf_bw_pos+rf_bw_neg)) [ks_f_peak[1],p] =stats.ks_2samp((mf_bw_pos-mf_bw_neg),(rf_bw_pos-rf_bw_neg)) # [ks_f_peak[0],p] =stats.ks_2samp((mf_bw_pos-mf_bw_neg),(rf_bw_pos-rf_bw_neg)) # [ks_f_peak[1],p] =stats.ks_2samp((mf_bw_pos-mf_bw_neg),(rf_bw_pos-rf_bw_neg)) ks_t_peak[np.isnan(ks_t_peak)] = 1 ks_t_bw[np.isnan(ks_t_bw)] = 1 ks_f_bw[np.isnan(ks_f_bw)] = 1 ks_f_peak[np.isnan(ks_f_peak)] = 1 if pd_entry is not None: pd_entry['f_peak_pos'] = mf_peak_pos pd_entry['f_peak_neg'] = mf_peak_neg pd_entry['f_bw_pos'] = mf_bw_pos pd_entry['f_bw_neg'] = mf_bw_neg pd_entry['t_peak_pos'] = mt_peak_pos pd_entry['t_peak_neg'] = mt_peak_neg pd_entry['t_bw_pos'] = mt_bw_pos pd_entry['t_bw_neg'] = mt_bw_neg pd_entry['t_pow'] = m_pow pd_entry['ks_f_peak_pos'] = ks_f_peak[0] pd_entry['ks_f_peak_neg'] = ks_f_peak[1] pd_entry['ks_t_peak_pos'] = ks_t_peak[0] pd_entry['ks_t_peak_neg'] = ks_t_peak[1] pd_entry['ks_t_bw_pos'] = ks_t_bw[0] pd_entry['ks_t_bw_neg'] = ks_t_bw[1] pd_entry['ks_f_bw_pos'] = ks_f_bw[0] pd_entry['ks_f_bw_neg'] = ks_f_bw[1] return pd_entry # print(ks_t_bw) return [ks_t_peak, ks_t_bw, ks_f_bw] def compare_real_model_populations(this_pd, rstrfs, display=1, keep_prop=0.01): n_h = 40 num_freq = 32 out_pd = this_pd.copy() ii= 0 for entry_loc,this_entry in this_pd.iterrows(): pth = this_entry['results_path'] pred_net = pkl.load(open(pth, 'rb')) if not isinstance(pred_net, dict): network_params = pred_net.network_params cost_history = pred_net.cost_history else: network_params = pred_net['network_params'] cost_history = pred_net['cost_history'] weights = network_params[0].T l2_norm = np.sum(weights**2,axis=1) keep_ix = l2_norm>keep_prop*max(l2_norm) mstrfs = weights[keep_ix,:] num_mstrfs = mstrfs.shape[0] mstrfs =np.reshape(mstrfs,[num_mstrfs, n_h, num_freq]) mstrfs = np.rollaxis(mstrfs,2,1) if ii == 0: temp = compare_real_model_distributions(mstrfs, rstrfs, this_entry) for cname in temp.index: if cname not in out_pd.columns: temp[cname] = None else: temp = temp.drop(cname) out_pd = out_pd.assign(**temp) this_entry = compare_real_model_distributions(mstrfs, rstrfs, this_entry) out_pd.loc[entry_loc,this_entry.index.tolist()] = this_entry ii+=1 return pd.DataFrame(out_pd)
StarcoderdataPython
3587458
import requests import json def test_healthcheck(): # Setup url = 'http://localhost:5000' headers = {'Content-Type': 'application/json' } # Action resp = requests.get(url, headers=headers) # Check assert resp.status_code == 200 resp_body = resp.json() assert resp_body['code'] == 1 def test_hr_weekly(): # Setup url = 'http://localhost:5000/hr/weekly' headers = {'Content-Type': 'application/json' } params = {'until': 1585699200} # Action resp = requests.get(url, headers=headers, params=params) # Check assert resp.status_code == 200 resp_body = resp.json() assert isinstance(resp_body, list) assert len(resp_body) > 0 assert resp_body[0] == ['Time','Value'] def test_bp_weekly(): # Setup url = 'http://localhost:5000/bp/weekly' headers = {'Content-Type': 'application/json' } params = {'until': 1585699200} # Action resp = requests.get(url, headers=headers, params=params) # Check assert resp.status_code == 200 resp_body = resp.json() assert isinstance(resp_body, list) assert len(resp_body) > 0 assert resp_body[0] == ['Time','Diastolic','Systolic'] def test_steps_monthly(): # Setup url = 'http://localhost:5000/steps/monthly' headers = {'Content-Type': 'application/json' } params = {'until': 1585699200} # Action resp = requests.get(url, headers=headers, params=params) # Check assert resp.status_code == 200 resp_body = resp.json() assert isinstance(resp_body, list) assert len(resp_body) > 0 assert resp_body[0] == ['Time','Steps'] assert isinstance(resp_body[1], list) def test_weight_all_data(): # Setup url = 'http://localhost:5000/weight' headers = {'Content-Type': 'application/json' } params = {'until': 1590969600} # Action resp = requests.get(url, headers=headers, params=params) # Check assert resp.status_code == 200 resp_body = resp.json() assert isinstance(resp_body, list) assert len(resp_body) == 192 assert resp_body[0] == ['Time','Weight'] assert isinstance(resp_body[1], list) def test_weight_until_april_1(): # Setup url = 'http://localhost:5000/weight' headers = {'Content-Type': 'application/json' } params = {'until': 1585699200} # Action resp = requests.get(url, headers=headers, params=params) # Check assert resp.status_code == 200 resp_body = resp.json() assert isinstance(resp_body, list) assert len(resp_body) == 154 assert resp_body[0] == ['Time','Weight'] assert isinstance(resp_body[1], list)
StarcoderdataPython
3406530
