id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
/Indomielibs-2.0.106.tar.gz/Indomielibs-2.0.106/pyrogram/types/messages_and_media/thumbnail.py
from typing import List, Optional, Union import pyrogram from pyrogram import raw from pyrogram.file_id import FileId, FileType, FileUniqueId, FileUniqueType, ThumbnailSource from ..object import Object class Thumbnail(Object): """One size of a photo or a file/sticker thumbnail. Parameters: file_id (``str``): Identifier for this file, which can be used to download or reuse the file. file_unique_id (``str``): Unique identifier for this file, which is supposed to be the same over time and for different accounts. Can't be used to download or reuse the file. width (``int``): Photo width. height (``int``): Photo height. file_size (``int``): File size. """ def __init__( self, *, client: "pyrogram.Client" = None, file_id: str, file_unique_id: str, width: int, height: int, file_size: int ): super().__init__(client) self.file_id = file_id self.file_unique_id = file_unique_id self.width = width self.height = height self.file_size = file_size @staticmethod def _parse(client, media: Union["raw.types.Photo", "raw.types.Document"]) -> Optional[List["Thumbnail"]]: if isinstance(media, raw.types.Photo): raw_thumbs = [i for i in media.sizes if isinstance(i, raw.types.PhotoSize)] raw_thumbs.sort(key=lambda p: p.size) raw_thumbs = raw_thumbs[:-1] file_type = FileType.PHOTO elif isinstance(media, raw.types.Document): raw_thumbs = media.thumbs file_type = FileType.THUMBNAIL else: return parsed_thumbs = [] for thumb in raw_thumbs: if not isinstance(thumb, raw.types.PhotoSize): continue parsed_thumbs.append( Thumbnail( file_id=FileId( file_type=file_type, dc_id=media.dc_id, media_id=media.id, access_hash=media.access_hash, file_reference=media.file_reference, thumbnail_file_type=file_type, thumbnail_source=ThumbnailSource.THUMBNAIL, thumbnail_size=thumb.type, volume_id=0, local_id=0 ).encode(), file_unique_id=FileUniqueId( file_unique_type=FileUniqueType.DOCUMENT, media_id=media.id ).encode(), width=thumb.w, height=thumb.h, file_size=thumb.size, client=client ) ) return parsed_thumbs or None
PypiClean
/Nuitka_fixed-1.1.2-cp310-cp310-win_amd64.whl/nuitka/build/inline_copy/lib/scons-4.4.0/SCons/Tool/dvips.py
__revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" import SCons.Action import SCons.Builder import SCons.Tool.dvipdf import SCons.Util def DviPsFunction(target = None, source= None, env=None): result = SCons.Tool.dvipdf.DviPdfPsFunction(PSAction,target,source,env) return result def DviPsStrFunction(target = None, source= None, env=None): """A strfunction for dvipdf that returns the appropriate command string for the no_exec options.""" if env.GetOption("no_exec"): result = env.subst('$PSCOM',0,target,source) else: result = '' return result PSAction = None DVIPSAction = None PSBuilder = None def generate(env): """Add Builders and construction variables for dvips to an Environment.""" global PSAction if PSAction is None: PSAction = SCons.Action.Action('$PSCOM', '$PSCOMSTR') global DVIPSAction if DVIPSAction is None: DVIPSAction = SCons.Action.Action(DviPsFunction, strfunction = DviPsStrFunction) global PSBuilder if PSBuilder is None: PSBuilder = SCons.Builder.Builder(action = PSAction, prefix = '$PSPREFIX', suffix = '$PSSUFFIX', src_suffix = '.dvi', src_builder = 'DVI', single_source=True) env['BUILDERS']['PostScript'] = PSBuilder env['DVIPS'] = 'dvips' env['DVIPSFLAGS'] = SCons.Util.CLVar('') # I'm not quite sure I got the directories and filenames right for variant_dir # We need to be in the correct directory for the sake of latex \includegraphics eps included files. env['PSCOM'] = 'cd ${TARGET.dir} && $DVIPS $DVIPSFLAGS -o ${TARGET.file} ${SOURCE.file}' env['PSPREFIX'] = '' env['PSSUFFIX'] = '.ps' def exists(env): SCons.Tool.tex.generate_darwin(env) return env.Detect('dvips') # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
PypiClean
/Cohen-0.7.4.tar.gz/Cohen-0.7.4/coherence/upnp/devices/wan_device_client.py
# Licensed under the MIT license # http://opensource.org/licenses/mit-license.php # Copyright 2010 Frank Scholz <[email protected]> from coherence.upnp.devices.wan_connection_device_client import WANConnectionDeviceClient from coherence.upnp.services.clients.wan_common_interface_config_client import WANCommonInterfaceConfigClient from coherence import log import coherence.extern.louie as louie class WANDeviceClient(log.Loggable): logCategory = 'wan_device_client' def __init__(self, device): log.Loggable.__init__(self) self.device = device self.device_type = self.device.get_friendly_device_type() self.version = int(self.device.get_device_type_version()) self.icons = device.icons self.wan_connection_device = None self.wan_common_interface_connection = None self.embedded_device_detection_completed = False self.service_detection_completed = False louie.connect(self.embedded_device_notified, signal='Coherence.UPnP.EmbeddedDeviceClient.detection_completed', sender=self.device) try: wan_connection_device = self.device.get_embedded_device_by_type('WANConnectionDevice')[0] self.wan_connection_device = WANConnectionDeviceClient(wan_connection_device) except: self.warning("Embedded WANConnectionDevice device not available, device not implemented properly according to the UPnP specification") raise louie.connect(self.service_notified, signal='Coherence.UPnP.DeviceClient.Service.notified', sender=self.device) for service in self.device.get_services(): if service.get_type() in ["urn:schemas-upnp-org:service:WANCommonInterfaceConfig:1"]: self.wan_common_interface_connection = WANCommonInterfaceConfigClient(service) self.info("WANDevice %s", self.device.get_friendly_name()) def remove(self): self.info("removal of WANDeviceClient started") if self.wan_common_interface_connection != None: self.wan_common_interface_connection.remove() if self.wan_connection_device != None: self.wan_connection_device.remove() def embedded_device_notified(self, device): self.info("EmbeddedDevice %r sent notification", device) if self.embedded_device_detection_completed == True: return self.embedded_device_detection_completed = True if self.embedded_device_detection_completed == True and self.service_detection_completed == True: louie.send('Coherence.UPnP.EmbeddedDeviceClient.detection_completed', None, self) def service_notified(self, service): self.info("Service %r sent notification", service) if self.service_detection_completed == True: return if self.wan_common_interface_connection != None: if not hasattr(self.wan_common_interface_connection.service, 'last_time_updated'): return if self.wan_common_interface_connection.service.last_time_updated == None: return self.service_detection_completed = True if self.embedded_device_detection_completed == True and self.service_detection_completed == True: louie.send('Coherence.UPnP.EmbeddedDeviceClient.detection_completed', None, self)
PypiClean
/GenomeTreeTk-0.1.6.tar.gz/GenomeTreeTk-0.1.6/genometreetk/main.py
import csv import logging import sys import dendropy from biolib.common import check_file_exists, make_sure_path_exists from biolib.external.execute import check_dependencies from biolib.newick import parse_label from biolib.taxonomy import Taxonomy from genometreetk.arb import Arb from genometreetk.bootstrap import Bootstrap from genometreetk.combine_support import CombineSupport from genometreetk.common import read_gtdb_metadata from genometreetk.derep_tree import DereplicateTree from genometreetk.jackknife_markers import JackknifeMarkers from genometreetk.jackknife_taxa import JackknifeTaxa from genometreetk.phylogenetic_diversity import PhylogeneticDiversity from genometreetk.arb import Arb from genometreetk.derep_tree import DereplicateTree from genometreetk.prune import Prune from genometreetk.reroot_tree import RerootTree from genometreetk.rna_workflow import RNA_Workflow csv.field_size_limit(sys.maxsize) class OptionsParser(): def __init__(self): """Initialization""" self.logger = logging.getLogger() def ssu_tree(self, options): """Infer 16S tree spanning GTDB genomes.""" check_dependencies(['mothur', 'ssu-align', 'ssu-mask', 'FastTreeMP', 'blastn']) check_file_exists(options.gtdb_metadata_file) check_file_exists(options.gtdb_ssu_file) make_sure_path_exists(options.output_dir) rna_workflow = RNA_Workflow(options.cpus) rna_workflow.run('ssu', options.gtdb_metadata_file, options.gtdb_ssu_file, options.min_ssu_length, options.min_scaffold_length, options.min_quality, options.max_contigs, options.min_N50, not options.disable_tax_filter, options.genome_list, options.output_dir, options.align_method) self.logger.info('Results written to: %s' % options.output_dir) def lsu_tree(self, options): """Infer 23S tree spanning GTDB genomes.""" check_dependencies(['esl-sfetch', 'cmsearch', 'cmalign', 'esl-alimask', 'FastTreeMP', 'blastn']) check_file_exists(options.gtdb_metadata_file) check_file_exists(options.gtdb_lsu_file) make_sure_path_exists(options.output_dir) rna_workflow = RNA_Workflow(options.cpus) rna_workflow.run('lsu', options.gtdb_metadata_file, options.gtdb_lsu_file, options.min_lsu_length, options.min_scaffold_length, options.min_quality, options.max_contigs, options.min_N50, not options.disable_tax_filter, #options.reps_only, #options.user_genomes, options.genome_list, options.output_dir) self.logger.info('Results written to: %s' % options.output_dir) def rna_tree(self, options): """Infer 16S + 23S tree spanning GTDB genomes.""" check_dependencies(['FastTreeMP']) check_file_exists(options.ssu_msa) check_file_exists(options.ssu_tree) check_file_exists(options.lsu_msa) check_file_exists(options.lsu_tree) make_sure_path_exists(options.output_dir) rna_workflow = RNA_Workflow(options.cpus) rna_workflow.combine(options.ssu_msa, options.ssu_tree, options.lsu_msa, options.lsu_tree, options.output_dir) self.logger.info('Results written to: %s' % options.output_dir) def rna_dump(self, options): """Dump all 5S, 16S, and 23S sequences to files.""" check_file_exists(options.genomic_file) make_sure_path_exists(options.output_dir) rna_workflow = RNA_Workflow(1) rna_workflow.dump(options.genomic_file, options.gtdb_taxonomy, options.min_5S_len, options.min_16S_ar_len, options.min_16S_bac_len, options.min_23S_len, options.min_contig_len, options.include_user, options.genome_list, options.output_dir) self.logger.info('Results written to: %s' % options.output_dir) def derep_tree(self, options): """Dereplicate tree.""" check_file_exists(options.input_tree) check_file_exists(options.gtdb_metadata) check_file_exists(options.msa_file) make_sure_path_exists(options.output_dir) derep_tree = DereplicateTree() derep_tree.run(options.input_tree, options.lineage_of_interest, options.outgroup, options.gtdb_metadata, options.taxa_to_retain, options.msa_file, options.keep_unclassified, options.output_dir) def bootstrap(self, options): """Bootstrap multiple sequence alignment.""" check_file_exists(options.input_tree) if options.msa_file != 'NONE': check_file_exists(options.msa_file) make_sure_path_exists(options.output_dir) bootstrap = Bootstrap(options.cpus) output_tree = bootstrap.run(options.input_tree, options.msa_file, options.num_replicates, options.model, options.gamma, options.base_type, options.fraction, options.boot_dir, options.output_dir) self.logger.info('Bootstrapped tree written to: %s' % output_tree) def jk_markers(self, options): """Jackknife marker genes.""" check_file_exists(options.input_tree) if options.msa_file != 'NONE': check_file_exists(options.msa_file) make_sure_path_exists(options.output_dir) jackknife_markers = JackknifeMarkers(options.cpus) output_tree = jackknife_markers.run(options.input_tree, options.msa_file, options.marker_info_file, options.mask_file, options.perc_markers, options.num_replicates, options.model, options.jk_dir, options.output_dir) self.logger.info('Jackknifed marker tree written to: %s' % output_tree) def jk_taxa(self, options): """Jackknife taxa.""" check_file_exists(options.input_tree) check_file_exists(options.msa_file) make_sure_path_exists(options.output_dir) jackknife_taxa = JackknifeTaxa(options.cpus) output_tree = jackknife_taxa.run(options.input_tree, options.msa_file, options.outgroup_ids, options.perc_taxa, options.num_replicates, options.model, options.output_dir) self.logger.info('Jackknifed taxa tree written to: %s' % output_tree) def combine(self, options): """Combine support values into a single tree.""" combineSupport = CombineSupport() combineSupport.run(options.support_type, options.bootstrap_tree, options.jk_marker_tree, options.jk_taxa_tree, options.output_tree) def support_wf(self, options): """"Perform entire tree support workflow.""" self.bootstrap(options) self.jk_markers(options) self.jk_taxa(options) self.combine(options) def midpoint(self, options): """"Midpoint root tree.""" reroot = RerootTree() reroot.midpoint(options.input_tree, options.output_tree) def outgroup(self, options): """Reroot tree with outgroup.""" check_file_exists(options.taxonomy_file) self.logger.info('Identifying genomes from the specified outgroup.') outgroup = set() for genome_id, taxa in Taxonomy().read(options.taxonomy_file).items(): if options.outgroup_taxon in taxa: outgroup.add(genome_id) self.logger.info('Identifying %d genomes in the outgroup.' % len(outgroup)) reroot = RerootTree() reroot.root_with_outgroup(options.input_tree, options.output_tree, outgroup) def fill_ranks(self, options): """Ensure taxonomy strings contain all 7 canonical ranks.""" check_file_exists(options.input_taxonomy) fout = open(options.output_taxonomy, 'w') taxonomy = Taxonomy() t = taxonomy.read(options.input_taxonomy) for genome_id, taxon_list in t.items(): full_taxon_list = taxonomy.fill_missing_ranks(taxon_list) taxonomy_str = ';'.join(full_taxon_list) if not taxonomy.check_full(taxonomy_str): sys.exit(-1) fout.write('%s\t%s\n' % (genome_id, taxonomy_str)) fout.close() self.logger.info('Revised taxonomy written to: %s' % options.output_taxonomy) def propagate(self, options): """Propagate labels to all genomes in a cluster.""" check_file_exists(options.input_taxonomy) check_file_exists(options.metadata_file) # get representative genome information rep_metadata = read_gtdb_metadata(options.metadata_file, ['gtdb_representative', 'gtdb_clustered_genomes']) taxonomy = Taxonomy() explict_tax = taxonomy.read(options.input_taxonomy) expanded_taxonomy = {} incongruent_count = 0 for genome_id, taxon_list in explict_tax.items(): taxonomy_str = ';'.join(taxon_list) # Propagate taxonomy strings if genome is a representatives. Also, determine # if genomes clustered together have compatible taxonomies. Note that a genome # may not have metadata as it is possible a User has removed a genome that is # in the provided taxonomy file. _rep_genome, clustered_genomes = rep_metadata.get(genome_id, (None, None)) if clustered_genomes: # genome is a representative clustered_genome_ids = clustered_genomes.split(';') # get taxonomy of all genomes in cluster with a specified taxonomy clustered_genome_tax = {} for cluster_genome_id in clustered_genome_ids: if cluster_genome_id == genome_id: continue if cluster_genome_id not in rep_metadata: continue # genome is no longer in the GTDB so ignore it if cluster_genome_id in explict_tax: clustered_genome_tax[cluster_genome_id] = explict_tax[cluster_genome_id] # determine if representative and clustered genome taxonomy strings are congruent working_cluster_taxonomy = list(taxon_list) incongruent_with_rep = False for cluster_genome_id, cluster_tax in clustered_genome_tax.items(): if incongruent_with_rep: working_cluster_taxonomy = list(taxon_list) # default to rep taxonomy break for r in range(0, len(Taxonomy.rank_prefixes)): if cluster_tax[r] == Taxonomy.rank_prefixes[r]: break # no more taxonomy information to consider if cluster_tax[r] != taxon_list[r]: if taxon_list[r] == Taxonomy.rank_prefixes[r]: # clustered genome has a more specific taxonomy string which # should be propagate to the representative if all clustered # genomes are in agreement if working_cluster_taxonomy[r] == Taxonomy.rank_prefixes[r]: # make taxonomy more specific based on genomes in cluster working_cluster_taxonomy[r] = cluster_tax[r] elif working_cluster_taxonomy[r] != cluster_tax[r]: # not all genomes agree on the assignment of this rank so leave it unspecified working_cluster_taxonomy[r] = Taxonomy.rank_prefixes[r] break else: # genomes in cluster have incongruent taxonomies so defer to representative self.logger.warning("Genomes in cluster have incongruent taxonomies.") self.logger.warning("Representative %s: %s" % (genome_id, taxonomy_str)) self.logger.warning("Clustered genome %s: %s" % (cluster_genome_id, ';'.join(cluster_tax))) self.logger.warning("Deferring to taxonomy specified for representative.") incongruent_count += 1 incongruent_with_rep = True break cluster_taxonomy_str = ';'.join(working_cluster_taxonomy) # assign taxonomy to representative and all genomes in the cluster expanded_taxonomy[genome_id] = cluster_taxonomy_str for cluster_genome_id in clustered_genome_ids: expanded_taxonomy[cluster_genome_id] = cluster_taxonomy_str else: if genome_id in expanded_taxonomy: # genome has already been assigned a taxonomy based on its representative pass else: # genome is a singleton expanded_taxonomy[genome_id] = taxonomy_str self.logger.info('Identified %d clusters with incongruent taxonomies.' % incongruent_count) fout = open(options.output_taxonomy, 'w') for genome_id, taxonomy_str in expanded_taxonomy.items(): fout.write('%s\t%s\n' % (genome_id, taxonomy_str)) fout.close() self.logger.info('Taxonomy written to: %s' % options.output_taxonomy) def strip(self, options): """Remove taxonomic labels from tree.""" check_file_exists(options.input_tree) outgroup_in_tree = set() tree = dendropy.Tree.get_from_path(options.input_tree, schema='newick', rooting='force-rooted', preserve_underscores=True) for node in tree.internal_nodes(): if node.label: if ':' in node.label: support, _taxa = node.label.split(':') node.label = support else: try: # if number if a float (or int) treat # it as a support value f = float(node.label) except ValueError: node.label = None tree.write_to_path(options.output_tree, schema='newick', suppress_rooting=True, unquoted_underscores=True) self.logger.info('Stripped tree written to: %s' % options.output_tree) def rm_support(self, options): """Remove support values from tree.""" check_file_exists(options.input_tree) outgroup_in_tree = set() tree = dendropy.Tree.get_from_path(options.input_tree, schema='newick', rooting='force-rooted', preserve_underscores=True) for node in tree.internal_nodes(): if node.label: if ':' in node.label: support, taxa = node.label.split(':') node.label = taxa else: try: # if number if a float (or int) treat # it as a support value f = float(node.label) node.label = None except ValueError: pass # keep other labels tree.write_to_path(options.output_tree, schema='newick', suppress_rooting=True, unquoted_underscores=True) self.logger.info('Stripped tree written to: %s' % options.output_tree) def pull(self, options): """Create taxonomy file from a decorated tree.""" check_file_exists(options.input_tree) if options.no_validation: tree = dendropy.Tree.get_from_path(options.input_tree, schema='newick', rooting="force-rooted", preserve_underscores=True) taxonomy = {} for leaf in tree.leaf_node_iter(): taxon_id = leaf.taxon.label node = leaf.parent_node taxa = [] while node: support, taxon, aux_info = parse_label(node.label) if taxon: for t in map(str.strip, taxon.split(';'))[::-1]: taxa.append(t) node = node.parent_node taxonomy[taxon_id] = taxa[::-1] else: taxonomy = Taxonomy().read_from_tree(options.input_tree) Taxonomy().write(taxonomy, options.output_taxonomy) self.logger.info('Stripped tree written to: %s' % options.output_taxonomy) def append(self, options): """Append command""" check_file_exists(options.input_tree) check_file_exists(options.input_taxonomy) taxonomy = Taxonomy().read(options.input_taxonomy) tree = dendropy.Tree.get_from_path(options.input_tree, schema='newick', rooting='force-rooted', preserve_underscores=True) for n in tree.leaf_node_iter(): taxa_str = taxonomy.get(n.taxon.label, None) if taxa_str == None: self.logger.error('Taxonomy file does not contain an entry for %s.' % n.label) sys.exit(-1) n.taxon.label = n.taxon.label + '|' + '; '.join(taxonomy[n.taxon.label]) tree.write_to_path(options.output_tree, schema='newick', suppress_rooting=True, unquoted_underscores=True) self.logger.info('Decorated tree written to: %s' % options.output_tree) def prune(self, options): """Prune tree.""" check_file_exists(options.input_tree) check_file_exists(options.taxa_to_retain) prune = Prune() prune.run(options.input_tree, options.taxa_to_retain, options.output_tree) def phylogenetic_diversity(self, options): """Calculate phylogenetic diversity of extant taxa.""" check_file_exists(options.tree) check_file_exists(options.taxa_list) pd = PhylogeneticDiversity() rtn = pd.pd(options.tree, options.taxa_list, options.per_taxa_pg_file) total_pd, num_in_taxa, in_pd, num_out_taxa, out_pd = rtn total_taxa = num_in_taxa + num_out_taxa in_pg = total_pd - out_pd # report phylogenetic diversity (PD) and gain (PG) print('') print('\tNo. Taxa\tPD\tPercent PD') print('%s\t%d\t%.2f\t%.2f%%' % ('Full tree', total_taxa, total_pd, 100)) print('%s\t%d\t%.2f\t%.3f%%' % ('Outgroup taxa (PD)', num_out_taxa, out_pd, out_pd * 100 / total_pd)) print('%s\t%d\t%.2f\t%.3f%%' % ('Ingroup taxa (PD)', num_in_taxa, in_pd, (in_pd) * 100 / total_pd)) print('%s\t%d\t%.2f\t%.3f%%' % ('Ingroup taxa (PG)', num_in_taxa, in_pg, in_pg * 100 / total_pd)) def phylogenetic_diversity_clade(self, options): """Calculate phylogenetic diversity of named groups.""" check_file_exists(options.decorated_tree) pd = PhylogeneticDiversity() pd.pd_clade(options.decorated_tree, options.taxa_list, options.output_file) def arb_records(self, options): """Create an ARB records file from GTDB metadata.""" check_file_exists(options.metadata_file) arb = Arb() arb.create_records(options.metadata_file, options.msa_file, options.taxonomy_file, options.genome_list, options.output_file) def parse_options(self, options): """Parse user options and call the correct pipeline(s)""" logging.basicConfig(format='', level=logging.INFO) check_dependencies(('FastTree', 'hmmsearch')) if options.subparser_name == 'ssu_tree': self.ssu_tree(options) elif options.subparser_name == 'lsu_tree': self.lsu_tree(options) elif options.subparser_name == 'rna_tree': self.rna_tree(options) elif options.subparser_name == 'rna_dump': self.rna_dump(options) elif options.subparser_name == 'derep_tree': self.derep_tree(options) elif options.subparser_name == 'bootstrap': self.bootstrap(options) elif options.subparser_name == 'jk_markers': self.jk_markers(options) elif options.subparser_name == 'jk_taxa': self.jk_taxa(options) elif options.subparser_name == 'combine': self.combine(options) elif options.subparser_name == 'midpoint': self.midpoint(options) elif options.subparser_name == 'outgroup': self.outgroup(options) elif options.subparser_name == 'propagate': self.propagate(options) elif options.subparser_name == 'fill_ranks': self.fill_ranks(options) elif options.subparser_name == 'strip': self.strip(options) elif options.subparser_name == 'rm_support': self.rm_support(options) elif options.subparser_name == 'pull': self.pull(options) elif options.subparser_name == 'append': self.append(options) elif options.subparser_name == 'prune': self.prune(options) elif options.subparser_name == 'pd': self.phylogenetic_diversity(options) elif options.subparser_name == 'pd_clade': self.phylogenetic_diversity_clade(options) elif options.subparser_name == 'arb_records': self.arb_records(options) else: self.logger.error('Unknown GenomeTreeTk command: ' + options.subparser_name + '\n') sys.exit(-1) return 0
PypiClean
/EclipsingBinaries-4.0.2-py3-none-any.whl/docs/pipeline.rst
Pipeline ======== Usage ----- The reason to use the pipeline is for automatic data reduction, finding comparison stars, multi-aperture photometry, etc. To run the pipeline, simply run:: EB_pipeline -h This will output the options available to a user for inputs that are allowed or required. Inputs ------ There are two required inputs by the user and the first is an ``input folder``. This is the folder pathway where the images that being taken by a telescope are going to. The second required input is the ``output folder``. This is where the user wants the new reudced images and created files to go to. These next few inputs all have default options and are not required by the user to replace them with. + ``--time`` How long should the program wait to see if no new files enter the folder and to start the data reduction. The default value is set at 3600 seconds (i.e. 1 hour). + ``--loc`` Location where the images are being taken. At this point in time, the only allowed locations are BSUO or any site that is in `this <https://github.com/astropy/astropy-data/blob/gh-pages/coordinates/sites.json>`_ Astropy list. + ``--ra`` and ``--dec`` These are the right ascension and declination of a target system, respectively. The default values are both set at ``00:00:00``, so we recommend setting these values. + ``--name`` Variable is designated for the object, that the user is looking at, name. The default value for this is simply ``target``. Example ------- An example script setup for the pipeline would be like the following: ``EB_pipeline C:/folder1/folder2/raw_images C:/folder1/folder2/reduced_images --time 3000 --loc CTIO --ra 00:28:27.96 --dec 78:57:42.65 --name NSVS_254037`` If the declination of the object is negative then that becomes ``--dec -78:57:42.65``. Notice the first two values entered for the ``input folder`` and ``output folder`` do not have any ``--[name]``. The order is also extremely important, as the raw images folder is first and the reduced images folder is second.
PypiClean
/Firefly%20III%20API%20Python%20Client-1.5.6.post2.tar.gz/Firefly III API Python Client-1.5.6.post2/firefly_iii_client/model/category_update.py
import re # noqa: F401 import sys # noqa: F401 from firefly_iii_client.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) from ..model_utils import OpenApiModel from firefly_iii_client.exceptions import ApiAttributeError class CategoryUpdate(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'name': (str,), # noqa: E501 'notes': (str, none_type,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'name': 'name', # noqa: E501 'notes': 'notes', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """CategoryUpdate - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) name (str): [optional] # noqa: E501 notes (str, none_type): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """CategoryUpdate - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) name (str): [optional] # noqa: E501 notes (str, none_type): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
PypiClean
/Bussator-0.2.tar.gz/Bussator-0.2/README.md
# Bussator [![pipeline status](https://gitlab.com/mardy/bussator/badges/master/pipeline.svg)](https://gitlab.com/mardy/bussator/commits/master) [![coverage report](https://gitlab.com/mardy/bussator/badges/master/coverage.svg)](https://gitlab.com/mardy/bussator/commits/master) Bussator is a WSGI application which implements a [webmention](https://www.w3.org/TR/webmention/) receiver. Webmentions can then be published through dedicated plugins; currently, a plugin for publishing webmentions as [Isso](https://posativ.org/isso/) comments exists. I've written Bussator to handle webmentions in [my static blog](http://www.mardy.it), written with the [Nikola](https://getnikola.com) site generator and having the comments handled by Isso. It's all served by a cheap shared hosting solution, so you shouldn't need any special hosting in order to run a similar setup. ## Installation Bussator can be installed via [PIP](https://pypi.org/project/Bussator/): pip install bussator will install the module with all its dependencies. If you plan to stay up on the bleeding edge, you can also install the latest master branch: pip install -e git+https://gitlab.com/mardy/bussator.git#egg=bussator When you wish to update it, just run `git pull` from within the directory where the code was checked out (if using virtualenv, this should be `<virtualenv>/src/bussator`). ## Deployment Once the Bussator module has been installed and can be found by your python interpreter, you need to instruct your webserver to use it. Given that the module provides a `make_app()` method which creates the WSGI application, its deployment with `mod_wsgi` or `mod_fastcgi` should be relatively easy. If you have been able to run Bussator on other types of deployment, you are warmly invited to share your success story with us by [opening an issue](https://gitlab.com/mardy/bussator/issues/new). - `mod_wsgi`: I haven't tested this, but the [instructions from the isso project](https://github.com/posativ/isso/blob/master/docs/docs/extras/deployment.rst#mod-wsgi) should work for Bussator too, with the obvious adaptations. - `mod_fastcgi`: install flup (`pip install flup-py3`), then create a `bussator.fcgi` file in your server's `cgi-bin/` directory (don't forget to make it executable!): ``` #!/usr/bin/env python #: uncomment if you're using a virtualenv #import sys #sys.path.insert(0, '<your-virtualenv>/lib/python3.6/site-packages') import os from bussator import make_app from flup.server.fcgi import WSGIServer application = make_app('<path-to-your-config>/config.ini') WSGIServer(application).run() ``` ## Configuration Bussator won't work unless a configuration file has been created. The configuration file is a `.ini` style document; it's recommended that you copy the [template](config.ini) from this repository and modify it as needed. The comments in the file should be explanative enough. ## Integration with Twitter, Flickr and other online services The excellent [Brid.gy](https://brid.gy) service can be used to forward comments and likes from your social networks into Bussator (and hence into your blog). Just tell it the exact URL of your Bussator endpoint and it should all work.
PypiClean
/MuPhyN-0.1.1.post4-py3-none-any.whl/muphyn/packages/unit_test/EDT_SFT_0048_1.py
from os import system import matplotlib.pyplot as plt from typing import List from box_library.transfert_function_box import get_coeff_vector, euler, trapeze _ = system('cls') # =========== Differential methods =========== def differentiate(order: int, last_index: int, vector: List[float], last_derivatives: List[float], dt: float) -> List[float]: returning_tuple = [] if last_index > 0: d_1 = vector[last_index] d_2 = vector[last_index - 1] returning_tuple.append(euler(d_1, d_2, dt)) for current_order in range(max(min(order, last_index - 1), 0)): d_1 = returning_tuple[current_order] d_0 = last_derivatives[last_index - 1][current_order] current_derivative = euler(d_1, d_0, dt) returning_tuple.append(current_derivative) if current_derivative == 0: break while len(returning_tuple) < order: returning_tuple.append(0) return returning_tuple # =========== Differential equation =========== num = '1 1 0' num_vect = get_coeff_vector(num) num_vect.reverse() num_order = len(num_vect) - 1 # =========== Simulation =========== fs = 1000 dt = 1/fs sim_time = 20 samples_number = int(fs * sim_time) + 1 print('=============================================================') print('|| ||') print('|| Simulation ||') print('|| ||') print('|| X = Y * (P² + P) ||') print('|| ||') print('|| - num order :', num_order, ' ||') print('|| ||') print('|| - simulation time :', sim_time, ' ||') print('|| - sample frequency :', fs, ' ||') print('|| - dt :', dt, ' ||') print('|| - samples number :', samples_number, ' ||') print('|| ||') print('=============================================================') print('') print('') # time t = [n * dt for n in range(samples_number)] # input u = [(12.5*t_)**2 for t_ in t] # output u_derivatives : List[List[float]] = [] y = [] for i, t_ in enumerate(t) : #for i in range(10) : current_y = 0 current_u_derivative = differentiate(num_order, i, u, u_derivatives, dt) for j, current_coeff in enumerate(num_vect): if j == 0: current_y += (current_coeff * u[i]) else: current_y += (current_coeff * current_u_derivative[j - 1]) u_derivatives.append(current_u_derivative) y.append(current_y) print('at', (len(y) - 1) / fs, 's :', y[len(y) - 1]) # =========== Personnal notes =========== print('') print(' =====> Résultats <=====') print('') print('date : 16/02/2022') print('') print('On se rend bien compte que ma méthode fonctionne pour dériver des u.') print('Cependant, ma méthode d\'approche pour les y semble très mauvaise !') print('') print('') print('date : 17/02/2022') print('') print('Essai d\'intégration des U au lieu de dériver les Y ... TRES MAUVAISES REPONSES !!!') print('') print('') print('date : 18/02/2022') print('') print('Reprise depuis le début du travail, voir EDT_SFT_0048_3 pour voir la suite.') # =========== Plot results =========== t_renderable = t[0 : len(y)] u_renderable = u[0 : len(y)] plt.figure() plt.plot(t_renderable, u_renderable, label="u(t)") plt.plot(t_renderable, y, label="y(t)") plt.legend() plt.grid() plt.xlabel('Time') plt.show()
PypiClean
/Django-4.2.4.tar.gz/Django-4.2.4/django/db/backends/sqlite3/_functions.py
import functools import random import statistics from datetime import timedelta from hashlib import sha1, sha224, sha256, sha384, sha512 from math import ( acos, asin, atan, atan2, ceil, cos, degrees, exp, floor, fmod, log, pi, radians, sin, sqrt, tan, ) from re import search as re_search from django.db.backends.base.base import timezone_constructor from django.db.backends.utils import ( split_tzname_delta, typecast_time, typecast_timestamp, ) from django.utils import timezone from django.utils.crypto import md5 from django.utils.duration import duration_microseconds def register(connection): create_deterministic_function = functools.partial( connection.create_function, deterministic=True, ) create_deterministic_function("django_date_extract", 2, _sqlite_datetime_extract) create_deterministic_function("django_date_trunc", 4, _sqlite_date_trunc) create_deterministic_function( "django_datetime_cast_date", 3, _sqlite_datetime_cast_date ) create_deterministic_function( "django_datetime_cast_time", 3, _sqlite_datetime_cast_time ) create_deterministic_function( "django_datetime_extract", 4, _sqlite_datetime_extract ) create_deterministic_function("django_datetime_trunc", 4, _sqlite_datetime_trunc) create_deterministic_function("django_time_extract", 2, _sqlite_time_extract) create_deterministic_function("django_time_trunc", 4, _sqlite_time_trunc) create_deterministic_function("django_time_diff", 2, _sqlite_time_diff) create_deterministic_function("django_timestamp_diff", 2, _sqlite_timestamp_diff) create_deterministic_function("django_format_dtdelta", 3, _sqlite_format_dtdelta) create_deterministic_function("regexp", 2, _sqlite_regexp) create_deterministic_function("BITXOR", 2, _sqlite_bitxor) create_deterministic_function("COT", 1, _sqlite_cot) create_deterministic_function("LPAD", 3, _sqlite_lpad) create_deterministic_function("MD5", 1, _sqlite_md5) create_deterministic_function("REPEAT", 2, _sqlite_repeat) create_deterministic_function("REVERSE", 1, _sqlite_reverse) create_deterministic_function("RPAD", 3, _sqlite_rpad) create_deterministic_function("SHA1", 1, _sqlite_sha1) create_deterministic_function("SHA224", 1, _sqlite_sha224) create_deterministic_function("SHA256", 1, _sqlite_sha256) create_deterministic_function("SHA384", 1, _sqlite_sha384) create_deterministic_function("SHA512", 1, _sqlite_sha512) create_deterministic_function("SIGN", 1, _sqlite_sign) # Don't use the built-in RANDOM() function because it returns a value # in the range [-1 * 2^63, 2^63 - 1] instead of [0, 1). connection.create_function("RAND", 0, random.random) connection.create_aggregate("STDDEV_POP", 1, StdDevPop) connection.create_aggregate("STDDEV_SAMP", 1, StdDevSamp) connection.create_aggregate("VAR_POP", 1, VarPop) connection.create_aggregate("VAR_SAMP", 1, VarSamp) # Some math functions are enabled by default in SQLite 3.35+. sql = "select sqlite_compileoption_used('ENABLE_MATH_FUNCTIONS')" if not connection.execute(sql).fetchone()[0]: create_deterministic_function("ACOS", 1, _sqlite_acos) create_deterministic_function("ASIN", 1, _sqlite_asin) create_deterministic_function("ATAN", 1, _sqlite_atan) create_deterministic_function("ATAN2", 2, _sqlite_atan2) create_deterministic_function("CEILING", 1, _sqlite_ceiling) create_deterministic_function("COS", 1, _sqlite_cos) create_deterministic_function("DEGREES", 1, _sqlite_degrees) create_deterministic_function("EXP", 1, _sqlite_exp) create_deterministic_function("FLOOR", 1, _sqlite_floor) create_deterministic_function("LN", 1, _sqlite_ln) create_deterministic_function("LOG", 2, _sqlite_log) create_deterministic_function("MOD", 2, _sqlite_mod) create_deterministic_function("PI", 0, _sqlite_pi) create_deterministic_function("POWER", 2, _sqlite_power) create_deterministic_function("RADIANS", 1, _sqlite_radians) create_deterministic_function("SIN", 1, _sqlite_sin) create_deterministic_function("SQRT", 1, _sqlite_sqrt) create_deterministic_function("TAN", 1, _sqlite_tan) def _sqlite_datetime_parse(dt, tzname=None, conn_tzname=None): if dt is None: return None try: dt = typecast_timestamp(dt) except (TypeError, ValueError): return None if conn_tzname: dt = dt.replace(tzinfo=timezone_constructor(conn_tzname)) if tzname is not None and tzname != conn_tzname: tzname, sign, offset = split_tzname_delta(tzname) if offset: hours, minutes = offset.split(":") offset_delta = timedelta(hours=int(hours), minutes=int(minutes)) dt += offset_delta if sign == "+" else -offset_delta dt = timezone.localtime(dt, timezone_constructor(tzname)) return dt def _sqlite_date_trunc(lookup_type, dt, tzname, conn_tzname): dt = _sqlite_datetime_parse(dt, tzname, conn_tzname) if dt is None: return None if lookup_type == "year": return f"{dt.year:04d}-01-01" elif lookup_type == "quarter": month_in_quarter = dt.month - (dt.month - 1) % 3 return f"{dt.year:04d}-{month_in_quarter:02d}-01" elif lookup_type == "month": return f"{dt.year:04d}-{dt.month:02d}-01" elif lookup_type == "week": dt -= timedelta(days=dt.weekday()) return f"{dt.year:04d}-{dt.month:02d}-{dt.day:02d}" elif lookup_type == "day": return f"{dt.year:04d}-{dt.month:02d}-{dt.day:02d}" raise ValueError(f"Unsupported lookup type: {lookup_type!r}") def _sqlite_time_trunc(lookup_type, dt, tzname, conn_tzname): if dt is None: return None dt_parsed = _sqlite_datetime_parse(dt, tzname, conn_tzname) if dt_parsed is None: try: dt = typecast_time(dt) except (ValueError, TypeError): return None else: dt = dt_parsed if lookup_type == "hour": return f"{dt.hour:02d}:00:00" elif lookup_type == "minute": return f"{dt.hour:02d}:{dt.minute:02d}:00" elif lookup_type == "second": return f"{dt.hour:02d}:{dt.minute:02d}:{dt.second:02d}" raise ValueError(f"Unsupported lookup type: {lookup_type!r}") def _sqlite_datetime_cast_date(dt, tzname, conn_tzname): dt = _sqlite_datetime_parse(dt, tzname, conn_tzname) if dt is None: return None return dt.date().isoformat() def _sqlite_datetime_cast_time(dt, tzname, conn_tzname): dt = _sqlite_datetime_parse(dt, tzname, conn_tzname) if dt is None: return None return dt.time().isoformat() def _sqlite_datetime_extract(lookup_type, dt, tzname=None, conn_tzname=None): dt = _sqlite_datetime_parse(dt, tzname, conn_tzname) if dt is None: return None if lookup_type == "week_day": return (dt.isoweekday() % 7) + 1 elif lookup_type == "iso_week_day": return dt.isoweekday() elif lookup_type == "week": return dt.isocalendar()[1] elif lookup_type == "quarter": return ceil(dt.month / 3) elif lookup_type == "iso_year": return dt.isocalendar()[0] else: return getattr(dt, lookup_type) def _sqlite_datetime_trunc(lookup_type, dt, tzname, conn_tzname): dt = _sqlite_datetime_parse(dt, tzname, conn_tzname) if dt is None: return None if lookup_type == "year": return f"{dt.year:04d}-01-01 00:00:00" elif lookup_type == "quarter": month_in_quarter = dt.month - (dt.month - 1) % 3 return f"{dt.year:04d}-{month_in_quarter:02d}-01 00:00:00" elif lookup_type == "month": return f"{dt.year:04d}-{dt.month:02d}-01 00:00:00" elif lookup_type == "week": dt -= timedelta(days=dt.weekday()) return f"{dt.year:04d}-{dt.month:02d}-{dt.day:02d} 00:00:00" elif lookup_type == "day": return f"{dt.year:04d}-{dt.month:02d}-{dt.day:02d} 00:00:00" elif lookup_type == "hour": return f"{dt.year:04d}-{dt.month:02d}-{dt.day:02d} {dt.hour:02d}:00:00" elif lookup_type == "minute": return ( f"{dt.year:04d}-{dt.month:02d}-{dt.day:02d} " f"{dt.hour:02d}:{dt.minute:02d}:00" ) elif lookup_type == "second": return ( f"{dt.year:04d}-{dt.month:02d}-{dt.day:02d} " f"{dt.hour:02d}:{dt.minute:02d}:{dt.second:02d}" ) raise ValueError(f"Unsupported lookup type: {lookup_type!r}") def _sqlite_time_extract(lookup_type, dt): if dt is None: return None try: dt = typecast_time(dt) except (ValueError, TypeError): return None return getattr(dt, lookup_type) def _sqlite_prepare_dtdelta_param(conn, param): if conn in ["+", "-"]: if isinstance(param, int): return timedelta(0, 0, param) else: return typecast_timestamp(param) return param def _sqlite_format_dtdelta(connector, lhs, rhs): """ LHS and RHS can be either: - An integer number of microseconds - A string representing a datetime - A scalar value, e.g. float """ if connector is None or lhs is None or rhs is None: return None connector = connector.strip() try: real_lhs = _sqlite_prepare_dtdelta_param(connector, lhs) real_rhs = _sqlite_prepare_dtdelta_param(connector, rhs) except (ValueError, TypeError): return None if connector == "+": # typecast_timestamp() returns a date or a datetime without timezone. # It will be formatted as "%Y-%m-%d" or "%Y-%m-%d %H:%M:%S[.%f]" out = str(real_lhs + real_rhs) elif connector == "-": out = str(real_lhs - real_rhs) elif connector == "*": out = real_lhs * real_rhs else: out = real_lhs / real_rhs return out def _sqlite_time_diff(lhs, rhs): if lhs is None or rhs is None: return None left = typecast_time(lhs) right = typecast_time(rhs) return ( (left.hour * 60 * 60 * 1000000) + (left.minute * 60 * 1000000) + (left.second * 1000000) + (left.microsecond) - (right.hour * 60 * 60 * 1000000) - (right.minute * 60 * 1000000) - (right.second * 1000000) - (right.microsecond) ) def _sqlite_timestamp_diff(lhs, rhs): if lhs is None or rhs is None: return None left = typecast_timestamp(lhs) right = typecast_timestamp(rhs) return duration_microseconds(left - right) def _sqlite_regexp(pattern, string): if pattern is None or string is None: return None if not isinstance(string, str): string = str(string) return bool(re_search(pattern, string)) def _sqlite_acos(x): if x is None: return None return acos(x) def _sqlite_asin(x): if x is None: return None return asin(x) def _sqlite_atan(x): if x is None: return None return atan(x) def _sqlite_atan2(y, x): if y is None or x is None: return None return atan2(y, x) def _sqlite_bitxor(x, y): if x is None or y is None: return None return x ^ y def _sqlite_ceiling(x): if x is None: return None return ceil(x) def _sqlite_cos(x): if x is None: return None return cos(x) def _sqlite_cot(x): if x is None: return None return 1 / tan(x) def _sqlite_degrees(x): if x is None: return None return degrees(x) def _sqlite_exp(x): if x is None: return None return exp(x) def _sqlite_floor(x): if x is None: return None return floor(x) def _sqlite_ln(x): if x is None: return None return log(x) def _sqlite_log(base, x): if base is None or x is None: return None # Arguments reversed to match SQL standard. return log(x, base) def _sqlite_lpad(text, length, fill_text): if text is None or length is None or fill_text is None: return None delta = length - len(text) if delta <= 0: return text[:length] return (fill_text * length)[:delta] + text def _sqlite_md5(text): if text is None: return None return md5(text.encode()).hexdigest() def _sqlite_mod(x, y): if x is None or y is None: return None return fmod(x, y) def _sqlite_pi(): return pi def _sqlite_power(x, y): if x is None or y is None: return None return x**y def _sqlite_radians(x): if x is None: return None return radians(x) def _sqlite_repeat(text, count): if text is None or count is None: return None return text * count def _sqlite_reverse(text): if text is None: return None return text[::-1] def _sqlite_rpad(text, length, fill_text): if text is None or length is None or fill_text is None: return None return (text + fill_text * length)[:length] def _sqlite_sha1(text): if text is None: return None return sha1(text.encode()).hexdigest() def _sqlite_sha224(text): if text is None: return None return sha224(text.encode()).hexdigest() def _sqlite_sha256(text): if text is None: return None return sha256(text.encode()).hexdigest() def _sqlite_sha384(text): if text is None: return None return sha384(text.encode()).hexdigest() def _sqlite_sha512(text): if text is None: return None return sha512(text.encode()).hexdigest() def _sqlite_sign(x): if x is None: return None return (x > 0) - (x < 0) def _sqlite_sin(x): if x is None: return None return sin(x) def _sqlite_sqrt(x): if x is None: return None return sqrt(x) def _sqlite_tan(x): if x is None: return None return tan(x) class ListAggregate(list): step = list.append class StdDevPop(ListAggregate): finalize = statistics.pstdev class StdDevSamp(ListAggregate): finalize = statistics.stdev class VarPop(ListAggregate): finalize = statistics.pvariance class VarSamp(ListAggregate): finalize = statistics.variance
PypiClean
/BRAILS-3.0.1.tar.gz/BRAILS-3.0.1/brails/legacy/workflow/Images.py
import os import random from multiprocessing.dummy import Pool as ThreadPool import requests from pathlib import Path from functools import lru_cache @lru_cache(maxsize=None) def validateGoogleMapsAPI(key: str)->bool: """Validate a Google Maps API key. The `@lru_cache` decorator automatically creates a cache for API values so that a validation process will only be run the first time the function is called. `bool(key)` will be false for both the empty string, `''`, and `None` values. This function should be expanded. """ return bool(key) and key != 'put-your-key-here' def capturePic(browser, picname): try: localurl = browser.save_screenshot(picname) print("%s : Success" % localurl) except BaseException as msg: print("Fail:%s" % msg) def download(urls): xcount = 0 nlimit = 1e10 reDownload = urls[0][5] for ls in urls: urlTop = ls[0] urlStreet = ls[1] #lon = ls[2] #lat = ls[3] addr = ls[2] cats = ls[3] imgDir = ls[4] #reDownload = ls[5] ''' if rooftype not in roofcat: print('not in roofcat') continue ''' #if not os.path.exists(thisFileDir): # os.makedirs(thisFileDir) #numoffiles = len(os.listdir(thisFileDir)) if xcount < nlimit: #numoffiles < maxNumofRoofImgs: for cat in cats: if cat == 'StreetView': trueURL = urlStreet elif cat == 'TopView': trueURL = urlTop if type(addr) == str: addrstr = addr.replace(' ','-') picname = Path(f'{imgDir}/{cat}/{cat}x{addrstr}.png') else: lon, lat = '%.6f'%addr[0], '%.6f'%addr[1] #picname = thisFileDir + '/{prefix}x{lon}x{lat}.png'.format(prefix='StreetView',lon=lon,lat=lat) picname = Path(f'{imgDir}/{cat}/{cat}x{lon}x{lat}.png') exist = os.path.exists(picname) if not exist or (exist and reDownload): r = requests.get(trueURL) f = open(picname, 'wb') f.write(r.content) f.close() xcount += 1 if os.path.getsize(picname)/1024 < 9: #print(urlStreet) #print(f"empty image from API: ", addr) pass #exit() # empty image from API else: break # construct urls def getGoogleImages(footprints=None, GoogleMapAPIKey='',imageTypes=['StreetView','TopView'],imgDir='',ncpu=2,fov=60,pitch=0,reDownloadImgs=False): if footprints is None: raise ValueError('Please provide footprints') if not validateGoogleMapsAPI(GoogleMapAPIKey): raise ValueError('Invalid GoogleMapAPIKey.') for imgType in imageTypes: tmpImgeDir = os.path.join(imgDir, imgType) if not os.path.exists(tmpImgeDir): os.makedirs(tmpImgeDir) # APIs baseurl_streetview = "https://maps.googleapis.com/maps/api/streetview?size=640x640&location={lat},{lon}&fov={fov}&pitch={pitch}&source=outdoor&key="+GoogleMapAPIKey # consider using 256x256 to save disk baseurl_satellite="https://maps.googleapis.com/maps/api/staticmap?center={lat},{lon}&zoom=20&scale=1&size=256x256&maptype=satellite&key="+GoogleMapAPIKey+"&format=png&visual_refresh=true" #footprints = gpd.read_file(BuildingFootPrintsFileName) urls = [] for ind, row in footprints.iterrows(): o = row['geometry'].centroid lon, lat = '%.6f'%o.x, '%.6f'%o.y # a top view urlTop = baseurl_satellite.format(lat=lat,lon=lon) urlStreet = baseurl_streetview.format(lat=lat,lon=lon,fov=fov,pitch=pitch) cats = imageTypes reDownload = 1 if reDownloadImgs else 0 urls.append([urlTop,urlStreet,[o.x, o.y],cats,imgDir,reDownload]) #print('shuffling...') #random.shuffle(urls) #print('shuffled...') # divide urls into small chunks #ncpu = 4 step = int(len(urls)/ncpu)+1 chunks = [urls[x:x+step] for x in range(0, len(urls), step)] print('Downloading images from Google API ...') # get some workers pool = ThreadPool(ncpu) # send job to workers results = pool.map(download, chunks) # jobs are done, clean the site pool.close() pool.join() print('Images downloaded ...') def getGoogleImagesByAddrOrCoord(Addrs=None, GoogleMapAPIKey='',imageTypes=['StreetView','TopView'],imgDir='',ncpu=2,fov=60,pitch=0,reDownloadImgs=False): if Addrs is None: raise ValueError('Please provide Addrs') if not validateGoogleMapsAPI(GoogleMapAPIKey): raise ValueError('Invalid GoogleMapAPIKey.') for imgType in imageTypes: tmpImgeDir = os.path.join(imgDir, imgType) if not os.path.exists(tmpImgeDir): os.makedirs(tmpImgeDir) # APIs baseurl_streetview_addr = "https://maps.googleapis.com/maps/api/streetview?size=640x640&location={addr}&fov={fov}&pitch={pitch}&source=outdoor&key="+GoogleMapAPIKey baseurl_streetview_coord = "https://maps.googleapis.com/maps/api/streetview?size=640x640&location={lat},{lon}&fov={fov}&pitch={pitch}&source=outdoor&key="+GoogleMapAPIKey # consider using 256x256 to save disk baseurl_satellite_addr="https://maps.googleapis.com/maps/api/staticmap?center={addr}&zoom=20&scale=1&size=256x256&maptype=satellite&key="+GoogleMapAPIKey+"&format=png&visual_refresh=true" baseurl_satellite_coord="https://maps.googleapis.com/maps/api/staticmap?center={lat},{lon}&zoom=20&scale=1&size=256x256&maptype=satellite&key="+GoogleMapAPIKey+"&format=png&visual_refresh=true" #footprints = gpd.read_file(BuildingFootPrintsFileName) urls = [] for addr in Addrs: if type(addr) == str: urlTop = baseurl_satellite_addr.format(addr=addr) urlStreet = baseurl_streetview_addr.format(addr=addr,fov=fov,pitch=pitch) else: lon, lat = '%.6f'%addr[0], '%.6f'%addr[1] urlTop = baseurl_satellite_coord.format(lat=lat,lon=lon) urlStreet = baseurl_streetview_coord.format(lat=lat,lon=lon,fov=fov,pitch=pitch) cats = imageTypes reDownload = 1 if reDownloadImgs else 0 urls.append([urlTop,urlStreet,addr,cats,imgDir,reDownload]) #print('shuffling...') #random.shuffle(urls) #print('shuffled...') # divide urls into small chunks #ncpu = 4 step = int(len(urls)/ncpu)+1 chunks = [urls[x:x+step] for x in range(0, len(urls), step)] print('Downloading images from Google API ...') # get some workers pool = ThreadPool(ncpu) # send job to workers results = pool.map(download, chunks) # jobs are done, clean the site pool.close() pool.join() print('Images downloaded ...')
