id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
382508
<reponame>x-web/social-network-user-influence-analysis #!/usr/bin/python # coding: utf-8 # nlp process of twitter data using nltk package __author__ = "x-web" from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem.lancaster import LancasterStemmer import re inputf = open('tweets.txt', 'r') outputf = open('tweets_segment.txt', 'w') # record every valid tweet's id tidf = open('tid.txt', 'w') english_stopwords = stopwords.words('english') english_punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', "#", '$', '%'] st = LancasterStemmer() reword = re.compile(r'^[\w]+$', re.I) noiseword = ['http', 'rt'] count = 1 def isWord(word): mword = reword.match(word) if mword and word not in noiseword: return True else: return False for tweet in inputf: # 小写化 tweet_lower = [word for word in tweet.lower().split()] # 分词 tweet_tokenized = [word.lower() for word in word_tokenize(tweet.decode("utf-8"))] # 去停用词 tweet_filtered_stopwords = [word for word in tweet_tokenized if not word in english_stopwords] # 去标点符号 tweet_filtered = [word for word in tweet_filtered_stopwords if not word in english_punctuations] # 词干化 tweet_stemmed = [st.stem(word) for word in tweet_filtered] # 抽取有意义的单词 tweet_filtered_nword = [word for word in tweet_stemmed if isWord(word)] result = " ".join(tweet_filtered_nword) if result != '': outputf.write(result + "\n") tidf.write(str(count) + "\n") print count count += 1 inputf.close(); outputf.close(); tidf.close(); print 'Done'
StarcoderdataPython
12836350
from . import submodule # noqa: F401
StarcoderdataPython
9796121
a=[] n=int(input("size ??")) for i in range(n): data=int(input("enter the data...")) a.append(data) print(a) a.sort() print("after sorting..",a)
StarcoderdataPython
6413273
""" 03: Fitting Algorithm ===================== A step-by-step overview of the algorithm for parameterizing neural power spectra. """ ################################################################################################### # Algorithmic Description # ----------------------- # # In this tutorial we will step through how the power spectrum model is fit. # # Note that this notebook is for demonstrative purposes, and does not represent # recommended usage of how to fit power spectrum models. # # Broadly, the steps in the algorithm are: # # - 1) An initial fit of the aperiodic component is computed from the power spectrum # - 2) This aperiodic fit is subtracted from the power spectrum, creating a flattened spectrum # - 3) An iterative process identifies peaks in this flattened spectrum # - 4) A full peak fit is re-fit from all of the identified peak candidates # - 5) The peak fit is subtracted from the original power spectrum, # creating a peak-removed power spectrum # - 6) A final fit of the aperiodic component is taken of the peak-removed power spectrum # - 7) The full model is reconstructed from the combination of the aperiodic and peak fits, # and goodness of fit metrics are calculated. # ################################################################################################### # sphinx_gallery_thumbnail_number = 4 # General imports import matplotlib.pyplot as plt # Import the FOOOF object from fooof import FOOOF # Import some internal functions # These are used here to demonstrate the algorithm # You do not need to import these functions for standard usage of the module from fooof.sim.gen import gen_aperiodic from fooof.plts.spectra import plot_spectra from fooof.plts.annotate import plot_annotated_peak_search # Import a utility to download and load example data from fooof.utils.download import load_fooof_data ################################################################################################### # Set whether to plot in log-log space plt_log = False ################################################################################################### # Load example data files needed for this example freqs = load_fooof_data('freqs_2.npy', folder='data') spectrum = load_fooof_data('spectrum_2.npy', folder='data') ################################################################################################### # Initialize a FOOOF object, with some settings # These settings will be more fully described later in the tutorials fm = FOOOF(peak_width_limits=[1, 8], max_n_peaks=6, min_peak_height=0.15) ################################################################################################### # # Note that data can be added to a FOOOF object independent of fitting the model, using the # :meth:`~fooof.FOOOF.add_data` method. FOOOF objects can also be used to plot data, # prior to fitting any models. # ################################################################################################### # Add data to the object fm.add_data(freqs, spectrum, [3, 40]) ################################################################################################### # Plot the power spectrum fm.plot(plt_log) ################################################################################################### # # The FOOOF object stores most of the intermediate steps internally. # # For this notebook, we will first fit the full model, as normal, but then step through, # and visualize each step the algorithm took to come to that final fit. # ################################################################################################### # Fit the power spectrum model fm.fit(freqs, spectrum, [3, 40]) ################################################################################################### # Step 1: Initial Aperiodic Fit # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # # We start by taking an initial aperiodic fit. This goal of this fit is to get an initial # fit that is good enough to get started with the fitting process. # ################################################################################################### # Do an initial aperiodic fit - a robust fit, that excludes outliers # This recreates an initial fit that isn't ultimately stored in the FOOOF object init_ap_fit = gen_aperiodic(fm.freqs, fm._robust_ap_fit(fm.freqs, fm.power_spectrum)) # Plot the initial aperiodic fit _, ax = plt.subplots(figsize=(12, 10)) plot_spectra(fm.freqs, fm.power_spectrum, plt_log, label='Original Power Spectrum', color='black', ax=ax) plot_spectra(fm.freqs, init_ap_fit, plt_log, label='Initial Aperiodic Fit', color='blue', alpha=0.5, linestyle='dashed', ax=ax) ################################################################################################### # Step 2: Flatten the Spectrum # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # # The initial fit is then used to create a flattened spectrum. # # The initial aperiodic fit is subtracted out from the original data, leaving a flattened # version of the data which no longer contains the aperiodic component. # ################################################################################################### # Recompute the flattened spectrum using the initial aperiodic fit init_flat_spec = fm.power_spectrum - init_ap_fit # Plot the flattened the power spectrum plot_spectra(fm.freqs, init_flat_spec, plt_log, label='Flattened Spectrum', color='black') ################################################################################################### # Step 3: Detect Peaks # ^^^^^^^^^^^^^^^^^^^^ # # The flattened spectrum is then used to detect peaks. We can better isolate # peaks in the data, as the aperiodic activity has been removed. # # The fitting algorithm uses an iterative procedure to find peaks in the flattened spectrum. # # For each iteration: # # - The maximum point of the flattened spectrum is found # # - If this point fails to pass the relative or absolute height threshold, # the procedure halts # - A Gaussian is fit around this maximum point # - This 'guess' Gaussian is then subtracted from the flatted spectrum # - The procedure continues to a new iteration with the new version of the flattened spectrum, # unless `max_n_peaks` has been reached # ################################################################################################### # Plot the iterative approach to finding peaks from the flattened spectrum plot_annotated_peak_search(fm) ################################################################################################### # Step 4: Create Full Peak Fit # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # # Once the iterative procedure has halted and the peaks have been identified in the # flattened spectrum, the set of identified 'guess' peaks, are then re-fit, all together. # This creates the full peak fit of the data. # ################################################################################################### # Plot the peak fit: created by re-fitting all of the candidate peaks together plot_spectra(fm.freqs, fm._peak_fit, plt_log, color='green', label='Final Periodic Fit') ################################################################################################### # Step 5: Create a Peak-Removed Spectrum # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # # Now that the peak component of the fit is completed and available, this fit is then # used in order to try and isolate a better aperiodic fit. # # To do so, the peak fit is removed from the original power spectrum, # leaving an 'aperiodic-only' spectrum for re-fitting. # ################################################################################################### # Plot the peak removed power spectrum, created by removing peak fit from original spectrum plot_spectra(fm.freqs, fm._spectrum_peak_rm, plt_log, label='Peak Removed Spectrum', color='black') ################################################################################################### # Step 6: Re-fit the Aperiodic Component # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # # The initial aperiodic component fit we made was a robust fit approach that was # used to get the fitting process started. # # With the peak-removed spectrum, we can now re-fit the aperiodic component, to # re-estimate a better fit, without the peaks getting in the way. # ################################################################################################### # Plot the final aperiodic fit, calculated on the peak removed power spectrum _, ax = plt.subplots(figsize=(12, 10)) plot_spectra(fm.freqs, fm._spectrum_peak_rm, plt_log, label='Peak Removed Spectrum', color='black', ax=ax) plot_spectra(fm.freqs, fm._ap_fit, plt_log, label='Final Aperiodic Fit', color='blue', alpha=0.5, linestyle='dashed', ax=ax) ################################################################################################### # Step 7: Combine the Full Model Fit # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # # Now that we have the final aperiodic fit, we can combine the aperiodic components # to create the full model fit. # # With this full model fit, we can also calculate the goodness of fit metrics, # including the error of the fit and the R-squared of the fit, by comparing the # full model fit to the original data. # ################################################################################################### # Plot full model, created by combining the peak and aperiodic fits plot_spectra(fm.freqs, fm.fooofed_spectrum_, plt_log, label='Full Model', color='red') ################################################################################################### # # The last stage is to calculate the goodness of fit metrics, meaning the fit error & R^2. # # At the end of the fitting process, the model object also organizes parameters, such as # updating gaussian parameters to be peak parameters, # # These results are part of what are stored, and printed, as the model results. # ################################################################################################### # Print out the model results fm.print_results() ################################################################################################### # # Altogether, the full model fit is now available, and can be plotted. # ################################################################################################### # Plot the full model fit of the power spectrum # The final fit (red), and aperiodic fit (blue), are the same as we plotted above fm.plot(plt_log) ################################################################################################### # Addendum: Data & Model Component Attributes # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # # As you may have noticed through this tutorial, the :class:`~fooof.FOOOF` object keeps # track of some versions of the original data as well as individual model components fits, # as well as the final model fit, the ultimate outcome of the fitting procedure. # # These attributes in the FOOOF object are kept at the end of the fitting procedure. # Though they are primarily computed for internal use (hence being considered 'private' # attributes, with the leading underscore), they are accessible and potentially # useful for some analyses, and so are briefly described here. # # Stored model components: # # - Aperiodic Component: ``_ap_fit`` # # - This is the aperiodic-only fit of the data. # - It is computed by generating a reconstruction of the measured aperiodic parameters # # - Periodic Component: ``_peak_fit`` # # - This is the periodic-only (or peak) fit of the data. # - It is computed by generating a reconstruction of the measured periodic (peak) parameters # # Stored data attributes: # # - Flattened Spectrum: ``_spectrum_flat`` # # - The original data, with the aperiodic component removed # - This is computed as ``power_spectrum`` - ``_ap_fit`` # # - Peak Removed Spectrum: ``_spectrum_peak_rm`` # # - The original data, with the periodic component (peaks) removed # - This is computed as ``power_spectrum`` - ``_peak_fit`` # ################################################################################################### # Conclusion # ---------- # # In this tutorial we have stepped through the parameterization algorithm for fitting # power spectrum models. # # Next, we will continue to explore the FOOOF object by properly introducing and more # fully describing the settings for the algorithm. #
StarcoderdataPython
1801679
import sys import pygame import random from settings import Settings from game_stats import GameStats from wizard import Wizard from info import Info from item import Item from inventory import Inventory from inventory_window import InventoryWindow class WizardsBroth: """Overal class to manage game assist and behavior""" def __init__(self): pygame.init() self.settings = Settings(self) self.screen = pygame.display.set_mode((0, 0), pygame.FULLSCREEN) self.settings.screen_width = self.screen.get_rect().width self.settings.screen_height = self.screen.get_rect().height pygame.display.set_caption(self.settings.game_name) self.wizard = Wizard(self) self.inventory = Inventory(self) self.inventory_window = InventoryWindow(self) # Create an instance to game statistics self.stats = GameStats(self) self.info = Info(self) self.items = pygame.sprite.Group() self._create_items() # Set the background color. self.bg_color=(150,230,150) def _create_items(self): count = 3 #random.randint(1,3) print(f"count {count}") for i in range(count): item = Item(self, random.randint(0,2)) item_width, item_height = item.rect.size item.x = random.randint(0,self.settings.screen_width - 20) item.y = random.randint(0,self.settings.screen_height - 20 ) self.items.add(item) def _reset_and_start_game(self): self.stats.game_active = True self.inventory.items = [] self.inventory_window.prep_inventory() def _pick_up_item(self): if self.stats.can_pick_up: print("voidaan nostaa") else: print("Täällä ei ole mitään kerättävää") def _check_events(self): # Watch for keyboard and mouse events. for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() elif event.type == pygame.KEYDOWN: self._check_keydown_events(event) elif event.type == pygame.KEYUP: self._check_keyup_events(event) def _check_keyup_events(self, event): if event.key == pygame.K_RIGHT: self.wizard.moving_right = False elif event.key == pygame.K_LEFT: self.wizard.moving_left = False elif event.key == pygame.K_UP: self.wizard.moving_up = False elif event.key == pygame.K_DOWN: self.wizard.moving_down = False def _check_keydown_events(self, event): """Respond to keypresses.""" if event.key == pygame.K_RIGHT: self.wizard.moving_right = True elif event.key == pygame.K_LEFT: self.wizard.moving_left = True elif event.key == pygame.K_q: sys.exit() elif event.key == pygame.K_UP: self.wizard.moving_up = True elif event.key == pygame.K_DOWN: self.wizard.moving_down = True elif event.key == pygame.K_SPACE: self._pick_up_item() elif event.key == pygame.K_o: self.stats.more_info = True elif event.key == pygame.K_ESCAPE: self.stats.more_info = False self.stats.show_inventory = False elif event.key == pygame.K_p: if not self.stats.game_active: self._reset_and_start_game() elif event.key == pygame.K_t: self.stats.show_inventory = True def __update_screen(self): # Redraw the screen during each pass through the loop. self.screen.fill(self.settings.bg_color) self.wizard.blitme() self.items.draw(self.screen) if self.stats.show_inventory: self.inventory_window.show_inventory() if not self.stats.game_active and not self.stats.more_info: self.info.show_message(self.settings.start_message) if self.stats.more_info: self.info.show_message(self.settings.instructions) # Make the most recently drawn screen visible. pygame.display.flip() def _check_can_pick(self): if pygame.sprite.spritecollideany(self.wizard, self.items): self.stats.can_pick_up = True else: self.stats.can_pick_up = False def run_game(self): """Start the main loop for game.""" while True: self._check_events() if self.stats.game_active: self.wizard.update() self._check_can_pick() self.__update_screen() if __name__ == '__main__': ai = WizardsBroth() ai.run_game()
StarcoderdataPython
8145419
from bs4 import BeautifulSoup import requests from selenium import webdriver import time import json from selenium.webdriver.common.desired_capabilities import DesiredCapabilities import os import urllib.request from tqdm import tqdm import datetime caps = DesiredCapabilities.CHROME caps['goog:loggingPrefs'] = {'performance': 'ALL'} chrome_options = webdriver.ChromeOptions() chrome_options.add_argument("--mute-audio") driver = webdriver.Chrome(desired_capabilities=caps, options = chrome_options) page = "https://www.vlive.tv/channel/C1B7AF/board/5464" driver.get(page) for i in range(1, 60): driver.execute_script("window.scrollTo(0, document.body.scrollHeight);") time.sleep(1) html = driver.page_source soup = BeautifulSoup(html, 'html.parser') videos = soup.find_all('li', {'class': 'post_item--3Brrv'}) links = [] for video in videos: link = video.find('a', {'class': 'post_area--3dKbo'}).attrs['href'] links.append(link) print('# of videos found: ' + str(len(links))) # links.reverse() def process_browser_log_entry(entry): response = json.loads(entry['message'])['message'] return response for vlive in tqdm(links): attempts = 0 r = requests.get("https://vlive.tv"+vlive) get_request_soup = BeautifulSoup(r.text, 'html.parser') script = get_request_soup.find('script', {'type': 'text/javascript'}).text.replace('window.__PRELOADED_STATE__=', "").split(',function', 1)[0] video_obj = json.loads(script) video_id = str(video_obj['postDetail']['post']['officialVideo']['videoSeq']) title = video_obj['postDetail']['post']['title'] date = datetime.datetime.fromtimestamp(video_obj['postDetail']['post']['createdAt']/1000).strftime("%Y%m%d%H%M") print(date, video_id, title) video_path = "D:/izone/" + date + '_' + video_id driver.get("https://vlive.tv/video/"+video_id) time.sleep(5) video_html = driver.page_source while attempts < 5: #handles unexpected page load failures try: browser_log = driver.get_log('performance') events = [process_browser_log_entry(entry) for entry in browser_log] new_events = [] for event in events: try: if 'apis.naver.com/rmcnmv/rmcnmv/vod/play/v2.0' in event['params']['request']['url']: new_events.append(event) except: pass if not len(new_events) == 0: naver_link = new_events[0]['params']['request']['url'][0:177] naver_r = requests.get(naver_link).json() video_res = naver_r['videos']['list'] sorted_video_res = sorted(video_res, key = lambda k: k['encodingOption']['height']) video_link = sorted_video_res[-1]['source'] else: driver.refresh() attempts+=1 break except: driver.refresh() attempts+=1 video_attempts = 0 if os.path.exists(video_path): for roots, dirs, files in os.walk(video_path): if 'captions' in naver_r: #if the video has captions for language in naver_r['captions']['list']: code_and_type = language['language'] + '-' + language['type'] sub_link = language['source'] # if not any(code_and_type in i for i in dirs): if not os.path.exists(video_path + '/' + code_and_type + '/'): os.mkdir(video_path + '/' + code_and_type) urllib.request.urlretrieve(sub_link, video_path + '/' + code_and_type + '/' + code_and_type + ".vtt") print('Acquired ' + code_and_type + '.vtt') if not any('.mp4' in x for x in files): #no video while video_attempts < 5: try: urllib.request.urlretrieve(video_link, video_path + '/' + video_id + '.mp4') print('Acquired ' + video_id + '.mp4') break except: video_attempts += 1 pass if not 'title.txt' in files: #no title with open(video_path + '/' + 'title.txt', 'w', encoding = 'utf-8') as f: f.write(title) #top level dir break else: matching_id_dir = [x for x in os.listdir("D:/izone/") if video_id in x.split("_")[1]] if not len(matching_id_dir) == 0: matching_id_date = matching_id_dir[0].split("_")[0] if not matching_id_date == date: print('SAME VIDEO ID EXISTS, DIFFERENT DATE: ', date, video_id) print(matching_id_dir[0]) break os.mkdir(video_path) while video_attempts < 5: try: urllib.request.urlretrieve(video_link, video_path + '/' + video_id+'.mp4') print('Acquired ' + video_id + '.mp4') break except: video_attempts += 1 pass if 'captions' in naver_r: #if video has captions for language in naver_r['captions']['list']: code_and_type = language['language'] + '-' + language['type'] sub_link = language['source'] os.mkdir(video_path + '/' + code_and_type) urllib.request.urlretrieve(sub_link, video_path + '/' + code_and_type + '/' + code_and_type + ".vtt") print('Acquired ' + code_and_type + '.vtt') with open(video_path + '/' + 'title.txt', 'w', encoding = 'utf-8') as f: f.write(title)
StarcoderdataPython
5082175
from calculo import Mathik import pytest class Test_Bhaskara: @pytest.fixture def mat(self): return Mathik() # dados parametrizados testdata = [( 1, -2, 1, 1, 1, ''), ( 1, -5, 6, 2, 3, 2), (10, 10, 10, 0,'', ''), (10, 20, 10, 1, -1,'') ] @pytest.mark.parametrize('a , b, c , nraiz, x1, x2 ', testdata) # teste de Bhaskara def testa_Bhaskara(self, mat, a, b , c , nraiz, x1, x2 ): if nraiz == 0: assert mat.calcula_raiz(a, b, c) == (nraiz) elif nraiz == 1: assert mat.calcula_raiz(a, b, c) == (nraiz, x1) elif nraiz == 2: assert mat.calcula_raiz(a, b, c) == (nraiz, x1, x2) ## def testa_uma_raiz(self, b): # inserido b, recebe a fixture B ## # codigo repetido b ## assert b.calcula_raiz(1,-2,1) == (1, 1) ## ## def testa_duas_raizes(self, b): ## assert b.calcula_raiz(1,-5, 6) == (2, 3, 2) ## ## def testa_zero_raizes(self, b): ## assert b.calcula_raiz(10,10, 10) == (0) ## ## def testa_raiz_negativa(self, b): ## assert b.calcula_raiz(10,20, 10) == (1,-1) ###
StarcoderdataPython
9680364
import os import numpy as np from rho_factor.gen_rho import generate_rho_values as g gg = g.generate() gg.azi = np.linspace(0, 180, 13) gg.sza = np.linspace(0, 80, 21) gg.vza = np.linspace(0, 80, 17) gg.execute()
StarcoderdataPython
1893832
import json, os PATH_ABS = os.path.abspath('.') if os.environ.get('CONF_PATH') is None: CONF_PATH = "../../config" else: CONF_PATH = os.environ.get('CONF_PATH') PATH_CONF = os.path.join(PATH_ABS , CONF_PATH) with open(os.path.join(PATH_CONF, "abi.json")) as file: ABIS = json.load(file) with open(os.path.join(PATH_CONF, "address.json")) as file: ADRESSES = json.load(file)
StarcoderdataPython
3262480
<filename>lifted_hgp.py import numpy as np import ldpc.protograph as pt from bposd.css import css_code from bposd.stab import stab_code def I(n): return pt.identity(n) class lifted_hgp(css_code): def __init__(self,lift_parameter,a,b=None): ''' Generates the lifted hypergraph product of the protographs a and b ''' self.a=a self.a_m,self.a_n=self.a.shape if b is None: self.b=pt.copy(self.a) else: self.b=b self.b_m,self.b_n=self.b.shape self.hx1_proto=np.kron(self.a,I(self.b_n)) self.hx2_proto=np.kron(I(self.a_m),self.b.T) self.hx_proto=pt.hstack([self.hx1_proto,self.hx2_proto]) self.hz1_proto=np.kron(I(self.a_n),self.b) self.hz2_proto=np.kron(self.a.T,I(self.b_m)) self.hz_proto=pt.hstack([self.hz1_proto,self.hz2_proto]) self.lift_parameter=lift_parameter super().__init__(self.hx_proto.to_binary(lift_parameter),self.hz_proto.to_binary(lift_parameter)) @property def protograph(self): px=pt.vstack([pt.zeros(self.hz_proto.shape),self.hx_proto]) pz=pt.vstack([self.hz_proto,pt.zeros(self.hx_proto.shape)]) return pt.hstack([px,pz]) @property def hx1(self): return self.hx1_proto.to_binary(self.lift_parameter) @property def hx2(self): return self.hx2_proto.to_binary(self.lift_parameter) @property def hz1(self): return self.hz1_proto.to_binary(self.lift_parameter) @property def hz2(self): return self.hz2_proto.to_binary(self.lift_parameter) class bias_tailored_lifted_product(stab_code): def __init__(self,lift_parameter,a,b=None): lhgp=lifted_hgp(lift_parameter,a,b) #Hadamard rotation temp1=pt.hstack([pt.zeros(lhgp.hx1_proto.shape),lhgp.hz2_proto]) temp2=pt.hstack([lhgp.hx1_proto,pt.zeros(lhgp.hz2_proto.shape)]) self.hx_proto=pt.vstack([temp1,temp2]) temp1=pt.hstack([lhgp.hz1_proto,pt.zeros(lhgp.hx2_proto.shape)]) temp2=pt.hstack([pt.zeros(lhgp.hz1_proto.shape),lhgp.hx2_proto]) self.hz_proto=pt.vstack([temp1,temp2]) super().__init__(self.hx_proto.to_binary(lift_parameter),self.hz_proto.to_binary(lift_parameter)) @property def protograph(self): px=pt.vstack([pt.zeros(self.hz_proto.shape),self.hx_proto]) pz=pt.vstack([self.hz_proto,pt.zeros(self.hx_proto.shape)]) return pt.hstack([px,pz])
StarcoderdataPython
1926971
from typing import List, Tuple from sqlalchemy import desc, asc class TrainingDataManager(object): def __init__(self, table_type): self._table_type = table_type self._session = None def new_training_data(self) -> List[Tuple[bytes]]: return self._session.query(self._table_type.text).filter(self._table_type.trained == 0).all() def all_training_data(self, limit: int = None, order_by: str = None, order='desc') -> List[Tuple[bytes]]: query = self._session.query(self._table_type.text) if order_by and order == 'desc': query = query.order_by(desc(order_by)) elif order_by and order == 'asc': query = query.order_by(asc(order_by)) if limit: query = query.limit(limit) return query.all() def mark_trained(self): self._session.execute('UPDATE ' + self._table_type.__tablename__ + ' SET TRAINED = 1') self._session.commit() def mark_untrained(self): self._session.execute('UPDATE ' + self._table_type.__tablename__ + ' SET TRAINED = 0') self._session.commit() def commit(self): self._session.commit() def store(self, data): pass
StarcoderdataPython
6581078
<filename>module/monsters.py<gh_stars>1-10 import json import random from module import db import copy with open('../assets/monsters.json', encoding='utf-8') as f: monsters = json.load(f) def init(): global monsters if all(i.isdecimal() for i in monsters.keys()): return for m_key in monsters["monsters"].keys(): for i, v in enumerate(monsters["monsters"][m_key]): monster = monsters["default"].copy() monster.update(v) monsters["monsters"][m_key][i] = monster monsters = monsters["monsters"] def get(boss_lv=1, boss_id=None): monster_division = monsters[str(max(i for i in map(int, monsters.keys()) if boss_lv % i == 0))] if boss_id is None: monster = random.choices(list(enumerate(monster_division)), weights=[i["encounter rate"] for i in monster_division])[0] else: try: monster = (boss_id, monster_division[boss_id]) except: print("ERROR boss_id: ",boss_id) return None return copy.deepcopy(monster) init()
StarcoderdataPython
11200952
<filename>tests/wrap/test_simple_soil_elements.py<gh_stars>10-100 import numpy as np import o3seespy.extensions import o3seespy as o3 import pytest def test_2d_site_period(): osi = o3.OpenSeesInstance(ndm=2, ndf=2, state=3) # Establish nodes node_depths = np.arange(0, 10, 1) n_node_rows = len(node_depths) x_nodes = np.arange(0, 10, 1) nx = len(x_nodes) nd = {} for yy in range(0, len(node_depths)): for xx in range(nx): # Establish left and right nodes nd[f"X{xx}Y{yy}"] = o3.node.Node(osi, x_nodes[xx], -node_depths[yy]) # set x and y dofs equal for left and right nodes o3.EqualDOF(osi, nd[f"X0Y{yy}"], nd[f"X{nx - 1}Y{yy}"], [o3.cc.X]) # Fix base nodes for xx in range(nx): o3.Fix2DOF(osi, nd[f"X{xx}Y{n_node_rows -1}"], o3.cc.FIXED, o3.cc.FIXED) for yy in range(0, len(node_depths) - 1): for xx in range(nx): o3.Fix2DOF(osi, nd[f"X{xx}Y{yy}"], o3.cc.FREE, o3.cc.FIXED) vs = 150.0 rho = 1.8 g_mod = vs ** 2 * rho poissons_ratio = 0.3 e_mod = 2 * g_mod * (1 + poissons_ratio) ele_thick = 1.0 soil_mat = o3.nd_material.ElasticIsotropic(osi, e_mod=e_mod, nu=poissons_ratio, rho=rho) eles = [] for yy in range(0, len(node_depths) - 1): for xx in range(nx - 1): # def element nodes = [nd[f"X{xx}Y{yy + 1}"], nd[f"X{xx + 1}Y{yy + 1}"], nd[f"X{xx + 1}Y{yy}"], nd[f"X{xx}Y{yy}"]] eles.append(o3.element.SSPquad(osi, nodes, soil_mat, o3.cc.PLANE_STRAIN, ele_thick, 0.0, 0.0)) # set damping based on first eigen mode angular_freq_sqrd = o3.get_eigen(osi, solver='fullGenLapack', n=1) if hasattr(angular_freq_sqrd, '__len__'): angular_freq = angular_freq_sqrd[0] ** 0.5 else: angular_freq = angular_freq_sqrd ** 0.5 # o3.extensions.to_py_file(osi, 'many_eles_2d.py') response_period = 2 * np.pi / angular_freq expected_period = 4 * max(node_depths) / vs print('response_period: ', response_period, expected_period, response_period / expected_period) assert np.isclose(response_period, expected_period, rtol=0.01) def _run_dyn_1d_site_response(region_based=None): osi = o3.OpenSeesInstance(ndm=2, ndf=2, state=3) # Establish nodes node_depths = np.arange(0, 5, 1) n_node_rows = len(node_depths) x_nodes = np.arange(0, 2, 1) nx = len(x_nodes) nd = {} for yy in range(0, len(node_depths)): for xx in range(nx): # Establish left and right nodes nd[f"X{xx}Y{yy}"] = o3.node.Node(osi, x_nodes[xx], -node_depths[yy]) # set x and y dofs equal for left and right nodes o3.EqualDOF(osi, nd[f"X0Y{yy}"], nd[f"X{nx - 1}Y{yy}"], [o3.cc.X]) # Fix base nodes for xx in range(nx): o3.Fix2DOF(osi, nd[f"X{xx}Y{n_node_rows -1}"], o3.cc.FIXED, o3.cc.FIXED) for yy in range(0, len(node_depths) - 1): for xx in range(nx): o3.Fix2DOF(osi, nd[f"X{xx}Y{yy}"], o3.cc.FREE, o3.cc.FIXED) vs = 150.0 rho = 1.8 g_mod = vs ** 2 * rho poissons_ratio = 0.3 e_mod = 2 * g_mod * (1 + poissons_ratio) ele_thick = 1.0 soil_mat = o3.nd_material.ElasticIsotropic(osi, e_mod=e_mod, nu=poissons_ratio, rho=rho) eles = [] for yy in range(0, len(node_depths) - 1): for xx in range(nx - 1): # def element nodes = [nd[f"X{xx}Y{yy + 1}"], nd[f"X{xx + 1}Y{yy + 1}"], nd[f"X{xx + 1}Y{yy}"], nd[f"X{xx}Y{yy}"]] eles.append(o3.element.SSPquad(osi, nodes, soil_mat, o3.cc.PLANE_STRAIN, ele_thick, 0.0, 0.0)) freqs = np.array([0.5, 15.0]) xi = 0.1 # high damping to see effects ang_f = np.pi / freqs alpha_m = xi * 2.0 * ang_f[0] * ang_f[1] / (ang_f[0] + ang_f[1]) # mass proportional beta_k = xi * 2.0 / (ang_f[0] + ang_f[1]) # stiffness proportional if region_based == 'node': o3.region.NodeRegion(osi, nodes='all', rayleigh={'alpha_m': alpha_m, 'beta_k_init': beta_k}) if region_based == 'ele': o3.region.ElementRegion(osi, eles='all', rayleigh={'alpha_m': alpha_m, 'beta_k_init': beta_k}) else: o3.rayleigh.Rayleigh(osi, alpha_m=alpha_m, beta_k=0.0, beta_k_init=beta_k, beta_k_comm=0.0) # Define the dynamic analysis dt = 0.01 vals = np.sin(np.linspace(0, np.pi, 50)) acc_series = o3.time_series.Path(osi, dt=dt, values=-vals) # should be negative o3.pattern.UniformExcitation(osi, dir=o3.cc.X, accel_series=acc_series) # Run the dynamic analysis o3.wipe_analysis(osi) o3.algorithm.Newton(osi) o3.system.SparseGeneral(osi) o3.numberer.RCM(osi) o3.constraints.Transformation(osi) o3.integrator.Newmark(osi, 0.5, 0.25) o3.analysis.Transient(osi) o3.test_check.EnergyIncr(osi, tol=1.0e-3, max_iter=10) analysis_time = 1.0 analysis_dt = 0.001 rec_dt = 0.01 tn = o3.recorder.NodeToArrayCache(osi, nd["X0Y0"], [o3.cc.DOF2D_X], 'accel', dt=rec_dt) if region_based: o3.extensions.to_py_file(osi, 'wr.py') else: o3.extensions.to_py_file(osi, 'wor.py') curr_time = o3.get_time(osi) while curr_time < analysis_time: status = o3.analyze(osi, 1, analysis_dt) curr_time = o3.get_time(osi) if status != 0: print('Not ok') print(status) o3.wipe(osi) x_acc = tn.collect() return x_acc def test_region_based_damping(): wnr = _run_dyn_1d_site_response(region_based='node') wer = _run_dyn_1d_site_response(region_based='ele') wor = _run_dyn_1d_site_response(region_based=None) assert np.isclose(wor, wnr).all() assert np.isclose(wor, wer).all() if __name__ == '__main__': test_2d_site_period() test_region_based_damping()
StarcoderdataPython
4947837
<filename>novice/02-02/latihan/tes_sum2.py def test_sum(): assert sum([1, 2, 3]) == 6, 'should be 6' def test_sum_tuple(): assert sum((1, 2, 2)) == 5, 'should be 6' if __name__=='__main__': test_sum() test_sum_tuple() print('everyting passed')
StarcoderdataPython
9738190
<reponame>liubaishuo-github/peening-post-processor import datetime dt = datetime.datetime.now() print(type(dt)) print(dt) time_str = dt.strftime('%b-%d-%Y %H:%M:%S') print(time_str)
StarcoderdataPython
11296133
<reponame>swederik/structurefunction from nipype.interfaces.base import (BaseInterface, traits, File, TraitedSpec, InputMultiPath, isdefined) from nipype.utils.filemanip import split_filename import os.path as op import numpy as np import nibabel as nb import networkx as nx import scipy.io as sio from nipype.workflows.misc.utils import get_data_dims from nipype.interfaces.cmtk.nx import (remove_all_edges, add_node_data, add_edge_data) from nipype import logging iflogger = logging.getLogger('interface') class CreateConnectivityThresholdInputSpec(TraitedSpec): in_files = InputMultiPath(File(exists=True), mandatory=True, xor=[ 'in_file4d'], desc='Original functional magnetic resonance image (fMRI) as a set of 3-dimensional images') in_file4d = File(exists=True, mandatory=True, xor=[ 'in_files'], desc='Original functional magnetic resonance image (fMRI) as a 4-dimension image') time_course_file = File(exists=True, mandatory=True, desc='Independent component timecourse array (as an image)') segmentation_file = File(exists=True, mandatory=True, desc='Image with segmented regions (e.g. aparc+aseg.nii or the output from cmtk.Parcellate())') subject_id = traits.Str(desc='Subject ID') out_t_value_threshold_file = File( 'tvalues.mat', usedefault=True, desc='T values per node saved as a Matlab .mat') class CreateConnectivityThresholdOutputSpec(TraitedSpec): t_value_threshold_file = File( desc='Output matlab file containing the thresholding parameters for each region/node') class CreateConnectivityThreshold(BaseInterface): input_spec = CreateConnectivityThresholdInputSpec output_spec = CreateConnectivityThresholdOutputSpec def _run_interface(self, runtime): iflogger.info( 'Segmentation image: {img}'.format(img=self.inputs.segmentation_file)) rois = get_roi_list(self.inputs.segmentation_file) number_of_nodes = len(rois) iflogger.info('Found {roi} unique region values'.format(roi=len(rois))) if len(self.inputs.in_files) > 1: iflogger.info('Multiple input images detected') iflogger.info(len(self.inputs.in_files)) in_files = self.inputs.in_files try: # VERY tempermental solution to sorting the functional images. # RELIES ON xyz-01_out.nii from recent resampling. in_files = sorted(in_files, key=lambda x: int(x.split("_")[-2].split("-")[-2])) except IndexError: # Tempermental solution to sorting the functional images. # RELIES ON xyz_out.nii from recent resampling. in_files = sorted(in_files, key=lambda x: int(x.split("_")[-2])) elif isdefined(self.inputs.in_file4d): iflogger.info('Single four-dimensional image selected') in_file4d = nb.load(self.inputs.in_file4d) in_files = nb.four_to_three(in_file4d) else: iflogger.info('Single functional image provided') in_files = self.inputs.in_files rois = get_roi_list(self.inputs.segmentation_file) fMRI_timecourse, _, _, _, _ = get_timecourse_by_region( in_files, self.inputs.segmentation_file, rois) timecourse_at_each_node = fMRI_timecourse.T time_course_image = nb.load(self.inputs.time_course_file) iflogger.info(np.shape(timecourse_at_each_node)) number_of_components = 30 number_of_images = 198 time_course_data = time_course_image.get_data() onerow = np.ones(number_of_images) time_course_per_IC = np.vstack((onerow.T, time_course_data.T)).T iflogger.info(np.shape(time_course_per_IC)) y = timecourse_at_each_node X = time_course_per_IC n = number_of_images XTX_inv = np.linalg.inv(np.dot(X.T, X)) N = number_of_components + 1 contrast = np.concatenate( (np.zeros((1, number_of_components)), np.eye(number_of_components))).T a = np.empty((number_of_nodes, N)) residues = np.empty((number_of_nodes, 1)) rank = np.empty((number_of_nodes, 1)) singularvalues = np.empty((number_of_nodes, N)) resids = np.empty((number_of_nodes, number_of_images)) error_variance = np.empty((number_of_nodes, 1)) t_values = np.empty((number_of_nodes, number_of_components)) beta_value = np.empty((number_of_components, 1)) for node_idx, node in enumerate(rois): a[node_idx], residues[node_idx], rank[node_idx], singularvalues[ node_idx] = np.linalg.lstsq(X, y[:, node_idx]) resids[node_idx, :] = y[:, node_idx] - \ np.dot(X, a[node_idx]) # e = y - Xa; error_variance[node_idx] = np.var(resids[node_idx]) for IC in range(0, number_of_components): t_values[node_idx, IC] = np.dot(contrast[IC], a[node_idx]) / \ np.sqrt( error_variance[node_idx] * np.dot(np.dot(contrast[IC], XTX_inv), contrast[IC, :].T)) beta_value[IC] = np.dot(contrast[IC], a[node_idx]) t_value_dict = {} t_value_dict['t_value_per_node'] = t_values t_value_dict['timecourse_at_each_node'] = y t_value_dict['timecourse_per_IC'] = X t_value_dict['number_of_images'] = n t_value_dict['a'] = a t_value_dict['contrast'] = contrast t_value_dict['residuals'] = resids t_value_dict['error_variance'] = error_variance out_file = op.abspath(self.inputs.out_t_value_threshold_file) iflogger.info( 'Saving T-values per node, per IC, as {file}'.format(file=out_file)) sio.savemat(out_file, t_value_dict) return runtime def _list_outputs(self): outputs = self.output_spec().get() out_file = op.abspath(self.inputs.out_t_value_threshold_file) outputs['t_value_threshold_file'] = out_file return outputs class ConnectivityGraphInputSpec(TraitedSpec): in_file = File(exists=True, mandatory=True, desc='fMRI ICA Map') resolution_network_file = File( exists=True, mandatory=True, desc='Network resolution file') t_value_threshold_file = File( exists=True, mandatory=True, desc='T-value threshold per node per IC. Saved as a Matlab .mat file.') component_index = traits.Int( mandatory=True, desc='Index of the independent component to use from the t-value threshold file.') segmentation_file = File( exists=True, desc='Image with segmented regions (e.g. aparc+aseg.nii or the output from cmtk.Parcellate())') subject_id = traits.Str(desc='Subject ID') give_nodes_values = traits.Bool( False, desc='Controls whether or not nodes are given scalar values from the functional image') significance_threshold = traits.Float( 0.001, usedefault=True, desc='Significance threshold used to keep an edge.') number_of_images = traits.Int( 198, usedefault=True, desc='Number of functional images used to generate the threshold file') out_stats_file = File( desc='Some simple image statistics for regions saved as a Matlab .mat') out_network_file = File(desc='The output network as a NetworkX gpickle.') class ConnectivityGraphOutputSpec(TraitedSpec): stats_file = File( desc='Some simple image statistics for the original and normalized images saved as a Matlab .mat') network_file = File( desc='Output gpickled network file for the connectivity graph.') correlation_network = File( desc='Output gpickled network file for the correlation network.') anticorrelation_network = File( desc='Output gpickled network file for the anticorrelation network.') class ConnectivityGraph(BaseInterface): """ Creates a weighted connectivity graph given a 4D functional image or list of functional images given a segmentated image. Output is saved in a MATLAB file, and if a network resolution file is provided (e.g. resolution1015.graphml), the regions are output as nodes in a NetworkX graph. Example ------- >>> import nipype.interfaces.cmtk as cmtk >>> congraph = cmtk.ConnectivityGraph() >>> congraph.inputs.in_file = 'pet_resliced_1.nii' >>> congraph.inputs.segmentation_file = 'ROI_scale500.nii.gz' >>> congraph.run() # doctest: +SKIP """ input_spec = ConnectivityGraphInputSpec output_spec = ConnectivityGraphOutputSpec def _run_interface(self, runtime): key = 'congraph' edge_key = 'weight' iflogger.info( 'T-value Threshold file: {t}'.format(t=self.inputs.t_value_threshold_file)) iflogger.info( 'Independent component to use: {i}'.format(i=self.inputs.component_index)) path, name, ext = split_filename(self.inputs.t_value_threshold_file) if ext == '.mat': t_value_dict = sio.loadmat(self.inputs.t_value_threshold_file) t_values = t_value_dict['t_value_per_node'] t_value_per_node = t_values[:, self.inputs.component_index - 1] number_of_ICs = np.shape(t_values)[1] else: iflogger.info( "Please save the t-values as a Matlab file with key 't_value_per_node'") functional = nb.load(self.inputs.in_file) functionaldata = functional.get_data() segmentation = nb.load(self.inputs.segmentation_file) segmentationdata = segmentation.get_data() rois = get_roi_list(self.inputs.segmentation_file) number_of_nodes = len(rois) iflogger.info( 'Found {roi} unique region values'.format(roi=number_of_nodes)) iflogger.info('Significance threshold: {p}'.format( p=self.inputs.significance_threshold)) #number_of_images = self.inputs.number_of_images # degrees_of_freedom = number_of_images - \ # number_of_ICs - 1 #sig = self.inputs.significance_threshold #threshold = tinv((1-sig), degrees_of_freedom) #threshold = 2*threshold #iflogger.info('Weight threshold: {w}'.format(w=threshold)) iflogger.info( 'Functional image: {img}'.format(img=self.inputs.in_file)) iflogger.info( 'Segmentation image: {img}'.format(img=self.inputs.segmentation_file)) if not get_data_dims(self.inputs.in_file) == get_data_dims(self.inputs.segmentation_file): iflogger.error( 'Image dimensions are not the same, please reslice the images to the same dimensions') dx, dy, dz = get_data_dims(self.inputs.in_file) iflogger.error('Functional image dimensions: {dimx}, {dimy}, {dimz}'.format( dimx=dx, dimy=dy, dimz=dz)) dx, dy, dz = get_data_dims(self.inputs.segmentation_file) iflogger.error('Segmentation image dimensions: {dimx}, {dimy}, {dimz}'.format( dimx=dx, dimy=dy, dimz=dz)) stats = {} if self.inputs.give_nodes_values: func_mean = [] for idx, roi in enumerate(rois): values = [] x, y, z = np.where(segmentationdata == roi) for index in range(0, len(x)): value = functionaldata[x[index]][y[index]][z[index]] values.append(value) func_mean.append(np.mean(values)) iflogger.info( 'Region ID: {id}, Mean Value: {avg}'.format(id=roi, avg=np.mean(values))) stats[key] = func_mean connectivity_matrix = np.zeros((number_of_nodes, number_of_nodes)) correlation_matrix = np.zeros((number_of_nodes, number_of_nodes)) anticorrelation_matrix = np.zeros((number_of_nodes, number_of_nodes)) iflogger.info('Drawing edges...') for idx_i, roi_i in enumerate(rois): t_i = t_value_per_node[idx_i] #iflogger.info('ROI:{i}, T-value: {t}'.format(i=roi_i, t=t_i)) for idx_j, roi_j in enumerate(rois): t_j = t_value_per_node[idx_j] #iflogger.info('...ROI:{j}, T-value: {t}'.format(j=roi_j, t=t_j)) if idx_j > idx_i: if (t_i > 0 and t_j > 0) or (t_i < 0 and t_j < 0): weight = abs(t_i) + abs(t_j) - abs(t_i - t_j) #iflogger.info('Weight = {w} T-values for ROIs {i}-{j}'.format(w=weight, i=t_i, j=t_j)) # if weight > threshold: connectivity_matrix[idx_i, idx_j] = weight correlation_matrix[idx_i, idx_j] = weight #iflogger.info('Drawing a correlation edge for ROIs {i}-{j} at {id_i},{id_j}'.format(i=roi_i, j=roi_j, id_i=idx_i, id_j=idx_j)) elif (t_i < 0 and t_j > 0) or (t_i > 0 and t_j < 0): weight = abs(t_i) + abs(t_j) - abs(t_i + t_j) #iflogger.info('Weight = {w} T-values for ROIs {i}-{j}'.format(w=weight, i=t_i, j=t_j)) # if weight > threshold: connectivity_matrix[idx_i, idx_j] = -weight anticorrelation_matrix[idx_i, idx_j] = weight #iflogger.info('Drawing an anticorrelation edge for ROIs {i}-{j} at {id_i},{id_j}'.format(i=roi_i, j=roi_j, id_i=idx_i, id_j=idx_j)) #iflogger.info('Weight = {w} T-values for ROIs {i}-{j}'.format(w=weight, i=t_i, j=t_j)) edges = len(np.nonzero(connectivity_matrix)[0]) cor_edges = len(np.nonzero(correlation_matrix)[0]) anticor_edges = len(np.nonzero(anticorrelation_matrix)[0]) iflogger.info('Total edges: {e}'.format(e=edges)) iflogger.info('Total correlation edges: {c}'.format(c=cor_edges)) iflogger.info( 'Total anticorrelation edges: {a}'.format(a=anticor_edges)) connectivity_matrix = connectivity_matrix + connectivity_matrix.T correlation_matrix = correlation_matrix + correlation_matrix.T anticorrelation_matrix = anticorrelation_matrix + \ anticorrelation_matrix.T stats[edge_key] = connectivity_matrix stats['correlation'] = correlation_matrix stats['anticorrelation'] = anticorrelation_matrix try: gp = nx.read_gpickle(self.inputs.resolution_network_file) except IndexError: gp = nx.read_graphml(self.inputs.resolution_network_file) nodedict = gp.node[gp.nodes()[0]] if not nodedict.has_key('dn_position'): iflogger.info("Creating node positions from segmentation") G = nx.Graph() for u, d in gp.nodes_iter(data=True): G.add_node(int(u), d) xyz = tuple( np.mean(np.where(np.flipud(segmentationdata) == int(d["dn_correspondence_id"])), axis=1)) G.node[int(u)]['dn_position'] = xyz ntwkname = op.abspath('nodepositions.pck') nx.write_gpickle(G, ntwkname) else: ntwkname = self.inputs.resolution_network_file try: ntwkname = nx.read_gpickle(ntwkname) except IndexError: ntwkname = nx.read_graphml(ntwkname) newntwk = ntwkname.copy() newntwk = remove_all_edges(newntwk) if self.inputs.give_nodes_values: newntwk = add_node_data(stats[key], newntwk) corntwk = add_node_data(stats[key], newntwk) anticorntwk = add_node_data(stats[key], newntwk) newntwk = add_edge_data(stats[edge_key], newntwk) corntwk = add_edge_data(stats['correlation'], corntwk) anticorntwk = add_edge_data(stats['anticorrelation'], anticorntwk) else: newntwk = add_edge_data(stats[edge_key], ntwkname) corntwk = add_edge_data(stats['correlation'], ntwkname) anticorntwk = add_edge_data(stats['anticorrelation'], ntwkname) if isdefined(self.inputs.out_network_file): path, name, ext = split_filename(self.inputs.out_network_file) if not ext == '.pck': ext = '.pck' out_network_file = op.abspath(name + ext) else: if isdefined(self.inputs.subject_id): out_network_file = op.abspath( self.inputs.subject_id + '_IC_' + str(self.inputs.component_index) + '.pck') else: out_network_file = op.abspath( 'IC_' + str(self.inputs.component_index) + '.pck') path, name, ext = split_filename(out_network_file) iflogger.info( 'Saving output network as {ntwk}'.format(ntwk=out_network_file)) nx.write_gpickle(newntwk, out_network_file) out_correlation_network = op.abspath(name + '_correlation' + ext) iflogger.info( 'Saving correlation network as {ntwk}'.format(ntwk=out_correlation_network)) nx.write_gpickle(corntwk, out_correlation_network) out_anticorrelation_network = op.abspath( name + '_anticorrelation' + ext) iflogger.info('Saving anticorrelation network as {ntwk}'.format( ntwk=out_anticorrelation_network)) nx.write_gpickle(anticorntwk, out_anticorrelation_network) if isdefined(self.inputs.subject_id): stats['subject_id'] = self.inputs.subject_id if isdefined(self.inputs.out_stats_file): path, name, ext = split_filename(self.inputs.out_stats_file) if not ext == '.mat': ext = '.mat' out_stats_file = op.abspath(name + ext) else: if isdefined(self.inputs.subject_id): out_stats_file = op.abspath( self.inputs.subject_id + '_IC_' + str(self.inputs.component_index) + '.mat') else: out_stats_file = op.abspath( 'IC_' + str(self.inputs.component_index) + '.mat') iflogger.info( 'Saving image statistics as {stats}'.format(stats=out_stats_file)) sio.savemat(out_stats_file, stats) return runtime def _list_outputs(self): outputs = self.output_spec().get() if isdefined(self.inputs.out_stats_file): path, name, ext = split_filename(self.inputs.out_stats_file) if not ext == '.pck': ext = '.pck' out_stats_file = op.abspath(name + ext) else: if isdefined(self.inputs.subject_id): out_stats_file = op.abspath( self.inputs.subject_id + '_IC_' + str(self.inputs.component_index) + '.mat') else: out_stats_file = op.abspath( 'IC_' + str(self.inputs.component_index) + '.mat') outputs["stats_file"] = out_stats_file if isdefined(self.inputs.out_network_file): path, name, ext = split_filename(self.inputs.out_network_file) if not ext == '.pck': ext = '.pck' out_network_file = op.abspath(name + ext) else: if isdefined(self.inputs.subject_id): out_network_file = op.abspath( self.inputs.subject_id + '_IC_' + str(self.inputs.component_index) + '.pck') else: out_network_file = op.abspath( 'IC_' + str(self.inputs.component_index) + '.pck') outputs["network_file"] = out_network_file path, name, ext = split_filename(out_network_file) out_correlation_network = op.abspath(name + '_correlation' + ext) outputs["correlation_network"] = out_correlation_network out_anticorrelation_network = op.abspath( name + '_anticorrelation' + ext) outputs["anticorrelation_network"] = out_anticorrelation_network return outputs
StarcoderdataPython
3529768
<filename>Python3-Learn/spongebob.py from turtle import * def go_to(x, y): up() goto(x, y) down() def head(): go_to(-200, 180) fillcolor('yellow') begin_fill() seth(-30) for i in range(6): circle(36, 60) circle(-36, 60) seth(-125) for i in range(5): circle(40,60) circle(-40,60) seth(-210) for i in range(4): circle(45,60) circle(-45,60) seth(65) for i in range(5): circle(40,60) circle(-40,60) end_fill() def eye(): # Eye white go_to(14, -5) fillcolor('#f0f0f0') begin_fill() circle(65, 360) end_fill() begin_fill() go_to(13,12) seth(98) circle(-65,360) end_fill() #eyeball go_to(-10,20) fillcolor('blue') begin_fill() circle(20,360) end_fill() go_to(-22,20) fillcolor('black') begin_fill() circle(7,360) end_fill() go_to(40,15) fillcolor('blue') begin_fill() circle(-20, 360) end_fill() go_to(53,15) fillcolor('black') begin_fill() circle(-7,360) end_fill() #eyelash go_to(-95,65) left(20) forward(40) go_to(-50,87) right(25) forward(32) go_to(0,70) right(25) forward(40) go_to(40, 75) left(35) forward(40) go_to(90, 87) right(18) forward(30) go_to(120, 70) right(25) forward(40) def nose(): fillcolor('yellow') go_to(0, -7) begin_fill() right(50) circle(-60, 30) color('yellow') goto(15,-40) end_fill() color('black') go_to(0, -7) seth(-75) forward(30) go_to(30,-7) seth(-105) forward(30) def mouth(): go_to(-120, - 60) seth(-45) circle(200, 30) seth(0) forward(100) seth(15) circle(200, 30) def tooth(): go_to(-30,-114) seth(-95) fillcolor('white') begin_fill() forward(30) seth(0) forward(40) seth(95) forward(30) go_to(-30,-114) end_fill() go_to(30, -114) seth(-95) fillcolor('white') begin_fill() forward(30) seth(0) forward(40) seth(95) forward(30) go_to(60, -114) end_fill() def hole(): go_to(-160,160) # fillcolor('#ffd700') # begin_fill() circle(30, 360) # a=1 # for i in range(120): # if 0<=i<30 or 60<=i<90: # a=a+0.2 # lt(3) # forward(a) # else: # a=a-0.2 # lt(3) # forward(a) # end_fill() def face(): eye() nose() mouth() tooth() # hole() def body(): go_to(-170,-180) seth(-120) circle(150, 30) seth(0) forward(40) seth(100) forward(35) seth(-80) forward(100) fillcolor('brown') begin_fill() seth(0) forward(300) seth(80) forward(110) seth(-100) forward(65) seth(180) forward(315) go_to(-118,-400) end_fill() go_to(-170,-255) fillcolor('yellow') begin_fill() seth(-75) forward(80) seth(0) forward(17) seth(105) forward(85) end_fill() go_to(200, -170) seth(-60) circle(-150,30) seth(-180) forward(45) begin_fill() seth(0) forward(20) seth(-100) forward(85) seth(180) forward(20) end_fill() def tie(): go_to(-50,-225) seth(-40) forward(40) seth(30) forward(52) go_to(30,-225) seth(-30) forward(40) seth(40) forward(45) fillcolor('red') go_to(0, -240) begin_fill() seth(-60) forward(10) seth(0) forward(30) seth(60) forward(15) go_to(30,-225) end_fill() go_to(4,-250) begin_fill() seth(-100) forward(80) seth(0) forward(55) seth(100) forward(80) end_fill() def spongeBob(): head() face() body() tie() if __name__=='__main__': screensize(800, 600) pensize(3) speed(10) go_to(0, 0) spongeBob() go_to(-100,240) write('<NAME>',font=('BRUSHSCI.TTF', '30', 'bold')) mainloop()
StarcoderdataPython
5001973
from typing import Dict, List import numpy as np from numpy.testing import assert_equal import pandas as pd from pandas.testing import assert_frame_equal import pytest import altair_transform @pytest.fixture def data() -> pd.DataFrame: return pd.DataFrame( { "x": [[1, 2, 3], [4, 5, 6, 7], [8, 9]], "y": [[1, 2], [3, 4], [5, 6]], "cat": list("ABC"), } ) def test_flatten_transform(data: pd.DataFrame) -> None: out = altair_transform.apply(data, {"flatten": ["x"]}) assert out.shape == (9, 3) assert out.columns.tolist() == ["x", "y", "cat"] assert_equal(out.x.values, range(1, 10)) assert_equal(out.cat.values, list("AAABBBBCC")) out = altair_transform.apply(data, {"flatten": ["x", "y"]}) assert out.shape == (9, 3) assert out.columns.tolist() == ["x", "y", "cat"] assert_equal(out.x.values, range(1, 10)) assert_equal(out.y.values, [1, 2, np.nan, 3, 4, np.nan, np.nan, 5, 6]) assert_equal(out.cat.values, list("AAABBBBCC")) def test_flatten_transform_with_as(data: pd.DataFrame): out = altair_transform.apply(data, {"flatten": ["y"], "as": ["yflat"]}) assert out.shape == (6, 4) assert out.columns.tolist() == ["yflat", "x", "y", "cat"] assert_equal(out.yflat.values, range(1, 7)) assert_equal(out.cat.values, list("AABBCC")) out = altair_transform.apply( data, {"flatten": ["x", "y"], "as": ["xflat", "yflat"]} ) assert out.shape == (9, 5) assert out.columns.tolist() == ["xflat", "yflat", "x", "y", "cat"] assert_equal(out.xflat.values, range(1, 10)) assert_equal(out.yflat.values, [1, 2, np.nan, 3, 4, np.nan, np.nan, 5, 6]) assert_equal(out.cat.values, list("AAABBBBCC")) @pytest.mark.parametrize( "transform", [ {"flatten": ["x"]}, {"flatten": ["x"], "as": ["xflat"]}, {"flatten": ["x", "y"]}, {"flatten": ["x", "y"], "as": ["xflat"]}, {"flatten": ["x", "y"], "as": ["xflat", "yflat"]}, ], ) def test_flatten_against_js( driver, data: pd.DataFrame, transform: Dict[str, List[str]], ) -> None: got = altair_transform.apply(data, transform) want = driver.apply(data, transform) assert_frame_equal( got[sorted(got.columns)], want[sorted(want.columns)], check_dtype=False, check_index_type=False, check_less_precise=True, )
StarcoderdataPython
4963467
<filename>lollylib/test.py import unittest import os import sys import ntpath def run(test_name='all'): loader = unittest.TestLoader() head, tail = ntpath.split(os.path.realpath(__file__)) sys.path.append(head) start_dir = head + '/tests' if test_name == 'all': suite = loader.discover(start_dir) else: suite = loader.discover(start_dir, test_name + '*') runner = unittest.TextTestRunner() runner.run(suite)
StarcoderdataPython
1728089
<filename>tmp/utils/thread.py import threading class MyThread(threading.Thread): def __init__(self, func, *args, **kwargs): # 改变线程的使用方式,可以直接传递函数方法和函数参数 super(MyThread, self).__init__() self.func = func self.args = args self.kwargs = kwargs self.result = None def run(self): self.result = self.func(*self.args, **self.kwargs) # 为线程添加属性result存储运行结果
StarcoderdataPython
8018850
<gh_stars>1-10 def flatten(*args): return helper(args, []) def helper(args, res): for i in args: if isinstance(i, list): helper(i, res) else: res.append(i) return res
StarcoderdataPython
1789544