<filename>resnet/data_loader.py import numpy as np from os.path import join class Loader: X_train = None y_train = None X_valid = None y_valid = None X_test = None y_test = None X_seq_train = None y_seq_train = None X_seq_valid = None y_seq_valid = None X_seq_test = None y_seq_test = None def load_pretrain(self, fold=0): path = './20_fold_data' npz = np.load(join(path,str(fold)+'.npz')) self.X_train = npz['X_train'] self.y_train = npz['y_train'] self.X_valid = npz['X_valid'] self.y_valid = npz['y_valid'] self.X_test = npz['X_test'] self.y_test = npz['y_test'] def load_finetune(self, fold=0 ): path = './20_fold_data' npz = np.load(join(path,str(fold)+'.npz')) self.X_seq_train = npz['X_seq_train'] self.y_seq_train = npz['y_seq_train'] self.X_seq_valid = npz['X_seq_valid'] self.y_seq_valid = npz['y_seq_valid'] self.X_seq_test = npz['X_seq_test'] self.y_seq_test = npz['y_seq_test'] if __name__ == '__main__': d = Loader() d.load_pretrain() print(d.X_train.shape) d.load_finetune() print(d.y_seq_test.shape)
StarcoderdataPython
6626342
<gh_stars>10-100 #!/usr/bin/env python import unittest import sys import shutil import os import io import re import gzip import numpy if "DEBUG" in sys.argv: sys.path.insert(0, "..") sys.path.insert(0, "../../") sys.path.insert(0, ".") sys.argv.remove("DEBUG") import metax.Formats as Formats from M00_prerequisites import ProcessPrerequisites class Dummy(object): pass def buildDummyArgs(root): dummy = Dummy() dummy.verbosity = 10 dummy.dosage_folder = os.path.join(root, "dosage_set_1") dummy.snp_list = os.path.join(root, "snp.txt.gz") dummy.output_folder = os.path.join(root, "intermediate/filtered") dummy.file_pattern = "set_(.*)" dummy.population_group_filters = ["HERO"] dummy.individual_filters = ["ID.*"] dummy.input_format = Formats.IMPUTE dummy.output_format = Formats.PrediXcan return dummy def setupDataForArgs(args, root): if os.path.exists(root): shutil.rmtree(root) shutil.copytree("tests/_td/dosage_set_1", os.path.join(root,"dosage_set_1")) shutil.copy("tests/_td/snp.txt.gz", root) def cleanUpDataForArgs(root): shutil.rmtree(root) class TestM00(unittest.TestCase): def testProcessPrerequisitesnoArgConstructor(self): with self.assertRaises(AttributeError): dummy = Dummy() p = ProcessPrerequisites(dummy) def testProcessPrerequisitesConstructor(self): dummy = buildDummyArgs("_test") setupDataForArgs(dummy, "_test") p = ProcessPrerequisites(dummy) self.assertEqual(p.dosage_folder, "_test/dosage_set_1") self.assertEqual(p.snp_list, "_test/snp.txt.gz") self.assertEqual(p.output_folder, "_test/intermediate/filtered") self.assertEqual(p.population_group_filters, ["HERO"]) # Previous check below looked at memory locations, which failed under # some conditions even though the expressions were effectively identical self.assertEqual([x.pattern for x in p.individual_filters], ["ID.*"]) self.assertEqual(p.chromosome_in_name_regex,re.compile("set_(.*)")) self.assertEqual(p.samples_input, "_test/dosage_set_1/set.sample") self.assertEqual(p.samples_output, "_test/intermediate/filtered/set.sample") cleanUpDataForArgs("_test") def testProcessPrerequisitesRun(self): dummy = buildDummyArgs("_test") setupDataForArgs(dummy, "_test") p = ProcessPrerequisites(dummy) try: p.run() except: self.assertEqual(False, True, "Prerequisites should have run without error") with open(p.samples_output) as f: expected_lines = ["ID POP GROUP SEX", "ID1 K HERO male", "ID2 K HERO female", "ID3 K HERO female"] for i,expected_line in enumerate(expected_lines): actual_line = f.readline().strip() self.assertEqual(actual_line, expected_line) path = os.path.join(p.output_folder, "set_chr1.dosage.gz") with io.TextIOWrapper(gzip.open(path), newline="") as f: expected_lines = ["chr1 rs2 2 G A 0.166666666667 0 1 0", "chr1 rs3 3 G A 0.333333333333 0 1 1", "chr1 rs4 4 G A 1.0 2 2 2"] for i,expected_line in enumerate(expected_lines): actual_line = f.readline().strip() actual_comps = actual_line.split(" ") expected_comps = expected_line.split(" ") self.assertEqual(actual_comps[0:5], expected_comps[0:5]) numpy.testing.assert_almost_equal(float(actual_comps[6]), float(actual_comps[6])) self.assertEqual(actual_comps[7:], expected_comps[7:]) cleanUpDataForArgs("_test") if __name__ == "__main__": unittest.main()
StarcoderdataPython
1780446
<gh_stars>1-10 import sys def printc(*s, color="grey", hl=None, bg=None, file=sys.stderr): """ Prints some text with some color, using Terminal escape sequences >>> printc("Hello world", color="blue") \033[1;34mHello world\033[1;m >>> printc("Hello world", color="blue", hl=True) \033[1;44mHello world\033[1;m """ colors = { 'grey': 30, 'black': 31, 'red': 31, 'green': 32, 'yellow': 33, 'blue': 34, 'magenta': 35, 'purple': 35, 'cyan': 36, } if color == "grey": hl = True code = colors.get(color) text = ' '.join(str(x) for x in s) if code: hl = 1 if hl else 0 if bg: code += 10 file.write("\r\033[{hl};{color}m{text}\033[1;m\n".format( hl=hl, text=text, color=code)) else: file.write(text + '\n') file.flush()