PypiClean
/BasicLibrary.PY-0.5.12.tar.gz/BasicLibrary.PY-0.5.12/BasicLibrary/dataBase/databaseClient.py
from BasicLibrary.configHelper import ConfigHelper as ch from BasicLibrary.data.dictHelper import DictHelper from BasicLibrary.dataBase.databaseDDL import DatabaseDDL from BasicLibrary.dataBase.databaseMate import DatabaseMate from BasicLibrary.model.container import Container class DatabaseClient: """ 向外暴露的主要类型接口 """ @classmethod def __get_db_type_name(cls): type_name = ch.get_item("db_type", "type_name", "MySql") return type_name @classmethod def get_mate(cls, table_name): """ 这是向外暴露的主要方法接口 获取跟数据库(表信息)交互的对象 :param table_name: :return: """ mate_dict = Container.get_dict("mate_dict") if DictHelper.is_contains_key(mate_dict, table_name): return mate_dict[table_name] else: type_name = cls.__get_db_type_name() package_name = "hilandBasicLibrary.dataBase.{0}.mate".format(type_name) module = __import__(package_name, fromlist=["Mate"]) mate = module.Mate(table_name) mate_dict[table_name] = mate if isinstance(mate, DatabaseMate): return mate else: return None @classmethod def get_ddl(cls): """ 这是向外暴露的操作数据库结构的方法接口 :return: """ ddl_key = "__database_ddl__" ddl = Container.get_item(ddl_key) if ddl is None: ddl = cls.__get_ddl_detail() Container.set_item(ddl_key, ddl) if isinstance(ddl, DatabaseDDL): return ddl else: return None @classmethod def __get_ddl_detail(cls): type_name = cls.__get_db_type_name() package_name = "hilandBasicLibrary.dataBase.{0}.ddl".format(type_name) module = __import__(package_name, fromlist=["DDL"]) ddl = module.DDL() return ddl # if __name__ == '__main__': # print(__MateContainer.mate_dict) # __MateContainer.mate_dict['a'] = 'AA' # __MateContainer.mate_dict['b'] = 'BB' # print(__MateContainer.mate_dict) # # result = DictHelper.contain_key(__MateContainer.mate_dict, 'c') # print(result) # result = DictHelper.contain_key(__MateContainer.mate_dict, 'b') # print(result) # # print(AAA) # # print(AAA()) # _mate = get_mate("dp_demo") # _mate.hello("Mr.Xie") # _result = _mate.find_one({"class": "一", "age": {"$gt": 20}}) # print(_result) # # _result = _mate.find_many({"class": "一"}) # print(_result) # _entity_data = {"name": "宋8", "age": 28, "class": "三"} # _result = _mate.insert_one(_entity_data) # print(_result) # _entity_list = [{"name": "宋10", "age": 28, "class": "三"}, {"name": "宋11", "age": 28, "class": "三"}, {"name": "宋12", "age": 28, "class": "三"}] # _result = _mate.insert_many(_entity_list) # print(_result) # _condition = {"name": "宋8"} # _result = _mate.delete_many(_condition) # print(_result) # _condition = {"name": "宋8"} # _result = _mate.delete_one(_condition) # print(_result) # _condition = {"name": "宋10"} # _fixing = {"age": 32} # _result = _mate.update_many(_fixing, _condition) # print(_result) # _condition = {"name": "宋10"} # _fixing = {"age": 32} # _result = _mate.update_one(_fixing, _condition) # print(_result) # _condition = {"name": "宋10"} # _condition = {} # _result = _mate.query_count(_condition) # print(_result) # _condition = {"name": "宋30"} # _entity = {"name": "宋30", "age": 28, "class": "三"} # _result = _mate.insert_one_non_duplication(_entity, _condition) # print(_result) # _condition = {"name": "宋31"} # _entity = [{"name": "宋31", "age": 28, "class": "三"}, {"name": "宋32", "age": 29, "class": "三"}] # _result = _mate.insert_many_non_duplication(_entity, _condition) # print(_result) # _result = _mate.get_max("age", {"name": "宋12"}) # print(_result) # # _result = _mate.get_min("age") # print(_result) # # _result = _mate.get_min("age", {"name": "宋10"}) # print(_result) # _result = _mate.find_like("name", "宋1", "before") # print(_result) # # _result = _mate.find_like("name", "五", "after") # print(_result) # # _result = _mate.find_like("name", "五") # print(_result) # _result = _mate.find_more("age", 25) # print(_result) # _result = _mate.find_less("age", 25) # print(_result) # _result = _mate.find_between("age", 25, 29) # print(_result) # type_name = __get_db_type_name() + "Mate" # module = __import__(type_name) # _mate = module.Mate # _mate.hello("China")
PypiClean
/LFT-0.1.1-py3-none-any.whl/lft/event/mediators/delayed_event_mediator.py
import asyncio from typing import Set, Optional from lft.event import (Event, EventSimulator, EventMediator, EventInstantMediatorExecutor, EventReplayerMediatorExecutor, EventRecorderMediatorExecutor) __all__ = ("DelayedHandlerMixin", "DelayedEventMediator", "DelayedHandler", "DelayedEventInstantMediatorExecutor", "DelayedEventRecorderMediatorExecutor", "DelayedEventReplayerMediatorExecutor") class DelayedHandlerMixin: def __init__(self): self.handlers: Set['DelayedHandler'] = set() def _handle(self, loop: asyncio.AbstractEventLoop, delay: float, event: Event, event_simulator: EventSimulator): delayed_handler = DelayedHandler() self.handlers.add(delayed_handler) loop = loop or asyncio.get_event_loop() timer_handler = loop.call_later(delay, delayed_handler) delayed_handler.event = event delayed_handler.event_simulator = event_simulator delayed_handler.timer_handler = timer_handler delayed_handler.handlers = self.handlers class DelayedEventInstantMediatorExecutor(EventInstantMediatorExecutor, DelayedHandlerMixin): def execute(self, delay: float, event: Event, loop: asyncio.AbstractEventLoop=None): _is_valid_event(event) self._handle(loop, delay, event, self._event_simulator) async def execute_async(self, delay: float, event: Event, loop: asyncio.AbstractEventLoop=None): return self.execute(delay, event, loop) class DelayedEventRecorderMediatorExecutor(EventRecorderMediatorExecutor, DelayedHandlerMixin): def execute(self, delay: float, event: Event, loop: asyncio.AbstractEventLoop=None): _is_valid_event(event) self._handle(loop, delay, event, self._event_recorder.event_simulator) async def execute_async(self, delay: float, event: Event, loop: asyncio.AbstractEventLoop=None): return self.execute(delay, event, loop) class DelayedEventReplayerMediatorExecutor(EventReplayerMediatorExecutor): def execute(self, delay: float, event: Event, loop: asyncio.AbstractEventLoop=None): # do nothing _is_valid_event(event) async def execute_async(self, delay: float, event: Event, loop: asyncio.AbstractEventLoop=None): return self.execute(delay, event, loop) class DelayedEventMediator(EventMediator): InstantExecutorType = DelayedEventInstantMediatorExecutor RecorderExecutorType = DelayedEventRecorderMediatorExecutor ReplayerExecutorType = DelayedEventReplayerMediatorExecutor def execute(self, delay: float, event: Event, loop: asyncio.AbstractEventLoop=None): return super().execute(delay=delay, event=event, loop=loop) def _is_valid_event(event: Event): if event.deterministic: raise RuntimeError(f"Delayed event must not be deterministic :{event.serialize()}") class DelayedHandler: def __init__(self): self.event: Optional[Event] = None self.event_simulator: Optional[EventSimulator] = None self.timer_handler: Optional[asyncio.TimerHandle] = None self.handlers: Optional[Set['DelayedHandler']] = None def __call__(self): self.handlers.remove(self) self.event_simulator.raise_event(self.event)
PypiClean
/DLTA-AI-1.1.tar.gz/DLTA-AI-1.1/DLTA_AI_app/mmdetection/configs/mask2former/mask2former_r50_lsj_8x2_50e_coco-panoptic.py
_base_ = [ '../_base_/datasets/coco_panoptic.py', '../_base_/default_runtime.py' ] num_things_classes = 80 num_stuff_classes = 53 num_classes = num_things_classes + num_stuff_classes model = dict( type='Mask2Former', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=-1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), panoptic_head=dict( type='Mask2FormerHead', in_channels=[256, 512, 1024, 2048], # pass to pixel_decoder inside strides=[4, 8, 16, 32], feat_channels=256, out_channels=256, num_things_classes=num_things_classes, num_stuff_classes=num_stuff_classes, num_queries=100, num_transformer_feat_level=3, pixel_decoder=dict( type='MSDeformAttnPixelDecoder', num_outs=3, norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU'), encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=dict( type='MultiScaleDeformableAttention', embed_dims=256, num_heads=8, num_levels=3, num_points=4, im2col_step=64, dropout=0.0, batch_first=False, norm_cfg=None, init_cfg=None), ffn_cfgs=dict( type='FFN', embed_dims=256, feedforward_channels=1024, num_fcs=2, ffn_drop=0.0, act_cfg=dict(type='ReLU', inplace=True)), operation_order=('self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), init_cfg=None), enforce_decoder_input_project=False, positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), transformer_decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=9, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, attn_drop=0.0, proj_drop=0.0, dropout_layer=None, batch_first=False), ffn_cfgs=dict( embed_dims=256, feedforward_channels=2048, num_fcs=2, act_cfg=dict(type='ReLU', inplace=True), ffn_drop=0.0, dropout_layer=None, add_identity=True), feedforward_channels=2048, operation_order=('cross_attn', 'norm', 'self_attn', 'norm', 'ffn', 'norm')), init_cfg=None), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0, reduction='mean', class_weight=[1.0] * num_classes + [0.1]), loss_mask=dict( type='CrossEntropyLoss', use_sigmoid=True, reduction='mean', loss_weight=5.0), loss_dice=dict( type='DiceLoss', use_sigmoid=True, activate=True, reduction='mean', naive_dice=True, eps=1.0, loss_weight=5.0)), panoptic_fusion_head=dict( type='MaskFormerFusionHead', num_things_classes=num_things_classes, num_stuff_classes=num_stuff_classes, loss_panoptic=None, init_cfg=None), train_cfg=dict( num_points=12544, oversample_ratio=3.0, importance_sample_ratio=0.75, assigner=dict( type='MaskHungarianAssigner', cls_cost=dict(type='ClassificationCost', weight=2.0), mask_cost=dict( type='CrossEntropyLossCost', weight=5.0, use_sigmoid=True), dice_cost=dict( type='DiceCost', weight=5.0, pred_act=True, eps=1.0)), sampler=dict(type='MaskPseudoSampler')), test_cfg=dict( panoptic_on=True, # For now, the dataset does not support # evaluating semantic segmentation metric. semantic_on=False, instance_on=True, # max_per_image is for instance segmentation. max_per_image=100, iou_thr=0.8, # In Mask2Former's panoptic postprocessing, # it will filter mask area where score is less than 0.5 . filter_low_score=True), init_cfg=None) # dataset settings image_size = (1024, 1024) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict( type='LoadPanopticAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='RandomFlip', flip_ratio=0.5), # large scale jittering dict( type='Resize', img_scale=image_size, ratio_range=(0.1, 2.0), multiscale_mode='range', keep_ratio=True), dict( type='RandomCrop', crop_size=image_size, crop_type='absolute', recompute_bbox=True, allow_negative_crop=True), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=image_size), dict(type='DefaultFormatBundle', img_to_float=True), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data_root = 'data/coco/' data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict( pipeline=test_pipeline, ins_ann_file=data_root + 'annotations/instances_val2017.json', ), test=dict( pipeline=test_pipeline, ins_ann_file=data_root + 'annotations/instances_val2017.json', )) embed_multi = dict(lr_mult=1.0, decay_mult=0.0) # optimizer optimizer = dict( type='AdamW', lr=0.0001, weight_decay=0.05, eps=1e-8, betas=(0.9, 0.999), paramwise_cfg=dict( custom_keys={ 'backbone': dict(lr_mult=0.1, decay_mult=1.0), 'query_embed': embed_multi, 'query_feat': embed_multi, 'level_embed': embed_multi, }, norm_decay_mult=0.0)) optimizer_config = dict(grad_clip=dict(max_norm=0.01, norm_type=2)) # learning policy lr_config = dict( policy='step', gamma=0.1, by_epoch=False, step=[327778, 355092], warmup='linear', warmup_by_epoch=False, warmup_ratio=1.0, # no warmup warmup_iters=10) max_iters = 368750 runner = dict(type='IterBasedRunner', max_iters=max_iters) log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook', by_epoch=False), dict(type='TensorboardLoggerHook', by_epoch=False) ]) interval = 5000 workflow = [('train', interval)] checkpoint_config = dict( by_epoch=False, interval=interval, save_last=True, max_keep_ckpts=3) # Before 365001th iteration, we do evaluation every 5000 iterations. # After 365000th iteration, we do evaluation every 368750 iterations, # which means that we do evaluation at the end of training. dynamic_intervals = [(max_iters // interval * interval + 1, max_iters)] evaluation = dict( interval=interval, dynamic_intervals=dynamic_intervals, metric=['PQ', 'bbox', 'segm'])
PypiClean
/Hikka_TL_New-2.0.4-py3-none-any.whl/hikkatl/tl/functions/messages.py
from ...tl.tlobject import TLObject from ...tl.tlobject import TLRequest from typing import Optional, List, Union, TYPE_CHECKING import os import struct from datetime import datetime if TYPE_CHECKING: from ...tl.types import TypeChatBannedRights, TypeChatReactions, TypeDataJSON, TypeDialogFilter, TypeInlineBotSwitchPM, TypeInlineBotWebView, TypeInputBotApp, TypeInputBotInlineMessageID, TypeInputBotInlineResult, TypeInputChatPhoto, TypeInputCheckPasswordSRP, TypeInputDialogPeer, TypeInputDocument, TypeInputEncryptedChat, TypeInputEncryptedFile, TypeInputFile, TypeInputGeoPoint, TypeInputMedia, TypeInputMessage, TypeInputPeer, TypeInputSingleMedia, TypeInputStickerSet, TypeInputStickeredMedia, TypeInputUser, TypeInputWallPaper, TypeMessageEntity, TypeMessagesFilter, TypeReaction, TypeReplyMarkup, TypeReportReason, TypeSendMessageAction, TypeShippingOption, TypeTextWithEntities, TypeWallPaperSettings class AcceptEncryptionRequest(TLRequest): CONSTRUCTOR_ID = 0x3dbc0415 SUBCLASS_OF_ID = 0x6d28a37a def __init__(self, peer: 'TypeInputEncryptedChat', g_b: bytes, key_fingerprint: int): """ :returns EncryptedChat: Instance of either EncryptedChatEmpty, EncryptedChatWaiting, EncryptedChatRequested, EncryptedChat, EncryptedChatDiscarded. """ self.peer = peer self.g_b = g_b self.key_fingerprint = key_fingerprint def to_dict(self): return { '_': 'AcceptEncryptionRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'g_b': self.g_b, 'key_fingerprint': self.key_fingerprint } def _bytes(self): return b''.join(( b'\x15\x04\xbc=', self.peer._bytes(), self.serialize_bytes(self.g_b), struct.pack('<q', self.key_fingerprint), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _g_b = reader.tgread_bytes() _key_fingerprint = reader.read_long() return cls(peer=_peer, g_b=_g_b, key_fingerprint=_key_fingerprint) class AcceptUrlAuthRequest(TLRequest): CONSTRUCTOR_ID = 0xb12c7125 SUBCLASS_OF_ID = 0x7765cb1e def __init__(self, write_allowed: Optional[bool]=None, peer: Optional['TypeInputPeer']=None, msg_id: Optional[int]=None, button_id: Optional[int]=None, url: Optional[str]=None): """ :returns UrlAuthResult: Instance of either UrlAuthResultRequest, UrlAuthResultAccepted, UrlAuthResultDefault. """ self.write_allowed = write_allowed self.peer = peer self.msg_id = msg_id self.button_id = button_id self.url = url async def resolve(self, client, utils): if self.peer: self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'AcceptUrlAuthRequest', 'write_allowed': self.write_allowed, 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'msg_id': self.msg_id, 'button_id': self.button_id, 'url': self.url } def _bytes(self): assert ((self.peer or self.peer is not None) and (self.msg_id or self.msg_id is not None) and (self.button_id or self.button_id is not None)) or ((self.peer is None or self.peer is False) and (self.msg_id is None or self.msg_id is False) and (self.button_id is None or self.button_id is False)), 'peer, msg_id, button_id parameters must all be False-y (like None) or all me True-y' return b''.join(( b'%q,\xb1', struct.pack('<I', (0 if self.write_allowed is None or self.write_allowed is False else 1) | (0 if self.peer is None or self.peer is False else 2) | (0 if self.msg_id is None or self.msg_id is False else 2) | (0 if self.button_id is None or self.button_id is False else 2) | (0 if self.url is None or self.url is False else 4)), b'' if self.peer is None or self.peer is False else (self.peer._bytes()), b'' if self.msg_id is None or self.msg_id is False else (struct.pack('<i', self.msg_id)), b'' if self.button_id is None or self.button_id is False else (struct.pack('<i', self.button_id)), b'' if self.url is None or self.url is False else (self.serialize_bytes(self.url)), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _write_allowed = bool(flags & 1) if flags & 2: _peer = reader.tgread_object() else: _peer = None if flags & 2: _msg_id = reader.read_int() else: _msg_id = None if flags & 2: _button_id = reader.read_int() else: _button_id = None if flags & 4: _url = reader.tgread_string() else: _url = None return cls(write_allowed=_write_allowed, peer=_peer, msg_id=_msg_id, button_id=_button_id, url=_url) class AddChatUserRequest(TLRequest): CONSTRUCTOR_ID = 0xf24753e3 SUBCLASS_OF_ID = 0x8af52aac def __init__(self, chat_id: int, user_id: 'TypeInputUser', fwd_limit: int): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.chat_id = chat_id self.user_id = user_id self.fwd_limit = fwd_limit async def resolve(self, client, utils): self.user_id = utils.get_input_user(await client.get_input_entity(self.user_id)) def to_dict(self): return { '_': 'AddChatUserRequest', 'chat_id': self.chat_id, 'user_id': self.user_id.to_dict() if isinstance(self.user_id, TLObject) else self.user_id, 'fwd_limit': self.fwd_limit } def _bytes(self): return b''.join(( b'\xe3SG\xf2', struct.pack('<q', self.chat_id), self.user_id._bytes(), struct.pack('<i', self.fwd_limit), )) @classmethod def from_reader(cls, reader): _chat_id = reader.read_long() _user_id = reader.tgread_object() _fwd_limit = reader.read_int() return cls(chat_id=_chat_id, user_id=_user_id, fwd_limit=_fwd_limit) class CheckChatInviteRequest(TLRequest): CONSTRUCTOR_ID = 0x3eadb1bb SUBCLASS_OF_ID = 0x4561736 # noinspection PyShadowingBuiltins def __init__(self, hash: str): """ :returns ChatInvite: Instance of either ChatInviteAlready, ChatInvite, ChatInvitePeek. """ self.hash = hash def to_dict(self): return { '_': 'CheckChatInviteRequest', 'hash': self.hash } def _bytes(self): return b''.join(( b'\xbb\xb1\xad>', self.serialize_bytes(self.hash), )) @classmethod def from_reader(cls, reader): _hash = reader.tgread_string() return cls(hash=_hash) class CheckHistoryImportRequest(TLRequest): CONSTRUCTOR_ID = 0x43fe19f3 SUBCLASS_OF_ID = 0x5bb2720b def __init__(self, import_head: str): """ :returns messages.HistoryImportParsed: Instance of HistoryImportParsed. """ self.import_head = import_head def to_dict(self): return { '_': 'CheckHistoryImportRequest', 'import_head': self.import_head } def _bytes(self): return b''.join(( b'\xf3\x19\xfeC', self.serialize_bytes(self.import_head), )) @classmethod def from_reader(cls, reader): _import_head = reader.tgread_string() return cls(import_head=_import_head) class CheckHistoryImportPeerRequest(TLRequest): CONSTRUCTOR_ID = 0x5dc60f03 SUBCLASS_OF_ID = 0xb84bb337 def __init__(self, peer: 'TypeInputPeer'): """ :returns messages.CheckedHistoryImportPeer: Instance of CheckedHistoryImportPeer. """ self.peer = peer async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'CheckHistoryImportPeerRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer } def _bytes(self): return b''.join(( b'\x03\x0f\xc6]', self.peer._bytes(), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() return cls(peer=_peer) class ClearAllDraftsRequest(TLRequest): CONSTRUCTOR_ID = 0x7e58ee9c SUBCLASS_OF_ID = 0xf5b399ac def to_dict(self): return { '_': 'ClearAllDraftsRequest' } def _bytes(self): return b''.join(( b'\x9c\xeeX~', )) @classmethod def from_reader(cls, reader): return cls() class ClearRecentReactionsRequest(TLRequest): CONSTRUCTOR_ID = 0x9dfeefb4 SUBCLASS_OF_ID = 0xf5b399ac def to_dict(self): return { '_': 'ClearRecentReactionsRequest' } def _bytes(self): return b''.join(( b'\xb4\xef\xfe\x9d', )) @classmethod def from_reader(cls, reader): return cls() class ClearRecentStickersRequest(TLRequest): CONSTRUCTOR_ID = 0x8999602d SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, attached: Optional[bool]=None): """ :returns Bool: This type has no constructors. """ self.attached = attached def to_dict(self): return { '_': 'ClearRecentStickersRequest', 'attached': self.attached } def _bytes(self): return b''.join(( b'-`\x99\x89', struct.pack('<I', (0 if self.attached is None or self.attached is False else 1)), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _attached = bool(flags & 1) return cls(attached=_attached) class CreateChatRequest(TLRequest): CONSTRUCTOR_ID = 0x34a818 SUBCLASS_OF_ID = 0x8af52aac def __init__(self, users: List['TypeInputUser'], title: str, ttl_period: Optional[int]=None): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.users = users self.title = title self.ttl_period = ttl_period async def resolve(self, client, utils): _tmp = [] for _x in self.users: _tmp.append(utils.get_input_user(await client.get_input_entity(_x))) self.users = _tmp def to_dict(self): return { '_': 'CreateChatRequest', 'users': [] if self.users is None else [x.to_dict() if isinstance(x, TLObject) else x for x in self.users], 'title': self.title, 'ttl_period': self.ttl_period } def _bytes(self): return b''.join(( b'\x18\xa84\x00', struct.pack('<I', (0 if self.ttl_period is None or self.ttl_period is False else 1)), b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.users)),b''.join(x._bytes() for x in self.users), self.serialize_bytes(self.title), b'' if self.ttl_period is None or self.ttl_period is False else (struct.pack('<i', self.ttl_period)), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() reader.read_int() _users = [] for _ in range(reader.read_int()): _x = reader.tgread_object() _users.append(_x) _title = reader.tgread_string() if flags & 1: _ttl_period = reader.read_int() else: _ttl_period = None return cls(users=_users, title=_title, ttl_period=_ttl_period) class DeleteChatRequest(TLRequest): CONSTRUCTOR_ID = 0x5bd0ee50 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, chat_id: int): """ :returns Bool: This type has no constructors. """ self.chat_id = chat_id def to_dict(self): return { '_': 'DeleteChatRequest', 'chat_id': self.chat_id } def _bytes(self): return b''.join(( b'P\xee\xd0[', struct.pack('<q', self.chat_id), )) @classmethod def from_reader(cls, reader): _chat_id = reader.read_long() return cls(chat_id=_chat_id) class DeleteChatUserRequest(TLRequest): CONSTRUCTOR_ID = 0xa2185cab SUBCLASS_OF_ID = 0x8af52aac def __init__(self, chat_id: int, user_id: 'TypeInputUser', revoke_history: Optional[bool]=None): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.chat_id = chat_id self.user_id = user_id self.revoke_history = revoke_history async def resolve(self, client, utils): self.user_id = utils.get_input_user(await client.get_input_entity(self.user_id)) def to_dict(self): return { '_': 'DeleteChatUserRequest', 'chat_id': self.chat_id, 'user_id': self.user_id.to_dict() if isinstance(self.user_id, TLObject) else self.user_id, 'revoke_history': self.revoke_history } def _bytes(self): return b''.join(( b'\xab\\\x18\xa2', struct.pack('<I', (0 if self.revoke_history is None or self.revoke_history is False else 1)), struct.pack('<q', self.chat_id), self.user_id._bytes(), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _revoke_history = bool(flags & 1) _chat_id = reader.read_long() _user_id = reader.tgread_object() return cls(chat_id=_chat_id, user_id=_user_id, revoke_history=_revoke_history) class DeleteExportedChatInviteRequest(TLRequest): CONSTRUCTOR_ID = 0xd464a42b SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, peer: 'TypeInputPeer', link: str): """ :returns Bool: This type has no constructors. """ self.peer = peer self.link = link async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'DeleteExportedChatInviteRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'link': self.link } def _bytes(self): return b''.join(( b'+\xa4d\xd4', self.peer._bytes(), self.serialize_bytes(self.link), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _link = reader.tgread_string() return cls(peer=_peer, link=_link) class DeleteHistoryRequest(TLRequest): CONSTRUCTOR_ID = 0xb08f922a SUBCLASS_OF_ID = 0x2c49c116 def __init__(self, peer: 'TypeInputPeer', max_id: int, just_clear: Optional[bool]=None, revoke: Optional[bool]=None, min_date: Optional[datetime]=None, max_date: Optional[datetime]=None): """ :returns messages.AffectedHistory: Instance of AffectedHistory. """ self.peer = peer self.max_id = max_id self.just_clear = just_clear self.revoke = revoke self.min_date = min_date self.max_date = max_date async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'DeleteHistoryRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'max_id': self.max_id, 'just_clear': self.just_clear, 'revoke': self.revoke, 'min_date': self.min_date, 'max_date': self.max_date } def _bytes(self): return b''.join(( b'*\x92\x8f\xb0', struct.pack('<I', (0 if self.just_clear is None or self.just_clear is False else 1) | (0 if self.revoke is None or self.revoke is False else 2) | (0 if self.min_date is None or self.min_date is False else 4) | (0 if self.max_date is None or self.max_date is False else 8)), self.peer._bytes(), struct.pack('<i', self.max_id), b'' if self.min_date is None or self.min_date is False else (self.serialize_datetime(self.min_date)), b'' if self.max_date is None or self.max_date is False else (self.serialize_datetime(self.max_date)), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _just_clear = bool(flags & 1) _revoke = bool(flags & 2) _peer = reader.tgread_object() _max_id = reader.read_int() if flags & 4: _min_date = reader.tgread_date() else: _min_date = None if flags & 8: _max_date = reader.tgread_date() else: _max_date = None return cls(peer=_peer, max_id=_max_id, just_clear=_just_clear, revoke=_revoke, min_date=_min_date, max_date=_max_date) class DeleteMessagesRequest(TLRequest): CONSTRUCTOR_ID = 0xe58e95d2 SUBCLASS_OF_ID = 0xced3c06e # noinspection PyShadowingBuiltins def __init__(self, id: List[int], revoke: Optional[bool]=None): """ :returns messages.AffectedMessages: Instance of AffectedMessages. """ self.id = id self.revoke = revoke def to_dict(self): return { '_': 'DeleteMessagesRequest', 'id': [] if self.id is None else self.id[:], 'revoke': self.revoke } def _bytes(self): return b''.join(( b'\xd2\x95\x8e\xe5', struct.pack('<I', (0 if self.revoke is None or self.revoke is False else 1)), b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.id)),b''.join(struct.pack('<i', x) for x in self.id), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _revoke = bool(flags & 1) reader.read_int() _id = [] for _ in range(reader.read_int()): _x = reader.read_int() _id.append(_x) return cls(id=_id, revoke=_revoke) class DeletePhoneCallHistoryRequest(TLRequest): CONSTRUCTOR_ID = 0xf9cbe409 SUBCLASS_OF_ID = 0xf817652e def __init__(self, revoke: Optional[bool]=None): """ :returns messages.AffectedFoundMessages: Instance of AffectedFoundMessages. """ self.revoke = revoke def to_dict(self): return { '_': 'DeletePhoneCallHistoryRequest', 'revoke': self.revoke } def _bytes(self): return b''.join(( b'\t\xe4\xcb\xf9', struct.pack('<I', (0 if self.revoke is None or self.revoke is False else 1)), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _revoke = bool(flags & 1) return cls(revoke=_revoke) class DeleteRevokedExportedChatInvitesRequest(TLRequest): CONSTRUCTOR_ID = 0x56987bd5 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, peer: 'TypeInputPeer', admin_id: 'TypeInputUser'): """ :returns Bool: This type has no constructors. """ self.peer = peer self.admin_id = admin_id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) self.admin_id = utils.get_input_user(await client.get_input_entity(self.admin_id)) def to_dict(self): return { '_': 'DeleteRevokedExportedChatInvitesRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'admin_id': self.admin_id.to_dict() if isinstance(self.admin_id, TLObject) else self.admin_id } def _bytes(self): return b''.join(( b'\xd5{\x98V', self.peer._bytes(), self.admin_id._bytes(), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _admin_id = reader.tgread_object() return cls(peer=_peer, admin_id=_admin_id) class DeleteScheduledMessagesRequest(TLRequest): CONSTRUCTOR_ID = 0x59ae2b16 SUBCLASS_OF_ID = 0x8af52aac # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', id: List[int]): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.id = id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'DeleteScheduledMessagesRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'id': [] if self.id is None else self.id[:] } def _bytes(self): return b''.join(( b'\x16+\xaeY', self.peer._bytes(), b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.id)),b''.join(struct.pack('<i', x) for x in self.id), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() reader.read_int() _id = [] for _ in range(reader.read_int()): _x = reader.read_int() _id.append(_x) return cls(peer=_peer, id=_id) class DiscardEncryptionRequest(TLRequest): CONSTRUCTOR_ID = 0xf393aea0 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, chat_id: int, delete_history: Optional[bool]=None): """ :returns Bool: This type has no constructors. """ self.chat_id = chat_id self.delete_history = delete_history def to_dict(self): return { '_': 'DiscardEncryptionRequest', 'chat_id': self.chat_id, 'delete_history': self.delete_history } def _bytes(self): return b''.join(( b'\xa0\xae\x93\xf3', struct.pack('<I', (0 if self.delete_history is None or self.delete_history is False else 1)), struct.pack('<i', self.chat_id), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _delete_history = bool(flags & 1) _chat_id = reader.read_int() return cls(chat_id=_chat_id, delete_history=_delete_history) class EditChatAboutRequest(TLRequest): CONSTRUCTOR_ID = 0xdef60797 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, peer: 'TypeInputPeer', about: str): """ :returns Bool: This type has no constructors. """ self.peer = peer self.about = about async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'EditChatAboutRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'about': self.about } def _bytes(self): return b''.join(( b'\x97\x07\xf6\xde', self.peer._bytes(), self.serialize_bytes(self.about), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _about = reader.tgread_string() return cls(peer=_peer, about=_about) class EditChatAdminRequest(TLRequest): CONSTRUCTOR_ID = 0xa85bd1c2 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, chat_id: int, user_id: 'TypeInputUser', is_admin: bool): """ :returns Bool: This type has no constructors. """ self.chat_id = chat_id self.user_id = user_id self.is_admin = is_admin async def resolve(self, client, utils): self.user_id = utils.get_input_user(await client.get_input_entity(self.user_id)) def to_dict(self): return { '_': 'EditChatAdminRequest', 'chat_id': self.chat_id, 'user_id': self.user_id.to_dict() if isinstance(self.user_id, TLObject) else self.user_id, 'is_admin': self.is_admin } def _bytes(self): return b''.join(( b'\xc2\xd1[\xa8', struct.pack('<q', self.chat_id), self.user_id._bytes(), b'\xb5ur\x99' if self.is_admin else b'7\x97y\xbc', )) @classmethod def from_reader(cls, reader): _chat_id = reader.read_long() _user_id = reader.tgread_object() _is_admin = reader.tgread_bool() return cls(chat_id=_chat_id, user_id=_user_id, is_admin=_is_admin) class EditChatDefaultBannedRightsRequest(TLRequest): CONSTRUCTOR_ID = 0xa5866b41 SUBCLASS_OF_ID = 0x8af52aac def __init__(self, peer: 'TypeInputPeer', banned_rights: 'TypeChatBannedRights'): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.banned_rights = banned_rights async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'EditChatDefaultBannedRightsRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'banned_rights': self.banned_rights.to_dict() if isinstance(self.banned_rights, TLObject) else self.banned_rights } def _bytes(self): return b''.join(( b'Ak\x86\xa5', self.peer._bytes(), self.banned_rights._bytes(), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _banned_rights = reader.tgread_object() return cls(peer=_peer, banned_rights=_banned_rights) class EditChatPhotoRequest(TLRequest): CONSTRUCTOR_ID = 0x35ddd674 SUBCLASS_OF_ID = 0x8af52aac def __init__(self, chat_id: int, photo: 'TypeInputChatPhoto'): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.chat_id = chat_id self.photo = photo async def resolve(self, client, utils): self.photo = utils.get_input_chat_photo(self.photo) def to_dict(self): return { '_': 'EditChatPhotoRequest', 'chat_id': self.chat_id, 'photo': self.photo.to_dict() if isinstance(self.photo, TLObject) else self.photo } def _bytes(self): return b''.join(( b't\xd6\xdd5', struct.pack('<q', self.chat_id), self.photo._bytes(), )) @classmethod def from_reader(cls, reader): _chat_id = reader.read_long() _photo = reader.tgread_object() return cls(chat_id=_chat_id, photo=_photo) class EditChatTitleRequest(TLRequest): CONSTRUCTOR_ID = 0x73783ffd SUBCLASS_OF_ID = 0x8af52aac def __init__(self, chat_id: int, title: str): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.chat_id = chat_id self.title = title def to_dict(self): return { '_': 'EditChatTitleRequest', 'chat_id': self.chat_id, 'title': self.title } def _bytes(self): return b''.join(( b'\xfd?xs', struct.pack('<q', self.chat_id), self.serialize_bytes(self.title), )) @classmethod def from_reader(cls, reader): _chat_id = reader.read_long() _title = reader.tgread_string() return cls(chat_id=_chat_id, title=_title) class EditExportedChatInviteRequest(TLRequest): CONSTRUCTOR_ID = 0xbdca2f75 SUBCLASS_OF_ID = 0x82dcd4ca def __init__(self, peer: 'TypeInputPeer', link: str, revoked: Optional[bool]=None, expire_date: Optional[datetime]=None, usage_limit: Optional[int]=None, request_needed: Optional[bool]=None, title: Optional[str]=None): """ :returns messages.ExportedChatInvite: Instance of either ExportedChatInvite, ExportedChatInviteReplaced. """ self.peer = peer self.link = link self.revoked = revoked self.expire_date = expire_date self.usage_limit = usage_limit self.request_needed = request_needed self.title = title async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'EditExportedChatInviteRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'link': self.link, 'revoked': self.revoked, 'expire_date': self.expire_date, 'usage_limit': self.usage_limit, 'request_needed': self.request_needed, 'title': self.title } def _bytes(self): return b''.join(( b'u/\xca\xbd', struct.pack('<I', (0 if self.revoked is None or self.revoked is False else 4) | (0 if self.expire_date is None or self.expire_date is False else 1) | (0 if self.usage_limit is None or self.usage_limit is False else 2) | (0 if self.request_needed is None else 8) | (0 if self.title is None or self.title is False else 16)), self.peer._bytes(), self.serialize_bytes(self.link), b'' if self.expire_date is None or self.expire_date is False else (self.serialize_datetime(self.expire_date)), b'' if self.usage_limit is None or self.usage_limit is False else (struct.pack('<i', self.usage_limit)), b'' if self.request_needed is None else (b'\xb5ur\x99' if self.request_needed else b'7\x97y\xbc'), b'' if self.title is None or self.title is False else (self.serialize_bytes(self.title)), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _revoked = bool(flags & 4) _peer = reader.tgread_object() _link = reader.tgread_string() if flags & 1: _expire_date = reader.tgread_date() else: _expire_date = None if flags & 2: _usage_limit = reader.read_int() else: _usage_limit = None if flags & 8: _request_needed = reader.tgread_bool() else: _request_needed = None if flags & 16: _title = reader.tgread_string() else: _title = None return cls(peer=_peer, link=_link, revoked=_revoked, expire_date=_expire_date, usage_limit=_usage_limit, request_needed=_request_needed, title=_title) class EditInlineBotMessageRequest(TLRequest): CONSTRUCTOR_ID = 0x83557dba SUBCLASS_OF_ID = 0xf5b399ac # noinspection PyShadowingBuiltins def __init__(self, id: 'TypeInputBotInlineMessageID', no_webpage: Optional[bool]=None, message: Optional[str]=None, media: Optional['TypeInputMedia']=None, reply_markup: Optional['TypeReplyMarkup']=None, entities: Optional[List['TypeMessageEntity']]=None): """ :returns Bool: This type has no constructors. """ self.id = id self.no_webpage = no_webpage self.message = message self.media = media self.reply_markup = reply_markup self.entities = entities async def resolve(self, client, utils): if self.media: self.media = utils.get_input_media(self.media) def to_dict(self): return { '_': 'EditInlineBotMessageRequest', 'id': self.id.to_dict() if isinstance(self.id, TLObject) else self.id, 'no_webpage': self.no_webpage, 'message': self.message, 'media': self.media.to_dict() if isinstance(self.media, TLObject) else self.media, 'reply_markup': self.reply_markup.to_dict() if isinstance(self.reply_markup, TLObject) else self.reply_markup, 'entities': [] if self.entities is None else [x.to_dict() if isinstance(x, TLObject) else x for x in self.entities] } def _bytes(self): return b''.join(( b'\xba}U\x83', struct.pack('<I', (0 if self.no_webpage is None or self.no_webpage is False else 2) | (0 if self.message is None or self.message is False else 2048) | (0 if self.media is None or self.media is False else 16384) | (0 if self.reply_markup is None or self.reply_markup is False else 4) | (0 if self.entities is None or self.entities is False else 8)), self.id._bytes(), b'' if self.message is None or self.message is False else (self.serialize_bytes(self.message)), b'' if self.media is None or self.media is False else (self.media._bytes()), b'' if self.reply_markup is None or self.reply_markup is False else (self.reply_markup._bytes()), b'' if self.entities is None or self.entities is False else b''.join((b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.entities)),b''.join(x._bytes() for x in self.entities))), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _no_webpage = bool(flags & 2) _id = reader.tgread_object() if flags & 2048: _message = reader.tgread_string() else: _message = None if flags & 16384: _media = reader.tgread_object() else: _media = None if flags & 4: _reply_markup = reader.tgread_object() else: _reply_markup = None if flags & 8: reader.read_int() _entities = [] for _ in range(reader.read_int()): _x = reader.tgread_object() _entities.append(_x) else: _entities = None return cls(id=_id, no_webpage=_no_webpage, message=_message, media=_media, reply_markup=_reply_markup, entities=_entities) class EditMessageRequest(TLRequest): CONSTRUCTOR_ID = 0x48f71778 SUBCLASS_OF_ID = 0x8af52aac # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', id: int, no_webpage: Optional[bool]=None, message: Optional[str]=None, media: Optional['TypeInputMedia']=None, reply_markup: Optional['TypeReplyMarkup']=None, entities: Optional[List['TypeMessageEntity']]=None, schedule_date: Optional[datetime]=None): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.id = id self.no_webpage = no_webpage self.message = message self.media = media self.reply_markup = reply_markup self.entities = entities self.schedule_date = schedule_date async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) if self.media: self.media = utils.get_input_media(self.media) def to_dict(self): return { '_': 'EditMessageRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'id': self.id, 'no_webpage': self.no_webpage, 'message': self.message, 'media': self.media.to_dict() if isinstance(self.media, TLObject) else self.media, 'reply_markup': self.reply_markup.to_dict() if isinstance(self.reply_markup, TLObject) else self.reply_markup, 'entities': [] if self.entities is None else [x.to_dict() if isinstance(x, TLObject) else x for x in self.entities], 'schedule_date': self.schedule_date } def _bytes(self): return b''.join(( b'x\x17\xf7H', struct.pack('<I', (0 if self.no_webpage is None or self.no_webpage is False else 2) | (0 if self.message is None or self.message is False else 2048) | (0 if self.media is None or self.media is False else 16384) | (0 if self.reply_markup is None or self.reply_markup is False else 4) | (0 if self.entities is None or self.entities is False else 8) | (0 if self.schedule_date is None or self.schedule_date is False else 32768)), self.peer._bytes(), struct.pack('<i', self.id), b'' if self.message is None or self.message is False else (self.serialize_bytes(self.message)), b'' if self.media is None or self.media is False else (self.media._bytes()), b'' if self.reply_markup is None or self.reply_markup is False else (self.reply_markup._bytes()), b'' if self.entities is None or self.entities is False else b''.join((b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.entities)),b''.join(x._bytes() for x in self.entities))), b'' if self.schedule_date is None or self.schedule_date is False else (self.serialize_datetime(self.schedule_date)), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _no_webpage = bool(flags & 2) _peer = reader.tgread_object() _id = reader.read_int() if flags & 2048: _message = reader.tgread_string() else: _message = None if flags & 16384: _media = reader.tgread_object() else: _media = None if flags & 4: _reply_markup = reader.tgread_object() else: _reply_markup = None if flags & 8: reader.read_int() _entities = [] for _ in range(reader.read_int()): _x = reader.tgread_object() _entities.append(_x) else: _entities = None if flags & 32768: _schedule_date = reader.tgread_date() else: _schedule_date = None return cls(peer=_peer, id=_id, no_webpage=_no_webpage, message=_message, media=_media, reply_markup=_reply_markup, entities=_entities, schedule_date=_schedule_date) class ExportChatInviteRequest(TLRequest): CONSTRUCTOR_ID = 0xa02ce5d5 SUBCLASS_OF_ID = 0xb4748a58 def __init__(self, peer: 'TypeInputPeer', legacy_revoke_permanent: Optional[bool]=None, request_needed: Optional[bool]=None, expire_date: Optional[datetime]=None, usage_limit: Optional[int]=None, title: Optional[str]=None): """ :returns ExportedChatInvite: Instance of either ChatInviteExported, ChatInvitePublicJoinRequests. """ self.peer = peer self.legacy_revoke_permanent = legacy_revoke_permanent self.request_needed = request_needed self.expire_date = expire_date self.usage_limit = usage_limit self.title = title async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'ExportChatInviteRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'legacy_revoke_permanent': self.legacy_revoke_permanent, 'request_needed': self.request_needed, 'expire_date': self.expire_date, 'usage_limit': self.usage_limit, 'title': self.title } def _bytes(self): return b''.join(( b'\xd5\xe5,\xa0', struct.pack('<I', (0 if self.legacy_revoke_permanent is None or self.legacy_revoke_permanent is False else 4) | (0 if self.request_needed is None or self.request_needed is False else 8) | (0 if self.expire_date is None or self.expire_date is False else 1) | (0 if self.usage_limit is None or self.usage_limit is False else 2) | (0 if self.title is None or self.title is False else 16)), self.peer._bytes(), b'' if self.expire_date is None or self.expire_date is False else (self.serialize_datetime(self.expire_date)), b'' if self.usage_limit is None or self.usage_limit is False else (struct.pack('<i', self.usage_limit)), b'' if self.title is None or self.title is False else (self.serialize_bytes(self.title)), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _legacy_revoke_permanent = bool(flags & 4) _request_needed = bool(flags & 8) _peer = reader.tgread_object() if flags & 1: _expire_date = reader.tgread_date() else: _expire_date = None if flags & 2: _usage_limit = reader.read_int() else: _usage_limit = None if flags & 16: _title = reader.tgread_string() else: _title = None return cls(peer=_peer, legacy_revoke_permanent=_legacy_revoke_permanent, request_needed=_request_needed, expire_date=_expire_date, usage_limit=_usage_limit, title=_title) class FaveStickerRequest(TLRequest): CONSTRUCTOR_ID = 0xb9ffc55b SUBCLASS_OF_ID = 0xf5b399ac # noinspection PyShadowingBuiltins def __init__(self, id: 'TypeInputDocument', unfave: bool): """ :returns Bool: This type has no constructors. """ self.id = id self.unfave = unfave async def resolve(self, client, utils): self.id = utils.get_input_document(self.id) def to_dict(self): return { '_': 'FaveStickerRequest', 'id': self.id.to_dict() if isinstance(self.id, TLObject) else self.id, 'unfave': self.unfave } def _bytes(self): return b''.join(( b'[\xc5\xff\xb9', self.id._bytes(), b'\xb5ur\x99' if self.unfave else b'7\x97y\xbc', )) @classmethod def from_reader(cls, reader): _id = reader.tgread_object() _unfave = reader.tgread_bool() return cls(id=_id, unfave=_unfave) class ForwardMessagesRequest(TLRequest): CONSTRUCTOR_ID = 0xc661bbc4 SUBCLASS_OF_ID = 0x8af52aac # noinspection PyShadowingBuiltins def __init__(self, from_peer: 'TypeInputPeer', id: List[int], to_peer: 'TypeInputPeer', silent: Optional[bool]=None, background: Optional[bool]=None, with_my_score: Optional[bool]=None, drop_author: Optional[bool]=None, drop_media_captions: Optional[bool]=None, noforwards: Optional[bool]=None, random_id: List[int]=None, top_msg_id: Optional[int]=None, schedule_date: Optional[datetime]=None, send_as: Optional['TypeInputPeer']=None): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.from_peer = from_peer self.id = id self.to_peer = to_peer self.silent = silent self.background = background self.with_my_score = with_my_score self.drop_author = drop_author self.drop_media_captions = drop_media_captions self.noforwards = noforwards self.random_id = random_id if random_id is not None else [int.from_bytes(os.urandom(8), 'big', signed=True) for _ in range(len(id))] self.top_msg_id = top_msg_id self.schedule_date = schedule_date self.send_as = send_as async def resolve(self, client, utils): self.from_peer = utils.get_input_peer(await client.get_input_entity(self.from_peer)) self.to_peer = utils.get_input_peer(await client.get_input_entity(self.to_peer)) if self.send_as: self.send_as = utils.get_input_peer(await client.get_input_entity(self.send_as)) def to_dict(self): return { '_': 'ForwardMessagesRequest', 'from_peer': self.from_peer.to_dict() if isinstance(self.from_peer, TLObject) else self.from_peer, 'id': [] if self.id is None else self.id[:], 'to_peer': self.to_peer.to_dict() if isinstance(self.to_peer, TLObject) else self.to_peer, 'silent': self.silent, 'background': self.background, 'with_my_score': self.with_my_score, 'drop_author': self.drop_author, 'drop_media_captions': self.drop_media_captions, 'noforwards': self.noforwards, 'random_id': [] if self.random_id is None else self.random_id[:], 'top_msg_id': self.top_msg_id, 'schedule_date': self.schedule_date, 'send_as': self.send_as.to_dict() if isinstance(self.send_as, TLObject) else self.send_as } def _bytes(self): return b''.join(( b'\xc4\xbba\xc6', struct.pack('<I', (0 if self.silent is None or self.silent is False else 32) | (0 if self.background is None or self.background is False else 64) | (0 if self.with_my_score is None or self.with_my_score is False else 256) | (0 if self.drop_author is None or self.drop_author is False else 2048) | (0 if self.drop_media_captions is None or self.drop_media_captions is False else 4096) | (0 if self.noforwards is None or self.noforwards is False else 16384) | (0 if self.top_msg_id is None or self.top_msg_id is False else 512) | (0 if self.schedule_date is None or self.schedule_date is False else 1024) | (0 if self.send_as is None or self.send_as is False else 8192)), self.from_peer._bytes(), b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.id)),b''.join(struct.pack('<i', x) for x in self.id), b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.random_id)),b''.join(struct.pack('<q', x) for x in self.random_id), self.to_peer._bytes(), b'' if self.top_msg_id is None or self.top_msg_id is False else (struct.pack('<i', self.top_msg_id)), b'' if self.schedule_date is None or self.schedule_date is False else (self.serialize_datetime(self.schedule_date)), b'' if self.send_as is None or self.send_as is False else (self.send_as._bytes()), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _silent = bool(flags & 32) _background = bool(flags & 64) _with_my_score = bool(flags & 256) _drop_author = bool(flags & 2048) _drop_media_captions = bool(flags & 4096) _noforwards = bool(flags & 16384) _from_peer = reader.tgread_object() reader.read_int() _id = [] for _ in range(reader.read_int()): _x = reader.read_int() _id.append(_x) reader.read_int() _random_id = [] for _ in range(reader.read_int()): _x = reader.read_long() _random_id.append(_x) _to_peer = reader.tgread_object() if flags & 512: _top_msg_id = reader.read_int() else: _top_msg_id = None if flags & 1024: _schedule_date = reader.tgread_date() else: _schedule_date = None if flags & 8192: _send_as = reader.tgread_object() else: _send_as = None return cls(from_peer=_from_peer, id=_id, to_peer=_to_peer, silent=_silent, background=_background, with_my_score=_with_my_score, drop_author=_drop_author, drop_media_captions=_drop_media_captions, noforwards=_noforwards, random_id=_random_id, top_msg_id=_top_msg_id, schedule_date=_schedule_date, send_as=_send_as) class GetAdminsWithInvitesRequest(TLRequest): CONSTRUCTOR_ID = 0x3920e6ef SUBCLASS_OF_ID = 0x8f5bad2b def __init__(self, peer: 'TypeInputPeer'): """ :returns messages.ChatAdminsWithInvites: Instance of ChatAdminsWithInvites. """ self.peer = peer async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetAdminsWithInvitesRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer } def _bytes(self): return b''.join(( b'\xef\xe6 9', self.peer._bytes(), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() return cls(peer=_peer) class GetAllChatsRequest(TLRequest): CONSTRUCTOR_ID = 0x875f74be SUBCLASS_OF_ID = 0x99d5cb14 def __init__(self, except_ids: List[int]): """ :returns messages.Chats: Instance of either Chats, ChatsSlice. """ self.except_ids = except_ids def to_dict(self): return { '_': 'GetAllChatsRequest', 'except_ids': [] if self.except_ids is None else self.except_ids[:] } def _bytes(self): return b''.join(( b'\xbet_\x87', b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.except_ids)),b''.join(struct.pack('<q', x) for x in self.except_ids), )) @classmethod def from_reader(cls, reader): reader.read_int() _except_ids = [] for _ in range(reader.read_int()): _x = reader.read_long() _except_ids.append(_x) return cls(except_ids=_except_ids) class GetAllDraftsRequest(TLRequest): CONSTRUCTOR_ID = 0x6a3f8d65 SUBCLASS_OF_ID = 0x8af52aac def to_dict(self): return { '_': 'GetAllDraftsRequest' } def _bytes(self): return b''.join(( b'e\x8d?j', )) @classmethod def from_reader(cls, reader): return cls() class GetAllStickersRequest(TLRequest): CONSTRUCTOR_ID = 0xb8a0a1a8 SUBCLASS_OF_ID = 0x45834829 # noinspection PyShadowingBuiltins def __init__(self, hash: int): """ :returns messages.AllStickers: Instance of either AllStickersNotModified, AllStickers. """ self.hash = hash def to_dict(self): return { '_': 'GetAllStickersRequest', 