<reponame>ATMackay/bsv-x509<gh_stars>0 # This programme contains functions and classes for secp256k1 elliptic curve cryptography import numpy as np import hashlib import random from getpass import getpass #Hard coded varaibles # secp256k1 parameters secp_G = [int("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16),\ int("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)] secp_n = int("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16) secp_p = int("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16) secp_a = int(0) secp_b = int(7) secp_inf_point = [0, 0] #Symmetric Key sym_key_n = int(2**512) #Base58 and Base64 encoding alphabet_58 = '123456789abcdefghijkmnopqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ' base58_count = len(alphabet_58) alphabet_64 = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' base64_count = len(alphabet_64) def passwd(): i = 0 while i < 4: pass_attempt = getpass() if password_check(pass_attempt) != True: if i > 2: print("\nPassword authentication failed. Aborting....") quit() print("\nPassword attempt failed. You have "+str(3-i)+" remaining attempts.") i += 1 else: break def password_check(password_attempt): if type(password_attempt) != str: raise Exception("password input must be a string!") # Uses a hard-coded password hash (insecure) password_hash = '<PASSWORD>' if hashlib.sha256(password_attempt.encode()).hexdigest() == password_hash: return True else: return False def bin_array(integer): # Returns a binarry array representation of a positive intger if type(integer)!= int or integer < 0: raise Exception("input must be a positive integer!") return [int(x) for x in bin(integer)[2:]] class base_58(object): def encode(self, num): """ Returns num in a base64-encoded string""" encode = '' if (num < 0): return '' while (num >= base58_count): mod = num % base58_count encode = alphabet_58[mod] + encode num = num // base58_count if (num): encode = alphabet_58[num] + encode return encode def decode(self, s): """Decodes the base58-encoded string s into an integer""" decoded = 0 multi = 1 s = s[::-1] for char in s: decoded += multi * alphabet_58.index(char) multi = multi * base58_count return decoded class base_64(object): def encode(self, num): """ Returns num in a base58-encoded string""" encode = '' if (num < 0): return '' while (num >= base64_count): mod = num % base64_count encode = alphabet_64[mod] + encode num = num // base64_count if (num): encode = alphabet_64[num] + encode padding = "=" return encode + padding def decode(self, s): if s[len(s)-1]!= '=': raise Exception("Base64 encoded object not formatted correctly. String should end with '='.") s = s[:len(s)-1] decoded = 0 multi = 1 s = s[::-1] for char in s: decoded += multi * alphabet_64.index(char) multi = multi * base64_count return decoded #Integer math class intmath(object): def mod_inv(self, num, modulus): # finds inverse of a modulo p, assummes a and p are coprime if type(num) != int: raise Exception("Inputs must be integer values") if num <= 0 or num > secp_p: num = num % modulus if num == 1: return a # Find gcd using Extended Euclid's Algorithm gcd, x, y = intmath().extended_euclid_gcd(num, modulus) # In case x is negative, we handle it by adding extra M # Because we know that multiplicative inverse of A in range M lies # in the range [0, M-1] if x < 0: x += modulus return x def extended_euclid_gcd(self, a, b): """ Returns a list `result` of size 3 where: Referring to the equation ax + by = gcd(a, b) result[0] is gcd(a, b) result[1] is x result[2] is y """ s = 0; old_s = 1 t = 1; old_t = 0 r = b; old_r = a while r != 0: quotient = old_r//r # In Python, // operator performs integer or floored division # This is a pythonic way to swap numbers # See the same part in C++ implementation below to know more old_r, r = r, old_r - quotient*r old_s, s = s, old_s - quotient*s old_t, t = t, old_t - quotient*t return [old_r, old_s, old_t] def sqrtmod(self, a, p): """ Find a quadratic residue (mod p) of 'a'. p must be an odd prime and p must be equivalent to 3 mod 4. Solve the congruence of the form: x^2 = a (mod p) And returns x. Note that p - x is also a root. 0 is returned if no square root exists for these a and p. The Tonelli-Shanks algorithm is used (except for some simple cases in which the solution is known from an identity). This algorithm runs in polynomial time (unless the generalized Riemann hypothesis is false). """ # Simple cases # if p % 4 == 3: power = (p+1) // 4 return pow(a, power , p) elif a == 0: return 0 elif p == 2: return 0 elif intmath().legendre_symbol(a, p) != 1: return 0 else: raise Exception("exponent must be 0, 1, 2 or prime and equivalent to 3 mod 4") def legendre_symbol(self, a, p): """ Compute the Legendre symbol a|p using Euler's criterion. p is a prime, a is relatively prime to p (if p divides a, then a|p = 0) Returns 1 if a has a square root modulo p, -1 otherwise. """ ls = pow(a, int((p - 1) / 2), p) return -1 if ls == p - 1 else ls # secp256k1 class libsecp(object): def private_key(self): return random.randint(1,secp_n) def public_key(self, priv_key): if priv_key > secp_n or priv_key < 0 or type(priv_key) != int: raise Exception("Private key must be an integer between 1 and n.") return point_mul(priv_key, secp_G) def public_key_hex(self, pubkey): if type(pubkey[0]) != int or type(pubkey[1]) != int: raise Exception("input must be valid (x,y) coordinate.") if pubkey[0] > secp_p or pubkey[0] < 0 or pubkey[1] > secp_p or pubkey[1] < 0: raise Exception("input must be valid secp256k1 element.") pubkey_x = hex(pubkey[0]) pubkey_y = hex(pubkey[1]) result = '0x04' + str(pubkey_x[2:]).zfill(64) + str(pubkey_y[2:]).zfill(64) return result def compress_key(self, pub_key): """Takes a hexadecimal encoded or integer array public key Returns a compressed public key '0x02....' or '0x03...' """ if type(pub_key) == str: if len(pub_key) != 132: raise Exception("Incorrect public key formatting.") pub_key_x = int(pub_key[4:68], 16) pub_key_y = int(pub_key[68:132], 16) elif len(pub_key) == 2: pub_key_x = pub_key[0] pub_key_y = pub_key[1] else: raise Exception("incorrect public key formatting.") if pub_key_x > secp_p or pub_key_x < 0 or pub_key_y > secp_p or pub_key_y < 0: raise Exception("public key values outside the accepted range!") if pub_key_y < secp_p // 2: """If the y-coordinate is less than (secp256k1) p then y is a "negative" EC point""" pref = '02' else: pref = '03' result = '0x' + pref + str(hex(pub_key_x)[2:]) return result def decompress_key(self, comp_pub_key): raise Exception("Not currently supported.") """Calculate the modular square root of x^3 + 7""" if len(comp_pub_key) != 68: raise Exception("public key must be a 32 byte string") if comp_pub_key[0:4]!='0x02' and comp_pub_key[0:4]!='0x03': raise Exception("Compressed key not formatted correctly!") # Convert back to integer pub_key_x = int(comp_pub_key[4:], 16) rhs = (pow(pub_key_x,3) + secp_a*pub_key_x + secp_b) % secp_p y_sol1 = intmath().sqrtmod(rhs, secp_p) y_sol2 = (secp_p - y_sol1) if pow(y_sol1, 2, secp_p) == rhs and pow(y_sol2, 2, secp_p) == rhs: if comp_pub_key[0:4] == '0x02': hex_y_neg = hex(min(y_sol1, y_sol2)) return '0x04' + str(comp_pub_key[4:]) + hex_y_neg[2:] if comp_pub_key[0:4] == '0x03': hex_y_pos = hex(max(y_sol1, y_sol2)) return '0x04' + str(comp_pub_key[4:]) + hex_y_pos[2:] else: raise Exception("Decompression Failed.") def wif(self, priv_key): prefix = "L" base58_enc = base_58().encode(priv_key) result = prefix + base58_enc return result def decode_wif(self, priv_key_string): if type(priv_key_string) != str or priv_key_string[0] != 'L' or len(priv_key_string) > 50: raise Exception("WIF private key not formatted correctly.") priv_key = base_58().decode(priv_key_string[1:]) return priv_key def point_double(self, A): return point_add(A,A) def point_add(self, A, B): # input 2 elliptic curve points if A==secp_inf_point: return B if B == secp_inf_point: return A if len(A)!=2 or len(B)!=2: raise Exception("public key must be an array of length 2!") if type(A[0]) != int or type(B[0]) != int: raise Exception("EC curve point must be an array of integers!") if A[0] >= secp_n or A[0] < 0 or A[1] < 0 or A[1] >= secp_n: raise Exception("input parameter 1 outside the accepted range!") if B[0] >= secp_n or B[0] < 0 or B[1] < 0 or B[1] >= secp_n: raise Exception("input parameter 2 outside the accepted range!") # if A is not equal to B then use this formula if A!=B: C_x = (pow(B[1]-A[1],2,secp_p)*pow(intmath().mod_inv(B[0]-A[0],secp_p),2,secp_p) - A[0] - B[0]) % secp_p C_y = ((B[1]-A[1])*intmath().mod_inv(B[0]-A[0],secp_p)*(A[0]-C_x) - A[1]) % secp_p return [C_x, C_y] # if A is equal to B then use this formula if A==B: C_x = (pow(3*pow(A[0],2,secp_p) + secp_a,2,secp_p)*pow(intmath().mod_inv(2*A[1],secp_p),2,secp_p) - 2*A[0]) % secp_p C_y = ((3*pow(A[0],2,secp_p) + secp_a)*intmath().mod_inv(2*A[1],secp_p) + A[0] - C_x - A[1] )% secp_p return [C_x, C_y] def point_mul(self, m, B): if m == 0: return secp_inf_point if m == 1: return B if len(B)!=2: raise Exception("public key must be an array of length 2!") if type(m) != int or type(B[0]) != int: raise Exception("EC curve point must be an array of integers!") if m >= secp_n or m < 0: raise Exception("Input parameter 1 outside the accepted range!") if B[0] >= secp_n or B[0] < 0 or B[1] < 0 or B[1] >= secp_n: raise Exception("Input parameter 2 outside the accepted range!") m_bin_array = bin_array(m) double_point = B point_sum = secp_inf_point for i in range(len(m_bin_array)): if m_bin_array[len(m_bin_array)-i-1]==1: point_sum = libsecp().point_add(double_point, point_sum) double_point = libsecp().point_add(double_point,double_point) # This is not quite right!! return point_sum def key_store(num_keys): for i in range(num_keys): privkey = libsecp().private_key() pubkey = libsecp().public_key(privkey) wallet_key = libsecp().wif(privkey) compressedkey = libsecp256k1().compress_key(pubkey) store.append([wallet_key, pubkey, compressedkey]) return store def symmetric_key(): return random.randint(1, sym_key_n)
StarcoderdataPython
5153741
<reponame>Tamlyn78/geo from django.apps import AppConfig class JobConfig(AppConfig): name = 'job'
StarcoderdataPython
329378
import logging import time from datetime import datetime as dt import pytz from colorfield.fields import ColorField from django.contrib.auth.models import Group from django.contrib.gis.db import models from django.core.validators import MinValueValidator, MaxValueValidator from django.urls import reverse from django.utils.timezone import now from wx.enums import FlashTypeEnum class BaseModel(models.Model): created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) class Meta: abstract = True class Decoder(BaseModel): name = models.CharField( max_length=40 ) description = models.CharField( max_length=256 ) class Meta: ordering = ['name'] def __str__(self): return self.name class Country(BaseModel): code = models.CharField(max_length=2) name = models.CharField(max_length=256, unique=True) class Meta: verbose_name_plural = "countries" def __str__(self): return self.name class Interval(BaseModel): symbol = models.CharField(max_length=8, ) description = models.CharField(max_length=40) default_query_range = models.IntegerField(default=0) seconds = models.IntegerField(null=True) class Meta: ordering = ('symbol',) def __str__(self): return self.symbol class PhysicalQuantity(BaseModel): name = models.CharField( max_length=16, unique=True ) class Meta: ordering = ('name',) def __str__(self): return self.name class MeasurementVariable(BaseModel): name = models.CharField( max_length=40, unique=True ) physical_quantity = models.ForeignKey( PhysicalQuantity, on_delete=models.DO_NOTHING ) class Meta: ordering = ('name',) def __str__(self): return self.name class CodeTable(BaseModel): name = models.CharField( max_length=45, unique=True ) description = models.CharField( max_length=256, ) def __str__(self): return self.name class Unit(BaseModel): symbol = models.CharField( max_length=16, unique=True ) name = models.CharField( max_length=256, unique=True ) class Meta: ordering = ('name',) def __str__(self): return self.name class SamplingOperation(BaseModel): """Old sampling_operations table""" symbol = models.CharField( max_length=5, unique=True ) name = models.CharField( max_length=40, unique=True ) class Meta: ordering = ('symbol',) def __str__(self): return self.name class Variable(BaseModel): """Old element table""" variable_type = models.CharField( max_length=40, ) symbol = models.CharField( max_length=8, ) name = models.CharField( max_length=40, ) sampling_operation = models.ForeignKey( SamplingOperation, on_delete=models.DO_NOTHING, null=True, blank=True, ) measurement_variable = models.ForeignKey( MeasurementVariable, on_delete=models.DO_NOTHING, null=True, blank=True, ) unit = models.ForeignKey( Unit, on_delete=models.DO_NOTHING, null=True, blank=True, ) precision = models.IntegerField( null=True, blank=True, ) scale = models.IntegerField( null=True, blank=True, ) code_table = models.ForeignKey( CodeTable, on_delete=models.DO_NOTHING, null=True, blank=True, ) color = ColorField(default='#FF0000', null=True, blank=True) range_min = models.IntegerField( null=True, blank=True, ) range_max = models.IntegerField( null=True, blank=True, ) default_representation = models.CharField( max_length=60, null=True, blank=True, default='line', choices=[('line', 'Line'), ('point', 'Point'), ('bar', 'Bar'), ('column', 'Column')]) class Meta: ordering = ('name',) def __str__(self): return self.name class DataSource(BaseModel): symbol = models.CharField(max_length=8, unique=True) name = models.CharField(max_length=32, unique=True) base_url = models.URLField(null=True) location = models.CharField(max_length=256, null=True) class Meta: verbose_name = "data source" verbose_name_plural = "data sources" def __str__(self): return self.name class StationProfile(BaseModel): name = models.CharField(max_length=45) description = models.CharField(max_length=256) color = models.CharField(max_length=7) is_automatic = models.BooleanField(default=False) is_manual = models.BooleanField(default=True) class Meta: verbose_name = "station profile" verbose_name_plural = "station profiles" def __str__(self): return self.name class AdministrativeRegionType(BaseModel): name = models.CharField(max_length=45) class Meta: verbose_name = "administrative region type" verbose_name_plural = "administrative region types" def __str__(self): return self.name class AdministrativeRegion(BaseModel): name = models.CharField(max_length=45) country = models.ForeignKey(Country, on_delete=models.DO_NOTHING) administrative_region_type = models.ForeignKey(AdministrativeRegionType, on_delete=models.DO_NOTHING) class Meta: verbose_name = "administrative region" verbose_name_plural = "administrative regions" def __str__(self): return self.name class StationType(BaseModel): name = models.CharField(max_length=45) description = models.CharField(max_length=256) parent_type = models.ForeignKey('self', on_delete=models.DO_NOTHING, null=True) class Meta: verbose_name = "station type" verbose_name_plural = "station types" def __str__(self): return self.name class StationCommunication(BaseModel): name = models.CharField(max_length=45) description = models.CharField(max_length=256) color = models.CharField(max_length=7) class Meta: verbose_name = "station communication" verbose_name_plural = "station communications" def __str__(self): return self.description class WMOStationType(BaseModel): name = models.CharField(max_length=256, unique=True) description = models.CharField(max_length=256, null=True, blank=True) def __str__(self): return self.name class WMORegion(BaseModel): name = models.CharField(max_length=256, unique=True) description = models.CharField(max_length=256, null=True, blank=True) def __str__(self): return self.name class WMOProgram(BaseModel): name = models.CharField(max_length=256, unique=True) description = models.CharField(max_length=256, null=True, blank=True) def __str__(self): return self.name class Station(BaseModel): name = models.CharField(max_length=256) alias_name = models.CharField(max_length=256, null=True, blank=True) begin_date = models.DateTimeField(null=True, blank=True) end_date = models.DateTimeField(null=True, blank=True) longitude = models.FloatField(validators=[ MinValueValidator(-180.), MaxValueValidator(180.) ]) latitude = models.FloatField(validators=[ MinValueValidator(-90.), MaxValueValidator(90.) ]) elevation = models.FloatField(null=True, blank=True) code = models.CharField(max_length=64) wmo = models.IntegerField( null=True, blank=True ) wigos = models.CharField( null=True, max_length=64, blank=True ) is_active = models.BooleanField(default=False) is_automatic = models.BooleanField(default=True) organization = models.CharField( max_length=256, null=True, blank=True ) observer = models.CharField( max_length=256, null=True, blank=True ) watershed = models.CharField( max_length=256, null=True, blank=True ) z = models.FloatField( null=True, blank=True ) datum = models.CharField( max_length=256, null=True, blank=True ) zone = models.CharField( max_length=256, null=True, blank=True ) ground_water_province = models.CharField( max_length=256, null=True, blank=True ) river_code = models.IntegerField( null=True, blank=True ) river_course = models.CharField( max_length=64, null=True, blank=True ) catchment_area_station = models.CharField( max_length=256, null=True, blank=True ) river_origin = models.CharField( max_length=256, null=True, blank=True ) easting = models.FloatField( null=True, blank=True ) northing = models.FloatField( null=True, blank=True ) river_outlet = models.CharField( max_length=256, null=True, blank=True ) river_length = models.IntegerField( null=True, blank=True ) local_land_use = models.CharField( max_length=256, null=True, blank=True ) soil_type = models.CharField( max_length=64, null=True, blank=True ) site_description = models.CharField( max_length=256, null=True, blank=True ) land_surface_elevation = models.FloatField( null=True, blank=True ) screen_length = models.FloatField( null=True, blank=True ) top_casing_land_surface = models.FloatField( null=True, blank=True ) depth_midpoint = models.FloatField( null=True, blank=True ) screen_size = models.FloatField( null=True, blank=True ) casing_type = models.CharField( max_length=256, null=True, blank=True ) casing_diameter = models.FloatField( null=True, blank=True ) existing_gauges = models.CharField( max_length=256, null=True, blank=True ) flow_direction_at_station = models.CharField( max_length=256, null=True, blank=True ) flow_direction_above_station = models.CharField( max_length=256, null=True, blank=True ) flow_direction_below_station = models.CharField( max_length=256, null=True, blank=True ) bank_full_stage = models.CharField( max_length=256, null=True, blank=True ) bridge_level = models.CharField( max_length=256, null=True, blank=True ) access_point = models.CharField( max_length=256, null=True, blank=True ) temporary_benchmark = models.CharField( max_length=256, null=True, blank=True ) mean_sea_level = models.CharField( max_length=256, null=True, blank=True ) data_type = models.CharField( max_length=256, null=True, blank=True ) frequency_observation = models.CharField( max_length=256, null=True, blank=True ) historic_events = models.CharField( max_length=256, null=True, blank=True ) other_information = models.CharField( max_length=256, null=True, blank=True ) profile = models.ForeignKey( StationProfile, on_delete=models.DO_NOTHING, null=True, blank=True ) hydrology_station_type = models.CharField( max_length=64, null=True, blank=True ) is_surface = models.BooleanField(default=True) # options are surface or ground station_details = models.CharField( max_length=256, null=True, blank=True ) country = models.CharField( max_length=256, null=True, blank=True ) region = models.CharField( max_length=256, null=True, blank=True ) data_source = models.ForeignKey( DataSource, on_delete=models.DO_NOTHING, null=True, blank=True ) communication_type = models.ForeignKey( StationCommunication, on_delete=models.DO_NOTHING, null=True, blank=True ) utc_offset_minutes = models.IntegerField( validators=[ MaxValueValidator(720), MinValueValidator(-720) ]) alternative_names = models.CharField( max_length=256, null=True, blank=True ) wmo_station_type = models.ForeignKey( WMOStationType, on_delete=models.DO_NOTHING, null=True, blank=True ) wmo_region = models.ForeignKey( WMORegion, on_delete=models.DO_NOTHING, null=True, blank=True ) wmo_program = models.ForeignKey( WMOProgram, on_delete=models.DO_NOTHING, null=True, blank=True ) wmo_station_plataform = models.CharField( max_length=256, null=True, blank=True ) operation_status = models.BooleanField(default=True) class Meta: unique_together = ('data_source', 'code') ordering = ('name',) def get_absolute_url(self): """Returns the url to access a particular instance of MyModelName.""" return reverse('station-detail', args=[str(self.id)]) def __str__(self): return self.name + ' - ' + self.code class StationVariable(BaseModel): station = models.ForeignKey(Station, on_delete=models.DO_NOTHING) variable = models.ForeignKey(Variable, on_delete=models.DO_NOTHING) first_measurement = models.DateTimeField(null=True, blank=True) last_measurement = models.DateTimeField(null=True, blank=True) last_value = models.FloatField(null=True, blank=True) height = models.FloatField(null=True, blank=True) test_range_min = models.FloatField(null=True, blank=True) test_range_max = models.FloatField(null=True, blank=True) test_step_min = models.FloatField(null=True, blank=True) test_step_max = models.FloatField(null=True, blank=True) test_persistence_variance = models.FloatField(null=True, blank=True) test_persistence_interval = models.FloatField(null=True, blank=True) test_spike_value = models.FloatField(null=True, blank=True) last_data_datetime = models.DateTimeField(null=True, blank=True) last_data_value = models.FloatField(null=True, blank=True) last_data_code = models.CharField(max_length=60, null=True, blank=True) class Meta: unique_together = ("station", "variable") ordering = ["station__id", "variable__id", ] class QualityFlag(BaseModel): symbol = models.CharField(max_length=8, unique=True) name = models.CharField(max_length=256, unique=True) color = ColorField(default='#FF0000', null=True, blank=True) def __str__(self): return self.name def document_directory_path(instance, filename): # file will be uploaded to MEDIA_ROOT/user_<id>/<filename> path_to_file = 'documents/{0}_{1}.{2}'.format(instance.station.code, time.strftime("%Y%m%d_%H%M%S"), filename.split('.')[-1]) logging.info(f"Saving file {filename} in {path_to_file}") return path_to_file class Document(BaseModel): alias = models.CharField(max_length=256, null=True) file = models.FileField(upload_to=document_directory_path) station = models.ForeignKey(Station, on_delete=models.CASCADE) processed = models.BooleanField(default=False) decoder = models.ForeignKey(Decoder, on_delete=models.CASCADE, null=True, blank=True) def __str__(self): return self.file.name class DataFile(BaseModel): ready_at = models.DateTimeField(null=True, blank=True) ready = models.BooleanField(default=False) initial_date = models.DateTimeField(null=True, blank=True) final_date = models.DateTimeField(null=True, blank=True) source = models.CharField(max_length=30, null=False, blank=False, default="Raw data") lines = models.IntegerField(null=True, blank=True, default=None) prepared_by = models.CharField(max_length=256, null=True, blank=True) interval_in_seconds = models.IntegerField(null=True, blank=True) def __str__(self): return 'file ' + str(self.id) class DataFileStation(BaseModel): datafile = models.ForeignKey(DataFile, on_delete=models.CASCADE) station = models.ForeignKey(Station, on_delete=models.CASCADE) class DataFileVariable(BaseModel): datafile = models.ForeignKey(DataFile, on_delete=models.CASCADE) variable = models.ForeignKey(Variable, on_delete=models.CASCADE) class StationFile(BaseModel): name = models.CharField(max_length=256, null=True) file = models.FileField(upload_to='station_files/%Y/%m/%d/') station = models.ForeignKey(Station, on_delete=models.CASCADE) def __str__(self): return self.name class Format(BaseModel): name = models.CharField( max_length=40, unique=True, ) description = models.CharField( max_length=256, ) class Meta: ordering = ['name'] def __str__(self): return self.name class VariableFormat(BaseModel): variable = models.ForeignKey( Variable, on_delete=models.DO_NOTHING, ) format = models.ForeignKey( Format, on_delete=models.DO_NOTHING, ) interval = models.ForeignKey( Interval, on_delete=models.DO_NOTHING, ) lookup_key = models.CharField( max_length=255, ) class Meta: ordering = ['variable', 'format', ] def __str__(self): return '{} {}'.format(self.variable, self.format) class PeriodicJobType(BaseModel): name = models.CharField( max_length=40, unique=True, ) description = models.CharField( max_length=256, ) class Meta: ordering = ['name'] def __str__(self): return self.name class PeriodicJob(BaseModel): periodic_job_type = models.ForeignKey( PeriodicJobType, on_delete=models.DO_NOTHING, ) station = models.ForeignKey( Station, on_delete=models.DO_NOTHING, ) is_running = models.BooleanField( default=False, ) last_record = models.IntegerField( default=0, ) class Meta: ordering = ('station', 'periodic_job_type',) class Watershed(models.Model): watershed = models.CharField(max_length=128) size = models.CharField(max_length=16) acres = models.FloatField() hectares = models.FloatField() shape_leng = models.FloatField() shape_area = models.FloatField() geom = models.MultiPolygonField(srid=4326) class District(models.Model): id_field = models.IntegerField() district = models.CharField(max_length=64) acres = models.FloatField() hectares = models.FloatField() geom = models.MultiPolygonField(srid=4326) class NoaaTransmissionType(models.Model): acronym = models.CharField(max_length=5, unique=True) description = models.CharField(max_length=255) def __str__(self): return self.acronym class NoaaTransmissionRate(models.Model): rate = models.IntegerField(unique=True) def __str__(self): return str(self.rate) class NoaaDcp(BaseModel): dcp_address = models.CharField(max_length=256) first_channel = models.IntegerField(null=True, blank=True) first_channel_type = models.ForeignKey(NoaaTransmissionType, on_delete=models.CASCADE, related_name="first_channels", null=True, blank=True) second_channel = models.IntegerField(null=True, blank=True) second_channel_type = models.ForeignKey(NoaaTransmissionType, on_delete=models.CASCADE, related_name="second_channels", null=True, blank=True) first_transmission_time = models.TimeField() transmission_window = models.TimeField() transmission_period = models.TimeField() last_datetime = models.DateTimeField(null=True, blank=True) def __str__(self): return self.dcp_address class NoaaDcpsStation(BaseModel): station = models.ForeignKey(Station, on_delete=models.CASCADE) noaa_dcp = models.ForeignKey(NoaaDcp, on_delete=models.CASCADE) decoder = models.ForeignKey(Decoder, on_delete=models.CASCADE) interval = models.ForeignKey(Interval, on_delete=models.CASCADE) format = models.ForeignKey(Format, on_delete=models.CASCADE) start_date = models.DateTimeField() end_date = models.DateTimeField(null=True, blank=True) def __str__(self): return "{} {} - {}".format(self.station, self.noaa_dcp, self.interval) class Meta: verbose_name = "NMS DCP Station" verbose_name_plural = "NMS DCP Stations" class Flash(BaseModel): type = models.CharField(max_length=60, choices=[(flashType.name, flashType.value) for flashType in FlashTypeEnum]) datetime = models.DateTimeField() latitude = models.FloatField() longitude = models.FloatField() peak_current = models.IntegerField() ic_height = models.IntegerField() num_sensors = models.IntegerField() ic_multiplicity = models.IntegerField() cg_multiplicity = models.IntegerField() start_datetime = models.DateTimeField() duration = models.IntegerField() ul_latitude = models.FloatField() ul_longitude = models.FloatField() lr_latitude = models.FloatField() lr_longitude = models.FloatField() def __str__(self): return "{} {} - {}".format(self.latitude, self.longitude, self.datetime) class QcRangeThreshold(BaseModel): station = models.ForeignKey(Station, on_delete=models.DO_NOTHING) variable = models.ForeignKey(Variable, on_delete=models.DO_NOTHING) interval = models.IntegerField(null=True, blank=True) range_min = models.FloatField(null=True, blank=True) range_max = models.FloatField(null=True, blank=True) month = models.IntegerField(default=1) def __str__(self): return f"station={self.station.code} variable={self.variable.symbol} interval={self.interval}" class Meta: ordering = ('station', 'variable', 'month', 'interval',) unique_together = ("station", "variable", "month", "interval",) class QcStepThreshold(BaseModel): station = models.ForeignKey(Station, on_delete=models.DO_NOTHING) variable = models.ForeignKey(Variable, on_delete=models.DO_NOTHING) interval = models.IntegerField(null=True, blank=True) step_min = models.FloatField(null=True, blank=True) step_max = models.FloatField(null=True, blank=True) class Meta: ordering = ('station', 'variable', 'interval') unique_together = ("station", "variable", "interval") class QcPersistThreshold(BaseModel): station = models.ForeignKey(Station, on_delete=models.DO_NOTHING) variable = models.ForeignKey(Variable, on_delete=models.DO_NOTHING) interval = models.IntegerField() window = models.IntegerField() minimum_variance = models.FloatField() class Meta: ordering = ('station', 'variable', 'interval') unique_together = ("station", "variable", "interval") class FTPServer(BaseModel): name = models.CharField(max_length=64, unique=True) host = models.CharField(max_length=256) port = models.IntegerField() username = models.CharField(max_length=128) password = models.CharField(max_length=128) is_active_mode = models.BooleanField() def __str__(self): return f'{self.name} - {self.host}:{self.port}' class Meta: unique_together = ('host', 'port', 'username', 'password') class StationFileIngestion(BaseModel): ftp_server = models.ForeignKey(FTPServer, on_delete=models.DO_NOTHING) remote_folder = models.CharField(max_length=1024) station = models.ForeignKey(Station, on_delete=models.DO_NOTHING) file_pattern = models.CharField(max_length=256) decoder = models.ForeignKey(Decoder, on_delete=models.DO_NOTHING) cron_schedule = models.CharField(max_length=64, default='15/15 * * * *') utc_offset_minutes = models.IntegerField() delete_from_server = models.BooleanField() is_active = models.BooleanField(default=True) is_binary_transfer = models.BooleanField(default=False) is_historical_data = models.BooleanField(default=False) override_data_on_conflict = models.BooleanField(default=False) class Meta: unique_together = ('ftp_server', 'remote_folder', 'station') def __str__(self): return f'{self.ftp_server} - {self.station}' class StationDataFileStatus(BaseModel): name = models.CharField(max_length=128) def __str__(self): return self.name class Meta: verbose_name = "station data file status" verbose_name_plural = "station data file statuses" class StationDataFile(BaseModel): station = models.ForeignKey(Station, on_delete=models.DO_NOTHING) decoder = models.ForeignKey(Decoder, on_delete=models.DO_NOTHING) status = models.ForeignKey(StationDataFileStatus, on_delete=models.DO_NOTHING) utc_offset_minutes = models.IntegerField() filepath = models.CharField(max_length=1024) file_hash = models.CharField(max_length=128, db_index=True) file_size = models.IntegerField() observation = models.TextField(max_length=1024, null=True, blank=True) is_historical_data = models.BooleanField(default=False) override_data_on_conflict = models.BooleanField(default=False) def __str__(self): return f'{self.filepath}' class HourlySummaryTask(BaseModel): station = models.ForeignKey(Station, on_delete=models.DO_NOTHING) datetime = models.DateTimeField() started_at = models.DateTimeField(null=True, blank=True) finished_at = models.DateTimeField(null=True, blank=True) class DailySummaryTask(BaseModel): station = models.ForeignKey(Station, on_delete=models.DO_NOTHING) date = models.DateField() started_at = models.DateTimeField(null=True, blank=True) finished_at = models.DateTimeField(null=True, blank=True) class DcpMessages(BaseModel): # 8 hex digit DCP Address noaa_dcp = models.ForeignKey(NoaaDcp, on_delete=models.DO_NOTHING) # YYDDDHHMMSS – Time the message arrived at the Wallops receive station. # The day is represented as a three digit day of the year (julian day). datetime = models.DateTimeField() # 1 character failure code failure_code = models.CharField(max_length=1) # 2 decimal digit signal strength signal_strength = models.CharField(max_length=2) # 2 decimal digit frequency offset frequency_offset = models.CharField(max_length=2) # 1 character modulation index modulation_index = models.CharField(max_length=1) # 1 character data quality indicator data_quality = models.CharField(max_length=1) # 3 decimal digit GOES receive channel channel = models.CharField(max_length=3) # 1 character GOES spacecraft indicator (‘E’ or ‘W’) spacecraft_indicator = models.CharField(max_length=1) # 2 character data source code Data Source Code Table data_source = models.ForeignKey(DataSource, on_delete=models.DO_NOTHING) # 5 decimal digit message data length message_data_length = models.CharField(max_length=5) payload = models.TextField() def station(self): return NoaaDcpsStation.objects.get(noaa_dcp=self.noaa_dcp).station class Meta: unique_together = ('noaa_dcp', 'datetime') ordering = ('noaa_dcp', 'datetime') @classmethod def create(cls, header, payload): # 5020734E20131172412G44+0NN117EXE00278 dcp_address = header[:8] print(f"create header={header} dcp_address={dcp_address}") noaa_dcp = NoaaDcp.objects.get(dcp_address=dcp_address) datetime = pytz.utc.localize(dt.strptime(header[8:19], '%y%j%H%M%S')) failure_code = header[19:20] signal_strength = header[20:22] frequency_offset = header[22:24] modulation_index = header[24:25] data_quality = header[25:26] channel = header[26:29] spacecraft_indicator = header[29:30] data_source = header[30:32] data_source_obj, created = DataSource.objects.get_or_create(symbol=data_source, defaults={ 'name': data_source, 'created_at': now(), 'updated_at': now() }) message_data_length = header[32:37] dcp_msg = cls( noaa_dcp=noaa_dcp, datetime=datetime, failure_code=failure_code, signal_strength=signal_strength, frequency_offset=frequency_offset, modulation_index=modulation_index, data_quality=data_quality, channel=channel, spacecraft_indicator=spacecraft_indicator, data_source=data_source_obj, message_data_length=message_data_length, payload=payload ) return dcp_msg class RatingCurve(BaseModel): station = models.ForeignKey(Station, on_delete=models.DO_NOTHING) start_date = models.DateTimeField() def __str__(self): return f'{self.station.name} - {self.start_date}' class RatingCurveTable(BaseModel): rating_curve = models.ForeignKey(RatingCurve, on_delete=models.DO_NOTHING) h = models.FloatField() q = models.FloatField() class WxPermission(BaseModel): name = models.CharField(max_length=256, unique=True) url_name = models.CharField(max_length=256) permission = models.CharField(max_length=32, choices=( ('read', 'Read'), ('write', 'Write'), ('update', 'Update'), ('delete', 'Delete'))) def __str__(self): return self.name class WxGroupPermission(BaseModel): group = models.OneToOneField(Group, on_delete=models.DO_NOTHING) permissions = models.ManyToManyField(WxPermission) def __str__(self): return self.group.name class StationImage(BaseModel): station = models.ForeignKey(Station, related_name='station_images', on_delete=models.CASCADE) name = models.CharField(max_length=256) path = models.FileField(upload_to='station_images/%Y/%m/%d/') description = models.CharField(max_length=256, null=True, blank=True) def __str__(self): return self.name class HydroMLPrediction(BaseModel): name = models.CharField(max_length=256) hydroml_prediction_id = models.IntegerField() variable = models.ForeignKey(Variable, on_delete=models.DO_NOTHING) class Meta: unique_together = ('hydroml_prediction_id', 'variable') def __str__(self): return self.name class HydroMLPredictionMapping(BaseModel): hydroml_prediction = models.ForeignKey(HydroMLPrediction, on_delete=models.DO_NOTHING) prediction_result = models.CharField(max_length=32) quality_flag = models.ForeignKey(QualityFlag, on_delete=models.DO_NOTHING) class Meta: unique_together = ('hydroml_prediction', 'quality_flag') def __str__(self): return f'{self.prediction_result} - {self.quality_flag}' class Neighborhood(BaseModel): name = models.CharField(max_length=256, unique=True) def __str__(self): return self.name class StationNeighborhood(BaseModel): neighborhood = models.ForeignKey(Neighborhood, related_name='neighborhood_stations', on_delete=models.DO_NOTHING) station = models.ForeignKey(Station, on_delete=models.DO_NOTHING) class Meta: unique_together = ('neighborhood', 'station') def __str__(self): return f'{self.neighborhood.name} - {self.station}' class HydroMLPredictionStation(BaseModel): prediction = models.ForeignKey(HydroMLPrediction, on_delete=models.DO_NOTHING) neighborhood = models.ForeignKey(Neighborhood, on_delete=models.DO_NOTHING) target_station = models.ForeignKey(Station, on_delete=models.DO_NOTHING) data_period_in_minutes = models.IntegerField() interval_in_minutes = models.IntegerField() def __str__(self): return f'{self.prediction.name} - {self.neighborhood.name}' class StationDataMinimumInterval(BaseModel): datetime = models.DateTimeField() station = models.ForeignKey(Station, on_delete=models.DO_NOTHING) variable = models.ForeignKey(Variable, on_delete=models.DO_NOTHING) minimum_interval = models.TimeField(null=True, blank=True) record_count = models.IntegerField() ideal_record_count = models.IntegerField() record_count_percentage = models.FloatField() class Meta: unique_together = ('datetime', 'station', 'variable') def __str__(self): return f'{self.datetime}: {self.station} - {self.variable}'
StarcoderdataPython
8001396
<gh_stars>0 from time import time import torch import numpy as np from abc import ABC, abstractmethod # tensorboard stuff from torch.utils.tensorboard import SummaryWriter # my libraries from .util import utilities as util_ from . import losses as ls from . import cluster BACKGROUND_LABEL = 0 TABLE_LABEL = 1 OBJECTS_LABEL = 2 NUM_GPUS = torch.cuda.device_count() def smart_random_sample_indices(X, Y, num_seeds): """ Helper function to sample seeds for mean shift training @param predicted_centers: a [N x 3] torch.FloatTensor @param Y: a [N] torch.LongTensor with values in {2, ... K+1} @param num_seeds: int """ unique_obj_labels = torch.unique(Y) num_objects = unique_obj_labels.shape[0] indices = torch.zeros(0, dtype=torch.long, device=X.device) num_seeds_per_obj = int(np.ceil(num_seeds / num_objects)) for k in unique_obj_labels: label_indices = torch.where(Y == k)[0] randperm = torch.randperm(label_indices.shape[0]) inds = label_indices[randperm[:num_seeds_per_obj]] indices = torch.cat([indices, inds], dim=0) X_I = X[indices, :] # Shape: [num_seeds x 3] Y_I = Y[indices] # Shape: [num_seeds] return X_I, Y_I def hill_climb_one_iter(Z, X, sigmas): """ Runs one iteration of GBMS hill climbing algorithm The seeds climb the distribution given by the KDE of X Note: X is not edited by this method @param Z: a [m x d] torch.FloatTensor of seeds @param X: a [n x d] torch.FloatTensor of d-dim unit vectors @param sigmas: a [1 x n] torch.FloatTensor of sigmas OR a Python float """ W = cluster.gaussian_kernel(Z, X, sigmas) # Shape: [m x n] Q = W / W.sum(dim=1, keepdim=True) # Shape: [m x n] Z = torch.mm(Q, X) return Z class Trainer(ABC): def __init__(self, model_wrapper, config): self.model_wrapper = model_wrapper self.device = self.model_wrapper.device self.config = config self.setup() @abstractmethod def setup(self): pass @abstractmethod def train(self): pass def save(self, name=None, save_dir=None): """ Save optimizer state, epoch/iter nums, loss information Also save model state """ # Save optimizer stuff checkpoint = {'iter_num': self.iter_num, 'epoch_num': self.epoch_num, 'infos': self.infos, 'optimizer': self.optimizer.state_dict()} if save_dir is None: save_dir = self.config['tb_directory'] if name is None: filename = save_dir + self.__class__.__name__ + '_' \ + self.model_wrapper.__class__.__name__ \ + '_iter' + str(self.iter_num) \ + '_checkpoint.pth' else: filename = save_dir + name + '_checkpoint.pth' torch.save(checkpoint, filename) # Save model stuff filename = save_dir + self.model_wrapper.__class__.__name__ \ + '_iter' + str(self.iter_num) \ + '_' + str(self.model_wrapper.config['feature_dim']) + 'c' \ + '_checkpoint.pth' self.model_wrapper.save(filename) def load(self, opt_filename, model_filename): """ Load optimizer state, epoch/iter nums, loss information Also load model state """ # Load optimizer stuff checkpoint = torch.load(opt_filename) self.optimizer.load_state_dict(checkpoint['optimizer']) print(f"Loaded optimizer") self.iter_num = checkpoint['iter_num'] self.epoch_num = checkpoint['epoch_num'] self.infos = checkpoint['infos'] # Load model stuff self.model_wrapper.load(model_filename) class DSNTrainer(Trainer): def setup(self): # Initialize stuff self.epoch_num = 1 self.iter_num = 1 self.infos = dict() # Initialize optimizer model_config = self.model_wrapper.model.parameters() self.optimizer = torch.optim.Adam(model_config, lr=self.config['lr']) if self.config['load']: self.load(self.config['opt_filename'], self.config['model_filename']) # Losses foreground_loss = ls.CELossWeighted(weighted=True) center_offset_loss = ls.SmoothL1LossWeighted(weighted=True) separation_loss = ls.CELossWeightedMasked(weighted=True) cluster_loss = ls.ClusterLossWeighted(self.config['delta'], weighted=True) self.losses = { 'fg_loss': foreground_loss, 'co_loss': center_offset_loss, 'sep_loss': separation_loss, 'cl_loss': cluster_loss, } # Tensorboard stuff self.tb_writer = SummaryWriter(self.config['tb_directory'], flush_secs=self.config['flush_secs']) def train(self, num_epochs, data_loader): # Some stuff to keep track of batch_time = util_.AverageMeter() data_time = util_.AverageMeter() total_losses = util_.AverageMeter() fg_losses = util_.AverageMeter() center_offset_losses = util_.AverageMeter() cluster_losses = util_.AverageMeter() separation_losses = util_.AverageMeter() end = time() # Training mode self.model_wrapper.train_mode() for epoch_iter in range(num_epochs): for i, batch in enumerate(data_loader): if self.iter_num >= self.config['max_iters']: print("Reached maximum number of iterations...") break # Send everything to GPU self.model_wrapper.send_batch_to_device(batch) # Get labels foreground_labels = batch['foreground_labels'] # Shape: [N x H x W] center_offset_labels = batch['center_offset_labels'] # Shape: [N x 2 x H x W] object_centers = batch['object_centers'] # Shape: [N x 100 x 3] # measure data loading time data_time.update(time() - end) N, H, W = foreground_labels.shape # This is (potentially) in parallel fg_logits, center_offsets = self.model_wrapper.model(batch['xyz']) ### Foreground Loss ### fg_masks = foreground_labels.clamp(0, 2).long() fg_loss = self.losses['fg_loss'](fg_logits, fg_masks) ### Center Prediction Loss ### center_offset_loss = self.losses['co_loss'](center_offsets, center_offset_labels, foreground_labels) separation_loss = torch.tensor(0.).to(self.device) cluster_loss = torch.tensor(0.).to(self.device) L = self.config['max_GMS_iters'] for j in range(N): fg_mask_j = fg_masks[j] == OBJECTS_LABEL if torch.sum(fg_mask_j) == 0: continue ### Separation Loss ### predicted_centers = batch['xyz'][j] + center_offsets[j] # Cross-Entropy Loss for M. Only run on FG pixels gt_centers = object_centers[j, :batch['num_3D_centers'][j]] M_logits = self.model_wrapper.construct_M_logits(predicted_centers, gt_centers) M_gt = ls.create_M_GT(foreground_labels[j]) separation_loss = separation_loss + \ self.losses['sep_loss'](M_logits.unsqueeze(0), M_gt.unsqueeze(0), foreground_labels[j].unsqueeze(0)) ### Cluster loss ### # Note: the meanshift is spread across GPUs to spread memory across X = predicted_centers.permute(1,2,0) X_fg = X[fg_mask_j][::self.model_wrapper.config['subsample_factor'], ...] # Shape: [num_fg_pixels//subsample_factor x 3] Y_fg = foreground_labels[j, fg_mask_j][::self.model_wrapper.config['subsample_factor']] # Shape: [num_fg_pixels//subsample_factor] X_fg = X_fg.to(f'cuda:{j % NUM_GPUS}'); Y_fg = Y_fg.to(f'cuda:{j % NUM_GPUS}') X_I, Y_I = smart_random_sample_indices(X_fg, Y_fg, self.config['num_seeds_training']) for l in range(L): X_I = hill_climb_one_iter(X_I, X_fg, self.model_wrapper.config['sigma']) cluster_loss = cluster_loss + self.losses['cl_loss'](X_I, Y_I, X_fg, Y_fg).to(self.device) # Weight the frame-wise losses by batch size separation_loss = separation_loss / N cluster_loss = cluster_loss / (N * L) # Total loss. Note: foreground loss is always computed/backpropagated loss = self.config['lambda_fg'] * fg_loss + \ self.config['lambda_co'] * center_offset_loss + \ self.config['lambda_sep'] * separation_loss + \ self.config['lambda_cl'] * cluster_loss ### Gradient descent ### self.optimizer.zero_grad() loss.backward() self.optimizer.step() # measure accuracy and record loss total_losses.update(loss.item(), N) fg_losses.update(fg_loss.item(), N) center_offset_losses.update(center_offset_loss.item(), N) cluster_losses.update(cluster_loss.item(), N) separation_losses.update(separation_loss.item(), N) # Record some information about this iteration batch_time.update(time() - end) end = time() # Record information every x iterations if self.iter_num % self.config['iter_collect'] == 0: info = {'iter_num': self.iter_num, 'Batch Time': round(batch_time.avg, 3), 'Data Time': round(data_time.avg, 3), 'loss': round(total_losses.avg, 7), 'FG loss': round(fg_losses.avg, 7), 'Center Offset loss': round(center_offset_losses.avg, 7), 'Cluster loss': round(cluster_losses.avg, 7), 'Separation loss' : round(separation_losses.avg, 7), } self.infos[self.iter_num] = info # Tensorboard stuff self.tb_writer.add_scalar('Total Loss', info['loss'], self.iter_num) self.tb_writer.add_scalar('Loss/Foreground', info['FG loss'], self.iter_num) self.tb_writer.add_scalar('Loss/Center Offset', info['Center Offset loss'], self.iter_num) self.tb_writer.add_scalar('Loss/Cluster', info['Cluster loss'], self.iter_num) self.tb_writer.add_scalar('Loss/Separation', info['Separation loss'], self.iter_num) self.tb_writer.add_scalar('Time/per iter', info['Batch Time'], self.iter_num) self.tb_writer.add_scalar('Time/data fetch', info['Data Time'], self.iter_num) # Reset meters batch_time = util_.AverageMeter() data_time = util_.AverageMeter() total_losses = util_.AverageMeter() fg_losses = util_.AverageMeter() center_offset_losses = util_.AverageMeter() cluster_losses = util_.AverageMeter() separation_losses = util_.AverageMeter() end = time() self.iter_num += 1 self.epoch_num += 1 class RRNTrainer(Trainer): def setup(self): # Initialize stuff self.epoch_num = 1 self.iter_num = 1 self.infos = dict() # Initialize optimizer model_config = self.model_wrapper.model.parameters() self.optimizer = torch.optim.Adam(model_config, lr=self.config['lr']) if self.config['load']: self.load(self.config['opt_filename'], self.config['model_filename']) # Losses foreground_loss = ls.BCEWithLogitsLossWeighted(weighted=True) self.losses = { 'fg_loss' : foreground_loss, } # Tensorboard stuff self.tb_writer = SummaryWriter(self.config['tb_directory'], flush_secs=self.config['flush_secs']) def train(self, num_epochs, data_loader): # Some stuff to keep track of batch_time = util_.AverageMeter() data_time = util_.AverageMeter() total_losses = util_.AverageMeter() end = time() # Training mode self.model_wrapper.train_mode() for epoch_iter in range(num_epochs): for i, batch in enumerate(data_loader): if self.iter_num >= self.config['max_iters']: print("Reached maximum number of iterations...") break # Send everything to GPU self.model_wrapper.send_batch_to_device(batch) # Get labels labels = batch['labels'].float() # Shape: [N x H x W] # measure data loading time data_time.update(time() - end) N, H, W = labels.shape # Apply the model logits = self.model_wrapper.model(batch) # Shape: [N x 3 x H x W] # Apply the loss loss = self.losses['fg_loss'](logits, labels) ### Gradient descent ### self.optimizer.zero_grad() loss.backward() self.optimizer.step() # measure accuracy and record loss total_losses.update(loss.item(), N) # Record some information about this iteration batch_time.update(time() - end) end = time() # Record information every x iterations if self.iter_num % self.config['iter_collect'] == 0: info = {'iter_num': self.iter_num, 'Batch Time': round(batch_time.avg, 3), 'Data Time': round(data_time.avg, 3), 'loss': round(total_losses.avg, 7), } self.infos[self.iter_num] = info # Tensorboard stuff self.tb_writer.add_scalar('Total Loss', info['loss'], self.iter_num) self.tb_writer.add_scalar('Time/per iter', info['Batch Time'], self.iter_num) self.tb_writer.add_scalar('Time/data fetch', info['Data Time'], self.iter_num) # Reset meters batch_time = util_.AverageMeter() data_time = util_.AverageMeter() total_losses = util_.AverageMeter() end = time() self.iter_num += 1 self.epoch_num += 1
StarcoderdataPython
339675
# Copyright (c) 2021 Graphcore Ltd. All rights reserved. """Auto diff transformation.""" from enum import Enum from typing import Iterable, List, Mapping, Optional, Tuple import popart._internal.ir as _ir from popart.ir.graph import Graph from popart.ir.tensor import Tensor from popart.ir.ops.call import CallInfo __all__ = [ 'autodiff', 'get_expected_forward_inputs_from_call', 'ExpectedConnectionType', 'ExpectedConnection', 'GradGraphInfo' ] class ExpectedConnectionType(Enum): Fwd = "Fwd" FwdGrad = "FwdGrad" @classmethod def _from_pb(cls, type_: _ir.ExpectedConnectionType): if type_ == _ir.ExpectedConnectionType.Fwd: return ExpectedConnectionType.Fwd return ExpectedConnectionType.FwdGrad def _to_pb(self): if self == ExpectedConnectionType.Fwd: return _ir.ExpectedConnectionType.Fwd return _ir.ExpectedConnectionType.FwdGrad class ExpectedConnection: def __init__(self) -> None: self._fwd_graph: _ir.Graph self._pb_ec: _ir.ExpectedConnection raise TypeError( "ExpectedConnection should not be constructed directly. Use ExpectedConnection._from_pb instead." ) @classmethod def _from_pb(cls, fwd_graph: _ir.Graph, pb_ec: _ir.ExpectedConnection) -> "ExpectedConnection": self = super().__new__(cls) self._fwd_graph = fwd_graph self._pb_ec = pb_ec return self def __repr__(self) -> str: return f"({self.connection_type}, {self.fwd_tensor})" @property def fwd_tensor(self) -> Tensor: return Tensor._from_pb_tensor( self._fwd_graph.getTensor(self._pb_ec.fwdId)) @property def connection_type(self): return ExpectedConnectionType._from_pb(self._pb_ec.type) class GradGraphInfo: """The result of differentiating a graph. `graph` is the computational graph for computing the gradient `expected_inputs` are Tensors from the forward_graph that are required as inputs to the grad `graph` `expected_outputs` are Tensors from the forward_graph that have gradients as outputs of the grad `graph`.""" def __init__(self) -> None: self._ir: _ir.Ir self._fwd_graph: _ir.Graph self._expected_inputs: List[ExpectedConnection] self._expected_outputs: List[ExpectedConnection] self._pb_bwd_info: _ir.BwdGraphInfo raise TypeError( "GradGraphInfo should not be constructed directly. Use GradGraphInfo._from_pb instead." ) @classmethod def _from_pb(cls, ir: _ir.Ir, fwd_graph: _ir.Graph, _pb_bwd_info: _ir.BwdGraphInfo) -> "GradGraphInfo": self = super().__new__(cls) self._ir = ir self._fwd_graph = fwd_graph self._expected_inputs = [ ExpectedConnection._from_pb(fwd_graph, e) for e in _pb_bwd_info.expectedInputs ] self._expected_outputs = [ ExpectedConnection._from_pb(fwd_graph, e) for e in _pb_bwd_info.expectedOutputs ] self._pb_bwd_info = _pb_bwd_info return self @property def graph(self): """The computational graph for computing the gradient""" _id = self._pb_bwd_info.bwdGraphId return Graph._from_pb(self._ir.getGraph(_id)) @property def forward_graph(self): return Graph._from_pb(self._fwd_graph) @property def expected_inputs(self) -> Tuple[ExpectedConnection, ...]: """Tensors (or their gradients) from the forward_graph that are required as inputs to the gradient graph""" return tuple(self._expected_inputs) @property def expected_outputs(self) -> Tuple[ExpectedConnection, ...]: """Tensors from the forward_graph that have gradients as outputs of the gradient graph""" return tuple(self._expected_outputs) def get_input_tensors(self) -> Tuple[Tensor, ...]: return tuple(map(lambda ec: ec.fwd_tensor, self._expected_inputs)) def get_output_tensors(self) -> Tuple[Tensor, ...]: return tuple(map(lambda ec: ec.fwd_tensor, self._expected_outputs)) def autodiff(graph: Graph, grads_provided: Optional[Iterable[Tensor]] = None, grads_required: Optional[Iterable[Tensor]] = None, called_graphs_grad_info: Optional[ Mapping[Graph, GradGraphInfo]] = None, return_all_grad_graphs: bool = False): """Differentiate a Graph. The graph will be differentiated using the chain rule starting from `grads_provided`. The outputs of the returned graph will be the gradient of the Tensors in `grads_required`. By default `gradProvided` will be all of the outputs of the forward graph and `grads_required` will be all of the inputs to the forward graph. Any Tensors in the forward graph that are needed to compute the gradients will be added as outputs to the forward graph (if not already an input/output). The returned `GradGraphInfo` contains the gradient graph and information regarding all required inputs to the gradient graph. This can include tensors which are outputs of the forward graph `ExpectedConnectionType.Fwd`, or a gradient of an output of the forwards graph `ExpectedConnectionType.FwdGrad`. Any graphs called in the forward graph will recursively have `autodiff` called on it. Arg `called_graphs_grad_info` can be used to specify the result of `autodiff` on a called graph that has already been differentiated. By default GradGraphInfo will only be returned for the provided forward graph. Arg `return_all_grad_graphs` can be set to `True` to return info on all graphs that `autodiff` as executed on as a result of this transformation. Args: graph (pir.Graph grads_provided (Optional[Iterable[pir.Tensor]], optional) Defaults to all outputs of the provided graph. grads_required (Optional[Iterable[pir.Tensor]], optional). Defaults to all inputs of the provided graph. called_graphs_grad_info (Optional[Mapping[pir.Graph, GradGraphInfo]], optional). Defaults to None. return_all_grad_graphs (bool, optional). Defaults to False. Returns: grad_info: GradGraphInfo """ grads_provided = graph.get_output_tensors( ) if grads_provided is None else grads_provided grads_required = graph.get_input_tensors( ) if grads_required is None else grads_required called_graphs_grad_info = {} if called_graphs_grad_info is None else called_graphs_grad_info _pb_ir = graph.ir()._pb_ir transform = _ir.transforms.Autodiff() _pb_result = transform.apply( _pb_ir, _ir.GraphId(graph.name), [t.id for t in grads_provided], _ir.OptionalTensors([t.id for t in grads_required]), {k: v._pb_bwd_info for k, v in called_graphs_grad_info.items()}) result: Mapping[Graph, GradGraphInfo] = {} for k, v in _pb_result.items(): _graph = Graph._from_pb(_pb_ir.getGraph(k)) result[_graph] = GradGraphInfo._from_pb(_pb_ir, _graph._pb_graph, v) if return_all_grad_graphs: return result return result[graph] def get_expected_forward_inputs_from_call( call_info: CallInfo, grad_info: GradGraphInfo) -> Mapping[Tensor, Tensor]: """Utility function for constructing inputs to calling a grad graph. Args: call_info: `popart.ir.ops.call.CallInfo` Callsite info of a call to the graph that was auto-differentiated. This can be accessed by using `ops.call_with_info()` grad_info: `GradGraphInfo` Output of autodiff on a graph. Returns: `Mapping[Tensor, Tensor]` from: a Tensor in the gradient Graph to: an input or output tensor at a callsite of the corresponding forward Graph. """ if call_info.called_graph != grad_info.forward_graph: raise TypeError( "The called graph does not match the graph that was auto-differentiated." ) return { Tensor._from_pb_tensor(grad_info.graph._pb_graph.getInputTensor(idx)): call_info.subgraph_to_op_tensor(act.fwd_tensor) for idx, act in enumerate(grad_info.expected_inputs) if act.connection_type == ExpectedConnectionType.Fwd }
StarcoderdataPython
4968413
import re class EncodedStringFilter: def __init__(self, \ min_encoded_string_length_inclusive=1, \ max_encoded_string_length_exclusive=1000, \ encoded_string_ignore_filter_regex="^$"): if min_encoded_string_length_inclusive < 0: raise ValueError("""min_encoded_string_length_inclusive must be greater than or equal to zero""") if max_encoded_string_length_exclusive <= min_encoded_string_length_inclusive: raise ValueError("""max_encoded_string_length_exclusive must be greater than or equal to min_encoded_string_length_inclusive""") self.length_range = range( \ min_encoded_string_length_inclusive, \ max_encoded_string_length_exclusive) self.pattern = re.compile(encoded_string_ignore_filter_regex) def should_evaluate_encoded_string(self, encoded_string): return (len(encoded_string) in self.length_range) and \ (not self.pattern.match(encoded_string))
StarcoderdataPython
252089
<reponame>Zazmuz/random_programs import time # God--------------------------------------------------------------------------------------- # # try_out = ["In the beginning", "God created the heavens and the earth"] # timed_try = 0 # holy_number = 3-0.333-0.333-0.333-0.333-0.333 # repeat = 0 # while True: # timed_try -= timed_try # time.sleep(holy_number) # print(try_out[timed_try]) # # timed_try += 1 # time.sleep(holy_number) # print(try_out[timed_try]) # repeat += 1 # if repeat == 3: # while True: # print("Kneel before your king!") # # Counter--------------------------------------------------------------------------------- # counting_seconds = 2450 # counting_seconds = 0 # counting_minutes = 0 # counting_hours = 0 # while True: # if counting_seconds >= 60: # while counting_seconds >= 60: # counting_seconds -= 60 # counting_minutes += 1 # if counting_minutes >= 60: # while counting_minutes >= 60: # counting_minutes -= 60 # counting_hours += 1 # print("\n secs:" + str(counting_seconds) + "\n minutes: " + str(counting_minutes) + "\n hours: " + str(counting_hours) + "\n") # counting_seconds += 1 # time.sleep(1) # Fibonacci-------------------------------------------------------------------------------- # def fibonacci_finder(repeats): # fibonacci_sequence = None # fibonacci_number_1 = 0 # fibonacci_number_2 = 1 # skipper = 0 # for i in range(repeats): # if skipper == 1: # fibonacci_sequence = fibonacci_number_1 + fibonacci_number_2 # fibonacci_number_2 = fibonacci_number_1 # fibonacci_number_1 = fibonacci_sequence # else: # skipper = 1 # fibonacci_sequence = 0 # print("The " + str(repeats) + "th number of the fibonacci seuence is: " + str(fibonacci_sequence)) # # # def fibonacci_checker(number): # fibonacci_sequence = None # fibonacci_number_1 = 0 # fibonacci_number_2 = 1 # no_overly_large_numbers_are_ok = 0 # skipper = 0 # while True: # if skipper == 1: # fibonacci_sequence = fibonacci_number_1 + fibonacci_number_2 # fibonacci_number_2 = fibonacci_number_1 # fibonacci_number_1 = fibonacci_sequence # if fibonacci_sequence == number: # print("Your number is a fibonacci number!") # break # if no_overly_large_numbers_are_ok > 5000: # print("Your number is not a fibonocci numbers! :(") # break # no_overly_large_numbers_are_ok += 1 # else: # skipper = 1 # fibonacci_sequence = 0 # fibonacci_checker(int(input())) # Calculator---------------------------------------------------------------------------- number_one = None number_two = None method = None answer = None def plus(number_one, number_two): answer = number_one + number_two return answer def minus(number_one, number_two): answer = number_one - number_two return answer def division(number_one, number_two): answer = number_one / number_two return answer def multiplication(number_one, number_two): answer = number_one * number_two return answer number_one = int(input("What is your first number?: ")) number_two = int(input("What is your second number?: ")) method = input("Choose a calculation method: + - * /: ") if method == "+": print(plus(number_one, number_two)) if method == "-": print(minus(number_one, number_two)) if method == "/": print(division(number_one, number_two)) if method == "*": print(multiplication(number_one, number_two))
StarcoderdataPython
5124819
# -*- encoding: utf-8 -*- # # Copyright 2014 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from oslo_log import log from six import moves import six.moves.urllib.parse as urlparse import sqlalchemy as sa from ceilometer.i18n import _LE, _LI from ceilometer import service from ceilometer import storage LOG = log.getLogger(__name__) def upgrade(): conf = cfg.ConfigOpts() conf.register_cli_opts([ cfg.BoolOpt('skip-metering-database', help='Skip metering database upgrade.', default=False), cfg.BoolOpt('skip-event-database', help='Skip event database upgrade.', default=False), cfg.BoolOpt('skip-gnocchi-resource-types', help='Skip gnocchi resource-types upgrade.', default=False), ]) service.prepare_service(conf=conf) if conf.skip_metering_database: LOG.info("Skipping metering database upgrade") else: LOG.debug("Upgrading metering database") storage.get_connection_from_config(conf, 'metering').upgrade() if conf.skip_event_database: LOG.info("Skipping event database upgrade") else: LOG.debug("Upgrading event database") storage.get_connection_from_config(conf, 'event').upgrade() if conf.skip_gnocchi_resource_types: LOG.info("Skipping Gnocchi resource types upgrade") else: LOG.debug("Upgrading Gnocchi resource types") from ceilometer import gnocchi_client gnocchi_client.upgrade_resource_types(conf) def expirer(): conf = service.prepare_service() if conf.database.metering_time_to_live > 0: LOG.debug("Clearing expired metering data") storage_conn = storage.get_connection_from_config(conf, 'metering') storage_conn.clear_expired_metering_data( conf.database.metering_time_to_live) else: LOG.info(_LI("Nothing to clean, database metering time to live " "is disabled")) if conf.database.event_time_to_live > 0: LOG.debug("Clearing expired event data") event_conn = storage.get_connection_from_config(conf, 'event') event_conn.clear_expired_event_data( conf.database.event_time_to_live) else: LOG.info(_LI("Nothing to clean, database event time to live " "is disabled")) def db_clean_legacy(): conf = cfg.ConfigOpts() conf.register_cli_opts([ cfg.strOpt('confirm-drop-alarm-table', short='n', help='confirm to drop the legacy alarm tables')]) if not conf.confirm_drop_alarm_table: confirm = moves.input("Do you really want to drop the legacy alarm " "tables? This will destroy data definitely " "if it exist. Please type 'YES' to confirm: ") if confirm != 'YES': print("DB legacy cleanup aborted!") return service.prepare_service(conf=conf) for purpose in ['metering', 'event']: url = (getattr(conf.database, '%s_connection' % purpose) or conf.database.connection) parsed = urlparse.urlparse(url) if parsed.password: masked_netloc = '****'.join(parsed.netloc.rsplit(parsed.password)) masked_url = parsed._replace(netloc=masked_netloc) masked_url = urlparse.urlunparse(masked_url) else: masked_url = url LOG.info(_LI('Starting to drop alarm and alarm history tables in ' '%(purpose)s backend: %(url)s'), { 'purpose': purpose, 'url': masked_url}) connection_scheme = parsed.scheme conn = storage.get_connection_from_config(conf, purpose) if connection_scheme in ('mysql', 'mysql+pymysql', 'postgresql', 'sqlite'): engine = conn._engine_facade.get_engine() meta = sa.MetaData(bind=engine) for table_name in ['alarm', 'alarm_history']: if engine.has_table(table_name): alarm = sa.Table(table_name, meta, autoload=True) alarm.drop() LOG.info(_LI("Legacy %s table of SQL backend has been " "dropped."), table_name) else: LOG.info(_LI('%s table does not exist.'), table_name) elif connection_scheme == 'hbase': with conn.conn_pool.connection() as h_conn: tables = h_conn.tables() table_name_mapping = {'alarm': 'alarm', 'alarm_h': 'alarm history'} for table_name in ['alarm', 'alarm_h']: try: if table_name in tables: h_conn.disable_table(table_name) h_conn.delete_table(table_name) LOG.info(_LI("Legacy %s table of Hbase backend " "has been dropped."), table_name_mapping[table_name]) else: LOG.info(_LI('%s table does not exist.'), table_name_mapping[table_name]) except Exception as e: LOG.error(_LE('Error occurred while dropping alarm ' 'tables of Hbase, %s'), e) elif connection_scheme == 'mongodb': for table_name in ['alarm', 'alarm_history']: if table_name in conn.db.conn.collection_names(): conn.db.conn.drop_collection(table_name) LOG.info(_LI("Legacy %s table of Mongodb backend has been " "dropped."), table_name) else: LOG.info(_LI('%s table does not exist.'), table_name) LOG.info('Legacy alarm tables cleanup done.')