StarcoderdataPython
308801
import sqlite3 import subprocess as sp """ database code """ def create_table(): conn = sqlite3.connect('testdb.sqlite') cursor = conn.cursor() query = ''' CREATE TABLE IF NOT EXISTS student( id INTEGER PRIMARY KEY, roll INTEGER, name TEXT, phone TEXT ) ''' cursor.execute(query) conn.commit() conn.close() def add_student(roll,name,phone): conn = sqlite3.connect('testdb.sqlite') cursor = conn.cursor() query = ''' INSERT INTO student( roll, name, phone ) VALUES ( ?,?,? ) ''' cursor.execute(query,(roll,name,phone)) conn.commit() conn.close() def get_students(): conn = sqlite3.connect('testdb.sqlite') cursor = conn.cursor() query = ''' SELECT roll, name, phone FROM student ''' cursor.execute(query) all_rows = cursor.fetchall() conn.commit() conn.close() return all_rows def get_student_by_roll(roll): conn = sqlite3.connect('testdb.sqlite') cursor = conn.cursor() query = ''' SELECT roll, name, phone FROM student WHERE roll = {} ''' .format(roll) cursor.execute(query) all_rows = cursor.fetchall() conn.commit() conn.close() return all_rows def update_student(roll,name,phone): conn = sqlite3.connect('testdb.sqlite') cursor = conn.cursor() query = ''' UPDATE student SET name = ?, phone = ? WHERE roll = ? ''' cursor.execute(query,(name,phone,roll)) conn.commit() conn.close() def delete_student(roll): conn = sqlite3.connect('testdb.sqlite') cursor = conn.cursor() query = ''' DELETE FROM student WHERE roll = {} ''' .format(roll) cursor.execute(query) all_rows = cursor.fetchall() conn.commit() conn.close() return all_rows create_table() """ main code """ def add_data(id_,name,phone): add_student(id_,name,phone) def get_data(): return get_students() def show_data(): students = get_data() for student in students: print(student) def show_data_by_id(id_): students = get_student_by_roll(id_) if not students: print("No data found at roll",id_) else: print (students) def select(): sp.call('clear',shell=True) sel = input("1. Add data\n2.Show Data\n3.Search\n4.Update\n5.Delete\n6.Exit\n\n") if sel=='1': sp.call('clear',shell=True) id_ = int(input('id: ')) name = input('Name: ') phone = input('phone: ') add_data(id_,name,phone) elif sel=='2': sp.call('clear',shell=True) show_data() input("\n\npress enter to back:") elif sel=='3': sp.call('clear',shell=True) id__ = int(input('Enter Id: ')) show_data_by_id(id__) input("\n\npress enter to back:") elif sel=='4': sp.call('clear',shell=True) id__ = int(input('Enter Id: ')) show_data_by_id(id__) print() name = input('Name: ') phone = input('phone: ') update_student(id__,name,phone) input("\n\nYour data has been updated \npress enter to back:") elif sel=='5': sp.call('clear',shell=True) id__ = int(input('Enter Id: ')) show_data_by_id(id__) delete_student(id__) input("\n\nYour data has been deleted \npress enter to back:") else: return 0; return 1; while(select()): pass
StarcoderdataPython
1741468
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Example of debugging TensorFlow runtime errors using tfdbg.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import tempfile import numpy as np import tensorflow from tensorflow.python import debug as tf_debug tf = tensorflow.compat.v1 def main(_): sess = tf.Session() # Construct the TensorFlow network. ph_float = tf.placeholder(tf.float32, name="ph_float") x = tf.transpose(ph_float, name="x") v = tf.Variable(np.array([[-2.0], [-3.0], [6.0]], dtype=np.float32), name="v") m = tf.constant( np.array([[0.0, 1.0, 2.0], [-4.0, -1.0, 0.0]]), dtype=tf.float32, name="m") y = tf.matmul(m, x, name="y") z = tf.matmul(m, v, name="z") if FLAGS.debug: config_file_path = (tempfile.mktemp(".tfdbg_config") if FLAGS.use_random_config_path else None) sess = tf_debug.LocalCLIDebugWrapperSession( sess, ui_type=FLAGS.ui_type, config_file_path=config_file_path) if FLAGS.error == "shape_mismatch": print(sess.run(y, feed_dict={ph_float: np.array([[0.0], [1.0], [2.0]])})) elif FLAGS.error == "uninitialized_variable": print(sess.run(z)) elif FLAGS.error == "no_error": print(sess.run(y, feed_dict={ph_float: np.array([[0.0, 1.0, 2.0]])})) else: raise ValueError("Unrecognized error type: " + FLAGS.error) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.register("type", "bool", lambda v: v.lower() == "true") parser.add_argument( "--error", type=str, default="shape_mismatch", help="""\ Type of the error to generate (shape_mismatch | uninitialized_variable | no_error).