'hash': self.hash } def _bytes(self): return b''.join(( b'\xa8\xa1\xa0\xb8', struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): _hash = reader.read_long() return cls(hash=_hash) class GetArchivedStickersRequest(TLRequest): CONSTRUCTOR_ID = 0x57f17692 SUBCLASS_OF_ID = 0x7296d771 def __init__(self, offset_id: int, limit: int, masks: Optional[bool]=None, emojis: Optional[bool]=None): """ :returns messages.ArchivedStickers: Instance of ArchivedStickers. """ self.offset_id = offset_id self.limit = limit self.masks = masks self.emojis = emojis def to_dict(self): return { '_': 'GetArchivedStickersRequest', 'offset_id': self.offset_id, 'limit': self.limit, 'masks': self.masks, 'emojis': self.emojis } def _bytes(self): return b''.join(( b'\x92v\xf1W', struct.pack('<I', (0 if self.masks is None or self.masks is False else 1) | (0 if self.emojis is None or self.emojis is False else 2)), struct.pack('<q', self.offset_id), struct.pack('<i', self.limit), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _masks = bool(flags & 1) _emojis = bool(flags & 2) _offset_id = reader.read_long() _limit = reader.read_int() return cls(offset_id=_offset_id, limit=_limit, masks=_masks, emojis=_emojis) class GetAttachMenuBotRequest(TLRequest): CONSTRUCTOR_ID = 0x77216192 SUBCLASS_OF_ID = 0xdb33883d def __init__(self, bot: 'TypeInputUser'): """ :returns AttachMenuBotsBot: Instance of AttachMenuBotsBot. """ self.bot = bot async def resolve(self, client, utils): self.bot = utils.get_input_user(await client.get_input_entity(self.bot)) def to_dict(self): return { '_': 'GetAttachMenuBotRequest', 'bot': self.bot.to_dict() if isinstance(self.bot, TLObject) else self.bot } def _bytes(self): return b''.join(( b'\x92a!w', self.bot._bytes(), )) @classmethod def from_reader(cls, reader): _bot = reader.tgread_object() return cls(bot=_bot) class GetAttachMenuBotsRequest(TLRequest): CONSTRUCTOR_ID = 0x16fcc2cb SUBCLASS_OF_ID = 0x842e23da # noinspection PyShadowingBuiltins def __init__(self, hash: int): """ :returns AttachMenuBots: Instance of either AttachMenuBotsNotModified, AttachMenuBots. """ self.hash = hash def to_dict(self): return { '_': 'GetAttachMenuBotsRequest', 'hash': self.hash } def _bytes(self): return b''.join(( b'\xcb\xc2\xfc\x16', struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): _hash = reader.read_long() return cls(hash=_hash) class GetAttachedStickersRequest(TLRequest): CONSTRUCTOR_ID = 0xcc5b67cc SUBCLASS_OF_ID = 0xcc125f6b def __init__(self, media: 'TypeInputStickeredMedia'): """ :returns Vector<StickerSetCovered>: This type has no constructors. """ self.media = media def to_dict(self): return { '_': 'GetAttachedStickersRequest', 'media': self.media.to_dict() if isinstance(self.media, TLObject) else self.media } def _bytes(self): return b''.join(( b'\xccg[\xcc', self.media._bytes(), )) @classmethod def from_reader(cls, reader): _media = reader.tgread_object() return cls(media=_media) class GetAvailableReactionsRequest(TLRequest): CONSTRUCTOR_ID = 0x18dea0ac SUBCLASS_OF_ID = 0xe426ad82 # noinspection PyShadowingBuiltins def __init__(self, hash: int): """ :returns messages.AvailableReactions: Instance of either AvailableReactionsNotModified, AvailableReactions. """ self.hash = hash def to_dict(self): return { '_': 'GetAvailableReactionsRequest', 'hash': self.hash } def _bytes(self): return b''.join(( b'\xac\xa0\xde\x18', struct.pack('<i', self.hash), )) @classmethod def from_reader(cls, reader): _hash = reader.read_int() return cls(hash=_hash) class GetBotAppRequest(TLRequest): CONSTRUCTOR_ID = 0x34fdc5c3 SUBCLASS_OF_ID = 0x8f7243a7 # noinspection PyShadowingBuiltins def __init__(self, app: 'TypeInputBotApp', hash: int): """ :returns messages.BotApp: Instance of BotApp. """ self.app = app self.hash = hash def to_dict(self): return { '_': 'GetBotAppRequest', 'app': self.app.to_dict() if isinstance(self.app, TLObject) else self.app, 'hash': self.hash } def _bytes(self): return b''.join(( b'\xc3\xc5\xfd4', self.app._bytes(), struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): _app = reader.tgread_object() _hash = reader.read_long() return cls(app=_app, hash=_hash) class GetBotCallbackAnswerRequest(TLRequest): CONSTRUCTOR_ID = 0x9342ca07 SUBCLASS_OF_ID = 0x6c4dd18c def __init__(self, peer: 'TypeInputPeer', msg_id: int, game: Optional[bool]=None, data: Optional[bytes]=None, password: Optional['TypeInputCheckPasswordSRP']=None): """ :returns messages.BotCallbackAnswer: Instance of BotCallbackAnswer. """ self.peer = peer self.msg_id = msg_id self.game = game self.data = data self.password = password async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetBotCallbackAnswerRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'msg_id': self.msg_id, 'game': self.game, 'data': self.data, 'password': self.password.to_dict() if isinstance(self.password, TLObject) else self.password } def _bytes(self): return b''.join(( b'\x07\xcaB\x93', struct.pack('<I', (0 if self.game is None or self.game is False else 2) | (0 if self.data is None or self.data is False else 1) | (0 if self.password is None or self.password is False else 4)), self.peer._bytes(), struct.pack('<i', self.msg_id), b'' if self.data is None or self.data is False else (self.serialize_bytes(self.data)), b'' if self.password is None or self.password is False else (self.password._bytes()), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _game = bool(flags & 2) _peer = reader.tgread_object() _msg_id = reader.read_int() if flags & 1: _data = reader.tgread_bytes() else: _data = None if flags & 4: _password = reader.tgread_object() else: _password = None return cls(peer=_peer, msg_id=_msg_id, game=_game, data=_data, password=_password) class GetChatInviteImportersRequest(TLRequest): CONSTRUCTOR_ID = 0xdf04dd4e SUBCLASS_OF_ID = 0xd9bc8aa6 def __init__(self, peer: 'TypeInputPeer', offset_date: Optional[datetime], offset_user: 'TypeInputUser', limit: int, requested: Optional[bool]=None, link: Optional[str]=None, q: Optional[str]=None): """ :returns messages.ChatInviteImporters: Instance of ChatInviteImporters. """ self.peer = peer self.offset_date = offset_date self.offset_user = offset_user self.limit = limit self.requested = requested self.link = link self.q = q async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) self.offset_user = utils.get_input_user(await client.get_input_entity(self.offset_user)) def to_dict(self): return { '_': 'GetChatInviteImportersRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'offset_date': self.offset_date, 'offset_user': self.offset_user.to_dict() if isinstance(self.offset_user, TLObject) else self.offset_user, 'limit': self.limit, 'requested': self.requested, 'link': self.link, 'q': self.q } def _bytes(self): return b''.join(( b'N\xdd\x04\xdf', struct.pack('<I', (0 if self.requested is None or self.requested is False else 1) | (0 if self.link is None or self.link is False else 2) | (0 if self.q is None or self.q is False else 4)), self.peer._bytes(), b'' if self.link is None or self.link is False else (self.serialize_bytes(self.link)), b'' if self.q is None or self.q is False else (self.serialize_bytes(self.q)), self.serialize_datetime(self.offset_date), self.offset_user._bytes(), struct.pack('<i', self.limit), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _requested = bool(flags & 1) _peer = reader.tgread_object() if flags & 2: _link = reader.tgread_string() else: _link = None if flags & 4: _q = reader.tgread_string() else: _q = None _offset_date = reader.tgread_date() _offset_user = reader.tgread_object() _limit = reader.read_int() return cls(peer=_peer, offset_date=_offset_date, offset_user=_offset_user, limit=_limit, requested=_requested, link=_link, q=_q) class GetChatsRequest(TLRequest): CONSTRUCTOR_ID = 0x49e9528f SUBCLASS_OF_ID = 0x99d5cb14 # noinspection PyShadowingBuiltins def __init__(self, id: List[int]): """ :returns messages.Chats: Instance of either Chats, ChatsSlice. """ self.id = id def to_dict(self): return { '_': 'GetChatsRequest', 'id': [] if self.id is None else self.id[:] } def _bytes(self): return b''.join(( b'\x8fR\xe9I', b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.id)),b''.join(struct.pack('<q', x) for x in self.id), )) @classmethod def from_reader(cls, reader): reader.read_int() _id = [] for _ in range(reader.read_int()): _x = reader.read_long() _id.append(_x) return cls(id=_id) class GetCommonChatsRequest(TLRequest): CONSTRUCTOR_ID = 0xe40ca104 SUBCLASS_OF_ID = 0x99d5cb14 def __init__(self, user_id: 'TypeInputUser', max_id: int, limit: int): """ :returns messages.Chats: Instance of either Chats, ChatsSlice. """ self.user_id = user_id self.max_id = max_id self.limit = limit async def resolve(self, client, utils): self.user_id = utils.get_input_user(await client.get_input_entity(self.user_id)) def to_dict(self): return { '_': 'GetCommonChatsRequest', 'user_id': self.user_id.to_dict() if isinstance(self.user_id, TLObject) else self.user_id, 'max_id': self.max_id, 'limit': self.limit } def _bytes(self): return b''.join(( b'\x04\xa1\x0c\xe4', self.user_id._bytes(), struct.pack('<q', self.max_id), struct.pack('<i', self.limit), )) @classmethod def from_reader(cls, reader): _user_id = reader.tgread_object() _max_id = reader.read_long() _limit = reader.read_int() return cls(user_id=_user_id, max_id=_max_id, limit=_limit) class GetCustomEmojiDocumentsRequest(TLRequest): CONSTRUCTOR_ID = 0xd9ab0f54 SUBCLASS_OF_ID = 0xcc590e08 def __init__(self, document_id: List[int]): """ :returns Vector<Document>: This type has no constructors. """ self.document_id = document_id def to_dict(self): return { '_': 'GetCustomEmojiDocumentsRequest', 'document_id': [] if self.document_id is None else self.document_id[:] } def _bytes(self): return b''.join(( b'T\x0f\xab\xd9', b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.document_id)),b''.join(struct.pack('<q', x) for x in self.document_id), )) @classmethod def from_reader(cls, reader): reader.read_int() _document_id = [] for _ in range(reader.read_int()): _x = reader.read_long() _document_id.append(_x) return cls(document_id=_document_id) class GetDefaultHistoryTTLRequest(TLRequest): CONSTRUCTOR_ID = 0x658b7188 SUBCLASS_OF_ID = 0xf00d3367 def to_dict(self): return { '_': 'GetDefaultHistoryTTLRequest' } def _bytes(self): return b''.join(( b'\x88q\x8be', )) @classmethod def from_reader(cls, reader): return cls() class GetDhConfigRequest(TLRequest): CONSTRUCTOR_ID = 0x26cf8950 SUBCLASS_OF_ID = 0xe488ed8b def __init__(self, version: int, random_length: int): """ :returns messages.DhConfig: Instance of either DhConfigNotModified, DhConfig. """ self.version = version self.random_length = random_length def to_dict(self): return { '_': 'GetDhConfigRequest', 'version': self.version, 'random_length': self.random_length } def _bytes(self): return b''.join(( b'P\x89\xcf&', struct.pack('<i', self.version), struct.pack('<i', self.random_length), )) @classmethod def from_reader(cls, reader): _version = reader.read_int() _random_length = reader.read_int() return cls(version=_version, random_length=_random_length) class GetDialogFiltersRequest(TLRequest): CONSTRUCTOR_ID = 0xf19ed96d SUBCLASS_OF_ID = 0x601ce94d def to_dict(self): return { '_': 'GetDialogFiltersRequest' } def _bytes(self): return b''.join(( b'm\xd9\x9e\xf1', )) @classmethod def from_reader(cls, reader): return cls() class GetDialogUnreadMarksRequest(TLRequest): CONSTRUCTOR_ID = 0x22e24e22 SUBCLASS_OF_ID = 0xbec64ad9 def to_dict(self): return { '_': 'GetDialogUnreadMarksRequest' } def _bytes(self): return b''.join(( b'"N\xe2"', )) @classmethod def from_reader(cls, reader): return cls() class GetDialogsRequest(TLRequest): CONSTRUCTOR_ID = 0xa0f4cb4f SUBCLASS_OF_ID = 0xe1b52ee # noinspection PyShadowingBuiltins def __init__(self, offset_date: Optional[datetime], offset_id: int, offset_peer: 'TypeInputPeer', limit: int, hash: int, exclude_pinned: Optional[bool]=None, folder_id: Optional[int]=None): """ :returns messages.Dialogs: Instance of either Dialogs, DialogsSlice, DialogsNotModified. """ self.offset_date = offset_date self.offset_id = offset_id self.offset_peer = offset_peer self.limit = limit self.hash = hash self.exclude_pinned = exclude_pinned self.folder_id = folder_id async def resolve(self, client, utils): self.offset_peer = utils.get_input_peer(await client.get_input_entity(self.offset_peer)) def to_dict(self): return { '_': 'GetDialogsRequest', 'offset_date': self.offset_date, 'offset_id': self.offset_id, 'offset_peer': self.offset_peer.to_dict() if isinstance(self.offset_peer, TLObject) else self.offset_peer, 'limit': self.limit, 'hash': self.hash, 'exclude_pinned': self.exclude_pinned, 'folder_id': self.folder_id } def _bytes(self): return b''.join(( b'O\xcb\xf4\xa0', struct.pack('<I', (0 if self.exclude_pinned is None or self.exclude_pinned is False else 1) | (0 if self.folder_id is None or self.folder_id is False else 2)), b'' if self.folder_id is None or self.folder_id is False else (struct.pack('<i', self.folder_id)), self.serialize_datetime(self.offset_date), struct.pack('<i', self.offset_id), self.offset_peer._bytes(), struct.pack('<i', self.limit), struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _exclude_pinned = bool(flags & 1) if flags & 2: _folder_id = reader.read_int() else: _folder_id = None _offset_date = reader.tgread_date() _offset_id = reader.read_int() _offset_peer = reader.tgread_object() _limit = reader.read_int() _hash = reader.read_long() return cls(offset_date=_offset_date, offset_id=_offset_id, offset_peer=_offset_peer, limit=_limit, hash=_hash, exclude_pinned=_exclude_pinned, folder_id=_folder_id) class GetDiscussionMessageRequest(TLRequest): CONSTRUCTOR_ID = 0x446972fd SUBCLASS_OF_ID = 0x53f8e3e8 def __init__(self, peer: 'TypeInputPeer', msg_id: int): """ :returns messages.DiscussionMessage: Instance of DiscussionMessage. """ self.peer = peer self.msg_id = msg_id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetDiscussionMessageRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'msg_id': self.msg_id } def _bytes(self): return b''.join(( b'\xfdriD', self.peer._bytes(), struct.pack('<i', self.msg_id), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _msg_id = reader.read_int() return cls(peer=_peer, msg_id=_msg_id) class GetDocumentByHashRequest(TLRequest): CONSTRUCTOR_ID = 0xb1f2061f SUBCLASS_OF_ID = 0x211fe820 def __init__(self, sha256: bytes, size: int, mime_type: str): """ :returns Document: Instance of either DocumentEmpty, Document. """ self.sha256 = sha256 self.size = size self.mime_type = mime_type def to_dict(self): return { '_': 'GetDocumentByHashRequest', 'sha256': self.sha256, 'size': self.size, 'mime_type': self.mime_type } def _bytes(self): return b''.join(( b'\x1f\x06\xf2\xb1', self.serialize_bytes(self.sha256), struct.pack('<q', self.size), self.serialize_bytes(self.mime_type), )) @classmethod def from_reader(cls, reader): _sha256 = reader.tgread_bytes() _size = reader.read_long() _mime_type = reader.tgread_string() return cls(sha256=_sha256, size=_size, mime_type=_mime_type) class GetEmojiGroupsRequest(TLRequest): CONSTRUCTOR_ID = 0x7488ce5b SUBCLASS_OF_ID = 0x7eca55d9 # noinspection PyShadowingBuiltins def __init__(self, hash: int): """ :returns messages.EmojiGroups: Instance of either EmojiGroupsNotModified, EmojiGroups. """ self.hash = hash def to_dict(self): return { '_': 'GetEmojiGroupsRequest', 'hash': self.hash } def _bytes(self): return b''.join(( b'[\xce\x88t', struct.pack('<i', self.hash), )) @classmethod def from_reader(cls, reader): _hash = reader.read_int() return cls(hash=_hash) class GetEmojiKeywordsRequest(TLRequest): CONSTRUCTOR_ID = 0x35a0e062 SUBCLASS_OF_ID = 0xd279c672 def __init__(self, lang_code: str): """ :returns EmojiKeywordsDifference: Instance of EmojiKeywordsDifference. """ self.lang_code = lang_code def to_dict(self): return { '_': 'GetEmojiKeywordsRequest', 'lang_code': self.lang_code } def _bytes(self): return b''.join(( b'b\xe0\xa05', self.serialize_bytes(self.lang_code), )) @classmethod def from_reader(cls, reader): _lang_code = reader.tgread_string() return cls(lang_code=_lang_code) class GetEmojiKeywordsDifferenceRequest(TLRequest): CONSTRUCTOR_ID = 0x1508b6af SUBCLASS_OF_ID = 0xd279c672 def __init__(self, lang_code: str, from_version: int): """ :returns EmojiKeywordsDifference: Instance of EmojiKeywordsDifference. """ self.lang_code = lang_code self.from_version = from_version def to_dict(self): return { '_': 'GetEmojiKeywordsDifferenceRequest', 'lang_code': self.lang_code, 'from_version': self.from_version } def _bytes(self): return b''.join(( b'\xaf\xb6\x08\x15', self.serialize_bytes(self.lang_code), struct.pack('<i', self.from_version), )) @classmethod def from_reader(cls, reader): _lang_code = reader.tgread_string() _from_version = reader.read_int() return cls(lang_code=_lang_code, from_version=_from_version) class GetEmojiKeywordsLanguagesRequest(TLRequest): CONSTRUCTOR_ID = 0x4e9963b2 SUBCLASS_OF_ID = 0xe795d387 def __init__(self, lang_codes: List[str]): """ :returns Vector<EmojiLanguage>: This type has no constructors. """ self.lang_codes = lang_codes def to_dict(self): return { '_': 'GetEmojiKeywordsLanguagesRequest', 'lang_codes': [] if self.lang_codes is None else self.lang_codes[:] } def _bytes(self): return b''.join(( b'\xb2c\x99N', b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.lang_codes)),b''.join(self.serialize_bytes(x) for x in self.lang_codes), )) @classmethod def from_reader(cls, reader): reader.read_int() _lang_codes = [] for _ in range(reader.read_int()): _x = reader.tgread_string() _lang_codes.append(_x) return cls(lang_codes=_lang_codes) class GetEmojiProfilePhotoGroupsRequest(TLRequest): CONSTRUCTOR_ID = 0x21a548f3 SUBCLASS_OF_ID = 0x7eca55d9 # noinspection PyShadowingBuiltins def __init__(self, hash: int): """ :returns messages.EmojiGroups: Instance of either EmojiGroupsNotModified, EmojiGroups. """ self.hash = hash def to_dict(self): return { '_': 'GetEmojiProfilePhotoGroupsRequest', 'hash': self.hash } def _bytes(self): return b''.join(( b'\xf3H\xa5!', struct.pack('<i', self.hash), )) @classmethod def from_reader(cls, reader): _hash = reader.read_int() return cls(hash=_hash) class GetEmojiStatusGroupsRequest(TLRequest): CONSTRUCTOR_ID = 0x2ecd56cd SUBCLASS_OF_ID = 0x7eca55d9 # noinspection PyShadowingBuiltins def __init__(self, hash: int): """ :returns messages.EmojiGroups: Instance of either EmojiGroupsNotModified, EmojiGroups. """ self.hash = hash def to_dict(self): return { '_': 'GetEmojiStatusGroupsRequest', 'hash': self.hash } def _bytes(self): return b''.join(( b'\xcdV\xcd.', struct.pack('<i', self.hash), )) @classmethod def from_reader(cls, reader): _hash = reader.read_int() return cls(hash=_hash) class GetEmojiStickersRequest(TLRequest): CONSTRUCTOR_ID = 0xfbfca18f SUBCLASS_OF_ID = 0x45834829 # noinspection PyShadowingBuiltins def __init__(self, hash: int): """ :returns messages.AllStickers: Instance of either AllStickersNotModified, AllStickers. """ self.hash = hash def to_dict(self): return { '_': 'GetEmojiStickersRequest', 'hash': self.hash } def _bytes(self): return b''.join(( b'\x8f\xa1\xfc\xfb', struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): _hash = reader.read_long() return cls(hash=_hash) class GetEmojiURLRequest(TLRequest): CONSTRUCTOR_ID = 0xd5b10c26 SUBCLASS_OF_ID = 0x1fa08a19 def __init__(self, lang_code: str): """ :returns EmojiURL: Instance of EmojiURL. """ self.lang_code = lang_code def to_dict(self): return { '_': 'GetEmojiURLRequest', 'lang_code': self.lang_code } def _bytes(self): return b''.join(( b'&\x0c\xb1\xd5', self.serialize_bytes(self.lang_code), )) @classmethod def from_reader(cls, reader): _lang_code = reader.tgread_string() return cls(lang_code=_lang_code) class GetExportedChatInviteRequest(TLRequest): CONSTRUCTOR_ID = 0x73746f5c SUBCLASS_OF_ID = 0x82dcd4ca def __init__(self, peer: 'TypeInputPeer', link: str): """ :returns messages.ExportedChatInvite: Instance of either ExportedChatInvite, ExportedChatInviteReplaced. """ self.peer = peer self.link = link async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetExportedChatInviteRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'link': self.link } def _bytes(self): return b''.join(( b'\\ots', self.peer._bytes(), self.serialize_bytes(self.link), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _link = reader.tgread_string() return cls(peer=_peer, link=_link) class GetExportedChatInvitesRequest(TLRequest): CONSTRUCTOR_ID = 0xa2b5a3f6 SUBCLASS_OF_ID = 0x603d3871 def __init__(self, peer: 'TypeInputPeer', admin_id: 'TypeInputUser', limit: int, revoked: Optional[bool]=None, offset_date: Optional[datetime]=None, offset_link: Optional[str]=None): """ :returns messages.ExportedChatInvites: Instance of ExportedChatInvites. """ self.peer = peer self.admin_id = admin_id self.limit = limit self.revoked = revoked self.offset_date = offset_date self.offset_link = offset_link async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) self.admin_id = utils.get_input_user(await client.get_input_entity(self.admin_id)) def to_dict(self): return { '_': 'GetExportedChatInvitesRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'admin_id': self.admin_id.to_dict() if isinstance(self.admin_id, TLObject) else self.admin_id, 'limit': self.limit, 'revoked': self.revoked, 'offset_date': self.offset_date, 'offset_link': self.offset_link } def _bytes(self): assert ((self.offset_date or self.offset_date is not None) and (self.offset_link or self.offset_link is not None)) or ((self.offset_date is None or self.offset_date is False) and (self.offset_link is None or self.offset_link is False)), 'offset_date, offset_link parameters must all be False-y (like None) or all me True-y' return b''.join(( b'\xf6\xa3\xb5\xa2', struct.pack('<I', (0 if self.revoked is None or self.revoked is False else 8) | (0 if self.offset_date is None or self.offset_date is False else 4) | (0 if self.offset_link is None or self.offset_link is False else 4)), self.peer._bytes(), self.admin_id._bytes(), b'' if self.offset_date is None or self.offset_date is False else (self.serialize_datetime(self.offset_date)), b'' if self.offset_link is None or self.offset_link is False else (self.serialize_bytes(self.offset_link)), struct.pack('<i', self.limit), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _revoked = bool(flags & 8) _peer = reader.tgread_object() _admin_id = reader.tgread_object() if flags & 4: _offset_date = reader.tgread_date() else: _offset_date = None if flags & 4: _offset_link = reader.tgread_string() else: _offset_link = None _limit = reader.read_int() return cls(peer=_peer, admin_id=_admin_id, limit=_limit, revoked=_revoked, offset_date=_offset_date, offset_link=_offset_link) class GetExtendedMediaRequest(TLRequest): CONSTRUCTOR_ID = 0x84f80814 SUBCLASS_OF_ID = 0x8af52aac # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', id: List[int]): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.id = id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetExtendedMediaRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'id': [] if self.id is None else self.id[:] } def _bytes(self): return b''.join(( b'\x14\x08\xf8\x84', self.peer._bytes(), b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.id)),b''.join(struct.pack('<i', x) for x in self.id), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() reader.read_int() _id = [] for _ in range(reader.read_int()): _x = reader.read_int() _id.append(_x) return cls(peer=_peer, id=_id) class GetFavedStickersRequest(TLRequest): CONSTRUCTOR_ID = 0x4f1aaa9 SUBCLASS_OF_ID = 0x8e736fb9 # noinspection PyShadowingBuiltins def __init__(self, hash: int): """ :returns messages.FavedStickers: Instance of either FavedStickersNotModified, FavedStickers. """ self.hash = hash def to_dict(self): return { '_': 'GetFavedStickersRequest', 'hash': self.hash } def _bytes(self): return b''.join(( b'\xa9\xaa\xf1\x04', struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): _hash = reader.read_long() return cls(hash=_hash) class GetFeaturedEmojiStickersRequest(TLRequest): CONSTRUCTOR_ID = 0xecf6736 SUBCLASS_OF_ID = 0x2614b722 # noinspection PyShadowingBuiltins def __init__(self, hash: int): """ :returns messages.FeaturedStickers: Instance of either FeaturedStickersNotModified, FeaturedStickers. """ self.hash = hash def to_dict(self): return { '_': 'GetFeaturedEmojiStickersRequest', 'hash': self.hash } def _bytes(self): return b''.join(( b'6g\xcf\x0e', struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): _hash = reader.read_long() return cls(hash=_hash) class GetFeaturedStickersRequest(TLRequest): CONSTRUCTOR_ID = 0x64780b14 SUBCLASS_OF_ID = 0x2614b722 # noinspection PyShadowingBuiltins def __init__(self, hash: int): """ :returns messages.FeaturedStickers: Instance of either FeaturedStickersNotModified, FeaturedStickers. """ self.hash = hash def to_dict(self): return { '_': 'GetFeaturedStickersRequest', 'hash': self.hash } def _bytes(self): return b''.join(( b'\x14\x0bxd', struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): _hash = reader.read_long() return cls(hash=_hash) class GetFullChatRequest(TLRequest): CONSTRUCTOR_ID = 0xaeb00b34 SUBCLASS_OF_ID = 0x225a5109 def __init__(self, chat_id: int): """ :returns messages.ChatFull: Instance of ChatFull. """ self.chat_id = chat_id def to_dict(self): return { '_': 'GetFullChatRequest', 'chat_id': self.chat_id } def _bytes(self): return b''.join(( b'4\x0b\xb0\xae', struct.pack('<q', self.chat_id), )) @classmethod def from_reader(cls, reader): _chat_id = reader.read_long() return cls(chat_id=_chat_id) class GetGameHighScoresRequest(TLRequest): CONSTRUCTOR_ID = 0xe822649d SUBCLASS_OF_ID = 0x6ccd95fd # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', id: int, user_id: 'TypeInputUser'): """ :returns messages.HighScores: Instance of HighScores. """ self.peer = peer self.id = id self.user_id = user_id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) self.user_id = utils.get_input_user(await client.get_input_entity(self.user_id)) def to_dict(self): return { '_': 'GetGameHighScoresRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'id': self.id, 'user_id': self.user_id.to_dict() if isinstance(self.user_id, TLObject) else self.user_id } def _bytes(self): return b''.join(( b'\x9dd"\xe8', self.peer._bytes(), struct.pack('<i', self.id), self.user_id._bytes(), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _id = reader.read_int() _user_id = reader.tgread_object() return cls(peer=_peer, id=_id, user_id=_user_id) class GetHistoryRequest(TLRequest): CONSTRUCTOR_ID = 0x4423e6c5 SUBCLASS_OF_ID = 0xd4b40b5e # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', offset_id: int, offset_date: Optional[datetime], add_offset: int, limit: int, max_id: int, min_id: int, hash: int): """ :returns messages.Messages: Instance of either Messages, MessagesSlice, ChannelMessages, MessagesNotModified. """ self.peer = peer self.offset_id = offset_id self.offset_date = offset_date self.add_offset = add_offset self.limit = limit self.max_id = max_id self.min_id = min_id self.hash = hash async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetHistoryRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'offset_id': self.offset_id, 'offset_date': self.offset_date, 'add_offset': self.add_offset, 'limit': self.limit, 'max_id': self.max_id, 'min_id': self.min_id, 'hash': self.hash } def _bytes(self): return b''.join(( b'\xc5\xe6#D', self.peer._bytes(), struct.pack('<i', self.offset_id), self.serialize_datetime(self.offset_date), struct.pack('<i', self.add_offset), struct.pack('<i', self.limit), struct.pack('<i', self.max_id), struct.pack('<i', self.min_id), struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _offset_id = reader.read_int() _offset_date = reader.tgread_date() _add_offset = reader.read_int() _limit = reader.read_int() _max_id = reader.read_int() _min_id = reader.read_int() _hash = reader.read_long() return cls(peer=_peer, offset_id=_offset_id, offset_date=_offset_date, add_offset=_add_offset, limit=_limit, max_id=_max_id, min_id=_min_id, hash=_hash) class GetInlineBotResultsRequest(TLRequest): CONSTRUCTOR_ID = 0x514e999d SUBCLASS_OF_ID = 0x3ed4d9c9 def __init__(self, bot: 'TypeInputUser', peer: 'TypeInputPeer', query: str, offset: str, geo_point: Optional['TypeInputGeoPoint']=None): """ :returns messages.BotResults: Instance of BotResults. """ self.bot = bot self.peer = peer self.query = query self.offset = offset self.geo_point = geo_point async def resolve(self, client, utils): self.bot = utils.get_input_user(await client.get_input_entity(self.bot)) self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetInlineBotResultsRequest', 'bot': self.bot.to_dict() if isinstance(self.bot, TLObject) else self.bot, 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'query': self.query, 'offset': self.offset, 'geo_point': self.geo_point.to_dict() if isinstance(self.geo_point, TLObject) else self.geo_point } def _bytes(self): return b''.join(( b'\x9d\x99NQ', struct.pack('<I', (0 if self.geo_point is None or self.geo_point is False else 1)), self.bot._bytes(), self.peer._bytes(), b'' if self.geo_point is None or self.geo_point is False else (self.geo_point._bytes()), self.serialize_bytes(self.query), self.serialize_bytes(self.offset), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _bot = reader.tgread_object() _peer = reader.tgread_object() if flags & 1: _geo_point = reader.tgread_object() else: _geo_point = None _query = reader.tgread_string() _offset = reader.tgread_string() return cls(bot=_bot, peer=_peer, query=_query, offset=_offset, geo_point=_geo_point) class GetInlineGameHighScoresRequest(TLRequest): CONSTRUCTOR_ID = 0xf635e1b SUBCLASS_OF_ID = 0x6ccd95fd # noinspection PyShadowingBuiltins def __init__(self, id: 'TypeInputBotInlineMessageID', user_id: 'TypeInputUser'): """ :returns messages.HighScores: Instance of HighScores. """ self.id = id self.user_id = user_id async def resolve(self, client, utils): self.user_id = utils.get_input_user(await client.get_input_entity(self.user_id)) def to_dict(self): return { '_': 'GetInlineGameHighScoresRequest', 'id': self.id.to_dict() if isinstance(self.id, TLObject) else self.id, 'user_id': self.user_id.to_dict() if isinstance(self.user_id, TLObject) else self.user_id } def _bytes(self): return b''.join(( b'\x1b^c\x0f', self.id._bytes(), self.user_id._bytes(), )) @classmethod def from_reader(cls, reader): _id = reader.tgread_object() _user_id = reader.tgread_object() return cls(id=_id, user_id=_user_id) class GetMaskStickersRequest(TLRequest): CONSTRUCTOR_ID = 0x640f82b8 SUBCLASS_OF_ID = 0x45834829 # noinspection PyShadowingBuiltins def __init__(self, hash: int): """ :returns messages.AllStickers: Instance of either AllStickersNotModified, AllStickers. """ self.hash = hash def to_dict(self): return { '_': 'GetMaskStickersRequest', 'hash': self.hash } def _bytes(self): return b''.join(( b'\xb8\x82\x0fd', struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): _hash = reader.read_long() return cls(hash=_hash) class GetMessageEditDataRequest(TLRequest): CONSTRUCTOR_ID = 0xfda68d36 SUBCLASS_OF_ID = 0xfb47949d # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', id: int): """ :returns messages.MessageEditData: Instance of MessageEditData. """ self.peer = peer self.id = id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetMessageEditDataRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'id': self.id } def _bytes(self): return b''.join(( b'6\x8d\xa6\xfd', self.peer._bytes(), struct.pack('<i', self.id), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _id = reader.read_int() return cls(peer=_peer, id=_id) class GetMessageReactionsListRequest(TLRequest): CONSTRUCTOR_ID = 0x461b3f48 SUBCLASS_OF_ID = 0x60fce5e6 # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', id: int, limit: int, reaction: Optional['TypeReaction']=None, offset: Optional[str]=None): """ :returns messages.MessageReactionsList: Instance of MessageReactionsList. """ self.peer = peer self.id = id self.limit = limit self.reaction = reaction self.offset = offset async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetMessageReactionsListRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'id': self.id, 'limit': self.limit, 'reaction': self.reaction.to_dict() if isinstance(self.reaction, TLObject) else self.reaction, 'offset': self.offset } def _bytes(self): return b''.join(( b'H?\x1bF', struct.pack('<I', (0 if self.reaction is None or self.reaction is False else 1) | (0 if self.offset is None or self.offset is False else 2)), self.peer._bytes(), struct.pack('<i', self.id), b'' if self.reaction is None or self.reaction is False else (self.reaction._bytes()), b'' if self.offset is None or self.offset is False else (self.serialize_bytes(self.offset)), struct.pack('<i', self.limit), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _peer = reader.tgread_object() _id = reader.read_int() if flags & 1: _reaction = reader.tgread_object() else: _reaction = None if flags & 2: _offset = reader.tgread_string() else: _offset = None _limit = reader.read_int() return cls(peer=_peer, id=_id, limit=_limit, reaction=_reaction, offset=_offset) class GetMessageReadParticipantsRequest(TLRequest): CONSTRUCTOR_ID = 0x31c1c44f SUBCLASS_OF_ID = 0x21ca455b def __init__(self, peer: 'TypeInputPeer', msg_id: int): """ :returns Vector<ReadParticipantDate>: This type has no constructors. """ self.peer = peer self.msg_id = msg_id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetMessageReadParticipantsRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'msg_id': self.msg_id } def _bytes(self): return b''.join(( b'O\xc4\xc11', self.peer._bytes(), struct.pack('<i', self.msg_id), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _msg_id = reader.read_int() return cls(peer=_peer, msg_id=_msg_id) class GetMessagesRequest(TLRequest): CONSTRUCTOR_ID = 0x63c66506 SUBCLASS_OF_ID = 0xd4b40b5e # noinspection PyShadowingBuiltins def __init__(self, id: List['TypeInputMessage']): """ :returns messages.Messages: Instance of either Messages, MessagesSlice, ChannelMessages, MessagesNotModified. """ self.id = id async def resolve(self, client, utils): _tmp = [] for _x in self.id: _tmp.append(utils.get_input_message(_x)) self.id = _tmp def to_dict(self): return { '_': 'GetMessagesRequest', 'id': [] if self.id is None else [x.to_dict() if isinstance(x, TLObject) else x for x in self.id] } def _bytes(self): return b''.join(( b'\x06e\xc6c', b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.id)),b''.join(x._bytes() for x in self.id), )) @classmethod def from_reader(cls, reader): reader.read_int() _id = [] for _ in range(reader.read_int()): _x = reader.tgread_object() _id.append(_x) return cls(id=_id) class GetMessagesReactionsRequest(TLRequest): CONSTRUCTOR_ID = 0x8bba90e6 SUBCLASS_OF_ID = 0x8af52aac # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', id: List[int]): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.id = id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetMessagesReactionsRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'id': [] if self.id is None else self.id[:] } def _bytes(self): return b''.join(( b'\xe6\x90\xba\x8b', self.peer._bytes(), b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.id)),b''.join(struct.pack('<i', x) for x in self.id), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() reader.read_int() _id = [] for _ in range(reader.read_int()): _x = reader.read_int() _id.append(_x) return cls(peer=_peer, id=_id) class GetMessagesViewsRequest(TLRequest): CONSTRUCTOR_ID = 0x5784d3e1 SUBCLASS_OF_ID = 0xafb5eb9c # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', id: List[int], increment: bool): """ :returns messages.MessageViews: Instance of MessageViews. """ self.peer = peer self.id = id self.increment = increment async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetMessagesViewsRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'id': [] if self.id is None else self.id[:], 'increment': self.increment } def _bytes(self): return b''.join(( b'\xe1\xd3\x84W', self.peer._bytes(), b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.id)),b''.join(struct.pack('<i', x) for x in self.id), b'\xb5ur\x99' if self.increment else b'7\x97y\xbc', )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() reader.read_int() _id = [] for _ in range(reader.read_int()): _x = reader.read_int() _id.append(_x) _increment = reader.tgread_bool() return cls(peer=_peer, id=_id, increment=_increment) class GetOldFeaturedStickersRequest(TLRequest): CONSTRUCTOR_ID = 0x7ed094a1 SUBCLASS_OF_ID = 0x2614b722 # noinspection PyShadowingBuiltins def __init__(self, offset: int, limit: int, hash: int): """ :returns messages.FeaturedStickers: Instance of either FeaturedStickersNotModified, FeaturedStickers. """ self.offset = offset self.limit = limit self.hash = hash def to_dict(self): return { '_': 'GetOldFeaturedStickersRequest', 'offset': self.offset, 'limit': self.limit, 'hash': self.hash } def _bytes(self): return b''.join(( b'\xa1\x94\xd0~', struct.pack('<i', self.offset), struct.pack('<i', self.limit), struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): _offset = reader.read_int() _limit = reader.read_int() _hash = reader.read_long() return cls(offset=_offset, limit=_limit, hash=_hash) class GetOnlinesRequest(TLRequest): CONSTRUCTOR_ID = 0x6e2be050 SUBCLASS_OF_ID = 0x8c81903a def __init__(self, peer: 'TypeInputPeer'): """ :returns ChatOnlines: Instance of ChatOnlines. """ self.peer = peer async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetOnlinesRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer } def _bytes(self): return b''.join(( b'P\xe0+n', self.peer._bytes(), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() return cls(peer=_peer) class GetPeerDialogsRequest(TLRequest): CONSTRUCTOR_ID = 0xe470bcfd SUBCLASS_OF_ID = 0x3ac70132 def __init__(self, peers: List['TypeInputDialogPeer']): """ :returns messages.PeerDialogs: Instance of PeerDialogs. """ self.peers = peers async def resolve(self, client, utils): _tmp = [] for _x in self.peers: _tmp.append(await client._get_input_dialog(_x)) self.peers = _tmp def to_dict(self): return { '_': 'GetPeerDialogsRequest', 'peers': [] if self.peers is None else [x.to_dict() if isinstance(x, TLObject) else x for x in self.peers] } def _bytes(self): return b''.join(( b'\xfd\xbcp\xe4', b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.peers)),b''.join(x._bytes() for x in self.peers), )) @classmethod def from_reader(cls, reader): reader.read_int() _peers = [] for _ in range(reader.read_int()): _x = reader.tgread_object() _peers.append(_x) return cls(peers=_peers) class GetPeerSettingsRequest(TLRequest): CONSTRUCTOR_ID = 0xefd9a6a2 SUBCLASS_OF_ID = 0x65a2f7a1 def __init__(self, peer: 'TypeInputPeer'): """ :returns messages.PeerSettings: Instance of PeerSettings. """ self.peer = peer async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetPeerSettingsRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer } def _bytes(self): return b''.join(( b'\xa2\xa6\xd9\xef', self.peer._bytes(), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() return cls(peer=_peer) class GetPinnedDialogsRequest(TLRequest): CONSTRUCTOR_ID = 0xd6b94df2 SUBCLASS_OF_ID = 0x3ac70132 def __init__(self, folder_id: int): """ :returns messages.PeerDialogs: Instance of PeerDialogs. """ self.folder_id = folder_id def to_dict(self): return { '_': 'GetPinnedDialogsRequest', 'folder_id': self.folder_id } def _bytes(self): return b''.join(( b'\xf2M\xb9\xd6', struct.pack('<i', self.folder_id), )) @classmethod def from_reader(cls, reader): _folder_id = reader.read_int() return cls(folder_id=_folder_id) class GetPollResultsRequest(TLRequest): CONSTRUCTOR_ID = 0x73bb643b SUBCLASS_OF_ID = 0x8af52aac def __init__(self, peer: 'TypeInputPeer', msg_id: int): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.msg_id = msg_id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetPollResultsRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'msg_id': self.msg_id } def _bytes(self): return b''.join(( b';d\xbbs', self.peer._bytes(), struct.pack('<i', self.msg_id), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _msg_id = reader.read_int() return cls(peer=_peer, msg_id=_msg_id) class GetPollVotesRequest(TLRequest): CONSTRUCTOR_ID = 0xb86e380e SUBCLASS_OF_ID = 0xc2199885 # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', id: int, limit: int, option: Optional[bytes]=None, offset: Optional[str]=None): """ :returns messages.VotesList: Instance of VotesList. """ self.peer = peer self.id = id self.limit = limit self.option = option self.offset = offset async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetPollVotesRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'id': self.id, 'limit': self.limit, 'option': self.option, 'offset': self.offset } def _bytes(self): return b''.join(( b'\x0e8n\xb8', struct.pack('<I', (0 if self.option is None or self.option is False else 1) | (0 if self.offset is None or self.offset is False else 2)), self.peer._bytes(), struct.pack('<i', self.id), b'' if self.option is None or self.option is False else (self.serialize_bytes(self.option)), b'' if self.offset is None or self.offset is False else (self.serialize_bytes(self.offset)), struct.pack('<i', self.limit), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _peer = reader.tgread_object() _id = reader.read_int() if flags & 1: _option = reader.tgread_bytes() else: _option = None if flags & 2: _offset = reader.tgread_string() else: _offset = None _limit = reader.read_int() return cls(peer=_peer, id=_id, limit=_limit, option=_option, offset=_offset) class GetRecentLocationsRequest(TLRequest): CONSTRUCTOR_ID = 0x702a40e0 SUBCLASS_OF_ID = 0xd4b40b5e # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', limit: int, hash: int): """ :returns messages.Messages: Instance of either Messages, MessagesSlice, ChannelMessages, MessagesNotModified. """ self.peer = peer self.limit = limit self.hash = hash async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetRecentLocationsRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'limit': self.limit, 'hash': self.hash } def _bytes(self): return b''.join(( b'\xe0@*p', self.peer._bytes(), struct.pack('<i', self.limit), struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _limit = reader.read_int() _hash = reader.read_long() return cls(peer=_peer, limit=_limit, hash=_hash) class GetRecentReactionsRequest(TLRequest): CONSTRUCTOR_ID = 0x39461db2 SUBCLASS_OF_ID = 0xadc38324 # noinspection PyShadowingBuiltins def __init__(self, limit: int, hash: int): """ :returns messages.Reactions: Instance of either ReactionsNotModified, Reactions. """ self.limit = limit self.hash = hash def to_dict(self): return { '_': 'GetRecentReactionsRequest', 'limit': self.limit, 'hash': self.hash } def _bytes(self): return b''.join(( b'\xb2\x1dF9', struct.pack('<i', self.limit), struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): _limit = reader.read_int() _hash = reader.read_long() return cls(limit=_limit, hash=_hash) class GetRecentStickersRequest(TLRequest): CONSTRUCTOR_ID = 0x9da9403b SUBCLASS_OF_ID = 0xf76f8683 # noinspection PyShadowingBuiltins def __init__(self, hash: int, attached: Optional[bool]=None): """ :returns messages.RecentStickers: Instance of either RecentStickersNotModified, RecentStickers. """ self.hash = hash self.attached = attached def to_dict(self): return { '_': 'GetRecentStickersRequest', 'hash': self.hash, 'attached': self.attached } def _bytes(self): return b''.join(( b';@\xa9\x9d', struct.pack('<I', (0 if self.attached is None or self.attached is False else 1)), struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _attached = bool(flags & 1) _hash = reader.read_long() return cls(hash=_hash, attached=_attached) class GetRepliesRequest(TLRequest): CONSTRUCTOR_ID = 0x22ddd30c SUBCLASS_OF_ID = 0xd4b40b5e # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', msg_id: int, offset_id: int, offset_date: Optional[datetime], add_offset: int, limit: int, max_id: int, min_id: int, hash: int): """ :returns messages.Messages: Instance of either Messages, MessagesSlice, ChannelMessages, MessagesNotModified. """ self.peer = peer self.msg_id = msg_id self.offset_id = offset_id self.offset_date = offset_date self.add_offset = add_offset self.limit = limit self.max_id = max_id self.min_id = min_id self.hash = hash async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetRepliesRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'msg_id': self.msg_id, 'offset_id': self.offset_id, 'offset_date': self.offset_date, 'add_offset': self.add_offset, 'limit': self.limit, 'max_id': self.max_id, 'min_id': self.min_id, 'hash': self.hash } def _bytes(self): return b''.join(( b'\x0c\xd3\xdd"', self.peer._bytes(), struct.pack('<i', self.msg_id), struct.pack('<i', self.offset_id), self.serialize_datetime(self.offset_date), struct.pack('<i', self.add_offset), struct.pack('<i', self.limit), struct.pack('<i', self.max_id), struct.pack('<i', self.min_id), struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _msg_id = reader.read_int() _offset_id = reader.read_int() _offset_date = reader.tgread_date() _add_offset = reader.read_int() _limit = reader.read_int() _max_id = reader.read_int() _min_id = reader.read_int() _hash = reader.read_long() return cls(peer=_peer, msg_id=_msg_id, offset_id=_offset_id, offset_date=_offset_date, add_offset=_add_offset, limit=_limit, max_id=_max_id, min_id=_min_id, hash=_hash) class GetSavedGifsRequest(TLRequest): CONSTRUCTOR_ID = 0x5cf09635 SUBCLASS_OF_ID = 0xa68b61f5 # noinspection PyShadowingBuiltins def __init__(self, hash: int): """ :returns messages.SavedGifs: Instance of either SavedGifsNotModified, SavedGifs. """ self.hash = hash def to_dict(self): return { '_': 'GetSavedGifsRequest', 'hash': self.hash } def _bytes(self): return b''.join(( b'5\x96\xf0\\', struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): _hash = reader.read_long() return cls(hash=_hash) class GetScheduledHistoryRequest(TLRequest): CONSTRUCTOR_ID = 0xf516760b SUBCLASS_OF_ID = 0xd4b40b5e # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', hash: int): """ :returns messages.Messages: Instance of either Messages, MessagesSlice, ChannelMessages, MessagesNotModified. """ self.peer = peer self.hash = hash async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetScheduledHistoryRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'hash': self.hash } def _bytes(self): return b''.join(( b'\x0bv\x16\xf5', self.peer._bytes(), struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _hash = reader.read_long() return cls(peer=_peer, hash=_hash) class GetScheduledMessagesRequest(TLRequest): CONSTRUCTOR_ID = 0xbdbb0464 SUBCLASS_OF_ID = 0xd4b40b5e # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', id: List[int]): """ :returns messages.Messages: Instance of either Messages, MessagesSlice, ChannelMessages, MessagesNotModified. """ self.peer = peer self.id = id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetScheduledMessagesRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'id': [] if self.id is None else self.id[:] } def _bytes(self): return b''.join(( b'd\x04\xbb\xbd', self.peer._bytes(), b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.id)),b''.join(struct.pack('<i', x) for x in self.id), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() reader.read_int() _id = [] for _ in range(reader.read_int()): _x = reader.read_int() _id.append(_x) return cls(peer=_peer, id=_id) class GetSearchCountersRequest(TLRequest): CONSTRUCTOR_ID = 0xae7cc1 SUBCLASS_OF_ID = 0x6bde3c6e def __init__(self, peer: 'TypeInputPeer', filters: List['TypeMessagesFilter'], top_msg_id: Optional[int]=None): """ :returns Vector<messages.SearchCounter>: This type has no constructors. """ self.peer = peer self.filters = filters self.top_msg_id = top_msg_id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetSearchCountersRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'filters': [] if self.filters is None else [x.to_dict() if isinstance(x, TLObject) else x for x in self.filters], 'top_msg_id': self.top_msg_id } def _bytes(self): return b''.join(( b'\xc1|\xae\x00', struct.pack('<I', (0 if self.top_msg_id is None or self.top_msg_id is False else 1)), self.peer._bytes(), b'' if self.top_msg_id is None or self.top_msg_id is False else (struct.pack('<i', self.top_msg_id)), b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.filters)),b''.join(x._bytes() for x in self.filters), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _peer = reader.tgread_object() if flags & 1: _top_msg_id = reader.read_int() else: _top_msg_id = None reader.read_int() _filters = [] for _ in range(reader.read_int()): _x = reader.tgread_object() _filters.append(_x) return cls(peer=_peer, filters=_filters, top_msg_id=_top_msg_id) class GetSearchResultsCalendarRequest(TLRequest): CONSTRUCTOR_ID = 0x49f0bde9 SUBCLASS_OF_ID = 0x92c5640f # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', filter: 'TypeMessagesFilter', offset_id: int, offset_date: Optional[datetime]): """ :returns messages.SearchResultsCalendar: Instance of SearchResultsCalendar. """ self.peer = peer self.filter = filter self.offset_id = offset_id self.offset_date = offset_date async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetSearchResultsCalendarRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'filter': self.filter.to_dict() if isinstance(self.filter, TLObject) else self.filter, 'offset_id': self.offset_id, 'offset_date': self.offset_date } def _bytes(self): return b''.join(( b'\xe9\xbd\xf0I', self.peer._bytes(), self.filter._bytes(), struct.pack('<i', self.offset_id), self.serialize_datetime(self.offset_date), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _filter = reader.tgread_object() _offset_id = reader.read_int() _offset_date = reader.tgread_date() return cls(peer=_peer, filter=_filter, offset_id=_offset_id, offset_date=_offset_date) class GetSearchResultsPositionsRequest(TLRequest): CONSTRUCTOR_ID = 0x6e9583a3 SUBCLASS_OF_ID = 0xd963708d # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', filter: 'TypeMessagesFilter', offset_id: int, limit: int): """ :returns messages.SearchResultsPositions: Instance of SearchResultsPositions. """ self.peer = peer self.filter = filter self.offset_id = offset_id self.limit = limit async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetSearchResultsPositionsRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'filter': self.filter.to_dict() if isinstance(self.filter, TLObject) else self.filter, 'offset_id': self.offset_id, 'limit': self.limit } def _bytes(self): return b''.join(( b'\xa3\x83\x95n', self.peer._bytes(), self.filter._bytes(), struct.pack('<i', self.offset_id), struct.pack('<i', self.limit), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _filter = reader.tgread_object() _offset_id = reader.read_int() _limit = reader.read_int() return