id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
3377378
<gh_stars>1-10 # AUTOGENERATED! DO NOT EDIT! File to edit: 01_image_classification.ipynb (unless otherwise specified). __all__ = ['data'] # Cell from fastai.vision.all import * # Cell data = DataBlock(blocks = (ImageBlock, CategoryBlock), get_items = get_image_files, get_y = parent_label, splitter = GrandparentSplitter(valid_name='val'), item_tfms = RandomResizedCrop(128, min_scale=0.35), batch_tfms = Normalize.from_stats(*imagenet_stats) )
StarcoderdataPython
1625880
<reponame>Heyjoy/P3<filename>datafield.py<gh_stars>0 import math # models hyperParmeter TrainTestSplitSize = 0.2 N_EPOCH = 20 Verbose = 1 BatchSize = 64 zeroSteeringCount = 3 #GaussianNoiseStddev = 1 # Imgae Process tuning paramter IMGPath = '../data/IMG/' CSVPath = '../data/driving_log.csv' ImgShape = [160, 320, 3] ResizedShape = [64, 64, 3] cropBottom = math.floor(ImgShape[0]/6) # cropTop = cropBottom * 2 AngleOffset = 0.25 # offset for left and right camera ## Image flip random FilpProb = 0.5 ## Brightness random RandomBrightOffset = 0.25 ## translate Image method parameter x_trRange = int(ImgShape[1]/10) # 320 = 6.4*50 y_trRange = int(ImgShape[0]/10) # 160 = 6.4 *25 trShiftAngle = 0.4
StarcoderdataPython
45432
<reponame>pep7/GorillaBot # Copyright (c) 2013-2016 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software # and associated documentation files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or # substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING # BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import logging import message from plugins.util import admin, command, humanize_list from queue import Empty @command("admincommandlist") def admincommands(m): """Provide a list of admin-only commands.""" #- !admincommands #- #- ```irc #- < GorillaWarfare> !admincommands #- < GorillaBot> My available admin commands are join, part, quit, setcommand, #- and unset. See http://molly.github.io/GorillaBot for documentation. #- ``` #- #- Say the available admin-only commands. This does not display command aliases. commands = [key for key in m.bot.admin_commands.keys() if not m.bot.admin_commands[key][1]] commands.sort() if len(commands) == 0: m.bot.private_message(m.location, "I have no available admin commands. See " "http://molly.github.io/GorillaBot for documentation.") elif len(commands) == 1: m.bot.private_message(m.location, "My available admin command is {0}. See " "http://molly.github.io/GorillaBot for " "documentation.".format(commands[0])) else: m.bot.private_message(m.location, "My available admin commands are {0}. See " "http://molly.github.io/GorillaBot for " "documentation.".format( humanize_list(commands))) @command("admins", "botops", "oplist") def adminlist(m): """Provide a list of current bot admins.""" #- !adminlist #- #- ```irc #- < GorillaWarfare> !adminlist #- < GorillaBot> My bot admin is GorillaWarfare. #- ``` #- #- Say the current bot operators. ops = list(m.bot.configuration["botops"].keys()) if ops: if len(ops) == 1: m.bot.private_message(m.location, "My bot admin is " + ops[0] + ".") else: m.bot.private_message(m.location, "My bot admins are " + humanize_list(ops)) else: nick = m.bot.configuration["nick"] m.bot.private_message(m.location, "{0} has no master. {0} is a free bot.".format(nick)) @command("pingall", "highlightall") def attention(m): """Ping everyone currently joined to the channel. Be careful to only turn this on if you trust those in the channel not to abuse it.""" #- !attention #- #- ```irc #- < GorillaWarfare> !attention #- < GorillaBot> user1, user2, user3: GorillaWarfare wants your attention #- ``` #- #- Ping all of the users in the channel. #- #- #### Settings #- `on` - Anyone can use this command. Be sure you trust everyone in the channel not to abuse #- it. #- `admin` - Only bot admins can use this command. logger = logging.getLogger("GorillaBot") attention_setting = m.bot.get_setting('attention', m.location) if attention_setting == 'admin': if not m.bot.is_admin(m.sender): m.bot.private_message(m.location, "Please ask a bot operator to perform this action for" " you.") return elif attention_setting != 'on': m.bot.private_message(m.location, "Command not enabled.") return # Okay, we're authorized to do this. m.bot.response_lock.acquire() ignored_messages = [] m.bot.send("NAMES {}".format(m.location)) while True: try: msg = m.bot.message_q.get(True, 120) except Empty: logger.error("No response from server when trying to get nicks. Shutting down.") m.bot.shutdown.set() return if isinstance(msg, message.Numeric): if msg.number == '353': nicks = msg.body.split() nicks = nicks[2:] nicks[0] = nicks[0][1:] sender = m.bot.parse_hostmask(m.sender)["nick"] try: nicks.remove(sender) nicks.remove(m.bot.configuration["nick"]) except ValueError: pass m.bot.private_message(m.location, "{0}: {1} wants your attention" .format(", ".join(nicks), sender)) break ignored_messages.append(msg) for msg in ignored_messages: m.bot.message_q.put(msg) m.bot.response_lock.release() @command("commandlist", "help") def commands(m): """Provide a list of commands available to all users.""" #- !commands #- #- ```irc #- < GorillaWarfare> !commands #- < GorillaBot> My available commands are admincommands, adminlist, commands, hug, #- link, spotify, and xkcd. See http://molly.github.io/GorillaBot #- for documentation. #- ``` #- #- Say the available all-user commands. This does not display command aliases. commands = [key for key in m.bot.commands.keys() if not m.bot.commands[key][1]] commands.sort() if len(commands) == 0: m.bot.private_message(m.location, "I have no available commands. See " "http://molly.github.io/GorillaBot for documentation.") elif len(commands) == 1: m.bot.private_message(m.location, "My available command is {0}. See " "http://molly.github.io/GorillaBot for " "documentation.".format(commands[0])) else: m.bot.private_message(m.location, "My available commands are {0}. See " "http://molly.github.io/GorillaBot for " "documentation.".format( humanize_list(commands)))
StarcoderdataPython
1649956
<reponame>jdmartinez36/azure-batch-cli-extensions # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from enum import Enum # These properties are reserved for application template use # and may not be used on jobs using an application template PROPS_RESERVED_FOR_TEMPLATES = { 'jobManagerTask', 'jobPreparationTask', 'jobReleaseTask', #'commonEnvironmentSettings', 'usesTaskDependencies', 'onAllTasksComplete', 'onTaskFailure', 'taskFactory'} PROPS_PERMITTED_ON_TEMPLATES = PROPS_RESERVED_FOR_TEMPLATES.union({ 'templateMetadata', 'parameters', 'metadata'}) ATTRS_RESERVED_FOR_TEMPLATES = { 'job_manager_task', 'job_preparation_task', 'job_release_task', #'common_environment_settings', 'uses_task_dependencies', 'on_all_tasks_complete', 'on_task_failure', 'task_factory'} # These properties are reserved for job use # and may not be used on an application template PROPS_RESERVED_FOR_JOBS = { 'id', 'displayName', 'priority', 'constraints', 'poolInfo', 'applicationTemplateInfo'} # Properties on a repeatTask object that should be # applied to each expanded task. PROPS_ON_REPEAT_TASK = { 'displayName', 'containerSettings', 'resourceFiles', 'environmentSettings', 'constraints', 'userIdentity', 'exitConditions', 'clientExtensions', 'outputFiles', 'packageReferences'} PROPS_ON_COLLECTION_TASK = PROPS_ON_REPEAT_TASK.union({ 'multiInstanceSettings', 'dependsOn'}) # Dates used as cutoffs for different SDK extension versions class KnownTemplateVersion(Enum): Dec2018 = "2018-12-01"
StarcoderdataPython
128922
<reponame>Tiago-S-Ribeiro/Python-Pro-Bootcamp<filename>100_days_of_code/Intermediate+/day_37/main.py import requests import datetime as dt from data import USER, TOKEN, G_ID, PXL_ENDPOINT, NEW_PIXEL_ENDPOINT, GRAPH_ENDPOINT headers = { "X-USER-TOKEN": TOKEN } today = dt.datetime.now() #------------------- Create a new user using POST ------------------- new_graph_params = { "token": TOKEN, "username": USER, "agreeTermsOfService": "yes", "notMinor": "yes" } response = requests.post(url=PXL_ENDPOINT, json=new_graph_params) print(response.text) #---------------- Create a new Pixela graph using POST ---------------- graph_config = { "id": G_ID, "name": "Reading Graph", "unit": "pages", "type": "int", "color": "momiji" } response = requests.post(url=GRAPH_ENDPOINT, json=graph_config, headers=headers) print(response.text) #-------------------- Create a new pixel using POST -------------------- pixel_params = { "date": today.strftime("%Y%m%d"), "quantity": input("How many pages did you read today? ") } response = requests.post(url=NEW_PIXEL_ENDPOINT, json=pixel_params, headers=headers) print(response.text) #----------------------- Update a pixel using PUT ----------------------- put = { "quantity": "14" } date = dt.datetime(year=2022, month=1, day=10) update_endpoint = f"{NEW_PIXEL_ENDPOINT}/{date.strftime('%Y%m%d')}" response = requests.put(url=update_endpoint, json=put, headers=headers) print(response.text) #---------------------------- Delete a pixel ---------------------------- response = requests.delete(url=update_endpoint, headers=headers) print(response.text)
StarcoderdataPython
3251212
from .directory import DirectoryClient from .organization import OrganizationClient from .service import ServiceClient
StarcoderdataPython
1768653
import discord import secrets import itertools import random import re import os from keepAlive import keep_alive import requests import json client = discord.Client() prefix = '&' diceTypes = [4,6,8,10,12,20,100] dnd5e_races = ["DragonBorn", "Dwarf", "Elf", "Gnome", "Half-Elf", "Halfing", "Half-Orc", "Human", "Tiefling", "Orc of Exandria", "Leonin", "Satyr", "Aarakocra", "Genasi", "Goliath", "Aasimar", "Bugbear", "Firbolg", "Goblin", "Hobgoblin", "Kenku", "Kobold", "Lizardfolk", "Orc", "Tabaxi", "Triton", "Yuan-ti Pureblood", "Feral Tiefling", "Tortle", "Changeling", "Kalashtar", "Orc of Eberron", "Shifter", "Warforged", "Gith", "Centaur", "Loxodon", "Minotaur", "Simic Hybrid", "Vedalken", "Verdan", "Locatah", "Grung"] dnd5e_races_phb = ["DragonBorn", "Dwarf", "Elf", "Gnome", "Half-Elf", "Halfing", "Half-Orc", "Human", "Tiefling"] dnd5e_classes = ["Barbarian", "Bard", "Cleric", "Druid", "Fighter", "Monk", "Paladin", "Ranger", "Rogue", "Sorcerer", "Walorck", "Wizard", "Artificer", "Blood Hunter"] dnd5e_classes_phb = ["Barbarian", "Bard", "Cleric", "Druid", "Fighter", "Monk", "Paladin", "Ranger", "Rogue", "Sorcerer", "Walorck", "Wizard"] def searchCondition(query): response = requests.get('https://www.dnd5eapi.co/api/conditions/'+query) json_data = json.loads(response.text) name = json_data['name'] desc = '' for i in json_data['desc']: desc = desc + i+"\n" return (name,desc) def conditionList(): response = requests.get('https://www.dnd5eapi.co/api/conditions') json_data = json.loads(response.text) cond = '' for i in json_data['results']: cond = cond + i['index']+", " return cond[:-2] def searchAbility(query): response = requests.get('https://www.dnd5eapi.co/api/ability-scores/'+query) json_data = json.loads(response.text) name = json_data['name'] desc = '' for i in json_data['desc']: desc = desc + i+"\n" skills = '' for i in json_data['skills']: skills = skills + i['name'] + ", " return (name,desc,skills[:-2]) def abilityList(): response = requests.get('https://www.dnd5eapi.co/api/ability-scores') json_data = json.loads(response.text) cond = '' for i in json_data['results']: cond = cond + i['index']+", " return cond[:-2] def skillList(): response = requests.get('https://www.dnd5eapi.co/api/skills') json_data = json.loads(response.text) cond = '' for i in json_data['results']: cond = cond + i['index']+", " return cond[:-2] def searchSkill(query): response = requests.get('https://www.dnd5eapi.co/api/skills/'+query) json_data = json.loads(response.text) name = json_data['name'] desc = '' for i in json_data['desc']: desc = desc + i+"\n" abi = json_data['ability_score']['index'] return (name,desc,abi) def damageList(): response = requests.get('https://www.dnd5eapi.co/api/damage-types') json_data = json.loads(response.text) damage = '' for i in json_data['results']: damage = damage + i['index']+", " return damage[:-2] def searchDamage(query): response = requests.get('https://www.dnd5eapi.co/api/damage-types/'+query) json_data = json.loads(response.text) name = json_data['name'] desc = '' for i in json_data['desc']: desc = desc + i+"\n" return (name,desc) def helpList(): string = '**Praise Asmodeus**'+'\n'+'Bot prefix: '+ prefix + '\n' + 'Rolling Dice: &[#dice]d[Type], ex: &8d6' + '\n' + 'Random Race(w/Expansions): &randrace' + '\n' + 'Random Race(PHB): &randracephb'+ '\n' + 'Random Class(w/Expansions): &randclass' + '\n' + 'Random Class(PHB): &randclassphb' + '\n' + 'Random Ability Scores: &randas'+ '\n' + 'Roll d20 with advantage: &adv' + '\n' + 'Roll d20 with disadvantage: &ddv' + '\n' + 'Roll 1d20: &r' + '\n' + 'Generate Random Character(w/Expansions): &randchar' + '\n' + 'Generate Random Character(PHB): &randcharphb' + '\n' + 'Ability Scores List: &abi' + '\n' + 'Ability Scores Descriptions: &[ability], ex:&dex' + '\n' + 'Conditions List: &cond' + '\n' + 'Conditions Description: &[condition], ex: &exhaustion' + '\n' + 'Skills List: &skills' + '\n' + 'Skills Description: &[skill], ex:&animal-handling' + '\n' + 'Damage Types: &damage' + '\n' + 'Damage Types Description: &[type], ex: &thunder' return string def diceRoll(message): split = re.split('&|d',message) number = int(split[1]) dice = int(split[2]) string = '' result = 0 if dice in diceTypes: if number == 1: rand = random.randrange(1, dice+1) result = rand string = string + str(rand) else: for i in itertools.repeat(None, number): rand = random.randrange(1, dice+1) result = result + rand string = string + str(rand) + ', ' else: string = 'Invalid' result = dice return (string[:-2],result) def randAS(): string = '' ability = 0 total = 0 for i in itertools.repeat(None, 6): one = random.randrange(1, 7) two = random.randrange(1, 7) three = random.randrange(1, 7) four = random.randrange(1, 7) list = [one, two, three, four] list2 = '(' lowest = min(list) ability = sum(list) - lowest total = total + ability counter = 0 for i in list: counter = counter + 1 if i != lowest and counter == 4: list2 = list2 + ' '+ str(i) + ' )' if i != lowest and counter != 4: list2 = list2 + ' '+str(i) + ' ,' if i == lowest and counter == 4: list2 = list2 + ' '+'~~'+str(i)+'~~' + ' )' lowest = 0 if i == lowest and counter != 4: list2 = list2 + ' '+'~~'+str(i)+'~~' + ' ,' lowest = 0 string = string + list2 + ' = '+'**'+str(ability)+'**'+ "\n" return string + 'Total: ' + '**'+str(total)+'**' @client.event async def on_ready(): print('We have logged in as {0.user}'.format(client)) @client.event async def on_message(message): if message.author == client.user: return if re.fullmatch(prefix+r'\d*d\d*',message.content): (string,result) = diceRoll(message.content) if string == 'Invalid': await message.channel.send(message.author.mention +"\n"+'Invalid dice format: d'+str(result)) else: await message.channel.send( message.author.mention +"\n"+ '**Rolls:** '+ string +"\n"+ '**Total:** '+ str(result) ) if re.fullmatch(prefix+r'randrace',message.content): racechoice = secrets.choice(dnd5e_races) await message.channel.send(message.author.mention +"\n"+racechoice) if re.fullmatch(prefix+r'randracephb',message.content): classchoice = secrets.choice(dnd5e_races_phb) await message.channel.send(message.author.mention +"\n"+classchoice) if re.fullmatch(prefix+r'randclass',message.content): racechoice = secrets.choice(dnd5e_classes) await message.channel.send(message.author.mention +"\n"+racechoice) if re.fullmatch(prefix+r'randclassphb',message.content): classchoice = secrets.choice(dnd5e_classes_phb) await message.channel.send(message.author.mention +"\n"+classchoice) if re.fullmatch(prefix+r'randas',message.content): await message.channel.send(message.author.mention +"\n"+randAS()) if re.fullmatch(prefix+r'adv',message.content): rand = random.randrange(1, 21) rand2 = random.randrange(1, 21) if rand > rand2: rand = '**'+str(rand)+'**' rand2 = str(rand2) else: rand = str(rand) rand2 = '**'+str(rand2)+'**' await message.channel.send(message.author.mention +"\n"+'**Advantage Rolls:** '+ rand+ ', ' + rand2 ) if re.fullmatch(prefix+r'ddv',message.content): rand = random.randrange(1, 21) rand2 = random.randrange(1, 21) if rand < rand2: rand = '**'+str(rand)+'**' rand2 = str(rand2) else: rand = str(rand) rand2 = '**'+str(rand2)+'**' await message.channel.send(message.author.mention +"\n"+'**Disadvantage Rolls:** '+ rand+ ', ' + rand2 ) if re.fullmatch(prefix+r'r',message.content): rand = random.randrange(1, 21) await message.channel.send(message.author.mention +"\n"+'**Roll:** ' + str(rand)) if re.fullmatch(prefix+r'randchar',message.content): racechoice = secrets.choice(dnd5e_races) classchoice = secrets.choice(dnd5e_classes) await message.channel.send(message.author.mention +"\n" +'**Race:** '+"\n"+racechoice+"\n"+'**Class:** '+classchoice + "\n" +'**Ability Scores:** ' +"\n" +randAS()) if re.fullmatch(prefix+r'randcharphb',message.content): racechoice = secrets.choice(dnd5e_races_phb) classchoice = secrets.choice(dnd5e_classes_phb) await message.channel.send(message.author.mention +"\n" +'**Race:** '+"\n"+racechoice+"\n"+'**Class:** '+classchoice + "\n" +'**Ability Scores:** ' +"\n" +randAS()) if re.fullmatch(r'&blinded|&charmed|&deafened|&exhaustion|&frightened|&grappled|&incapacitated|&invisible|&paralyzed|&petrified|&poisoned|&restrained|&stunned|&unconscious',message.content): (name,desc)=searchCondition(message.content[1:]) await message.channel.send(message.author.mention +"\n" +'**Name:** '+name+"\n"+'**Desc:** '+desc) if re.fullmatch(r'&str|&con|&dex|&wis|&cha|&int',message.content): (name,desc,skills)=searchAbility(message.content[1:]) await message.channel.send(message.author.mention +"\n" +'**Name:** '+name+"\n"+'**Desc:** '+desc+"\n"+'**Skills:** '+skills) if re.fullmatch(prefix+r'cond',message.content): cond = conditionList() await message.channel.send(message.author.mention +"\n" +'**Conditions:** '+cond) if re.fullmatch(prefix+r'abi',message.content): abi = abilityList() await message.channel.send(message.author.mention +"\n" +'**Ability Scores:** '+abi) if re.fullmatch(prefix+r'skills',message.content): skill = skillList() await message.channel.send(message.author.mention +"\n" +'**Skills:** '+skill) if re.fullmatch(r'&acrobatics|&animal-handling|&arcana|&athletics|&deception|&history|&insight|&intimidation|&investigation|&medicine|&nature|&perception|&performance|&persuasion|&religion|&sleight-of-hand|&stealth|&survival',message.content): (name,desc,abi)=searchSkill(message.content[1:]) await message.channel.send(message.author.mention +"\n" +'**Name:** '+name+"\n"+'**Desc:** '+desc+"\n"+'**Ability Mod:** '+abi) if re.fullmatch(prefix+r'damage',message.content): damage = damageList() await message.channel.send(message.author.mention +"\n" +'**Damage Types:** '+damage) if re.fullmatch(r'&acid|&bludgeoning|&cold|&fire|&force|&lightning|&necrotic|&piercing|&poison|&psychic|&radiant|&slashing|&thunder',message.content): (name,desc)=searchDamage(message.content[1:]) await message.channel.send(message.author.mention +"\n" +'**Damage Type:** '+name+"\n"+'**Desc:** '+desc) if re.fullmatch(prefix+r'help',message.content): await message.channel.send(message.author.mention +"\n" + helpList()) keep_alive() client.run(os.getenv('TOKEN'))
StarcoderdataPython
152736
''' defines all the sources necessary for building cgui.pyd ''' import os BUILD_BUDDYLIST_GUI = False thisdir = os.path.dirname(os.path.abspath(__file__)) sources = ''' src/ctextutil.cpp src/SplitImage4.cpp src/ScrollWindow.cpp src/skinvlist.cpp src/pyutils.cpp src/cwindowfx.cpp src/SkinSplitter.cpp src/alphaborder.cpp src/skin/skinobjects.cpp src/skin/SkinBitmap.cpp src/LoginWindow.cpp src/DragMixin.cpp src/MiscUI.cpp src/SelectionEvent.cpp src/InputBox.cpp src/ExpandoTextCtrl.cpp src/ExpandEvent.cpp src/GettextPython.cpp '''.split() include_dirs = ''' src src/skin src/Animation src/Animation/Platform src/Animation/Platform/wx src/BuddyList '''.split() boost_env_dir = os.getenv('BOOST_DIR') if boost_env_dir is not None: include_dirs.append(boost_env_dir) # rtf rtf_files = \ ''' DebugUtil.cpp HTMLEncoder.cpp MSIMEncoder.cpp MSNEncoder.cpp RTFToX.cpp StyleDesc.cpp StringUtil.cpp XHTMLEncoder.cpp YahooEncoder.cpp '''.split() sources.extend('src/RTFToX/%s' % s for s in rtf_files) include_dirs.append('src/RTFToX') import sys if sys.platform == 'win32': sources.extend(''' src/alphaborder_win.cpp src/win/PlatformMessagesWin.cpp src/win/WindowSnapperWin.cpp src/WindowSnapper.cpp src/win/FullscreenWin.cpp src/win/WinUtils.cpp src/win/WinTaskbar.cpp src/win/WinJumpList.cpp src/win/RichEditUtils.cpp src/TransparentFrame.cpp src/Statistics.cpp src/IconUtils.cpp '''.split()) include_dirs.extend([ 'src/win', ]) if BUILD_BUDDYLIST_GUI: sources.extend(''' src/TreeList.cpp src/BuddyList.cpp '''.split())
StarcoderdataPython
1691462
from http.server import HTTPServer, SimpleHTTPRequestHandler class MyHTTPRequestHandler(SimpleHTTPRequestHandler): def do_GET(self): self.send_response(200) self.end_headers() self.wfile.write(b"hi there") if __name__ == '__main__': server_address = ('127.0.0.1', 8000) httpd = HTTPServer(server_address, MyHTTPRequestHandler) httpd.serve_forever()
StarcoderdataPython
1684312
#!/usr/bin/env python """ TAP protocol client library. Copyright (c) 2010 <NAME> <<EMAIL>> """ import socket import string import random import struct import asyncore import mc_bin_server import mc_bin_client from memcacheConstants import REQ_MAGIC_BYTE, RES_MAGIC_BYTE from memcacheConstants import REQ_PKT_FMT, RES_PKT_FMT, MIN_RECV_PACKET from memcacheConstants import SET_PKT_FMT, DEL_PKT_FMT, INCRDECR_RES_FMT import memcacheConstants class TapConnection(mc_bin_server.MemcachedBinaryChannel): def __init__(self, server, port, callback, clientId=None, opts={}, user=None, pswd=None): mc_bin_server.MemcachedBinaryChannel.__init__(self, None, None, self._createTapCall(clientId, opts)) self.server = server self.port = port self.callback = callback self.identifier = (server, port) self.user = user self.pswd = pswd self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.connect((server, port)) def create_socket(self, family, type): if not self.user: mc_bin_server.MemcachedBinaryChannel.create_socket(self, family, type) return self.family_and_type = family, type self.mc = mc_bin_client.MemcachedClient(self.server, self.port) self.mc.sasl_auth_plain(self.user, self.pswd or "") sock = self.mc.s sock.setblocking(0) self.set_socket(sock) def _createTapCall(self, key=None, opts={}): # Client identifier if not key: key = "".join(random.sample(string.letters, 16)) dtype=0 opaque=0 cas=0 extraHeader, val = self._encodeOpts(opts) msg=struct.pack(REQ_PKT_FMT, REQ_MAGIC_BYTE, memcacheConstants.CMD_TAP_CONNECT, len(key), len(extraHeader), dtype, 0, len(key) + len(extraHeader) + len(val), opaque, cas) return msg + extraHeader + key + val def _encodeOpts(self, opts): header = 0 val = [] for op in sorted(opts.keys()): header |= op if op in memcacheConstants.TAP_FLAG_TYPES: val.append(struct.pack(memcacheConstants.TAP_FLAG_TYPES[op], opts[op])) elif op == memcacheConstants.TAP_FLAG_LIST_VBUCKETS: val.append(self._encodeVBucketList(opts[op])) else: val.append(opts[op]) return struct.pack(">I", header), ''.join(val) def _encodeVBucketList(self, vbl): l = list(vbl) # in case it's a generator vals = [struct.pack("!H", len(l))] for v in vbl: vals.append(struct.pack("!H", v)) return ''.join(vals) def processCommand(self, cmd, klen, vb, extralen, cas, data): extra = data[0:extralen] key = data[extralen:(extralen+klen)] val = data[(extralen+klen):] return self.callback(self.identifier, cmd, extra, key, vb, val, cas) def handle_connect(self): pass def handle_close(self): self.close() class TapClient(object): def __init__(self, servers, callback, opts={}, user=None, pswd=None): for t in servers: tc = TapConnection(t.host, t.port, callback, t.id, opts, user, pswd) class TapDescriptor(object): port = 11211 id = None def __init__(self, s): self.host = s if ':' in s: self.host, self.port = s.split(':', 1) self.port = int(self.port) if '@' in self.host: self.id, self.host = self.host.split('@', 1) def __repr__(self): return "<TapDescriptor %s@%s:%d>" % (self.id or "(anon)", self.host, self.port)
StarcoderdataPython
3281548
<gh_stars>1000+ #!/usr/bin/python3 """ [[https://bluemaestro.com/products/product-details/bluetooth-environmental-monitor-and-logger][Bluemaestro]] temperature/humidity/pressure monitor """ # todo most of it belongs to DAL... but considering so few people use it I didn't bother for now from datetime import datetime, timedelta from pathlib import Path import re import sqlite3 from typing import Iterable, Sequence, Set, Optional from my.core import get_files, LazyLogger, dataclass, Res from my.core.sqlite import sqlite_connect_immutable from my.config import bluemaestro as config # todo control level via env variable? # i.e. HPI_LOGGING_MY_BLUEMAESTRO_LEVEL=debug logger = LazyLogger(__name__, level='debug') def inputs() -> Sequence[Path]: return get_files(config.export_path) Celsius = float Percent = float mBar = float @dataclass class Measurement: dt: datetime # todo aware/naive temp : Celsius humidity: Percent pressure: mBar dewpoint: Celsius # fixme: later, rely on the timezone provider # NOTE: the timezone should be set with respect to the export date!!! import pytz # type: ignore tz = pytz.timezone('Europe/London') # TODO when I change tz, check the diff def is_bad_table(name: str) -> bool: # todo hmm would be nice to have a hook that can patch any module up to delegate = getattr(config, 'is_bad_table', None) return False if delegate is None else delegate(name) from my.core.cachew import cache_dir from my.core.common import mcachew @mcachew(depends_on=lambda: inputs(), cache_path=cache_dir('bluemaestro')) def measurements() -> Iterable[Res[Measurement]]: # todo ideally this would be via arguments... but needs to be lazy dbs = inputs() last: Optional[datetime] = None # tables are immutable, so can save on processing.. processed_tables: Set[str] = set() for f in dbs: logger.debug('processing %s', f) tot = 0 new = 0 # todo assert increasing timestamp? with sqlite_connect_immutable(f) as db: db_dt: Optional[datetime] = None try: datas = db.execute(f'SELECT "{f.name}" as name, Time, Temperature, Humidity, Pressure, Dewpoint FROM data ORDER BY log_index') oldfmt = True db_dts = list(db.execute('SELECT last_download FROM info'))[0][0] if db_dts == 'N/A': # ??? happens for 20180923-20180928 continue if db_dts.endswith(':'): db_dts += '00' # wtf.. happens on some day db_dt = tz.localize(datetime.strptime(db_dts, '%Y-%m-%d %H:%M:%S')) except sqlite3.OperationalError: # Right, this looks really bad. # The device doesn't have internal time & what it does is: # 1. every X seconds, record a datapoint, store it in the internal memory # 2. on sync, take the phone's datetime ('now') and then ASSIGN the timestamps to the collected data # as now, now - X, now - 2X, etc # # that basically means that for example, hourly timestamps are completely useless? because their error is about 1h # yep, confirmed on some historic exports. seriously, what the fuck??? # # The device _does_ have an internal clock, but it's basically set to 0 every time you update settings # So, e.g. if, say, at 17:15 you set the interval to 3600, the 'real' timestamps would be # 17:15, 18:15, 19:15, etc # But depending on when you export, you might get # 17:35, 18:35, 19:35; or 17:55, 18:55, 19:55, etc # basically all you guaranteed is that the 'correct' interval is within the frequency # it doesn't seem to keep the reference time in the database # # UPD: fucking hell, so you can set the reference date in the settings (calcReferenceUnix field in meta db) # but it's not set by default. log_tables = [c[0] for c in db.execute('SELECT name FROM sqlite_sequence WHERE name LIKE "%_log"')] log_tables = [t for t in log_tables if t not in processed_tables] processed_tables |= set(log_tables) # todo use later? frequencies = [list(db.execute(f'SELECT interval from {t.replace("_log", "_meta")}'))[0][0] for t in log_tables] # todo could just filter out the older datapoints?? dunno. # eh. a bit horrible, but seems the easiest way to do it? # note: for some reason everything in the new table multiplied by 10 query = ' UNION '.join( f'SELECT "{t}" AS name, unix, tempReadings / 10.0, humiReadings / 10.0, pressReadings / 10.0, dewpReadings / 10.0 FROM {t}' for t in log_tables ) if len(log_tables) > 0: # ugh. otherwise end up with syntax error.. query = f'SELECT * FROM ({query}) ORDER BY name, unix' datas = db.execute(query) oldfmt = False db_dt = None for i, (name, tsc, temp, hum, pres, dewp) in enumerate(datas): if is_bad_table(name): continue # note: bluemaestro keeps local datetime if oldfmt: tss = tsc.replace('Juli', 'Jul').replace('Aug.', 'Aug') dt = datetime.strptime(tss, '%Y-%b-%d %H:%M') dt = tz.localize(dt) assert db_dt is not None else: # todo cache? m = re.search(r'_(\d+)_', name) assert m is not None export_ts = int(m.group(1)) db_dt = datetime.fromtimestamp(export_ts / 1000, tz=tz) dt = datetime.fromtimestamp(tsc / 1000, tz=tz) ## sanity checks (todo make defensive/configurable?) # not sure how that happens.. but basically they'd better be excluded lower = timedelta(days=6000 / 24) # ugh some time ago I only did it once in an hour.. in theory can detect from meta? upper = timedelta(days=10) # kinda arbitrary if not (db_dt - lower < dt < db_dt + timedelta(days=10)): # todo could be more defenive?? yield RuntimeError('timestamp too far out', f, name, db_dt, dt) continue assert -60 <= temp <= 60, (f, dt, temp) ## tot += 1 if last is not None and last >= dt: continue # todo for performance, pass 'last' to sqlite instead? last = dt new += 1 p = Measurement( dt=dt, temp=temp, pressure=pres, humidity=hum, dewpoint=dewp, ) yield p logger.debug('%s: new %d/%d', f, new, tot) # logger.info('total items: %d', len(merged)) # for k, v in merged.items(): # # TODO shit. quite a few of them have varying values... how is that freaking possible???? # # most of them are within 0.5 degree though... so just ignore? # if isinstance(v, set) and len(v) > 1: # print(k, v) # for k, v in merged.items(): # yield Point(dt=k, temp=v) # meh? from my.core import stat, Stats def stats() -> Stats: return stat(measurements) from my.core.pandas import DataFrameT, as_dataframe def dataframe() -> DataFrameT: """ %matplotlib gtk from my.bluemaestro import dataframe dataframe().plot() """ df = as_dataframe(measurements(), schema=Measurement) # todo not sure how it would handle mixed timezones?? # todo hmm, not sure about setting the index return df.set_index('dt') def fill_influxdb() -> None: from my.core import influxdb influxdb.fill(measurements(), measurement=__name__) def check() -> None: temps = list(measurements()) latest = temps[:-2] from my.core.error import unwrap prev = unwrap(latest[-2]).dt last = unwrap(latest[-1]).dt # todo stat should expose a dataclass? # TODO ugh. might need to warn about points past 'now'?? # the default shouldn't allow points in the future... # # TODO also needs to be filtered out on processing, should be rejected on the basis of export date? POINTS_STORED = 6000 # on device? FREQ_SEC = 60 SECS_STORED = POINTS_STORED * FREQ_SEC HOURS_STORED = POINTS_STORED / (60 * 60 / FREQ_SEC) # around 4 days NOW = datetime.now() assert NOW - last < timedelta(hours=HOURS_STORED / 2), f'old backup! {last}' assert last - prev < timedelta(minutes=3), f'bad interval! {last - prev}' single = (last - prev).seconds
StarcoderdataPython
68495
import datetime from ..dojo_test_case import DojoTestCase from dojo.models import Test from dojo.tools.acunetix.parser import AcunetixParser class TestAcunetixParser(DojoTestCase): def test_parse_file_with_one_finding(self): testfile = open("unittests/scans/acunetix/one_finding.xml") parser = AcunetixParser() findings = parser.get_findings(testfile, Test()) for finding in findings: for endpoint in finding.unsaved_endpoints: endpoint.clean() self.assertEqual(1, len(findings)) with self.subTest(i=0): finding = findings[0] self.assertEqual("Medium", finding.severity) self.assertEqual(352, finding.cwe) self.assertEqual(datetime.date(2018, 9, 24), finding.date) self.assertIsNotNone(finding.description) self.assertGreater(len(finding.description), 0) self.assertFalse(finding.false_p) self.assertEqual("Vijay Test Imapact", finding.impact) self.assertIsNotNone(finding.references) self.assertGreater(len(finding.references), 0) self.assertEqual(1, len(finding.unsaved_endpoints)) # check endpoints self.assertEqual(1, len(finding.unsaved_endpoints)) endpoint = finding.unsaved_endpoints[0] self.assertEqual('https', endpoint.protocol) self.assertEqual(443, endpoint.port) self.assertEqual('vijaytest.com', endpoint.host) self.assertEqual('some/path', endpoint.path) def test_parse_file_with_multiple_finding(self): testfile = open("unittests/scans/acunetix/many_findings.xml") parser = AcunetixParser() findings = parser.get_findings(testfile, Test()) for finding in findings: for endpoint in finding.unsaved_endpoints: endpoint.clean() self.assertEqual(4, len(findings)) with self.subTest(i=0): finding = findings[0] self.assertEqual("Medium", finding.severity) self.assertEqual(datetime.date(2020, 2, 27), finding.date) self.assertIsNotNone(finding.description) self.assertEqual("CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L", finding.cvssv3) self.assertFalse(finding.false_p) self.assertEqual("A single machine can take down another machine's web server with minimal bandwidth and side effects on unrelated services and ports.", finding.impact) # check that this finding have references self.assertIsNotNone(finding.references) self.assertGreater(len(finding.references), 0) # check endpoints self.assertEqual(1, len(finding.unsaved_endpoints)) endpoint = finding.unsaved_endpoints[0] self.assertIsNone(endpoint.protocol) self.assertIsNone(endpoint.port) self.assertEqual('www.itsecgames.com', endpoint.host) self.assertIsNone(endpoint.path) # check req/resp self.assertEqual(1, len(finding.unsaved_req_resp)) req_resp = finding.unsaved_req_resp[0] self.assertIn('req', req_resp) self.assertIsNotNone(req_resp['req']) self.assertIsInstance(req_resp['req'], str) self.assertIn('resp', req_resp) self.assertIsNotNone(req_resp['resp']) self.assertIsInstance(req_resp['resp'], str) with self.subTest(i=1): finding = findings[1] self.assertEqual("Possible virtual host found", finding.title) self.assertEqual("Low", finding.severity) self.assertEqual(200, finding.cwe) self.assertEqual(datetime.date(2020, 2, 27), finding.date) self.assertIsNotNone(finding.description) self.assertEqual("CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N", finding.cvssv3) self.assertFalse(finding.false_p) self.assertEqual("Possible sensitive information disclosure.", finding.impact) # check that this finding have references self.assertIsNotNone(finding.references) self.assertGreater(len(finding.references), 0) # check endpoints self.assertEqual(1, len(finding.unsaved_endpoints)) endpoint = finding.unsaved_endpoints[0] self.assertIsNone(endpoint.protocol) self.assertIsNone(endpoint.port) self.assertEqual('www.itsecgames.com', endpoint.host) self.assertIsNone(endpoint.path) # check req/resp self.assertEqual(1, len(finding.unsaved_req_resp)) req_resp = finding.unsaved_req_resp[0] self.assertIn('req', req_resp) self.assertIsNotNone(req_resp['req']) self.assertIsInstance(req_resp['req'], str) self.assertIn('resp', req_resp) self.assertIsNotNone(req_resp['resp']) self.assertIsInstance(req_resp['resp'], str) with self.subTest(i=2): finding = findings[2] self.assertEqual("Unencrypted connection (verified)", finding.title) self.assertEqual("Low", finding.severity) self.assertEqual(310, finding.cwe) self.assertEqual(datetime.date(2020, 2, 27), finding.date) self.assertIsNotNone(finding.description) self.assertEqual("CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N", finding.cvssv3) self.assertFalse(finding.false_p) self.assertEqual("Possible information disclosure.", finding.impact) # check that this finding have no references self.assertIsNone(finding.references) # check endpoints self.assertEqual(1, len(finding.unsaved_endpoints)) endpoint = finding.unsaved_endpoints[0] self.assertIsNone(endpoint.protocol) self.assertIsNone(endpoint.port) self.assertEqual('www.itsec<EMAIL>', endpoint.host) self.assertIsNone(endpoint.path) # check req/resp self.assertEqual(1, len(finding.unsaved_req_resp)) req_resp = finding.unsaved_req_resp[0] self.assertIn('req', req_resp) self.assertIsNotNone(req_resp['req']) self.assertIsInstance(req_resp['req'], str) self.assertIn('resp', req_resp) self.assertIsNotNone(req_resp['resp']) self.assertIsInstance(req_resp['resp'], str) def test_parse_file_with_example_com(self): testfile = open("unittests/scans/acunetix/XML_http_example_co_id_.xml") parser = AcunetixParser() findings = parser.get_findings(testfile, Test()) for finding in findings: for endpoint in finding.unsaved_endpoints: endpoint.clean() self.assertEqual(7, len(findings)) with self.subTest(i=0): finding = findings[0] self.assertEqual("HTML form without CSRF protection", finding.title) self.assertEqual("Medium", finding.severity) self.assertEqual(datetime.date(2020, 4, 28), finding.date) self.assertIsNotNone(finding.description) self.assertEqual("CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:L/A:N", finding.cvssv3) self.assertFalse(finding.false_p) self.assertIn("An attacker could use CSRF to trick a victim into accessing a website hosted by the attacker,", finding.impact) # aggregated self.assertEqual(3, finding.nb_occurences) # check that this finding have references self.assertIsNotNone(finding.references) self.assertGreater(len(finding.references), 0) # check endpoints self.assertEqual(3, len(finding.unsaved_endpoints)) endpoint = finding.unsaved_endpoints[0] self.assertIsNone(endpoint.protocol) self.assertIsNone(endpoint.port) self.assertEqual('example.co.id', endpoint.host) self.assertEqual('h/search', endpoint.path) endpoint = finding.unsaved_endpoints[1] self.assertIsNone(endpoint.protocol) self.assertIsNone(endpoint.port) self.assertEqual('example.co.id', endpoint.host) self.assertEqual('m/zmain', endpoint.path) # check req/resp self.assertEqual(3, len(finding.unsaved_req_resp)) for req_resp in finding.unsaved_req_resp: self.assertIn('req', req_resp) self.assertIsNotNone(req_resp['req']) self.assertIsInstance(req_resp['req'], str) self.assertIn('resp', req_resp) self.assertIsNotNone(req_resp['resp']) self.assertIsInstance(req_resp['resp'], str) with self.subTest(i=6): finding = findings[6] self.assertEqual("Content Security Policy (CSP) not implemented", finding.title) self.assertEqual("Info", finding.severity) self.assertEqual(datetime.date(2020, 4, 28), finding.date) self.assertIsNotNone(finding.description) self.assertFalse(finding.false_p) self.assertIn("CSP can be used to prevent and/or mitigate attacks that involve content/code injection,", finding.impact) # check that this finding have references self.assertIsNotNone(finding.references) self.assertGreater(len(finding.references), 0) # check endpoints self.assertEqual(1, len(finding.unsaved_endpoints)) endpoint = finding.unsaved_endpoints[0] self.assertIsNone(endpoint.protocol) self.assertIsNone(endpoint.port) self.assertEqual('example.co.id', endpoint.host) self.assertIsNone(endpoint.path) # check req/resp self.assertEqual(1, len(finding.unsaved_req_resp)) req_resp = finding.unsaved_req_resp[0] self.assertIn('req', req_resp) self.assertIsNotNone(req_resp['req']) self.assertIsInstance(req_resp['req'], str) self.assertIn('resp', req_resp) self.assertIsNotNone(req_resp['resp']) self.assertIsInstance(req_resp['resp'], str)
StarcoderdataPython
1625657
# This module is used to map the old Python 2 names to the new names used in # Python 3 for the pickle module. This needed to make pickle streams # generated with Python 2 loadable by Python 3. # This is a copy of lib2to3.fixes.fix_imports.MAPPING. We cannot import # lib2to3 and use the mapping defined there, because lib2to3 uses pickle. # Thus, this could cause the module to be imported recursively. IMPORT_MAPPING = { '__builtin__' : 'builtins', 'copy_reg': 'copyreg', 'Queue': 'queue', 'SocketServer': 'socketserver', 'ConfigParser': 'configparser', 'repr': 'reprlib', 'tkFileDialog': 'tkinter.filedialog', 'tkSimpleDialog': 'tkinter.simpledialog', 'tkColorChooser': 'tkinter.colorchooser', 'tkCommonDialog': 'tkinter.commondialog', 'Dialog': 'tkinter.dialog', 'Tkdnd': 'tkinter.dnd', 'tkFont': 'tkinter.font', 'tkMessageBox': 'tkinter.messagebox', 'ScrolledText': 'tkinter.scrolledtext', 'Tkconstants': 'tkinter.constants', 'Tix': 'tkinter.tix', 'ttk': 'tkinter.ttk', 'Tkinter': 'tkinter', 'markupbase': '_markupbase', '_winreg': 'winreg', 'thread': '_thread', 'dummy_thread': '_dummy_thread', 'dbhash': 'dbm.bsd', 'dumbdbm': 'dbm.dumb', 'dbm': 'dbm.ndbm', 'gdbm': 'dbm.gnu', 'xmlrpclib': 'xmlrpc.client', 'SimpleXMLRPCServer': 'xmlrpc.server', 'httplib': 'http.client', 'htmlentitydefs' : 'html.entities', 'HTMLParser' : 'html.parser', 'Cookie': 'http.cookies', 'cookielib': 'http.cookiejar', 'BaseHTTPServer': 'http.server', 'test.test_support': 'test.support', 'commands': 'subprocess', 'urlparse' : 'urllib.parse', 'robotparser' : 'urllib.robotparser', 'urllib2': 'urllib.request', 'anydbm': 'dbm', '_abcoll' : 'collections.abc', } # This contains rename rules that are easy to handle. We ignore the more # complex stuff (e.g. mapping the names in the urllib and types modules). # These rules should be run before import names are fixed. NAME_MAPPING = { ('__builtin__', 'xrange'): ('builtins', 'range'), ('__builtin__', 'reduce'): ('functools', 'reduce'), ('__builtin__', 'intern'): ('sys', 'intern'), ('__builtin__', 'unichr'): ('builtins', 'chr'), ('__builtin__', 'unicode'): ('builtins', 'str'), ('__builtin__', 'long'): ('builtins', 'int'), ('itertools', 'izip'): ('builtins', 'zip'), ('itertools', 'imap'): ('builtins', 'map'), ('itertools', 'ifilter'): ('builtins', 'filter'), ('itertools', 'ifilterfalse'): ('itertools', 'filterfalse'), ('itertools', 'izip_longest'): ('itertools', 'zip_longest'), ('UserDict', 'IterableUserDict'): ('collections', 'UserDict'), ('UserList', 'UserList'): ('collections', 'UserList'), ('UserString', 'UserString'): ('collections', 'UserString'), ('whichdb', 'whichdb'): ('dbm', 'whichdb'), ('_socket', 'fromfd'): ('socket', 'fromfd'), ('_multiprocessing', 'Connection'): ('multiprocessing.connection', 'Connection'), ('multiprocessing.process', 'Process'): ('multiprocessing.context', 'Process'), ('multiprocessing.forking', 'Popen'): ('multiprocessing.popen_fork', 'Popen'), ('urllib', 'ContentTooShortError'): ('urllib.error', 'ContentTooShortError'), ('urllib', 'getproxies'): ('urllib.request', 'getproxies'), ('urllib', 'pathname2url'): ('urllib.request', 'pathname2url'), ('urllib', 'quote_plus'): ('urllib.parse', 'quote_plus'), ('urllib', 'quote'): ('urllib.parse', 'quote'), ('urllib', 'unquote_plus'): ('urllib.parse', 'unquote_plus'), ('urllib', 'unquote'): ('urllib.parse', 'unquote'), ('urllib', 'url2pathname'): ('urllib.request', 'url2pathname'), ('urllib', 'urlcleanup'): ('urllib.request', 'urlcleanup'), ('urllib', 'urlencode'): ('urllib.parse', 'urlencode'), ('urllib', 'urlopen'): ('urllib.request', 'urlopen'), ('urllib', 'urlretrieve'): ('urllib.request', 'urlretrieve'), ('urllib2', 'HTTPError'): ('urllib.error', 'HTTPError'), ('urllib2', 'URLError'): ('urllib.error', 'URLError'), } PYTHON2_EXCEPTIONS = ( "ArithmeticError", "AssertionError", "AttributeError", "BaseException", "BufferError", "BytesWarning", "DeprecationWarning", "EOFError", "EnvironmentError", "Exception", "FloatingPointError", "FutureWarning", "GeneratorExit", "IOError", "ImportError", "ImportWarning", "IndentationError", "IndexError", "KeyError", "KeyboardInterrupt", "LookupError", "MemoryError", "NameError", "NotImplementedError", "OSError", "OverflowError", "PendingDeprecationWarning", "ReferenceError", "RuntimeError", "RuntimeWarning", # StandardError is gone in Python 3, so we map it to Exception "StopIteration", "SyntaxError", "SyntaxWarning", "SystemError", "SystemExit", "TabError", "TargetScopeError", "TypeError", "UnboundLocalError", "UnicodeDecodeError", "UnicodeEncodeError", "UnicodeError", "UnicodeTranslateError", "UnicodeWarning", "UserWarning", "ValueError", "Warning", "ZeroDivisionError", ) try: TaskletExit except NameError: pass else: PYTHON2_EXCEPTIONS += ("TaskletExit",) try: WindowsError except NameError: pass else: PYTHON2_EXCEPTIONS += ("WindowsError",) for excname in PYTHON2_EXCEPTIONS: NAME_MAPPING[("exceptions", excname)] = ("builtins", excname) MULTIPROCESSING_EXCEPTIONS = ( 'AuthenticationError', 'BufferTooShort', 'ProcessError', 'TimeoutError', ) for excname in MULTIPROCESSING_EXCEPTIONS: NAME_MAPPING[("multiprocessing", excname)] = ("multiprocessing.context", excname) # Same, but for 3.x to 2.x REVERSE_IMPORT_MAPPING = dict((v, k) for (k, v) in IMPORT_MAPPING.items()) assert len(REVERSE_IMPORT_MAPPING) == len(IMPORT_MAPPING) REVERSE_NAME_MAPPING = dict((v, k) for (k, v) in NAME_MAPPING.items()) assert len(REVERSE_NAME_MAPPING) == len(NAME_MAPPING) # Non-mutual mappings. IMPORT_MAPPING.update({ 'cPickle': 'pickle', '_elementtree': 'xml.etree.ElementTree', 'FileDialog': 'tkinter.filedialog', 'SimpleDialog': 'tkinter.simpledialog', 'DocXMLRPCServer': 'xmlrpc.server', 'SimpleHTTPServer': 'http.server', 'CGIHTTPServer': 'http.server', # For compatibility with broken pickles saved in old Python 3 versions 'UserDict': 'collections', 'UserList': 'collections', 'UserString': 'collections', 'whichdb': 'dbm', 'StringIO': 'io', 'cStringIO': 'io', }) REVERSE_IMPORT_MAPPING.update({ '_bz2': 'bz2', '_dbm': 'dbm', '_functools': 'functools', '_gdbm': 'gdbm', '_pickle': 'pickle', }) NAME_MAPPING.update({ ('__builtin__', 'basestring'): ('builtins', 'str'), ('exceptions', 'StandardError'): ('builtins', 'Exception'), ('UserDict', 'UserDict'): ('collections', 'UserDict'), ('socket', '_socketobject'): ('socket', 'SocketType'), }) REVERSE_NAME_MAPPING.update({ ('_functools', 'reduce'): ('__builtin__', 'reduce'), ('tkinter.filedialog', 'FileDialog'): ('FileDialog', 'FileDialog'), ('tkinter.filedialog', 'LoadFileDialog'): ('FileDialog', 'LoadFileDialog'), ('tkinter.filedialog', 'SaveFileDialog'): ('FileDialog', 'SaveFileDialog'), ('tkinter.simpledialog', 'SimpleDialog'): ('SimpleDialog', 'SimpleDialog'), ('xmlrpc.server', 'ServerHTMLDoc'): ('DocXMLRPCServer', 'ServerHTMLDoc'), ('xmlrpc.server', 'XMLRPCDocGenerator'): ('DocXMLRPCServer', 'XMLRPCDocGenerator'), ('xmlrpc.server', 'DocXMLRPCRequestHandler'): ('DocXMLRPCServer', 'DocXMLRPCRequestHandler'), ('xmlrpc.server', 'DocXMLRPCServer'): ('DocXMLRPCServer', 'DocXMLRPCServer'), ('xmlrpc.server', 'DocCGIXMLRPCRequestHandler'): ('DocXMLRPCServer', 'DocCGIXMLRPCRequestHandler'), ('http.server', 'SimpleHTTPRequestHandler'): ('SimpleHTTPServer', 'SimpleHTTPRequestHandler'), ('http.server', 'CGIHTTPRequestHandler'): ('CGIHTTPServer', 'CGIHTTPRequestHandler'), ('_socket', 'socket'): ('socket', '_socketobject'), }) PYTHON3_OSERROR_EXCEPTIONS = ( 'BrokenPipeError', 'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError', 'ConnectionRefusedError', 'ConnectionResetError', 'FileExistsError', 'FileNotFoundError', 'InterruptedError', 'IsADirectoryError', 'NotADirectoryError', 'PermissionError', 'ProcessLookupError', 'TimeoutError', ) for excname in PYTHON3_OSERROR_EXCEPTIONS: REVERSE_NAME_MAPPING[('builtins', excname)] = ('exceptions', 'OSError') PYTHON3_IMPORTERROR_EXCEPTIONS = ( 'ModuleNotFoundError', ) for excname in PYTHON3_IMPORTERROR_EXCEPTIONS: REVERSE_NAME_MAPPING[('builtins', excname)] = ('exceptions', 'ImportError')
StarcoderdataPython
4813743
<reponame>Shea192/pytorch-lightning<gh_stars>1-10 import torch from pytorch_lightning import Trainer from tests.base import EvalModelTemplate import tests.base.utils as tutils def test_training_epoch_end_metrics_collection(tmpdir): """ Test that progress bar metrics also get collected at the end of an epoch. """ num_epochs = 3 class CurrentModel(EvalModelTemplate): def training_step(self, *args, **kwargs): output = super().training_step(*args, **kwargs) output['progress_bar'].update({'step_metric': torch.tensor(-1)}) output['progress_bar'].update({'shared_metric': 100}) return output def training_epoch_end(self, outputs): epoch = self.current_epoch # both scalar tensors and Python numbers are accepted return { 'progress_bar': { f'epoch_metric_{epoch}': torch.tensor(epoch), # add a new metric key every epoch 'shared_metric': 111, } } model = CurrentModel(tutils.get_default_hparams()) trainer = Trainer( max_epochs=num_epochs, default_root_dir=tmpdir, overfit_pct=0.1, ) result = trainer.fit(model) assert result == 1 metrics = trainer.progress_bar_dict # metrics added in training step should be unchanged by epoch end method assert metrics['step_metric'] == -1 # a metric shared in both methods gets overwritten by epoch_end assert metrics['shared_metric'] == 111 # metrics are kept after each epoch for i in range(num_epochs): assert metrics[f'epoch_metric_{i}'] == i
StarcoderdataPython
25897
<reponame>nvuillam/checkov<filename>tests/cloudformation/graph_builder/test_local_graph.py import os from unittest import TestCase from checkov.cloudformation.graph_builder.graph_components.block_types import BlockType from checkov.cloudformation.graph_builder.local_graph import CloudformationLocalGraph from checkov.cloudformation.parser import parse TEST_DIRNAME = os.path.dirname(os.path.realpath(__file__)) class TestLocalGraph(TestCase): def test_build_graph_with_single_resource(self): relative_file_path = "../checks/resource/aws/example_APIGatewayXray/APIGatewayXray-PASSED.yaml" definitions = {} file = os.path.realpath(os.path.join(TEST_DIRNAME, relative_file_path)) (definitions[relative_file_path], definitions_raw) = parse(file) local_graph = CloudformationLocalGraph(definitions) local_graph.build_graph(render_variables=False) self.assertEqual(1, len(local_graph.vertices)) resource_vertex = local_graph.vertices[0] self.assertEqual("AWS::ApiGateway::Stage.MyStage", resource_vertex.name) self.assertEqual("AWS::ApiGateway::Stage.MyStage", resource_vertex.id) self.assertEqual(BlockType.RESOURCE, resource_vertex.block_type) self.assertEqual("CloudFormation", resource_vertex.source) self.assertDictEqual(definitions[relative_file_path]["Resources"]["MyStage"]["Properties"], resource_vertex.attributes)
StarcoderdataPython
3293553
# -*- coding: utf-8 -*- from argh.decorators import arg from lain_sdk.util import warn, info from lain_cli.utils import get_version_lists, lain_yaml, check_phase, ClusterConfig @arg('phase', help="lain cluster phase id, can be added by lain config save") @arg('-r', '--registry', help='registry url') def appversion(phase, registry=None): """ Show available app versions in remote registry of lain """ check_phase(phase) params = dict(name=phase) if registry is not None: params['registry'] = registry cluster_config = ClusterConfig(**params) yml = lain_yaml(ignore_prepare=True) version_list = get_version_lists(phase, yml.appname, ClusterConfig=cluster_config) print_available_version(version_list) def print_available_version(version_list): if len(version_list) == 0: warn("No available release versions.") else: info("Below are the available versions: ") for version in version_list: print(version)
StarcoderdataPython