StarcoderdataPython
1784678
import base64 import hmac import hashlib import time import requests import urllib class azureiot: API_VERSION = '2016-02-03' TOKEN_VALID_SECS = 10 TOKEN_FORMAT = 'SharedAccessSignature sig=%s&se=%s&sr=%s' def __init__(self, connectionString=None): if connectionString != None: iotHost, keyValue = [sub[sub.index('=') + 1:] for sub in connectionString.split(";")] self.iotHost = iotHost self.keyValue = keyValue def _buildExpiryOn(self): return '%d' % (time.time() + self.TOKEN_VALID_SECS) def _buildIoTHubSasToken(self, deviceId): resourceUri = '%s/devices/%s' % (self.iotHost, deviceId) targetUri = resourceUri.lower() expiryTime = self._buildExpiryOn() toSign = '%s\n%s' % (targetUri, expiryTime) key = base64.b64decode(self.keyValue.encode('utf-8')) signature = urllib.quote( base64.b64encode( hmac.HMAC(key, toSign.encode('utf-8'), hashlib.sha256).digest() ) ).replace('/', '%2F') return self.TOKEN_FORMAT % (signature, expiryTime, targetUri) def sendMessage(self, deviceId, message): sasToken = self._buildIoTHubSasToken(deviceId) url = 'https://%s/devices/%s/messages/events?api-version=%s' % (self.iotHost, deviceId, self.API_VERSION) r = requests.post(url, headers={'Authorization': sasToken}, data=message) return r.text, r.status_code
StarcoderdataPython
115737
<gh_stars>0 #!/usr/bin/env python3 # -*- coding: utf-8 -*- import gym gym.register( id='GridWorld-v1', entry_point='simple_grid:MyGridWorld1', max_episode_steps=200, reward_threshold=100.0 ) from skinner import FiniteSet from objects import Robot, NeuralRobot class MyRobot(Robot): """there are 3 nubmers in state The first 2 present position by default """ init_power = 20 @property def power(self): # the third number of state presents the power return self.state[2] def _reset(self): self.state = 1, self.env.n_rows, self.init_power def _next_state(self, state, action): """transition function Arguments: state -- state before action action -- the action selected by the agent Returns: new state Raises: Exception -- invalid action """ if action=='e': next_state = (state[0]+1, state[1], state[2]) elif action=='w': next_state = (state[0]-1, state[1], state[2]) elif action=='s': next_state = (state[0], state[1]-1, state[2]) elif action=='n': next_state = (state[0], state[1]+1, state[2]) else: raise Exception('invalid action!') if self.env.collide(next_state[:2]): next_state = state next_state = *next_state[:2], next_state[2]-1 else: if next_state[:2] == self.env.CHARGER: next_state = *next_state[:2], 35 else: next_state = *next_state[:2], next_state[2]-1 return next_state def _get_reward(self, state0, action, state1): """reward function called in step method Arguments: state0 -- state before action action -- the action state1 -- state after action Returns: number -- reward """ r = 0 # if state0[-1] <=3: # if state1[:2] == self.env.CHARGER: # r += .1 # else: # r -= .1 # else: # if state1[:2] == self.env.CHARGER: # r -= .1 if state1[:2] in self.env.TRAPS: r -= 100 elif state1[:2] in self.env.DEATHTRAPS: r -= 200 elif state1[:2] == self.env.GOLD: r += 100 elif state0[:2] == state1[:2]: r -= 2 else: r -= 1 return r def Q(self, key): # predict Q value of key based on current QTable if key in self.QTable: return self.QTable[key] dm = 100 q = 0 for k, v in self.QTable.items(): if k[1] == key[1] and k[0][:2] == key[0][:2]: d = abs(k[0][2] - key[0][2]) if d < dm: dm = d q = self.QTable[key] return q agent = MyRobot(alpha=0.7, gamma=0.99, epsilon=0.1) if __name__ == '__main__': env = gym.make('GridWorld-v1') env.config('config1.yaml') env.add_agent(agent) env.seed() env.demo(n_epochs=2000)
StarcoderdataPython
5095984
import ply.yacc as yacc import ply.lex as lex from etcdb import PARSER_LOCK from etcdb.sqlparser import etcdb_lexer from etcdb.sqlparser.sql_tree import SQLTree # noinspection PyUnresolvedReferences from etcdb_lexer import tokens precedence = ( ('left', 'AND', 'OR'), ('right', 'UNOT'), ) def p_statement(p): """statement : select_statement | show_tables_statement | create_table_statement | create_database_statement | show_databases_statement | use_database_statement | commit_statement | set_statement | insert_statement | delete_statement | drop_database_statement | drop_table_statement | desc_table_statement | update_table_statement | wait_statement""" p[1].success = True p[0] = p[1] def p_wait_statement(p): """wait_statement : WAIT select_item_list FROM identifier opt_WHERE opt_AFTER""" tree = SQLTree() tree.query_type = "WAIT" tree.table = p[4] tree.expressions = p[2] tree.where = p[5] tree.options = p[6] p[0] = tree def p_opt_after_empty(p): """opt_AFTER : """ def p_opt_after(p): """opt_AFTER : AFTER NUMBER""" after = { 'after': int(p[2]) } p[0] = after def p_update_table_statement(p): """update_table_statement : UPDATE identifier SET col_expr_list opt_WHERE opt_USE_LOCK""" tree = SQLTree() tree.query_type = "UPDATE" tree.table = p[2] tree.expressions = p[4] tree.where = p[5] tree.lock = p[6] p[0] = tree def p_col_expr_list_one(p): """col_expr_list : col_expr""" p[0] = [p[1]] def p_col_expr_list(p): """col_expr_list : col_expr_list ',' col_expr""" p[1].append(p[3]) p[0] = p[1] def p_col_expr(p): """col_expr : identifier '=' expr""" p[0] = (p[1], p[3]) def p_desc_table_statement(p): """desc_table_statement : DESC identifier""" tree = SQLTree() tree.table = p[2] tree.query_type = "DESC_TABLE" p[0] = tree def p_drop_database_statement(p): """drop_database_statement : DROP DATABASE identifier""" tree = SQLTree() tree.db = p[3] tree.query_type = "DROP_DATABASE" p[0] = tree def p_drop_table_statement(p): """drop_table_statement : DROP TABLE identifier opt_IF_EXISTS""" tree = SQLTree() tree.table = p[3] tree.query_type = "DROP_TABLE" tree.options['if_exists'] = p[4] p[0] = tree def p_opt_if_exists_empty(p): """opt_IF_EXISTS : """ p[0] = False def p_opt_if_exists(p): """opt_IF_EXISTS : IF EXISTS""" p[0] = True def p_insert_statement(p): """insert_statement : INSERT INTO identifier opt_fieldlist VALUES '(' values_list ')' opt_USE_LOCK""" tree = SQLTree() tree.query_type = "INSERT" tree.table = p[3] n_fields = len(p[4]) n_values = len(p[7]) if n_fields != n_values: msg = 'There are {n_fields} fields, but {n_values} values'.format( n_fields=n_fields, n_values=n_values ) raise SQLParserError(msg) for i in xrange(n_fields): tree.fields[p[4][i]] = p[7][i] tree.lock = p[9] p[0] = tree def p_opt_fieldlist_empty(p): """opt_fieldlist : """ p[0] = {} def p_opt_fieldlist(p): """opt_fieldlist : '(' fieldlist ')'""" p[0] = p[2] def p_fieldlist_one(p): """fieldlist : identifier""" p[0] = [p[1]] def p_fieldlist_many(p): """fieldlist : fieldlist ',' identifier """ if p[1] is None: p[0] = [p[3]] else: p[1].append(p[3]) p[0] = p[1] def p_values_list_one(p): """values_list : value""" p[0] = [p[1]] def p_values_list_many(p): """values_list : values_list ',' value""" if p[1] is None: p[0] = p[3] else: p[1].append(p[3]) p[0] = p[1] def p_set_statement(p): """set_statement : set_autocommit_statement | set_names_statement""" p[0] = p[1] def p_set_names_statement(p): """set_names_statement : SET NAMES STRING""" tree = SQLTree() tree.query_type = "SET_NAMES" p[0] = tree def p_set_statement_autocommit(p): """set_autocommit_statement : SET AUTOCOMMIT '=' NUMBER""" tree = SQLTree() tree.query_type = "SET_AUTOCOMMIT" tree.options['autocommit'] = int(p[4]) p[0] = tree def p_commit_statement(p): """commit_statement : COMMIT""" tree = SQLTree() tree.query_type = "COMMIT" p[0] = tree def p_create_table_statement(p): """create_table_statement : CREATE TABLE identifier '(' create_definition_list ')'""" tree = SQLTree() tree.query_type = "CREATE_TABLE" tree.table = p[3] tree.fields = p[5] p[0] = tree def p_create_database_statement(p): """create_database_statement : CREATE DATABASE identifier""" tree = SQLTree() tree.query_type = "CREATE_DATABASE" tree.db = p[3] p[0] = tree def p_show_databases_statement(p): """show_databases_statement : SHOW DATABASES""" tree = SQLTree() tree.query_type = "SHOW_DATABASES" p[0] = tree def p_use_database_statement(p): """use_database_statement : USE identifier""" tree = SQLTree() tree.query_type = "USE_DATABASE" tree.db = p[2] p[0] = tree def p_identifier(p): """identifier : STRING""" p[0] = p[1] def p_identifier_escaped(p): """identifier : '`' STRING '`'""" p[0] = p[2] def p_create_definition_list_one(p): """create_definition_list : create_definition""" p[0] = { p[1][0]: p[1][1] } def p_create_definition_list_many(p): """create_definition_list : create_definition_list ',' create_definition""" create_definition_list = p[1] create_definition_list[p[3][0]] = p[3][1] p[0] = create_definition_list def p_create_definition(p): """create_definition : identifier column_definition""" p[0] = p[1], p[2] def p_column_definition(p): """column_definition : data_type opt_column_def_options_list""" p[0] = { 'type': p[1] } p[0]['options'] = p[2] def p_data_type(p): """data_type : INTEGER opt_UNSIGNED | VARCHAR '(' NUMBER ')' | DATETIME | DATETIME '(' NUMBER ')' | INT opt_UNSIGNED | LONGTEXT | SMALLINT opt_UNSIGNED | TINYINT | BOOL""" p[0] = p[1] def p_opt_UNSIGNED(p): """opt_UNSIGNED : | UNSIGNED""" def p_opt_column_def_options_list_empty(p): """opt_column_def_options_list : """ p[0] = { 'nullable': True } def p_opt_column_def_options_list(p): """opt_column_def_options_list : opt_column_def_options opt_column_def_options_list""" if p[2] is None: p[0] = p[1] else: p[2].update(p[1]) p[0] = p[2] def p_DEFAULT_CLAUSE(p): """opt_column_def_options : DEFAULT value""" p[0] = { 'default': p[2] } def p_NULL(p): """opt_column_def_options : NULL""" p[0] = { 'nullable': True } def p_NOT_NULL(p): """opt_column_def_options : NOT NULL""" p[0] = { 'nullable': False } def p_AUTO_INCREMENT(p): """opt_column_def_options : AUTO_INCREMENT""" p[0] = { 'auto_increment': True } def p_PRIMARY_KEY(p): """opt_column_def_options : PRIMARY KEY""" p[0] = { 'primary': True } def p_UNIQUE(p): """opt_column_def_options : UNIQUE""" p[0] = { 'unique': True } def p_value(p): """value : q_STRING | NUMBER | STRING_VALUE """ p[0] = p[1] def p_q_STRING(p): """q_STRING : "'" STRING "'" """ p[0] = p[2] def p_q_STRING_EMPTY(p): """q_STRING : """ p[0] = "" def p_select_statement(p): """select_statement : SELECT select_item_list opt_FROM opt_WHERE opt_ORDER_BY opt_LIMIT""" tree = SQLTree() tree.query_type = "SELECT" tree.db = p[3][0] tree.table = p[3][1] tree.expressions = p[2] tree.where = p[4] try: tree.limit = int(p[6]) except TypeError: tree.limit = None tree.order = p[5] p[0] = tree def p_opt_ORDER_BY_empty(p): """opt_ORDER_BY : """ p[0] = None def p_opt_ORDER_BY_simple(p): """opt_ORDER_BY : ORDER BY identifier opt_ORDER_DIRECTION""" order = { 'by': p[3], 'direction': p[4] } p[0] = order def p_opt_ORDER_BY_extended(p): """opt_ORDER_BY : ORDER BY identifier '.' identifier opt_ORDER_DIRECTION""" order = { 'by': p[5], 'direction': p[6] } p[0] = order def p_opt_ORDER_DIRECTION_empty(p): """opt_ORDER_DIRECTION : """ p[0] = 'ASC' def p_opt_ORDER_DIRECTION(p): """opt_ORDER_DIRECTION : ASC | DESC """ p[0] = p[1] def p_opt_LIMIT_empty(p): """opt_LIMIT : """ p[0] = None def p_opt_LIMIT(p): """opt_LIMIT : LIMIT NUMBER""" p[0] = p[2] def p_show_tables_statement(p): """show_tables_statement : SHOW opt_FULL TABLES""" tree = SQLTree() tree.query_type = "SHOW_TABLES" tree.options['full'] = p[2] p[0] = tree def p_opt_from_empty(p): """opt_FROM : """ p[0] = None, None def p_opt_from(p): """opt_FROM : FROM table_reference""" p[0] = p[2] def p_table_reference(p): """table_reference : identifier""" p[0] = None, p[1] def p_table_reference_w_database(p): """table_reference : identifier '.' identifier""" p[0] = p[1], p[3] def p_opt_FULL_empty(p): """opt_FULL : """ p[0] = False def p_opt_FULL(p): """opt_FULL : FULL""" p[0] = True def p_select_item_list_select_item(p): """select_item_list : select_item """ p[0] = [p[1]] def p_select_item_list(p): """select_item_list : select_item_list ',' select_item """ select_item_list = p[1] select_item_list .append(p[3]) p[0] = select_item_list def p_select_item_list_star(p): """select_item_list : '*'""" p[0] = [ ( ('*', None), None ) ] def p_select_item(p): """select_item : select_item2 select_alias""" p[0] = (p[1], p[2]) def p_select_item2(p): """select_item2 : table_wild | expr """ p[0] = p[1] def p_select_alias_empty(p): """select_alias : """ p[0] = None def p_select_alias(p): """select_alias : AS identifier""" p[0] = p[2] def p_table_wild(p): """table_wild : identifier '.' '*' """ p[0] = ("*", p[1]) def p_opt_USE_LOCK_empty(p): """opt_USE_LOCK : """ p[0] = None def p_opt_USE_LOCK(p): """opt_USE_LOCK : USE LOCK STRING_VALUE """ p[0] = p[3] def p_opt_WHERE_empty(p): """opt_WHERE : """ p[0] = None def p_opt_WHERE(p): """opt_WHERE : WHERE expr""" p[0] = p[2] def p_expr_OR(p): """expr : expr OR expr""" p[0] = ('OR', p[1], p[3]) def p_expr_AND(p): """expr : expr AND expr""" p[0] = ('AND', p[1], p[3]) def p_expr_NOT(p): """expr : NOT expr %prec UNOT""" p[0] = ('NOT', p[2]) def p_expr_bool_primary(p): """expr : boolean_primary""" p[0] = ('bool_primary', p[1]) def p_boolean_primary_is_null(p): """boolean_primary : boolean_primary IS NULL""" p[0] = ('IS NULL', p[1]) def p_boolean_primary_is_not_null(p): """boolean_primary : boolean_primary IS NOT NULL""" p[0] = ('IS NOT NULL', p[1]) def p_boolean_primary_comparison(p): """boolean_primary : boolean_primary comparison_operator predicate""" p[0] = (p[2], p[1], p[3]) def p_boolean_primary_predicate(p): """boolean_primary : predicate""" p[0] = ('predicate', p[1]) def p_comparison_operator(p): """comparison_operator : '=' | GREATER_OR_EQ | '>' | LESS_OR_EQ | '<' | N_EQ""" p[0] = p[1] def p_predicate(p): """predicate : bit_expr """ p[0] = ('bit_expr', p[1]) def p_predicate_in(p): """predicate : bit_expr IN '(' list_expr ')'""" p[0] = ( 'IN', p[1], p[4] ) def p_list_expr_one(p): """list_expr : expr""" p[0] = [p[1]] def p_list_expr(p): """list_expr : list_expr ',' expr""" p[1].append(p[3]) p[0] = p[1] def p_bit_expr(p): """bit_expr : simple_expr""" p[0] = ('simple_expr', p[1]) def p_simple_expr_identifier(p): """simple_expr : identifier""" p[0] = ('IDENTIFIER', p[1]) def p_simple_expr_identifier_full(p): """simple_expr : identifier '.' identifier""" p[0] = ('IDENTIFIER', p[1] + '.' + p[3]) def p_simple_expr_parent(p): """simple_expr : '(' expr ')'""" p[0] = ('expr', p[2]) def p_simple_expr_variable(p): """simple_expr : variable""" p[0] = ('variable', p[1]) def p_variable(p): """variable : '@' '@' STRING""" p[0] = p[3] def p_simple_expr_literal(p): """simple_expr : literal""" p[0] = ('literal', p[1]) def p_literal(p): """literal : q_STRING | NUMBER | STRING_VALUE""" p[0] = p[1] def p_simple_expr_function_call(p): """simple_expr : function_call""" p[0] = ('function_call', p[1]) def p_function_call_version(p): """function_call : VERSION '(' ')'""" p[0] = 'VERSION' def p_function_call_count_star(p): """function_call : COUNT '(' '*' ')'""" p[0] = 'COUNT' def p_delete_statement(p): """delete_statement : DELETE FROM identifier opt_WHERE""" tree = SQLTree() tree.query_type = 'DELETE' tree.table = p[3] tree.where = p[4] p[0] = tree def p_error(t): if t: msg = "Syntax error at lexeme '{value}' (type: '{type}'). " \ "Line: {lineno}, position: {lexpos}".format(value=t.value, type=t.type, lineno=t.lineno, lexpos=t.lexpos) raise SQLParserError(msg) else: raise SQLParserError("Syntax error") class SQLParser(object): def __init__(self): self._parser = yacc.yacc(debug=False) def parse(self, *args, **kwargs): try: PARSER_LOCK.acquire() # noinspection PyUnusedLocal lexer = lex.lex(module=etcdb_lexer) tree = self._parser.parse(*args, **kwargs) tree.query = args[0] return tree except SQLParserError: self._parser.restart() raise finally: PARSER_LOCK.release() class SQLParserError(Exception): """All SQL parsing errors"""
StarcoderdataPython
5090843
<reponame>al-arz/the-tale<gh_stars>10-100 from aiohttp import web from tt_web import log from tt_web import postgresql from . import operations async def on_startup(app): await postgresql.initialize(app['config']['database']) await operations.initialize_timestamps_cache() async def on_cleanup(app): await postgresql.deinitialize() def register_routers(app): from . import handlers app.router.add_post('/version', handlers.version) app.router.add_post('/push-message', handlers.push_message) app.router.add_post('/diary', handlers.diary) def create_application(config): app = web.Application() app['config'] = config log.initilize(config['log']) app.on_startup.append(on_startup) app.on_cleanup.append(on_cleanup) register_routers(app) return app
StarcoderdataPython
3496489
import types import synapse.common as s_common from synapse.eventbus import EventBus class Task(EventBus): ''' A cancelable Task abstraction which operates much like a Future but with some additional features. ''' def __init__(self, iden=None): EventBus.__init__(self) if iden is None: iden = s_common.guid() self.info = {} self.iden = iden self.on('task:fini', self._onTaskFini) def _onTaskFini(self, mesg): retn = mesg[1].get('retn') if retn is not None: self.fire('task:retn', task=self.iden, retn=retn) self.fini() def get(self, prop, defval=None): ''' Get a value from the info dict for the task. Args: prop (str): The name of the info value. defval (obj): The default value to return if not found Returns: (obj): The object from the info dict (or None) ''' return self.info.get(prop, defval) def set(self, prop, valu): ''' Set a value in the info dict for the task. Args: prop (str): The name of the info dict value valu (obj): The value to set in the info dict ''' self.info[prop] = valu def err(self, info): ''' Fire an error return value for the task. Args: info (dict): Exception info dict (see synapse.common.excinfo ) ''' retn = (False, info) self.fire('task:retn', task=self.iden, retn=retn) def retn(self, valu): ''' Fire a result return value for the task. Args: valu (obj): The return value ''' retn = (True, valu) self.fire('task:retn', task=self.iden, retn=retn) def onretn(self, func): ''' Provide a function to receive return values. The specififed callback will be called with a retn tuple defined as (ok,valu). If ok is True, valu is a return valu, if ok is False, valu is an excinfo dictionary. Args: func (function): Callback for a retn tuple. ''' def prox(mesg): return func(mesg[1].get('retn')) self.on('task:retn', prox) def run(self): ''' Execute the task. ''' if not self.isfini: self._task_run() self.fini() def _task_run(self): # pragma: no cover raise s_common.NoSuchImpl(name='_task_run') def __call__(self): self.run() class CallTask(Task): ''' An extension for a runnable task. Args: call ((func,[],{})): A tuple of call details. ''' def __init__(self, call): Task.__init__(self) self._call = call def _task_run(self): func, args, kwargs = self._call try: valu = func(*args, **kwargs) if isinstance(valu, types.GeneratorType): for v in valu: self.retn(v) else: self.retn(valu) except Exception as e: self.err(s_common.excinfo(e))
StarcoderdataPython
5085040
from parsy import generate, match_item, test_item class Command: def __init__(self, parameter): self.parameter = parameter def __repr__(self): return "{0}({1})".format(self.__class__.__name__, self.parameter) class Forward(Command): pass class Backward(Command): pass class Right(Command): pass class Left(Command): pass commands = { 'fd': Forward, 'bk': Backward, 'rt': Right, 'lt': Left, } @generate def statement(): cmd_name = yield test_item(lambda i: i in commands.keys(), "command") parameter = yield test_item(lambda i: isinstance(i, int), "number") yield match_item('\n') return commands[cmd_name](int(parameter)) program = statement.many() import pytest # noqa isort:skip test_item = pytest.mark.skip(test_item) # This is not a test
StarcoderdataPython
219803
<filename>src/alembic/versions/15ea3c2cf83d_pr_comment_editing.py """Adding column to store edited_by and edited_on a PR comment Revision ID: 15ea3c2cf83d Revises: <PASSWORD> Create Date: 2015-11-09 16:18:47.192088 """ # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = '<PASSWORD>' from alembic import op import sqlalchemy as sa def upgrade(): ''' Add the columns editor_id and edited_on to the table pull_request_comments. ''' op.add_column( 'pull_request_comments', sa.Column( 'editor_id', sa.Integer, sa.ForeignKey('users.id', onupdate='CASCADE'), nullable=True) ) op.add_column( 'pull_request_comments', sa.Column( 'edited_on', sa.DateTime, nullable=True) ) def downgrade(): ''' Remove the columns editor_id and edited_on from the table pull_request_comments. ''' op.drop_column('pull_request_comments', 'editor_id') op.drop_column('pull_request_comments', 'edited_on')
StarcoderdataPython
4918774
from dataclasses import dataclass, field from enum import Enum from typing import Optional from xsdata.models.datatype import XmlPeriod __NAMESPACE__ = "NISTSchema-SV-IV-union-gMonthDay-gYearMonth-enumeration-5-NS" class NistschemaSvIvUnionGMonthDayGYearMonthEnumeration5Type(Enum): VALUE_05_07 = XmlPeriod("--05-07") VALUE_07_18 = XmlPeriod("--07-18") VALUE_2011_09 = XmlPeriod("2011-09") VALUE_2019_10 = XmlPeriod("2019-10") VALUE_03_13 = XmlPeriod("--03-13") VALUE_02_15 = XmlPeriod("--02-15") VALUE_11_30 = XmlPeriod("--11-30") VALUE_1997_02 = XmlPeriod("1997-02") @dataclass class NistschemaSvIvUnionGMonthDayGYearMonthEnumeration5: class Meta: name = "NISTSchema-SV-IV-union-gMonthDay-gYearMonth-enumeration-5" namespace = "NISTSchema-SV-IV-union-gMonthDay-gYearMonth-enumeration-5-NS" value: Optional[NistschemaSvIvUnionGMonthDayGYearMonthEnumeration5Type] = field( default=None, metadata={ "required": True, } )
StarcoderdataPython
3468804
<gh_stars>0 # Generated by Django 3.1.1 on 2020-12-15 10:20 import django.core.validators from django.db import migrations, models import django.db.models.deletion import django_countries.fields import stdimage.models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Address', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('cart_id', models.CharField(blank=True, max_length=40, null=True)), ('street_address', models.CharField(max_length=100)), ('apartment_address', models.CharField(max_length=100)), ('country', django_countries.fields.CountryField(max_length=2)), ('city', models.CharField(max_length=60)), ('zip', models.CharField(max_length=10)), ('address_type', models.CharField(choices=[('B', 'Billing'), ('S', 'Shipping')], max_length=1)), ('payment_option', models.CharField(choices=[('D', 'Debit Card'), ('P', 'Paypal'), ('M', 'M-Pesa'), ('C', 'Cash On Delivery'), ('S', 'Stripe')], max_length=2)), ('default', models.BooleanField(default=False)), ('name', models.CharField(blank=True, max_length=60, null=True)), ('email', models.EmailField(blank=True, max_length=50, null=True)), ('phone', models.CharField(blank=True, max_length=20, null=True)), ('date_updated', models.DateTimeField(auto_now_add=True)), ], options={ 'verbose_name_plural': 'Addresses', 'ordering': ['-date_updated'], }, ), migrations.CreateModel( name='Brand', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(editable=False, verbose_name='creation date and time')), ('modified', models.DateTimeField(editable=False, null=True, verbose_name='modification date and time')), ('title', models.CharField(help_text='Unique title to identify Your store and your product line', max_length=100, unique=True)), ('active', models.BooleanField(default=True)), ('is_featured', models.BooleanField(blank=True, default=False, null=True)), ('image', stdimage.models.StdImageField(blank=True, default='images/brands/brand_background/default.jpg', help_text="wallpaper for your store.Leave blank if you don't have one", null=True, upload_to='images/brands/brand_background')), ('logo', stdimage.models.StdImageField(blank=True, help_text="logo for your store, Leave blank if you don't have one", null=True, upload_to='images/brands/brand_logo')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Coupon', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('code', models.CharField(max_length=10)), ('amount', models.DecimalField(decimal_places=2, default=20, max_digits=9)), ('valid', models.BooleanField(default=True)), ], ), migrations.CreateModel( name='Order', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(editable=False, verbose_name='creation date and time')), ('modified', models.DateTimeField(editable=False, null=True, verbose_name='modification date and time')), ('cart_id', models.CharField(blank=True, max_length=40, null=True)), ('status', models.IntegerField(choices=[(10, 'New'), (20, 'Paid'), (30, 'Done')], default=10)), ('ref_code', models.CharField(max_length=20)), ('start_date', models.DateTimeField(auto_now_add=True)), ('order_date', models.DateTimeField(auto_now=True)), ('ordered', models.BooleanField(default=False)), ('payment', models.CharField(blank=True, max_length=2, null=True)), ('being_delivered', models.BooleanField(default=False)), ('received', models.BooleanField(default=False)), ('refund_requested', models.BooleanField(default=False)), ('refund_granted', models.BooleanField(default=False)), ('email', models.EmailField(blank=True, max_length=50, null=True)), ('phone', models.CharField(blank=True, max_length=20, null=True)), ('name', models.CharField(blank=True, max_length=60, null=True)), ('billing_address1', models.CharField(max_length=60)), ('billing_address2', models.CharField(blank=True, max_length=60)), ('billing_zip_code', models.CharField(max_length=12)), ('billing_country', models.CharField(max_length=3)), ('billing_city', models.CharField(blank=True, max_length=12, null=True)), ('shipping_address1', models.CharField(max_length=60)), ('shipping_address2', models.CharField(blank=True, max_length=60)), ('shipping_zip_code', models.CharField(max_length=12)), ('shipping_country', models.CharField(max_length=3)), ('shipping_city', models.CharField(blank=True, max_length=12, null=True)), ('comments', models.TextField(blank=True)), ], options={ 'ordering': ['-modified'], }, ), migrations.CreateModel( name='OrderItem', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(editable=False, verbose_name='creation date and time')), ('modified', models.DateTimeField(editable=False, null=True, verbose_name='modification date and time')), ('cart_id', models.CharField(blank=True, max_length=40, null=True)), ('date_added', models.DateTimeField(auto_now_add=True)), ('date_ordered', models.DateTimeField(auto_now=True)), ('status', models.IntegerField(choices=[(10, 'New'), (20, 'Processing'), (30, 'Sent'), (40, 'Cancelled'), (45, 'in_transit'), (50, 'Delivered')], default=10)), ('order_received', models.BooleanField(default=False)), ('ordered', models.BooleanField(default=False)), ('quantity', models.PositiveIntegerField(default=1, validators=[django.core.validators.MinValueValidator(1)])), ('comments', models.TextField(blank=True)), ], options={ 'ordering': ['-date_added'], }, ), migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('slug', models.SlugField(help_text='Unique value for product page URL, created from the product title.', unique=True)), ('stock', models.IntegerField(default=1)), ('sku', models.CharField(max_length=120)), ('in_stock', models.BooleanField(blank=True, default=True, null=True)), ('price', models.DecimalField(decimal_places=2, max_digits=9)), ('discount_price', models.DecimalField(blank=True, decimal_places=2, max_digits=9, null=True, validators=[django.core.validators.MinValueValidator(1.0)])), ('made_in_africa', models.BooleanField(default=False)), ('is_active', models.BooleanField(default=True)), ('is_bestseller', models.BooleanField(default=False)), ('is_featured', models.BooleanField(default=False)), ('is_bestrated', models.BooleanField(default=False)), ('description', models.TextField()), ('additional_information', models.TextField(blank=True, null=True)), ('meta_keywords', models.CharField(help_text='Comma-delimited set of SEO keywords that summarize the type of product above max 4 words', max_length=100, verbose_name='Meta Keywords')), ('meta_description', models.CharField(help_text='help sellers get your product easily. Give a simple short description about the page content you have added. This information makes iteasy for customers to get your product and offers an overview of it', max_length=255, verbose_name='Meta Description')), ('created_at', models.DateTimeField(auto_now_add=True, null=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('category_choice', models.CharField(choices=[('At', 'Arts, Crafts'), ('Bk', 'Books'), ('Bb', 'Baby Care'), ('Be', 'Beautiful 2'), ('Ca', 'Camera & Photo'), ('S', 'Shirt'), ('Sw', 'Sport wear'), ('Ow', 'Outwear'), ('Am', 'Automotive & Motorcycle'), ('Ca', 'Cell Phones & Accessories'), ('El', 'Electronics'), ('Fa', 'Fashion'), ('Fu', 'Furniture'), ('So', 'Sokoni'), ('Wo', 'Women Fashion')], help_text='Choose the main category for the product', max_length=2)), ], options={ 'verbose_name_plural': 'Products', 'db_table': 'Products', 'ordering': ['-created_at'], }, ), migrations.CreateModel( name='ProductAttribute', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(editable=False, verbose_name='creation date and time')), ('modified', models.DateTimeField(editable=False, null=True, verbose_name='modification date and time')), ('name', models.CharField(max_length=300)), ('description', models.TextField(blank=True)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='ProductDetail', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(editable=False, verbose_name='creation date and time')), ('modified', models.DateTimeField(editable=False, null=True, verbose_name='modification date and time')), ('value', models.CharField(max_length=500)), ('description', models.TextField(blank=True)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='ProductImage', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(editable=False, verbose_name='creation date and time')), ('modified', models.DateTimeField(editable=False, null=True, verbose_name='modification date and time')), ('image', stdimage.models.StdImageField(upload_to='images/products')), ('in_display', models.BooleanField(default=True)), ], options={ 'ordering': ('-created',), }, ), migrations.CreateModel( name='ProductReview', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=50)), ('date', models.DateTimeField(auto_now_add=True)), ('rating', models.PositiveSmallIntegerField(choices=[(5, 5), (4, 4), (3, 3), (2, 2), (1, 1)], default=5)), ('is_approved', models.BooleanField(default=True)), ('content', models.TextField()), ('country', django_countries.fields.CountryField(blank=True, max_length=2, null=True)), ], ), migrations.CreateModel( name='RequestRefund', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('reason', models.TextField()), ('accepted', models.BooleanField(default=False)), ('email', models.EmailField(max_length=254)), ('ref_code', models.CharField(max_length=20)), ], ), migrations.CreateModel( name='StatusCode', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(editable=False, verbose_name='creation date and time')), ('modified', models.DateTimeField(editable=False, null=True, verbose_name='modification date and time')), ('short_name', models.IntegerField(choices=[(10, 'New'), (20, 'Paid'), (30, 'Processing'), (40, 'Sent'), (50, 'Cancelled'), (60, 'in_transit'), (70, 'Delivered')], default=10)), ('name', models.CharField(max_length=300)), ('description', models.TextField()), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='StripePayment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('stripe_charge_id', models.CharField(max_length=50)), ('amount', models.DecimalField(decimal_places=2, max_digits=9)), ('timestamp', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='WishList', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(editable=False, verbose_name='creation date and time')), ('modified', models.DateTimeField(editable=False, null=True, verbose_name='modification date and time')), ('product', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='me2ushop.product')), ], options={ 'abstract': False, }, ), ]
StarcoderdataPython
3584627
import psycopg2, multiprocessing from dbconfig import chitanka_dbname, chitanka_dbuser, chitanka_dbpassword import os import re, nltk from pathlib import Path import requests, os,re import glob def importData(start, end): my_dirs = glob.glob("../books/*") my_dirs.sort() try: connection = psycopg2.connect("dbname='" + chitanka_dbname + "' user='" + chitanka_dbuser + "' password='" + <PASSWORD> + "'") connection.autocommit = True cur = connection.cursor() except Exception as e: print(e) for my_dir in my_dirs[start:end]: author_name = re.sub("\-", " ", my_dir[9:]) # 9 -> to skip the ../books/ and use only the author name try: sql = 'insert into authors (name) values(%s) RETURNING id' cur.execute(sql, (author_name, )) author_id = cur.fetchone()[0] connection.commit() except Exception as e: print(e) folder_location = "../books/" + my_dir[9:] my_files = os.listdir("../books/" + my_dir[9:]) author_words_count = dict() for my_file in my_files: if my_file.endswith(".txt"): names = my_file.split("-") book_name = "" for name in names[1:]: book_name += name + " " book_name.strip() book_name = book_name[:len(book_name) - 5] #to skip .txt file_location = os.path.join(folder_location, my_file) f = open(file_location, encoding='utf-8', mode='r') file_content = f.read() f.close() current_file_words = list(set(re.findall("[а-яА-Я]{3,}", file_content))) sentences = nltk.tokenize.sent_tokenize(file_content) try: words_in_book = len(current_file_words) sql = 'insert into books (name, words_count, author_id) values(%s, %s, %s) RETURNING id' cur.execute(sql, (book_name, words_in_book, author_id)) book_id = cur.fetchone()[0] connection.commit() except Exception as e: print(e) try: for sentence in sentences[3:len(sentences) - 4]: if not sentence == "": words_in_sentence = len(re.findall("[а-яА-Я]{3,}", sentence)) sql = 'insert into sentences (sentence, words_count, book_id) values(%s, %s, %s)' cur.execute(sql, (sentence, words_in_sentence, book_id)) except Exception as e: print(e) for word in current_file_words: # populate author_words dictionary word = word.lower() if word in author_words_count: author_words_count[word] += 1 else: author_words_count[word] = 1 try: sql = 'insert into words (word) values(%s) RETURNING id' cur.execute(sql, (word.lower(),)) word_id = cur.fetchone()[0] sql2 = 'insert into books_words (book_id, word_id) values(%s, %s)' cur.execute(sql2, (book_id, word_id)) print("Word added") connection.commit() except Exception as e: print("Word already exists") try: sql2 = 'select id from words where word=%s' cur.execute(sql2, (word.lower(),)) duplicate_word_id = cur.fetchone()[0] sql2 = 'insert into books_words (book_id, word_id) values(%s, %s)' cur.execute(sql2, (book_id, duplicate_word_id)) except: print("This word has already been linked with this author") print(e) connection.commit() # insert unique words the author has used author_unique_words = sum(value == 1 for value in author_words_count.values()) sql = "update authors set words_count=(%s) where name=%s" cur.execute(sql, (author_unique_words, author_name)) cur.close() connection.close() if __name__ == '__main__': start = 21 end = 22 for i in range(1): p1 = multiprocessing.Process(target=importData, args=(start, end)) p2 = multiprocessing.Process(target=importData, args=(start + 1, end+1)) p3 = multiprocessing.Process(target=importData, args=(start + 2, end+2)) p4 = multiprocessing.Process(target=importData, args=(start + 3, end+3)) p5 = multiprocessing.Process(target=importData, args=(start + 4, end+4)) p6 = multiprocessing.Process(target=importData, args=(start + 5, end + 5)) p7 = multiprocessing.Process(target=importData, args=(start + 6, end+6)) p8 = multiprocessing.Process(target=importData, args=(start + 7, end+7)) p9 = multiprocessing.Process(target=importData, args=(start + 8, end + 8)) p10 = multiprocessing.Process(target=importData, args=(start + 9, end + 9)) p1.start() p2.start() p3.start() p4.start() p5.start() p6.start() p7.start() p8.start() p9.start() p10.start() start += 10 end += 10
StarcoderdataPython
3585218
#!/usr/bin/env python # # Copyright 2019 <NAME>, S.A. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import io import os import ssl import sys import json import shlex import logging import asyncio from uuid import uuid4 from urllib.parse import urlparse from collections import namedtuple import click import requests from aiohttp import web, StreamReader from aiohttp.web_urldispatcher import UrlDispatcher log = logging.getLogger('kapow') try: import uvloop asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) except ImportError: pass ######################################################################## # Resource Management # ######################################################################## CONNECTIONS = {} class Connection: """ Manages the lifecycle of a PyPow! connection. Behaves like a memory for the "fields" available in HTTP connections. """ def __init__(self, request): self._stream = None self._body = io.BytesIO() self._status = 200 self._headers = dict() self._cookies = dict() self.request = request async def get(self, key): """Get the content of the field `key`.""" res = urlparse(key) def nth(n): """Return the nth element in a path.""" return res.path.split('/')[n] if res.path == 'request/method': return self.request.method.encode('utf-8') elif res.path == 'request/body': return self.request.content elif res.path == 'request/path': return self.request.path.encode('utf-8') elif res.path == 'request/host': return self.request.host.encode('utf-8') elif res.path.startswith('request/matches/'): return self.request.match_info[nth(2)].encode('utf-8') elif res.path.startswith('request/params/'): return self.request.rel_url.query[nth(2)].encode('utf-8') elif res.path.startswith('request/headers/'): return self.request.headers[nth(2)].encode('utf-8') elif res.path.startswith('request/cookies/'): return self.request.cookies[nth(2)].encode('utf-8') elif res.path == 'request/form': data = await self.request.post() files = [fieldname.encode('utf-8') for fieldname, field in data.items()] return b'\n'.join(files) elif res.path.startswith('request/form/'): return (await self.request.post())[nth(2)].encode('utf-8') elif res.path == 'request/files': data = await self.request.post() files = [fieldname.encode('utf-8') for fieldname, field in data.items() if hasattr(field, 'filename')] return b'\n'.join(files) elif res.path.startswith('request/files/'): name = nth(2) content = nth(3) # filename / content field = (await self.request.post())[name] if content == 'filename': try: return field.filename.encode('utf-8') except Exception: return b'' elif content == 'content': try: return field.file.read() except Exception: return b'' else: raise ValueError(f'Unknown content type {content!r}') else: raise ValueError('Unknown path') async def set(self, key, content): """Set the field `key` with the value in `content`.""" res = urlparse(key) def nth(n): return res.path.split('/')[n] if res.path == 'response/status': self._status = int((await content.read()).decode('utf-8')) elif res.path == 'response/body': self._body.write(await content.read()) elif res.path.startswith('response/headers/'): clean = (await content.read()).rstrip(b'\n').decode('utf-8') self._headers[nth(2)] = clean elif res.path.startswith('response/cookies/'): clean = (await content.read()).rstrip(b'\n').decode('utf-8') self._cookies[nth(2)] = clean elif res.path == 'response/stream': if self._stream is None: self._stream = web.StreamResponse(status=self._status, reason="OK", headers=self._headers) for name, value in self._cookies.items(): self._stream.set_cookie(name, value) await self._stream.prepare(self.request) chunk = await content.readany() while chunk: await self._stream.write(chunk) chunk = await content.readany() else: raise ValueError(f'Unknown path {res.path!r}') async def append(self, key, content): """Append to field `key` the value in `content`.""" raise NotImplementedError() async def build_response(self): """Return the appropriate aiohttp.web.*Response.""" if self._stream is None: response = web.Response(body=self._body.getvalue(), status=self._status, headers=self._headers) for name, value in self._cookies.items(): response.set_cookie(name, value) return response else: await self._stream.write_eof() return self._stream async def get_field(request): """Get the value of some HTTP field in the given connection.""" id = request.match_info["id"] field = request.match_info["field"] try: connection = CONNECTIONS[id] except KeyError: response = web.Response(status=404, reason="Handler ID Not Found") else: try: content = await connection.get(field) except ValueError: return web.Response(status=400, reason="Invalid Resource Path") except KeyError: return web.Response(status=404, reason="Resource Item Not Found") except Exception as e: pass if isinstance(content, StreamReader): response = web.StreamResponse(status=200, reason="OK") await response.prepare(request) chunk = await content.readany() while chunk: await response.write(chunk) chunk = await content.readany() await response.write_eof() else: response = web.Response(body=content) return response async def set_field(request): """Set the value of some HTTP field in the given connection.""" id = request.match_info["id"] field = request.match_info["field"] try: connection = CONNECTIONS[id] except KeyError: response = web.Response(status=404, reason="Handler ID Not Found") else: try: await connection.set(field, request.content) except ConnectionResetError: # Raised when trying to write to an already-closed stream. request.transport.close() else: response = web.Response(body=b'') return response ######################################################################## # Middlewares # ######################################################################## # @web.middleware # async def overwrite_server_name(request, handler): # response = await handler(request) # response.headers["Kapow-Version"] = "0.0.3" # # return response ######################################################################## # Endpoint Execution # ######################################################################## def handle_route(entrypoint, command): """ Return an aiohttp route handler that will execute entrypoint and command in order to manage a Kapow! route. """ async def _handle(request): # Register a new connection to Kapow! id = f"CONN_{str(uuid4()).replace('-', '_')}" connection = CONNECTIONS[id] = Connection(request) # Run entrypoint + command passing the connection id executable, *params = shlex.split(entrypoint) args = ' '.join([executable] + [shlex.quote(token) for token in params] + [shlex.quote(command)]) try: shell_task = await asyncio.create_subprocess_shell( args, env={**os.environ, "KAPOW_URL": "http://localhost:8081", "KAPOW_HANDLER_ID": id }, stdin=asyncio.subprocess.DEVNULL) await shell_task.wait() except: raise else: # Respond when the command finish return await connection.build_response() finally: del CONNECTIONS[id] return _handle ######################################################################## # Route Management # ######################################################################## def get_routes(app): async def _get_routes(request): """Return the list of registered routes.""" data = [{"index": idx, "method": r.method, "id": r.id, "url_pattern": r.path, "entrypoint": r.entrypoint, "command": r.command} for idx, r in enumerate(app["user_routes"])] return web.json_response(data) return _get_routes def get_route(app): async def _get_route(request): """Return requested registered route.""" id = request.match_info["id"] for idx, r in enumerate(app["user_routes"]): if r.id == id: return web.json_response({"index": idx, "method": r.method, "id": r.id, "url_pattern": r.path, "entrypoint": r.entrypoint, "command": r.command}) else: return web.Response(status=404, reason="Not Found") return _get_route def insert_route(app): async def _insert_route(request): """Insert a new Kapow! route.""" try: content = await request.json() except ValueError: return web.Response(status=400, reason="Malformed JSON") try: index = int(content["index"]) assert index >= 0 method = content.get("method", "GET") entrypoint = content.get("entrypoint", "/bin/sh -c") command = content.get("command", "") route = KapowRoute(method=method, path=content["url_pattern"], id="ROUTE_" + str(uuid4()).replace('-', '_'), entrypoint=entrypoint, command=command, handler=handle_route(entrypoint, command)) app.change_routes((app["user_routes"][:index] + [route] + app["user_routes"][index:])) except ( InvalidRouteError, KeyError, AssertionError, ValueError) as exc: return web.Response(status=422, reason="Invalid Route") else: app["user_routes"].insert(index, route) return web.json_response({"id": route.id, "method": route.method, "url_pattern": route.path, "entrypoint": route.entrypoint, "command": route.command, "index": index}, status=201) return _insert_route def append_route(app): async def _append_route(request): """Append a new Kapow! route.""" try: content = await request.json() except ValueError as exc: return web.Response(status=400, reason="Malformed JSON") try: method = content.get("method", "GET") entrypoint = content.get("entrypoint", "/bin/sh -c") command = content.get("command", "") route = KapowRoute(method=method, path=content["url_pattern"], id=f"ROUTE_{str(uuid4()).replace('-', '_')}", entrypoint=entrypoint, command=command, handler=handle_route(entrypoint, command)) app.change_routes(app["user_routes"] + [route]) except (InvalidRouteError, KeyError) as exc: return web.Response(status=422, reason="Invalid Route") else: app["user_routes"].append(route) return web.json_response({"id": route.id, "method": route.method, "url_pattern": route.path, "entrypoint": route.entrypoint, "command": route.command, "index": len(app["user_routes"]) - 1}, status=201) return _append_route def delete_route(app): async def _delete_route(request): """Delete the given Kapow! route.""" id = request.match_info["id"] routes = [r for r in app["user_routes"] if r.id != id] if len(routes) == len(app["user_routes"]): return web.Response(status=404, reason="Not Found") else: app.change_routes(routes) app["user_routes"] = routes return web.Response(status=204, reason="No Content") return _delete_route ######################################################################## # aiohttp webapp # ######################################################################## async def run_init_script(app, scripts, interactive): """ Run the init script if given, then wait for the shell to finish. """ if not scripts: # No script given if not interactive: return else: cmd = "/bin/bash" else: def build_filenames(): for filename in scripts: yield shlex.quote(filename) yield "<(echo)" filenames = " ".join(build_filenames()) if interactive: cmd = f"/bin/bash --init-file <(cat {filenames})" else: # cmd = f"/bin/bash <(cat {filenames})" cmd = f"/bin/bash <(cat {filenames})" shell_task = await asyncio.create_subprocess_shell( cmd, executable="/bin/bash", env={**os.environ, "KAPOW_URL": "http://localhost:8081" }) await shell_task.wait() if interactive: await app.cleanup() os._exit(shell_task.returncode) class InvalidRouteError(Exception): pass class DynamicApplication(web.Application): """ A wrapper around `aiohttp.web.Application` allowing changing routes dynamically. This is not safe as mentioned here: https://github.com/aio-libs/aiohttp/issues/3238. On the other hand this is a PoC anyway... """ def change_routes(self, routes): router = UrlDispatcher() try: for route in routes: router.add_route(route.method, route.path, route.handler, name=route.id) except Exception as exc: raise InvalidRouteError("Invalid route") from exc else: self._router = router if self._frozen: self._router.freeze() KapowRoute = namedtuple('KapowRoute', ('method', 'path', 'id', 'entrypoint', 'command', 'handler')) async def start_background_tasks(app): loop = asyncio.get_event_loop() app["debug_tasks"] = loop.create_task( run_init_script(app, app["scripts"], app["interactive"])) async def start_kapow_server(bind, scripts, capem=None, certfile=None, interactive=False, keyfile=None): user_app = DynamicApplication(client_max_size=1024 ** 3) user_app["user_routes"] = list() # [KapowRoute] user_runner = web.AppRunner(user_app) await user_runner.setup() ssl_context = None if certfile and keyfile and capem: ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2) ssl_context.verify_mode = ssl.CERT_REQUIRED ssl_context.load_verify_locations(cafile=capem) ssl_context.load_cert_chain(certfile, keyfile=keyfile) ssl_context.check_hostname = False ip, port = bind.split(':') user_site = web.TCPSite(user_runner, ip, int(port), ssl_context=ssl_context) await user_site.start() control_app = web.Application( client_max_size=1024 ** 3 ) control_app.add_routes([ # Control API web.get('/routes', get_routes(user_app)), web.get('/routes/{id}', get_route(user_app)), web.post('/routes', append_route(user_app)), web.put('/routes', insert_route(user_app)), web.delete('/routes/{id}', delete_route(user_app)), # Data API web.get('/handlers/{id}/{field:.*}', get_field), web.put('/handlers/{id}/{field:.*}', set_field), ]) control_app["scripts"] = scripts control_app["interactive"] = interactive control_app.on_startup.append(start_background_tasks) control_runner = web.AppRunner(control_app) await control_runner.setup() control_site = web.TCPSite(control_runner, '127.0.0.1', 8081) await control_site.start() ######################################################################## # Command Line # ######################################################################## @click.group() @click.pass_context def kapow(ctx): """PyPow! If you can script it, you can HTTP it.""" pass @kapow.command(help="Start a Kapow! server") @click.option("--capem", default=None) @click.option("--certfile", default=None) @click.option("--keyfile", default=None) @click.option("--bind", default="0.0.0.0:8080") @click.option("-i", "--interactive", is_flag=True) @click.argument("scripts", nargs=-1) def server(capem, certfile, keyfile, bind, interactive, scripts): if bool(certfile) ^ bool(keyfile) ^ bool(capem): print( "For SSL auth 'capem', 'certfile' and 'keyfile' " "should be provided." ) sys.exit(1) loop = asyncio.get_event_loop() print(f"[*] Listen PyNow! at: {bind}") loop.run_until_complete( start_kapow_server(bind, scripts, capem, certfile, interactive, keyfile)) loop.run_forever() @kapow.group(help="Manage current server HTTP routes") def route(): pass @route.command("add") @click.option("-c", "--command", nargs=1) @click.option("-e", "--entrypoint", default="/bin/sh -c") @click.option("-X", "--method", default="GET") @click.option("--url", envvar='KAPOW_URL') @click.argument("url_pattern", nargs=1) @click.argument("command_file", required=False) def route_add(url_pattern, entrypoint, command, method, url, command_file): if command: # Command is given inline source = command elif command_file is None: # No command source = "" elif command_file == '-': # Read commands from stdin source = sys.stdin.read() else: # Read commands from a file with open(command_file, 'r', encoding='utf-8') as handler: source = handler.read() response = requests.post(f"{url}/routes", json={"method": method, "url_pattern": url_pattern, "entrypoint": entrypoint, "command": source}) response.raise_for_status() print(json.dumps(response.json(), indent=2)) @route.command("remove") @click.option("--url", envvar='KAPOW_URL') @click.argument("route-id") def route_remove(route_id, url): response = requests.delete(f"{url}/routes/{route_id}") response.raise_for_status() @route.command("list") @click.option("--url", envvar='KAPOW_URL') @click.argument("route-id", nargs=1, required=False, default=None) def route_list(route_id, url): if route_id is None: response = requests.get(f"{url}/routes") else: response = requests.get(f"{url}/routes/{route_id}") response.raise_for_status() print(json.dumps(response.json(), indent=2)) @kapow.command("set", help="Set data from the current context") @click.option("--url", envvar='KAPOW_URL') @click.option("--handler-id", envvar='KAPOW_HANDLER_ID') @click.argument("path", nargs=1) @click.argument("value", required=False) def kapow_set(url, handler_id, path, value): if value is None: data = sys.stdin.buffer else: data = value.encode('utf-8') try: response = requests.put(f"{url}/handlers/{handler_id}{path}", data=data) except requests.exceptions.ConnectionError: return False else: response.raise_for_status() @kapow.command("get", help="Get data from the current context") @click.option("--url", envvar='KAPOW_URL') @click.option("--handler-id", envvar='KAPOW_HANDLER_ID') @click.argument("path", nargs=1) def kapow_get(url, handler_id, path): try: response = requests.get(f"{url}/handlers/{handler_id}{path}", stream=True) except requests.exceptions.ConnectionError: return False else: for chunk in response.iter_content(chunk_size=None): sys.stdout.buffer.write(chunk) if __name__ == '__main__': kapow()