cls(peer=_peer, filter=_filter, offset_id=_offset_id, limit=_limit) class GetSplitRangesRequest(TLRequest): CONSTRUCTOR_ID = 0x1cff7e08 SUBCLASS_OF_ID = 0x5ba52504 def to_dict(self): return { '_': 'GetSplitRangesRequest' } def _bytes(self): return b''.join(( b'\x08~\xff\x1c', )) @classmethod def from_reader(cls, reader): return cls() class GetStickerSetRequest(TLRequest): CONSTRUCTOR_ID = 0xc8a0ec74 SUBCLASS_OF_ID = 0x9b704a5a # noinspection PyShadowingBuiltins def __init__(self, stickerset: 'TypeInputStickerSet', hash: int): """ :returns messages.StickerSet: Instance of either StickerSet, StickerSetNotModified. """ self.stickerset = stickerset self.hash = hash def to_dict(self): return { '_': 'GetStickerSetRequest', 'stickerset': self.stickerset.to_dict() if isinstance(self.stickerset, TLObject) else self.stickerset, 'hash': self.hash } def _bytes(self): return b''.join(( b't\xec\xa0\xc8', self.stickerset._bytes(), struct.pack('<i', self.hash), )) @classmethod def from_reader(cls, reader): _stickerset = reader.tgread_object() _hash = reader.read_int() return cls(stickerset=_stickerset, hash=_hash) class GetStickersRequest(TLRequest): CONSTRUCTOR_ID = 0xd5a5d3a1 SUBCLASS_OF_ID = 0xd73bb9de # noinspection PyShadowingBuiltins def __init__(self, emoticon: str, hash: int): """ :returns messages.Stickers: Instance of either StickersNotModified, Stickers. """ self.emoticon = emoticon self.hash = hash def to_dict(self): return { '_': 'GetStickersRequest', 'emoticon': self.emoticon, 'hash': self.hash } def _bytes(self): return b''.join(( b'\xa1\xd3\xa5\xd5', self.serialize_bytes(self.emoticon), struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): _emoticon = reader.tgread_string() _hash = reader.read_long() return cls(emoticon=_emoticon, hash=_hash) class GetSuggestedDialogFiltersRequest(TLRequest): CONSTRUCTOR_ID = 0xa29cd42c SUBCLASS_OF_ID = 0x7b296c39 def to_dict(self): return { '_': 'GetSuggestedDialogFiltersRequest' } def _bytes(self): return b''.join(( b',\xd4\x9c\xa2', )) @classmethod def from_reader(cls, reader): return cls() class GetTopReactionsRequest(TLRequest): CONSTRUCTOR_ID = 0xbb8125ba SUBCLASS_OF_ID = 0xadc38324 # noinspection PyShadowingBuiltins def __init__(self, limit: int, hash: int): """ :returns messages.Reactions: Instance of either ReactionsNotModified, Reactions. """ self.limit = limit self.hash = hash def to_dict(self): return { '_': 'GetTopReactionsRequest', 'limit': self.limit, 'hash': self.hash } def _bytes(self): return b''.join(( b'\xba%\x81\xbb', struct.pack('<i', self.limit), struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): _limit = reader.read_int() _hash = reader.read_long() return cls(limit=_limit, hash=_hash) class GetUnreadMentionsRequest(TLRequest): CONSTRUCTOR_ID = 0xf107e790 SUBCLASS_OF_ID = 0xd4b40b5e def __init__(self, peer: 'TypeInputPeer', offset_id: int, add_offset: int, limit: int, max_id: int, min_id: int, top_msg_id: Optional[int]=None): """ :returns messages.Messages: Instance of either Messages, MessagesSlice, ChannelMessages, MessagesNotModified. """ self.peer = peer self.offset_id = offset_id self.add_offset = add_offset self.limit = limit self.max_id = max_id self.min_id = min_id self.top_msg_id = top_msg_id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetUnreadMentionsRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'offset_id': self.offset_id, 'add_offset': self.add_offset, 'limit': self.limit, 'max_id': self.max_id, 'min_id': self.min_id, 'top_msg_id': self.top_msg_id } def _bytes(self): return b''.join(( b'\x90\xe7\x07\xf1', struct.pack('<I', (0 if self.top_msg_id is None or self.top_msg_id is False else 1)), self.peer._bytes(), b'' if self.top_msg_id is None or self.top_msg_id is False else (struct.pack('<i', self.top_msg_id)), struct.pack('<i', self.offset_id), struct.pack('<i', self.add_offset), struct.pack('<i', self.limit), struct.pack('<i', self.max_id), struct.pack('<i', self.min_id), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _peer = reader.tgread_object() if flags & 1: _top_msg_id = reader.read_int() else: _top_msg_id = None _offset_id = reader.read_int() _add_offset = reader.read_int() _limit = reader.read_int() _max_id = reader.read_int() _min_id = reader.read_int() return cls(peer=_peer, offset_id=_offset_id, add_offset=_add_offset, limit=_limit, max_id=_max_id, min_id=_min_id, top_msg_id=_top_msg_id) class GetUnreadReactionsRequest(TLRequest): CONSTRUCTOR_ID = 0x3223495b SUBCLASS_OF_ID = 0xd4b40b5e def __init__(self, peer: 'TypeInputPeer', offset_id: int, add_offset: int, limit: int, max_id: int, min_id: int, top_msg_id: Optional[int]=None): """ :returns messages.Messages: Instance of either Messages, MessagesSlice, ChannelMessages, MessagesNotModified. """ self.peer = peer self.offset_id = offset_id self.add_offset = add_offset self.limit = limit self.max_id = max_id self.min_id = min_id self.top_msg_id = top_msg_id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'GetUnreadReactionsRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'offset_id': self.offset_id, 'add_offset': self.add_offset, 'limit': self.limit, 'max_id': self.max_id, 'min_id': self.min_id, 'top_msg_id': self.top_msg_id } def _bytes(self): return b''.join(( b'[I#2', struct.pack('<I', (0 if self.top_msg_id is None or self.top_msg_id is False else 1)), self.peer._bytes(), b'' if self.top_msg_id is None or self.top_msg_id is False else (struct.pack('<i', self.top_msg_id)), struct.pack('<i', self.offset_id), struct.pack('<i', self.add_offset), struct.pack('<i', self.limit), struct.pack('<i', self.max_id), struct.pack('<i', self.min_id), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _peer = reader.tgread_object() if flags & 1: _top_msg_id = reader.read_int() else: _top_msg_id = None _offset_id = reader.read_int() _add_offset = reader.read_int() _limit = reader.read_int() _max_id = reader.read_int() _min_id = reader.read_int() return cls(peer=_peer, offset_id=_offset_id, add_offset=_add_offset, limit=_limit, max_id=_max_id, min_id=_min_id, top_msg_id=_top_msg_id) class GetWebPageRequest(TLRequest): CONSTRUCTOR_ID = 0x32ca8f91 SUBCLASS_OF_ID = 0x55a97481 # noinspection PyShadowingBuiltins def __init__(self, url: str, hash: int): """ :returns WebPage: Instance of either WebPageEmpty, WebPagePending, WebPage, WebPageNotModified. """ self.url = url self.hash = hash def to_dict(self): return { '_': 'GetWebPageRequest', 'url': self.url, 'hash': self.hash } def _bytes(self): return b''.join(( b'\x91\x8f\xca2', self.serialize_bytes(self.url), struct.pack('<i', self.hash), )) @classmethod def from_reader(cls, reader): _url = reader.tgread_string() _hash = reader.read_int() return cls(url=_url, hash=_hash) class GetWebPagePreviewRequest(TLRequest): CONSTRUCTOR_ID = 0x8b68b0cc SUBCLASS_OF_ID = 0x476cbe32 def __init__(self, message: str, entities: Optional[List['TypeMessageEntity']]=None): """ :returns MessageMedia: Instance of either MessageMediaEmpty, MessageMediaPhoto, MessageMediaGeo, MessageMediaContact, MessageMediaUnsupported, MessageMediaDocument, MessageMediaWebPage, MessageMediaVenue, MessageMediaGame, MessageMediaInvoice, MessageMediaGeoLive, MessageMediaPoll, MessageMediaDice. """ self.message = message self.entities = entities def to_dict(self): return { '_': 'GetWebPagePreviewRequest', 'message': self.message, 'entities': [] if self.entities is None else [x.to_dict() if isinstance(x, TLObject) else x for x in self.entities] } def _bytes(self): return b''.join(( b'\xcc\xb0h\x8b', struct.pack('<I', (0 if self.entities is None or self.entities is False else 8)), self.serialize_bytes(self.message), b'' if self.entities is None or self.entities is False else b''.join((b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.entities)),b''.join(x._bytes() for x in self.entities))), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _message = reader.tgread_string() if flags & 8: reader.read_int() _entities = [] for _ in range(reader.read_int()): _x = reader.tgread_object() _entities.append(_x) else: _entities = None return cls(message=_message, entities=_entities) class HideAllChatJoinRequestsRequest(TLRequest): CONSTRUCTOR_ID = 0xe085f4ea SUBCLASS_OF_ID = 0x8af52aac def __init__(self, peer: 'TypeInputPeer', approved: Optional[bool]=None, link: Optional[str]=None): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.approved = approved self.link = link async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'HideAllChatJoinRequestsRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'approved': self.approved, 'link': self.link } def _bytes(self): return b''.join(( b'\xea\xf4\x85\xe0', struct.pack('<I', (0 if self.approved is None or self.approved is False else 1) | (0 if self.link is None or self.link is False else 2)), self.peer._bytes(), b'' if self.link is None or self.link is False else (self.serialize_bytes(self.link)), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _approved = bool(flags & 1) _peer = reader.tgread_object() if flags & 2: _link = reader.tgread_string() else: _link = None return cls(peer=_peer, approved=_approved, link=_link) class HideChatJoinRequestRequest(TLRequest): CONSTRUCTOR_ID = 0x7fe7e815 SUBCLASS_OF_ID = 0x8af52aac def __init__(self, peer: 'TypeInputPeer', user_id: 'TypeInputUser', approved: Optional[bool]=None): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.user_id = user_id self.approved = approved async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) self.user_id = utils.get_input_user(await client.get_input_entity(self.user_id)) def to_dict(self): return { '_': 'HideChatJoinRequestRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'user_id': self.user_id.to_dict() if isinstance(self.user_id, TLObject) else self.user_id, 'approved': self.approved } def _bytes(self): return b''.join(( b'\x15\xe8\xe7\x7f', struct.pack('<I', (0 if self.approved is None or self.approved is False else 1)), self.peer._bytes(), self.user_id._bytes(), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _approved = bool(flags & 1) _peer = reader.tgread_object() _user_id = reader.tgread_object() return cls(peer=_peer, user_id=_user_id, approved=_approved) class HidePeerSettingsBarRequest(TLRequest): CONSTRUCTOR_ID = 0x4facb138 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, peer: 'TypeInputPeer'): """ :returns Bool: This type has no constructors. """ self.peer = peer async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'HidePeerSettingsBarRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer } def _bytes(self): return b''.join(( b'8\xb1\xacO', self.peer._bytes(), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() return cls(peer=_peer) class ImportChatInviteRequest(TLRequest): CONSTRUCTOR_ID = 0x6c50051c SUBCLASS_OF_ID = 0x8af52aac # noinspection PyShadowingBuiltins def __init__(self, hash: str): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.hash = hash def to_dict(self): return { '_': 'ImportChatInviteRequest', 'hash': self.hash } def _bytes(self): return b''.join(( b'\x1c\x05Pl', self.serialize_bytes(self.hash), )) @classmethod def from_reader(cls, reader): _hash = reader.tgread_string() return cls(hash=_hash) class InitHistoryImportRequest(TLRequest): CONSTRUCTOR_ID = 0x34090c3b SUBCLASS_OF_ID = 0xb18bb50a def __init__(self, peer: 'TypeInputPeer', file: 'TypeInputFile', media_count: int): """ :returns messages.HistoryImport: Instance of HistoryImport. """ self.peer = peer self.file = file self.media_count = media_count async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'InitHistoryImportRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'file': self.file.to_dict() if isinstance(self.file, TLObject) else self.file, 'media_count': self.media_count } def _bytes(self): return b''.join(( b';\x0c\t4', self.peer._bytes(), self.file._bytes(), struct.pack('<i', self.media_count), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _file = reader.tgread_object() _media_count = reader.read_int() return cls(peer=_peer, file=_file, media_count=_media_count) class InstallStickerSetRequest(TLRequest): CONSTRUCTOR_ID = 0xc78fe460 SUBCLASS_OF_ID = 0x67cb3fe8 def __init__(self, stickerset: 'TypeInputStickerSet', archived: bool): """ :returns messages.StickerSetInstallResult: Instance of either StickerSetInstallResultSuccess, StickerSetInstallResultArchive. """ self.stickerset = stickerset self.archived = archived def to_dict(self): return { '_': 'InstallStickerSetRequest', 'stickerset': self.stickerset.to_dict() if isinstance(self.stickerset, TLObject) else self.stickerset, 'archived': self.archived } def _bytes(self): return b''.join(( b'`\xe4\x8f\xc7', self.stickerset._bytes(), b'\xb5ur\x99' if self.archived else b'7\x97y\xbc', )) @classmethod def from_reader(cls, reader): _stickerset = reader.tgread_object() _archived = reader.tgread_bool() return cls(stickerset=_stickerset, archived=_archived) class MarkDialogUnreadRequest(TLRequest): CONSTRUCTOR_ID = 0xc286d98f SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, peer: 'TypeInputDialogPeer', unread: Optional[bool]=None): """ :returns Bool: This type has no constructors. """ self.peer = peer self.unread = unread async def resolve(self, client, utils): self.peer = await client._get_input_dialog(self.peer) def to_dict(self): return { '_': 'MarkDialogUnreadRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'unread': self.unread } def _bytes(self): return b''.join(( b'\x8f\xd9\x86\xc2', struct.pack('<I', (0 if self.unread is None or self.unread is False else 1)), self.peer._bytes(), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _unread = bool(flags & 1) _peer = reader.tgread_object() return cls(peer=_peer, unread=_unread) class MigrateChatRequest(TLRequest): CONSTRUCTOR_ID = 0xa2875319 SUBCLASS_OF_ID = 0x8af52aac def __init__(self, chat_id: int): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.chat_id = chat_id def to_dict(self): return { '_': 'MigrateChatRequest', 'chat_id': self.chat_id } def _bytes(self): return b''.join(( b'\x19S\x87\xa2', struct.pack('<q', self.chat_id), )) @classmethod def from_reader(cls, reader): _chat_id = reader.read_long() return cls(chat_id=_chat_id) class ProlongWebViewRequest(TLRequest): CONSTRUCTOR_ID = 0x7ff34309 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, peer: 'TypeInputPeer', bot: 'TypeInputUser', query_id: int, silent: Optional[bool]=None, reply_to_msg_id: Optional[int]=None, top_msg_id: Optional[int]=None, send_as: Optional['TypeInputPeer']=None): """ :returns Bool: This type has no constructors. """ self.peer = peer self.bot = bot self.query_id = query_id self.silent = silent self.reply_to_msg_id = reply_to_msg_id self.top_msg_id = top_msg_id self.send_as = send_as async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) self.bot = utils.get_input_user(await client.get_input_entity(self.bot)) if self.send_as: self.send_as = utils.get_input_peer(await client.get_input_entity(self.send_as)) def to_dict(self): return { '_': 'ProlongWebViewRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'bot': self.bot.to_dict() if isinstance(self.bot, TLObject) else self.bot, 'query_id': self.query_id, 'silent': self.silent, 'reply_to_msg_id': self.reply_to_msg_id, 'top_msg_id': self.top_msg_id, 'send_as': self.send_as.to_dict() if isinstance(self.send_as, TLObject) else self.send_as } def _bytes(self): return b''.join(( b'\tC\xf3\x7f', struct.pack('<I', (0 if self.silent is None or self.silent is False else 32) | (0 if self.reply_to_msg_id is None or self.reply_to_msg_id is False else 1) | (0 if self.top_msg_id is None or self.top_msg_id is False else 512) | (0 if self.send_as is None or self.send_as is False else 8192)), self.peer._bytes(), self.bot._bytes(), struct.pack('<q', self.query_id), b'' if self.reply_to_msg_id is None or self.reply_to_msg_id is False else (struct.pack('<i', self.reply_to_msg_id)), b'' if self.top_msg_id is None or self.top_msg_id is False else (struct.pack('<i', self.top_msg_id)), b'' if self.send_as is None or self.send_as is False else (self.send_as._bytes()), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _silent = bool(flags & 32) _peer = reader.tgread_object() _bot = reader.tgread_object() _query_id = reader.read_long() if flags & 1: _reply_to_msg_id = reader.read_int() else: _reply_to_msg_id = None if flags & 512: _top_msg_id = reader.read_int() else: _top_msg_id = None if flags & 8192: _send_as = reader.tgread_object() else: _send_as = None return cls(peer=_peer, bot=_bot, query_id=_query_id, silent=_silent, reply_to_msg_id=_reply_to_msg_id, top_msg_id=_top_msg_id, send_as=_send_as) class RateTranscribedAudioRequest(TLRequest): CONSTRUCTOR_ID = 0x7f1d072f SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, peer: 'TypeInputPeer', msg_id: int, transcription_id: int, good: bool): """ :returns Bool: This type has no constructors. """ self.peer = peer self.msg_id = msg_id self.transcription_id = transcription_id self.good = good async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'RateTranscribedAudioRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'msg_id': self.msg_id, 'transcription_id': self.transcription_id, 'good': self.good } def _bytes(self): return b''.join(( b'/\x07\x1d\x7f', self.peer._bytes(), struct.pack('<i', self.msg_id), struct.pack('<q', self.transcription_id), b'\xb5ur\x99' if self.good else b'7\x97y\xbc', )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _msg_id = reader.read_int() _transcription_id = reader.read_long() _good = reader.tgread_bool() return cls(peer=_peer, msg_id=_msg_id, transcription_id=_transcription_id, good=_good) class ReadDiscussionRequest(TLRequest): CONSTRUCTOR_ID = 0xf731a9f4 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, peer: 'TypeInputPeer', msg_id: int, read_max_id: int): """ :returns Bool: This type has no constructors. """ self.peer = peer self.msg_id = msg_id self.read_max_id = read_max_id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'ReadDiscussionRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'msg_id': self.msg_id, 'read_max_id': self.read_max_id } def _bytes(self): return b''.join(( b'\xf4\xa91\xf7', self.peer._bytes(), struct.pack('<i', self.msg_id), struct.pack('<i', self.read_max_id), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _msg_id = reader.read_int() _read_max_id = reader.read_int() return cls(peer=_peer, msg_id=_msg_id, read_max_id=_read_max_id) class ReadEncryptedHistoryRequest(TLRequest): CONSTRUCTOR_ID = 0x7f4b690a SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, peer: 'TypeInputEncryptedChat', max_date: Optional[datetime]): """ :returns Bool: This type has no constructors. """ self.peer = peer self.max_date = max_date def to_dict(self): return { '_': 'ReadEncryptedHistoryRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'max_date': self.max_date } def _bytes(self): return b''.join(( b'\niK\x7f', self.peer._bytes(), self.serialize_datetime(self.max_date), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _max_date = reader.tgread_date() return cls(peer=_peer, max_date=_max_date) class ReadFeaturedStickersRequest(TLRequest): CONSTRUCTOR_ID = 0x5b118126 SUBCLASS_OF_ID = 0xf5b399ac # noinspection PyShadowingBuiltins def __init__(self, id: List[int]): """ :returns Bool: This type has no constructors. """ self.id = id def to_dict(self): return { '_': 'ReadFeaturedStickersRequest', 'id': [] if self.id is None else self.id[:] } def _bytes(self): return b''.join(( b'&\x81\x11[', b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.id)),b''.join(struct.pack('<q', x) for x in self.id), )) @classmethod def from_reader(cls, reader): reader.read_int() _id = [] for _ in range(reader.read_int()): _x = reader.read_long() _id.append(_x) return cls(id=_id) class ReadHistoryRequest(TLRequest): CONSTRUCTOR_ID = 0xe306d3a SUBCLASS_OF_ID = 0xced3c06e def __init__(self, peer: 'TypeInputPeer', max_id: int): """ :returns messages.AffectedMessages: Instance of AffectedMessages. """ self.peer = peer self.max_id = max_id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'ReadHistoryRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'max_id': self.max_id } def _bytes(self): return b''.join(( b':m0\x0e', self.peer._bytes(), struct.pack('<i', self.max_id), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _max_id = reader.read_int() return cls(peer=_peer, max_id=_max_id) class ReadMentionsRequest(TLRequest): CONSTRUCTOR_ID = 0x36e5bf4d SUBCLASS_OF_ID = 0x2c49c116 def __init__(self, peer: 'TypeInputPeer', top_msg_id: Optional[int]=None): """ :returns messages.AffectedHistory: Instance of AffectedHistory. """ self.peer = peer self.top_msg_id = top_msg_id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'ReadMentionsRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'top_msg_id': self.top_msg_id } def _bytes(self): return b''.join(( b'M\xbf\xe56', struct.pack('<I', (0 if self.top_msg_id is None or self.top_msg_id is False else 1)), self.peer._bytes(), b'' if self.top_msg_id is None or self.top_msg_id is False else (struct.pack('<i', self.top_msg_id)), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _peer = reader.tgread_object() if flags & 1: _top_msg_id = reader.read_int() else: _top_msg_id = None return cls(peer=_peer, top_msg_id=_top_msg_id) class ReadMessageContentsRequest(TLRequest): CONSTRUCTOR_ID = 0x36a73f77 SUBCLASS_OF_ID = 0xced3c06e # noinspection PyShadowingBuiltins def __init__(self, id: List[int]): """ :returns messages.AffectedMessages: Instance of AffectedMessages. """ self.id = id def to_dict(self): return { '_': 'ReadMessageContentsRequest', 'id': [] if self.id is None else self.id[:] } def _bytes(self): return b''.join(( b'w?\xa76', b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.id)),b''.join(struct.pack('<i', x) for x in self.id), )) @classmethod def from_reader(cls, reader): reader.read_int() _id = [] for _ in range(reader.read_int()): _x = reader.read_int() _id.append(_x) return cls(id=_id) class ReadReactionsRequest(TLRequest): CONSTRUCTOR_ID = 0x54aa7f8e SUBCLASS_OF_ID = 0x2c49c116 def __init__(self, peer: 'TypeInputPeer', top_msg_id: Optional[int]=None): """ :returns messages.AffectedHistory: Instance of AffectedHistory. """ self.peer = peer self.top_msg_id = top_msg_id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'ReadReactionsRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'top_msg_id': self.top_msg_id } def _bytes(self): return b''.join(( b'\x8e\x7f\xaaT', struct.pack('<I', (0 if self.top_msg_id is None or self.top_msg_id is False else 1)), self.peer._bytes(), b'' if self.top_msg_id is None or self.top_msg_id is False else (struct.pack('<i', self.top_msg_id)), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _peer = reader.tgread_object() if flags & 1: _top_msg_id = reader.read_int() else: _top_msg_id = None return cls(peer=_peer, top_msg_id=_top_msg_id) class ReceivedMessagesRequest(TLRequest): CONSTRUCTOR_ID = 0x5a954c0 SUBCLASS_OF_ID = 0x8565f897 def __init__(self, max_id: int): """ :returns Vector<ReceivedNotifyMessage>: This type has no constructors. """ self.max_id = max_id def to_dict(self): return { '_': 'ReceivedMessagesRequest', 'max_id': self.max_id } def _bytes(self): return b''.join(( b'\xc0T\xa9\x05', struct.pack('<i', self.max_id), )) @classmethod def from_reader(cls, reader): _max_id = reader.read_int() return cls(max_id=_max_id) class ReceivedQueueRequest(TLRequest): CONSTRUCTOR_ID = 0x55a5bb66 SUBCLASS_OF_ID = 0x8918e168 def __init__(self, max_qts: int): """ :returns Vector<long>: This type has no constructors. """ self.max_qts = max_qts def to_dict(self): return { '_': 'ReceivedQueueRequest', 'max_qts': self.max_qts } def _bytes(self): return b''.join(( b'f\xbb\xa5U', struct.pack('<i', self.max_qts), )) @classmethod def from_reader(cls, reader): _max_qts = reader.read_int() return cls(max_qts=_max_qts) @staticmethod def read_result(reader): reader.read_int() # Vector ID return [reader.read_long() for _ in range(reader.read_int())] class ReorderPinnedDialogsRequest(TLRequest): CONSTRUCTOR_ID = 0x3b1adf37 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, folder_id: int, order: List['TypeInputDialogPeer'], force: Optional[bool]=None): """ :returns Bool: This type has no constructors. """ self.folder_id = folder_id self.order = order self.force = force async def resolve(self, client, utils): _tmp = [] for _x in self.order: _tmp.append(await client._get_input_dialog(_x)) self.order = _tmp def to_dict(self): return { '_': 'ReorderPinnedDialogsRequest', 'folder_id': self.folder_id, 'order': [] if self.order is None else [x.to_dict() if isinstance(x, TLObject) else x for x in self.order], 'force': self.force } def _bytes(self): return b''.join(( b'7\xdf\x1a;', struct.pack('<I', (0 if self.force is None or self.force is False else 1)), struct.pack('<i', self.folder_id), b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.order)),b''.join(x._bytes() for x in self.order), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _force = bool(flags & 1) _folder_id = reader.read_int() reader.read_int() _order = [] for _ in range(reader.read_int()): _x = reader.tgread_object() _order.append(_x) return cls(folder_id=_folder_id, order=_order, force=_force) class ReorderStickerSetsRequest(TLRequest): CONSTRUCTOR_ID = 0x78337739 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, order: List[int], masks: Optional[bool]=None, emojis: Optional[bool]=None): """ :returns Bool: This type has no constructors. """ self.order = order self.masks = masks self.emojis = emojis def to_dict(self): return { '_': 'ReorderStickerSetsRequest', 'order': [] if self.order is None else self.order[:], 'masks': self.masks, 'emojis': self.emojis } def _bytes(self): return b''.join(( b'9w3x', struct.pack('<I', (0 if self.masks is None or self.masks is False else 1) | (0 if self.emojis is None or self.emojis is False else 2)), b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.order)),b''.join(struct.pack('<q', x) for x in self.order), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _masks = bool(flags & 1) _emojis = bool(flags & 2) reader.read_int() _order = [] for _ in range(reader.read_int()): _x = reader.read_long() _order.append(_x) return cls(order=_order, masks=_masks, emojis=_emojis) class ReportRequest(TLRequest): CONSTRUCTOR_ID = 0x8953ab4e SUBCLASS_OF_ID = 0xf5b399ac # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', id: List[int], reason: 'TypeReportReason', message: str): """ :returns Bool: This type has no constructors. """ self.peer = peer self.id = id self.reason = reason self.message = message async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'ReportRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'id': [] if self.id is None else self.id[:], 'reason': self.reason.to_dict() if isinstance(self.reason, TLObject) else self.reason, 'message': self.message } def _bytes(self): return b''.join(( b'N\xabS\x89', self.peer._bytes(), b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.id)),b''.join(struct.pack('<i', x) for x in self.id), self.reason._bytes(), self.serialize_bytes(self.message), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() reader.read_int() _id = [] for _ in range(reader.read_int()): _x = reader.read_int() _id.append(_x) _reason = reader.tgread_object() _message = reader.tgread_string() return cls(peer=_peer, id=_id, reason=_reason, message=_message) class ReportEncryptedSpamRequest(TLRequest): CONSTRUCTOR_ID = 0x4b0c8c0f SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, peer: 'TypeInputEncryptedChat'): """ :returns Bool: This type has no constructors. """ self.peer = peer def to_dict(self): return { '_': 'ReportEncryptedSpamRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer } def _bytes(self): return b''.join(( b'\x0f\x8c\x0cK', self.peer._bytes(), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() return cls(peer=_peer) class ReportReactionRequest(TLRequest): CONSTRUCTOR_ID = 0x3f64c076 SUBCLASS_OF_ID = 0xf5b399ac # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', id: int, reaction_peer: 'TypeInputPeer'): """ :returns Bool: This type has no constructors. """ self.peer = peer self.id = id self.reaction_peer = reaction_peer async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) self.reaction_peer = utils.get_input_peer(await client.get_input_entity(self.reaction_peer)) def to_dict(self): return { '_': 'ReportReactionRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'id': self.id, 'reaction_peer': self.reaction_peer.to_dict() if isinstance(self.reaction_peer, TLObject) else self.reaction_peer } def _bytes(self): return b''.join(( b'v\xc0d?', self.peer._bytes(), struct.pack('<i', self.id), self.reaction_peer._bytes(), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _id = reader.read_int() _reaction_peer = reader.tgread_object() return cls(peer=_peer, id=_id, reaction_peer=_reaction_peer) class ReportSpamRequest(TLRequest): CONSTRUCTOR_ID = 0xcf1592db SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, peer: 'TypeInputPeer'): """ :returns Bool: This type has no constructors. """ self.peer = peer async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'ReportSpamRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer } def _bytes(self): return b''.join(( b'\xdb\x92\x15\xcf', self.peer._bytes(), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() return cls(peer=_peer) class RequestAppWebViewRequest(TLRequest): CONSTRUCTOR_ID = 0x8c5a3b3c SUBCLASS_OF_ID = 0x1c24a413 def __init__(self, peer: 'TypeInputPeer', app: 'TypeInputBotApp', platform: str, write_allowed: Optional[bool]=None, start_param: Optional[str]=None, theme_params: Optional['TypeDataJSON']=None): """ :returns AppWebViewResult: Instance of AppWebViewResultUrl. """ self.peer = peer self.app = app self.platform = platform self.write_allowed = write_allowed self.start_param = start_param self.theme_params = theme_params async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'RequestAppWebViewRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'app': self.app.to_dict() if isinstance(self.app, TLObject) else self.app, 'platform': self.platform, 'write_allowed': self.write_allowed, 'start_param': self.start_param, 'theme_params': self.theme_params.to_dict() if isinstance(self.theme_params, TLObject) else self.theme_params } def _bytes(self): return b''.join(( b'<;Z\x8c', struct.pack('<I', (0 if self.write_allowed is None or self.write_allowed is False else 1) | (0 if self.start_param is None or self.start_param is False else 2) | (0 if self.theme_params is None or self.theme_params is False else 4)), self.peer._bytes(), self.app._bytes(), b'' if self.start_param is None or self.start_param is False else (self.serialize_bytes(self.start_param)), b'' if self.theme_params is None or self.theme_params is False else (self.theme_params._bytes()), self.serialize_bytes(self.platform), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _write_allowed = bool(flags & 1) _peer = reader.tgread_object() _app = reader.tgread_object() if flags & 2: _start_param = reader.tgread_string() else: _start_param = None if flags & 4: _theme_params = reader.tgread_object() else: _theme_params = None _platform = reader.tgread_string() return cls(peer=_peer, app=_app, platform=_platform, write_allowed=_write_allowed, start_param=_start_param, theme_params=_theme_params) class RequestEncryptionRequest(TLRequest): CONSTRUCTOR_ID = 0xf64daf43 SUBCLASS_OF_ID = 0x6d28a37a def __init__(self, user_id: 'TypeInputUser', g_a: bytes, random_id: int=None): """ :returns EncryptedChat: Instance of either EncryptedChatEmpty, EncryptedChatWaiting, EncryptedChatRequested, EncryptedChat, EncryptedChatDiscarded. """ self.user_id = user_id self.g_a = g_a self.random_id = random_id if random_id is not None else int.from_bytes(os.urandom(4), 'big', signed=True) async def resolve(self, client, utils): self.user_id = utils.get_input_user(await client.get_input_entity(self.user_id)) def to_dict(self): return { '_': 'RequestEncryptionRequest', 'user_id': self.user_id.to_dict() if isinstance(self.user_id, TLObject) else self.user_id, 'g_a': self.g_a, 'random_id': self.random_id } def _bytes(self): return b''.join(( b'C\xafM\xf6', self.user_id._bytes(), struct.pack('<i', self.random_id), self.serialize_bytes(self.g_a), )) @classmethod def from_reader(cls, reader): _user_id = reader.tgread_object() _random_id = reader.read_int() _g_a = reader.tgread_bytes() return cls(user_id=_user_id, g_a=_g_a, random_id=_random_id) class RequestSimpleWebViewRequest(TLRequest): CONSTRUCTOR_ID = 0x299bec8e SUBCLASS_OF_ID = 0x15eee3db def __init__(self, bot: 'TypeInputUser', url: str, platform: str, from_switch_webview: Optional[bool]=None, theme_params: Optional['TypeDataJSON']=None): """ :returns SimpleWebViewResult: Instance of SimpleWebViewResultUrl. """ self.bot = bot self.url = url self.platform = platform self.from_switch_webview = from_switch_webview self.theme_params = theme_params async def resolve(self, client, utils): self.bot = utils.get_input_user(await client.get_input_entity(self.bot)) def to_dict(self): return { '_': 'RequestSimpleWebViewRequest', 'bot': self.bot.to_dict() if isinstance(self.bot, TLObject) else self.bot, 'url': self.url, 'platform': self.platform, 'from_switch_webview': self.from_switch_webview, 'theme_params': self.theme_params.to_dict() if isinstance(self.theme_params, TLObject) else self.theme_params } def _bytes(self): return b''.join(( b'\x8e\xec\x9b)', struct.pack('<I', (0 if self.from_switch_webview is None or self.from_switch_webview is False else 2) | (0 if self.theme_params is None or self.theme_params is False else 1)), self.bot._bytes(), self.serialize_bytes(self.url), b'' if self.theme_params is None or self.theme_params is False else (self.theme_params._bytes()), self.serialize_bytes(self.platform), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _from_switch_webview = bool(flags & 2) _bot = reader.tgread_object() _url = reader.tgread_string() if flags & 1: _theme_params = reader.tgread_object() else: _theme_params = None _platform = reader.tgread_string() return cls(bot=_bot, url=_url, platform=_platform, from_switch_webview=_from_switch_webview, theme_params=_theme_params) class RequestUrlAuthRequest(TLRequest): CONSTRUCTOR_ID = 0x198fb446 SUBCLASS_OF_ID = 0x7765cb1e def __init__(self, peer: Optional['TypeInputPeer']=None, msg_id: Optional[int]=None, button_id: Optional[int]=None, url: Optional[str]=None): """ :returns UrlAuthResult: Instance of either UrlAuthResultRequest, UrlAuthResultAccepted, UrlAuthResultDefault. """ self.peer = peer self.msg_id = msg_id self.button_id = button_id self.url = url async def resolve(self, client, utils): if self.peer: self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'RequestUrlAuthRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'msg_id': self.msg_id, 'button_id': self.button_id, 'url': self.url } def _bytes(self): assert ((self.peer or self.peer is not None) and (self.msg_id or self.msg_id is not None) and (self.button_id or self.button_id is not None)) or ((self.peer is None or self.peer is False) and (self.msg_id is None or self.msg_id is False) and (self.button_id is None or self.button_id is False)), 'peer, msg_id, button_id parameters must all be False-y (like None) or all me True-y' return b''.join(( b'F\xb4\x8f\x19', struct.pack('<I', (0 if self.peer is None or self.peer is False else 2) | (0 if self.msg_id is None or self.msg_id is False else 2) | (0 if self.button_id is None or self.button_id is False else 2) | (0 if self.url is None or self.url is False else 4)), b'' if self.peer is None or self.peer is False else (self.peer._bytes()), b'' if self.msg_id is None or self.msg_id is False else (struct.pack('<i', self.msg_id)), b'' if self.button_id is None or self.button_id is False else (struct.pack('<i', self.button_id)), b'' if self.url is None or self.url is False else (self.serialize_bytes(self.url)), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() if flags & 2: _peer = reader.tgread_object() else: _peer = None if flags & 2: _msg_id = reader.read_int() else: _msg_id = None if flags & 2: _button_id = reader.read_int() else: _button_id = None if flags & 4: _url = reader.tgread_string() else: _url = None return cls(peer=_peer, msg_id=_msg_id, button_id=_button_id, url=_url) class RequestWebViewRequest(TLRequest): CONSTRUCTOR_ID = 0x178b480b SUBCLASS_OF_ID = 0x93cea746 def __init__(self, peer: 'TypeInputPeer', bot: 'TypeInputUser', platform: str, from_bot_menu: Optional[bool]=None, silent: Optional[bool]=None, url: Optional[str]=None, start_param: Optional[str]=None, theme_params: Optional['TypeDataJSON']=None, reply_to_msg_id: Optional[int]=None, top_msg_id: Optional[int]=None, send_as: Optional['TypeInputPeer']=None): """ :returns WebViewResult: Instance of WebViewResultUrl. """ self.peer = peer self.bot = bot self.platform = platform self.from_bot_menu = from_bot_menu self.silent = silent self.url = url self.start_param = start_param self.theme_params = theme_params self.reply_to_msg_id = reply_to_msg_id self.top_msg_id = top_msg_id self.send_as = send_as async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) self.bot = utils.get_input_user(await client.get_input_entity(self.bot)) if self.send_as: self.send_as = utils.get_input_peer(await client.get_input_entity(self.send_as)) def to_dict(self): return { '_': 'RequestWebViewRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'bot': self.bot.to_dict() if isinstance(self.bot, TLObject) else self.bot, 'platform': self.platform, 'from_bot_menu': self.from_bot_menu, 'silent': self.silent, 'url': self.url, 'start_param': self.start_param, 'theme_params': self.theme_params.to_dict() if isinstance(self.theme_params, TLObject) else self.theme_params, 'reply_to_msg_id': self.reply_to_msg_id, 'top_msg_id': self.top_msg_id, 'send_as': self.send_as.to_dict() if isinstance(self.send_as, TLObject) else self.send_as } def _bytes(self): return b''.join(( b'\x0bH\x8b\x17', struct.pack('<I', (0 if self.from_bot_menu is None or self.from_bot_menu is False else 16) | (0 if self.silent is None or self.silent is False else 32) | (0 if self.url is None or self.url is False else 2) | (0 if self.start_param is None or self.start_param is False else 8) | (0 if self.theme_params is None or self.theme_params is False else 4) | (0 if self.reply_to_msg_id is None or self.reply_to_msg_id is False else 1) | (0 if self.top_msg_id is None or self.top_msg_id is False else 512) | (0 if self.send_as is None or self.send_as is False else 8192)), self.peer._bytes(), self.bot._bytes(), b'' if self.url is None or self.url is False else (self.serialize_bytes(self.url)), b'' if self.start_param is None or self.start_param is False else (self.serialize_bytes(self.start_param)), b'' if self.theme_params is None or self.theme_params is False else (self.theme_params._bytes()), self.serialize_bytes(self.platform), b'' if self.reply_to_msg_id is None or self.reply_to_msg_id is False else (struct.pack('<i', self.reply_to_msg_id)), b'' if self.top_msg_id is None or self.top_msg_id is False else (struct.pack('<i', self.top_msg_id)), b'' if self.send_as is None or self.send_as is False else (self.send_as._bytes()), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _from_bot_menu = bool(flags & 16) _silent = bool(flags & 32) _peer = reader.tgread_object() _bot = reader.tgread_object() if flags & 2: _url = reader.tgread_string() else: _url = None if flags & 8: _start_param = reader.tgread_string() else: _start_param = None if flags & 4: _theme_params = reader.tgread_object() else: _theme_params = None _platform = reader.tgread_string() if flags & 1: _reply_to_msg_id = reader.read_int() else: _reply_to_msg_id = None if flags & 512: _top_msg_id = reader.read_int() else: _top_msg_id = None if flags & 8192: _send_as = reader.tgread_object() else: _send_as = None return cls(peer=_peer, bot=_bot, platform=_platform, from_bot_menu=_from_bot_menu, silent=_silent, url=_url, start_param=_start_param, theme_params=_theme_params, reply_to_msg_id=_reply_to_msg_id, top_msg_id=_top_msg_id, send_as=_send_as) class SaveDefaultSendAsRequest(TLRequest): CONSTRUCTOR_ID = 0xccfddf96 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, peer: 'TypeInputPeer', send_as: 'TypeInputPeer'): """ :returns Bool: This type has no constructors. """ self.peer = peer self.send_as = send_as async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) self.send_as = utils.get_input_peer(await client.get_input_entity(self.send_as)) def to_dict(self): return { '_': 'SaveDefaultSendAsRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'send_as': self.send_as.to_dict() if isinstance(self.send_as, TLObject) else self.send_as } def _bytes(self): return b''.join(( b'\x96\xdf\xfd\xcc', self.peer._bytes(), self.send_as._bytes(), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _send_as = reader.tgread_object() return cls(peer=_peer, send_as=_send_as) class SaveDraftRequest(TLRequest): CONSTRUCTOR_ID = 0xb4331e3f SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, peer: 'TypeInputPeer', message: str, no_webpage: Optional[bool]=None, reply_to_msg_id: Optional[int]=None, top_msg_id: Optional[int]=None, entities: Optional[List['TypeMessageEntity']]=None): """ :returns Bool: This type has no constructors. """ self.peer = peer self.message = message self.no_webpage = no_webpage self.reply_to_msg_id = reply_to_msg_id self.top_msg_id = top_msg_id self.entities = entities async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'SaveDraftRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'message': self.message, 'no_webpage': self.no_webpage, 'reply_to_msg_id': self.reply_to_msg_id, 'top_msg_id': self.top_msg_id, 'entities': [] if self.entities is None else [x.to_dict() if isinstance(x, TLObject) else x for x in self.entities] } def _bytes(self): return b''.join(( b'?\x1e3\xb4', struct.pack('<I', (0 if self.no_webpage is None or self.no_webpage is False else 2) | (0 if self.reply_to_msg_id is None or self.reply_to_msg_id is False else 1) | (0 if self.top_msg_id is None or self.top_msg_id is False else 4) | (0 if self.entities is None or self.entities is False else 8)), b'' if self.reply_to_msg_id is None or self.reply_to_msg_id is False else (struct.pack('<i', self.reply_to_msg_id)), b'' if self.top_msg_id is None or self.top_msg_id is False else (struct.pack('<i', self.top_msg_id)), self.peer._bytes(), self.serialize_bytes(self.message), b'' if self.entities is None or self.entities is False else b''.join((b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.entities)),b''.join(x._bytes() for x in self.entities))), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _no_webpage = bool(flags & 2) if flags & 1: _reply_to_msg_id = reader.read_int() else: _reply_to_msg_id = None if flags & 4: _top_msg_id = reader.read_int() else: _top_msg_id = None _peer = reader.tgread_object() _message = reader.tgread_string() if flags & 8: reader.read_int() _entities = [] for _ in range(reader.read_int()): _x = reader.tgread_object() _entities.append(_x) else: _entities = None return cls(peer=_peer, message=_message, no_webpage=_no_webpage, reply_to_msg_id=_reply_to_msg_id, top_msg_id=_top_msg_id, entities=_entities) class SaveGifRequest(TLRequest): CONSTRUCTOR_ID = 0x327a30cb SUBCLASS_OF_ID = 0xf5b399ac # noinspection PyShadowingBuiltins def __init__(self, id: 'TypeInputDocument', unsave: bool): """ :returns Bool: This type has no constructors. """ self.id = id self.unsave = unsave async def resolve(self, client, utils): self.id = utils.get_input_document(self.id) def to_dict(self): return { '_': 'SaveGifRequest', 'id': self.id.to_dict() if isinstance(self.id, TLObject) else self.id, 'unsave': self.unsave } def _bytes(self): return b''.join(( b'\xcb0z2', self.id._bytes(), b'\xb5ur\x99' if self.unsave else b'7\x97y\xbc', )) @classmethod def from_reader(cls, reader): _id = reader.tgread_object() _unsave = reader.tgread_bool() return cls(id=_id, unsave=_unsave) class SaveRecentStickerRequest(TLRequest): CONSTRUCTOR_ID = 0x392718f8 SUBCLASS_OF_ID = 0xf5b399ac # noinspection PyShadowingBuiltins def __init__(self, id: 'TypeInputDocument', unsave: bool, attached: Optional[bool]=None): """ :returns Bool: This type has no constructors. """ self.id = id self.unsave = unsave self.attached = attached async def resolve(self, client, utils): self.id = utils.get_input_document(self.id) def to_dict(self): return { '_': 'SaveRecentStickerRequest', 'id': self.id.to_dict() if isinstance(self.id, TLObject) else self.id, 'unsave': self.unsave, 'attached': self.attached } def _bytes(self): return b''.join(( b"\xf8\x18'9", struct.pack('<I', (0 if self.attached is None or self.attached is False else 1)), self.id._bytes(), b'\xb5ur\x99' if self.unsave else b'7\x97y\xbc', )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _attached = bool(flags & 1) _id = reader.tgread_object() _unsave = reader.tgread_bool() return cls(id=_id, unsave=_unsave, attached=_attached) class SearchRequest(TLRequest): CONSTRUCTOR_ID = 0xa0fda762 SUBCLASS_OF_ID = 0xd4b40b5e # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', q: str, filter: 'TypeMessagesFilter', min_date: Optional[datetime], max_date: Optional[datetime], offset_id: int, add_offset: int, limit: int, max_id: int, min_id: int, hash: int, from_id: Optional['TypeInputPeer']=None, top_msg_id: Optional[int]=None): """ :returns messages.Messages: Instance of either Messages, MessagesSlice, ChannelMessages, MessagesNotModified. """ self.peer = peer self.q = q self.filter = filter self.min_date = min_date self.max_date = max_date self.offset_id = offset_id self.add_offset = add_offset self.limit = limit self.max_id = max_id self.min_id = min_id self.hash = hash self.from_id = from_id self.top_msg_id = top_msg_id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) if self.from_id: self.from_id = utils.get_input_peer(await client.get_input_entity(self.from_id)) def to_dict(self): return { '_': 'SearchRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'q': self.q, 'filter': self.filter.to_dict() if isinstance(self.filter, TLObject) else self.filter, 'min_date': self.min_date, 'max_date': self.max_date, 'offset_id': self.offset_id, 'add_offset': self.add_offset, 'limit': self.limit, 'max_id': self.max_id, 'min_id': self.min_id, 'hash': self.hash, 'from_id': self.from_id.to_dict() if isinstance(self.from_id, TLObject) else self.from_id, 'top_msg_id': self.top_msg_id } def _bytes(self): return b''.join(( b'b\xa7\xfd\xa0', struct.pack('<I', (0 if self.from_id is None or self.from_id is False else 1) | (0 if self.top_msg_id is None or self.top_msg_id is False else 2)), self.peer._bytes(), self.serialize_bytes(self.q), b'' if self.from_id is None or self.from_id is False else (self.from_id._bytes()), b'' if self.top_msg_id is None or self.top_msg_id is False else (struct.pack('<i', self.top_msg_id)), self.filter._bytes(), self.serialize_datetime(self.min_date), self.serialize_datetime(self.max_date), struct.pack('<i', self.offset_id), struct.pack('<i', self.add_offset), struct.pack('<i', self.limit), struct.pack('<i', self.max_id), struct.pack('<i', self.min_id), struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _peer = reader.tgread_object() _q = reader.tgread_string() if flags & 1: _from_id = reader.tgread_object() else: _from_id = None if flags & 2: _top_msg_id = reader.read_int() else: _top_msg_id = None _filter = reader.tgread_object() _min_date = reader.tgread_date() _max_date = reader.tgread_date() _offset_id = reader.read_int() _add_offset = reader.read_int() _limit = reader.read_int() _max_id = reader.read_int() _min_id = reader.read_int() _hash = reader.read_long() return cls(peer=_peer, q=_q, filter=_filter, min_date=_min_date, max_date=_max_date, offset_id=_offset_id, add_offset=_add_offset, limit=_limit, max_id=_max_id, min_id=_min_id, hash=_hash, from_id=_from_id, top_msg_id=_top_msg_id) class SearchCustomEmojiRequest(TLRequest): CONSTRUCTOR_ID = 0x2c11c0d7 SUBCLASS_OF_ID = 0xbcef6aba # noinspection PyShadowingBuiltins def __init__(self, emoticon: str, hash: int): """ :returns EmojiList: Instance of either EmojiListNotModified, EmojiList. """ self.emoticon = emoticon self.hash = hash def to_dict(self): return { '_': 'SearchCustomEmojiRequest', 'emoticon': self.emoticon, 'hash': self.hash } def _bytes(self): return b''.join(( b'\xd7\xc0\x11,', self.serialize_bytes(self.emoticon), struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): _emoticon = reader.tgread_string() _hash = reader.read_long() return cls(emoticon=_emoticon, hash=_hash) class SearchGlobalRequest(TLRequest): CONSTRUCTOR_ID = 0x4bc6589a SUBCLASS_OF_ID = 0xd4b40b5e # noinspection PyShadowingBuiltins def __init__(self, q: str, filter: 'TypeMessagesFilter', min_date: Optional[datetime], max_date: Optional[datetime], offset_rate: int, offset_peer: 'TypeInputPeer', offset_id: int, limit: int, folder_id: Optional[int]=None): """ :returns messages.Messages: Instance of either Messages, MessagesSlice, ChannelMessages, MessagesNotModified. """ self.q = q self.filter = filter self.min_date = min_date self.max_date = max_date self.offset_rate = offset_rate self.offset_peer = offset_peer self.offset_id = offset_id self.limit = limit self.folder_id = folder_id async def resolve(self, client, utils): self.offset_peer = utils.get_input_peer(await client.get_input_entity(self.offset_peer)) def to_dict(self): return { '_': 'SearchGlobalRequest', 'q': self.q, 'filter': self.filter.to_dict() if isinstance(self.filter, TLObject) else self.filter, 'min_date': self.min_date, 'max_date': self.max_date, 'offset_rate': self.offset_rate, 'offset_peer': self.offset_peer.to_dict() if isinstance(self.offset_peer, TLObject) else self.offset_peer, 'offset_id': self.offset_id, 'limit': self.limit, 'folder_id': self.folder_id } def _bytes(self): return b''.join(( b'\x9aX\xc6K', struct.pack('<I', (0 if self.folder_id is None or self.folder_id is False else 1)), b'' if self.folder_id is None or self.folder_id is False else (struct.pack('<i', self.folder_id)), self.serialize_bytes(self.q), self.filter._bytes(), self.serialize_datetime(self.min_date), self.serialize_datetime(self.max_date), struct.pack('<i', self.offset_rate), self.offset_peer._bytes(), struct.pack('<i', self.offset_id), struct.pack('<i', self.limit), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() if flags & 1: _folder_id = reader.read_int() else: _folder_id = None _q = reader.tgread_string() _filter = reader.tgread_object() _min_date = reader.tgread_date() _max_date = reader.tgread_date() _offset_rate = reader.read_int() _offset_peer = reader.tgread_object() _offset_id = reader.read_int() _limit = reader.read_int() return cls(q=_q, filter=_filter, min_date=_min_date, max_date=_max_date, offset_rate=_offset_rate, offset_peer=_offset_peer, offset_id=_offset_id, limit=_limit, folder_id=_folder_id) class SearchSentMediaRequest(TLRequest): CONSTRUCTOR_ID = 0x107e31a0 SUBCLASS_OF_ID = 0xd4b40b5e # noinspection