3285051
#!/usr/bin/env python import sys #from heapq import heappush, heappop, heapify from random import randint, choice, seed try: import numpy #import scipy.sparse.linalg as la except ImportError: print("numpy not found") if sys.version_info.major>=3: long = int from bruhat.util import write class Point(object): """ A Point is a vertex in a Graph (an undirected graph). Each Point has a "desc", this is any distinguishing characteristic (colour/type, etc.) as respected by isomorphisms of Graph's. The "desc" can be any string. """ def __init__(self, desc, idx, nbd=None, colour="", **kw): self.desc = desc self._colour = colour self._desc = {} # cache get_desc self.idx = idx if nbd is None: nbd = [] self.nbd = nbd self.__dict__.update(kw) def __str__(self): return "Point(desc=%r, idx=%s, nbd=%s)"%( self.desc, self.idx, [p.idx for p in self.nbd]) __repr__ = __str__ def get_colour(self): return self._colour def set_colour(self, colour): self._desc = {} # clear cache self._colour = colour colour = property(get_colour, set_colour) def get_desc(self, depth=1, source=None): assert self.nbd is not None assert depth>=0 assert depth<=1 #_desc = self._desc.get(depth) #if _desc: # return _desc desc = self.desc+str(self._colour) if depth==0: #self._desc = desc return desc if source is None: source = [] else: assert self not in source descs = [a.get_desc(depth-1, source+[self]) for a in self.nbd if a not in source] descs.sort() desc = "%s[%s]"%(desc, ' '.join(descs)) #self._desc = desc return desc #def __str__(self): # return "Point(%s: %s)"%(self.desc, descs) class Graph(object): """ Undirected graph. """ def __init__(self, points=[], **attrs): self.__dict__.update(attrs) self.descs = {} # cache, map point -> desc self.deps = None # map point -> list of points self.attrs = dict(attrs) self.points = list(points) for i, point in enumerate(points): assert point.idx == i def add(self, desc='', **kw): "add a Point" assert not self.descs assert self.deps is None i = len(self.points) point = Point(desc, i, **kw) self.points.append(point) return point def add_directed(self, pi, pj, desc='directed'): "encode a directed edge using a path with two extra (coloured) Point's" pa = self.add("%s_a"%desc) pb = self.add("%s_b"%desc) self.join(pi, pa) self.join(pa, pb) self.join(pb, pj) def __str__(self): return "Graph(%s)"%(self.points,) def __len__(self): return len(self.points) def __getitem__(self, idx): return self.points[idx] def join(self, pi, pj): points = self.points if type(pi) in [int, long]: pi = points[pi] if type(pj) in [int, long]: pj = points[pj] if pi not in pj.nbd: pj.nbd.append(pi) if pj not in pi.nbd: pi.nbd.append(pj) @classmethod def build(cls, Gx): m, n = Gx.shape points = [] for i in range(m): g = Gx[i] assert g.sum()==4 weights = [] for j in numpy.where(g)[0]: weights.append(Gx[:, j].sum()) weights.sort() desc = ''.join(str(w) for w in weights) a = Point(desc, i) points.append(a) #print [a.desc for a in points] for i in range(m): g = Gx[i] a = points[i] for j in numpy.where(g)[0]: for i1 in numpy.where(Gx[:, j])[0]: if i1 != i: a.nbd.append(points[i1]) return cls(points, m=m, n=n) def map(self, fn): points = [None]*len(self) for p in self.points: p = Point(p.desc, fn[p.idx]) points[p.idx] = p for p in self.points: for p1 in p.nbd: points[fn[p.idx]].nbd.append(points[fn[p1.idx]]) # whoops.. tricky return self.__class__(points, **self.attrs) def get_desc(self, depth=1): return [v.get_desc(depth) for v in self.points] def get_stats(self, depth=1): stats = {} for point in self: desc = point.get_desc(depth) stats[desc] = stats.get(desc, 0) + 1 return stats # ---------- HOTSPOT -----------------------------> def get_orbits(self, depth=1): orbits = {} assert depth==1 if self.deps is None: deps = {} for p in self.points: deps[p] = [p]+p.nbd # 1-neighbours self.deps = deps descs = self.descs for p in self.points: desc = descs.get(p) if desc is None: desc = p.get_desc(depth) descs[p] = desc orbit = orbits.setdefault(desc, []) orbit.append(p) return orbits # map desc -> list of points def set_colour(self, p, colour=''): if colour: assert p.colour=='' else: assert p.colour p.colour = colour for p in self.deps[p]: self.descs[p] = None # clear cache Bag = Graph # backwards compat class Tanner(Graph): # This is the Tanner graph @classmethod def build(cls, Gx, Gz=None): if Gz is not None: return cls.build2(Gx, Gz) m, n = Gx.shape checks = [Point('c', i) for i in range(m)] bits = [Point('b', i+m) for i in range(n)] for i in range(m): for j in range(n): if Gx[i, j]==0: continue checks[i].nbd.append(bits[j]) bits[j].nbd.append(checks[i]) return cls(checks+bits, m=m, n=n) @classmethod def build2(cls, Gx, Gz): # This is the Tanner graph mx, n = Gx.shape mz, n = Gz.shape xchecks = [Point('x', i, row=i) for i in range(mx)] zchecks = [Point('z', i+mx, row=i) for i in range(mz)] bits = [Point('b', i+mx+mz, row=i) for i in range(n)] for i in range(mx): for j in range(n): if Gx[i, j]==0: continue xchecks[i].nbd.append(bits[j]) bits[j].nbd.append(xchecks[i]) for i in range(mz): for j in range(n): if Gz[i, j]==0: continue zchecks[i].nbd.append(bits[j]) bits[j].nbd.append(zchecks[i]) return cls(xchecks+zchecks+bits, mx=mx, mz=mz, n=n) def shortstr(self): m, n = self.m, self.n rows = [] for i in range(m): # checks row = ['.']*n p = self.points[i] for p1 in p.nbd: row[p1.idx-m] = '1' row = ''.join(row) rows.append(row) return '\n'.join(rows) def from_sparse_ham(n, H): points = [] for i in range(n): p = Point('(%s)'%H[i, i], i) points.append(p) for i, j in H.keys(): if i!=j: points[i].nbd.append(points[j]) graph = Graph(points) return graph def from_ham(H, syndromes=None): if syndromes is not None: return from_ham_syndromes(H, syndromes) # <------ return n = len(H) points = [] for i in range(n): p = Point('(%s)'%H[i, i], i) points.append(p) for i in range(n): for j in range(n): if i==j: continue if H[i, j]: points[i].nbd.append(points[j]) graph = Graph(points) return graph def from_ham_syndromes(H, syndromes): n = len(H) # dimension of state space assert len(syndromes)==n # one syndrome for each basis vector m = len(syndromes[0]) # each syndrome has m check values points = [] for i in range(n): p = Point('(%s)'%H[i, i], i) points.append(p) checks = [] for i in range(m): c = Point('c', n+i) checks.append(c) for i in range(n): for j in range(n): if i==j: continue if H[i, j]: points[i].nbd.append(points[j]) for j in range(m): if syndromes[i][j]: points[i].nbd.append(checks[j]) checks[j].nbd.append(points[i]) graph = Graph(points+checks) return graph def get_perm(m, n, fn): U = numpy.zeros((m, m), dtype=int) for i in range(m): j = fn[i] U[i, j] = 1 V = numpy.zeros((n, n), dtype=int) for i in range(n): j = fn[i+m]-m V[j, i] = 1 return U, V def search_recursive(graph0, graph1, fn=None, depth=1): assert depth>0 if fn is None: fn = {} if len(graph0)!=len(graph1): return assert graph0 is not graph1 orbits0 = graph0.get_orbits(depth) orbits1 = graph1.get_orbits(depth) if len(orbits0) != len(orbits1): return keys0 = list(orbits0.keys()) keys1 = list(orbits1.keys()) keys0.sort() keys1.sort() if keys0 != keys1: return idx = len(fn) # choose any uncoloured graph0 point p = graph0.points[idx] assert p.colour == '' key = p.get_desc(depth) orbit = orbits1[key] #p.colour = str(idx) graph0.set_colour(p, str(idx)) # go through each candidate in graph1 for p1 in orbit: assert p1.colour == '' #p1.colour = str(idx) graph1.set_colour(p1, str(idx)) assert fn.get(idx) is None fn[idx] = p1.idx if len(fn) == len(graph0): yield dict(fn) else: for _fn in search_recursive(graph0, graph1, fn, depth): yield _fn del fn[idx] assert len(fn) == idx #p1.colour = '' graph1.set_colour(p1) #p.colour = '' graph0.set_colour(p, '') class Backtrack(Exception): pass class State(object): def __init__(self, graph0, graph1, depth=1): orbits0 = graph0.get_orbits(depth) # map: desc -> list of points orbits1 = graph1.get_orbits(depth) # map: desc -> list of points if len(orbits0) != len(orbits1): raise Backtrack() # <-------------- raise keys0 = list(orbits0.keys()) keys1 = list(orbits1.keys()) keys0.sort() keys1.sort() if keys0 != keys1: raise Backtrack() # <-------------- raise self.graphs = graph0, graph1 self.orbitss = orbits0, orbits1 self.keyss = keys0, keys1 self.idx0 = None self.depth = depth def choose(self, idx0): assert self.idx0 is None assert idx0 is not None graph0, graph1 = self.graphs p0 = graph0.points[idx0] assert p0.colour == '' key0 = p0.get_desc(self.depth) self.orbit1 = self.orbitss[1][key0] assert self.orbit1 # otherwise: wtf? self.idx0 = idx0 # source index: this is constant self.idx1 = 0 # search target index self.p0 = p0 self.p1 = None def choose_best(self): XXX orbits0 = self.orbitss[0] items = orbits0.items() items.sort(key = lambda item : len(item[1])) p = items[0][1][0] # first guy in smallest orbit self.choose(p.idx) return p.idx def do(self, fn): graph0, graph1 = self.graphs # make assignment: idx0 -> idx1 p0 = self.p0 #assert p0.colour == '' #p0.colour = str(self.idx0) graph0.set_colour(p0, str(self.idx0)) p1 = self.orbit1[self.idx1] #assert p1.colour == '' #p1.colour = str(self.idx0) graph1.set_colour(p1, str(self.idx0)) assert fn.get(self.idx0) is None fn[self.idx0] = p1.idx assert self.p1 is None self.p1 = p1 def undo(self, fn): graph0, graph1 = self.graphs # undo assignment del fn[self.idx0] assert self.p1 is not None p0 = self.p0 p1 = self.p1 assert p1.colour==str(self.idx0) assert p0.colour==str(self.idx0) #p0.colour = '' #p1.colour = '' graph0.set_colour(p0) graph1.set_colour(p1) self.p1 = None def next(self): assert self.p1 is None self.idx1 += 1 if self.idx1 >= len(self.orbit1): raise Backtrack() # <-------------- raise def search(graph0, graph1, depth=1, fn=None, verbose=False): # return dict: int --> int assert graph0 is not graph1 if len(graph0) != len(graph1): return # doesn't help any: #if graph0.get_stats() != graph1.get_stats(): # return if fn is None: fn = {} remain = range(len(graph0)) orbits = graph0.get_orbits(depth) graph1.get_orbits() keys = list(orbits.keys()) keys.sort(key = lambda key : len(orbits[key])) remain = [] for key in keys: for p in orbits[key]: if p.idx not in fn: remain.append(p.idx) #for idx in fn.keys(): # remain.remove(idx) remain.sort() for idx in fn: graph0.set_colour(graph0[idx], str(idx)) graph1.set_colour(graph1[fn[idx]], str(idx)) try: state = State(graph0, graph1, depth) except Backtrack: return idx = remain.pop(0) state.choose(idx) #idx = remain.pop(randint(0, len(remain)-1)) #state.choose(idx) #idx = state.choose_best() #remain.remove(idx) stack = [state] while stack: if verbose: print( "SEARCH", len(stack)) for idx in remain: assert fn.get(idx) is None assert len(remain)+len(fn)+1==len(graph0) state = stack[-1] state.do(fn) assert len(remain)+len(fn)==len(graph0) if verbose: print( fn) if len(fn) == len(graph0): if verbose: print( "FOUND") yield dict(fn) else: # try to add another state try: _state = State(graph0, graph1, depth) #idx = remain.pop(randint(0, len(remain)-1)) idx = remain.pop(0) _state.choose(idx) #idx = _state.choose_best() #remain.remove(idx) stack.append(_state) if verbose: print( "PUSH") continue except Backtrack: if verbose: print( "BACK") # the above do() doesn't work pass # next while stack: state = stack[-1] if verbose: print( "UNDO") assert len(remain)+len(fn)==len(graph0) state.undo(fn) assert len(remain)+len(fn)+1==len(graph0) try: if verbose: print( "NEXT") state.next() break # ok, finished backtracking except Backtrack: if verbose: print( "POP") state = stack.pop() # discard this guy #remain.append(state.idx0) remain.insert(0, state.idx0) def all_autos(Gx): #Gx = parse(gcolor_gauge) m, n = Gx.shape graph0 = Tanner.build(Gx) graph1 = Tanner.build(Gx) for fn in search(graph0, graph1): U, V = get_perm(m, n, fn) yield U, V def peterson_graph(): inside = [Point('', i) for i in range(5)] outside = [Point('', i+5) for i in range(5)] graph = Graph(inside+outside) for i in range(5): graph.join(i, (i+2)%5) graph.join(i, (i+3)%5) graph.join(i, i+5) if i<4: graph.join(i+5, i+6) else: graph.join(i+5, i+1) return graph def cyclic_graph(): n = 5 points = [Point('', i) for i in range(n)] graph = Graph(points) # for i in range(n): # points[i].nbd.append(points[(i+1)%n]) # points[(i+1)%n].nbd.append(points[i]) for i in range(n): graph.add_directed(points[i], points[(i+1)%n]) return graph gcolor_gauge = """ 1111........... 11..11......... 1.1.1.1........ ..11..11....... .1.1.1.1....... ....1111....... 11......11..... 1.1.....1.1.... ........1111... ..11......11... .1.1.....1.1... 1...1...1...1.. ........11..11. .1...1...1...1. ....11......11. ........1.1.1.1 ..1...1...1...1 ....1.1.....1.1 """ gcolor_stab = """ 11111111....... 1111....1111... 11..11..11..11. 1.1.1.1.1.1.1.1 """ cube_ham = """ 6111.... 14..11.. 1.4.1.1. 1..4.11. .11.2..1 .1.1.2.1 ..11..21 ....1110 """ def parse(s): s = s.replace('.', '0') lines = s.split() lines = [l.strip() for l in lines if l.strip()] rows = [list(int(c) for c in l) for l in lines] if rows: n = len(rows[0]) for row in rows: assert len(row)==n, "rows have varying lengths" a = numpy.array(rows, dtype=numpy.int32) return a def test(): # Find rotation symmetry of the code. It's S_4 with order 24. Gx = parse(gcolor_gauge) m, n = Gx.shape graph0 = Tanner.build(Gx) graph1 = Tanner.build(Gx) #global search #search = search_recursive count = 0 for fn in search(graph0, graph1): #print "iso", fn graph = graph0.map(fn) #print graph.shortstr() U, V = get_perm(m, n, fn) Gx1 = numpy.dot(U, numpy.dot(Gx, V)) assert numpy.abs(Gx-Gx1).sum()==0 count += 1 #print "count:", count assert count == 24 # S_3 symmetry of cubical hamiltonian depth = 1 H = parse(cube_ham) graph0 = from_ham(H) graph1 = from_ham(H) count = 0 for fn in search(graph0, graph1, depth=depth): count += 1 assert count == 6 graph0 = peterson_graph() graph1 = peterson_graph() assert len(list(search(graph0, graph1, depth=1))) == 120 # directed graph graph0 = cyclic_graph() graph1 = cyclic_graph() assert len(list(search(graph0, graph1))) == 5 #for f in (search(graph0, graph1)): # print(f) from bruhat.argv import argv if __name__ == "__main__": if argv.profile: import cProfile as profile profile.run("test()") else: test() print( "OK")
StarcoderdataPython
89200
<reponame>subaruclover/apis-fixed<filename>plots_fixed.py<gh_stars>0 """ Show the results of different acc with plots input data files: .csv files with one week data from sample data House ID: E001 ~ E004 created by Qiong TODO: plot the sample data (from apis-emulator/data/input/Sample) and compare it with our acc data (try: compare p2) """ import numpy as np from matplotlib import pyplot as plt import seaborn as sns sns.set(style="white") import pandas as pd import os import global_var as gl inputFile = "sample_acc_60.csv" inputData = pd.read_csv(inputFile) memory = inputData.to_numpy() # calculate the coefficient w.r.t gl.acc filename = os.path.splitext(inputFile)[0] check_acc = filename.split("_")[2] coeff = int(60 / gl.acc) if int(check_acc) == gl.acc: print("acc correctly received") # PLOT Houses data rows_e001 = list(range(0, 10000, 4)) rows_e002 = [x + 1 for x in rows_e001] rows_e003 = [x + 2 for x in rows_e001] rows_e004 = [x + 3 for x in rows_e001] pvc_e001 = memory[rows_e001, 0] load_e001 = memory[rows_e001, 1] p2_e001 = memory[rows_e001, 2] rsoc_e001 = memory[rows_e001, 3] pvc_e002 = memory[rows_e002, 0] load_e002 = memory[rows_e002, 1] p2_e002 = memory[rows_e002, 2] rsoc_e002 = memory[rows_e002, 3] pvc_e003 = memory[rows_e003, 0] load_e003 = memory[rows_e003, 1] p2_e003 = memory[rows_e003, 2] rsoc_e003 = memory[rows_e003, 3] pvc_e004 = memory[rows_e004, 0] load_e004 = memory[rows_e004, 1] p2_e004 = memory[rows_e004, 2] rsoc_e004 = memory[rows_e004, 3] """ Plot data """ # fig, axs = plt.subplots(2, 2, figsize=(12, 12)) fig, (ax0, ax1, ax2, ax3) = plt.subplots(4, 1, figsize=(12, 12)) ax0_2 = ax0.twinx() ax1_2 = ax1.twinx() ax2_2 = ax2.twinx() ax3_2 = ax3.twinx() fig.suptitle("The default scenario, E001-E004, acc=%i" % gl.acc) pvc_e001_plot = ax0.plot(pvc_e001[:24 * 7 * coeff], 'm*-', label="PV E001") load_e001_plot = ax0.plot(load_e001[:24 * 7 * coeff], 'y--', label="Load E001") p2_e001_plot = ax0.plot(p2_e001[:24 * 7 * coeff], 'b', label="p2 E001") rsoc_e001_plot = ax0_2.plot(rsoc_e001[:24 * 7 * coeff], 'g', label="RSOC E001") # ticks = np.arange(0, 24*7*coeff, 24*coeff) ax0_ticks = ax0.set_xticks(np.linspace(0, 24*7*coeff, 8, endpoint=True)) hours = np.round(np.linspace(0, 24*7*coeff, 8, endpoint=True) / coeff).astype(int) label = [] for i in range(len(hours)): label.append(str(hours[i])) # ['0', '24', '48', '72', '96', '120', '144', '168'] ax0_labels = ax0.set_xticklabels(label) # ax0.set_xlabel("Hour") ax0.set_ylabel("Power (W)") ax0_2.set_ylabel(" % ") plots_e001 = pvc_e001_plot + load_e001_plot + p2_e001_plot + rsoc_e001_plot labels_e001 = [plot.get_label() for plot in plots_e001] ax0.legend(plots_e001, labels_e001, loc='upper left') pvc_e002_plot = ax1.plot(pvc_e002[:24 * 7 * coeff], 'm*-', label="PV E002") load_e002_plot = ax1.plot(load_e002[:24 * 7 * coeff], 'y--', label="Load E002") p2_e002_plot = ax1.plot(p2_e002[:24 * 7 * coeff], 'b', label="p2 E002") rsoc_e002_plot = ax1_2.plot(rsoc_e002[:24 * 7 * coeff], 'g', label="RSOC E002") ax1_ticks = ax1.set_xticks(np.linspace(0, 24*7*coeff, 8, endpoint=True)) ax1_labels = ax1.set_xticklabels(label) # ax1.set_xlabel("Hour") ax1.set_ylabel("Power (W)") ax1_2.set_ylabel(" % ") plots_e002 = pvc_e002_plot + load_e002_plot + p2_e002_plot + rsoc_e002_plot labels_e002 = [plot.get_label() for plot in plots_e002] ax1.legend(plots_e002, labels_e002, loc='upper left') pvc_e003_plot = ax2.plot(pvc_e003[:24 * 7 * coeff], 'm*-', label="PV E003") load_e003_plot = ax2.plot(load_e003[:24 * 7 * coeff], 'y--', label="Load E003") p2_e003_plot = ax2.plot(p2_e003[:24 * 7 * coeff], 'b', label="p2 E003") rsoc_e003_plot = ax2_2.plot(rsoc_e003[:24 * 7 * coeff], 'g', label="RSOC E003") ax2_ticks = ax2.set_xticks(np.linspace(0, 24*7*coeff, 8, endpoint=True)) ax2_labels = ax2.set_xticklabels(label) # ax2.set_xlabel("Hour") ax2.set_ylabel("Power (W)") ax2_2.set_ylabel(" % ") plots_e003 = pvc_e003_plot + load_e003_plot + p2_e003_plot + rsoc_e003_plot labels_e003 = [plot.get_label() for plot in plots_e003] ax2.legend(plots_e003, labels_e003, loc='upper left') pvc_e004_plot = ax3.plot(pvc_e004[:24 * 7 * coeff], 'm*-', label="PV E004") load_e004_plot = ax3.plot(load_e004[:24 * 7 * coeff], 'y--', label="Load E004") p2_e004_plot = ax3.plot(p2_e004[:24 * 7 * coeff], 'b', label="p2 E004") rsoc_e004_plot = ax3_2.plot(rsoc_e004[:24 * 7 * coeff], 'g', label="RSOC E004") ax3_ticks = ax3.set_xticks(np.linspace(0, 24*7*coeff, 8, endpoint=True)) ax3_labels = ax3.set_xticklabels(label) ax3.set_xlabel("Hour") ax3.set_ylabel("Power (W)") ax3_2.set_ylabel(" % ") plots_e004 = pvc_e004_plot + load_e004_plot + p2_e004_plot + rsoc_e004_plot labels_e004 = [plot.get_label() for plot in plots_e004] ax3.legend(plots_e004, labels_e004, loc='upper left') plt.show() else: print("check acc value and try again") # Compare MSE (or sth. likely) to check different acc
StarcoderdataPython
1622599
#!/usr/bin/python2 # -*- coding: utf-8 -*- import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import glob, csv, librosa, os, subprocess, time import numpy as np import pandas as pd import data_vn try: from StringIO import StringIO except ImportError: from io import StringIO __author__ = '<EMAIL>' # data path data_path = "asset/data/" # # process Vivos corpus # def process_vivos(csv_file, category): parent_path = data_path + 'vivos/' labels, wave_files = [], [] # create csv writer writer = csv.writer(csv_file, delimiter=',') # read label-info content_filename = parent_path + category + '/prompts.txt' label_info = pd.read_table(content_filename, usecols=['ID'], index_col=False, delim_whitespace=True) # print(label_info) # testpoint: label_info # read file IDs # file_ids = [] # for uid in label_info.ID.values: # print(uid) # testpoint: uid # folder_path, filename = uid.split("_") # for d in [parent_path + category + '/waves/%s' % folder_path]: # print(d) # testpoint: folder_path # a = glob.glob(d + '*.txt') # print(a) # b = sorted(glob.glob(d + '*.txt')) # print(b) # for f in sorted(glob.glob(d + '*.txt')): # # print(f[-12:-4]) # file_ids.extend([f[-12:-4]]) # # print(file_ids) file_ids = label_info.ID # print(file_ids) # testpoint: file_ID # preprocess content_ = open(content_filename, 'r') title_content = content_.readline() # print(title_content) # Result: 'ID\t\tContent\n' for i, f in enumerate(file_ids): # wave file name wave_file = parent_path + category + '/waves/%s/' % f[0:10] + f + '.wav' # print(wave_file) fn = wave_file.split('/')[-1] # print(fn) target_filename = 'asset/data/preprocess_vn/mfcc/' + fn + '.npy' # print(target_filename) if os.path.exists(target_filename): continue print("Vivos corpus preprocessing (%d/%d) - ['%s']" % (i, len(file_ids), wave_file)) # load wave file wave, sr = librosa.load(wave_file, sr=16000, mono=True) # default: sr=22050Hz # re-sample (48K --> 16K) # wave = wave[::3] # get mfcc feature mfcc = librosa.feature.mfcc(wave, sr=16000) # get label index curr_content = content_.readline() curr_content = curr_content[(len(fn)-3):(len(curr_content))] print(curr_content) label = data_vn.str2index(curr_content) # save result (exclude small mfcc data to prevent CTC loss) if len(label) < mfcc.shape[1]: # save meta info writer.writerow([fn] + label) # save mfcc np.save(target_filename, mfcc, allow_pickle=False) # check saved features print(data_vn.index2str(label), '\n') # delay for observation and analysis # time.sleep(10) # # Create directories # if not os.path.exists('asset/data/preprocess_vn'): os.makedirs('asset/data/preprocess_vn') if not os.path.exists('asset/data/preprocess_vn/meta'): os.makedirs('asset/data/preprocess_vn/meta') if not os.path.exists('asset/data/preprocess_vn/mfcc'): os.makedirs('asset/data/preprocess_vn/mfcc') # # Run pre-processing for training # # Vivos corpus for training csv_file_train = open('asset/data/preprocess_vn/meta/train.csv', 'w') process_vivos(csv_file_train, 'train') csv_file_train.close() # # Run pre-processing for testing # # Vivos corpus for test csv_file_test = open('asset/data/preprocess_vn/meta/test.csv', 'w') process_vivos(csv_file_test, 'test') csv_file_test.close()
StarcoderdataPython
164741
from functools import partial from . import utils import numpy as np import jax.numpy as jnp import jax.random as random from jax import grad, jit, vmap, lax, jacrev, jacfwd, jvp, vjp, hessian #class Lattice(seed, cell_params, sim_params, def random_c0(subkeys, odds_c, n): """Make random initial conditions given odds ratio of cell types.""" n_ctypes = len(odds_c) n_c = (n * odds_c / odds_c.sum()).astype(int) n_c = n_c.at[0].add(n - n_c.sum()) c0 = jnp.repeat(jnp.arange(n_ctypes), n_c) nmap = np.ndim(subkeys) - 1 fun = lambda sk: random.permutation(sk, c0) for _ in range(nmap): fun = vmap(fun) return n_c, fun(subkeys) @jit def dE_swap(ij, c, W, AL): """ Energy differential after swapping cells i and j. Depends only on i, j, and their neighbors """ new_c = c.at[ij].set(c[ij[::-1]]) E_local = -W[ c[ij, None], c[AL[ij]]].sum() E_local_swap = -W[new_c[ij, None], new_c[AL[ij]]].sum() return E_local_swap - E_local @jit def quadratic_form(a, G): """Quadratic form of column vector `a` induced by matrix `G`""" return a.T @ G @ a @jit def P_swap(dE, beta): """ Probability of a swap between cells i and j. Symmetric w.r.t. i and j. """ # Glauber dynamics probability # return 1 / (1 + jnp.exp(beta * dE)) # Metropolis acceptance probability return jnp.minimum(1., jnp.exp(-beta * dE)) @jit def swap_ij(c, ij): """Swaps cells i and j in the cell type state vector `c`. """ cji = c[ij][::-1] return c.at[ij].set(cji) @jit def accept_swap(c, P, ij): """ Returns cell state and log-probability after swapping i <--> j """ return swap_ij(c, ij) @jit def reject_swap(c, P, ij): """ Returns cell state and log-probability after rejecting i <--> j """ return c, jnp.log(1 - P) @jit def make_swap(c, P, ij, accept): """ Returns cell state vector and log-probability of event after an accepted/rejected swap of cells `i` and `j`. """ return lax.cond(accept, accept_swap, reject_swap, c, P, ij) @jit def get_random_pair(key, AL): """Returns indices of a pair of adjacent cells""" i, Aj = random.randint( key=key, shape=(2,), minval=jnp.array([0, 0]), maxval=jnp.array(AL.shape) ) j = AL[i, Aj] return jnp.array([i, j]) @jit def take_MC_step(key, c, beta, W, AL, n): """ Randomly selects a swap between adjacent cells and accepts/rejects. Acceptance is based on Metropolis algorithm. """ key, sk1, sk2 = random.split(key, 3) # Pick random interface and acceptance threshold ij = get_random_pair(sk1, AL) thresh = random.uniform(key=sk2) # Take a Metropolis step dE = dE_swap(ij, c, W, AL) P = P_swap(dE, beta) accept = P > thresh new_c = make_swap(c, P, ij, accept) expected_dE = P * dE return key, new_c, expected_dE @jit def propose_swap(key, c, beta, W, AL): """ """ ij = get_random_pair(key, AL) c_swap = swap_ij(c, ij) dE = dE_swap(ij, c, W, AL) P = P_swap(dE, beta) return ij, c_swap, dE, P @jit def local_alignment(c, A, k, I, O): s = I[c] @ O s_swap = I[c_swap] @ O m_diff_nb = (A_k * diff_nb) @ s / n_diff_nb @jit def local_alignment_change(ij, c, c_swap, AL, k, I, O): A_k = get_knn_adjacency_matrix(AL, k) # cells that are neighbors (within k radii) of # `i` but not `j` and vice-versa - i.e. different neighbors diff_nb = jnp.expand_dims(jnp.logical_xor(*A_k[ij]), 1) n_diff_nb = 4 * k + 2 s = I[c] @ O s_swap = I[c_swap] @ O m_diff_nb = (A_k * diff_nb) @ s / n_diff_nb m_diff_nb_swap = (A_k * diff_nb) @ s_swap / n_diff_nb return ((m_diff_nb_swap ** 2) - (m_diff_nb ** 2)).sum() mapped_local_alignment_change = vmap( local_alignment_change, in_axes=(None, None, None, None, 0, None, None) ) #@jit def take_MC_step2(args, step): """ Randomly selects a swap between adjacent cells and accepts/rejects. Acceptance is based on Metropolis algorithm. """ key, c_t, beta_t, W, AL, *align_args = args c = c_t[step] beta = beta_t[step] new_key, sk1, sk2 = random.split(key, 3) # Propose a random swap ij, c_swap, dE, P = propose_swap(sk1, c, beta, W, AL) expected_d_eta = P * mapped_local_alignment_change( ij, c, c_swap, AL, *align_args ).mean() # Accept/reject thresh = random.uniform(key=sk2) do_swap = P > thresh new_c = lax.cond(do_swap, lambda: c_swap, lambda: c) return ( new_key, c_t.at[step + 1].set(new_c), beta_t, W, AL, *align_args ), expected_d_eta @partial(jit, static_argnums=(2, 3, 4)) def simulate(theta, args, nsweeps, n, n_ctypes): key, c, t, _, *more_args = args beta_t = jnp.power(10., -utils.map_linear(t, theta[0], theta[1])) W = jnp.eye(n_ctypes) * theta[2] new_args, expected_d_etas = lax.scan( take_MC_step2, (key, c, beta_t, W, *more_args), jnp.repeat(jnp.arange(nsweeps), n), ) return new_args, expected_d_etas @partial(jit, static_argnums=(2, 3, 4)) def simulate_loss(theta, args, nsweeps, n, n_ctypes): return simulate(theta, args, nsweeps, n, n_ctypes)[1].mean() @partial(jit, static_argnums=(2, 3)) def update(theta, args, nt, lr): """Performs one update step on T.""" # Compute the gradients on replicates eta, grads = jax.value_and_grad( simulate, )(T, key, l, nt) new_T = T - grads * lr_toy return new_T, loss, grads @partial(jit, static_argnums=3) def update_toy(T, key, l, nt, lr_toy): """Performs one update step on T.""" # Compute the gradients on replicates loss, grads = jax.value_and_grad( simulate_loss, )(T, key, l, nt) new_T = T - grads * lr_toy return new_T, loss, grads @jit def MC_iteration(step, args): key, c, *extra = args key, c, expected_dE = take_MC_step(*args) return key, c, *extra @jit def MC_sweep(key, c, beta, W, AL, n): args = (key, c, beta, W, AL, n) return lax.fori_loop(0, n, MC_iteration, args) @jit def n_cmatch_t(c_t, AL): """Returns number of homotypic interfaces at each time-point.""" return cmatch_t(c_t, c_t[:, AL]).sum(axis=(1, 2)) // 2 @jit def get_E_cell(c, W): return W[c[:, None], c[AL]].mean(axis=1) #### sorting metrics def get_identity(n_ctypes): """Returns the (n_ctypes, n_ctypes) identity matrix.""" return jnp.eye(n_ctypes, dtype=int) def get_difference_matrix(n_ctypes): """ Returns a (n_ctypes, n_ctypes - 1) matrix `O` with -1 on the principal diagonal and 1 elsewhere. `O @ u` thus computes a difference on the components of `u`. """ return 1 - 2 * jnp.eye(n_ctypes, n_ctypes - 1, dtype=int) @jit def get_num_neighbors(k): return 1 + 3 * k * (k + 1) @jit def pow_matrix(A, k): return lax.fori_loop(1, k, lambda i, M: jnp.matmul(M, A), A) @jit def get_knn_adjacency_matrix(AL, k): n, nnb = AL.shape diag_true = jnp.diag(jnp.ones(n, dtype=bool)) A = adjacency_matrix_from_adjacency_list(AL, dtype=bool) A = A | diag_true A = pow_matrix(A, k) return A equal_vec_scalar = vmap(lambda a, b: a == b, (0, None)) equal_outer_1d_1d = vmap(equal_vec_scalar, (None, 0)) equal_outer_1d_2d = vmap(equal_outer_1d_1d, (None, 0)) equal_outer_2d_1d = vmap(equal_outer_1d_1d, (0, None)) mult_vec_scalar = vmap(lambda a, b: a * b, (0, None)) mult_outer_1d_1d = vmap(mult_vec_scalar, (None, 0)) mult_outer_1d_2d = vmap(mult_outer_1d_1d, (None, 0)) mult_outer_2d_1d = vmap(mult_outer_1d_1d, (0, None)) @jit def local_spin(c, AL, k): """ """ A_k = get_knn_adjacency_matrix(AL, k) nnb = get_num_neighbors(k) s_i = jnp.array([-1, 1])[c] return A_k @ s_i / nnb @jit def knn_alignment_per_cell(c, AL, k, I, O): """ Return alignment of cell types `c` in local neighborhoods. `c` is the cell type vector of shape `(n,)` with dtype `int` `A` is the `(n, n)`cell-cell adjacency matrix (can be Boolean) `I` is the `(n_ctypes, n_ctypes)` identity matrix, where `n_ctypes` is the number of cell types in the tissue. `O` is the `(n_ctypes, n_ctypes - 1)` difference matrix with `-1` on the principal diagonal and `1` elsewhere. `I[c] @ O` converts cell types (non-negative `int`) to spins (difference vectors). The sum of spin vector components lies in [-1, 1]. `nnb` is the number of neighbors in the (regular) lattice within distance `k`. """ A_k = get_knn_adjacency_matrix(AL, k) nnb = get_num_neighbors(k) s_i = I[c] @ O m_i = A_k @ s_i / nnb return 1 - (m_i ** 2).mean(axis=1) @jit def knn_alignment_tissue(c, AL, k, I, O): """ Return mean alignment of cell types in a tissue by averaging over neighborhoods. This is equivalent to `knn_alignment_per_cell(*args).mean()` `c` is the cell type vector of shape `(n,)` with dtype `int` `A` is the `(n, n)`cell-cell adjacency matrix (can be Boolean) `I` is the `(n_ctypes, n_ctypes)` identity matrix, where `n_ctypes` is the number of cell types in the tissue. `O` is the `(n_ctypes, n_ctypes - 1)` difference matrix with `-1` on the principal diagonal and `1` elsewhere. `I[c] @ O` converts cell types (non-negative `int`) to spins (difference vectors). The sum of spin vector components lies in [-1, 1]. `nnb` is the number of neighbors in the (regular) lattice within distance `k`. """ A_k = get_knn_adjacency_matrix(AL, k) nnb = get_num_neighbors(k) s_i = I[c] @ O m_i = A_k @ s_i / nnb return 1 - (m_i ** 2).mean() #### Graph def adjacency_matrix_from_adjacency_list(AL, dtype=bool): """ Returns adjacency matrix for a nnb-regular graph given the adjacency list. """ n, nnb = AL.shape A = jnp.zeros((n, n), dtype=dtype) return A.at[jnp.repeat(jnp.arange(n), nnb), AL.flatten()].set(1) def get_adjacency_matrix_periodic(rows, cols=0): """Construct adjacency matrix for a periodic hexagonal lattice of dimensions rows x cols.""" AL = get_adjacency_list_periodic(rows, cols, **kwargs) return adjacency_matrix_from_adjacency_list(AL) def get_adjacency_list_periodic(rows, cols=0): """Construct adjacency matrix for a periodic hexagonal lattice of dimensions rows x cols.""" # Assume square if not specified if cols == 0: cols = rows n = rows * cols row, col = np.meshgrid(np.arange(rows), np.arange(cols)) row = row.flatten() col = col.flatten() # Get row of adjacent cells dr = np.array([0, 1, 1, 0, -1, -1]) AL_row = np.add.outer(row, dr) % rows # Get column of adjacent cells, accounting for staggering dc1 = np.array([1, 0, -1, -1, -1, 0]) dc2 = np.array([1, 1, 0, -1, 0, 1]) AL_col = np.add.outer(col, dc1) AL_col[1::2] += dc2 - dc1 AL_col = AL_col % cols return rows * AL_col + AL_row def hex_grid(rows, cols=0, r=1., sigma=0, **kwargs): """ Returns XY coordinates of a regular 2D hexagonal grid (rows x cols) with edge length r. Points are optionally passed through a Gaussian filter with std. dev. = sigma * r. """ print("Deprecated: please use `cx.geom.hex_grid") # Check if square grid if cols == 0: cols = rows # Populate grid x_coords = np.linspace(-r * (cols - 1) / 2, r * (cols - 1) / 2, cols) y_coords = np.linspace(-np.sqrt(3) * r * (rows - 1) / 4, np.sqrt(3) * r * (rows - 1) / 4, rows) X = [] for i, x in enumerate(x_coords): for j, y in enumerate(y_coords): X.append(np.array([x + (j % 2) * r / 2, y])) X = np.array(X) # Apply Gaussian filter if specified if sigma != 0: X = np.array([np.random.normal(loc=x, scale=sigma*r) for x in X]) return X def get_outer_idx(rows, cols): """Returns the indices of cells on the border of the lattice grid""" print("Deprecated: please use `cx.geom.get_outer_idx") return np.array([ rows * c + r for c in range(cols) for r in range(rows) if ((r in (0, rows - 1)) or (c in (0, cols - 1))) ])
StarcoderdataPython
3248149
from flask import current_app, request, make_response, jsonify, abort from api.blueprint import api from core import crossdomain from flask_security import auth_token_required, roles_required from flask_login import current_user from jsonschema import validate from jsonschema.exceptions import ValidationError from api.views.all_views import api_version from api.correction import correction_api @api.route('/<api_version>/corrections/<int:correction_id>', methods=['GET', 'OPTIONS']) @crossdomain(origin='*', headers='authentication-token') @auth_token_required @api_version def get_correction(api_version, correction_id): correction = correction_api.find_correction_by_id(correction_id) if(correction): return jsonify( correction.to_dict() ) else: abort(404) @api.route('/<api_version>/corrections', methods=['POST', 'OPTIONS']) @crossdomain(origin='*', headers='authentication-token') @auth_token_required @api_version def add_correction(api_version): json = request.get_json() schema = { "content" : "string", "file_id" : "number", "format" : "string", "required": ["content", "file_id", "format"] } try: validate(json, schema) except ValidationError as ve: return make_response(jsonify( { 'error': ve.message } ), 400) correction = correction_api.add_correction(json['content'], json['file_id'], json['format']) return jsonify( correction.to_dict() ) @api.route('/<api_version>/corrections/<int:correction_id>', methods=['PUT', 'OPTIONS']) @crossdomain(origin='*', headers='authentication-token') @auth_token_required @api_version def update_correction(api_version, correction_id): json = request.get_json() schema = { "content" : "string", "format" : "string", "required": ["content", "format"] } try: validate(json, schema) except ValidationError as ve: return make_response(jsonify( { 'error': ve.message } ), 400) correction = correction_api.find_correction_by_id(correction_id) if(correction): correction = correction_api.update_correction_content(correction, content=json['content']) return jsonify( correction.to_dict() ) else: abort(404)
StarcoderdataPython
1745205
<reponame>WeiwenXu21/FRU<gh_stars>10-100 import math import tensorflow as tf from tensorflow.python.util import nest import collections import pdb _FRUStateTuple = collections.namedtuple("FRUStateTuple", ("state", "t")) class FRUStateTuple(_FRUStateTuple): """Tuple used by FRU Cells for `state_size`, `zero_state`, and output state. Stores two elements: `(state, t)`, in that order. Where `state` is the hidden state and `t` is the time step. """ __slots__ = () @property def dtype(self): (state, t) = self if state.dtype != t.dtype: raise TypeError("Inconsistent internal state: %s vs %s" % (str(state.dtype), str(t.dtype))) return state.dtype class FRUCell(tf.contrib.rnn.RNNCell): """Implements a simple distribution based recurrent unit that keeps moving averages of the mean map embeddings of features of inputs. """ """ num_stats: phi size freqs: array of w freqs_mask: mask value when frequency is not equal to zero output_dims: output size recur_dims: r size seq_len: length of sequence """ def __init__(self, num_stats, freqs, freqs_mask, output_dims, recur_dims, seq_len, summarize=True, linear_out=False, include_input=False, activation=tf.nn.relu): self._num_stats = num_stats self._output_dims = output_dims self._recur_dims = recur_dims self._freqs_array = freqs self._nfreqs = len(freqs) self._freqs_mask_array = [0.0 if w == 0 and len(freqs) > 1 else freqs_mask for w in freqs] print "frequency_mask = ", self._freqs_mask_array self._summarize = summarize self._linear_out = linear_out self._activation = activation self._include_input = include_input # as tensorflow does not feed current time step to __call__ # I have to manually record it self._seq_len = seq_len self.W = [] self.b = [] """ nfreqs*num_stats """ @property def state_size(self): return FRUStateTuple(int(self._nfreqs * self._num_stats), 1) @property def output_size(self): return self._output_dims def __call__(self, inputs, state_tuple, scope=None): """ recur*: r state*: mu, state_tuple includes (state, t) stats*: phi freq*: frequency vector """ state, cur_time_step = state_tuple with tf.variable_scope(scope or type(self).__name__): self._freqs = tf.reshape(tf.get_variable("frequency", initializer=self._freqs_array, trainable=False), [1, -1, 1]) self._phases = tf.reshape(tf.get_variable("phase", [self._nfreqs], initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32), trainable=True), [1, -1, 1]) self._freqs_mask = tf.reshape(tf.get_variable("frequency_mask", initializer=self._freqs_mask_array, trainable=False), [1, -1, 1]) # Make statistics on input. if self._recur_dims > 0: """ r_t = f(W^r mu_{t-1} + b^r) """ recur_output = self._activation(_linear( state, self._recur_dims, True, scope='recur_feats' ), name='recur_feats_act') """ phi_t = W^phi r_t + W^x x_t + b^phi """ stats = self._activation(_linear( [inputs, recur_output], self._num_stats, True, scope='stats', ), name='stats_act') else: stats = self._activation(_linear( inputs, self._num_stats, True, scope='stats' ), name='stats_act') # Compute moving averages of statistics for the state. with tf.variable_scope('out_state'): state_tensor = tf.reshape( state, [-1, self._nfreqs, self._num_stats], 'state_tensor' ) stats_tensor = tf.reshape( stats, [-1, 1, self._num_stats], 'stats_tensor' ) #cur_time_step = tf.Print(cur_time_step, [cur_time_step], message="cur_time_step = ") """ mu_t = mask*mu_{t-1} + cos(2*pi*w*t/T + 2*pi*phase)*phi_t """ out_state = tf.reshape(self._freqs_mask*state_tensor + 1.0/self._seq_len*tf.cos(2.0*math.pi/self._seq_len*tf.reshape(cur_time_step, shape=[-1, 1, 1])*self._freqs + 2.0*math.pi*self._phases)*stats_tensor, [-1, self.state_size.state], 'out_state') # Compute the output. if self._include_input: output_vars = [out_state, inputs] else: output_vars = out_state """ o_t = W^o mu_t + b^o """ output = _linear( output_vars, self._output_dims, True, scope='output' ) if not self._linear_out: output = self._activation(output, name='output_act') # update time step out_state_tuple = (out_state, cur_time_step+1) # Retrieve RNN Variables if not self.W: with tf.variable_scope('recur_feats', reuse=True): self.W.append(tf.get_variable('Matrix')) self.b.append(tf.get_variable('Bias')) with tf.variable_scope('stats', reuse=True): self.W.append(tf.get_variable('Matrix')) self.b.append(tf.get_variable('Bias')) with tf.variable_scope('output', reuse=True): self.W.append(tf.get_variable('Matrix')) self.b.append(tf.get_variable('Bias')) print("W = ", self.W) print("b = ", self.b) """ o_t and mu_t """ return (output, out_state_tuple) # No longer publicly expose function in tensorflow. def _linear(args, output_size, bias, bias_start=0.0, scope=None): """Linear map: sum_i(args[i] * W[i]), where W[i] is a variable. Args: args: a 2D Tensor or a list of 2D, batch x n, Tensors. output_size: int, second dimension of W[i]. bias: boolean, whether to add a bias term or not. bias_start: starting value to initialize the bias; 0 by default. scope: VariableScope for the created subgraph; defaults to "Linear". Returns: A 2D Tensor with shape [batch x output_size] equal to sum_i(args[i] * W[i]), where W[i]s are newly created matrices. Raises: ValueError: if some of the arguments has unspecified or wrong shape. """ if args is None or (nest.is_sequence(args) and not args): raise ValueError("`args` must be specified") if not nest.is_sequence(args): args = [args] # Calculate the total size of arguments on dimension 1. total_arg_size = 0 shapes = [a.get_shape().as_list() for a in args] for shape in shapes: if len(shape) != 2: raise ValueError( "Linear is expecting 2D arguments: %s" % str(shapes)) if not shape[1]: raise ValueError( "Linear expects shape[1] of arguments: %s" % str(shapes)) else: total_arg_size += shape[1] dtype = [a.dtype for a in args][0] # Now the computation. with tf.variable_scope(scope or "Linear"): matrix = tf.get_variable( "Matrix", [total_arg_size, output_size], initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=dtype), dtype=dtype) if len(args) == 1: res = tf.matmul(args[0], matrix) else: res = tf.matmul(tf.concat(args, 1), matrix) if not bias: return res bias_term = tf.get_variable( "Bias", [output_size], dtype=dtype, initializer=tf.constant_initializer(bias_start, dtype=dtype) ) return res + bias_term
StarcoderdataPython
1633058
<gh_stars>10-100 ################################################ ## Writen by <NAME> ################################################ from utilities import * from Co8 import * # Define dictionaries of ordinary gems and jewelry in the game. # Format is key : [value in gp, [list of proto numbers]] gem_table = { 1: [10, [12042, 12044]], 2: [50, [12041, 12042]], 3: [100, [12035, 12040]], 4: [500, [12034, 12039]], 5: [1000, [12010, 12038]], 6: [5000, [12036, 12037]] } jewelry_table = { 1: [50, [6180, 6190]], 2: [100, [6181, 6185]], 3: [200, [6157]], 4: [250, [6182, 6194]], 5: [500, [6186, 6191]], 6: [750, [6183, 6193]], 7: [1000, [6184, 6192]], 8: [2500, [6187, 6197]], 9: [5000, [6188, 6195]], 10: [7500, [6189, 6196]] } def RespawnInventory(attachee, num = 0): # Removes all attachee's inventory, and respawns it friom the InvenSource.mes line number specified by 'num'. # If num is not given in the function call, the function will attempt to use the default InvenSource.mes line number for the attachee, if one is defined. # If no InvenSource.mes line number is defined, the function will terminate. # Example call 1: RespawnInventory(attachee, 1) will create Burne's inventory(per line number 1 in InvenSource.mes) in attachee's inventory. # Example call 2: RespawnInventory(attachee) will attempt to create the attachee's pre-defined inventory (per InvenSource.mes). # If the attachee has no Inventory Source defined, the function will terminate. if num == 0: if attachee.type == obj_t_container: num = attachee.obj_get_int( obj_f_container_inventory_source) elif attachee.type == obj_t_npc: num = attachee.obj_get_int(obj_f_critter_inventory_source) else: print attachee, 'is not a valid type' return if num == 0: print attachee, 'has no inventory source defined' print 'Please specify an inventory to respawn' return ClearInv(attachee) CreateInv(attachee, num) return def ClearInv(attachee): # Removes all inventory from attachee. for num in range(4000, 13000): item = attachee.item_find_by_proto(num) while (item != OBJ_HANDLE_NULL): item.destroy() item = attachee.item_find_by_proto(num) return def CreateInv(attachee, num): # Creates inventory from the structured list created by GetInv from the InvenSource.mes line number 'num'. inv = GetInv(num) for i in range(len(inv)): if not (type(inv[i][0]) is str): if type(inv[i][1]) is int: if inv[i][0] <= 100: chance = inv[i][0] if chance >= game.random_range(1,100): create_item_in_inventory(inv[i][1], attachee) else: money = create_item_in_inventory(inv[i][0], attachee) money.obj_set_int(obj_f_money_quantity, inv[i][1]) else: if inv[i][0] == 100: n = game.random_range(0, len(inv[i][1]) - 1) create_item_in_inventory(inv[i][1][n], attachee) elif inv[i][0] >= 7000 and inv[i][0] <= 7003: money = create_item_in_inventory(inv[i][0], attachee) money.obj_set_int(obj_f_money_quantity, game.random_range(inv[i][1][0], inv[i][1][1])) else: gjlist = CalcGJ(inv[i][0], inv[i][1]) if gjlist != []: for k in range(len(gjlist)): create_item_in_inventory(gjlist[k], attachee) return def GetInv(num, filename = 'data\\rules\\InvenSource.mes'): # Reads InvenSource.mes, finds the line numbered 'num', and creates a structured list of the entries in that line. InvDict = readMes(filename) #readMes is in Co8.py InvLine = InvDict[num][0] InvLine = InvLine.split(':') InvLine.remove(InvLine[0]) InvLine[0] = InvLine[0].strip() n = InvLine[0].find('_num') if n != -1: n = n + 7 InvLine[0] = InvLine[0][n:] inv = InvLine[0] inv = inv.split(' ') for i in range(len(inv)): if inv[i].find('(') == -1: inv[i] = inv[i].split(',') for j in range(len(inv[i])): if inv[i][j] == 'copper': inv[i][j] = 7000 elif inv[i][j] == 'silver': inv[i][j] = 7001 elif inv[i][j] == 'gold': inv[i][j] = 7002 elif inv[i][j] == 'platinum': inv[i][j] = 7003 elif type(inv[i][j]) is str and inv[i][j].find('-') != -1: inv[i][j] = inv[i][j].split('-') for k in range(len(inv[i][j])): inv[i][j][k] = ConvertToInt(inv[i][j][k]) if type(inv[i][j]) is str: inv[i][j] = ConvertToInt(inv[i][j]) else: temp1 = inv[i] temp1 = str(temp1) temp1 = temp1[1:-1] temp1 = temp1.split(',') for n in range(len(temp1)): temp1[n] = ConvertToInt(temp1[n]) temp2 = [100, temp1] inv[i] = temp2 return inv def ConvertToInt( string ): if type(string) is str: try: string = int(string) except: if not (string == 'gems' or string == 'jewelry'): print 'WARNING: NON-INTEGER FOUND' print 'Non-integer found is', string else: print 'WARNING: NON-STRING FOUND' print 'Non-string found is', string return string def CalcGJ(string, value): gjlist = [] if string == 'gems': table = gem_table elif string == 'jewelry': table = jewelry_table else: return gjlist if not (type(value) is int): value = ConvertToInt(value) if not (type(value) is int): return gjlist n = len(table) while value >= table[1][0]: if table[n][0] <= value: gjlist.append(table[n][1][game.random_range(0, len(table[n][1]) - 1)]) value = value - table[n][0] else: n = n - 1 return gjlist
StarcoderdataPython
1648823
# slope """ x_0: initial position dt: dt float iteration: integer a: accerelation 0 < a < 1 t: dt * iteration """ # class slope_field(object): # """docstring for slope_field""" # def __init__(self, arg): # super(slope_field, self).__init__() # self.arg = arg def slope(x_0, dt, iteration, a): x = np.array([x_0]) t = np.array([0]) for i in range(iteration): x_i = x[i] t_i = t[i] x_i = x_i + x_dot(x_i) * a t_i = t_i + dt x = np.append(x, np.array([x_i])) t = np.append(t, np.array([t_i])) return x, t
StarcoderdataPython
1646651
<filename>sdk/python/pulumi_azure/cognitive/outputs.py # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'AccountNetworkAcls', ] @pulumi.output_type class AccountNetworkAcls(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "defaultAction": suggest = "default_action" elif key == "ipRules": suggest = "ip_rules" elif key == "virtualNetworkSubnetIds": suggest = "virtual_network_subnet_ids" if suggest: pulumi.log.warn(f"Key '{key}' not found in AccountNetworkAcls. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: AccountNetworkAcls.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: AccountNetworkAcls.__key_warning(key) return super().get(key, default) def __init__(__self__, *, default_action: str, ip_rules: Optional[Sequence[str]] = None, virtual_network_subnet_ids: Optional[Sequence[str]] = None): """ :param str default_action: The Default Action to use when no rules match from `ip_rules` / `virtual_network_subnet_ids`. Possible values are `Allow` and `Deny`. :param Sequence[str] ip_rules: One or more IP Addresses, or CIDR Blocks which should be able to access the Cognitive Account. :param Sequence[str] virtual_network_subnet_ids: One or more Subnet ID's which should be able to access this Cognitive Account. """ pulumi.set(__self__, "default_action", default_action) if ip_rules is not None: pulumi.set(__self__, "ip_rules", ip_rules) if virtual_network_subnet_ids is not None: pulumi.set(__self__, "virtual_network_subnet_ids", virtual_network_subnet_ids) @property @pulumi.getter(name="defaultAction") def default_action(self) -> str: """ The Default Action to use when no rules match from `ip_rules` / `virtual_network_subnet_ids`. Possible values are `Allow` and `Deny`. """ return pulumi.get(self, "default_action") @property @pulumi.getter(name="ipRules") def ip_rules(self) -> Optional[Sequence[str]]: """ One or more IP Addresses, or CIDR Blocks which should be able to access the Cognitive Account. """ return pulumi.get(self, "ip_rules") @property @pulumi.getter(name="virtualNetworkSubnetIds") def virtual_network_subnet_ids(self) -> Optional[Sequence[str]]: """ One or more Subnet ID's which should be able to access this Cognitive Account. """ return pulumi.get(self, "virtual_network_subnet_ids")
StarcoderdataPython
4814134
from django.apps import AppConfig class ChatUsersConfig(AppConfig): name = 'chat_users'
StarcoderdataPython
1761695
from __future__ import print_function import sys import numpy as np def main(argv): np.random.seed(2) numPoints = 1001 xs = np.linspace(-5, 5, numPoints) probs = generateData(numPoints) convProbs = convolveProbs(probs) print(np.sum(convProbs)) plt.imshow(convProbs, interpolation = 'none') plt.show() def generateData(numPoints): probs = list() for i in range(4): p1 = np.random.rand(numPoints) p1 /= np.sum(p1) probs.append(p1) return probs def convolveProbs(probs): numPoints = len(probs[0]) convProbs = np.diag(probs[0]) for p1 in probs[1:]: convProbsCopy = np.copy(convProbs) convProbs = np.zeros((numPoints, numPoints)) rowCumSums = np.zeros((numPoints, numPoints)) for j in range(numPoints): rowCumSums[:j, j] = np.cumsum(convProbsCopy[1:j+1, j][::-1])[::-1] for i in range(numPoints): convProbs[i, i:] += convProbsCopy[i, i:]*np.cumsum(p1[i:]) convProbs[i, i:] += rowCumSums[i, i:]*p1[i] convProbs[i, i+1:] += np.cumsum(convProbsCopy[i, i:-1])*p1[i+1:] return convProbs if __name__ == "__main__": main(sys.argv[1:])
StarcoderdataPython
1701222
import os os.system('docker login -u "dashy2004" -p "12345678qwerty123" repo.treescale.com') os.system('docker build -t games-day .') os.system('docker tag games-day repo.treescale.com/dashy2004/games-day:latest') os.system('docker push repo.treescale.com/dashy2004/games-day:latest') print('The build passed yay!')