StarcoderdataPython
9641542
<reponame>RadarSun/SUSTech-EC2021-A3<filename>main2.py import numpy as np from cec2013.cec2013 import * from modules2 import * import argparse import time def run(func_id): f = CEC2013(func_id) D = f.get_dimension() pop_size = 16 * D archive = np.empty((0, D)) evaluation_remaind_cnt = f.get_maxfes() taboo_points = np.empty((0, D)) radius_of_taboo_points = np.array([]) while evaluation_remaind_cnt > 0: population = initialization(f, 4 * pop_size, taboo_points, radius_of_taboo_points) evaluation_remaind_cnt -= population.shape[0] score = np.zeros(population.shape[0]) for i in range(population.shape[0]): score[i] = f.evaluate(population[i]) id_sorted_pop = np.argsort(score)[::-1] population = population[id_sorted_pop[:1 * pop_size]]# decrese tmp_taboo_point = np.empty((0, D)) # use to store the best individuals tmp_radius_of_taboo_points = np.array([]) start_time = time.time()*1000 for individual in population: new_population, evaluation_remaind_cnt = cmsa(np.reshape(individual, (-1, D)), evaluation_remaind_cnt, f, np.ones(1) * f.evaluate(individual), taboo_points, radius_of_taboo_points) radius_of_this_taboo = np.linalg.norm(new_population[0] - individual, 2) tmp_radius_of_taboo_points = np.hstack((tmp_radius_of_taboo_points, radius_of_this_taboo)) tmp_taboo_point = np.vstack((tmp_taboo_point, new_population[0])) archive, evaluation_remaind_cnt = union(archive, new_population, f, evaluation_remaind_cnt, start_time) taboo_points = tmp_taboo_point radius_of_taboo_points = tmp_radius_of_taboo_points return archive def experiment(): runcnt = 50 problemcnt = 20+1 recall1 = np.zeros((problemcnt-1,runcnt)) recall2 = np.zeros((problemcnt-1,runcnt)) recall3 = np.zeros((problemcnt-1,runcnt)) recall4 = np.zeros((problemcnt-1,runcnt)) recall5 = np.zeros((problemcnt-1,runcnt)) precison1 = np.zeros((problemcnt-1,runcnt)) precison2 = np.zeros((problemcnt-1,runcnt)) precison3 = np.zeros((problemcnt-1,runcnt)) precison4 = np.zeros((problemcnt-1,runcnt)) precison5 = np.zeros((problemcnt-1,runcnt)) f1_stasic1 = np.zeros((problemcnt-1,runcnt)) f1_stasic2 = np.zeros((problemcnt-1,runcnt)) f1_stasic3 = np.zeros((problemcnt-1,runcnt)) f1_stasic4 = np.zeros((problemcnt-1,runcnt)) f1_stasic5 = np.zeros((problemcnt-1,runcnt)) for exp in range(runcnt): for func_id in range(1, problemcnt): print('Prblem', func_id, 'RUN', exp) # ans = main4(func_id) ans = run(func_id) recall,precison,f1_stasic = print_result(ans[:, :-2], CEC2013(func_id),func_id,exp) recall1[func_id-1][exp] = recall[0] recall2[func_id-1][exp] = recall[1] recall3[func_id-1][exp] = recall[2] recall4[func_id-1][exp] = recall[3] recall5[func_id-1][exp] = recall[4] precison1[func_id-1][exp] = precison[0] precison2[func_id-1][exp] = precison[1] precison3[func_id-1][exp] = precison[2] precison4[func_id-1][exp] = precison[3] precison5[func_id-1][exp] = precison[4] f1_stasic1[func_id-1][exp] = precison[0] f1_stasic2[func_id-1][exp] = precison[1] f1_stasic3[func_id-1][exp] = precison[2] f1_stasic4[func_id-1][exp] = precison[3] f1_stasic5[func_id-1][exp] = precison[4] score = np.zeros(ans.shape[0]) f = CEC2013(func_id) characters1 = np.empty([ans.shape[0],1], dtype = str) characters2 = np.empty([ans.shape[0],1], dtype = str) for i in range(ans.shape[0]): score[i] = f.evaluate(ans[i, :-2]) characters1[i,0] = '=' characters2[i,0] = '@' adds = np.ones(ans.shape[0],dtype= 'int8') anss = np.hstack((ans[:,:-2], characters1.reshape(ans.shape[0], 1), score.reshape(ans.shape[0], 1),\ characters2.reshape(ans.shape[0], 1), ans[:,-2].reshape(ans.shape[0], 1), ans[:,-1].reshape(ans.shape[0], 1), adds.reshape(ans.shape[0],1))) np.savetxt('./results/' + 'problem%03d' % (func_id) + 'run%03d' % (exp+1) + '.dat', anss,fmt = '%s') # save data to csv import pandas as pd for func_id in range(1, problemcnt): recordeddata = np.zeros((runcnt,3*5)) recordeddata[:,0] = recall1[func_id-1][:] recordeddata[:,1] = recall2[func_id-1][:] recordeddata[:,2] = recall3[func_id-1][:] recordeddata[:,3] = recall4[func_id-1][:] recordeddata[:,4] = recall5[func_id-1][:] recordeddata[:,5] = precison1[func_id-1][:] recordeddata[:,6] = precison2[func_id-1][:] recordeddata[:,7] = precison3[func_id-1][:] recordeddata[:,8] = precison4[func_id-1][:] recordeddata[:,9] = precison5[func_id-1][:] recordeddata[:,10] = f1_stasic1[func_id-1][:] recordeddata[:,11] = f1_stasic2[func_id-1][:] recordeddata[:,12] = f1_stasic3[func_id-1][:] recordeddata[:,13] = f1_stasic4[func_id-1][:] recordeddata[:,14] = f1_stasic5[func_id-1][:] datafram_recordeddata = pd.DataFrame(recordeddata) recoed_filename = "./recorded_data/fuction" + str(func_id) + ".csv" datafram_recordeddata.to_csv(recoed_filename) # save data to txt import sys newfile = 'result.txt' data = open(newfile,'a',encoding="utf-8") for func_id in range(1, problemcnt): strproblem = "+Problem " + str(func_id) print(strproblem,file=data) strrecall = "recall: " + str(recall1[func_id-1][:]) + " mean: " + str(np.mean(recall1[func_id-1][:])) + " var: " + str(np.var(recall1[func_id-1][:])) print(strrecall,file=data) strrecall = "recall: " + str(recall2[func_id-1][:]) + " mean: " + str(np.mean(recall2[func_id-1][:])) + " var: " + str(np.var(recall2[func_id-1][:])) print(strrecall,file=data) strrecall = "recall: " + str(recall3[func_id-1][:]) + " mean: " + str(np.mean(recall3[func_id-1][:])) + " var: " + str(np.var(recall3[func_id-1][:])) print(strrecall,file=data) strrecall = "recall: " + str(recall4[func_id-1][:]) + " mean: " + str(np.mean(recall4[func_id-1][:])) + " var: " + str(np.var(recall4[func_id-1][:])) print(strrecall,file=data) strrecall = "recall: " + str(recall5[func_id-1][:]) + " mean: " + str(np.mean(recall5[func_id-1][:])) + " var: " + str(np.var(recall5[func_id-1][:])) print(strrecall,file=data) runstr = "-------------------" print(runstr,file=data) strprecision = "precision: " + str(precison1[func_id-1][:]) + " mean: " + str(np.mean(precison1[func_id-1][:])) + " var: " + str(np.var(precison1[func_id-1][:])) print(strprecision,file=data) strprecision = "precision: " + str(precison2[func_id-1][:]) + " mean: " + str(np.mean(precison2[func_id-1][:])) + " var: " + str(np.var(precison2[func_id-1][:])) print(strprecision,file=data) strprecision = "precision: " + str(precison3[func_id-1][:]) + " mean: " + str(np.mean(precison3[func_id-1][:])) + " var: " + str(np.var(precison3[func_id-1][:])) print(strprecision,file=data) strprecision = "precision: " + str(precison4[func_id-1][:]) + " mean: " + str(np.mean(precison4[func_id-1][:])) + " var: " + str(np.var(precison4[func_id-1][:])) print(strprecision,file=data) strprecision = "precision: " + str(precison5[func_id-1][:]) + " mean: " + str(np.mean(precison5[func_id-1][:])) + " var: " + str(np.var(precison5[func_id-1][:])) print(strprecision,file=data) runstr = "-------------------" print(runstr,file=data) strf1 = "f1_stastic " + str(f1_stasic1[func_id-1][:]) + " mean: " + str(np.mean(f1_stasic1[func_id-1][:])) + " var: " + str(np.var(f1_stasic1[func_id-1][:])) print(strf1,file=data) strf1 = "f1_stastic " + str(f1_stasic2[func_id-1][:]) + " mean: " + str(np.mean(f1_stasic2[func_id-1][:])) + " var: " + str(np.var(f1_stasic2[func_id-1][:])) print(strf1,file=data) strf1 = "f1_stastic " + str(f1_stasic3[func_id-1][:]) + " mean: " + str(np.mean(f1_stasic3[func_id-1][:])) + " var: " + str(np.var(f1_stasic3[func_id-1][:])) print(strf1,file=data) strf1 = "f1_stastic " + str(f1_stasic4[func_id-1][:]) + " mean: " + str(np.mean(f1_stasic4[func_id-1][:])) + " var: " + str(np.var(f1_stasic4[func_id-1][:])) print(strf1,file=data) strf1 = "f1_stastic " + str(f1_stasic5[func_id-1][:]) + " mean: " + str(np.mean(f1_stasic5[func_id-1][:])) + " var: " + str(np.var(f1_stasic5[func_id-1][:])) print(strf1,file=data) runstr = "\n" print(runstr,file=data) if __name__ == '__main__': experiment() # parse = argparse.ArgumentParser() # parse.add_argument('--func_id',default=1,type=int) # args = parse.parse_args() # func_id = args.func_id # func_id = 3 # ans = run(func_id) # # see_result(ans[:, :-1], CEC2013(func_id)) # print_result(ans[:, :-1], CEC2013(func_id),1,2) # np.savetxt('points.txt', ans)
StarcoderdataPython
9662683
<reponame>ajstewart/tkp import logging import tkp.db import tkp.db.quality as dbquality from tkp.quality.restoringbeam import beam_invalid from tkp.quality.rms import rms_invalid, rms_with_clipped_subregion from tkp.telescope.lofar.noise import noise_level from tkp.utility import nice_format logger = logging.getLogger(__name__) def reject_check_lofar(accessor, job_config): lofar_quality_params = job_config['quality_lofar'] low_bound = lofar_quality_params['low_bound'] high_bound = lofar_quality_params['high_bound'] oversampled_x = lofar_quality_params['oversampled_x'] elliptical_x = lofar_quality_params['elliptical_x'] min_separation = lofar_quality_params['min_separation'] if accessor.tau_time == 0: logger.info("image %s REJECTED: tau_time is 0, should be > 0" % accessor.url) return dbquality.reject_reasons['tau_time'], "tau_time is 0" rms_est_sigma = job_config.persistence.rms_est_sigma rms_est_fraction = job_config.persistence.rms_est_fraction rms_qc = rms_with_clipped_subregion(accessor.data, rms_est_sigma=rms_est_sigma, rms_est_fraction=rms_est_fraction) noise = noise_level(accessor.freq_eff, accessor.freq_bw, accessor.tau_time, accessor.antenna_set, accessor.ncore, accessor.nremote, accessor.nintl ) rms_check = rms_invalid(rms_qc, noise, low_bound, high_bound) if not rms_check: logger.info("image %s accepted: rms: %s, theoretical noise: %s" % \ (accessor.url, nice_format(rms_qc), nice_format(noise))) else: logger.info("image %s REJECTED: %s " % (accessor.url, rms_check)) return (dbquality.reject_reasons['rms'], rms_check) # beam shape check (semimaj, semimin, theta) = accessor.beam beam_check = beam_invalid(semimaj, semimin, theta, oversampled_x, elliptical_x) if not beam_check: logger.info("image %s accepted: semimaj: %s, semimin: %s" % (accessor.url, nice_format(semimaj), nice_format(semimin))) else: logger.info("image %s REJECTED: %s " % (accessor.url, beam_check)) return (dbquality.reject_reasons['beam'], beam_check) # Bright source check bright = tkp.quality.brightsource.is_bright_source_near(accessor, min_separation) if bright: logger.info("image %s REJECTED: %s " % (accessor.url, bright)) return (dbquality.reject_reasons['bright_source'], bright)
StarcoderdataPython
4816463
#!/usr/bin/env python #pylint: skip-file from __future__ import print_function import itertools import pytest import types from .util import RandomComplexString, RandomIP class Test_PreferenceFlags(object): def test_DecodeFlags(self): print() from pyirobot import CarpetBoost, CleaningPasses, FinishWhenBinFull, EdgeClean, Robot robot = Robot(RandomIP(), RandomComplexString(64)) # Fake the robot post call def fake_post(self, cmd, args): return { "lang" : 0, "name" : "Roomba", "timezone" : "America/Chicago", "flags" : sum([field.value for field in self._fake_preferences]) } setattr(robot, "_PostToRobot", types.MethodType(fake_post, robot)) # Test decoding every combination of options combinations = list(itertools.product(list(CarpetBoost)[1:], list(CleaningPasses)[1:], list(FinishWhenBinFull)[1:], list(EdgeClean)[1:])) for combo in combinations: setattr(robot, "_fake_preferences", combo) print("combo={}".format(combo)) prefs = robot.GetCleaningPreferences() print("prefs={}".format(prefs)) assert prefs["carpetBoost"] == combo[0] assert prefs["cleaningPasses"] == combo[1] assert prefs["finishWhenBinFull"] == combo[2] assert prefs["edgeClean"] == combo[3]
StarcoderdataPython
12841231
<reponame>easyCZ/UoE-Projects #!/usr/bin/python # aggregate-combiner.py import sys answers = [] last_user_id = None MEM_THRESHOLD = 1024 * 1024 * 1024 # 1 GB def write(user, entries): if len(entries) > 0: print('{0}\t{1}'.format(user, ','.join(entries))) for line in sys.stdin: user_id, answer_id = line.strip().split('\t', 1) if (last_user_id and last_user_id != user_id) or sys.getsizeof(answers) > MEM_THRESHOLD: write(last_user_id, answers) answers = [] last_user_id = user_id answers.append(answer_id) if last_user_id: write(last_user_id, answers)
StarcoderdataPython
4979746
<gh_stars>0 import logging import os from galaxy.model.orm import and_ from tool_shed.util import hg_util from tool_shed.util import shed_util_common as suc log = logging.getLogger( __name__ ) class ToolVersionManager( object ): def __init__( self, app ): self.app = app def get_tool_version( self, tool_id ): context = self.app.install_model.context return context.query( self.app.install_model.ToolVersion ) \ .filter( self.app.install_model.ToolVersion.table.c.tool_id == tool_id ) \ .first() def get_tool_version_association( self, parent_tool_version, tool_version ): """ Return a ToolVersionAssociation if one exists that associates the two received tool_versions This function is called only from Galaxy. """ context = self.app.install_model.context return context.query( self.app.install_model.ToolVersionAssociation ) \ .filter( and_( self.app.install_model.ToolVersionAssociation.table.c.parent_id == parent_tool_version.id, self.app.install_model.ToolVersionAssociation.table.c.tool_id == tool_version.id ) ) \ .first() def get_version_lineage_for_tool( self, repository_id, repository_metadata, guid ): """ Return the tool version lineage chain in descendant order for the received guid contained in the received repsitory_metadata.tool_versions. This function is called only from the Tool Shed. """ repository = suc.get_repository_by_id( self.app, repository_id ) repo = hg_util.get_repo_for_repository( self.app, repository=repository, repo_path=None, create=False ) # Initialize the tool lineage version_lineage = [ guid ] # Get all ancestor guids of the received guid. current_child_guid = guid for changeset in hg_util.reversed_upper_bounded_changelog( repo, repository_metadata.changeset_revision ): ctx = repo.changectx( changeset ) rm = suc.get_repository_metadata_by_changeset_revision( self.app, repository_id, str( ctx ) ) if rm: parent_guid = rm.tool_versions.get( current_child_guid, None ) if parent_guid: version_lineage.append( parent_guid ) current_child_guid = parent_guid # Get all descendant guids of the received guid. current_parent_guid = guid for changeset in hg_util.reversed_lower_upper_bounded_changelog( repo, repository_metadata.changeset_revision, repository.tip( self.app ) ): ctx = repo.changectx( changeset ) rm = suc.get_repository_metadata_by_changeset_revision( self.app, repository_id, str( ctx ) ) if rm: tool_versions = rm.tool_versions for child_guid, parent_guid in tool_versions.items(): if parent_guid == current_parent_guid: version_lineage.insert( 0, child_guid ) current_parent_guid = child_guid break return version_lineage def handle_tool_versions( self, tool_version_dicts, tool_shed_repository ): """ Using the list of tool_version_dicts retrieved from the Tool Shed (one per changeset revision up to the currently installed changeset revision), create the parent / child pairs of tool versions. Each dictionary contains { tool id : parent tool id } pairs. This function is called only from Galaxy. """ context = self.app.install_model.context for tool_version_dict in tool_version_dicts: for tool_guid, parent_id in tool_version_dict.items(): tool_version_using_tool_guid = self.get_tool_version( tool_guid ) tool_version_using_parent_id = self.get_tool_version( parent_id ) if not tool_version_using_tool_guid: tool_version_using_tool_guid = \ self.app.install_model.ToolVersion( tool_id=tool_guid, tool_shed_repository=tool_shed_repository ) context.add( tool_version_using_tool_guid ) context.flush() if not tool_version_using_parent_id: tool_version_using_parent_id = \ self.app.install_model.ToolVersion( tool_id=parent_id, tool_shed_repository=tool_shed_repository ) context.add( tool_version_using_parent_id ) context.flush() tool_version_association = \ self.get_tool_version_association( tool_version_using_parent_id, tool_version_using_tool_guid ) if not tool_version_association: # Associate the two versions as parent / child. tool_version_association = \ self.app.install_model.ToolVersionAssociation( tool_id=tool_version_using_tool_guid.id, parent_id=tool_version_using_parent_id.id ) context.add( tool_version_association ) context.flush()
StarcoderdataPython
9680546
# -*- coding: utf-8 -*- """ Unit tests for dim transforms """ from __future__ import division import numpy as np from holoviews.core.data import Dataset from holoviews.element.comparison import ComparisonTestCase from holoviews.util.transform import dim class TestDimTransforms(ComparisonTestCase): def setUp(self): self.linear_ints = np.arange(1, 11) self.linear_floats = np.arange(1, 11)/10. self.negative = -self.linear_floats self.repeating = ['A', 'B', 'C', 'A', 'B', 'C', 'A', 'B', 'C', 'A'] self.dataset = Dataset( (self.linear_ints, self.linear_floats, self.negative, self.repeating), ['int', 'float', 'negative', 'categories'] ) # Unary operators def test_abs_transform(self): self.assertEqual(abs(dim('negative')).apply(self.dataset), self.linear_floats) def test_neg_transform(self): self.assertEqual(-dim('negative').apply(self.dataset), self.linear_floats) # Binary operators def test_add_transform(self): self.assertEqual((dim('float')+1).apply(self.dataset), self.linear_floats+1) def test_div_transform(self): self.assertEqual((dim('int')/10.).apply(self.dataset), self.linear_floats) def test_floor_div_transform(self): self.assertEqual((dim('int')//2).apply(self.dataset), self.linear_ints//2) def test_mod_transform(self): self.assertEqual((dim('int')%2).apply(self.dataset), self.linear_ints%2) def test_mul_transform(self): self.assertEqual((dim('float')*10.).apply(self.dataset), self.linear_ints) def test_pow_transform(self): self.assertEqual((dim('int')**2).apply(self.dataset), self.linear_ints**2) def test_sub_transform(self): self.assertEqual((dim('int')-10).apply(self.dataset), self.linear_ints-10) # Reverse binary operators def test_radd_transform(self): self.assertEqual((1+dim('float')).apply(self.dataset), 1+self.linear_floats) def test_rdiv_transform(self): self.assertEqual((10./dim('int')).apply(self.dataset), 10./self.linear_ints) def test_rfloor_div_transform(self): self.assertEqual((2//dim('int')).apply(self.dataset), 2//self.linear_ints) def test_rmod_transform(self): self.assertEqual((2%dim('int')).apply(self.dataset), 2%self.linear_ints) def test_rmul_transform(self): self.assertEqual((10.*dim('float')).apply(self.dataset), self.linear_ints) def test_rsub_transform(self): self.assertEqual((10-dim('int')).apply(self.dataset), 10-self.linear_ints) # NumPy operations def test_ufunc_transform(self): self.assertEqual(np.sin(dim('float')).apply(self.dataset), np.sin(self.linear_floats)) def test_astype_transform(self): self.assertEqual(dim('int').astype(str).apply(self.dataset), self.linear_ints.astype(str)) def test_cumsum_transform(self): self.assertEqual(dim('float').cumsum().apply(self.dataset), self.linear_floats.cumsum()) def test_max_transform(self): self.assertEqual(dim('float').max().apply(self.dataset), self.linear_floats.max()) def test_min_transform(self): self.assertEqual(dim('float').min().apply(self.dataset), self.linear_floats.min()) def test_round_transform(self): self.assertEqual(dim('float').round().apply(self.dataset), self.linear_floats.round()) def test_sum_transform(self): self.assertEqual(dim('float').sum().apply(self.dataset), self.linear_floats.sum()) def test_std_transform(self): self.assertEqual(dim('float').std().apply(self.dataset), self.linear_floats.std()) def test_var_transform(self): self.assertEqual(dim('float').var().apply(self.dataset), self.linear_floats.var()) # Custom functions def test_norm_transform(self): self.assertEqual(dim('int').norm().apply(self.dataset), (self.linear_ints-1)/9.) def test_bin_transform(self): self.assertEqual(dim('int').bin([0, 5, 10]).apply(self.dataset), np.array([2.5, 2.5, 2.5, 2.5, 2.5, 7.5, 7.5, 7.5, 7.5, 7.5])) def test_bin_transform_with_labels(self): self.assertEqual(dim('int').bin([0, 5, 10], ['A', 'B']).apply(self.dataset), np.array(['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B'])) def test_categorize_transform_list(self): self.assertEqual(dim('categories').categorize(['circle', 'square', 'triangle']).apply(self.dataset), np.array((['circle', 'square', 'triangle']*3)+['circle'])) def test_categorize_transform_dict(self): self.assertEqual(dim('categories').categorize({'A': 'circle', 'B': 'square', 'C': 'triangle'}).apply(self.dataset), np.array((['circle', 'square', 'triangle']*3)+['circle'])) def test_categorize_transform_dict_with_default(self): self.assertEqual(dim('categories').categorize({'A': 'circle', 'B': 'square'}, default='triangle').apply(self.dataset), np.array((['circle', 'square', 'triangle']*3)+['circle'])) # Complex expressions def test_multi_operator_expression(self): self.assertEqual((((dim('float')-2)*3)**2).apply(self.dataset), ((self.linear_floats-2)*3)**2) def test_multi_dim_expression(self): self.assertEqual((dim('int')-dim('float')).apply(self.dataset), self.linear_ints-self.linear_floats) # Repr method def test_dim_repr(self): self.assertEqual(repr(dim('float')), "'float'") def test_unary_op_repr(self): self.assertEqual(repr(-dim('float')), "-dim('float')") def test_binary_op_repr(self): self.assertEqual(repr(dim('float')*2), "dim('float')*2") def test_reverse_binary_op_repr(self): self.assertEqual(repr(1+dim('float')), "1+dim('float')") def test_ufunc_expression_repr(self): self.assertEqual(repr(np.log(dim('float'))), "np.log(dim('float'))") def test_custom_func_repr(self): self.assertEqual(repr(dim('float').norm()), "dim('float').norm()") def test_multi_operator_expression_repr(self): self.assertEqual(repr(((dim('float')-2)*3)**2), "((dim('float')-2)*3)**2") # Applies method def test_multi_dim_expression_applies(self): self.assertEqual((dim('int')-dim('float')).applies(self.dataset), True) def test_multi_dim_expression_not_applies(self): self.assertEqual((dim('foo')-dim('bar')).applies(self.dataset), False) def test_multi_dim_expression_partial_applies(self): self.assertEqual((dim('int')-dim('bar')).applies(self.dataset), False)
StarcoderdataPython
5130046
<filename>django_photo_gallery/app/migrations/0008_auto_20180820_2032.py<gh_stars>0 # Generated by Django 2.0.4 on 2018-08-20 20:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0007_auto_20180817_1423'), ] operations = [ migrations.AddField( model_name='fooditem', name='price2', field=models.DecimalField(decimal_places=2, max_digits=8, null=True), ), migrations.AddField( model_name='fooditem', name='price3', field=models.DecimalField(decimal_places=2, max_digits=8, null=True), ), migrations.AlterField( model_name='foodcategory', name='description', field=models.TextField(max_length=1024, null=True), ), migrations.AlterField( model_name='fooditem', name='description', field=models.TextField(blank=True, max_length=1024), ), ]
StarcoderdataPython
6656619
# -*- coding: utf-8 -*- from util import Log def remove(absFilePath, realPath = ''): with open(absFilePath, "rb") as tmpFile: content = tmpFile.read() if len(content) < 3: return 0 if content[0:3] == b'\xef\xbb\xbf': content = content[3:] with open(absFilePath, "wb+") as tmpFile: tmpFile.write(content) if realPath != '': Log.printDetailln("[Bom] removed: %s" % (realPath)) return 0
StarcoderdataPython
1687427
import os from collections import defaultdict """ Run from actual_data directory to get the average runtimes for each actual data test """ files_for_avg = 3 valid_strs = ["data{0}.acp".format(i) for i in range(1, files_for_avg + 1)] def is_file_path_valid_str(path): for valid_str in valid_strs: try: idx = path.index(valid_str) return path[0:idx] except: pass return None for ref_path in os.listdir('./'): try: runtimes = defaultdict(float) for file_path in os.listdir('./' + ref_path + '/igenomics_data'): complete_file_path = './' + ref_path + '/igenomics_data/' + file_path prefix_str = is_file_path_valid_str(complete_file_path) if prefix_str is not None: with open(complete_file_path) as my_file: for line_num, line in enumerate(my_file.readlines()): if line_num == 1: line_comps = line.split('\t') runtime = float(line_comps[2]) runtimes[prefix_str] += runtime break for key in runtimes.keys(): print("{0}: {1}".format(key, round(runtimes[key] / files_for_avg, 2))) except Exception: pass
StarcoderdataPython
6480061
<filename>unit.py import database as d import jobs as j import incubator as inc import bigData as big import staff import copy import math #Not all units, but all units you can create (no house, church) def all_units(): unit_list = [Farm, Mill, Brewery, Bakery, Lumberyard, Joinery] return unit_list #units use Business's money class Unit(object): unitType = "genericUnit" character = "X" locality = None #should be a locality location = () #(x,y), being indices on the localMap. business = None stock = None output = None def __init__ (self, unitName, unitLocality, unitLocationTuple, business): self.name = unitName self.bigdata = big.bigdata(self) stockLength = range(len(d.getMaterials())) missionsLength = range(len(d.getUnitMissions())) self.locality = unitLocality self.location = unitLocationTuple self.business = business self.jobList = [] self.incubator = inc.incubator(self) self.bigdata = big.bigdata(self) self.stock = [0 for material in stockLength] self.output = [0 for material in stockLength] self.tech = [1 for material in stockLength] #current prices self.price = [0 for material in stockLength] self.purchases = [0 for material in stockLength] #yesterday's number of sales for each item self.sales = [0 for material in stockLength] self.failSales = [0 for material in stockLength] self.transports = [0 for material in stockLength] self.failTransports = [0 for material in stockLength] #Direct Materials Cost of a SINGLE instance of each product self.DMC = [0 for material in stockLength] # self.orders = [0 for material in stockLength] self.crafted = [0 for material in stockLength] self.planted = [0 for material in stockLength] self.harvested = [0 for material in stockLength] self.missions = [False for mission in missionsLength] self.can_make = [False for material in stockLength] self.laborTotal = 0 # self.rentTotal = 0 self.customers = [] def toString(self): print("------------------------------------------") print(self.name + " is a " + self.unitType + ".") print("\nCurrent stocks:") print("Stock:", self.stock) print("Output:", self.output) print("\nCurrent crafted:") print("Crafted: ", self.crafted) print("Planted: ", self.planted) print("\nCurrent prices:") print("Direct material costs:", self.DMC) print("Last week's labor costs:", self.laborTotal) print("Sales:", self.sales) print("Failsales: ", self.failSales) print("Demand: ", [self.sales[i] + self.failSales[i] for i in range(len(self.sales))]) print("Prices:", self.price) def getPrice(self): return self.price def complain(self, who): failSale = [0 for i in range(len(d.getMaterials()))] cost = 0 self.customers.append((who, failSale, copy.copy(self.output), cost, who.capital, False)) def sell(self, who, amounts): wishamounts = copy.copy(amounts) wishcost = sum(self.price[i] * wishamounts[i] for i in range(len(self.output))) for i in range(len(self.output)): if amounts[i] > self.output[i]: amounts[i] = math.floor(self.output[i]) cost = sum(self.price[i] * amounts[i] for i in range(len(self.output))) #verify if who.canAfford(cost): #sale who.addCapital(-cost) self.business.addCash(cost) for i in range(len(self.output)): self.addOutput(i, -amounts[i]) who.addInventory(i, amounts[i]) self.addSales(i, amounts[i]) self.addFailSales(i, wishamounts[i] - amounts[i]) if sum(amounts) > 0: sold = True else: sold = False #customers is for bigData- cleared during *PHASE* self.customers.append((who, wishamounts, wishcost, copy.copy(amounts), cost, copy.copy(self.output), who.capital, sold)) return (amounts, cost, sold) #calculate the price of a single material, without changing it in place- i = materialIndex def priceCalc(self, i): #natural rate of profit- 4% return on capital nrp = 1.04 #K is a constant weight- adjust if needed. At .5 one period is the half life. K = .5 #natural price if d.getMaterials()[i] in d.planted: #2 days, tech same for planting and harvesting ratio = self.incubator.ratios[d.getMaterials()[i]] labor = 2 / (self.tech[i] * ratio) else: labor = 1 / self.tech[i] naturalPrice = (self.DMC[i] + labor) * nrp #if never sold before if self.price[i] == 0: price = round(naturalPrice, 2) oPrice = price #if sold before else: #optimal price, set price. demand = self.sales[i] + self.failSales[i] oPrice = (demand / self.output[i]) * naturalPrice priceAdjustment = (K * (oPrice - self.price[i])) price = round(self.price[i] + priceAdjustment, 2) return (price, oPrice, naturalPrice) #call AFTER transferring but BEFORE transporting. For stores, after restocking and before selling. (rest) #priceGen gives new prices every period for each item based on the earlier price and #the "optimal price" that it should trend towards. def priceGen(self): yDayNum = self.getDayNum() - 1 oPrice = [0 for i in d.getMaterials()] naturalPrice = [0 for i in d.getMaterials()] for i in range(len(self.price)): if self.output[i] != 0: (self.price[i], oPrice[i], naturalPrice[i]) = self.priceCalc(i) #debug # if self.name in ("<NAME>", "<NAME>", "<NAME>"): # print(self.name) # print("DMC: ", self.DMC) # print("sales: ", self.sales) # print("output: ", self.output) # print("nPrice: ", naturalPrice) # print("oPrice: ", oPrice) # print("price: ", self.price) # print("") self.resetSales() self.resetCustomers() def growingPlants(self, materialIndex): return self.incubator.getGrowing(d.getMaterials()[materialIndex]) def ripePlants(self, materialIndex): return self.incubator.getRipe(d.getMaterials()[materialIndex]) def plantSeeds(self, materialIndex, amount): # if self.stock[materialIndex] <= amount: # amount = self.stock[materialIndex] # self.stock[materialIndex] -= amount self.incubator.plant(d.getMaterials()[materialIndex], amount) def harvest(self, materialIndex, amount): if self.ripePlants(materialIndex) >= amount: amount = self.incubator.harvest(d.getMaterials()[materialIndex], amount) self.addCrafted(materialIndex, amount) self.addStock(materialIndex, amount) def getName(self): return self.name def getEmployees(self): employeeList = [] for job in self.jobList: employeeList += job.getEmployees() return employeeList def get_emp_dict(self): empDict = {} for job in self.jobList: empDict[job] = job.getEmployees() return empDict def getLocality(self): return self.locality def getLocation(self): return self.location def getBusiness(self): return self.business def getDayNum(self): return self.locality.getDayNum() def getDMC(self): return self.DMC # def getIsMarket(self): # return self.isMarket #for now, skills don't matter. But they will. def getJobs(self, interviewee): jobList = copy.copy(self.jobList) return jobList def getJobList(self): return self.jobList def getOutput(self, materialIndex): return (self.output[materialIndex]) def getAllOutput(self): return self.output def getMissions(self): return self.missions def getStock(self, materialIndex): return (self.stock[materialIndex]) def getAllStock(self): return self.stock def getTech(self, materialIndex): return self.tech[materialIndex] def getUnitType(self): return self.unitType def setBusiness(self, newBusiness): self.business = newBusiness #addPurchase, addSales, addFailSales. This is stupid. def addPurchase(self, materialIndex, amount): self.purchases[materialIndex] += amount def addSales(self, materialIndex, amount): self.sales[materialIndex] += amount def addFailSales(self, materialIndex, amount): self.failSales[materialIndex] += amount def addTransports(self, materialIndex, amount): self.transports[materialIndex] += amount def addFailTransports(self, materialIndex, amount): self.failTransports[materialIndex] += amount def getTotalDemand(self): demand = [] for i in range(len(self.sales)): demand.append(self.sales[i] + self.failSales[i] + self.transports[i] + self.failTransports[i]) return demand def addStock(self, materialIndex, amount): self.stock[materialIndex] += amount def addOutput(self, materialIndex, amount): self.output[materialIndex] += amount def addCrafted(self, materialIndex, amount): self.crafted[materialIndex] += amount def addPlanted(self, materialIndex, amount): self.planted[materialIndex] += amount def addHarvested(self, materialIndex, amount): self.harvested[materialIndex] += amount def getCrafted(self): return self.crafted #used for displaying production in matplotlib def getProduction(self): return ([0,1,2,3,4,5,6,7,8], self.crafted) def getSales(self): return ([0,1,2,3,4,5,6,7,8], self.sales) def addJob(self, job): self.jobList.append(job) def removeJob(self, job): self.jobList.remove(job) def setDMC(self, materialIndex, DMCost): self.DMC[materialIndex] = DMCost def setLaborTotal(self, laborTotal): self.laborTotal = laborTotal def resetPurchases(self): self.purchases = [0 for i in self.purchases] def resetSales(self): self.sales = [0 for i in self.sales] self.failSales = [0 for i in self.failSales] self.transports = [0 for i in self.transports] self.failTransports = [0 for i in self.failTransports] def resetCrafted(self): self.crafted = [0 for i in self.crafted] def resetPlanted(self): self.planted = [0 for i in self.planted] def resetHarvested(self): self.harvested = [0 for i in self.harvested] def resetCustomers(self): self.customers = [] def getRevenue(self): revenue = [] for i in range(len(self.sales)): thisRev = round(self.sales[i] * self.price[i], 2) revenue.append(thisRev) return revenue def dailyRevenue(self): materials = d.getMaterials() revenue = self.getRevenue() noSales = True toString = ("\n" + self.name + " made") for i in range(len(revenue)): if revenue[i] != 0: if not noSales: toString += "," toString += ( " $" + str(revenue[i]) + " from " + str(self.sales[i]) + "/" + str(self.sales[i] + self.failSales[i]) + " sales of " + materials[i] ) noSales = False toString += "." if noSales: toString = ("\n" + self.name + " made no sales today.") return toString def dailyCrafted(self): materials = d.getMaterials() toString = ("\n" + self.name + " created") noCrafted = True for i in range(len(self.crafted)): if self.crafted[i] != 0: if not noCrafted: toString += "," toString += ( " " + str(self.crafted[i]) + " " + str(materials[i]) ) noCrafted = False toString += "." if noCrafted: toString = ("\n" + self.name + " didn't craft anything today.") return toString def dailyExpenses(self): pass class Manufactury(Unit): unitType = "Manufactury" character = "Manu" def __init__(self, unitName, unitLocality, unitLocationTuple, business): Unit.__init__(self, unitName, unitLocality, unitLocationTuple, business) self.missions[d.MANU_INDEX] = True self.staff = staff.manu_staff(self) class Farm(Manufactury): unitType = "Farm" character = "F" def __init__(self, unitName, unitLocality, unitLocationTuple, business): Manufactury.__init__(self, unitName, unitLocality, unitLocationTuple, business) self.can_make[d.GRAIN_INDEX] = True self.tech[d.GRAIN_INDEX] = 4.5 self.stock[d.GRAIN_INDEX] = 50 # self.DMC[d.GRAIN_INDEX] = 1 self.failSales[d.GRAIN_INDEX] = 500 d.addUnit(self) if self.business is not None: self.business.addUnit(self) #20-30 kg flour per hour- ~440 lb per 8 hours class Mill(Manufactury): unitType = "Mill" character = "M" def __init__(self, unitName, unitLocality, unitLocationTuple, business): Manufactury.__init__(self, unitName, unitLocality, unitLocationTuple, business) self.can_make[d.FLOUR_INDEX] = True self.tech[d.FLOUR_INDEX] = 440 self.missions[d.MANU_INDEX] = True self.stock[d.GRAIN_INDEX] = 50 # self.DMC[d.GRAIN_INDEX] = 1 self.failSales[d.FLOUR_INDEX] = 500 d.addUnit(self) if self.business is not None: self.business.addUnit(self) class Brewery(Manufactury): unitType = "Brewery" character = "b" def __init__(self, unitName, unitLocality, unitLocationTuple, business): Manufactury.__init__(self, unitName, unitLocality, unitLocationTuple, business) self.can_make[d.BEER_INDEX] = True self.tech[d.BEER_INDEX] = 40 self.missions[d.MANU_INDEX] = True self.stock[d.GRAIN_INDEX] = 50 # self.DMC[d.GRAIN_INDEX] = 1 self.failSales[d.BEER_INDEX] = 500 d.addUnit(self) if self.business is not None: self.business.addUnit(self) class Bakery(Manufactury): unitType = "Bakery" character = "B" def __init__(self, unitName, unitLocality, unitLocationTuple, business): Manufactury.__init__(self, unitName, unitLocality, unitLocationTuple, business) self.can_make[d.BREAD_INDEX] = True self.tech[d.BREAD_INDEX] = 60 self.missions[d.MANU_INDEX] = True self.missions[d.STORE_INDEX] = True self.stock[d.FLOUR_INDEX] = 50 # self.DMC[d.FLOUR_INDEX] = 1 self.failSales[d.BREAD_INDEX] = 500 d.addUnit(self) if self.business is not None: self.business.addUnit(self) class Lumberyard(Manufactury): unitType = "Lumberyard" character = "L" def __init__(self, unitName, unitLocality, unitLocationTuple, business): Manufactury.__init__(self, unitName, unitLocality, unitLocationTuple, business) self.can_make[d.WOOD_INDEX] = True self.tech[d.WOOD_INDEX] = 50 self.missions[d.MANU_INDEX] = True self.stock[d.WOOD_INDEX] = 50 # self.DMC[d.WOOD_INDEX] = 1 self.failSales[d.WOOD_INDEX] = 500 d.addUnit(self) if self.business is not None: self.business.addUnit(self) class Joinery(Manufactury): unitType = "Joinery" character = "J" def __init__(self, unitName, unitLocality, unitLocationTuple, business): Manufactury.__init__(self, unitName, unitLocality, unitLocationTuple, business) self.can_make[d.CHAIR_INDEX] = True self.can_make[d.TABLE_INDEX] = True self.tech[d.CHAIR_INDEX] = 1 self.tech[d.TABLE_INDEX] = 1 self.missions[d.MANU_INDEX] = True self.missions[d.STORE_INDEX] = True self.stock[d.WOOD_INDEX] = 50 # self.DMC[d.WOOD_INDEX] = 1 self.failSales[d.CHAIR_INDEX] = 500 self.failSales[d.TABLE_INDEX] = 500 d.addUnit(self) if self.business is not None: self.business.addUnit(self) class House(Unit): unitType = "Home" character = "H" def __init__(self, unitLocality, unitLocationTuple, business=None, unitName="House"): Unit.__init__(self, unitName, unitLocality, unitLocationTuple, business) self.missions[d.HOME_INDEX] = True self.tenants = set() d.addUnit(self) if self.business is not None: self.business.addUnit(self) def addTenant(self, tenant): self.tenants.add(tenant) def removeTenant(self, tenant): self.tenants.remove(tenant) #the ai don't need warehouses, players probably do. class Warehouse(Unit): unitType = "Warehouse" character = "W" def __init__(self, unitName, unitLocality, unitLocationTuple, business): Unit.__init__(self, unitName, unitLocality, unitLocationTuple, business) self.missions[d.MANU_INDEX] = True d.addUnit(self) if self.business is not None: self.business.addUnit(self) class Church(Unit): unitType = "Church" character = "C" def __init__(self, unitName, unitLocality, unitLocationTuple, business, religion): Unit.__init__(self, unitName, unitLocality, unitLocationTuple, business) self.religion = religion self.missions[d.CHURCH_INDEX] = True self.flock = [] self.attendance = [] self.staff = staff.church_staff(self) # self.manager = j.Manager(business, self, 41) d.addChurch(self) if self.business is not None: self.business.addUnit(self) def attend(self, member): self.attendance.append(member) def getAttendance(self): return self.attendance def resetAttendance(self): self.attendance = [] def getReligion(self): return self.religion def getFlock(self): return self.flock def addMember(self, member): self.flock.append(member)
StarcoderdataPython
3278789
from PySide.QtCore import * from PySide.QtGui import * # importo todas las funciones de pyside class MatrixDialog(QDialog): def __init__(self, ValoresIniciales, parent=None): super(MatrixDialog, self).__init__(parent) self.setGeometry(QRect(100, 100, 600, 200)) Matrix = QTableWidget(len(ValoresIniciales[0]), len(ValoresIniciales), self) Matrix.setGeometry(QRect(0, 0, 600, 200)) Matrix.setHorizontalHeaderLabels(['1', '2', '3', '4', '5', '6']) Matrix.setVerticalHeaderLabels(['P [Pa]', 'T [K]', 'rho [kg/m3]', 'V [m3/kg]', 'S [J/kgK]']) for i in range(len(ValoresIniciales)): for j in range(len(ValoresIniciales[i])): Matrix.setItem(j, i, QTableWidgetItem(str(ValoresIniciales[i][j])))
StarcoderdataPython
4826717
<gh_stars>1-10 from abc import abstractmethod from pathlib import Path from titlecase import titlecase from modules.ImageMaker import ImageMaker class CardType(ImageMaker): """ This class describes an abstract card type. A CardType is a subclass of ImageMaker, because all CardTypes are designed to create title cards. This class outlines the requirements for creating a custom type of title card. All subclasses of CardType must implement this class's abstract properties and methods in order to work with the TitleCardMaker. However, not all CardTypes need to use every argument of these methods. For example, the StandardTitleCard utilizes most all customizations for a title card (i.e. custom fonts, colors, sizing, season titles, etc.), while a StarWarsTitleCard doesn't use anything except the episode title and number. """ """Default case string for all title text""" DEFAULT_FONT_CASE = 'upper' """Mapping of 'case' strings to format functions""" CASE_FUNCTIONS = { 'source': str, 'upper': str.upper, 'lower': str.lower, 'title': titlecase, 'blank': lambda _: '', } """Default episode text format string, can be overwritten by each class""" EPISODE_TEXT_FORMAT = 'EPISODE {episode_number}' """Whether this class uses unique source images for card creation""" USES_UNIQUE_SOURCES = True """Standard size for all title cards""" TITLE_CARD_SIZE = '3200x1800' """Standard blur effect to apply to spoiler-free images""" BLUR_PROFILE = '0x60' @property @abstractmethod def TITLE_CHARACTERISTICS(self) -> dict: """ Characteristics of title splitting for this card type. Must have keys for max_line_width, max_line_count, and top_heavy. See `Title` class for details. """ raise NotImplementedError(f'All CardType objects must implement this') @property @abstractmethod def ARCHIVE_NAME(self) -> str: """How to name archive directories for this type of card""" raise NotImplementedError(f'All CardType objects must implement this') @property @abstractmethod def TITLE_FONT(self) -> str: """ Standard font (full path or ImageMagick recognized font name) to use for the episode title text """ raise NotImplementedError(f'All CardType objects must implement this') @property @abstractmethod def TITLE_COLOR(self) -> str: """Standard color to use for the episode title text""" raise NotImplementedError(f'All CardType objects must implement this') @property @abstractmethod def FONT_REPLACEMENTS(self) -> dict: """Standard font replacements for the episode title font""" raise NotImplementedError(f'All CardType objects must implement this') @property @abstractmethod def USES_SEASON_TITLE(self) -> bool: """Whether this class uses season titles for the purpose of archives""" raise NotImplementedError(f'All CardType objects must implement this') @abstractmethod def __init__(self) -> None: """ Construct a new CardType. Must call super().__init__() to initialize the parent ImageMaker class (for PreferenceParser and ImageMagickInterface objects). """ super().__init__() @staticmethod @abstractmethod def is_custom_font() -> bool: """ Abstract method to determine whether the given font characteristics indicate the use of a custom font or not. :returns: True if a custom font is indicated, False otherwise. """ raise NotImplementedError(f'All CardType objects must implement this') @staticmethod @abstractmethod def is_custom_season_titles() -> bool: """ Abstract method to determine whether the given season characteristics indicate the use of a custom season title or not. :returns: True if a custom season title is indicated, False otherwise. """ raise NotImplementedError(f'All CardType objects must implement this') @abstractmethod def create(self) -> None: """ Abstract method to create the title card outlined by the CardType. All implementations of this method should delete any intermediate files. """ raise NotImplementedError(f'All CardType objects must implement this')
StarcoderdataPython
227642
<filename>setup.py<gh_stars>0 from setuptools import setup setup (name = 'python_slack_client', packages = ['python_slack_client'], version = '0.0.1', author = '<NAME>', author_email = '<EMAIL>', url = 'https://github.com/Geam/python_slack_client', description = 'Slack client for terminal write in python', licence = 'MIT', install_requires = ['slacksocket >= 0.7'] )
StarcoderdataPython
1628503
from flask import session from collections import UserDict class SessionCredentialStore(UserDict): def __init__(self): super().__init__() self.session = session def __setitem__(self, key, value): self.session[key] = value def __getitem__(self, key): return self.session[key] def __delitem__(self, key): return self.session.pop(key) def __contains__(self, key): return key in self.session def __repr__(self): return 'SessionStore: {}'.format(str(self.__class__))
StarcoderdataPython
239103