\ """) parser.add_argument( "--ui_type", type=str, default="curses", help="Command-line user interface type (curses | readline)") parser.add_argument( "--debug", type="bool", nargs="?", const=True, default=False, help="Use debugger to track down bad values during training") parser.add_argument( "--use_random_config_path", type="bool", nargs="?", const=True, default=False, help="""If set, set config file path to a random file in the temporary directory.""") FLAGS, unparsed = parser.parse_known_args() with tf.Graph().as_default(): tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
StarcoderdataPython
182297
import numpy as np from mlxtend.feature_selection import SequentialFeatureSelector as SFS from sklearn.model_selection import KFold from sklearn.feature_selection import SelectPercentile, mutual_info_classif import sys from pathlib import Path sys.path[0] = str(Path(sys.path[0]).parent) from metrics import metrics, meanMetrics, stdMetrics, printMetrics import time def select_features(classifier, n_features, fwd, fltg): sfs = SFS(classifier, k_features=n_features, forward=fwd, floating=fltg, verbose=1, scoring='accuracy', cv=10, n_jobs=-1) return sfs def select_features_number(classifier, number_features, fwd, fltg, X, Y): tiempo_i = time.time() Errores = np.ones(10) Metrics = np.zeros((10,5)) j = 0 kf = KFold(n_splits=10) clf = classifier sf = select_features(clf, number_features, fwd, fltg) sf = sf.fit(X, Y) X_sf = sf.transform(X) for train_index, test_index in kf.split(X_sf): X_train, X_test = X_sf[train_index], X_sf[test_index] y_train, y_test = Y[train_index], Y[test_index] classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) Errores[j] = 1-metrics(y_test,y_pred)[0] Metrics[j,:] = metrics(y_test, y_pred) j+=1 print("\nError de validación aplicando SFS: "+str(np.mean(Errores))+"+/-"+str(np.std(Errores))) print("\nEficiencia en validación aplicando SFS: "+str((1-np.mean(Errores))*100)+"%") print("\nTiempo total de ejecución: "+str(time.time()-tiempo_i)+" segundos.") MetricsMean = meanMetrics(Metrics) MetricsStd = stdMetrics(Metrics) printMetrics(MetricsMean) print("\nDesviaciones Estandard") printMetrics(MetricsStd) return sf def select_features_filter_percentage(classifier, percentage, X, Y): tiempo_i = time.time() Errores = np.ones(10) Metrics = np.zeros((10,5)) j = 0 kf = KFold(n_splits=10) filter_method = SelectPercentile(mutual_info_classif, percentile=percentage) filter_method.fit(X,Y) X_sf = filter_method.transform(X) for train_index, test_index in kf.split(X_sf): X_train, X_test = X_sf[train_index], X_sf[test_index] y_train, y_test = Y[train_index], Y[test_index] classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) Metrics[j,:] = metrics(y_test, y_pred) Errores[j] = 1-metrics(y_test,y_pred)[0] j+=1 print("\nError de validación aplicando at "+str(percentage)+"%: "+str(np.mean(Errores))+"+/-"+str(np.std(Errores))) print("\nEficiencia en validación aplicando at "+str(percentage)+"%: "+str((1-np.mean(Errores))*100)+"%") print("\nTiempo total de ejecución: "+str(time.time()-tiempo_i)+" segundos.") MetricsMean = meanMetrics(Metrics) MetricsStd = stdMetrics(Metrics) printMetrics(MetricsMean) print("\nDesviaciones Estandard") printMetrics(MetricsStd) return filter_method
StarcoderdataPython
1602325
<filename>bazel/rules/library_rule.bzl # Copyright 2018-present Open Networking Foundation # SPDX-License-Identifier: Apache-2.0 def stratum_cc_library(name, deps = None, srcs = None, data = None, hdrs = None, copts = None, defines = None, include_prefix = None, includes = None, strip_include_prefix = None, testonly = None, textual_hdrs = None, visibility = None, arches = None): if arches and arches != ["x86"] and arches != ["host"]: fail("Stratum does not currently support non-x86 architectures") alwayslink = 0 if srcs: if type(srcs) == "select": alwayslink = 1 elif [s for s in srcs if not s.endswith(".h")]: alwayslink = 1 native.cc_library( name = name, deps = deps, srcs = srcs, data = data, hdrs = hdrs, alwayslink = alwayslink, copts = copts, defines = defines, include_prefix = include_prefix, includes = includes, strip_include_prefix = strip_include_prefix, testonly = testonly, textual_hdrs = textual_hdrs, visibility = visibility, )
StarcoderdataPython
8105984
#!/usr/bin/python3 class mppt(object): def __init__(self): self.__panelVoltage = 0 self.__panelCurrent = 0 self.__batteryVoltage = 48 self.__batteryInputCurrent = 0 @property def panelVoltage(self): return self.__panelVoltage @property def panelCurrent(self): return self.__panelCurrent @property def batteryVoltage(self): return self.__batteryVoltage @property def batteryInputCurrent(self): return self.__batteryInputCurrent