StarcoderdataPython
1759169
import os import sys from alembic import command from alembic import config directory = os.path.abspath( os.path.join(os.path.dirname(__file__), '..')) sys.path.insert(0, directory) import settings import data.db_session as db_session directory = os.path.abspath( os.path.join(os.path.dirname(__file__), '../..')) sys.path.insert(0, directory) from migrations import utils as migrations_utils def run(): alembic_cfg = config.Config(settings.ALEMBIC_INI) if not migrations_utils.is_current_rev_is_latest(): command.upgrade(alembic_cfg, 'head') def setup_db(): db_session.init_sql(settings.DB_CONNECTION) if __name__ == '__main__': run()
StarcoderdataPython
1666648
<filename>setup.py from setuptools import setup def readme(): with open('README.md') as f: return f.read() setup( name='diffenv', version='0.2.9', author='<NAME>, <NAME>', author_email='<EMAIL>, <EMAIL>', url='http://github.com/error-central/diffenv', description='Compare development environments', long_description=readme(), long_description_content_type='text/markdown', include_package_data=True, scripts=['bin/diffenv'], license='MIT', packages=['diffenv'], install_requires=[ 'colorama', 'requests', 'ruamel.yaml', 'gitpython', 'psutil', 'importlib_metadata', ], zip_safe=False, )
StarcoderdataPython
4833512
<gh_stars>0 from pathlib import Path import cv2 import matplotlib.pyplot as plt import numpy as np from skimage import io, transform from datawriter import FolderWriter, ICDAR2015Writer from synthgen import RendererV3 import random # Define some configuration variables: NUM_IMG = -1 # no. of images to use for generation (-1 to use all available): # SECS_PER_IMG = 5 #max time per image in seconds SECS_PER_IMG = None # max time per image in seconds # INSTANCE_PER_IMAGE = 900 # no. of times to use the same image INSTANCE_PER_IMAGE = 5 # no. of times to use the same image # path to the data-file, containing image, depth and segmentation: SEED = 2001 def main(bg_dir: Path, depth_dir: Path, seg_dir: Path, font_dir: Path, text_path: Path, output_dir: Path, total_samples, viz): writer = ICDAR2015Writer(output_dir, total_samples) writer.open() random.seed(SEED) np.random.seed(SEED) color_model_path = model_dir / 'colors_new.cp' font_model_path = model_dir / 'font_px2pt.pkl' RV3 = RendererV3(color_model_path, font_dir, text_path, font_model_path, max_time=SECS_PER_IMG) for i, image_path in enumerate(bg_dir.iterdir()): image_name = image_path.stem print('Processing', image_path) depth_path = depth_dir / (image_name + '.npz') if not depth_path.exists(): print(depth_path, 'does not exist. Skip') continue seg_path = seg_dir / (image_name + '.npz') if not seg_path.exists(): print(seg_path, 'does not exist. Skip') continue img = io.imread(str(image_path)) with np.load(depth_path) as data: depth = data['depth'] depth = (depth - depth.min()) / (depth.max() - depth.min()) depth = 1 - depth depth = depth * 255 with np.load(seg_path) as data: seg = data['seg'] area = data['area'] label = data['label'] # try: res = RV3.render_text(img, depth, seg, area, label, ninstance=INSTANCE_PER_IMAGE, viz=viz) # except Exception as e: # print(f'[ERROR] {image_path}: {e}') # print(res) if len(res) > 0: writer.write(res) # visualize the output: if viz: plt.show(block=True) if 'q' == input('Continue? (q to quit)'): break writer.close() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser( description='Generate Synthetic Scene-Text Images') parser.add_argument('data_dir', type=Path) parser.add_argument('--bg_dir', type=Path, default=None) parser.add_argument('--depth_dir', type=Path, default=None) parser.add_argument('--seg_dir', type=Path, default=None) parser.add_argument('--font_dir', type=Path, default=None) parser.add_argument('--text_path', type=Path, default=None) parser.add_argument('--model_dir', type=Path, default=None) parser.add_argument('--viz', action='store_true', dest='viz', default=False, help='flag for turning on visualizations') parser.add_argument('--output_dir', default='outputs', type=Path, help='path to store generated results') parser.add_argument('--total_samples', default=10000, help='Total number of samples to generate') args = parser.parse_args() bg_dir = args.bg_dir or Path(args.data_dir) / 'bg' depth_dir = args.depth_dir or Path(args.data_dir) / 'depths' seg_dir = args.seg_dir or Path(args.data_dir) / 'segs' font_dir = args.font_dir or Path(args.data_dir) / 'fonts' text_path = args.text_path or Path(args.data_dir) / 'text.txt' model_dir = args.model_dir or Path(args.data_dir) / 'models' output_dir = Path(args.output_dir) output_dir.mkdir(exist_ok=True, parents=True) main(bg_dir, depth_dir, seg_dir, font_dir, text_path, output_dir, args.total_samples, args.viz) cv2.destroyAllWindows()
StarcoderdataPython
47229
import os from flask import Flask from flask_restful import Resource, Api app = Flask(__name__) api = Api(app) class EnvironmentVariablesEndpoint(Resource): def get(self): return [(key, os.environ[key]) for key in os.environ.keys()] api.add_resource(EnvironmentVariablesEndpoint, '/') if __name__ == '__main__': app.run(debug=True, host='0.0.0.0', port=8000)
StarcoderdataPython
37424
import math import pathlib import sys import torch import torch.nn as nn PROJECT_DIR = pathlib.Path(__file__).absolute().parent.parent.parent # main directory, the parent of src if str(PROJECT_DIR) not in sys.path: sys.path.append(str(PROJECT_DIR)) from src.model.ConvLayer import ConvLayer from src.model.PrimaryCaps import PrimaryCaps from src.model.DigitCaps import DigitCaps from src.model.Decoder import Decoder INPUT_WIDTH = 28 NUM_CONV_IN_CHANNELS = 1 CONV_KERNEL = 9 CONV_STRIDE = 1 NUM_CONV_OUT_CHANNELS = 256 NUM_PRIMARY_CHANNELS = 32 PRIMARY_CAPS_DIM = 8 PRIMARY_KERNEL = 9 PRIMARY_STRIDE = 2 DIGIT_CAPS_DIM = 16 NUM_CLASSES = 10 REGULARIZATION_SCALE = 0.0005 ITER = 3 DEC1_DIM = 512 DEC2_DIM = 1024 CUDA_ENABLED = True SMALL_DECODER = False DEVICE = 'cuda:0' CONV_SHARED_WEIGHTS = 0 # disabled PRIMARY_SHARED_WEIGHTS = 0 # disabled DIGIT_SHARED_WEIGHTS = 0 # disabled CONV_SHARED_BIAS = CONV_SHARED_WEIGHTS # to have coherency as default SQUASH_APPROX = False class Net(nn.Module): def __init__(self, input_wh=INPUT_WIDTH, num_conv_in_channels=NUM_CONV_IN_CHANNELS, conv_kernel=CONV_KERNEL, conv_stride=CONV_STRIDE, num_conv_out_channels=NUM_CONV_OUT_CHANNELS, num_primary_channels=NUM_PRIMARY_CHANNELS, primary_caps_dim=PRIMARY_CAPS_DIM, primary_kernel=PRIMARY_KERNEL, primary_stride=PRIMARY_STRIDE, digit_caps_dim=DIGIT_CAPS_DIM, num_classes=NUM_CLASSES, regularization_scale=REGULARIZATION_SCALE, iter=ITER, dec1_dim=DEC1_DIM, dec2_dim=DEC2_DIM, cuda_enabled=CUDA_ENABLED, small_decoder=SMALL_DECODER, device=DEVICE, conv_shared_weights=CONV_SHARED_WEIGHTS, primary_shared_weights=PRIMARY_SHARED_WEIGHTS, digit_shared_weights=DIGIT_SHARED_WEIGHTS, conv_shared_bias=CONV_SHARED_BIAS, squash_approx=SQUASH_APPROX): super(Net, self).__init__() self.cuda_enabled = cuda_enabled if cuda_enabled: self.device = torch.device(device) else: self.device = torch.device('cpu') self.regularization_scale = regularization_scale conv_dimension = math.floor( (input_wh-conv_kernel+conv_stride)/conv_stride) primary_dimension = math.floor( (conv_dimension-primary_kernel+primary_stride)/primary_stride) self.conv = ConvLayer(in_channels=num_conv_in_channels, out_channels=num_conv_out_channels, kernel_size=conv_kernel, stride=conv_stride, cuda_enabled=cuda_enabled, device=device, shared_weights=conv_shared_weights, shared_bias=conv_shared_bias) self.primary = PrimaryCaps(in_channels=num_conv_out_channels, out_channels=num_primary_channels, out_caps_dim=primary_caps_dim, kernel_size=primary_kernel, stride=primary_stride, cuda_enabled=cuda_enabled, device=device, shared_weights=primary_shared_weights, squash_approx=squash_approx) self.digit = DigitCaps(in_dim=num_primary_channels*primary_dimension*primary_dimension, out_dim=num_classes, in_caps_dim=primary_caps_dim, out_caps_dim=digit_caps_dim, iter=iter, cuda_enabled=cuda_enabled, device=device, shared_weights=digit_shared_weights, squash_approx=squash_approx) decoder_in_dim = digit_caps_dim if small_decoder else num_classes * digit_caps_dim self.decoder = Decoder(in_dim=decoder_in_dim, l1_dim=dec1_dim, l2_dim=dec2_dim, out_dim=input_wh*input_wh, device=device, small_decoder=small_decoder) def forward(self, x, labels, is_training=True): out_conv = self.conv(x) out_primary = self.primary(out_conv) out_digit = self.digit(out_primary) reconstruction = self.decoder(out_digit, labels, is_training) return out_digit, reconstruction
StarcoderdataPython
3333357
<filename>instascrape/structures.py import os import sys import json import logging import traceback from typing import * from io import BytesIO from collections import namedtuple, OrderedDict import requests from instascrape.constants import * from instascrape.exceptions import * from instascrape.group import * from instascrape.utils import get_username_from_userid, set_mtime, get_biggest_media, verify_file, to_datetime __all__ = ("Post", "IGTV", "Profile", "Hashtag", "Explore") logger = logging.getLogger("instascrape") CommentItem = namedtuple("CommentItem", "author text created_time") class DataGetterMixin: @property def raw_data(self) -> dict: if self._full_data is None: self._obtain_full_data() return self._full_data def _find_or_get(self, *keys: str, data: dict = None, i: int = None): i = 0 if i is None else i key = keys[i] if data is not None: if key in data: return data[key] else: # get full data & find in it self._obtain_full_data() d = self._full_data[keys[0]] for k in keys[1:]: d = d[k] # raises KeyError return d else: # [1] find in initial data if key in self._init_data: d = self._init_data[key] # [2] find in full data (if not None) elif self._full_data is not None and key in self._full_data: d = self._full_data[key] else: # get full data & find in it self._obtain_full_data() d = self._full_data[key] # raises KeyError i += 1 return self._find_or_get(*keys, data=d, i=i) if len(keys) > 1 else d class AsDictMixin: info_vars = () def as_dict(self, *, extra: bool = False) -> OrderedDict: """Returns all 'info_vars' as an 'OrderedDict'. Arguments: extra: Add extra data to the dictionary if True. """ assert len(self.info_vars) > 0, "'AsDictMixin' should not be used in this class if 'info_vars' is intended to be empty" dictionary = OrderedDict({"_struct": self.__class__.__name__} if extra else {}) for attr in self.info_vars: dictionary[attr] = getattr(self, attr) return dictionary class MediaItem(AsDictMixin): """Represents a media item (image or video).""" info_vars = ("typename", "src", "width", "height", "is_video") @classmethod def compose_items(cls, data: dict) -> List["MediaItem"]: """Composes 'MediaItem' objects by extracting from 'data'.""" def make(node: dict) -> "MediaItem": typename = node["__typename"] if typename == "GraphImage": item = get_biggest_media(node["display_resources"]) elif typename == "GraphVideo": item = {"src": node["video_url"]} return cls(typename, item.get("src"), item.get("config_width"), item.get("config_height")) typename = data["__typename"] if typename in ("GraphImage", "GraphVideo"): items = [make(data)] elif typename == "GraphSidecar": items = [] data = data["edge_sidecar_to_children"]["edges"] for node in data: items.append(make(node["node"])) else: raise AssertionError("unrecognized typename: '{}'".format(typename)) return items def __init__(self, typename: str, src: str, width: int, height: int): self.typename = typename self.src = src self.width = width self.height = height def __repr__(self) -> str: return "MediaItem(typename='{}', src='{}', width={}, height={})".format(self.typename, self.src, self.width, self.height) def __eq__(self, other) -> bool: return isinstance(other, MediaItem) and self.src == other.src def __hash__(self) -> int: return hash(self.src) @property def is_video(self) -> bool: """Returns True if this media is a video.""" return self.typename == "GraphStoryVideo" def download(self, dest: str, filename: str, *, write: bool = True, verify: bool = True) -> Optional[str]: """Download this media item to a file. Arguments: dest: Path to the destination directory. filename: Name of the file without extension. write: Write file to disk if True, write to memory otherwise (for testing and debugging). verify: Verify file integrity if True, check the size of file in bytes otherwise. Returns: The path to the downloaded file if download suceeded, False otherwise """ try: f = None logger.debug("Downloading file {0} -> {1}".format(self.src, dest)) r = requests.get(self.src, stream=True, timeout=30) # get info of the file mime = r.headers["Content-Type"] bytesize = int(r.headers["Content-Length"]) size = int(bytesize / 1024) if mime == "video/mp4": ext = ".mp4" elif mime == "image/jpeg": ext = ".jpg" else: raise DownloadError("Unsupported MIME type: {0}".format(mime), self.src) finish_filename = filename + ext finish_path = os.path.join(dest, finish_filename) part_filename = filename + ext + ".part" part_path = os.path.join(dest, part_filename) # skip if the file is existing and intact if os.path.isfile(finish_path): # verify file integrity using md5 if verify and verify_file(r.content, finish_path): logger.debug("~> [{0}] {1} [skip] (already downloaded)".format(mime, finish_filename)) return None # verify file by checking the size in byte if os.stat(finish_path).st_size == bytesize: logger.debug("~> [{0}] {1} [skip] (already downloaded)".format(mime, finish_filename)) return None # write to file f = open(part_path, "wb+") if write else BytesIO() for chunk in r.iter_content(1024): if chunk: f.write(chunk) logger.debug("=> [{0}] {1} [{2}x{3}] ({4} kB)".format(mime, finish_filename, self.width or "?", self.height or "?", size)) except Exception as e: raise DownloadError(str(e), self.src) from e else: # rename .part file to its real extension if f: f.close() os.rename(part_path, finish_path) return finish_path finally: if f and not f.closed: f.close() class ReelItem(MediaItem): """Represents a media item (image or video) of a reel.""" info_vars = ("typename", "src", "width", "height", "is_video", "id", "owner_username", "owner_id", "owner_profile_picture_url", "created_time", "expire_time", "cta_url") @classmethod def compose_items(cls, data: dict) -> List["ReelItem"]: """Composes 'ReelItem' objects by extracting from 'data'.""" def make(node: dict) -> "ReelItem": typename = node["__typename"] if typename == "GraphStoryImage": item = get_biggest_media(node["display_resources"]) elif typename == "GraphStoryVideo": item = get_biggest_media(node["video_resources"]) return cls(typename, item.get("src"), item.get("config_width"), item.get("config_height"), node) items = [] data = data["items"] for node in data: items.append(make(node)) return items def __init__(self, typename: str, src: str, width: int, height: int, data: dict): super().__init__(typename, src, width, height) self.data = data def __repr__(self) -> str: return "ReelItem(typename='{}', src='{}', width={}, height={})".format(self.typename, self.src, self.width, self.height) def __eq__(self, other) -> bool: return isinstance(other, ReelItem) and self.src == other.src and self.id == other.id def __hash__(self) -> int: return hash(self.id) @property def is_video(self) -> bool: """Returns True if this media item is a video.""" return self.typename == "GraphStoryVideo" @property def id(self) -> str: """Returns the ID of this reel item.""" return self.data["id"] @property def owner_username(self) -> str: """Returns the owner's username of this reel item.""" return self.data["owner"]["username"] @property def owner_id(self) -> str: """Returns the owner's ID of this reel item.""" return self.data["owner"]["id"] @property def owner_profile_picture_url(self) -> str: """Returns the URL of the owner's profile picture of this reel item.""" return self.data["owner"]["profile_pic_url"] def owner_profile_picture(self) -> MediaItem: """Returns a 'MediaItem' that represents the owner's profile picture of this reel item.""" return MediaItem("GraphImage", self.owner_profile_picture_url, 150, 150) @property def created_time(self) -> int: """Returns the created time (timestamp) of this reel item.""" return int(self.data["taken_at_timestamp"]) @property def expire_time(self) -> int: """Returns the expire time in timestamp of this reel item.""" return int(self.data["expiring_at_timestamp"]) @property def cta_url(self) -> Optional[str]: """Returns the 'swipe up for more' URL of this reel item.""" return self.data["story_cta_url"] class Post(AsDictMixin, DataGetterMixin): """Represents a Post entity.""" info_vars = ("shortcode", "url", "typename", "id", "owner_username", "owner_id", "owner_profile_picture_url", "created_time", "caption", "media_count", "likes_count", "comments_count") @classmethod def from_shortcode(cls, insta, shortcode: str): """Returns a 'Post' instance by shortcode.""" post = cls(insta, {"shortcode": shortcode}) post._obtain_full_data() return post def __init__(self, insta, data: dict): self._insta = insta self._init_data = data self._full_data = None self.shortcode = data["shortcode"] def _obtain_full_data(self): if self._full_data is None: logger.debug("Fetching initial json data of Post(shortcode='{}')...".format(self.shortcode)) self._full_data = self._insta._fetch_json_data(POST_URL.format(shortcode=self.shortcode))["shortcode_media"] def __repr__(self) -> str: return "Post(shortcode='{0}', typename='{1}')".format(self.shortcode, self.typename) def __eq__(self, other) -> bool: return isinstance(other, Post) and self.shortcode == other.shortcode and self.id == other.id def __hash__(self) -> int: return hash(self.shortcode) def __len__(self) -> int: return self.media_count def __getitem__(self, index: int) -> MediaItem: return self.media_items()[index] def __iter__(self) -> MediaItem: for media in self.media_items(): yield media @property def url(self) -> str: """Returns the URL of this post.""" return "https://instagram.com/p/" + self.shortcode @property def typename(self) -> str: """Returns the typename of this post (one of 'GraphImage', 'GraphVideo', 'GraphSidecar').""" return self._find_or_get("__typename") @property def id(self) -> str: """Returns the ID of this post.""" return self._find_or_get("id") @property def owner_username(self) -> str: """Returns the owner's username this post.""" return self._find_or_get("owner")["username"] @property def owner_id(self) -> str: """Returns the owner's ID of this post.""" return self._find_or_get("owner")["id"] @property def owner_profile_picture_url(self) -> str: """Returns the URL of the owner's profile picture of this post.""" return self._find_or_get("owner", "profile_pic_url") def owner_profile_picture(self) -> MediaItem: """Returns a 'MediaItem' object of the owner's profile picture of this post.""" return MediaItem("GraphImage", self.owner_profile_picture_url, 150, 150) @property def created_time(self) -> int: """Returns the created_time (timestamp) of this post.""" return int(self._find_or_get("taken_at_timestamp")) @property def caption(self) -> str: """Returns the caption of this post.""" edges = self._find_or_get("edge_media_to_caption", "edges") if not edges: return "" return edges[0]["node"]["text"] @property def likes_count(self) -> int: """Returns the amount of likes of this post.""" return self._find_or_get("edge_media_preview_like")["count"] @property def comments_count(self) -> int: """Returns the amount of comments of this post.""" try: return self._find_or_get("edge_media_preview_comment")["count"] except KeyError: # fallback return self._find_or_get("edge_media_to_parent_comment")["count"] @property def media_count(self) -> int: """Returns the amount of media items in this post.""" return len(self.media_items()) def media_items(self) -> List[MediaItem]: """Returns a list of 'MediaItem' of this post.""" self._obtain_full_data() return MediaItem.compose_items(self._full_data) def likes(self) -> Group: """Retrieves likes of this post in the form of usernames. Returns: A 'Group' object that yields 'Profile' objects. """ logger.info("Retrieving likes of :{0}".format(self.shortcode)) variables = {"shortcode": self.shortcode} nodes = self._insta._graphql_query_edges(QUERYHASH_LIKES, variables, "shortcode_media", "edge_liked_by") return Group(next(nodes), (Profile(self._insta, node) for node in nodes)) def comments(self): """Retrieves likes of this post in the form of usernames. Returns: - An integer that idicates the estimated amount of items. - A generator that yields 'CommentItem' -> namedtuple(author, text, created_time). """ logger.info("Retrieving comments of :{0}".format(self.shortcode)) variables = {"shortcode": self.shortcode} nodes = self._insta._graphql_query_edges(QUERYHASH_COMMENTS, variables, "shortcode_media", "edge_media_to_comment") return next(nodes), (CommentItem(node["owner"]["username"], node["text"], node["created_at"]) for node in nodes) def download(self, dest: str = None, *, write: bool = True, verify: bool = True, on_item_start: Callable = None, on_item_finish: Callable = None, on_item_error: Callable = None): """Download all media items of this post. Arguments: dest: Path to the destination directory. write: Write file to disk if True, write to memory otherwise. verify: Verify file integrity if True, check the size of file in bytes otherwise. See 'MediaItem.download()'. on_item_start: A callable (Post, int, MediaItem). Called on start of each item. on_item_finish: A callable (Post, int, MediaItem, str). Called on finish of each item. on_item_error: A callable (Post, int, MediaItem, Exception). Called on error of each item. """ dest = os.path.abspath(dest or "./") media_items = self.media_items() multi = self.media_count > 1 subdest = os.path.join(dest, self.shortcode) if multi else None if subdest and not os.path.isdir(subdest): os.mkdir(subdest) logger.debug("Downloading {0} ({1} media) [{2}]...".format(repr(self), len(media_items), self.typename)) logger.debug("Dest: " + dest) for i, item in enumerate(media_items): if on_item_start is not None: on_item_start(self, i, item) try: filename = str(i) if multi else self.shortcode file_path = item.download(subdest or dest, filename, write=write, verify=verify) if file_path is not None: set_mtime(file_path, self.created_time) if on_item_finish is not None: on_item_finish(self, i, item, file_path) except Exception as e: # NOTE: if the Post has multiple media items to download, the occurrence of exception will NOT interrupt # the whole download of the post, unless user reraises the exception in 'on_item_error()'. exc_type, exc_value, tb = sys.exc_info() logger.error("{}: {}".format(exc_type.__name__, exc_value)) logger.debug("".join(traceback.format_tb(tb))) if on_item_error is not None: on_item_error(self, i, item, e) continue class IGTV(Post): """Represents an IGTV Post entity.""" info_vars = ("shortcode", "url", "typename", "id", "owner_username", "owner_id", "owner_profile_picture_url", "created_time", "caption", "media_count", "likes_count", "comments_count", "title", "duration") def __init__(self, insta, data: dict): # In fact, the URL of a IGTV Post is 'instagram.com/tv/{shortcode}' # but I found out that using 'instagram.com/p/{shortcode}' is just the same, since it is also considered as a Post super().__init__(insta, data) def __repr__(self) -> str: return "IGTV(title='{0}', shortcode='{1}')".format(self.title, self.shortcode) @property def title(self) -> str: """Returns the title of this IGTV post.""" return self._find_or_get("title") @property def duration(self) -> float: """Returns the video duration of this IGTV post.""" return float(self._find_or_get("video_duration")) @property def view_count(self) -> int: """Returns the video view count of this IGTV post.""" return self._find_or_get("video_view_count") class Story(AsDictMixin): """Represents a Story entity.""" info_vars = ("typename", "id", "reel_count") def __init__(self, data: dict): self.data = data def __repr__(self): return NotImplemented def __eq__(self, other) -> bool: return isinstance(other, Story) and self.id == other.id def __hash__(self) -> int: return hash(self.id) def __len__(self) -> int: return self.reel_count def __getitem__(self, index: int) -> ReelItem: return self.reel_items()[index] def __iter__(self) -> ReelItem: for reel in self.reel_items(): yield reel @property def typename(self) -> str: """Returns the typename of this story.""" return self.data["__typename"] @property def id(self) -> str: """Returns the ID of this story.""" return self.data["id"] @property def reel_count(self) -> int: """Returns the amount of reel items in this story.""" return len(self.reel_items()) def reel_items(self) -> List[ReelItem]: """Returns a list of reel items of this story.""" return ReelItem.compose_items(self.data) def download(self, dest: str = None, *, write: bool = True, verify: bool = True, on_item_start: Callable = None, on_item_finish: Callable = None, on_item_error: Callable = None): """Download all reel items of this story. Arguments: dest: Path to the destination directory. write: Write file to disk if True, write to memory otherwise. verify: Verify file integrity if True, check the size of file in bytes otherwise. See 'MediaItem.download()'. on_item_start: A callable (Story, int, ReelItem). Called on start of each item. on_item_finish: A callable (Story, int, ReelItem, str). Called on finish of each item. on_item_error: A callable (Story, int, ReelItem, Exception). Called on error of each item. """ dest = os.path.abspath(dest or "./") reel_items = self.reel_items() logger.debug("Downloading {0} ({1} media) [{2}]...".format(repr(self), len(reel_items), self.typename)) logger.debug("Dest: " + dest) for i, item in enumerate(reel_items): if on_item_start is not None: on_item_start(self, i, item) try: filename = to_datetime(item.created_time) file_path = item.download(dest, filename, write=write, verify=verify) if file_path is not None: set_mtime(file_path, item.created_time) if on_item_finish is not None: on_item_finish(self, i, item, file_path) except Exception as e: # NOTE: if the Story has multiple reel items to download, the occurrence of exception will NOT interrupt # the whole download of the story, unless user reraises the exception in 'on_item_error()'. exc_type, exc_value, tb = sys.exc_info() logger.error("{}: {}".format(exc_type.__name__, exc_value)) logger.debug("".join(traceback.format_tb(tb))) if on_item_error is not None: on_item_error(self, i, item, e) continue class UserStory(Story): """Represents a Story entity that belongs to a Profile.""" info_vars = ("typename", "id", "latest_reel_media", "reel_count", "owner_username", "owner_id", "owner_profile_picture_url", "seen_time") def __init__(self, data: dict): super().__init__(data) def __repr__(self) -> str: return "UserStory(owner_username='{0}', typename='{1}')".format(self.owner_username, self.typename) @property def latest_reel_media(self) -> int: """Returns the created time of the latest reel media (timestamp) of this story.""" return int(self.data["latest_reel_media"]) @property def owner_username(self) -> str: """Returns the owner's username of this story.""" return self.data["owner"]["username"] @property def owner_id(self) -> str: """Returns the owner's ID of this story.""" return self.data["owner"]["id"] @property def owner_profile_picture_url(self) -> str: """Returns the URL of the owner's profile picture of this story.""" return self.data["owner"]["profile_pic_url"] def owner_profile_picture(self) -> MediaItem: """Returns a 'MediaItem' object of the owner's profile picture of this story.""" return MediaItem("GraphImage", self.data["owner"]["profile_pic_url"], 150, 150) @property def seen_time(self) -> Optional[int]: """Returns the seen time (timestamp) of this story if it has been seen, None otherwise.""" if self.data["seen"]: return int(self.data["seen"]) class HashtagStory(Story): """Represents a Story entity that belongs to a Hashtag.""" info_vars = ("typename", "id", "latest_reel_media", "reel_count", "tagname") def __init__(self, data: dict): super().__init__(data) def __repr__(self) -> str: return "HashtagStory(tagname='{0}', typename='{1}')".format(self.tagname, self.typename) @property def latest_reel_media(self) -> int: """Returns the created time of the latest reel media (timestamp) of this story.""" return int(self.data["latest_reel_media"]) @property def tagname(self) -> str: """Returns the hashtag's tag name of this story.""" return self.data["owner"]["name"] class Highlight(Story): """Represents a Highlight entity.""" info_vars = ("typename", "id", "title", "cover_media_thumbnail", "owner_username", "owner_id", "owner_profile_picture_url", "reel_count") def __init__(self, data: dict): super().__init__(data) def __repr__(self) -> str: return "Highlight(title='{}')".format(self.title) @property def title(self) -> str: """Returns the title of this highlight.""" return self.data["title"] @property def cover_media_thumbnail(self) -> str: """Returns the URL of the cover thumbnail of this highlight.""" return self.data["cover_media"]["thumbnail_src"] @property def owner_username(self) -> str: """Returns the owner's username of this highlight.""" return self.data["owner"]["username"] @property def owner_id(self) -> str: """Returns the owner's ID of this highlight.""" return self.data["owner"]["id"] @property def owner_profile_picture_url(self) -> str: """Returns the URL of the owner's profile picture of this highlight.""" return self.data["owner"]["profile_pic_url"] def owner_profile_picture(self) -> MediaItem: """Returns a 'MediaItem' object of the owner's profile picture of this highlight.""" return MediaItem("GraphImage", self.data["owner"]["profile_pic_url"], 150, 150) class Profile(AsDictMixin, DataGetterMixin): """Represents a user Profile entity.""" info_vars = ("username", "url", "id", "fullname", "biography", "website", "followers_count", "followings_count", "mutual_followers_count", "is_verified", "is_private", "profile_picture_url") @classmethod def from_id(cls, insta, id: str): """Returns a Post instance from user ID. * This takes one more step to obtain the username of the user. """ username = get_username_from_userid(id) return cls.from_username(insta, username) @classmethod def from_username(cls, insta, username: str): """Returns a Post instance from username.""" profile = cls(insta, {"username": username}) profile._obtain_full_data() return profile def __init__(self, insta, data: dict): self._insta = insta self._init_data = data self._full_data = None self.username = data["username"] def _obtain_full_data(self): if self._full_data is None: logger.debug("Obtaining full data of Profile(username='{}')".format(self.username)) self._full_data = self._insta._fetch_json_data(PROFILE_URL.format(username=self.username))["user"] def __repr__(self): return "Profile(username='{0}', id='{1}')".format(self.username, self.id) def __eq__(self, other): return isinstance(other, Profile) and self.username == other.username and self.id == other.id def __hash__(self) -> int: return hash(self.id) @property def url(self) -> str: """Returns the URL of this profile.""" return "https://instagram.com/" + self.username @property def id(self) -> str: """Returns the ID (user ID) of this profile.""" return self._find_or_get("id") @property def fullname(self) -> str: """Returns the fullname of this profile.""" return self._find_or_get("full_name") @property def biography(self) -> str: """Returns the biography of this profile.""" return self._find_or_get("biography") @property def website(self) -> Optional[str]: """Returns the website of this profile if applicable, None otherwise.""" return self._find_or_get("external_url") @property def followers_count(self) -> int: """Returns the amount of followers this profile has.""" return self._find_or_get("edge_followed_by")["count"] @property def followings_count(self) -> int: """Returns the amount of users this profile is following.""" return self._find_or_get("edge_follow")["count"] @property def mutual_followers_count(self) -> int: """Returns the amount of mutual followers of this profile.""" return self._find_or_get("edge_mutual_followed_by")["count"] @property def is_verified(self) -> bool: """Returns True if this profile is verified, False otherwise""" return self._find_or_get("is_verified") @property def is_private(self) -> bool: """Returns True if this profile is private, False otherwise""" return self._find_or_get("is_private") @property def profile_picture_url(self) -> str: """Retunrs the URL of the profile picture of this profile.""" return self._find_or_get("profile_pic_url_hd") def profile_picture(self) -> MediaItem: """Retunrs a 'MediaItem' of the profile picture of this profile.""" return MediaItem("GraphImage", self.profile_picture_url, 320, 320) def timeline_posts(self) -> PostGroup: """Retrieves timeline posts of this profile. Returns: A 'PostGroup' object. """ self._obtain_full_data() logger.info("Retrieving timeline posts of @{0}".format(self.username)) variables = {"id": self.id} nodes = self._insta._graphql_query_edges(QUERYHASH_TIMELINE, variables, "user", "edge_owner_to_timeline_media", self._full_data) return Group.of_posts(next(nodes), (Post(self._insta, node) for node in nodes)) def saved_posts(self) -> PostGroup: """Retrieves saved posts of this profile. * Requires authentication. Returns: A 'PostGroup' object. """ if not self._insta.authenticated: raise AuthenticationRequired() self._obtain_full_data() logger.info("Retrieving saved posts of @{0}".format(self.username)) variables = {"id": self.id} nodes = self._insta._graphql_query_edges(QUERYHASH_SAVED, variables, "user", "edge_saved_media", self._full_data) return Group.of_posts(next(nodes), (Post(self._insta, node) for node in nodes)) def tagged_posts(self) -> PostGroup: """Retrieves tagged posts of this profile. Returns: A 'PostGroup' object. """ logger.info("Retrieving tagged posts of @{0}".format(self.username)) variables = {"id": self.id} nodes = self._insta._graphql_query_edges(QUERYHASH_TAGGED, variables, "user", "edge_user_to_photos_of_you") return Group.of_posts(next(nodes), (Post(self._insta, node) for node in nodes)) def igtv_posts(self) -> PostGroup: """Retrieves IGTV posts of this profile. Returns: A 'PostGroup' object. """ self._obtain_full_data() logger.info("Retrieving IGTV video posts of @{0}".format(self.username)) variables = {"id": self.id} nodes = self._insta._graphql_query_edges(QUERYHASH_IGTV, variables, "user", "edge_felix_video_timeline", self._full_data) return Group.of_posts(next(nodes), (IGTV(self._insta, node) for node in nodes)) def followers(self) -> Group: """Retrieves followers of this profile. * Requires authentication. Returns: A 'Group' object that yields 'Profile' instances. """ if not self._insta.authenticated: raise AuthenticationRequired() logger.info("Retrieving followers of @{0}".format(self.username)) variables = {"id": self.id} nodes = self._insta._graphql_query_edges(QUERYHASH_FOLLOWERS, variables, "user", "edge_followed_by") return Group(next(nodes), (Profile(self._insta, node) for node in nodes)) def followings(self) -> Group: """Retrieves profiles that this profile is following. * Requires authentication. Returns: A 'Group' object that yields 'Profile' instances. """ if not self._insta.authenticated: raise AuthenticationRequired() logger.info("Retrieving followings of @{0}".format(self.username)) variables = {"id": self.id} nodes = self._insta._graphql_query_edges(QUERYHASH_FOLLOWINGS, variables, "user", "edge_follow") return Group(next(nodes), (Profile(self._insta, node) for node in nodes)) def highlights(self) -> List[Highlight]: """Retrieves highlights of this profile. * Requires authentication. Returns: A list of 'Highlight' objects. """ if not self._insta.authenticated: raise AuthenticationRequired() logger.info("Retrieving story highlights of @{0}".format(self.username)) # [1] retrieve all available highlights of this user variables = {"user_id": self.id, "include_chaining": False, "include_reel": False, "include_suggested_users": False, "include_logged_out_extras": False, "include_highlight_reels": True} data = self._insta._graphql_query(QUERYHASH_HIGHLIGHTS, variables)["user"]["edge_highlight_reels"] nodes = [edge["node"] for edge in data["edges"]] if not nodes: logger.warning("No visible highlight is found for this profile.") return [] # [2] do GraphQL query to get the reel items data of all highlights at once logger.debug("Fetching json data of highlights of @{} ...".format(self.username)) variables = {"highlight_reel_ids": [str(node["id"]) for node in nodes], "precomposed_overlay": False, "show_story_viewer_list": False} url = QUERY_URL.format(QUERYHASH_REELITEMS, json.dumps(variables)) data = self._insta._fetch_json_data(url)["reels_media"] hs = [] for d in data: for node in nodes: if node["id"] == d["id"]: d.update(node) break else: continue # produce 'Highlight' object hs.append(Highlight(d)) return hs def story(self) -> Optional[UserStory]: """Retrieves the currently visible story of this profile. * Requires authentication. Returns: A 'UserStory' object if applicable, None otherwise. """ if not self._insta.authenticated: raise AuthenticationRequired() logger.info("Retrieving story of @{0}".format(self.username)) variables = {"reel_ids": [self.id], "precomposed_overlay": False, "show_story_viewer_list": False} data = self._insta._graphql_query(QUERYHASH_REELITEMS, variables)["reels_media"] if not data: logger.warning("No visible story is available now for this profile.") return return UserStory(data[0]) class Hashtag(DataGetterMixin): """Represents a Hashtag entity.""" @classmethod def from_tagname(cls, insta, tagname: str): """Returns a Hashtag instance from tag name.""" hashtag = cls(insta, {"name": tagname}) hashtag._obtain_full_data() return hashtag def __init__(self, insta, data: dict): self._insta = insta self._init_data = data self._full_data = None self.tagname = data["name"] def _obtain_full_data(self): if self._full_data is None: logger.debug("Obtaining full data of Hashtag(tagname='{}')".format(self.tagname)) self._full_data = self._insta._fetch_json_data(HASHTAG_URL.format(tagname=self.tagname))["hashtag"] def __repr__(self): return "Hashtag(tagname='{0}')".format(self.tagname) def __eq__(self, other): return isinstance(other, Hashtag) and self.tagname == other.tagname and self.id == other.id def __hash__(self) -> int: return hash(self.tagname) @property def id(self) -> str: """Returns the ID of this hashtag.""" return self._find_or_get("id") @property def profile_picture_url(self) -> str: """Returns the URl of the profile picture of this hashtag.""" return self._find_or_get("profile_pic_url") def profile_picture(self) -> MediaItem: """Returns a 'MediaItem' of the profile picture of this hashtag.""" return MediaItem("GraphImage", self.profile_picture_url, 320, 320) def top_posts(self) -> PostGroup: """Retrieves top posts if this hashtag. * Only 9 posts at most. Returns: A 'PostGroup' object. """ self._obtain_full_data() logger.info("Retrieving top posts of #{0}".format(self.tagname)) nodes = self._insta._graphql_query_edges("", {}, "hashtag", "edge_hashtag_to_top_posts", self._full_data) return Group.of_posts(next(nodes), (Post(self._insta, node) for node in nodes)) def recent_posts(self) -> PostGroup: """Retrieves most recent posts if this hashtag. Returns: A 'PostGroup' object. """ logger.info("Retrieving recent posts of #{0}".format(self.tagname)) variables = {"tag_name": self.tagname} nodes = self._insta._graphql_query_edges(QUERYHASH_HASHTAG, variables, "hashtag", "edge_hashtag_to_media") return Group.of_posts(next(nodes), (Post(self._insta, node) for node in nodes)) def story(self) -> Optional[HashtagStory]: """Retrieves the current visible Story of this hashtag. * Requires authentication. Returns: A 'HashtagStory' object. """ if not self._insta.authenticated: raise AuthenticationRequired() logger.info("Retrieving story of #{0}".format(self.tagname)) variables = {"tag_names": [self.tagname], "precomposed_overlay": False, "show_story_viewer_list": False} data = self._insta._graphql_query(QUERYHASH_REELITEMS, variables)["reels_media"] if not data: logger.warning("No visible story is avaliable now for this hashtag.") return return HashtagStory(data[0]) class Explore: """Represents the Explore entity in the discover section.""" def __init__(self, insta): self._insta = insta def __repr__(self): return "Explore()" def posts(self) -> PostGroup: """Retrieves posts of explore. * Requires authentication. Returns: A 'PostGroup' object. """ if not self._insta.authenticated: raise AuthenticationRequired() logger.info("Retrieving explore posts...") nodes = self._insta._graphql_query_edges(QUERYHASH_EXPLORE, {}, "user", "edge_web_discover_media") return Group.of_posts(next(nodes), (Post(self._insta, node) for node in nodes))
StarcoderdataPython
1358
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=line-too-long """List of renames to apply when converting from TF 1.0 to TF 2.0. THIS FILE IS AUTOGENERATED: To update, please run: bazel build tensorflow/tools/compatibility/update:generate_v2_renames_map bazel-bin/tensorflow/tools/compatibility/update/generate_v2_renames_map This file should be updated whenever endpoints are deprecated. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function renames = { 'tf.AUTO_REUSE': 'tf.compat.v1.AUTO_REUSE', 'tf.AttrValue': 'tf.compat.v1.AttrValue', 'tf.COMPILER_VERSION': 'tf.version.COMPILER_VERSION', 'tf.CXX11_ABI_FLAG': 'tf.sysconfig.CXX11_ABI_FLAG', 'tf.ConditionalAccumulator': 'tf.compat.v1.ConditionalAccumulator', 'tf.ConditionalAccumulatorBase': 'tf.compat.v1.ConditionalAccumulatorBase', 'tf.ConfigProto': 'tf.compat.v1.ConfigProto', 'tf.DeviceSpec': 'tf.compat.v1.DeviceSpec', 'tf.Dimension': 'tf.compat.v1.Dimension', 'tf.Event': 'tf.compat.v1.Event', 'tf.FIFOQueue': 'tf.queue.FIFOQueue', 'tf.FixedLenFeature': 'tf.io.FixedLenFeature', 'tf.FixedLenSequenceFeature': 'tf.io.FixedLenSequenceFeature', 'tf.FixedLengthRecordReader': 'tf.compat.v1.FixedLengthRecordReader', 'tf.GIT_VERSION': 'tf.version.GIT_VERSION', 'tf.GPUOptions': 'tf.compat.v1.GPUOptions', 'tf.GRAPH_DEF_VERSION': 'tf.version.GRAPH_DEF_VERSION', 'tf.GRAPH_DEF_VERSION_MIN_CONSUMER': 'tf.version.GRAPH_DEF_VERSION_MIN_CONSUMER', 'tf.GRAPH_DEF_VERSION_MIN_PRODUCER': 'tf.version.GRAPH_DEF_VERSION_MIN_PRODUCER', 'tf.GraphDef': 'tf.compat.v1.GraphDef', 'tf.GraphKeys': 'tf.compat.v1.GraphKeys', 'tf.GraphOptions': 'tf.compat.v1.GraphOptions', 'tf.HistogramProto': 'tf.compat.v1.HistogramProto', 'tf.IdentityReader': 'tf.compat.v1.IdentityReader', 'tf.InteractiveSession': 'tf.compat.v1.InteractiveSession', 'tf.LMDBReader': 'tf.compat.v1.LMDBReader', 'tf.LogMessage': 'tf.compat.v1.LogMessage', 'tf.MONOLITHIC_BUILD': 'tf.sysconfig.MONOLITHIC_BUILD', 'tf.MetaGraphDef': 'tf.compat.v1.MetaGraphDef', 'tf.NameAttrList': 'tf.compat.v1.NameAttrList', 'tf.NoGradient': 'tf.no_gradient', 'tf.NodeDef': 'tf.compat.v1.NodeDef', 'tf.NotDifferentiable': 'tf.no_gradient', 'tf.OpError': 'tf.errors.OpError', 'tf.OptimizerOptions': 'tf.compat.v1.OptimizerOptions', 'tf.PaddingFIFOQueue': 'tf.queue.PaddingFIFOQueue', 'tf.Print': 'tf.compat.v1.Print', 'tf.PriorityQueue': 'tf.queue.PriorityQueue', 'tf.QUANTIZED_DTYPES': 'tf.dtypes.QUANTIZED_DTYPES', 'tf.QueueBase': 'tf.queue.QueueBase', 'tf.RandomShuffleQueue': 'tf.queue.RandomShuffleQueue', 'tf.ReaderBase': 'tf.compat.v1.ReaderBase', 'tf.RunMetadata': 'tf.compat.v1.RunMetadata', 'tf.RunOptions': 'tf.compat.v1.RunOptions', 'tf.Session': 'tf.compat.v1.Session', 'tf.SessionLog': 'tf.compat.v1.SessionLog', 'tf.SparseConditionalAccumulator': 'tf.sparse.SparseConditionalAccumulator', 'tf.SparseFeature': 'tf.io.SparseFeature', 'tf.SparseTensorValue': 'tf.compat.v1.SparseTensorValue', 'tf.Summary': 'tf.compat.v1.Summary', 'tf.SummaryMetadata': 'tf.compat.v1.SummaryMetadata', 'tf.TFRecordReader': 'tf.compat.v1.TFRecordReader', 'tf.TensorInfo': 'tf.compat.v1.TensorInfo', 'tf.TextLineReader': 'tf.compat.v1.TextLineReader', 'tf.VERSION': 'tf.version.VERSION', 'tf.VarLenFeature': 'tf.io.VarLenFeature', 'tf.VariableScope': 'tf.compat.v1.VariableScope', 'tf.WholeFileReader': 'tf.compat.v1.WholeFileReader', 'tf.accumulate_n': 'tf.math.accumulate_n', 'tf.add_check_numerics_ops': 'tf.compat.v1.add_check_numerics_ops', 'tf.add_to_collection': 'tf.compat.v1.add_to_collection', 'tf.add_to_collections': 'tf.compat.v1.add_to_collections', 'tf.all_variables': 'tf.compat.v1.all_variables', 'tf.angle': 'tf.math.angle', 'tf.app.run': 'tf.compat.v1.app.run', 'tf.assert_greater_equal': 'tf.compat.v1.assert_greater_equal', 'tf.assert_integer': 'tf.compat.v1.assert_integer', 'tf.assert_less_equal': 'tf.compat.v1.assert_less_equal', 'tf.assert_near': 'tf.compat.v1.assert_near', 'tf.assert_negative': 'tf.compat.v1.assert_negative', 'tf.assert_non_negative': 'tf.compat.v1.assert_non_negative', 'tf.assert_non_positive': 'tf.compat.v1.assert_non_positive', 'tf.assert_none_equal': 'tf.compat.v1.assert_none_equal', 'tf.assert_positive': 'tf.compat.v1.assert_positive', 'tf.assert_proper_iterable': 'tf.debugging.assert_proper_iterable', 'tf.assert_rank_at_least': 'tf.compat.v1.assert_rank_at_least', 'tf.assert_rank_in': 'tf.compat.v1.assert_rank_in', 'tf.assert_same_float_dtype': 'tf.debugging.assert_same_float_dtype', 'tf.assert_scalar': 'tf.compat.v1.assert_scalar', 'tf.assert_type': 'tf.compat.v1.assert_type', 'tf.assert_variables_initialized': 'tf.compat.v1.assert_variables_initialized', 'tf.assign': 'tf.compat.v1.assign', 'tf.assign_add': 'tf.compat.v1.assign_add', 'tf.assign_sub': 'tf.compat.v1.assign_sub', 'tf.batch_scatter_update': 'tf.compat.v1.batch_scatter_update', 'tf.betainc': 'tf.math.betainc', 'tf.ceil': 'tf.math.ceil', 'tf.check_numerics': 'tf.debugging.check_numerics', 'tf.cholesky': 'tf.linalg.cholesky', 'tf.cholesky_solve': 'tf.linalg.cholesky_solve', 'tf.clip_by_average_norm': 'tf.compat.v1.clip_by_average_norm', 'tf.colocate_with': 'tf.compat.v1.colocate_with', 'tf.conj': 'tf.math.conj', 'tf.container': 'tf.compat.v1.container', 'tf.convert_to_tensor_or_indexed_slices': 'tf.compat.v1.convert_to_tensor_or_indexed_slices', 'tf.convert_to_tensor_or_sparse_tensor': 'tf.compat.v1.convert_to_tensor_or_sparse_tensor', 'tf.count_up_to': 'tf.compat.v1.count_up_to', 'tf.create_partitioned_variables': 'tf.compat.v1.create_partitioned_variables', 'tf.cross': 'tf.linalg.cross', 'tf.cumprod': 'tf.math.cumprod', 'tf.data.make_initializable_iterator': 'tf.compat.v1.data.make_initializable_iterator', 'tf.data.make_one_shot_iterator': 'tf.compat.v1.data.make_one_shot_iterator', 'tf.debugging.is_finite': 'tf.math.is_finite', 'tf.debugging.is_inf': 'tf.math.is_inf', 'tf.debugging.is_nan': 'tf.math.is_nan', 'tf.debugging.is_non_decreasing': 'tf.math.is_non_decreasing', 'tf.debugging.is_strictly_increasing': 'tf.math.is_strictly_increasing', 'tf.decode_base64': 'tf.io.decode_base64', 'tf.decode_compressed': 'tf.io.decode_compressed', 'tf.decode_json_example': 'tf.io.decode_json_example', 'tf.decode_raw': 'tf.io.decode_raw', 'tf.delete_session_tensor': 'tf.compat.v1.delete_session_tensor', 'tf.depth_to_space': 'tf.compat.v1.depth_to_space', 'tf.dequantize': 'tf.quantization.dequantize', 'tf.deserialize_many_sparse': 'tf.io.deserialize_many_sparse', 'tf.diag': 'tf.linalg.tensor_diag', 'tf.diag_part': 'tf.linalg.tensor_diag_part', 'tf.digamma': 'tf.math.digamma', 'tf.dimension_at_index': 'tf.compat.dimension_at_index', 'tf.dimension_value': 'tf.compat.dimension_value', 'tf.disable_eager_execution': 'tf.compat.v1.disable_eager_execution', 'tf.disable_resource_variables': 'tf.compat.v1.disable_resource_variables', 'tf.disable_v2_batch_normalization': 'tf.compat.v1.disable_v2_batch_normalization', 'tf.disable_v2_behavior': 'tf.compat.v1.disable_v2_behavior', 'tf.disable_v2_tensorshape': 'tf.compat.v1.disable_v2_tensorshape', 'tf.distributions.Bernoulli': 'tf.compat.v1.distributions.Bernoulli', 'tf.distributions.Beta': 'tf.compat.v1.distributions.Beta', 'tf.distributions.Categorical': 'tf.compat.v1.distributions.Categorical', 'tf.distributions.Dirichlet': 'tf.compat.v1.distributions.Dirichlet', 'tf.distributions.DirichletMultinomial': 'tf.compat.v1.distributions.DirichletMultinomial', 'tf.distributions.Distribution': 'tf.compat.v1.distributions.Distribution', 'tf.distributions.Exponential': 'tf.compat.v1.distributions.Exponential', 'tf.distributions.FULLY_REPARAMETERIZED': 'tf.compat.v1.distributions.FULLY_REPARAMETERIZED', 'tf.distributions.Gamma': 'tf.compat.v1.distributions.Gamma', 'tf.distributions.Laplace': 'tf.compat.v1.distributions.Laplace', 'tf.distributions.Multinomial': 'tf.compat.v1.distributions.Multinomial', 'tf.distributions.NOT_REPARAMETERIZED': 'tf.compat.v1.distributions.NOT_REPARAMETERIZED', 'tf.distributions.Normal': 'tf.compat.v1.distributions.Normal', 'tf.distributions.RegisterKL': 'tf.compat.v1.distributions.RegisterKL', 'tf.distributions.ReparameterizationType': 'tf.compat.v1.distributions.ReparameterizationType', 'tf.distributions.StudentT': 'tf.compat.v1.distributions.StudentT', 'tf.distributions.Uniform': 'tf.compat.v1.distributions.Uniform', 'tf.distributions.kl_divergence': 'tf.compat.v1.distributions.kl_divergence', 'tf.div': 'tf.compat.v1.div', 'tf.dtypes.as_string': 'tf.strings.as_string', 'tf.enable_eager_execution': 'tf.compat.v1.enable_eager_execution', 'tf.enable_resource_variables': 'tf.compat.v1.enable_resource_variables', 'tf.enable_v2_batch_normalization': 'tf.compat.v1.enable_v2_batch_normalization', 'tf.enable_v2_behavior': 'tf.compat.v1.enable_v2_behavior', 'tf.enable_v2_tensorshape': 'tf.compat.v1.enable_v2_tensorshape', 'tf.encode_base64': 'tf.io.encode_base64', 'tf.erf': 'tf.math.erf', 'tf.erfc': 'tf.math.erfc', 'tf.expm1': 'tf.math.expm1', 'tf.fake_quant_with_min_max_args': 'tf.quantization.fake_quant_with_min_max_args', 'tf.fake_quant_with_min_max_args_gradient': 'tf.quantization.fake_quant_with_min_max_args_gradient', 'tf.fake_quant_with_min_max_vars': 'tf.quantization.fake_quant_with_min_max_vars', 'tf.fake_quant_with_min_max_vars_gradient': 'tf.quantization.fake_quant_with_min_max_vars_gradient', 'tf.fake_quant_with_min_max_vars_per_channel': 'tf.quantization.fake_quant_with_min_max_vars_per_channel', 'tf.fake_quant_with_min_max_vars_per_channel_gradient': 'tf.quantization.fake_quant_with_min_max_vars_per_channel_gradient', 'tf.feature_column.input_layer': 'tf.compat.v1.feature_column.input_layer', 'tf.feature_column.linear_model': 'tf.compat.v1.feature_column.linear_model', 'tf.fft': 'tf.signal.fft', 'tf.fft2d': 'tf.signal.fft2d', 'tf.fft3d': 'tf.signal.fft3d', 'tf.fixed_size_partitioner': 'tf.compat.v1.fixed_size_partitioner', 'tf.floordiv': 'tf.math.floordiv', 'tf.get_collection': 'tf.compat.v1.get_collection', 'tf.get_collection_ref': 'tf.compat.v1.get_collection_ref', 'tf.get_default_graph': 'tf.compat.v1.get_default_graph', 'tf.get_default_session': 'tf.compat.v1.get_default_session', 'tf.get_local_variable': 'tf.compat.v1.get_local_variable', 'tf.get_seed': 'tf.compat.v1.get_seed', 'tf.get_session_handle': 'tf.compat.v1.get_session_handle', 'tf.get_session_tensor': 'tf.compat.v1.get_session_tensor', 'tf.get_variable': 'tf.compat.v1.get_variable', 'tf.get_variable_scope': 'tf.compat.v1.get_variable_scope', 'tf.gfile.FastGFile': 'tf.compat.v1.gfile.FastGFile', 'tf.gfile.GFile': 'tf.io.gfile.GFile', 'tf.gfile.Open': 'tf.io.gfile.GFile', 'tf.global_norm': 'tf.linalg.global_norm', 'tf.global_variables': 'tf.compat.v1.global_variables', 'tf.global_variables_initializer': 'tf.compat.v1.global_variables_initializer', 'tf.glorot_normal_initializer': 'tf.compat.v1.glorot_normal_initializer', 'tf.glorot_uniform_initializer': 'tf.compat.v1.glorot_uniform_initializer', 'tf.graph_util.convert_variables_to_constants': 'tf.compat.v1.graph_util.convert_variables_to_constants', 'tf.graph_util.extract_sub_graph': 'tf.compat.v1.graph_util.extract_sub_graph', 'tf.graph_util.must_run_on_cpu': 'tf.compat.v1.graph_util.must_run_on_cpu', 'tf.graph_util.remove_training_nodes': 'tf.compat.v1.graph_util.remove_training_nodes', 'tf.graph_util.tensor_shape_from_node_def_name': 'tf.compat.v1.graph_util.tensor_shape_from_node_def_name', 'tf.ifft': 'tf.signal.ifft', 'tf.ifft2d': 'tf.signal.ifft2d', 'tf.ifft3d': 'tf.signal.ifft3d', 'tf.igamma': 'tf.math.igamma', 'tf.igammac': 'tf.math.igammac', 'tf.imag': 'tf.math.imag', 'tf.image.resize_area': 'tf.compat.v1.image.resize_area', 'tf.image.resize_bicubic': 'tf.compat.v1.image.resize_bicubic', 'tf.image.resize_bilinear': 'tf.compat.v1.image.resize_bilinear', 'tf.image.resize_nearest_neighbor': 'tf.compat.v1.image.resize_nearest_neighbor', 'tf.image.transpose_image': 'tf.compat.v1.image.transpose_image', 'tf.initialize_all_tables': 'tf.compat.v1.initialize_all_tables', 'tf.initialize_all_variables': 'tf.compat.v1.initialize_all_variables', 'tf.initialize_local_variables': 'tf.compat.v1.initialize_local_variables', 'tf.initialize_variables': 'tf.compat.v1.initialize_variables', 'tf.initializers.constant': 'tf.compat.v1.initializers.constant', 'tf.initializers.global_variables': 'tf.compat.v1.initializers.global_variables', 'tf.initializers.glorot_normal': 'tf.compat.v1.initializers.glorot_normal', 'tf.initializers.glorot_uniform': 'tf.compat.v1.initializers.glorot_uniform', 'tf.initializers.he_normal': 'tf.compat.v1.initializers.he_normal', 'tf.initializers.he_uniform': 'tf.compat.v1.initializers.he_uniform', 'tf.initializers.identity': 'tf.compat.v1.initializers.identity', 'tf.initializers.lecun_normal': 'tf.compat.v1.initializers.lecun_normal', 'tf.initializers.lecun_uniform': 'tf.compat.v1.initializers.lecun_uniform', 'tf.initializers.local_variables': 'tf.compat.v1.initializers.local_variables', 'tf.initializers.ones': 'tf.compat.v1.initializers.ones', 'tf.initializers.orthogonal': 'tf.compat.v1.initializers.orthogonal', 'tf.initializers.random_normal': 'tf.compat.v1.initializers.random_normal', 'tf.initializers.random_uniform': 'tf.compat.v1.initializers.random_uniform', 'tf.initializers.tables_initializer': 'tf.compat.v1.initializers.tables_initializer', 'tf.initializers.truncated_normal': 'tf.compat.v1.initializers.truncated_normal', 'tf.initializers.uniform_unit_scaling': 'tf.compat.v1.initializers.uniform_unit_scaling', 'tf.initializers.variables': 'tf.compat.v1.initializers.variables', 'tf.initializers.variance_scaling': 'tf.compat.v1.initializers.variance_scaling', 'tf.initializers.zeros': 'tf.compat.v1.initializers.zeros', 'tf.invert_permutation': 'tf.math.invert_permutation', 'tf.io.PaddingFIFOQueue': 'tf.queue.PaddingFIFOQueue', 'tf.io.PriorityQueue': 'tf.queue.PriorityQueue', 'tf.io.QueueBase': 'tf.queue.QueueBase', 'tf.io.RandomShuffleQueue': 'tf.queue.RandomShuffleQueue', 'tf.io.tf_record_iterator': 'tf.compat.v1.io.tf_record_iterator', 'tf.is_finite': 'tf.math.is_finite', 'tf.is_inf': 'tf.math.is_inf', 'tf.is_nan': 'tf.math.is_nan', 'tf.is_non_decreasing': 'tf.math.is_non_decreasing', 'tf.is_numeric_tensor': 'tf.debugging.is_numeric_tensor', 'tf.is_strictly_increasing': 'tf.math.is_strictly_increasing', 'tf.is_variable_initialized': 'tf.compat.v1.is_variable_initialized', 'tf.keras.initializers.Identity': 'tf.compat.v1.keras.initializers.Identity', 'tf.keras.initializers.Orthogonal': 'tf.compat.v1.keras.initializers.Orthogonal', 'tf.keras.initializers.TruncatedNormal': 'tf.compat.v1.keras.initializers.TruncatedNormal', 'tf.keras.initializers.VarianceScaling': 'tf.compat.v1.keras.initializers.VarianceScaling', 'tf.keras.initializers.constant': 'tf.compat.v1.keras.initializers.constant', 'tf.keras.initializers.glorot_normal': 'tf.compat.v1.keras.initializers.glorot_normal', 'tf.keras.initializers.glorot_uniform': 'tf.compat.v1.keras.initializers.glorot_uniform', 'tf.keras.initializers.he_normal': 'tf.compat.v1.keras.initializers.he_normal', 'tf.keras.initializers.he_uniform': 'tf.compat.v1.keras.initializers.he_uniform', 'tf.keras.initializers.identity': 'tf.compat.v1.keras.initializers.identity', 'tf.keras.initializers.lecun_normal': 'tf.compat.v1.keras.initializers.lecun_normal', 'tf.keras.initializers.lecun_uniform': 'tf.compat.v1.keras.initializers.lecun_uniform', 'tf.keras.initializers.normal': 'tf.compat.v1.keras.initializers.normal', 'tf.keras.initializers.ones': 'tf.compat.v1.keras.initializers.ones', 'tf.keras.initializers.orthogonal': 'tf.compat.v1.keras.initializers.orthogonal', 'tf.keras.initializers.random_normal': 'tf.compat.v1.keras.initializers.random_normal', 'tf.keras.initializers.random_uniform': 'tf.compat.v1.keras.initializers.random_uniform', 'tf.keras.initializers.truncated_normal': 'tf.compat.v1.keras.initializers.truncated_normal', 'tf.keras.initializers.uniform': 'tf.compat.v1.keras.initializers.uniform', 'tf.keras.initializers.zeros': 'tf.compat.v1.keras.initializers.zeros', 'tf.layers.AveragePooling1D': 'tf.compat.v1.layers.AveragePooling1D', 'tf.layers.AveragePooling2D': 'tf.compat.v1.layers.AveragePooling2D', 'tf.layers.AveragePooling3D': 'tf.compat.v1.layers.AveragePooling3D', 'tf.layers.BatchNormalization': 'tf.compat.v1.layers.BatchNormalization', 'tf.layers.Conv1D': 'tf.compat.v1.layers.Conv1D', 'tf.layers.Conv2D': 'tf.compat.v1.layers.Conv2D', 'tf.layers.Conv2DTranspose': 'tf.compat.v1.layers.Conv2DTranspose', 'tf.layers.Conv3D': 'tf.compat.v1.layers.Conv3D', 'tf.layers.Conv3DTranspose': 'tf.compat.v1.layers.Conv3DTranspose', 'tf.layers.Dense': 'tf.compat.v1.layers.Dense', 'tf.layers.Dropout': 'tf.compat.v1.layers.Dropout', 'tf.layers.Flatten': 'tf.compat.v1.layers.Flatten', 'tf.layers.InputSpec': 'tf.keras.layers.InputSpec', 'tf.layers.Layer': 'tf.compat.v1.layers.Layer', 'tf.layers.MaxPooling1D': 'tf.compat.v1.layers.MaxPooling1D', 'tf.layers.MaxPooling2D': 'tf.compat.v1.layers.MaxPooling2D', 'tf.layers.MaxPooling3D': 'tf.compat.v1.layers.MaxPooling3D', 'tf.layers.SeparableConv1D': 'tf.compat.v1.layers.SeparableConv1D', 'tf.layers.SeparableConv2D': 'tf.compat.v1.layers.SeparableConv2D', 'tf.layers.average_pooling1d': 'tf.compat.v1.layers.average_pooling1d', 'tf.layers.average_pooling2d': 'tf.compat.v1.layers.average_pooling2d', 'tf.layers.average_pooling3d': 'tf.compat.v1.layers.average_pooling3d', 'tf.layers.batch_normalization': 'tf.compat.v1.layers.batch_normalization', 'tf.layers.conv1d': 'tf.compat.v1.layers.conv1d', 'tf.layers.conv2d': 'tf.compat.v1.layers.conv2d', 'tf.layers.conv2d_transpose': 'tf.compat.v1.layers.conv2d_transpose', 'tf.layers.conv3d': 'tf.compat.v1.layers.conv3d', 'tf.layers.conv3d_transpose': 'tf.compat.v1.layers.conv3d_transpose', 'tf.layers.dense': 'tf.compat.v1.layers.dense', 'tf.layers.dropout': 'tf.compat.v1.layers.dropout', 'tf.layers.experimental.keras_style_scope': 'tf.compat.v1.layers.experimental.keras_style_scope', 'tf.layers.experimental.set_keras_style': 'tf.compat.v1.layers.experimental.set_keras_style', 'tf.layers.flatten': 'tf.compat.v1.layers.flatten', 'tf.layers.max_pooling1d': 'tf.compat.v1.layers.max_pooling1d', 'tf.layers.max_pooling2d': 'tf.compat.v1.layers.max_pooling2d', 'tf.layers.max_pooling3d': 'tf.compat.v1.layers.max_pooling3d', 'tf.layers.separable_conv1d': 'tf.compat.v1.layers.separable_conv1d', 'tf.layers.separable_conv2d': 'tf.compat.v1.layers.separable_conv2d', 'tf.lbeta': 'tf.math.lbeta', 'tf.lgamma': 'tf.math.lgamma', 'tf.lin_space': 'tf.linspace', 'tf.local_variables': 'tf.compat.v1.local_variables', 'tf.local_variables_initializer': 'tf.compat.v1.local_variables_initializer', 'tf.log': 'tf.math.log', 'tf.log1p': 'tf.math.log1p', 'tf.log_sigmoid': 'tf.math.log_sigmoid', 'tf.logging.DEBUG': 'tf.compat.v1.logging.DEBUG', 'tf.logging.ERROR': 'tf.compat.v1.logging.ERROR', 'tf.logging.FATAL': 'tf.compat.v1.logging.FATAL', 'tf.logging.INFO': 'tf.compat.v1.logging.INFO', 'tf.logging.TaskLevelStatusMessage': 'tf.compat.v1.logging.TaskLevelStatusMessage', 'tf.logging.WARN': 'tf.compat.v1.logging.WARN', 'tf.logging.debug': 'tf.compat.v1.logging.debug', 'tf.logging.error': 'tf.compat.v1.logging.error', 'tf.logging.fatal': 'tf.compat.v1.logging.fatal', 'tf.logging.flush': 'tf.compat.v1.logging.flush', 'tf.logging.get_verbosity': 'tf.compat.v1.logging.get_verbosity', 'tf.logging.info': 'tf.compat.v1.logging.info', 'tf.logging.log': 'tf.compat.v1.logging.log', 'tf.logging.log_every_n': 'tf.compat.v1.logging.log_every_n', 'tf.logging.log_first_n': 'tf.compat.v1.logging.log_first_n', 'tf.logging.log_if': 'tf.compat.v1.logging.log_if', 'tf.logging.set_verbosity': 'tf.compat.v1.logging.set_verbosity', 'tf.logging.vlog': 'tf.compat.v1.logging.vlog', 'tf.logging.warn': 'tf.compat.v1.logging.warn', 'tf.logging.warning': 'tf.compat.v1.logging.warning', 'tf.logical_xor': 'tf.math.logical_xor', 'tf.losses.absolute_difference': 'tf.compat.v1.losses.absolute_difference', 'tf.losses.add_loss': 'tf.compat.v1.losses.add_loss', 'tf.losses.compute_weighted_loss': 'tf.compat.v1.losses.compute_weighted_loss', 'tf.losses.cosine_distance': 'tf.compat.v1.losses.cosine_distance', 'tf.losses.get_losses': 'tf.compat.v1.losses.get_losses', 'tf.losses.get_regularization_loss': 'tf.compat.v1.losses.get_regularization_loss', 'tf.losses.get_regularization_losses': 'tf.compat.v1.losses.get_regularization_losses', 'tf.losses.get_total_loss': 'tf.compat.v1.losses.get_total_loss', 'tf.losses.hinge_loss': 'tf.compat.v1.losses.hinge_loss', 'tf.losses.huber_loss': 'tf.compat.v1.losses.huber_loss', 'tf.losses.log_loss': 'tf.compat.v1.losses.log_loss', 'tf.losses.mean_pairwise_squared_error': 'tf.compat.v1.losses.mean_pairwise_squared_error', 'tf.losses.mean_squared_error': 'tf.compat.v1.losses.mean_squared_error', 'tf.losses.sigmoid_cross_entropy': 'tf.compat.v1.losses.sigmoid_cross_entropy', 'tf.losses.softmax_cross_entropy': 'tf.compat.v1.losses.softmax_cross_entropy', 'tf.losses.sparse_softmax_cross_entropy': 'tf.compat.v1.losses.sparse_softmax_cross_entropy', 'tf.make_template': 'tf.compat.v1.make_template', 'tf.make_tensor_proto': 'tf.compat.v1.make_tensor_proto', 'tf.manip.gather_nd': 'tf.gather_nd', 'tf.manip.reshape': 'tf.reshape', 'tf.manip.reverse': 'tf.reverse', 'tf.manip.roll': 'tf.roll', 'tf.manip.scatter_nd': 'tf.scatter_nd', 'tf.manip.space_to_batch_nd': 'tf.space_to_batch_nd', 'tf.manip.tile': 'tf.tile', 'tf.matching_files': 'tf.io.matching_files', 'tf.matrix_band_part': 'tf.linalg.band_part', 'tf.matrix_determinant': 'tf.linalg.det', 'tf.matrix_diag': 'tf.linalg.diag', 'tf.matrix_diag_part': 'tf.linalg.diag_part', 'tf.matrix_inverse': 'tf.linalg.inv', 'tf.matrix_set_diag': 'tf.linalg.set_diag', 'tf.matrix_solve': 'tf.linalg.solve', 'tf.matrix_solve_ls': 'tf.linalg.lstsq', 'tf.matrix_transpose': 'tf.linalg.transpose', 'tf.matrix_triangular_solve': 'tf.linalg.triangular_solve', 'tf.metrics.accuracy': 'tf.compat.v1.metrics.accuracy', 'tf.metrics.auc': 'tf.compat.v1.metrics.auc', 'tf.metrics.average_precision_at_k': 'tf.compat.v1.metrics.average_precision_at_k', 'tf.metrics.false_negatives': 'tf.compat.v1.metrics.false_negatives', 'tf.metrics.false_negatives_at_thresholds': 'tf.compat.v1.metrics.false_negatives_at_thresholds', 'tf.metrics.false_positives': 'tf.compat.v1.metrics.false_positives', 'tf.metrics.false_positives_at_thresholds': 'tf.compat.v1.metrics.false_positives_at_thresholds', 'tf.metrics.mean': 'tf.compat.v1.metrics.mean', 'tf.metrics.mean_absolute_error': 'tf.compat.v1.metrics.mean_absolute_error', 'tf.metrics.mean_cosine_distance': 'tf.compat.v1.metrics.mean_cosine_distance', 'tf.metrics.mean_iou': 'tf.compat.v1.metrics.mean_iou', 'tf.metrics.mean_per_class_accuracy': 'tf.compat.v1.metrics.mean_per_class_accuracy', 'tf.metrics.mean_relative_error': 'tf.compat.v1.metrics.mean_relative_error', 'tf.metrics.mean_squared_error': 'tf.compat.v1.metrics.mean_squared_error', 'tf.metrics.mean_tensor': 'tf.compat.v1.metrics.mean_tensor', 'tf.metrics.percentage_below': 'tf.compat.v1.metrics.percentage_below', 'tf.metrics.precision': 'tf.compat.v1.metrics.precision', 'tf.metrics.precision_at_k': 'tf.compat.v1.metrics.precision_at_k', 'tf.metrics.precision_at_thresholds': 'tf.compat.v1.metrics.precision_at_thresholds', 'tf.metrics.precision_at_top_k': 'tf.compat.v1.metrics.precision_at_top_k', 'tf.metrics.recall': 'tf.compat.v1.metrics.recall', 'tf.metrics.recall_at_k': 'tf.compat.v1.metrics.recall_at_k', 'tf.metrics.recall_at_thresholds': 'tf.compat.v1.metrics.recall_at_thresholds', 'tf.metrics.recall_at_top_k': 'tf.compat.v1.metrics.recall_at_top_k', 'tf.metrics.root_mean_squared_error': 'tf.compat.v1.metrics.root_mean_squared_error', 'tf.metrics.sensitivity_at_specificity': 'tf.compat.v1.metrics.sensitivity_at_specificity', 'tf.metrics.sparse_average_precision_at_k': 'tf.compat.v1.metrics.sparse_average_precision_at_k', 'tf.metrics.sparse_precision_at_k': 'tf.compat.v1.metrics.sparse_precision_at_k', 'tf.metrics.specificity_at_sensitivity': 'tf.compat.v1.metrics.specificity_at_sensitivity', 'tf.metrics.true_negatives': 'tf.compat.v1.metrics.true_negatives', 'tf.metrics.true_negatives_at_thresholds': 'tf.compat.v1.metrics.true_negatives_at_thresholds', 'tf.metrics.true_positives': 'tf.compat.v1.metrics.true_positives', 'tf.metrics.true_positives_at_thresholds': 'tf.compat.v1.metrics.true_positives_at_thresholds', 'tf.min_max_variable_partitioner': 'tf.compat.v1.min_max_variable_partitioner', 'tf.model_variables': 'tf.compat.v1.model_variables', 'tf.moving_average_variables': 'tf.compat.v1.moving_average_variables', 'tf.nn.bidirectional_dynamic_rnn': 'tf.compat.v1.nn.bidirectional_dynamic_rnn', 'tf.nn.conv3d_backprop_filter_v2': 'tf.nn.conv3d_backprop_filter', 'tf.nn.ctc_beam_search_decoder_v2': 'tf.nn.ctc_beam_search_decoder', 'tf.nn.ctc_loss_v2': 'tf.nn.ctc_loss', 'tf.nn.depthwise_conv2d_native': 'tf.compat.v1.nn.depthwise_conv2d_native', 'tf.nn.depthwise_conv2d_native_backprop_filter': 'tf.nn.depthwise_conv2d_backprop_filter', 'tf.nn.depthwise_conv2d_native_backprop_input': 'tf.nn.depthwise_conv2d_backprop_input', 'tf.nn.dynamic_rnn': 'tf.compat.v1.nn.dynamic_rnn', 'tf.nn.log_uniform_candidate_sampler': 'tf.random.log_uniform_candidate_sampler', 'tf.nn.quantized_avg_pool': 'tf.compat.v1.nn.quantized_avg_pool', 'tf.nn.quantized_conv2d': 'tf.compat.v1.nn.quantized_conv2d', 'tf.nn.quantized_max_pool': 'tf.compat.v1.nn.quantized_max_pool', 'tf.nn.quantized_relu_x': 'tf.compat.v1.nn.quantized_relu_x', 'tf.nn.raw_rnn': 'tf.compat.v1.nn.raw_rnn', 'tf.nn.relu_layer': 'tf.compat.v1.nn.relu_layer', 'tf.nn.rnn_cell.BasicLSTMCell': 'tf.compat.v1.nn.rnn_cell.BasicLSTMCell', 'tf.nn.rnn_cell.BasicRNNCell': 'tf.compat.v1.nn.rnn_cell.BasicRNNCell', 'tf.nn.rnn_cell.DropoutWrapper': 'tf.compat.v1.nn.rnn_cell.DropoutWrapper', 'tf.nn.rnn_cell.GRUCell': 'tf.compat.v1.nn.rnn_cell.GRUCell', 'tf.nn.rnn_cell.LSTMCell': 'tf.compat.v1.nn.rnn_cell.LSTMCell', 'tf.nn.rnn_cell.MultiRNNCell': 'tf.compat.v1.nn.rnn_cell.MultiRNNCell', 'tf.nn.static_bidirectional_rnn': 'tf.compat.v1.nn.static_bidirectional_rnn', 'tf.nn.static_rnn': 'tf.compat.v1.nn.static_rnn', 'tf.nn.uniform_candidate_sampler': 'tf.random.uniform_candidate_sampler', 'tf.nn.xw_plus_b': 'tf.compat.v1.nn.xw_plus_b', 'tf.op_scope': 'tf.compat.v1.op_scope', 'tf.orthogonal_initializer': 'tf.compat.v1.orthogonal_initializer', 'tf.parse_single_sequence_example': 'tf.io.parse_single_sequence_example', 'tf.parse_tensor': 'tf.io.parse_tensor', 'tf.placeholder': 'tf.compat.v1.placeholder', 'tf.placeholder_with_default': 'tf.compat.v1.placeholder_with_default', 'tf.polygamma': 'tf.math.polygamma', 'tf.profiler.AdviceProto': 'tf.compat.v1.profiler.AdviceProto', 'tf.profiler.GraphNodeProto': 'tf.compat.v1.profiler.GraphNodeProto', 'tf.profiler.MultiGraphNodeProto': 'tf.compat.v1.profiler.MultiGraphNodeProto', 'tf.profiler.OpLogProto': 'tf.compat.v1.profiler.OpLogProto', 'tf.profiler.ProfileOptionBuilder': 'tf.compat.v1.profiler.ProfileOptionBuilder', 'tf.profiler.Profiler': 'tf.compat.v1.profiler.Profiler', 'tf.profiler.advise': 'tf.compat.v1.profiler.advise', 'tf.profiler.profile': 'tf.compat.v1.profiler.profile', 'tf.profiler.write_op_log': 'tf.compat.v1.profiler.write_op_log', 'tf.py_func': 'tf.compat.v1.py_func', 'tf.python_io.TFRecordCompressionType': 'tf.io.TFRecordCompressionType', 'tf.python_io.TFRecordOptions': 'tf.io.TFRecordOptions', 'tf.python_io.TFRecordWriter': 'tf.io.TFRecordWriter', 'tf.python_io.tf_record_iterator': 'tf.compat.v1.python_io.tf_record_iterator', 'tf.qr': 'tf.linalg.qr', 'tf.quantize': 'tf.quantization.quantize', 'tf.quantized_concat': 'tf.quantization.quantized_concat', 'tf.ragged.RaggedTensorValue': 'tf.compat.v1.ragged.RaggedTensorValue', 'tf.ragged.constant_value': 'tf.compat.v1.ragged.constant_value', 'tf.random.get_seed': 'tf.compat.v1.random.get_seed', 'tf.random.set_random_seed': 'tf.compat.v1.random.set_random_seed', 'tf.random_crop': 'tf.image.random_crop', 'tf.random_gamma': 'tf.random.gamma', 'tf.random_normal': 'tf.random.normal', 'tf.random_shuffle': 'tf.random.shuffle', 'tf.random_uniform': 'tf.random.uniform', 'tf.read_file': 'tf.io.read_file', 'tf.real': 'tf.math.real', 'tf.reciprocal': 'tf.math.reciprocal', 'tf.regex_replace': 'tf.strings.regex_replace', 'tf.report_uninitialized_variables': 'tf.compat.v1.report_uninitialized_variables', 'tf.reset_default_graph': 'tf.compat.v1.reset_default_graph', 'tf.resource_loader.get_data_files_path': 'tf.compat.v1.resource_loader.get_data_files_path', 'tf.resource_loader.get_path_to_datafile': 'tf.compat.v1.resource_loader.get_path_to_datafile', 'tf.resource_loader.get_root_dir_with_all_resources': 'tf.compat.v1.resource_loader.get_root_dir_with_all_resources', 'tf.resource_loader.load_resource': 'tf.compat.v1.resource_loader.load_resource', 'tf.resource_loader.readahead_file_path': 'tf.compat.v1.resource_loader.readahead_file_path', 'tf.reverse_v2': 'tf.reverse', 'tf.rint': 'tf.math.rint', 'tf.rsqrt': 'tf.math.rsqrt', 'tf.saved_model.Builder': 'tf.compat.v1.saved_model.Builder', 'tf.saved_model.LEGACY_INIT_OP_KEY': 'tf.compat.v1.saved_model.LEGACY_INIT_OP_KEY', 'tf.saved_model.MAIN_OP_KEY': 'tf.compat.v1.saved_model.MAIN_OP_KEY', 'tf.saved_model.build_tensor_info': 'tf.compat.v1.saved_model.build_tensor_info', 'tf.saved_model.builder.SavedModelBuilder': 'tf.compat.v1.saved_model.builder.SavedModelBuilder', 'tf.saved_model.constants.ASSETS_DIRECTORY': 'tf.saved_model.ASSETS_DIRECTORY', 'tf.saved_model.constants.ASSETS_KEY': 'tf.saved_model.ASSETS_KEY', 'tf.saved_model.constants.LEGACY_INIT_OP_KEY': 'tf.compat.v1.saved_model.constants.LEGACY_INIT_OP_KEY', 'tf.saved_model.constants.MAIN_OP_KEY': 'tf.compat.v1.saved_model.constants.MAIN_OP_KEY', 'tf.saved_model.constants.SAVED_MODEL_FILENAME_PB': 'tf.saved_model.SAVED_MODEL_FILENAME_PB', 'tf.saved_model.constants.SAVED_MODEL_FILENAME_PBTXT': 'tf.saved_model.SAVED_MODEL_FILENAME_PBTXT', 'tf.saved_model.constants.SAVED_MODEL_SCHEMA_VERSION': 'tf.saved_model.SAVED_MODEL_SCHEMA_VERSION', 'tf.saved_model.constants.VARIABLES_DIRECTORY': 'tf.saved_model.VARIABLES_DIRECTORY', 'tf.saved_model.constants.VARIABLES_FILENAME': 'tf.saved_model.VARIABLES_FILENAME', 'tf.saved_model.experimental.save': 'tf.saved_model.save', 'tf.saved_model.get_tensor_from_tensor_info': 'tf.compat.v1.saved_model.get_tensor_from_tensor_info', 'tf.saved_model.load': 'tf.compat.v1.saved_model.load', 'tf.saved_model.loader.load': 'tf.compat.v1.saved_model.loader.load', 'tf.saved_model.loader.maybe_saved_model_directory': 'tf.compat.v1.saved_model.loader.maybe_saved_model_directory', 'tf.saved_model.main_op.main_op': 'tf.compat.v1.saved_model.main_op.main_op', 'tf.saved_model.main_op.main_op_with_restore': 'tf.compat.v1.saved_model.main_op.main_op_with_restore', 'tf.saved_model.main_op_with_restore': 'tf.compat.v1.saved_model.main_op_with_restore', 'tf.saved_model.maybe_saved_model_directory': 'tf.compat.v1.saved_model.maybe_saved_model_directory', 'tf.saved_model.signature_constants.CLASSIFY_INPUTS': 'tf.saved_model.CLASSIFY_INPUTS', 'tf.saved_model.signature_constants.CLASSIFY_METHOD_NAME': 'tf.saved_model.CLASSIFY_METHOD_NAME', 'tf.saved_model.signature_constants.CLASSIFY_OUTPUT_CLASSES': 'tf.saved_model.CLASSIFY_OUTPUT_CLASSES', 'tf.saved_model.signature_constants.CLASSIFY_OUTPUT_SCORES': 'tf.saved_model.CLASSIFY_OUTPUT_SCORES', 'tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY': 'tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY', 'tf.saved_model.signature_constants.PREDICT_INPUTS': 'tf.saved_model.PREDICT_INPUTS', 'tf.saved_model.signature_constants.PREDICT_METHOD_NAME': 'tf.saved_model.PREDICT_METHOD_NAME', 'tf.saved_model.signature_constants.PREDICT_OUTPUTS': 'tf.saved_model.PREDICT_OUTPUTS', 'tf.saved_model.signature_constants.REGRESS_INPUTS': 'tf.saved_model.REGRESS_INPUTS', 'tf.saved_model.signature_constants.REGRESS_METHOD_NAME': 'tf.saved_model.REGRESS_METHOD_NAME', 'tf.saved_model.signature_constants.REGRESS_OUTPUTS': 'tf.saved_model.REGRESS_OUTPUTS', 'tf.saved_model.signature_def_utils.build_signature_def': 'tf.saved_model.build_signature_def', 'tf.saved_model.signature_def_utils.classification_signature_def': 'tf.saved_model.classification_signature_def', 'tf.saved_model.signature_def_utils.is_valid_signature': 'tf.saved_model.is_valid_signature', 'tf.saved_model.signature_def_utils.predict_signature_def': 'tf.saved_model.predict_signature_def', 'tf.saved_model.signature_def_utils.regression_signature_def': 'tf.saved_model.regression_signature_def', 'tf.saved_model.simple_save': 'tf.compat.v1.saved_model.simple_save', 'tf.saved_model.tag_constants.GPU': 'tf.saved_model.GPU', 'tf.saved_model.tag_constants.SERVING': 'tf.saved_model.SERVING', 'tf.saved_model.tag_constants.TPU': 'tf.saved_model.TPU', 'tf.saved_model.tag_constants.TRAINING': 'tf.saved_model.TRAINING', 'tf.saved_model.utils.build_tensor_info': 'tf.compat.v1.saved_model.utils.build_tensor_info', 'tf.saved_model.utils.get_tensor_from_tensor_info': 'tf.compat.v1.saved_model.utils.get_tensor_from_tensor_info', 'tf.scatter_add': 'tf.compat.v1.scatter_add', 'tf.scatter_nd_add': 'tf.compat.v1.scatter_nd_add', 