import sqlite3 import os import time import logging import datetime from sys import argv from sl_signature import SL_Signature ''' @author:jzf @date: 2019-11-20 @desc: 仓库模块 ''' LOG_FORMAT = "%(asctime)s - %(levelname)s - %(message)s" #logging.basicConfig(filename='Storage.log', level=logging.DEBUG, format=LOG_FORMAT) #fileHandler = logging.FileHandler(filename='Storage.log',encoding="utf-8") #logging.getLogger().addHandler(fileHandler) DBName = "Storage.db" def TimeStampToTime(timestamp = 0): timeStruct = time.localtime(timestamp) return time.strftime('%Y-%m-%d %H:%M:%S',timeStruct) class SL_Storage: #存储类 def __init__(self, rootdir, DBName = None): self.logger = logging.getLogger("Storage") fileHandler = logging.FileHandler(filename='Storage.log',encoding="utf-8") formatter = logging.Formatter("%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s") fileHandler.setFormatter(formatter) self.logger.addHandler(fileHandler) self.logger.setLevel(logging.INFO) self.rootdir = rootdir if DBName is None : #DBName = os.path.basename(os.path.abspath(rootdir)) #DBName += ".db" DBName = "Storage.db" DBName = os.path.abspath(rootdir)+os.sep+".showlib" +os.sep+ DBName self.DBName = DBName print("dname ="+DBName) self.conn = sqlite3.connect(DBName) self.cur = self.conn.cursor() self.cur.execute('''create table IF NOT EXISTS StorageLib( name varchar(256) not null, hash varchar(256) not null, size decimal(19,2) not null, idev varchar(256) not null, inode varchar(256) not null, path text not null, mtime datetime not null) ''') self.conn.commit() self.signature = SL_Signature(self.rootdir) def __del__(self): print('close') self.conn.close() def create_storage(self): ''' 创建一个.showlib文件夹 创建一个config.xml,生成仓库的uuid等基本信息 ''' pass def open_storage(self): ''' 从config.xml中读取配置信息 ''' pass def delete_stroage(self): ''' 删除仓库 ''' pass def add_path(self): pass def del_path(self): pass def scan_path(self,root_path = None,rescan = False): ''' 扫描路径,生成db ''' RootPath = os.path.abspath(self.rootdir) if root_path is not None: RootPath = os.path.abspath(self.root_path) self.logger.debug(RootPath) records = [] recordset = self.GetRecords() for root, dirs, files in os.walk(RootPath) : print(root) if os.path.basename(root) == ".showlib": continue for name in files : if root+os.sep+name == self.DBName: continue if rescan == False: if self.IsResourceChange(root,name,recordset) != True: continue print(name) record = self.GenRecord(root,name) records.append(record) return records def IsResourceChange(self,dir,name,records): rc_stat = os.stat(dir+os.sep+name) record = None for item in records: if item[4] == str(rc_stat.st_ino): record = item if record is None: return True elif record[6] != TimeStampToTime(rc_stat.st_mtime): return True else: return False def InsertToDB(self,record): #将记录插入到数据库 try: self.conn.execute('''insert into StorageLib (name, hash, size, idev, inode, path, mtime) values(?,?,?,?,?,?,?)''',tuple(record)) self.conn.commit() self.logger.info(record) except Exception as e: self.logger.debug("SL_Storage %s path is %s" %(e,record[5])) self.cur.close() self.conn.close() self.conn = sqlite3.connect(self.DBName) self.cur = self.conn.cursor() def InsertDB_Signature_Records(self, recordset): if len(recordset) == 0: return records = [] hash_list = self.signature.GetHashList() for item in recordset: # name hash size bexsit = False for hash in hash_list: if item[1] == hash: bexsit = True self.logger.info("hash exsit name=%s hash =%s" %(item[0],item[1])) break if bexsit == True: continue for record in records: if item[1] == record[1]: bexsit = True self.logger.info("hash exsit name=%s hash =%s" %(item[0],item[1])) break if bexsit == True: continue records.append(tuple(item[0:3])) self.signature.InsertDB_Records(records) def InsertDB_Records(self, recordset): if len(recordset) == 0: return records = [] for item in recordset: records.append(tuple(item)) try: self.conn.executemany('''insert into StorageLib (name, hash, size, idev, inode, path, mtime) values(?,?,?,?,?,?,?)''',records) self.conn.commit() except Exception as e: self.logger.warning("%s len is %s" %(e,str(len(records)))) self.cur.close() self.conn.close() self.conn = sqlite3.connect(self.DBName) self.cur = self.conn.cursor() def GenRecord(self,root,name): #生成单条记录并插入到库 FileAbsPath = root+'\\'+name record = self.signature.GenRecord(root,name) record.append(str(os.stat(FileAbsPath).st_dev)) record.append(str(os.stat(FileAbsPath).st_ino)) record.append(FileAbsPath) record.append(TimeStampToTime(os.path.getmtime(FileAbsPath))) return record #self.InsertToDB(record) def ListvedioRC(self): #查找视频资源 l = [] for row in self.conn.execute(''' SELECT * FROM StorageLib where name like '%.avi' or name like '%.MP4' or name like '%.flv' or name like '%.rmvb' or name like '%.wmv' '''): l.append(row) self.conn.commit() return l def GetRecord_ByHash(self,hash): l = [] for row in self.conn.execute(''' SELECT * FROM StorageLib where hash = ? ''',hash): l.append(row) self.conn.commit() return l def GetRecords(self): self.cur.execute(''' SELECT * FROM StorageLib''') ls = self.cur.fetchall() self.conn.commit() return ls def ShowRecordsCount(self): count = None for row in self.conn.execute(''' SELECT count(*) FROM StorageLib'''): print(row) count = row[0] self.conn.commit() return count def GetHashList(self) : hashlist = [] for row in self.conn.execute('SELECT distinct hash FROM StorageLib'): hashlist.append(row[0]) self.conn.commit() return hashlist def GethashCount(self): for row in self.conn.execute(''' SELECT count(distinct hash) FROM StorageLib'''): print(row) self.conn.commit() def ShowRepeatHashRC(self) : l = [] l = self.GetHashList() sizeCount = 0 for h in l: lh = [] lh.append(h) ret = self.GetRecord_ByHash(lh) if len(ret) > 1: print('hash is %s num is %d' %(h,len(ret))) print('=========================================') index = 0 for item in ret: print("FileName %s" %item[0]) print(" |__size %s" %item[2]) print(" |__Path %s" %item[5]) print('') if index != 0 : sizeCount += item[2] index += 1 print('') sizeM = sizeCount/1024.0/1024.0 sizeg = sizeM/1024.0 print('冗余大小约为 %d B == %d M == %d G' %(sizeCount,sizeM,sizeg)) def ShowRepeatNameRC(self) : pass def Get_RCPath_byHash(self, hash): l = [] for row in self.conn.execute(''' SELECT path FROM StorageLib where hash = ? ''',hash): l.append(row[0]) self.conn.commit() return l if __name__ == "__main__" : # 使用xx.py xxx路径 old = datetime.datetime.now() print(old.strftime('%Y-%m-%d %H:%M:%S.%f')) f = SL_Storage(argv[1]) if argv[2] == "scan": # 扫描文件夹 f.scan_path() elif argv[2] == "ShowRepeatHashRC": #显示重复 f.ShowRepeatHashRC() elif argv[2] == "ListvedioRC": l = f.ListvedioRC() print(l) elif argv[2] == "ShowRecordsCount": # 显示数目 f.ShowRecordsCount() f.GethashCount() else: print("不能存在方法 "+argv[2]+",您可以利用当前代码自行编写脚本" ) print(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')) print(datetime.datetime.now()-old)
StarcoderdataPython
3258475
<filename>tick/survival/sccs/__init__.py # License: BSD 3 clause import tick.base from .batch_convolutional_sccs import BatchConvSCCS from .stream_convolutional_sccs import StreamConvSCCS __all__ = [ "BatchConvSCCS", "StreamConvSCCS" ]
StarcoderdataPython
6475959
<filename>sgr_analysis/sapt/helpers.py<gh_stars>0 """helpers.py: Functions for parsing data from SAPT0 and ALMO output files.""" import os.path import re import numpy as np import pandas as pd from pandas.util.testing import assert_frame_equal import scipy.stats as sps from sgr_analysis.analysis_utils import make_file_iterator KJ_TO_KCAL = 4.184 rsq_cutoff = 0.50 re_number_str = "(-?[0-9]*\.[0-9]*)" re_number = re.compile(re_number_str) def fit_line(x, y): """Return slope, intercept of best fit line.""" # Remove entries where either x or y is NaN. clean_data = pd.concat([x, y], 1).dropna(0) # row-wise (_, x), (_, y) = clean_data.iteritems() slope, intercept, r, p, stderr = sps.linregress(x, y) return slope, intercept, r**2 def assertFrameEqual(df1, df2, **kwds): """Assert that two dataframes are equal, ignoring ordering of columns. """ return assert_frame_equal(df1.sort(axis=1), df2.sort(axis=1), check_names=True, **kwds) def linear_regression_2df(df1, df2): """Perform a linear regression between all pairs of columns in two DataFrames. """ header = ' slope intercept rsq' print(header) template = '{:20.10f} {:20.10f} {:.4f} ({}, {})' columns = df1.columns # Are the two DataFrames identical? try: assertFrameEqual(df1, df2) except AssertionError: samedf = False else: samedf = True rsq_list = [] # If the two DataFrames are the same, avoid double-counting and # "self-regression". if samedf: for xi in range(len(columns)): for yi in range(xi): xlabel = columns[xi] ylabel = columns[yi] if xlabel != ylabel: slope, intercept, rsq = fit_line(df1.loc[:, xlabel], df2.loc[:, ylabel]) rsq_list.append((rsq, (xlabel, ylabel))) if rsq >= rsq_cutoff: print(template.format(slope, intercept, rsq, xlabel, ylabel)) # If the two DataFrames aren't the same, go over all columns in both. else: for xlabel in columns: for ylabel in columns: slope, intercept, rsq = fit_line(df1.loc[:, xlabel], df2.loc[:, ylabel]) rsq_list.append((rsq, (xlabel, ylabel))) if rsq >= rsq_cutoff: print(template.format(slope, intercept, rsq, xlabel, ylabel)) rsq_list = sorted(rsq_list) for entry in rsq_list: print(entry) return def _add_axis_labels(pg): """Add labels to all possible left and bottom Axes. This doesn't work the way I expect it to? """ # for ax, label in zip(self.axes[-1, :], self.x_vars): # ax.set_xlabel(label) # for ax, label in zip(self.axes[:, 0], self.y_vars): # ax.set_ylabel(label) for i, j in zip(*np.tril_indices_from(pg.axes, -1)): ax = pg.axes[i, j] # WHY ARE THINGS INVERTED xlabel = pg.x_vars[j] ylabel = pg.y_vars[i] ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) return def read_qchem_eda_v1(filename: str, is_cp: bool = False): """Units of returned values: kcal/mol""" almo_data_snap = dict() with open(filename) as fh: for line in fh: if 'Frozen Density ( FRZ )' in line: frz = float(line.split()[-1]) almo_data_snap['frz'] = frz if 'Polarization ( POL )' in line: pol = float(line.split()[-1]) almo_data_snap['pol'] = pol if 'RS Delocalization ( P-DEL )' in line: rs_del = float(line.split()[-1]) almo_data_snap['del_rs'] = rs_del if 'RS Basis set superposition error ( P-BSSE )' in line: assert is_cp rs_bsse = float(line.split()[-1]) almo_data_snap['bsse_rs'] = rs_bsse if 'RS Charge-transfer ( P-CT = P-DEL + P-BSSE )' in line: assert is_cp rs_ct = float(line.split()[-1]) assert abs(rs_del + rs_bsse - rs_ct) < 1.0e-4 almo_data_snap['ct_rs'] = rs_ct if 'SCF Delocalization ( V-DEL )' in line: scf_del = float(line.split()[-1]) almo_data_snap['del_scf'] = scf_del if 'SCF Basis set superposition error ( V-BSSE )' in line: assert is_cp scf_bsse = float(line.split()[-1]) almo_data_snap['bsse_scf'] = scf_bsse if 'SCF Charge-transfer ( V-CT = V-DEL + V-BSSE )' in line: assert is_cp scf_ct = float(line.split()[-1]) assert abs(scf_del + scf_bsse - scf_ct) < 1.0e-4 almo_data_snap['ct_scf'] = scf_ct if 'RS Total ( P-TOT = FRZ + POL + P-DEL )' in line: assert not is_cp rs_tot = float(line.split()[-1]) almo_data_snap['tot_rs'] = rs_tot if 'RS Total ( P-TOT = FRZ + POL + P-CT )' in line: assert is_cp rs_tot = float(line.split()[-1]) almo_data_snap['tot_rs'] = rs_tot if 'SCF Total ( V-TOT = FRZ + POL + V-DEL )' in line: assert not is_cp scf_tot = float(line.split()[-1]) almo_data_snap['tot_scf'] = scf_tot if 'SCF Total ( V-TOT = FRZ + POL + V-CT )' in line: assert is_cp scf_tot = float(line.split()[-1]) almo_data_snap['tot_scf'] = scf_tot if 'Higher order relaxation ( HO = V-TOT - P-TOT )' in line: scf_ho = float(line.split()[-1]) assert abs(scf_tot - rs_tot - scf_ho) < 1.0e-4 almo_data_snap['ho_scf'] = scf_ho for k in almo_data_snap: almo_data_snap[k] /= KJ_TO_KCAL return almo_data_snap def read_qchem_eda_v2(filename: str): """Units of returned values: kcal/mol""" almo_data = dict() fh = open(filename) line = next(fh) while "Results of EDA2" not in line: line = next(fh) line = next(fh) assert line.strip() == "================================" line = next(fh) assert line.strip() == "Basic EDA Quantities" line = next(fh) assert line.strip() == "--------------------" line = next(fh) assert line.strip() == "Fragment Energies (Ha):" line = next(fh) while line.strip() != "--------------------": # Do nothing with the fragment energies for now line = next(fh) line = next(fh) e_prp = float(line.split()[3]) almo_data["prp"] = e_prp line = next(fh) e_sol = float(line.split()[3]) almo_data["sol"] = e_sol line = next(fh) e_frz = float(line.split()[3]) almo_data["frz"] = e_frz line = next(fh) e_pol = float(line.split()[3]) almo_data["pol"] = e_pol line = next(fh) e_vct = float(line.split()[3]) almo_data["vct"] = e_vct line = next(fh) e_int = float(line.split()[3]) almo_data["int"] = e_int line = next(fh) assert line.strip() == "--------------------" line = next(fh) assert line.strip() == "" line = next(fh) assert line.strip() == "" line = next(fh) assert line.strip() == "Decomposition of frozen interaction energy" line = next(fh) assert line.strip() == "--------------------" line = next(fh) assert line.strip() == "--------------------" line = next(fh) assert line.strip() == "Orthogonal Frozen Decomposition:" line = next(fh) assert line.strip() == "--------------------" line = next(fh) e_elec = float(line.split()[4]) almo_data["elec"] = e_elec line = next(fh) e_pauli = float(line.split()[4]) almo_data["pauli"] = e_pauli line = next(fh) # e_disp = float(line.split()[4]) line = next(fh) assert line.strip() == "--------------------" line = next(fh) assert line.strip() == "Classical Frozen Decomposition:" line = next(fh) assert line.strip() == "--------------------" line = next(fh) e_cls_elec = float(line.split()[5]) almo_data["cls_elec"] = e_cls_elec line = next(fh) e_mod_pauli = float(line.split()[5]) almo_data["mod_pauli"] = e_mod_pauli line = next(fh) e_disp = float(line.split()[4]) almo_data["disp"] = e_disp line = next(fh) assert line.strip() == "--------------------" line = next(fh) assert line.strip() == "--------------------" line = next(fh) assert line.strip() == "" line = next(fh) assert line.strip() == "--------------------" line = next(fh) assert line.strip() == "Perturbative CT Analysis:" line = next(fh) assert line.strip() == "--------------------" line = next(fh) e_pct = float(line.split()[3]) almo_data["pct"] = e_pct line = next(fh) e_HO = float(line.split()[3]) almo_data["HO"] = e_HO line = next(fh) assert line.strip() == "---------------" # TODO PCT Energy lowering # TODO PCT Charge displacement fh.close() for k in almo_data: almo_data[k] /= KJ_TO_KCAL return almo_data def make_snapnum_to_bin_map(): snapshots_filename = '/home/eric/Chemistry/calc.sgr/paper_02_CD_SC/inputs_freq/representative_snapshots_1qm' snapnum_to_bin_map = dict() with open(snapshots_filename) as fh: for line in fh: if line[0] == '#': binnum = int(line.split()[2]) else: snapnum = int(line.strip()) snapnum_to_bin_map[snapnum] = binnum return snapnum_to_bin_map # B3LYP/6-31G(d,p) BIN_TO_WEIGHT_MAP = { 1: 0.06060606, 2: 0.24747475, 3: 0.4010101, 4: 0.22626263, 5: 0.06464646, } SAPT_HEADERS_MONOMER = [ '// Monomer Basis SAPT //', ] SAPT_HEADERS_DIMER = [ '// SAPT0 //', '// Dimer Basis SAPT //', ] SAPT_HEADERS = SAPT_HEADERS_MONOMER + SAPT_HEADERS_DIMER SAPT_BASES = ('monomer', 'dimer') def read_psi4_sapt_section(fi, pos: int = 1, calculation_thresh: float = 1.0e-7): """All returned values have units of kcal/mol.""" sapt_single_basis_data = dict() line = '' while 'SAPT Results' not in line: line = next(fi) line = next(fi) assert '------' in line line = next(fi) assert 'Electrostatics' in line val_electrostatics = float(re_number.findall(line)[pos]) sapt_single_basis_data['el'] = val_electrostatics line = next(fi) assert 'Elst10,r' in line line = next(fi) assert line.strip() == '' line = next(fi) assert 'Exchange' in line val_exchange = float(re_number.findall(line)[pos]) sapt_single_basis_data['exch'] = val_exchange line = next(fi) assert 'Exch10' in line line = next(fi) assert 'Exch10(S^2)' in line line = next(fi) assert line.strip() == '' line = next(fi) assert 'Induction' in line line = next(fi) assert 'Ind20,r' in line val_induction = float(re_number.findall(line)[pos]) sapt_single_basis_data['ind'] = val_induction line = next(fi) assert 'Exch-Ind20,r' in line val_exchange_induction = float(re_number.findall(line)[pos]) sapt_single_basis_data['exch-ind'] = val_exchange_induction line = next(fi) assert 'delta HF,r (2)' in line val_induction_delta_hf = float(re_number.findall(line)[pos]) sapt_single_basis_data['ind_HO'] = val_induction_delta_hf line = next(fi) assert line.strip() == '' line = next(fi) assert 'Dispersion' in line line = next(fi) assert 'Disp20' in line val_dispersion = float(re_number.findall(line)[pos]) sapt_single_basis_data['disp'] = val_dispersion line = next(fi) assert 'Exch-Disp20' in line val_exchange_dispersion = float(re_number.findall(line)[pos]) sapt_single_basis_data['exch-disp'] = val_exchange_dispersion while 'Total SAPT0' not in line: line = next(fi) sapt0_total_calculated = float(re_number.findall(line)[pos]) sapt0_total = val_electrostatics + \ val_exchange + \ val_induction + \ val_exchange_induction + \ val_induction_delta_hf + \ val_dispersion + \ val_exchange_dispersion assert abs(sapt0_total - sapt0_total_calculated) < calculation_thresh sapt_single_basis_data['total'] = sapt0_total return sapt_single_basis_data def read_psi4_sapt0(filename: str, pos: int = 1): """All returned values have units of kcal/mol.""" fi = make_file_iterator(filename) sapt_data = dict() # Collect both dimer-centered and monomer-centered SAPT basis # data. for line in fi: # Dimer results always come before monomer results. if any(sapt_header in line for sapt_header in SAPT_HEADERS_DIMER): sapt_data['dimer'] = read_psi4_sapt_section(fi, pos) if any(sapt_header in line for sapt_header in SAPT_HEADERS_MONOMER): sapt_data['monomer'] = read_psi4_sapt_section(fi, pos) break # Finally, check to see if a charge transfer (CT) calculation has # been performed. for line in fi: if 'SAPT Charge Transfer Analysis' in line: line = next(fi) assert list(set(line.strip())) == ['-'] line = next(fi) # Asserts here comparing to induction values that were # parsed earlier? assert 'SAPT Induction (Dimer Basis)' in line line = next(fi) assert 'SAPT Induction (Monomer Basis)' in line line = next(fi) assert 'SAPT Charge Transfer' in line ct = float(re_number.findall(line)[pos]) sapt_data['ct'] = ct return sapt_data def read_psi4_sapt0_with_snapnum_and_weight(filename): snapnum_to_bin_map = make_snapnum_to_bin_map() stub = os.path.splitext(os.path.basename(filename))[0] stub_tokens = stub.split('_') snapnum = int(stub_tokens[1]) binnum = snapnum_to_bin_map[snapnum] sapt_data = read_psi4_sapt0(filename) sapt_data['snapnum'] = snapnum sapt_data['weight'] = BIN_TO_WEIGHT_MAP[binnum] return sapt_data def df_weighted_average(df, weights): # Have to do things manually with Pandas, it seems. weights = np.array(weights).reshape((len(weights), 1)) weights_sum = np.sum(weights) return (weights * df.select_dtypes(include=[np.number])).sum(axis=0) / weights_sum
StarcoderdataPython
37760
from rest_framework import serializers class ProductSerializer(serializers.Serializer): product = serializers.ListField( child=serializers.CharField(max_length=200))
StarcoderdataPython
5157532
# script for running parameter scans of agent based simulation import os.path, sys sys.path.append('../lib/') import numpy as np from evolimmune import (from_tau, mus_from_str, cup_from_str, agentbasedsim_evol, zstogrowthrate) import cevolimmune from misc import * # general model parameters lambdas = 3.0 muss = '1.0-2.0*epsilon/(1.0+epsilon), 1.0+0.8*epsilon' cups = '0.1*pup+pup**2' # finite population model parameters Ls = 1 ninds = [50, 100, 1000] aenvs = from_tau(np.logspace(np.log10(0.09), np.log10(11.0), 40, True)) pienvs = [0.3, 0.5, 0.7] # numerical parameters ngens = [100000] # parameter evolution parameters mutrates = lambda gen: 1e-2 * np.exp(-gen/1e4) mutsizes = lambda gen: 0.25 * np.exp(-gen/1e4) # script parameters nbatch = 1 nruns = 50 datadir = 'data' paramscomb = params_combination((Ls, lambdas, muss, cups, aenvs, pienvs, ninds, mutrates, mutsizes)) if parametercheck(datadir, sys.argv, paramscomb, nbatch): ngens = np.asarray([ngens]) if isinstance(ngens, int) else np.asarray(ngens) index = int(sys.argv[1]) njob = (index-1) % len(paramscomb) data = [] for run in progressbar(range(nbatch * nruns)): n = njob * nbatch + run // nruns L, lambda_, mus, cup, aenv, pienv, nind, mutrate, mutsize = paramscomb[n] print paramscomb[n] fmus = mus_from_str(mus) fcup = cup_from_str(cup) def xi(ind, env, epsilon, pup): mu1, mu2 = fmus(epsilon) return cevolimmune.xi_pa(ind, env, lambda_, mu1, mu2) * np.exp(-fcup(pup).sum(axis=1)) # ngens is handled by running one long simulation and storing intermediate results zs, pis, as_, pups, epsilons = agentbasedsim_evol(aenv, pienv, xi, L=L, nind=nind, ngens=ngens, mutrate=mutrate, mutsize=mutsize, evolvep=True, evolveq=True, evolvepup=True, evolveepsilon=True ) Lambdas = [zstogrowthrate(zs[(ngens[i-1] if i > 0 else 0):ngens[i]]) for i in range(len(ngens))] for j, ngen in enumerate(ngens): data.append([L, lambda_, mus, cup, aenv, pienv, nind, ngen, as_[j], pis[j], pups[j], epsilons[j], Lambdas[j]]) columns = ['L', 'lambda_', 'mus', 'cup', 'aenv', 'pienv', 'nind', 'ngen', 'a', 'pi', 'pup', 'epsilon', 'Lambda'] np.savez_compressed(datadir + 'scan_ind%g' % (index), data=data, columns=columns)
StarcoderdataPython
5141225
<reponame>skaben/server_core from alert.serializers import AlertStateSerializer from core.models import AlertCounter, AlertState from django.contrib.auth import get_user_model from django.urls import reverse from rest_framework import status from rest_framework.test import APITestCase API_URL = reverse('api:alertstate-list') class TestPublicAlertApi(APITestCase): """Test the publicly available locks API""" def test_login_required(self): """Test that login required for retrieving tags""" res = self.client.get(API_URL) assert res.status_code == status.HTTP_401_UNAUTHORIZED class TestPrivateAlertStateApi(APITestCase): def setUp(self): self.user = get_user_model().objects.create_user( '<EMAIL>', '<PASSWORD>' ) self.client.force_authenticate(self.user) def test_retrieve_alert_states(self): for x in range(2): AlertState.objects.create(name=f'test_state_{x}', info='notimportant', current=False ) res = self.client.get(API_URL) states = AlertState.objects.all() serializer = AlertStateSerializer(states, many=True) assert res.status_code == status.HTTP_200_OK assert res.data == serializer.data def test_alert_state_set_current_solitude(self): """ Test action set_current for solitude alert state without any other AlertState objects """ state = AlertState.objects.create(name='statename', info='testinfo', current=False) instance_url = f'{API_URL}{str(state.id)}/set_current/' res = self.client.post(instance_url) patched = AlertState.objects.get(id=state.id) assert res.status_code == status.HTTP_200_OK, res.data assert patched.info == state.info, 'state change expected' def test_alert_state_set_current_normal(self): """ Test action set_current for alert state""" old = AlertState.objects.create(name='stateold', info='test2', current=True) new = AlertState.objects.create(name='statenew', info='test', current=False) counter = AlertCounter.objects.create(value='100500', comment='test') instance_url = f'{API_URL}{str(new.id)}/set_current/' res = self.client.post(instance_url) new_current = AlertState.objects.get(id=new.id) old_current = AlertState.objects.get(id=old.id) counter_new = AlertCounter.objects.latest('id') assert res.status_code == status.HTTP_200_OK assert old_current.current is False, 'change to False expected' assert new_current.current is True, 'change to True expected' assert counter_new.id != counter.id, 'counter create expected' def test_create_alert_state_fail(self): """ Test create new alert state via API fails """ name = 'notastate' payload = {'name': name, 'current': True} res = self.client.post(API_URL, payload) exists = AlertState.objects.filter(name=name).exists() assert not exists assert res.status_code == status.HTTP_405_METHOD_NOT_ALLOWED def test_update_alert_state_fail(self): """ Test partial update existing alert state fails """ state = AlertState.objects.create(name='statename', info='testinfo', current=False) payload = {'current': True, 'name': '12345'} instance_url = API_URL + str(state.id) + '/' res = self.client.patch(instance_url, payload) assert res.status_code == status.HTTP_405_METHOD_NOT_ALLOWED def test_delete_alert_state_fail(self): """ Test delete alert state via API fails """ state = AlertState.objects.create(name='test') instance_url = API_URL + str(state.id) + '/' res = self.client.delete(instance_url) exists = AlertState.objects.filter(id=state.id).exists() assert exists assert res.status_code == status.HTTP_405_METHOD_NOT_ALLOWED
StarcoderdataPython
11247728
<reponame>DLC01/elvis """ Created By <NAME> September 2020 @parzuko """ import discord from discord.ext import commands import mysql.connector import random # This is not an ideal example and would ideally be a database hosted on a server mydb = mysql.connector.connect( host = "localhost", user = "root", passwd = "<PASSWORD>", database = "userlevels", auth_plugin = "mysql_native_password" ) class XPLeveling(commands.Cog): def __init__(self, elvis): self.elvis = elvis def get_xp(self): return random.randint(1,5) def get_level(self, new_xp): current_level = "" if new_xp < 20: current_level = "Aquintances" elif new_xp >= 20 and new_xp < 60: current_level = "Friends" elif new_xp >= 60 and new_xp < 120: current_level = "Best Friends" elif new_xp >= 120 and new_xp < 240: current_level = "Homies" elif new_xp >= 240: current_level = "Brothers" return current_level @commands.command(name="friendship", aliases=["dosti", "xp"]) async def _xp(self, ctx): user_id = ctx.message.author.id name = ctx.message.author.name cursor = mydb.cursor() try: cursor.execute(f"SELECT friendship_level FROM xp WHERE client_id = {user_id}") result = cursor.fetchall() level = result[0][0] embed = discord.Embed( title = f"**{name} and Elvis are `{level}`.**", color=discord.Color.teal(), ) await ctx.send(embed=embed) except Exception: embed = discord.Embed( title = f"**{name} and Elvis are meeting for the first time!**", color=discord.Color.from_rgb(244,66,146), ) await ctx.send(embed=embed) @commands.Cog.listener() async def on_message(self, message): if message.author.bot: return if message.content[0] == ".": xp = self.get_xp() user_id = message.author.id name = message.author.name cursor = mydb.cursor() cursor.execute(f"SELECT user_xp, friendship_level FROM xp WHERE client_id = {user_id}") result = cursor.fetchall() if len(result) == 0: cursor.execute(f"INSERT INTO xp VALUES({user_id},{xp},'Aquintances')") mydb.commit() embed = discord.Embed( title = f"**{name} and Elvis are now `Aquintances`**", color=discord.Color.teal() ) await message.channel.send(embed=embed) else: new_xp = result[0][0] + xp current_level = result[0][1] flag = False new_level = self.get_level(new_xp) if current_level != new_level: flag = True current_level = new_level cursor.execute(f"UPDATE xp SET user_xp = {new_xp}, friendship_level = '{current_level}' WHERE client_id = {message.author.id}") mydb.commit() if flag: embed = discord.Embed( title = f"**{name} and Elvis are now `{current_level}`**", color=discord.Color.teal(), ) await message.channel.send(embed=embed) def setup(elvis): elvis.add_cog(XPLeveling(elvis))
StarcoderdataPython
8152272
<gh_stars>0 #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Mixed membership stochastic block model (Godoy-Lorite et al. 2016) #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #---------------------------------------------------------------------- # PURPOSE: # This method attempt to predict missing links within # a network based on observed links. #--------------------------------------------------------------------- # In our case we attempt to predict the missing link between a place # and a visitor based on the choices users made without categorising # them in a defined group #----------------------------------------------------------------------- # NOTE: [Antonia's code] # 1) Script modified to speed up code on python # 2) Order of vectors not the same as in Antonia's code # 3) Some modifications are still required to run the prediction.dat bit #----------------------------------------------------------------------- #importing the different modules import sys # import numpy as np (short form) #import _numpypy as np import numpy as np from math import * import copy import random import csv def read_files(training, zeros_as_null): user_dict = {} place_dict = {} visits = {} linksr = [] file = open(training,"r") for line in file: about = line.strip().split("\t") if int(about[2])!=0 or not zeros_as_null: try: x = user_dict[about[0]][0] user_dict[about[0]][1] += 1 except KeyError: #x = len(user_dict) x = int(about[0])-1 user_dict[about[0]] = [x, 1] try: y = place_dict[about[1]][0] place_dict[about[1]][1] += 1 except KeyError: #y = len(place_dict) y = int(about[1])-1 place_dict[about[1]] = [y, 1] try: v = visits[about[2]] except KeyError: v = len(visits) visits[about[2]] = v linksr.append([x, y, v]) file.close() return user_dict, place_dict, linksr, visits def calc_likelihood(linksr, theta, eta, L, K, pr): Like = 0. for n, m, ra in linksr: D = 0. for l in range(L): for k in range(K): D = D+theta[n][k]*eta[m][l]*pr[ra][k][l] for l in range(L): for k in range(K): Like = Like+(theta[n][k]*eta[m][l]*pr[ra][k][l])*log(D)/D return Like def sampling(c, ofolder, linksr, nsampling, iterations, K, L, R, user_dict, n_users, users_denom, place_dict, n_places, places_denom, verbose, study_likelyhood, alloutput): if verbose: sys.stderr.write(" ".join(['sampling',str(c),'\n'])) #theta = vector containing the different groups to which each user belongs to theta = np.random.rand(n_users,K) / users_denom[:,np.newaxis] #eta = vector containing the different groups to which each place belongs to eta = np.random.rand(n_places,L) / places_denom[:,np.newaxis] # 3d matrix containing random probabilities of ratings across user-group and place-group combos # NOTE: I have changed the structure of this and related variables!!! pr = np.random.rand(R, K, L) # normalize the probabilities across ratings # should divide by: sum of all ratings corresponding to a group-group combo pr = pr / pr.sum(axis=0) # create empty containers for the calculations that are made during each iteration ntheta = np.zeros((n_users, K)) neta = np.zeros((n_places, L)) npr = np.zeros((R, K, L)) Like=[] ################################################################################ for g in range(iterations): if verbose: sys.stderr.write(" ".join(['iteration',str(g),'\n'])) if study_likelyhood: Like+=[calc_likelihood(linksr, theta, eta, L, K, pr)] # update the parameters using each observed 'rating' for n, m, ra in linksr: # calculate the sum of all mixtures for rating ra by # multiplying rating probabilities rowwise by the user group # membership probabilities and columnwise by the place group # membership probabilities D = (pr[ra].T * theta[n]).T * eta[m] # normalize these values a = D / D.sum() # update the new (n) parameter estimates npr[ra] = npr[ra] + a ntheta[n] = ntheta[n] + a.sum(axis=1) neta[m] = neta[m] + a.sum(axis=0) # normalize the users' membership probabilities across groups ntheta = ntheta / users_denom[:,np.newaxis] # normalize the places' membership probabilities across groups neta = neta / places_denom[:,np.newaxis] # normalize the probabilities across ratings npr = npr / npr.sum(axis=0) # create copies of previous values and zero'd estimates as placeholders theta = copy.deepcopy(ntheta) eta = copy.deepcopy(neta) pr = copy.deepcopy(npr) # restart arrays ntheta = ntheta*0 neta = neta*0 npr = npr*0 # calculate the likelihood given the probabilities if study_likelyhood: Like += [calc_likelihood(linksr, theta, eta, L, K, pr)] else: Like = calc_likelihood(linksr, theta, eta, L, K, pr) if verbose: print Like[-1] #inv_user = {v[0]: k for k, v in user_dict.iteritems()} #id_user = np.asarray([int(inv_user[x]) for x in np.sort(np.asarray(inv_user.keys()))]) #inv_place = {v[0]: k for k, v in place_dict.iteritems()} #id_place = np.asarray([int(inv_place[x]) for x in np.sort(np.asarray(inv_place.keys()))]) #theta_=theta[id_user,:] #eta_=eta[id_place,:] if alloutput: np.save(ofolder + "_".join([str(c), str(K), str(L)]) + "_theta", theta) np.save(ofolder + "_".join([str(c), str(K), str(L)]) + "_eta", eta) np.save(ofolder + "_".join([str(c), str(K), str(L)]) + "_pr", pr) np.save(ofolder + "_".join([str(c), str(K), str(L)]) + "_like", np.asarray(Like)) return Like def run_sampling(training, ofolder="../../results/test/", K=10, L=10, nsampling=0, iterations=200, zeros_as_null=False, verbose=False, study_likelyhood=True, alloutput=True): if not zeros_as_null: sys.stderr.write("\nCareful! Zeros in your data will represent a type of interaction and will be used in the sampling.\n\n") user_dict, place_dict, linksr, visits = read_files(training, zeros_as_null) n_users = len(user_dict) n_places = len(place_dict) R = len(visits) users_denom = np.asarray(user_dict.values()) users_denom = users_denom[users_denom[:,0].argsort(),1] places_denom = np.asarray(place_dict.values()) places_denom = places_denom[places_denom[:,0].argsort(),1] lkl = sampling(nsampling, ofolder, linksr, nsampling, iterations, K, L, R, user_dict, n_users, users_denom, place_dict, n_places, places_denom, verbose, study_likelyhood, alloutput) return lkl
StarcoderdataPython
5087146
# pylint: disable=I0011,W0613,W0201,W0212,E1101,E1103 from .. import qtutil from ...external.qt import QtGui from ...external.qt.QtCore import Qt from mock import MagicMock, patch from ..qtutil import GlueDataDialog from ..qtutil import pretty_number, GlueComboBox from glue.config import data_factory from glue.core import Subset def test_glue_action_button(): a = QtGui.QAction(None) a.setToolTip("testtooltip") a.setWhatsThis("testwhatsthis") a.setIcon(QtGui.QIcon("dummy_file")) a.setText('testtext') b = qtutil.GlueActionButton() b.set_action(a) # assert b.icon() == a.icon() icons are copied, apparently assert b.text() == a.text() assert b.toolTip() == a.toolTip() assert b.whatsThis() == a.whatsThis() #stays in sync a.setText('test2') assert b.text() == 'test2' @data_factory('testing_factory', '*.*') def dummy_factory(filename): from glue.core import Data result = Data() result.made_with_dummy_factory = True return result dummy_factory_member = [f for f in data_factory.members if f[0] is dummy_factory][0] class TestGlueDataDialog(object): def test_factory(self): """Factory method should always match with filter""" fd = GlueDataDialog() assert len(fd.filters) > 0 for k, v in fd.filters: fd._fd.setFilter(v) assert fd.factory() is k def test_load_data_cancel(self): """Return None if user cancels operation""" fd = GlueDataDialog() mock_file_exec(fd, cancel=True) assert fd.load_data() == [] def test_load_data_normal(self): """normal load_data dispatches path to factory""" fd = GlueDataDialog() mock_file_exec(fd, cancel=False, path='ld_data_nrml', factory=dummy_factory_member) d = fd.load_data() assert len(d) == 1 d = d[0] assert d.label == 'ld_data_nrml' assert d.made_with_dummy_factory is True def test_filters(self): """Should build filter list from data_factories env var""" fd = GlueDataDialog() assert len(fd.filters) == len(data_factory.members) def test_load_multiple(self): fd = GlueDataDialog() mock_file_exec(fd, cancel=False, path=['a.fits', 'b.fits'], factory=dummy_factory_member) ds = fd.load_data() assert len(ds) == 2 for d, label in zip(ds, 'ab'): assert d.label == label assert d.made_with_dummy_factory is True def mock_file_exec(fd, cancel=False, path='junk', factory=dummy_factory_member): if not isinstance(path, list): path = [path] fd._fd.exec_ = MagicMock() fd._fd.exec_.return_value = 1 - cancel fd.factory = MagicMock() fd.factory.return_value = factory fd.paths = MagicMock() fd.paths.return_value = path def test_data_wizard_cancel(): """Returns empty list if user cancel's dialog""" with patch('glue.qt.qtutil.GlueDataDialog') as mock: mock().load_data.return_value = [] assert qtutil.data_wizard() == [] def test_data_wizard_normal(): """Returns data list if successful""" with patch('glue.qt.qtutil.GlueDataDialog') as mock: mock().load_data.return_value = [1] assert qtutil.data_wizard() == [1] def test_data_wizard_error_cancel(): """Returns empty list of error generated and then canceled""" with patch('glue.qt.qtutil.GlueDataDialog') as mock: mock().load_data.side_effect = Exception with patch('glue.qt.qtutil.QMessageBox') as qmb: qmb().exec_.return_value = 0 assert qtutil.data_wizard() == [] class TestPrettyNumber(object): def test_single(self): assert pretty_number([1]) == ['1'] assert pretty_number([0]) == ['0'] assert pretty_number([-1]) == ['-1'] assert pretty_number([1.0001]) == ['1'] assert pretty_number([1.01]) == ['1.01'] assert pretty_number([1e-5]) == ['1.000e-05'] assert pretty_number([1e5]) == ['1.000e+05'] assert pretty_number([3.3]) == ['3.3'] def test_list(self): assert pretty_number([1, 2, 3.3, 1e5]) == ['1', '2', '3.3', '1.000e+05'] class TestGlueComboBox(object): def setup_method(self, method): self.combo = GlueComboBox() def test_add_data(self): self.combo.addItem('hi', userData=3) assert self.combo.itemData(0) == 3 def test_add_multi_data(self): self.combo.addItem('hi', userData=3) self.combo.addItem('ho', userData=4) assert self.combo.itemData(0) == 3 assert self.combo.itemData(1) == 4 def test_replace(self): self.combo.addItem('hi', userData=3) self.combo.removeItem(0) self.combo.addItem('ho', userData=4) assert self.combo.itemData(0) == 4 def test_clear(self): self.combo.addItem('a', 1) self.combo.addItem('b', 2) self.combo.addItem('c', 3) self.combo.clear() self.combo.addItem('d', 4) assert self.combo.itemData(0) == 4 def test_mid_remove(self): self.combo.addItem('a', 1) self.combo.addItem('b', 2) self.combo.addItem('c', 3) self.combo.removeItem(1) assert self.combo.itemData(1) == 3 def test_set_item_data(self): self.combo.addItem('a', 1) self.combo.setItemData(0, 2) assert self.combo.itemData(0) == 2 def test_default_data(self): self.combo.addItem('a') assert self.combo.itemData(0) is None def test_add_items(self): self.combo.addItem('a', 1) self.combo.addItems(['b', 'c', 'd']) assert self.combo.itemData(0) == 1 assert self.combo.itemData(1) is None assert self.combo.itemData(2) is None assert self.combo.itemData(3) is None def test_non_user_role(self): """methods that edit data other than userRole dispatched to super""" self.combo.addItem('a', 1) assert self.combo.itemData(0, role=Qt.DisplayRole) == 'a' self.combo.setItemData(0, 'b', role=Qt.DisplayRole) assert self.combo.itemData(0, role=Qt.DisplayRole) == 'b' def test_consistent_with_signals(self): """Ensure that when signal/slot connections interrupt methods mid-call, internal data state is consistent""" # Qt swallows exceptions in signals, so we can't assert in this # instead, store state and assert after signal good = [False] def assert_consistent(*args): good[0] = len(self.combo._data) == self.combo.count() # addItem self.combo.currentIndexChanged.connect(assert_consistent) self.combo.addItem('a', 1) assert good[0] # addItems self.combo.clear() good[0] = False self.combo.addItems('b c d'.split()) assert good[0] # removeItem self.combo.clear() self.combo.addItem('a', 1) good[0] = False self.combo.removeItem(0) assert good[0] def test_qt4_to_mpl_color(): assert qtutil.qt4_to_mpl_color(QtGui.QColor(255, 0, 0)) == '#ff0000' assert qtutil.qt4_to_mpl_color(QtGui.QColor(255, 255, 255)) == '#ffffff' def test_edit_color(): with patch('glue.qt.qtutil.QColorDialog') as d: d.getColor.return_value = QtGui.QColor(0, 1, 0) d.isValid.return_value = True s = Subset(None) qtutil.edit_layer_color(s) assert s.style.color == '#000100' def test_edit_color_cancel(): with patch('glue.qt.qtutil.QColorDialog') as d: d.getColor.return_value = QtGui.QColor(0, -1, 0) s = Subset(None) qtutil.edit_layer_color(s) def test_edit_symbol(): with patch('glue.qt.qtutil.QInputDialog') as d: d.getItem.return_value = ('*', True) s = Subset(None) qtutil.edit_layer_symbol(s) assert s.style.marker == '*' def test_edit_symbol_cancel(): with patch('glue.qt.qtutil.QInputDialog') as d: d.getItem.return_value = ('*', False) s = Subset(None) qtutil.edit_layer_symbol(s) assert s.style.marker != '*' def test_edit_point_size(): with patch('glue.qt.qtutil.QInputDialog') as d: d.getInt.return_value = 123, True s = Subset(None) qtutil.edit_layer_point_size(s) assert s.style.markersize == 123 def test_edit_point_size_cancel(): with patch('glue.qt.qtutil.QInputDialog') as d: d.getInt.return_value = 123, False s = Subset(None) qtutil.edit_layer_point_size(s) assert s.style.markersize != 123 def test_edit_layer_label(): with patch('glue.qt.qtutil.QInputDialog') as d: d.getText.return_value = ('accepted label', True) s = Subset(None) qtutil.edit_layer_label(s) assert s.label == 'accepted label' def test_edit_layer_label_cancel(): with patch('glue.qt.qtutil.QInputDialog') as d: d.getText.return_value = ('rejected label', False) s = Subset(None) qtutil.edit_layer_label(s) assert s.label != 'rejected label' def test_pick_item(): items = ['a', 'b', 'c'] labels = ['1', '2', '3'] with patch('glue.qt.qtutil.QInputDialog') as d: d.getItem.return_value = '1', True assert qtutil.pick_item(items, labels) == 'a' d.getItem.return_value = '2', True assert qtutil.pick_item(items, labels) == 'b' d.getItem.return_value = '3', True assert qtutil.pick_item(items, labels) == 'c' d.getItem.return_value = '3', False assert qtutil.pick_item(items, labels) is None def test_pick_class(): class Foo: pass class Bar: pass Bar.LABEL = 'Baz' with patch('glue.qt.qtutil.pick_item') as d: qtutil.pick_class([Foo, Bar]) d.assert_called_once_with([Foo, Bar], ['Foo', 'Baz']) def test_get_text(): with patch('glue.qt.qtutil.QInputDialog') as d: d.getText.return_value = 'abc', True assert qtutil.get_text() == 'abc' d.getText.return_value = 'abc', False assert qtutil.get_text() is None class TestGlueListWidget(object): def setup_method(self, method): self.w = qtutil.GlueListWidget() def test_mime_type(self): assert self.w.mimeTypes() == [qtutil.LAYERS_MIME_TYPE] def test_mime_data(self): self.w.set_data(3, 'test data') self.w.set_data(4, 'do not pick') mime = self.w.mimeData([3]) mime.data(qtutil.LAYERS_MIME_TYPE) == ['test data'] def test_mime_data_multiselect(self): self.w.set_data(3, 'test data') self.w.set_data(4, 'also pick') mime = self.w.mimeData([3, 4]) mime.data(qtutil.LAYERS_MIME_TYPE) == ['test data', 'also pick'] class TestRGBEdit(object): def setup_method(self, method): from glue.clients.layer_artist import RGBImageLayerArtist from glue.core import Data d = Data() self.artist = RGBImageLayerArtist(d, None) self.w = qtutil.RGBEdit(artist=self.artist) def test_update_visible(self): for color in ['red', 'green', 'blue']: state = self.artist.layer_visible[color] self.w.vis[color].click() assert self.artist.layer_visible[color] != state def test_update_current(self): for color in ['red', 'green', 'blue']: self.w.current[color].click() assert self.artist.contrast_layer == color
StarcoderdataPython
5002850
from setuptools import setup from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name="rwafaker", version='2.0.6', url="https://github.com/knowbee/py-rwafaker.git", description="This package generates massive amounts of realistic fake data in Rwanda native language (Ikinyarwanda)", long_description=long_description, long_description_content_type="text/markdown", py_modules=["rwafake"], package_dir={'': 'rwafake'}, classifiers=[ "Programming Language :: Python", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Development Status :: 4 - Beta", "Environment :: Other Environment", "Intended Audience :: Developers", "Intended Audience :: Education", "License :: OSI Approved :: GNU General Public License (GPL)", "Operating System :: OS Independent", "Topic :: Software Development :: Libraries :: Python Modules" ], keywords='hi', author='<NAME>', author_email='<EMAIL>', license='MIT', zip_safe=False, )
StarcoderdataPython
3379416
"""Desenvolva um programa que pergunte a distância de uma viagem em Km. Calcule o preço da passagem, cobrando R$0,50 por Km para viagens de até 200Km e R$0,45 parta viagens mais longas.""" distancia = float(input('Qual a distância da viagem? Km')) if distancia <= 200: print('O preço da passagem será de: R${:.2f}'.format(distancia*0.5)) else: print('O preço da passagem será de: R${:.2f}'.format(distancia*0.45))
StarcoderdataPython
11335384
from albumentations import Compose, PadIfNeeded, LongestMaxSize class InferenceTransformation: def __init__(self, width, height): self.aug = Compose([ LongestMaxSize(max_size=width if width > height else height), PadIfNeeded(min_height=height, min_width=width, border_mode=cv2.BORDER_CONSTANT) ]) def __call__(self, image): transformed = self.aug(image=image) return transformed["image"]
StarcoderdataPython
35532