StarcoderdataPython
3520629
import matplotlib.pyplot as plt import matplotlib.lines as mlines import math import numpy as np from Simple_FISs import split_vector_given def get_plot_points(fuzzy_system): def to_x_y_vectors(centers, widths): x_values = [] y_values = [] for center, width in zip(centers, widths): x_values.extend([[center - width, center, center + width]]) y_values.extend([[0, 1, 0]]) return x_values, y_values ga_vector = fuzzy_system[-1] if fuzzy_system[0] == '2_1': split_2_1_vector = split_vector_given(fuzzy_system[3], fuzzy_system[4], 0, ga_vector, 3) centers_1, widths_1, centers_2, widths_2, centers_3, widths_3, output_centers, output_widths, rules = split_2_1_vector elif fuzzy_system[0] == '3_1': split_3_1_vector = split_vector_given(fuzzy_system[4], fuzzy_system[5], fuzzy_system[6], ga_vector, 3) centers_1, widths_1, centers_2, widths_2, centers_3, widths_3, output_centers, output_widths, rules = split_3_1_vector x_values_1, y_values_1 = to_x_y_vectors(centers_1, widths_1) x_values_2, y_values_2 = to_x_y_vectors(centers_2, widths_2) x_values_3, y_values_3 = to_x_y_vectors(centers_3, widths_3) x_values_out, y_values_out = to_x_y_vectors(output_centers, output_widths) return x_values_1, y_values_1, x_values_2, y_values_2, x_values_3, y_values_3, x_values_out, y_values_out, rules def view_layer_mfs(fuzzy_systems_layer, layer_num): """ Populate a figure with all membership function graphs from that layer""" def populate_subplot(n_rows, n_cols, i1, i2, x_values, y_values, title, two_one=True): """ Add functions to single subplot""" def add_formatted_title(title): """ Move title to two lines if too long and replace '_' with ' ' """ title = title.replace("_", " ") title = list(title) if len(title) > 20: title_first = title[:20] i = 0 save_i_to_insert = 0 for char in title_first[::-1]: if char == ' ': save_i_to_insert = i i += 1 title.insert(save_i_to_insert, '\n') return "".join(title) colors = ['g', 'c', 'b', 'm', 'k'] the_subplot = plt.subplot2grid((n_rows, n_cols), (i1, i2)) if two_one and i2 == 3: the_subplot = plt.subplot2grid((n_rows, n_cols), (i1, 2), colspan=2) for x_value, y_value, color in zip(x_values, y_values, colors): the_subplot.plot(x_value, y_value, color) the_subplot.set_title(add_formatted_title(title), fontsize=9.0) the_subplot.set_ylim([0, 1.1]) n_row = len(fuzzy_systems_layer) n_col = 4 fig = plt.figure(figsize=(n_col * 3, n_row * 2.5)) fig.suptitle(('Layer ' + str(layer_num) + ' Membership Functions')) fig.subplots_adjust(left=.05, right=.95, top=.8, hspace=0.7) low_patch = mlines.Line2D([], [], color='g', markersize=15, label='low') med_patch = mlines.Line2D([], [], color='c', markersize=15, label='medium') hgh_patch = mlines.Line2D([], [], color='b', markersize=15, label='high') i = 0 layer_rule_tables = [] for fuzzy_system in fuzzy_systems_layer: x_values_1, y_values_1, x_values_2, y_values_2, x_values_3, y_values_3, x_values_out, y_values_out, rules = get_plot_points( fuzzy_system) if fuzzy_system[0] == '2_1': layer_rule_tables.append(display_rules_single_fis(rules, fuzzy_system)) populate_subplot(n_row, n_col, i, 0, x_values_1, y_values_1, fuzzy_system[1]) populate_subplot(n_row, n_col, i, 1, x_values_2, y_values_2, fuzzy_system[2]) if x_values_3: populate_subplot(n_row, n_col, i, 2, x_values_3, y_values_3, fuzzy_system[3]) two_one_fuzzy_system = False else: two_one_fuzzy_system = True populate_subplot(n_row, n_col, i, 3, x_values_out, y_values_out, 'Layer output', two_one=two_one_fuzzy_system) if i == 0: plt.legend(handles=[low_patch, med_patch, hgh_patch], bbox_to_anchor=(0., 1.02, 1., .102), loc='lower center', ncol=3, borderaxespad=1.5) #plt.legend(handles=[low_patch, med_patch, hgh_patch], loc='upper left') i += 1 return layer_rule_tables # Now for the rules - still needs a good amount of work def display_rules_single_fis(rules, fuzzy_system_descriptors): number_of_mfs_in1 = fuzzy_system_descriptors[3] number_of_mfs_in2 = fuzzy_system_descriptors[4] basic_descriptors = ['low', 'medium', 'high'] #{'3': , '5': ['very low', 'low', 'medium', 'high', 'very high']} rule_strings = [] for rule in rules: try: rule = basic_descriptors[int(math.ceil(rule) - 1)] except IndexError: rule = 'high' rule_strings.append(rule) rule_table = [['mf2: low', 'mf2: medium', 'mf2: high']] loc_list = 0 for i1 in np.arange(0, number_of_mfs_in1): rule_table.append(rule_strings[loc_list: loc_list+number_of_mfs_in2]) loc_list += number_of_mfs_in2 return rule_table # # number_mfs_inord = [['2_1', 'mobility_retail_and_recreation', 'mobility_grocery_and_pharmacy', 3, 3, chromosome[0: 27]], # ['2_1', 'mobility_parks', 'mobility_residential', 3, 3, chromosome[27: 54]], # ['2_1', 'mobility_transit_stations', 'mobility_workplaces', 3, 3, chromosome[54: 81]], # ['3_1', 'lam 1', 'lam 2', 'lam 3', 3, 3, 3, chromosome[81: 132]], # ['2_1', 'lam 4', 'new_confirmed cases', 3, 5, chromosome[132: 169]]] # # # Layer 1 # layer_1_rules = view_layer_mfs(number_mfs_inord[0: 3], 1) # plt.show() # # # Layer 2 # view_layer_mfs(number_mfs_inord[3: 4], 2) # plt.show() # # # Layer 3 # view_layer_mfs(number_mfs_inord[4: 5], 3) # plt.show()