'tf.scatter_nd_sub': 'tf.compat.v1.scatter_nd_sub', 'tf.scatter_nd_update': 'tf.compat.v1.scatter_nd_update', 'tf.scatter_sub': 'tf.compat.v1.scatter_sub', 'tf.scatter_update': 'tf.compat.v1.scatter_update', 'tf.segment_max': 'tf.math.segment_max', 'tf.segment_mean': 'tf.math.segment_mean', 'tf.segment_min': 'tf.math.segment_min', 'tf.segment_prod': 'tf.math.segment_prod', 'tf.segment_sum': 'tf.math.segment_sum', 'tf.self_adjoint_eig': 'tf.linalg.eigh', 'tf.self_adjoint_eigvals': 'tf.linalg.eigvalsh', 'tf.serialize_many_sparse': 'tf.compat.v1.serialize_many_sparse', 'tf.serialize_sparse': 'tf.compat.v1.serialize_sparse', 'tf.serialize_tensor': 'tf.io.serialize_tensor', 'tf.set_random_seed': 'tf.compat.v1.set_random_seed', 'tf.setdiff1d': 'tf.compat.v1.setdiff1d', 'tf.sets.set_difference': 'tf.sets.difference', 'tf.sets.set_intersection': 'tf.sets.intersection', 'tf.sets.set_size': 'tf.sets.size', 'tf.sets.set_union': 'tf.sets.union', 'tf.space_to_depth': 'tf.compat.v1.space_to_depth', 'tf.sparse.matmul': 'tf.sparse.sparse_dense_matmul', 'tf.sparse.merge': 'tf.compat.v1.sparse.merge', 'tf.sparse.placeholder': 'tf.compat.v1.sparse.placeholder', 'tf.sparse.reduce_max_sparse': 'tf.compat.v1.sparse.reduce_max_sparse', 'tf.sparse.reduce_sum_sparse': 'tf.compat.v1.sparse.reduce_sum_sparse', 'tf.sparse_fill_empty_rows': 'tf.sparse.fill_empty_rows', 'tf.sparse_mask': 'tf.sparse.mask', 'tf.sparse_maximum': 'tf.sparse.maximum', 'tf.sparse_merge': 'tf.compat.v1.sparse_merge', 'tf.sparse_minimum': 'tf.sparse.minimum', 'tf.sparse_placeholder': 'tf.compat.v1.sparse_placeholder', 'tf.sparse_reduce_max_sparse': 'tf.compat.v1.sparse_reduce_max_sparse', 'tf.sparse_reduce_sum_sparse': 'tf.compat.v1.sparse_reduce_sum_sparse', 'tf.sparse_reorder': 'tf.sparse.reorder', 'tf.sparse_reset_shape': 'tf.sparse.reset_shape', 'tf.sparse_reshape': 'tf.sparse.reshape', 'tf.sparse_retain': 'tf.sparse.retain', 'tf.sparse_segment_mean': 'tf.compat.v1.sparse_segment_mean', 'tf.sparse_segment_sqrt_n': 'tf.compat.v1.sparse_segment_sqrt_n', 'tf.sparse_segment_sum': 'tf.compat.v1.sparse_segment_sum', 'tf.sparse_slice': 'tf.sparse.slice', 'tf.sparse_softmax': 'tf.sparse.softmax', 'tf.sparse_tensor_dense_matmul': 'tf.sparse.sparse_dense_matmul', 'tf.sparse_tensor_to_dense': 'tf.sparse.to_dense', 'tf.sparse_to_dense': 'tf.compat.v1.sparse_to_dense', 'tf.sparse_to_indicator': 'tf.sparse.to_indicator', 'tf.sparse_transpose': 'tf.sparse.transpose', 'tf.spectral.dct': 'tf.signal.dct', 'tf.spectral.fft': 'tf.signal.fft', 'tf.spectral.fft2d': 'tf.signal.fft2d', 'tf.spectral.fft3d': 'tf.signal.fft3d', 'tf.spectral.idct': 'tf.signal.idct', 'tf.spectral.ifft': 'tf.signal.ifft', 'tf.spectral.ifft2d': 'tf.signal.ifft2d', 'tf.spectral.ifft3d': 'tf.signal.ifft3d', 'tf.spectral.irfft': 'tf.signal.irfft', 'tf.spectral.irfft2d': 'tf.signal.irfft2d', 'tf.spectral.irfft3d': 'tf.signal.irfft3d', 'tf.spectral.rfft': 'tf.signal.rfft', 'tf.spectral.rfft2d': 'tf.signal.rfft2d', 'tf.spectral.rfft3d': 'tf.signal.rfft3d', 'tf.squared_difference': 'tf.math.squared_difference', 'tf.string_join': 'tf.strings.join', 'tf.string_strip': 'tf.strings.strip', 'tf.string_to_hash_bucket_fast': 'tf.strings.to_hash_bucket_fast', 'tf.string_to_hash_bucket_strong': 'tf.strings.to_hash_bucket_strong', 'tf.summary.Event': 'tf.compat.v1.summary.Event', 'tf.summary.FileWriter': 'tf.compat.v1.summary.FileWriter', 'tf.summary.FileWriterCache': 'tf.compat.v1.summary.FileWriterCache', 'tf.summary.SessionLog': 'tf.compat.v1.summary.SessionLog', 'tf.summary.Summary': 'tf.compat.v1.summary.Summary', 'tf.summary.SummaryDescription': 'tf.compat.v1.summary.SummaryDescription', 'tf.summary.TaggedRunMetadata': 'tf.compat.v1.summary.TaggedRunMetadata', 'tf.summary.audio': 'tf.compat.v1.summary.audio', 'tf.summary.get_summary_description': 'tf.compat.v1.summary.get_summary_description', 'tf.summary.histogram': 'tf.compat.v1.summary.histogram', 'tf.summary.image': 'tf.compat.v1.summary.image', 'tf.summary.merge': 'tf.compat.v1.summary.merge', 'tf.summary.merge_all': 'tf.compat.v1.summary.merge_all', 'tf.summary.scalar': 'tf.compat.v1.summary.scalar', 'tf.summary.tensor_summary': 'tf.compat.v1.summary.tensor_summary', 'tf.summary.text': 'tf.compat.v1.summary.text', 'tf.svd': 'tf.linalg.svd', 'tf.tables_initializer': 'tf.compat.v1.tables_initializer', 'tf.test.StubOutForTesting': 'tf.compat.v1.test.StubOutForTesting', 'tf.test.compute_gradient': 'tf.compat.v1.test.compute_gradient', 'tf.test.compute_gradient_error': 'tf.compat.v1.test.compute_gradient_error', 'tf.test.get_temp_dir': 'tf.compat.v1.test.get_temp_dir', 'tf.test.mock': 'tf.compat.v1.test.mock', 'tf.test.test_src_dir_path': 'tf.compat.v1.test.test_src_dir_path', 'tf.to_bfloat16': 'tf.compat.v1.to_bfloat16', 'tf.to_complex128': 'tf.compat.v1.to_complex128', 'tf.to_complex64': 'tf.compat.v1.to_complex64', 'tf.to_double': 'tf.compat.v1.to_double', 'tf.to_float': 'tf.compat.v1.to_float', 'tf.to_int32': 'tf.compat.v1.to_int32', 'tf.to_int64': 'tf.compat.v1.to_int64', 'tf.trace': 'tf.linalg.trace', 'tf.train.AdadeltaOptimizer': 'tf.compat.v1.train.AdadeltaOptimizer', 'tf.train.AdagradDAOptimizer': 'tf.compat.v1.train.AdagradDAOptimizer', 'tf.train.AdagradOptimizer': 'tf.compat.v1.train.AdagradOptimizer', 'tf.train.AdamOptimizer': 'tf.compat.v1.train.AdamOptimizer', 'tf.train.CheckpointSaverHook': 'tf.estimator.CheckpointSaverHook', 'tf.train.CheckpointSaverListener': 'tf.estimator.CheckpointSaverListener', 'tf.train.ChiefSessionCreator': 'tf.compat.v1.train.ChiefSessionCreator', 'tf.train.FeedFnHook': 'tf.estimator.FeedFnHook', 'tf.train.FinalOpsHook': 'tf.estimator.FinalOpsHook', 'tf.train.FtrlOptimizer': 'tf.compat.v1.train.FtrlOptimizer', 'tf.train.GlobalStepWaiterHook': 'tf.estimator.GlobalStepWaiterHook', 'tf.train.GradientDescentOptimizer': 'tf.compat.v1.train.GradientDescentOptimizer', 'tf.train.LoggingTensorHook': 'tf.estimator.LoggingTensorHook', 'tf.train.LooperThread': 'tf.compat.v1.train.LooperThread', 'tf.train.MomentumOptimizer': 'tf.compat.v1.train.MomentumOptimizer', 'tf.train.MonitoredSession': 'tf.compat.v1.train.MonitoredSession', 'tf.train.MonitoredTrainingSession': 'tf.compat.v1.train.MonitoredTrainingSession', 'tf.train.NanLossDuringTrainingError': 'tf.estimator.NanLossDuringTrainingError', 'tf.train.NanTensorHook': 'tf.estimator.NanTensorHook', 'tf.train.NewCheckpointReader': 'tf.compat.v1.train.NewCheckpointReader', 'tf.train.Optimizer': 'tf.compat.v1.train.Optimizer', 'tf.train.ProfilerHook': 'tf.estimator.ProfilerHook', 'tf.train.ProximalAdagradOptimizer': 'tf.compat.v1.train.ProximalAdagradOptimizer', 'tf.train.ProximalGradientDescentOptimizer': 'tf.compat.v1.train.ProximalGradientDescentOptimizer', 'tf.train.QueueRunner': 'tf.compat.v1.train.QueueRunner', 'tf.train.RMSPropOptimizer': 'tf.compat.v1.train.RMSPropOptimizer', 'tf.train.Saver': 'tf.compat.v1.train.Saver', 'tf.train.SaverDef': 'tf.compat.v1.train.SaverDef', 'tf.train.Scaffold': 'tf.compat.v1.train.Scaffold', 'tf.train.SecondOrStepTimer': 'tf.estimator.SecondOrStepTimer', 'tf.train.Server': 'tf.distribute.Server', 'tf.train.SessionCreator': 'tf.compat.v1.train.SessionCreator', 'tf.train.SessionManager': 'tf.compat.v1.train.SessionManager', 'tf.train.SessionRunArgs': 'tf.estimator.SessionRunArgs', 'tf.train.SessionRunContext': 'tf.estimator.SessionRunContext', 'tf.train.SessionRunHook': 'tf.estimator.SessionRunHook', 'tf.train.SessionRunValues': 'tf.estimator.SessionRunValues', 'tf.train.SingularMonitoredSession': 'tf.compat.v1.train.SingularMonitoredSession', 'tf.train.StepCounterHook': 'tf.estimator.StepCounterHook', 'tf.train.StopAtStepHook': 'tf.estimator.StopAtStepHook', 'tf.train.SummarySaverHook': 'tf.estimator.SummarySaverHook', 'tf.train.Supervisor': 'tf.compat.v1.train.Supervisor', 'tf.train.SyncReplicasOptimizer': 'tf.compat.v1.train.SyncReplicasOptimizer', 'tf.train.VocabInfo': 'tf.estimator.VocabInfo', 'tf.train.WorkerSessionCreator': 'tf.compat.v1.train.WorkerSessionCreator', 'tf.train.add_queue_runner': 'tf.compat.v1.train.add_queue_runner', 'tf.train.assert_global_step': 'tf.compat.v1.train.assert_global_step', 'tf.train.basic_train_loop': 'tf.compat.v1.train.basic_train_loop', 'tf.train.batch': 'tf.compat.v1.train.batch', 'tf.train.batch_join': 'tf.compat.v1.train.batch_join', 'tf.train.checkpoint_exists': 'tf.compat.v1.train.checkpoint_exists', 'tf.train.create_global_step': 'tf.compat.v1.train.create_global_step', 'tf.train.do_quantize_training_on_graphdef': 'tf.compat.v1.train.do_quantize_training_on_graphdef', 'tf.train.export_meta_graph': 'tf.compat.v1.train.export_meta_graph', 'tf.train.generate_checkpoint_state_proto': 'tf.compat.v1.train.generate_checkpoint_state_proto', 'tf.train.get_checkpoint_mtimes': 'tf.compat.v1.train.get_checkpoint_mtimes', 'tf.train.get_global_step': 'tf.compat.v1.train.get_global_step', 'tf.train.get_or_create_global_step': 'tf.compat.v1.train.get_or_create_global_step', 'tf.train.global_step': 'tf.compat.v1.train.global_step', 'tf.train.import_meta_graph': 'tf.compat.v1.train.import_meta_graph', 'tf.train.init_from_checkpoint': 'tf.compat.v1.train.init_from_checkpoint', 'tf.train.input_producer': 'tf.compat.v1.train.input_producer', 'tf.train.limit_epochs': 'tf.compat.v1.train.limit_epochs', 'tf.train.match_filenames_once': 'tf.io.match_filenames_once', 'tf.train.maybe_batch': 'tf.compat.v1.train.maybe_batch', 'tf.train.maybe_batch_join': 'tf.compat.v1.train.maybe_batch_join', 'tf.train.maybe_shuffle_batch': 'tf.compat.v1.train.maybe_shuffle_batch', 'tf.train.maybe_shuffle_batch_join': 'tf.compat.v1.train.maybe_shuffle_batch_join', 'tf.train.piecewise_constant': 'tf.compat.v1.train.piecewise_constant', 'tf.train.queue_runner.QueueRunner': 'tf.compat.v1.train.queue_runner.QueueRunner', 'tf.train.queue_runner.add_queue_runner': 'tf.compat.v1.train.queue_runner.add_queue_runner', 'tf.train.queue_runner.start_queue_runners': 'tf.compat.v1.train.queue_runner.start_queue_runners', 'tf.train.range_input_producer': 'tf.compat.v1.train.range_input_producer', 'tf.train.remove_checkpoint': 'tf.compat.v1.train.remove_checkpoint', 'tf.train.replica_device_setter': 'tf.compat.v1.train.replica_device_setter', 'tf.train.shuffle_batch': 'tf.compat.v1.train.shuffle_batch', 'tf.train.shuffle_batch_join': 'tf.compat.v1.train.shuffle_batch_join', 'tf.train.slice_input_producer': 'tf.compat.v1.train.slice_input_producer', 'tf.train.start_queue_runners': 'tf.compat.v1.train.start_queue_runners', 'tf.train.string_input_producer': 'tf.compat.v1.train.string_input_producer', 'tf.train.summary_iterator': 'tf.compat.v1.train.summary_iterator', 'tf.train.update_checkpoint_state': 'tf.compat.v1.train.update_checkpoint_state', 'tf.train.warm_start': 'tf.compat.v1.train.warm_start', 'tf.train.write_graph': 'tf.io.write_graph', 'tf.trainable_variables': 'tf.compat.v1.trainable_variables', 'tf.truncated_normal': 'tf.random.truncated_normal', 'tf.uniform_unit_scaling_initializer': 'tf.compat.v1.uniform_unit_scaling_initializer', 'tf.unsorted_segment_max': 'tf.math.unsorted_segment_max', 'tf.unsorted_segment_mean': 'tf.math.unsorted_segment_mean', 'tf.unsorted_segment_min': 'tf.math.unsorted_segment_min', 'tf.unsorted_segment_prod': 'tf.math.unsorted_segment_prod', 'tf.unsorted_segment_sqrt_n': 'tf.math.unsorted_segment_sqrt_n', 'tf.unsorted_segment_sum': 'tf.math.unsorted_segment_sum', 'tf.variable_axis_size_partitioner': 'tf.compat.v1.variable_axis_size_partitioner', 'tf.variable_op_scope': 'tf.compat.v1.variable_op_scope', 'tf.variable_scope': 'tf.compat.v1.variable_scope', 'tf.variables_initializer': 'tf.compat.v1.variables_initializer', 'tf.variance_scaling_initializer': 'tf.compat.v1.variance_scaling_initializer', 'tf.verify_tensor_all_finite': 'tf.compat.v1.verify_tensor_all_finite', 'tf.wrap_function': 'tf.compat.v1.wrap_function', 'tf.write_file': 'tf.io.write_file', 'tf.zeta': 'tf.math.zeta' }
StarcoderdataPython
1646915
<reponame>larson-group/clubb_release import netCDF4 import numpy as np import pylab as pl clubb_nc = netCDF4.Dataset('cldwt/rico_silhs_zt.nc') silhs_files = [ 'cldwt/rico_silhs_lh_zt.nc' ] silhs_labels = [ 'cldwt' ] silhs_sfc_nc = netCDF4.Dataset('cldwt/rico_silhs_lh_sfc.nc') silhs_ncs = list() for silhs_file in silhs_files: silhs_ncs.append(netCDF4.Dataset(silhs_file)) ############# silhs_2D_u = netCDF4.Dataset('cldwt/rico_silhs_u_lh_sample_points_2D.nc') silhs_2D_nl = netCDF4.Dataset('cldwt/rico_silhs_nl_lh_sample_points_2D.nc') dp1 = silhs_2D_u.variables['dp1'] rr_nl = silhs_2D_nl.variables['rr'] mf1 = clubb_nc.variables['mixt_frac'] ############# clubb_var = clubb_nc.variables['mu_rr_1'] l_time_shift = False silhs_vars = list() for silhs_nc in silhs_ncs: silhs_vars.append(silhs_nc.variables['lh_rrm']) k_lh_start = silhs_sfc_nc.variables['k_lh_start'] time1 = 300 time2 = 400 clubb_var_plt = np.empty(time2-time1) silhs_vars_plt = list() for silhs_var in silhs_vars: silhs_vars_plt.append(np.empty(time2-time1)) for t in range(time1,time2): k = int(round(k_lh_start[t,0,0,0])) - 1 if l_time_shift: clubb_var_plt[t-time1] = clubb_var[t-1,k,0,0] else: clubb_var_plt[t-time1] = clubb_var[t,k,0,0] # for u in range(0,len(silhs_vars_plt)): # silhs_vars_plt[u][t-time1] = silhs_vars[u][t,k,0,0] samples = [] for i in range(0,100): if dp1[t,k,i,0] < mf1[t,k,0,0] and rr_nl[t,k,i,0] > 0: samples.append(rr_nl[t,k,i,0]) avg = np.average(samples) silhs_vars_plt[0][t-time1] = avg pl.plot(range(time1,time2), clubb_var_plt[:], label='analytic') for u in range(0,len(silhs_vars_plt)): pl.plot(range(time1,time2), silhs_vars_plt[u][:], label=silhs_labels[u]) pl.show() pl.legend() clubb_nc.close() for silhs_nc in silhs_ncs: silhs_nc.close() silhs_sfc_nc.close()
StarcoderdataPython
1792039
<gh_stars>0 #!/usr/bin/python3 # -*- coding: utf-8 -*- import pwd import re import sys from subprocess import check_output, CalledProcessError users = [user for user in pwd.getpwall() if 1000 <= user.pw_uid < 2000] try: lxc_cmd = ["lxc", "ls", "volatile.last_state.power=RUNNING", "-c", "n", "--format", "csv"] lxc_running = check_output(lxc_cmd, universal_newlines=True).splitlines() except (CalledProcessError, FileNotFoundError): lxc_running = [] def get_cpu_usage(): out = check_output(["systemd-cgtop", "-b", "-n", "2", "-c", "--raw"], universal_newlines=True) outlines = out.splitlines() regex_user = re.compile(r'^/user.slice/user-(1\d{3}).slice ') regex_lxc = re.compile(r'^/lxc/(.+?) ') cpu_usage_users = {} cpu_usage_lxc = {} for line in outlines[len(outlines)//2:]: match_user = regex_user.match(line) match_lxc = regex_lxc.match(line) if match_user or match_lxc: _, _, cpu, _, _, _ = line.split() if cpu == '-': continue if match_user: uid = int(match_user.group(1)) cpu_usage_users[uid] = cpu elif match_lxc: lxc_label = match_lxc.group(1) cpu_usage_lxc[lxc_label] = cpu else: continue for user in users: label = "u{}".format(user.pw_uid) value = cpu_usage_users.get(user.pw_uid, 'U') print("{}.value {}".format(label, value)) for lxc in lxc_running: label = "lxc_{}".format(re.sub(r'[^a-zA-Z0-9_]', '_', lxc)) value = cpu_usage_lxc.get(lxc, 'U') print("{}.value {}".format(label, value)) def output_config(): print("graph_title CPU usage per user and LXC containers") print("graph_vlabel %") print("graph_category system") print("graph_args -l 0 -u 3200") print("graph_scale no") print("graph_total Total") first = True for user in users: label = "u{}".format(user.pw_uid) print("{}.label {}".format(label, user.pw_name)) print("{}.info Amount of CPU used by {}".format(label, user.pw_name)) if first: print("{}.draw AREA".format(label)) else: print("{}.draw STACK".format(label)) print("{}.min 0".format(label)) first = False for lxc in lxc_running: label = "lxc_{}".format(re.sub(r'[^a-zA-Z0-9_]', '_', lxc)) print("{}.label {}".format(label, lxc)) print("{}.info Amount of CPU used by LXC container {}".format(label, lxc)) if first: print("{}.draw AREA".format(label)) else: print("{}.draw STACK".format(label)) print("{}.min 0".format(label)) first = False def main(): if len(sys.argv) == 1: get_cpu_usage() if len(sys.argv) == 2: if sys.argv[1] == 'config': output_config() if __name__ == '__main__': main()
StarcoderdataPython
183149
<reponame>alexa/aac-sdk import subprocess from pylib.common import BaseHandler class BuilderHandler(BaseHandler): def run( self ): clean_packages = self.builder_configuration.find_packages( self.get_arg("pattern") ) self.log_info( "Cleaning cached builder data..." ) for next in clean_packages: # remove package from builder settings self.builder_configuration.remove_package( next ) # remove package from conan if not self.get_arg( "skip_conan", False ): subprocess.run( ["conan", "remove", next, "-f"], env=self.conan_env, capture_output=not self.verbose, check=True ) # save the settings state self.builder_configuration.save()
StarcoderdataPython
3328500
import argparse from CoolDataLoader import CoolDataLoader from CoolDataProcessor import * # Training settings parser = argparse.ArgumentParser() parser.add_argument('--f', type=str) args = parser.parse_args() Loader = CoolDataLoader(args.f) # print(Loader.get_course()) # print(Loader.get_videos()) # print(Loader.get_students()) # print(Loader.get_records()) videos_df = Loader.get_videos() cool_df = Loader.filter_select(["b07705016", "b07705051"], [], "", "") # print(cool_df.head()) # print(videos_df.head()) # func 1 watch_time_df = watch_time(cool_df) # print(watch_time_df) # func2 complete_table = completion_rate(cool_df, videos_df) # print(complete_table) # func 3 action_freq_table = action_freq(cool_df, action="forward") # print(action_freq_table) # func 4 action_dura_table = action_duration(cool_df, action="forward") # print(action_dura_table) # func 5 pause_freq_table = pause_freq(cool_df) # print(pause_freq_table) period_watch_df = watch_time(cool_df, [0000, 600]) print(period_watch_df)
StarcoderdataPython
24340
# # One-liner implementation of cPickle # from pickle import * from pickle import __doc__, __version__, format_version, compatible_formats BadPickleGet = KeyError UnpickleableError = PicklingError # ____________________________________________________________ # XXX some temporary dark magic to produce pickled dumps that are # closer to the ones produced by cPickle in CPython from pickle import StringIO PythonPickler = Pickler class Pickler(PythonPickler): def __init__(self, *args, **kw): self.__f = None if len(args) == 1 and isinstance(args[0], int): self.__f = StringIO() PythonPickler.__init__(self, self.__f, args[0], **kw) else: PythonPickler.__init__(self, *args, **kw) def memoize(self, obj): self.memo[None] = None # cPickle starts counting at one return PythonPickler.memoize(self, obj) def getvalue(self): return self.__f and self.__f.getvalue() def dump(obj, file, protocol=None, bin=None): Pickler(file, protocol, bin).dump(obj) def dumps(obj, protocol=None, bin=None): file = StringIO() Pickler(file, protocol, bin).dump(obj) return file.getvalue()
StarcoderdataPython
3257591
""" Week 2, Day 2: Valid Perfect Square Given a positive integer num, write a function which returns True if num is a perfect square else False. Note: Do not use any built-in library function such as sqrt. Example 1: Input: 16 Output: true Example 2: Input: 14 Output: false """ from functools import reduce from time import perf_counter_ns def isPerfectSquare(num: int) -> bool: """Okay. Solution is O(1).""" r = int(num ** 0.5) return r * r == num def isPerfectSquare_v2(num: int) -> bool: """ This O(1) solution were contributed to LeetCode by another user. Way faster than my first solution! A good example why you should always: 'Know your standard API!' But there is so much much python magic in it, that it almost feels like cheating. """ return (num ** 0.5).is_integer() def isPerfectSquare_v3(num: int) -> bool: """ Solve with math. Because (x + 1)^2 = x^2 + 2*x + 1. With 2*x + 1 being an odd number. This math based solution is O(n), and not O(1), so it is elegant, but slow. """ x = 1 while num > 0: num -= x x += 2 return num == 0 if __name__ == '__main__': p = 4321 * 4321 q = 4321 * 4319 start = perf_counter_ns() print(isPerfectSquare(16) is True) print(isPerfectSquare(14) is False) print(isPerfectSquare(p) is True) print(isPerfectSquare(q) is False) print('v1', perf_counter_ns() - start) start = perf_counter_ns() print(isPerfectSquare_v2(16) is True) print(isPerfectSquare_v2(14) is False) print(isPerfectSquare_v2(p) is True) print(isPerfectSquare_v2(q) is False) print('v2', perf_counter_ns() - start) start = perf_counter_ns() print(isPerfectSquare_v3(16) is True) print(isPerfectSquare_v3(14) is False) print(isPerfectSquare_v3(p) is True) print(isPerfectSquare_v3(q) is False) print('v3', perf_counter_ns() - start) # last line of code
StarcoderdataPython
1672653
<filename>secrets.template.py ## ## SP API Developer Settings ## # This is the first part of the LWA credentials from the developer console # and is specific to the application you set up. This looks something like # "amzn1.application-oa2-client.<hex id>" client_id = None # This is the hidden part of the LWA credentials from the developer console client_secret = None # This is what you get after you click Authorize to initate a self authorization # for this specific application in the specific marketplace. refresh_token = None ## ## AWS Credentials ## # If you aren't in a lambda you need to fill out the following 3 items # You also don't need the first two if you have system wide credentials # set up for AWS e.g. via `aws configure` access_key = None secret_key = None registered_role_arn = None
StarcoderdataPython
1700709
<filename>setup.py from setuptools import setup, find_packages setup( name='currency-wallet', version='0.1.0', description="Track investment returns in multiple currencies through the National Bank of Poland's API.", packages=find_packages(include=['currency_wallet']), python_requires='>=3.6', entry_points={ 'console_scripts': ['currency-wallet=currency_wallet.cli:cli'], }, )
StarcoderdataPython
105760
<reponame>jeamick/ares-visual<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- # author: <NAME> import json import importlib import inspect import sys from ares.Lib.js import AresJsEncoder factory = None def getConfigs(libraries): """ :category: Factory :rubric: JS :type: Configuration :dsc: Load the factory with all the different javascript configuration for the different HTML components. Some components like charts, tables, pivot and lists are bespoke and would require extra tuning according to the need. This module in the framework will segregate all the different official configurations. Some bespoke ones can be added in the reports using the available hooks for each type of components :return: The content of the factory """ global factory if factory is None: tmpFactory = {} for libConfig in libraries: chartMod = importlib.import_module('ares.Lib.js.configs.JsConfig%s' % libConfig) for name, chartCls in inspect.getmembers(sys.modules[chartMod.__name__]): chartAlias = getattr(chartCls, 'alias', None) if chartAlias is not None: if chartAlias in tmpFactory.get(libConfig, {}): raise Exception("Duplicated Name - Chart %s in %s cannot be replaced !!!" % (chartAlias, libConfig)) tmpFactory.setdefault(libConfig, {})[chartAlias] = chartCls factory = tmpFactory return factory def getConfig(pyCls, chartFam): """ :category: Chart Bespoke Configuration :rubric: JS :type: Framework Extension :example: aresObj.addChartConfig(JsTestHBar, 'ChartJs') :dsc: Entry point to allow the add of bespoke configurations. Those configurations should be linked to an alias which has to be unique. From this entry point it is not possible to update existing configurations. Those configurations should follow the defined class structure in order to be then easily added to the framework in the next release. The entry point of this function in the framework is in the function aresObj.addChartConfig in the framework """ chartMod = importlib.import_module('ares.Lib.js.configs.JsConfig%s' % chartFam) return type(pyCls.__name__, (pyCls, chartMod.JsBase), {}) class JsConfig(dict): """ :category: Javascript Wrapper :rubric: JS :type: System :dsc: Base class in charge of the conversion of Python configurations to Javascript ones. Those configurations defined on the Python side will only be used and visible on the Javascript. This class will build a dictionary of valid parameters for the Javascript layer. ## Class Parameters - aresObj: The uniq AReS object, shared with all the different objects in the framework - seriesProperties: Dictionary with configuration to be added after the Javascript data transformation to the object - data: The Python data structure which will be added to the data section of the Javascript chart ## Special static class variables Those variable are properties of the class and should not be changed directly. Some methods are available in order to add bespoke configuration to the chart or to the series like addAttr() and addSeriesAttr(). If something seems to be missing, please never change those variable and either create a new bespoke configuration or talk to your IT team. - _attrs, Chart properties and styles - _statics, parameters added to each series at the end of the data build The different Javascript structure are defined by the charting libraries """ def __init__(self, aresObj, data, seriesProperties): self.aresObj, self.seriesProperties = aresObj, seriesProperties resolvedAttrs = {} self.rAttr(self._attrs, resolvedAttrs) if getattr(self, '_statics', None) is not None: seriesProperties.setdefault('static', {}).update(self._statics) self.update(resolvedAttrs) self.data = self.transformation(data) self.config() def config(self): pass def rAttr(self, srcVals, dstVals, srcKey=None): """ :category: :rubric: PY :type: System :dsc: """ if isinstance(srcVals, dict): for key, val in srcVals.items(): if isinstance(val, dict): dstVals[key] = {} self.rAttr(val, dstVals[key]) else: self.rAttr(val, dstVals, key) elif isinstance(srcVals, list): dstVals[srcKey] = [] for val in srcVals: dstVals[srcKey].append({}) self.rAttr(val, dstVals[srcKey][-1]) else: if srcKey is not None: if isinstance(srcVals, str): if srcVals.startswith("function") or srcVals.startswith("JSON.stringify"): dstVals[srcKey] = srcVals else: dstVals[srcKey] = json.dumps(srcVals) else: dstVals[srcKey] = json.dumps(srcVals) elif isinstance(dstVals, list): dstVals.append(json.dumps(srcVals)) def toJs(self, options=None): return self @classmethod def transformation(cls, data): """ :category: Data Transformation :rubric: PY :type: Transformation :dsc: Data transformation for the DataFrame. Using this function might create a new DataFrame. Thus a new Javascript object will be created and the logic within the global filters might not work correctly. If you use this, please make it obvious to ensure other users might not be surprised """ return data def addAttr(self, key, val, tree=None, category=None, isPyData=True): if isinstance(key, dict): for k, v in key.items(): self.addAttr.addAttr(k, v, category=category, isPyData=isPyData) if isPyData: val = json.dumps(val, cls=AresJsEncoder.AresEncoder) if category is None and tree is not None: category, tree = tree, None if tree is not None: chartLocation = self[category] if not isinstance(tree, list): tree = [tree] for subCategory in tree: if isinstance(subCategory, tuple): subCategory, subCategoryIndex = subCategory else: subCategory, subCategoryIndex = subCategory, 0 if subCategory in self.listAttributes: if not subCategory in chartLocation: chartLocation[subCategory] = [] for i in range(subCategoryIndex + 1): chartLocation[subCategory].append({}) if len(chartLocation[subCategory]) < subCategoryIndex + 1: for i in range(subCategoryIndex + 1): if i not in chartLocation[subCategory]: chartLocation[subCategory].append({}) chartLocation = chartLocation[subCategory][subCategoryIndex] else: if not subCategory in chartLocation: chartLocation[subCategory] = {} chartLocation = chartLocation[subCategory] if isinstance(chartLocation, list): chartLocation[0][key] = val else: chartLocation[key] = val elif category is not None: self.setdefault(category, {})[key] = val else: self[key] = val def delAttr(self, keys, tree=None, category=None): """ """ chart = self if tree is not None: chartLocation = self.get(category, {}) for subCategory in tree: chartLocation = chartLocation.get(subCategory, {}) chart = chartLocation if category is not None: chart = self.get(category, {}) for attr in keys: if attr in chart: del chart[attr] def _colors(self, cList, index=None): """ :category: Chart Series Colors :rubric: JS :type: Configuration :dsc: """ if index is None: for i in range(len(self.data._schema['values'])): if len(cList) > i: self.seriesProperties['dynamic'].setdefault(i, {})['backgroundColor'] = cList[i] else: self.seriesProperties['dynamic'].setdefault(index, {})['backgroundColor'] = cList if __name__ == "__main__": print(getConfigs(['ChartJs']))
StarcoderdataPython
1669620
import pygame import random from inc_SpriteSheet import SpriteSheet ''' Enemy (sprite group) This class handles the badguys which fires lasers ''' class Enemy(pygame.sprite.Sprite): ''' Init This function is called automatically when we initialize the Class ''' def __init__(self): super().__init__() self.animation_frames = [] # empty list to hold all sprite frames # Load the sprite sheet sprite_sheet = SpriteSheet("assets/Images/sprite_sheet.png") # enemy sprites (3 frame animation) image = sprite_sheet.get_image(0, 16, 16, 16); # (x, y, width, height) self.animation_frames.append(image) image = sprite_sheet.get_image(16, 16, 16, 16); self.animation_frames.append(image) image = sprite_sheet.get_image(32, 16, 16, 16); self.animation_frames.append(image) # enemy explosion (4 frame animation) image = sprite_sheet.get_image(0, 32, 16, 16); self.animation_frames.append(image) image = sprite_sheet.get_image(16, 32, 16, 16); self.animation_frames.append(image) image = sprite_sheet.get_image(32, 32, 16, 16); self.animation_frames.append(image) image = sprite_sheet.get_image(48, 32, 16, 16); self.animation_frames.append(image) self.image = self.animation_frames[0] # set initial frame # Create a mask for collision (same for both lasers) self.mask = pygame.mask.from_surface(self.image) self.rect = self.image.get_rect() self.rect.x = -16 # enemy init location (horizontal) - offscreen self.rect.y = -16 # enemy init location (vertical) - offscreen self.frame = 1 # current animation frame self.animation_time = 0 # animation delay speed self.shoot_time = pygame.time.get_ticks() + random.randrange(0, 1000) # delay between firing self.gun_loaded = 0 # ready to fire! self.alive = True # Flag if we're alive or not ''' Update Handles animations and gun timing ''' def update(self): if pygame.time.get_ticks() > self.shoot_time + 1000: self.shoot_time = pygame.time.get_ticks() + random.randrange(0, 1000) self.gun_loaded = 1 # Animation Frames if pygame.time.get_ticks() > self.animation_time + 50: self.animation_time = pygame.time.get_ticks() self.frame = self.frame + 1 if self.frame > 2 and self.alive == True: # reset animation loop self.frame = 0 elif self.frame > 5 and self.alive == False: # dead :( self.kill() self.image = self.animation_frames[self.frame] self.rect.x -= 1 # scoot across the screen kinda slow # Offscreen, remove this sprite if self.rect.y < -16: self.kill() if self.rect.y > 240: self.kill() if self.rect.x < -16: self.kill() if self.rect.x > 320: self.kill() ''' Draw Places the current animation frame image onto the passed screen ''' def draw(self, win): win.blit(self.image, self.rect)
StarcoderdataPython
100540
"""Interfaces for interacting with Pinterest users""" import logging import json from datetime import datetime from dateutil import tz from friendlypins.board import Board class User(object): """Abstraction around a Pinterest user and their associated data""" def __init__(self, url, rest_io): """ Args: url (str): URL for this user, relative to the API root rest_io (RestIO): reference to the Pinterest REST API """ self._log = logging.getLogger(__name__) self._io = rest_io self._relative_url = url self._data_cache = None @staticmethod def default_fields(): """list (str): list of fields we pre-populate when loading user data""" return [ "id", "username", "first_name", "last_name", "bio", "created_at", "counts", "image", "account_type", "url" ] def refresh(self): """Updates cached response data describing the state of this user NOTE: This method simply clears the internal cache, and updated information will automatically be pulled on demand as additional queries are made through the API""" self._data_cache = None @property def _data(self): """dict: JSON response containing details of the users' profile This internal helper caches the user profile data to minimize the number of calls to the REST API, to make more efficient use of rate limitations. """ if self._data_cache is not None: return self._data_cache self._log.debug("Getting authenticated user details...") fields = ",".join(self.default_fields()) temp = self._io.get(self._relative_url, {"fields": fields}) assert 'data' in temp self._data_cache = temp["data"] return self._data_cache def __str__(self): return json.dumps(dict(self._data), sort_keys=True, indent=4) def __repr__(self): return "<{0} ({1} {2})>".format( self.__class__.__name__, self.first_name, self.last_name) @property def unique_id(self): """int: Gets the internal unique ID associated with the user""" return int(self._data['id']) @property def first_name(self): """str: the first name of the user""" return self._data['first_name'] @property def last_name(self): """str: the last name of the user""" return self._data['last_name'] @property def name(self): """str: the full name of the user alias for first_name + last_name """ return "{0} {1}".format(self.first_name, self.last_name).strip() @property def username(self): """str: display name, used for logging in to Pinterest""" return self._data["username"] @property def url(self): """str: the URL of the users profile""" return self._data['url'] @property def num_pins(self): """int: the total number of pins owned by this user""" return self._data['counts']['pins'] @property def num_boards(self): """int: the total number of boards owned by this user""" return self._data['counts']['boards'] @property def num_followers(self): """int: number of people following this Pinterest user""" return self._data["counts"]["followers"] @property def created(self): """datetime.datetime: when this user's profile was created""" # sample datetime to parse: "2020-07-21T16:16:03" (in UTC) raw_date = self._data["created_at"] retval = datetime.strptime(raw_date, "%Y-%m-%dT%H:%M:%S") return retval.replace(tzinfo=tz.tzutc()) @property def account_type(self): """str: type of Pinterest account (ie: individual / business)""" return self._data["account_type"] @property def bio(self): """str: description of who this user is""" return self._data["bio"] @property def boards(self): """Board: Generator for iterating over the boards owned by this user""" self._log.debug('Loading boards for user %s...', self._relative_url) properties = { "fields": ','.join(Board.default_fields()) } board_url = "{0}/boards".format(self._relative_url) for cur_page in self._io.get_pages(board_url, properties): assert 'data' in cur_page for cur_item in cur_page['data']: yield Board.from_json(cur_item, self._io) def create_board(self, name, description=None): """Creates a new board for the currently authenticated user Args: name (str): name for the new board description (str): optional descriptive text for the board Returns: Board: reference to the newly created board """ properties = { "fields": ','.join(Board.default_fields()) } data = {"name": name} if description: data["description"] = description result = self._io.post("boards", data, properties) return Board.from_json(result['data'], self._io) if __name__ == "__main__": # pragma: no cover pass
StarcoderdataPython
1727735
from jinja2 import Template # >>> template = Template('Hello {{ name }}!') # >>> template.render(name='<NAME>') template = ''' <div class="col-md-4 col-sm-6 portfolio-item"> <div> <img src="img/games/jigsaw_puzzles.png" class="img-responsive" alt=""> </div> <div class="portfolio-caption"> <a href="http://www.onet.pl"> <img src="img/google-play-badge.png" class="img-responsive center-block" alt=""> </a> <h4>+</h4> <a href="http://www.onet.pl"> <img src="img/ms-badge.png" class="img-responsive center-block" alt=""> </a> <h3>Jigsaw Puzzle</h3> <!-- <p class="text-muted">Website Design</p> --> </div> </div>''' template2 = ''' {% for game in games %} <div class="col-xs-6 col-sm-4 col-md-3 portfolio-item"> <div> <img src="img/games/{{ game["image"] }}" class="img-responsive" alt=""> </div> <div class="portfolio-caption"> <div class="row">{% for store in game["stores"] %} <div class="col-xs-6 portfolio-item"> <a href="{{ store["link"] }}"> <img src="{{ store["badge"] }}" class="img-responsive center-block" alt=""> </a> </div>{% endfor %} </div> <h4>{{ game["name"] }}</h4> </div> </div> {% endfor %} ''' def get_stores(stores): def get_store(store, col_class): return f"""<div class="portfolio-caption"> <a href = "{store["link"]}" > <img src = "{store["badge"]}" class = "img-responsive center-block" alt = "" > </a > </div >""" if len(stores) == 1: return get_store(stores[0], "") assert len(stores) == 2 return "\n".join(get_store(store, "col-xs-6") for store in stores) def get_template_item(game): return f""" <div class="col-xs-6 col-sm-4 col-md-3 portfolio-item"> <a href = "{game["stores"][0]["link"]}" > <div class="portfolio-caption"> <h4>{game["name"]}</h4> </div> <div class="portfolio-caption"> <img src="img/games/{game["image"]}" class="img-responsive" alt=""> </div> {get_stores(game["stores"])} </a> </div>""" def get_template_items(games): return "\n".join([get_template_item(game) for game in games]) def googleLink(id): return 'https://play.google.com/store/apps/details?id=com.crazyhappygame.{id}&pcampaignid=MKT-Other-global-all-co-prtnr-py-PartBadge-Mar2515-1'.format(id=id) def getGoogleStore(id): return { "badge": "img/google-play-badge.png", "link": googleLink(id) } def msLink(id): return 'https://www.microsoft.com/store/apps/{id}?ocid=badge'.format(id=id) def getMsStore(id): return { "badge": "img/ms-badge.png", "link": msLink(id) } games = [ { "name": "DotPoly", "image": "dotpoly.png", "stores": [getGoogleStore("dotpoly")] }, { "name": "DotToDot", "image": "dottodot.png", "stores": [getGoogleStore("dottodot")] }, { "name": "Mahjong", "image": "mahjong.png", "stores": [getGoogleStore("mahjong")] }, { "name": "Planet Draw", "image": "planet_draw.png", "stores": [getGoogleStore("planetdraw")] }, { "name": "Jigsaw Puzzle", "image": "jigsaw_puzzle.png", "stores": [getGoogleStore("jigsawpuzzle"), getMsStore("9nblggh4tpj1")] }, { "name": "Coloring Book", "image": "coloring_book.png", "stores": [getGoogleStore("coloringpagespuzzleforkids"), getMsStore("9nblggh4m297")] }, { "name": "<NAME>uzzle", "image": "puzzle_animals.png", "stores": [getGoogleStore("letterjigsawpuzzlesforkids"), getMsStore("9nblggh4nxmn")] }, { "name": "Puzzle/Memo", "image": "bee_pack.png", "stores": [getGoogleStore("kidspuzzlebeepack"), getMsStore("9nblggh3vrtd")] }, { "name": "<NAME>", "image": "christmas_tree.png", "stores": [getGoogleStore("christmastree")] }, # { # "name": "Smart Draw", # "image": "smart_draw.png", # "stores": [getGoogleStore("smartdraw")] # }, { "name": "<NAME>", "image": "bee.png", "stores": [getGoogleStore("kidspuzzlebee")] }, { "name": "Cats Puzzle", "image": "puzzle_animals2.png", "stores": [getGoogleStore("catsandmicejigsawpuzzlesforkids")] } ] t = Template(template2) # print(t.render(games=games)) print(get_template_items(games))
StarcoderdataPython
3387673
from django.apps import AppConfig class ColdocappConfig(AppConfig): name = 'ColDocApp' default_auto_field = 'django.db.models.AutoField'
StarcoderdataPython
1774526
<reponame>andyjohn23/python-instagram-clone from django import forms from .models import UserAccount, Profile from django.contrib.auth.forms import UserCreationForm from django.contrib.auth import authenticate, login from django.forms.widgets import TextInput class RegisterUserForm(UserCreationForm): email = forms.EmailField( max_length=200, help_text='Required valid emailaddress') class Meta: model = UserAccount fields = ['username', 'email', '<PASSWORD>', '<PASSWORD>'] def clean_email(self): email = self.cleaned_data['email'].lower() try: account = UserAccount.objects.get(email=email) except Exception as e: return email raise forms.ValidationError(f'Email {email} is already in use!') def clean_username(self): username = self.cleaned_data['username'] try: account = UserAccount.objects.get(username=username) except Exception as e: return username raise forms.ValidationError(f'Username {username} is already in use!') class AuthenticationForm(forms.ModelForm): password = forms.CharField(label='password', widget=forms.PasswordInput) class Meta: model = UserAccount fields = ('email', 'password') def clean(self): if self.is_valid(): email = self.cleaned_data['email'] password = self.cleaned_data['password'] if not authenticate(email=email, password=password): raise forms.ValidationError('invalid login') class UserUpdateForm(forms.ModelForm): username = forms.CharField(widget=forms.TextInput(), max_length=15, required=True) email = forms.CharField(widget=forms.TextInput(), max_length=100, required=True) class Meta: model = UserAccount fields = ['username', 'email'] class ProfileUpdateForm(forms.ModelForm): bio = forms.CharField(widget=forms.Textarea( attrs={'class': 'input is-medium'}), max_length=150, required=False) class Meta: model = Profile fields = ['bio'] class UserSearchForm(forms.Form): q = forms.CharField() c = forms.ModelChoiceField( queryset=UserAccount.objects.all().order_by('username')) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['c'].label = '' self.fields['c'].required = False self.fields['c'].label = 'Category' self.fields['q'].label = 'Search For' self.fields['q'].widget.attrs.update( {'class': 'form-control menudd'}) self.fields['q'].widget.attrs.update( {'data-toggle': 'dropdown'})
StarcoderdataPython
3203665
from .na_graves_top import * from .na_graves_jng import * from .na_graves_mid import * from .na_graves_bot import * from .na_graves_sup import *
StarcoderdataPython
3201805
import numpy as np from src.features import get_dtmp_distribution_statistics, get_dtl_distribution_statistics from src.helpers import read_video def test_get_dtmp_distribution_statistics(): df_video = read_video(video_id='001') feature = get_dtmp_distribution_statistics(df_video, 'left', 'ankle', np.nanmedian) assert len(feature) == 10 def test_get_dtl_distribution_statistics(): df_video = read_video(video_id='001') feature = get_dtl_distribution_statistics(df_video, 'left', 'ankle', np.nanmedian) assert len(feature) == 10
StarcoderdataPython
1749614
from pathlib import Path USER_REPOS_PAGE1 = '''\ [ { "archive_url": "https://api.github.com/repos/jwodder/advent350/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/advent350/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/advent350/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/advent350/branches{/branch}", "clone_url": "https://github.com/jwodder/advent350.git", "collaborators_url": "https://api.github.com/repos/jwodder/advent350/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/advent350/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/advent350/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/advent350/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/advent350/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/advent350/contributors", "created_at": "2009-07-03T04:36:49Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/advent350/deployments", "description": "Yet another port of the Colossal Cave Adventure", "downloads_url": "https://api.github.com/repos/jwodder/advent350/downloads", "events_url": "https://api.github.com/repos/jwodder/advent350/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/advent350/forks", "full_name": "jwodder/advent350", "git_commits_url": "https://api.github.com/repos/jwodder/advent350/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/advent350/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/advent350/git/tags{/sha}", "git_url": "git://github.com/jwodder/advent350.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": false, "homepage": "", "hooks_url": "https://api.github.com/repos/jwodder/advent350/hooks", "html_url": "https://github.com/jwodder/advent350", "id": 242192, "issue_comment_url": "https://api.github.com/repos/jwodder/advent350/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/advent350/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/advent350/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/advent350/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/advent350/labels{/name}", "language": "Perl6", "languages_url": "https://api.github.com/repos/jwodder/advent350/languages", "license": null, "merges_url": "https://api.github.com/repos/jwodder/advent350/merges", "milestones_url": "https://api.github.com/repos/jwodder/advent350/milestones{/number}", "mirror_url": null, "name": "advent350", "notifications_url": "https://api.github.com/repos/jwodder/advent350/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/advent350/pulls{/number}", "pushed_at": "2015-12-31T00:57:19Z", "releases_url": "https://api.github.com/repos/jwodder/advent350/releases{/id}", "size": 417, "ssh_url": "[email protected]:jwodder/advent350.git", "stargazers_count": 2, "stargazers_url": "https://api.github.com/repos/jwodder/advent350/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/advent350/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/advent350/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/advent350/subscription", "svn_url": "https://github.com/jwodder/advent350", "tags_url": "https://api.github.com/repos/jwodder/advent350/tags", "teams_url": "https://api.github.com/repos/jwodder/advent350/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/advent350/git/trees{/sha}", "updated_at": "2016-08-14T18:09:16Z", "url": "https://api.github.com/repos/jwodder/advent350", "watchers": 2, "watchers_count": 2 }, { "archive_url": "https://api.github.com/repos/jwodder/aptrepo/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/aptrepo/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/aptrepo/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/aptrepo/branches{/branch}", "clone_url": "https://github.com/jwodder/aptrepo.git", "collaborators_url": "https://api.github.com/repos/jwodder/aptrepo/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/aptrepo/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/aptrepo/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/aptrepo/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/aptrepo/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/aptrepo/contributors", "created_at": "2016-10-03T18:31:42Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/aptrepo/deployments", "description": "Examining & traversing APT repositories", "downloads_url": "https://api.github.com/repos/jwodder/aptrepo/downloads", "events_url": "https://api.github.com/repos/jwodder/aptrepo/events", "fork": false, "forks": 1, "forks_count": 1, "forks_url": "https://api.github.com/repos/jwodder/aptrepo/forks", "full_name": "jwodder/aptrepo", "git_commits_url": "https://api.github.com/repos/jwodder/aptrepo/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/aptrepo/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/aptrepo/git/tags{/sha}", "git_url": "git://github.com/jwodder/aptrepo.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/aptrepo/hooks", "html_url": "https://github.com/jwodder/aptrepo", "id": 69898888, "issue_comment_url": "https://api.github.com/repos/jwodder/aptrepo/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/aptrepo/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/aptrepo/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/aptrepo/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/aptrepo/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/aptrepo/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/aptrepo/merges", "milestones_url": "https://api.github.com/repos/jwodder/aptrepo/milestones{/number}", "mirror_url": null, "name": "aptrepo", "notifications_url": "https://api.github.com/repos/jwodder/aptrepo/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/aptrepo/pulls{/number}", "pushed_at": "2017-06-10T19:54:05Z", "releases_url": "https://api.github.com/repos/jwodder/aptrepo/releases{/id}", "size": 90, "ssh_url": "git<EMAIL>.com:jwodder/aptrepo.git", "stargazers_count": 2, "stargazers_url": "https://api.github.com/repos/jwodder/aptrepo/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/aptrepo/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/aptrepo/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/aptrepo/subscription", "svn_url": "https://github.com/jwodder/aptrepo", "tags_url": "https://api.github.com/repos/jwodder/aptrepo/tags", "teams_url": "https://api.github.com/repos/jwodder/aptrepo/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/aptrepo/git/trees{/sha}", "updated_at": "2017-06-12T16:37:38Z", "url": "https://api.github.com/repos/jwodder/aptrepo", "watchers": 2, "watchers_count": 2 }, { "archive_url": "https://api.github.com/repos/jwodder/awesome-python/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/awesome-python/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/awesome-python/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/awesome-python/branches{/branch}", "clone_url": "https://github.com/jwodder/awesome-python.git", "collaborators_url": "https://api.github.com/repos/jwodder/awesome-python/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/awesome-python/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/awesome-python/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/awesome-python/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/awesome-python/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/awesome-python/contributors", "created_at": "2017-04-15T23:25:28Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/awesome-python/deployments", "description": "A curated list of awesome Python frameworks, libraries, software and resources", "downloads_url": "https://api.github.com/repos/jwodder/awesome-python/downloads", "events_url": "https://api.github.com/repos/jwodder/awesome-python/events", "fork": true, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/awesome-python/forks", "full_name": "jwodder/awesome-python", "git_commits_url": "https://api.github.com/repos/jwodder/awesome-python/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/awesome-python/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/awesome-python/git/tags{/sha}", "git_url": "git://github.com/jwodder/awesome-python.git", "has_downloads": true, "has_issues": false, "has_pages": false, "has_projects": true, "has_wiki": false, "homepage": "http://awesome-python.com/", "hooks_url": "https://api.github.com/repos/jwodder/awesome-python/hooks", "html_url": "https://github.com/jwodder/awesome-python", "id": 88379694, "issue_comment_url": "https://api.github.com/repos/jwodder/awesome-python/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/awesome-python/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/awesome-python/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/awesome-python/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/awesome-python/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/awesome-python/languages", "license": null, "merges_url": "https://api.github.com/repos/jwodder/awesome-python/merges", "milestones_url": "https://api.github.com/repos/jwodder/awesome-python/milestones{/number}", "mirror_url": null, "name": "awesome-python", "notifications_url": "https://api.github.com/repos/jwodder/awesome-python/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/awesome-python/pulls{/number}", "pushed_at": "2017-04-15T23:37:44Z", "releases_url": "https://api.github.com/repos/jwodder/awesome-python/releases{/id}", "size": 3216, "ssh_url": "[email protected]:jwodder/awesome-python.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/awesome-python/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/awesome-python/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/awesome-python/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/awesome-python/subscription", "svn_url": "https://github.com/jwodder/awesome-python", "tags_url": "https://api.github.com/repos/jwodder/awesome-python/tags", "teams_url": "https://api.github.com/repos/jwodder/awesome-python/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/awesome-python/git/trees{/sha}", "updated_at": "2017-04-15T23:25:31Z", "url": "https://api.github.com/repos/jwodder/awesome-python", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/binheat/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/binheat/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/binheat/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/binheat/branches{/branch}", "clone_url": "https://github.com/jwodder/binheat.git", "collaborators_url": "https://api.github.com/repos/jwodder/binheat/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/binheat/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/binheat/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/binheat/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/binheat/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/binheat/contributors", "created_at": "2014-04-30T21:35:56Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/binheat/deployments", "description": "Binary heat map generator", "downloads_url": "https://api.github.com/repos/jwodder/binheat/downloads", "events_url": "https://api.github.com/repos/jwodder/binheat/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/binheat/forks", "full_name": "jwodder/binheat", "git_commits_url": "https://api.github.com/repos/jwodder/binheat/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/binheat/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/binheat/git/tags{/sha}", "git_url": "git://github.com/jwodder/binheat.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": "", "hooks_url": "https://api.github.com/repos/jwodder/binheat/hooks", "html_url": "https://github.com/jwodder/binheat", "id": 19328026, "issue_comment_url": "https://api.github.com/repos/jwodder/binheat/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/binheat/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/binheat/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/binheat/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/binheat/labels{/name}", "language": "Perl", "languages_url": "https://api.github.com/repos/jwodder/binheat/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/binheat/merges", "milestones_url": "https://api.github.com/repos/jwodder/binheat/milestones{/number}", "mirror_url": null, "name": "binheat", "notifications_url": "https://api.github.com/repos/jwodder/binheat/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/binheat/pulls{/number}", "pushed_at": "2014-10-29T22:20:10Z", "releases_url": "https://api.github.com/repos/jwodder/binheat/releases{/id}", "size": 172, "ssh_url": "<EMAIL>:jwodder/binheat.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/binheat/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/binheat/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/binheat/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/binheat/subscription", "svn_url": "https://github.com/jwodder/binheat", "tags_url": "https://api.github.com/repos/jwodder/binheat/tags", "teams_url": "https://api.github.com/repos/jwodder/binheat/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/binheat/git/trees{/sha}", "updated_at": "2014-09-09T18:09:46Z", "url": "https://api.github.com/repos/jwodder/binheat", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/bitvector.py/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/bitvector.py/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/bitvector.py/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/bitvector.py/branches{/branch}", "clone_url": "https://github.com/jwodder/bitvector.py.git", "collaborators_url": "https://api.github.com/repos/jwodder/bitvector.py/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/bitvector.py/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/bitvector.py/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/bitvector.py/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/bitvector.py/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/bitvector.py/contributors", "created_at": "2014-05-21T00:10:35Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/bitvector.py/deployments", "description": "[Abandoned] Python class for vectors of bits", "downloads_url": "https://api.github.com/repos/jwodder/bitvector.py/downloads", "events_url": "https://api.github.com/repos/jwodder/bitvector.py/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/bitvector.py/forks", "full_name": "jwodder/bitvector.py", "git_commits_url": "https://api.github.com/repos/jwodder/bitvector.py/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/bitvector.py/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/bitvector.py/git/tags{/sha}", "git_url": "git://github.com/jwodder/bitvector.py.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": "", "hooks_url": "https://api.github.com/repos/jwodder/bitvector.py/hooks", "html_url": "https://github.com/jwodder/bitvector.py", "id": 20002028, "issue_comment_url": "https://api.github.com/repos/jwodder/bitvector.py/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/bitvector.py/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/bitvector.py/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/bitvector.py/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/bitvector.py/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/bitvector.py/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/bitvector.py/merges", "milestones_url": "https://api.github.com/repos/jwodder/bitvector.py/milestones{/number}", "mirror_url": null, "name": "bitvector.py", "notifications_url": "https://api.github.com/repos/jwodder/bitvector.py/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/bitvector.py/pulls{/number}", "pushed_at": "2015-11-29T01:29:03Z", "releases_url": "https://api.github.com/repos/jwodder/bitvector.py/releases{/id}", "size": 21, "ssh_url": "[email protected]:jwodder/bitvector.py.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/bitvector.py/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/bitvector.py/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/bitvector.py/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/bitvector.py/subscription", "svn_url": "https://github.com/jwodder/bitvector.py", "tags_url": "https://api.github.com/repos/jwodder/bitvector.py/tags", "teams_url": "https://api.github.com/repos/jwodder/bitvector.py/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/bitvector.py/git/trees{/sha}", "updated_at": "2016-03-16T02:10:02Z", "url": "https://api.github.com/repos/jwodder/bitvector.py", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/caught/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/caught/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/caught/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/caught/branches{/branch}", "clone_url": "https://github.com/jwodder/caught.git", "collaborators_url": "https://api.github.com/repos/jwodder/caught/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/caught/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/caught/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/caught/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/caught/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/caught/contributors", "created_at": "2015-04-13T02:01:49Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/caught/deployments", "description": "Track caught Pokémon in multiple games", "downloads_url": "https://api.github.com/repos/jwodder/caught/downloads", "events_url": "https://api.github.com/repos/jwodder/caught/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/caught/forks", "full_name": "jwodder/caught", "git_commits_url": "https://api.github.com/repos/jwodder/caught/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/caught/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/caught/git/tags{/sha}", "git_url": "git://github.com/jwodder/caught.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/caught/hooks", "html_url": "https://github.com/jwodder/caught", "id": 33842682, "issue_comment_url": "https://api.github.com/repos/jwodder/caught/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/caught/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/caught/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/caught/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/caught/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/caught/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/caught/merges", "milestones_url": "https://api.github.com/repos/jwodder/caught/milestones{/number}", "mirror_url": null, "name": "caught", "notifications_url": "https://api.github.com/repos/jwodder/caught/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/caught/pulls{/number}", "pushed_at": "2015-12-04T02:36:47Z", "releases_url": "https://api.github.com/repos/jwodder/caught/releases{/id}", "size": 80, "ssh_url": "[email protected]:jwodder/caught.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/caught/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/caught/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/caught/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/caught/subscription", "svn_url": "https://github.com/jwodder/caught", "tags_url": "https://api.github.com/repos/jwodder/caught/tags", "teams_url": "https://api.github.com/repos/jwodder/caught/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/caught/git/trees{/sha}", "updated_at": "2015-04-13T02:02:34Z", "url": "https://api.github.com/repos/jwodder/caught", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/Chess.hs/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/Chess.hs/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/Chess.hs/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/Chess.hs/branches{/branch}", "clone_url": "https://github.com/jwodder/Chess.hs.git", "collaborators_url": "https://api.github.com/repos/jwodder/Chess.hs/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/Chess.hs/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/Chess.hs/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/Chess.hs/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/Chess.hs/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/Chess.hs/contributors", "created_at": "2014-05-08T00:15:23Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/Chess.hs/deployments", "description": "Representing chess games & notation in Haskell", "downloads_url": "https://api.github.com/repos/jwodder/Chess.hs/downloads", "events_url": "https://api.github.com/repos/jwodder/Chess.hs/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/Chess.hs/forks", "full_name": "jwodder/Chess.hs", "git_commits_url": "https://api.github.com/repos/jwodder/Chess.hs/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/Chess.hs/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/Chess.hs/git/tags{/sha}", "git_url": "git://github.com/jwodder/Chess.hs.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/Chess.hs/hooks", "html_url": "https://github.com/jwodder/Chess.hs", "id": 19554865, "issue_comment_url": "https://api.github.com/repos/jwodder/Chess.hs/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/Chess.hs/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/Chess.hs/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/Chess.hs/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/Chess.hs/labels{/name}", "language": "Haskell", "languages_url": "https://api.github.com/repos/jwodder/Chess.hs/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/Chess.hs/merges", "milestones_url": "https://api.github.com/repos/jwodder/Chess.hs/milestones{/number}", "mirror_url": null, "name": "Chess.hs", "notifications_url": "https://api.github.com/repos/jwodder/Chess.hs/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/Chess.hs/pulls{/number}", "pushed_at": "2015-06-06T19:12:11Z", "releases_url": "https://api.github.com/repos/jwodder/Chess.hs/releases{/id}", "size": 192, "ssh_url": "[email protected]:jwodder/Chess.hs.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/Chess.hs/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/Chess.hs/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/Chess.hs/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/Chess.hs/subscription", "svn_url": "https://github.com/jwodder/Chess.hs", "tags_url": "https://api.github.com/repos/jwodder/Chess.hs/tags", "teams_url": "https://api.github.com/repos/jwodder/Chess.hs/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/Chess.hs/git/trees{/sha}", "updated_at": "2014-10-29T22:18:38Z", "url": "https://api.github.com/repos/jwodder/Chess.hs", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/conjugate/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/conjugate/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/conjugate/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/conjugate/branches{/branch}", "clone_url": "https://github.com/jwodder/conjugate.git", "collaborators_url": "https://api.github.com/repos/jwodder/conjugate/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/conjugate/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/conjugate/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/conjugate/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/conjugate/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/conjugate/contributors", "created_at": "2014-05-04T22:49:11Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/conjugate/deployments", "description": "Latin verb conjugator", "downloads_url": "https://api.github.com/repos/jwodder/conjugate/downloads", "events_url": "https://api.github.com/repos/jwodder/conjugate/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/conjugate/forks", "full_name": "jwodder/conjugate", "git_commits_url": "https://api.github.com/repos/jwodder/conjugate/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/conjugate/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/conjugate/git/tags{/sha}", "git_url": "git://github.com/jwodder/conjugate.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/conjugate/hooks", "html_url": "https://github.com/jwodder/conjugate", "id": 19437932, "issue_comment_url": "https://api.github.com/repos/jwodder/conjugate/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/conjugate/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/conjugate/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/conjugate/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/conjugate/labels{/name}", "language": "Perl", "languages_url": "https://api.github.com/repos/jwodder/conjugate/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/conjugate/merges", "milestones_url": "https://api.github.com/repos/jwodder/conjugate/milestones{/number}", "mirror_url": null, "name": "conjugate", "notifications_url": "https://api.github.com/repos/jwodder/conjugate/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/conjugate/pulls{/number}", "pushed_at": "2014-10-29T22:23:37Z", "releases_url": "https://api.github.com/repos/jwodder/conjugate/releases{/id}", "size": 148, "ssh_url": "[email protected]:jwodder/conjugate.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/conjugate/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/conjugate/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/conjugate/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/conjugate/subscription", "svn_url": "https://github.com/jwodder/conjugate", "tags_url": "https://api.github.com/repos/jwodder/conjugate/tags", "teams_url": "https://api.github.com/repos/jwodder/conjugate/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/conjugate/git/trees{/sha}", "updated_at": "2014-09-09T18:13:20Z", "url": "https://api.github.com/repos/jwodder/conjugate", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/daemail/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/daemail/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/daemail/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/daemail/branches{/branch}", "clone_url": "https://github.com/jwodder/daemail.git", "collaborators_url": "https://api.github.com/repos/jwodder/daemail/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/daemail/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/daemail/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/daemail/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/daemail/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/daemail/contributors", "created_at": "2016-04-28T21:34:45Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/daemail/deployments", "description": "Daemonize a command and e-mail the results", "downloads_url": "https://api.github.com/repos/jwodder/daemail/downloads", "events_url": "https://api.github.com/repos/jwodder/daemail/events", "fork": false, "forks": 1, "forks_count": 1, "forks_url": "https://api.github.com/repos/jwodder/daemail/forks", "full_name": "jwodder/daemail", "git_commits_url": "https://api.github.com/repos/jwodder/daemail/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/daemail/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/daemail/git/tags{/sha}", "git_url": "git://github.com/jwodder/daemail.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": "", "hooks_url": "https://api.github.com/repos/jwodder/daemail/hooks", "html_url": "https://github.com/jwodder/daemail", "id": 57335258, "issue_comment_url": "https://api.github.com/repos/jwodder/daemail/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/daemail/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/daemail/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/daemail/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/daemail/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/daemail/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/daemail/merges", "milestones_url": "https://api.github.com/repos/jwodder/daemail/milestones{/number}", "mirror_url": null, "name": "daemail", "notifications_url": "https://api.github.com/repos/jwodder/daemail/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/daemail/pulls{/number}", "pushed_at": "2017-04-17T17:54:23Z", "releases_url": "https://api.github.com/repos/jwodder/daemail/releases{/id}", "size": 129, "ssh_url": "git<EMAIL>:jwodder/daemail.git", "stargazers_count": 1, "stargazers_url": "https://api.github.com/repos/jwodder/daemail/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/daemail/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/daemail/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/daemail/subscription", "svn_url": "https://github.com/jwodder/daemail", "tags_url": "https://api.github.com/repos/jwodder/daemail/tags", "teams_url": "https://api.github.com/repos/jwodder/daemail/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/daemail/git/trees{/sha}", "updated_at": "2016-10-23T19:52:40Z", "url": "https://api.github.com/repos/jwodder/daemail", "watchers": 1, "watchers_count": 1 }, { "archive_url": "https://api.github.com/repos/jwodder/doapi/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/doapi/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/doapi/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/doapi/branches{/branch}", "clone_url": "https://github.com/jwodder/doapi.git", "collaborators_url": "https://api.github.com/repos/jwodder/doapi/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/doapi/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/doapi/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/doapi/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/doapi/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/doapi/contributors", "created_at": "2015-12-31T00:55:35Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/doapi/deployments", "description": "DigitalOcean API Python library & CLI", "downloads_url": "https://api.github.com/repos/jwodder/doapi/downloads", "events_url": "https://api.github.com/repos/jwodder/doapi/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/doapi/forks", "full_name": "jwodder/doapi", "git_commits_url": "https://api.github.com/repos/jwodder/doapi/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/doapi/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/doapi/git/tags{/sha}", "git_url": "git://github.com/jwodder/doapi.