<gh_stars>0 import numpy as np import pickle import tqdm import os import torch from prompts.prompt_material import DETS_LIST, CONTENT_STRUCTS_PREFIX_LIST, CONTENT_STRUCTS_MIDDLE_LIST, CONTENT_STRUCTS_SUFFIX_LIST, TRANSFORMATIONS, LOGICAL_PREFIXES_LIST, LOGICAL_STRUCTS_LW_LIST ####################################### # # # CONTENT # # # ####################################### class ContentPromptScorer: def __init__(self, model = None, tokenizer = None, device = None, dataset_name = ''): # Model used to compute scores self.model = model self.tokenizer = tokenizer self.device = device # Load prompts materials self.dets_list = DETS_LIST self.structs_dict = {'prefix': CONTENT_STRUCTS_PREFIX_LIST, 'middle': CONTENT_STRUCTS_MIDDLE_LIST, 'suffix': CONTENT_STRUCTS_SUFFIX_LIST} # Load transformations names self.transformations_names = TRANSFORMATIONS # Define template self.vanilla_template = '<PREFIX> <DET1> <WORD1> <MIDDLE> <DET2> <WORD2> <SUFFIX>.' self.key_template = '<det1>-<det2>-<prefix>-<middle>-<suffix>' # Compute keys self._compute_keys() # Where to save data self.filename = 'prompts\\scores\\content_prompts_scores_{}'.format(dataset_name) # Compute Prompts self.create_prompts() def _compute_keys(self): """ Compute all the possible keys in the form idx_{det1}-idx_{det2}-idx_{struct_prefix}-idx_{struct_middle}-idx_{struct_suffix} """ N_dets = len(self.dets_list) N_prefix = len(self.structs_dict['prefix']) N_middle = len(self.structs_dict['middle']) N_suffix = len(self.structs_dict['suffix']) list_of_keys = [] for idx_det1 in range(N_dets): for idx_det2 in range(N_dets): for idx_prefix in range(N_prefix): for idx_middle in range(N_middle): for idx_suffix in range(N_suffix): key = self.key_template.replace('<det1>', str(idx_det1)).replace('<det2>', str(idx_det2)) key = key.replace('<prefix>', str(idx_prefix)).replace('<middle>', str(idx_middle)).replace('<suffix>', str(idx_suffix)) list_of_keys.append(key) self.list_of_keys = list_of_keys def _from_key_to_words(self, key): """ Expect a key of the form idx_{det1}-idx_{det2}-idx_{struct_prefix}-idx_{struct_middle}-idx_{struct_suffix} """ list_of_idx = [int(idx) for idx in key.split('-')] det1 = self.dets_list[list_of_idx[0]] det2 = self.dets_list[list_of_idx[1]] prefix = self.structs_dict['prefix'][list_of_idx[2]] middle = self.structs_dict['middle'][list_of_idx[3]] suffix = self.structs_dict['suffix'][list_of_idx[4]] return [det1, det2, prefix, middle, suffix] def _create_prompt(self, dets, structs): det1, det2 = dets prefix, middle, suffix = structs sentence = self.vanilla_template.replace('<DET1>', det1).replace('<DET2>', det2) sentence = sentence.replace('<PREFIX>', prefix).replace('<MIDDLE>', middle).replace('<SUFFIX>', suffix) return sentence def create_prompts(self): """ Returns : keys idx_{det1}-idx_{det2}-idx_{struct_prefix}-idx_{struct_middle}-idx_{struct_suffix} value sentence """ dict_of_prompts = {} for key in self.list_of_keys: words_from_keys = self._from_key_to_words(key) dets, structs = words_from_keys[0:2], words_from_keys[2:5] sentence = self._create_prompt(dets, structs) dict_of_prompts[key] = sentence self.dict_of_prompts = dict_of_prompts def compute_all_pairs_scores(self, list_of_words): """ expect words = list of pairs [HYPONYM, NOUN] returns : dict -> key "HYPONYM---NOUN" value dict -> key transf value dict -> keys idx_{det1}-idx_{det2}-idx_{struct_prefix}-idx_{struct_middle}-idx_{struct_suffix} value [score_mask1, score_mask2] """ # Compute Prompts Scores if os.path.exists(self.filename): # Previous save savefile = open(self.filename, 'rb') all_pairs_scores_dict = pickle.load(savefile) savefile.close() else: all_pairs_scores_dict = {} num_treated = 0 for words in tqdm.tqdm(list_of_words, total = len(list_of_words)): word1, word2 = words key = word1 + '---' + word2 if key in all_pairs_scores_dict.keys(): #If we have already computed this key go to the next continue scores_dict = self.batch_compute_one_pair_scores(words) all_pairs_scores_dict[key] = scores_dict num_treated += 1 if num_treated % 20000 == 0: #Save from time to time savefile = open(self.filename, 'wb') pickle.dump(all_pairs_scores_dict, savefile) savefile.close() self.all_pairs_scores_dict = all_pairs_scores_dict # Save scores savefile = open(self.filename, 'wb') pickle.dump(all_pairs_scores_dict, savefile) savefile.close() def compute_one_pair_scores(self, words): """ expect words = [HYPONYM, NOUN] returns : dict -> key transf value dict -> keys idx_{det1}-idx_{det2}-idx_{struct_prefix}-idx_{struct_middle}-idx_{struct_suffix} value [score_mask1, score_mask2] """ # Tokenize the words to know the number of masks to add word1, word2 = words masked_token_ids_1 = self.tokenizer(word1)['input_ids'][1:-1] masked_token_ids_2 = self.tokenizer(word2)['input_ids'][1:-1] N_masks_1 = len(masked_token_ids_1) N_masks_2 = len(masked_token_ids_2) # Construct sentences scores_dict = {} for transf in self.transformations_names: transf_score_dict = {} for key in self.list_of_keys: vanilla_sentence = self.dict_of_prompts[key] sentence, mask1_rank, mask2_rank = self.phi(vanilla_sentence, transf, N_masks_1, N_masks_2) # Compute input_ids and attention_mask of the sentence encoding = self.tokenizer(sentence, return_tensors='pt' ) input_ids = encoding['input_ids'].to(self.device) attention_mask = encoding['attention_mask'].to(self.device) # The model needs the masks_to_predict_pos masks_to_predict_pos = self.find_masks_pos(input_ids) score_mask1 = self._compute_model_score(input_ids, attention_mask, masked_token_ids_1, masks_to_predict_pos[mask1_rank - 1]) score_mask2 = self._compute_model_score(input_ids, attention_mask, masked_token_ids_2, masks_to_predict_pos[mask2_rank - 1]) transf_score_dict[key] = [score_mask1, score_mask2] scores_dict[transf] = transf_score_dict return scores_dict def _compute_model_score(self, input_ids, attention_mask, masked_token_ids, masks_to_predict_pos): # Compute the probabilities and ranks from the model with torch.no_grad(): probs_n_ranks = self.model.compute_greedy(input_ids, attention_mask, masks_to_predict_pos, masked_token_ids) # Compute scores score = probs_n_ranks[:,0].prod() return score def batch_compute_one_pair_scores(self, words): """ expect words = [HYPONYM, NOUN] returns : dict -> key transf value dict -> keys idx_{det1}-idx_{det2}-idx_{struct_prefix}-idx_{struct_middle}-idx_{struct_suffix} value [score_mask1, score_mask2] """ # Tokenize the words to know the number of masks to add word1, word2 = words masked_token_ids_1 = self.tokenizer(word1, return_tensors='pt')['input_ids'][:,1:-1].repeat(len(self.list_of_keys),1).to(self.device) masked_token_ids_2 = self.tokenizer(word2, return_tensors='pt')['input_ids'][:,1:-1].repeat(len(self.list_of_keys),1).to(self.device) N_masks_1 = masked_token_ids_1.shape[1] N_masks_2 = masked_token_ids_2.shape[1] # Construct sentences scores_dict = {} for transf in self.transformations_names: transf_score_dict = {} sentences = [] mask1_ranks, mask2_ranks = [], [] for key in self.list_of_keys: vanilla_sentence = self.dict_of_prompts[key] sentence, mask1_rank, mask2_rank = self.phi(vanilla_sentence, transf, N_masks_1, N_masks_2) sentences.append(sentence) mask1_ranks.append(mask1_rank) mask2_ranks.append(mask2_rank) # Compute input_ids and attention_mask of the sentence encoding = self.tokenizer(sentences, padding = True, return_tensors='pt' ) input_ids = encoding['input_ids'].to(self.device) attention_mask = encoding['attention_mask'].to(self.device) # The model needs the masks_to_predict_pos masks_to_predict_pos = self.batch_find_masks_pos(input_ids) # We suppose this is ok scores_mask1 = self._batch_compute_model_score(input_ids, attention_mask, masked_token_ids_1, self.helper(masks_to_predict_pos, mask1_ranks).to(self.device)) scores_mask2 = self._batch_compute_model_score(input_ids, attention_mask, masked_token_ids_2, self.helper(masks_to_predict_pos, mask2_ranks).to(self.device)) for idx in range(len(self.list_of_keys)): key = self.list_of_keys[idx] transf_score_dict[key] = [scores_mask1[idx].item(), scores_mask2[idx].item()] scores_dict[transf] = transf_score_dict return scores_dict def _batch_compute_model_score(self, input_ids, attention_mask, masked_token_ids, masks_to_predict_pos): # Compute the probabilities and ranks from the model with torch.no_grad(): probs = self.model.batch_compute_greedy(input_ids, attention_mask, masks_to_predict_pos, masked_token_ids) # Compute scores scores = probs.prod(dim=1) # shape [batch_size = len(self.list_of_keys)] return scores def batch_find_masks_pos(self, ids_seq): masks_pos = torch.where(ids_seq == 103)[1] pos_clusters = [] cluster = [] for k in range(masks_pos.shape[0]): cluster.append(masks_pos[k]) if (k < len(masks_pos) -1) and (masks_pos[k] + 1 != masks_pos[k + 1]): #The next mask pos does not follow the previous one pos_clusters.append(torch.LongTensor(cluster)) cluster = [] pos_clusters.append(torch.LongTensor(cluster)) return pos_clusters def helper(self, list_of_tensors, mask_rank): batch_size = len(self.list_of_keys) mask_pos = [] for k in range(batch_size): mask_pos.append(list_of_tensors[2*k:2*k+2][mask_rank[k] - 1]) return torch.cat(mask_pos) def find_masks_pos(self, ids_seq): """ Compute all mask_token positions in the sequence, then divide it into clusters (following sequence) and returns the mask_rank^th cluster. """ def find_all_masks_pos(ids_seq): pos = [] for k in range(ids_seq.shape[1]): if ids_seq[0][k] == 103: pos.append(k) return pos all_masks_pos = find_all_masks_pos(ids_seq) pos_clusters = [] cluster = [] for k in range(len(all_masks_pos)): cluster.append(all_masks_pos[k]) if (k < len(all_masks_pos) -1) and (all_masks_pos[k] + 1 != all_masks_pos[k + 1]): #The next mask pos does not follow the previous one pos_clusters.append(cluster) cluster = [] pos_clusters.append(cluster) return pos_clusters def phi(self, vanilla_sentence, transf, N_masks_1, N_masks_2): """ Take a sentence s and returns phi(s) and the rank of mask1 (cf. google doc.) The template vanilla is something like : "MASK1 is MASK2" thus MASK1 is rank 1 and MASK2 is rank 2 Whereas for the transformation opposite : "MASK2 is MASK1" thus MASK1 is rank 2 and MASK2 is rank 1 """ if transf == 'vanilla': sentence = vanilla_sentence.replace('<WORD1>', N_masks_1*self.tokenizer.mask_token).replace('<WORD2>', N_masks_2*self.tokenizer.mask_token) mask1_rank, mask2_rank = 1, 2 elif transf == 'opposite': sentence = vanilla_sentence.replace('<WORD1>', N_masks_2*self.tokenizer.mask_token).replace('<WORD2>', N_masks_1*self.tokenizer.mask_token) mask1_rank, mask2_rank = 2, 1 elif transf == 'reverse': sentence = vanilla_sentence.replace('<WORD1>', N_masks_2*self.tokenizer.mask_token).replace('<WORD2>', N_masks_1*self.tokenizer.mask_token) mask1_rank, mask2_rank = 2, 1 return sentence, mask1_rank, mask2_rank ####################################### # # # LOGICAL # # # ####################################### class LogicalPromptScorer: def __init__(self, model = None, tokenizer = None, device = None, dataset_name = ''): # Model used to compute scores self.model = model self.tokenizer = tokenizer self.device = device # Load prompts materials self.dets_list = DETS_LIST self.structs_dict = {'prefixes': LOGICAL_PREFIXES_LIST, 'struct_lw': LOGICAL_STRUCTS_LW_LIST} # Define template self.vanilla_template = '<PREFIX1> <DET1> <WORD1> <STRUCT_LW> <LW> <PREFIX2> <DET2> <WORD2>.' self.key_template = '<det1>-<det2>-<prefixes>-<struct_lw>' # Compute keys self._compute_keys() # Where to save data self.filename = 'prompts\\scores\\logical_prompts_scores_{}'.format(dataset_name) # Compute Prompts self.create_prompts() def _compute_keys(self): """ Compute all the possible keys in the form idx_{det1}-idx_{det2}-idx_{prefixes}-idx_{struct_lw} """ N_dets = len(self.dets_list) N_prefixes = len(self.structs_dict['prefixes']) N_struct_lw = len(self.structs_dict['struct_lw']) list_of_keys = [] for idx_det1 in range(N_dets): for idx_det2 in range(N_dets): for idx_prefixes in range(N_prefixes): for idx_struct_lw in range(N_struct_lw): key = self.key_template.replace('<det1>', str(idx_det1)).replace('<det2>', str(idx_det2)) key = key.replace('<prefixes>', str(idx_prefixes)).replace('<struct_lw>', str(idx_struct_lw)) list_of_keys.append(key) self.list_of_keys = list_of_keys def _from_key_to_words(self, key): """ Expect a key of the form idx_{det1}-idx_{det2}-idx_{struct_prefix}-idx_{struct_middle}-idx_{struct_suffix} """ list_of_idx = [int(idx) for idx in key.split('-')] det1 = self.dets_list[list_of_idx[0]] det2 = self.dets_list[list_of_idx[1]] prefixes = self.structs_dict['prefixes'][list_of_idx[2]] struct_lw = self.structs_dict['struct_lw'][list_of_idx[3]] return [det1, det2, prefixes, struct_lw] def _create_prompt(self, dets, prefixes, struct_lw): det1, det2 = dets prefix1, prefix2 = prefixes # Sentence in the right order "This is a seagull, therefore it is a bird." sentence = self.vanilla_template.replace('<DET1>', det1).replace('<DET2>', det2) sentence = sentence.replace('<PREFIX1>', prefix1).replace('<PREFIX2>', prefix2).replace('<STRUCT_LW>', struct_lw) # Sentence in the reverse order "It is a bird, therefore this is a seagull." sentence_reverse = self.vanilla_template.replace('<DET1>', det2).replace('<DET2>', det1) sentence_reverse = sentence_reverse.replace('<PREFIX1>', prefix2).replace('<PREFIX2>', prefix1).replace('<STRUCT_LW>', struct_lw) return sentence, sentence_reverse def create_prompts(self): """ Returns : keys idx_{det1}-idx_{det2}-idx_{prefixes}-idx_{struct_lw} value [sentence, sentence_reverse] """ dict_of_prompts = {} for key in self.list_of_keys: words_from_keys = self._from_key_to_words(key) dets, prefixes, struct_lw = words_from_keys[0:2], words_from_keys[2], words_from_keys[3] sentence, sentence_reverse = self._create_prompt(dets, prefixes, struct_lw) dict_of_prompts[key] = [sentence, sentence_reverse] self.dict_of_prompts = dict_of_prompts def compute_all_pairs_scores(self, logical_words, list_of_words): """ expect words = list of pairs [HYPONYM, NOUN] returns : dict -> key "HYPONYM---NOUN" value dict -> keys idx_{det1}-idx_{det2}-idx_{prefixes}-idx_{struct_lw} value [[score_lw for lw in logical_words], [score_reverse_lw for lw in logical_words]] """ # Tokenize the logical words logical_words_ids = [] for lw in logical_words: input_ids = self.tokenizer(lw)['input_ids'][1:-1] assert len(input_ids) == 1 # We only keep logical words mapped to a single token logical_words_ids.append(input_ids[0]) # Compute Prompts Scores if os.path.exists(self.filename): # Previous save savefile = open(self.filename, 'rb') all_pairs_scores_dict = pickle.load(savefile) savefile.close() else: all_pairs_scores_dict = {} num_treated = 0 for words in tqdm.tqdm(list_of_words, total = len(list_of_words)): word1, word2 = words key = word1 + '---' + word2 if key in all_pairs_scores_dict.keys(): # If we have already computed this key go to the next continue scores_dict = self.batch_compute_one_pair_scores(logical_words_ids, words) all_pairs_scores_dict[key] = scores_dict num_treated += 1 if num_treated % 20000 == 0: # Save from time to time savefile = open(self.filename, 'wb') pickle.dump(all_pairs_scores_dict, savefile) savefile.close() self.all_pairs_scores_dict = all_pairs_scores_dict # Save scores savefile = open(self.filename, 'wb') pickle.dump(all_pairs_scores_dict, savefile) savefile.close() def compute_one_pair_scores(self, logical_words_ids, words): """ expect words = [HYPONYM, NOUN] returns : dict -> keys idx_{det1}-idx_{det2}-idx_{prefixes}-idx_{struct_lw} value [[score_lw for lw in logical_words], [score_reverse_lw for lw in logical_words]] """ word1, word2 = words # Construct sentences scores_dict = {} for key in self.list_of_keys: sentence, sentence_reverse = self.dict_of_prompts[key] sentence = sentence.replace('<WORD1>', word1).replace('<WORD2>', word2).replace('<LW>', self.tokenizer.mask_token) sentence_reverse = sentence_reverse.replace('<WORD1>', word2).replace('<WORD2>', word1).replace('<LW>', self.tokenizer.mask_token) # Compute scores for sentence encoding = self.tokenizer(sentence, return_tensors='pt' ) input_ids = encoding['input_ids'].to(self.device) attention_mask = encoding['attention_mask'].to(self.device) mask_pos = self.find_mask_pos(input_ids) scores = self._compute_model_score(input_ids, attention_mask, logical_words_ids, mask_pos) # Compute scores for sentence_reverse encoding_reverse = self.tokenizer(sentence_reverse, return_tensors='pt' ) input_ids_reverse = encoding_reverse['input_ids'].to(self.device) attention_mask_reverse = encoding_reverse['attention_mask'].to(self.device) mask_pos_reverse = self.find_mask_pos(input_ids_reverse) scores_reverse = self._compute_model_score(input_ids_reverse, attention_mask_reverse, logical_words_ids, mask_pos_reverse) scores_dict[key] = [scores, scores_reverse] return scores_dict def batch_compute_one_pair_scores(self, logical_words_ids, words): """ expect words = [HYPONYM, NOUN] returns : dict -> keys idx_{det1}-idx_{det2}-idx_{prefixes}-idx_{struct_lw} value [[score_lw for lw in logical_words], [score_reverse_lw for lw in logical_words]] """ word1, word2 = words # Construct sentences scores_dict = {} sentences = [] for key in self.list_of_keys: sentence, sentence_reverse = self.dict_of_prompts[key] sentence = sentence.replace('<WORD1>', word1).replace('<WORD2>', word2).replace('<LW>', self.tokenizer.mask_token) sentence_reverse = sentence_reverse.replace('<WORD1>', word2).replace('<WORD2>', word1).replace('<LW>', self.tokenizer.mask_token) sentences.append(sentence) sentences.append(sentence_reverse) # Compute scores for sentence encoding = self.tokenizer(sentences, padding = True, return_tensors='pt') input_ids = encoding['input_ids'].to(self.device) attention_mask = encoding['attention_mask'].to(self.device) mask_pos = self.find_mask_pos(input_ids) scores = self._batch_compute_model_score(input_ids, attention_mask, logical_words_ids, mask_pos) for k in range(len(self.list_of_keys)): key = self.list_of_keys[k] scores_dict[key] = [scores[2*k], scores[2*k + 1]] return scores_dict def _compute_model_score(self, input_ids, attention_mask, masked_token_ids, mask_pos): # Compute the probabilities and ranks from the model with torch.no_grad(): probs_n_ranks = self.model.compute_multiple_mono_token(input_ids, attention_mask, mask_pos, masked_token_ids) # Compute scores scores = probs_n_ranks[:,0] # drop rank return scores def _batch_compute_model_score(self, input_ids, attention_mask, masked_token_ids, mask_pos): # Compute the probabilities and ranks from the model with torch.no_grad(): probs = self.model.compute_batch_multiple_mono_token(input_ids, attention_mask, mask_pos, masked_token_ids) return probs def find_mask_pos(self, ids_seq): return torch.where(ids_seq == 103)[1]
StarcoderdataPython
8078361
# # Open Source SAM-BA Programmer # Copyright (C) <NAME>, 2016. # # dean [at] fourwalledcubicle [dot] com # www.fourwalledcubicle.com # # # Released under a MIT license, see LICENCE.txt. from . import Transport import logging class Serial(Transport.TransportBase): """Serial transport for SAM-BA devices using a COM port.""" def __init__(self, port, baud=115200): """Constructs a Serial transport. Args: port : Serial port to open (e.g. "COM1" or "/dev/ttyACM0"). baud : Baud rate to use. log_to_console: If `True`, traffic will be logged to the console. """ try: import serial except ImportError as e: self.LOG.fatal('Could not import pyserial library. Is it installed?') raise e self.serialport = serial.Serial(port=port, baudrate=baud, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS, timeout=1) def __del__(self): """Destructor for the Serial transport, closing all resources.""" try: self.serialport.close() except: pass def _to_byte_array(self, data): """Encodes an input string or list of values/characters into a flat byte array of bytes. This can be used to convert a Unicode string (using an ASCII only encoding) or list of characters and integers into a flat set of bytes for transmission. Args: data : input data to convert Returns: Flat byte array. """ if isinstance(data, str): return bytearray(data.encode('ascii', 'ignore')) else: return bytearray([ord(d) if isinstance(d, str) else d for d in data]) def read(self, length): """Reads a given number of bytes from the serial interface. Args: length : Number of bytes to read. Returns: Byte array of the received data. Raises: TimeoutError if the read operation timed out. """ data = self.serialport.read(length) if len(data) != length: raise Transport.TimeoutError() self.LOG.debug('Receive %d bytes %s' % (len(data), [b for b in data])) return bytearray(data) def write(self, data): """Writes a given number of bytes to the serial interface. Args: data : Bytes to write. """ self.LOG.debug('Send %d bytes: %s' % (len(data), [b for b in data])) self.serialport.write(self._to_byte_array(data))
StarcoderdataPython
3536967
<filename>build_databases/build_global_power_plant_database.py # This Python file uses the following encoding: utf-8 """ Global Power Plant Database build_global_power_plant_database.py Builds the Global Power Plant Database from various data sources. - Log build to DATABASE_BUILD_LOG_FILE - Use country and fuel information as specified in powerplant_database.py - Use matches/concordances as specified in powerplants_database.py TO-DOS: - Alias list for power plants """ import csv import time import argparse import sys, os sys.path.insert(0, os.pardir) import powerplant_database as pw ### PARAMETERS ### COUNTRY_DATABASE_FILE = pw.make_file_path(fileType="src_bin", filename="COUNTRY-Database.bin") WRI_DATABASE_FILE = pw.make_file_path(fileType="src_bin", filename="WRI-Database.bin") GEO_DATABASE_FILE = pw.make_file_path(fileType="src_bin", filename="GEODB-Database.bin") CARMA_DATABASE_FILE = pw.make_file_path(fileType="src_bin", filename="CARMA-Database.bin") DATABASE_CSV_SAVEFILE = pw.make_file_path(fileType="output", filename="global_power_plant_database.csv") DATABASE_BUILD_LOG_FILE = pw.make_file_path(fileType="output", filename="database_build_log.txt") DATABASE_CSV_DUMPFILE = pw.make_file_path(fileType="output", filename="global_power_plant_database_data_dump.csv") MINIMUM_CAPACITY_MW = 1 parser = argparse.ArgumentParser() parser.add_argument("--dump", help="dump all the data", action="store_true") DATA_DUMP = True if parser.parse_args().dump else False # open log file f_log = open(DATABASE_BUILD_LOG_FILE, 'a') f_log.write('Starting Global Power Plant Database build run at {0}.\n'.format(time.ctime())) # print summary print("Starting Global Power Plant Database build; minimum plant size: {0} MW.".format(MINIMUM_CAPACITY_MW)) # make country dictionary country_dictionary = pw.make_country_dictionary() # make powerplants dictionary core_database = {} datadump = {} # make plant condcordance dictionary plant_concordance = pw.make_plant_concordance() print("Loaded concordance file with {0} entries.".format(len(plant_concordance))) carma_id_used = [] # Record matched carma_ids # STEP 0: Read in source databases. # Identify countries with automated data from .automated flag. print("Loading source databases...") country_databases = {} for country_name, country in country_dictionary.iteritems(): if country.automated == 1: country_code = country.iso_code database_filename = COUNTRY_DATABASE_FILE.replace("COUNTRY", country_code) country_databases[country_name] = pw.load_database(database_filename) print("Loaded {0} plants from {1} database.".format(len(country_databases[country_name]), country_name)) # Load multi-country databases. wri_database = pw.load_database(WRI_DATABASE_FILE) print("Loaded {0} plants from WRI database.".format(len(wri_database))) geo_database = pw.load_database(GEO_DATABASE_FILE) print("Loaded {0} plants from GEO database.".format(len(geo_database))) carma_database = pw.load_database(CARMA_DATABASE_FILE) print("Loaded {0} plants from CARMA database.".format(len(carma_database))) # Track counts using a dict with keys corresponding to each data source db_sources = country_databases.keys() db_sources.extend(["WRI","GEO","WRI with GEO lat/long data","WRI with CARMA lat/long data"]) database_additions = {dbname: {'count': 0, 'capacity': 0} for dbname in db_sources} # STEP 1: Add all data (capacity >= 1MW) from countries with automated data to the Database for country_name, database in country_databases.iteritems(): country_code = country_dictionary[country_name].iso_code print("Adding plants from {0}.".format(country_dictionary[country_name].primary_name)) for plant_id, plant in database.iteritems(): datadump[plant_id] = plant if plant.capacity >= MINIMUM_CAPACITY_MW: if (plant.location.latitude and plant.location.longitude) and (plant.location.latitude != 0 and plant.location.longitude != 0): core_database[plant_id] = plant database_additions[country_name]['count'] += 1 database_additions[country_name]['capacity'] += plant.capacity else: plant.idnr = plant_id + u",No" else: plant.idnr = plant_id + u",No" # STEP 2: Go through WRI database and triage plants print("Adding plants from WRI internal database.") for plant_id, plant in wri_database.iteritems(): # Cases to skip if not isinstance(plant, pw.PowerPlant): f_log.write('Error: plant {0} is not a PowerPlant object.\n'.format(plant_id)) continue if plant.country not in country_dictionary.keys(): f_log.write('Error: country {0} not recognized.\n'.format(plant.country)) continue # Skip plants with data loaded from an automated script if country_dictionary[plant.country].automated: continue # Skip plants in countries where we will use GEO data if country_dictionary[plant.country].use_geo: continue # skip plants in countries where WRI-collected data is already handled in an automated script if country_dictionary[plant.country].wri_data_built_in: continue datadump[plant_id] = plant # Skip plants below minimum capacity cutoff if plant.capacity < MINIMUM_CAPACITY_MW: continue # STEP 2.1: If plant has lat/long information, add it to the Database if (plant.location.latitude and plant.location.longitude) and (plant.location.latitude != 0 and plant.location.longitude != 0): plant.idnr = plant_id #plant.coord_source = u"WRI data" core_database[plant_id] = plant database_additions['WRI']['count'] += 1 database_additions['WRI']['capacity'] += plant.capacity continue # STEP 2.2: If plant is matched to GEODB, add to the Database using GEODB lat/long if plant_id in plant_concordance: matching_geo_id = plant_concordance[plant_id]['geo_id'] if matching_geo_id: try: plant.location = geo_database[matching_geo_id].location except: f_log.write("Matching error: no GEO location for WRI plant {0}, GEO plant {1}\n".format(plant_id, matching_geo_id)) continue if plant.location.latitude and plant.location.longitude: plant.idnr = plant_id plant.coord_source = u"GEODB" core_database[plant_id] = plant database_additions["WRI with GEO lat/long data"]['count'] += 1 database_additions["WRI with GEO lat/long data"]['capacity'] += plant.capacity continue # STEP 2.3: If plant is matched to CARMA, add to the Database using CARMA lat/long if plant_id in plant_concordance: matching_carma_id = plant_concordance[plant_id]['carma_id'] if matching_carma_id: try: plant.location = carma_database[matching_carma_id].location except: f_log.write("Matching error: no CARMA location for WRI plant {0}, CARMA plant {1}\n".format(plant_id,matching_carma_id)) continue if plant.location.latitude and plant.location.longitude: plant.idnr = plant_id plant.coord_source = u"CARMA" core_database[plant_id] = plant carma_id_used.append(matching_carma_id) database_additions["WRI with CARMA lat/long data"]['count'] += 1 database_additions["WRI with CARMA lat/long data"]['capacity'] += plant.capacity continue # Note: Would eventually like to refine CARMA locations - known to be inaccurate in some cases # STEP 3: Go through GEO database and add plants from small countries # Plants in this database only have numeric ID (no prefix) because of concordance matching for plant_id,plant in geo_database.iteritems(): # Catch errors if plants do not have a correct country assigned datadump[plant_id] = plant if plant.country not in country_dictionary.keys(): print("Plant {0} has country {1} - not found.".format(plant_id,plant.country)) continue if country_dictionary[plant.country].use_geo: if plant.capacity < 1: continue if (plant.location.latitude and plant.location.longitude) and (plant.location.latitude != 0 and plant.location.longitude != 0): #plant.coord_source = u"GEO" plant.idnr = plant_id try: database_additions['GEO']['capacity'] += plant.capacity except: f_log.write("Attribute Warning: GEO plant {0} does not have valid capacity information <{1}>\n".format(plant_id, plant.capacity)) else: core_database[plant_id] = plant database_additions['GEO']['count'] += 1 # STEP 3.1: Append another multinational database wiki_solar_file = pw.make_file_path(fileType="raw", subFolder="Wiki-Solar", filename="wiki-solar-plant-additions-2019.csv") country_lookup = {cc.iso_code: cc.primary_name for cc in country_dictionary.values()} # FIXME: patch lookup with additional geographies relevant in the wikisolar dataset country_lookup.update({ # Bonaire, Sint Eustatius and Saba "BES": "Netherlands", # Cayman Islands "CYM": "United Kingdom", # Puerto Rico "PRI": "United States of America", # Reunion "REU": "France", # The Virgin Islands of the United States "VIR": "United States of America", }) wiki_solar_skip = { 'United States of America': (0, 0) } wiki_solar_whitelist = ['PRI'] wiki_solar_count = 0 with open(wiki_solar_file) as fin: wiki_solar = csv.DictReader(fin) for solar_plant in wiki_solar: country = country_lookup.get(solar_plant['country'], '') plant_idnr = 'WKS{0:07d}'.format(int(solar_plant['id'])) plant_location = pw.LocationObject(latitude=float(solar_plant['lat']), longitude=float(solar_plant['lon'])) plant = pw.PowerPlant( plant_idnr=plant_idnr, plant_name=solar_plant['name'], plant_country=country, plant_capacity=float(solar_plant['capacity']), plant_location=plant_location, plant_coord_source='Wiki-Solar', plant_source='Wiki-Solar', plant_source_url='https://www.wiki-solar.org', plant_primary_fuel = 'Solar' ) if (country in wiki_solar_skip) and \ (solar_plant["country"] not in wiki_solar_whitelist): _n, _capacity = wiki_solar_skip[country] wiki_solar_skip[country] = (_n + 1, _capacity + plant.capacity) continue core_database[plant_idnr] = plant wiki_solar_count += 1 print("Loaded {0} plants from Wiki-Solar database.".format(wiki_solar_count)) for _country, _vals in wiki_solar_skip.iteritems(): if _vals[0] != 0: print("...skipped {0} plants ({1} MW) for {2}.".format(_vals[0], _vals[1], _country)) # STEP 3.9: Add in multinational generation datasets COUNTRY_DATABASE_FILE = pw.make_file_path(fileType="src_bin", filename="COUNTRY-Database.bin") JRC_OPEN_PERFORMANCE = pw.make_file_path('raw', 'JRC-PPDB-OPEN', 'JRC_OPEN_PERFORMANCE.csv') JRC_OPEN_UNITS = pw.make_file_path('raw', 'JRC-PPDB-OPEN', 'JRC_OPEN_UNITS.csv') JRC_OPEN_LINKAGES = pw.make_file_path('raw', 'JRC-PPDB-OPEN', 'JRC_OPEN_LINKAGES.csv') JRC_OPEN_TEMPORAL = pw.make_file_path('raw', 'JRC-PPDB-OPEN', 'JRC_OPEN_TEMPORAL.csv') JRC_BLACKLIST = set([ # blacklist created looking at obviously-wrong matches based on country designation # eic_g, # bad_wri_id '50WG00000001097W', # 'BRA0030768' '48W000000SUTB-1P', # 'USA0060878' '26WUCNTRLDSCND24', # 'CAN0008429' '26WUCNTRLDSCND16', # 'CAN0008429' '50WG000000019861', # 'BRA0029858' '50WG000000019853', # 'BRA0029858' '50WGI00000019875', # 'BRA0029858' '48W000000ROOS-1P', # 'USA0006202' ]) # {wri_id: [eic_g_1, eic_g_2, ...], ...} gppd_ppdb_link = {} with open(JRC_OPEN_LINKAGES) as fin: r = csv.DictReader(fin) for row in r: wri_id = row['WRI_id'] gen_id = row['eic_g'] if gen_id: # some blank gen_ids, which currently don't have wri_id matches gppd_ppdb_link[wri_id] = gppd_ppdb_link.get(wri_id, []) + [gen_id] # {yr: {eic_g: (gen, time_coverage), ...}, ...} ppdb_generation = {str(yr): {} for yr in [2015, 2016, 2017, 2018]} with open(JRC_OPEN_TEMPORAL) as fin: r = csv.DictReader(fin) skipped_generation = 0 for row in r: year_data = ppdb_generation[row['cyear']] # value is in MWh according to `datapackage.json` in JRC-PPDB-OPEN year_data[row['eic_g']] = (row['Generation'], row['time_coverage']) # desired lookup structure: {plant1: {year1: val, year2: val2, ...}, ...} agg_gen_by_gppd = {} # per-unit time availability time_threshold = '0.950' # yes this is a string # WRI plants that aren't having the estimation applied [(plant1, yearA), ...] jrc_skipped_plants = [] for wri_id, gen_ids in gppd_ppdb_link.items(): plant_totals = {} for year in map(str, [2015, 2016, 2017]): year_data = ppdb_generation[year] year_gen_val = 0 accepted_gen_ids = [] for gen_id in gen_ids: gen, time_coverage = year_data.get(gen_id, (0, '0.000')) if time_coverage < time_threshold or gen_id in JRC_BLACKLIST: jrc_skipped_plants.append((wri_id, int(year))) break year_gen_val += float(gen) accepted_gen_ids.append(gen_id) if set(accepted_gen_ids) == set(gen_ids): # convert MWh to GWh and assign value for the year plant_totals[int(year)] = year_gen_val / 1000 agg_gen_by_gppd[wri_id] = plant_totals for pid, pp in core_database.items(): if agg_gen_by_gppd.get(pid, {}): new_generation = [] for yr, val in agg_gen_by_gppd[pid].items(): gen = pw.PlantGenerationObject.create(val, year=yr, source='JRC-PPDB-OPEN') new_generation.append(gen) if new_generation: pp.generation = new_generation #print("Added {0} plants ({1} MW) from {2}.".format(data['count'], data['capacity'], dbname)) # STEP 4: Estimate generation for plants without reported generation for target year count_plants_with_generation = 0 #for plant_id,plant in core_database.iteritems(): # if plant.generation != pw.NO_DATA_OTHER: # count_plants_with_generation += 1 #print('Of {0} total plants, {1} have reported generation data.'.format(len(core_database),count_plants_with_generation)) print('Estimating generation...') estimated_plants = pw.estimate_generation(core_database) print('...estimated for {0} plants.'.format(estimated_plants)) # STEP 4.1: Add WEPP ID matches pw.add_wepp_id(core_database) if DATA_DUMP: pw.add_wepp_id(datadump) # STEP 5: Write the Global Power Plant Database for dbname, data in database_additions.iteritems(): print("Added {0} plants ({1} MW) from {2}.".format(data['count'], data['capacity'], dbname)) f_log.close() print("Loaded {0} plants to the Global Power Plant Database.".format(len(core_database))) pw.write_csv_file(core_database, DATABASE_CSV_SAVEFILE) print("Global Power Plant Database built.") # STEP 6: Dump Data if DATA_DUMP: print("Dumping all the data...") # STEP 6.1: Label plants in datadump pw_idnrs = core_database.keys() for plant_id,plant in datadump.iteritems(): if plant_id in pw_idnrs: plant.idnr = plant_id + ",Yes" else: plant.idnr = plant_id + ",No" # STEP 6.2: Add unused CARMA plants for plant_id,plant in carma_database.iteritems(): plant.coord_source = u"CARMA data" if plant_id in carma_id_used: continue else: plant.idnr = plant_id + ",No" datadump[plant_id] = plant print("Dumped {0} plants.".format(len(datadump))) pw.write_csv_file(datadump, DATABASE_CSV_DUMPFILE,dump=True) print("Data dumped.") print("Finished.")
StarcoderdataPython
3353603
<reponame>namanh11611/FlaskCrypto import logging import os import platform import socket import sys import tempfile import time import zipfile from http import HTTPStatus from urllib.request import urlopen import yaml from pyngrok.exception import PyngrokNgrokInstallError, PyngrokSecurityError, PyngrokError __author__ = "<NAME>" __copyright__ = "Copyright 2020, <NAME>" __version__ = "5.0.0" logger = logging.getLogger(__name__) CDN_URL_PREFIX = "https://bin.equinox.io/c/4VmDzA7iaHb/" PLATFORMS = { "darwin_x86_64": CDN_URL_PREFIX + "ngrok-stable-darwin-amd64.zip", "darwin_i386": CDN_URL_PREFIX + "ngrok-stable-darwin-386.zip", "windows_x86_64": CDN_URL_PREFIX + "ngrok-stable-windows-amd64.zip", "windows_i386": CDN_URL_PREFIX + "ngrok-stable-windows-386.zip", "linux_x86_64_arm": CDN_URL_PREFIX + "ngrok-stable-linux-arm64.zip", "linux_i386_arm": CDN_URL_PREFIX + "ngrok-stable-linux-arm.zip", "linux_i386": CDN_URL_PREFIX + "ngrok-stable-linux-386.zip", "linux_x86_64": CDN_URL_PREFIX + "ngrok-stable-linux-amd64.zip", "freebsd_x86_64": CDN_URL_PREFIX + "ngrok-stable-freebsd-amd64.zip", "freebsd_i386": CDN_URL_PREFIX + "ngrok-stable-freebsd-386.zip", "cygwin_x86_64": CDN_URL_PREFIX + "ngrok-stable-windows-amd64.zip", } DEFAULT_DOWNLOAD_TIMEOUT = 6 DEFAULT_RETRY_COUNT = 0 _config_cache = None _print_progress_enabled = True def get_ngrok_bin(): """ Get the ``ngrok`` executable for the current system. :return: The name of the ``ngrok`` executable. :rtype: str """ system = platform.system().lower() if system in ["darwin", "linux", "freebsd"]: return "ngrok" elif system in ["windows", "cygwin"]: # pragma: no cover return "ngrok.exe" else: # pragma: no cover raise PyngrokNgrokInstallError("\"{}\" is not a supported platform".format(system)) def install_ngrok(ngrok_path, **kwargs): """ Download and install the latest ``ngrok`` for the current system, overwriting any existing contents at the given path. :param ngrok_path: The path to where the ``ngrok`` binary will be downloaded. :type ngrok_path: str :param kwargs: Remaining ``kwargs`` will be passed to :func:`_download_file`. :type kwargs: dict, optional """ logger.debug( "Installing ngrok to {}{} ...".format(ngrok_path, ", overwriting" if os.path.exists(ngrok_path) else "")) ngrok_dir = os.path.dirname(ngrok_path) if not os.path.exists(ngrok_dir): os.makedirs(ngrok_dir) arch = "x86_64" if sys.maxsize > 2 ** 32 else "i386" if platform.uname()[4].startswith("arm") or \ platform.uname()[4].startswith("aarch64"): arch += "_arm" system = platform.system().lower() if "cygwin" in system: system = "cygwin" plat = system + "_" + arch try: url = PLATFORMS[plat] logger.debug("Platform to download: {}".format(plat)) except KeyError: raise PyngrokNgrokInstallError("\"{}\" is not a supported platform".format(plat)) try: download_path = _download_file(url, **kwargs) _install_ngrok_zip(ngrok_path, download_path) except Exception as e: raise PyngrokNgrokInstallError("An error occurred while downloading ngrok from {}: {}".format(url, e)) def _install_ngrok_zip(ngrok_path, zip_path): """ Extract the ``ngrok`` zip file to the given path. :param ngrok_path: The path where ``ngrok`` will be installed. :type ngrok_path: str :param zip_path: The path to the ``ngrok`` zip file to be extracted. :type zip_path: str """ _print_progress("Installing ngrok ... ") with zipfile.ZipFile(zip_path, "r") as zip_ref: logger.debug("Extracting ngrok binary to {} ...".format(zip_path)) zip_ref.extractall(os.path.dirname(ngrok_path)) os.chmod(ngrok_path, int("777", 8)) _clear_progress() def get_ngrok_config(config_path, use_cache=True): """ Get the ``ngrok`` config from the given path. :param config_path: The ``ngrok`` config path to read. :type config_path: str :param use_cache: Use the cached version of the cache (if populated). :type use_cache: bool :return: The ``ngrok`` config. :rtype: dict """ global _config_cache if not _config_cache or not use_cache: with open(config_path, "r") as config_file: config = yaml.safe_load(config_file) if config is None: config = {} _config_cache = config return _config_cache def install_default_config(config_path, data=None): """ Install the given data to the ``ngrok`` config. If a config is not already present for the given path, create one. Before saving new data to the default config, validate that they are compatible with ``pyngrok``. :param config_path: The path to where the ``ngrok`` config should be installed. :type config_path: str :param data: A dictionary of things to added to the default config. :type data: dict, optional """ if data is None: data = {} config_dir = os.path.dirname(config_path) if not os.path.exists(config_dir): os.makedirs(config_dir) if not os.path.exists(config_path): open(config_path, "w").close() config = get_ngrok_config(config_path, use_cache=False) config.update(data) validate_config(config) with open(config_path, "w") as config_file: logger.debug("Installing default ngrok config to {} ...".format(config_path)) yaml.dump(config, config_file) def validate_config(data): """ Validate that the given dict of config items are valid for ``ngrok`` and ``pyngrok``. :param data: A dictionary of things to be validated as config items. :type data: dict """ if data.get("web_addr", None) is False: raise PyngrokError("\"web_addr\" cannot be False, as the ngrok API is a dependency for pyngrok") elif data.get("log_format") == "json": raise PyngrokError("\"log_format\" must be \"term\" to be compatible with pyngrok") elif data.get("log_level", "info") not in ["info", "debug"]: raise PyngrokError("\"log_level\" must be \"info\" to be compatible with pyngrok") def _download_file(url, retries=0, **kwargs): """ Download a file to a temporary path and emit a status to stdout (if possible) as the download progresses. :param url: The URL to download. :type url: str :param retries: The number of retries to attempt, if download fails. :type retries: int, optional :param kwargs: Remaining ``kwargs`` will be passed to :py:func:`urllib.request.urlopen`. :type kwargs: dict, optional :return: The path to the downloaded temporary file. :rtype: str """ kwargs["timeout"] = kwargs.get("timeout", DEFAULT_DOWNLOAD_TIMEOUT) if not url.lower().startswith("http"): raise PyngrokSecurityError("URL must start with \"http\": {}".format(url)) try: _print_progress("Downloading ngrok ...") logger.debug("Download ngrok from {} ...".format(url)) local_filename = url.split("/")[-1] response = urlopen(url, **kwargs) status_code = response.getcode() if status_code != HTTPStatus.OK: logger.debug("Response status code: {}".format(status_code)) return None length = response.getheader("Content-Length") if length: length = int(length) chunk_size = max(4096, length // 100) else: chunk_size = 64 * 1024 download_path = os.path.join(tempfile.gettempdir(), local_filename) with open(download_path, "wb") as f: size = 0 while True: buffer = response.read(chunk_size) if not buffer: break f.write(buffer) size += len(buffer) if length: percent_done = int((float(size) / float(length)) * 100) _print_progress("Downloading ngrok: {}%".format(percent_done)) _clear_progress() return download_path except socket.timeout as e: if retries < DEFAULT_RETRY_COUNT: time.sleep(0.5) return _download_file(url, retries + 1, **kwargs) else: raise e def _print_progress(line): if _print_progress_enabled: sys.stdout.write("{}\r".format(line)) sys.stdout.flush() def _clear_progress(spaces=100): if _print_progress_enabled: sys.stdout.write((" " * spaces) + "\r") sys.stdout.flush()
StarcoderdataPython
1846324
import numpy as np import torch import os import sys from matplotlib import pyplot as plt import torch.nn as nn from xplain.attr import LayerIntegratedGradients, LayerGradientXActivation import skimage.io import torchvision import pickle import pandas as pd import scipy.interpolate as interpolate from torch.utils.data import TensorDataset, DataLoader import helper import argparse from tqdm import tqdm import warnings from helper import pre_process_image from torch.utils.data import Dataset, DataLoader, TensorDataset import torch.nn.functional as F warnings.filterwarnings("ignore") # attribute_to_layer_input=True, def densenet_feat_preprocess(x): out = F.relu(x, inplace=True) out = F.adaptive_avg_pool2d(out, (1, 1)) out = torch.flatten(out, 1) return out def shufflenet_feat_preprocess(x): x = x.mean([2, 3]) # globalpool return x def inception_feat_preprocess(x): x = F.adaptive_avg_pool2d(x, (1, 1)) # N x 2048 x 1 x 1 x = F.dropout(x, training=False) # N x 2048 x 1 x 1 x = torch.flatten(x, 1) return x model_to_layer_dict = { "DenseNet": ("features.norm5", None, True), "ResNet": ("avgpool", None, False), "VGG": ("classifier", 4, False), "GoogLeNet": ("dropout", None, False), # "Inception3": ("dropout", None, False), "Inception3": ("Mixed_7c", None, True), "SqueezeNet": ("features", None, False), "ShuffleNetV2": ("conv5", 2, True), "MobileNetV2": ("classifier", 0, False), } model_to_feature_dict = { "DenseNet": ("classifier", None, densenet_feat_preprocess), "ResNet": ("fc", None, None), "VGG": ("classifier", 6, None), "GoogLeNet": ("fc", None, None), # "Inception3": ("fc", None, None), "Inception3": ("fc", None, inception_feat_preprocess), "SqueezeNet": ("classifier", None, None), "ShuffleNetV2": ("fc", None, shufflenet_feat_preprocess), "MobileNetV2": ("classifier", 1, None), } def get_layer(model, layer_name, layer_index): _layer_names = layer_name.split(".") en = model for lm in _layer_names: en = getattr(en, lm) if layer_index is not None: en = en[layer_index] return en def get_dl(file_list, round): labels = torch.tensor([int(en.split("/")[-1].split("_")[1]) for en in file_list]) img_batch_load = [] for img in file_list: img = pre_process_image(img, round=round) batch_data = torch.FloatTensor(img) img_batch_load.append(batch_data) img_batch = torch.stack(img_batch_load, 0).squeeze() dataset = TensorDataset(torch.Tensor(img_batch), labels) dl = DataLoader(dataset, batch_size=2) return dl def identify_bad_neurons(target, attribution, logits_per_class): tmp = [] for cls in range(num_cls): if cls == target: continue _idx = logits_per_class[cls].argsort()[::-1][1:3] # if _idx != target: # if not target in _idx: # continue _idx = (labels == cls).nonzero()[0] # import ipdb; ipdb.set_trace() # attribution_mean = attribution[_idx].mean(0)[..., target] # attribution_mean = attribution_mean.flatten() if attribution.ndim > 3: attribution = attribution.mean(-2).mean(-2) assert attribution.ndim == 3, "Check size of attribution" attribution_mean = attribution[_idx].mean(0)[:, target] _idx = attribution_mean > 0 try: thresh = np.percentile(attribution_mean[_idx], 20) except: # If all attributions are < 0 thresh = 0 attribution_mean[attribution_mean < thresh] = 0 tmp.append(attribution_mean) assert np.mean(tmp, 0).ndim == 1, "bad neurons have ndim > 1" bad_neurons = np.mean(tmp, 0).argsort()[::-1].tolist() assert bad_neurons return bad_neurons def ablation_plot(dataloader, bad_neurons, target, activation_value=25): acc_all = [] nn_all = [] N = int(NUM_NEURONS) for nn in range(0, N, 2): pred = [] gnd = [] logits_clean = [] for data in feat_dl: _feat, label = data _feat = _feat.to(device) # if _feat.ndim != 2: # _feat_shape = _feat.shape # _feat_f = _feat.view(_feat_shape[0], -1) # _feat_f[:, bad_neurons[:nn]] = activation_value # _feat = _feat_f.view(*_feat_shape) # else: # _feat[:, bad_neurons[:nn]] = activation_value if feat_preprocess is not None: _feat = feat_preprocess(_feat) if _feat.ndim > 2: _feat[:, bad_neurons[:nn], ...] = activation_value else: _feat[:, bad_neurons[:nn]] = activation_value logits = _feat_layer(_feat).squeeze() logits_clean.append(logits.data.cpu().numpy()) pred.append(logits.argmax(1).data.cpu().numpy()) gnd.append(label.numpy()) logits_clean = np.vstack(logits_clean) acc = np.mean(np.hstack(gnd) == np.hstack(pred)) * 100 acc_all.append(acc) nn_all.append(int(nn / NUM_NEURONS * 100)) kk = 0 # % neurons where perf = P f = interpolate.interp1d(acc_all, nn_all) try: P = 20 position_0 = f(P) except: position_0 = 0 try: P = 40 position_1 = f(P) except: position_1 = 0 if target < 12: plt.plot(nn_all, acc_all) plt.plot(nn_all, 20 * np.ones((len(nn_all)))) plt.plot(nn_all, 40 * np.ones((len(nn_all))), color="red") plt.ylabel("Accuracy") plt.xlabel("Percentage of neurons triggered in the layer") plt.title(f"Ablation for class {target}, Position={position_1}") print(target, ":", position_0, position_1) return acc_all, nn_all, position_1 def forward_fn( model, dataloader, compute_attribution=True, use_internal_batch_size=True ): pred = [] gnd = [] logits = [] attribution = [] labels = [] feat = [] for data in tqdm(dataloader): img, label = data labels.append(label) model(img.to(device)) _feat = hook_fn_feat_layer.outputs if isinstance(_feat, list): _feat = _feat[0] feat.append(_feat.data.cpu().numpy()) # import ipdb; ipdb.set_trace() if feat_preprocess is not None: _feat = feat_preprocess(_feat) _logits = _feat_layer(_feat).squeeze() logits.append(_logits.data.cpu().numpy()) pred.append(_logits.argmax(1).data.cpu().numpy()) gnd.append(label.numpy()) if compute_attribution: _attrib = [] for c in range(num_cls): if use_internal_batch_size: _atr = attrib_fn.attribute( img.to(device), target=torch.Tensor([c, c]).to(device).long(), internal_batch_size=4, attribute_to_layer_input=attribute_to_layer_input, ) else: _atr = attrib_fn.attribute( img.to(device), target=torch.Tensor([c, c]).to(device).long(), attribute_to_layer_input=attribute_to_layer_input, ) if isinstance(_atr, tuple): _atr = _atr[0] _attrib.append(_atr.unsqueeze(-1).cpu().data.numpy()) attribution.append(np.concatenate(_attrib, axis=-1)) logits = np.vstack(logits) labels = np.hstack(labels) attribution = np.vstack(attribution) attribution = np.squeeze(attribution) feat = np.vstack(feat) acc = np.mean(np.hstack(gnd) == np.hstack(pred)) * 100 print("Accuracy is ", acc) print("feat_shape: ", feat.shape) print("attr_shape: ", attribution.shape) return logits, labels, attribution, feat, acc # def get_feature(meta_idx, model_dir, meta_data): if __name__ == "__main__": parser = argparse.ArgumentParser(description="Get attribution") # parser.add_argument("--meta_idx", type=int, default=439) parser.add_argument("--model_name", type=str, default="id-00000823") parser.add_argument( "--model_dir", type=str, default="/data/SRI/projects_2020/trojAI/round2-dataset-train", ) parser.add_argument( "--meta_data", type=str, default="/data/SRI/projects_2020/trojAI/round2-dataset-train/METADATA.csv", ) parser.add_argument("--results_dir", type=str, default="curve_features") parser.add_argument("--attributions_dir", type=str, default="attribution_features") parser.add_argument("--device", type=str, default="cuda") parser.add_argument("--mult_factor", type=int, default=2) parser.add_argument("--round", type=int, default=2) parser.add_argument( "--attribution_fn", type=str, default="IG", choices=["IG", "GradxAct"] ) args = parser.parse_args() device = args.device # meta_idx = args.meta_idx model_dir = args.model_dir meta_data = args.meta_data MULT_FACTOR = args.mult_factor # meta_idx = 64 #inceptionv3 # meta_idx = 371 #densenet121 # meta_idx = 269 #densenet161 # meta_idx = 342 #densenet169 # meta_idx = 205 #densenet201 # meta_idx = 489 # shufflenet1_0 # meta_idx = 463 #shufflenet1_5 # meta_idx = 152 #shufflenet2_0 # meta_idx = 272 #squeezenetv1_0 .. acc not coming # meta_idx = 18 #squeezenetv1_1 meta_data = pd.read_csv(meta_data) # model_info = meta_data.loc[meta_idx] model_info = meta_data[meta_data["model_name"] == args.model_name] model_name = model_info.model_name.item() model_curr_dir = os.path.join(model_dir, model_name) model_filepath = os.path.join(model_curr_dir, "model.pt") model = torch.load(model_filepath, map_location=device) model = model.eval() # print (model) num_cls = model_info.number_classes.item() tt = type(model).__name__ # print(model_info.model_architecture) # print(tt) info = model_to_layer_dict.get(tt) layer_name = info[0] layer_index = info[1] attribute_to_layer_input = info[2] _layer = get_layer(model, layer_name, layer_index) # print (layer_name) # print (_layer) hook_fn_feat_layer = helper.hook_fn_nn() _layer.register_forward_hook(hook_fn_feat_layer) info = model_to_feature_dict.get(tt) layer_name = info[0] layer_index = info[1] feat_preprocess = info[2] _feat_layer = get_layer(model, layer_name, layer_index) if args.attribution_fn == "IG": attribution_fn = LayerIntegratedGradients use_internal_batch_size = True elif args.attribution_fn == "GradxAct": attribution_fn = LayerGradientXActivation use_internal_batch_size = False if attribute_to_layer_input: attrib_fn = attribution_fn(model, _feat_layer) else: attrib_fn = attribution_fn(model, _layer) # print (model) # print (_layer) # print (_feat_layer) # x = torch.rand((2, 3, 224, 224)).to(device) # l = model(x) # print (l.shape) # f = hook_fn_feat_layer.outputs # print (f.shape) # print (attribute_to_layer_input) # a = attrib_fn.attribute(x,target=torch.Tensor([0,0]).to(device).long(), # internal_batch_size=4, attribute_to_layer_input=attribute_to_layer_input) ##import ipdb; ipdb.set_trace() # print (a.shape) # if feat_preprocess is not None: # f = feat_preprocess(f) # o = _feat_layer(f) # print (o.shape) # exit() if args.round == 3: clean_image_dir = os.path.join(model_curr_dir, "clean_example_data") else: clean_image_dir = os.path.join(model_curr_dir, "example_data") clean_images = [ os.path.join(clean_image_dir, en) for en in os.listdir(clean_image_dir) if en.endswith(".png") ] # dataloader = get_dl(clean_images[:10]) dataloader = get_dl(clean_images, round=args.round) attribution_path = os.path.join(args.attributions_dir, "{}.npz".format(model_name)) if os.path.exists(attribution_path): # if False: data = np.load(attribution_path, allow_pickle=True) logits = data["logits"] labels = data["labels"] attribution = data["attribution"] feat = data["feat"] acc = data["acc"] print("Accuracy is ", acc) print("feat_shape: ", feat.shape) print("attr_shape: ", attribution.shape) else: logits, labels, attribution, feat, acc = forward_fn( model, dataloader, use_internal_batch_size=use_internal_batch_size ) np.savez( attribution_path, logits=logits, labels=labels, attribution=attribution, feat=feat, acc=acc, ) sys.exit() feat_ds = TensorDataset(torch.from_numpy(feat), torch.from_numpy(labels)) feat_dl = DataLoader(feat_ds, batch_size=8) logits_per_class = [] for i in range(num_cls): idx = (labels == i).nonzero()[0] logits_per_class.append(logits[idx].mean(0)) logits_per_class = np.asarray(logits_per_class) NUM_NEURONS = feat.shape[1] res_file = os.path.join(args.results_dir, "{}.pkl".format(model_name)) print(res_file) # if not os.path.exists(res_file): if True: fig = plt.figure(figsize=[20, 20]) acc_ablation = [] position = [] # ipdb.set_trace() M = feat.mean(0).max() * MULT_FACTOR print("Using activation value", M) for target in range(num_cls): print(f"Running ablation for class {target}/{num_cls} ") if target < 12: ax = plt.subplot(4, 3, target + 1) bad_neurons = identify_bad_neurons(target, attribution, logits_per_class) _acc, nn_all, pos = ablation_plot( dataloader, bad_neurons, target, activation_value=M ) position.append(pos) acc_ablation.append(_acc) pickle.dump((acc_ablation, nn_all, position), open(res_file, "wb")) position = np.asarray(position) print(f"Poisoned class is {position.argmin()} with {position.min()}") plt.savefig( os.path.join( args.results_dir, "{}_{}.jpg".format(model_name, model_info.model_architecture.item()), ) ) print(f"Finished model {model_name}")
StarcoderdataPython
343849