StarcoderdataPython
3220315
from enum import IntFlag from typing import cast, List, Tuple, Iterable, TextIO from itertools import takewhile from qcodes import VisaInstrument, InstrumentChannel, ChannelList from qcodes.utils.validators import Enum, Numbers from qcodes.instrument.group_parameter import GroupParameter, Group def read_curve_file(curve_file: TextIO) -> dict: """ Read a curve file with extension .330 The file format of this file is shown in test_lakeshore_file_parser.py in the test module The output is a dictionary with keys: "metadata" and "data". The metadata dictionary contains the first n lines of the curve file which are in the format "item: value". The data dictionary contains the actual curve data. """ def split_data_line(line: str, parser: type = str) -> List[str]: return [parser(i) for i in line.split(" ") if i != ""] def strip(strings: Iterable[str]) -> Tuple: return tuple(s.strip() for s in strings) lines = iter(curve_file.readlines()) # Meta data lines contain a colon metadata_lines = takewhile(lambda s: ":" in s, lines) # Data from the file is collected in the following dict file_data = dict() # Capture meta data parsed_lines = [strip(line.split(":")) for line in metadata_lines] file_data["metadata"] = {key: value for key, value in parsed_lines} # After meta data we have a data header header_items = strip(split_data_line(next(lines))) # After that we have the curve data data = [ split_data_line(line, parser=float) for line in lines if line.strip() != "" ] file_data["data"] = dict( zip(header_items, zip(*data)) ) return file_data def get_sanitize_data(file_data: dict) -> dict: """ Data as found in the curve files are slightly different then the dictionary as expected by the 'upload_curve' method of the driver """ data_dict = dict(file_data["data"]) # We do not need the index column del data_dict["No."] # Rename the 'Units' column to the appropriate name # Look up under the 'Data Format' entry to find what units we have data_format = file_data['metadata']['Data Format'] # This is a string in the form '4 (Log Ohms/Kelvin)' data_format_int = int(data_format.split()[0]) correct_name = Model_325_Curve.valid_sensor_units[data_format_int - 1] # Rename the column data_dict[correct_name] = data_dict["Units"] del data_dict["Units"] return data_dict class Status(IntFlag): sensor_units_overrang = 128 sensor_units_zero = 64 temp_overrange = 32 temp_underrange = 16 invalid_reading = 1 class Model_325_Curve(InstrumentChannel): valid_sensor_units = ["mV", "V", "Ohm", "log Ohm"] temperature_key = "Temperature (K)" def __init__(self, parent: 'Model_325', index: int) -> None: self._index = index name = f"curve_{index}" super().__init__(parent, name) self.add_parameter( "serial_number", parameter_class=GroupParameter ) self.add_parameter( "format", val_mapping={ f"{unt}/K": i+1 for i, unt in enumerate(self.valid_sensor_units) }, parameter_class=GroupParameter ) self.add_parameter( "limit_value", parameter_class=GroupParameter ) self.add_parameter( "coefficient", val_mapping={ "negative": 1, "positive": 2 }, parameter_class=GroupParameter ) self.add_parameter( "curve_name", parameter_class=GroupParameter ) Group( [ self.curve_name, self.serial_number, self.format, self.limit_value, self.coefficient ], set_cmd=f"CRVHDR {self._index}, {{curve_name}}, " f"{{serial_number}}, {{format}}, {{limit_value}}, " f"{{coefficient}}", get_cmd=f"CRVHDR? {self._index}" ) def get_data(self) -> dict: curve = [ float(a) for point_index in range(1, 200) for a in self.ask(f"CRVPT? {self._index}, {point_index}").split(",") ] d = {self.temperature_key: curve[1::2]} sensor_unit = self.format().split("/")[0] d[sensor_unit] = curve[::2] return d @classmethod def validate_datadict(cls, data_dict: dict) -> str: """ A data dict has two keys, one of which is 'Temperature (K)'. The other contains the units in which the curve is defined and must be one of: 'mV', 'V', 'Ohm' or 'log Ohm' This method validates