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/doapi/hooks", "html_url": "https://github.com/jwodder/doapi", "id": 48825963, "issue_comment_url": "https://api.github.com/repos/jwodder/doapi/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/doapi/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/doapi/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/doapi/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/doapi/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/doapi/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/doapi/merges", "milestones_url": "https://api.github.com/repos/jwodder/doapi/milestones{/number}", "mirror_url": null, "name": "doapi", "notifications_url": "https://api.github.com/repos/jwodder/doapi/notifications{?since,all,participating}", "open_issues": 11, "open_issues_count": 11, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/doapi/pulls{/number}", "pushed_at": "2017-04-17T18:05:10Z", "releases_url": "https://api.github.com/repos/jwodder/doapi/releases{/id}", "size": 480, "ssh_url": "<EMAIL>:jwodder/doapi.git", "stargazers_count": 3, "stargazers_url": "https://api.github.com/repos/jwodder/doapi/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/doapi/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/doapi/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/doapi/subscription", "svn_url": "https://github.com/jwodder/doapi", "tags_url": "https://api.github.com/repos/jwodder/doapi/tags", "teams_url": "https://api.github.com/repos/jwodder/doapi/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/doapi/git/trees{/sha}", "updated_at": "2017-01-27T20:00:53Z", "url": "https://api.github.com/repos/jwodder/doapi", "watchers": 3, "watchers_count": 3 }, { "archive_url": "https://api.github.com/repos/jwodder/envec/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/envec/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/envec/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/envec/branches{/branch}", "clone_url": "https://github.com/jwodder/envec.git", "collaborators_url": "https://api.github.com/repos/jwodder/envec/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/envec/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/envec/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/envec/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/envec/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/envec/contributors", "created_at": "2014-05-10T22:42:33Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/envec/deployments", "description": "M:TG Oracle database scraper & offline manipulator", "downloads_url": "https://api.github.com/repos/jwodder/envec/downloads", "events_url": "https://api.github.com/repos/jwodder/envec/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/envec/forks", "full_name": "jwodder/envec", "git_commits_url": "https://api.github.com/repos/jwodder/envec/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/envec/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/envec/git/tags{/sha}", "git_url": "git://github.com/jwodder/envec.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/envec/hooks", "html_url": "https://github.com/jwodder/envec", "id": 19653700, "issue_comment_url": "https://api.github.com/repos/jwodder/envec/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/envec/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/envec/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/envec/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/envec/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/envec/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/envec/merges", "milestones_url": "https://api.github.com/repos/jwodder/envec/milestones{/number}", "mirror_url": null, "name": "envec", "notifications_url": "https://api.github.com/repos/jwodder/envec/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/envec/pulls{/number}", "pushed_at": "2016-06-08T13:21:07Z", "releases_url": "https://api.github.com/repos/jwodder/envec/releases{/id}", "size": 556, "ssh_url": "[email protected]:jwodder/envec.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/envec/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/envec/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/envec/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/envec/subscription", "svn_url": "https://github.com/jwodder/envec", "tags_url": "https://api.github.com/repos/jwodder/envec/tags", "teams_url": "https://api.github.com/repos/jwodder/envec/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/envec/git/trees{/sha}", "updated_at": "2016-01-14T00:14:48Z", "url": "https://api.github.com/repos/jwodder/envec", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/euler/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/euler/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/euler/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/euler/branches{/branch}", "clone_url": "https://github.com/jwodder/euler.git", "collaborators_url": "https://api.github.com/repos/jwodder/euler/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/euler/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/euler/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/euler/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/euler/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/euler/contributors", "created_at": "2014-07-04T01:58:55Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/euler/deployments", "description": "Yet another Project Euler repository", "downloads_url": "https://api.github.com/repos/jwodder/euler/downloads", "events_url": "https://api.github.com/repos/jwodder/euler/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/euler/forks", "full_name": "jwodder/euler", "git_commits_url": "https://api.github.com/repos/jwodder/euler/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/euler/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/euler/git/tags{/sha}", "git_url": "git://github.com/jwodder/euler.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/euler/hooks", "html_url": "https://github.com/jwodder/euler", "id": 21482466, "issue_comment_url": "https://api.github.com/repos/jwodder/euler/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/euler/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/euler/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/euler/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/euler/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/euler/languages", "license": null, "merges_url": "https://api.github.com/repos/jwodder/euler/merges", "milestones_url": "https://api.github.com/repos/jwodder/euler/milestones{/number}", "mirror_url": null, "name": "euler", "notifications_url": "https://api.github.com/repos/jwodder/euler/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/euler/pulls{/number}", "pushed_at": "2016-08-06T01:29:31Z", "releases_url": "https://api.github.com/repos/jwodder/euler/releases{/id}", "size": 371, "ssh_url": "[email protected]:jwodder/euler.git", "stargazers_count": 1, "stargazers_url": "https://api.github.com/repos/jwodder/euler/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/euler/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/euler/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/euler/subscription", "svn_url": "https://github.com/jwodder/euler", "tags_url": "https://api.github.com/repos/jwodder/euler/tags", "teams_url": "https://api.github.com/repos/jwodder/euler/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/euler/git/trees{/sha}", "updated_at": "2016-01-22T15:54:11Z", "url": "https://api.github.com/repos/jwodder/euler", "watchers": 1, "watchers_count": 1 }, { "archive_url": "https://api.github.com/repos/jwodder/gforth-docker/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/gforth-docker/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/gforth-docker/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/gforth-docker/branches{/branch}", "clone_url": "https://github.com/jwodder/gforth-docker.git", "collaborators_url": "https://api.github.com/repos/jwodder/gforth-docker/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/gforth-docker/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/gforth-docker/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/gforth-docker/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/gforth-docker/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/gforth-docker/contributors", "created_at": "2015-11-02T00:05:41Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/gforth-docker/deployments", "description": "Gforth Docker image", "downloads_url": "https://api.github.com/repos/jwodder/gforth-docker/downloads", "events_url": "https://api.github.com/repos/jwodder/gforth-docker/events", "fork": false, "forks": 1, "forks_count": 1, "forks_url": "https://api.github.com/repos/jwodder/gforth-docker/forks", "full_name": "jwodder/gforth-docker", "git_commits_url": "https://api.github.com/repos/jwodder/gforth-docker/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/gforth-docker/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/gforth-docker/git/tags{/sha}", "git_url": "git://github.com/jwodder/gforth-docker.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": "", "hooks_url": "https://api.github.com/repos/jwodder/gforth-docker/hooks", "html_url": "https://github.com/jwodder/gforth-docker", "id": 45362940, "issue_comment_url": "https://api.github.com/repos/jwodder/gforth-docker/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/gforth-docker/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/gforth-docker/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/gforth-docker/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/gforth-docker/labels{/name}", "language": null, "languages_url": "https://api.github.com/repos/jwodder/gforth-docker/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/gforth-docker/merges", "milestones_url": "https://api.github.com/repos/jwodder/gforth-docker/milestones{/number}", "mirror_url": null, "name": "gforth-docker", "notifications_url": "https://api.github.com/repos/jwodder/gforth-docker/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/gforth-docker/pulls{/number}", "pushed_at": "2015-11-04T03:35:34Z", "releases_url": "https://api.github.com/repos/jwodder/gforth-docker/releases{/id}", "size": 168, "ssh_url": "<EMAIL>:jwodder/gforth-docker.git", "stargazers_count": 1, "stargazers_url": "https://api.github.com/repos/jwodder/gforth-docker/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/gforth-docker/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/gforth-docker/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/gforth-docker/subscription", "svn_url": "https://github.com/jwodder/gforth-docker", "tags_url": "https://api.github.com/repos/jwodder/gforth-docker/tags", "teams_url": "https://api.github.com/repos/jwodder/gforth-docker/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/gforth-docker/git/trees{/sha}", "updated_at": "2015-11-02T02:50:16Z", "url": "https://api.github.com/repos/jwodder/gforth-docker", "watchers": 1, "watchers_count": 1 }, { "archive_url": "https://api.github.com/repos/jwodder/ghutil/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/ghutil/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/ghutil/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/ghutil/branches{/branch}", "clone_url": "https://github.com/jwodder/ghutil.git", "collaborators_url": "https://api.github.com/repos/jwodder/ghutil/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/ghutil/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/ghutil/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/ghutil/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/ghutil/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/ghutil/contributors", "created_at": "2017-05-19T19:40:57Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/ghutil/deployments", "description": "Interact with GitHub from the command line", "downloads_url": "https://api.github.com/repos/jwodder/ghutil/downloads", "events_url": "https://api.github.com/repos/jwodder/ghutil/events", "fork": false, "forks": 1, "forks_count": 1, "forks_url": "https://api.github.com/repos/jwodder/ghutil/forks", "full_name": "jwodder/ghutil", "git_commits_url": "https://api.github.com/repos/jwodder/ghutil/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/ghutil/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/ghutil/git/tags{/sha}", "git_url": "git://github.com/jwodder/ghutil.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/ghutil/hooks", "html_url": "https://github.com/jwodder/ghutil", "id": 91839769, "issue_comment_url": "https://api.github.com/repos/jwodder/ghutil/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/ghutil/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/ghutil/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/ghutil/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/ghutil/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/ghutil/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/ghutil/merges", "milestones_url": "https://api.github.com/repos/jwodder/ghutil/milestones{/number}", "mirror_url": null, "name": "ghutil", "notifications_url": "https://api.github.com/repos/jwodder/ghutil/notifications{?since,all,participating}", "open_issues": 1, "open_issues_count": 1, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/ghutil/pulls{/number}", "pushed_at": "2017-07-20T14:03:23Z", "releases_url": "https://api.github.com/repos/jwodder/ghutil/releases{/id}", "size": 151, "ssh_url": "[email protected]:jwodder/ghutil.git", "stargazers_count": 3, "stargazers_url": "https://api.github.com/repos/jwodder/ghutil/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/ghutil/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/ghutil/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/ghutil/subscription", "svn_url": "https://github.com/jwodder/ghutil", "tags_url": "https://api.github.com/repos/jwodder/ghutil/tags", "teams_url": "https://api.github.com/repos/jwodder/ghutil/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/ghutil/git/trees{/sha}", "updated_at": "2017-06-12T16:38:36Z", "url": "https://api.github.com/repos/jwodder/ghutil", "watchers": 3, "watchers_count": 3 }, { "archive_url": "https://api.github.com/repos/jwodder/groups/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/groups/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/groups/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/groups/branches{/branch}", "clone_url": "https://github.com/jwodder/groups.git", "collaborators_url": "https://api.github.com/repos/jwodder/groups/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/groups/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/groups/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/groups/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/groups/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/groups/contributors", "created_at": "2014-05-18T23:37:03Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/groups/deployments", "description": "Group theory code", "downloads_url": "https://api.github.com/repos/jwodder/groups/downloads", "events_url": "https://api.github.com/repos/jwodder/groups/events", "fork": false, "forks": 1, "forks_count": 1, "forks_url": "https://api.github.com/repos/jwodder/groups/forks", "full_name": "jwodder/groups", "git_commits_url": "https://api.github.com/repos/jwodder/groups/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/groups/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/groups/git/tags{/sha}", "git_url": "git://github.com/jwodder/groups.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/groups/hooks", "html_url": "https://github.com/jwodder/groups", "id": 19923702, "issue_comment_url": "https://api.github.com/repos/jwodder/groups/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/groups/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/groups/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/groups/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/groups/labels{/name}", "language": "C++", "languages_url": "https://api.github.com/repos/jwodder/groups/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/groups/merges", "milestones_url": "https://api.github.com/repos/jwodder/groups/milestones{/number}", "mirror_url": null, "name": "groups", "notifications_url": "https://api.github.com/repos/jwodder/groups/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/groups/pulls{/number}", "pushed_at": "2016-03-07T00:35:50Z", "releases_url": "https://api.github.com/repos/jwodder/groups/releases{/id}", "size": 442, "ssh_url": "[email protected]:jwodder/groups.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/groups/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/groups/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/groups/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/groups/subscription", "svn_url": "https://github.com/jwodder/groups", "tags_url": "https://api.github.com/repos/jwodder/groups/tags", "teams_url": "https://api.github.com/repos/jwodder/groups/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/groups/git/trees{/sha}", "updated_at": "2016-02-25T03:54:02Z", "url": "https://api.github.com/repos/jwodder/groups", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/headerparser/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/headerparser/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/headerparser/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/headerparser/branches{/branch}", "clone_url": "https://github.com/jwodder/headerparser.git", "collaborators_url": "https://api.github.com/repos/jwodder/headerparser/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/headerparser/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/headerparser/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/headerparser/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/headerparser/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/headerparser/contributors", "created_at": "2017-01-25T14:14:33Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/headerparser/deployments", "description": "argparse for mail-style headers", "downloads_url": "https://api.github.com/repos/jwodder/headerparser/downloads", "events_url": "https://api.github.com/repos/jwodder/headerparser/events", "fork": false, "forks": 1, "forks_count": 1, "forks_url": "https://api.github.com/repos/jwodder/headerparser/forks", "full_name": "jwodder/headerparser", "git_commits_url": "https://api.github.com/repos/jwodder/headerparser/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/headerparser/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/headerparser/git/tags{/sha}", "git_url": "git://github.com/jwodder/headerparser.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": "", "hooks_url": "https://api.github.com/repos/jwodder/headerparser/hooks", "html_url": "https://github.com/jwodder/headerparser", "id": 80020669, "issue_comment_url": "https://api.github.com/repos/jwodder/headerparser/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/headerparser/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/headerparser/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/headerparser/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/headerparser/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/headerparser/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/headerparser/merges", "milestones_url": "https://api.github.com/repos/jwodder/headerparser/milestones{/number}", "mirror_url": null, "name": "headerparser", "notifications_url": "https://api.github.com/repos/jwodder/headerparser/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/headerparser/pulls{/number}", "pushed_at": "2017-07-19T17:28:08Z", "releases_url": "https://api.github.com/repos/jwodder/headerparser/releases{/id}", "size": 126, "ssh_url": "[email protected]:jwodder/headerparser.git", "stargazers_count": 1, "stargazers_url": "https://api.github.com/repos/jwodder/headerparser/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/headerparser/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/headerparser/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/headerparser/subscription", "svn_url": "https://github.com/jwodder/headerparser", "tags_url": "https://api.github.com/repos/jwodder/headerparser/tags", "teams_url": "https://api.github.com/repos/jwodder/headerparser/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/headerparser/git/trees{/sha}", "updated_at": "2017-04-02T20:14:21Z", "url": "https://api.github.com/repos/jwodder/headerparser", "watchers": 1, "watchers_count": 1 }, { "archive_url": "https://api.github.com/repos/jwodder/hsgraphics/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/hsgraphics/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/hsgraphics/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/hsgraphics/branches{/branch}", "clone_url": "https://github.com/jwodder/hsgraphics.git", "collaborators_url": "https://api.github.com/repos/jwodder/hsgraphics/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/hsgraphics/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/hsgraphics/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/hsgraphics/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/hsgraphics/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/hsgraphics/contributors", "created_at": "2014-06-22T02:15:41Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/hsgraphics/deployments", "description": "Haskell raster images and raytracing", "downloads_url": "https://api.github.com/repos/jwodder/hsgraphics/downloads", "events_url": "https://api.github.com/repos/jwodder/hsgraphics/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/hsgraphics/forks", "full_name": "jwodder/hsgraphics", "git_commits_url": "https://api.github.com/repos/jwodder/hsgraphics/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/hsgraphics/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/hsgraphics/git/tags{/sha}", "git_url": "git://github.com/jwodder/hsgraphics.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/hsgraphics/hooks", "html_url": "https://github.com/jwodder/hsgraphics", "id": 21083505, "issue_comment_url": "https://api.github.com/repos/jwodder/hsgraphics/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/hsgraphics/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/hsgraphics/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/hsgraphics/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/hsgraphics/labels{/name}", "language": "Haskell", "languages_url": "https://api.github.com/repos/jwodder/hsgraphics/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/hsgraphics/merges", "milestones_url": "https://api.github.com/repos/jwodder/hsgraphics/milestones{/number}", "mirror_url": null, "name": "hsgraphics", "notifications_url": "https://api.github.com/repos/jwodder/hsgraphics/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/hsgraphics/pulls{/number}", "pushed_at": "2014-10-29T22:30:14Z", "releases_url": "https://api.github.com/repos/jwodder/hsgraphics/releases{/id}", "size": 180, "ssh_url": "[email protected]:jwodder/hsgraphics.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/hsgraphics/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/hsgraphics/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/hsgraphics/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/hsgraphics/subscription", "svn_url": "https://github.com/jwodder/hsgraphics", "tags_url": "https://api.github.com/repos/jwodder/hsgraphics/tags", "teams_url": "https://api.github.com/repos/jwodder/hsgraphics/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/hsgraphics/git/trees{/sha}", "updated_at": "2014-10-29T22:30:14Z", "url": "https://api.github.com/repos/jwodder/hsgraphics", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/inplace/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/inplace/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/inplace/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/inplace/branches{/branch}", "clone_url": "https://github.com/jwodder/inplace.git", "collaborators_url": "https://api.github.com/repos/jwodder/inplace/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/inplace/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/inplace/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/inplace/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/inplace/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/inplace/contributors", "created_at": "2016-11-09T15:50:18Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/inplace/deployments", "description": "In-place file processing in Python", "downloads_url": "https://api.github.com/repos/jwodder/inplace/downloads", "events_url": "https://api.github.com/repos/jwodder/inplace/events", "fork": false, "forks": 1, "forks_count": 1, "forks_url": "https://api.github.com/repos/jwodder/inplace/forks", "full_name": "jwodder/inplace", "git_commits_url": "https://api.github.com/repos/jwodder/inplace/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/inplace/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/inplace/git/tags{/sha}", "git_url": "git://github.com/jwodder/inplace.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/inplace/hooks", "html_url": "https://github.com/jwodder/inplace", "id": 73298075, "issue_comment_url": "https://api.github.com/repos/jwodder/inplace/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/inplace/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/inplace/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/inplace/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/inplace/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/inplace/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/inplace/merges", "milestones_url": "https://api.github.com/repos/jwodder/inplace/milestones{/number}", "mirror_url": null, "name": "inplace", "notifications_url": "https://api.github.com/repos/jwodder/inplace/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/inplace/pulls{/number}", "pushed_at": "2017-06-06T19:03:59Z", "releases_url": "https://api.github.com/repos/jwodder/inplace/releases{/id}", "size": 85, "ssh_url": "git<EMAIL>.com:jwodder/inplace.git", "stargazers_count": 2, "stargazers_url": "https://api.github.com/repos/jwodder/inplace/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/inplace/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/inplace/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/inplace/subscription", "svn_url": "https://github.com/jwodder/inplace", "tags_url": "https://api.github.com/repos/jwodder/inplace/tags", "teams_url": "https://api.github.com/repos/jwodder/inplace/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/inplace/git/trees{/sha}", "updated_at": "2017-06-12T16:38:13Z", "url": "https://api.github.com/repos/jwodder/inplace", "watchers": 2, "watchers_count": 2 }, { "archive_url": "https://api.github.com/repos/jwodder/javaproperties/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/javaproperties/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/javaproperties/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/javaproperties/branches{/branch}", "clone_url": "https://github.com/jwodder/javaproperties.git", "collaborators_url": "https://api.github.com/repos/jwodder/javaproperties/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/javaproperties/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/javaproperties/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/javaproperties/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/javaproperties/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/javaproperties/contributors", "created_at": "2016-08-13T22:19:16Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/javaproperties/deployments", "description": "Python library for reading & writing Java .properties files", "downloads_url": "https://api.github.com/repos/jwodder/javaproperties/downloads", "events_url": "https://api.github.com/repos/jwodder/javaproperties/events", "fork": false, "forks": 2, "forks_count": 2, "forks_url": "https://api.github.com/repos/jwodder/javaproperties/forks", "full_name": "jwodder/javaproperties", "git_commits_url": "https://api.github.com/repos/jwodder/javaproperties/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/javaproperties/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/javaproperties/git/tags{/sha}", "git_url": "git://github.com/jwodder/javaproperties.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/javaproperties/hooks", "html_url": "https://github.com/jwodder/javaproperties", "id": 65639217, "issue_comment_url": "https://api.github.com/repos/jwodder/javaproperties/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/javaproperties/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/javaproperties/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/javaproperties/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/javaproperties/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/javaproperties/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/javaproperties/merges", "milestones_url": "https://api.github.com/repos/jwodder/javaproperties/milestones{/number}", "mirror_url": null, "name": "javaproperties", "notifications_url": "https://api.github.com/repos/jwodder/javaproperties/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/javaproperties/pulls{/number}", "pushed_at": "2017-05-18T17:16:20Z", "releases_url": "https://api.github.com/repos/jwodder/javaproperties/releases{/id}", "size": 236, "ssh_url": "<EMAIL>:jwodder/javaproperties.git", "stargazers_count": 3, "stargazers_url": "https://api.github.com/repos/jwodder/javaproperties/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/javaproperties/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/javaproperties/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/javaproperties/subscription", "svn_url": "https://github.com/jwodder/javaproperties", "tags_url": "https://api.github.com/repos/jwodder/javaproperties/tags", "teams_url": "https://api.github.com/repos/jwodder/javaproperties/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/javaproperties/git/trees{/sha}", "updated_at": "2017-05-30T15:40:02Z", "url": "https://api.github.com/repos/jwodder/javaproperties", "watchers": 3, "watchers_count": 3 }, { "archive_url": "https://api.github.com/repos/jwodder/javaproperties-cli/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/javaproperties-cli/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/javaproperties-cli/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/javaproperties-cli/branches{/branch}", "clone_url": "https://github.com/jwodder/javaproperties-cli.git", "collaborators_url": "https://api.github.com/repos/jwodder/javaproperties-cli/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/javaproperties-cli/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/javaproperties-cli/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/javaproperties-cli/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/javaproperties-cli/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/javaproperties-cli/contributors", "created_at": "2017-04-20T13:33:30Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/javaproperties-cli/deployments", "description": "Command-line manipulation of Java .properties files", "downloads_url": "https://api.github.com/repos/jwodder/javaproperties-cli/downloads", "events_url": "https://api.github.com/repos/jwodder/javaproperties-cli/events", "fork": false, "forks": 1, "forks_count": 1, "forks_url": "https://api.github.com/repos/jwodder/javaproperties-cli/forks", "full_name": "jwodder/javaproperties-cli", "git_commits_url": "https://api.github.com/repos/jwodder/javaproperties-cli/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/javaproperties-cli/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/javaproperties-cli/git/tags{/sha}", "git_url": "git://github.com/jwodder/javaproperties-cli.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/javaproperties-cli/hooks", "html_url": "https://github.com/jwodder/javaproperties-cli", "id": 88869195, "issue_comment_url": "https://api.github.com/repos/jwodder/javaproperties-cli/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/javaproperties-cli/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/javaproperties-cli/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/javaproperties-cli/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/javaproperties-cli/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/javaproperties-cli/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/javaproperties-cli/merges", "milestones_url": "https://api.github.com/repos/jwodder/javaproperties-cli/milestones{/number}", "mirror_url": null, "name": "javaproperties-cli", "notifications_url": "https://api.github.com/repos/jwodder/javaproperties-cli/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/javaproperties-cli/pulls{/number}", "pushed_at": "2017-05-17T13:12:54Z", "releases_url": "https://api.github.com/repos/jwodder/javaproperties-cli/releases{/id}", "size": 206, "ssh_url": "[email protected]:jwodder/javaproperties-cli.git", "stargazers_count": 1, "stargazers_url": "https://api.github.com/repos/jwodder/javaproperties-cli/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/javaproperties-cli/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/javaproperties-cli/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/javaproperties-cli/subscription", "svn_url": "https://github.com/jwodder/javaproperties-cli", "tags_url": "https://api.github.com/repos/jwodder/javaproperties-cli/tags", "teams_url": "https://api.github.com/repos/jwodder/javaproperties-cli/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/javaproperties-cli/git/trees{/sha}", "updated_at": "2017-04-27T02:11:05Z", "url": "https://api.github.com/repos/jwodder/javaproperties-cli", "watchers": 1, "watchers_count": 1 }, { "archive_url": "https://api.github.com/repos/jwodder/jbobaf/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/jbobaf/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/jbobaf/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/jbobaf/branches{/branch}", "clone_url": "https://github.com/jwodder/jbobaf.git", "collaborators_url": "https://api.github.com/repos/jwodder/jbobaf/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/jbobaf/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/jbobaf/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/jbobaf/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/jbobaf/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/jbobaf/contributors", "created_at": "2010-03-20T02:06:23Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/jbobaf/deployments", "description": "[Dead] Miscellaneous Lojban-related code", "downloads_url": "https://api.github.com/repos/jwodder/jbobaf/downloads", "events_url": "https://api.github.com/repos/jwodder/jbobaf/events", "fork": false, "forks": 4, "forks_count": 4, "forks_url": "https://api.github.com/repos/jwodder/jbobaf/forks", "full_name": "jwodder/jbobaf", "git_commits_url": "https://api.github.com/repos/jwodder/jbobaf/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/jbobaf/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/jbobaf/git/tags{/sha}", "git_url": "git://github.com/jwodder/jbobaf.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": "", "hooks_url": "https://api.github.com/repos/jwodder/jbobaf/hooks", "html_url": "https://github.com/jwodder/jbobaf", "id": 570896, "issue_comment_url": "https://api.github.com/repos/jwodder/jbobaf/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/jbobaf/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/jbobaf/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/jbobaf/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/jbobaf/labels{/name}", "language": "Perl", "languages_url": "https://api.github.com/repos/jwodder/jbobaf/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/jbobaf/merges", "milestones_url": "https://api.github.com/repos/jwodder/jbobaf/milestones{/number}", "mirror_url": null, "name": "jbobaf", "notifications_url": "https://api.github.com/repos/jwodder/jbobaf/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/jbobaf/pulls{/number}", "pushed_at": "2014-10-29T22:32:06Z", "releases_url": "https://api.github.com/repos/jwodder/jbobaf/releases{/id}", "size": 554, "ssh_url": "[email protected]:jwodder/jbobaf.git", "stargazers_count": 5, "stargazers_url": "https://api.github.com/repos/jwodder/jbobaf/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/jbobaf/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/jbobaf/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/jbobaf/subscription", "svn_url": "https://github.com/jwodder/jbobaf", "tags_url": "https://api.github.com/repos/jwodder/jbobaf/tags", "teams_url": "https://api.github.com/repos/jwodder/jbobaf/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/jbobaf/git/trees{/sha}", "updated_at": "2016-02-21T05:41:30Z", "url": "https://api.github.com/repos/jwodder/jbobaf", "watchers": 5, "watchers_count": 5 }, { "archive_url": "https://api.github.com/repos/jwodder/julian/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/julian/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/julian/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/julian/branches{/branch}", "clone_url": "https://github.com/jwodder/julian.git", "collaborators_url": "https://api.github.com/repos/jwodder/julian/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/julian/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/julian/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/julian/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/julian/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/julian/contributors", "created_at": "2014-04-05T19:07:23Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/julian/deployments", "description": "Convert Julian dates to & from calendar dates", "downloads_url": "https://api.github.com/repos/jwodder/julian/downloads", "events_url": "https://api.github.com/repos/jwodder/julian/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/julian/forks", "full_name": "jwodder/julian", "git_commits_url": "https://api.github.com/repos/jwodder/julian/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/julian/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/julian/git/tags{/sha}", "git_url": "git://github.com/jwodder/julian.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/julian/hooks", "html_url": "https://github.com/jwodder/julian", "id": 18474140, "issue_comment_url": "https://api.github.com/repos/jwodder/julian/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/julian/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/julian/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/julian/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/julian/labels{/name}", "language": "C", "languages_url": "https://api.github.com/repos/jwodder/julian/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/julian/merges", "milestones_url": "https://api.github.com/repos/jwodder/julian/milestones{/number}", "mirror_url": null, "name": "julian", "notifications_url": "https://api.github.com/repos/jwodder/julian/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/julian/pulls{/number}", "pushed_at": "2015-09-26T01:29:20Z", "releases_url": "https://api.github.com/repos/jwodder/julian/releases{/id}", "size": 236, "ssh_url": "[email protected]:jwodder/julian.git", "stargazers_count": 1, "stargazers_url": "https://api.github.com/repos/jwodder/julian/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/julian/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/julian/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/julian/subscription", "svn_url": "https://github.com/jwodder/julian", "tags_url": "https://api.github.com/repos/jwodder/julian/tags", "teams_url": "https://api.github.com/repos/jwodder/julian/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/julian/git/trees{/sha}", "updated_at": "2015-10-07T01:22:09Z", "url": "https://api.github.com/repos/jwodder/julian", "watchers": 1, "watchers_count": 1 }, { "archive_url": "https://api.github.com/repos/jwodder/jwodder.github.io/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/jwodder.github.io/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/jwodder.github.io/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/jwodder.github.io/branches{/branch}", "clone_url": "https://github.com/jwodder/jwodder.github.io.git", "collaborators_url": "https://api.github.com/repos/jwodder/jwodder.github.io/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/jwodder.github.io/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/jwodder.github.io/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/jwodder.github.io/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/jwodder.github.io/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/jwodder.github.io/contributors", "created_at": "2014-06-23T21:46:29Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/jwodder.github.io/deployments", "description": "Yet another GitHub Pages site", "downloads_url": "https://api.github.com/repos/jwodder/jwodder.github.io/downloads", "events_url": "https://api.github.com/repos/jwodder/jwodder.github.io/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/jwodder.github.io/forks", "full_name": "jwodder/jwodder.github.io", "git_commits_url": "https://api.github.com/repos/jwodder/jwodder.github.io/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/jwodder.github.io/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/jwodder.github.io/git/tags{/sha}", "git_url": "git://github.com/jwodder/jwodder.github.io.git", "has_downloads": true, "has_issues": true, "has_pages": true, "has_projects": true, "has_wiki": true, "homepage": "https://jwodder.github.io", "hooks_url": "https://api.github.com/repos/jwodder/jwodder.github.io/hooks", "html_url": "https://github.com/jwodder/jwodder.github.io", "id": 21143368, "issue_comment_url": "https://api.github.com/repos/jwodder/jwodder.github.io/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/jwodder.github.io/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/jwodder.github.io/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/jwodder.github.io/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/jwodder.github.io/labels{/name}", "language": "CSS", "languages_url": "https://api.github.com/repos/jwodder/jwodder.github.io/languages", "license": null, "merges_url": "https://api.github.com/repos/jwodder/jwodder.github.io/merges", "milestones_url": "https://api.github.com/repos/jwodder/jwodder.github.io/milestones{/number}", "mirror_url": null, "name": "jwodder.github.io", "notifications_url": "https://api.github.com/repos/jwodder/jwodder.github.io/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/jwodder.github.io/pulls{/number}", "pushed_at": "2016-12-06T03:26:41Z", "releases_url": "https://api.github.com/repos/jwodder/jwodder.github.io/releases{/id}", "size": 125, "ssh_url": "[email protected]:jwodder/jwodder.github.io.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/jwodder.github.io/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/jwodder.github.io/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/jwodder.github.io/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/jwodder.github.io/subscription", "svn_url": "https://github.com/jwodder/jwodder.github.io", "tags_url": "https://api.github.com/repos/jwodder/jwodder.github.io/tags", "teams_url": "https://api.github.com/repos/jwodder/jwodder.github.io/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/jwodder.github.io/git/trees{/sha}", "updated_at": "2017-01-29T22:21:35Z", "url": "https://api.github.com/repos/jwodder/jwodder.github.io", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/lambdas/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/lambdas/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/lambdas/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/lambdas/branches{/branch}", "clone_url": "https://github.com/jwodder/lambdas.git", "collaborators_url": "https://api.github.com/repos/jwodder/lambdas/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/lambdas/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/lambdas/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/lambdas/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/lambdas/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/lambdas/contributors", "created_at": "2014-06-14T23:57:33Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/lambdas/deployments", "description": "Lambda calculus interpreter", "downloads_url": "https://api.github.com/repos/jwodder/lambdas/downloads", "events_url": "https://api.github.com/repos/jwodder/lambdas/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/lambdas/forks", "full_name": "jwodder/lambdas", "git_commits_url": "https://api.github.com/repos/jwodder/lambdas/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/lambdas/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/lambdas/git/tags{/sha}", "git_url": "git://github.com/jwodder/lambdas.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/lambdas/hooks", "html_url": "https://github.com/jwodder/lambdas", "id": 20844504, "issue_comment_url": "https://api.github.com/repos/jwodder/lambdas/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/lambdas/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/lambdas/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/lambdas/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/lambdas/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/lambdas/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/lambdas/merges", "milestones_url": "https://api.github.com/repos/jwodder/lambdas/milestones{/number}", "mirror_url": null, "name": "lambdas", "notifications_url": "https://api.github.com/repos/jwodder/lambdas/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/lambdas/pulls{/number}", "pushed_at": "2015-01-11T03:57:09Z", "releases_url": "https://api.github.com/repos/jwodder/lambdas/releases{/id}", "size": 196, "ssh_url": "[email protected]:jwodder/lambdas.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/lambdas/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/lambdas/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/lambdas/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/lambdas/subscription", "svn_url": "https://github.com/jwodder/lambdas", "tags_url": "https://api.github.com/repos/jwodder/lambdas/tags", "teams_url": "https://api.github.com/repos/jwodder/lambdas/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/lambdas/git/trees{/sha}", "updated_at": "2015-01-11T03:57:09Z", "url": "https://api.github.com/repos/jwodder/lambdas", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/linesep/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/linesep/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/linesep/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/linesep/branches{/branch}", "clone_url": "https://github.com/jwodder/linesep.git", "collaborators_url": "https://api.github.com/repos/jwodder/linesep/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/linesep/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/linesep/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/linesep/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/linesep/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/linesep/contributors", "created_at": "2016-05-12T13:44:52Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/linesep/deployments", "description": "Handling lines with arbitrary separators", "downloads_url": "https://api.github.com/repos/jwodder/linesep/downloads", "events_url": "https://api.github.com/repos/jwodder/linesep/events", "fork": false, "forks": 1, "forks_count": 1, "forks_url": "https://api.github.com/repos/jwodder/linesep/forks", "full_name": "jwodder/linesep", "git_commits_url": "https://api.github.com/repos/jwodder/linesep/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/linesep/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/linesep/git/tags{/sha}", "git_url": "git://github.com/jwodder/linesep.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": "", "hooks_url": "https://api.github.com/repos/jwodder/linesep/hooks", "html_url": "https://github.com/jwodder/linesep", "id": 58645336, "issue_comment_url": "https://api.github.com/repos/jwodder/linesep/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/linesep/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/linesep/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/linesep/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/linesep/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/linesep/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/linesep/merges", "milestones_url": "https://api.github.com/repos/jwodder/linesep/milestones{/number}", "mirror_url": null, "name": "linesep", "notifications_url": "https://api.github.com/repos/jwodder/linesep/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/linesep/pulls{/number}", "pushed_at": "2017-05-29T17:53:24Z", "releases_url": "https://api.github.com/repos/jwodder/linesep/releases{/id}", "size": 49, "ssh_url": "<EMAIL>:jwodder/linesep.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/linesep/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/linesep/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/linesep/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/linesep/subscription", "svn_url": "https://github.com/jwodder/linesep", "tags_url": "https://api.github.com/repos/jwodder/linesep/tags", "teams_url": "https://api.github.com/repos/jwodder/linesep/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/linesep/git/trees{/sha}", "updated_at": "2017-01-16T01:09:01Z", "url": "https://api.github.com/repos/jwodder/linesep", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/literal_exec/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/literal_exec/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/literal_exec/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/literal_exec/branches{/branch}", "clone_url": "https://github.com/jwodder/literal_exec.git", "collaborators_url": "https://api.github.com/repos/jwodder/literal_exec/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/literal_exec/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/literal_exec/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/literal_exec/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/literal_exec/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/literal_exec/contributors", "created_at": "2017-06-04T15:21:06Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/literal_exec/deployments", "description": "Parse literal variable assignments from source files", "downloads_url": "https://api.github.com/repos/jwodder/literal_exec/downloads", "events_url": "https://api.github.com/repos/jwodder/literal_exec/events", "fork": false, "forks": 2, "forks_count": 2, "forks_url": "https://api.github.com/repos/jwodder/literal_exec/forks", "full_name": "jwodder/literal_exec", "git_commits_url": "https://api.github.com/repos/jwodder/literal_exec/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/literal_exec/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/literal_exec/git/tags{/sha}", "git_url": "git://github.com/jwodder/literal_exec.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/literal_exec/hooks", "html_url": "https://github.com/jwodder/literal_exec", "id": 93322183, "issue_comment_url": "https://api.github.com/repos/jwodder/literal_exec/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/literal_exec/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/literal_exec/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/literal_exec/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/literal_exec/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/literal_exec/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/literal_exec/merges", "milestones_url": "https://api.github.com/repos/jwodder/literal_exec/milestones{/number}", "mirror_url": null, "name": "literal_exec", "notifications_url": "https://api.github.com/repos/jwodder/literal_exec/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/literal_exec/pulls{/number}", "pushed_at": "2017-07-07T15:03:33Z", "releases_url": "https://api.github.com/repos/jwodder/literal_exec/releases{/id}", "size": 24, "ssh_url": "[email protected]:jwodder/literal_exec.git", "stargazers_count": 1, "stargazers_url": "https://api.github.com/repos/jwodder/literal_exec/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/literal_exec/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/literal_exec/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/literal_exec/subscription", "svn_url": "https://github.com/jwodder/literal_exec", "tags_url": "https://api.github.com/repos/jwodder/literal_exec/tags", "teams_url": "https://api.github.com/repos/jwodder/literal_exec/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/literal_exec/git/trees{/sha}", "updated_at": "2017-06-25T14:27:11Z", "url": "https://api.github.com/repos/jwodder/literal_exec", "watchers": 1, "watchers_count": 1 }, { "archive_url": "https://api.github.com/repos/jwodder/logger/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/logger/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/logger/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/logger/branches{/branch}", "clone_url": "https://github.com/jwodder/logger.git", "collaborators_url": "https://api.github.com/repos/jwodder/logger/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/logger/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/logger/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/logger/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/logger/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/logger/contributors", "created_at": "2014-05-02T21:47:28Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/logger/deployments", "description": "IRC logging bot", "downloads_url": "https://api.github.com/repos/jwodder/logger/downloads", "events_url": "https://api.github.com/repos/jwodder/logger/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/logger/forks", "full_name": "jwodder/logger", "git_commits_url": "https://api.github.com/repos/jwodder/logger/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/logger/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/logger/git/tags{/sha}", "git_url": "git://github.com/jwodder/logger.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/logger/hooks", "html_url": "https://github.com/jwodder/logger", "id": 19389598, "issue_comment_url": "https://api.github.com/repos/jwodder/logger/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/logger/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/logger/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/logger/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/logger/labels{/name}", "language": "Perl", "languages_url": "https://api.github.com/repos/jwodder/logger/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/logger/merges", "milestones_url": "https://api.github.com/repos/jwodder/logger/milestones{/number}", "mirror_url": null, "name": "logger", "notifications_url": "https://api.github.com/repos/jwodder/logger/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/logger/pulls{/number}", "pushed_at": "2014-10-29T22:55:27Z", "releases_url": "https://api.github.com/repos/jwodder/logger/releases{/id}", "size": 168, "ssh_url": "[email protected]:jwodder/logger.git", "stargazers_count": 1, "stargazers_url": "https://api.github.com/repos/jwodder/logger/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/logger/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/logger/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/logger/subscription", "svn_url": "https://github.com/jwodder/logger", "tags_url": "https://api.github.com/repos/jwodder/logger/tags", "teams_url": "https://api.github.com/repos/jwodder/logger/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/logger/git/trees{/sha}", "updated_at": "2017-03-29T20:11:01Z", "url": "https://api.github.com/repos/jwodder/logger", "watchers": 1, "watchers_count": 1 }, { "archive_url": "https://api.github.com/repos/jwodder/nethack-docker/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/nethack-docker/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/nethack-docker/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/nethack-docker/branches{/branch}", "clone_url": "https://github.com/jwodder/nethack-docker.git", "collaborators_url": "https://api.github.com/repos/jwodder/nethack-docker/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/nethack-docker/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/nethack-docker/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/nethack-docker/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/nethack-docker/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/nethack-docker/contributors", "created_at": "2015-12-13T23:59:06Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/nethack-docker/deployments", "description": "NetHack Docker image", "downloads_url": "https://api.github.com/repos/jwodder/nethack-docker/downloads", "events_url": "https://api.github.com/repos/jwodder/nethack-docker/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/nethack-docker/forks", "full_name": "jwodder/nethack-docker", "git_commits_url": "https://api.github.com/repos/jwodder/nethack-docker/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/nethack-docker/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/nethack-docker/git/tags{/sha}", "git_url": "git://github.com/jwodder/nethack-docker.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/nethack-docker/hooks", "html_url": "https://github.com/jwodder/nethack-docker", "id": 47942009, "issue_comment_url": "https://api.github.com/repos/jwodder/nethack-docker/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/nethack-docker/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/nethack-docker/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/nethack-docker/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/nethack-docker/labels{/name}", "language": "Shell", "languages_url": "https://api.github.com/repos/jwodder/nethack-docker/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/nethack-docker/merges", "milestones_url": "https://api.github.com/repos/jwodder/nethack-docker/milestones{/number}", "mirror_url": null, "name": "nethack-docker", "notifications_url": "https://api.github.com/repos/jwodder/nethack-docker/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/nethack-docker/pulls{/number}", "pushed_at": "2016-03-19T23:40:07Z", "releases_url": "https://api.github.com/repos/jwodder/nethack-docker/releases{/id}", "size": 16, "ssh_url": "[email protected]:jwodder/nethack-docker.git", "stargazers_count": 2, "stargazers_url": "https://api.github.com/repos/jwodder/nethack-docker/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/nethack-docker/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/nethack-docker/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/nethack-docker/subscription", "svn_url": "https://github.com/jwodder/nethack-docker", "tags_url": "https://api.github.com/repos/jwodder/nethack-docker/tags", "teams_url": "https://api.github.com/repos/jwodder/nethack-docker/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/nethack-docker/git/trees{/sha}", "updated_at": "2016-08-03T16:07:13Z", "url": "https://api.github.com/repos/jwodder/nethack-docker", "watchers": 2, "watchers_count": 2 }, { "archive_url": "https://api.github.com/repos/jwodder/notesys/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/notesys/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/notesys/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/notesys/branches{/branch}", "clone_url": "https://github.com/jwodder/notesys.git", "collaborators_url": "https://api.github.com/repos/jwodder/notesys/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/notesys/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/notesys/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/notesys/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/notesys/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/notesys/contributors", "created_at": "2009-12-03T16:01:02Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/notesys/deployments", "description": "[Abandoned] A web-based personal notes management system", "downloads_url": "https://api.github.com/repos/jwodder/notesys/downloads", "events_url": "https://api.github.com/repos/jwodder/notesys/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/notesys/forks", "full_name": "jwodder/notesys", "git_commits_url": "https://api.github.com/repos/jwodder/notesys/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/notesys/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/notesys/git/tags{/sha}", "git_url": "git://github.com/jwodder/notesys.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": false, "homepage": "", "hooks_url": "https://api.github.com/repos/jwodder/notesys/hooks", "html_url": "https://github.com/jwodder/notesys", "id": 394200, "issue_comment_url": "https://api.github.com/repos/jwodder/notesys/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/notesys/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/notesys/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/notesys/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/notesys/labels{/name}", "language": "Perl", "languages_url": "https://api.github.com/repos/jwodder/notesys/languages", "license": null, "merges_url": "https://api.github.com/repos/jwodder/notesys/merges", "milestones_url": "https://api.github.com/repos/jwodder/notesys/milestones{/number}", "mirror_url": null, "name": "notesys", "notifications_url": "https://api.github.com/repos/jwodder/notesys/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/notesys/pulls{/number}", "pushed_at": "2014-05-22T20:29:59Z", "releases_url": "https://api.github.com/repos/jwodder/notesys/releases{/id}", "size": 184, "ssh_url": "[email protected]:jwodder/notesys.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/notesys/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/notesys/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/notesys/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/notesys/subscription", "svn_url": "https://github.com/jwodder/notesys", "tags_url": "https://api.github.com/repos/jwodder/notesys/tags", "teams_url": "https://api.github.com/repos/jwodder/notesys/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/notesys/git/trees{/sha}", "updated_at": "2014-09-08T20:38:32Z", "url": "https://api.github.com/repos/jwodder/notesys", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/open-humans-api/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/open-humans-api/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/open-humans-api/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/open-humans-api/branches{/branch}", "clone_url": "https://github.com/jwodder/open-humans-api.git", "collaborators_url": "https://api.github.com/repos/jwodder/open-humans-api/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/open-humans-api/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/open-humans-api/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/open-humans-api/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/open-humans-api/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/open-humans-api/contributors", "created_at": "2017-07-08T18:38:44Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/open-humans-api/deployments", "description": "Tools to work with our APIs.", "downloads_url": "https://api.github.com/repos/jwodder/open-humans-api/downloads", "events_url": "https://api.github.com/repos/jwodder/open-humans-api/events", "fork": true, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/open-humans-api/forks", "full_name": "jwodder/open-humans-api", "git_commits_url": "https://api.github.com/repos/jwodder/open-humans-api/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/open-humans-api/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/open-humans-api/git/tags{/sha}", "git_url": "git://github.com/jwodder/open-humans-api.git", "has_downloads": true, "has_issues": false, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/open-humans-api/hooks", "html_url": "https://github.com/jwodder/open-humans-api", "id": 96637377, "issue_comment_url": "https://api.github.com/repos/jwodder/open-humans-api/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/open-humans-api/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/open-humans-api/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/open-humans-api/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/open-humans-api/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/open-humans-api/languages", "license": null, "merges_url": "https://api.github.com/repos/jwodder/open-humans-api/merges", "milestones_url": "https://api.github.com/repos/jwodder/open-humans-api/milestones{/number}", "mirror_url": null, "name": "open-humans-api", "notifications_url": "https://api.github.com/repos/jwodder/open-humans-api/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/open-humans-api/pulls{/number}", "pushed_at": "2017-07-08T18:40:48Z", "releases_url": "https://api.github.com/repos/jwodder/open-humans-api/releases{/id}", "size": 27, "ssh_url": "[email protected]:jwodder/open-humans-api.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/open-humans-api/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/open-humans-api/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/open-humans-api/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/open-humans-api/subscription", "svn_url": "https://github.com/jwodder/open-humans-api", "tags_url": "https://api.github.com/repos/jwodder/open-humans-api/tags", "teams_url": "https://api.github.com/repos/jwodder/open-humans-api/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/open-humans-api/git/trees{/sha}", "updated_at": "2017-07-08T18:38:46Z", "url": "https://api.github.com/repos/jwodder/open-humans-api", "watchers": 0, "watchers_count": 0 } ] ''' USER_REPOS_PAGE2 = '''\ [ { "archive_url": "https://api.github.com/repos/jwodder/packaging/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/packaging/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/packaging/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/packaging/branches{/branch}", "clone_url": "https://github.com/jwodder/packaging.git", "collaborators_url": "https://api.github.com/repos/jwodder/packaging/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/packaging/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/packaging/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/packaging/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/packaging/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/packaging/contributors", "created_at": "2017-06-11T23:02:07Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/packaging/deployments", "description": "Core utilities for Python packages", "downloads_url": "https://api.github.com/repos/jwodder/packaging/downloads", "events_url": "https://api.github.com/repos/jwodder/packaging/events", "fork": true, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/packaging/forks", "full_name": "jwodder/packaging", "git_commits_url": "https://api.github.com/repos/jwodder/packaging/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/packaging/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/packaging/git/tags{/sha}", "git_url": "git://github.com/jwodder/packaging.git", "has_downloads": true, "has_issues": false, "has_pages": false, "has_projects": true, "has_wiki": false, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/packaging/hooks", "html_url": "https://github.com/jwodder/packaging", "id": 94036941, "issue_comment_url": "https://api.github.com/repos/jwodder/packaging/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/packaging/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/packaging/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/packaging/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/packaging/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/packaging/languages", "license": null, "merges_url": "https://api.github.com/repos/jwodder/packaging/merges", "milestones_url": "https://api.github.com/repos/jwodder/packaging/milestones{/number}", "mirror_url": null, "name": "packaging", "notifications_url": "https://api.github.com/repos/jwodder/packaging/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/packaging/pulls{/number}", "pushed_at": "2017-06-14T19:33:29Z", "releases_url": "https://api.github.com/repos/jwodder/packaging/releases{/id}", "size": 279, "ssh_url": "[email protected]:jwodder/packaging.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/packaging/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/packaging/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/packaging/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/packaging/subscription", "svn_url": "https://github.com/jwodder/packaging", "tags_url": "https://api.github.com/repos/jwodder/packaging/tags", "teams_url": "https://api.github.com/repos/jwodder/packaging/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/packaging/git/trees{/sha}", "updated_at": "2017-06-11T23:02:09Z", "url": "https://api.github.com/repos/jwodder/packaging", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/peps/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/peps/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/peps/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/peps/branches{/branch}", "clone_url": "https://github.com/jwodder/peps.git", "collaborators_url": "https://api.github.com/repos/jwodder/peps/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/peps/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/peps/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/peps/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/peps/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/peps/contributors", "created_at": "2017-06-18T02:28:46Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/peps/deployments", "description": "Python Enhancement Proposals", "downloads_url": "https://api.github.com/repos/jwodder/peps/downloads", "events_url": "https://api.github.com/repos/jwodder/peps/events", "fork": true, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/peps/forks", "full_name": "jwodder/peps", "git_commits_url": "https://api.github.com/repos/jwodder/peps/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/peps/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/peps/git/tags{/sha}", "git_url": "git://github.com/jwodder/peps.git", "has_downloads": true, "has_issues": false, "has_pages": false, "has_projects": true, "has_wiki": false, "homepage": "https://www.python.org/dev/peps/", "hooks_url": "https://api.github.com/repos/jwodder/peps/hooks", "html_url": "https://github.com/jwodder/peps", "id": 94660395, "issue_comment_url": "https://api.github.com/repos/jwodder/peps/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/peps/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/peps/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/peps/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/peps/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/peps/languages", "license": null, "merges_url": "https://api.github.com/repos/jwodder/peps/merges", "milestones_url": "https://api.github.com/repos/jwodder/peps/milestones{/number}", "mirror_url": null, "name": "peps", "notifications_url": "https://api.github.com/repos/jwodder/peps/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/peps/pulls{/number}", "pushed_at": "2017-06-25T14:42:55Z", "releases_url": "https://api.github.com/repos/jwodder/peps/releases{/id}", "size": 8759, "ssh_url": "[email protected]:jwodder/peps.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/peps/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/peps/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/peps/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/peps/subscription", "svn_url": "https://github.com/jwodder/peps", "tags_url": "https://api.github.com/repos/jwodder/peps/tags", "teams_url": "https://api.github.com/repos/jwodder/peps/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/peps/git/trees{/sha}", "updated_at": "2017-06-24T17:33:07Z", "url": "https://api.github.com/repos/jwodder/peps", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/psych/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/psych/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/psych/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/psych/branches{/branch}", "clone_url": "https://github.com/jwodder/psych.git", "collaborators_url": "https://api.github.com/repos/jwodder/psych/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/psych/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/psych/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/psych/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/psych/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/psych/contributors", "created_at": "2009-09-28T21:25:58Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/psych/deployments", "description": "Brainf*ck interpreter", "downloads_url": "https://api.github.com/repos/jwodder/psych/downloads", "events_url": "https://api.github.com/repos/jwodder/psych/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/psych/forks", "full_name": "jwodder/psych", "git_commits_url": "https://api.github.com/repos/jwodder/psych/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/psych/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/psych/git/tags{/sha}", "git_url": "git://github.com/jwodder/psych.