PyShadowingBuiltins def __init__(self, q: str, filter: 'TypeMessagesFilter', limit: int): """ :returns messages.Messages: Instance of either Messages, MessagesSlice, ChannelMessages, MessagesNotModified. """ self.q = q self.filter = filter self.limit = limit def to_dict(self): return { '_': 'SearchSentMediaRequest', 'q': self.q, 'filter': self.filter.to_dict() if isinstance(self.filter, TLObject) else self.filter, 'limit': self.limit } def _bytes(self): return b''.join(( b'\xa01~\x10', self.serialize_bytes(self.q), self.filter._bytes(), struct.pack('<i', self.limit), )) @classmethod def from_reader(cls, reader): _q = reader.tgread_string() _filter = reader.tgread_object() _limit = reader.read_int() return cls(q=_q, filter=_filter, limit=_limit) class SearchStickerSetsRequest(TLRequest): CONSTRUCTOR_ID = 0x35705b8a SUBCLASS_OF_ID = 0x40df361 # noinspection PyShadowingBuiltins def __init__(self, q: str, hash: int, exclude_featured: Optional[bool]=None): """ :returns messages.FoundStickerSets: Instance of either FoundStickerSetsNotModified, FoundStickerSets. """ self.q = q self.hash = hash self.exclude_featured = exclude_featured def to_dict(self): return { '_': 'SearchStickerSetsRequest', 'q': self.q, 'hash': self.hash, 'exclude_featured': self.exclude_featured } def _bytes(self): return b''.join(( b'\x8a[p5', struct.pack('<I', (0 if self.exclude_featured is None or self.exclude_featured is False else 1)), self.serialize_bytes(self.q), struct.pack('<q', self.hash), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _exclude_featured = bool(flags & 1) _q = reader.tgread_string() _hash = reader.read_long() return cls(q=_q, hash=_hash, exclude_featured=_exclude_featured) class SendBotRequestedPeerRequest(TLRequest): CONSTRUCTOR_ID = 0xfe38d01b SUBCLASS_OF_ID = 0x8af52aac def __init__(self, peer: 'TypeInputPeer', msg_id: int, button_id: int, requested_peer: 'TypeInputPeer'): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.msg_id = msg_id self.button_id = button_id self.requested_peer = requested_peer async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) self.requested_peer = utils.get_input_peer(await client.get_input_entity(self.requested_peer)) def to_dict(self): return { '_': 'SendBotRequestedPeerRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'msg_id': self.msg_id, 'button_id': self.button_id, 'requested_peer': self.requested_peer.to_dict() if isinstance(self.requested_peer, TLObject) else self.requested_peer } def _bytes(self): return b''.join(( b'\x1b\xd08\xfe', self.peer._bytes(), struct.pack('<i', self.msg_id), struct.pack('<i', self.button_id), self.requested_peer._bytes(), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _msg_id = reader.read_int() _button_id = reader.read_int() _requested_peer = reader.tgread_object() return cls(peer=_peer, msg_id=_msg_id, button_id=_button_id, requested_peer=_requested_peer) class SendEncryptedRequest(TLRequest): CONSTRUCTOR_ID = 0x44fa7a15 SUBCLASS_OF_ID = 0xc99e3e50 def __init__(self, peer: 'TypeInputEncryptedChat', data: bytes, silent: Optional[bool]=None, random_id: int=None): """ :returns messages.SentEncryptedMessage: Instance of either SentEncryptedMessage, SentEncryptedFile. """ self.peer = peer self.data = data self.silent = silent self.random_id = random_id if random_id is not None else int.from_bytes(os.urandom(8), 'big', signed=True) def to_dict(self): return { '_': 'SendEncryptedRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'data': self.data, 'silent': self.silent, 'random_id': self.random_id } def _bytes(self): return b''.join(( b'\x15z\xfaD', struct.pack('<I', (0 if self.silent is None or self.silent is False else 1)), self.peer._bytes(), struct.pack('<q', self.random_id), self.serialize_bytes(self.data), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _silent = bool(flags & 1) _peer = reader.tgread_object() _random_id = reader.read_long() _data = reader.tgread_bytes() return cls(peer=_peer, data=_data, silent=_silent, random_id=_random_id) class SendEncryptedFileRequest(TLRequest): CONSTRUCTOR_ID = 0x5559481d SUBCLASS_OF_ID = 0xc99e3e50 def __init__(self, peer: 'TypeInputEncryptedChat', data: bytes, file: 'TypeInputEncryptedFile', silent: Optional[bool]=None, random_id: int=None): """ :returns messages.SentEncryptedMessage: Instance of either SentEncryptedMessage, SentEncryptedFile. """ self.peer = peer self.data = data self.file = file self.silent = silent self.random_id = random_id if random_id is not None else int.from_bytes(os.urandom(8), 'big', signed=True) def to_dict(self): return { '_': 'SendEncryptedFileRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'data': self.data, 'file': self.file.to_dict() if isinstance(self.file, TLObject) else self.file, 'silent': self.silent, 'random_id': self.random_id } def _bytes(self): return b''.join(( b'\x1dHYU', struct.pack('<I', (0 if self.silent is None or self.silent is False else 1)), self.peer._bytes(), struct.pack('<q', self.random_id), self.serialize_bytes(self.data), self.file._bytes(), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _silent = bool(flags & 1) _peer = reader.tgread_object() _random_id = reader.read_long() _data = reader.tgread_bytes() _file = reader.tgread_object() return cls(peer=_peer, data=_data, file=_file, silent=_silent, random_id=_random_id) class SendEncryptedServiceRequest(TLRequest): CONSTRUCTOR_ID = 0x32d439a4 SUBCLASS_OF_ID = 0xc99e3e50 def __init__(self, peer: 'TypeInputEncryptedChat', data: bytes, random_id: int=None): """ :returns messages.SentEncryptedMessage: Instance of either SentEncryptedMessage, SentEncryptedFile. """ self.peer = peer self.data = data self.random_id = random_id if random_id is not None else int.from_bytes(os.urandom(8), 'big', signed=True) def to_dict(self): return { '_': 'SendEncryptedServiceRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'data': self.data, 'random_id': self.random_id } def _bytes(self): return b''.join(( b'\xa49\xd42', self.peer._bytes(), struct.pack('<q', self.random_id), self.serialize_bytes(self.data), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _random_id = reader.read_long() _data = reader.tgread_bytes() return cls(peer=_peer, data=_data, random_id=_random_id) class SendInlineBotResultRequest(TLRequest): CONSTRUCTOR_ID = 0xd3fbdccb SUBCLASS_OF_ID = 0x8af52aac # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', query_id: int, id: str, silent: Optional[bool]=None, background: Optional[bool]=None, clear_draft: Optional[bool]=None, hide_via: Optional[bool]=None, reply_to_msg_id: Optional[int]=None, top_msg_id: Optional[int]=None, random_id: int=None, schedule_date: Optional[datetime]=None, send_as: Optional['TypeInputPeer']=None): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.query_id = query_id self.id = id self.silent = silent self.background = background self.clear_draft = clear_draft self.hide_via = hide_via self.reply_to_msg_id = reply_to_msg_id self.top_msg_id = top_msg_id self.random_id = random_id if random_id is not None else int.from_bytes(os.urandom(8), 'big', signed=True) self.schedule_date = schedule_date self.send_as = send_as async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) if self.send_as: self.send_as = utils.get_input_peer(await client.get_input_entity(self.send_as)) def to_dict(self): return { '_': 'SendInlineBotResultRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'query_id': self.query_id, 'id': self.id, 'silent': self.silent, 'background': self.background, 'clear_draft': self.clear_draft, 'hide_via': self.hide_via, 'reply_to_msg_id': self.reply_to_msg_id, 'top_msg_id': self.top_msg_id, 'random_id': self.random_id, 'schedule_date': self.schedule_date, 'send_as': self.send_as.to_dict() if isinstance(self.send_as, TLObject) else self.send_as } def _bytes(self): return b''.join(( b'\xcb\xdc\xfb\xd3', struct.pack('<I', (0 if self.silent is None or self.silent is False else 32) | (0 if self.background is None or self.background is False else 64) | (0 if self.clear_draft is None or self.clear_draft is False else 128) | (0 if self.hide_via is None or self.hide_via is False else 2048) | (0 if self.reply_to_msg_id is None or self.reply_to_msg_id is False else 1) | (0 if self.top_msg_id is None or self.top_msg_id is False else 512) | (0 if self.schedule_date is None or self.schedule_date is False else 1024) | (0 if self.send_as is None or self.send_as is False else 8192)), self.peer._bytes(), b'' if self.reply_to_msg_id is None or self.reply_to_msg_id is False else (struct.pack('<i', self.reply_to_msg_id)), b'' if self.top_msg_id is None or self.top_msg_id is False else (struct.pack('<i', self.top_msg_id)), struct.pack('<q', self.random_id), struct.pack('<q', self.query_id), self.serialize_bytes(self.id), b'' if self.schedule_date is None or self.schedule_date is False else (self.serialize_datetime(self.schedule_date)), b'' if self.send_as is None or self.send_as is False else (self.send_as._bytes()), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _silent = bool(flags & 32) _background = bool(flags & 64) _clear_draft = bool(flags & 128) _hide_via = bool(flags & 2048) _peer = reader.tgread_object() if flags & 1: _reply_to_msg_id = reader.read_int() else: _reply_to_msg_id = None if flags & 512: _top_msg_id = reader.read_int() else: _top_msg_id = None _random_id = reader.read_long() _query_id = reader.read_long() _id = reader.tgread_string() if flags & 1024: _schedule_date = reader.tgread_date() else: _schedule_date = None if flags & 8192: _send_as = reader.tgread_object() else: _send_as = None return cls(peer=_peer, query_id=_query_id, id=_id, silent=_silent, background=_background, clear_draft=_clear_draft, hide_via=_hide_via, reply_to_msg_id=_reply_to_msg_id, top_msg_id=_top_msg_id, random_id=_random_id, schedule_date=_schedule_date, send_as=_send_as) class SendMediaRequest(TLRequest): CONSTRUCTOR_ID = 0x7547c966 SUBCLASS_OF_ID = 0x8af52aac def __init__(self, peer: 'TypeInputPeer', media: 'TypeInputMedia', message: str, silent: Optional[bool]=None, background: Optional[bool]=None, clear_draft: Optional[bool]=None, noforwards: Optional[bool]=None, update_stickersets_order: Optional[bool]=None, reply_to_msg_id: Optional[int]=None, top_msg_id: Optional[int]=None, random_id: int=None, reply_markup: Optional['TypeReplyMarkup']=None, entities: Optional[List['TypeMessageEntity']]=None, schedule_date: Optional[datetime]=None, send_as: Optional['TypeInputPeer']=None): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.media = media self.message = message self.silent = silent self.background = background self.clear_draft = clear_draft self.noforwards = noforwards self.update_stickersets_order = update_stickersets_order self.reply_to_msg_id = reply_to_msg_id self.top_msg_id = top_msg_id self.random_id = random_id if random_id is not None else int.from_bytes(os.urandom(8), 'big', signed=True) self.reply_markup = reply_markup self.entities = entities self.schedule_date = schedule_date self.send_as = send_as async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) self.media = utils.get_input_media(self.media) if self.send_as: self.send_as = utils.get_input_peer(await client.get_input_entity(self.send_as)) def to_dict(self): return { '_': 'SendMediaRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'media': self.media.to_dict() if isinstance(self.media, TLObject) else self.media, 'message': self.message, 'silent': self.silent, 'background': self.background, 'clear_draft': self.clear_draft, 'noforwards': self.noforwards, 'update_stickersets_order': self.update_stickersets_order, 'reply_to_msg_id': self.reply_to_msg_id, 'top_msg_id': self.top_msg_id, 'random_id': self.random_id, 'reply_markup': self.reply_markup.to_dict() if isinstance(self.reply_markup, TLObject) else self.reply_markup, 'entities': [] if self.entities is None else [x.to_dict() if isinstance(x, TLObject) else x for x in self.entities], 'schedule_date': self.schedule_date, 'send_as': self.send_as.to_dict() if isinstance(self.send_as, TLObject) else self.send_as } def _bytes(self): return b''.join(( b'f\xc9Gu', struct.pack('<I', (0 if self.silent is None or self.silent is False else 32) | (0 if self.background is None or self.background is False else 64) | (0 if self.clear_draft is None or self.clear_draft is False else 128) | (0 if self.noforwards is None or self.noforwards is False else 16384) | (0 if self.update_stickersets_order is None or self.update_stickersets_order is False else 32768) | (0 if self.reply_to_msg_id is None or self.reply_to_msg_id is False else 1) | (0 if self.top_msg_id is None or self.top_msg_id is False else 512) | (0 if self.reply_markup is None or self.reply_markup is False else 4) | (0 if self.entities is None or self.entities is False else 8) | (0 if self.schedule_date is None or self.schedule_date is False else 1024) | (0 if self.send_as is None or self.send_as is False else 8192)), self.peer._bytes(), b'' if self.reply_to_msg_id is None or self.reply_to_msg_id is False else (struct.pack('<i', self.reply_to_msg_id)), b'' if self.top_msg_id is None or self.top_msg_id is False else (struct.pack('<i', self.top_msg_id)), self.media._bytes(), self.serialize_bytes(self.message), struct.pack('<q', self.random_id), b'' if self.reply_markup is None or self.reply_markup is False else (self.reply_markup._bytes()), b'' if self.entities is None or self.entities is False else b''.join((b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.entities)),b''.join(x._bytes() for x in self.entities))), b'' if self.schedule_date is None or self.schedule_date is False else (self.serialize_datetime(self.schedule_date)), b'' if self.send_as is None or self.send_as is False else (self.send_as._bytes()), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _silent = bool(flags & 32) _background = bool(flags & 64) _clear_draft = bool(flags & 128) _noforwards = bool(flags & 16384) _update_stickersets_order = bool(flags & 32768) _peer = reader.tgread_object() if flags & 1: _reply_to_msg_id = reader.read_int() else: _reply_to_msg_id = None if flags & 512: _top_msg_id = reader.read_int() else: _top_msg_id = None _media = reader.tgread_object() _message = reader.tgread_string() _random_id = reader.read_long() if flags & 4: _reply_markup = reader.tgread_object() else: _reply_markup = None if flags & 8: reader.read_int() _entities = [] for _ in range(reader.read_int()): _x = reader.tgread_object() _entities.append(_x) else: _entities = None if flags & 1024: _schedule_date = reader.tgread_date() else: _schedule_date = None if flags & 8192: _send_as = reader.tgread_object() else: _send_as = None return cls(peer=_peer, media=_media, message=_message, silent=_silent, background=_background, clear_draft=_clear_draft, noforwards=_noforwards, update_stickersets_order=_update_stickersets_order, reply_to_msg_id=_reply_to_msg_id, top_msg_id=_top_msg_id, random_id=_random_id, reply_markup=_reply_markup, entities=_entities, schedule_date=_schedule_date, send_as=_send_as) class SendMessageRequest(TLRequest): CONSTRUCTOR_ID = 0x1cc20387 SUBCLASS_OF_ID = 0x8af52aac def __init__(self, peer: 'TypeInputPeer', message: str, no_webpage: Optional[bool]=None, silent: Optional[bool]=None, background: Optional[bool]=None, clear_draft: Optional[bool]=None, noforwards: Optional[bool]=None, update_stickersets_order: Optional[bool]=None, reply_to_msg_id: Optional[int]=None, top_msg_id: Optional[int]=None, random_id: int=None, reply_markup: Optional['TypeReplyMarkup']=None, entities: Optional[List['TypeMessageEntity']]=None, schedule_date: Optional[datetime]=None, send_as: Optional['TypeInputPeer']=None): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.message = message self.no_webpage = no_webpage self.silent = silent self.background = background self.clear_draft = clear_draft self.noforwards = noforwards self.update_stickersets_order = update_stickersets_order self.reply_to_msg_id = reply_to_msg_id self.top_msg_id = top_msg_id self.random_id = random_id if random_id is not None else int.from_bytes(os.urandom(8), 'big', signed=True) self.reply_markup = reply_markup self.entities = entities self.schedule_date = schedule_date self.send_as = send_as async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) if self.send_as: self.send_as = utils.get_input_peer(await client.get_input_entity(self.send_as)) def to_dict(self): return { '_': 'SendMessageRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'message': self.message, 'no_webpage': self.no_webpage, 'silent': self.silent, 'background': self.background, 'clear_draft': self.clear_draft, 'noforwards': self.noforwards, 'update_stickersets_order': self.update_stickersets_order, 'reply_to_msg_id': self.reply_to_msg_id, 'top_msg_id': self.top_msg_id, 'random_id': self.random_id, 'reply_markup': self.reply_markup.to_dict() if isinstance(self.reply_markup, TLObject) else self.reply_markup, 'entities': [] if self.entities is None else [x.to_dict() if isinstance(x, TLObject) else x for x in self.entities], 'schedule_date': self.schedule_date, 'send_as': self.send_as.to_dict() if isinstance(self.send_as, TLObject) else self.send_as } def _bytes(self): return b''.join(( b'\x87\x03\xc2\x1c', struct.pack('<I', (0 if self.no_webpage is None or self.no_webpage is False else 2) | (0 if self.silent is None or self.silent is False else 32) | (0 if self.background is None or self.background is False else 64) | (0 if self.clear_draft is None or self.clear_draft is False else 128) | (0 if self.noforwards is None or self.noforwards is False else 16384) | (0 if self.update_stickersets_order is None or self.update_stickersets_order is False else 32768) | (0 if self.reply_to_msg_id is None or self.reply_to_msg_id is False else 1) | (0 if self.top_msg_id is None or self.top_msg_id is False else 512) | (0 if self.reply_markup is None or self.reply_markup is False else 4) | (0 if self.entities is None or self.entities is False else 8) | (0 if self.schedule_date is None or self.schedule_date is False else 1024) | (0 if self.send_as is None or self.send_as is False else 8192)), self.peer._bytes(), b'' if self.reply_to_msg_id is None or self.reply_to_msg_id is False else (struct.pack('<i', self.reply_to_msg_id)), b'' if self.top_msg_id is None or self.top_msg_id is False else (struct.pack('<i', self.top_msg_id)), self.serialize_bytes(self.message), struct.pack('<q', self.random_id), b'' if self.reply_markup is None or self.reply_markup is False else (self.reply_markup._bytes()), b'' if self.entities is None or self.entities is False else b''.join((b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.entities)),b''.join(x._bytes() for x in self.entities))), b'' if self.schedule_date is None or self.schedule_date is False else (self.serialize_datetime(self.schedule_date)), b'' if self.send_as is None or self.send_as is False else (self.send_as._bytes()), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _no_webpage = bool(flags & 2) _silent = bool(flags & 32) _background = bool(flags & 64) _clear_draft = bool(flags & 128) _noforwards = bool(flags & 16384) _update_stickersets_order = bool(flags & 32768) _peer = reader.tgread_object() if flags & 1: _reply_to_msg_id = reader.read_int() else: _reply_to_msg_id = None if flags & 512: _top_msg_id = reader.read_int() else: _top_msg_id = None _message = reader.tgread_string() _random_id = reader.read_long() if flags & 4: _reply_markup = reader.tgread_object() else: _reply_markup = None if flags & 8: reader.read_int() _entities = [] for _ in range(reader.read_int()): _x = reader.tgread_object() _entities.append(_x) else: _entities = None if flags & 1024: _schedule_date = reader.tgread_date() else: _schedule_date = None if flags & 8192: _send_as = reader.tgread_object() else: _send_as = None return cls(peer=_peer, message=_message, no_webpage=_no_webpage, silent=_silent, background=_background, clear_draft=_clear_draft, noforwards=_noforwards, update_stickersets_order=_update_stickersets_order, reply_to_msg_id=_reply_to_msg_id, top_msg_id=_top_msg_id, random_id=_random_id, reply_markup=_reply_markup, entities=_entities, schedule_date=_schedule_date, send_as=_send_as) class SendMultiMediaRequest(TLRequest): CONSTRUCTOR_ID = 0xb6f11a1c SUBCLASS_OF_ID = 0x8af52aac def __init__(self, peer: 'TypeInputPeer', multi_media: List['TypeInputSingleMedia'], silent: Optional[bool]=None, background: Optional[bool]=None, clear_draft: Optional[bool]=None, noforwards: Optional[bool]=None, update_stickersets_order: Optional[bool]=None, reply_to_msg_id: Optional[int]=None, top_msg_id: Optional[int]=None, schedule_date: Optional[datetime]=None, send_as: Optional['TypeInputPeer']=None): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.multi_media = multi_media self.silent = silent self.background = background self.clear_draft = clear_draft self.noforwards = noforwards self.update_stickersets_order = update_stickersets_order self.reply_to_msg_id = reply_to_msg_id self.top_msg_id = top_msg_id self.schedule_date = schedule_date self.send_as = send_as async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) if self.send_as: self.send_as = utils.get_input_peer(await client.get_input_entity(self.send_as)) def to_dict(self): return { '_': 'SendMultiMediaRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'multi_media': [] if self.multi_media is None else [x.to_dict() if isinstance(x, TLObject) else x for x in self.multi_media], 'silent': self.silent, 'background': self.background, 'clear_draft': self.clear_draft, 'noforwards': self.noforwards, 'update_stickersets_order': self.update_stickersets_order, 'reply_to_msg_id': self.reply_to_msg_id, 'top_msg_id': self.top_msg_id, 'schedule_date': self.schedule_date, 'send_as': self.send_as.to_dict() if isinstance(self.send_as, TLObject) else self.send_as } def _bytes(self): return b''.join(( b'\x1c\x1a\xf1\xb6', struct.pack('<I', (0 if self.silent is None or self.silent is False else 32) | (0 if self.background is None or self.background is False else 64) | (0 if self.clear_draft is None or self.clear_draft is False else 128) | (0 if self.noforwards is None or self.noforwards is False else 16384) | (0 if self.update_stickersets_order is None or self.update_stickersets_order is False else 32768) | (0 if self.reply_to_msg_id is None or self.reply_to_msg_id is False else 1) | (0 if self.top_msg_id is None or self.top_msg_id is False else 512) | (0 if self.schedule_date is None or self.schedule_date is False else 1024) | (0 if self.send_as is None or self.send_as is False else 8192)), self.peer._bytes(), b'' if self.reply_to_msg_id is None or self.reply_to_msg_id is False else (struct.pack('<i', self.reply_to_msg_id)), b'' if self.top_msg_id is None or self.top_msg_id is False else (struct.pack('<i', self.top_msg_id)), b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.multi_media)),b''.join(x._bytes() for x in self.multi_media), b'' if self.schedule_date is None or self.schedule_date is False else (self.serialize_datetime(self.schedule_date)), b'' if self.send_as is None or self.send_as is False else (self.send_as._bytes()), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _silent = bool(flags & 32) _background = bool(flags & 64) _clear_draft = bool(flags & 128) _noforwards = bool(flags & 16384) _update_stickersets_order = bool(flags & 32768) _peer = reader.tgread_object() if flags & 1: _reply_to_msg_id = reader.read_int() else: _reply_to_msg_id = None if flags & 512: _top_msg_id = reader.read_int() else: _top_msg_id = None reader.read_int() _multi_media = [] for _ in range(reader.read_int()): _x = reader.tgread_object() _multi_media.append(_x) if flags & 1024: _schedule_date = reader.tgread_date() else: _schedule_date = None if flags & 8192: _send_as = reader.tgread_object() else: _send_as = None return cls(peer=_peer, multi_media=_multi_media, silent=_silent, background=_background, clear_draft=_clear_draft, noforwards=_noforwards, update_stickersets_order=_update_stickersets_order, reply_to_msg_id=_reply_to_msg_id, top_msg_id=_top_msg_id, schedule_date=_schedule_date, send_as=_send_as) class SendReactionRequest(TLRequest): CONSTRUCTOR_ID = 0xd30d78d4 SUBCLASS_OF_ID = 0x8af52aac def __init__(self, peer: 'TypeInputPeer', msg_id: int, big: Optional[bool]=None, add_to_recent: Optional[bool]=None, reaction: Optional[List['TypeReaction']]=None): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.msg_id = msg_id self.big = big self.add_to_recent = add_to_recent self.reaction = reaction async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'SendReactionRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'msg_id': self.msg_id, 'big': self.big, 'add_to_recent': self.add_to_recent, 'reaction': [] if self.reaction is None else [x.to_dict() if isinstance(x, TLObject) else x for x in self.reaction] } def _bytes(self): return b''.join(( b'\xd4x\r\xd3', struct.pack('<I', (0 if self.big is None or self.big is False else 2) | (0 if self.add_to_recent is None or self.add_to_recent is False else 4) | (0 if self.reaction is None or self.reaction is False else 1)), self.peer._bytes(), struct.pack('<i', self.msg_id), b'' if self.reaction is None or self.reaction is False else b''.join((b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.reaction)),b''.join(x._bytes() for x in self.reaction))), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _big = bool(flags & 2) _add_to_recent = bool(flags & 4) _peer = reader.tgread_object() _msg_id = reader.read_int() if flags & 1: reader.read_int() _reaction = [] for _ in range(reader.read_int()): _x = reader.tgread_object() _reaction.append(_x) else: _reaction = None return cls(peer=_peer, msg_id=_msg_id, big=_big, add_to_recent=_add_to_recent, reaction=_reaction) class SendScheduledMessagesRequest(TLRequest): CONSTRUCTOR_ID = 0xbd38850a SUBCLASS_OF_ID = 0x8af52aac # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', id: List[int]): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.id = id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'SendScheduledMessagesRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'id': [] if self.id is None else self.id[:] } def _bytes(self): return b''.join(( b'\n\x858\xbd', self.peer._bytes(), b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.id)),b''.join(struct.pack('<i', x) for x in self.id), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() reader.read_int() _id = [] for _ in range(reader.read_int()): _x = reader.read_int() _id.append(_x) return cls(peer=_peer, id=_id) class SendScreenshotNotificationRequest(TLRequest): CONSTRUCTOR_ID = 0xc97df020 SUBCLASS_OF_ID = 0x8af52aac def __init__(self, peer: 'TypeInputPeer', reply_to_msg_id: int, random_id: int=None): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.reply_to_msg_id = reply_to_msg_id self.random_id = random_id if random_id is not None else int.from_bytes(os.urandom(8), 'big', signed=True) async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'SendScreenshotNotificationRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'reply_to_msg_id': self.reply_to_msg_id, 'random_id': self.random_id } def _bytes(self): return b''.join(( b' \xf0}\xc9', self.peer._bytes(), struct.pack('<i', self.reply_to_msg_id), struct.pack('<q', self.random_id), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _reply_to_msg_id = reader.read_int() _random_id = reader.read_long() return cls(peer=_peer, reply_to_msg_id=_reply_to_msg_id, random_id=_random_id) class SendVoteRequest(TLRequest): CONSTRUCTOR_ID = 0x10ea6184 SUBCLASS_OF_ID = 0x8af52aac def __init__(self, peer: 'TypeInputPeer', msg_id: int, options: List[bytes]): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.msg_id = msg_id self.options = options async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'SendVoteRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'msg_id': self.msg_id, 'options': [] if self.options is None else self.options[:] } def _bytes(self): return b''.join(( b'\x84a\xea\x10', self.peer._bytes(), struct.pack('<i', self.msg_id), b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.options)),b''.join(self.serialize_bytes(x) for x in self.options), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _msg_id = reader.read_int() reader.read_int() _options = [] for _ in range(reader.read_int()): _x = reader.tgread_bytes() _options.append(_x) return cls(peer=_peer, msg_id=_msg_id, options=_options) class SendWebViewDataRequest(TLRequest): CONSTRUCTOR_ID = 0xdc0242c8 SUBCLASS_OF_ID = 0x8af52aac def __init__(self, bot: 'TypeInputUser', button_text: str, data: str, random_id: int=None): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.bot = bot self.button_text = button_text self.data = data self.random_id = random_id if random_id is not None else int.from_bytes(os.urandom(8), 'big', signed=True) async def resolve(self, client, utils): self.bot = utils.get_input_user(await client.get_input_entity(self.bot)) def to_dict(self): return { '_': 'SendWebViewDataRequest', 'bot': self.bot.to_dict() if isinstance(self.bot, TLObject) else self.bot, 'button_text': self.button_text, 'data': self.data, 'random_id': self.random_id } def _bytes(self): return b''.join(( b'\xc8B\x02\xdc', self.bot._bytes(), struct.pack('<q', self.random_id), self.serialize_bytes(self.button_text), self.serialize_bytes(self.data), )) @classmethod def from_reader(cls, reader): _bot = reader.tgread_object() _random_id = reader.read_long() _button_text = reader.tgread_string() _data = reader.tgread_string() return cls(bot=_bot, button_text=_button_text, data=_data, random_id=_random_id) class SendWebViewResultMessageRequest(TLRequest): CONSTRUCTOR_ID = 0xa4314f5 SUBCLASS_OF_ID = 0x75e49312 def __init__(self, bot_query_id: str, result: 'TypeInputBotInlineResult'): """ :returns WebViewMessageSent: Instance of WebViewMessageSent. """ self.bot_query_id = bot_query_id self.result = result def to_dict(self): return { '_': 'SendWebViewResultMessageRequest', 'bot_query_id': self.bot_query_id, 'result': self.result.to_dict() if isinstance(self.result, TLObject) else self.result } def _bytes(self): return b''.join(( b'\xf5\x14C\n', self.serialize_bytes(self.bot_query_id), self.result._bytes(), )) @classmethod def from_reader(cls, reader): _bot_query_id = reader.tgread_string() _result = reader.tgread_object() return cls(bot_query_id=_bot_query_id, result=_result) class SetBotCallbackAnswerRequest(TLRequest): CONSTRUCTOR_ID = 0xd58f130a SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, query_id: int, cache_time: int, alert: Optional[bool]=None, message: Optional[str]=None, url: Optional[str]=None): """ :returns Bool: This type has no constructors. """ self.query_id = query_id self.cache_time = cache_time self.alert = alert self.message = message self.url = url def to_dict(self): return { '_': 'SetBotCallbackAnswerRequest', 'query_id': self.query_id, 'cache_time': self.cache_time, 'alert': self.alert, 'message': self.message, 'url': self.url } def _bytes(self): return b''.join(( b'\n\x13\x8f\xd5', struct.pack('<I', (0 if self.alert is None or self.alert is False else 2) | (0 if self.message is None or self.message is False else 1) | (0 if self.url is None or self.url is False else 4)), struct.pack('<q', self.query_id), b'' if self.message is None or self.message is False else (self.serialize_bytes(self.message)), b'' if self.url is None or self.url is False else (self.serialize_bytes(self.url)), struct.pack('<i', self.cache_time), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _alert = bool(flags & 2) _query_id = reader.read_long() if flags & 1: _message = reader.tgread_string() else: _message = None if flags & 4: _url = reader.tgread_string() else: _url = None _cache_time = reader.read_int() return cls(query_id=_query_id, cache_time=_cache_time, alert=_alert, message=_message, url=_url) class SetBotPrecheckoutResultsRequest(TLRequest): CONSTRUCTOR_ID = 0x9c2dd95 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, query_id: int, success: Optional[bool]=None, error: Optional[str]=None): """ :returns Bool: This type has no constructors. """ self.query_id = query_id self.success = success self.error = error def to_dict(self): return { '_': 'SetBotPrecheckoutResultsRequest', 'query_id': self.query_id, 'success': self.success, 'error': self.error } def _bytes(self): return b''.join(( b'\x95\xdd\xc2\t', struct.pack('<I', (0 if self.success is None or self.success is False else 2) | (0 if self.error is None or self.error is False else 1)), struct.pack('<q', self.query_id), b'' if self.error is None or self.error is False else (self.serialize_bytes(self.error)), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _success = bool(flags & 2) _query_id = reader.read_long() if flags & 1: _error = reader.tgread_string() else: _error = None return cls(query_id=_query_id, success=_success, error=_error) class SetBotShippingResultsRequest(TLRequest): CONSTRUCTOR_ID = 0xe5f672fa SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, query_id: int, error: Optional[str]=None, shipping_options: Optional[List['TypeShippingOption']]=None): """ :returns Bool: This type has no constructors. """ self.query_id = query_id self.error = error self.shipping_options = shipping_options def to_dict(self): return { '_': 'SetBotShippingResultsRequest', 'query_id': self.query_id, 'error': self.error, 'shipping_options': [] if self.shipping_options is None else [x.to_dict() if isinstance(x, TLObject) else x for x in self.shipping_options] } def _bytes(self): return b''.join(( b'\xfar\xf6\xe5', struct.pack('<I', (0 if self.error is None or self.error is False else 1) | (0 if self.shipping_options is None or self.shipping_options is False else 2)), struct.pack('<q', self.query_id), b'' if self.error is None or self.error is False else (self.serialize_bytes(self.error)), b'' if self.shipping_options is None or self.shipping_options is False else b''.join((b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.shipping_options)),b''.join(x._bytes() for x in self.shipping_options))), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _query_id = reader.read_long() if flags & 1: _error = reader.tgread_string() else: _error = None if flags & 2: reader.read_int() _shipping_options = [] for _ in range(reader.read_int()): _x = reader.tgread_object() _shipping_options.append(_x) else: _shipping_options = None return cls(query_id=_query_id, error=_error, shipping_options=_shipping_options) class SetChatAvailableReactionsRequest(TLRequest): CONSTRUCTOR_ID = 0xfeb16771 SUBCLASS_OF_ID = 0x8af52aac def __init__(self, peer: 'TypeInputPeer', available_reactions: 'TypeChatReactions'): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.available_reactions = available_reactions async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'SetChatAvailableReactionsRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'available_reactions': self.available_reactions.to_dict() if isinstance(self.available_reactions, TLObject) else self.available_reactions } def _bytes(self): return b''.join(( b'qg\xb1\xfe', self.peer._bytes(), self.available_reactions._bytes(), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _available_reactions = reader.tgread_object() return cls(peer=_peer, available_reactions=_available_reactions) class SetChatThemeRequest(TLRequest): CONSTRUCTOR_ID = 0xe63be13f SUBCLASS_OF_ID = 0x8af52aac def __init__(self, peer: 'TypeInputPeer', emoticon: str): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.emoticon = emoticon async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'SetChatThemeRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'emoticon': self.emoticon } def _bytes(self): return b''.join(( b'?\xe1;\xe6', self.peer._bytes(), self.serialize_bytes(self.emoticon), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _emoticon = reader.tgread_string() return cls(peer=_peer, emoticon=_emoticon) class SetChatWallPaperRequest(TLRequest): CONSTRUCTOR_ID = 0x8ffacae1 SUBCLASS_OF_ID = 0x8af52aac # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', wallpaper: Optional['TypeInputWallPaper']=None, settings: Optional['TypeWallPaperSettings']=None, id: Optional[int]=None): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.wallpaper = wallpaper self.settings = settings self.id = id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'SetChatWallPaperRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'wallpaper': self.wallpaper.to_dict() if isinstance(self.wallpaper, TLObject) else self.wallpaper, 'settings': self.settings.to_dict() if isinstance(self.settings, TLObject) else self.settings, 'id': self.id } def _bytes(self): return b''.join(( b'\xe1\xca\xfa\x8f', struct.pack('<I', (0 if self.wallpaper is None or self.wallpaper is False else 1) | (0 if self.settings is None or self.settings is False else 4) | (0 if self.id is None or self.id is False else 2)), self.peer._bytes(), b'' if self.wallpaper is None or self.wallpaper is False else (self.wallpaper._bytes()), b'' if self.settings is None or self.settings is False else (self.settings._bytes()), b'' if self.id is None or self.id is False else (struct.pack('<i', self.id)), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _peer = reader.tgread_object() if flags & 1: _wallpaper = reader.tgread_object() else: _wallpaper = None if flags & 4: _settings = reader.tgread_object() else: _settings = None if flags & 2: _id = reader.read_int() else: _id = None return cls(peer=_peer, wallpaper=_wallpaper, settings=_settings, id=_id) class SetDefaultHistoryTTLRequest(TLRequest): CONSTRUCTOR_ID = 0x9eb51445 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, period: int): """ :returns Bool: This type has no constructors. """ self.period = period def to_dict(self): return { '_': 'SetDefaultHistoryTTLRequest', 'period': self.period } def _bytes(self): return b''.join(( b'E\x14\xb5\x9e', struct.pack('<i', self.period), )) @classmethod def from_reader(cls, reader): _period = reader.read_int() return cls(period=_period) class SetDefaultReactionRequest(TLRequest): CONSTRUCTOR_ID = 0x4f47a016 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, reaction: 'TypeReaction'): """ :returns Bool: This type has no constructors. """ self.reaction = reaction def to_dict(self): return { '_': 'SetDefaultReactionRequest', 'reaction': self.reaction.to_dict() if isinstance(self.reaction, TLObject) else self.reaction } def _bytes(self): return b''.join(( b'\x16\xa0GO', self.reaction._bytes(), )) @classmethod def from_reader(cls, reader): _reaction = reader.tgread_object() return cls(reaction=_reaction) class SetEncryptedTypingRequest(TLRequest): CONSTRUCTOR_ID = 0x791451ed SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, peer: 'TypeInputEncryptedChat', typing: bool): """ :returns Bool: This type has no constructors. """ self.peer = peer self.typing = typing def to_dict(self): return { '_': 'SetEncryptedTypingRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'typing': self.typing } def _bytes(self): return b''.join(( b'\xedQ\x14y', self.peer._bytes(), b'\xb5ur\x99' if self.typing else b'7\x97y\xbc', )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _typing = reader.tgread_bool() return cls(peer=_peer, typing=_typing) class SetGameScoreRequest(TLRequest): CONSTRUCTOR_ID = 0x8ef8ecc0 SUBCLASS_OF_ID = 0x8af52aac # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', id: int, user_id: 'TypeInputUser', score: int, edit_message: Optional[bool]=None, force: Optional[bool]=None): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.id = id self.user_id = user_id self.score = score self.edit_message = edit_message self.force = force async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) self.user_id = utils.get_input_user(await client.get_input_entity(self.user_id)) def to_dict(self): return { '_': 'SetGameScoreRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'id': self.id, 'user_id': self.user_id.to_dict() if isinstance(self.user_id, TLObject) else self.user_id, 'score': self.score, 'edit_message': self.edit_message, 'force': self.force } def _bytes(self): return b''.join(( b'\xc0\xec\xf8\x8e', struct.pack('<I', (0 if self.edit_message is None or self.edit_message is False else 1) | (0 if self.force is None or self.force is False else 2)), self.peer._bytes(), struct.pack('<i', self.id), self.user_id._bytes(), struct.pack('<i', self.score), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _edit_message = bool(flags & 1) _force = bool(flags & 2) _peer = reader.tgread_object() _id = reader.read_int() _user_id = reader.tgread_object() _score = reader.read_int() return cls(peer=_peer, id=_id, user_id=_user_id, score=_score, edit_message=_edit_message, force=_force) class SetHistoryTTLRequest(TLRequest): CONSTRUCTOR_ID = 0xb80e5fe4 SUBCLASS_OF_ID = 0x8af52aac def __init__(self, peer: 'TypeInputPeer', period: int): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.period = period async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'SetHistoryTTLRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'period': self.period } def _bytes(self): return b''.join(( b'\xe4_\x0e\xb8', self.peer._bytes(), struct.pack('<i', self.period), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _period = reader.read_int() return cls(peer=_peer, period=_period) class SetInlineBotResultsRequest(TLRequest): CONSTRUCTOR_ID = 0xbb12a419 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, query_id: int, results: List['TypeInputBotInlineResult'], cache_time: int, gallery: Optional[bool]=None, private: Optional[bool]=None, next_offset: Optional[str]=None, switch_pm: Optional['TypeInlineBotSwitchPM']=None, switch_webview: Optional['TypeInlineBotWebView']=None): """ :returns Bool: This type has no constructors. """ self.query_id = query_id self.results = results self.cache_time = cache_time self.gallery = gallery self.private = private self.next_offset = next_offset self.switch_pm = switch_pm self.switch_webview = switch_webview def to_dict(self): return { '_': 'SetInlineBotResultsRequest', 'query_id': self.query_id, 'results': [] if self.results is None else [x.to_dict() if isinstance(x, TLObject) else x for x in self.results], 'cache_time': self.cache_time, 'gallery': self.gallery, 'private': self.private, 'next_offset': self.next_offset, 'switch_pm': self.switch_pm.to_dict() if isinstance(self.switch_pm, TLObject) else self.switch_pm, 'switch_webview': self.switch_webview.to_dict() if isinstance(self.switch_webview, TLObject) else self.switch_webview } def _bytes(self): return b''.join(( b'\x19\xa4\x12\xbb', struct.pack('<I', (0 if self.gallery is None or self.gallery is False else 1) | (0 if self.private is None or self.private is False else 2) | (0 if self.next_offset is None or self.next_offset is False else 4) | (0 if self.switch_pm is None or self.switch_pm is False else 8) | (0 if self.switch_webview is None or self.switch_webview is False else 16)), struct.pack('<q', self.query_id), b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.results)),b''.join(x._bytes() for x in self.results), struct.pack('<i', self.cache_time), b'' if self.next_offset is None or self.next_offset is False else (self.serialize_bytes(self.next_offset)), b'' if self.switch_pm is None or self.switch_pm is False else (self.switch_pm._bytes()), b'' if self.switch_webview is None or self.switch_webview is False else (self.switch_webview._bytes()), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _gallery = bool(flags & 1) _private = bool(flags & 2) _query_id = reader.read_long() reader.read_int() _results = [] for _ in range(reader.read_int()): _x = reader.tgread_object() _results.append(_x) _cache_time = reader.read_int() if flags & 4: _next_offset = reader.tgread_string() else: _next_offset = None if flags & 8: _switch_pm = reader.tgread_object() else: _switch_pm = None if flags & 16: _switch_webview = reader.tgread_object() else: _switch_webview = None return cls(query_id=_query_id, results=_results, cache_time=_cache_time, gallery=_gallery, private=_private, next_offset=_next_offset, switch_pm=_switch_pm, switch_webview=_switch_webview) class SetInlineGameScoreRequest(TLRequest): CONSTRUCTOR_ID = 0x15ad9f64 SUBCLASS_OF_ID = 0xf5b399ac # noinspection PyShadowingBuiltins def __init__(self, id: 'TypeInputBotInlineMessageID', user_id: 'TypeInputUser', score: int, edit_message: Optional[bool]=None, force: Optional[bool]=None): """ :returns Bool: This type has no constructors. """ self.id = id self.user_id = user_id self.score = score self.edit_message = edit_message self.force = force async def resolve(self, client, utils): self.user_id = utils.get_input_user(await client.get_input_entity(self.user_id)) def to_dict(self): return { '_': 'SetInlineGameScoreRequest', 'id': self.id.to_dict() if isinstance(self.id, TLObject) else self.id, 'user_id': self.user_id.to_dict() if isinstance(self.user_id, TLObject) else self.user_id, 'score': self.score, 'edit_message': self.edit_message, 'force': self.force } def _bytes(self): return b''.join(( b'd\x9f\xad\x15', struct.pack('<I', (0 if self.edit_message is None or self.edit_message is False else 1) | (0 if self.force is None or self.force is False else 2)), self.id._bytes(), self.user_id._bytes(), struct.pack('<i', self.score), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _edit_message = bool(flags & 1) _force = bool(flags & 2) _id = reader.tgread_object() _user_id = reader.tgread_object() _score = reader.read_int() return cls(id=_id, user_id=_user_id, score=_score, edit_message=_edit_message, force=_force) class SetTypingRequest(TLRequest): CONSTRUCTOR_ID = 0x58943ee2 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, peer: 'TypeInputPeer', action: 'TypeSendMessageAction', top_msg_id: Optional[int]=None): """ :returns Bool: This type has no constructors. """ self.peer = peer self.action = action self.top_msg_id = top_msg_id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'SetTypingRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'action': self.action.to_dict() if isinstance(self.action, TLObject) else self.action, 'top_msg_id': self.top_msg_id } def _bytes(self): return b''.join(( b'\xe2>\x94X', struct.pack('<I', (0 if self.top_msg_id is None or self.top_msg_id is False else 1)), self.peer._bytes(), b'' if self.top_msg_id is None or self.top_msg_id is False else (struct.pack('<i', self.top_msg_id)), self.action._bytes(), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _peer = reader.tgread_object() if flags & 1: _top_msg_id = reader.read_int() else: _top_msg_id = None _action = reader.tgread_object() return cls(peer=_peer, action=_action, top_msg_id=_top_msg_id) class StartBotRequest(TLRequest): CONSTRUCTOR_ID = 0xe6df7378 SUBCLASS_OF_ID = 0x8af52aac def __init__(self, bot: 'TypeInputUser', peer: 'TypeInputPeer', start_param: str, random_id: int=None): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.bot = bot self.peer = peer self.start_param = start_param self.random_id = random_id if random_id is not None else int.from_bytes(os.urandom(8), 'big', signed=True) async def resolve(self, client, utils): self.bot = utils.get_input_user(await client.get_input_entity(self.bot)) self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'StartBotRequest', 'bot': self.bot.to_dict() if isinstance(self.bot, TLObject) else self.bot, 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'start_param': self.start_param, 'random_id': self.random_id } def _bytes(self): return b''.join(( b'xs\xdf\xe6', self.bot._bytes(), self.peer._bytes(), struct.pack('<q', self.random_id), self.serialize_bytes(self.start_param), )) @classmethod def from_reader(cls, reader): _bot = reader.tgread_object() _peer = reader.tgread_object() _random_id = reader.read_long() _start_param = reader.tgread_string() return cls(bot=_bot, peer=_peer, start_param=_start_param, random_id=_random_id) class StartHistoryImportRequest(TLRequest): CONSTRUCTOR_ID = 0xb43df344 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, peer: 'TypeInputPeer', import_id: int): """ :returns Bool: This type has no constructors. """ self.peer = peer self.import_id = import_id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'StartHistoryImportRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'import_id': self.import_id } def _bytes(self): return b''.join(( b'D\xf3=\xb4', self.peer._bytes(), struct.pack('<q', self.import_id), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _import_id = reader.read_long() return cls(peer=_peer, import_id=_import_id) class ToggleBotInAttachMenuRequest(TLRequest): CONSTRUCTOR_ID = 0x69f59d69 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, bot: 'TypeInputUser', enabled: bool, write_allowed: Optional[bool]=None): """ :returns Bool: This type has no constructors. """ self.bot = bot self.enabled = enabled self.write_allowed = write_allowed async def resolve(self, client, utils): self.bot = utils.get_input_user(await client.get_input_entity(self.bot)) def to_dict(self): return { '_': 'ToggleBotInAttachMenuRequest', 'bot': self.bot.to_dict() if isinstance(self.bot, TLObject) else self.bot, 'enabled': self.enabled, 'write_allowed': self.write_allowed } def _bytes(self): return b''.join(( b'i\x9d\xf5i', struct.pack('<I', (0 if self.write_allowed is None or self.write_allowed is False else 1)), self.bot._bytes(), b'\xb5ur\x99' if self.enabled else b'7\x97y\xbc', )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _write_allowed = bool(flags & 1) _bot = reader.tgread_object() _enabled = reader.tgread_bool() return cls(bot=_bot, enabled=_enabled, write_allowed=_write_allowed) class ToggleDialogPinRequest(TLRequest): CONSTRUCTOR_ID = 0xa731e257 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, peer: 'TypeInputDialogPeer', pinned: Optional[bool]=None): """ :returns Bool: This type has no constructors. """ self.peer = peer self.pinned = pinned async def resolve(self, client, utils): self.peer = await client._get_input_dialog(self.peer) def to_dict(self): return { '_': 'ToggleDialogPinRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'pinned': self.pinned } def _bytes(self): return b''.join(( b'W\xe21\xa7', struct.pack('<I', (0 if self.pinned is None or self.pinned is False else 1)), self.peer._bytes(), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _pinned = bool(flags & 1) _peer = reader.tgread_object() return cls(peer=_peer, pinned=_pinned) class ToggleNoForwardsRequest(TLRequest): CONSTRUCTOR_ID = 0xb11eafa2 SUBCLASS_OF_ID = 0x8af52aac def __init__(self, peer: 'TypeInputPeer', enabled: bool): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.enabled = enabled async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'ToggleNoForwardsRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'enabled': self.enabled } def _bytes(self): return b''.join(( b'\xa2\xaf\x1e\xb1', self.peer._bytes(), b'\xb5ur\x99' if self.enabled else b'7\x97y\xbc', )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _enabled = reader.tgread_bool() return cls(peer=_peer, enabled=_enabled) class TogglePeerTranslationsRequest(TLRequest): CONSTRUCTOR_ID = 0xe47cb579 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, peer: 'TypeInputPeer', disabled: Optional[bool]=None): """ :returns Bool: This type has no constructors. """ self.peer = peer self.disabled = disabled async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'TogglePeerTranslationsRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'disabled': self.disabled } def _bytes(self): return b''.join(( b'y\xb5|\xe4', struct.pack('<I', (0 if self.disabled is None or self.disabled is False else 1)), self.peer._bytes(), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _disabled = bool(flags & 1) _peer = reader.tgread_object() return cls(peer=_peer, disabled=_disabled) class ToggleStickerSetsRequest(TLRequest): CONSTRUCTOR_ID = 0xb5052fea SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, stickersets: List['TypeInputStickerSet'], uninstall: Optional[bool]=None, archive: Optional[bool]=None, unarchive: Optional[bool]=None): """ :returns Bool: This type has no constructors. """ self.stickersets = stickersets self.uninstall = uninstall self.archive = archive self.unarchive = unarchive def to_dict(self): return { '_': 'ToggleStickerSetsRequest', 'stickersets': [] if self.stickersets is None else [x.to_dict() if isinstance(x, TLObject) else x for x in self.stickersets], 'uninstall': self.uninstall, 'archive': self.archive, 'unarchive': self.unarchive } def _bytes(self): return b''.join(( b'\xea/\x05\xb5', struct.pack('<I', (0 if self.uninstall is None or self.uninstall is False else 1) | (0 if self.archive is None or self.archive is False else 2) | (0 if self.unarchive is None or self.unarchive is False else 4)), b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.stickersets)),b''.join(x._bytes() for x in self.stickersets), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _uninstall = bool(flags & 1) _archive = bool(flags & 2) _unarchive = bool(flags & 4) reader.read_int() _stickersets = [] for _ in range(reader.read_int()): _x = reader.tgread_object() _stickersets.append(_x) return cls(stickersets=_stickersets, uninstall=_uninstall, archive=_archive, unarchive=_unarchive) class TranscribeAudioRequest(TLRequest): CONSTRUCTOR_ID = 0x269e9a49 SUBCLASS_OF_ID = 0x21b24936 def __init__(self, peer: 'TypeInputPeer', msg_id: int): """ :returns messages.TranscribedAudio: Instance of TranscribedAudio. """ self.peer = peer self.msg_id = msg_id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'TranscribeAudioRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'msg_id': self.msg_id } def _bytes(self): return b''.join(( b'I\x9a\x9e&', self.peer._bytes(), struct.pack('<i', self.msg_id), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _msg_id = reader.read_int() return cls(peer=_peer, msg_id=_msg_id) class TranslateTextRequest(TLRequest): CONSTRUCTOR_ID = 0x63183030 SUBCLASS_OF_ID = 0x24243e8 # noinspection PyShadowingBuiltins def __init__(self, to_lang: str, peer: Optional['TypeInputPeer']=None, id: Optional[List[int]]=None, text: Optional[List['TypeTextWithEntities']]=None): """ :returns messages.TranslatedText: Instance of TranslateResult. """ self.to_lang = to_lang self.peer = peer self.id = id self.text = text async def resolve(self, client, utils): if self.peer: self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'TranslateTextRequest', 'to_lang': self.to_lang, 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'id': [] if self.id is None else self.id[:], 'text': [] if self.text is None else [x.to_dict() if isinstance(x, TLObject) else x for x in self.text] } def _bytes(self): assert ((self.peer or self.peer is not None) and (self.id or self.id is not None)) or ((self.peer is None or self.peer is False) and (self.id is None or self.id is False)), 'peer, id parameters must all be False-y (like None) or all me True-y' return b''.join(( b'00\x18c', struct.pack('<I', (0 if self.peer is None or self.peer is False else 1) | (0 if self.id is None or self.id is False else 1) | (0 if self.text is None or self.text is False else 2)), b'' if self.peer is None or self.peer is False else (self.peer._bytes()), b'' if self.id is None or self.id is False else b''.join((b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.id)),b''.join(struct.pack('<i', x) for x in self.id))), b'' if self.text is None or self.text is False else b''.join((b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.text)),b''.join(x._bytes() for x in self.text))), self.serialize_bytes(self.to_lang), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() if flags & 1: _peer = reader.tgread_object() else: _peer = None if flags & 1: reader.read_int() _id = [] for _ in range(reader.read_int()): _x = reader.read_int() _id.append(_x) else: _id = None if flags & 2: reader.read_int() _text = [] for _ in range(reader.read_int()): _x = reader.tgread_object() _text.append(_x) else: _text = None _to_lang = reader.tgread_string() return cls(to_lang=_to_lang, peer=_peer, id=_id, text=_text) class UninstallStickerSetRequest(TLRequest): CONSTRUCTOR_ID = 0xf96e55de SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, stickerset: 'TypeInputStickerSet'): """ :returns Bool: This type has no constructors. """ self.stickerset = stickerset def to_dict(self): return { '_': 'UninstallStickerSetRequest', 'stickerset': self.stickerset.to_dict() if isinstance(self.stickerset, TLObject) else self.stickerset } def _bytes(self): return b''.join(( b'\xdeUn\xf9', self.stickerset._bytes(), )) @classmethod def from_reader(cls, reader): _stickerset = reader.tgread_object() return cls(stickerset=_stickerset) class UnpinAllMessagesRequest(TLRequest): CONSTRUCTOR_ID = 0xee22b9a8 SUBCLASS_OF_ID = 0x2c49c116 def __init__(self, peer: 'TypeInputPeer', top_msg_id: Optional[int]=None): """ :returns messages.AffectedHistory: Instance of AffectedHistory. """ self.peer = peer self.top_msg_id = top_msg_id async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'UnpinAllMessagesRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'top_msg_id': self.top_msg_id } def _bytes(self): return b''.join(( b'\xa8\xb9"\xee', struct.pack('<I', (0 if self.top_msg_id is None or self.top_msg_id is False else 1)), self.peer._bytes(), b'' if self.top_msg_id is None or self.top_msg_id is False else (struct.pack('<i', self.top_msg_id)), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _peer = reader.tgread_object() if flags & 1: _top_msg_id = reader.read_int() else: _top_msg_id = None return cls(peer=_peer, top_msg_id=_top_msg_id) class UpdateDialogFilterRequest(TLRequest): CONSTRUCTOR_ID = 0x1ad4a04a SUBCLASS_OF_ID = 0xf5b399ac # noinspection PyShadowingBuiltins def __init__(self, id: int, filter: Optional['TypeDialogFilter']=None): """ :returns Bool: This type has no constructors. """ self.id = id self.filter = filter def to_dict(self): return { '_': 'UpdateDialogFilterRequest', 'id': self.id, 'filter': self.filter.to_dict() if isinstance(self.filter, TLObject) else self.filter } def _bytes(self): return b''.join(( b'J\xa0\xd4\x1a', struct.pack('<I', (0 if self.filter is None or self.filter is False else 1)), struct.pack('<i', self.id), b'' if self.filter is None or self.filter is False else (self.filter._bytes()), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _id = reader.read_int() if flags & 1: _filter = reader.tgread_object() else: _filter = None return cls(id=_id, filter=_filter) class UpdateDialogFiltersOrderRequest(TLRequest): CONSTRUCTOR_ID = 0xc563c1e4 SUBCLASS_OF_ID = 0xf5b399ac def __init__(self, order: List[int]): """ :returns Bool: This type has no constructors. """ self.order = order def to_dict(self): return { '_': 'UpdateDialogFiltersOrderRequest', 'order': [] if self.order is None else self.order[:] } def _bytes(self): return b''.join(( b'\xe4\xc1c\xc5', b'\x15\xc4\xb5\x1c',struct.pack('<i', len(self.order)),b''.join(struct.pack('<i', x) for x in self.order), )) @classmethod def from_reader(cls, reader): reader.read_int() _order = [] for _ in range(reader.read_int()): _x = reader.read_int() _order.append(_x) return cls(order=_order) class UpdatePinnedMessageRequest(TLRequest): CONSTRUCTOR_ID = 0xd2aaf7ec SUBCLASS_OF_ID = 0x8af52aac # noinspection PyShadowingBuiltins def __init__(self, peer: 'TypeInputPeer', id: int, silent: Optional[bool]=None, unpin: Optional[bool]=None, pm_oneside: Optional[bool]=None): """ :returns Updates: Instance of either UpdatesTooLong, UpdateShortMessage, UpdateShortChatMessage, UpdateShort, UpdatesCombined, Updates, UpdateShortSentMessage. """ self.peer = peer self.id = id self.silent = silent self.unpin = unpin self.pm_oneside = pm_oneside async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) def to_dict(self): return { '_': 'UpdatePinnedMessageRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'id': self.id, 'silent': self.silent, 'unpin': self.unpin, 'pm_oneside': self.pm_oneside } def _bytes(self): return b''.join(( b'\xec\xf7\xaa\xd2', struct.pack('<I', (0 if self.silent is None or self.silent is False else 1) | (0 if self.unpin is None or self.unpin is False else 2) | (0 if self.pm_oneside is None or self.pm_oneside is False else 4)), self.peer._bytes(), struct.pack('<i', self.id), )) @classmethod def from_reader(cls, reader): flags = reader.read_int() _silent = bool(flags & 1) _unpin = bool(flags & 2) _pm_oneside = bool(flags & 4) _peer = reader.tgread_object() _id = reader.read_int() return cls(peer=_peer, id=_id, silent=_silent, unpin=_unpin, pm_oneside=_pm_oneside) class UploadEncryptedFileRequest(TLRequest): CONSTRUCTOR_ID = 0x5057c497 SUBCLASS_OF_ID = 0x842a67c0 def __init__(self, peer: 'TypeInputEncryptedChat', file: 'TypeInputEncryptedFile'): """ :returns EncryptedFile: Instance of either EncryptedFileEmpty, EncryptedFile. """ self.peer = peer self.file = file def to_dict(self): return { '_': 'UploadEncryptedFileRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'file': self.file.to_dict() if isinstance(self.file, TLObject) else self.file } def _bytes(self): return b''.join(( b'\x97\xc4WP', self.peer._bytes(), self.file._bytes(), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _file = reader.tgread_object() return cls(peer=_peer, file=_file) class UploadImportedMediaRequest(TLRequest): CONSTRUCTOR_ID = 0x2a862092 SUBCLASS_OF_ID = 0x476cbe32 def __init__(self, peer: 'TypeInputPeer', import_id: int, file_name: str, media: 'TypeInputMedia'): """ :returns MessageMedia: Instance of either MessageMediaEmpty, MessageMediaPhoto, MessageMediaGeo, MessageMediaContact, MessageMediaUnsupported, MessageMediaDocument, MessageMediaWebPage, MessageMediaVenue, MessageMediaGame, MessageMediaInvoice, MessageMediaGeoLive, MessageMediaPoll, MessageMediaDice. """ self.peer = peer self.import_id = import_id self.file_name = file_name self.media = media async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) self.media = utils.get_input_media(self.media) def to_dict(self): return { '_': 'UploadImportedMediaRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'import_id': self.import_id, 'file_name': self.file_name, 'media': self.media.to_dict() if isinstance(self.media, TLObject) else self.media } def _bytes(self): return b''.join(( b'\x92 \x86*', self.peer._bytes(), struct.pack('<q', self.import_id), self.serialize_bytes(self.file_name), self.media._bytes(), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _import_id = reader.read_long() _file_name = reader.tgread_string() _media = reader.tgread_object() return cls(peer=_peer, import_id=_import_id, file_name=_file_name, media=_media) class UploadMediaRequest(TLRequest): CONSTRUCTOR_ID = 0x519bc2b1 SUBCLASS_OF_ID = 0x476cbe32 def __init__(self, peer: 'TypeInputPeer', media: 'TypeInputMedia'): """ :returns MessageMedia: Instance of either MessageMediaEmpty, MessageMediaPhoto, MessageMediaGeo, MessageMediaContact, MessageMediaUnsupported, MessageMediaDocument, MessageMediaWebPage, MessageMediaVenue, MessageMediaGame, MessageMediaInvoice, MessageMediaGeoLive, MessageMediaPoll, MessageMediaDice. """ self.peer = peer self.media = media async def resolve(self, client, utils): self.peer = utils.get_input_peer(await client.get_input_entity(self.peer)) self.media = utils.get_input_media(self.media) def to_dict(self): return { '_': 'UploadMediaRequest', 'peer': self.peer.to_dict() if isinstance(self.peer, TLObject) else self.peer, 'media': self.media.to_dict() if isinstance(self.media, TLObject) else self.media } def _bytes(self): return b''.join(( b'\xb1\xc2\x9bQ', self.peer._bytes(), self.media._bytes(), )) @classmethod def from_reader(cls, reader): _peer = reader.tgread_object() _media = reader.tgread_object() return cls(peer=_peer, media=_media)
PypiClean
/Mathics_Django-6.0.0-py3-none-any.whl/mathics_django/web/media/js/mathjax/jax/output/HTML-CSS/fonts/Gyre-Termes/Marks/Regular/Main.js
MathJax.OutputJax["HTML-CSS"].FONTDATA.FONTS.GyreTermesMathJax_Marks={directory:"Marks/Regular",family:"GyreTermesMathJax_Marks",testString:"\u00A0\u02DB\u02DD\u0305\u0309\u030F\u0311\u0323\u0326\u032C\u032D\u032E\u032F\u0330\u0331",32:[0,0,250,0,0],160:[0,0,250,0,0],731:[17,245,333,81,261],733:[676,-505,333,37,427],773:[632,-588,0,-416,-83],777:[704,-517,0,-348,-151],783:[711,-540,0,-510,-120],785:[692,-567,0,-425,-75],803:[-89,191,0,-301,-199],806:[-38,281,0,-319,-180],812:[-70,204,0,-421,-79],813:[-80,214,0,-421,-79],814:[-70,195,0,-425,-75],815:[-88,213,0,-425,-75],816:[-88,197,0,-417,-83],817:[-113,167,0,-405,-94],818:[-70,114,0,-416,-83],819:[-70,228,0,-416,-83],831:[746,-588,0,-416,-83],8192:[0,0,500,0,0],8193:[0,0,1000,0,0],8199:[0,0,500,0,0],8200:[0,0,250,0,0],8203:[0,0,0,0,0],8204:[0,0,0,0,0],8205:[0,0,0,0,0],8208:[257,-194,333,39,285],8210:[357,-305,660,80,580],8213:[276,-224,1160,80,1080],8215:[-70,228,493,80,413],8218:[102,141,333,79,218],8222:[102,141,444,45,416],8226:[400,-100,460,80,380],8239:[0,0,200,0,0],8240:[676,13,1000,14,986],8241:[676,13,1320,14,1306],8246:[780,-450,521,60,461],8247:[780,-450,721,60,661],8249:[411,-33,333,57,278],8250:[411,-33,333,45,266],8251:[514,14,564,18,546],8253:[736,8,444,68,414],8274:[662,0,500,28,472],8287:[0,0,222,0,0],8288:[0,0,0,0,0],8289:[702,202,1008,52,956],8290:[0,0,0,0,0],8291:[0,0,0,0,0],8292:[0,0,0,0,0],8400:[710,-600,0,-438,-62],8401:[710,-600,0,-438,-62],8402:[650,150,0,-272,-228],8403:[500,0,0,-276,-224],8404:[768,-599,0,-452,-48],8405:[768,-599,0,-452,-48],8406:[710,-534,0,-443,-57],8408:[400,-100,0,-400,-100],8411:[660,-560,0,-500,0],8412:[660,-560,0,-600,100],8413:[668,168,0,-668,168],8414:[650,150,0,-650,150],8415:[872,372,0,-872,372],8417:[710,-534,0,-479,-21],8420:[735,209,0,-795,295],8421:[650,150,0,-403,-97],8422:[650,150,0,-344,-156],8424:[-70,170,0,-500,0],8425:[726,-548,0,-438,-63],8426:[430,-70,0,-595,95],8427:[650,150,0,-479,-21],8428:[-150,260,0,-438,-62],8429:[-150,260,0,-438,-62],8430:[-84,260,0,-443,-57],8431:[-84,260,0,-443,-57],8432:[747,-509,0,-356,-143],11800:[503,241,444,30,376],12310:[668,168,430,80,350],12311:[668,168,430,80,350]};MathJax.Callback.Queue(["initFont",MathJax.OutputJax["HTML-CSS"],"GyreTermesMathJax_Marks"],["loadComplete",MathJax.Ajax,MathJax.OutputJax["HTML-CSS"].fontDir+"/Marks/Regular/Main.js"]);
PypiClean
/BCPy2000-1.6.tar.gz/BCPy2000-1.6/src/SigTools/LearningTools.py
__all__ = [ 'binomial', 'seqste', 'all_pairs', 'one_versus_rest', 'infer_classes', 'logistic', 'invlogistic', 'cg', 'invcg', 'dprime', 'running_mean', 'running_cov', 'svd', 'lda', 'csp', 'csp_itfe', 'confuse', 'balanced_loss', 'class_loss', 'eeop', 'linkern', 'sqdist', 'rbfkern', 'guesswidth', 'kview', 'predictor', 'klr2class', 'lda2class', 'demodata', 'plotopt', 'foldguide', 'experiment', 'overlapping', 'spcov', 'shrinkcov', 'spfilt', 'symwhiten', 'symwhitenkern', 'stfac', 'stfac_filters_and_patterns', 'correlate', 'correlation_pvalue', ] import numpy import copy from .NumTools import asmatrix, mad, loadmat, savemat, project, isequal from functools import reduce __all__ += ['asmatrix', 'mad', 'loadmat', 'savemat', 'project', 'isequal'] from .NumTools import summarize, sdict, reportstruct, sstruct __all__ += ['summarize', 'sdict', 'reportstruct', 'sstruct', ] def binomial(x, axis=None): """ Given a sequence or array of booleans <x>, Return a dict containing 'mean': proportion of True values, 'ste': standard error of the mean, 'n': number of observations, These dicts can be combined, to provide exact incremental standard error estimates, using seqste() """### x = numpy.asarray(x, dtype=numpy.float64) if axis == None: n = x.size else: n = x.shape[axis] m = x.mean(axis=axis) v = (m * (1-m))/(n-1) e = v ** 0.5 return {'mean':m,'ste':e,'n':int(n)} def test_seqste(p=0.9, n=184): x = numpy.random.rand(n) < p b = binomial(x) n = int(b['n']/3) b1 = binomial(x[:n]) b2 = binomial(x[n:n*2]) b3 = binomial(x[n*2:]) print(b, "(ground truth)") print(seqste(b1,b2,b3)) print(seqste(b1,b3,b2)) print(seqste(b2,b1,b3)) print(seqste(b2,b3,b1)) print(seqste(b3,b1,b2)) print(seqste(b3,b2,b1)) def seqste(d1, *more): """ d1 and d2 both dicts with entries 'mean', 'ste' and 'n'. Return a similar dict with a combined estimate of the mean and standard-error-of-mean. Baker, R.W.R & Nissim, J.A. (1963): Expressions for Combining Standard Errors of Two Groups and for Sequential Standard Error Nature 198, 1020; doi:10.1038/1981020a0 http://www.nature.com/nature/journal/v198/n4884/abs/1981020a0.html """### if len(more) == 0: return d1 d2 = more[0] keys = ['mean','ste','n'] if sorted(d1.keys()) != sorted(keys) or sorted(d2.keys()) != sorted(keys): raise ValueError('data inputs should be dicts with fields %s' % ','.join(keys)) def conv(x): if isinstance(x, numpy.ndarray): x = numpy.asarray(x, dtype=numpy.float64) if isinstance(x, (int,bool)): x = float(x) return x m1,e1,n1 = [conv(d1[k]) for k in keys] m2,e2,n2 = [conv(d2[k]) for k in keys] n3 = n1 + n2 v3 = n1*(n1-1)*e1**2 + n2*(n2-1)*e2**2 + n1*n2*(m1-m2)**2/n3 v3 /= n3 * (n3-1) e3 = v3 ** 0.5 m3 = (m1*n1 + m2*n2) / n3 result = {'mean':m3,'ste':e3,'n':int(n3)} return seqste(result, *more[1:]) def all_pairs(classes): """ for neg,pos in all_pairs(5): print neg,"versus",pos 1 versus 2 1 versus 3 2 versus 3 1 versus 4 2 versus 4 3 versus 4 1 versus 5 2 versus 5 3 versus 5 4 versus 5 You get the idea. The input may alternatively be a sequence of class identifiers. """### if isinstance(classes, (float,int)): classes = list(range(1,int(classes)+1)) classes = sorted(tuple(set(classes))) pairs = [] for x in range(len(classes)): for y in range(x): pairs.append((classes[y], classes[x])) return tuple(pairs) def one_versus_rest(classes): """ for neg,pos in one_versus_rest(5): print neg,"versus",pos (2, 3, 4, 5) versus 1 (1, 3, 4, 5) versus 2 (1, 2, 4, 5) versus 3 (1, 2, 3, 5) versus 4 (1, 2, 3, 4) versus 5 You get the idea. The convention is for the "rest" to come out first (to be labelled as -1 in the binary sub-problem) and the "one" to come out second (to be labelled as +1). The input may alternatively be a sequence of class identifiers. """### if isinstance(classes, (float,int)): classes = list(range(1,int(classes)+1)) classes = set(classes) standardize = lambda x: tuple(sorted(tuple(x))) # because python sorts set((-1,1)) the wrong way round for some inexplicable reason if len(classes) == 2: return (standardize(classes),) rest = lambda x: standardize(classes.difference((x,))) pairs = [(rest(one),one) for one in standardize(classes)] return tuple(pairs) def infer_classes(cc, types=None): """ classes,data = infer_classes(data) If <data> is a 2-element sequence, assign the classes (-1, +1). Otherwise, if <data> is an n-element sequence, return the classes 1 through n. If data is a dictionary, the classes will be inferred from the keys, and the classes and data delivered in a standardized order. If all the keys are scalar, they will simply be returned sorted in ascending order. If any are sequences, then all the keys will be made into sequences, sorted within themselves and then delivered in an order that is sorted first by decreasing length, then by value. So, for example, the input {3:'one', (2,1): 'rest'} will yield classes=( (1,2) , (3,) ) and data=( 'rest' , 'one' ). The sorting-by-decreasing-length ensures that, in a one-versus-rest problem, the "rest" will always come out first (to be mapped to -1) and the "one" will come out second (to be mapped to +1). """### if len(cc) == 1 and isinstance(cc[0], (list,tuple,set,dict)): cc = cc[0] if len(cc) == 2: classes = (-1, +1) else: classes = tuple(range(1,len(cc)+1)) isseq = lambda x: isinstance(x,(tuple,list,set)) tuplify = lambda x: isseq(x) and tuple(x) or (x,) if isinstance(cc, dict): k = list(cc.keys()) v = list(cc.values()) if True in list(map(isseq, k)): k = [tuple(set(tuplify(x))) for x in k] keylencmp = lambda x,y: cmp( (-len(x[0]),)+x[0],(-len(y[0]),)+y[0] ) classes, cc = list(zip(*sorted(zip(k,v),cmp=keylencmp))) else: classes, cc = list(zip(*sorted(cc.items()))) if isinstance(types, list): types = tuple(types) if types != None and False in [isinstance(c,types) for c in cc]: raise TypeError('inputs must be of one of the following types: '+repr(types)) return classes, cc def logistic(x, deriv=0): f = 1.0 / (1.0 + numpy.exp(-x)) if deriv == 0: return f elif deriv == 1: return f * (1.0 - f) else: raise ValueError("derivative %s not defined" % str(deriv)) def invlogistic(p): return -numpy.log(1.0/p - 1.0) def cg(x, deriv=0): import scipy.special if deriv == 0: return 0.5 * scipy.special.erfc(-x / 2.0 ** 0.5) elif deriv == 1: return numpy.exp(-0.5 * x ** 2.0) * (numpy.pi * 2) ** -0.5 else: raise ValueError("derivative %s not defined" % str(deriv)) def invcg(p): import scipy.special return 2.0 ** 0.5 * scipy.special.erfinv(2.0 * p - 1.0) def dprime(*cc, **kwargs): """ Compute the dprime value (signed square root of the Fisher score) between two running_mean or running_cov objects which correspond to two different classes. """### if len(cc): if len(kwargs): raise TypeError("supply either all-unnamed args or all-named") classes,cc = infer_classes(cc, [running_mean,running_cov]) if len(cc) != 2: raise TypeError('expected two inputs') return (cc[1].m - cc[0].m) / numpy.sqrt(cc[1].v + cc[0].v) if len(kwargs): if len(cc): raise TypeError("supply either all-unnamed args or all-named") x = kwargs.pop('x') y = kwargs.pop('y') exemplar_dim = kwargs.pop('exemplar_dim', 0) if len(kwargs): raise TypeError("unexpected keyword argument %s" % list(kwargs.keys())[0]) sub = [slice(None) for d in x.shape] sub[exemplar_dim] = [i for i,yi in enumerate(y.flat) if yi > 0.0] xsub = x[sub] mpos = xsub.mean(axis=exemplar_dim) vpos = xsub.var(axis=exemplar_dim) sub[exemplar_dim] = [i for i,yi in enumerate(y.flat) if yi < 0.0] xsub = x[sub] mneg = xsub.mean(axis=exemplar_dim) vneg = xsub.var(axis=exemplar_dim) return (mpos - mneg) / numpy.sqrt(vpos + vneg) class running_mean(object): """ An object that keeps track of the mean and variance of a series of values x presented online. Each x may be a scalar value or a numpy.array. Exemplars are added to object r by the += operator: r = running_mean() r += x The object r has the following properties: r.n : number of samples so far r.m : mean of x so far (same shape as incoming x) r.v : variance of x so far, normalized by r.n (same shape as incoming x) r.v_unbiased : a virtual attribute which returns the variance normalized by (r.n - 1.0) instead of by r.n If r is created with fullcov=True, then elements x are flattened as they are added (so, for one thing, the mean and variance will be flat arrays with length equal to the number of elements of x) and a full covariance matrix is also computed, and is accessible using the properties r.C and r.C_unbiased (analogous to r.v and r.v_unbiased). If r.persistence=1.0, then all previous samples are "remembered" and each incoming exemplar counts as r.increment number of new samples (the increment may be measured in any units you like - seconds, for example). If r.persistence < 1.0, then an exponential forgetting factor of 1.0-r.persistence is used, and although self.increment is added to s.n, s.n does not fully reflect the number of degrees of freedom in the estimation, which is roughly equal to 1/(1.0-r.persistence) The reset() method zeroes everything. """### def __init__(self, persistence=1.0, increment=1.0, fullcov=False): """ The persistence and increment arguments initialize the self.persistence and self.increment attributes. """### self.increment = float(increment) self.persistence = float(persistence) self.fullcov = fullcov self.reset() def reset(self): self.sumx2 = 0.0 self.sumx1 = 0.0 self.denom = 0.0 self.n = 0.0 def update(self, x, increment=None): if increment == None: increment = self.increment persistence = self.persistence if self.n == 0.0: persistence = 0.0 if self.fullcov: x1 = numpy.asarray(x).flatten() xM = numpy.asmatrix(x1) x2 = xM.H * xM else: x1 = x x2 = numpy.multiply(x, numpy.conj(x)) self.sumx2 = persistence * self.sumx2 + x2 self.sumx1 = persistence * self.sumx1 + x1 self.denom = persistence * self.denom + increment self.n += increment def get_mean(self): if self.denom == 0.0: return numpy.nan return self.sumx1 / self.denom def get_variance_biased(self, return_fullcov=False): if self.denom == 0.0: return numpy.nan if return_fullcov and not self.fullcov: raise ValueError("full covariance matrices are not available from this object") if self.fullcov and not return_fullcov: mean_xsquared = self.sumx2.diagonal().A.flatten() / self.denom else: mean_xsquared = self.sumx2 / self.denom meanx = self.sumx1 / self.denom if self.fullcov and return_fullcov: meanx = numpy.asmatrix(meanx) squared_meanx = meanx.H * meanx else: squared_meanx = numpy.multiply(meanx, numpy.conj(meanx)) return mean_xsquared - squared_meanx def get_variance_unbiased(self, return_fullcov=False): if self.denom <= self.increment: return numpy.nan return self.get_variance_biased(return_fullcov=return_fullcov) * (self.denom / (self.denom - self.increment)) @apply def m(): def fget(self): return self.get_mean() return property(fget=fget, doc="running mean estimate") @apply def v(): def fget(self): return self.get_variance_biased(return_fullcov=False) return property(fget=fget, doc="running variance estimate normalized by n (see also v_unbiased)") @apply def v_unbiased(): def fget(self): return self.get_variance_unbiased(return_fullcov=False) return property(fget=fget, doc="running variance estimate normalized by n-1 (see also v)") @apply def C(): def fget(self): return self.get_variance_biased(return_fullcov=True) return property(fget=fget, doc="running covariance estimate normalized by n (see also C_unbiased)") @apply def C_unbiased(): def fget(self): return self.get_variance_unbiased(return_fullcov=True) return property(fget=fget, doc="running covariance estimate normalized by n-1 (see also C)") def __iadd__(self, x): self.update(x) return self def run(self, x, axis=-1, reset=False): """ Test the running_mean object by adding <x> one sample at a time, where samples are slices concatenated along the specified <axis>. If <reset> is passed as True, the object is reset first. running_mean().run(x, axis=0).m # should be the same as numpy.mean(x, axis=0) running_mean().run(x, axis=0).v # should be the same as numpy.var(x, axis=0) running_mean(fullcov=True).run(x, axis=0).C_unbiased # should be the same as numpy.cov(x, axis=0) """### if reset: self.reset() x = numpy.array(x, copy=False) x = x.view() if axis < 0: axis += len(x.shape) x.shape = tuple(list(x.shape) + [1]*(axis+1-len(x.shape))) sub = [slice(None)] * len(x.shape) for i in range(x.shape[axis]): sub[axis] = i; self += x[sub] return self def plot(self, *pargs, **kwargs): """ Works only for an object that has accumulated information about two-dimensional inputs. Plots an ellipse centred on the computed mean, indicating the shape of the covariance of the distribution of x. The size of the ellipse is specified by optional keyword argument nstd=2.0 (any other arguments are passed through to plot). """### if not self.fullcov: raise ValueError("plot method is only available for objects that compute full covariance matrices (construct with fullcov=True)") if numpy.asarray(self.m).size != 2: raise ValueError("plot method is only available for objects that have accumulated two-dimensional data") nstd = kwargs.pop('nstd', 2.0) r = numpy.linspace(0, 2*numpy.pi, 100) x = numpy.asmatrix(self.m).A + nstd*(svd(self.C).sqrtm * numpy.matrix([numpy.cos(r), numpy.sin(r)])).A from . import Plotting; pylab = Plotting.load_pylab() pylab.plot(x[0],x[1],*pargs,**kwargs) pylab.draw() class running_cov(running_mean): """ A class for computing means, variances and covariances online, optionally with a decay factor. It is a subclass of running_mean for which the fullcov attribute is always initialized to True. It is included under the separate name running_cov purely for backward compatibility. See running_mean for more details. """### def __init__(self, persistence=1.0, increment=1.0): running_mean.__init__(self, persistence=persistence, increment=increment, fullcov=True) class ema(running_mean): def reset(self): self.sumx1 = 0.0 self.sumx2 = 0.0 self.n = 0.0 self.denom = 1.0 def update(self, x, increment=None): if increment == None: increment = self.increment persistence = self.persistence if persistence == 1.0: persistence = self.n / (self.n + increment) if self.n == 0.0: persistence = 0.0 if self.fullcov: x1 = numpy.asarray(x).flatten() xM = numpy.asmatrix(x1) x2 = xM.H * xM else: x1 = x x2 = numpy.multiply(x, numpy.conj(x)) self.sumx1 = persistence * self.sumx1 + (1.0 - persistence) * x1 self.sumx2 = persistence * self.sumx2 + (1.0 - persistence) * x2 self.n += increment class svd(object): """ d = svd(A) where A is m-by-n The following are computed immediately, using the singular value decomposition A = d.U * numpy.diag(d.s) * d.V.H d.s: the singular values of A in decreasing order d.rank: estimated rank r of A, = #{singular values > tol}, where tol defaults to max(m,n)*eps*max(d.s) d.cond: estimated condition number of A, = max(d.s)/min(d.s) d.U: m by r orthonormal basis for the column space of A d.leftnull: m by min(m,n)-r the discarded columns of U d.V: n by r orthonormal basis for the row space of A d.null: n by min(m,n)-r the discarded columns of V d.original: a copy of A, unless keepcopy is set to False The following can then be computed cheaply. They are computed on demand the first time they are requested, and then cached: d.pinv: pseudo-inverse of A d.sqrtm: X such that X*X.H = (U*S*U.H) and X.H*X = (V*S*V.H) (for symmetric A, therefore, X is the matrix-square-root) d.isqrtm: the inverse of d.sqrtm, when A is invertible: i.e. X such that X*X.H = (U*S*U.H).I and X.H*X = (V*S*V.H).I d.reconstruction: reconstruction of A, without using the discarded columns of d.U and d.V """### def __init__(self, A, tol=None, keepcopy=True): A = asmatrix(A, copy=keepcopy) (U, s, Vh) = numpy.linalg.svd(A, full_matrices=False, compute_uv=True) if tol==None: tol = max(A.shape) * numpy.finfo(A.dtype).eps * max(s) r = numpy.sum(s > tol) if keepcopy: self.original = A self.rank = r smin,smax = min(s),max(s) if smin: self.cond = smax/smin else: self.cond = numpy.inf self.U = U[:,:r] # columns of U are an orthonormal basis for the column space of A self.s = s[:r] self.V = Vh[:r,:].H # columns of V are an orthonormal basis for the row space of A self.null = Vh[r:,:].H self.leftnull = U[:,r:] def __getattr__(self, key): if key == 'pinv': self.__dict__[key] = self.V * numpy.diag(1.0/self.s) * self.U.H if key == 'sqrtm': self.__dict__[key] = self.U * numpy.diag(self.s**0.5) * self.V.H # X*X.H = (U*S*U.H), X.H*X = (V*S*V.H) if key == 'isqrtm': self.__dict__[key] = self.U * numpy.diag(self.s**-0.5) * self.V.H # X*X.H = (U*S*U.H).I, X.H*X = (V*S*V.H).I for invertible matrices if key == 'reconstruction': self.__dict__[key] = self.U * numpy.diag(self.s) * self.V.H if not hasattr(self, key): raise AttributeError(key) return self.__dict__.get(key) def _getAttributeNames(self): return ['pinv', 'sqrtm', 'isqrtm', 'reconstruction'] def __repr__(self): s = "<%s.%s instance at 0x%08X>" % (self.__class__.__module__,self.__class__.__name__,id(self)) s = '\n'.join([s] + [" %s: % 3d by % 3d" % (tuple([key]+list(getattr(self,key).shape))) for key in ['U', 'V']]) return s class LDAError(Exception): pass class lda(object): """ Fisher's linear discriminant analysis. Example: f = lda(ridge=0.1) f.solve(rneg, rpos) # rneg and rpos are running_cov objects # corresponding to the negative and positive # classes: their .m and .C contain the # features' means and covariances respectively. rneg += xneg rpos += xpos f.rebias(rneg, rpos) # don't re-solve, but re-bias according to the # updated estimates. f.predict(xtest) # xtest is a sequence of features for a single # exemplar, or a features-by-exemplars array. f.w contains the weights f.b contains the bias """### def __init__(self, ridge=0.0): """ Initialize the object's self.ridge attribute, indicating the amount of L2 regularization. The self.ridge parameter is scaled by the mean diagonal element of the between-class covariance matrix, then added to the diagonal. """### self.ridge = ridge def solve(self, *cc): """ f.solve(rneg, rpos) # rneg and rpos are running_cov objects f.solve(d) # the running_cov objects are in a sequence # or dict d (infer_classes is called). """### self.classes,cc = infer_classes(cc, [running_cov]) if len(cc) < 2: raise LDAError('need at least two classes') if len(cc) > 2: raise LDAError('multiclass LDA not supported') C = sum([c.C for c in cc]) # say that fast three times if self.ridge: C += numpy.eye(C.shape[0]) * self.ridge * C.diagonal().mean() self.w = numpy.linalg.solve(C, cc[1].m - cc[0].m) self.b = 0.0 self.rebias(cc) return self def rebias(self, *cc): """ f.rebias(rneg, rpos) # rneg and rpos are running_cov objects f.rebias(d) # the running_cov objects are in a sequence # or dict d (infer_classes is called). """### classes,cc = infer_classes(cc, [running_cov]) m = sum([c.m for c in cc]) / float(len(cc)) self.b = self.b - self.predict(m) def predict(self, x): """ Input is a sequence of features for a single exemplar, or a features-by-exemplars array. Output is a real-valued decision value per exemplar. """### return asmatrix(self.w).H* asmatrix(x) + self.b def plot(self, *cc): classes,cc = infer_classes(cc, [running_cov]) m = sum([c.m for c in cc]) / float(len(cc)) cc[0].plot('b-') cc[1].plot('r-') db = [-self.w[1], self.w[0]] from . import Plotting; pylab = Plotting.load_pylab() xl = list(pylab.gca().get_xlim()) yl = list(pylab.gca().get_ylim()) pylab.plot([m[0]-2*db[0],m[0]+2*db[0]], [m[1]-2*db[1],m[1]+2*db[1]], 'k-') pylab.gca().set_xlim(xl) pylab.gca().set_ylim(yl) class ldatest(object): def __init__(self,x1=None,x2=None,ridge=0.0): if x1==None: x1 = numpy.random.randn(2,1)+(numpy.matrix(numpy.random.rand(2,2))*numpy.matrix(numpy.random.randn(2,1000))).A if x2==None: x2 = numpy.random.randn(2,1)+(numpy.matrix(numpy.random.rand(2,2))*numpy.matrix(numpy.random.randn(2,1000))).A self.x1 = x1 self.x2 = x2 self.cc = [running_cov().run(x,1) for x in [self.x1,self.x2]] self.s = lda(ridge=ridge).solve(self.cc) def plot(self): from . import Plotting; pylab = Plotting.load_pylab() pylab.clf() pylab.plot(self.x1[0],self.x1[1],'bx') pylab.plot(self.x2[0],self.x2[1],'r+') self.s.plot(self.cc) ax = pylab.gca(); xl,yl = ax.get_xlim(),ax.get_ylim() x = numpy.linspace(xl[0],xl[1],10) y = numpy.linspace(yl[0],yl[1],10) xx,yy=numpy.meshgrid(x,y) xy = numpy.concatenate((xx.reshape((1,xx.size)),yy.reshape((1,yy.size))),axis=0) z = self.s.predict(xy).reshape(xx.shape) z = logistic(z) z = numpy.array(z, order='C', dtype=numpy.float64, copy=True) pylab.contour(x,y,z,numpy.arange(0.1,1.0,0.1)) pylab.draw() class CSPError(Exception): pass class csp(object): def __init__(self, classcov, globalcov=None, whichclass=1, normalize=False): """ Implements the CSP algorithm of Koles (1991). <classcov> is the class covariance matrix. Alternatively, it is a sequence or dict of class-covariance matrices, in which case the class labels are inferred using infer_classes(), and the matrix corresponding to <whichclass> is used. <globalcov> is the global covariance. If omitted, then classcov must be a sequence or dict containing information about all relevant classes: then <globalcov> is computed as an equal weighting between the class of interest <whichclass>, and the mean of other classes. <normalize> is a boolean option specifying whether to normalize covariance matrices by their trace before use. The output object c has the following attributes: c.classes : the sequence of inferred classes c.whichclass : the class of interest c.opts : dict containing options (normalize) c.classcov : the class covariance matrix of interest (after normalization, if any) c.globalcov : the global covariance matrix used (after normalization, if any) c.whitening : symmetric whitening or spherizing matrix c.rotation : rotation directions (one in each column) c.filters : spatial filters (one in each column) c.patterns : spatial patterns (one in each column) c.eigenvalues : eigenvalue corresponding to each column The best() method is useful for selecting based on eigenvalue. """### if not isinstance(classcov, (list,tuple,dict)): classcov = {whichclass:classcov} self.classes,classcov = infer_classes(classcov) if not whichclass in self.classes: raise CSPError('no information about class'+str(whichclass)) for i in range(len(classcov)): if isinstance(classcov[i],running_mean): classcov[i] = classcov[i].m classcov[i] = numpy.matrix(classcov[i]) # copies, and ensures matrixhood if normalize: classcov[i] /= classcov[i].trace() d = dict(list(zip(self.classes,classcov))) if len(self.classes)==1: self.classes = (-1,+1) self.whichclass = whichclass self.opts = {'normalize':normalize} self.classcov = d.pop(whichclass) if globalcov==None: if len(d) == 0: raise CSPError('too few matrices') globalcov = 0.5 * self.classcov + 0.5 * sum(d.values())/len(d) # (equal weighting of whichclass and the rest) if isinstance(globalcov,running_mean): globalcov = globalcov.m globalcov = numpy.matrix(globalcov) # copies, and ensures matrixhood if normalize: globalcov /= globalcov.trace() self.globalcov = globalcov s1 = svd(self.globalcov) self.whitening = s1.isqrtm m = self.whitening.H * self.classcov/2.0 * self.whitening s2 = svd(m) self.rotation = s2.U self.filters = self.whitening * self.rotation self.patterns = self.globalcov * self.filters for j in range(self.patterns.shape[1]): pattern = self.patterns[:,j] if numpy.max(numpy.abs(pattern)) == -numpy.min(pattern): pattern *= -1.0 self.filters[:,j] *= -1.0 self.rotation[:,j] *= -1.0 self.eigenvalues = s2.s def best(self, n, m=None): """ c.best(n) or c.best([n]) returns a list of indices to the best n eigenvalues in the sense of absolute deviation from 0.5. c.best(n, m) or c.best([n,m]) returns a list of indices to the best n eigenvalues from the high end of the spectrum and the best m eigenvalues from the low end. Example: ind = c.best(3, 3) filt = c.filters[:, ind] pat = c.patterns[:, ind] eig = c.eigenvalues[:, ind] """### n = numpy.array(n,copy=False).ravel().tolist() if len(n) == 1 and m != None: n += numpy.array(m,copy=False).ravel().tolist() if len(n) == 1: n += [0] d = numpy.abs(self.eigenvalues - 0.5) elif len(n) == 2: d = self.eigenvalues else: raise CSPError('expected either 1 or 2 numbers') pp = [(d[i], i) for i in range(len(d))] pp = [p[1] for p in sorted(pp, reverse=True)] out = pp[:n[0]] if n[1]: out += pp[-n[1]:] return out def csp_itfe(filters, classcov=None, globalcov=None, classprob=None): """ For a set of spatial <filters> expressed one-per-column, a dict or sequence of <classcov> objects ( as supplied to csp() ) return the Information-Theoretic Feature Extraction criterion for CSP defined in: Grosse-Wentrup and Buss (2008) IEEE Transactions on Biomedical Engineering 55(8), 1991-2000 Optionally, a list/numpy-array/dict of class probabilities may be supplied in <classprob>. """### if isinstance(filters, csp): c = filters filters = c.filters if classcov == None: classcov = (c.classcov,) if globalcov == None: globalcov = c.globalcov if classcov==None: raise CSPError('class covariance matrices not supplied') if isinstance(globalcov, running_cov): globalcov = globalcov.C classes,classcov = infer_classes(classcov, [numpy.ndarray, running_cov]) M = len(classes) if M == 1: if globalcov==None: raise CSPError('not enough covariance matrices') classcov = classcov[0] if isinstance(classcov, running_cov): classcov = classcov.C classcov = (2.0*globalcov-classcov, classcov) classes = (-1,1) M = 2 #import IPython;IPython.Debugger.Tracer()() if classprob == None: classprob = numpy.asmatrix(numpy.ones((M,1)))/M else: if isinstance(classprob, numpy.ndarray): classprob = classprob.flatten().tolist() cl,clp = infer_classes(classprob) if len(cl) != len(classes) or (isinstance(classprob,dict) and cl != classes): raise CSPError('class labels are inconsistent between classcov and classprob inputs') classprob = numpy.matrix(clp).T W = numpy.asmatrix(filters) nfilt = W.shape[1] proj = numpy.asmatrix(numpy.zeros((nfilt,M))) default_globalcov = 0.0 classcov = list(classcov) for j in range(M): if isinstance(classcov[j], running_cov): classcov[j] = classcov[j].C classcov[j] = numpy.matrix(classcov[j]) C = classcov[j] / float(M) default_globalcov = default_globalcov + C proj[:, j].flat = numpy.diag(W.H * C * W) if globalcov == None: globalcov = default_globalcov nrm = numpy.diag(W.H * globalcov * W) nrm.shape += (1,) proj = proj / nrm v = -numpy.log(numpy.power(proj, 0.5))*classprob - numpy.power((numpy.power(proj,2.0)-1.0)*classprob, 2.0) * 3.0/16.0 return v def linkern(x, x2=None, exemplar_dim=0): """ Computes a linear kernel between data points x (or if x2 supplied, between x on the rows and x2 on columns). x (and x2) are packed data arrays, such that one step along dimension <exemplar_dim> is a step from one datapoint or exemplar to the next. """### if x2 == None: x2 = x withself = (id(x2) == id(x)) if not isinstance(x, numpy.ndarray): x = numpy.asarray(x) if withself: x2 = x if not isinstance(x2, numpy.ndarray): x2 = numpy.asarray(x2) nd = max(exemplar_dim+1, len(x.shape), len(x2.shape)) if exemplar_dim < 0: exemplar_dim += nd ax = list(range(nd)) ax.remove(exemplar_dim) x = project(x, nd-1) x2 = project(x2, nd-1) return numpy.tensordot(x, x2, axes=(ax,ax)) def rbfkern(x, x2=None, exemplar_dim=0, invcov=None, sigma=1.0): """ Computes a Gaussian RBF kernel between data points x (or if x2 is supplied, between x on the rows and x2 on the columns). x (and x2) are packed data arrays, such that one step along dimension <exemplar_dim> is a step from one datapoint or exemplar to the next. The argument <invcov>, if any, is passed through to sqdist() for computing distances, and <sigma> is the length scale by which the result is divided. """### d2 = sqdist(x=x, x2=x2, exemplar_dim=exemplar_dim, invcov=invcov) d2 /= -2.0 * sigma ** 2.0 d2 = numpy.exp(d2) return d2 def guesswidth(x=None, y=None, dsq=None, exemplar_dim=0, invcov=None, norm=2, return_rbfkern=False): """ Based on data <x>, and optionally on labels <y>, guess the optimal length scale for an RBF kernel (and for return_rbfkern=True, return said kernel in addition to the estimated length scale). Options <exemplar_dim> and <invcov> are passed through to sqdist() in order to compute squared distances if you supply <x>. However, for efficiency reasons you may wish to precompute the squared distances, passing them in as <dsq> instead of <x>, in which case these options do nothing. More generally, you can base your width estimate on other norms besides the 2-norm distance, by setting <norm> to something other than 2. Then, instead of squared distances, you may pass in <dsq> your pre-computed matrix of dsq[i,j] = sum_over_k ( abs(x[i][k] - x[j][k]) ** norm ) where k indexes the features in each exemplar. In other words, the elements of dsq should be p-norms-raised-to-the-power-p. """### if dsq == None and x == None: raise ValueError("must supply either x or dsq") if dsq != None and x != None: raise ValueError("supply either x or dsq, but not both") if dsq == None: dsq = sqdist(x, exemplar_dim=exemplar_dim, invcov=invcov) if norm != 2: raise RuntimeError("currently, if you want to use norm values other than 2, you must precompute the matrix and pass it in as dsq") keep = numpy.logical_not(numpy.eye(dsq.shape[0], dtype=numpy.bool)) if y != None: for i,yi in enumerate(y): for j,yj in enumerate(y): keep[i,j] = isequal(yi,yj) a = dsq.flat[keep.flatten()] sigma = numpy.median(a) ** (1.0/norm) if return_rbfkern: if x == None: dsq = dsq.copy() # don't modify original if that was passed in dsq /= -norm * sigma ** norm rbfK = dsq = numpy.exp(dsq) return sigma, rbfK else: return sigma def sqdist(x, x2=None, exemplar_dim=0, invcov=None): """ Computes a matrix of squared Euclidean distances between data points x (or if x2 supplied, between x on the rows and x2 on columns). x (and x2) are packed data arrays, such that a step along dimension <exemplar_dim> is a step from one datapoint or exemplar to the next. If supplied, <invcov> should be a symmetric matrix. The distance is then computed in the space transformed by this matrix. If p and q are m-by-1 numpy.matrix representations of two data points, then the distance between them is computed as: (p-q).T * invcov * (p-q) If <invcov> is truly the inverse of the covariance matrix between the features of <x>, then the result of the function is the Mahalanobis distance. """### if x2 == None: x2 = x withself = (id(x2) == id(x)) if not isinstance(x, numpy.ndarray): x = numpy.asarray(x) if withself: x2 = x if not isinstance(x2, numpy.ndarray): x2 = numpy.asarray(x2) nd = max(exemplar_dim+1, len(x.shape), len(x2.shape)) if exemplar_dim < 0: exemplar_dim += nd ax = list(range(nd)) ax.remove(exemplar_dim) x = project(x, nd-1) x2 = project(x2, nd-1) if invcov == None: xmag = numpy.multiply(x, x) for dim in ax: xmag = numpy.expand_dims(xmag.sum(axis=dim), dim) if withself: x2mag = xmag.view() else: x2mag = numpy.multiply(x2, x2) for dim in ax: x2mag = numpy.expand_dims(x2mag.sum(axis=dim), dim) xmag.shape = (xmag.size,1) x2mag.shape = (1,x2mag.size) return xmag + x2mag - 2 * numpy.tensordot(x, x2, axes=(ax,ax)) else: A = numpy.asmatrix(invcov) if exemplar_dim == 0: p = x # project() has already made a view of x else: p = x.swapaxes(0, exemplar_dim) p.shape = (p.shape[0], p.size/p.shape[0]) p = numpy.asmatrix(p) pA = p * A pmag = numpy.multiply(p, pA).sum(axis=1) if withself: q, qA, qmag = p, pA, pmag.view() else: if exemplar_dim == 0: q = x2 # project() has already made a view of x2 else: q = x2.swapaxes(0, exemplar_dim) q.shape = (q.shape[0], q.size/q.shape[0]) q = numpy.asmatrix(q) qA = q * A qmag = numpy.multiply(q, qA).sum(axis=1) pmag.shape = (pmag.size, 1) qmag.shape = (1, qmag.size) return pmag + qmag - 2 * pA * q.T # NB: this assumes A is symmetric --- really it's -p * (A+A.T) * q.T def kview(K, y=None): from . import Plotting; pylab = Plotting.load_pylab() import matplotlib pylab.clf() K = numpy.asarray(K) if y == None: fdiff = [] else: if K.shape[1] != K.shape[0]: raise ValueError("K must be square to reorder by label") order = list(zip(*sorted([(yi,i) for i,yi in enumerate(y)])))[1] y = numpy.asarray(y)[order,:] K = K[order,:][:,order] fdiff = numpy.where(numpy.diff(y, axis=0))[0] + 0.5 Plotting.imagesc(K) for d in fdiff: pylab.plot(pylab.gca().get_xlim(), [d,d], linewidth=2, linestyle='--', color=(0.0,1.0,0.0), scalex=False, scaley=False) pylab.plot([d,d], pylab.gca().get_ylim(), linewidth=2, linestyle='--', color=(0.0,1.0,0.0), scalex=False, scaley=False) pylab.colorbar() pylab.draw() def confuse(true, predicted, labels=None, exemplar_dim=0): """ Returns a confusion matrix and a list of unique labels, based on paired lists of true and predicted labels. Output rows correspond to the possible true labels and columns correspond to the possible predicted labels. This is the ordering assumed in, for example, balanced_loss(). """### true = numpy.asarray(true) predicted = numpy.asarray(predicted) nd = max(exemplar_dim+1, len(true.shape), len(predicted.shape)) if exemplar_dim < 0: exemplar_dim += nd true = true.swapaxes(exemplar_dim, 0) predicted = predicted.swapaxes(exemplar_dim, 0) if len(true) != len(predicted): raise ValueError('mismatched numbers of true and predicted labels') def isequal(a,b): if isinstance(a, str) and isinstance(b, str): return a == b a = numpy.asarray(a) b = numpy.asarray(b) ndd = len(b.shape) - len(a.shape) if ndd > 0: a.shape += (1,) * ndd if ndd < 0: b.shape += (1,) * -ndd if a.shape != b.shape: return False return numpy.logical_or(a == b, numpy.logical_and(numpy.isnan(a), numpy.isnan(b))).all() def find(a, b, append=False): for i in range(len(b)): if isequal(a, b[i]): return i if append: b.append(a); return len(b)-1 else: return None n = len(true) c = {} found_labels = [] for i in range(n): tv,pv = true[i],predicted[i] ti = find(tv, found_labels, append=True) pi = find(pv, found_labels, append=True) key = (ti,pi) c[key] = c.get(key,0) + 1 if labels == None: labels = list(found_labels) try: labels.sort() except: pass else: labels = list(labels) for fi in found_labels: if find(fi, labels) == None: raise ValueError('inputs contain labels not listed in the <labels> argument') nclasses = len(labels) C = numpy.zeros((nclasses, nclasses), dtype=numpy.float64) for i in range(nclasses): ti = find(labels[i], found_labels, append=False) if ti == None: continue for j in range(nclasses): tj = find(labels[j], found_labels, append=False) if tj == None: continue C[i,j] = c.get((ti,tj), 0) return C,labels def balanced_loss(true=None, predicted=None, confusion_matrix=None): """ err, se = balanced_loss(true, predicted) err, se = balanced_loss(confusion_matrix=C) where C = confuse(true, predicted) A classification loss function. As in confuse(), each row of <true> or <predicted> is a label for one instance or data point. balanced_loss() is asymmetric with regard to its inputs: it is the mean of the misclassification rates on each of the classes (as per <true>). """### if confusion_matrix == None: predicted = numpy.asarray(predicted).flatten() if (predicted > numpy.floor(predicted)).any(): predicted = numpy.sign(predicted) confusion_matrix,labels = confuse(true=true, predicted=predicted) confusion_matrix = numpy.asarray(confusion_matrix, dtype=numpy.float64) hits = confusion_matrix.diagonal() totals = confusion_matrix.sum(axis=1) hits = hits[totals != 0] totals = totals[totals != 0] err = 1 - (hits /totals) ste = (err * (1 - err) / (totals-1)) ** 0.5 n = totals.min() # combine means and standard errors as if all classes had the same number of members as the smallest class # (for means, that's just a flat average of error rates across classes; for standard errors it's the most conservative way to do it) d = [{'mean':err[i], 'ste':ste[i], 'n':n} for i in range(len(totals))] d = seqste(*d) return d['mean'],d['ste'] def class_loss(true=None, predicted=None, confusion_matrix=None): """ err, se = class_loss(true, predicted) err, se = class_loss(confusion_matrix=C) where C = confuse(true, predicted) Actually class_loss() is symmetrical in its input arguments, but the order (true, predicted) is the convention established elsewhere, e.g. in balanced_loss() A classification loss function. As in confuse(), each row of <true> or <predicted> is a label for one instance or data point. """### if confusion_matrix == None: predicted = numpy.asarray(predicted).flatten() if (predicted > numpy.floor(predicted)).any(): predicted = numpy.sign(predicted) confusion_matrix,labels = confuse(true=true, predicted=predicted) confusion_matrix = numpy.asarray(confusion_matrix, dtype=numpy.float64) n = confusion_matrix.sum() err = 1 - confusion_matrix.trace() / n se = (err * (1 - err) / (n-1)) ** 0.5 return err,se def eeop(f,y): """ A one-dimensional classifier: given values f and binary labels y (+/- 1), return the equal-error operating point. """### e = { -1:numpy.zeros((len(f),), dtype=numpy.float64), +1:numpy.zeros((len(f),), dtype=numpy.float64), } y = numpy.sign(y) z = sorted(zip(f,y)) for i,(fi,yi) in enumerate(z): if yi == 0: continue if i: e[yi][i] = e[yi][i-1] + 1 e[-yi][i] = e[-yi][i-1] else: e[yi][i] = 1 for k in e: e[k] /= e[k][-1] e[+1] = 1 - e[+1] de = abs(e[+1] - e[-1]) de = de[:-1] mde = min(de) ind = numpy.where(de==mde)[0] #import Plotting; pylab = Plotting.load_pylab(); pylab.subplot(1,2,1); Plotting.plot(z); Plotting.plot(numpy.c_[e[-1],e[+1]], hold=1); pylab.subplot(1,2,2) f,y = list(zip(*z)) f = numpy.asarray(f) return numpy.mean([f[ind].mean(), f[ind+1].mean()]) def kern(x, x2=None, spec=None, **kwargs): spec = sstruct(spec) spec._update(kwargs) func = spec.func del spec.func if spec._fields == ['params']: spec = spec.params spec = dict(spec._allitems()) return func(x, x2, **spec) def demodata(n=(80,40), randseed=None): if isinstance(n, int): n = (int(n/2.0), int(n/2.0)+int(int(n/2.0) < n/2.0)) n1,n2 = n m1 = [0.75, 0] S1 = [[1, -0.3], [-0.3, 1]] m2 = [-0.75, 0] S2 = [[1, 0.95], [0.95, 1]] oldrandstate = None if randseed != None: oldrandstate = numpy.random.get_state(); if isinstance(randseed, int): numpy.random.seed(randseed) else: numpy.random.set_state(randseed) x1 = numpy.random.randn(n1,2) * svd(S1).sqrtm + m1 x2 = numpy.random.randn(n2,2) * svd(S2).sqrtm + m2 if oldrandstate != None: numpy.random.set_state(oldrandstate) x = numpy.r_[x1, x2] y = [-1] * n1 + [+1] * n2 return numpy.asarray(x),numpy.asarray(y) class predictor(sstruct): """ Virtual superclass for classification and regression problems. klr2class is an example of a working subclass, for classification. # example 1: single training, kernel computed by hand from SigTools.LearningTools import * xtrain,ytrain = demodata() c = klr2class(C=1.0, relcost='balance', lossfunc=balanced_loss) s = guesswidth(xtrain,ytrain) K = rbfkern(xtrain, sigma=s) c.train(K=K, y=ytrain) print c xtest,ytest = demodata() K_testtrain = rbfkern(xtest, xtrain, sigma=s) c.test(K=K_testtrain, true=ytest) print c # example 2: using a kernel function inside the cross-validation loop from SigTools.LearningTools import * xtrain,ytrain = demodata() c = klr2class(relcost='balance', lossfunc=balanced_loss) c.varyhyper({'C':[10.0,1.0,0.1], 'kernel.func':rbfkern, 'kernel.sigma':[0.5,1.0,1.5,2.0]}) c.train(x=xtrain, y=ytrain) xtest,ytest = demodata() c.test(x=xtest, true=ytest) c.plotd() """### def __init__(self, hyper=None, model=None, output=None, verbosity=2, lossfunc=class_loss, lossfield='y'): sstruct.