# # Copyright (c) 2013, Prometheus Research, LLC # Released under MIT license, see `LICENSE` for details. # import itertools import types class registry: # Stores registered test types and respective record types. case_types = [] input_types = [] output_types = [] class FieldSpec(object): # Record field specification. def __init__(self, attr, key, check=None, default=None, order=0, required=False, hint=None): self.attr = attr # attribute name (for Python code) self.key = key # key name (for YAML documents) self.check = check # expected type self.default = default # default value self.order = order # relative order self.required = required # mandatory or not self.hint = hint # one line description def __repr__(self): return "%s(attr=%r, key=%r, check=%r, default=%r," \ " order=%r, required=%r, hint=%r)" \ % (self.__class__.__name__, self.attr, self.key, self.check, self.default, self.order, self.required, self.hint) class Field(object): """Record field descriptor.""" CTR = itertools.count(1) REQ = object() def __init__(self, check=None, default=REQ, order=None, hint=None): self.check = check # expected type self.default = default # default value or mandatory field self.order = order or next(self.CTR) # relative order self.hint = hint # one line description def __get__(self, instance, owner): if instance is None: return self raise AttributeError("unset test field") class RecordMetaclass(type): def __new__(mcls, name, bases, members): # Nothing to do if fields are processed already. if '__fields__' in members: return type.__new__(mcls, name, bases, members) # Gather fields from base classes. fields = set() for base in bases: if '__fields__' in base.__dict__: fields.update(base.__fields__) # Find and process field descriptors in the class dictionary. keys = set(field.key for field in fields) for attr in sorted(members): dsc = members[attr] if not isinstance(dsc, Field): continue del members[attr] key = attr if (key.endswith('_') and not (key.startswith('_') or key.endswith('__'))): key = key[:-1] key = key.replace('_', '-') assert key not in keys, \ "duplicate field %r" % key keys.add(key) check = dsc.check default = dsc.default order = dsc.order required = False if default is dsc.REQ: required = True default = None hint = dsc.hint field = FieldSpec(attr, key, check, default, order=order, required=required, hint=hint) fields.add(field) # Store field metadata and generate the class. fields = sorted(fields, key=(lambda f: f.order)) members['__fields__'] = tuple(fields) members['__slots__'] = tuple(field.attr for field in fields) return type.__new__(mcls, name, bases, members) class Record(object): """Base class for test input/output data.""" __metaclass__ = RecordMetaclass __slots__ = ('__weakref__',) __owner__ = None # test type which owns the record type __fields__ = () # list of record fields @classmethod def __recognizes__(cls, keys): """Checks if the set of keys compatible with the record type.""" # Check if the key set contains all required record fields. if not any(field.required for field in cls.__fields__): return False return all(field.key in keys for field in cls.__fields__ if field.required) @classmethod def __load__(cls, mapping): """Generates a record from a mapping of field keys and values.""" args = [] for field in cls.__fields__: if field.key not in mapping: if field.required: raise ValueError("missing field %r" % field.key) arg = field.default else: arg = mapping.pop(field.key) if field.check is not None and not isinstance(arg, field.check): raise ValueError("invalid field %r: expected %s, got %r" % (field.key, field.check.__name__, arg)) args.append(arg) if mapping: key = sorted(mapping)[0] raise ValueError("unknown field %r" % key) return cls(*args) def __dump__(self): """Generates a list of field keys and values.""" mapping = [] for field in self.__fields__: arg = getattr(self, field.attr) if arg == field.default and not field.required: continue mapping.append((field.key, arg)) return mapping def __complements__(self, other): """ Checks if two records are complementary input and output records for the same test case. """ # Check if the records belong to the same test type and are of # complementary types (input and output or vice versa). if not (self.__owner__ is other.__owner__ and self.__class__ is not other.__class__): return False # Find a common mandatory field. match_field = None other_attrs = set(field.attr for field in other.__fields__ if field.required) for field in self.__fields__: if field.required and field.attr in other_attrs: match_field = field break if match_field is None: return False # Check if the field values coincide. value = getattr(self, match_field.attr) other_value = getattr(other, match_field.attr) return (value == other_value) def __init__(self, *args, **kwds): # Convert any keywords to positional arguments. if kwds: args_tail = [] for field in self.__fields__[len(args):]: if field.attr not in kwds: if field.required: raise TypeError("missing field %r" % field.attr) else: args_tail.append(field.default) else: args_tail.append(kwds.pop(field.attr)) args = args + tuple(args_tail) # Complain if there are any keywords left. if kwds: attr = sorted(kwds)[0] if any(field.attr == attr for field in self.__fields__): raise TypeError("duplicate field %r" % attr) else: raise TypeError("unknown field %r" % attr) # Assign field values. if len(args) != len(self.__fields__): raise TypeError("expected %d arguments, got %d" % (len(self.__fields__), len(args))) for arg, field in zip(args, self.__fields__): setattr(self, field.attr, arg) def __clone__(self, **kwds): """Makes a copy with new values for the given fields.""" if not kwds: return self args = [] for field in self.__fields__: if field.attr not in kwds: arg = getattr(self, field.attr) else: arg = kwds.pop(field.attr) args.append(arg) if kwds: attr = sorted(kwds)[0] raise TypeError("unknown field %r" % attr) return self.__class__(*args) def __iter__(self): # Provided so that ``tuple(self)`` works. for field in self.__fields__: yield getattr(self, field.attr) def __hash__(self): return hash(tuple(self)) def __eq__(self, other): return (self.__class__ is other.__class__ and tuple(self) == tuple(other)) def __ne__(self, other): return (self.__class__ is not other.__class__ or tuple(self) != tuple(other)) def __str__(self): # Generates printable representation from the first mandatory field. title_field = None for field in self.__fields__: if field.required: title_field = field break if title_field is None: return repr(self) value = str(getattr(self, title_field.attr)) return "%s: %s" % (title_field.key.upper(), value) def __repr__(self): # `<name>(<field>=<value>, ...)` return ("%s(%s)" % (self.__class__.__name__, ", ".join("%s=%r" % (field.attr, value) for field, value in zip(self.__fields__, self) if value != field.default))) def Test(cls): """Registers a test type.""" assert isinstance(cls, types.TypeType), "a test type must be a class" # Convert `Input` and `Output` definitions to `Record` subclasses. for name in ['Input', 'Output']: record_bases = [Record] for base in reversed(cls.__mro__): if name not in base.__dict__: continue record_def = base.__dict__[name] if isinstance(record_def, type) and issubclass(record_def, Record): record_bases.insert(0, record_def) continue record_name = "%s.%s" % (base.__name__, name) record_members = record_def.__dict__.copy() record_members['__owner__'] = base record_type = type(record_name, tuple(record_bases), record_members) setattr(base, name, record_type) record_bases.insert(0, record_type) # Register test and record types. registry.case_types.append(cls) if 'Input' in cls.__dict__: registry.input_types.append(cls.Input) if 'Output' in cls.__dict__: registry.output_types.append(cls.Output) return cls
StarcoderdataPython
11216372
<reponame>curenamo/ssmhub """this preset uses a url-type string to implement 12-factor configuration with fewer environment variables. DATABASE_URL = '<engine>://<user>:<password>@<host>:<port>/<database>' <engine> can be one of: 'postgresql', 'postgis', 'mysql', 'sqlite' (default: sqlite3 database file) DJANGO_CONFIGURATION = 'Dev' # use testing environment DJANGO_SECRET_KEY = '<key of your invention>' """ import os configuration = os.getenv('DJANGO_CONFIGURATION', 'Dev') if configuration == 'Dev': from staging_example import * # get most settings from staging_example.py (which in turn, imports from settings.py) else: from production_example import * url = os.getenv('DATABASE_URL') if url: import dj_database_url DATABASES = {'default': dj_database_url.config(url)} else: DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'db.sqlite3', } } # Make a unique unique key (with a default for testing), and don't share it with anybody. SECRET_KEY = os.getenv('DJANGO_SECRET_KEY', '<KEY>')
StarcoderdataPython
4895359
""" Run the KGTK-Browser Flask server Open a browser window with the kgtk-browser location Optional params: - hostname (--host) - port number (-p, --port) - kgtk browser config file (-c, --config) - kgtk browser flask app file (-a, --app) Example usage: kgtk browser --host 0.0.0.0 --port 1234 --app flask_app.py --config config.py """ from argparse import Namespace, SUPPRESS import typing from kgtk.cli_argparse import KGTKArgumentParser, KGTKFiles # Define the name of the command and its alias. BROWSER_COMMAND: str = "browser" BROWSE_COMMAND: str = "browse" def parser(): return { 'aliases': [ BROWSE_COMMAND ], 'help': 'Run the KGTK-Browser Flask app.', 'description': 'Open a new browser with the KGTK-Browser app running.', } def add_arguments_extended(parser: KGTKArgumentParser, parsed_shared_args: Namespace): """ Parse arguments Args: parser (argparse.ArgumentParser) """ from kgtk.utils.argparsehelpers import optional_bool # These special shared aruments inticate whether the `--expert` option # was supplied and the command name that was used. _expert: bool = parsed_shared_args._expert _command: str = parsed_shared_args._command # This helper function makes it easy to suppress options from # The help message. The options are still there, and initialize # what they need to initialize. def h(msg: str)->str: if _expert: return msg else: return SUPPRESS # KGTK Browser hostname parser.add_argument( '--host', dest="kgtk_browser_host", help="Hostname used to launch flask server, defaults to localhost", default="localhost", ) # KGTK Browser port number parser.add_argument( '-p', '--port', dest="kgtk_browser_port", help="Port number used to launch flask server, defaults to 5000", default="5000", ) # KGTK Browser configuration file parser.add_argument( '-c', '--config', dest="kgtk_browser_config", help="KGTK Browser configuration file, defaults to `kgtk_browser_config.py`", default="kgtk_browser_config.py", ) # KGTK Browser application file parser.add_argument( '-a', '--app', dest="kgtk_browser_app", help="KGTK Browser flask application file, defaults to `kgtk_browser_app.py`", default="kgtk_browser_app.py", ) def run( kgtk_browser_host: str = 'localhost', kgtk_browser_port: str = '5000', kgtk_browser_config: str = 'kgtk_browser_config.py', kgtk_browser_app: str = 'kgtk_browser_app.py', errors_to_stdout: bool = False, errors_to_stderr: bool = True, show_options: bool = False, verbose: bool = False, very_verbose: bool = False, **kwargs # Whatever KgtkFileOptions and KgtkValueOptions want. )->int: # import modules locally from pathlib import Path import simplejson as json import webbrowser import threading import os, sys import typing from kgtk.exceptions import KGTKException # Select where to send error messages, defaulting to stderr. error_file: typing.TextIO = sys.stdout if errors_to_stdout else sys.stderr # Show the final option structures for debugging and documentation. if show_options: print("--input-file=%s" % repr(str(input_file_path)), file=error_file, flush=True) print("--output-file=%s" % repr(str(output_file_path)), file=error_file, flush=True) idbuilder_options.show(out=error_file) print("=======", file=error_file, flush=True) try: # Set the flask app and configuration file settings os.environ["FLASK_APP"] = kgtk_browser_app os.environ["KGTK_BROWSER_CONFIG"] = kgtk_browser_config # Open the default web browser at the kgtk-browser location url = "http://{}:{}/browser".format(kgtk_browser_host, kgtk_browser_port) threading.Timer(2.5, lambda: webbrowser.open(url)).start() # Run flask app using the selected host and port os.system( "flask run --host {} --port {}".format( kgtk_browser_host, kgtk_browser_port, ) ) return 0 except SystemExit as e: raise KGTKException("Exit requested") except Exception as e: raise KGTKException(str(e))
StarcoderdataPython
208020
from typing import Tuple import pytest from core.emulator.data import IpPrefixes, LinkOptions from core.emulator.session import Session from core.errors import CoreError from core.nodes.base import CoreNode from core.nodes.network import SwitchNode INVALID_ID: int = 100 LINK_OPTIONS: LinkOptions = LinkOptions( delay=50, bandwidth=5000000, loss=25, dup=25, jitter=10, buffer=100 ) def create_ptp_network( session: Session, ip_prefixes: IpPrefixes ) -> Tuple[CoreNode, CoreNode]: # create nodes node1 = session.add_node(CoreNode) node2 = session.add_node(CoreNode) # link nodes to net node iface1_data = ip_prefixes.create_iface(node1) iface2_data = ip_prefixes.create_iface(node2) session.add_link(node1.id, node2.id, iface1_data, iface2_data) # instantiate session session.instantiate() return node1, node2 class TestLinks: def test_add_node_to_node(self, session: Session, ip_prefixes: IpPrefixes): # given node1 = session.add_node(CoreNode) node2 = session.add_node(CoreNode) iface1_data = ip_prefixes.create_iface(node1) iface2_data = ip_prefixes.create_iface(node2) # when iface1, iface2 = session.add_link( node1.id, node2.id, iface1_data, iface2_data, options=LINK_OPTIONS ) # then assert node1.get_iface(iface1_data.id) assert node2.get_iface(iface2_data.id) assert iface1 is not None assert iface2 is not None assert iface1.local_options == LINK_OPTIONS assert iface1.has_local_netem assert iface2.local_options == LINK_OPTIONS assert iface2.has_local_netem def test_add_node_to_net(self, session: Session, ip_prefixes: IpPrefixes): # given node1 = session.add_node(CoreNode) node2 = session.add_node(SwitchNode) iface1_data = ip_prefixes.create_iface(node1) # when iface, _ = session.add_link( node1.id, node2.id, iface1_data=iface1_data, options=LINK_OPTIONS ) # then assert node2.links() assert node1.get_iface(iface1_data.id) assert iface is not None assert iface.local_options == LINK_OPTIONS assert iface.has_local_netem def test_add_net_to_node(self, session: Session, ip_prefixes: IpPrefixes): # given node1 = session.add_node(SwitchNode) node2 = session.add_node(CoreNode) iface2_data = ip_prefixes.create_iface(node2) # when _, iface = session.add_link( node1.id, node2.id, iface2_data=iface2_data, options=LINK_OPTIONS ) # then assert node1.links() assert node2.get_iface(iface2_data.id) assert iface is not None assert iface.local_options == LINK_OPTIONS assert iface.has_local_netem def test_add_net_to_net(self, session): # given node1 = session.add_node(SwitchNode) node2 = session.add_node(SwitchNode) # when iface, _ = session.add_link(node1.id, node2.id, options=LINK_OPTIONS) # then assert node1.links() assert iface is not None assert iface.local_options == LINK_OPTIONS assert iface.options == LINK_OPTIONS assert iface.has_local_netem assert iface.has_netem def test_add_node_to_node_uni(self, session: Session, ip_prefixes: IpPrefixes): # given node1 = session.add_node(CoreNode) node2 = session.add_node(CoreNode) iface1_data = ip_prefixes.create_iface(node1) iface2_data = ip_prefixes.create_iface(node2) link_options1 = LinkOptions( delay=50, bandwidth=5000000, loss=25, dup=25, jitter=10, buffer=100, unidirectional=True, ) link_options2 = LinkOptions( delay=51, bandwidth=5000001, loss=26, dup=26, jitter=11, buffer=101, unidirectional=True, ) # when iface1, iface2 = session.add_link( node1.id, node2.id, iface1_data, iface2_data, link_options1 ) session.update_link( node2.id, node1.id, iface2_data.id, iface1_data.id, link_options2 ) # then assert node1.get_iface(iface1_data.id) assert node2.get_iface(iface2_data.id) assert iface1 is not None assert iface2 is not None assert iface1.local_options == link_options1 assert iface1.has_local_netem assert iface2.local_options == link_options2 assert iface2.has_local_netem def test_update_node_to_net(self, session: Session, ip_prefixes: IpPrefixes): # given node1 = session.add_node(CoreNode) node2 = session.add_node(SwitchNode) iface1_data = ip_prefixes.create_iface(node1) iface1, _ = session.add_link(node1.id, node2.id, iface1_data) assert iface1.local_options != LINK_OPTIONS # when session.update_link( node1.id, node2.id, iface1_id=iface1_data.id, options=LINK_OPTIONS ) # then assert iface1.local_options == LINK_OPTIONS assert iface1.has_local_netem def test_update_net_to_node(self, session: Session, ip_prefixes: IpPrefixes): # given node1 = session.add_node(SwitchNode) node2 = session.add_node(CoreNode) iface2_data = ip_prefixes.create_iface(node2) _, iface2 = session.add_link(node1.id, node2.id, iface2_data=iface2_data) assert iface2.local_options != LINK_OPTIONS # when session.update_link( node1.id, node2.id, iface2_id=iface2_data.id, options=LINK_OPTIONS ) # then assert iface2.local_options == LINK_OPTIONS assert iface2.has_local_netem def test_update_ptp(self, session: Session, ip_prefixes: IpPrefixes): # given node1 = session.add_node(CoreNode) node2 = session.add_node(CoreNode) iface1_data = ip_prefixes.create_iface(node1) iface2_data = ip_prefixes.create_iface(node2) iface1, iface2 = session.add_link(node1.id, node2.id, iface1_data, iface2_data) assert iface1.local_options != LINK_OPTIONS assert iface2.local_options != LINK_OPTIONS # when session.update_link( node1.id, node2.id, iface1_data.id, iface2_data.id, LINK_OPTIONS ) # then assert iface1.local_options == LINK_OPTIONS assert iface1.has_local_netem assert iface2.local_options == LINK_OPTIONS assert iface2.has_local_netem def test_update_net_to_net(self, session: Session, ip_prefixes: IpPrefixes): # given node1 = session.add_node(SwitchNode) node2 = session.add_node(SwitchNode) iface1, _ = session.add_link(node1.id, node2.id) assert iface1.local_options != LINK_OPTIONS # when session.update_link(node1.id, node2.id, options=LINK_OPTIONS) # then assert iface1.local_options == LINK_OPTIONS assert iface1.has_local_netem assert iface1.options == LINK_OPTIONS assert iface1.has_netem def test_clear_net_to_net(self, session: Session, ip_prefixes: IpPrefixes): # given node1 = session.add_node(SwitchNode) node2 = session.add_node(SwitchNode) iface1, _ = session.add_link(node1.id, node2.id, options=LINK_OPTIONS) assert iface1.local_options == LINK_OPTIONS assert iface1.has_local_netem assert iface1.options == LINK_OPTIONS assert iface1.has_netem # when options = LinkOptions(delay=0, bandwidth=0, loss=0.0, dup=0, jitter=0, buffer=0) session.update_link(node1.id, node2.id, options=options) # then assert iface1.local_options.is_clear() assert not iface1.has_local_netem assert iface1.options.is_clear() assert not iface1.has_netem def test_delete_node_to_node(self, session: Session, ip_prefixes: IpPrefixes): # given node1 = session.add_node(CoreNode) node2 = session.add_node(CoreNode) iface1_data = ip_prefixes.create_iface(node1) iface2_data = ip_prefixes.create_iface(node2) session.add_link(node1.id, node2.id, iface1_data, iface2_data) assert node1.get_iface(iface1_data.id) assert node2.get_iface(iface2_data.id) # when session.delete_link(node1.id, node2.id, iface1_data.id, iface2_data.id) # then assert iface1_data.id not in node1.ifaces assert iface2_data.id not in node2.ifaces def test_delete_node_to_net(self, session: Session, ip_prefixes: IpPrefixes): # given node1 = session.add_node(CoreNode) node2 = session.add_node(SwitchNode) iface1_data = ip_prefixes.create_iface(node1) session.add_link(node1.id, node2.id, iface1_data) assert node1.get_iface(iface1_data.id) # when session.delete_link(node1.id, node2.id, iface1_id=iface1_data.id) # then assert iface1_data.id not in node1.ifaces def test_delete_net_to_node(self, session: Session, ip_prefixes: IpPrefixes): # given node1 = session.add_node(SwitchNode) node2 = session.add_node(CoreNode) iface2_data = ip_prefixes.create_iface(node2) session.add_link(node1.id, node2.id, iface2_data=iface2_data) assert node2.get_iface(iface2_data.id) # when session.delete_link(node1.id, node2.id, iface2_id=iface2_data.id) # then assert iface2_data.id not in node2.ifaces def test_delete_net_to_net(self, session: Session, ip_prefixes: IpPrefixes): # given node1 = session.add_node(SwitchNode) node2 = session.add_node(SwitchNode) session.add_link(node1.id, node2.id) assert node1.get_linked_iface(node2) # when session.delete_link(node1.id, node2.id) # then assert not node1.get_linked_iface(node2) def test_delete_node_error(self, session: Session, ip_prefixes: IpPrefixes): # given node1 = session.add_node(SwitchNode) node2 = session.add_node(SwitchNode) session.add_link(node1.id, node2.id) assert node1.get_linked_iface(node2) # when with pytest.raises(CoreError): session.delete_link(node1.id, INVALID_ID) with pytest.raises(CoreError): session.delete_link(INVALID_ID, node2.id) def test_delete_net_to_net_error(self, session: Session, ip_prefixes: IpPrefixes): # given node1 = session.add_node(SwitchNode) node2 = session.add_node(SwitchNode) node3 = session.add_node(SwitchNode) session.add_link(node1.id, node2.id) assert node1.get_linked_iface(node2) # when with pytest.raises(CoreError): session.delete_link(node1.id, node3.id) def test_delete_node_to_net_error(self, session: Session, ip_prefixes: IpPrefixes): # given node1 = session.add_node(CoreNode) node2 = session.add_node(SwitchNode) node3 = session.add_node(SwitchNode) iface1_data = ip_prefixes.create_iface(node1) iface1, _ = session.add_link(node1.id, node2.id, iface1_data) assert iface1 # when with pytest.raises(CoreError): session.delete_link(node1.id, node3.id) def test_delete_net_to_node_error(self, session: Session, ip_prefixes: IpPrefixes): # given node1 = session.add_node(SwitchNode) node2 = session.add_node(CoreNode) node3 = session.add_node(SwitchNode) iface2_data = ip_prefixes.create_iface(node2) _, iface2 = session.add_link(node1.id, node2.id, iface2_data=iface2_data) assert iface2 # when with pytest.raises(CoreError): session.delete_link(node1.id, node3.id) def test_delete_node_to_node_error(self, session: Session, ip_prefixes: IpPrefixes): # given node1 = session.add_node(CoreNode) node2 = session.add_node(CoreNode) node3 = session.add_node(SwitchNode) iface1_data = ip_prefixes.create_iface(node1) iface2_data = ip_prefixes.create_iface(node2) iface1, iface2 = session.add_link(node1.id, node2.id, iface1_data, iface2_data) assert iface1 assert iface2 # when with pytest.raises(CoreError): session.delete_link(node1.id, node3.id)
StarcoderdataPython
3408675
<reponame>UniversitaDellaCalabria/datiFontiSparse<gh_stars>0 from django.contrib import admin from template.admin import AbstractCreatedModifiedBy from .admin_inline import * from .models import * @admin.register(Visiting) class VisitingAdmin(AbstractCreatedModifiedBy): list_display = ('visitor', 'from_structure', 'to_structure', 'role') search_fields = ('visitor__last_name',) list_filter = ('from_structure', 'to_structure', 'role__role_type') inlines = (VisitingCollaborationAdminInline,) @admin.register(Role) class RoleAdmin(admin.ModelAdmin): list_display = ('role_type',) @admin.register(Collaboration) class CollaborationAdmin(admin.ModelAdmin): list_display = ('collab_type',)
StarcoderdataPython
372416
<filename>chp8/trajectory_sampling.py # -*- coding: utf-8 -*- """ Created on Fri Jun 4 10:44:13 2021 @author: leyuan """ import time import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd from tqdm import tqdm # 2 actions ACTIONS = [0, 1] # each transition has a probability to terminate with 0 TERMINATION_PROB = 0.1 # maximum expected updates MAX_STEPS = 20000 # epsilon greedy for behavior policy EPSILON = 0.1 # break tie randomly def argmax(value): return np.random.choice(np.where(value == np.max(value))[0]) class Task(object): def __init__(self, n_states, b): ''' @n_states: num of non-terminal state @b: # of branches each episode starts at state 0, and terminates at state n_states ''' self.n_states = n_states self.b = b # transition matrix, each state-action pair leads to b possible states with equal prob # and with a different random selection of b states for each state–action pair. self.transition = np.random.randint(n_states, size=(n_states, len(ACTIONS), b)) # self.transition = np.zeros((n_states, len(ACTIONS), b)) # for i in range(n_states): # for j in range(len(ACTIONS)): # self.transition[i, j] = np.random.sample(n_states, b, replace=False) self.reward = np.random.randn(n_states, len(ACTIONS), b) def step(self, state, action): if np.random.rand() < TERMINATION_PROB: return self.n_states, 0 idx = np.random.choice(self.b) return self.transition[state, action, idx], self.reward[state, action, idx] # Evaluate the value of the start state for the greedy policy def evaluate_pi(q_value, task): # use MC method to estimate the state value runs = 1000 returns = [] for r in range(runs): reward = 0 state = 0 while state < task.n_states: action = argmax(q_value[state]) state, r = task.step(state, action) reward += r returns.append(reward) return np.mean(returns) def uniform(task, eval_interval): ''' perform expected update from a uniform state-action distribution of the MDP @task evaluate the learned q value every @eval_interval steps ''' performance = [] q_value = np.zeros((task.n_states, len(ACTIONS))) for step in tqdm(range(MAX_STEPS)): ''' 因为是state-action pair是均匀分布,所有在MAX_STEPS当中平均个pair更新MAX_STEPS/(n_states * 2)次 可以采用随机抽样的方式,每次从state里抽一个,从action里抽一个,但是这样程序会比较慢 参考的代码里给出了一个比较巧妙的近似,就是从头到尾轮着更新 ''' state = step // len(ACTIONS) % task.n_states action = step % len(ACTIONS) next_states = task.transition[state, action] q_value[state, action] = (1 - TERMINATION_PROB) * np.mean(task.reward[state, action] + np.max(q_value[next_states, :], axis=1)) if step % eval_interval == 0: v_pi = evaluate_pi(q_value, task) performance.append([step, v_pi]) return zip(*performance) def on_policy(task, eval_interval): performance = [] q_value = np.zeros((task.n_states, len(ACTIONS))) state = 0 # every episode starts at state 0 for step in tqdm(range(MAX_STEPS)): if np.random.rand() < EPSILON: action = np.random.choice(ACTIONS) else: action = argmax(q_value[state]) next_state, _ = task.step(state, action) # 因为用的是期望更新,所以采样出来的r不需要 next_states = task.transition[state, action] q_value[state, action] = (1 - TERMINATION_PROB) * np.mean(task.reward[state, action] + np.max(q_value[next_states, :], axis=1)) ''' 这个更新表达适合uniform是一样的,因为都是期望跟新,但是更要更新的内容q(s,a)是不同的, 这里是来自于on policy的分布,uniform是来自于均匀分布 下面判断next_state是否等于terminal state也是两者的差异,因为是轨迹采样(step函数), 所以有可能会达到terminal ''' if next_state == task.n_states: next_state = 0 state = next_state if step % eval_interval == 0: v_pi = evaluate_pi(q_value, task) performance.append([step, v_pi]) return zip(*performance) def figure_8_8(): num_states = [1000, 10000] branch = [1, 3, 10] methods =[on_policy, uniform] # average over 30 tasks n_tasks = 30 # num of evaluation points x_ticks = 100 plt.figure(figsize=(10, 20)) for i, n in enumerate(num_states): plt.subplot(2, 1, i+1) for b in branch: tasks = [Task(n, b) for _ in range(n_tasks)] for method in methods: steps = None value = [] for task in tasks: steps, v = method(task, MAX_STEPS / x_ticks) value.append(v) value = np.mean(np.asarray(value), axis=0) plt.plot(steps, value, label=f'branch = {b}, {method.__name__}') plt.title(f'{n} states') plt.xlabel('computation time, in expected updates') plt.ylabel('value of start state') plt.legend() figure_8_8()
StarcoderdataPython
3533284
# Generated by Django 3.2 on 2021-04-13 15:36 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('chat_bots', '0008_alter_bottype_id'), ('chat_bots', '0009_auto_20210413_1823'), ] operations = [ ]
StarcoderdataPython
8136499
from rest_framework import viewsets, mixins from rest_framework.authentication import TokenAuthentication from rest_framework.permissions import IsAuthenticated from problem.models import Response, Problem from problem.serializers import ResponseSerializer, ProblemSerializer class BaseProblemAttrViewSet(viewsets.GenericViewSet, mixins.ListModelMixin, \ mixins.CreateModelMixin): """Base viewset for problem attributes""" authentication_classes = (TokenAuthentication,) permission_classes = (IsAuthenticated,) def perform_create(self, serializer): """Create a new object""" serializer.save(user=self.request.user) class ResponseViewSet(BaseProblemAttrViewSet): """Manage responses in the database""" queryset = Response.objects.all() serializer_class = ResponseSerializer class ProblemViewSet(BaseProblemAttrViewSet): """Manage problems in the database""" queryset = Problem.objects.all() serializer_class = ProblemSerializer
StarcoderdataPython
12857068
<reponame>LordGhostX/ECXBotsMastery import requests from bs4 import BeautifulSoup def find_word_meaning(word): r = requests.get(f"https://www.dictionary.com/browse/{word}") if r.status_code == 200: page = BeautifulSoup(r.text, "html.parser") luna_pos = page.find("span", {"class": "luna-pos"}).text word_meaning = f"{word} - {luna_pos}\n\n" meanings = page.find( "div", {"class": "css-1uqerbd e1hk9ate0"}).find_all("div", {"class": "e1q3nk1v2"}) for i, meaning in enumerate(meanings): word_meaning += f"{i + 1} - {meaning.find('span').text}\n\n" return word_meaning.strip() elif r.status_code == 404: return "the specified word does not exist!" else: return "an error occured while finding word meaning!" if __name__ == "__main__": print(find_word_meaning("intense"))
StarcoderdataPython
3391897
# -*- coding: utf-8 -*- """ File Name: largest-perimeter-triangle.py Author : jynnezhang Date: 2020/11/29 12:55 下午 Description: https://leetcode-cn.com/problems/largest-perimeter-triangle/ """ class Solution: def largestPerimeter(self, A=[]) -> int: if not A or len(A) < 3: return 0 A.sort(reverse=True) i = 2 while i < len(A): a1, a2, a3 = A[i-2], A[i-1], A[i] if a2 + a3 > a1: return a1 + a2 + a3 else: i += 1 return 0 if __name__ == '__main__': print(Solution().largestPerimeter([3,6,2,3]))
StarcoderdataPython
8091134
# Copyright 2017-2019 typed_python Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import typed_python._types as _types import unittest from flaky import flaky from typed_python import ( Tuple, NamedTuple, Class, Member, ListOf, Compiled, Final, Forward, OneOf ) from typed_python import Entrypoint, makeNamedTuple, Function class TestTupleCompilation(unittest.TestCase): def test_tuple_passing(self): T = Tuple(float, int, str) @Compiled def f(x: T) -> T: y = x return y t = T((0.0, 1, "hi")) self.assertEqual(f(t), t) def test_named_tuple_passing(self): NT = NamedTuple(a=float, b=int, c=str) @Compiled def f(x: NT) -> NT: y = x return y nt = NT(a=0.0, b=1, c="hi") self.assertEqual(f(nt), nt) def test_named_tuple_getattr(self): NT = NamedTuple(a=float, b=int, c=str) @Compiled def f(x: NT) -> str: return x.c + x.c nt = NT(a=0.0, b=1, c="hi") self.assertEqual(f(nt), "hihi") def test_named_tuple_assignment_refcounting(self): class C(Class): x = Member(int) NT = NamedTuple(c=C) @Compiled def f(x: NT): y = x return y.c c = C(x=20) res = f(NT(c=c)) self.assertEqual(res.x, 20) self.assertEqual(_types.refcount(res), 2) def test_indexing(self): T = Tuple(int, str) @Entrypoint def getFirst(t): return t[0] @Entrypoint def getSecond(t): return t[1] @Entrypoint def getIx(t, i): return t[i] self.assertEqual(getFirst(T((1, '2'))), 1) self.assertEqual(getSecond(T((1, '2'))), '2') self.assertEqual(getIx(T((1, '2')), 0), 1) self.assertEqual(getIx(T((1, '2')), 1), '2') def test_iterating(self): @Entrypoint def tupToString(x): res = ListOf(str)() for elt in x: res.append(str(elt)) return res self.assertEqual( tupToString(Tuple(int, str)((0, 'a'))), ["0", "a"] ) def test_named_tuple_replacing_error(self): """We should have errors for all the field names passed to the replacing function, if the fields are not in the tuple definition. """ NT = NamedTuple(a=int, b=str) n1 = NT(a=1, b='x') @Compiled def f1(x: NT) -> NT: return x.replacing(c=10) with self.assertRaisesRegex(Exception, "The arguments list contain names 'c' which are not in the tuple definition."): f1(n1) @Compiled def f2(x: NT) -> NT: return x.replacing(c=10, d=10, e=10) with self.assertRaisesRegex(Exception, "The arguments list contain names 'c, d, e' which are not in the tuple definition."): f2(n1) def test_named_tuple_replacing_function(self): NT = NamedTuple(a=int, b=str) n1 = NT(a=1, b='x') @Compiled def f1(x: NT, a: int) -> NT: return x.replacing(a=a) n2 = f1(n1, 10) self.assertIsNot(n1, n2) self.assertEqual(n2.a, 10) self.assertEqual(n2.b, 'x') @Compiled def f2(x: NT, a: int, b: str) -> NT: return x.replacing(a=a, b=b) n3 = f2(n2, 123, '345') self.assertIsNot(n1, n2) self.assertIsNot(n2, n3) self.assertEqual(n3.a, 123) self.assertEqual(n3.b, '345') def test_named_tuple_replacing_refcount(self): N = NamedTuple(x=ListOf(int)) N = NamedTuple(x=ListOf(int)) aList = ListOf(int)([1, 2, 3]) self.assertEqual(_types.refcount(aList), 1) nt = N().replacing(x=aList) self.assertEqual(nt.x, aList) self.assertEqual(_types.refcount(aList), 2) nt = None self.assertEqual(_types.refcount(aList), 1) def test_named_tuple_construction(self): NT = NamedTuple(x=ListOf(int), y=float) @Entrypoint def makeNt(): return NT() @Entrypoint def makeNtX(x): return NT(x=x) @Entrypoint def makeNtY(y): return NT(y=y) @Entrypoint def makeNtXY(x, y): return NT(x=x, y=y) self.assertEqual(makeNt(), NT()) self.assertEqual(makeNtX(ListOf(int)([1, 2, 3])), NT(x=ListOf(int)([1, 2, 3]))) self.assertEqual(makeNtXY(ListOf(int)([1, 2, 3]), 2.0), NT(x=ListOf(int)([1, 2, 3]), y=2.0)) self.assertEqual(makeNtY(2.0), NT(y=2.0)) with self.assertRaisesRegex(TypeError, "Couldn't initialize type ListOf.int. from float"): makeNtX(1.2) def test_compile_make_named_tuple(self): @Entrypoint def makeNt(x, y): return makeNamedTuple(x=x, y=y) self.assertEqual(makeNt(1, 2), makeNamedTuple(x=1, y=2)) self.assertEqual(makeNt(1, "2"), makeNamedTuple(x=1, y="2")) def test_compiled_tuple_construction(self): def makeNamed(x, y): return NamedTuple(x=type(x), y=type(y))((x, y)) def makeUnnamed(x, y): return Tuple(type(x), type(y))((x, y)) def check(f, x, y): compiledRes = Entrypoint(f)(x, y) interpRes = f(x, y) self.assertEqual(compiledRes, interpRes) self.assertEqual(type(compiledRes), type(interpRes)) check(makeNamed, 1, 2) check(makeNamed, 1, "2") check(makeUnnamed, 1, 2) check(makeUnnamed, 1, "2") def test_compare_tuples(self): ClassWithCompare = Forward("ClassWithCompare") @ClassWithCompare.define class ClassWithCompare(Class, Final): x = Member(int) y = Member(int) def __eq__(self, other: ClassWithCompare): return self.x == other.x and self.y == other.y def __lt__(self, other: ClassWithCompare): if self.x < other.x: return True if self.x > other.x: return True return self.y < other.y aTuple1 = Tuple(int, int, int)((1, 2, 3)) aTuple2 = Tuple(int, int, int)((1, 2, 4)) aTuple3 = Tuple(int, ClassWithCompare)((1, ClassWithCompare(x=2, y=3))) aTuple4 = Tuple(int, ClassWithCompare)((1, ClassWithCompare(x=2, y=4))) aTuple5 = NamedTuple(x=int, y=int, z=int)((1, 2, 3)) aTuple6 = NamedTuple(x=int, y=int, z=int)((1, 2, 4)) aTuple7 = NamedTuple(x=int, y=ClassWithCompare)((1, ClassWithCompare(x=2, y=3))) aTuple8 = NamedTuple(x=int, y=ClassWithCompare)((1, ClassWithCompare(x=2, y=4))) def check(l, expected=None): if expected is not None: self.assertEqual(l(), expected) self.assertEqual(l(), Entrypoint(l)()) for tup1, tup2 in [ (aTuple1, aTuple2), (aTuple3, aTuple4), (aTuple5, aTuple6), (aTuple7, aTuple8) ]: check(lambda: tup1 == tup1, True) check(lambda: tup2 == tup2, True) check(lambda: tup1 != tup2, True) check(lambda: tup2 != tup1, True) someTuples = [ Tuple(int, int)((1, 2)), Tuple(int, int)((1, 3)), Tuple(int, int)((2, 2)), Tuple(int, int)((2, 3)), Tuple(int, int, int)((2, 3, 4)), Tuple(int, int, int)((1, 2, 3)), NamedTuple(x=int, y=int, z=int)((2, 3, 4)), NamedTuple(x=int, y=int, z=int)((1, 2, 3)), ] for t1 in someTuples: for t2 in someTuples: check(lambda: t1 < t2) check(lambda: t1 > t2) check(lambda: t1 <= t2) check(lambda: t1 >= t2) check(lambda: t1 == t2) check(lambda: t1 != t2) def test_subclass_of_named_tuple_compilation(self): NT = NamedTuple(a=int, b=str) class X(NT): def aMethod(self, x): return self.a + x @property def aProperty(self): return self.a + 100 @staticmethod def aStaticMethod(x): return x @Function def aMethodWithType(self, x) -> float: return self.a + x assert X().aProperty == 100 @Entrypoint def makeAnX(a, b): return X(a=a, b=b) assert makeAnX(a=1, b="hi").a == 1 assert makeAnX(a=1, b="hi").b == 'hi' @Entrypoint def callAnXMethod(x: X, y): return x.aMethod(y) assert callAnXMethod(X(a=1), 10) == 11 @Entrypoint def callAnXMethodWithType(x: X, y): return x.aMethodWithType(y) assert callAnXMethod(X(a=1), 10.5) == 11.5 @Entrypoint def callAStaticMethodOnInstance(x: X, y): return x.aStaticMethod(y) callAStaticMethodOnInstance(X(a=1), 12) == 12 @Entrypoint def callAStaticMethodOnClass(y): return X.aStaticMethod(y) assert callAStaticMethodOnClass(13) == 13 @Entrypoint def getAProperty(x: X): return x.aProperty assert getAProperty(X(a=12)) == 112 @flaky(max_runs=3, min_passes=1) def test_subclass_of_named_tuple_compilation_perf(self): NT = NamedTuple(a=float, b=str) class X(NT): def aMethod(self, x): return self.a + x @Entrypoint def loop(self, x, times): res = 0.0 for i in range(times): res += self.aMethod(x) return res X(a=123).loop(1.2, 100) t0 = time.time() X(a=123).loop(1.2, 1000000) print(time.time() - t0, " to do 1mm") # I get about .001 seconds for this. assert time.time() - t0 < .01 def test_bound_method_on_named_tuple(self): class NT(NamedTuple(x=str)): @Function def f(self, x): return x + self.x @Entrypoint def callIt(n): method = n.f return method("asdf") assert callIt(NT(x="hi")) == "asdfhi" def test_negative_indexing(self): @Entrypoint def sliceAt(tup, ix): return tup[ix] @Entrypoint def sliceAtOne(tup): return tup[1] @Entrypoint def sliceAtMinusOne(tup): return tup[-1] class A(Class): pass class B(Class): pass tup = Tuple(A, B)([A(), B()]) self.assertEqual(sliceAtMinusOne(tup), sliceAtOne(tup)) self.assertEqual(sliceAt(tup, -2), sliceAt(tup, 0)) with self.assertRaises(IndexError): sliceAt(tup, -3) self.assertIs(sliceAtMinusOne.resultTypeFor(type(tup)).interpreterTypeRepresentation, B) self.assertIs(Function(lambda tup: sliceAt(tup, -2)).resultTypeFor(type(tup)).interpreterTypeRepresentation, OneOf(A, B)) def test_construct_named_tuple_with_other_named_tuple(self): # we should be matching the names up correctly T1 = NamedTuple(x=int, y=str) T2 = NamedTuple(y=str, x=int) T3 = NamedTuple(z=float, y=str, x=int) @Entrypoint def firstCheck(): assert T1(T2(T1(x=10, y='hello'))) == T1(x=10, y='hello') # we can construct a bigger tuple from a smaller one assert T3(T2(x=10, y='hello')).y == 'hello' firstCheck() @Entrypoint def secondCheck(): T2(T3(x=10, y='hello')) # but not in reverse with self.assertRaises(TypeError): secondCheck() def test_construct_named_tuple_with_incorrect_number_of_arguments(self): # we should be matching the names up correctly NT = NamedTuple(z=float, y=str, x=int) @Entrypoint def checkIt(): return NT(z=10, x=20) assert checkIt().y == "" def test_cant_construct_named_tuple_with_non_default_initializable(self): # we should be matching the names up correctly C = Forward("C") @C.define class C(Class): def __init__(self): pass assert not _types.is_default_constructible(C) NT = NamedTuple(x=float, c=C) @Entrypoint def checkIt(): return NT(x=10) with self.assertRaisesRegex(TypeError, "Can't default initialize member 'c'"): checkIt()
StarcoderdataPython
1711788
from time import sleep from typing import List, Union, Dict from privex.loghelper import LogHelper from tests.base import PrivexBaseCase from privex.helpers import thread as modthread, LockConflict, random_str, OrderedDictObject from privex.helpers.thread import BetterEvent, event_multi_wait_all, event_multi_wait_any, lock_acquire_timeout, SafeLoopThread from collections import namedtuple from threading import Event, Lock import threading import queue import logging LOG_FORMATTER = logging.Formatter('[%(asctime)s]: %(name)-25s -> %(funcName)-35s : %(levelname)-8s:: %(message)s') _lh = LogHelper(__name__, handler_level=logging.DEBUG, formatter=LOG_FORMATTER) _lh.add_console_handler() _lh.copy_logger('privex.helpers.thread') log = logging.getLogger(__name__) # release_lock = BetterEvent(name='Global Release Lock event') shared_lock = threading.Lock() shared_queue = queue.Queue() stop_threads = BetterEvent(name='Global stop_threads') LockCheck = namedtuple('LockCheck', 'thread_id was_locked lock_exception thread_name') UnlockEvent = namedtuple('UnlockEvent', 'thread_id thread_name') class LockerThread(SafeLoopThread): loop_sleep = 0.05 def __init__(self, lock: threading.Lock, timeout=2, fail=True, hold_lock_start=True, **kwargs): kwargs = dict(kwargs) # Arguments passed to lock_acquire_timeout self.lock = lock self.timeout = timeout self.fail = fail # Amount of time to wait between each `release_lock` check after the lock is acquired. # self.lock_hold_sleep = kwargs.get('lock_hold_sleep', 0.2) # When the release_lock is in the SET position, the thread will hold the lock until release_lock is cleared. self.release_lock = BetterEvent(name='Release Lock') if not hold_lock_start: log.info("hold_lock_start is False. Triggering event self.release_lock (do not hold lock)") self.release_lock.set() self.event_change_lock = Lock() self.pause_if_locked = kwargs.pop('pause_if_locked', True) super().__init__(stop_events=[stop_threads], **kwargs) @property def should_lock(self): return not self.release_lock.is_set() def emit_lock(self, event_lock_timeout=None): with lock_acquire_timeout(self.event_change_lock, event_lock_timeout, fail=True, block=event_lock_timeout is not None): return self.release_lock.clear() def emit_unlock(self, event_lock_timeout=None): with lock_acquire_timeout(self.event_change_lock, event_lock_timeout, fail=True, block=event_lock_timeout is not None): return self.release_lock.set() def loop(self): if not self.should_lock: log.debug(f" [{self.name}] Waiting for release_lock event to be cleared...") ev_trig = event_multi_wait_any(self.release_lock, *self.stop_events, invert_idx=[0], wait_timeout=20) return log.debug(f" [{self.name}] Finished waiting due to events: {ev_trig}") log.info(f" [{self.name}] Acquiring lock: %s", self.lock) try: with modthread.lock_acquire_timeout(self.lock, self.timeout, fail=self.fail) as locked: if not locked: log.debug(f" [{self.name}] did not acquire lock. not waiting to hold lock open.") if self.pause_if_locked: log.debug(f" [{self.name}] pause_if_locked is True. setting release_lock to pause lock acquisition attempts.") try: self.emit_unlock() except LockConflict: log.debug(f" [{self.name}] got lock conflict while setting release_lock...") self.out_queue.put(LockCheck(self.ident, locked, lock_exception=None, thread_name=self.name)) if not locked: return log.debug(f" [{self.name}] lock not acquired, returning loop...") log.debug(f" [{self.name}] waiting until release_lock or any event in stop_events is triggered...") ev_trig = event_multi_wait_any(self.release_lock, *self.stop_events) log.debug(f" [{self.name}] finished waiting to release lock due to events: {ev_trig}") if locked: log.debug(f" [{self.name}] release_lock released or thread stop event fired. releasing previously acquired lock.") was_locked = bool(locked) log.debug(f" [{self.name}] finished lock_acquire_timeout context manager block. lock will be released if we held it...") if was_locked: self.out_queue.put(UnlockEvent(self.ident, self.name)) except LockConflict as e: log.debug(f" [{self.name}] Lock conflict / timeout exception was raised: %s %s", type(e), str(e)) self.out_queue.put(LockCheck(self.ident, None, e, thread_name=self.name)) except Exception as e: log.exception(f" [{self.name}] Exception raised while acquiring lock: %s %s", type(e), str(e)) self.out_queue.put(LockCheck(self.ident, None, e, thread_name=self.name)) ThreadTypes = Union[threading.Thread, LockerThread] class TestThreading(PrivexBaseCase): """Test cases for :mod:`privex.helpers.thread` functions/classes""" threads: Union[OrderedDictObject, Dict[str, ThreadTypes]] = OrderedDictObject() def tearDown(self) -> None: if len(self.threads) > 0: stop_threads.set() sleep(0.3) thread_keys = list(self.threads.keys()) for name in thread_keys: t = self.threads[name] if not t.is_alive(): log.debug("Thread '%s' is dead. Removing from thread dict...", name) del self.threads[name] continue log.debug("Thread '%s' is still alive. Joining and waiting for it to shutdown...", name) if hasattr(t, 'emit_stop'): log.debug("Thread '%s' has emit_stop method. Calling emit_stop before joining.", name) t.emit_stop() t.join(3) log.debug("Removing stopped thread %s", name) del self.threads[name] log.debug("Successfully removed stopped thread %s", name) # Reset global event thread signals to their default, empty queues, and release any leftover locks. # if release_lock.is_set(): release_lock.clear() if shared_lock.locked(): shared_lock.release() while not shared_queue.empty(): shared_queue.get_nowait() if stop_threads.is_set(): stop_threads.clear() @classmethod def _mk_locker(cls, lock: threading.Lock, timeout=2, fail=True, hold_lock_start=False, name=None, **kwargs) -> LockerThread: """ :param threading.Lock lock: :param int|float timeout: :param bool fail: :param bool hold_lock_start: :param str name: :param kwargs: :return: """ auto_start = kwargs.pop('auto_start', True) name = random_str(8) if name is None else name t = LockerThread(lock, timeout=timeout, fail=fail, hold_lock_start=hold_lock_start, **kwargs) t.name = name t.daemon = kwargs.pop('daemon', False) if auto_start: t.start() cls.threads[name] = t return t @staticmethod def _cleanup_lockers(*lockers: LockerThread): for l in lockers: l.emit_unlock() # Release any lock they might be holding l.emit_stop() # Stop the locker thread if l.is_alive(): # Join the thread if it's alive so that it can shutdown correctly. l.join(1) def test_lock_acquire_timeout_basic(self): # First we test that we can successfully acquire an unlocked lock t1 = self._mk_locker(shared_lock, timeout=2, fail=False, name="acquire_lock_timeout_t1") self.assertFalse(shared_lock.locked()) self.assertTrue(t1.emit_lock(), msg="emit_lock should've returned True to acknowledge release_lock flipping") # Check the LockCheck result from the thread queue res: LockCheck = t1.out_queue.get(block=True, timeout=2) self.assertTrue(res.was_locked) self.assertTrue(shared_lock.locked()) self.assertIsNone(res.lock_exception) self.assertEqual(res.thread_name, "acquire_lock_timeout_t1") # Ask t1 to release the lock t1.emit_unlock() res: UnlockEvent = t1.out_queue.get(block=True, timeout=2) self.assertEqual(res.thread_name, 'acquire_lock_timeout_t1') self.assertFalse(shared_lock.locked()) # Stop t1 t1.emit_stop() t1.join(1) def test_lock_acquire_timeout_timed_out(self): self.assertFalse(shared_lock.locked()) # First we acquire a lock using our first thread log.debug(" >>> thread 1 acquire") t1 = self._mk_locker(shared_lock, timeout=4, fail=False, name="timeout_t1") t1.emit_lock() # Check the LockCheck result from the thread queue res: LockCheck = t1.out_queue.get(block=True, timeout=2) self.assertTrue(res.was_locked) self.assertTrue(shared_lock.locked()) # Confirm our lock is locked # Now we try and acquire the lock with a second thread log.debug(" >>> thread 2 acquire (test lock timeout fail)") t2 = self._mk_locker(shared_lock, timeout=2, fail=False, name="timeout_t2") t2.emit_lock() # Confirm that t2 failed to get the lock res: LockCheck = t2.out_queue.get(block=True, timeout=4) self.assertFalse(res.was_locked) self.assertTrue(shared_lock.locked()) self.assertIsNone(res.lock_exception) # Now we'll ask t2 to try and get the lock again, wait 200ms and release the lock log.debug(" >>> thread 2 acquiring (unlocking thread 1)") t2.emit_lock() sleep(0.2) log.debug(" >>> thread 1 unlocking") t1.emit_unlock() # If the lock wait timeout was being acknowledged, t2 should now have the lock. log.debug(" >>> get thread 2 out_queue") res: LockCheck = t2.out_queue.get(block=True, timeout=4) self.assertTrue(res.was_locked) self.assertTrue(shared_lock.locked()) # Now we'll release the lock and confirm the lock is unlocked again log.debug(" >>> thread 2 unlock") t2.emit_unlock() res: UnlockEvent = t2.out_queue.get(block=True, timeout=4) self.assertEqual(res.thread_name, 'timeout_t2') self.assertFalse(shared_lock.locked()) log.debug(" >>> cleanup") # If we got this far - everything is fine :) - stop the threads and cleanup self._cleanup_lockers(t1, t2)
StarcoderdataPython
3542289
import sys class Solution: def findClosestElements(self, arr, k, x): """ :type arr: List[int] :type k: int :type x: int :rtype: List[int] """ left = 0 right = len(arr) - 1 pos = 0 if x < arr[0]: return arr[0:k] elif x > arr[-1]: return arr[-k:] else: while left <= right: mid = (left + right) / 2 start = int(mid) end = start + 1 if mid - start > 0.1 else start if x < arr[start]: right = start elif arr[end] < x: left = end elif arr[start] < x < arr[end]: pos = mid break elif arr[start] == x: pos = start break elif arr[end] == x: pos = end break return self.expend(arr, pos, x, k) def expend(self, arr, center, x, width): start = int(center) end = start + 1 if center - start > 0.1 else start result = [] max_diff = arr[-1] - arr[0] while len(result) < width: if start < 0: diff1 = max_diff + 1 else: diff1 = x - arr[start] if end >= len(arr): diff2 = max_diff + 1 else: diff2 = arr[end] - x if start == end: result = [arr[start]] start = start - 1 end = end + 1 elif diff1 <= diff2: result.insert(0, arr[start]) start = start - 1 else: result.append(arr[end]) end = end + 1 return result def main(*args): result = Solution().findClosestElements([0, 0, 1, 2, 3, 3, 4, 7, 7, 8], 3, 3) # result = Solution().expend([1, 2, 4, 6, 7], 1.5, 3, 3) print(result) if __name__ == '__main__': main(*sys.argv[1:])
StarcoderdataPython
6445868