this and returns the sensor unit encountered in the data dict """ if cls.temperature_key not in data_dict: raise ValueError(f"At least {cls.temperature_key} needed in the " f"data dictionary") sensor_units = [i for i in data_dict.keys() if i != cls.temperature_key] if len(sensor_units) != 1: raise ValueError( "Data dictionary should have one other key, other then " "'Temperature (K)'" ) sensor_unit = sensor_units[0] if sensor_unit not in cls.valid_sensor_units: raise ValueError( f"Sensor unit {sensor_unit} invalid. This needs to be one of " f"{', '.join(cls.valid_sensor_units)}" ) data_size = len(data_dict[cls.temperature_key]) if data_size != len(data_dict[sensor_unit]) or data_size > 200: raise ValueError("The length of the temperature axis should be " "the same as the length of the sensor axis and " "should not exceed 200 in size") return sensor_unit def set_data(self, data_dict: dict, sensor_unit: str = None) -> None: """ Set the curve data according to the values found the the dictionary. Args: data_dict (dict): See `validate_datadict` to see the format of this dictionary sensor_unit (str): If None, the data dict is validated and the units are extracted. """ if sensor_unit is None: sensor_unit = self.validate_datadict(data_dict) temperature_values = data_dict[self.temperature_key] sensor_values = data_dict[sensor_unit] for value_index, (temperature_value, sensor_value) in \ enumerate(zip(temperature_values, sensor_values)): cmd_str = f"CRVPT {self._index}, {value_index + 1}, " \ f"{sensor_value:3.3f}, {temperature_value:3.3f}" self.write(cmd_str) class Model_325_Sensor(InstrumentChannel): """ A single sensor of a Lakeshore 325. Args: parent (Model_325): The instrument this heater belongs to name (str) inp (str): Either "A" or "B" """ def __init__(self, parent: 'Model_325', name: str, inp: str) -> None: if inp not in ["A", "B"]: raise ValueError("Please either specify input 'A' or 'B'") super().__init__(parent, name) self._input = inp self.add_parameter( 'temperature', get_cmd='KRDG? {}'.format(self._input), get_parser=float, label='Temperature', unit='K' ) self.add_parameter( 'status', get_cmd='RDGST? {}'.format(self._input), get_parser=lambda status: self.decode_sensor_status(int(status)), label='Sensor_Status' ) self.add_parameter( "type", val_mapping={ "Silicon diode": 0, "GaAlAs diode": 1, "100 Ohm platinum/250": 2, "100 Ohm platinum/500": 3, "1000 Ohm platinum": 4, "NTC RTD": 5, "Thermocouple 25mV": 6, "Thermocouple 50 mV": 7, "2.5 V, 1 mA": 8, "7.5 V, 1 mA": 9 }, parameter_class=GroupParameter ) self.add_parameter( "compensation", vals=Enum(0, 1), parameter_class=GroupParameter ) Group( [self.type, self.compensation], set_cmd=f"INTYPE {self._input}, {{type}}, {{compensation}}", get_cmd=f"INTYPE? {self._input}" ) self.add_parameter( "curve_index", set_cmd=f"INCRV {self._input}, {{}}", get_cmd=f"INCRV? {self._input}", get_parser=int, vals=Numbers(min_value=1, max_value=35) ) @staticmethod def decode_sensor_status(sum_of_codes: int) -> str: total_status = Status(sum_of_codes) if sum_of_codes == 0: return 'OK' status_messages = [st.name.replace('_', ' ') for st in Status if st in total_status] return ", ".join(status_messages) @property def curve(self) -> Model_325_Curve: parent = cast(Model_325, self.parent) return Model_325_Curve(parent, self.curve_index()) class Model_325_Heater(InstrumentChannel): """ Heater control for the Lakeshore 325. Args: parent (Model_325): The instrument this heater belongs to name (str) loop (int): Either 1 or 2 """ def __init__(self, parent: 'Model_325', name: str, loop: int) -> None: if loop not in [1, 2]: raise ValueError("Please either specify loop 1 or 2") super().__init__(parent, name) self._loop = loop self.add_parameter( "control_mode", get_cmd=f"CMODE? {self._loop}", set_cmd=f"CMODE {self._loop},{{}}", val_mapping={ "Manual PID": "1", "Zone": "2", "Open Loop": "3", "AutoTune PID": "4", "AutoTune PI": "5", "AutoTune P": "6" } ) self.add_parameter( "input_channel", vals=Enum("A", "B"), parameter_class=GroupParameter ) self.add_parameter( "unit", val_mapping={ "Kelvin": "1", "Celsius": "2", "Sensor Units": "3" }, parameter_class=GroupParameter ) self.add_parameter( 'powerup_enable', val_mapping={True: 1, False: 0}, parameter_class=GroupParameter ) self.add_parameter( "output_metric", val_mapping={ "current": "1", "power": "2", }, parameter_class=GroupParameter ) Group( [self.input_channel, self.unit, self.powerup_enable, self.output_metric], set_cmd=f"CSET {self._loop}, {{input_channel}}, {{unit}}, " f"{{powerup_enable}}, {{output_metric}}", get_cmd=f"CSET? {self._loop}" ) self.add_parameter( 