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": "", "hooks_url": "https://api.github.com/repos/jwodder/psych/hooks", "html_url": "https://github.com/jwodder/psych", "id": 320444, "issue_comment_url": "https://api.github.com/repos/jwodder/psych/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/psych/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/psych/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/psych/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/psych/labels{/name}", "language": "Groff", "languages_url": "https://api.github.com/repos/jwodder/psych/languages", "license": { "featured": true, "key": "gpl-3.0", "name": "GNU General Public License v3.0", "spdx_id": "GPL-3.0", "url": "https://api.github.com/licenses/gpl-3.0" }, "merges_url": "https://api.github.com/repos/jwodder/psych/merges", "milestones_url": "https://api.github.com/repos/jwodder/psych/milestones{/number}", "mirror_url": null, "name": "psych", "notifications_url": "https://api.github.com/repos/jwodder/psych/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/psych/pulls{/number}", "pushed_at": "2015-12-18T21:55:47Z", "releases_url": "https://api.github.com/repos/jwodder/psych/releases{/id}", "size": 57, "ssh_url": "[email protected]:jwodder/psych.git", "stargazers_count": 1, "stargazers_url": "https://api.github.com/repos/jwodder/psych/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/psych/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/psych/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/psych/subscription", "svn_url": "https://github.com/jwodder/psych", "tags_url": "https://api.github.com/repos/jwodder/psych/tags", "teams_url": "https://api.github.com/repos/jwodder/psych/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/psych/git/trees{/sha}", "updated_at": "2015-12-18T21:55:48Z", "url": "https://api.github.com/repos/jwodder/psych", "watchers": 1, "watchers_count": 1 }, { "archive_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/branches{/branch}", "clone_url": "https://github.com/jwodder/python-packaging-user-guide.git", "collaborators_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/contributors", "created_at": "2017-06-18T01:44:17Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/deployments", "description": "Python Packaging User Guide", "downloads_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/downloads", "events_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/events", "fork": true, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/forks", "full_name": "jwodder/python-packaging-user-guide", "git_commits_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/git/tags{/sha}", "git_url": "git://github.com/jwodder/python-packaging-user-guide.git", "has_downloads": true, "has_issues": false, "has_pages": false, "has_projects": true, "has_wiki": false, "homepage": "http://packaging.python.org", "hooks_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/hooks", "html_url": "https://github.com/jwodder/python-packaging-user-guide", "id": 94658816, "issue_comment_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/languages", "license": null, "merges_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/merges", "milestones_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/milestones{/number}", "mirror_url": null, "name": "python-packaging-user-guide", "notifications_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/pulls{/number}", "pushed_at": "2017-06-26T00:50:17Z", "releases_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/releases{/id}", "size": 2120, "ssh_url": "[email protected]:jwodder/python-packaging-user-guide.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/subscription", "svn_url": "https://github.com/jwodder/python-packaging-user-guide", "tags_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/tags", "teams_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/python-packaging-user-guide/git/trees{/sha}", "updated_at": "2017-06-18T01:44:18Z", "url": "https://api.github.com/repos/jwodder/python-packaging-user-guide", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/qypi/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/qypi/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/qypi/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/qypi/branches{/branch}", "clone_url": "https://github.com/jwodder/qypi.git", "collaborators_url": "https://api.github.com/repos/jwodder/qypi/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/qypi/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/qypi/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/qypi/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/qypi/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/qypi/contributors", "created_at": "2017-03-28T01:44:27Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/qypi/deployments", "description": "Query PyPI from the command line", "downloads_url": "https://api.github.com/repos/jwodder/qypi/downloads", "events_url": "https://api.github.com/repos/jwodder/qypi/events", "fork": false, "forks": 1, "forks_count": 1, "forks_url": "https://api.github.com/repos/jwodder/qypi/forks", "full_name": "jwodder/qypi", "git_commits_url": "https://api.github.com/repos/jwodder/qypi/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/qypi/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/qypi/git/tags{/sha}", "git_url": "git://github.com/jwodder/qypi.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/qypi/hooks", "html_url": "https://github.com/jwodder/qypi", "id": 86402360, "issue_comment_url": "https://api.github.com/repos/jwodder/qypi/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/qypi/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/qypi/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/qypi/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/qypi/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/qypi/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/qypi/merges", "milestones_url": "https://api.github.com/repos/jwodder/qypi/milestones{/number}", "mirror_url": null, "name": "qypi", "notifications_url": "https://api.github.com/repos/jwodder/qypi/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/qypi/pulls{/number}", "pushed_at": "2017-07-03T19:26:28Z", "releases_url": "https://api.github.com/repos/jwodder/qypi/releases{/id}", "size": 62, "ssh_url": "[email protected]:jwodder/qypi.git", "stargazers_count": 3, "stargazers_url": "https://api.github.com/repos/jwodder/qypi/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/qypi/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/qypi/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/qypi/subscription", "svn_url": "https://github.com/jwodder/qypi", "tags_url": "https://api.github.com/repos/jwodder/qypi/tags", "teams_url": "https://api.github.com/repos/jwodder/qypi/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/qypi/git/trees{/sha}", "updated_at": "2017-07-11T02:09:57Z", "url": "https://api.github.com/repos/jwodder/qypi", "watchers": 3, "watchers_count": 3 }, { "archive_url": "https://api.github.com/repos/jwodder/schedule/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/schedule/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/schedule/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/schedule/branches{/branch}", "clone_url": "https://github.com/jwodder/schedule.git", "collaborators_url": "https://api.github.com/repos/jwodder/schedule/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/schedule/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/schedule/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/schedule/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/schedule/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/schedule/contributors", "created_at": "2014-04-30T21:49:22Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/schedule/deployments", "description": "Weekly schedule typesetter", "downloads_url": "https://api.github.com/repos/jwodder/schedule/downloads", "events_url": "https://api.github.com/repos/jwodder/schedule/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/schedule/forks", "full_name": "jwodder/schedule", "git_commits_url": "https://api.github.com/repos/jwodder/schedule/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/schedule/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/schedule/git/tags{/sha}", "git_url": "git://github.com/jwodder/schedule.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/schedule/hooks", "html_url": "https://github.com/jwodder/schedule", "id": 19328407, "issue_comment_url": "https://api.github.com/repos/jwodder/schedule/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/schedule/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/schedule/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/schedule/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/schedule/labels{/name}", "language": "Perl", "languages_url": "https://api.github.com/repos/jwodder/schedule/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/schedule/merges", "milestones_url": "https://api.github.com/repos/jwodder/schedule/milestones{/number}", "mirror_url": null, "name": "schedule", "notifications_url": "https://api.github.com/repos/jwodder/schedule/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/schedule/pulls{/number}", "pushed_at": "2014-10-29T22:38:39Z", "releases_url": "https://api.github.com/repos/jwodder/schedule/releases{/id}", "size": 148, "ssh_url": "<EMAIL>:jwodder/schedule.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/schedule/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/schedule/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/schedule/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/schedule/subscription", "svn_url": "https://github.com/jwodder/schedule", "tags_url": "https://api.github.com/repos/jwodder/schedule/tags", "teams_url": "https://api.github.com/repos/jwodder/schedule/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/schedule/git/trees{/sha}", "updated_at": "2014-09-09T18:09:47Z", "url": "https://api.github.com/repos/jwodder/schedule", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/scoreGismu/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/scoreGismu/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/scoreGismu/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/scoreGismu/branches{/branch}", "clone_url": "https://github.com/jwodder/scoreGismu.git", "collaborators_url": "https://api.github.com/repos/jwodder/scoreGismu/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/scoreGismu/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/scoreGismu/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/scoreGismu/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/scoreGismu/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/scoreGismu/contributors", "created_at": "2014-05-01T00:04:06Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/scoreGismu/deployments", "description": "{gismu} creation algorithm", "downloads_url": "https://api.github.com/repos/jwodder/scoreGismu/downloads", "events_url": "https://api.github.com/repos/jwodder/scoreGismu/events", "fork": false, "forks": 1, "forks_count": 1, "forks_url": "https://api.github.com/repos/jwodder/scoreGismu/forks", "full_name": "jwodder/scoreGismu", "git_commits_url": "https://api.github.com/repos/jwodder/scoreGismu/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/scoreGismu/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/scoreGismu/git/tags{/sha}", "git_url": "git://github.com/jwodder/scoreGismu.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/scoreGismu/hooks", "html_url": "https://github.com/jwodder/scoreGismu", "id": 19331080, "issue_comment_url": "https://api.github.com/repos/jwodder/scoreGismu/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/scoreGismu/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/scoreGismu/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/scoreGismu/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/scoreGismu/labels{/name}", "language": "C++", "languages_url": "https://api.github.com/repos/jwodder/scoreGismu/languages", "license": null, "merges_url": "https://api.github.com/repos/jwodder/scoreGismu/merges", "milestones_url": "https://api.github.com/repos/jwodder/scoreGismu/milestones{/number}", "mirror_url": null, "name": "scoreGismu", "notifications_url": "https://api.github.com/repos/jwodder/scoreGismu/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/scoreGismu/pulls{/number}", "pushed_at": "2015-06-07T23:34:03Z", "releases_url": "https://api.github.com/repos/jwodder/scoreGismu/releases{/id}", "size": 194, "ssh_url": "[email protected]:jwodder/scoreGismu.git", "stargazers_count": 1, "stargazers_url": "https://api.github.com/repos/jwodder/scoreGismu/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/scoreGismu/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/scoreGismu/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/scoreGismu/subscription", "svn_url": "https://github.com/jwodder/scoreGismu", "tags_url": "https://api.github.com/repos/jwodder/scoreGismu/tags", "teams_url": "https://api.github.com/repos/jwodder/scoreGismu/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/scoreGismu/git/trees{/sha}", "updated_at": "2015-10-07T01:22:23Z", "url": "https://api.github.com/repos/jwodder/scoreGismu", "watchers": 1, "watchers_count": 1 }, { "archive_url": "https://api.github.com/repos/jwodder/statjson/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/statjson/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/statjson/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/statjson/branches{/branch}", "clone_url": "https://github.com/jwodder/statjson.git", "collaborators_url": "https://api.github.com/repos/jwodder/statjson/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/statjson/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/statjson/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/statjson/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/statjson/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/statjson/contributors", "created_at": "2017-05-08T15:54:09Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/statjson/deployments", "description": "stat(2) output as JSON", "downloads_url": "https://api.github.com/repos/jwodder/statjson/downloads", "events_url": "https://api.github.com/repos/jwodder/statjson/events", "fork": false, "forks": 1, "forks_count": 1, "forks_url": "https://api.github.com/repos/jwodder/statjson/forks", "full_name": "jwodder/statjson", "git_commits_url": "https://api.github.com/repos/jwodder/statjson/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/statjson/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/statjson/git/tags{/sha}", "git_url": "git://github.com/jwodder/statjson.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/statjson/hooks", "html_url": "https://github.com/jwodder/statjson", "id": 90646347, "issue_comment_url": "https://api.github.com/repos/jwodder/statjson/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/statjson/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/statjson/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/statjson/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/statjson/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/statjson/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/statjson/merges", "milestones_url": "https://api.github.com/repos/jwodder/statjson/milestones{/number}", "mirror_url": null, "name": "statjson", "notifications_url": "https://api.github.com/repos/jwodder/statjson/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/statjson/pulls{/number}", "pushed_at": "2017-05-13T18:04:44Z", "releases_url": "https://api.github.com/repos/jwodder/statjson/releases{/id}", "size": 23, "ssh_url": "[email protected]:jwodder/statjson.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/statjson/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/statjson/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/statjson/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/statjson/subscription", "svn_url": "https://github.com/jwodder/statjson", "tags_url": "https://api.github.com/repos/jwodder/statjson/tags", "teams_url": "https://api.github.com/repos/jwodder/statjson/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/statjson/git/trees{/sha}", "updated_at": "2017-05-30T21:07:01Z", "url": "https://api.github.com/repos/jwodder/statjson", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/Verity/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/Verity/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/Verity/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/Verity/branches{/branch}", "clone_url": "https://github.com/jwodder/Verity.git", "collaborators_url": "https://api.github.com/repos/jwodder/Verity/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/Verity/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/Verity/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/Verity/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/Verity/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/Verity/contributors", "created_at": "2009-06-23T16:46:53Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/Verity/deployments", "description": "Truth table generator", "downloads_url": "https://api.github.com/repos/jwodder/Verity/downloads", "events_url": "https://api.github.com/repos/jwodder/Verity/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/Verity/forks", "full_name": "jwodder/Verity", "git_commits_url": "https://api.github.com/repos/jwodder/Verity/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/Verity/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/Verity/git/tags{/sha}", "git_url": "git://github.com/jwodder/Verity.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": "", "hooks_url": "https://api.github.com/repos/jwodder/Verity/hooks", "html_url": "https://github.com/jwodder/Verity", "id": 234445, "issue_comment_url": "https://api.github.com/repos/jwodder/Verity/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/Verity/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/Verity/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/Verity/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/Verity/labels{/name}", "language": "C", "languages_url": "https://api.github.com/repos/jwodder/Verity/languages", "license": { "featured": true, "key": "gpl-3.0", "name": "GNU General Public License v3.0", "spdx_id": "GPL-3.0", "url": "https://api.github.com/licenses/gpl-3.0" }, "merges_url": "https://api.github.com/repos/jwodder/Verity/merges", "milestones_url": "https://api.github.com/repos/jwodder/Verity/milestones{/number}", "mirror_url": null, "name": "Verity", "notifications_url": "https://api.github.com/repos/jwodder/Verity/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/Verity/pulls{/number}", "pushed_at": "2014-03-29T22:58:19Z", "releases_url": "https://api.github.com/repos/jwodder/Verity/releases{/id}", "size": 248, "ssh_url": "[email protected]:jwodder/Verity.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/Verity/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/Verity/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/Verity/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/Verity/subscription", "svn_url": "https://github.com/jwodder/Verity", "tags_url": "https://api.github.com/repos/jwodder/Verity/tags", "teams_url": "https://api.github.com/repos/jwodder/Verity/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/Verity/git/trees{/sha}", "updated_at": "2014-06-24T22:54:05Z", "url": "https://api.github.com/repos/jwodder/Verity", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/whitaker-docker/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/whitaker-docker/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/whitaker-docker/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/whitaker-docker/branches{/branch}", "clone_url": "https://github.com/jwodder/whitaker-docker.git", "collaborators_url": "https://api.github.com/repos/jwodder/whitaker-docker/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/whitaker-docker/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/whitaker-docker/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/whitaker-docker/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/whitaker-docker/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/whitaker-docker/contributors", "created_at": "2016-04-10T23:52:16Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/whitaker-docker/deployments", "description": "Whitaker's Words Docker image", "downloads_url": "https://api.github.com/repos/jwodder/whitaker-docker/downloads", "events_url": "https://api.github.com/repos/jwodder/whitaker-docker/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/whitaker-docker/forks", "full_name": "jwodder/whitaker-docker", "git_commits_url": "https://api.github.com/repos/jwodder/whitaker-docker/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/whitaker-docker/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/whitaker-docker/git/tags{/sha}", "git_url": "git://github.com/jwodder/whitaker-docker.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/whitaker-docker/hooks", "html_url": "https://github.com/jwodder/whitaker-docker", "id": 55928611, "issue_comment_url": "https://api.github.com/repos/jwodder/whitaker-docker/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/whitaker-docker/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/whitaker-docker/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/whitaker-docker/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/whitaker-docker/labels{/name}", "language": null, "languages_url": "https://api.github.com/repos/jwodder/whitaker-docker/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/whitaker-docker/merges", "milestones_url": "https://api.github.com/repos/jwodder/whitaker-docker/milestones{/number}", "mirror_url": null, "name": "whitaker-docker", "notifications_url": "https://api.github.com/repos/jwodder/whitaker-docker/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/whitaker-docker/pulls{/number}", "pushed_at": "2016-04-14T23:40:19Z", "releases_url": "https://api.github.com/repos/jwodder/whitaker-docker/releases{/id}", "size": 2, "ssh_url": "git<EMAIL>.com:jwodder/whitaker-docker.git", "stargazers_count": 0, "stargazers_url": "https://api.github.com/repos/jwodder/whitaker-docker/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/whitaker-docker/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/whitaker-docker/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/whitaker-docker/subscription", "svn_url": "https://github.com/jwodder/whitaker-docker", "tags_url": "https://api.github.com/repos/jwodder/whitaker-docker/tags", "teams_url": "https://api.github.com/repos/jwodder/whitaker-docker/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/whitaker-docker/git/trees{/sha}", "updated_at": "2016-04-10T23:52:16Z", "url": "https://api.github.com/repos/jwodder/whitaker-docker", "watchers": 0, "watchers_count": 0 }, { "archive_url": "https://api.github.com/repos/jwodder/whitaker2json/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/whitaker2json/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/whitaker2json/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/whitaker2json/branches{/branch}", "clone_url": "https://github.com/jwodder/whitaker2json.git", "collaborators_url": "https://api.github.com/repos/jwodder/whitaker2json/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/whitaker2json/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/whitaker2json/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/whitaker2json/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/whitaker2json/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/whitaker2json/contributors", "created_at": "2016-02-28T04:48:26Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/whitaker2json/deployments", "description": "Convert William Whitaker's DICTPAGE.RAW to JSON", "downloads_url": "https://api.github.com/repos/jwodder/whitaker2json/downloads", "events_url": "https://api.github.com/repos/jwodder/whitaker2json/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/whitaker2json/forks", "full_name": "jwodder/whitaker2json", "git_commits_url": "https://api.github.com/repos/jwodder/whitaker2json/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/whitaker2json/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/whitaker2json/git/tags{/sha}", "git_url": "git://github.com/jwodder/whitaker2json.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": null, "hooks_url": "https://api.github.com/repos/jwodder/whitaker2json/hooks", "html_url": "https://github.com/jwodder/whitaker2json", "id": 52705142, "issue_comment_url": "https://api.github.com/repos/jwodder/whitaker2json/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/whitaker2json/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/whitaker2json/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/whitaker2json/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/whitaker2json/labels{/name}", "language": "Python", "languages_url": "https://api.github.com/repos/jwodder/whitaker2json/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/whitaker2json/merges", "milestones_url": "https://api.github.com/repos/jwodder/whitaker2json/milestones{/number}", "mirror_url": null, "name": "whitaker2json", "notifications_url": "https://api.github.com/repos/jwodder/whitaker2json/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/whitaker2json/pulls{/number}", "pushed_at": "2017-02-21T15:26:27Z", "releases_url": "https://api.github.com/repos/jwodder/whitaker2json/releases{/id}", "size": 38, "ssh_url": "[email protected]:jwodder/whitaker2json.git", "stargazers_count": 2, "stargazers_url": "https://api.github.com/repos/jwodder/whitaker2json/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/whitaker2json/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/whitaker2json/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/whitaker2json/subscription", "svn_url": "https://github.com/jwodder/whitaker2json", "tags_url": "https://api.github.com/repos/jwodder/whitaker2json/tags", "teams_url": "https://api.github.com/repos/jwodder/whitaker2json/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/whitaker2json/git/trees{/sha}", "updated_at": "2017-07-09T23:26:26Z", "url": "https://api.github.com/repos/jwodder/whitaker2json", "watchers": 2, "watchers_count": 2 }, { "archive_url": "https://api.github.com/repos/jwodder/xattr/{archive_format}{/ref}", "assignees_url": "https://api.github.com/repos/jwodder/xattr/assignees{/user}", "blobs_url": "https://api.github.com/repos/jwodder/xattr/git/blobs{/sha}", "branches_url": "https://api.github.com/repos/jwodder/xattr/branches{/branch}", "clone_url": "https://github.com/jwodder/xattr.git", "collaborators_url": "https://api.github.com/repos/jwodder/xattr/collaborators{/collaborator}", "comments_url": "https://api.github.com/repos/jwodder/xattr/comments{/number}", "commits_url": "https://api.github.com/repos/jwodder/xattr/commits{/sha}", "compare_url": "https://api.github.com/repos/jwodder/xattr/compare/{base}...{head}", "contents_url": "https://api.github.com/repos/jwodder/xattr/contents/{+path}", "contributors_url": "https://api.github.com/repos/jwodder/xattr/contributors", "created_at": "2009-09-28T20:33:40Z", "default_branch": "master", "deployments_url": "https://api.github.com/repos/jwodder/xattr/deployments", "description": "[Obsolete] Extended attributes manipulator for Mac OS X", "downloads_url": "https://api.github.com/repos/jwodder/xattr/downloads", "events_url": "https://api.github.com/repos/jwodder/xattr/events", "fork": false, "forks": 0, "forks_count": 0, "forks_url": "https://api.github.com/repos/jwodder/xattr/forks", "full_name": "jwodder/xattr", "git_commits_url": "https://api.github.com/repos/jwodder/xattr/git/commits{/sha}", "git_refs_url": "https://api.github.com/repos/jwodder/xattr/git/refs{/sha}", "git_tags_url": "https://api.github.com/repos/jwodder/xattr/git/tags{/sha}", "git_url": "git://github.com/jwodder/xattr.git", "has_downloads": true, "has_issues": true, "has_pages": false, "has_projects": true, "has_wiki": true, "homepage": "", "hooks_url": "https://api.github.com/repos/jwodder/xattr/hooks", "html_url": "https://github.com/jwodder/xattr", "id": 320398, "issue_comment_url": "https://api.github.com/repos/jwodder/xattr/issues/comments{/number}", "issue_events_url": "https://api.github.com/repos/jwodder/xattr/issues/events{/number}", "issues_url": "https://api.github.com/repos/jwodder/xattr/issues{/number}", "keys_url": "https://api.github.com/repos/jwodder/xattr/keys{/key_id}", "labels_url": "https://api.github.com/repos/jwodder/xattr/labels{/name}", "language": "C", "languages_url": "https://api.github.com/repos/jwodder/xattr/languages", "license": { "featured": true, "key": "mit", "name": "MIT License", "spdx_id": "MIT", "url": "https://api.github.com/licenses/mit" }, "merges_url": "https://api.github.com/repos/jwodder/xattr/merges", "milestones_url": "https://api.github.com/repos/jwodder/xattr/milestones{/number}", "mirror_url": null, "name": "xattr", "notifications_url": "https://api.github.com/repos/jwodder/xattr/notifications{?since,all,participating}", "open_issues": 0, "open_issues_count": 0, "owner": { "avatar_url": "https://avatars1.githubusercontent.com/u/98207?v=4", "events_url": "https://api.github.com/users/jwodder/events{/privacy}", "followers_url": "https://api.github.com/users/jwodder/followers", "following_url": "https://api.github.com/users/jwodder/following{/other_user}", "gists_url": "https://api.github.com/users/jwodder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jwodder", "id": 98207, "login": "jwodder", "organizations_url": "https://api.github.com/users/jwodder/orgs", "received_events_url": "https://api.github.com/users/jwodder/received_events", "repos_url": "https://api.github.com/users/jwodder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jwodder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jwodder/subscriptions", "type": "User", "url": "https://api.github.com/users/jwodder" }, "permissions": { "admin": true, "pull": true, "push": true }, "private": false, "pulls_url": "https://api.github.com/repos/jwodder/xattr/pulls{/number}", "pushed_at": "2014-07-12T23:14:06Z", "releases_url": "https://api.github.com/repos/jwodder/xattr/releases{/id}", "size": 136, "ssh_url": "<EMAIL>:jwodder/xattr.git", "stargazers_count": 1, "stargazers_url": "https://api.github.com/repos/jwodder/xattr/stargazers", "statuses_url": "https://api.github.com/repos/jwodder/xattr/statuses/{sha}", "subscribers_url": "https://api.github.com/repos/jwodder/xattr/subscribers", "subscription_url": "https://api.github.com/repos/jwodder/xattr/subscription", "svn_url": "https://github.com/jwodder/xattr", "tags_url": "https://api.github.com/repos/jwodder/xattr/tags", "teams_url": "https://api.github.com/repos/jwodder/xattr/teams", "topics": [], "trees_url": "https://api.github.com/repos/jwodder/xattr/git/trees{/sha}", "updated_at": "2016-02-21T05:40:57Z", "url": "https://api.github.com/repos/jwodder/xattr", "watchers": 1, "watchers_count": 1 } ] ''' def test_request_user_repos(cmd): r = cmd('request', '/user/repos') assert r.exit_code == 0 assert r.output == USER_REPOS_PAGE1 def test_request_paginate_user_repos(cmd): r = cmd('request', '--paginate', '/user/repos') assert r.exit_code == 0 assert r.output == USER_REPOS_PAGE1 + USER_REPOS_PAGE2 def test_request_debug_user_repos(cmd): r = cmd('--debug', 'request', '/user/repos') assert r.exit_code == 0 assert r.output == 'GET https://api.github.com/user/repos\n' \ + USER_REPOS_PAGE1 def test_request_debug_paginate_user_repos(cmd): r = cmd('--debug', 'request', '--paginate', '/user/repos') assert r.exit_code == 0 assert r.output == 'GET https://api.github.com/user/repos\n' \ + USER_REPOS_PAGE1 \ + 'GET https://api.github.com/user/repos?page=2\n' \ + USER_REPOS_PAGE2 def test_request_nonjson(cmd): r = cmd('request', 'https://github.com/vinta/awesome-python/pull/875.diff') assert r.exit_code == 0 assert r.output == '''\ diff --git a/README.md b/README.md index 0f63a961..3508e953 100644 --- a/README.md +++ b/README.md @@ -777,6 +777,7 @@ Inspired by [awesome-php](https://github.com/ziadoz/awesome-php). \n *Useful libraries or tools that don't fit in the categories above.* \n+* [attrs](https://github.com/python-attrs/attrs) - Replacement for `__init__`, `__eq__`, `__repr__`, etc. boilerplate in class definitions. * [blinker](https://github.com/jek/blinker) - A fast Python in-process signal/event dispatching system. * [itsdangerous](https://github.com/pallets/itsdangerous) - Various helpers to pass trusted data to untrusted environments. * [pluginbase](https://github.com/mitsuhiko/pluginbase) - A simple but flexible plugin system for Python. ''' def test_request_post_data(cmd): r = cmd( '--debug', 'request', '-XPOST', '-H', 'Content-Type: application/json', '-d{"name": "Test Label", "color": "FF0000"}', 'https://api.github.com/repos/jwodder/test/labels', ) assert r.exit_code == 0 assert r.output == '''\ POST https://api.github.com/repos/jwodder/test/labels {"name": "Test Label", "color": "FF0000"} { "color": "FF0000", "default": false, "id": 671710206, "name": "Test Label", "url": "https://api.github.com/repos/jwodder/test/labels/Test%20Label" } ''' def test_request_post_data_file(cmd): r = cmd( '--debug', 'request', '-XPOST', '-H', 'Content-Type: application/json', '-d@' + str(Path(__file__).with_name('data')/'files'/'label.json'), 'https://api.github.com/repos/jwodder/test/labels', ) assert r.exit_code == 0 assert r.output == '''\ POST https://api.github.com/repos/jwodder/test/labels {"name": "Test Label", "color": "FF0000"} { "color": "FF0000", "default": false, "id": 671710206, "name": "Test Label", "url": "https://api.github.com/repos/jwodder/test/labels/Test%20Label" } ''' def test_request_post_data_stdin(cmd): r = cmd( '--debug', 'request', '-XPOST', '-H', 'Content-Type: application/json', '-d@-', 'https://api.github.com/repos/jwodder/test/labels', input='{"name": "Test Label", "color": "FF0000"}', ) assert r.exit_code == 0 assert r.output == '''\ POST https://api.github.com/repos/jwodder/test/labels {"name": "Test Label", "color": "FF0000"} { "color": "FF0000", "default": false, "id": 671710206, "name": "Test Label", "url": "https://api.github.com/repos/jwodder/test/labels/Test%20Label" } '''
StarcoderdataPython
1749065
import datetime as dt import blpapi import logging from .BbgRefDataService import BbgRefDataService import pandas as pd import numpy as np from . import BbgLogger import pytz from tzlocal import get_localzone logger = BbgLogger.logger SECURITY_DATA = blpapi.Name("securityData") SECURITY = blpapi.Name("security") FIELD_DATA = blpapi.Name("fieldData") FIELD_EXCEPTIONS = blpapi.Name("fieldExceptions") FIELD_ID = blpapi.Name("fieldId") ERROR_INFO = blpapi.Name("errorInfo") BAR_DATA = blpapi.Name("barData") BAR_TICK_DATA = blpapi.Name("barTickData") OPEN = blpapi.Name("open") HIGH = blpapi.Name("high") LOW = blpapi.Name("low") CLOSE = blpapi.Name("close") VOLUME = blpapi.Name("volume") NUM_EVENTS = blpapi.Name("numEvents") TIME = blpapi.Name("time") class BbgIntradayBar(BbgRefDataService): def __init__(self, securities, startTime, endTime, event = "TRADE", barInterval = 60, timeZone = str(get_localzone()), gapFillInitialBar = False, adjustmentSplit = True, adjustmentAbnormal = False, adjustmentNormal = False, adjustmentFollowDPDF = True): ''' Bloomberg Intraday Bar query object. Allows user to input a list of securities retrieval over a specified time period subject to the usual constraints that apply to Bloomberg Intraday Bar data retrieval. Parameters ---------- fields : tuple, list, or ndarray The list of fields to be retrieved, field names and data types can be determined by typing FLDS <GO> and using the search box. securities : tuple, list, or ndarray List of Bloomberg tickers to retrieve data for. If one item is passed this can be input as a string, otherwise inputs must be passed as a list or array-like. startTime : datetime.datetime The start date and time at which to retrieving data from. Must be passed as a datetime. endTime : datetime.datetime The end date and time at which to retrieving data from. Must be passed as a datetime. event : string Defines the market event supplied for an intraday request. Could be TRADE, BID or ASK. If no event is passed, will default to TRADE. barInterval : integer Sets the length of each time-bar in the response. Entered as a whole number (between 1 and 1,440 minutes). If omitted, the request will default to 60 minutes. One minute is the lowest possible granularity. timeZone : string Timezone for the request based on the pytz package timezone names. If no timezone is passed, will default to current system timezone. gapFillInitialBar : bool Adjust historical pricing to reflect: Special Cash, Liquidation, Capital Gains, Long-Term Capital Gains, Short-Term Capital Gains, Memorial, Return of Capital, Rights Redemption, Miscellaneous, Return Premium, Preferred Rights Redemption, Proceeds/Rights, Proceeds/Shares, Proceeds/Warrants adjustmentSplit : bool Adjust historical pricing and/or volume to reflect: Spin-Offs, Stock Splits/Consolidations, Stock Dividend/Bonus, Rights Offerings/Entitlement. If not set, will be set to True. adjustmentAbnormal : bool Adjust historical pricing to reflect: Special Cash, Liquidation, Capital Gains, Long-Term Capital Gains, Short-Term Capital Gains, Memorial, Return of Capital, Rights Redemption, Miscellaneous, Return Premium, Preferred Rights Redemption, Proceeds/Rights, Proceeds/Shares, Proceeds/Warrants. If not set, will be set to False. adjustmentNormal : bool Adjust historical pricing to reflect: Regular Cash, Interim, 1st Interim, 2nd Interim, 3rd Interim, 4th Interim, 5th Interim, Income, Estimated, Partnership Distribution, Final, Interest on Capital, Distribution, Prorated. If not set, will be set to False. adjustmentFollowDPDF : bool Setting to True will follow the DPDF <GO> Terminal function. True is the default setting for this option. If not set, will be set to True. See Also -------- BbgIntradayBar.constructDf : Constructor method, retrieves data associated with a BbgDataPoint query object and generates a dataframe from it. BbgDataPoint : Retrieve single point static, calculated or other reference data. BbgIntradayTick : Retrieve historic tick-level data for a given security. BbgIntradayBar : Retrieve historic bar level data for a given security (open, high, low and close) for a specified time interval given in minutes. Examples -------- Retrieve open, high, low, close, volume, number of events and value data for a basket of securities between two datetimes. >>> import datetime as dt >>> import pandas as pd >>> import BloombergDataModule as bbg >>> futHist = bbg.BbgIntradayBar(securities = ["YMH0 Comdty", "XMH0 Comdty"], startTime = dt.datetime(2020, 1, 31, 9, 0, 0), endTime = dt.datetime(2020, 1, 31, 12, 0, 0), barInterval = 5) >>> futHist.constructDf().head() Field open high low close volume numEvents value Security time YMH0 Comdty 2020-01-31 09:10:00+11:00 99.37 99.375 99.37 99.375 149 3 14806.3 2020-01-31 09:15:00+11:00 99.375 99.38 99.375 99.38 1749 13 173807 2020-01-31 09:20:00+11:00 99.38 99.38 99.38 99.38 6 6 596.28 2020-01-31 09:25:00+11:00 99.38 99.38 99.375 99.38 2170 35 215655 2020-01-31 09:30:00+11:00 99.38 99.38 99.375 99.38 93 3 9241.89 ''' self.securities = list(securities) if type(securities) is not list else securities self.startTime = startTime self.endTime = endTime self.event = event self.barInterval = barInterval self.timeZone = timeZone self.gapFillInitialBar = gapFillInitialBar self.adjustmentSplit = adjustmentSplit self.adjustmentAbnormal = adjustmentAbnormal self.adjustmentNormal = adjustmentNormal self.adjustmentFollowDPDF = adjustmentFollowDPDF def constructDf(self): ''' The constructDf method retrieves data associated with a BbgIntradayBar query object and generates a dataframe from it. Parameters ---------- None Returns ------- table : DataFrame Raises ------ ValueError: Blah blah blah See Also -------- BbgDataHistory.constructDf : retrieves static history data and constructs a DataFrame from it. It has more customisability with respect to overrides BbgIntradayTick.constructDf: retrieves intraday (or multi-day) tick level data and constructs a dataframe from it. It has applications in more data intensive and granular analysis BbgDataPoint.constructDf: retrieves intraday (or multi-day) bar level (open-high-low-close) data and constructs a dataframe from it. It is for use in more data intensive and granular analysis.constructDf. The bar interval frequency can be specified in minutes to optimise for efficiency and speed. Notes ----- Blah blah blah Examples -------- Retrieve open, high, low, close, volume, number of events and value data for a basket of securities between two datetimes. >>> import datetime as dt >>> import pandas as pd >>> import BloombergDataModule as bbg >>> futHist = bbg.BbgIntradayBar(securities = ["YMH0 Comdty", "XMH0 Comdty"], startTime = dt.datetime(2020, 1, 31, 9, 0, 0), endTime = dt.datetime(2020, 1, 31, 12, 0, 0), barInterval = 5) >>> futHist.constructDf().head() Field open high low close volume numEvents value Security time YMH0 Comdty 2020-01-31 09:10:00+11:00 99.37 99.375 99.37 99.375 149 3 14806.3 2020-01-31 09:15:00+11:00 99.375 99.38 99.375 99.38 1749 13 173807 2020-01-31 09:20:00+11:00 99.38 99.38 99.38 99.38 6 6 596.28 2020-01-31 09:25:00+11:00 99.38 99.38 99.375 99.38 2170 35 215655 2020-01-31 09:30:00+11:00 99.38 99.38 99.375 99.38 93 3 9241.89 ''' BbgRefDataService.__init__(self) self.bbgRefData = pd.DataFrame() UTCStartTime = self.__convertFromTimezoneToUTC(self.startTime, self.timeZone) UTCEndTime = self.__convertFromTimezoneToUTC(self.endTime, self.timeZone) for sec in self.securities: self.request = self.createIntradayBarRequest(security = sec, requestType = "IntradayBarRequest", startTime = UTCStartTime, endTime = UTCEndTime, event = self.event, barInterval = self.barInterval, gapFillInitialBar = self.gapFillInitialBar, adjustmentSplit = self.adjustmentSplit, adjustmentAbnormal = self.adjustmentAbnormal, adjustmentNormal = self.adjustmentNormal, adjustmentFollowDPDF = self.adjustmentFollowDPDF) self.cid = self.session.sendRequest(self.request) for response in self.parseResponse(self.cid, False): self.bbgRefData = self.bbgRefData.append(self.refDataContentToDf(response, sec)) BbgRefDataService.__del__(self) self.bbgRefData['time'] = self.bbgRefData['time'].apply(lambda x: self.__convertFromUTCToTimezone(x, self.timeZone)) return self.bbgRefData.set_index(['Security', 'time']) def refDataContentToDf(self, response, security): securityData = response['content']['IntradayBarResponse']['barData'] barData = securityData['barTickData'] returnDf = pd.DataFrame() for snapShot in barData: fieldData = snapShot['barTickData'] returnDf = returnDf.append(pd.DataFrame(fieldData.items(), columns=['Field', 'Values']).set_index('Field').transpose().reset_index(drop=True))#, index = [fieldData['time'] for i in range(0, len(fieldData))])[1:]) returnDf.index.names = ['time'] returnDf['Security'] = security return returnDf def __convertFromUTCToTimezone(self, fromDt, toTimeZone): return pytz.utc.localize(fromDt).astimezone(pytz.timezone(toTimeZone)) def __convertFromTimezoneToUTC(self, fromDt, fromTimeZone): return pytz.timezone(fromTimeZone).localize(fromDt).astimezone(pytz.utc)
StarcoderdataPython
1724575
<reponame>welvin21/pysimt from .base_sublayer import BaseSublayer from .self_attention_sublayer import SelfAttentionSublayer from .cross_attention_sublayer import CrossAttentionSublayer from .cross_attention_sublayer_mm_flat import FlatMMCrossAttentionSublayer from .cross_attention_sublayer_mm_hier import HierarchicalMMCrossAttentionSublayer from .cross_attention_sublayer_mm_serial import SerialMMCrossAttentionSublayer from .cross_attention_sublayer_mm_parallel import ParallelMMCrossAttentionSublayer
StarcoderdataPython
100834
import FWCore.ParameterSet.Config as cms from RecoBTag.SecondaryVertex.candidateCombinedSecondaryVertexV2Computer_cfi import * candidateNegativeCombinedSecondaryVertexV2Computer = candidateCombinedSecondaryVertexV2Computer.clone() candidateNegativeCombinedSecondaryVertexV2Computer.vertexFlip = True candidateNegativeCombinedSecondaryVertexV2Computer.trackFlip = True candidateNegativeCombinedSecondaryVertexV2Computer.trackSelection.sip3dSigMax = 0 candidateNegativeCombinedSecondaryVertexV2Computer.trackPseudoSelection.sip3dSigMax = 0 candidateNegativeCombinedSecondaryVertexV2Computer.trackPseudoSelection.sip2dSigMin = -99999.9 candidateNegativeCombinedSecondaryVertexV2Computer.trackPseudoSelection.sip2dSigMax = -2.0
StarcoderdataPython
124563
<filename>unsec/email_collection.py # coding: utf8 """email_collection.py: EmailCollection is a container for Email class """ __author__ = "<NAME> - <NAME>" __copyright__ = "Copyright 2015, labsquare" __license__ = "GPL3" __email__ = "<EMAIL>" import re import glob from unsec import Email, tools import logging class EmailCollection(object): def __init__(self, directory = None, name = None): self.emails = [] self.log = logging.getLogger(__name__) self.name = name if directory is not None: self.add_from_directory(directory) def get_emails(self): """ emails accessors @param string lang @return generator emails emails in the collection """ for email in self.emails: yield email def add_email(self, email): self.emails.append(email) def add_file(self, filename): """ add email from filename @param string filename """ email = Email(filename) self.add_email(email) self.log.debug("add {}".format(filename)) def add_from_directory(self, directory): """ add email from a directory @param string directory path of directory """ for f in glob.glob(directory+"/*"): self.add_file(f) def add_from_files(self, directory): """ add email from a directory @param string files """ for f in glob.glob(directory): self.add_file(f) def get_subjects(self): """ return all subjects from collection's emails @return generator subjects """ for email in self.emails: yield email.get_subject() def get_bodies(self): """ return all bodies from collection's emails @return generator bodies """ for email in self.emails: yield email.get_body() def get_senders(self): """ return all subjects from collection's emails @return generator senders """ for email in self.emails: yield email.get_sender() def select(self, category): return [email for email in self.get_emails() if email.category == category.lower()] def count(self): """ return size of collection @return int count """ return len(self.emails) def category_count(self, category): return len(select(category)) def at(self, index): """ return email from index @return Email email """ return self.emails[index] def keep_lang(self, lang="fr"): self.log.info("Fitering language : {}".format(lang)) new_list = [] for email in self.get_emails(): if email.get_lang() == lang: new_list.append(email) self.log.debug("keep file {}".format(email.filename)) self.emails = new_list def get_categories(self): categories = {} for email in self.get_emails(): if email.category not in categories: categories[email.category] = 1 else: categories[email.category]+=1 return categories def get_vectors(self): vectors = [] # WORKS ONLY IF CLUSTERIZER HAS BEEN PROCESS for email in self.get_emails(): vectors.append(email.vector) return vectors def get_centroid(self): return tools.barycenter(self.get_vectors()) def get_similarity(self): center = self.get_centroid() return tools.avg_distance(self.get_vectors(), center) def __getitem__(self, index): return self.at(index) def __iter__(self): return self.get_emails() def __str__(self): return "Collection of {} emails".format(self.count())
StarcoderdataPython
1763099
<reponame>lizhaoliu-Lec/Revisiting_Deep_Metric_Learning_PyTorch """ The network architectures and weights are adapted and used from the great https://github.com/Cadene/pretrained-models.pytorch. """ import pretrainedmodels as ptm import torch.nn as nn import torch.nn.functional as F class Network(nn.Module): def __init__(self, opt, return_embed_dict=False): super(Network, self).__init__() self.pars = opt self.model = ptm.__dict__['bninception'](num_classes=1000, pretrained='imagenet') self.model.last_linear = nn.Linear(self.model.last_linear.in_features, opt.embed_dim) if '_he' in opt.arch: nn.init.kaiming_normal_(self.model.last_linear.weight, mode='fan_out') nn.init.constant_(self.model.last_linear.bias, 0) if 'frozen' in opt.arch: for module in filter(lambda m: type(m) == nn.BatchNorm2d, self.model.modules()): module.eval() module.train = lambda _: None self.return_embed_dict = return_embed_dict self.pool_base = nn.AdaptiveAvgPool2d(1) self.pool_aux = nn.AdaptiveMaxPool2d(1) if 'double' in opt.arch else None self.name = opt.arch self.out_adjust = None def forward(self, x, warmup=False, **kwargs): x_before_pooled = self.model.features(x) x_pooled = self.pool_base(x_before_pooled) if self.pool_aux is not None: x_pooled += self.pool_aux(x) if warmup: x_pooled, x = x_pooled.detach(), x.detach() x = self.model.last_linear(x_pooled.view(x.size(0), -1)) if 'normalize' in self.name: x = F.normalize(x, dim=-1) if self.out_adjust and not self.training: x = self.out_adjust(x) return x, (x_pooled, x_before_pooled) def functional_forward(self, x): pass
StarcoderdataPython
4836049
<gh_stars>1-10 from setuptools import setup, find_packages import os package_name = "pyromocc" package_data = {} if os.name == 'posix': package_data[package_name] = ['*.so'] else: package_data[package_name] = ['*.pyd', '*.dll'] setup(name=package_name, version='0.0.4', author="<NAME>", packages=find_packages(exclude=['third_party', 'examples']), install_requires=['numpy'], setup_requires=['wheel'], extras_require={'examples': ["matplotlib"]}, include_package_data=True, classifiers=[ 'Operating System :: POSIX :: Linux', 'Programming Language :: C++', 'Programming Language :: Python :: 3 :: 3.6', 'Programming Language :: Python :: 3 :: 3.7', 'Programming Language :: Python :: 3 :: 3.8', ], python_requires='>=3.6', package_data=package_data)
StarcoderdataPython
1725710
# Copyright (c) 2020 the Eclipse BaSyx Authors # # This program and the accompanying materials are made available under the terms of the MIT License, available in # the LICENSE file of this project. # # SPDX-License-Identifier: MIT import io import unittest from basyx.aas import model from basyx.aas.adapter.xml import write_aas_xml_file, read_aas_xml_file from basyx.aas.examples.data import example_concept_description, example_aas_missing_attributes, example_aas, \ example_aas_mandatory_attributes, example_submodel_template, create_example from basyx.aas.examples.data._helper import AASDataChecker def _serialize_and_deserialize(data: model.DictObjectStore) -> model.DictObjectStore: file = io.BytesIO() write_aas_xml_file(file=file, data=data) # try deserializing the xml document into a DictObjectStore of AAS objects with help of the xml module file.seek(0) return read_aas_xml_file(file, failsafe=False) class XMLSerializationDeserializationTest(unittest.TestCase): def test_example_serialization_deserialization(self) -> None: object_store = _serialize_and_deserialize(example_aas.create_full_example()) checker = AASDataChecker(raise_immediately=True) example_aas.check_full_example(checker, object_store) def test_example_mandatory_attributes_serialization_deserialization(self) -> None: object_store = _serialize_and_deserialize(example_aas_mandatory_attributes.create_full_example()) checker = AASDataChecker(raise_immediately=True) example_aas_mandatory_attributes.check_full_example(checker, object_store) def test_example_missing_attributes_serialization_deserialization(self) -> None: object_store = _serialize_and_deserialize(example_aas_missing_attributes.create_full_example()) checker = AASDataChecker(raise_immediately=True) example_aas_missing_attributes.check_full_example(checker, object_store) def test_example_submodel_template_serialization_deserialization(self) -> None: data: model.DictObjectStore[model.Identifiable] = model.DictObjectStore() data.add(example_submodel_template.create_example_submodel_template()) object_store = _serialize_and_deserialize(data) checker = AASDataChecker(raise_immediately=True) example_submodel_template.check_full_example(checker, object_store) def test_example_iec61360_concept_description_serialization_deserialization(self) -> None: data: model.DictObjectStore[model.Identifiable] = model.DictObjectStore() data.add(example_concept_description.create_iec61360_concept_description()) object_store = _serialize_and_deserialize(data) checker = AASDataChecker(raise_immediately=True) example_concept_description.check_full_example(checker, object_store) def test_example_all_examples_serialization_deserialization(self) -> None: data: model.DictObjectStore[model.Identifiable] = create_example() object_store = _serialize_and_deserialize(data) checker = AASDataChecker(raise_immediately=True) checker.check_object_store(object_store, data)
StarcoderdataPython
3350646
# -*- coding: utf-8 -*- # # Copyright 2017 Ricequant, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import six import jsonpickle from rqalpha.environment import Environment from rqalpha.const import DAYS_CNT, DEFAULT_ACCOUNT_TYPE from rqalpha.utils import get_account_type, merge_dicts from rqalpha.utils.repr import property_repr from rqalpha.events import EVENT class Portfolio(object): __repr__ = property_repr def __init__(self, start_date, static_unit_net_value, units, accounts, register_event=True): self._start_date = start_date self._static_unit_net_value = static_unit_net_value self._units = units self._accounts = accounts self._mixed_positions = None if register_event: self.register_event() def register_event(self): """ 注册事件 """ event_bus = Environment.get_instance().event_bus event_bus.prepend_listener(EVENT.PRE_BEFORE_TRADING, self._pre_before_trading) def order(self, order_book_id, quantity, style, target=False): account_type = get_account_type(order_book_id) return self.accounts[account_type].order(order_book_id, quantity, style, target) def get_state(self): return jsonpickle.encode({ 'start_date': self._start_date, 'static_unit_net_value': self._static_unit_net_value, 'units': self._units, 'accounts': { name: account.get_state() for name, account in six.iteritems(self._accounts) } }).encode('utf-8') def set_state(self, state): state = state.decode('utf-8') value = jsonpickle.decode(state) self._start_date = value['start_date'] self._static_unit_net_value = value['static_unit_net_value'] self._units = value['units'] for k, v in six.iteritems(value['accounts']): self._accounts[k].set_state(v) def _pre_before_trading(self, event): self._static_unit_net_value = self.unit_net_value @property def accounts(self): """ [dict] 账户字典 """ return self._accounts @property def stock_account(self): """ [StockAccount] 股票账户 """ return self._accounts.get(DEFAULT_ACCOUNT_TYPE.STOCK.name, None) @property def future_account(self): """ [FutureAccount] 期货账户 """ return self._accounts.get(DEFAULT_ACCOUNT_TYPE.FUTURE.name, None) @property def start_date(self): """ [datetime.datetime] 策略投资组合的开始日期 """ return self._start_date @property def units(self): """ [float] 份额 """ return self._units @property def unit_net_value(self): """ [float] 实时净值 """ return self.total_value / self._units @property def static_unit_net_value(self): return self._static_unit_net_value @property def daily_pnl(self): """ [float] 当日盈亏 """ return self.total_value - self._static_unit_net_value * self.units @property def daily_returns(self): """ [float] 当前最新一天的日收益 """ return 0 if self._static_unit_net_value == 0 else self.unit_net_value / self._static_unit_net_value - 1 @property def total_returns(self): """ [float] 累计收益率 """ return self.unit_net_value - 1 @property def annualized_returns(self): """ [float] 累计年化收益率 """ current_date = Environment.get_instance().trading_dt.date() return self.unit_net_value ** (DAYS_CNT.DAYS_A_YEAR / float((current_date - self.start_date).days + 1)) - 1 @property def total_value(self): """ [float]总权益 """ return sum(account.total_value for account in six.itervalues(self._accounts)) @property def portfolio_value(self): """ [Deprecated] 总权益 """ return self.total_value @property def positions(self): """ [dict] 持仓 """ if self._mixed_positions is None: self._mixed_positions = MixedPositions(self._accounts) return self._mixed_positions @property def cash(self): """ [float] 可用资金 """ return sum(account.cash for account in six.itervalues(self._accounts)) @property def dividend_receivable(self): return sum(getattr(account, 'dividend_receivable', 0) for account in six.itervalues(self._accounts)) @property def transaction_cost(self): return sum(account.transaction_cost for account in six.itervalues(self._accounts)) @property def market_value(self): """ [float] 市值 """ return sum(account.market_value for account in six.itervalues(self._accounts)) @property def pnl(self): return (self.unit_net_value - 1) * self.units @property def starting_cash(self): return self.units @property def frozen_cash(self): return sum(account.frozen_cash for account in six.itervalues(self._accounts)) class MixedPositions(dict): def __init__(self, accounts): super(MixedPositions, self).__init__() self._accounts = accounts def __missing__(self, key): account_type = get_account_type(key) for a_type in self._accounts: if a_type == account_type: return self._accounts[a_type].positions[key] return None def __contains__(self, item): return item in self.keys() def __repr__(self): keys = [] for account in six.itervalues(self._accounts): keys += account.positions.keys() return str(sorted(keys)) def __len__(self): return sum(len(account.positions) for account in six.itervalues(self._accounts)) def __iter__(self): keys = [] for account in six.itervalues(self._accounts): keys += account.positions.keys() for key in sorted(keys): yield key def items(self): items = merge_dicts(*[account.positions.items() for account in six.itervalues(self._accounts)]) for k in sorted(items.keys()): yield k, items[k] def keys(self): keys = [] for account in six.itervalues(self._accounts): keys += list(account.positions.keys()) return sorted(keys)
StarcoderdataPython
191277
<filename>flaskdeploy/test/prototype.py from config import * from validation import * from utils import * import subprocess import getpass import os import click domain = "xx.com" usr = getpass.getuser() loc = os.path.join(os.getcwd(), domain) DOMAIN, USR, CUR_LOC = domain, usr, loc cli = click.Group() @click.command(short_help='AliYun Option',context_settings=dict( allow_extra_args=True )) @click.option('--ali_key', prompt='Ali_Key') @click.option('--ali_secret', prompt='Ali_Secret') @click.pass_context def op_ali(ctx,ali_key,ali_secret): dns_op = "dns_ali" op_1 = "Ali_Key={}".format(ali_key) op_2 = "Ali_Secret={}".format(ali_secret) ssl_multi_gen(DOMAIN, USR, CUR_LOC, op_1,op_2,dns_op) raise JumpOutFuckingClick2 @click.command(short_help='CloudFlare Option',context_settings=dict( allow_extra_args=True )) @click.option('--cf_email', prompt='CF_Email') @click.option('--cf_key', prompt='CF_Key') @click.pass_context def op_cf(ctx,cf_email,cf_key): dns_op = "dns_cf" op_1 = "CF_Email={}".format(cf_email) op_2 = "CF_Key={}".format(cf_key) ssl_multi_gen(DOMAIN, USR, CUR_LOC, op_1,op_2,dns_op) raise JumpOutFuckingClick2 @click.command(context_settings=dict( allow_extra_args=True )) @click.option('--dns_type', prompt='Service options. \n [1] CloudFlare \n [2] AliYun \n\n\nYour Choice') @click.pass_context def miss_ssl(ctx,dns_type): """ These are available DNS provider servie options. \n [1] CloudFlare <CF_Email,CF_Key> --dns dns_cf \n [2] AliYun <Ali_Key,Ali_Secret> --dns dns_ali \n """ # if not dns_type: if(str(dns_type)=="1"): try: op_cf() except JumpOutFuckingClick2: click.echo("<_@,@_<2") if(str(dns_type)=="2"): try: op_ali() except JumpOutFuckingClick2: click.echo("<_@,@_<2") raise JumpOutFuckingClick @click.command(short_help='test',context_settings=dict( allow_extra_args=True )) @click.option('--count', prompt='count') def test(count): click.echo("2333") raise JumpOutFuckingClick @click.command(short_help='dist') @click.option('--count') @click.pass_context def dist(ctx, count): if not count: try: # test() miss_ssl() except JumpOutFuckingClick: click.echo("<_@,@_<") cli.add_command(dist, 'dist') cli.add_command(test, 'test') cli.add_command(op_ali, 'op_ali') cli.add_command(miss_ssl, 'miss_ssl') if __name__ == '__main__': cli()
StarcoderdataPython
3290047
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from tvm import te import numpy as np import psutil def schedule(attrs): cfg, s = attrs.auto_config, attrs.scheduler def mcpu_auto_schedule(s, output, prefix): hyper_params = [[-1, 2, 8, 4], [-1, 1, 512, 1]] slice_data, slice_reduce = [], [] for i in range(len(output.op.axis)): slice_data.append(cfg.define_split(f"{prefix}:D{i}", attrs.get_extent(output.op.axis[i]), num_outputs=4, init_vals=[hyper_params[i % len(hyper_params)],])) for i in range(len(output.op.reduce_axis)): slice_reduce.append(cfg.define_split(f"{prefix}:R{i}", attrs.get_extent(output.op.reduce_axis[i]), num_outputs=2, init_vals=[[-1, 4],])) unroll = cfg.define_knob(f"{prefix}:UN", [1, 4, 8, 16, 32, 64], init_vals=[1,] if attrs.backend == 'c-mcpu_avx512' else [0,]) output_local, = s.cache_write([output], "local") slice_axes = [] for i in range(len(output.op.axis)): slice_axes.append(cfg.apply_split(s, output_local, output_local.op.axis[i], slice_data[i])) if output.op.reduce_axis: reduce_at = cfg.define_knob(f"{prefix}:RA", [x for x in range(len(output.op.reduce_axis))], init_vals=[0,]) output_local_K_o, output_local_K_i = cfg.apply_split(s, output_local, output_local.op.reduce_axis[reduce_at], slice_reduce[reduce_at]) output_local_K_o, output_local_K_i = [output_local_K_o], [output_local_K_i] else: output_local_K_o, output_local_K_i = [], [] first, second, third, fourth = [x[0] for x in slice_axes], [x[1] for x in slice_axes], [x[2] for x in slice_axes], [x[3] for x in slice_axes] s[output_local].reorder(*(first + second + output_local_K_o + third + output_local_K_i + fourth)) slice_global_axes = [] for i in range(len(output.op.axis)): if cfg.define_knob(f"{prefix}:_{i}", [False, True], init_vals=[0,]): slice_global_axes.append(cfg.apply_split(s, output, output.op.axis[i], [-1, slice_data[i][1], int(np.product(slice_data[i][2:]))])) else: slice_global_axes.append(cfg.apply_split(s, output, output.op.axis[i], [-1, 1, int(np.product(slice_data[i][1:]))])) s[output].reorder(*([x[0] for x in slice_global_axes] + [x[1] for x in slice_global_axes] + [x[2] for x in slice_global_axes])) s[output_local].compute_at(s[output], slice_global_axes[-1][1]) s[output].bind(s[output].fuse(*[x[0] for x in slice_global_axes]), te.thread_axis('threadIdx.x')) s[output_local].pragma(first[0], "auto_unroll_max_step", unroll) s[output_local].pragma(first[0], "unroll_explicit", True) # s[output_local].vectorize(fourth[-1]) s[output_local].unroll(fourth[-1]) def mcpu_simple_schedule(s, output, prefix): slice_data = [cfg.define_split(f"{prefix}:D{i}", attrs.get_extent(output.op.axis[i]), num_outputs=3, init_vals=[[-1, 1, 1],]) for i in range(len(output.op.axis))] slice_axes = [cfg.apply_split(s, output, output.op.axis[i], [-1, 1] + slice_data[i][1:]) for i in range(len(output.op.axis))] first, second, third, fourth = [x[0] for x in slice_axes], [x[1] for x in slice_axes], [x[2] for x in slice_axes], [x[3] for x in slice_axes] s[output].reorder(*(first + second + third + fourth)) s[output].bind(s[output].fuse(*first), te.thread_axis('threadIdx.x')) s[output].bind(s[output].fuse(*second), te.thread_axis('vthread')) for i, m in enumerate(attrs.explicit_ops): if len(m.output(0).op.reduce_axis) == 0: return mcpu_simple_schedule(s, m.output(0), f'T{m.output(0).name}') mcpu_auto_schedule(s, m.output(0), f'T{m.output(0).name}')
StarcoderdataPython
1799457
import os from game.prepare import stat_library from models import FilesConfig, LabelsConfig, Game def main(): stat_library('/opt/game/game') input_folder = '/opt/game/games/slack_22_02_2019/' output_folder = '/opt/game/game/output/out-test-10/' files = FilesConfig( os.path.join(input_folder, 'lines.dat'), # todo was 'inputs' os.path.join(input_folder, 'errors.dat'), os.path.join(input_folder, 'labels.dat'), output_folder, additional_files=True ) labels = LabelsConfig( ["g0", "n", "NH", "U", "Z", "Av", "fesc"], ) driver = Game(files, 4, 5, labels) driver.run() if __name__ == "__main__": main()
StarcoderdataPython
185007
<gh_stars>1-10 #!/usr/bin/env python # -*- coding: utf-8 -*- """ File: main.py Author: huxuan Email: i(at)huxuan.org Description: Filter IPTV m3u playlists according to customized criteria. """ import argparse from . import __version__ from .config import Config from .constants import defaults from .constants import helps from .models import Playlist def parse_args(): """Arguments Parsers.""" parser = argparse.ArgumentParser() parser.add_argument('--min-height', default=defaults.MIN_HEIGHT, type=int, help=helps.MIN_HEIGHT) parser.add_argument('-c', '--config', default=defaults.CONFIG, help=helps.CONFIG) parser.add_argument('-i', '--input', action='append', default=[], help=helps.INPUT) parser.add_argument('-I', '--interval', default=defaults.INTERVAL, type=int, help=helps.INTERVAL) parser.add_argument('-o', '--output', default=defaults.OUTPUT, help=helps.OUTPUT) parser.add_argument('-r', '--replace-group-by-source', action='store_true', help=helps.REPLACE_GROUP_BY_SOURCE) parser.add_argument('-t', '--template', action='append', default=[], help=helps.TEMPLATE) parser.add_argument('-T', '--timeout', default=defaults.TIMEOUT, type=int, help=helps.TIMEOUT) parser.add_argument('-u', '--udpxy', default=defaults.UDPXY, help=helps.UDPXY) parser.add_argument('-v', '--version', action='version', version=__version__) return parser.parse_args() def main(): """Main process.""" args = parse_args() if not args.input: args.input = [defaults.INPUT] Config.init(args.config) playlist = Playlist() playlist.parse(args) playlist.filter(args) open(args.output, 'w', encoding='utf-8').write(playlist.export(args)) print('Invalid Urls:') print('\n'.join(sorted(playlist.invalid_urls))) if __name__ == '__main__': main()
StarcoderdataPython
1614415
<reponame>alessandrostockman/dl-flatlands<gh_stars>1-10 from abc import abstractclassmethod, abstractmethod import random from collections import deque import numpy as np from fltlnd.utils import SumTree class Buffer: def __init__(self, buffer_size, batch_size): self.buffer_size = buffer_size self.batch_size = batch_size @abstractmethod def add(self, state, action, reward, next_state, done): pass @abstractmethod def sample(self): pass @abstractmethod def update(self, idx, error): pass @abstractmethod def add_agent_episode(self, agent, action, value, obs, reward, done, policy_logits): pass @abstractmethod def retrieve_agent_episodes(self, agent): pass @abstractmethod def reset(self): pass @abstractmethod def reset(self): pass @abstractmethod def __len__(self): pass class ReplayBuffer(Buffer): """Fixed-size buffer to store experience tuples.""" def __init__(self, buffer_size, batch_size): super().__init__(buffer_size, batch_size) self._batch_size = buffer_size self.memory = deque(maxlen=self._batch_size) self.has_probability = False def add(self, state, action, reward, next_state, done, probability=None): """Add a new experience to memory.""" self.memory.append([state, action, reward, next_state, done, probability]) if probability is not None: self.has_probability = True def get_last(self): return self.memory.__getitem__(self.memory.__len__()-1) def sample(self): """Randomly sample a batch of experiences from memory.""" # sample memory for a minibatch batch = random.sample(self.memory, self.batch_size) # separate minibatch into elements state, action, reward, next_state, done, probability = [np.squeeze(i) for i in zip(*batch)] if self.has_probability: return state, action, reward, next_state, done, probability else: return state, action, reward, next_state, done def update(self, error): pass def add_agent_episode(self, agent, action, value, obs, reward, done, policy_logits): raise NotImplementedError() def retrieve_agent_episodes(self, agent): raise NotImplementedError() def reset(self): raise NotImplementedError() def __len__(self): """Return the current size of internal memory.""" return len(self.memory) class PrioritizedBuffer(Buffer): def __init__(self, buffer_size, batch_size): super().__init__(buffer_size, batch_size) self._internal_len = 0 self.eta = 0.01 self.alpha = 0.6 self.beta = 0.4 self.beta_growth = 0.001 self._batch_size = batch_size self.tree = SumTree(batch_size) def _get_priority(self, error): return (error + self.eta) ** self.alpha def add(self, state, action, reward, next_state, done): """Add a new experience to memory.""" sample = [state, action, reward, next_state, done] # Find the max priority max_priority = np.max(self.tree.tree[-self.tree.capacity:]) # If the max priority = 0 we can't put priority = 0 since this experience will never have a chance to be selected # So we use a minimum priority if max_priority == 0: max_priority = 1 self._internal_len += 1 self.tree.add(max_priority, sample) def sample(self): batch = [] idxs = [] segment = self.tree.total() / self.batch_size priorities = [] self.beta = np.min([1., self.beta + self.beta_growth]) for i in range(self.batch_size): a = segment * i b = segment * (i + 1) s = random.uniform(a, b) (idx, p, data) = self.tree.get(s) priorities.append(p) batch.append(data) idxs.append(idx) sampling_probabilities = priorities / self.tree.total() is_weight = np.power(self.tree.n_entries * sampling_probabilities, -self.beta) is_weight /= is_weight.max() self.sample_ids = idxs state, action, reward, next_state, done = [np.squeeze(i) for i in zip(*batch)] return state, action, reward, next_state, done def update(self, error): p = self._get_priority(error) for idx in self.sample_ids: self.tree.update(idx, p) def add_agent_episode(self, agent, action, value, obs, reward, done, policy_logits): raise NotImplementedError() def retrieve_agent_episodes(self, agent): raise NotImplementedError() def reset(self): raise NotImplementedError() def __len__(self): return self._internal_len class AgentEpisodeBuffer(Buffer): def __init__(self, buffer_size, batch_size): self._memory = {} def add(self, state, action, reward, next_state, done): raise NotImplementedError() def sample(self): raise NotImplementedError() def update(self, idx, error): raise NotImplementedError() def add_agent_episode(self, agent, action, value, obs, reward, done, policy_logits): agent_mem = self._memory.get(agent, []) agent_mem.append([action, value, obs, reward, done, policy_logits]) self._memory[agent] = agent_mem def retrieve_agent_episodes(self, agent): action, value, obs, reward, done, policy_logits = [np.squeeze(i) for i in zip(*self._memory[agent])] return action, value, obs, reward, done, policy_logits def reset(self): self._memory = {} def __len__(self): pass
StarcoderdataPython
3388550
<gh_stars>0 """ .. module: horseradish.models :platform: Unix :synopsis: This module contains all of the associative tables that help define the many to many relationships established in Horseradish :copyright: (c) 2020 by <NAME>, see AUTHORS for more :license: Apache, see LICENSE for more details. .. moduleauthor:: <NAME> <<EMAIL>> """ from sqlalchemy import Column, Integer, ForeignKey, Index, UniqueConstraint from horseradish.database import db roles_users = db.Table( "roles_users", Column("user_id", Integer, ForeignKey("users.id")), Column("role_id", Integer, ForeignKey("roles.id")), ) Index("roles_users_ix", roles_users.c.user_id, roles_users.c.role_id)
StarcoderdataPython
3233661