__init__(self) self.input = sstruct() self.input.x=None self.input.K=None self.input.y=None self.input.istrain=None self.input.istest=None self.hyper = sstruct(hyper) self.model = sstruct(model) self.output = sstruct(output) self.loss = sstruct() self.update_loss(func=lossfunc, field=lossfield, training=False, testing=False) self.verbosity = verbosity self._allowedfields = list(self._fields) + ['cv'] def write(self, txt): import sys sys.stdout.write(txt) sys.stdout.flush() def update_loss(self, func=None, field=None, training=True, testing=True): self.loss.func = getattr(self.loss, 'func', None) self.loss.field = getattr(self.loss, 'field', None) newfunc = (func != None and func != self.loss.func) newfield = (field != None and field != self.loss.field) if newfunc: self.loss.func = func if newfield: self.loss.field = field if training or newfunc or newfield: self.loss.train = None self.loss.train_se = None if testing or newfunc or newfield: self.loss.test = None self.loss.test_se = None if self.loss.func != None and (training or testing): if not hasattr(self.output, self.loss.field): raise RuntimeError("could not find subfield 'output.%s'" % self.loss.field) out = getattr(self.output, self.loss.field) istrain = self.input.istrain istest = self.input.istest if training and istrain != None and istrain.any(): self.loss.train, self.loss.train_se = self.loss.func(true=self.input.y[istrain], predicted=out[istrain]) if testing and istest != None and istest.any(): self.loss.test, self.loss.test_se = self.loss.func(true=self.input.y[istest], predicted=out[istest]) return self def pretrain(self): pass def training(self): raise RuntimeError("no training() method implemented") def testing(self): raise RuntimeError("no testing() method implemented") def doublecv(self, x=None, K=None, y=None, istrain=None, istest=None, outerfg=None, **innerkwargs): """ All-singing all-dancing double-nested cross-validated training/evaluation procedure. To train/test once, as per cvtrain(), supply <istrain> and/or <istest>. To train/test on multiple folds, supply a foldguide object as <outerfg>. To perform a hyperparameter grid-search during cross-validation within each training set, make sure that self.hyper is an experiment object (for example, use the varyhyper() method to do this). Extra **kwargs are passed on to cvtrain() which uses them in the construction of a foldguide object, to dictate how the inner folding is performed. This includes <randomseed>, which is handled in a special way: a different inner <randomseed> is used for each outer fold (the seed is incremented by 1 from one outer fold to the next), but the same <randomseed> is used across all grid-search conditions within a given outer fold: this ensures that each hyperparameter setting is tested on exactly the same train/test splits as each other. The return value is a list of trained copies of <self>, one per outer-fold. If grid-search was performed, each object has .model, .output and .loss fields corresponding to the best-in-grid hyperparameter settings for that fold. An additional substruct .cv gives some insight into this decision. Note that it is often convenient to conceptualize inner-cv-with-hyperparameter- grid-search as an integral part of an algorithm's "training" procedure. Therefore, if an object has an experiment object in self.hyper, this function will also be called automatically (in one-outer-fold-only mode) if you call self.train() or self.cvtrain(), these two being synonymous for such objects. The difference to calling doublecv() directly is merely that the attributes of self are then actually updated to match the chosen setting, instead of a copy being returned. """### folded = (outerfg != None) varied = isinstance(self.hyper, experiment) if folded: n_outerfolds = len(outerfg) if istest != None or istrain != None: raise ValueError("either supply outerfg, or (istrain and/or istest), but not a mixture") else: n_outerfolds = 1 if varied: expt = self.hyper else: expt = [self.hyper] if 'cv' in self._fields: del self.cv n_conditions = len(expt) x,K,y,istrain,istest = self.resolve_training_inputs(x=x,K=K,y=y,istrain=istrain,istest=istest) if folded and not isequal(outerfg.ids, list(range(len(y)))): raise ValueError("outerfg has the wrong ids for this dataset") z = numpy.zeros((n_conditions,n_outerfolds), dtype=numpy.float64) inner_loss = z + numpy.nan inner_se = z + numpy.nan outer_loss = z + numpy.nan outer_se = z + numpy.nan chosen = [None for i in range(n_outerfolds)] chosenind = [None for i in range(n_outerfolds)] if 'ntrain' not in innerkwargs and 'ntest' not in innerkwargs and 'folds' not in innerkwargs: innerkwargs['folds'] = 10 innerseed = innerkwargs.pop('randomseed', None) if innerseed == None: innerseed = [foldguide.next_randomseed() for ifold in range(n_outerfolds)] if isinstance(innerseed, (int,float)): innerseed = [innerseed + ifold for ifold in range(n_outerfolds)] import inspect innernames,xx,yy,innerdefaults = inspect.getargspec(foldguide.__init__) folding = dict([(k,v) for k,v in zip(innernames[1:], innerdefaults) if v != None]) folding.update(innerkwargs) prevkernel = None makekernel = 'kernel' in expt[0]._fields input_for_kernel = None if makekernel: if K != None: self.input.K = K = None #if K != None: raise ValueError("since hyper.kernel field exists, input argument K is unexpected") if x == None: raise ValueError("since hyper.kernel field exists, input argument x is expected") if expt._order == 'C': expt._reorder_fields('kernel', 0) elif expt._order == 'F': expt._reorder_fields('kernel', -1) input_for_kernel = x x = None for icond,condition in enumerate(expt): if self.verbosity and varied: self.write('hyper[%d], condition %d of %d (%s):\n' % (icond, icond+1, len(expt), expt._shortdesc(condition))) self_c = self.copy(deep=False) self_c.hyper = condition if makekernel: if not isequal(condition.kernel, prevkernel): K = kern(x=input_for_kernel, spec=condition.kernel) del condition.kernel for ifold in range(n_outerfolds): if folded: istrain,istest = outerfg[ifold] self_cf = self_c.copy(deep=False) self_cf.cvtrain(x=x,K=K, y=y, istrain=istrain, istest=istest, randomseed=innerseed[ifold], **innerkwargs) isbest = (chosen[ifold] == None) isbest = isbest or self_cf.loss.train < chosen[ifold].loss.train isbest = isbest or (self_cf.loss.train == chosen[ifold].loss.train and self_cf.loss.train_se < chosen[ifold].loss.train_se) if isbest: chosen[ifold] = self_cf chosenind[ifold] = icond inner_loss[icond,ifold] = self_cf.loss.train inner_se[icond,ifold] = self_cf.loss.train_se outer_loss[icond,ifold] = self_cf.loss.test outer_se[icond,ifold] = self_cf.loss.test_se for ifold in range(n_outerfolds): self_f = chosen[ifold] if self_f == None: continue if 'cv' in self_f._fields: del self_f.cv if self_f.input.x == None: self_f.input.x = input_for_kernel self_f._setfield('cv.folding', dict(folding, randomseed=innerseed[ifold])) self_f._setfield('cv.chosen.index', chosenind[ifold]) self_f._setfield('cv.chosen.hyper', expt[chosenind[ifold]]) self_f._setfield('cv.inner.mean', list(inner_loss[:,ifold])) self_f._setfield('cv.inner.se', list(inner_se[:,ifold])) self_f._setfield('cv.outer.mean', list(outer_loss[:,ifold])) self_f._setfield('cv.outer.se', list(outer_se[:,ifold])) self_f.hyper = self.hyper.copy(deep=True) self_f._reorder_fields('verbosity', -1) if self.verbosity and varied: for ifold,self_f in enumerate(chosen): if folded: self.write('outerfg[%d] - ' % (ifold)) fname, outerstr = self_f.loss_str(field='test') fname, innerstr = self_f.loss_str(field='train') self.write("picked hyper[%d] (%s): %s = outer %s; inner %s\n" % ( self_f.cv.chosen.index, expt._shortdesc(self_f.cv.chosen.hyper), fname, outerstr, innerstr, )) return chosen def loss_str(self, field=None, mean=None, se=None): fname = self.loss.func.__name__.replace('_', ' ') if field != None: if mean == None: mean = self.loss._getfield(field) if se == None: se = self.loss._getfield(field + '_se') if fname in ['balanced loss', 'class loss']: fmt = '%4.1f%%' if mean != None: mean *= 100.0 if se != None: se *= 100.0 else: fmt = '%.3f' if mean == None: s = 'N/A' else: s = fmt % mean if se != None: s += (' +/- ' + fmt) % se return fname, s def defaults(self): return {} def varyhyper(self, *pargs, **kwargs): if not isinstance(self.hyper, experiment): self.hyper = experiment([(k,[v]) for k,v in self.hyper._allitems()]) if len(kwargs) == 0 and len(pargs) == 0: kwargs = self.defaults() for arg in pargs: if hasattr(arg, '_allitems'): arg = arg._allitems() elif hasattr(arg, 'items'): arg = list(arg.items()) for k,v in arg: self.hyper._setfield(k,v) for k,v in list(kwargs.items()): self.hyper._setfield(k, v) return self def fixhyper(self, *pargs, **kwargs): if 'cv' in self._fields: self.hyper = self.cv.chosen.hyper del self.cv elif isinstance(self.hyper, experiment): if len(self.hyper) == 1: self.hyper = self.hyper[0] elif len(pargs) == 0 and len(kwargs) == 0: raise ValueError("cannot fix hyperparameters---no CV has been performed") for arg in pargs: if hasattr(arg, '_allitems'): arg = arg._allitems() elif hasattr(arg, 'items'): arg = list(arg.items()) for k,v in arg: self.hyper._setfield(k,v) for k,v in list(kwargs.items()): self.hyper._setfield(k, v) return self def train(self, x=None, K=None, y=None, istrain=None, istest=None, **kwargs): if isinstance(self.hyper, experiment): return self.cvtrain(x=x, K=K, y=y, istrain=istrain, istest=istest, **kwargs) printtime = kwargs.pop('printtime', False) if printtime: import time; tstart = time.time() if len(kwargs): raise TypeError("unexpected keyword arguments---use these only when self.hyper is an experiment object, so train() and cvtrain() are synonymous") if 'kernel' in self.hyper._fields: self.input.K = None x,K,y,istrain,istest = self.resolve_training_inputs(x=x, K=K,y=y,istrain=istrain,istest=istest) input_for_kernel = x if 'kernel' in self.hyper._fields: if x == None: raise ValueError("since hyper.kernel field exists, input x is expected") if K != None: raise ValueError("since hyper.kernel field exists, input K is unexpected") K = kern(x=x, spec=self.hyper.kernel) x = None for f in set(self.input._fields): setattr(self.input, f, None) # subclass method training() will *only* see the training set: precludes label leakage if istrain.all(): self.input.x = x self.input.K = K self.input.y = y self.input.istrain = istrain self.input.istest = istest else: if x != None: self.input.x = numpy.asarray(x)[istrain] if K != None: self.input.K = K[istrain,:][:, istrain] self.input.y = y[istrain] self.input.istrain = istrain[istrain] self.input.istest = istest[istrain] for f in set(self.model._fields): setattr(self.model, f, None) for f in set(self.output._fields): setattr(self.output, f, None) if self.input.K == None: self.training(x=self.input.x, y=self.input.y) else: self.training(K=self.input.K, y=self.input.y) # should set model fields if K == None: ntrain = len(x) else: ntrain = K.shape[1] self.input.x = x if K != None: if istrain[:ntrain].all(): self.input.K = K else: self.input.K = K[:, istrain] self.input.y = None self.input.istrain = istrain self.input.istest = istest for f in set(self.output._fields): setattr(self.output, f, None) if self.input.K == None: self.testing(x=self.input.x) else: self.testing(K=self.input.K) # should set output fields if x == None: x = input_for_kernel self.input.x = x self.input.K = K self.input.y = y self.input.istrain = istrain self.input.istest = istest self.update_loss(training=True, testing=True) if self.verbosity >= 2: self.write(self.summarystr()[0] + '\n') elif self.verbosity >= 1: self.write(self.summarystr()[1]) if printtime: print("%.2f seconds" % (time.time() - tstart)) return self def test(self, x=None, K=None, true=None): if x == None and K == None: raise ValueError("either K or x must be supplied") self.fixhyper() if 'kernel' in self.hyper._fields and K==None: K = kern(x=x, x2=self.input.x, spec=self.hyper.kernel) if K == None: nnew = len(x) full_K = None else: K = numpy.asmatrix(K, dtype=self.input.K.dtype) if K.shape[1] != self.input.K.shape[1]: raise ValueError("test/train kernel must have the same number of columns as the kernel used for training (=%d)" % self.input.K.shape[1]) nnew = K.shape[0] full_K = numpy.r_[self.input.K, K] if x == None: full_x = None self.input.x = None else: if isinstance(self.input.x, list): full_x = self.input.x + list(x) else: full_x = numpy.concatenate((self.input.x,x), axis=0) self.loss.test = self.loss.test_se = None got_true = (true != None) if not got_true: true = numpy.zeros((nnew,)+self.input.y.shape[1:], dtype=float) true.flat = numpy.nan self.loss.test = self.loss.test_se = None full_y = numpy.r_[self.input.y, project(true, len(self.input.y.shape)-1)] full_istrain = numpy.r_[self.input.istrain, numpy.zeros((nnew,), dtype=numpy.bool)] full_istest = numpy.r_[self.input.istest * False, numpy.ones((nnew,), dtype=numpy.bool)] if K != None: kcols = full_K.shape[1] if full_istrain[:kcols].all(): self.input.K = full_K else: self.input.K = full_K[:, full_istrain[:kcols]] self.input.x = full_x self.input.y = None self.input.istrain = full_istrain self.input.istest = full_istest if K == None: self.testing(x=self.input.x) else: self.testing(K=self.input.K) self.input.x = full_x self.input.K = full_K self.input.y = full_y self.input.istrain = full_istrain self.input.istest = full_istest self.update_loss(training=False, testing=got_true) return self def cvtrain(self, x=None, K=None, y=None, istrain=None, istest=None, **kwargs): """ train() once on the outer fold (dictated by <istrain> and <istest> as usual) reporting the test results in self.loss.test as usual. In the self.output fields (for example, self.output.f) the elements self.output.f[self.input.istest] are as normal. Reported performance on the training set (both in self.loss.train and in self.output.*[self.input.istrain] ) come from a cross-validation within the <istrain> set. Additional **kwargs are passed through to the construction of a foldguide() object. """### if isinstance(self.hyper, experiment): if kwargs.get('outerfg', None) != None: raise ValueError("outerfg is only a valid argument when doublecv() is called directly, not via train() or cvtrain()") cc = self.doublecv(x=x,K=K,y=y,istrain=istrain,istest=istest, **kwargs) if len(cc) != 1: raise RuntimeError("multiple outputs from doublecv--this shouldn't happen") chosen = cc[0] self.input = chosen.input self.model = chosen.model self.output = chosen.output self.loss = chosen.loss self.cv = chosen.cv self._reorder_fields('verbosity', -1) return self outer = self outer.verbosity -= 1 verb = outer.verbosity indent = ' ' if verb == 1: self.write(indent) if verb == 1: numstr = indent outer.train(x=x, K=K, y=y, istrain=istrain, istest=istest) del istrain, istest sep = ' // ' if verb == 1: self.write(sep) if verb == 1: numstr += outer.summarystr()[2] + sep outer.verbosity += 1 x, K, y = outer.input.x, outer.input.K, outer.input.y visible = numpy.where(outer.input.istrain)[0] for f,v in self.output._allitems(): v[self.input.istrain] = numpy.nan #inner = [] fg = foldguide(ids=visible, labels=y[visible], **kwargs) #print ' '.join(['%d'%iii for iii in fg[0][1]]) result = {'mean':0.0, 'ste':0.0, 'n':0} for foldnumber,(tr,val) in enumerate(fg): each = self.copy() #inner.append(each) if 'kernel' in each.hyper._fields and K != None: del each.hyper.kernel each.verbosity -= 1 each.train(x=x, K=K, y=y, istrain=tr, istest=val) if verb == 1: numstr += each.summarystr()[2] each.verbosity += 1 result = seqste(result, {'mean':each.loss.test, 'ste':each.loss.test_se, 'n':len(val)}) for f,v in self.output._allitems(): v[each.input.istest] = each.output._getfield(f)[each.input.istest] self.loss.train = result['mean'] self.loss.train_se = result['ste'] if verb == 1: self.write(' (avg=%.3f)\n' % self.loss.train) if verb == 1: self.write(numstr + '\n') return self def featureweight(self, x=None, primalname='weights', dualname='alpha'): if x == None: return self.model._getfield(primalname) trainind = numpy.where(self.input.istrain)[0] if len(x) == len(trainind): trainind = list(range(len(x))) elif len(x) != self.input.K.shape[0]: raise ValueError("wrong number of input data points x") w = None alpha = self.model._getfield(dualname) for i,a in zip(trainind, alpha.flat): wi = x[i] * a if w == None: w = wi else: w += wi return w def summarystr(self): ntrain = sum(self.input.istrain) ntest = sum(self.input.istest) longstr = self.__class__.__name__ shortstr = ' (?????) ' if ntrain == 0: longstr = '%s (untrained)' % longstr else: longstr = '%s trained on %d' % (longstr, ntrain) if self.loss.train != None: longstr = '%s (%s = %.3f)' % (longstr, self.loss.func.__name__, self.loss.train) shortstr = '(%.3f)' % self.loss.train if ntest: longstr = '%s, tested on %d' % (longstr, ntest) if self.loss.test != None: longstr = '%s (%s = %.3f)' % (longstr, self.loss.func.__name__, self.loss.test) shortstr = ' %.3f ' % self.loss.test numstr = '%d:%d ' % (ntrain,ntest) shortstr = shortstr.rjust(max(len(shortstr), len(numstr))) numstr = numstr.rjust(max(len(shortstr), len(numstr))) return longstr,shortstr,numstr def resolve_training_inputs(self, x=None, K=None, y=None, istrain=None, istest=None): if x == None: x = self.input.x if K == None: K = self.input.K if y == None: y = self.input.y if istrain == None and istest == None: istrain = self.input.istrain istest = self.input.istest if x == None and K == None: raise ValueError("no data and no kernel supplied") #if x != None and K != None: raise ValueError("supply data or kernel, but not both") if y == None: raise ValueError("no labels supplied") if K == None: ntest = ntrain = len(x) ksiz = (ntest,ntrain) else: K = numpy.asmatrix(K) ntest,ntrain = ksiz = K.shape if not isinstance(y, numpy.ndarray): y = numpy.asarray(y) y = y.view() while len(y.shape) < 2: y.shape = y.shape + (1,) nlabels = len(y) if nlabels != ntest: raise ValueError("the number of labels must match the number of rows in the kernel") use_explicit_istest = False if istrain == None: istrain = numpy.arange(max(ksiz)) < min(ksiz) use_explicit_istest = True istrain = numpy.asarray(istrain) if istrain.size != max(istrain.shape): raise ValueError("istrain must be a vector") istrain = istrain.flatten() if istrain.dtype != numpy.bool: ind = istrain istrain = numpy.arange(max(ksiz)) < 0 istrain[ind] = True if istrain.size not in ksiz: if K == None: raise ValueError("x and istrain have mismatched number of points") else: raise ValueError("K and istrain have mismatched number of points") if istrain.size < nlabels: istrain = numpy.r_[istrain, [False] * (nlabels - istrain.size)] if istest == None: istest = numpy.logical_not(istrain) istest = numpy.asarray(istest) if istest.size != max(istest.shape): raise ValueError("istest must be a vector") istest = istest.flatten() if istest.dtype != numpy.bool: ind = istest istest = numpy.arange(max(ksiz)) < 0 istest[ind] = True if istest.size not in ksiz: raise ValueError("K and istest have mismatched number of points") if istest.size < nlabels: istest = numpy.r_[istest, [False] * (nlabels - istest.size)] if use_explicit_istest: istrain = numpy.logical_and(istrain, numpy.logical_not(istest)) if (numpy.where(istrain)[0] > min(ksiz)).any(): raise ValueError("training points are missing from K") if (numpy.where(istest)[0] > ntest).any(): raise ValueError("testing points are missing from K") if numpy.logical_and(istrain, istest).any(): raise ValueError("some points are designated both training and testing") return x,K,y,istrain,istest def calibrate(self, link=logistic, balance=True): from .Optimization import psifit p = psifit(link=link, balance=balance, x=self.output.f[self.input.istrain], y=self.input.y[self.input.istrain]) p.fix(logyoked=-numpy.inf) p.fix(loglower=-numpy.inf, logupper=-numpy.inf) p.fix(shift=0) p.free(logscale=0.0) p.optimize() fac = numpy.exp(p.logscale) if 'alpha' in self.model._fields: self.model.alpha *= fac if 'weights' in self.model._fields: self.model.weights *= fac self.model.bias *= fac self.output.f *= fac # f' = k f # f = a x + b = a (x - s) # f' = a'x + b' = a'(x - s') # where f' = kf, so a' = ka and b' = kb, so s' = s = -b/a, so the inflection point (x=s,f=0) hasn't moved (x=s, f still=0). # you may think this obvious, but somehow it took me a while to wrap my head around it: the "bias" is not the same as the shift. if 'p' in self.output._fields: self.output.p = link(self.output.f) self.update_loss() return self def rebias(self): if self.verbosity: c,classes = confuse(self.input.y, self.output.y); err = 1.0 - c.diagonal() / c.sum(axis=1) print("before rebias: bias = %g; train/CV err on %+d = %.3f; train/CV err on %+d = %.3f, train/CV %s = %.3f" % (self.model.bias, classes[0], err[0], classes[1], err[1], self.loss.func.__name__, self.loss.train)) self.output.f -= self.model.bias self.model.bias = -eeop(numpy.asarray(self.output.f).flatten(), numpy.asarray(self.input.y).flatten()) self.output.f += self.model.bias self.output.y = numpy.sign(self.output.f) if 'p' in self.output._fields: self.output.p = logistic(self.output.f) self.update_loss() if self.verbosity: c,classes = confuse(self.input.y, self.output.y); err = 1.0 - c.diagonal() / c.sum(axis=1) print("after rebias: bias = %g; train/CV err on %+d = %.3f; train/CV err on %+d = %.3f, train/CV %s = %.3f" % (self.model.bias, classes[0], err[0], classes[1], err[1], self.loss.func.__name__, self.loss.train)) return self def plotf(self, condition=None, field='output.f'): """ Plot values (by default self.output.f) separately in red for cases where self.input.y > 0 and in blue for cases where self.input.y < 0. <condition> may be 'istrain' or 'istest' to further limit which data are viewed, or None (for everything) """### neg = (self.input.y<0).flat pos = (self.input.y>0).flat if condition == None: neg = numpy.array(neg) pos = numpy.array(pos) else: neg = self.input[condition] * neg pos = self.input[condition] * pos if field in self.output._fields: f = self.output._getfield(field) else: f = self._getfield(field) from . import Plotting Plotting.plot(f[neg], hold=False, marker='*', color=(0,0,1), drawnow=False) Plotting.plot(f[pos], hold=True, marker='+', color=(1,0,0), grid=True) def plotd(self, hold=False, drawnow=True): """ Plot two-dimensional data, along with decision surface of trained classifier. """### xtr = self.input.x[self.input.istrain] xts = self.input.x[self.input.istest] ytr = self.input.y[self.input.istrain] yts = self.input.y[self.input.istest] dmin = numpy.asarray(self.input.x).min(axis=0) dmax = numpy.asarray(self.input.x).max(axis=0) expand = (dmax - dmin) * 0.05 dmin -= expand; dmax += expand res = 70 c = self.copy() tr = c.input.istrain c.input.x = c.input.x[tr] c.input.y = c.input.y[tr] if c.input.K != None: c.input.K = c.input.K[tr,:][:,tr] # whereas c.input.K[tr,tr] screws up: a bug in numpy?? c.input.istest = c.input.istest[tr] c.input.istrain = c.input.istrain[tr] x = numpy.linspace(dmin[0], dmax[0], res, endpoint=True) y = numpy.linspace(dmin[1], dmax[1], res, endpoint=True) xx,yy = numpy.meshgrid(x,y) c.test(x=numpy.c_[xx.flat,yy.flat]) z = numpy.asarray(c.output.f[c.input.istest]) z.shape = xx.shape h = {} from . import Plotting pylab = Plotting.load_pylab() ax = pylab.gca() if not hold: ax.cla() #h['surf'] = pylab.pcolor(x,y,z) h['surf'] = Plotting.imagesc(x=x,y=y,img=z, interpolation='bilinear', cmap=pylab.cm.gray) h['contours'] = pylab.contour(x,y,z, linestyles=['--'], colors=[(0,1.0,0)], hold='on') h['boundary'] = pylab.contour(x,y,z, (0,), colors=[(0,1.0,0)], linewidths=3, hold='on') for hh in list(h.values()): hh.set_clim(numpy.array([-1,+1]) * max(abs(numpy.array([z.min(), z.max()])))) if len(ytr): h['tr+'] = pylab.plot(xtr[ytr.flat>0][:,0], xtr[ytr.flat>0][:,1], mec=(0.2,0.0,0.0), mfc=(1.0,0.0,0.0), marker='s', linestyle='none', markersize=7) if len(ytr): h['tr-'] = pylab.plot(xtr[ytr.flat<0][:,0], xtr[ytr.flat<0][:,1], mec=(0.0,0.0,0.2), mfc=(0.0,0.0,1.0), marker='s', linestyle='none', markersize=7) if len(yts): h['ts+'] = pylab.plot(xts[yts.flat>0][:,0], xts[yts.flat>0][:,1], mec=(0.2,0.0,0.0), mfc=(1.0,0.5,0.5), marker='o', linestyle='none', markersize=7) if len(yts): h['ts-'] = pylab.plot(xts[yts.flat<0][:,0], xts[yts.flat<0][:,1], mec=(0.0,0.0,0.2), mfc=(0.5,0.5,1.0), marker='o', linestyle='none', markersize=7) ax.set(xlim=[dmin[0],dmax[0]], ylim=[dmin[1],dmax[1]]) if drawnow: pylab.draw() return h def plotw(self, xtrain=None, normaxis=None, norm=2, x=None, y=None, **kwargs): """ Plot weights of a linear predictor (supply the training data in <xtrain> if this was a kernel implementation of a linear predictor). Weights may be formatted in a 1- or 2-dimensional array (depending on how the data exemplars were formatted): a stem plot is used for 1-D and an image for 2-D. Dimensionality may be reduced by 1 by taking the L-<norm> norm along axis <normaxis>. Optional arguments <x> and <y> supply the x- and (for image plots) y-axis data for plotting. """### w = self.featureweight(x=xtrain) if normaxis != None: w = (w ** norm).sum(axis=normaxis) ** 1.0/norm kwargs['aspect'] = kwargs.get('aspect', 'auto') kwargs['balance'] = kwargs.get('balance', {None:0.0}.get(normaxis, None)) kwargs['grid'] = kwargs.get('grid', True) if len(w.shape) == 2: kwargs['colorbartitle'] = kwargs.get('colorbartitle', 'weight') kwargs['colorbarformat'] = kwargs.get('colorbarformat', '%+g') from . import Plotting; pylab = Plotting.load_pylab() out = Plotting.imagesc(w, x=x, y=y, **kwargs) elif len(w.shape) == 1: if x == None: x = list(range(len(w))) from . import Plotting; pylab = Plotting.load_pylab() out = Plotting.stem(x, w, **kwargs) else: raise ValueError('do not know how to plot %d-dimensional weight array' % len(w.shape)) return out def plotopt(cc, hold=False, drawnow=True, **kwargs): if not isinstance(cc, (list, tuple)): cc = [cc] expt = cc[0].hyper lab = [expt._shortdesc(cond) for cond in expt] inner = sum([numpy.asarray(cci.cv.inner.mean) for cci in cc]) / len(cc) innerse = sum([numpy.asarray(cci.cv.inner.se) for cci in cc]) / len(cc) # plot the average error-bar size across outer folds, rather than just making the bars unrepresentatively small (we don't actually have that many data points!) outer = [{ 'mean': numpy.asarray(cci.cv.outer.mean), 'ste': numpy.asarray(cci.cv.outer.se), 'n': sum(cci.input.istest), } for cci in cc] outer = seqste(*outer) outer,outerse = outer['mean'],outer['ste'] n = inner.size from . import Plotting pylab = Plotting.load_pylab() if not hold: pylab.cla() kwargs['mec'] = kwargs.get('mec', 'auto') kwargs['mfc'] = kwargs.get('mfc', 'auto') kwargs['markersize'] = kwargs.get('markersize', 10) explicitmarker = 'marker' in kwargs if not explicitmarker: kwargs['marker'] = 'o' hinner = pylab.errorbar(x=1.0+numpy.arange(n), y=inner, yerr=innerse, **kwargs) if not explicitmarker: kwargs['marker'] = 's' houter = pylab.errorbar(x=1.0+numpy.arange(n), y=outer, yerr=outerse, **kwargs) ax = pylab.gca() ax.set_xlim((0,n+1)) ax.set_xticks(1.0 + numpy.arange(n)) ax.set_xticklabels(lab, rotation=20, horizontalalignment='right') ax.set_yticks(numpy.arange(0.0,1.1,0.1)) ax.set_ylim([0.0, 1.0]) ax.grid(True) if drawnow: pylab.draw() class klr2class(predictor): def __init__(self, C=0.1, relcost=(1.0,1.0), lossfunc=class_loss, lossfield='y'): predictor.__init__(self, lossfunc=lossfunc, lossfield=lossfield) self.hyper.C = C self.hyper.relcost = relcost self.model.alpha = None self.model.bias = None self.output.y = None self.output.f = None self.output.p = None def defaults(self): return {'C':[10.0, 3.0, 1.0, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001]} def training(self, K, y): if len(K.shape) != 2 or K.shape[0] != K.shape[1]: raise ValueError('K must be a square matrix') if y.size != K.shape[0]: raise ValueError('y must contain one label per row of K') relcost = self.hyper.relcost if relcost == None: relcost = 1.0 if relcost == 'balance': relcost = float(sum(y<0.0)) / float(sum(y>0.0)) err = 'hyper.relcost must be a scalar, a two-element sequence, or the string "balance"' if isinstance(relcost, str): raise ValueError(err) relcost = numpy.asarray(relcost).flatten() if relcost.size == 1: relcost = relcost ** [-0.5, 0.5] if relcost.size != 2: raise ValueError(err) if relcost[0]==relcost[1]: relcost = None varK = K.diagonal().mean() - K.mean() C = self.hyper.C C = numpy.asarray(C).flatten() if C.size != 1: raise ValueError('hyper.C must be a scalar') C = C[0] * varK from . import klr ab,f,J,obj = klr.klr_cg(K=K, Y=y, C=C, wght=relcost, verb=-1) self.model.alpha = ab[:-1] self.model.bias = ab[-1].flat[0] def testing(self, K): if K.shape[1] != len(self.model.alpha): raise ValueError('wrong number of training points (columns) in test/train kernel') self.output.f = numpy.asmatrix(K) * self.model.alpha + self.model.bias self.output.y = numpy.sign(self.output.f) self.output.y[self.output.y==0] = 1 self.output.p = 1.0 / (1.0 + numpy.exp(-self.output.f)) class lda2class(predictor): def __init__(self, shrinkage='optimal', lossfunc=class_loss, lossfield='y'): predictor.__init__(self, lossfunc=lossfunc, lossfield=lossfield) self.hyper.shrinkage = shrinkage self.model.weights = None self.model.bias = None self.output.y = None self.output.f = None self.output.p = None def defaults(self): return {'shrinkage':['optimal', 0.0, 0.001, 0.005, 0.05, 0.5, 0.8, 1.0]} def training(self, x, y): n = {}; m = {}; c = {}; z = {} y = numpy.sign(y.flat) for i,yi in enumerate(y): n[yi] = n.get(yi, 0) + 1 m[yi] = m.get(yi, 0.0) + x[i] for k,v in list(m.items()): v /= n[k] for i,yi in enumerate(y): xi = x[i] - m[yi] zi = numpy.outer(xi.flat, xi.flat) c[yi] = c.get(yi, 0.0) + zi if self.hyper.shrinkage == 'optimal': for k,v in list(c.items()): v /= n[k] # mean of centered per-exemplar outer products (biased ML estimator of cov) for i,yi in enumerate(y): xi = x[i] - m[yi] zi = numpy.outer(xi.flat, xi.flat) z[yi] = z.get(yi, 0.0) + ((zi - c[yi]).flatten() ** 2).sum() for k,v in list(c.items()): v *= float(n[k]) / float(n[k]-1) # correct to unbiased estimate for k in z: z[k] = z[k] * float(n[k]) / float(n[k] - 1) ** 3.0 # divide by (n-1) for unbiased estimate of z variances, then multiply by n/(n-1)^2 else: for k,v in list(c.items()): v /= n[k]-1 # straight to unbiased estimate dm = (m[+1] - m[-1]) for k,cov in list(c.items()): gamma = self.hyper.shrinkage nu = cov.diagonal().mean() if gamma == 'optimal': denom = (cov.flatten()**2).sum() - 2.0 * nu * cov.trace() - cov.shape[0] * nu ** 2.0 gamma = z[k] / denom shrinkcov(cov, gamma=gamma, nu=nu) cov = (c[+1] + c[-1]) / 2.0 w = numpy.linalg.solve(cov, dm.flatten()) w.shape = dm.shape f = numpy.zeros((len(x),),dtype=numpy.float64) for i,xi in enumerate(x): f[i] = numpy.inner(w.flat,xi.flat) self.model.weights = w self.model.bias = -eeop(f,y) def testing(self, x): w = self.model.weights.flat self.output.f = numpy.asarray([numpy.inner(w,xi.flat) for xi in x]) + self.model.bias self.output.y = numpy.sign(self.output.f) self.output.p = logistic(self.output.f) class FoldingError(Exception): pass class foldguide(object): randomseed = None # global for all foldguide objects @classmethod def next_randomseed(cls): limit = int(2**31-1) if foldguide.randomseed == None: saved_state = numpy.random.get_state() numpy.random.seed() # randomizes from random-number generator and/or clock... foldguide.randomseed = numpy.random.randint(limit) # ...but doesn't return the seed it found: so let's use the first number it gets that way numpy.random.set_state(saved_state) r = foldguide.randomseed foldguide.randomseed = (foldguide.randomseed + 1) % limit return r def __init__(self, ids=None, labels=None, folds=None, ntrain=None, ntest=None, balance=True, randomseed='auto'): """ foldguide constructor parameters: ids: a list of exemplar ids; shortcut: pass integer n if the ids should be just range(n) labels: a list of labels, or None if balancing folds doesn't matter (or label information is unavailable) folds: integer number of folds, or 'LOO' for leave-one-out; could also be a list of lists of test-fold ids for explicit() ntrain: the size of each training fold, or None for auto ntest: the size of each test fold, or None for auto balance: whether to ensure that each fold contains (approximately) the same relative proportions of classes randomseed: an integer (32-bit), or 'auto' """### #sstruct.__init__(self) if ids == None: if labels == None: raise ValueError("either ids or labels must be supplied") ids = len(labels) if randomseed == 'auto': randomseed = foldguide.next_randomseed() if isinstance(ids, foldguide): self.__dict__.update(ids.__dict__); return if isinstance(ids, int): ids = list(range(ids)) self.n = len(ids) self.ids = list(ids) if labels == None: self.labels = None elif len(labels) != self.n: raise ValueError("mismatched number of ids and labels") else: self.labels = list(labels) explicit_testfolds = None if isinstance(folds, (tuple, list)): explicit_testfolds = folds folds = len(folds) if ntrain != None or ntest != None: raise ValueError("cannot specify ntrain or ntest when folds are supplied as an explicit list") if ntrain != None and ntest != None: raise ValueError("specify either ntrain or ntest, or neither, but not both") if ntrain != None and ntrain > self.n / 2.0: ntrain,ntest = None, self.n - ntrain if ntest != None and ntest > self.n / 2.0: ntrain,ntest = self.n - ntest, None swap = False if ntrain != None: foldsize = float(ntrain); swap = True elif ntest != None: foldsize = float(ntest) else: if folds == None: folds = min(len(ids),10) if isinstance(folds, str) and folds.lower() in ['loo', 'leave one out']: folds = len(ids) foldsize = float(self.n) / folds if folds == None: folds = int(round( numpy.ceil(self.n / float(foldsize)) )) self.balanced = balance order = list(range(self.n)) self.randomseed = randomseed if self.randomseed != None: saved_state = numpy.random.get_state() numpy.random.seed(self.randomseed) #print "shuffling with", self.randomseed numpy.random.shuffle(order) numpy.random.set_state(saved_state) self.classes = [] categorized = [] saved_order = list(order) i = len(order) while len(order): wrap = i >= len(order) if wrap: i = 0 if labels == None: thislabel = None else: thislabel = labels[order[i]] if wrap: matchlabel = thislabel self.classes.append(matchlabel) categorized.append([]) if isequal(matchlabel, thislabel): categorized[-1].append(order.pop(i)) else: i += 1 if not balance: categorized = [saved_order] self.indices = [] distributed = [None for i in range(folds)] riffled = []; for cl in range(len(categorized)): c = categorized[cl] n = len(c) k = numpy.linspace(0.0, 1.0, n, endpoint=True) riffled += list(zip(k, c)) riffled = numpy.array([ind for x,ind in sorted(riffled)]) foldstart = numpy.linspace(0.0, self.n-foldsize, folds, endpoint=True) for ifold in range(folds): start,stop = int(round(foldstart[ifold])), int(round(foldstart[ifold] + foldsize)) distributed[ifold] = riffled[start:stop] a = set(range(self.n)) self.indices = tuple([( tuple(sorted(a - set(d))), tuple(sorted(d)), ) for d in distributed]) if swap: self.indices = tuple([(b,a) for a,b in self.indices]) try: self.classes.sort() except: pass if explicit_testfolds != None: self.explicit(test = explicit_testfolds) def __repr__(self): s = "<%s.%s instance at 0x%08X>" % (self.__class__.__module__,self.__class__.__name__,id(self)) trmean,tsmean = numpy.mean([ (len(tr),len(ts)) for tr,ts in self.indices], axis=0) nfolds = len(self.indices) describe_as_balanced = self.balanced and len(self.classes) > 1 describe_as_balanced = {True:' balanced ', False:' '}[describe_as_balanced] s += "\n %d%sfolds each ~ %d:%d" % (nfolds, describe_as_balanced, round(trmean), round(tsmean)) s += ", randomseed = %s" % str(self.randomseed) over = self.check() s += "\n avg overlap between folds = %.3g%% : %.3g%%" % (100.0 * over['tr']['average'], 100.0 * over['ts']['average']) ijust = len('%d' % (nfolds - 1)) trlabels,tslabels = [],[] for i in range(nfolds): tr,ts = self.indices[i] trlabels.append('(' + '/'.join(['%d' % len([ind for ind in tr if self.labels == None or isequal(self.labels[ind], c)]) for c in self.classes]) + ')') tslabels.append('(' + '/'.join(['%d' % len([ind for ind in ts if self.labels == None or isequal(self.labels[ind], c)]) for c in self.classes]) + ')') trljust = max([len(x) for x in trlabels]) for i in range(nfolds): s += "\n fold %s --- %s:%s" % ( ('%d'%i).rjust(ijust), trlabels[i].rjust(trljust), tslabels[i] ) return s def __getitem__(self, i): return self.get(i, 'ids') def __len__(self): return len(self.indices) def get(self, fold, attr='ids'): lookup = getattr(self, attr) return ( tuple([lookup[x] for x in self.indices[fold][0]]), tuple([lookup[x] for x in self.indices[fold][1]]), ) def check(self): nfolds = len(self.indices) for i in range(nfolds): tr,ts = self.indices[i] overlap = sorted(set(tr).intersection(ts)) union = sorted(set(tr).union(ts)) if len(tr) == 0: raise FoldingError("fold %d of foldguide 0x%08x is corrupt: training fold is empty" % (i, id(self),)) if len(ts) == 0: raise FoldingError("fold %d of foldguide 0x%08x is corrupt: test fold is empty" % (i, id(self),)) if len(overlap): raise FoldingError("fold %d of foldguide 0x%08x is corrupt: overlap of %d items between training and test fold" % (i, id(self), len(overlap),)) if len(union) < self.n: raise FoldingError("fold %d of foldguide 0x%08x is corrupt: %d items are missing from both training and test fold" % (i, id(self), self.n-len(union))) if len(union) > self.n: raise FoldingError("fold %d of foldguide 0x%08x is corrupt: %d extra unexpected items" % (i, id(self), len(union)-self.n)) tr,ts = list(zip(*self.indices)) tr = sorted(set(reduce(tuple.__add__, tr))) if len(tr) < self.n: raise FoldingError("foldguide 0x%08x is corrupt: %d items never appear in the training folds" % (id(self), self.n - len(tr))) if len(tr) > self.n: raise FoldingError("foldguide 0x%08x is corrupt: %d extra unexpected items appear in the training folds" % (id(self), len(tr) - self.n)) ts = sorted(set(reduce(tuple.__add__, ts))) if len(ts) < self.n: raise FoldingError("foldguide 0x%08x is corrupt: %d items never appear in the test folds" % (id(self), self.n - len(ts))) if len(ts) > self.n: raise FoldingError("foldguide 0x%08x is corrupt: %d extra unexpected items appear in the test folds" % (id(self), len(ts) - self.n)) overlap_tr = {} overlap_ts = {} for j in range(nfolds): for i in range(j): indi = set(self.indices[i][0]) indj = set(self.indices[j][0]) overlap_tr[(i,j)] = 2.0 * float(len(indi.intersection(indj))) / (len(indi) + len(indj)) indi = set(self.indices[i][1]) indj = set(self.indices[j][1]) overlap_ts[(i,j)] = 2.0 * float(len(indi.intersection(indj))) / (len(indi) + len(indj)) overlap_tr['average'] = numpy.mean(list(overlap_tr.values())) overlap_ts['average'] = numpy.mean(list(overlap_ts.values())) return {'tr':overlap_tr, 'ts':overlap_ts} def explicit(self, training=None, test=None): """ Supply, as either <training> or <test> but not both, a list of lists of ids. The ids will be re-folded explicitly in the specified way. """### if training == None and test == None: raise ValueError("must supply either training or test") if training != None and test != None: raise ValueError("must supply either training or test, but not both") if training != None: folded = training else: folded = test nfolds = len(folded) unmatched = reduce(list.__add__, [[str(x) for x in foldids if x not in self.ids] for foldids in folded]) if len(unmatched): raise ValueError("ids not found: %s" % ','.join(unmatched)) result = [] allind = set(range(len(self.ids))) for foldids in folded: specified = [self.ids.index(x) for x in foldids] rest = allind - set(specified) if training != None: result.append((tuple(specified), tuple(rest))) else: result.append((tuple(rest), tuple(specified))) oldindices = self.indices self.indices = tuple(result) try: self.check() except FoldingError as e: self.indices = oldindices raise FoldingError(str(e).split(':')[-1]) self.randomseed = 'explicit' self.balanced = False # TODO: maybe could do better at inferring this class experiment(sstruct): """ An sstruct subclass, hence inheriting (versions of) the _setitem, _getitem, _allfields and _allitems methods. May have fields and subfields. Values at the leaves of the tree are forced, when assigned, to be lists (if they are not already lists, they become one-item lists). Iteration over the object iterates over combinations of the leaf elements (conditions of the experiment), returning sstruct objects. Example: expt = {'a.x': 'hello', 'a.y':[1,2,3], 'b':['foo', 'bar']} expt = experiment(expt) for i,condition in enumerate(expt): print 'condition', i; print condition Additional methods (over and above inherited sstruct methods) include _shape(), _reshape() and _shortdesc() Conditions can be dereferenced with a single serial index expt[i] or with multi-dimensional subscripts expt[p,q,r,...] expt._order is a special property which dictates the order in which conditions come out when dereferenced with the serial index. It is the same as numpy's array order: the default, _order='C', means that the last-listed subfield varies fastest, whereas the alternative _order='F' would mean that the first-listed subfield varies fastest. """### def __init__(self, _baseobj=None, _order='C', **kwargs): self._inherit(_baseobj, _recursive=True, **kwargs) self._order = _order def __setattr__(self, f, v): if f == '_order' and v not in ('C', 'F'): raise ValueError("_order must be 'C' or 'F'") sstruct.__setattr__(self, f, v) if f not in self._fields: return if isinstance(v, list): v = list(v) elif isinstance(v, sstruct): v = self.__class__(v) else: v = [v] self.__dict__[f] = v def __len__(self): n = 1 for f,v in self._allitems(): n *= len(v) return n def _shape(self): """ Return a tuple containing the number of levels in each subfield. """### return [len(v) for f,v in self._allitems()] def _reshape(self, x): """ Use numpy.reshape() to reshape a sequence x (perhaps a list of results from each experimental condition?) into an array the same "shape" as the experiment as given by _shape(). """### return numpy.reshape(x, self._shape(), order=self._order) def _shortdesc(self, x, delim=', '): """ Describe condition (or other sstruct) <x> in one line, in terms of how it differs from the experiment <self>. Constants (i.e. fields of the experiment that have exactly one level) are not mentioned. """### if not isinstance(x, sstruct): x = sstruct(x) def shortstr(v): cand1 = str(v) if len(cand1) > 10 and hasattr(v, '__name__') and type(v).__name__.endswith(('function', 'method')): return v.__name__ if isinstance(v, numpy.ndarray) and len(v.shape)>1: cand2 = '[%s %s]' % (v.__class__.__name__, 'x'.join([str(d) for d in v.shape])) elif isinstance(v, (tuple,list,numpy.ndarray)): cand2 = '[%s of %s item%s]' % (v.__class__.__name__, len(v), {1:''}.get(len(v),'s')) elif isinstance(v, str): cand2 = '[string length %d]' % len(v) else: cand2 = '[...]' if len(cand1) > 10 and len(cand2) < len(cand1): return cand2 return cand1 terms = [('%s=%s' % (k,shortstr(v))) for k,v in x._allitems() if len(self._getfield(k,[0,1]))>1] return delim.join(terms) def _ind2sub(self, ind): # TODO: optionally make this C-order instead of F-order shape = self._shape() if self._order == 'C': shape = shape[::-1] s,n = [],1 for sh in shape: s.append(n); n *= sh if not -n <= ind < n: raise IndexError("index out of range") for i in range(len(s)-1, -1, -1): tmp = ind % s[i] s[i] = (ind - tmp) / s[i] ind = tmp if self._order == 'C': s = s[::-1] return s def _sub2ind(self, sub): shape = self._shape() if self._order == 'C': sub = list(sub)[::-1] shape = shape[::-1] if len(sub) != len(shape): raise IndexError("expected %d subscripts, got %d" % (len(shape),len(s))) s,n = [],1 for sh in shape: s.append(n); n *= sh ind,sub = 0,list(sub) while len(sub): ind += s.pop(0) * sub.pop(0) return ind def __getitem__(self, ind): if isinstance(ind, tuple): e = sstruct() s = list(ind) slicing = True in [isinstance(x, slice) for x in s] if False in [isinstance(x, (int,slice)) for x in s]: raise IndexError("invalid index type") if slicing: e = self.__class__(e) elif isinstance(ind, int): e = sstruct() s = self._ind2sub(ind) elif isinstance(ind, str): return self._getfield(ind) else: raise IndexError("invalid index type") items = self._allitems() if len(s) != len(items): raise IndexError("expected %d subscripts, got %d" % (len(items),len(s))) for f,v in items: e._setfield(f, v[s.pop(0)]) return e def __iadd__(self, other): cl = self.__class__ if not isinstance(other, cl): other = cl(other) absent = [] for f,ov in other._allitems(): sv = self._getfield(f, absent) if id(sv) == id(absent): sv = list(ov) self._setfield(f, sv) elif f not in self._allfields(): raise ValueError("cannot extend subfield '%s'" % f) for ovi in ov: for svi in sv: if isequal(ovi, svi): break else: sv.append(ovi) return self def __add__(self, other): a = copy.deepcopy(self) a += other return a def overlapping(nsamples=None, windowlength=None, nwindows=None, overlap=None): if nsamples != None: nsamples = int(nsamples) if nsamples < 1: raise ValueError("illegal number of samples %d" % nsamples) if windowlength != None: windowlength = int(windowlength) if windowlength < 1: raise ValueError("illegal window length %d" % windowlength) if nwindows != None: nwindows = int(nwindows) if nwindows < 1: raise ValueError("illegal number of windows %d" % nwindows) if overlap != None: overlap = float(overlap) if not 0.0 <= overlap < 1.0: raise ValueError("illegal overlap value %g" % overlap) original = {'nsamples':nsamples, 'windowlength':windowlength, 'nwindows':nwindows, 'overlap':overlap} nnones = sum([v==None for k,v in list(original.items())]) if nnones > 1: raise ValueError("insufficient information") def ceil(x): return int(x) + int(x > int(x)) if nsamples == None: nsamples = int(round( windowlength + (nwindows - 1.0) * (1.0 - overlap) * windowlength )) if windowlength == None: windowlength = int(round( nsamples / (nwindows + overlap - nwindows * overlap) )) if nwindows == None: nwindows = int(round( float(nsamples - windowlength * overlap) / (windowlength * (1.0 - overlap)) )) if nwindows == 0: nwindows = 1 if nwindows == 1: overlap_samples, windowlength = 0,nsamples else: overlap_samples = ceil(float(windowlength * nwindows - nsamples) / (nwindows - 1.0)) overlap = overlap_samples / float(windowlength) new_nsamples = windowlength * (nwindows + overlap - nwindows * overlap) new_nsamples = int(round(new_nsamples)) # rounding should only be necessary due to numerical precision here skipfront = ceil((nsamples-new_nsamples)/2.0) step = windowlength - overlap_samples if step < 1: raise ValueError("nsamples=%d is too small for %d windows of length %d" % (nsamples,nwindows,windowlength)) maxstart = nsamples - windowlength t0 = list(range(skipfront, maxstart+1, step)) while len(t0) > nwindows: t0.pop() final = {'nsamples':nsamples, 'windowlength':windowlength, 'nwindows':nwindows, 'overlap':overlap} for k,v in list(original.items()): if v == None: continue fv = final[k] if k == 'overlap': v = round(v * windowlength) fv = round(fv * windowlength) if abs(v-fv) > 1: raise ValueError('%s=%g is not consistent with other inputs (should be %d/%d = %g)' % (k,original[k],fv,windowlength,fv/windowlength)) elif v != fv: raise ValueError("%s=%g is not consistent with other inputs (should be %d)" % (k,v,fv)) return t0,final def spcov(x, y=None, balance=True, spdim=1, return_trchvar=False): """ From data <x>, compute a spatial covariance matrix, where "space" is the dimension of <x> denoted by <spdim> (cannot be 0). If labels <y> are supplied and <balance> is set to True, there is the opportunity to balance the computation: then, covariance matrices are computed separately on each class, and averaged at the end. """### n = {}; c = {} axes = None if spdim < 1: raise ValueError("spdim cannot be <1 (exemplar dim is assumed to be 0, so that x[i] is exemplar i)") ntr, nch = x.shape[0],x.shape[spdim] if return_trchvar: trchvar = numpy.zeros((ntr,nch), x.dtype) spdim -= 1 # since we will be operating on each x[i] for i,xi in enumerate(x): denom = 1.0 xim = xi = numpy.asarray(xi) if axes == None: axes = [axis for axis in range(len(xi.shape)) if axis != spdim] for axis in axes: xim = numpy.expand_dims(xim.mean(axis=axis), axis) denom *= xi.shape[axis] xi = xi - xim ci = numpy.tensordot(xi, xi, axes=(axes,axes)) if y == None or not balance: yi = 0 else: yi = y[i] c[yi] = c.get(yi, 0.0) + ci n[yi] = n.get(yi, 0) + denom if return_trchvar: trchvar[i,:].flat = ci.diagonal().flat if balance: for k,v in list(c.items()): v /= float(n[k]) c = sum(c.values()) / float(len(n)) else: c = sum(c.values()) / float(sum(n.values())) c = numpy.asmatrix(c) if return_trchvar: return c, trchvar else: return c def shrinkcov(cov, gamma, nu='mean', copy=False): """ Shrink a covariance matrix <cov> towards a sphere. <gamma> is the degree of shrinkage (0.0 for no change, 1.0 for complete shrinkage to a sphere). <nu> is the variance of the sphere: if nu='mean', then use the mean of the diagonal elements of <cov> on input. For copy=False, modify <cov> in place and return it. For copy=True, operate on and return a copy of <cov>. """### if not 0.0 <= gamma <= 1.0: raise ValueError("illegal shrinkage value") if not isinstance(cov, numpy.ndarray): cov = numpy.array(cov, dtype=numpy.float64) if nu == 'mean': nu = cov.diagonal().mean() elif nu == 'diag': nu = cov.diagonal() if isinstance(nu, (list,tuple,numpy.ndarray)): nu = numpy.asarray(nu, dtype=cov.dtype).flatten() else: nu = float(nu) if copy: cov = cov * (1.0 - gamma) elif gamma: cov *= 1.0 - gamma if gamma: cov.flat[::cov.shape[1]+1] += gamma * nu return cov def spfilt(x, W, copy=False): """ Each x[i] is a space-by-time signal array. W is a spatial filtering matrix with one filter per *row* (so each W[i] is a filter). For copy=False, modify x in place and return it (only possible if W is square). For copy=True, operate on and return a new array. """### for i,xi in enumerate(x): Wxi = numpy.dot(W, xi) if i == 0: xout = x if copy: xout = numpy.zeros((len(x),)+Wxi.shape, dtype=x.dtype) elif xout[0].shape != Wxi.shape: raise ValueError("in-place spatial-filtering only works with square W: otherwise must call with copy=True") xout[i].flat = Wxi.flat return xout def symwhiten(x, cov=None, gamma=0.0, copy=False, **kwargs): """ If <cov> is supplied, use that, otherwise estimate a spatial covariance matrix by calling spcov() on the data <x>, passing through any other keyword args supplied to that. First, if gamma > 0.0, obtain a shrunken copy of <cov> by calling shrinkcov() with that <gamma> setting. Take the (symmetrical) matrix-square-root of the inverse of the resulting (shrunken, or not) covariance matrix, and use that to spatially filter the data with spfilt(). Return (x,W) where x is the spatially filtered data and W is the matrix of spatial filters (one per row). """### if cov == None: cov = spcov(x=x, **kwargs) cov = shrinkcov(cov, gamma=gamma, copy=False) else: cov = shrinkcov(cov, gamma=gamma, copy=True) W = svd(cov).isqrtm x = spfilt(x, W, copy=copy) return x,W def symwhitenkern(x, x2=None, gamma=0.0, cov=None): if x2 == None: x,W = symwhiten(x, copy=True, cov=cov, gamma=gamma) else: x2,W = symwhiten(x2, copy=True, cov=cov, gamma=gamma) x = spfilt(x, W, copy=True) return linkern(x=x, x2=x2) def stfac(Gp, Ps=None, Pt=None, maxrank=numpy.inf): """ Gp: S x T weights in preconditioned space Ps: S x S spatial preconditioner (e.g. whitener), default = eye(S) Pt: T x T temporal preconditioner, default = eye(T) """### Gp = numpy.asmatrix(Gp) S,T = Gp.shape if Ps == None: Ps = numpy.eye(S, dtype=numpy.float64) if Pt == None: Pt = numpy.eye(T, dtype=numpy.float64) u = sstruct() u.Ps = numpy.asmatrix(Ps) u.Pt = numpy.asmatrix(Pt) u.G = u.Ps * Gp * u.Pt.H u.Gp = Gp decomp = svd(u.Gp) u.Rs, u.Rt = decomp.U,decomp.V u.sv = decomp.s nfac = sum(u.sv/(max(S,T)*max(u.sv)) > 1e-8) nfac = min(nfac, maxrank) u.Rs = u.Rs[:, :nfac] u.Rt = u.Rt[:, :nfac] u = stfac_filters_and_patterns(u, D=numpy.diag(u.sv[:nfac]), S=numpy.eye(nfac, dtype=numpy.float64)) return u def stfac_filters_and_patterns(u, D=None, S=None, B=None, Ss=None, St=None): dt = numpy.float64 nfac = u.Rs.shape[1] I = numpy.eye(nfac, dtype=dt) if D == None: D = numpy.asmatrix(u._getfield('D', I.copy()), dtype=dt) if S == None: S = numpy.asmatrix(u._getfield('S', I.copy()), dtype=dt) if B == None: B = numpy.asmatrix(u._getfield('B', I.copy()), dtype=dt) if Ss == None: Ss = numpy.asmatrix(u._getfield('St', I.copy()), dtype=dt) if St == None: St = numpy.asmatrix(u._getfield('St', I.copy()), dtype=dt) if not isequal(D, numpy.diag(numpy.diag(D ))): raise ValueError('D must be a diagonal matrix') if not isequal(S, numpy.diag(numpy.diag(S ))): raise ValueError('S must be a diagonal matrix') if not isequal(Ss, numpy.diag(numpy.diag(Ss))): raise ValueError('Ss must be a diagonal matrix') if not isequal(St, numpy.diag(numpy.diag(St))): raise ValueError('St must be a diagonal matrix') u.S = numpy.asmatrix(S, dtype=dt) u.B = numpy.asmatrix(B, dtype=dt) u.Ss = numpy.asmatrix(Ss, dtype=dt) u.St = numpy.asmatrix(St, dtype=dt) u_B_I = u.B.I u_S_I = u.S.I u_Ps_I = u.Ps.I u_Pt_I = u.Pt.I u.Ws = u.Ps * u.Rs * u.S * u.B.H * u.Ss u.Wt = u.Pt * u.Rt * u.S * u_B_I * u.St u.As = u_Ps_I.H * u.Rs * u_S_I * u_B_I * u.Ss.I u.At = u_Pt_I.H * u.Rt * u_S_I * u.B.H * u.St.I u.D = numpy.asmatrix(D) u.d = numpy.diag(u.D.A) u.H = u.As * u.D * u.At.H u.Q = u.As * u.D.I * u.At.H u.G = u.Ws * u.D * u.Wt.H # should already be the case, unless (for example) rank was explicitly reduced since Gp and G were computed u.Gp = u_Ps_I * u.G * u_Pt_I.H return u def correlate(x, y, axis=0): x = numpy.asarray(x, dtype=float).view() y = numpy.asarray(y, dtype=float).view() x.shape = list(x.shape) + [1] * (len(y.shape) - len(x.shape)) y.shape = list(y.shape) + [1] * (len(x.shape) - len(y.shape)) xm = numpy.expand_dims( x.mean(axis=axis), axis ) ym = numpy.expand_dims( y.mean(axis=axis), axis ) xs = numpy.expand_dims( x.std(axis=axis), axis ) ys = numpy.expand_dims( y.std(axis=axis), axis ) x = x - xm y = y - ym x = x / xs y = y / ys return (x * y).mean(axis=axis) def correlation_pvalue(r, n, two_tailed=True ): r = numpy.asarray( r, float ) n = numpy.asarray( n, float ) dof = n - 2.0 t = r / ( ( 1.0 - r ** 2.0 ) / dof ) ** 0.5 import scipy.stats p = scipy.stats.t( dof ).cdf( t ) positive = ( r >= 0.0 ).astype( float ) p = positive + ( 1.0 - 2.0 * positive ) * p if two_tailed: p *= 2.0 return p
PypiClean