'P', vals=Numbers(0, 1000), get_parser=float, parameter_class=GroupParameter ) self.add_parameter( 'I', vals=Numbers(0, 1000), get_parser=float, parameter_class=GroupParameter ) self.add_parameter( 'D', vals=Numbers(0, 1000), get_parser=float, parameter_class=GroupParameter ) Group( [self.P, self.I, self.D], set_cmd=f'PID {self._loop}, {{P}}, {{I}}, {{D}}', get_cmd=f'PID? {self._loop}' ) if self._loop == 1: valid_output_ranges = Enum(0, 1, 2) else: valid_output_ranges = Enum(0, 1) self.add_parameter( 'output_range', vals=valid_output_ranges, set_cmd=f'RANGE {self._loop}, {{}}', get_cmd=f'RANGE? {self._loop}', val_mapping={ "Off": '0', "Low (2.5W)": '1', "High (25W)": '2' } ) self.add_parameter( 'setpoint', vals=Numbers(0, 400), get_parser=float, set_cmd=f'SETP {self._loop}, {{}}', get_cmd=f'SETP? {self._loop}' ) self.add_parameter( "ramp_state", vals=Enum(0, 1), parameter_class=GroupParameter ) self.add_parameter( "ramp_rate", vals=Numbers(0, 100 / 60 * 1E3), unit="mK/s", parameter_class=GroupParameter, get_parser=lambda v: float(v) / 60 * 1E3, # We get values in K/min, set_parser=lambda v: v * 60 * 1E-3 # Convert to K/min ) Group( [self.ramp_state, self.ramp_rate], set_cmd=f"RAMP {self._loop}, {{ramp_state}}, {{ramp_rate}}", get_cmd=f"RAMP? {self._loop}" ) self.add_parameter( "is_ramping", get_cmd=f"RAMPST? {self._loop}" ) self.add_parameter( "resistance", get_cmd=f"HTRRES? {self._loop}", set_cmd=f"HTRRES {self._loop}, {{}}", val_mapping={ 25: 1, 50: 2, }, label='Resistance', unit="Ohm" ) self.add_parameter( "heater_output", get_cmd=f"HTR? {self._loop}", get_parser=float, label='Heater Output', unit="%" ) class Model_325(VisaInstrument): """ Lakeshore Model 325 Temperature Controller Driver """ def __init__(self, name: str, address: str, **kwargs) -> None: super().__init__(name, address, terminator="\r\n", **kwargs) sensors = ChannelList( self, "sensor", Model_325_Sensor, snapshotable=False) for inp in ['A', 'B']: sensor = Model_325_Sensor(self, 'sensor_{}'.format(inp), inp) sensors.append(sensor) self.add_submodule('sensor_{}'.format(inp), sensor) sensors.lock() self.add_submodule("sensor", sensors) heaters = ChannelList( self, "heater", Model_325_Heater, snapshotable=False) for loop in [1, 2]: heater = Model_325_Heater(self, 'heater_{}'.format(loop), loop) heaters.append(heater) self.add_submodule('heater_{}'.format(loop), heater) heaters.lock() self.add_submodule("heater", heaters) curves = ChannelList( self, "curve", Model_325_Curve, snapshotable=False ) for curve_index in range(1, 35): curve = Model_325_Curve(self, curve_index) curves.append(curve) self.add_submodule("curve", curves) self.connect_message() def upload_curve( self, index: int, name: str, serial_number: str, data_dict: dict ) -> None: """ Upload a curve to the given index Args: index (int): The index to upload the curve to. We can only use indices reserved for user defined curves, 21-35 name (str) serial_number (str) data_dict (dict): A dictionary containing the curve data """ if index not in range(21, 36): raise ValueError("index value should be between 21 and 35") sensor_unit = Model_325_Curve.validate_datadict(data_dict) curve = self.curve[index - 1] curve.curve_name(name) curve.serial_number(serial_number) curve.format(f"{sensor_unit}/K") curve.set_data(data_dict, sensor_unit=sensor_unit) def upload_curve_from_file(self, index: int, file_path: str) -> None: """ Upload a curve from a curve file. Note that we only support curve files with extension .330 """ if not file_path.endswith(".330"): raise ValueError("Only curve files with extension .330 are supported") with open(file_path, "r") as curve_file: file_data = read_curve_file(curve_file) data_dict = get_sanitize_data(file_data) name = file_data["metadata"]["Sensor Model"] serial_number = file_data["metadata"]["Serial Number"] self.upload_curve(index, name, serial_number, data_dict)
StarcoderdataPython
9641261
<filename>EmergencyServices/migrations/0004_unsafeareas.py # Generated by Django 3.1.1 on 2020-12-07 19:10 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import uuid class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('EmergencyServices', '0003_auto_20201121_1631'), ] operations = [ migrations.CreateModel( name='UnsafeAreas', fields=[ ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('city', models.CharField(blank=True, max_length=250, null=True)), ('state', models.CharField(blank=True, max_length=250, null=True)), ('flag', models.IntegerField(blank=True, default=0, null=True)), ('time', models.DateTimeField(auto_now=True)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
StarcoderdataPython