<filename>modules/couchpotato.py<gh_stars>1-10 #!/usr/bin/env python # -*- coding: utf-8 -*- import cherrypy import htpc import requests from htpc.auth2 import require, member_of import logging import hashlib from htpc.helpers import fix_basepath, get_image, striphttp, comp_table import json import os import re class Couchpotato(object): def __init__(self): self.logger = logging.getLogger('modules.couchpotato') htpc.MODULES.append({ 'name': 'CouchPotato', 'id': 'couchpotato', 'test': htpc.WEBDIR + 'couchpotato/getapikey', 'fields': [ {'type': 'bool', 'label': 'Enable', 'name': 'couchpotato_enable'}, {'type': 'text', 'label': 'Menu name', 'name': 'couchpotato_name'}, {'type': 'text', 'label': 'Username', 'name': 'couchpotato_username'}, {'type': 'password', 'label': 'Password', 'name': 'couchpotato_password'}, {'type': 'text', 'label': 'IP / Host *', 'name': 'couchpotato_host'}, {'type': 'text', 'label': 'Port', 'placeholder': '5050', 'name': 'couchpotato_port'}, {'type': 'text', 'label': 'Basepath', 'placeholder': '/couchpotato', 'name': 'couchpotato_basepath'}, {'type': 'text', 'label': 'API key', 'desc': 'Press test get apikey', 'name': 'couchpotato_apikey'}, {'type': 'bool', 'label': 'Use SSL', 'name': 'couchpotato_ssl'}, {'type': 'text', 'label': 'Reverse proxy link', 'placeholder': '', 'desc': 'Reverse proxy link ex: https://couchpotato.domain.com', 'name': 'couchpotato_reverse_proxy_link'}, ] }) @cherrypy.expose() @require() def index(self): return htpc.LOOKUP.get_template('couchpotato.html').render(scriptname='couchpotato', webinterface=self.webinterface()) def webinterface(self): ''' Generate page from template ''' ssl = 's' if htpc.settings.get('couchpotato_ssl', 0) else '' host = striphttp(htpc.settings.get('couchpotato_host', '')) port = str(htpc.settings.get('couchpotato_port', '')) basepath = fix_basepath(htpc.settings.get('couchpotato_basepath', '/')) url = 'http%s://%s:%s%s' % (ssl, host, port, basepath) if htpc.settings.get('couchpotato_reverse_proxy_link'): url = htpc.settings.get('couchpotato_reverse_proxy_link') return url def ctrl_c(self, filt): ctrl_char = '' if '!=' in filt: ctrl_char = '!=' elif '==' in filt: ctrl_char = '==' elif '<=' in filt: ctrl_char = '<=' elif '>=' in filt: ctrl_char = '>=' elif '<=' in filt: ctrl_char = '==' elif '!' in filt: ctrl_char = '!' elif '<' in filt: ctrl_char = '<' elif '>' in filt: ctrl_char = '>' elif '=' in filt: ctrl_char = '=' return ctrl_char def cp_filter(self, filt, collection): self.logger.debug('Called cp_filter %s' % filt) before = len(collection.get('movies', 0)) results = [] if collection.get('movies', ''): check = self.ctrl_c(filt) if filt: # default to fuzzy title search "16 blocks" if check == '': pat = '.*?'.join(map(re.escape, filt)) regex = re.compile(pat, flags=re.I) for m in collection['movies']: f = regex.search(m['title']) if f: results.append(m) else: # default to normal search if check: filt = filt.split(check) for m in collection['movies']: # flatten the info since we would normally be interessed in that if 'info' in m: for k, v in m['info'].items(): m[k] = v try: imdb = m['info']['rating']['imdb'] m['rating'] = imdb[0] except: pass for k, v in m.items(): if k.lower() == filt[0].lower(): if isinstance(v, dict): # actor roles='<NAME>' for kk, vv in v.items(): if v == kk: results.append(m) elif isinstance(v, list): # genres=action if filt[1].lower() in [z.lower() for z in v]: results.append(m) elif isinstance(v, (int, float)): # for year!=1337 rating<=5.0 if check and check != '=': if comp_table[check](float(v), float(filt[1])): results.append(m) elif isinstance(v, str): # plot='some string' if filt[1].lower() in v.lower(): results.append(m) self.logger.debug('Filter out %s' % (before - len(results))) return results @cherrypy.expose() @require(member_of(htpc.role_admin)) @cherrypy.tools.json_out() def ping(self, couchpotato_host, couchpotato_port, couchpotato_apikey, couchpotato_basepath, couchpotato_ssl=False, **kwargs): self.logger.debug('Testing connectivity to couchpotato') couchpotato_basepath = fix_basepath(couchpotato_basepath) couchpotato_host = striphttp(couchpotato_host) ssl = 's' if couchpotato_ssl else '' url = 'http%s://%s:%s%sapi/%s' % (ssl, couchpotato_host, couchpotato_port, couchpotato_apikey) try: f = requests.get(url + '/app.available/', timeout=10) return f.json() except: self.logger.error('Unable to connect to couchpotato') self.logger.debug('connection-URL: %s' % url) return @cherrypy.expose() @require(member_of(htpc.role_admin)) @cherrypy.tools.json_out() def getapikey(self, couchpotato_username, couchpotato_password, couchpotato_host, couchpotato_port, couchpotato_apikey, couchpotato_basepath, couchpotato_ssl=False, **kwargs): self.logger.debug('Testing connectivity to couchpotato') if couchpotato_password and couchpotato_username != '': couchpotato_password = hashlib.md5(<PASSWORD>potato_password).hexdigest() couchpotato_username = hashlib.md5(couchpotato_username).hexdigest() getkey = 'getkey/?p=%s&u=%s' % (couchpotato_password, couchpotato_username) couchpotato_basepath = fix_basepath(couchpotato_basepath) ssl = 's' if couchpotato_ssl else '' url = 'http%s://%s:%s%s%s' % (ssl, striphttp(couchpotato_host), couchpotato_port, couchpotato_basepath, getkey) try: f = requests.get(url, timeout=10, verify=False) return f.json() except Exception as e: self.logger.error('Unable to connect to couchpotato %s' % e) self.logger.debug('connection-URL: %s' % url) return @cherrypy.expose() @require() def GetImage(self, url, h=None, w=None, o=100, *args, **kwargs): # url can be a string or json working_url = None imgdir = os.path.join(htpc.DATADIR, 'images/') try: x = json.loads(url) if isinstance(x, list): tl = [(hashlib.md5(u).hexdigest(), u) for u in x] checkurl = [] # check any of the images exist in the cache for i in tl: if os.path.isfile(os.path.join(imgdir, i[0])): #self.logger.debug('%s exist in cache, ignore the rest of the hashes %s' % (str(i[1]), str(tl))) # dont bother checking any else if we have image checkurl = [] working_url = i[1] break else: checkurl.append(i) continue if working_url: return get_image(working_url, h, w, o) else: # None of the imges existed in the cache if checkurl: for ii, i in enumerate(checkurl): # verify that the download is ok before we try to cache it. try: r = requests.get(i[1], headers={'Cache-Control': 'private, max-age=0, no-cache, must-revalidate', 'Pragma': 'no-cache'}) if r.content: working_url = i[1] break except Exception as e: self.logger.error('Error: %s url: %s item: %s loop n : %s tuplelist %s' % (e, i[1], i, ii, str(tl))) if working_url: return get_image(working_url, h, w, o) except ValueError as e: if isinstance(url, str): return get_image(url, h, w, o) @cherrypy.expose() @require() @cherrypy.tools.json_out() def GetMovieList(self, status='', limit='', f=''): self.logger.debug('Fetching Movies') if status == 'done': status += '&type=movie&release_status=done&status_or=1' data = self.fetch('media.list/?status=' + status) if f: filtered_movies = self.cp_filter(f, data) data['movies'] = filtered_movies data['total'] = len(filtered_movies) return data else: return data data = self.fetch('media.list/?status=' + status + '&limit_offset=' + limit) if f: filtered_movies = self.cp_filter(f, data) data['movies'] = filtered_movies data['total'] = len(filtered_movies) return data else: return data @cherrypy.expose() @require() @cherrypy.tools.json_out() def GetNotificationList(self, limit='20'): self.logger.debug('Fetching Notification') data = self.fetch('notification.list/?limit_offset=' + limit) self.fetch('notification.markread') return data @cherrypy.expose() @require() @cherrypy.tools.json_out() def SearchMovie(self, q=''): self.logger.debug('Searching for movie') return self.fetch('movie.search/?q=' + q) @cherrypy.expose() @require() @cherrypy.tools.json_out() def AddMovie(self, movieid, profile, title, category_id=''): self.logger.debug('Adding movie') if category_id: return self.fetch('movie.add/?profile_id=' + profile + '&identifier=' + movieid + '&title=' + title + '&category_id=' + category_id) return self.fetch('movie.add/?profile_id=' + profile + '&identifier=' + movieid + '&title=' + title) @cherrypy.expose() @require(member_of(htpc.role_user)) @cherrypy.tools.json_out() def EditMovie(self, id, profile, title): self.logger.debug('Editing movie') return self.fetch('movie.edit/?id=' + id + '&profile_id=' + profile + '&default_title=' + title) @cherrypy.expose() @require(member_of(htpc.role_user)) @cherrypy.tools.json_out() def RefreshMovie(self, id): self.logger.debug('Refreshing movie') return self.fetch('movie.refresh/?id=' + id) @cherrypy.expose() @require(member_of(htpc.role_user)) @cherrypy.tools.json_out() def DeleteMovie(self, id=''): self.logger.debug('Deleting movie') return self.fetch('movie.delete/?id=' + id) @cherrypy.expose() @require() @cherrypy.tools.json_out() def GetReleases(self, id=''): self.logger.debug('Downloading movie') return self.fetch('media.get/?id=' + id) @cherrypy.expose() @require() @cherrypy.tools.json_out() def DownloadRelease(self, id=''): self.logger.debug('Downloading movie') return self.fetch('release.manual_download/?id=' + id) @cherrypy.expose() @require(member_of(htpc.role_user)) @cherrypy.tools.json_out() def IgnoreRelease(self, id=''): self.logger.debug('Downloading movie') return self.fetch('release.ignore/?id=' + id) @cherrypy.expose() @require() @cherrypy.tools.json_out() def GetProfiles(self): self.logger.debug('Fetching available profiles') return self.fetch('profile.list/') @cherrypy.expose() @require() @cherrypy.tools.json_out() def GetCategories(self): self.logger.debug('Feching categories') return self.fetch('category.list') @cherrypy.expose() @require() @cherrypy.tools.json_out() def Suggestion(self): self.logger.debug('Fetching suggestion') return self.fetch('suggestion.view') @cherrypy.expose() @require() @cherrypy.tools.json_out() def ChartsView(self): self.logger.debug('Fetching charts') return self.fetch('charts.view') @cherrypy.expose() @require(member_of(htpc.role_user)) @cherrypy.tools.json_out() def SuggestionIgnore(self, imdb=None, seenit=None): u = 'suggestion.ignore/?imdb=%s' % imdb if seenit: u += '&seenit=1' self.logger.debug('Fetching suggestion') return self.fetch(u) @cherrypy.expose() @require() @cherrypy.tools.json_out() def DashboardSoon(self): return self.fetch('dashboard.soon') @cherrypy.expose() @require(member_of(htpc.role_user)) @cherrypy.tools.json_out() def Restart(self): return self.fetch('app.restart') @cherrypy.expose() @require(member_of(htpc.role_user)) @cherrypy.tools.json_out() def Shutdown(self): return self.fetch('app.shutdown') @cherrypy.expose() @require(member_of(htpc.role_user)) @cherrypy.tools.json_out() def Update(self): return self.fetch('updater.update') @cherrypy.expose() @require(member_of(htpc.role_user)) @cherrypy.tools.json_out() def SearchAllWanted(self): return self.fetch('movie.searcher.full_search') @cherrypy.expose() @require(member_of(htpc.role_user)) @cherrypy.tools.json_out() def Postprocess(self, path=''): u = 'renamer.scan' if path: u += '/?base_folder=%s' % path return self.fetch(u) def fetch(self, path): try: host = striphttp(htpc.settings.get('couchpotato_host', '')) port = str(htpc.settings.get('couchpotato_port', '')) apikey = htpc.settings.get('couchpotato_apikey', '') basepath = fix_basepath(htpc.settings.get('couchpotato_basepath', '/')) ssl = 's' if htpc.settings.get('couchpotato_ssl', 0) else '' url = 'http%s://%s:%s%sapi/%s/%s' % (ssl, host, port, basepath, apikey, path) self.logger.debug('Fetching information from: %s' % url) f = requests.get(url, timeout=60, verify=False) return f.json() except Exception as e: self.logger.debug('Exception: %s' % e) self.logger.error('Unable to fetch information') return
StarcoderdataPython
1697034
<reponame>weezel/BandEventNotifier<filename>venues/plugin_lutakko.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- import lxml.html import re import time from venues.abstract_venue import AbstractVenue class Lutakko(AbstractVenue): def __init__(self): super().__init__() self.url = "http://www.jelmu.net/" self.name = "Lutakko" self.city = "Jyväskylä" self.country = "Finland" # Parsing patterns self.datepat = re.compile("[0-9.]+") def parse_price(self, t): tag = " ".join(t.xpath('./div[@role="tickets"]/div/a/strong/text()')) return "0" if len(tag) == 0 else "%s" % tag def parse_date(self, t): month_now = time.strftime("%m") year = int(time.strftime("%Y")) date = "" tag = " ".join(t.xpath('./div[@class="badges"]' + '/div[@class="date"]' + '/span/text()')) splt = tag.split(" - ") slen = len(splt) if slen == 1: date = " ".join(re.findall(self.datepat, tag)) # We only care about the starting date elif slen > 1: date = " ".join(re.findall(self.datepat, tag)[0]) date = date.rstrip(".") # FIXME day, month = date.split(".") # Are we on the new year already? if int(month) < int(month_now): year += 1 return "%.4d-%.2d-%.2d" % (int(year), int(month), int(day)) def parse_event(self, tag): date = self.parse_date(tag) title = tag.xpath('./a')[0].text_content() desc = tag.xpath('./p')[0].text_content() price = self.parse_price(tag) name = f"{title} {desc}" name = re.sub("\s+", " ", name).lstrip(" ").rstrip(" ") return { "venue": self.get_venue_name(), "date": date, "name": name, "price": price } def parse_events(self, data: str): doc = lxml.html.fromstring(data) for event in doc.xpath('//ul[@role="upcoming-events"]/li'): yield self.parse_event(event) if __name__ == '__main__': import requests l = Lutakko() r = requests.get(l.url) for e in l.parse_events(r.content): for k, v in e.items(): print(f"{k:>10s}: {v}") print()
StarcoderdataPython
1780241
import logging import os import re from pathlib import Path class Problem: editor = "code" def __init__(self, pid: str): self._pid = pid self._logger = logging.getLogger(f"题目 {pid}") self._path = Path(f"problems/{re.match(r'[A-Z]+', pid).group()}/{pid}") self._path_md = self._path / f"{self._pid}.md" self._path_gen_cpp = self._path / "gen.cpp" self._path_gen_py = self._path / "gen.py" self._path_std = self._path / "std.cpp" def open(self): os.system(f"{self.editor} {self._path_md}") return self
StarcoderdataPython
188252
<filename>examples/nw/tests/test_upd_employee_salary.py import sys, unittest import logic_bank_utils.util as logic_bank_utils from datetime import datetime from decimal import Decimal (did_fix_path, sys_env_info) = \ logic_bank_utils.add_python_path(project_dir="LogicBank", my_file=__file__) if __name__ == '__main__': print("\nStarted from cmd line - launch unittest and exit\n") sys.argv = [sys.argv[0]] unittest.main(module="examples.nw.tests.test_update_employee_salary") exit(0) else: print("Started from unittest: " + __name__) from examples.nw import tests tests.copy_gold_over_db() import examples.nw.db.models as models from examples.nw.logic import session, engine # opens db, activates rules <-- # activate rules: LogicBank.activate(session=session, activator=declare_logic) from logic_bank.util import prt print("\n" + sys_env_info + "\n\n") class Test(unittest.TestCase): def setUp(self): # banner self.started_at = str(datetime.now()) tests.setUp(file=__file__) def tearDown(self): tests.tearDown(file=__file__, started_at=self.started_at, engine=engine, session=session) def test_run(self): """ Test State Transition Logic - raise over 20% should fail due to credit limit exceeded (catch exception to verify) """ bad_employee_raise = session.query(models.Employee).filter(models.Employee.Id == 1).one() bad_employee_raise.Salary = bad_employee_raise.Salary * Decimal('1.1') did_fail_as_expected = False try: session.commit() except: session.rollback() did_fail_as_expected = True if not did_fail_as_expected: self.fail("too-small should have failed constraint, but succeeded") else: print("\n" + prt("puny raise failed constraint as expected.")) print("\nupd_employee_salary, ran to completion") self.assertTrue(True)
StarcoderdataPython
1662845
""" Install odet first: https://github.com/kun0906/odet """ import os import pickle import pandas as pd from odet.pparser.parser import _pcap2flows, _get_IAT_SIZE, _get_STATS from odet.utils.tool import dump_data, check_path import numpy as np """ Analyze IOT datasets (data-clean.zip: 20GB, 20210714) collected on 2021. """ import collections import os import subprocess from odet.pparser.parser import PCAP import numpy as np RANDOM_STATE = 42 def check_path(in_dir): if not os.path.exists(in_dir): os.makedirs(in_dir) def dump_data(data, out_file=''): """Save data to file Parameters ---------- data: any data out_file: str out file path verbose: int (default is 1) a print level is to control what information should be printed according to the given value. The higher the value is, the more info is printed. Returns ------- """ # save results with open(out_file, 'wb') as out_hdl: pickle.dump(data, out_hdl) class IOT2021(PCAP): def get_flows(self, in_file='xxx.pcap'): # flows: [(fid, arrival times list, packet sizes list)] self.flows = _pcap2flows(in_file, flow_pkts_thres=2) def keep_ip(self, pcap_file, kept_ips=[], output_file=''): if output_file == '': output_file = os.path.splitext(pcap_file)[0] + 'kept_ips.pcap' # Split a path in root and extension. # only keep srcIPs' traffic # srcIP_str = " or ".join([f'ip.src=={srcIP}' for srcIP in kept_ips]) # filter by mac srcIP address srcIP_str = " or ".join([f'eth.src=={srcIP}' for srcIP in kept_ips]) cmd = f"tshark -r {pcap_file} -w {output_file} {srcIP_str}" print(f'{cmd}') try: result = subprocess.run(cmd, stdout=subprocess.PIPE, shell=True).stdout.decode('utf-8') except Exception as e: print(f'{e}, {result}') return -1 return output_file def get_pcaps(in_dir, file_type='normal'): files = collections.defaultdict(list) for activity_name in sorted(os.listdir(in_dir)): if activity_name.startswith('.'): continue activity_dir = os.path.join(in_dir, activity_name) for partcipant_id in sorted(os.listdir(activity_dir)): if partcipant_id.startswith('.'): continue partcipant_dir = os.path.join(activity_dir, partcipant_id) for f in sorted(os.listdir(partcipant_dir)): if f.startswith('.'): continue if f.endswith('pcap'): f = os.path.join(partcipant_dir, f) files[activity_name].append(f) # files.append(f) else: pass return files def get_mac_ip(flows): ips = [] macs = [] # [(fid, arrival times list, packet sizes list)] for i, (fid, pkt_times, pkts) in enumerate(flows): macs.append(pkts[0].src) ips.append(fid[0]) print(set(ips)) return macs, ips def get_durations(flows): durations = [] # [(fid, arrival times list, packet sizes list)] for i, (fid, pkt_times, pkts) in enumerate(flows): start = min(pkt_times) end = max(pkt_times) durations.append(end - start) return durations # IP has changed (dynamic IPs) in different collection process, so please use mac to filter packets. ip2device = {'192.168.143.152': 'refrigerator', } device2ip = {'refrigerator': '192.168.143.43', 'nestcam': '192.168.143.104', 'alexa': '192.168.143.74'} device2mac = {'refrigerator': '70:2c:1f:39:25:6e', 'nestcam': '18:b4:30:8a:9f:b2', 'alexa': '4c:ef:c0:0b:91:b3'} # # def main(device='refrigerator'): # in_dir = f'../Datasets/UCHI/IOT_2021/data-clean/{device}' # out_dir = f'examples/datasets/IOT2021/data-clean/{device}' # device_meta_file = os.path.join(out_dir, f'{device}.dat') # device_meta = {} # if not os.path.exists(device_meta_file): # device_files = get_pcaps(in_dir, file_type='normal') # for i, (activity_name, files) in enumerate(device_files.items()): # activity_flows = [] # for j, f in enumerate(files): # print(j, f) # # create the PCAP object # pp = IOT2021() # # # filter unnecesarry IP addresses # filtered_f = os.path.join(out_dir, # os.path.splitext(os.path.relpath(f, start=in_dir))[0] + '-filtered.pcap') # check_path(filtered_f) # # pp.keep_ip(f, kept_ips=[device2ip[device]], output_file=filtered_f) # pp.keep_ip(f, kept_ips=[device2mac[device]], output_file=filtered_f) # # # parse pcap and get the flows (only forward flows (sent from src IP)) # pp.get_flows(filtered_f) # # # concatenated the flows to the total flows # device_files[activity_name][j] = (filtered_f, pp.flows) # activity_flows += pp.flows # # break # # # activity_flows = sum(len(flows_) for flows_ in ]) # print(f'activity_flows: {len(activity_flows)}') # device_meta[activity_name] = (activity_flows, device_files[activity_name]) # check_path(device_meta_file) # print(device_meta_file) # dump_data(device_meta, output_file=device_meta_file) # else: # device_meta = load_data(device_meta_file) # # ips = set() # macs = set() # for i, (activity_name, vs_) in enumerate(device_meta.items()): # activity_flows, file_flows = vs_ # print(i, activity_name, len(activity_flows)) # macs_, ips_ = get_mac_ip(activity_flows) # # print strange IP and pcap_file # for v_, (f_, _) in zip(ips_, file_flows): # if v_ == '0.0.0.0': # print(activity_name, v_, f_) # macs.update(macs_) # ips.update(ips_) # # print(f'MAC: {macs}, IP: {ips}') # # get normal_durations # normal_flows = device_meta['no_interaction'][0] # normal_durations = get_durations(normal_flows) # # # get subflow_interval # q_flow_dur = 0.9 # subflow_interval = np.quantile(normal_durations, q=q_flow_dur) # median of flow_durations # print(f'---subflow_interval: ', subflow_interval, f', q_flow_dur: {q_flow_dur}') # # subflow_device_meta = {'q_flow_dur': q_flow_dur, 'subflow_interval': subflow_interval, # 'normal_durations': normal_durations} # for i, (activity_name, vs_) in enumerate(device_meta.items()): # activity_flows, file_flows = vs_ # subflows = [] # for file_, flows_ in file_flows: # subflows_ = flow2subflows(flows_, interval=subflow_interval, num_pkt_thresh=2, verbose=False) # subflows += subflows_ # print(i, activity_name, len(activity_flows), len(subflows)) # subflow_device_meta[activity_name] = subflows[:] # # print('\n') # # print subflow results # for i, (key, vs_) in enumerate(sorted(subflow_device_meta.items())): # if type(vs_) == list: # print(i, key, len(vs_)) # else: # print(i, key, vs_) def _extract_pcap_feature(pcap_file, out_dir, feat_type='IAT+SIZE', device='refrigerator'): # # filter ip by macaddress # filtered_pcap_file = os.path.join(out_dir, os.path.basename(pcap_file)) # keep_ip(pcap_file, kept_ips= [device2mac[device]], output_file= filtered_pcap_file) # create the PCAP object pp = IOT2021() # filter unnecesarry IP addresses filtered_f = os.path.join(out_dir, os.path.basename(pcap_file)) check_path(os.path.dirname(filtered_f)) # pp.keep_ip(f, kept_ips=[device2ip[device]], output_file=filtered_f) pp.keep_ip(pcap_file, kept_ips=[device2mac[device]], output_file=filtered_f) # parse pcap and get the flows (only forward flows (sent from src IP)) pp.get_flows(filtered_f) pp.flows = [(fid, pkts) for fid, pkts in pp.flows if '0.0.0.0' not in fid[0] and '0.0.0.0' not in fid[1]] check_path(out_dir) out_file = os.path.join(out_dir, os.path.basename(pcap_file) + f'-flows.dat') dump_data(pp.flows, out_file) # get features if feat_type == 'IAT+SIZE': features, fids = _get_IAT_SIZE(pp.flows) elif feat_type == 'STATS': features, fids = _get_STATS(pp.flows) else: msg = f'{feat_type}' raise NotImplementedError(msg) feature_file = os.path.join(out_dir, os.path.basename(pcap_file) + f'-{feat_type}.dat') dump_data((features, fids), feature_file) return out_file, feature_file, 0 def pcap2feature(in_dir, out_dir, is_subclip=True, is_mirror=False, is_cnn_feature=False, feat_type='IAT+SIZE', device_type='refrigerator'): """ preprocessing the videos: e.g., trim and mirror videos, extract features by CNN Parameters ---------- in_dir: ['data/data-clean/refrigerator] out_dir: is_subclip: cut video is_mirror is_cnn_feature Returns ------- meta: dictionary """ # video_logs = parse_logs(in_dir='data/data-clean/log') # issued_videos = pd.read_csv(os.path.join('data/data-clean/refrigerator', 'issued_videos.csv'), header=None).values[ # :, -1].tolist() issued_videos = [] data = [] # [(video_path, cnn_feature, y)] durations = {'camera1': [], 'camera2': [], 'camera3': []} # list device folders (e.g., refrigerator or camera) i = 0 cnt_3 = 0 # camera_3 cnt_32 = 0 # camera_32: backup for device_dir in sorted(in_dir): out_dir_sub = '' if device_type not in device_dir: continue # list activity folders (e.g., open_close or take_out ) for activity_dir in sorted(os.listdir(device_dir)): activity_label = activity_dir out_dir_activity = activity_dir activity_dir = os.path.join(device_dir, activity_dir) if not os.path.exists(activity_dir) or '.DS_Store' in activity_dir or not os.path.isdir( activity_dir): continue # list participant folders (e.g., participant 1 or participant 2) for participant_dir in sorted(os.listdir(activity_dir)): out_dir_participant = participant_dir out_dir_sub = os.path.join(participant_dir) participant_dir = os.path.join(activity_dir, participant_dir) if not os.path.exists(participant_dir) or '.DS_Store' in participant_dir: continue # print(participant_dir) # list videos (e.g., 'no_interaction_1_1614038765_1.mp4') for f in sorted(os.listdir(participant_dir)): print(f) if f.startswith('.'): continue if not f.endswith('.pcap'): continue issued_flg = False for _issued_f in issued_videos: if f in _issued_f + '.npy': issued_flg = True break if issued_flg: continue # issued videos, skip x = os.path.join(participant_dir, f) try: # vd_info = get_info(x) out_dir_tmp = os.path.join(out_dir, out_dir_activity, out_dir_participant) x_flows, x_feat, kept_durations = _extract_pcap_feature(x, out_dir=out_dir_tmp, feat_type=feat_type) data.append((x, x_feat, activity_label)) except Exception as e: msg = f'error: {e} on {x}' raise ValueError(msg) i += 1 print(f'tot pcaps: {i}') meta = {'data': data, 'is_mirror': is_mirror, 'is_cnn_feature': is_cnn_feature} return meta if __name__ == '__main__': pcap2feature(in_dir=['data/data-clean/refrigerator'], out_dir='out/data/data-clean/refrigerator', feat_type='IAT+SIZE', device_type='refrigerator')
StarcoderdataPython
44735
<reponame>digital-land/pipeline<filename>tests/unit/test_uri.py<gh_stars>1-10 from digital_land.log import IssueLog from digital_land.datatype.uri import URIDataType def test_uri_normalise(): uri = URIDataType() assert uri.normalise("https://example.com/foo") == "https://example.com/foo" assert ( uri.normalise("https://example.com/foo\nbar\n/baz") == "https://example.com/foobar/baz" ) issues = IssueLog() assert uri.normalise("example.com", issues=issues) == "" issue = issues.rows.pop() assert issue["issue-type"] == "invalid URI" assert issue["value"] == "example.com" assert issues.rows == []
StarcoderdataPython
3214401
from .fhirbase import fhirbase class Task(fhirbase): """ A task to be performed. Attributes: resourceType: This is a Task resource identifier: The business identifier for this task. definitionUri: A reference to a formal or informal definition of the task. For example, a protocol, a step within a defined workflow definition, etc. definitionReference: A reference to a formal or informal definition of the task. For example, a protocol, a step within a defined workflow definition, etc. basedOn: BasedOn refers to a higher-level authorization that triggered the creation of the task. It references a "request" resource such as a ProcedureRequest, MedicationRequest, ProcedureRequest, CarePlan, etc. which is distinct from the "request" resource the task is seeking to fulfil. This latter resource is referenced by FocusOn. For example, based on a ProcedureRequest (= BasedOn), a task is created to fulfil a procedureRequest ( = FocusOn ) to collect a specimen from a patient. groupIdentifier: An identifier that links together multiple tasks and other requests that were created in the same context. partOf: Task that this particular task is part of. status: The current status of the task. statusReason: An explanation as to why this task is held, failed, was refused, etc. businessStatus: Contains business-specific nuances of the business state. intent: Indicates the "level" of actionability associated with the Task. I.e. Is this a proposed task, a planned task, an actionable task, etc. priority: Indicates how quickly the Task should be addressed with respect to other requests. code: A name or code (or both) briefly describing what the task involves. description: A free-text description of what is to be performed. focus: The request being actioned or the resource being manipulated by this task. for: The entity who benefits from the performance of the service specified in the task (e.g., the patient). context: The healthcare event (e.g. a patient and healthcare provider interaction) during which this task was created. executionPeriod: Identifies the time action was first taken against the task (start) and/or the time final action was taken against the task prior to marking it as completed (end). authoredOn: The date and time this task was created. lastModified: The date and time of last modification to this task. requester: The creator of the task. performerType: The type of participant that can execute the task. owner: Individual organization or Device currently responsible for task execution. reason: A description or code indicating why this task needs to be performed. note: Free-text information captured about the task as it progresses. relevantHistory: Links to Provenance records for past versions of this Task that identify key state transitions or updates that are likely to be relevant to a user looking at the current version of the task. restriction: If the Task.focus is a request resource and the task is seeking fulfillment (i.e is asking for the request to be actioned), this element identifies any limitations on what parts of the referenced request should be actioned. input: Additional information that may be needed in the execution of the task. output: Outputs produced by the Task. """ __name__ = 'Task' def __init__(self, dict_values=None): self.resourceType = 'Task' # type: str # possible values: Task self.definitionUri = None # type: str self.definitionReference = None # reference to Reference: identifier self.basedOn = None # type: list # reference to Reference: identifier self.groupIdentifier = None # reference to Identifier self.partOf = None # type: list # reference to Reference: identifier self.status = None # type: str # possible values: draft, requested, received, accepted, # rejected, ready, cancelled, in-progress, on-hold, failed, completed, # entered-in-error self.statusReason = None # reference to CodeableConcept self.businessStatus = None # reference to CodeableConcept self.intent = None # type: str self.priority = None # type: str self.code = None # reference to CodeableConcept self.description = None # type: str self.focus = None # reference to Reference: identifier self._for = None # reference to Reference: identifier self.context = None # reference to Reference: identifier self.executionPeriod = None # reference to Period self.authoredOn = None # type: str self.lastModified = None # type: str self.requester = None # reference to Task_Requester self.performerType = None # type: list # reference to CodeableConcept self.owner = None # reference to Reference: identifier self.reason = None # reference to CodeableConcept self.note = None # type: list # reference to Annotation self.relevantHistory = None # type: list # reference to Reference: identifier self.restriction = None # reference to Task_Restriction self.input = None # type: list # reference to Task_Input self.output = None # type: list # reference to Task_Output self.identifier = None # type: list # reference to Identifier if dict_values: self.set_attributes(dict_values) self.assert_type() def assert_type(self): if self.status is not None: for value in self.status: if value is not None and value.lower() not in [ 'draft', 'requested', 'received', 'accepted', 'rejected', 'ready', 'cancelled', 'in-progress', 'on-hold', 'failed', 'completed', 'entered-in-error']: raise ValueError('"{}" does not match possible values: {}'.format( value, 'draft, requested, received, accepted, rejected, ready, cancelled,' 'in-progress, on-hold, failed, completed, entered-in-error')) def get_relationships(self): return [ {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'Task', 'child_variable': 'context'}, {'parent_entity': 'Identifier', 'parent_variable': 'object_id', 'child_entity': 'Task', 'child_variable': 'identifier'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'Task', 'child_variable': 'performerType'}, {'parent_entity': 'Task_Restriction', 'parent_variable': 'object_id', 'child_entity': 'Task', 'child_variable': 'restriction'}, {'parent_entity': 'Period', 'parent_variable': 'object_id', 'child_entity': 'Task', 'child_variable': 'executionPeriod'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'Task', 'child_variable': 'basedOn'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'Task', 'child_variable': 'focus'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'Task', 'child_variable': 'reason'}, {'parent_entity': 'Annotation', 'parent_variable': 'object_id', 'child_entity': 'Task', 'child_variable': 'note'}, {'parent_entity': 'Task_Input', 'parent_variable': 'object_id', 'child_entity': 'Task', 'child_variable': 'input'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'Task', 'child_variable': 'relevantHistory'}, {'parent_entity': 'Task_Requester', 'parent_variable': 'object_id', 'child_entity': 'Task', 'child_variable': 'requester'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'Task', 'child_variable': 'definitionReference'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'Task', 'child_variable': 'code'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'Task', 'child_variable': 'owner'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'Task', 'child_variable': 'statusReason'}, {'parent_entity': 'Identifier', 'parent_variable': 'object_id', 'child_entity': 'Task', 'child_variable': 'groupIdentifier'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'Task', 'child_variable': 'partOf'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'Task', 'child_variable': '_for'}, {'parent_entity': 'Task_Output', 'parent_variable': 'object_id', 'child_entity': 'Task', 'child_variable': 'output'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'Task', 'child_variable': 'businessStatus'}, ] class Task_Requester(fhirbase): """ A task to be performed. Attributes: agent: The device, practitioner, etc. who initiated the task. onBehalfOf: The organization the device or practitioner was acting on behalf of when they initiated the task. """ __name__ = 'Task_Requester' def __init__(self, dict_values=None): self.agent = None # reference to Reference: identifier self.onBehalfOf = None # reference to Reference: identifier self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'Task_Requester', 'child_variable': 'onBehalfOf'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'Task_Requester', 'child_variable': 'agent'}, ] class Task_Restriction(fhirbase): """ A task to be performed. Attributes: repetitions: Indicates the number of times the requested action should occur. period: Over what time-period is fulfillment sought. recipient: For requests that are targeted to more than on potential recipient/target, for whom is fulfillment sought? """ __name__ = 'Task_Restriction' def __init__(self, dict_values=None): self.repetitions = None # type: int self.period = None # reference to Period self.recipient = None # type: list # reference to Reference: identifier self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'Period', 'parent_variable': 'object_id', 'child_entity': 'Task_Restriction', 'child_variable': 'period'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'Task_Restriction', 'child_variable': 'recipient'}, ] class Task_Input(fhirbase): """ A task to be performed. Attributes: type: A code or description indicating how the input is intended to be used as part of the task execution. valueBoolean: The value of the input parameter as a basic type. valueInteger: The value of the input parameter as a basic type. valueDecimal: The value of the input parameter as a basic type. valueBase64Binary: The value of the input parameter as a basic type. valueInstant: The value of the input parameter as a basic type. valueString: The value of the input parameter as a basic type. valueUri: The value of the input parameter as a basic type. valueDate: The value of the input parameter as a basic type. valueDateTime: The value of the input parameter as a basic type. valueTime: The value of the input parameter as a basic type. valueCode: The value of the input parameter as a basic type. valueOid: The value of the input parameter as a basic type. valueUuid: The value of the input parameter as a basic type. valueId: The value of the input parameter as a basic type. valueUnsignedInt: The value of the input parameter as a basic type. valuePositiveInt: The value of the input parameter as a basic type. valueMarkdown: The value of the input parameter as a basic type. valueElement: The value of the input parameter as a basic type. valueExtension: The value of the input parameter as a basic type. valueBackboneElement: The value of the input parameter as a basic type. valueNarrative: The value of the input parameter as a basic type. valueAnnotation: The value of the input parameter as a basic type. valueAttachment: The value of the input parameter as a basic type. valueIdentifier: The value of the input parameter as a basic type. valueCodeableConcept: The value of the input parameter as a basic type. valueCoding: The value of the input parameter as a basic type. valueQuantity: The value of the input parameter as a basic type. valueDuration: The value of the input parameter as a basic type. valueSimpleQuantity: The value of the input parameter as a basic type. valueDistance: The value of the input parameter as a basic type. valueCount: The value of the input parameter as a basic type. valueMoney: The value of the input parameter as a basic type. valueAge: The value of the input parameter as a basic type. valueRange: The value of the input parameter as a basic type. valuePeriod: The value of the input parameter as a basic type. valueRatio: The value of the input parameter as a basic type. valueReference: The value of the input parameter as a basic type. valueSampledData: The value of the input parameter as a basic type. valueSignature: The value of the input parameter as a basic type. valueHumanName: The value of the input parameter as a basic type. valueAddress: The value of the input parameter as a basic type. valueContactPoint: The value of the input parameter as a basic type. valueTiming: The value of the input parameter as a basic type. valueMeta: The value of the input parameter as a basic type. valueElementDefinition: The value of the input parameter as a basic type. valueContactDetail: The value of the input parameter as a basic type. valueContributor: The value of the input parameter as a basic type. valueDosage: The value of the input parameter as a basic type. valueRelatedArtifact: The value of the input parameter as a basic type. valueUsageContext: The value of the input parameter as a basic type. valueDataRequirement: The value of the input parameter as a basic type. valueParameterDefinition: The value of the input parameter as a basic type. valueTriggerDefinition: The value of the input parameter as a basic type. """ __name__ = 'Task_Input' def __init__(self, dict_values=None): self.type = None # reference to CodeableConcept self.valueBoolean = None # type: bool self.valueInteger = None # type: int self.valueDecimal = None # type: int self.valueBase64Binary = None # type: str self.valueInstant = None # type: str self.valueString = None # type: str self.valueUri = None # type: str self.valueDate = None # type: str self.valueDateTime = None # type: str self.valueTime = None # type: str self.valueCode = None # type: str self.valueOid = None # type: str self.valueUuid = None # type: str self.valueId = None # type: str self.valueUnsignedInt = None # type: int self.valuePositiveInt = None # type: int self.valueMarkdown = None # type: str self.valueElement = None # reference to Element: id self.valueExtension = None # reference to Extension self.valueBackboneElement = None # reference to BackboneElement self.valueNarrative = None # reference to Narrative self.valueAnnotation = None # reference to Annotation self.valueAttachment = None # reference to Attachment self.valueIdentifier = None # reference to Identifier self.valueCodeableConcept = None # reference to CodeableConcept self.valueCoding = None # reference to Coding self.valueQuantity = None # reference to Quantity self.valueDuration = None # reference to Duration self.valueSimpleQuantity = None # reference to Quantity self.valueDistance = None # reference to Distance self.valueCount = None # reference to Count self.valueMoney = None # reference to Money self.valueAge = None # reference to Age self.valueRange = None # reference to Range self.valuePeriod = None # reference to Period self.valueRatio = None # reference to Ratio self.valueReference = None # reference to Reference: identifier self.valueSampledData = None # reference to SampledData self.valueSignature = None # reference to Signature self.valueHumanName = None # reference to HumanName self.valueAddress = None # reference to Address self.valueContactPoint = None # reference to ContactPoint self.valueTiming = None # reference to Timing self.valueMeta = None # reference to Meta self.valueElementDefinition = None # reference to ElementDefinition self.valueContactDetail = None # reference to ContactDetail self.valueContributor = None # reference to Contributor self.valueDosage = None # reference to Dosage self.valueRelatedArtifact = None # reference to RelatedArtifact self.valueUsageContext = None # reference to UsageContext self.valueDataRequirement = None # reference to DataRequirement self.valueParameterDefinition = None # reference to ParameterDefinition self.valueTriggerDefinition = None # reference to TriggerDefinition self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueCodeableConcept'}, {'parent_entity': 'ContactDetail', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueContactDetail'}, {'parent_entity': 'Contributor', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueContributor'}, {'parent_entity': 'RelatedArtifact', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueRelatedArtifact'}, {'parent_entity': 'Identifier', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueIdentifier'}, {'parent_entity': 'Attachment', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueAttachment'}, {'parent_entity': 'Meta', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueMeta'}, {'parent_entity': 'Quantity', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueSimpleQuantity'}, {'parent_entity': 'Extension', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueExtension'}, {'parent_entity': 'Address', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueAddress'}, {'parent_entity': 'Period', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valuePeriod'}, {'parent_entity': 'DataRequirement', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueDataRequirement'}, {'parent_entity': 'Quantity', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueQuantity'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'Task_Input', 'child_variable': 'valueReference'}, {'parent_entity': 'TriggerDefinition', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueTriggerDefinition'}, {'parent_entity': 'Duration', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueDuration'}, {'parent_entity': 'ElementDefinition', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueElementDefinition'}, {'parent_entity': 'Money', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueMoney'}, {'parent_entity': 'Range', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueRange'}, {'parent_entity': 'Signature', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueSignature'}, {'parent_entity': 'UsageContext', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueUsageContext'}, {'parent_entity': 'Coding', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueCoding'}, {'parent_entity': 'Dosage', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueDosage'}, {'parent_entity': 'Narrative', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueNarrative'}, {'parent_entity': 'Element', 'parent_variable': 'id', 'child_entity': 'Task_Input', 'child_variable': 'valueElement'}, {'parent_entity': 'Annotation', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueAnnotation'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'type'}, {'parent_entity': 'Count', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueCount'}, {'parent_entity': 'Ratio', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueRatio'}, {'parent_entity': 'Distance', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueDistance'}, {'parent_entity': 'BackboneElement', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueBackboneElement'}, {'parent_entity': 'ContactPoint', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueContactPoint'}, {'parent_entity': 'Age', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueAge'}, {'parent_entity': 'Timing', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueTiming'}, {'parent_entity': 'ParameterDefinition', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueParameterDefinition'}, {'parent_entity': 'HumanName', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueHumanName'}, {'parent_entity': 'SampledData', 'parent_variable': 'object_id', 'child_entity': 'Task_Input', 'child_variable': 'valueSampledData'}, ] class Task_Output(fhirbase): """ A task to be performed. Attributes: type: The name of the Output parameter. valueBoolean: The value of the Output parameter as a basic type. valueInteger: The value of the Output parameter as a basic type. valueDecimal: The value of the Output parameter as a basic type. valueBase64Binary: The value of the Output parameter as a basic type. valueInstant: The value of the Output parameter as a basic type. valueString: The value of the Output parameter as a basic type. valueUri: The value of the Output parameter as a basic type. valueDate: The value of the Output parameter as a basic type. valueDateTime: The value of the Output parameter as a basic type. valueTime: The value of the Output parameter as a basic type. valueCode: The value of the Output parameter as a basic type. valueOid: The value of the Output parameter as a basic type. valueUuid: The value of the Output parameter as a basic type. valueId: The value of the Output parameter as a basic type. valueUnsignedInt: The value of the Output parameter as a basic type. valuePositiveInt: The value of the Output parameter as a basic type. valueMarkdown: The value of the Output parameter as a basic type. valueElement: The value of the Output parameter as a basic type. valueExtension: The value of the Output parameter as a basic type. valueBackboneElement: The value of the Output parameter as a basic type. valueNarrative: The value of the Output parameter as a basic type. valueAnnotation: The value of the Output parameter as a basic type. valueAttachment: The value of the Output parameter as a basic type. valueIdentifier: The value of the Output parameter as a basic type. valueCodeableConcept: The value of the Output parameter as a basic type. valueCoding: The value of the Output parameter as a basic type. valueQuantity: The value of the Output parameter as a basic type. valueDuration: The value of the Output parameter as a basic type. valueSimpleQuantity: The value of the Output parameter as a basic type. valueDistance: The value of the Output parameter as a basic type. valueCount: The value of the Output parameter as a basic type. valueMoney: The value of the Output parameter as a basic type. valueAge: The value of the Output parameter as a basic type. valueRange: The value of the Output parameter as a basic type. valuePeriod: The value of the Output parameter as a basic type. valueRatio: The value of the Output parameter as a basic type. valueReference: The value of the Output parameter as a basic type. valueSampledData: The value of the Output parameter as a basic type. valueSignature: The value of the Output parameter as a basic type. valueHumanName: The value of the Output parameter as a basic type. valueAddress: The value of the Output parameter as a basic type. valueContactPoint: The value of the Output parameter as a basic type. valueTiming: The value of the Output parameter as a basic type. valueMeta: The value of the Output parameter as a basic type. valueElementDefinition: The value of the Output parameter as a basic type. valueContactDetail: The value of the Output parameter as a basic type. valueContributor: The value of the Output parameter as a basic type. valueDosage: The value of the Output parameter as a basic type. valueRelatedArtifact: The value of the Output parameter as a basic type. valueUsageContext: The value of the Output parameter as a basic type. valueDataRequirement: The value of the Output parameter as a basic type. valueParameterDefinition: The value of the Output parameter as a basic type. valueTriggerDefinition: The value of the Output parameter as a basic type. """ __name__ = 'Task_Output' def __init__(self, dict_values=None): self.type = None # reference to CodeableConcept self.valueBoolean = None # type: bool self.valueInteger = None # type: int self.valueDecimal = None # type: int self.valueBase64Binary = None # type: str self.valueInstant = None # type: str self.valueString = None # type: str self.valueUri = None # type: str self.valueDate = None # type: str self.valueDateTime = None # type: str self.valueTime = None # type: str self.valueCode = None # type: str self.valueOid = None # type: str self.valueUuid = None # type: str self.valueId = None # type: str self.valueUnsignedInt = None # type: int self.valuePositiveInt = None # type: int self.valueMarkdown = None # type: str self.valueElement = None # reference to Element: id self.valueExtension = None # reference to Extension self.valueBackboneElement = None # reference to BackboneElement self.valueNarrative = None # reference to Narrative self.valueAnnotation = None # reference to Annotation self.valueAttachment = None # reference to Attachment self.valueIdentifier = None # reference to Identifier self.valueCodeableConcept = None # reference to CodeableConcept self.valueCoding = None # reference to Coding self.valueQuantity = None # reference to Quantity self.valueDuration = None # reference to Duration self.valueSimpleQuantity = None # reference to Quantity self.valueDistance = None # reference to Distance self.valueCount = None # reference to Count self.valueMoney = None # reference to Money self.valueAge = None # reference to Age self.valueRange = None # reference to Range self.valuePeriod = None # reference to Period self.valueRatio = None # reference to Ratio self.valueReference = None # reference to Reference: identifier self.valueSampledData = None # reference to SampledData self.valueSignature = None # reference to Signature self.valueHumanName = None # reference to HumanName self.valueAddress = None # reference to Address self.valueContactPoint = None # reference to ContactPoint self.valueTiming = None # reference to Timing self.valueMeta = None # reference to Meta self.valueElementDefinition = None # reference to ElementDefinition self.valueContactDetail = None # reference to ContactDetail self.valueContributor = None # reference to Contributor self.valueDosage = None # reference to Dosage self.valueRelatedArtifact = None # reference to RelatedArtifact self.valueUsageContext = None # reference to UsageContext self.valueDataRequirement = None # reference to DataRequirement self.valueParameterDefinition = None # reference to ParameterDefinition self.valueTriggerDefinition = None # reference to TriggerDefinition self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'Signature', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueSignature'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'Task_Output', 'child_variable': 'valueReference'}, {'parent_entity': 'BackboneElement', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueBackboneElement'}, {'parent_entity': 'RelatedArtifact', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueRelatedArtifact'}, {'parent_entity': 'Quantity', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueSimpleQuantity'}, {'parent_entity': 'ContactPoint', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueContactPoint'}, {'parent_entity': 'Extension', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueExtension'}, {'parent_entity': 'Age', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueAge'}, {'parent_entity': 'Meta', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueMeta'}, {'parent_entity': 'Dosage', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueDosage'}, {'parent_entity': 'TriggerDefinition', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueTriggerDefinition'}, {'parent_entity': 'Distance', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueDistance'}, {'parent_entity': 'Coding', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueCoding'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueCodeableConcept'}, {'parent_entity': 'ElementDefinition', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueElementDefinition'}, {'parent_entity': 'Period', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valuePeriod'}, {'parent_entity': 'Identifier', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueIdentifier'}, {'parent_entity': 'DataRequirement', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueDataRequirement'}, {'parent_entity': 'SampledData', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueSampledData'}, {'parent_entity': 'Element', 'parent_variable': 'id', 'child_entity': 'Task_Output', 'child_variable': 'valueElement'}, {'parent_entity': 'HumanName', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueHumanName'}, {'parent_entity': 'Money', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueMoney'}, {'parent_entity': 'Quantity', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueQuantity'}, {'parent_entity': 'ContactDetail', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueContactDetail'}, {'parent_entity': 'Attachment', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueAttachment'}, {'parent_entity': 'Count', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueCount'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'type'}, {'parent_entity': 'Range', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueRange'}, {'parent_entity': 'Timing', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueTiming'}, {'parent_entity': 'Duration', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueDuration'}, {'parent_entity': 'Narrative', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueNarrative'}, {'parent_entity': 'ParameterDefinition', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueParameterDefinition'}, {'parent_entity': 'Annotation', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueAnnotation'}, {'parent_entity': 'Ratio', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueRatio'}, {'parent_entity': 'UsageContext', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueUsageContext'}, {'parent_entity': 'Address', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueAddress'}, {'parent_entity': 'Contributor', 'parent_variable': 'object_id', 'child_entity': 'Task_Output', 'child_variable': 'valueContributor'}, ]
StarcoderdataPython
4803499
__version__ = '0.9.1.1' __gui__ = True # global option to enable/disable graphics
StarcoderdataPython
3239964
<reponame>velocist/TS4CheatsInfo # uncompyle6 version 3.7.4 # Python bytecode 3.7 (3394) # Decompiled from: Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 18:58:18) [MSC v.1900 64 bit (AMD64)] # Embedded file name: T:\InGame\Gameplay\Scripts\Server\carry\carry_elements.py # Compiled at: 2018-05-18 03:28:16 # Size of source mod 2**32: 44951 bytes import functools from animation import ClipEventType from animation.animation_utils import flush_all_animations, disable_asm_auto_exit from animation.arb import Arb from animation.arb_element import distribute_arb_element from carry.carry_tuning import CarryPostureStaticTuning from carry.carry_utils import hand_to_track, track_to_hand, SCRIPT_EVENT_ID_START_CARRY, SCRIPT_EVENT_ID_STOP_CARRY from element_utils import build_element, build_critical_section, must_run, build_critical_section_with_finally from interactions import ParticipantType, ParticipantTypeSingleSim from interactions.aop import AffordanceObjectPair from interactions.context import QueueInsertStrategy, InteractionContext from postures import PostureTrack from postures.context import PostureContext from postures.posture_specs import PostureSpecVariable, PostureOperation, PostureAspectBody, PostureAspectSurface, SURFACE_TARGET_INDEX, SURFACE_SLOT_TYPE_INDEX, SURFACE_INDEX from postures.transition import PostureTransition from sims4.log import StackVar from sims4.tuning.tunable import HasTunableFactory, AutoFactoryInit, HasTunableSingletonFactory, TunableEnumEntry, TunableVariant, TunableFactory, TunableTuple, TunablePackSafeReference from singletons import DEFAULT import element_utils, elements, services, sims4.log, sims4.resources from postures.posture_state import PostureState logger = sims4.log.Logger('Carry', default_owner='rmccord') def _create_enter_carry_posture(sim, posture_state, carry_target, track): var_map = {PostureSpecVariable.CARRY_TARGET: carry_target, PostureSpecVariable.HAND: track_to_hand(track), PostureSpecVariable.POSTURE_TYPE_CARRY_OBJECT: carry_target.get_carry_object_posture()} pick_up_operation = PostureOperation.PickUpObject(PostureSpecVariable.POSTURE_TYPE_CARRY_OBJECT, PostureSpecVariable.CARRY_TARGET) new_source_aop = pick_up_operation.associated_aop(sim, var_map) new_posture_spec = pick_up_operation.apply((posture_state.get_posture_spec(var_map)), enter_carry_while_holding=True) if new_posture_spec is None: raise RuntimeError('[rmccord] Failed to create new_posture_spec in enter_carry_while_holding!') new_posture_state = PostureState(sim, posture_state, new_posture_spec, var_map) new_posture = new_posture_state.get_aspect(track) from carry.carry_postures import CarryingNothing if new_posture is None or isinstance(new_posture, CarryingNothing): raise RuntimeError('[rmccord] Failed to create a valid new_posture ({}) from new_posture_state ({}) in enter_carry_while_holding!'.format(new_posture, new_posture_state)) new_posture.external_transition = True return ( new_posture_state, new_posture, new_source_aop, var_map) def enter_carry_while_holding(si, obj=None, carry_obj_participant_type=None, callback=None, create_si_fn=DEFAULT, sim_participant_type=ParticipantType.Actor, target_participant_type=None, owning_affordance=DEFAULT, carry_track_override=None, sequence=None, carry_sim=DEFAULT, track=DEFAULT, asm_context=None, priority_override=None, target_override=None): sim = si.get_participant(sim_participant_type) if carry_sim is DEFAULT else carry_sim if target_override is None: target = si.get_participant(target_participant_type) if target_participant_type is not None else None else: target = target_override context = si.context.clone_for_sim(sim, insert_strategy=(QueueInsertStrategy.NEXT)) if priority_override is not None: context.priority = priority_override if carry_track_override is not None: track = carry_track_override if track is DEFAULT: track = si.carry_track if track is None: raise RuntimeError("[rmccord] enter_carry_while_holding: Interaction {} does not have a carry_track, which means its animation tuning doesn't have a carry target or create target specified in object editor or the posture manifest from the swing graph does not require a specific object. {}".format(si, StackVar(('process', '_auto_constraints')))) if create_si_fn is DEFAULT: if owning_affordance is None: create_si_fn = None if create_si_fn is DEFAULT: if owning_affordance is DEFAULT: raise AssertionError("[rmccord] No create_si_fn was provided and we don't know how to make one.") def create_si_fn(): context.carry_target = obj aop = AffordanceObjectPair(owning_affordance, target, owning_affordance, None) return (aop, context) def set_up_transition_gen(timeline): nonlocal obj nonlocal sequence if carry_obj_participant_type is not None: obj = si.get_participant(carry_obj_participant_type) if obj is None: raise ValueError('[rmccord] Attempt to perform an enter carry while holding with None as the carried object. SI: {}'.format(si)) else: new_posture_state, new_posture, new_source_aop, var_map = _create_enter_carry_posture(sim, sim.posture_state, obj, track) if obj.is_sim: target_posture_state = new_posture.set_target_linked_posture_data() else: target_posture_state = None got_callback = False def event_handler_enter_carry(event_data): nonlocal got_callback if got_callback: logger.warn('Animation({}) calling to start a carry multiple times', event_data.event_data.get('clip_name')) return got_callback = True arb = Arb() locked_params = new_posture.get_locked_params(None) old_carry_posture = sim.posture_state.get_aspect(track) if old_carry_posture is not None: old_carry_posture.append_exit_to_arb(arb, new_posture_state, new_posture, var_map) new_posture.append_transition_to_arb(arb, old_carry_posture, locked_params=locked_params, in_xevt_handler=True) distribute_arb_element(arb) if asm_context is not None: asm_context.register_event_handler(event_handler_enter_carry, handler_type=(ClipEventType.Script), handler_id=SCRIPT_EVENT_ID_START_CARRY, tag='enter_carry') else: si.store_event_handler(event_handler_enter_carry, handler_id=SCRIPT_EVENT_ID_START_CARRY) def maybe_do_transition_gen(timeline): def push_si_gen(timeline): context = InteractionContext(sim, (InteractionContext.SOURCE_POSTURE_GRAPH), (si.priority if priority_override is None else priority_override), run_priority=(si.run_priority if priority_override is None else priority_override), insert_strategy=(QueueInsertStrategy.FIRST), must_run_next=True, group_id=(si.group_id)) result = new_source_aop.interaction_factory(context) if not result: return result source_interaction = result.interaction new_posture.source_interaction = source_interaction owning_interaction = None if create_si_fn is not None: aop, context = create_si_fn() if aop is not None: if context is not None: if aop.test(context): result = aop.interaction_factory(context) if result: owning_interaction = result.interaction if owning_interaction is None: si.acquire_posture_ownership(new_posture) yield from source_interaction.run_direct_gen(timeline) else: owning_interaction.acquire_posture_ownership(new_posture) aop.execute_interaction(owning_interaction) new_source_aop.execute_interaction(source_interaction) if target_posture_state is not None: yield from new_posture.kickstart_linked_carried_posture_gen(timeline) return result if False: yield None def call_callback(_): if callback is not None: callback(new_posture, new_posture.source_interaction) if got_callback: if target_posture_state is not None: obj.posture_state = target_posture_state result = yield from element_utils.run_child(timeline, must_run([ PostureTransition(new_posture, new_posture_state, context, var_map), push_si_gen, call_callback])) return result return True if False: yield None sequence = disable_asm_auto_exit(sim, sequence) with si.cancel_deferred((si,)): yield from element_utils.run_child(timeline, must_run(build_critical_section(build_critical_section(sequence, flush_all_animations), maybe_do_transition_gen))) if False: yield None return build_element(set_up_transition_gen) def _create_exit_carry_posture(sim, target, interaction, use_posture_animations, preserve_posture=None): failure_result = (None, None, None, None, None) slot_manifest = interaction.slot_manifest old_carry_posture = sim.posture_state.get_carry_posture(target) if old_carry_posture is None: return failure_result spec_surface = sim.posture_state.spec[SURFACE_INDEX] has_slot_surface = spec_surface is not None and spec_surface[SURFACE_SLOT_TYPE_INDEX] is not None if not target.transient: if has_slot_surface: put_down_operation = PostureOperation.PutDownObjectOnSurface(PostureSpecVariable.POSTURE_TYPE_CARRY_NOTHING, spec_surface[SURFACE_TARGET_INDEX], spec_surface[SURFACE_SLOT_TYPE_INDEX], PostureSpecVariable.CARRY_TARGET) else: put_down_operation = PostureOperation.PutDownObject(PostureSpecVariable.POSTURE_TYPE_CARRY_NOTHING, PostureSpecVariable.CARRY_TARGET) var_map = {PostureSpecVariable.CARRY_TARGET: target, PostureSpecVariable.HAND: track_to_hand(old_carry_posture.track), PostureSpecVariable.POSTURE_TYPE_CARRY_NOTHING: CarryPostureStaticTuning.POSTURE_CARRY_NOTHING, PostureSpecVariable.SLOT: slot_manifest, PostureSpecVariable.SLOT_TEST_DEFINITION: interaction.create_target} current_spec = sim.posture_state.get_posture_spec(var_map) if current_spec is None: if preserve_posture is None: logger.warn('Failed to get posture spec for var_map: {} for {}', sim.posture_state, var_map) return failure_result new_posture_spec = put_down_operation.apply(current_spec) if new_posture_spec is None: if preserve_posture is None: logger.warn('Failed to apply put_down_operation: {}', put_down_operation) return failure_result if not new_posture_spec.validate_destination((new_posture_spec,), var_map, interaction.affordance, sim): if preserve_posture is None: logger.warn('Failed to validate put down spec {} with var map {}', new_posture_spec, var_map) return failure_result carry_posture_overrides = {} if preserve_posture is not None: carry_posture_overrides[preserve_posture.track] = preserve_posture new_posture_state = PostureState(sim, (sim.posture_state), new_posture_spec, var_map, carry_posture_overrides=carry_posture_overrides) new_posture = new_posture_state.get_aspect(old_carry_posture.track) new_posture.source_interaction = interaction.super_interaction new_posture.external_transition = not use_posture_animations posture_context = PostureContext(interaction.context.source, interaction.priority, None) transition = PostureTransition(new_posture, new_posture_state, posture_context, var_map, locked_params=(interaction.locked_params)) transition.must_run = True return ( old_carry_posture, new_posture, new_posture_state, transition, var_map) def exit_carry_while_holding(interaction, callback=None, sequence=None, sim_participant_type=ParticipantType.Actor, use_posture_animations=False, carry_system_target=None, target=DEFAULT, arb=None): si = interaction.super_interaction sim = interaction.get_participant(sim_participant_type) target = interaction.carry_target or interaction.target if target is DEFAULT else target def set_up_transition_gen(timeline): old_carry_posture, new_posture, _, transition, var_map = _create_exit_carry_posture(sim, target, interaction, use_posture_animations) if transition is None: yield from element_utils.run_child(timeline, sequence) return elif arb is None: register_event = functools.partial((interaction.store_event_handler), handler_id=SCRIPT_EVENT_ID_STOP_CARRY) else: register_event = functools.partial((arb.register_event_handler), handler_id=SCRIPT_EVENT_ID_STOP_CARRY) exited_carry = False if not use_posture_animations: def event_handler_exit_carry(event_data): nonlocal exited_carry exited_carry = True arb = Arb() old_carry_posture.append_exit_to_arb(arb, None, new_posture, var_map, exit_while_holding=True) new_posture.append_transition_to_arb(arb, old_carry_posture, in_xevt_handler=True) distribute_arb_element(arb, master=sim) register_event(event_handler_exit_carry) if callback is not None: register_event(callback) def maybe_do_transition(timeline): nonlocal transition _, _, _, new_transition, _ = _create_exit_carry_posture(sim, target, interaction, use_posture_animations, preserve_posture=new_posture) if new_transition is not None: transition = new_transition if not use_posture_animations: if not exited_carry: event_handler_exit_carry(None) if callback is not None: callback() if use_posture_animations or exited_carry: interaction_target_was_target = False si_target_was_target = False if old_carry_posture.target_is_transient: if interaction.target == target: interaction_target_was_target = True interaction.set_target(None) if si.target == target: si_target_was_target = True si.set_target(None) if carry_system_target is not None: old_carry_posture.carry_system_target = carry_system_target def do_transition(timeline): result = yield from element_utils.run_child(timeline, transition) if result: if target.is_sim: body_posture_type = sim.posture_state.spec.body.posture_type if not body_posture_type.multi_sim: post_transition_spec = sim.posture_state.spec.clone(body=(PostureAspectBody((body_posture_type, None))), surface=(PostureAspectSurface((None, None, None)))) post_posture_state = PostureState(sim, sim.posture_state, post_transition_spec, var_map) post_posture_state.body.source_interaction = sim.posture.source_interaction post_transition = PostureTransition(post_posture_state.body, post_posture_state, sim.posture.posture_context, var_map) post_transition.must_run = True yield from element_utils.run_child(timeline, post_transition) interaction_target_was_target = False si_target_was_target = False new_posture.source_interaction = None return True return False if False: yield None def post_transition(_): if interaction_target_was_target: interaction.set_target(target) if si_target_was_target: si.set_target(target) if carry_system_target is not None: old_carry_posture.carry_system_target = None yield from element_utils.run_child(timeline, must_run(build_critical_section_with_finally(do_transition, post_transition))) if False: yield None new_sequence = disable_asm_auto_exit(sim, sequence) yield from element_utils.run_child(timeline, build_critical_section(build_critical_section(new_sequence, flush_all_animations), maybe_do_transition)) if False: yield None return build_element(set_up_transition_gen) def swap_carry_while_holding(interaction, original_carry_target, new_carry_object, callback=None, sequence=None, sim_participant_type=ParticipantType.Actor, carry_system_target=None): si = interaction.super_interaction sim = interaction.get_participant(sim_participant_type) def set_up_transition(timeline): original_carry_posture, carry_nothing_posture, carry_nothing_posture_state, transition_to_carry_nothing, carry_nothing_var_map = _create_exit_carry_posture(sim, original_carry_target, interaction, False) if transition_to_carry_nothing is None: return False final_posture_state, final_posture, final_source_aop, final_var_map = _create_enter_carry_posture(sim, carry_nothing_posture_state, new_carry_object, original_carry_posture.track) got_callback = False def event_handler_swap_carry(event_data): nonlocal got_callback if got_callback: logger.warn('Animation({}) calling to start a carry multiple times', event_data.event_data.get('clip_name')) return got_callback = True arb_exit = Arb() original_carry_posture.append_exit_to_arb(arb_exit, None, carry_nothing_posture, carry_nothing_var_map, exit_while_holding=True) carry_nothing_posture.append_transition_to_arb(arb_exit, original_carry_posture, in_xevt_handler=True) distribute_arb_element(arb_exit) original_carry_posture.target.transient = True original_carry_posture.target.clear_parent(sim.transform, sim.routing_surface) original_carry_posture.target.remove_from_client() arb_enter = Arb() locked_params = final_posture.get_locked_params(None) if carry_nothing_posture is not None: carry_nothing_posture.append_exit_to_arb(arb_enter, final_posture_state, final_posture, final_var_map) final_posture.append_transition_to_arb(arb_enter, carry_nothing_posture, locked_params=locked_params, in_xevt_handler=True) distribute_arb_element(arb_enter) interaction.store_event_handler(event_handler_swap_carry, handler_id=SCRIPT_EVENT_ID_START_CARRY) if callback is not None: interaction.store_event_handler(callback, handler_id=SCRIPT_EVENT_ID_START_CARRY) def maybe_do_transition(timeline): def push_si(_): context = InteractionContext(sim, (InteractionContext.SOURCE_POSTURE_GRAPH), (si.priority), run_priority=(si.run_priority), insert_strategy=(QueueInsertStrategy.NEXT), must_run_next=True, group_id=(si.group_id)) result = final_source_aop.interaction_factory(context) if not result: return result final_source_interaction = result.interaction si.acquire_posture_ownership(final_posture) yield from final_source_interaction.run_direct_gen(timeline) final_posture.source_interaction = final_source_interaction return result if False: yield None if not got_callback: event_handler_swap_carry(None) if callback is not None: callback() if got_callback: if original_carry_posture.target_is_transient: if interaction.target == original_carry_target: interaction_target_was_target = True interaction.set_target(None) else: interaction_target_was_target = False if si.target == original_carry_target: si_target_was_target = True si.set_target(None) else: si_target_was_target = False else: interaction_target_was_target = False si_target_was_target = False if carry_system_target is not None: original_carry_posture.carry_system_target = carry_system_target def do_transition(timeline): nonlocal interaction_target_was_target nonlocal si_target_was_target result = yield from element_utils.run_child(timeline, transition_to_carry_nothing) if not result: return False interaction_target_was_target = False si_target_was_target = False carry_nothing_posture.source_interaction = None return True if False: yield None def post_transition(_): if interaction_target_was_target: interaction.set_target(original_carry_target) if si_target_was_target: si.set_target(original_carry_target) if carry_system_target is not None: original_carry_posture.carry_system_target = None exit_carry_result = yield from element_utils.run_child(timeline, must_run(build_critical_section_with_finally(do_transition, post_transition))) if not exit_carry_result: raise RuntimeError('[maxr] Failed to exit carry: {}'.format(original_carry_posture)) if got_callback: context = si.context.clone_for_sim(sim) yield from element_utils.run_child(timeline, ( PostureTransition(final_posture, final_posture_state, context, final_var_map), push_si)) if False: yield None new_sequence = disable_asm_auto_exit(sim, sequence) yield from element_utils.run_child(timeline, build_critical_section(build_critical_section(new_sequence, flush_all_animations), maybe_do_transition)) if False: yield None return ( set_up_transition,) class EnterCarryWhileHolding(elements.ParentElement, HasTunableFactory, AutoFactoryInit): class TrackOverrideExplicit(HasTunableSingletonFactory, AutoFactoryInit): FACTORY_TUNABLES = {'carry_track': TunableEnumEntry(description='\n Which hand to carry the object in.\n ', tunable_type=PostureTrack, default=(PostureTrack.RIGHT), invalid_enums=( PostureTrack.BODY,))} def get_override(self, *args, **kwargs): return self.carry_track class TrackOverrideHandedness(HasTunableSingletonFactory, AutoFactoryInit): def get_override(self, interaction, sim_participant, *args, **kwargs): carry_participant = interaction.get_participant(sim_participant) if carry_participant is None: return hand = carry_participant.get_preferred_hand() return hand_to_track(hand) NONE = 1 OBJECT_TO_BE_CARRIED = 2 PARTICIPANT_TYPE = 3 FACTORY_TUNABLES = {'carry_obj_participant_type':TunableEnumEntry(description='\n The object that will be carried.\n ', tunable_type=ParticipantType, default=ParticipantType.CarriedObject), 'sim_participant_type':TunableEnumEntry(description='\n The Sim that will get a new carry.\n ', tunable_type=ParticipantTypeSingleSim, default=ParticipantTypeSingleSim.Actor), 'target':TunableVariant(description='\n Specify what to use as the target of\n the owning affordance.\n ', object_to_be_carried=TunableTuple(description='\n Target is the object that WILL be carried.\n ', locked_args={'target_type': OBJECT_TO_BE_CARRIED}), none=TunableTuple(description='\n Target is None\n ', locked_args={'target_type': NONE}), participant_type=TunableTuple(description='\n Target is the specified participant of THIS interaction.\n \n This is necessary if we need to target another participant\n when we push the owning affordance\n ', participant=TunableEnumEntry(tunable_type=ParticipantType, default=(ParticipantType.CarriedObject)), locked_args={'target_type': PARTICIPANT_TYPE}), default='object_to_be_carried'), 'owning_affordance':TunablePackSafeReference(description='\n The interaction that will be pushed that will own the carry\n state (e.g. a put down).\n ', manager=services.get_instance_manager(sims4.resources.Types.INTERACTION), allow_none=True), 'carry_track_override':TunableVariant(description='\n Specify the carry track, instead of using the carry of the SI.\n ', explicit=TrackOverrideExplicit.TunableFactory(), handedness=TrackOverrideHandedness.TunableFactory(), default='disabled', locked_args={'disabled': None})} def __init__(self, interaction, *args, sequence=(), **kwargs): (super().__init__)(*args, **kwargs) self.interaction = interaction self.sequence = sequence def _run(self, timeline): carry_track_override = self.carry_track_override.get_override(self.interaction, self.sim_participant_type) if self.carry_track_override is not None else None target = self.target if target.target_type == EnterCarryWhileHolding.NONE: target_participant_type = None else: if target.target_type == EnterCarryWhileHolding.OBJECT_TO_BE_CARRIED: target_participant_type = self.carry_obj_participant_type else: if target.target_type == EnterCarryWhileHolding.PARTICIPANT_TYPE: target_participant_type = target.participant carry_element = enter_carry_while_holding((self.interaction), sequence=(self.sequence), carry_obj_participant_type=(self.carry_obj_participant_type), sim_participant_type=(self.sim_participant_type), target_participant_type=target_participant_type, owning_affordance=(self.owning_affordance), carry_track_override=carry_track_override) return timeline.run_child(carry_element) class TunableExitCarryWhileHolding(TunableFactory): FACTORY_TYPE = staticmethod(exit_carry_while_holding) def __init__(self, *args, description='Exit the carry for the target or carry_target of an interaction. The animations played during the interaction should exit the carry via an XEVT.', **kwargs): (super().__init__)(args, description=description, sim_participant_type=TunableEnumEntry(description='\n The Sim that will exit a carry.\n ', tunable_type=ParticipantType, default=(ParticipantType.Actor)), **kwargs) class TransferCarryWhileHolding(elements.ParentElement, HasTunableFactory, AutoFactoryInit): FACTORY_TUNABLES = {'enter_carry_while_holding':EnterCarryWhileHolding.TunableFactory(), 'exit_carry_while_holding':TunableExitCarryWhileHolding()} def __init__(self, interaction, *args, sequence=(), **kwargs): (super().__init__)(*args, **kwargs) self.interaction = interaction self.sequence = sequence def _run(self, timeline): obj = self.interaction.get_participant(self.enter_carry_while_holding.carry_obj_participant_type) source_sim = self.interaction.get_participant(self.exit_carry_while_holding.sim_participant_type) target_sim = self.interaction.get_participant(self.enter_carry_while_holding.sim_participant_type) def _add_reservation_clobberer(_): obj.add_reservation_clobberer(source_sim, target_sim) def _remove_reservation_clobberer(_): obj.remove_reservation_clobberer(source_sim, target_sim) sequence = self.enter_carry_while_holding((self.interaction), sequence=(self.sequence)) sequence = self.exit_carry_while_holding((self.interaction), sequence=sequence) sequence = element_utils.build_critical_section_with_finally(_add_reservation_clobberer, sequence, _remove_reservation_clobberer) return timeline.run_child(sequence)