# Copyright 2021 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd import pytest import sawatabi.constants as constants from sawatabi.model import LogicalModel from sawatabi.model.constraint import NHotConstraint @pytest.fixture def ising(): return LogicalModel(mtype="ising") @pytest.fixture def qubo(): return LogicalModel(mtype="qubo") ################################ # Select ################################ def test_logical_model_select(ising): x = ising.variables("x", shape=(10, 10)) ising.add_interaction(x[0][0], coefficient=10.0) ising.add_interaction(x[0, 1], name="my name", coefficient=20.0) ising.add_interaction((x[0, 0], x[0, 1]), coefficient=30.0, timestamp=1234567890.123, attributes={"foo": "bar", "my attr": "my value"}) # single result selected = ising.select_interaction("name == 'x[0][0]'") assert type(selected) is pd.core.frame.DataFrame assert len(selected) == 1 assert selected["name"].values[0] == "x[0][0]" assert selected["key"].values[0] == "x[0][0]" assert id(selected["interacts"].values[0]) == id(x[0][0]) assert selected["coefficient"].values[0] == 10.0 # dict format selected = ising.select_interaction("name == 'my name'", fmt="dict") assert type(selected) is dict assert len(selected) == 1 key = list(selected.keys())[0] assert selected[key]["name"] == "my name" assert selected[key]["key"] == "x[0][1]" assert id(selected[key]["interacts"]) == id(x[0][1]) assert selected[key]["coefficient"] == 20.0 # multiple results selected = ising.select_interaction("timestamp > 1234567890.000") assert len(selected) == 3 assert selected["name"].values[0] == "x[0][0]" assert selected["name"].values[1] == "my name" assert selected["name"].values[2] == "x[0][0]*x[0][1]" assert selected["coefficient"].values[0] == 10.0 assert selected["coefficient"].values[1] == 20.0 assert selected["coefficient"].values[2] == 30.0 assert selected["attributes.foo"].values[2] == "bar" assert selected["attributes.my attr"].values[2] == "my value" # empty selected = ising.select_interaction("timestamp < 1234567890.000") assert len(selected) == 0 # attributes selected = ising.select_interaction("`attributes.foo` == 'bar'") assert len(selected) == 1 assert selected["name"].values[0] == "x[0][0]*x[0][1]" selected = ising.select_interaction("`attributes.my attr` == 'my value'") assert len(selected) == 1 assert selected["name"].values[0] == "x[0][0]*x[0][1]" # invalid query with pytest.raises(pd.core.computation.ops.UndefinedVariableError): ising.select_interaction("invalid == 'invalid'") # invalid format with pytest.raises(ValueError): ising.select_interaction("name == 'x[0][0]'", fmt="invalid") def test_logical_model_select_interactions_by_variable(ising): x = ising.variables("x", shape=(10, 10)) ising.add_interaction(x[0, 0], coefficient=10.0) ising.add_interaction(x[0, 1], coefficient=20.0) ising.add_interaction((x[0, 0], x[0, 1]), coefficient=30.0) selected = ising.select_interactions_by_variable(x[0, 0]) assert type(selected) is np.ndarray assert len(selected) == 2 assert selected[0] == "x[0][0]" assert selected[1] == "x[0][0]*x[0][1]" ################################ # Add ################################ def test_logical_model_add(ising): x = ising.variables("x", shape=(2, 2)) ising.add_interaction(x[0, 0], coefficient=1.0) assert len(ising._interactions_array["name"]) == 1 assert ising._interactions_array["name"][0] == "x[0][0]" assert len(ising._interactions_array["key"]) == 1 assert ising._interactions_array["key"][0] == "x[0][0]" assert len(ising._interactions_array["interacts"]) == 1 assert ising._interactions_array["interacts"][0] == x[0, 0] assert len(ising._interactions_array["coefficient"]) == 1 assert ising._interactions_array["coefficient"][0] == 1.0 assert len(ising._interactions_array["scale"]) == 1 assert ising._interactions_array["scale"][0] == 1.0 assert ising._interactions_length == 1 selected = ising.select_interaction("name == 'x[0][0]'") # Side effect: Internal interactions DataFrame is updated assert len(ising._interactions) == 1 assert selected["name"].values[0] == "x[0][0]" assert selected["key"].values[0] == "x[0][0]" assert selected["interacts"].values[0] == x[0, 0] assert id(selected["interacts"].values[0]) == id(x[0, 0]) assert ising._interactions[ising._interactions["name"] == "x[0][0]"]["coefficient"].values[0] == 1.0 assert ising._interactions[ising._interactions["name"] == "x[0][0]"]["scale"].values[0] == 1.0 ising.add_interaction(x[0, 1], coefficient=2.0, scale=0.1) selected = ising.select_interaction("name == 'x[0][1]'") # Side effect: Internal interactions DataFrame is updated assert len(ising._interactions) == 2 assert selected["name"].values[0] == "x[0][1]" assert ising._interactions[ising._interactions["name"] == "x[0][1]"]["coefficient"].values[0] == 2.0 assert ising._interactions[ising._interactions["name"] == "x[0][1]"]["scale"].values[0] == 0.1 # attributes ising.add_interaction(x[1, 0], coefficient=3.0, attributes={"foo": "bar"}) selected = ising.select_interaction("name == 'x[1][0]'") # Side effect: Internal interactions DataFrame is updated assert len(ising._interactions) == 3 assert selected["name"].values[0] == "x[1][0]" assert ising._interactions[ising._interactions["name"] == "x[1][0]"]["coefficient"].values[0] == 3.0 assert ising._interactions[ising._interactions["name"] == "x[1][0]"]["attributes.foo"].values[0] == "bar" # timestamp ising.add_interaction((x[0, 0], x[0, 1]), coefficient=-4.0, timestamp=1234567890.123) selected = ising.select_interaction("name == 'x[0][0]*x[0][1]'") # Side effect: Internal interactions DataFrame is updated assert len(ising._interactions) == 4 assert selected["name"].values[0] == "x[0][0]*x[0][1]" assert selected["key"].values[0] == ("x[0][0]", "x[0][1]") assert selected["interacts"].values[0] == (x[0, 0], x[0, 1]) assert id(selected["interacts"].values[0][0]) == id(x[0, 0]) assert id(selected["interacts"].values[0][1]) == id(x[0, 1]) assert ising._interactions[ising._interactions["name"] == "x[0][0]*x[0][1]"]["coefficient"].values[0] == -4.0 assert ising._interactions[ising._interactions["name"] == "x[0][0]*x[0][1]"]["timestamp"].values[0] == 1234567890.123 # Test key order ising.add_interaction((x[1, 1], x[1, 0]), coefficient=-4.0, timestamp=1234567890.123) selected = ising.select_interaction("name == 'x[1][0]*x[1][1]'") # Side effect: Internal interactions DataFrame is updated assert len(ising._interactions) == 5 assert selected["name"].values[0] == "x[1][0]*x[1][1]" assert selected["key"].values[0] == ("x[1][0]", "x[1][1]") assert selected["interacts"].values[0] == (x[1, 0], x[1, 1]) assert id(selected["interacts"].values[0][0]) == id(x[1, 0]) assert id(selected["interacts"].values[0][1]) == id(x[1, 1]) assert ising._interactions[ising._interactions["name"] == "x[1][0]*x[1][1]"]["coefficient"].values[0] == -4.0 assert ising._interactions[ising._interactions["name"] == "x[1][0]*x[1][1]"]["timestamp"].values[0] == 1234567890.123 def test_logical_model_add_invalid_arguments(ising): x = ising.variables("x", shape=(3,)) y = ising.variables("y", shape=(2,)) with pytest.raises(ValueError): ising.add_interaction(target=None) with pytest.raises(TypeError): ising.add_interaction() with pytest.raises(TypeError): ising.add_interaction("invalid type", coefficient=1.0) with pytest.raises(TypeError): ising.add_interaction((x[0], x[1], x[2]), coefficient=1.0) with pytest.raises(TypeError): ising.add_interaction(("a", "b"), coefficient=1.0) with pytest.raises(ValueError): ising.add_interaction((x[0], x[0]), coefficient=1.0) # Invalid types with pytest.raises(TypeError): ising.add_interaction(x[0], coefficient="invalid type") with pytest.raises(TypeError): ising.add_interaction(x[0], scale="invalid type") with pytest.raises(TypeError): ising.add_interaction(x[0], attributes="invalid type") with pytest.raises(TypeError): ising.add_interaction(x[0], timestamp="invalid type") # Already added with pytest.raises(ValueError): ising.add_interaction(y[0], coefficient=2.0) ising.add_interaction(y[0], coefficient=2.0) # Already removed with pytest.raises(ValueError): ising.add_interaction(y[1], coefficient=2.0) ising.remove_interaction(y[1]) ising.add_interaction(y[1], coefficient=2.0) def test_logical_model_add_duplicate(ising): x = ising.variables("x", shape=(2,)) ising.add_interaction(x[0], coefficient=1.0) selected = ising.select_interaction("name == 'x[0]'") # Side effect: Internal interactions DataFrame is updated assert len(ising._interactions) == 1 assert selected["name"].values[0] == "x[0]" ising.add_interaction(x[0], name="<NAME>", coefficient=1.0) selected = ising.select_interaction("name == '<NAME>'") # Side effect: Internal interactions DataFrame is updated assert len(ising._interactions) == 2 assert selected["name"].values[0] == "<NAME>" def test_logical_model_add_duplicate_invalid(ising): x = ising.variables("x", shape=(2,)) ising.add_interaction(x[0], coefficient=1.0) ising.add_interaction(x[1], name="<NAME>", coefficient=1.0) with pytest.raises(ValueError): ising.add_interaction(x[0], coefficient=2.0) with pytest.raises(ValueError): ising.add_interaction(x[1], name="<NAME>", coefficient=2.0) ################################ # Update ################################ def test_logical_model_update(ising): x = ising.variables("x", shape=(2,)) # initialize ising.add_interaction(x[0], coefficient=1.0) ising.add_interaction((x[0], x[1]), coefficient=2.0) ising._update_interactions_dataframe_from_arrays() # Update the interactions DataFrame for debug assert len(ising._interactions) == 2 assert ising._interactions[ising._interactions["name"] == "x[0]"]["coefficient"].values[0] == 1.0 assert ising._interactions[ising._interactions["name"] == "x[0]*x[1]"]["coefficient"].values[0] == 2.0 # update by a variable ising.update_interaction(x[0], coefficient=10.0) selected = ising.select_interaction("name == 'x[0]'") # Side effect: Internal interactions DataFrame is updated assert len(ising._interactions) == 2 assert ising._interactions[ising._interactions["name"] == "x[0]"]["coefficient"].values[0] == 10.0 assert selected["name"].values[0] == "x[0]" assert selected["key"].values[0] == "x[0]" assert selected["interacts"].values[0] == x[0] assert id(selected["interacts"].values[0]) == id(x[0]) # update by a target ising.update_interaction(target=x[0], coefficient=100.0) ising._update_interactions_dataframe_from_arrays() # Update the interactions DataFrame for debug assert len(ising._interactions) == 2 assert ising._interactions[ising._interactions["name"] == "x[0]"]["coefficient"].values[0] == 100.0 # update by a name ising.update_interaction(name="x[0]", coefficient=1000.0, scale=2.0, attributes={"foo": "bar"}) ising._update_interactions_dataframe_from_arrays() # Update the interactions DataFrame for debug assert len(ising._interactions) == 2 assert ising._interactions[ising._interactions["name"] == "x[0]"]["coefficient"].values[0] == 1000.0 assert ising._interactions[ising._interactions["name"] == "x[0]"]["scale"].values[0] == 2.0 assert ising._interactions[ising._interactions["name"] == "x[0]"]["attributes.foo"].values[0] == "bar" # update by a pair of variables ising.update_interaction(target=(x[0], x[1]), coefficient=20.0) selected = ising.select_interaction("name == 'x[0]*x[1]'") # Side effect: Internal interactions DataFrame is updated assert len(ising._interactions) == 2 assert ising._interactions[ising._interactions["name"] == "x[0]*x[1]"]["coefficient"].values[0] == 20.0 assert selected["name"].values[0] == "x[0]*x[1]" assert selected["key"].values[0] == ("x[0]", "x[1]") assert selected["interacts"].values[0] == (x[0], x[1]) assert id(selected["interacts"].values[0][0]) == id(x[0]) assert id(selected["interacts"].values[0][1]) == id(x[1]) # update by a pair of variables (reversed order) ising.update_interaction(target=(x[1], x[0]), coefficient=200.0) selected = ising.select_interaction("name == 'x[0]*x[1]'") # Side effect: Internal interactions DataFrame is updated assert len(ising._interactions) == 2 assert ising._interactions[ising._interactions["name"] == "x[0]*x[1]"]["coefficient"].values[0] == 200.0 assert selected["name"].values[0] == "x[0]*x[1]" assert selected["key"].values[0] == ("x[0]", "x[1]") assert selected["interacts"].values[0] == (x[0], x[1]) assert id(selected["interacts"].values[0][0]) == id(x[0]) assert id(selected["interacts"].values[0][1]) == id(x[1]) # update by a name ising.update_interaction(name="x[0]*x[1]", coefficient=2000.0) ising._update_interactions_dataframe_from_arrays() # Update the interactions DataFrame for debug assert len(ising._interactions) == 2 assert ising._interactions[ising._interactions["name"] == "x[0]*x[1]"]["coefficient"].values[0] == 2000.0 def test_logical_model_update_by_custom_names(ising): y = ising.variables("y", shape=(2,)) n1 = "custom interaction 1" n2 = "custom interaction 2" n3 = "custom interaction 3" # initialize ising.add_interaction(y[0], coefficient=-1.0, name=n1) ising.add_interaction((y[0], y[1]), coefficient=-2.0, name=n2) ising._update_interactions_dataframe_from_arrays() # Update the interactions DataFrame for debug assert len(ising._interactions) == 2 assert ising._interactions[ising._interactions["name"] == n1]["coefficient"].values[0] == -1.0 assert ising._interactions[ising._interactions["name"] == n2]["coefficient"].values[0] == -2.0 ising.update_interaction(name=n1, coefficient=-10.0) ising._update_interactions_dataframe_from_arrays() # Update the interactions DataFrame for debug assert len(ising._interactions) == 2 assert ising._interactions[ising._interactions["name"] == n1]["coefficient"].values[0] == -10.0 ising.update_interaction(name=n2, coefficient=-20.0) ising._update_interactions_dataframe_from_arrays() # Update the interactions DataFrame for debug assert len(ising._interactions) == 2 assert ising._interactions[ising._interactions["name"] == n2]["coefficient"].values[0] == -20.0 with pytest.raises(KeyError): ising.update_interaction(name=n3, coefficient=-30.0) def test_logical_model_update_without_initialize(ising): # The following operation will be successful with a UserWarning. x = ising.variables("x", shape=(3,)) with pytest.warns(UserWarning): ising.update_interaction(x[0], coefficient=11.0) selected = ising.select_interaction("name == 'x[0]'") # Side effect: Internal interactions DataFrame is updated assert len(ising._interactions) == 1 assert ising._interactions[ising._interactions["name"] == "x[0]"]["coefficient"].values[0] == 11.0 assert ising._interactions[ising._interactions["name"] == "x[0]"]["scale"].values[0] == 1.0 assert selected["name"].values[0] == "x[0]" assert selected["key"].values[0] == ("x[0]") assert selected["interacts"].values[0] == (x[0]) with pytest.warns(UserWarning): ising.update_interaction((x[0], x[1]), coefficient=22.0, scale=33.0) selected = ising.select_interaction("name == 'x[0]*x[1]'") # Side effect: Internal interactions DataFrame is updated assert len(ising._interactions) == 2 assert ising._interactions[ising._interactions["name"] == "x[0]*x[1]"]["coefficient"].values[0] == 22.0 assert ising._interactions[ising._interactions["name"] == "x[0]*x[1]"]["scale"].values[0] == 33.0 assert selected["name"].values[0] == "x[0]*x[1]" assert selected["key"].values[0] == ("x[0]", "x[1]") assert selected["interacts"].values[0] == (x[0], x[1]) def test_logical_model_update_invalid(ising): x = ising.variables("x", shape=(3,)) ising.add_interaction(x[0], coefficient=1.0) with pytest.raises(ValueError): ising.update_interaction() with pytest.raises(ValueError): ising.update_interaction(x[0], name="x[0]") with pytest.raises(KeyError): ising.update_interaction(name="x[1]", coefficient=1.0) with pytest.raises(TypeError): ising.update_interaction("invalid type", coefficient=1.0) with pytest.raises(TypeError): ising.update_interaction((x[0], x[1], x[2]), coefficient=1.0) with pytest.raises(TypeError): ising.update_interaction(("a", "b"), coefficient=1.0) with pytest.raises(ValueError): ising.update_interaction((x[0], x[0]), coefficient=1.0) # Invalid types with pytest.raises(TypeError): ising.update_interaction(x[0], coefficient="invalid type") with pytest.raises(TypeError): ising.update_interaction(x[0], scale="invalid type") with pytest.raises(TypeError): ising.update_interaction(x[0], attributes="invalid type") with pytest.raises(TypeError): ising.update_interaction(x[0], timestamp="invalid type") # Already removed with pytest.raises(ValueError): ising.add_interaction(x[1], coefficient=2.0) ising.remove_interaction(x[1]) ising.update_interaction(x[1], coefficient=2.0) ################################ # Remove ################################ def test_logical_model_remove_by_target(ising): x = ising.variables("x", shape=(2,)) # initialize ising.add_interaction(x[0], coefficient=1.0) ising.add_interaction(x[1], coefficient=10.0) assert ising._interactions_length == 2 # remove ising.remove_interaction(x[0]) selected = ising.select_interaction("key == 'x[0]'") # Side effect: Internal interactions DataFrame is updated assert len(ising._interactions) == 2 assert selected["name"].values[0] == "x[0]" assert selected["key"].values[0] == "x[0]" assert selected["coefficient"].values[0] == 1.0 assert selected["dirty"].values[0] assert selected["removed"].values[0] ising.remove_interaction(name="x[1]") selected = ising.select_interaction("key == 'x[1]'") # Side effect: Internal interactions DataFrame is updated assert len(ising._interactions) == 2 assert selected["name"].values[0] == "x[1]" assert selected["key"].values[0] == "x[1]" assert selected["coefficient"].values[0] == 10.0 assert selected["dirty"].values[0] assert selected["removed"].values[0] def test_logical_model_remove_by_name(ising): x = ising.variables("x", shape=(2,)) # initialize ising.add_interaction(x[0], "<NAME>", coefficient=1.0) assert ising._interactions_length == 1 # remove ising.remove_interaction(name="<NAME>") assert ising._interactions_length == 1 assert ising.select_interaction("name == '<NAME>'")["removed"].values[0] def test_logical_model_remove_invalid(ising): x = ising.variables("x", shape=(3,)) ising.add_interaction(x[0], coefficient=1.0) with pytest.raises(ValueError): ising.remove_interaction() with pytest.raises(ValueError): ising.remove_interaction(x[0], name="x[0]") with pytest.raises(KeyError): ising.remove_interaction(x[1]) with pytest.raises(TypeError): ising.remove_interaction("invalid type") with pytest.raises(TypeError): ising.update_interaction((x[0], x[1], x[2])) with pytest.raises(TypeError): ising.update_interaction(("a", "b")) with pytest.raises(ValueError): ising.update_interaction((x[0], x[0])) ################################ # Delete ################################ def test_logical_model_delete(ising): x = ising.variables("x", shape=(2, 3, 4)) y = ising.variables("y", shape=(5, 6)) # noqa: F841 ising.add_interaction(x[0, 0, 0], coefficient=1.0) assert ising._interactions_length == 1 ising.add_interaction((x[0, 0, 0], x[0, 0, 1]), coefficient=2.0) assert ising._interactions_length == 2 assert ising.get_size() == 2 * 3 * 4 + 5 * 6 assert ising.get_deleted_size() == 0 assert ising.get_all_size() == 2 * 3 * 4 + 5 * 6 # Set dirty flags for interactions releted to the deleting variable ising.delete_variable(x[0, 0, 0]) assert ising._interactions_length == 2 assert ising.get_size() == 2 * 3 * 4 + 5 * 6 - 1 assert ising.get_deleted_size() == 1 assert ising.get_all_size() == 2 * 3 * 4 + 5 * 6 # Convert physical to resolve dirty ising.to_physical() assert len(ising._interactions_array["name"]) == 0 assert ising._interactions_length == 0 assert ising.get_size() == 2 * 3 * 4 + 5 * 6 - 1 assert ising.get_deleted_size() == 1 assert ising.get_all_size() == 2 * 3 * 4 + 5 * 6 def test_logical_model_delete_dealing_with_nhot_constraints_qubo(): model = LogicalModel(mtype="qubo") x = model.variables("x", shape=(4,)) default_label = "Default N-hot Constraint" model.add_constraint(NHotConstraint(x, n=1, strength=1.0)) assert len(model.get_constraints()) == 1 assert default_label in model.get_constraints() assert model.get_constraints_by_label(default_label)._n == 1 assert len(model.get_constraints_by_label(default_label)._variables) == 4 model.delete_variable(x[0]) assert len(model.get_constraints()) == 1 assert default_label in model.get_constraints() assert model.get_constraints_by_label(default_label)._n == 1 assert len(model.get_constraints_by_label(default_label)._variables) == 3 physical = model.to_physical() assert physical._raw_interactions[constants.INTERACTION_LINEAR]["x[1]"] == 1.0 assert physical._raw_interactions[constants.INTERACTION_QUADRATIC][("x[1]", "x[2]")] == -2.0 def test_logical_model_delete_invalid_argument(ising): with pytest.raises(TypeError): ising.delete_variable() with pytest.raises(TypeError): ising.delete_variable("invalid type") with pytest.raises(ValueError): ising.delete_variable(target=None) ################################ # Fix ################################ def test_logical_model_fix_ising(ising): x = ising.variables("x", shape=(6,)) ising.add_interaction(x[0], coefficient=10.0, scale=1.1) ising.add_interaction(x[1], coefficient=20.0) ising.add_interaction(x[2], coefficient=30.0) ising.add_interaction((x[1], x[2]), coefficient=40.0) ising.add_interaction((x[1], x[2]), name="my interaction", coefficient=45.0) ising.add_interaction(x[3], coefficient=50.0) ising.add_interaction(x[4], coefficient=60.0) ising.add_interaction((x[3], x[4]), coefficient=70.0) with pytest.raises(ValueError): ising.fix_variable(target=x[0], value=0) # Remove a variable that has no 2-body interactions. ising.fix_variable(x[0], 1) assert ising.get_fixed_size() == 1 assert "x[0]" in ising.get_fixed_array() assert ising.get_offset() == -11.0 selected = ising.select_interaction("name == 'x[0]'") assert selected["dirty"].values[0] assert selected["removed"].values[0] # Remove variables that has 2-body interactions. ising.fix_variable(x[1], -1) assert ising.get_fixed_size() == 2 assert "x[1]" in ising.get_fixed_array() assert ising.get_offset() == -11.0 + 20.0 selected = ising.select_interaction("name == 'x[1]'") assert selected["dirty"].values[0] assert selected["removed"].values[0] selected = ising.select_interaction("name == 'x[1]*x[2]'") assert selected["dirty"].values[0] assert selected["removed"].values[0] selected = ising.select_interaction("name == 'my interaction'") assert selected["dirty"].values[0] assert selected["removed"].values[0] selected = ising.select_interaction("name == 'x[2] (before fixed: x[1]*x[2])'") assert selected["body"].values[0] == 1 assert selected["key"].values[0] == "x[2]" assert selected["coefficient"].values[0] == -40.0 assert selected["scale"].values[0] == 1.0 assert selected["dirty"].values[0] assert not selected["removed"].values[0] selected = ising.select_interaction("name == 'x[2] (before fixed: my interaction)'") assert selected["body"].values[0] == 1 assert selected["key"].values[0] == "x[2]" assert selected["coefficient"].values[0] == -45.0 assert selected["scale"].values[0] == 1.0 assert selected["dirty"].values[0] assert not selected["removed"].values[0] ising.fix_variable(x[3], 1) assert ising.get_fixed_size() == 3 assert "x[3]" in ising.get_fixed_array() assert ising.get_offset() == -11.0 + 20.0 - 50.0 selected = ising.select_interaction("name == 'x[3]'") assert selected["dirty"].values[0] assert selected["removed"].values[0] selected = ising.select_interaction("name == 'x[3]*x[4]'") assert selected["dirty"].values[0] assert selected["removed"].values[0] selected = ising.select_interaction("name == 'x[4] (before fixed: x[3]*x[4])'") assert selected["body"].values[0] == 1 assert selected["key"].values[0] == "x[4]" assert selected["coefficient"].values[0] == 70.0 assert selected["scale"].values[0] == 1.0 assert selected["dirty"].values[0] assert not selected["removed"].values[0] # Nothing happens with pytest.warns(UserWarning): ising.fix_variable(x[5], 1) def test_logical_model_fix_qubo(qubo): a = qubo.variables("a", shape=(6,)) qubo.add_interaction(a[0], coefficient=10.0, scale=1.1) qubo.add_interaction(a[1], coefficient=20.0) qubo.add_interaction(a[2], coefficient=30.0) qubo.add_interaction((a[1], a[2]), coefficient=40.0) qubo.add_interaction((a[1], a[2]), name="my interaction", coefficient=45.0) qubo.add_interaction(a[3], coefficient=50.0) qubo.add_interaction(a[4], coefficient=60.0) qubo.add_interaction((a[3], a[4]), coefficient=70.0) with pytest.raises(ValueError): qubo.fix_variable(target=a[0], value=-1) # Remove a variable that has no 2-body interactions. qubo.fix_variable(a[0], 1) assert qubo.get_fixed_size() == 1 assert "a[0]" in qubo.get_fixed_array() assert qubo.get_offset() == -11.0 selected = qubo.select_interaction("name == 'a[0]'") assert selected["dirty"].values[0] assert selected["removed"].values[0] # Remove variables that has 2-body interactions. qubo.fix_variable(a[2], 1) assert qubo.get_fixed_size() == 2 assert "a[2]" in qubo.get_fixed_array() assert qubo.get_offset() == -11.0 - 30.0 selected = qubo.select_interaction("name == 'a[2]'") assert selected["dirty"].values[0] assert selected["removed"].values[0] selected = qubo.select_interaction("name == 'a[1]*a[2]'") assert selected["dirty"].values[0] assert selected["removed"].values[0] selected = qubo.select_interaction("name == 'my interaction'") assert selected["dirty"].values[0] assert selected["removed"].values[0] selected = qubo.select_interaction("name == 'a[1] (before fixed: a[1]*a[2])'") assert selected["body"].values[0] == 1 assert selected["key"].values[0] == "a[1]" assert selected["coefficient"].values[0] == 40.0 assert selected["scale"].values[0] == 1.0 assert selected["dirty"].values[0] assert not selected["removed"].values[0] selected = qubo.select_interaction("name == 'a[1] (before fixed: my interaction)'") assert selected["body"].values[0] == 1 assert selected["key"].values[0] == "a[1]" assert selected["coefficient"].values[0] == 45.0 assert selected["scale"].values[0] == 1.0 assert selected["dirty"].values[0] assert not selected["removed"].values[0] qubo.fix_variable(a[4], 0) selected = qubo.select_interaction("name == 'a[4]'") assert selected["dirty"].values[0] assert selected["removed"].values[0] selected = qubo.select_interaction("name == 'a[3]*a[4]'") assert selected["dirty"].values[0] assert selected["removed"].values[0] # Nothing happens with pytest.warns(UserWarning): qubo.fix_variable(a[5], 1) def test_logical_model_fix_invalid_argument(ising): with pytest.raises(TypeError): ising.fix_variable() with pytest.raises(TypeError): ising.fix_variable("invalid type") with pytest.raises(ValueError): ising.fix_variable(target=None, value=1)
StarcoderdataPython
394392
<filename>aircraftdata.py<gh_stars>10-100 # Using the api.joshdouch.me calls to get data from ICAO hex import requests def regis(hex): """ Gets registration from hex """ if hex == None: return None regis = requests.get(f"https://api.joshdouch.me/hex-reg.php?hex={hex}") return regis.text def plane(hex): """ Gets plane from hex """ if hex == None: return None plane = requests.get(f"https://api.joshdouch.me/hex-type.php?hex={hex}") return plane.text def oper(hex): """ Gets plane from hex """ if hex == None: return None oper = requests.get(f"https://api.joshdouch.me/hex-airline.php?hex={hex}") return oper.text
StarcoderdataPython
132132
import telebot from telebot import types chave = "<KEY>" bot = telebot.TeleBot(chave) @bot.message_handler(commands=["badalo"]) def responder(mensagem): bot.reply_to(mensagem,"badalado em você") @bot.message_handler(commands=["redes"]) def responder(mensagem): bot.reply_to(mensagem,"Jownao se encontra atualmente nessas redes sociais:\n"+ "Instagram: instagram.com/jownao\n"+ "Twitch: twitch.tv/jownao\n"+ "Github: github.com/Jownao") @bot.message_handler(commands=["amigos"]) def responder(mensagem): bot.reply_to(mensagem,"Amigos:\n"+ "Carlo\nRulio\nVicsk\nAlbert\nzaboyz ltda") @bot.message_handler(func=lambda m: True) def echo_all(message): if message == "oi": bot.reply_to(message, "Iae de boa ?") else: bot.reply_to(message, message.text) chat_id = "798429701" # or add KeyboardButton one row at a time: markup = types.ReplyKeyboardMarkup() itembtna = types.KeyboardButton('Badalo') itembtnv = types.KeyboardButton('de') itembtnc = types.KeyboardButton('Sino') itembtnd = types.KeyboardButton('Macho') itembtne = types.KeyboardButton('Veio') markup.row(itembtna, itembtnv) markup.row(itembtnc, itembtnd, itembtne) bot.send_message(chat_id, "Escolha oque desejar meu caro:", reply_markup=markup) bot.polling()
StarcoderdataPython
1841599
<filename>weeconsume.py # consume notifications from redis import sys import json import subprocess import redis import time def growl(message): # args = ['growlnotify', '-m', message] args = ['notify-send', 'IRC', message] subprocess.check_call(args) def highlight_decision(event): if event['hilight']: return True elif 'notify_private' in event['tags']: return True elif event['buffer_name'] == 'bitlbee.#naaya': return True elif event['buffer_is_front']: return True else: return False def consume_json(e): event = json.loads(e) # print event if highlight_decision(event): growl("%(prefix)s | %(msg)s" % event) def main(): redis_port = int(sys.argv[1]) server = redis.Redis(port=redis_port, db=13) while True: msg = server.lpop('weechat') if msg != None: consume_json(msg) time.sleep(5) if __name__ == "__main__": main()
StarcoderdataPython
9751896
<filename>Competitive Programming/Binary Search Trees/Given n appointments, find all conflicting appointments.py '''https: // www.geeksforgeeks.org/given-n-appointments-find-conflicting-appointments/ Given n appointments, find all conflicting appointments. Examples: Input: appointments[] = {{1, 5} {3, 7}, {2, 6}, {10, 15}, {5, 6}, {4, 100}} Output: Following are conflicting intervals [3, 7] Conflicts with [1, 5] [2, 6] Conflicts with [1, 5] [5, 6] Conflicts with [3, 7] [4, 100] Conflicts with [1, 5] An appointment is conflicting if it conflicts with any of the previous appointments in the array. We strongly recommend to minimize the browser and try this yourself first. A Simple Solution is to one by one process all appointments from the second appointment to last. For every appointment i, check if it conflicts with i-1, i-2, … 0. The time complexity of this method is O(n2). We can use Interval Tree to solve this problem in O(nLogn) time. Following is a detailed algorithm. 1) Create an Interval Tree, initially with the first appointment. 2) Do following for all other appointments starting from the second one. a) Check if the current appointment conflicts with any of the existing appointments in Interval Tree. If conflicts, then print the current appointment. This step can be done O(Logn) time. b) Insert the current appointment in Interval Tree. This step also can be done O(Logn) time. Following is the implementation of the above idea. ''' # Python3 program to print all conflicting # appointments in a given set of appointments # Structure to represent an interval class Interval: def __init__(self): self.low = None self.high = None # Structure to represent a node # in Interval Search Tree class ITNode: def __init__(self): self.max = None self.i = None self.left = None self.right = None def newNode(j): # print(j) temp = ITNode() temp.i = j temp.max = j[1] return temp # A utility function to check if # given two intervals overlap def doOVerlap(i1, i2): if (i1[0] < i2[1] and i2[0] < i1[1]): return True return False # Function to create a new node def insert(node, data): global succ # If the tree is empty, return a new node root = node if (node == None): return newNode(data) # If key is smaller than root's key, go to left # subtree and set successor as current node # print(node) if (data[0] < node.i[0]): # print(node) root.left = insert(node.left, data) # Go to right subtree else: root.right = insert(node.right, data) if root.max < data[1]: root.max = data[1] return root # The main function that searches a given # interval i in a given Interval Tree. def overlapSearch(root, i): # Base Case, tree is empty if (root == None): return None # If given interval overlaps with root if (doOVerlap(root.i, i)): return root.i # If left child of root is present and # max of left child is greater than or # equal to given interval, then i may # overlap with an interval is left subtree if (root.left != None and root.left.max >= i[0]): return overlapSearch(root.left, i) # Else interval can only overlap # with right subtree return overlapSearch(root.right, i) # This function prints all conflicting # appointments in a given array of # appointments. def printConflicting(appt, n): # Create an empty Interval Search Tree, # add first appointment root = None root = insert(root, appt[0]) # Process rest of the intervals for i in range(1, n): # If current appointment conflicts # with any of the existing intervals, # print it res = overlapSearch(root, appt[i]) if (res != None): print("[", appt[i][0], ",", appt[i][1], "] Conflicts with [", res[0], ",", res[1], "]") # Insert this appointment root = insert(root, appt[i]) # Driver code if __name__ == '__main__': # Let us create interval tree # shown in above figure appt = [[1, 5], [3, 7], [2, 6], [10, 15], [5, 6], [4, 100]] n = len(appt) print("Following are conflicting intervals") printConflicting(appt, n)
StarcoderdataPython
1763738
<reponame>hwikene/steam-wishlist from homeassistant import config_entries, core from .const import DOMAIN async def async_setup_entry( hass: core.HomeAssistant, config_entry: config_entries.ConfigEntry, async_add_entities, ): """Defer sensor setup to the sensor manager.""" await hass.data[DOMAIN][config_entry.entry_id].async_register_component( "binary_sensor", async_add_entities )
StarcoderdataPython
4816273
<reponame>banteg/woofy-snapshot import math from collections import Counter from fractions import Fraction from brownie import Contract from brownie.convert import EthAddress from eth_abi.exceptions import InsufficientDataBytes from scripts.snapshot import UNISWAP_V3_FACTORY from camera_shy.common import ( NFT_POSITION_MANAGER, UNISWAP_V3_FACTORY, eth_call, get_code, memory, ) from camera_shy.multicall import fetch_multicall, fetch_multicall_batched @memory.cache() def is_uniswap_v3_pool(address): if not get_code(address): return False try: return EthAddress(eth_call(address, "factory()(address)")) == UNISWAP_V3_FACTORY except (ValueError, InsufficientDataBytes): return False @memory.cache() def fetch_uniswap_v3_positions(block): manager = Contract(NFT_POSITION_MANAGER) total_supply = manager.totalSupply(block_identifier=block) ids = fetch_multicall_batched( [[manager, "tokenByIndex", i] for i in range(total_supply)], block=block ) positions = fetch_multicall_batched( [[manager, "positions", i] for i in ids], block=block ) return {token_id: position.dict() for token_id, position in zip(ids, positions)} def filter_positions_of_pool(pool, positions): token0, token1, fee = fetch_multicall( [[pool, key] for key in ["token0", "token1", "fee"]] ) return { i: pos for i, pos in positions.items() if (pos["token0"], pos["token1"], pos["fee"]) == (token0, token1, fee) } def unwrap_liquidity(pool, token, positions, block=None, min_balance=0): manager = Contract(NFT_POSITION_MANAGER) positions = filter_positions_of_pool(pool, positions) total_liquidity = sum(pos["liquidity"] for pos in positions.values()) total_balance = token.balanceOf(pool, block_identifier=block) owners = fetch_multicall([[manager, "ownerOf", i] for i in positions], block=block) user_balances = Counter() for i, owner in zip(positions, owners): user_balances[owner] += ( Fraction(positions[i]["liquidity"], total_liquidity) * total_balance ) return { user: int(tokens) for user, tokens in user_balances.most_common() if tokens >= min_balance }
StarcoderdataPython
3367573
<reponame>UnixJunkie/selfies<gh_stars>1-10 """This script is specifically for testing the large eMolecules dataset, which upon downloading, should have the file name version.smi.gz. This test will automatically create a checkpoint file, so that the test can be paused and resumed easily. Please note that there are some SMILES in the dataset that are expected to fail; these are SMILES which use the same ring-bond number across a dot symbol. Example: C1.C2.C12, COC(=O)C1CCCN1CP123OCCO1.C(CO2)O3 """ import faulthandler import os import pandas as pd import pytest from rdkit.Chem import MolFromSmiles, MolToSmiles import selfies as sf faulthandler.enable() # Test Configuration ========================================================== # file path curr_dir = os.path.dirname(__file__) EMOL_PATH = os.path.join(curr_dir, 'test_sets', 'version.smi.gz') # SMILES in eMolecules are under this column name COL_NAME = 'isosmiles' # Tests ======================================================================= # TODO: Comment out the pytest skip to use this script. @pytest.mark.skip(reason="eMolecules dataset not on GitHub") def test_roundtrip_translation(): """Tests a roundtrip SMILES -> SELFIES -> SMILES translation of the SMILES examples in QM9, NonFullerene, Zinc, etc. """ # modify constraints constraints = sf.get_semantic_constraints() constraints['N'] = 6 constraints['Br'] = 7 constraints['Cl'] = 7 constraints['I'] = 7 sf.set_semantic_constraints(constraints) # file I/O ckpt_path = os.path.join(curr_dir, 'checkpoints', 'emolecule_ckpt.txt') error_path = os.path.join(curr_dir, 'error_sets', 'errors_emolecules.csv') # check if a previous checkpoint exists to continue tests if os.path.exists(ckpt_path): with open(ckpt_path, 'r') as ckpt_file: checkpoint = int(ckpt_file.readlines()[0]) # if no path to a checkpoint exists, # create a new directory for error logging and checkpoints else: os.makedirs(os.path.dirname(ckpt_path), exist_ok=True) os.makedirs(os.path.dirname(error_path), exist_ok=True) with open(error_path, "w+") as error_log: error_log.write("In, Out\n") checkpoint = -1 error_list = [] error_found_flag = False # make pandas reader reader = pd.read_csv(EMOL_PATH, chunksize=10000, compression='gzip', delimiter=' ', header=0) # roundtrip testing for chunk_idx, chunk in enumerate(reader): if chunk_idx <= checkpoint: continue for in_smiles in chunk[COL_NAME]: # check if SMILES in chunk is a valid RDKit molecule. # if not, skip testing # All inputted SMILES must be valid # RDKit Mol objects to be encoded. if (MolFromSmiles(in_smiles) is None) or ('*' in in_smiles): continue # encode selfies selfies = sf.encoder(in_smiles) # if unable to encode SMILES, write to list of errors if selfies is None: error_list.append((in_smiles, '')) continue # take encoeded SELFIES and decode out_smiles = sf.decoder(selfies) # compare original SMILES to decoded SELFIE string. # if not the same string, write to list of errors. if not is_same_mol(in_smiles, out_smiles): error_list.append((in_smiles, out_smiles)) # open and write all errors to errors_emolecule.csv with open(error_path, "a") as error_log: for error in error_list: error_log.write(','.join(error) + "\n") error_found_flag = error_found_flag or error_list error_list = [] # create checkpoint from the current pandas reader chunk, # to load from and continue testing. with open(ckpt_path, 'w+') as ckpt_file: ckpt_file.write(str(chunk_idx)) sf.set_semantic_constraints() # restore defaults os.remove(ckpt_path) # remove checkpoint assert not error_found_flag # Helper Methods def is_same_mol(smiles1, smiles2): """Helper method that returns True if smiles1 and smiles2 correspond to the same molecule. """ if smiles1 is None or smiles2 is None: return False m1 = MolFromSmiles(smiles1) m2 = MolFromSmiles(smiles2) if m1 is None or m2 is None: return False can1 = MolToSmiles(m1) can2 = MolToSmiles(m2) return can1 == can2
StarcoderdataPython
3537536
#!/usr/bin/python3 # -*- encoding: utf-8 -*- # Tweet retrieval script # # Written by <NAME> # April 2018 # dependencies import datetime import json from newsSourcesENTT import english_sources_twitter import sys from twitterApiHandle import api # English news def news(screen_names = english_sources_twitter, date = datetime.date.today().isoformat()): tweetCount = 0 print(file = sys.stderr) for screen_name in screen_names: for status in api.GetSearch(term = 'from:' + str(screen_name), until = date, count = 100) + api.GetSearch(term = 'from:' + str(screen_name), since = date, count = 100): tweet = json.loads(str(status)) tweet['entities'] = {'urls': tweet['urls']} del tweet['urls'] yield tweet tweetCount += 1 print('\x1b[A\x1b[2K\r' + str(tweetCount), file = sys.stderr) # live stream def filter(track = [], follow = [], limit = 3000, englishOnly = True, keepRT = True): tweetCount = 0 s = None if len(track) == 0 and len(follow) == 0: s = api.GetStreamSample() else: if englishOnly: s = api.GetStreamFilter(track = track, follow = follow, languages = ['en']) else: s = api.GetStreamFilter(track = track, follow = follow) print(file = sys.stderr) for message in s: # if we are done if limit > 0 and tweetCount >= limit: break # only keep tweets if 'text' not in message: continue # only keep tweets in English if englishOnly and message['lang'] != 'en': continue # filter out retweets if (not keepRT) and ('retweeted_status' in message): continue # kept tweet yield message tweetCount += 1 print('\x1b[A\x1b[2K\r' + str(tweetCount), file = sys.stderr) # read from file def fromFile(fName, keepRT = True): with open(fName) as f: tweetCount = 0 print(file = sys.stderr) for line in f: tweet = json.loads(line) if (not keepRT) and tweet['text'][:2] == 'RT': continue yield tweet tweetCount += 1 print('\x1b[A\x1b[2K\r' + str(tweetCount), file = sys.stderr) # get tweet IDs from a file def fromIDsFile(fName, keepRT = True): with open(fName) as f: notFound = [] tweetCount = 0 print(file = sys.stderr) lines = [l for l in f] lines100 = [lines[100*i:100*i+100] for i in range(int(len(lines) / 100 + 1))] for i in range(len(lines100)): lines100[i] = [line.split('\t')[0] for line in lines100[i]] for tIter, tweetIDs in enumerate(lines100): try: tweets = [json.loads(str(s)) for s in api.GetStatuses(tweetIDs)] notFound += [tweetID for tweetID in tweetIDs if tweetID not in [tweet['id_str'] for tweet in tweets]] for tweet in tweets: if (not keepRT) and tweet['text'][:2] == 'RT': continue yield tweet tweetCount += 1 except Exception as e: print(str(e) + '\n', file = sys.stderr) pass print('\x1b[A\x1b[2K\r' + str(tIter + 1) + '/' + str(len(lines100)) + ' ' + str(tweetCount) + ' kept', file = sys.stderr) print('\n'.join([json.dumps({'id_str': nf, 'id': int(nf)}) for nf in notFound]))
StarcoderdataPython
1409
import sklearn.linear_model from autosklearn.pipeline.components.classification.passive_aggressive import \ PassiveAggressive from .test_base import BaseClassificationComponentTest class PassiveAggressiveComponentTest(BaseClassificationComponentTest): __test__ = True res = dict() res["default_iris"] = 0.92 res["iris_n_calls"] = 5 res["default_iris_iterative"] = 0.92 res["iris_iterative_n_iter"] = 32 res["default_iris_proba"] = 0.29271032477461295 res["default_iris_sparse"] = 0.4 res["default_digits"] = 0.9156041287188829 res["digits_n_calls"] = 6 res["default_digits_iterative"] = 0.9156041287188829 res["digits_iterative_n_iter"] = 64 res["default_digits_binary"] = 0.9927140255009107 res["default_digits_multilabel"] = 0.90997912489192 res["default_digits_multilabel_proba"] = 1.0 res['ignore_hps'] = ['max_iter'] sk_mod = sklearn.linear_model.PassiveAggressiveClassifier module = PassiveAggressive step_hyperparameter = { 'name': 'max_iter', 'value': module.get_max_iter(), }
StarcoderdataPython
375582
################################################################################ ## Copyright (c) 2019, <NAME> & <NAME> ## All rights reserved. ## ## Redistribution and use in source and binary forms, with or without ## modification, are permitted provided that the following conditions are met: ## ## 1. Redistributions of source code must retain the above copyright notice ## this list of conditions and the following disclaimer. ## 2. Redistributions in binary form must reproduce the above copyright ## notice, this list of conditions and the following disclaimer in the ## documentation and/or other materials provided with the distribution. ## 3. Neither the name of the copyright holder nor the names of its ## contributors may be used to endorse or promote products derived from ## this software without specific prior written permission. ## ## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ## ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE ## LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR ## CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF ## SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS ## INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN ## CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ## ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ## POSSIBILITY OF SUCH DAMAGE. ################################################################################ from proto import environment_projections_pb2 import numpy as np class EnvironmentInterpreter(): def __init__(self, projections_filename): f = open(projections_filename, 'rb') self.environment_projections = \ environment_projections_pb2.EnvironmentProjections() self.environment_projections.ParseFromString(f.read()) self.num_projections = len(self.environment_projections.projections) # searches through a batch of workspaces to find one containing the # corresponding (x, y) def get_current_workspace(self, x, y, batch): workspaces = [] for workspace in batch: if not self.is_outer_workspace_area_cell(x, y, workspace): workspaces.append(workspace) if len(workspaces) > 0: return workspaces return [-1] # Builds a numpy array of all the cells in a workspace for rendering def get_workspace_map(self, workspace): projection = self.environment_projections.projections[workspace]; data = list() for cell in projection.data: data.append(cell) data = np.reshape(np.asarray(data), (self.environment_projections.rows, -1)) return data # Maps an (x, y, workspace) tuple to the surface(s) it belongs to # if the (x, y, workspace) is a gate then there are two surfaces def get_workspace_indices(self, x, y, workspace): projection = self.environment_projections.projections[workspace] cols = self.environment_projections.cols rows = self.environment_projections.rows workspace_2d_idx = y*cols + x surface_z = projection.workspace_2d_to_surface_3d[workspace_2d_idx] surface_3d_idx = (surface_z * rows * cols) + (y * cols) + x; return self.environment_projections.surface_3d_to_indices[surface_3d_idx] # returns the type of cell at (x, y, workspace) def get_projected_cell(self, x, y, workspace): projection = self.environment_projections.projections[workspace] idx = int(y)*self.environment_projections.cols + int(x) return projection.data[idx] def get_projection_size(self): return self.environment_projections.rows, self.environment_projections.cols def is_outer_workspace_area_cell(self, x, y, workspace): cell = self.get_projected_cell(x, y, workspace) return cell == environment_projections_pb2.EnvironmentProjection.OUTER_WORKSPACE_AREA_CELL def is_gate_cell(self, x, y, workspace): cell = self.get_projected_cell(x, y, workspace) return cell == environment_projections_pb2.EnvironmentProjection.GATE_CELL def is_free_cell(self, x, y, workspace): cell = self.get_projected_cell(x, y, workspace) return cell == environment_projections_pb2.EnvironmentProjection.FREE_CELL
StarcoderdataPython
1934949
<filename>snapshottest/parse_env.py<gh_stars>0 import os def _env_bool(val): return val.lower() in ["1", "yes", "true", "t", "y"] def env_snapshot_update(): return _env_bool(os.environ.get("SNAPSHOT_UPDATE", "false"))
StarcoderdataPython
140513
# Generated by Django 3.2.3 on 2021-05-17 02:18 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Floor', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255, unique=True)), ], ), migrations.CreateModel( name='Hotel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255, unique=True)), ], ), migrations.CreateModel( name='SubCorridor', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255, unique=True)), ('floor', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='hotel.floor')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='MainCorridor', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255, unique=True)), ('floor', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='hotel.floor')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Light', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255, unique=True)), ('consumption_unit', models.IntegerField(default=5)), ('turned_on', models.BooleanField(default=True)), ('main_corridor', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='hotel.maincorridor')), ('sub_corridor', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='hotel.subcorridor')), ], options={ 'abstract': False, }, ), migrations.AddField( model_name='floor', name='hotel', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='hotel.hotel'), ), migrations.CreateModel( name='AirConditioner', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255, unique=True)), ('consumption_unit', models.IntegerField(default=5)), ('turned_on', models.BooleanField(default=True)), ('main_corridor', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='hotel.maincorridor')), ('sub_corridor', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='hotel.subcorridor')), ], options={ 'abstract': False, }, ), ]
StarcoderdataPython
1984606
from backend.common_tile import CommonTile import math class Farm(CommonTile): def __init__(self): super().__init__() self.food = 1 self.production = 0 self.gold = 0 self.housing = .5 self.acceptable_terrain = [ 'grassland', 'plains', ] self.acceptable_features = [ 'floodplains', 'volcanic_soil' ] self.resources = [ 'wheat', 'rice', 'maize', ] self.hills = True def calculate_adjacency(self, tile_obj, target_index, adj_list): # pragma: no cover target_object = getattr(tile_obj, target_index) adj_count = 0 for adj_obj in adj_list: if adj_obj is None: continue if isinstance(adj_obj.improvement, Farm): adj_count += 1 if tile_obj.erah >= 2: target_object.food = target_object.food + math.floor(adj_count / 2) if tile_obj.erah >= 5: target_object.food = target_object.food + adj_count
StarcoderdataPython
5195261
""" Objective In this challenge, we will use loops to do some math. Check out the Tutorial tab to learn more. Task Given an integer, , print its first multiples. Each multiple (where ) should be printed on a new line in the form: n x i = result. Example The printout should look like this: 3 x 1 = 3 3 x 2 = 6 3 x 3 = 9 3 x 4 = 12 3 x 5 = 15 3 x 6 = 18 3 x 7 = 21 3 x 8 = 24 3 x 9 = 27 3 x 10 = 30 Input Format A single integer, . Constraints Output Format Print lines of output; each line (where ) contains the of in the form: n x i = result. Sample Input 2 Sample Output 2 x 1 = 2 2 x 2 = 4 2 x 3 = 6 2 x 4 = 8 2 x 5 = 10 2 x 6 = 12 2 x 7 = 14 2 x 8 = 16 2 x 9 = 18 2 x 10 = 20 """ #!/bin/python3 import math import os import random import re import sys n = int(input()) i=1 if(n>=1 and n<=20): while(i<11): mul=n*i print(n, "x", i, "=", mul) i=i+1
StarcoderdataPython
1607835
<gh_stars>0 from dataclasses import dataclass from bindings.csw.derived_crstype_type import DerivedCrstypeType __NAMESPACE__ = "http://www.opengis.net/gml" @dataclass class DerivedCrstype(DerivedCrstypeType): class Meta: name = "derivedCRSType" namespace = "http://www.opengis.net/gml"
StarcoderdataPython