StarcoderdataPython
36426
<filename>goodrich/python_primer/c119.py """ C 1.19 --------------------------------- Problem Statement : Demonstrate how to use Python’s list comprehension syntax to produce the list [ a , b , c , ..., z ], but without having to type all 26 such characters literally. Author : Saurabh """ print([chr(x + 97) for x in range(26)])
StarcoderdataPython
46494
import numpy as np import pandas as pd import time mnist = pd.read_csv("../input/train.csv") mnist.head() y_train = mnist.label.values x_train = mnist.drop('label',axis=1) x_train = (x_train / 255.0).values x_train = np.reshape(x_train,(42000,1,28,28)) x_train.shape from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.layers.convolutional import Conv2D from keras.layers.pooling import MaxPooling2D from keras.optimizers import SGD from keras import backend as K K.set_image_data_format('channels_first') IMG_SIZE = 28 NUM_CLASSES = 10 def cnn_model(): model = Sequential() model.add(Conv2D(32, (3, 3), padding='same', input_shape=(1, IMG_SIZE, IMG_SIZE), activation='relu')) model.add(Conv2D(32, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Conv2D(64, (3, 3), padding='same', activation='relu')) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Conv2D(128, (3, 3), padding='same', activation='relu')) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(NUM_CLASSES, activation='softmax')) return model model = cnn_model() model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=3) test = pd.read_csv("../input/test.csv") test.describe() x_test = (test / 255.0).values x_test = np.reshape(x_test,(28000,1,28,28)) x_test.shape predictions = model.predict(x_test) import matplotlib.pyplot as plt plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid('off') plt.imshow(np.reshape(x_test[i],(28,28)), cmap=plt.cm.binary) predicted_label = np.argmax(predictions[i]) #true_label = y_test[i] #if predicted_label == true_label: # color = 'green' #else: # color = 'red' plt.xlabel("{} ".format(predicted_label), color='green') model_name = "digit_clf_model_"+ time.strftime("%Y-%m-%d-%H%M") +".h5" model.save_weights("models/"+model_name) # f=open("submissions.csv","w") # # Write headers # f.write("ImageId,Label\n") # for key,p in enumerate(predictions): # i = key+1 # line = str(i)+","+str(np.argmax(p))+"\n" # f.write(line) # f.close() # sub = pd.read_csv("submissions.csv") # sub.head()
StarcoderdataPython
1671913
<filename>openstack_dashboard/dashboards/project/data_processing/jobs/tests.py # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django.core.urlresolvers import reverse from django import http from mox import IsA # noqa from openstack_dashboard import api from openstack_dashboard.test import helpers as test INDEX_URL = reverse('horizon:project:data_processing.jobs:index') DETAILS_URL = reverse( 'horizon:project:data_processing.jobs:details', args=['id']) class DataProcessingJobTests(test.TestCase): @test.create_stubs({api.sahara: ('job_list',)}) def test_index(self): api.sahara.job_list(IsA(http.HttpRequest), {}) \ .AndReturn(self.jobs.list()) self.mox.ReplayAll() res = self.client.get(INDEX_URL) self.assertTemplateUsed(res, 'project/data_processing.jobs/jobs.html') self.assertContains(res, 'Jobs') self.assertContains(res, 'Name') @test.create_stubs({api.sahara: ('job_get',)}) def test_details(self): api.sahara.job_get(IsA(http.HttpRequest), IsA(unicode)) \ .AndReturn(self.jobs.list()[0]) self.mox.ReplayAll() res = self.client.get(DETAILS_URL) self.assertTemplateUsed(res, 'project/data_processing.jobs/details.html') self.assertContains(res, 'pigjob') @test.create_stubs({api.sahara: ('job_list', 'job_delete')}) def test_delete(self): job = self.jobs.first() api.sahara.job_list(IsA(http.HttpRequest), {}) \ .AndReturn(self.jobs.list()) api.sahara.job_delete(IsA(http.HttpRequest), job.id) self.mox.ReplayAll() form_data = {'action': 'jobs__delete__%s' % job.id} res = self.client.post(INDEX_URL, form_data) self.assertNoFormErrors(res) self.assertRedirectsNoFollow(res, INDEX_URL) self.assertMessageCount(success=1)
StarcoderdataPython
4842839
<reponame>OpenDataServices/flatten-tool<gh_stars>10-100 """ This file contains code that takes an instance of a JSON file as input (not a JSON schema, for that see schema.py). """ import codecs import copy import os import tempfile import uuid from collections import OrderedDict from decimal import Decimal from warnings import warn import BTrees.OOBTree import ijson import transaction import xmltodict import zc.zlibstorage import ZODB.FileStorage from flattentool.i18n import _ from flattentool.input import path_search from flattentool.schema import make_sub_sheet_name from flattentool.sheet import PersistentSheet BASIC_TYPES = [str, bool, int, Decimal, type(None)] class BadlyFormedJSONError(ValueError): pass class BadlyFormedJSONErrorUTF8(BadlyFormedJSONError): pass def sheet_key_field(sheet, key): if key not in sheet: sheet.append(key) return key def sheet_key_title(sheet, key): """ If the key has a corresponding title, return that. If doesn't, create it in the sheet and return it. """ if key in sheet.titles: title = sheet.titles[key] if title not in sheet: sheet.append(title) return title else: if key not in sheet: sheet.append(key) return key def lists_of_dicts_paths(xml_dict): for key, value in xml_dict.items(): if isinstance(value, list) and value and isinstance(value[0], dict): yield (key,) for x in value: if isinstance(x, dict): for path in lists_of_dicts_paths(x): yield (key,) + path elif isinstance(value, dict): for path in lists_of_dicts_paths(value): yield (key,) + path def dicts_to_list_of_dicts(lists_of_dicts_paths_set, xml_dict, path=()): for key, value in xml_dict.items(): if isinstance(value, list): for x in value: if isinstance(x, dict): dicts_to_list_of_dicts(lists_of_dicts_paths_set, x, path + (key,)) elif isinstance(value, dict): child_path = path + (key,) dicts_to_list_of_dicts(lists_of_dicts_paths_set, value, child_path) if child_path in lists_of_dicts_paths_set: xml_dict[key] = [value] def list_dict_consistency(xml_dict): """ For use with XML files opened with xmltodict. If there is only one tag, xmltodict produces a dict. If there are multiple, xmltodict produces a list of dicts. This functions replaces dicts with lists of dicts, if there exists a list of dicts for the same path elsewhere in the file. """ lists_of_dicts_paths_set = set(lists_of_dicts_paths(xml_dict)) dicts_to_list_of_dicts(lists_of_dicts_paths_set, xml_dict) class JSONParser(object): # Named for consistency with schema.SchemaParser, but not sure it's the most appropriate name. # Similarly with methods like parse_json_dict def __init__( self, json_filename=None, root_json_dict=None, schema_parser=None, root_list_path=None, root_id="ocid", use_titles=False, xml=False, id_name="id", filter_field=None, filter_value=None, preserve_fields=None, remove_empty_schema_columns=False, rollup=False, truncation_length=3, persist=False, ): if persist: # Use temp directories in OS agnostic way self.zodb_db_location = ( tempfile.gettempdir() + "/flattentool-" + str(uuid.uuid4()) ) # zlibstorage lowers disk usage by a lot at very small performance cost zodb_storage = zc.zlibstorage.ZlibStorage( ZODB.FileStorage.FileStorage(self.zodb_db_location) ) self.db = ZODB.DB(zodb_storage) else: # If None, in memory storage is used. self.db = ZODB.DB(None) self.connection = self.db.open() # ZODB root, only objects attached here will be persisted root = self.connection.root # OOBTree means a btree with keys and values are objects (including strings) root.sheet_store = BTrees.OOBTree.BTree() self.sub_sheets = {} self.main_sheet = PersistentSheet(connection=self.connection, name="") self.root_list_path = root_list_path self.root_id = root_id self.use_titles = use_titles self.truncation_length = truncation_length self.id_name = id_name self.xml = xml self.filter_field = filter_field self.filter_value = filter_value self.remove_empty_schema_columns = remove_empty_schema_columns self.seen_paths = set() self.persist = persist if schema_parser: # schema parser does not make sheets that are persistent, # so use from_sheets which deep copies everything in it. self.main_sheet = PersistentSheet.from_sheet( schema_parser.main_sheet, self.connection ) for sheet_name, sheet in list(self.sub_sheets.items()): self.sub_sheets[sheet_name] = PersistentSheet.from_sheet( sheet, self.connection ) self.sub_sheets = copy.deepcopy(schema_parser.sub_sheets) if remove_empty_schema_columns: # Don't use columns from the schema parser # (avoids empty columns) self.main_sheet.columns = [] for sheet_name, sheet in list(self.sub_sheets.items()): sheet.columns = [] self.schema_parser = schema_parser else: self.schema_parser = None self.rollup = False if rollup: if schema_parser and len(schema_parser.rollup) > 0: # If rollUp is present in the schema this takes precedence over direct input. self.rollup = schema_parser.rollup if isinstance(rollup, (list,)) and ( len(rollup) > 1 or (len(rollup) == 1 and rollup[0] is not True) ): warn(_("Using rollUp values from schema, ignoring direct input.")) elif isinstance(rollup, (list,)): if len(rollup) == 1 and os.path.isfile(rollup[0]): # Parse file, one json path per line. rollup_from_file = set() with open(rollup[0]) as rollup_file: for line in rollup_file: line = line.strip() rollup_from_file.add(line) self.rollup = rollup_from_file # Rollup args passed directly at the commandline elif len(rollup) == 1 and rollup[0] is True: warn( _( "No fields to rollup found (pass json path directly, as a list in a file, or via a schema)" ) ) else: self.rollup = set(rollup) else: warn( _( "Invalid value passed for rollup (pass json path directly, as a list in a file, or via a schema)" ) ) if self.xml: with codecs.open(json_filename, "rb") as xml_file: top_dict = xmltodict.parse( xml_file, force_list=(root_list_path,), force_cdata=True, ) # AFAICT, this should be true for *all* XML files assert len(top_dict) == 1 root_json_dict = list(top_dict.values())[0] list_dict_consistency(root_json_dict) json_filename = None if json_filename is None and root_json_dict is None: raise ValueError( _("Either json_filename or root_json_dict must be supplied") ) if json_filename is not None and root_json_dict is not None: raise ValueError( _("Only one of json_file or root_json_dict should be supplied") ) if not json_filename: if self.root_list_path is None: self.root_json_list = root_json_dict else: self.root_json_list = path_search( root_json_dict, self.root_list_path.split("/") ) if preserve_fields: # Extract fields to be preserved from input file (one path per line) preserve_fields_all = [] preserve_fields_input = [] with open(preserve_fields) as preserve_fields_file: for line in preserve_fields_file: line = line.strip() path_fields = line.rsplit("/", 1) preserve_fields_all = ( preserve_fields_all + path_fields + [line.rstrip("/")] ) preserve_fields_input = preserve_fields_input + [line.rstrip("/")] self.preserve_fields = set(preserve_fields_all) self.preserve_fields_input = set(preserve_fields_input) try: input_not_in_schema = set() for field in self.preserve_fields_input: if field not in self.schema_parser.flattened.keys(): input_not_in_schema.add(field) warn( _( "You wanted to preserve the following fields which are not present in the supplied schema: {}" ).format(list(input_not_in_schema)) ) except AttributeError: # no schema pass else: self.preserve_fields = None self.preserve_fields_input = None if json_filename: if self.root_list_path is None: path = "item" else: path = root_list_path.replace("/", ".") + ".item" json_file = codecs.open(json_filename, encoding="utf-8") self.root_json_list = ijson.items(json_file, path, map_type=OrderedDict) try: self.parse() except ijson.common.IncompleteJSONError as err: raise BadlyFormedJSONError(*err.args) except UnicodeDecodeError as err: raise BadlyFormedJSONErrorUTF8(*err.args) finally: if json_filename: json_file.close() def parse(self): for num, json_dict in enumerate(self.root_json_list): if json_dict is None: # This is particularly useful for IATI XML, in order to not # fall over on empty activity, e.g. <iati-activity/> continue self.parse_json_dict(json_dict, sheet=self.main_sheet) # only persist every 2000 objects. peristing more often slows down storing. # 2000 top level objects normally not too much to store in memory. if num % 2000 == 0 and num != 0: transaction.commit() # This commit could be removed which would mean that upto 2000 objects # could be stored in memory without anything being persisted. transaction.commit() if self.remove_empty_schema_columns: # Remove sheets with no lines of data for sheet_name, sheet in list(self.sub_sheets.items()): if not sheet.lines: del self.sub_sheets[sheet_name] if self.preserve_fields_input: nonexistent_input_paths = [] for field in self.preserve_fields_input: if field not in self.seen_paths: nonexistent_input_paths.append(field) if len(nonexistent_input_paths) > 0: warn( _( "You wanted to preserve the following fields which are not present in the input data: {}" ).format(nonexistent_input_paths) ) def parse_json_dict( self, json_dict, sheet, json_key=None, parent_name="", flattened_dict=None, parent_id_fields=None, top_level_of_sub_sheet=False, ): """ Parse a json dictionary. json_dict - the json dictionary sheet - a sheet.Sheet object representing the resulting spreadsheet json_key - the key that maps to this JSON dict, either directly to the dict, or to a dict that this list contains. Is None if this dict is contained in root_json_list directly. """ # Possibly main_sheet should be main_sheet_columns, but this is # currently named for consistency with schema.py if self.use_titles: sheet_key = sheet_key_title else: sheet_key = sheet_key_field parent_id_fields = copy.copy(parent_id_fields) or OrderedDict() if flattened_dict is None: flattened_dict = {} top = True else: top = False if parent_name == "" and self.filter_field and self.filter_value: if self.filter_field not in json_dict: return if json_dict[self.filter_field] != self.filter_value: return if top_level_of_sub_sheet: # Add the IDs for the top level of object in an array for k, v in parent_id_fields.items(): if self.xml: flattened_dict[sheet_key(sheet, k)] = v["#text"] else: flattened_dict[sheet_key(sheet, k)] = v if self.root_id and self.root_id in json_dict: parent_id_fields[sheet_key(sheet, self.root_id)] = json_dict[self.root_id] if self.id_name in json_dict: parent_id_fields[sheet_key(sheet, parent_name + self.id_name)] = json_dict[ self.id_name ] for key, value in json_dict.items(): # Keep a unique list of all the JSON paths in the data that have been seen. parent_path = parent_name.replace("/0", "") full_path = parent_path + key self.seen_paths.add(full_path) if self.preserve_fields: siblings = False for field in self.preserve_fields: if parent_path in field: siblings = True if siblings and full_path not in self.preserve_fields: continue if type(value) in BASIC_TYPES: if self.xml and key == "#text": # Handle the text output from xmltodict key = "" parent_name = parent_name.strip("/") flattened_dict[sheet_key(sheet, parent_name + key)] = value elif hasattr(value, "items"): self.parse_json_dict( value, sheet=sheet, json_key=key, parent_name=parent_name + key + "/", flattened_dict=flattened_dict, parent_id_fields=parent_id_fields, ) elif hasattr(value, "__iter__"): if all(type(x) in BASIC_TYPES for x in value): # Check for an array of BASIC types # TODO Make this check the schema # TODO Error if the any of the values contain the separator # TODO Support doubly nested arrays flattened_dict[sheet_key(sheet, parent_name + key)] = ";".join( map(str, value) ) else: if ( self.rollup and parent_name == "" ): # Rollup only currently possible to main sheet if self.use_titles and not self.schema_parser: warn( _( "Warning: No schema was provided so column headings are JSON keys, not titles." ) ) if len(value) == 1: for k, v in value[0].items(): if ( self.preserve_fields and parent_name + key + "/" + k not in self.preserve_fields ): continue if type(v) not in BASIC_TYPES: raise ValueError( _("Rolled up values must be basic types") ) else: if self.schema_parser: # We want titles and there's a schema and rollUp is in it if ( self.use_titles and parent_name + key + "/0/" + k in self.schema_parser.main_sheet.titles ): flattened_dict[ sheet_key_title( sheet, parent_name + key + "/0/" + k ) ] = v # We want titles and there's a schema but rollUp isn't in it # so the titles for rollup properties aren't in the main sheet # so we need to try to get the titles from a subsheet elif ( self.use_titles and parent_name + key in self.rollup and self.schema_parser.sub_sheet_titles.get( (parent_name, key,) ) in self.schema_parser.sub_sheets ): relevant_subsheet = self.schema_parser.sub_sheets.get( self.schema_parser.sub_sheet_titles.get( (parent_name, key,) ) ) if relevant_subsheet is not None: rollup_field_title = sheet_key_title( relevant_subsheet, parent_name + key + "/0/" + k, ) flattened_dict[ sheet_key(sheet, rollup_field_title) ] = v # We don't want titles even though there's a schema elif not self.use_titles and ( parent_name + key + "/0/" + k in self.schema_parser.main_sheet or parent_name + key in self.rollup ): flattened_dict[ sheet_key( sheet, parent_name + key + "/0/" + k ) ] = v # No schema, so no titles elif parent_name + key in self.rollup: flattened_dict[ sheet_key( sheet, parent_name + key + "/0/" + k ) ] = v elif len(value) > 1: for k in set(sum((list(x.keys()) for x in value), [])): if ( self.preserve_fields and parent_name + key + "/" + k not in self.preserve_fields ): continue if ( self.schema_parser and parent_name + key + "/0/" + k in self.schema_parser.main_sheet ): warn( _( 'More than one value supplied for "{}". Could not provide rollup, so adding a warning to the relevant cell(s) in the spreadsheet.' ).format(parent_name + key) ) flattened_dict[ sheet_key(sheet, parent_name + key + "/0/" + k) ] = _( "WARNING: More than one value supplied, consult the relevant sub-sheet for the data." ) elif parent_name + key in self.rollup: warn( _( 'More than one value supplied for "{}". Could not provide rollup, so adding a warning to the relevant cell(s) in the spreadsheet.' ).format(parent_name + key) ) flattened_dict[ sheet_key(sheet, parent_name + key + "/0/" + k) ] = _( "WARNING: More than one value supplied, consult the relevant sub-sheet for the data." ) if ( self.use_titles and self.schema_parser and (parent_name, key,) in self.schema_parser.sub_sheet_titles ): sub_sheet_name = self.schema_parser.sub_sheet_titles[ (parent_name, key,) ] else: sub_sheet_name = make_sub_sheet_name( parent_name, key, truncation_length=self.truncation_length ) if sub_sheet_name not in self.sub_sheets: self.sub_sheets[sub_sheet_name] = PersistentSheet( name=sub_sheet_name, connection=self.connection ) for json_dict in value: if json_dict is None: continue self.parse_json_dict( json_dict, sheet=self.sub_sheets[sub_sheet_name], json_key=key, parent_id_fields=parent_id_fields, parent_name=parent_name + key + "/0/", top_level_of_sub_sheet=True, ) else: raise ValueError(_("Unsupported type {}").format(type(value))) if top: sheet.append_line(flattened_dict) def __enter__(self): return self def __exit__(self, type, value, traceback): if self.persist: self.connection.close() self.db.close() os.remove(self.zodb_db_location) os.remove(self.zodb_db_location + ".lock") os.remove(self.zodb_db_location + ".index") os.remove(self.zodb_db_location + ".tmp")
StarcoderdataPython
3323350
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_pynab ---------------------------------- Tests for `pynab` module. """ import unittest from pprint import pformat from pynab.server import Server from pynab.db import db_session import pynab.parts from pynab import log import regex from pynab.categories import extract_features class TestPynab(unittest.TestCase): def setUp(self): self.server = None def test_connect(self): self.server = Server() self.server.connect() self.assertTrue(self.server) def test_capabilities(self): self.test_connect() print(self.server.connection.getcapabilities()) def test_fetch_headers(self): self.test_connect() groups = ['alt.binaries.teevee'] for group in groups: (_, _, first, last, _) = self.server.connection.group(group) for x in range(0, 40000, 20000): y = x + 20000 - 1 parts = self.server.scan(group, last - y, last - x) pynab.parts.save_all(parts) def test_group_update(self): import pynab.groups pynab.groups.update('alt.binaries.teevee') def test_request_process(self): import pynab.requests pynab.requests.process() def test_update_pres(self): from scripts.nzedb_pre_import import largeNzedbPre, nzedbPre largeNzedbPre() nzedbPre() def test_process_binaries(self): import pynab.binaries pynab.binaries.process() def test_process_releases(self): import pynab.releases pynab.releases.process() def test_update_blacklist(self): import pynab.util pynab.util.update_blacklist() def test_update_regex(self): import pynab.util pynab.util.update_regex() def test_process_requests(self): import pynab.requests pynab.requests.process() def test_quick_postproc(self): import scripts.quick_postprocess scripts.quick_postprocess.local_postprocess() def test_process_ids(self): import pynab.ids pynab.ids.process('movie') def test_remove_metablacks(self): from pynab.db import MetaBlack with db_session() as db: db.query(MetaBlack).delete() db.commit() def test_search_releases(self): from sqlalchemy_searchable import search from pynab.db import Release with db_session() as db: q = db.query(Release) q = search(q, 'engaged e06') print(q.first().search_name) def test_nzb_parse(self): import pynab.nzbs from pynab.db import NZB with db_session() as db: nzb = db.query(NZB).filter(NZB.id==1).one() import pprint pprint.pprint(pynab.nzbs.get_nzb_details(nzb)) def test_scrape_nzbsu(self): import requests import time from bs4 import BeautifulSoup url = 'https://api.nzb.su/api?apikey=4d901407e99ae6c942416585c8a44673' ua = {'User-agent': 'CouchPotato 3.0.1'} results = [] for category in [5020,5030,5040,5050,5060,5070,5080,2010,2020,2030,2040,2050,2060,2070,4010,4020,4030,1010,1020,1030,1050,1080,1090,1100,4050,3010,3020,3030,3040,3050,7010,7020,7030,6010,6020,6030,6040,6050,6060,6070,8010]: data = requests.get(url + '&t=search&cat={}&o=json'.format(category), headers=ua).json() if 'item' in data['channel']: results.extend(data['channel']['item']) with open('dog_releases.csv', 'w', encoding='utf-8') as f: f.write('"r","name","name","category_id","name","name"\r\n') # turn results into useful data for i, result in enumerate(results): try: resp = requests.get(url + '&t=details&id={}'.format(result['attr'][3]['@attributes']['value']), headers=ua) soup = BeautifulSoup(resp.text) group = soup.find(attrs={'name':'group'})['value'] f.write('"{}","{}","{}","{}","{}","{}"\r\n'.format(i, result['title'], group, result['attr'][1]['@attributes']['value'], *result['category'].split(' > '))) time.sleep(5) except: continue def test_categorise(self): import nltk import regex import csv import random import pprint #def determine_category(name, group_name=''): def load_data(filename): with open(filename, encoding='utf-8') as f: f.readline() csvfile = csv.reader(f, delimiter=',', quotechar='"') data = [] for line in csvfile: features = extract_features(line[1]) features['group'] = line[2] features['name'] = line[1] data.append((features, line[3])) random.shuffle(data) return data train_data = load_data('tagged_releases_train.csv') test_data = load_data('tagged_releases_test.csv') nzbsu_data = load_data('tagged_releases_test_nzbsu.csv') train_set = train_data test_set = test_data nzbsu_set = nzbsu_data classifier = nltk.NaiveBayesClassifier.train(train_set) from pickle import dump with open('release_categoriser.pkl', 'wb') as out: dump(classifier, out, -1) errors = [] for features, tag in nzbsu_set: guess = classifier.classify(features) if guess[:2] != tag[:2]: errors.append((tag, guess, features)) for tag, guess, features in errors: print('correct={} guess={} name={}'.format(tag, guess, features['name'].encode('utf-8'))) print(classifier.show_most_informative_features()) print('test: {}'.format(nltk.classify.accuracy(classifier, test_set))) print('test: {}'.format(nltk.classify.accuracy(classifier, nzbsu_set))) def test_load_and_categorise(self): from pynab.db import db_session, Release, Group, windowed_query from pickle import load with open('release_categoriser.pkl', 'rb') as cat_file: categoriser = load(cat_file) with db_session() as db: errors = [] i = 0 query = db.query(Release).join(Group) count = query.count() for result in windowed_query(query, Release.id, 500): features = extract_features(result.name) features['group'] = result.group.name features['name'] = result.name guess = categoriser.classify(features) if guess[:2] != str(result.category_id)[:2]: errors.append((result.category_id, guess, features)) i += 1 if i % 500 == 0: print('{} - {:.3f}%'.format((i/count)*100, (1 - (len(errors) / i)) * 100)) for tag, guess, features in errors: print('correct={} guess={} name={}'.format(tag, guess, features['name'].encode('utf-8'))) print('accuracy={}'.format(1 - (len(errors)/i))) def tearDown(self): try: self.server.connection.quit() except: pass if __name__ == '__main__': unittest.main()
StarcoderdataPython
1718023
<filename>main.py<gh_stars>0 import os import requests from pathlib import Path from requests.exceptions import ConnectionError test_results = {} # # CHECK ENVIRONMENT VARIALBES # print('--> Reading the environment variables') print(f'ENVIRONMENT: {os.environ}') test_results['environment'] = os.environ # # CHECK INPUT_FILE # try: with open(os.environ['INPUT_FILE'], 'rb') as f: print('--> Reading input file') print(f'INPUT FILE: {f.read()}') test_results['READ_INPUT_FILE'] = {'Success': True} except Exception as e: print('x-> Reading input file failed') test_results['READ_INPUT_FILE'] = {'Success': False, 'Exception': e} # # CHECK OUTPUT FILE # try: with open(os.environ['OUTPUT_FILE'], 'w') as f: print('--> Writing to output file (contents: test)') f.write('test') with open(os.environ['OUTPUT_FILE'], 'r') as f: print('--> Reading output file back and check') print(f.read()) test_results['WRITE_READ_OUTPUT_FILE'] = {'Success': True} except Exception as e: print('x-> Reading or Writing output file failed') test_results['WRITE_READ_OUTPUT_FILE'] = {'Success': False, 'Exception': e} # # CHECK TOKEN FILE # try: with open(os.environ['TOKEN_FILE'], 'r') as f: print('--> Reading token file') print(f'TOKEN: {f.read()}') test_results['READ_TOKEN_FILE'] = {'Success': True} except Exception as e: print('x-> Reading token file failed') test_results['READ_TOKEN_FILE'] = {'Success': False, 'Exception': e} # # CHECK TEMPORARY VOLUME # print('--> Test temporary volume') try: temp_file = f'{os.environ["TEMPORARY_FOLDER"]}/test.txt' with open(temp_file, 'w') as f: print(f'--> Writing to temporary file: {temp_file}') f.write('test') test_results['TEMPORARY_VOLUME'] = {'Success': True} except Exception as e: print('x-> Writing to temporary folder failed') test_results['TEMPORARY_VOLUME'] = {'Success': False, 'Exception': e} print('--> Test that the temporary file is created') try: file_exists = Path(temp_file).exists() print(f'FILE CREATED: {file_exists}') test_results['TEMPORARY_VOLUME_FILE_EXISTS'] = {'Success': file_exists} except Exception as e: print('x-> Test temporary volume failed') test_results['TEMPORARY_VOLUME_FILE_EXISTS'] = {'Success': False, 'Exception': e} # --> Check that we can reach the local proxy print('--> Test that we can reach the local proxy (and thereby the server)') try: host = os.environ['HOST'] port = os.environ['PORT'] response = requests.get(f'{host}:{port}/version') ok = response.status_code == 200 test_results['LOCAL_PROXY_CENTRAL_SERVER'] = {'Success': ok} except Exception as e: print('x-> Using the local proxy failed') test_results['LOCAL_PROXY_CENTRAL_SERVER'] = {'Success': False, 'Exception': e} # --> check that we cannot reach another address print('--> Verify that the container has no internet connection') try: try: response = requests.get('https://google.nl') except ConnectionError as e: print('--> Connection error catched') print(e) test_results['ISOLATION_TEST'] = {'Success': ok} except Exception as e: print('x-> Testing an external connection failed...') test_results['ISOLATION_TEST'] = {'Success': False, 'Exception': e} print(test_results)
StarcoderdataPython
1765907
import numpy as np import pandas as pd import tensorflow as tf import time import argparse from matplotlib import pyplot as plt from random_effect_logistic_regression_utils import generate_data, timestamp import sys sys.path.append('../models') from random_effect_logistic_regression import random_effect_logistic_regression as RELR from random_effect_logistic_regression import bayesian_random_effect_logistic_regression as BRELR # Turn GPUs off import os os.environ["CUDA_VISIBLE_DEVICES"] = "-1" EPS = 1e-6 def d(f, params): # Take the derivative of f # returned value is a function df/d[beta0, beta, alpha] def df(x,y,level): with tf.GradientTape(persistent=True) as g: g.watch(params) target = f(x,y,level) est0 = g.gradient(target, params) est = np.concatenate([e.numpy().reshape([-1]) for e in est0], axis=0) return est return df def get_mlmc_cost(N, max_level, b, w0): # compute the cost of MLMC estimation # when the size of x (and that of y) is N if max_level==0: levels = np.array([0]) weights = np.array([1.]) else: weights = 2.**(-(b+1)/2*np.arange(max_level)) weights /= sum(weights) weights = np.concatenate([[w0], (1-w0)*weights]) levels = np.arange(max_level+1) cost = N * weights[0] + N * sum( weights[1:] * (2**levels[1:] + 2**(levels[1:]-1)) ) return cost # Argparse parser = argparse.ArgumentParser() parser.add_argument("--output_file", default="../../out/random_effect_logistic_regression/learning_curve_{}.csv".format(timestamp()), type=str, help="Output file name. \nAn example usage: `python random_effect_logistic_regression_learning_log.py --output_file example.csv`") args = parser.parse_args() input_files = args.input_files.split() output_file = args.output_file x_axis = args.x_axis time_discretization = args.time_discretization ### Initializations N_total = 100000 B,T,D = (1000, 2, 3) if tf.test.is_gpu_available() else (100, 2, 3)#(100, 2, 3) cost_nmc = B * 2**9 cost_mlmc = get_mlmc_cost(B, max_level=9, b=1.8, w0=0.9) cost_sumo = B * 9 B_mlmc = np.math.ceil(B * (cost_nmc / cost_mlmc)) B_sumo = np.math.ceil(B * (cost_nmc / cost_sumo)) alpha = np.float64(1.) beta0 = np.float64(0.) beta = np.array([0.25, 0.50, 0.75]) #np.random.randn(D) / np.sqrt(D) model = RELR(D=D) # True model parameters X,Y,_ = generate_data(N_total, D, T, beta0, beta, alpha) objectives = { "iwelbo1": lambda x, y: model.IWELBO(x, y, n_MC=1), "iwelbo8": lambda x, y: model.IWELBO(x, y, n_MC=8), "iwelbo64": lambda x, y: model.IWELBO(x, y, n_MC=64), "iwelbo512": lambda x, y: model.IWELBO(x, y, n_MC=512), "iwelbo512_mlmc": lambda x, y: model.IWELBO_MLMC(x, y, max_level=9, b=1.8, w0=0.9, randomize=False), "iwelbo512_randmlmc": lambda x, y: model.IWELBO_MLMC(x, y, max_level=9, b=1.8, w0=0.9, randomize=True), "iwelbo512_sumo": lambda x, y: model.IWELBO_SUMO(x, y, K_max=512), "jvi8": lambda x, y: model.JVI_IWELBO(x, y, n_MC=8), "jvi64": lambda x, y: model.JVI_IWELBO(x, y, n_MC=64), "jvi512": lambda x, y: model.JVI_IWELBO(x, y, n_MC=512), } # for parallelization #obj_id = int(input()) #objectives = {k:objectives[k] for i, k in enumerate(objectives.keys()) if i == obj_id} #print(objectives) n_train_steps = { "iwelbo1": 2000, "iwelbo8": 2000, "iwelbo64": 2000, "iwelbo512": 17000, "iwelbo512_mlmc": 3000, "iwelbo512_randmlmc": 3000, "iwelbo512_sumo": 2000, "jvi8": 2000, "jvi64": 2000, "jvi512": 17000, } data = [] n_repeat = 100 # TODO: change to 20 params_repeated = {name:[] for name in objectives.keys()} for name, obj in objectives.items(): for i in range(n_repeat): print("training {}.... #iter:{} ".format(name,i)) # initialize parameters model.beta0 = tf.Variable(0.0, dtype=tf.float64) model.beta = tf.Variable(np.zeros([model.D]), dtype=tf.float64) model.alpha = tf.Variable(0.0, dtype=tf.float64) # pointers to the parameters of trained model params_list = [ model.beta0, model.beta, model.alpha ] optimizer = tf.keras.optimizers.Adam(0.005) # Training start = time.time() for t in range(n_train_steps[name] + 1): # Balance the cost of mlmc and nmc when level=9 (n_MC=512) # by changing the batch size adoptively if 'mlmc' in name: batch = np.random.choice(np.arange(N_total), B_mlmc) elif 'sumo' in name: batch = np.random.choice(np.arange(N_total), B_sumo) else: batch = np.random.choice(np.arange(N_total), B) x = X[batch] y = Y[batch] # Train step with tf.GradientTape() as g: g.watch(params_list) loss = - obj(x, y) dparams = g.gradient(loss, params_list) optimizer.apply_gradients(zip(dparams, params_list)) # Take a log if t%5==0: data.append({ "objective": name, "#iter": i, "step": t, "elapsed time": time.time() - start, "alpha": model.alpha.numpy(), "beta0": model.beta0.numpy(), "beta1": model.beta.numpy()[0], "beta2": model.beta.numpy()[1], "beta3": model.beta.numpy()[2], "squared error": sum( np.concatenate([ [alpha - model.alpha.numpy()], [beta0 - model.beta0.numpy()], beta - model.beta.numpy() ]) ** 2 ) }) if t%200==0 and i == 0: print("#iter: {},\tloss: {}".format(t, loss.numpy())) print() print("\n======== Results ========\n") data = pd.DataFrame( data=data, columns = [ "objective", "#iter", "elapsed time", "step", "alpha", "beta0", "beta1", "beta2", "beta3", "squared error" ] ) print(data) data.to_csv(output_file) print("\nSaved the results to:\n{}".format(output_file))
StarcoderdataPython
3357980
from datetime import datetime from pathlib import Path from pony.orm import Database, Optional, PrimaryKey, Required, Set, db_session from PhotoPhixer.common.config import SysConfig def db_connection(config: SysConfig) -> Database: """ This routine must be used to create and manage data in database. :param config: A config instance where important DB properties must be set :return: A database connection to handle data """ config_dict = config.list_config() sqlite_path = Path(config_dict['GLOBAL']['sqlite_path']) db = Database( config_dict['GLOBAL']['db_engine'], str(sqlite_path), create_db=True) class File(db.Entity): id = PrimaryKey(str) name = Optional(str) file_type = Optional(str) device = Optional(str) has_metadata = Optional(bool) date_processing = Optional(datetime) date_file_creation = Optional(datetime) date_last_change = Optional(datetime) dropbox_hash = Optional(str) directory = Optional('Directory') class Directory(db.Entity): id = PrimaryKey(str) path = Required(str) date_creation = Required(datetime) date_last_update = Optional(datetime) files = Set(File) db.generate_mapping(create_tables=True) add_null_objects(db) return db @db_session def add_null_objects(db: Database) -> None: """ This routine creates null objects into Database so we can return these objects instead of raising an error or different objects types. :param db: Database connection :return: None """ if not db.File.exists(id='None'): null_file = db.File( id='None', name='None', file_type='None' ) if not db.Directory.exists(id='None'): db.Directory( id='None', path='None', date_creation=datetime.now(), date_last_update=datetime.now(), files=null_file ) @db_session def add_device_directories(config: SysConfig, db: Database) -> None: """ :param config: :param db: Database connection :return: None """ dir_list = list() config_dict = config.list_config() for device_dir in config_dict['DROPBOX']:
StarcoderdataPython
47149
<filename>lists.py # Set number of participants num_dyads = 4 num_participants = num_dyads*2 # Create lists for iterations participants = list(range(num_participants)) dyads = list(range(num_dyads))
StarcoderdataPython
3266848
<reponame>omaskery/classdict from .toplevel import to_dict, from_dict, can_consume_dict, can_become_dict from .errors import * class FieldType(object): def __init__(self, expected_type=None, required=False): self.required = required self.type = expected_type self._name = None def set_name(self, name): self._name = name def validate(self, value): if value is None and self.required: raise RequiredFieldError( "field {name} absent but is required".format( name=self._name ) ) if self.type is not None and value is not None and not isinstance(value, self.type): raise ValidationError( "field {name} got value of unexpected type {got}, expected: {type}".format( got=type(value), name=self._name, type=self.type ) ) def to_dict(self, value): return to_dict(value) def from_dict(self, value): return from_dict(self.type, value) class EmbeddedFieldType(FieldType): def __init__(self, objdict_class, **kwargs): if 'expected_type' not in kwargs: kwargs['expected_type'] = objdict_class super().__init__(**kwargs) self._class = objdict_class class ListFieldType(FieldType): def validate(self, value): if not isinstance(value, list): raise ValidationError( "field {name} got value of unexpected type {got}, expected a list of {type}".format( got=type(value), name=self._name, type=self.type ) ) list(map(super().validate, value)) def to_dict(self, value): return list(map(to_dict, value)) def from_dict(self, value): return list(map(lambda x: from_dict(self.type, x), value)) class TupleFieldType(FieldType): def __init__(self, *args, **kwargs): if 'expected_type' in kwargs: raise ObjDictError("expected type is not compatible with TupleFieldType, specify element types as *args") kwargs['expected_type'] = args super().__init__(**kwargs) def validate(self, value): if not isinstance(value, (tuple, list)): raise ValidationError( "field {name} got value of unexpected type {got}, expected a tuple of types ({type})".format( name=self._name, got=type(value), type=", ".join(map(str, self.type)) ) ) if len(value) != len(self.type): raise ValidationError( "field {name} expected a tuple of length {len}, got tuple of length {got}".format( name=self._name, len=len(self.type), got=len(value) ) ) for index, (expected, got) in enumerate(zip(self.type, value)): if not isinstance(got, expected): raise ValidationError("field {name} expected element {nth} to be {type}, got type {got}".format( name=self._name, nth=index, type=expected, got=type(got) )) def to_dict(self, value): return tuple(map(to_dict, value)) def from_dict(self, value): return tuple([ cls.from_dict(element) for element, cls in zip(value, self.type) ])
StarcoderdataPython
111132
#!/usr/bin/env python from M2Crypto import X509 import binascii import hashlib import ssl import sys def main(argv): if len(argv) != 1 and len(argv) != 2: print "Usage: pin.py [<certificate_path> | <host> <port>]" return if (len(argv) == 1): cert = X509.load_cert(argv[0]) else: peerCert = ssl.get_server_certificate((argv[0], int(argv[1]))) cert = X509.load_cert_string(peerCert) pubkey = cert.get_pubkey().as_der() digest = hashlib.sha256() digest.update(pubkey) sha256 = digest.digest() print "Calculating PIN for certificate: " + cert.get_subject().as_text() print "\n" print "Public Key Pins:" print "----------------" print "SHA256:" + binascii.hexlify(sha256) print "PLAIN:" + binascii.hexlify(pubkey) print "\n" print "Certificate Pins:" print "-----------------" print "CERTSHA256:" + cert.get_fingerprint('sha256') print "CERTPLAIN:" + binascii.hexlify(cert.as_der()) if __name__ == '__main__': main(sys.argv[1:])
StarcoderdataPython
4090
<gh_stars>1-10 """viewer application which allows to interactively view spatio-temporal gap filling results""" import os import argparse from datetime import datetime, timedelta from tkinter import Canvas, Tk, Button, RAISED, DISABLED, SUNKEN, NORMAL import numpy as np from PIL import Image, ImageTk import probgf.media as media class MainWindow(): def next(self, event=None): self.curr_img = (self.curr_img + 1) % len(self.imgs_orig) self.refresh() def prev(self, event=None): self.curr_img = (self.curr_img - 1) % len(self.imgs_orig) self.refresh() def click_wheel(self, event): self.start_drag = (event.x + self.shift_x, event.y + self.shift_y) def click_left(self, event): if not self.over_button: self.prev() def click_right(self, event): if not self.over_button: self.next() def refresh(self): zoom = float(self.zoom) / 100 self.start_x = int(self.img_w_f / 2 - self.img_w_f / zoom / 2) + self.shift_x self.end_x = int(self.start_x + self.img_w_f / zoom) self.start_y = int(self.img_w_f / 2 - self.img_w_f / zoom / 2) + self.shift_y self.end_y = int(self.start_y + self.img_w_f / zoom) if not self.mask_toggle: self.b_masks.config(relief=RAISED) img1 = self.imgs_orig[self.curr_img] img2 = self.imgs_pred[self.curr_img] else: self.b_masks.config(relief=SUNKEN) img1 = self.imgs_orig_m[self.curr_img] img2 = self.imgs_pred_m[self.curr_img] img1 = img1.crop((self.start_x, self.start_y, self.end_x, self.end_y)).resize((self.img_w, self.img_w), Image.ANTIALIAS) img2 = img2.crop((self.start_x, self.start_y, self.end_x, self.end_y)).resize((self.img_w, self.img_w), Image.ANTIALIAS) self.imgs_orig_v[self.curr_img] = ImageTk.PhotoImage(img1) self.imgs_pred_v[self.curr_img] = ImageTk.PhotoImage(img2) self.canvas.itemconfig(self.i_left, image = self.imgs_orig_v[self.curr_img]) self.canvas.itemconfig(self.i_right, image = self.imgs_pred_v[self.curr_img]) self.canvas.itemconfig(self.i_list, image = self.imagelists[self.curr_img]) self.canvas.itemconfig(self.day_info, text='{} - cloud cover {:06.2f}% - estimated MAE {}'.format(self.dates[self.curr_img], self.cc[self.curr_img] * 100, self.errors[self.curr_img])) if self.zoom == 100: self.canvas.itemconfig(self.zoom, text='') self.b_reset.config(state=DISABLED) else: self.canvas.itemconfig(self.zoom, text='ZOOM: {:3d}%'.format(self.zoom)) self.b_reset.config(state=NORMAL) def zoomer(self, event): if event.num == 4 or event.delta == 120 or event.keysym == 'plus': self.zoom += 20 elif event.delta == 240: self.zoom += 40 elif event.delta == 360: self.zoom += 60 else: if self.zoom - 20 >= 100: self.zoom -= 20 if self.zoom == 100: self.reset_transform() self.refresh() def drag_roi(self, event): self.shift_x = min(max(self.start_drag[0] - event.x, 0 - int(self.img_w_f / 2 - self.img_w_f / self.zoom / 2)), int(self.img_w_f / 2 - self.img_w_f / self.zoom / 2)) self.shift_y = min(max(self.start_drag[1] - event.y, 0 - int(self.img_w_f / 2 - self.img_w_f / self.zoom / 2)), int(self.img_w_f / 2 - self.img_w_f / self.zoom / 2)) self.refresh() def toggle_mask(self, event=None): self.mask_toggle = not self.mask_toggle self.refresh() def reset_transform(self, event=None): self.mask_toggle = False self.zoom = 100 self.shift_x = 0 self.shift_y = 0 self.refresh() def button_enter(self, event): self.over_button = True def button_leave(self, enter): self.over_button = False def __init__(self, root, w, h, imgs_p, imgs_o, imgs_m, dates, errors, logos): self.dates = dates self.errors = errors # setup images self.img_w = int(h * 0.68) # width of each displayed image self.imgs_orig_m = [] # masked full images self.imgs_pred_m = [] self.imgs_orig = [] # unmasked full images self.imgs_pred = [] self.cc = [] for index, img in enumerate(imgs_p): self.imgs_orig.append(imgs_o[index].resize((self.img_w, self.img_w), resample=0)) self.imgs_pred.append(img.resize((self.img_w, self.img_w), resample=0)) self.imgs_orig_m.append(Image.blend(self.imgs_orig[-1], imgs_m[index].convert(mode='RGB').resize((self.img_w, self.img_w), resample=0), alpha=.5)) self.imgs_pred_m.append(Image.blend(self.imgs_pred[-1], imgs_m[index].convert(mode='RGB').resize((self.img_w, self.img_w), resample=0), alpha=.5)) self.cc.append(1 - np.count_nonzero(np.array(imgs_m[index])) / np.array(imgs_m[index]).size) self.curr_img = 0 # text labels and logos h_logos = int(h / 17) b_logos = int(w / 100) self.canvas = Canvas(root, width=w, height=h) self.canvas.pack() self.canvas.configure(background='white') self.logo1 = ImageTk.PhotoImage(logos[0].resize((int(h_logos / logos[0].size[1] * logos[0].size[0]), h_logos), Image.ANTIALIAS)) self.logo2 = ImageTk.PhotoImage(logos[1].resize((int(h_logos / logos[1].size[1] * logos[1].size[0]), h_logos), Image.ANTIALIAS)) self.logo3 = ImageTk.PhotoImage(logos[2].resize((int(h_logos / logos[2].size[1] * logos[2].size[0]), h_logos), Image.ANTIALIAS)) self.canvas.create_image(int(self.logo1.width() / 2 + b_logos), int(self.logo1.height() / 2 + b_logos), image=self.logo1) self.canvas.create_image(int(w - self.logo2.width() / 2 - b_logos), int(self.logo2.height() / 2 + b_logos), image=self.logo2) self.canvas.create_image(int(w - self.logo3.width() / 2 - b_logos), int(h - (self.logo3.height() / 2 + b_logos)), image=self.logo3) self.canvas.create_text(w / 2, h * 0.06, font=("Courier", int(h / 25)), text='Gap Filling Viewer') self.canvas.create_text(w / 3.9, h * 0.19, font=("Courier", int(h / 35)), text='Observed') self.canvas.create_text(w - w / 3.9, h * 0.19, font=("Courier", int(h / 35)), text='Predicted') self.day_info = self.canvas.create_text(w / 2, h * 0.13, font=("Courier", int(h / 30)), text='') self.zoom = self.canvas.create_text(w * 0.12, h * 0.94, font=("Courier", int(h / 50)), text='') # image timeline imagelist_h = int(self.img_w / len(self.imgs_pred)) + 1 imagelist_a = np.zeros((len(self.imgs_pred), imagelist_h, imagelist_h, 3), dtype='uint8') for index in range(len(self.imgs_pred)): imagelist_a[index, :, :, :] = np.array(self.imgs_pred[index].resize((imagelist_h, imagelist_h), Image.ANTIALIAS)) self.imagelists = [] for index in range(len(self.imgs_pred)): c_list = np.array(imagelist_a) c_list[index, :int(w / 600), :, :] = 255 c_list[index, (imagelist_h - int(w / 600)):, :, :] = 255 c_list[index, :, :int(w / 600), :] = 255 c_list[index, :, (imagelist_h - int(w / 600)):, :] = 255 self.imagelists.append(ImageTk.PhotoImage(Image.fromarray(c_list.reshape(len(self.imgs_pred) * imagelist_h, imagelist_h, 3)))) self.i_list = self.canvas.create_image(w * 0.5, h * 0.56, image=self.imagelists[self.curr_img]) # images and buttons self.img_w_f = self.imgs_orig[0].size[0] # full image width self.imgs_orig_v = [ImageTk.PhotoImage(img.resize((self.img_w, self.img_w), Image.ANTIALIAS)) for img in self.imgs_orig] # images for visualization self.imgs_pred_v = [ImageTk.PhotoImage(img.resize((self.img_w, self.img_w), Image.ANTIALIAS)) for img in self.imgs_pred] self.i_left = self.canvas.create_image(w / 3.9, h * 0.56, image=self.imgs_orig_v[self.curr_img]) self.i_right = self.canvas.create_image(w - w / 3.9, h * 0.56, image=self.imgs_pred_v[self.curr_img]) self.b_masks = Button(root, font=("Courier", int(h / 50)), text = "Show masks", command=self.toggle_mask) self.b_reset = Button(root, font=("Courier", int(h / 50)), text = "Reset view", command=self.reset_transform, state=DISABLED) self.b_quit = Button(root, font=("Courier", int(h / 50)), text = "Quit", command=self.canvas.master.destroy) self.reset_transform() self.canvas.create_window(w * 0.30, h * 0.94, window=self.b_masks) self.canvas.create_window(w * 0.50, h * 0.94, window=self.b_reset) self.canvas.create_window(w * 0.70, h * 0.94, window=self.b_quit) # bind buttons and keys root.bind("q", lambda e: self.canvas.master.destroy()) root.bind("r", self.reset_transform) root.bind("m", self.toggle_mask) root.bind("<Right>", self.next) root.bind("<Left>", self.prev) root.bind("<Down>", self.next) root.bind("<Up>", self.prev) root.bind("<Button-3>", self.click_right) root.bind("<Button-1>", self.click_left) root.bind("<Button-2>", self.click_wheel) root.bind("<Button-4>", self.zoomer) root.bind("<Button-5>", self.zoomer) root.bind("<MouseWheel>", self.zoomer) root.bind("<B2-Motion>", self.drag_roi) root.bind("+", self.zoomer) root.bind("-", self.zoomer) self.over_button = False self.b_masks.bind("<Enter>", self.button_enter) self.b_masks.bind("<Leave>", self.button_leave) self.b_reset.bind("<Enter>", self.button_enter) self.b_reset.bind("<Leave>", self.button_leave) self.b_quit.bind("<Enter>", self.button_enter) self.b_quit.bind("<Leave>", self.button_leave) parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('-l', '--left', default='imgs/original/', help='directory with images which are shown on the left') parser.add_argument('-r', '--right', default='imgs/pred_outline_lin_spatial_clouds0_2/', help='directory with images which are shown on the right') parser.add_argument('-m', '--masks', default='imgs/mask/', help='directory with mask images') parser.add_argument('-R', '--report', default='report_lin_spatial_clouds0_2.csv', help='report containing date and error information for the right hand images') parser.add_argument('-y', '--year', type=int, default=2018, help='year of data acquisition') parser.add_argument('-W', '--width', type=int, default=1280, help='window width') parser.add_argument('-H', '--height', type=int, default=720, help='window height') args = parser.parse_args() imgs_o = [Image.open(img) for img in sorted([os.path.join(args.left, img) for img in os.listdir(args.left)])] imgs_p = [Image.open(img) for img in sorted([os.path.join(args.right, img) for img in os.listdir(args.right)])] imgs_m = [Image.open(img) for img in sorted([os.path.join(args.masks, img) for img in os.listdir(args.masks)])] report = np.genfromtxt(args.report, delimiter=',', dtype=float)[1:-1] dates = [(datetime(args.year, 1, 1) + timedelta(int(report[day, 1]) - 1)).strftime('%b %d %Y') for day in range(report.shape[0])] errors = ['{:4.1f}'.format(error) if error != 0.0 else 'n.a. ' for error in report[:, 5]] logos = [media.logo1, media.logo2, media.logo3] if len(imgs_o) != len(dates): raise RuntimeError('Different number of images in {} than days in the report {}!'.format(args.left, args.report)) if len(imgs_p) != len(dates): raise RuntimeError('Different number of images in {} than days in the report {}!'.format(args.right, args.report)) if len(imgs_m) != len(dates): raise RuntimeError('Different number of images in {} than days in the report {}!'.format(args.masks, args.report)) root = Tk() root.title('Gap Filling Viewer') root.geometry("%dx%d+0+0" % (args.width, args.height)) MainWindow(root, args.width, args.height, imgs_p, imgs_o, imgs_m, dates, errors, logos) root.focus_set() root.mainloop()
StarcoderdataPython
3203779
#!/usr/bin/python from functools import wraps def log(fun): @wraps(fun) def do_log(*args, **kwargs): print(f'{fun.__name__} was called') return fun(*args, **kwargs) return do_log @log def power(x): return x * x res = power(4) print(res)
StarcoderdataPython
1772652
<filename>Abbot/script.py def inv_me(num, den): ans = [] ans.append(num // den) num = num % den reducer = 0 while True: reducer += 1 num, den = den * reducer, num ans.append(num // den) num = num % den if num == 0: break return bytes(ans) def inv_you(num, den): ans = [] ans.append(num // den) num = num % den reducer = 1 while True: reducer *= -1 num, den = den * reducer, num ans.append(abs(num // den)) num = num % den if num == 0: break return bytes(ans) def inv_us(num, den): ans = [] ans.append(num // den) num = num % den while True: num, den = den, num ans.append(abs(num // den)) num = num % den if num == 0: break return bytes(ans) enc = [ (inv_us, 4874974328610108385835995981839358584964018454799387862, 72744608672130404216404640268150609115102538654479393), (inv_you, 39640220997840521464725453281273913920171987264976009809, 366968282179507143583456804992018400453304099650742276), (inv_me, 145338791483840102508854650881795321139259790204977, 1529712573230983998328149700664285268430918011078), (inv_me, 84704403065477663839636886654846156888046890191627, 717773708720775877427974283328022404459326394028), (inv_you, 287605888305597385307725138275886061497915866633976011, 8712550395581704680675139804565590824398265004367939) ] flag = b'' for func, num, den in enc: flag += func(num, den) print(flag)
StarcoderdataPython
3292376
class UnknownError(Exception): pass class ImageCheckError(Exception): pass class ImageAuthenticationError(ImageCheckError): pass class ImageNameError(ImageCheckError): pass
StarcoderdataPython
1782690
from .base import * import django_heroku import dj_database_url SECRET_KEY = config('SECRET_KEY') DEBUG = config('DEBUG', cast=bool) # Honor the 'X-Forwarded-Proto' header for request.is_secure() SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') ALLOWED_HOSTS = ['https://learnwithanarul.herokuapp.com/','*'] # database management DATABASES = {'default': dj_database_url.config()} # Configure Django App for Heroku. django_heroku.settings(locals()) # whitenoise collectstatic STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' EMAIL_HOST = config('EMAIL_HOST') EMAIL_HOST_USER = config('EMAIL_HOST_USER') EMAIL_HOST_PASSWORD = config('EMAIL_HOST_PASSWORD') EMAIL_PORT = config('EMAIL_PORT') EMAIL_USE_TLS = config('EMAIL_USE_TLS') EMAIL_BACKEND = config('EMAIL_BACKEND') DEFAULT_FROM_EMAIL = config('DEFAULT_FROM_EMAIL') # cloudinary config for heroku # cloudinary.config( # cloud_name = 'mohammadanarul', # api_key = '867477367854119', # api_secret = '<KEY>' # )
StarcoderdataPython
1676499
<reponame>fqrouter/fquni import signal import socket import logging import os import time import argparse import dpkt.ip LOGGER = logging.getLogger(__name__) udp_socket = socket.socket(family=socket.AF_INET, type=socket.SOCK_DGRAM) udp_socket.setblocking(False) SO_MARK = 36 udp_socket.setsockopt(socket.SOL_SOCKET, SO_MARK, 0xcafe) udp_socket.setsockopt(socket.SOL_IP, socket.IP_TTL, 250) SERVER_IP = None SERVER_PORT = None def main(): global SERVER_IP, SERVER_PORT from netfilterqueue import NetfilterQueue argument_parser = argparse.ArgumentParser() argument_parser.add_argument('--log-file') argument_parser.add_argument('--log-level', choices=['INFO', 'DEBUG'], default='INFO') argument_parser.add_argument('--queue-number', default=0, type=int) argument_parser.add_argument('server', help='x.x.x.x:19842') args = argument_parser.parse_args() log_level = getattr(logging, args.log_level) logging.getLogger().setLevel(log_level) logging.getLogger().handlers = [] if args.log_file: handler = logging.handlers.RotatingFileHandler( args.log_file, maxBytes=1024 * 16, backupCount=0) handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s %(message)s')) handler.setLevel(log_level) logging.getLogger().addHandler(handler) handler = logging.StreamHandler() handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s %(message)s')) handler.setLevel(log_level) logging.getLogger().addHandler(handler) signal.signal(signal.SIGTERM, lambda signum, fame: os._exit(1)) signal.signal(signal.SIGINT, lambda signum, fame: os._exit(1)) SERVER_IP, SERVER_PORT = args.server.split(':') SERVER_PORT = int(SERVER_PORT) nfqueue = NetfilterQueue() nfqueue.bind(args.queue_number, handle_nfqueue_element) LOGGER.info('fquni client started') nfqueue.run() def handle_nfqueue_element(nfqueue_element): try: raw_ip_packet = nfqueue_element.get_payload() try: ip_packet = dpkt.ip.IP(raw_ip_packet) except: LOGGER.error('not ip packet') nfqueue_element.accept() return l4_packet = getattr(ip_packet, 'tcp', None) or getattr(ip_packet, 'udp', None) if not l4_packet: LOGGER.error('%s not tcp or udp' % repr(ip_packet)) nfqueue_element.accept() return ip_packet.src_ip = socket.inet_ntoa(ip_packet.src) ip_packet.dst_ip = socket.inet_ntoa(ip_packet.dst) if SERVER_IP == ip_packet.dst_ip: nfqueue_element.accept() return if getattr(ip_packet, 'tcp', None) and dpkt.tcp.TH_SYN == ip_packet.tcp.flags: LOGGER.info('%s:%s =syn=> %s:%s' % (ip_packet.src_ip, ip_packet.tcp.sport, ip_packet.dst_ip, ip_packet.tcp.dport)) elif getattr(ip_packet, 'udp', None) and 53 == ip_packet.udp.dport: LOGGER.info('%s:%s =dns=> %s:%s' % (ip_packet.src_ip, ip_packet.udp.sport, ip_packet.dst_ip, ip_packet.udp.dport)) udp_socket.sendto(raw_ip_packet, (SERVER_IP, SERVER_PORT)) ip_packet.ttl = 3 l4_packet.sum = 1 ip_packet.sum = 0 nfqueue_element.set_payload(str(ip_packet)) nfqueue_element.accept() except: LOGGER.exception('failed to handle nfqueue element') time.sleep(3) if '__main__' == __name__: main()
StarcoderdataPython
158137
from defusedcsv import csv import importlib import logging import os import re from pathlib import Path from tempfile import mkstemp from urllib.parse import urlparse import pypandoc from django.apps import apps from django.conf import settings from django.http import Http404, HttpResponse, HttpResponseBadRequest from django.template.loader import get_template from django.utils.translation import ugettext_lazy as _ log = logging.getLogger(__name__) def get_script_alias(request): return request.path[:-len(request.path_info)] def get_referer(request, default=None): return request.META.get('HTTP_REFERER', default) def get_referer_path_info(request, default=''): referer = request.META.get('HTTP_REFERER', None) if not referer: return default script_alias = get_script_alias(request) return urlparse(referer).path[len(script_alias):] def get_next(request): next = request.POST.get('next') current = request.path_info if next in (current, None): return get_script_alias(request) + '/' else: return get_script_alias(request) + next def get_uri_prefix(obj): # needs to stay, is part of a migration r = settings.DEFAULT_URI_PREFIX if bool(obj.uri_prefix) is True: r = obj.uri_prefix.rstrip('/') return r def get_pandoc_version(): return int(pypandoc.get_pandoc_version().split('.')[0]) def join_url(base, *args): url = base for arg in args: url = url.rstrip('/') + '/' + arg.lstrip('/') return url def get_model_field_meta(model): meta = {} for field in model._meta.get_fields(): meta[field.name] = {} if hasattr(field, 'verbose_name'): meta[field.name]['verbose_name'] = field.verbose_name if hasattr(field, 'help_text'): meta[field.name]['help_text'] = field.help_text return meta def get_languages(): languages = [] for i in range(5): try: language = settings.LANGUAGES[i][0], settings.LANGUAGES[i][1],\ 'lang%i' % (i + 1) languages.append(language) except IndexError: pass return languages def get_language_fields(field_name): return [ field_name + '_' + lang_field for lang_code, lang_string, lang_field in get_languages() ] def get_language_warning(obj, field): for lang_code, lang_string, lang_field in get_languages(): if not getattr(obj, '%s_%s' % (field, lang_field)): return True return False def set_export_reference_document(format, context): # try to get the view uri from the context try: view = context['view'] view_uri = getattr(view, 'uri') except (AttributeError, KeyError, TypeError): view_uri = None refdocs = [] if format == 'odt': # append view specific custom refdoc try: refdocs.append(settings.EXPORT_REFERENCE_ODT_VIEWS[view_uri]) except KeyError: pass # append custom refdoc if settings.EXPORT_REFERENCE_ODT: refdocs.append(settings.EXPORT_REFERENCE_ODT) elif format == 'docx': # append view specific custom refdoc try: refdocs.append(settings.EXPORT_REFERENCE_DOCX_VIEWS[view_uri]) except KeyError: pass # append custom refdoc if settings.EXPORT_REFERENCE_DOCX: refdocs.append(settings.EXPORT_REFERENCE_DOCX) # append the default reference docs refdocs.append( os.path.join( apps.get_app_config('rdmo').path, 'share', 'reference' + '.' + format ) ) # return the first file in refdocs that actually exists for refdoc in refdocs: if os.path.isfile(refdoc): return refdoc def render_to_format(request, export_format, title, template_src, context): if export_format not in dict(settings.EXPORT_FORMATS): return HttpResponseBadRequest(_('This format is not supported.')) # render the template to a html string template = get_template(template_src) html = template.render(context) # remove empty lines html = os.linesep.join([line for line in html.splitlines() if line.strip()]) if export_format == 'html': # create the response object response = HttpResponse(html) else: pandoc_version = get_pandoc_version() pandoc_args = settings.EXPORT_PANDOC_ARGS.get(export_format, []) content_disposition = 'attachment; filename="%s.%s"' % (title, export_format) if export_format == 'pdf': # check pandoc version (the pdf arg changed to version 2) if pandoc_version == 1: pandoc_args = [arg.replace( '--pdf-engine=xelatex', '--latex-engine=xelatex' ) for arg in pandoc_args] # display pdf in browser content_disposition = 'filename="%s.%s"' % (title, export_format) # use reference document for certain file formats refdoc = set_export_reference_document(export_format, context) if refdoc is not None and export_format in ['docx', 'odt']: # check pandoc version (the args changed to version 2) if pandoc_version == 1: pandoc_args.append('--reference-{}={}'.format(export_format, refdoc)) else: pandoc_args.append('--reference-doc={}'.format(refdoc)) # add the possible resource-path if 'resource_path' in context and pandoc_version > 1: resource_path = Path(settings.MEDIA_ROOT).joinpath(context['resource_path']).as_posix() pandoc_args.append('--resource-path={}'.format(resource_path)) # create a temporary file (tmp_fd, tmp_filename) = mkstemp('.' + export_format) # convert the file using pandoc log.info('Export %s document using args %s.', export_format, pandoc_args) pypandoc.convert_text(html, export_format, format='html', outputfile=tmp_filename, extra_args=pandoc_args) # read the temporary file file_handler = os.fdopen(tmp_fd, 'rb') file_content = file_handler.read() file_handler.close() # delete the temporary file os.remove(tmp_filename) # create the response object response = HttpResponse(file_content, content_type='application/%s' % export_format) response['Content-Disposition'] = content_disposition.encode('utf-8') return response def render_to_csv(title, rows, delimiter=','): response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="%s.csv"' % title writer = csv.writer(response, delimiter=delimiter) for row in rows: writer.writerow( ['' if x is None else str(x) for x in row] ) return response def return_file_response(file_path, content_type): file_abspath = Path(settings.MEDIA_ROOT) / file_path if file_abspath.exists(): with file_abspath.open('rb') as fp: response = HttpResponse(fp.read(), content_type=content_type) response['Content-Disposition'] = 'attachment; filename=' + file_abspath.name return response else: raise Http404 def sanitize_url(s): # is used in the rdmo-app try: m = re.search('[a-z0-9-_]', s) except TypeError: s = '' else: if bool(m) is False: s = '' else: s = re.sub('/+', '/', s) return s def import_class(string): module_name, class_name = string.rsplit('.', 1) return getattr(importlib.import_module(module_name), class_name) def copy_model(instance, **kwargs): # get values from instance which are not id, ForeignKeys orde M2M relations data = {} for field in instance._meta.get_fields(): if not (field.name == 'id' or field.is_relation): data[field.name] = getattr(instance, field.name) # update with the kwargs provided to this function data.update(kwargs) # create and save new instance instance_copy = instance._meta.model(**data) instance_copy.save() return instance_copy def human2bytes(string): if not string: return 0 m = re.match(r'([0-9.]+)\s*([A-Za-z]+)', string) number, unit = float(m.group(1)), m.group(2).strip().lower() if unit == 'kb' or unit == 'k': return number * 1000 elif unit == 'mb' or unit == 'm': return number * 1000**2 elif unit == 'gb' or unit == 'g': return number * 1000**3 elif unit == 'tb' or unit == 't': return number * 1000**4 elif unit == 'pb' or unit == 'p': return number * 1000**5 elif unit == 'kib': return number * 1024 elif unit == 'mib': return number * 1024**2 elif unit == 'gib': return number * 1024**3 elif unit == 'tib': return number * 1024**4 elif unit == 'pib': return number * 1024**5
StarcoderdataPython
1775322
'''AlexNet for CIFAR10. FC layers are removed. Paddings are adjusted. Without BN, the start learning rate should be 0.01 (c) <NAME> ''' import torch.nn as nn import torch.nn.functional as F from torchsso.utils.accumulator import TensorAccumulator __all__ = ['alexnet', 'alexnet_mcdropout'] class AlexNet(nn.Module): def __init__(self, num_classes=10): super().__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=5) self.conv2 = nn.Conv2d(64, 192, kernel_size=5, padding=2) self.conv3 = nn.Conv2d(192, 384, kernel_size=3, padding=1) self.conv4 = nn.Conv2d(384, 256, kernel_size=3, padding=1) self.conv5 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.fc = nn.Linear(256, num_classes) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, kernel_size=2, stride=2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, kernel_size=2, stride=2) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = F.relu(self.conv5(x)) x = F.max_pool2d(x, kernel_size=2, stride=2) x = x.view(x.size(0), -1) x = self.fc(x) return x class AlexNetMCDropout(AlexNet): mc_dropout = True def __init__(self, num_classes=10, dropout_ratio=0.5, val_mc=10): super(AlexNetMCDropout, self).__init__(num_classes) self.dropout_ratio = dropout_ratio self.val_mc = val_mc def forward(self, x): dropout_ratio = self.dropout_ratio x = F.relu(F.dropout(self.conv1(x), p=dropout_ratio)) x = F.max_pool2d(x, kernel_size=2, stride=2) x = F.relu(F.dropout(self.conv2(x), p=dropout_ratio)) x = F.max_pool2d(x, kernel_size=2, stride=2) x = F.relu(F.dropout(self.conv3(x), p=dropout_ratio)) x = F.relu(F.dropout(self.conv4(x), p=dropout_ratio)) x = F.relu(F.dropout(self.conv5(x), p=dropout_ratio)) x = F.max_pool2d(x, kernel_size=2, stride=2) x = x.view(x.size(0), -1) x = self.fc(x) return x def prediction(self, x): acc_prob = TensorAccumulator() m = self.val_mc for _ in range(m): output = self.forward(x) prob = F.softmax(output, dim=1) acc_prob.update(prob, scale=1/m) prob = acc_prob.get() return prob def alexnet(**kwargs): r"""AlexNet model architecture from the `"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper. """ model = AlexNet(**kwargs) return model def alexnet_mcdropout(**kwargs): model = AlexNetMCDropout(**kwargs) return model
StarcoderdataPython
134151
<reponame>jhonatanlteodoro/ecommerce-django """ Django settings for djangoecommerce project. Generated by 'django-admin startproject' using Django 1.11. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '<KEY> # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', #Meus apps 'core', 'catalog', 'accounts', 'checkout', #libs 'widget_tweaks', 'paypal.standard.ipn', 'easy_thumbnails', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', #custom middleware 'checkout.middleware.cart_item_middleware', ] EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' ROOT_URLCONF = 'djangoecommerce.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', #context do meu app catalog 'catalog.context_processors.categories', ], }, }, ] WSGI_APPLICATION = 'djangoecommerce.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] #Configurações de usuário - Auth AUTH_USER_MODEL = 'accounts.User' AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'accounts.backends.ModelBackend', ) LOGIN_URL = 'login' LOGIN_REDIRECT_URL = 'index' # Menssagens Custom from django.contrib.messages import constants as messages_constants MESSAGE_TAGS = { messages_constants.DEBUG: 'debug', messages_constants.INFO: 'info', messages_constants.SUCCESS: 'success', messages_constants.WARNING: 'warning', messages_constants.ERROR: 'danger', } # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'pt-br' TIME_ZONE = 'America/Sao_Paulo' USE_I18N = True USE_L10N = True USE_TZ = True #E-mail #EMAIL_HOST = '' #EMAIL_HOST_USER = '' #EMAIL_HOST_PASSWORD = '' DEFAULT_FROM_EMAIL = 'admindjangoecmmerce@localhost' #CONFIGURAÇÃO PAGSEGURO #Validar doc pagseguro PAGSEGURO_TOKEN = '' PAGSEGURO_EMAIL = '<EMAIL>' PAGSEGURO_SANDBOX = True #CONFIGURAÇÃO PAYPAL #Validar doc paypal PAYPAL_TEST = True PAYPAL_EMAIL = '<EMAIL>' # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'staticfiles') ] MEDIA_URL = '/media/' MEDIA_ROOT =os.path.join(BASE_DIR, 'media') # Thumbnails THUMBNAIL_ALIASES = { '':{ 'product_image': {'size': (285, 160), 'crop': True}, }, }
StarcoderdataPython
1774386
class Solution: def findSubstring(self, s: str, words: List[str]) -> List[int]: if not words: return [] nwords = len(words) counter = collections.Counter(words) ans = [] m = len(words[0]) total_len = nwords * m for i in range(len(s) - total_len + 1): seen = collections.Counter() j = i while j < i + total_len: word = s[j:j + m] if word in counter and seen[word] < counter[word]: seen[word] += 1 else: break j += m else: ans.append(i) return ans
StarcoderdataPython
4814205
<reponame>Random-Coders/trash-sorter-flask<gh_stars>1-10 """ Imports """ # Flask imports from flask import Flask # Create Flask app app = Flask(__name__, template_folder='templates') # Add Configurations to app app.config.from_pyfile('config.py', silent=False) from trash import views
StarcoderdataPython
4830817
<reponame>tobykirk/PyBaMM from .base_porosity import BaseModel from .constant_porosity import Constant from .reaction_driven_porosity import ReactionDriven
StarcoderdataPython
4832525
"""Init file for Supervisor Security RESTful API.""" import logging from typing import Any, Dict from aiohttp import web import voluptuous as vol from ..const import ATTR_CONTENT_TRUST, ATTR_FORCE_SECURITY, ATTR_PWNED from ..coresys import CoreSysAttributes from .utils import api_process, api_validate _LOGGER: logging.Logger = logging.getLogger(__name__) # pylint: disable=no-value-for-parameter SCHEMA_OPTIONS = vol.Schema( { vol.Optional(ATTR_PWNED): vol.Boolean(), vol.Optional(ATTR_CONTENT_TRUST): vol.Boolean(), vol.Optional(ATTR_FORCE_SECURITY): vol.Boolean(), } ) class APISecurity(CoreSysAttributes): """Handle RESTful API for Security functions.""" @api_process async def info(self, request: web.Request) -> Dict[str, Any]: """Return Security information.""" return { ATTR_CONTENT_TRUST: self.sys_security.content_trust, ATTR_PWNED: self.sys_security.pwned, ATTR_FORCE_SECURITY: self.sys_security.force, } @api_process async def options(self, request: web.Request) -> None: """Set options for Security.""" body = await api_validate(SCHEMA_OPTIONS, request) if ATTR_PWNED in body: self.sys_security.pwned = body[ATTR_PWNED] if ATTR_CONTENT_TRUST in body: self.sys_security.content_trust = body[ATTR_CONTENT_TRUST] if ATTR_FORCE_SECURITY in body: self.sys_security.force = body[ATTR_FORCE_SECURITY] self.sys_security.save_data() await self.sys_resolution.evaluate.evaluate_system()
StarcoderdataPython
4800427
<filename>h/indexer/__init__.py from h.indexer.reindexer import reindex __all__ = ("reindex",)
StarcoderdataPython