/BobBuildTool-0.23.1.tar.gz/BobBuildTool-0.23.1/pym/bob/intermediate.py
import asyncio import hashlib import os.path import struct from abc import ABC, abstractmethod from .input import DigestHasher from .languages import getLanguage, ScriptLanguage from .scm import getScm, ScmOverride from .state import BobState from .utils import asHexStr, getPlatformTag # Fully dumped: Package-/Build-/Checkout-Step of built package # Partially dumped: everything else # packageStep: variantId, workspacePath, package, isRelocatable, sandbox # package: packageStep, recipe, name # sandbox: None/!None class AbstractIR(ABC): @abstractmethod def mungeStep(self, step): return step @abstractmethod def mungePackage(self, package): return package @abstractmethod def mungeRecipe(self, recipe): return recipe @abstractmethod def mungeSandbox(self, sandbox): return sandbox @abstractmethod def mungeTool(self, tool): return tool @abstractmethod def mungeRecipeSet(self, recipeSet): return recipeSet class StepIR(AbstractIR): @classmethod def fromStep(cls, step, graph, partial=False): self = cls() self.__data = {} self.__data['partial'] = partial self.__data['variantId'] = step.getVariantId().hex() self.__data['package'] = graph.addPackage(step.getPackage(), partial) self.__data['valid'] = step.isValid() self.__data['workspacePath'] = step.getWorkspacePath() self.__data['isCheckoutStep'] = step.isCheckoutStep() self.__data['isBuildStep'] = step.isBuildStep() self.__data['isPackageStep'] = step.isPackageStep() self.__data['isRelocatable'] = step.isRelocatable() self.__data['isShared'] = step.isShared() self.__data['sandbox'] = ( graph.addSandbox(step.getSandbox(False)), graph.addSandbox(step.getSandbox(True)) ) if not partial: self.__data['isFingerprinted'] = step._isFingerprinted() self.__data['digestScript'] = step.getDigestScript() self.__data['tools'] = { name : graph.addTool(tool) for name, tool in step.getTools().items() } self.__data['arguments'] = [ graph.addStep(a, a.getPackage() != step.getPackage()) for a in step.getArguments() ] self.__data['allDepSteps'] = ( [ graph.addStep(a, a.getPackage() != step.getPackage()) for a in step.getAllDepSteps(False) ], [ graph.addStep(a, a.getPackage() != step.getPackage()) for a in step.getAllDepSteps(True) ] ) self.__data['env'] = step.getEnv() if self.JENKINS: self.__data['preRunCmds'] = step.getJenkinsPreRunCmds() else: self.__data['preRunCmds'] = step.getPreRunCmds() self.__data['postRunCmds'] = step.getPostRunCmds() self.__data['setupScript'] = step.getSetupScript() self.__data['mainScript'] = step.getMainScript() self.__data['updateScript'] = step.getUpdateScript() self.__data['fingerprintScript'] = step._getFingerprintScript() self.__data['jobServer'] = step.jobServer() self.__data['label'] = step.getLabel() self.__data['isDeterministic'] = step.isDeterministic() self.__data['isUpdateDeterministic'] = step.isUpdateDeterministic() self.__data['hasNetAccess'] = step.hasNetAccess() if self.__data['isCheckoutStep']: self.__data['hasLiveBuildId'] = step.hasLiveBuildId() self.__data['scmList'] = [ (s.getProperties(self.JENKINS), [ o.__getstate__() for o in s.getActiveOverrides()]) for s in step.getScmList() ] self.__data['scmDirectories'] = { d : (h.hex(), p) for (d, (h, p)) in step.getScmDirectories().items() } self.__data['sandboxVariantId'] = step._getSandboxVariantId().hex() self.__data['toolKeysWeak'] = sorted(step._coreStep._getToolKeysWeak()) self.__data['digestEnv'] = step._coreStep.digestEnv return self @classmethod def fromData(cls, data): self = cls() self.__data = data return self def toData(self): return self.__data def __hash__(self): return hash(self.__data['variantId']) def __lt__(self, other): return self.getVariantId() < other.getVariantId() def __le__(self, other): return self.getVariantId() <= other.getVariantId() def __eq__(self, other): return self.getVariantId() == other.getVariantId() def __ne__(self, other): return self.getVariantId() != other.getVariantId() def __gt__(self, other): return self.getVariantId() > other.getVariantId() def __ge__(self, other): return self.getVariantId() >= other.getVariantId() @property def partial(self): return self.__data['partial'] def getPackage(self): return self.mungePackage(self.__data['package']) def isValid(self): return self.__data['valid'] def isShared(self): return self.__data['isShared'] def getWorkspacePath(self): return self.__data['workspacePath'] def getExecPath(self, referrer=None): """Return the execution path of the step. The execution path is where the step is actually run. It may be distinct from the workspace path if the build is performed in a sandbox. The ``referrer`` is an optional parameter that represents a step that refers to this step while building. """ if self.isValid(): if (referrer or self).getSandbox() is None: return self.getStoragePath() else: return os.path.join("/bob", asHexStr(self.getVariantId()), "workspace") else: return "/invalid/exec/path/of/{}".format(self.getPackage().getName()) def getStoragePath(self): """Return the storage path of the step. The storage path is where the files of the step are stored. For checkout and build steps this is always the workspace path. But package steps can be shared globally and thus the directory may lie outside of the project directoy. The storage path may also change between invocations if the shared location changes. """ if self.isPackageStep() and self.isShared(): return BobState().getStoragePath(self.getWorkspacePath()) else: return self.getWorkspacePath() def getSandbox(self, forceSandbox=False): return self.mungeSandbox(self.__data['sandbox'][1 if forceSandbox else 0]) def getVariantId(self): return bytes.fromhex(self.__data['variantId']) def isCheckoutStep(self): return self.__data['isCheckoutStep'] def isBuildStep(self): return self.__data['isBuildStep'] def isPackageStep(self): return self.__data['isPackageStep'] def _isFingerprinted(self): return self.__data['isFingerprinted'] def isRelocatable(self): return self.__data['isRelocatable'] def getDigestScript(self): return self.__data['digestScript'] def getTools(self): return { name : self.mungeTool(tool) for name, tool in self.__data['tools'].items() } def getArguments(self): return [ self.mungeStep(arg) for arg in self.__data['arguments'] ] def getAllDepSteps(self, forceSandbox=False): return [ self.mungeStep(dep) for dep in self.__data['allDepSteps'][1 if forceSandbox else 0] ] def getEnv(self): return self.__data['env'] def getPaths(self): # FIXME: rename to getToolPaths """Get sorted list of execution paths to used tools. The returned list is intended to be passed as PATH environment variable. The paths are sorted by name. """ return sorted([ os.path.join(tool.getStep().getExecPath(self), tool.getPath()) for tool in self.getTools().values() ]) def getLibraryPaths(self): """Get sorted list of library paths of used tools. The returned list is intended to be passed as LD_LIBRARY_PATH environment variable. The paths are first sorted by tool name. The order of paths of a single tool is kept. """ paths = [] for (name, tool) in sorted(self.getTools().items()): paths.extend([ os.path.join(tool.getStep().getExecPath(self), l) for l in tool.getLibs() ]) return paths def getPreRunCmds(self): assert not self.JENKINS return self.__data['preRunCmds'] def getJenkinsPreRunCmds(self): assert self.JENKINS return self.__data['preRunCmds'] def getPostRunCmds(self): return self.__data['postRunCmds'] def getSetupScript(self): return self.__data['setupScript'] def getMainScript(self): return self.__data['mainScript'] def getUpdateScript(self): return self.__data['updateScript'] def _getFingerprintScript(self): return self.__data['fingerprintScript'] def jobServer(self): return self.__data['jobServer'] def getLabel(self): return self.__data['label'] def isDeterministic(self): return self.__data['isDeterministic'] def isUpdateDeterministic(self): return self.__data['isUpdateDeterministic'] def hasLiveBuildId(self): return self.__data['hasLiveBuildId'] def hasNetAccess(self): return self.__data['hasNetAccess'] def getScmList(self): recipeSet = self.getPackage().getRecipe().getRecipeSet() def deserialize(state): ret = ScmOverride.__new__(ScmOverride) ret.__setstate__(state) return ret return [ getScm(scm, [deserialize(o) for o in overrides], recipeSet) for scm, overrides in self.__data['scmList'] ] def getScmDirectories(self): return { d : (bytes.fromhex(h), p) for (d, (h, p)) in self.__data['scmDirectories'].items() } def mayUpdate(self, inputChanged, oldHash, rehash): if any((s.isLocal() and not s.isDeterministic()) for s in self.getScmList()): return True if not self.getUpdateScript(): return False if not self.isUpdateDeterministic() or inputChanged: return True return rehash() != oldHash def _getSandboxVariantId(self): return bytes.fromhex(self.__data['sandboxVariantId']) async def getDigestCoro(self, calculate, forceSandbox=False, hasher=DigestHasher, fingerprint=None, platform=b'', relaxTools=False): h = hasher() h.update(platform) if self._isFingerprinted() and self.getSandbox() \ and not self.getPackage().getRecipe().getRecipeSet().sandboxFingerprints: [d] = await calculate([self.getSandbox().getStep()]) h.fingerprint(hasher.sliceRecipes(d)) elif fingerprint: h.fingerprint(fingerprint) sandbox = not self.getPackage().getRecipe().getRecipeSet().sandboxInvariant and \ self.getSandbox(forceSandbox) if sandbox: [d] = await calculate([sandbox.getStep()]) h.update(hasher.sliceRecipes(d)) h.update(struct.pack("<I", len(sandbox.getPaths()))) for p in sandbox.getPaths(): h.update(struct.pack("<I", len(p))) h.update(p.encode('utf8')) else: h.update(b'\x00' * 20) script = self.getDigestScript() if script: h.update(struct.pack("<I", len(script))) h.update(script.encode("utf8")) else: h.update(b'\x00\x00\x00\x00') tools = self.getTools() weakTools = set(self.__data['toolKeysWeak']) if relaxTools else [] h.update(struct.pack("<I", len(tools))) tools = sorted(tools.items(), key=lambda t: t[0]) toolsDigests = await calculate([ tool.getStep() for name,tool in tools ]) for ((name, tool), d) in zip(tools, toolsDigests): if name in weakTools: h.update(name.encode('utf8')) else: h.update(hasher.sliceRecipes(d)) h.update(struct.pack("<II", len(tool.getPath()), len(tool.getLibs()))) h.update(tool.getPath().encode("utf8")) for l in tool.getLibs(): h.update(struct.pack("<I", len(l))) h.update(l.encode('utf8')) h.update(struct.pack("<I", len(self.__data['digestEnv']))) for (key, val) in sorted(self.__data['digestEnv'].items()): h.update(struct.pack("<II", len(key), len(val))) h.update((key+val).encode('utf8')) args = [ a for a in self.getArguments() if a.isValid() ] argsDigests = await calculate(args) h.update(struct.pack("<I", len(args))) for d in argsDigests: h.update(hasher.sliceRecipes(d)) h.fingerprint(hasher.sliceHost(d)) return h.digest() async def predictLiveBuildId(self): """Query server to predict live build-id. Returns the live-build-id or None if an SCM query failed. """ if not self.hasLiveBuildId(): return None h = hashlib.sha1() h.update(getPlatformTag()) h.update(self._getSandboxVariantId()) for s in self.getScmList(): liveBId = await s.predictLiveBuildId(self) if liveBId is None: return None h.update(liveBId) return h.digest() def calcLiveBuildId(self): """Calculate live build-id from workspace.""" if not self.hasLiveBuildId(): return None workspacePath = self.getWorkspacePath() h = hashlib.sha1() h.update(getPlatformTag()) h.update(self._getSandboxVariantId()) for s in self.getScmList(): liveBId = s.calcLiveBuildId(workspacePath) if liveBId is None: return None h.update(liveBId) return h.digest() def getUpdateScriptDigest(self): """Return a digest that tracks relevant changes to the update script behaviour""" h = hashlib.sha1() script = self.getUpdateScript() if script: h.update(struct.pack("<I", len(script))) h.update(script.encode("utf8")) else: h.update(b'\x00\x00\x00\x00') h.update(struct.pack("<I", len(self.__data['digestEnv']))) for (key, val) in sorted(self.__data['digestEnv'].items()): h.update(struct.pack("<II", len(key), len(val))) h.update((key+val).encode('utf8')) return h.digest() class PackageIR(AbstractIR): @classmethod def fromPackage(cls, package, graph, partial=False): self = cls() self.__data = {} self.__data['partial'] = partial self.__data['stack'] = package.getStack() self.__data['recipe'] = graph.addRecipe(package.getRecipe()) self.__data['name'] = package.getName() self.__data['packageStep'] = graph.addStep(package.getPackageStep(), partial) self.__data['metaEnv'] = package.getMetaEnv() if not partial: self.__data['buildStep'] = graph.addStep(package.getBuildStep(), False) self.__data['checkoutStep'] = graph.addStep(package.getCheckoutStep(), False) return self @classmethod def fromData(cls, data): self = cls() self.__data = data return self def toData(self): return self.__data def __eq__(self, other): return isinstance(other, PackageIR) and (self.__data['stack'] == other.__data['stack']) @property def partial(self): return self.__data['data']['partial'] def getRecipe(self): return self.mungeRecipe(self.__data['recipe']) def getCheckoutStep(self): return self.mungeStep(self.__data['checkoutStep']) def getBuildStep(self): return self.mungeStep(self.__data['buildStep']) def getPackageStep(self): return self.mungeStep(self.__data['packageStep']) def getStack(self): return self.__data['stack'] def getName(self): return self.__data['name'] def getMetaEnv(self): return self.__data['metaEnv'] class SandboxIR(AbstractIR): @classmethod def fromSandbox(cls, sandbox, graph): self = cls() self.__data = {} self.__data['step'] = graph.addStep(sandbox.getStep(), True) self.__data['paths'] = sandbox.getPaths() self.__data['mounts'] = sandbox.getMounts() return self @classmethod def fromData(cls, data): self = cls() self.__data = data return self def toData(self): return self.__data def getStep(self): return self.mungeStep(self.__data['step']) def getPaths(self): return self.__data['paths'] def getMounts(self): return self.__data['mounts'] class ToolIR(AbstractIR): @classmethod def fromTool(cls, tool, graph): self = cls() self.__data = {} self.__data['step'] = graph.addStep(tool.getStep(), True) self.__data['path'] = tool.getPath() self.__data['libs'] = tool.getLibs() return self @classmethod def fromData(cls, data): self = cls() self.__data = data return self def toData(self): return self.__data def getStep(self): return self.mungeStep(self.__data['step']) def getPath(self): return self.__data['path'] def getLibs(self): return self.__data['libs'] class RecipeIR(AbstractIR): @classmethod def fromRecipe(cls, recipe, graph): self = cls() self.__data = {} self.__data['recipeSet'] = graph.addRecipeSet(recipe.getRecipeSet()) self.__data['scriptLanguage'] = recipe.scriptLanguage.index.value self.__data['name'] = recipe.getName() self.__data['layer'] = recipe.getLayer() return self @classmethod def fromData(cls, data): self = cls() self.__data = data return self def toData(self): return self.__data def getRecipeSet(self): return self.mungeRecipeSet(self.__data['recipeSet']) def getName(self): return self.__data['name'] def getLayer(self): return self.__data['layer'] @property def scriptLanguage(self): return getLanguage(ScriptLanguage(self.__data['scriptLanguage'])) class RecipeSetIR: @classmethod def fromRecipeSet(cls, recipeSet): self = cls() self.__data = {} self.__data['sandboxInvariant'] = recipeSet.sandboxInvariant self.__data['sandboxFingerprints'] = recipeSet.sandboxFingerprints self.__data['policies'] = { # FIXME: lazily query policies and only add them all in toData() 'allRelocatable' : recipeSet.getPolicy('allRelocatable'), 'pruneImportScm' : recipeSet.getPolicy('pruneImportScm'), 'scmIgnoreUser' : recipeSet.getPolicy('scmIgnoreUser'), 'secureSSL' : recipeSet.getPolicy('secureSSL'), 'tidyUrlScm' : recipeSet.getPolicy('tidyUrlScm'), 'sandboxFingerprints' : recipeSet.getPolicy('sandboxFingerprints'), 'gitCommitOnBranch' : recipeSet.getPolicy('gitCommitOnBranch'), 'fixImportScmVariant' : recipeSet.getPolicy('fixImportScmVariant'), } self.__data['archiveSpec'] = recipeSet.archiveSpec() self.__data['envWhiteList'] = sorted(recipeSet.envWhiteList()) self.__data['projectRoot'] = recipeSet.getProjectRoot() return self @classmethod def fromData(cls, data): self = cls() self.__data = data return self def toData(self): return self.__data @property def sandboxInvariant(self): return self.__data['sandboxInvariant'] @property def sandboxFingerprints(self): return self.__data['sandboxFingerprints'] def archiveSpec(self): return self.__data['archiveSpec'] def envWhiteList(self): return set(self.__data['envWhiteList']) def getPolicy(self, name, location=None): return self.__data['policies'][name] def getProjectRoot(self): return self.__data['projectRoot']
PypiClean
/MaterialDjango-0.2.5.tar.gz/MaterialDjango-0.2.5/bower_components/paper-fab/.github/ISSUE_TEMPLATE.md
<!-- Instructions: https://github.com/PolymerElements/paper-fab/CONTRIBUTING.md#filing-issues --> ### Description <!-- Example: The `paper-foo` element causes the page to turn pink when clicked. --> ### Expected outcome <!-- Example: The page stays the same color. --> ### Actual outcome <!-- Example: The page turns pink. --> ### Live Demo <!-- Example: https://jsbin.com/cagaye/edit?html,output --> ### Steps to reproduce <!-- Example 1. Put a `paper-foo` element in the page. 2. Open the page in a web browser. 3. Click the `paper-foo` element. --> ### Browsers Affected <!-- Check all that apply --> - [ ] Chrome - [ ] Firefox - [ ] Safari 9 - [ ] Safari 8 - [ ] Safari 7 - [ ] Edge - [ ] IE 11 - [ ] IE 10
PypiClean
/ExtProxy-1.0.3.tar.gz/ExtProxy-1.0.3/README.md
# ExtProxy [![license](https://img.shields.io/github/license/SeaHOH/extproxy)](https://github.com/SeaHOH/extproxy/blob/master/LICENSE) [![release status](https://img.shields.io/github/v/release/SeaHOH/extproxy?include_prereleases&sort=semver)](https://github.com/SeaHOH/extproxy/releases) [![code size](https://img.shields.io/github/languages/code-size/SeaHOH/extproxy)](https://github.com/SeaHOH/extproxy) ExtProxy extend urllib2's ProxyHandler to support extra proxy types: HTTPS, SOCKS. It provides a consistent user experience like HTTP proxy for the users. This script is using a non-side-effects monkey patch, it did not applied to build-in module socket, just inject some codes into `Request`, `ProxyHandler`, `HTTPConnection`, `SSLContext` method's processing. Don't need to worry about the patching, you can using everything like before, or you can unpatch it at any time. # Installation Install from [![version](https://img.shields.io/pypi/v/ExtProxy)](https://pypi.org/project/ExtProxy/) [![package format](https://img.shields.io/pypi/format/ExtProxy)](https://pypi.org/project/ExtProxy/#files) [![monthly downloads](https://img.shields.io/pypi/dm/ExtProxy)](https://pypi.org/project/ExtProxy/#files) pip install ExtProxy Or download and Install from source code python setup.py install # Compatibility - Python >= 2.7 - Require PySocks to support SOCKS proxy type # Usage ```py # Target can be imported before monkey patching from urllib.request import urlopen, build_opener, ProxyHandler # Import extproxy, auto apply monkey patching by `extproxy.patch_items` import extproxy # Use origin HTTP proxy proxy = "http://127.0.0.1:8080" # Use HTTPS proxy, use `set_https_proxy` to custom proxy's SSL verify mode import ssl proxy = "https://127.0.0.1:8443" cafile = "cafile path" set_https_proxy(proxy, check_hostname=False, cafile=cafile) context_settings = { "protocol": ssl.PROTOCOL_TLSv1_2, "cert_reqs": ssl.CERT_REQUIRED, # "check_hostname": True, # "cafile": "cafile path", # "capath": "cafiles dir path", # "cadata": b"ca data" # Uesd to server auth "certfile": "certfile path", # "keyfile": "keyfile path", # Uesd to client auth } context = ssl._create_unverified_context(**context_settings) ... # More custom settings set_https_proxy(proxy, context=context) # Use SOCKS proxy, `socks` can be: socks, socks4, socks4a, socks5, socks5h # SOCKS4 does not support remote resolving, but SOCKS4a/5 supported # 'socks' means SOCKS5, 'socks5h' means do not use remote resolving proxy = "socks://127.0.0.1:1080" # Set proxy via system/python environment variables import os os.environ["HTTP_PROXY"] = proxy os.environ["HTTPS_PROXY"] = proxy print(urlopen("https://httpbin.org/ip").read().decode()) # Set proxy via ProxyHandler opener = build_opener(ProxyHandler({ "http": proxy, "https": proxy })) print(opener.open("https://httpbin.org/ip").read().decode()) # Restore monkey patch, then HTTPS, SOCKS proxy use can not continue working extproxy.restore_items() ``` # License ExtProxy is released under the [MIT License](https://github.com/SeaHOH/extproxy/blob/master/LICENSE).
PypiClean
/MatchZoo-2.2.0.tar.gz/MatchZoo-2.2.0/matchzoo/contrib/models/bimpm.py
from keras.models import Model from keras.layers import Dense, Concatenate, Dropout from keras.layers import Bidirectional, LSTM from matchzoo.engine.param import Param from matchzoo.engine.param_table import ParamTable from matchzoo.engine.base_model import BaseModel from matchzoo.contrib.layers import MultiPerspectiveLayer class BiMPM(BaseModel): """ BiMPM. Reference: https://github.com/zhiguowang/BiMPM/blob/master/src/SentenceMatchModelGraph.py#L43-L186 Examples: >>> import matchzoo as mz >>> model = mz.contrib.models.BiMPM() >>> model.guess_and_fill_missing_params(verbose=0) >>> model.build() """ @classmethod def get_default_params(cls) -> ParamTable: """:return: model default parameters.""" params = super().get_default_params(with_embedding=True) params['optimizer'] = 'adam' # params.add(Param('dim_word_embedding', 50)) # TODO(tjf): remove unused params in the final version # params.add(Param('dim_char_embedding', 50)) # params.add(Param('word_embedding_mat')) # params.add(Param('char_embedding_mat')) # params.add(Param('embedding_random_scale', 0.2)) # params.add(Param('activation_embedding', 'softmax')) # BiMPM Setting params.add(Param('perspective', {'full': True, 'max-pooling': True, 'attentive': True, 'max-attentive': True})) params.add(Param('mp_dim', 3)) params.add(Param('att_dim', 3)) params.add(Param('hidden_size', 4)) params.add(Param('dropout_rate', 0.0)) params.add(Param('w_initializer', 'glorot_uniform')) params.add(Param('b_initializer', 'zeros')) params.add(Param('activation_hidden', 'linear')) params.add(Param('with_match_highway', False)) params.add(Param('with_aggregation_highway', False)) return params def build(self): """Build model structure.""" # ~ Input Layer input_left, input_right = self._make_inputs() # Word Representation Layer # TODO: concatenate word level embedding and character level embedding. embedding = self._make_embedding_layer() embed_left = embedding(input_left) embed_right = embedding(input_right) # L119-L121 # https://github.com/zhiguowang/BiMPM/blob/master/src/SentenceMatchModelGraph.py#L119-L121 embed_left = Dropout(self._params['dropout_rate'])(embed_left) embed_right = Dropout(self._params['dropout_rate'])(embed_right) # ~ Word Level Matching Layer # Reference: # https://github.com/zhiguowang/BiMPM/blob/master/src/match_utils.py#L207-L223 # TODO pass # ~ Encoding Layer # Note: When merge_mode = None, output will be [forward, backward], # The default merge_mode is concat, and the output will be [lstm]. # If with return_state, then the output would append [h,c,h,c]. bi_lstm = Bidirectional( LSTM(self._params['hidden_size'], return_sequences=True, return_state=True, dropout=self._params['dropout_rate'], kernel_initializer=self._params['w_initializer'], bias_initializer=self._params['b_initializer']), merge_mode='concat') # x_left = [lstm_lt, forward_h_lt, _, backward_h_lt, _ ] x_left = bi_lstm(embed_left) x_right = bi_lstm(embed_right) # ~ Multi-Perspective Matching layer. # Output is two sequence of vectors. # Cons: Haven't support multiple context layer multi_perspective = MultiPerspectiveLayer(self._params['att_dim'], self._params['mp_dim'], self._params['perspective']) # Note: input to `keras layer` must be list of tensors. mp_left = multi_perspective(x_left + x_right) mp_right = multi_perspective(x_right + x_left) # ~ Dropout Layer mp_left = Dropout(self._params['dropout_rate'])(mp_left) mp_right = Dropout(self._params['dropout_rate'])(mp_right) # ~ Highway Layer # reference: # https://github.com/zhiguowang/BiMPM/blob/master/src/match_utils.py#L289-L295 if self._params['with_match_highway']: # the input is left matching representations (question / passage) pass # ~ Aggregation layer # TODO: mask the above layer aggregation = Bidirectional( LSTM(self._params['hidden_size'], return_sequences=False, return_state=False, dropout=self._params['dropout_rate'], kernel_initializer=self._params['w_initializer'], bias_initializer=self._params['b_initializer']), merge_mode='concat') rep_left = aggregation(mp_left) rep_right = aggregation(mp_right) # Concatenate the concatenated vector of left and right. x = Concatenate()([rep_left, rep_right]) # ~ Highway Network # reference: # https://github.com/zhiguowang/BiMPM/blob/master/src/match_utils.py#L289-L295 if self._params['with_aggregation_highway']: pass # ~ Prediction layer. # reference: # https://github.com/zhiguowang/BiMPM/blob/master/src/SentenceMatchModelGraph.py#L140-L153 x = Dense(self._params['hidden_size'], activation=self._params['activation_hidden'])(x) x = Dense(self._params['hidden_size'], activation=self._params['activation_hidden'])(x) x_out = self._make_output_layer()(x) self._backend = Model(inputs=[input_left, input_right], outputs=x_out)
PypiClean
/Data_mining_platform-1.2.tar.gz/Data_mining_platform-1.2/codes/FeatureSelect.py
from sklearn.model_selection import GridSearchCV,cross_val_score, ShuffleSplit from sklearn.ensemble import RandomForestRegressor ,RandomForestClassifier import numpy as np import pandas as pd from codes.Tools import * from scipy.stats import pearsonr from minepy import MINE import dcor from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as Lda from sklearn.decomposition import PCA from sklearn.feature_selection import VarianceThreshold,SelectKBest,chi2,SelectFromModel,RFE import warnings warnings.filterwarnings('ignore') class Filter(): def __init__(self,strategy,threshold_s,bestk): self.strategy = strategy #### 1:移除低方差 ,2:卡方检验 , 3:Pearson相关系数 ,4:最大信息系数 ,5:距离相关系数 ,6:基于模型,回归 ,7:基于模型 分类 self.threshold_s = threshold_s self.bestk = bestk def fit(self,df_s,cols): df = df_s if self.strategy == 1: vc = VarianceThreshold(threshold=self.threshold_s) vc.fit(df[cols]) n = len(cols) self.delete_lst = [] for i in range(n): if not vc.get_support()[i]: if dcor.distance_correlation(df[cols[i]], df['y_label']) <0.05: self.delete_lst.append(cols[i]) elif self.strategy == 2: cc = SelectKBest(chi2,self.bestk) cc.fit(df[cols],df['y_label']) n = len(cols) self.delete_lst = [] for i in range(n): if not cc.get_support()[i]: self.delete_lst.append(cols[i]) elif self.strategy == 3: self.delete_lst = [] for col in cols : if pearsonr(df[col],df['y_label'])[1].abs()<self.threshold_s: self.delete_lst.append(col) elif self.strategy == 4: self.delete_lst = [] m = MINE() for col in cols : if m.compute_score(df[col],df['y_label']).mic() <self.threshold_s: self.delete_lst.append(col) elif self.strategy == 5: self.delete_lst = [] for col in cols : if dcor.distance_correlation(df[col],df['y_label']).mic() <self.threshold_s: self.delete_lst.append(col) elif self.strategy == 6: ##### 回归 self.delete_lst = [] for col in cols : rf = RandomForestRegressor(n_estimators=20, max_depth=4) for col in cols: score = cross_val_score(rf, df[col], df['y_label'], scoring="r2", cv=ShuffleSplit(df.shape[0], 3, .3)) if score <self.threshold_s: self.delete_lst.append(col) elif self.strategy == 7: ##### 分类 self.delete_lst = [] for col in cols : rf = RandomForestClassifier(n_estimators=20, max_depth=4) for col in cols: score = cross_val_score(rf, df[col], df['y_label'], scoring="auc", cv=ShuffleSplit(df.shape[0], 3, .3)) if score <self.threshold_s: self.delete_lst.append(col) else: return {'status': 1, 'msg': 'Ineffective strategy', 'res': None} return {'status': 0, 'msg': '', 'res': None} def transform(self,df_s,cols): df = df_s.copy() df = df.loc[:,~df.columns.isin(self.delete_lst)] return {'status': 0, 'msg': '', 'res': df} def sava_model(self): return {'status': 0, 'msg': '', 'res': self.delete_lst} class Wrapper(): ############### 特征递归消除 def __init__(self,strategy,bestk): self.strategy = strategy ### 1:回归,2:分类 self.bestk = bestk def fit(self,df_s,cols): df = df_s.copy() if self.strategy == 1: rfe = RFE(estimator=RandomForestRegressor(n_estimators=100,max_depth='sqrt'), n_features_to_select=self.bestk) elif self.strategy == 2: rfe = RFE(estimator=RandomForestClassifier(n_estimators=100, max_depth='sqrt'),n_features_to_select=self.bestk) rfe.fit(df[cols],df['y_label']) n = len(cols) self.delete_lst = [] for i in range(n): if not rfe.get_support()[i]: self.delete_lst.append(cols[i]) return {'status': 0, 'msg': '', 'res': None} def transform(self,df_s,cols): df = df_s.copy() df = df.loc[:,~df.columns.isin(self.delete_lst)] return {'status': 0, 'msg': '', 'res': df} def save_model(self): return {'status': 0, 'msg': '', 'res': self.delete_lst} class Embedded(): def __init__(self,strategy,base_model,threshold_s ): ## 来选择不为0的系数 #self.strategy = strategy ### 1:L1 ,2:稀疏矩阵 ,3:基于树 self.base_model = base_model ## 1:{ 1:svc ,2:lasso,3:lr } #self.threshold_s = threshold_s def fit(self,df_s,cols): df = df_s.copy() if self.strategy == 1: ##lsvc = LinearSVC(C=0.01, penalty="l1", dual=False) ## GradientBoostingClassifier() ### LogisticRegression(penalty="l1", C=0.1) self.base_model.fit(df[cols].values, df['y_label']) sfm = SelectFromModel(self.base_model, prefit=True) n = len(cols) self.delete_lst = [] for i in range(n): if not sfm.get_support()[i]: self.delete_lst.append(cols[i]) return {'status': 0, 'msg': '', 'res': None} def transform(self,df_s,cols): df = df_s.copy() df = df.loc[:,~df.columns.isin(self.delete_lst)] return {'status': 0, 'msg': '', 'res': df} def save_model(self): return {'status': 0, 'msg': '', 'res': self.delete_lst} class DimensionalityReduction(): def __init__(self,strategy,components): self.strategy = strategy ###1:pca, 2:lda self.components = components def fit(self,df_s,cols): df = df_s.copy() if self.strategy == 1: self.dr = PCA(n_components=self.components) self.dr.fit(df[cols]) elif self.strategy == 2: self.dr = Lda(n_components=self.components) self.dr.fit(df[cols], df['y_label']) return {'status': 0, 'msg': '', 'res': None} def transform(self,df_s,cols): df = df_s.copy() X = self.dr.transform(df[cols]) y = df['y_label'] res ={'X':X,'y':y} return {'status': 0, 'msg': '', 'res': res} def save_model(self): return {'status': 0, 'msg': '', 'res': self.dr}
PypiClean
/Euphorie-15.0.2.tar.gz/Euphorie-15.0.2/src/euphorie/client/resources/oira/script/chunks/17797.82a2f2183302fa63a7a8.min.js
"use strict";(self.webpackChunk_patternslib_patternslib=self.webpackChunk_patternslib_patternslib||[]).push([[17797],{51913:function(n,e,t){var o=t(87537),s=t.n(o),r=t(23645),l=t.n(r),a=t(61667),c=t.n(a),i=new URL(t(77794),t.b),u=l()(s()),h=c()(i);u.push([n.id,".hljs{display:block;overflow-x:auto;padding:.5em;color:#dccf8f;background:url("+h+") repeat scroll left top #181914}.hljs-comment,.hljs-quote{color:#586e75;font-style:italic}.hljs-keyword,.hljs-selector-tag,.hljs-literal,.hljs-addition{color:#b64926}.hljs-number,.hljs-string,.hljs-doctag,.hljs-regexp{color:#468966}.hljs-title,.hljs-section,.hljs-built_in,.hljs-name{color:#ffb03b}.hljs-variable,.hljs-template-variable,.hljs-class .hljs-title,.hljs-type,.hljs-tag{color:#b58900}.hljs-attribute{color:#b89859}.hljs-symbol,.hljs-bullet,.hljs-link,.hljs-subst,.hljs-meta{color:#cb4b16}.hljs-deletion{color:#dc322f}.hljs-selector-id,.hljs-selector-class{color:#d3a60c}.hljs-formula{background:#073642}.hljs-emphasis{font-style:italic}.hljs-strong{font-weight:bold}","",{version:3,sources:["webpack://./node_modules/highlight.js/styles/pojoaque.css"],names:[],mappings:"AAQA,MACE,aAAA,CACA,eAAA,CACA,YAAA,CACA,aAAA,CACA,iFAAA,CAGF,0BAEE,aAAA,CACA,iBAAA,CAGF,8DAIE,aAAA,CAGF,oDAIE,aAAA,CAGF,oDAIE,aAAA,CAGF,oFAKE,aAAA,CAGF,gBACE,aAAA,CAGF,4DAKE,aAAA,CAGF,eACE,aAAA,CAGF,uCAEE,aAAA,CAGF,cACE,kBAAA,CAGF,eACE,iBAAA,CAGF,aACE,gBAAA",sourcesContent:["/*\n\nPojoaque Style by Jason Tate\nhttp://web-cms-designs.com/ftopict-10-pojoaque-style-for-highlight-js-code-highlighter.html\nBased on Solarized Style from http://ethanschoonover.com/solarized\n\n*/\n\n.hljs {\n display: block;\n overflow-x: auto;\n padding: 0.5em;\n color: #dccf8f;\n background: url(./pojoaque.jpg) repeat scroll left top #181914;\n}\n\n.hljs-comment,\n.hljs-quote {\n color: #586e75;\n font-style: italic;\n}\n\n.hljs-keyword,\n.hljs-selector-tag,\n.hljs-literal,\n.hljs-addition {\n color: #b64926;\n}\n\n.hljs-number,\n.hljs-string,\n.hljs-doctag,\n.hljs-regexp {\n color: #468966;\n}\n\n.hljs-title,\n.hljs-section,\n.hljs-built_in,\n.hljs-name {\n color: #ffb03b;\n}\n\n.hljs-variable,\n.hljs-template-variable,\n.hljs-class .hljs-title,\n.hljs-type,\n.hljs-tag {\n color: #b58900;\n}\n\n.hljs-attribute {\n color: #b89859;\n}\n\n.hljs-symbol,\n.hljs-bullet,\n.hljs-link,\n.hljs-subst,\n.hljs-meta {\n color: #cb4b16;\n}\n\n.hljs-deletion {\n color: #dc322f;\n}\n\n.hljs-selector-id,\n.hljs-selector-class {\n color: #d3a60c;\n}\n\n.hljs-formula {\n background: #073642;\n}\n\n.hljs-emphasis {\n font-style: italic;\n}\n\n.hljs-strong {\n font-weight: bold;\n}\n"],sourceRoot:""}]),e.Z=u},23645:function(n){n.exports=function(n){var e=[];return e.toString=function(){return this.map((function(e){var t="",o=void 0!==e[5];return e[4]&&(t+="@supports (".concat(e[4],") {")),e[2]&&(t+="@media ".concat(e[2]," {")),o&&(t+="@layer".concat(e[5].length>0?" ".concat(e[5]):""," {")),t+=n(e),o&&(t+="}"),e[2]&&(t+="}"),e[4]&&(t+="}"),t})).join("")},e.i=function(n,t,o,s,r){"string"==typeof n&&(n=[[null,n,void 0]]);var l={};if(o)for(var a=0;a<this.length;a++){var c=this[a][0];null!=c&&(l[c]=!0)}for(var i=0;i<n.length;i++){var u=[].concat(n[i]);o&&l[u[0]]||(void 0!==r&&(void 0===u[5]||(u[1]="@layer".concat(u[5].length>0?" ".concat(u[5]):""," {").concat(u[1],"}")),u[5]=r),t&&(u[2]?(u[1]="@media ".concat(u[2]," {").concat(u[1],"}"),u[2]=t):u[2]=t),s&&(u[4]?(u[1]="@supports (".concat(u[4],") {").concat(u[1],"}"),u[4]=s):u[4]="".concat(s)),e.push(u))}},e}},61667:function(n){n.exports=function(n,e){return e||(e={}),n?(n=String(n.__esModule?n.default:n),/^['"].*['"]$/.test(n)&&(n=n.slice(1,-1)),e.hash&&(n+=e.hash),/["'() \t\n]|(%20)/.test(n)||e.needQuotes?'"'.concat(n.replace(/"/g,'\\"').replace(/\n/g,"\\n"),'"'):n):n}},87537:function(n){n.exports=function(n){var e=n[1],t=n[3];if(!t)return e;if("function"==typeof btoa){var o=btoa(unescape(encodeURIComponent(JSON.stringify(t)))),s="sourceMappingURL=data:application/json;charset=utf-8;base64,".concat(o),r="/*# ".concat(s," */");return[e].concat([r]).join("\n")}return[e].join("\n")}},17797:function(n,e,t){t.r(e);var o=t(93379),s=t.n(o),r=t(7795),l=t.n(r),a=t(3565),c=t.n(a),i=t(19216),u=t.n(i),h=t(44589),p=t.n(h),f=t(51913),A={};A.styleTagTransform=p(),A.setAttributes=c(),A.insert=function(n){var e=document.head.querySelectorAll("*")[0];e?document.head.insertBefore(n,e):document.head.append(n)},A.domAPI=l(),A.insertStyleElement=u();s()(f.Z,A);e.default=f.Z&&f.Z.locals?f.Z.locals:void 0},93379:function(n){var e=[];function t(n){for(var t=-1,o=0;o<e.length;o++)if(e[o].identifier===n){t=o;break}return t}function o(n,o){for(var r={},l=[],a=0;a<n.length;a++){var c=n[a],i=o.base?c[0]+o.base:c[0],u=r[i]||0,h="".concat(i," ").concat(u);r[i]=u+1;var p=t(h),f={css:c[1],media:c[2],sourceMap:c[3],supports:c[4],layer:c[5]};if(-1!==p)e[p].references++,e[p].updater(f);else{var A=s(f,o);o.byIndex=a,e.splice(a,0,{identifier:h,updater:A,references:1})}l.push(h)}return l}function s(n,e){var t=e.domAPI(e);t.update(n);return function(e){if(e){if(e.css===n.css&&e.media===n.media&&e.sourceMap===n.sourceMap&&e.supports===n.supports&&e.layer===n.layer)return;t.update(n=e)}else t.remove()}}n.exports=function(n,s){var r=o(n=n||[],s=s||{});return function(n){n=n||[];for(var l=0;l<r.length;l++){var a=t(r[l]);e[a].references--}for(var c=o(n,s),i=0;i<r.length;i++){var u=t(r[i]);0===e[u].references&&(e[u].updater(),e.splice(u,1))}r=c}}},19216:function(n){n.exports=function(n){var e=document.createElement("style");return n.setAttributes(e,n.attributes),n.insert(e,n.options),e}},3565:function(n,e,t){n.exports=function(n){var e=t.nc;e&&n.setAttribute("nonce",e)}},7795:function(n){n.exports=function(n){if("undefined"==typeof document)return{update:function(){},remove:function(){}};var e=n.insertStyleElement(n);return{update:function(t){!function(n,e,t){var o="";t.supports&&(o+="@supports (".concat(t.supports,") {")),t.media&&(o+="@media ".concat(t.media," {"));var s=void 0!==t.layer;s&&(o+="@layer".concat(t.layer.length>0?" ".concat(t.layer):""," {")),o+=t.css,s&&(o+="}"),t.media&&(o+="}"),t.supports&&(o+="}");var r=t.sourceMap;r&&"undefined"!=typeof btoa&&(o+="\n/*# sourceMappingURL=data:application/json;base64,".concat(btoa(unescape(encodeURIComponent(JSON.stringify(r))))," */")),e.styleTagTransform(o,n,e.options)}(e,n,t)},remove:function(){!function(n){if(null===n.parentNode)return!1;n.parentNode.removeChild(n)}(e)}}}},44589:function(n){n.exports=function(n,e){if(e.styleSheet)e.styleSheet.cssText=n;else{for(;e.firstChild;)e.removeChild(e.firstChild);e.appendChild(document.createTextNode(n))}}},77794:function(n,e,t){n.exports=t.p+"456f618a6e4559de337b.jpg"}}]); //# sourceMappingURL=17797.82a2f2183302fa63a7a8.min.js.map
PypiClean
/Kreveik-0.6.0.tar.gz/Kreveik-0.6.0/kreveik/genetic/__init__.py
def score(element,scorer=None): """ If a scorer is specified, the score of the element calculated with that scorer is returned. If scorer is not set, then the element is scored with the scorer specified in its definition. """ if scorer == None: element.score = element.scorer(element) else: return scorer(element) def genetic_iteration(ensemble,**kwargs): ''' Runs one iteration of the genetic algorithm. It finds wildtypes of the family, mutates them, populates the family with mutants and assasinates as much of it has mutated. ''' import logging if ((ensemble.scorer == None) or (ensemble.selector == None) or (ensemble.mutator == None) or (ensemble.killer == None)): raise ValueError("An element needs its scorer, killer, selector and mutator \ defined in order to be fed into the GA") return False logging.info("GA: for ensemble "+str(ensemble)+" started.") killcount = 0 newcomer_list = [] for element in ensemble: try: element.score = ensemble.scorer(element) logging.info("GA: Scoring Network "+str(element)) except: logging.error("GA: The scoring of the element failed.") if ensemble.selector(element,**kwargs): newcomer = element.copy() logging.info("GA: Mutating Wildtype "+str(element)) ensemble.mutator(newcomer) newcomer_list.append(newcomer) killcount += 1 logging.info("GA: Adding Newcomers") for individual in newcomer_list: ensemble.add(individual) logging.info("New network added, "+str(individual)+".") individual.populate_equilibria() individual.score = ensemble.scorer(individual) logging.info("GA: Killing...") ensemble.killer(ensemble,killcount) def stop_iteration(ensemble, number, **kwargs): """ """ import numpy as num import logging if number>200: return False else: if 'scores' in kwargs: last_scores = kwargs['scores'][-100:] logging.debug("Last scores are: "+str(last_scores)) previous_scores = kwargs['scores'][-200:-100] logging.debug("Previous scores are: "+str(previous_scores)) else: last_scores = [network.score for network in ensemble][-100:] previous_scores = [network.score for network in ensemble][-200:-100] difference = num.std(previous_scores) - num.mean(last_scores) if abs(difference) < 0.001: return True else: return False __all__= [genetic_iteration, score]
PypiClean
/BitstampClient-2.2.10.tar.gz/BitstampClient-2.2.10/README.rst
.. image:: https://badge.fury.io/py/BitstampClient.svg :target: https://badge.fury.io/py/BitstampClient ====================== bitstamp-python-client ====================== Python package to communicate with the bitstamp.net API (v1 and v2). Compatible with Python 2.7+ and Python 3.3+ Overview ======== There are two classes. One for the public part of API and a second for the trading part. Public class doesn't need user credentials, because API commands which this class implements are not bound to bitstamp user account. Description of API: https://www.bitstamp.net/api/ Install ======= Install from PyPi:: pip install BitstampClient Install from git:: pip install git+git://github.com/kmadac/bitstamp-python-client.git Usage ===== Here's a quick example of usage:: >>> import bitstamp.client >>> public_client = bitstamp.client.Public() >>> print(public_client.ticker()['volume']) 8700.01208078 >>> trading_client = bitstamp.client.Trading( ... username='999999', key='xxx', secret='xxx') >>> print(trading_client.account_balance()['fee']) 0.5000 >>> print(trading_client.ticker()['volume']) # Can access public methods 8700.01208078 How to activate a new API key ============================= 1. Login your Bitstamp account 2. Click on Security -> Api Access 3. Select permissions which you want to have for you access key (if you don't check any box, you will get error message 'No permission found' after each API call) 4. Click the 'Generate key' button and don't forget to write down your Secret! 5. Click 'Activate' 6. Goto your Inbox and click on link sent by Bitstamp to activate this API key Class diagram ============= .. image:: https://raw.github.com/kmadac/bitstamp-python-client/master/class_diagram.png :alt: Class diagram :align: center
PypiClean
/Apycula-0.9.0a1.tar.gz/Apycula-0.9.0a1/doc/sdram.md
# SDRAM Gowin devices with the R suffic such as the GW1NR-9 have built-in SDRAM. This SDRAM is a System-in-Package wirdebonded of the shelf SDRAM module. So there isn't so much to fuzz, you just have to know the pinout and the model. Gowin has been so kind as to provide LiteX with [the details](https://github.com/litex-hub/litex-boards/blob/8a33c2aa312dddc66297f7cd6e39107fda5a2efb/litex_boards/targets/trenz_tec0117.py#L92-L118) of the model and pinout. That is... the magic wire names that result in the vendor placing the IOB in the correct place. For the open source tools, you can't use the magic wire names. But what you can do is feed the magic wire names to the vendor and look at the generated placement. This is what has been done in `/legacy/sdram`, which is a standalone script not tied into the rest of Apicula. The result for GW1NR-9 is as below. A daring adventurer could use these to develop their own SDRAM controller or try to add support for LiteX on open source Gowin tools. ``` IO_sdram_dq(0) -> R29C26_IOA IO_sdram_dq(1) -> R29C27_IOA IO_sdram_dq(2) -> R29C35_IOA IO_sdram_dq(3) -> R29C36_IOA IO_sdram_dq(4) -> R29C37_IOA IO_sdram_dq(5) -> R29C38_IOA IO_sdram_dq(6) -> R29C39_IOA IO_sdram_dq(7) -> R29C40_IOA IO_sdram_dq(8) -> R29C16_IOB IO_sdram_dq(9) -> R29C17_IOB IO_sdram_dq(10) -> R29C18_IOA IO_sdram_dq(11) -> R29C18_IOB IO_sdram_dq(12) -> R29C19_IOB IO_sdram_dq(13) -> R29C20_IOB IO_sdram_dq(14) -> R29C21_IOB IO_sdram_dq(15) -> R29C22_IOB O_sdram_clk -> R1C4_IOB O_sdram_cke -> R1C9_IOA O_sdram_cs_n -> R1C35_IOB O_sdram_cas_n -> R1C40_IOB O_sdram_ras_n -> R1C40_IOA O_sdram_wen_n -> R1C44_IOA O_sdram_addr(0) -> R1C31_IOA O_sdram_addr(1) -> R1C28_IOA O_sdram_addr(2) -> R1C27_IOA O_sdram_addr(3) -> R1C26_IOA O_sdram_addr(4) -> R1C22_IOB O_sdram_addr(5) -> R1C21_IOB O_sdram_addr(6) -> R1C18_IOB O_sdram_addr(7) -> R1C18_IOA O_sdram_addr(8) -> R1C14_IOB O_sdram_addr(9) -> R1C14_IOA O_sdram_addr(10) -> R1C31_IOB O_sdram_addr(11) -> R1C9_IOB O_sdram_dqm(0) -> R1C44_IOB O_sdram_dqm(1) -> R1C4_IOA O_sdram_ba(0) -> R1C35_IOA O_sdram_ba(1) -> R1C32_IOA ```
PypiClean
/K40Silence-0.0.1.tar.gz/K40Silence-0.0.1/src/core/svg_io.py
import os from ..svgelements import (SVG, Group, Path, Shape, SVGImage, SVGText) MILS_PER_MM = 39.3701 def plugin(kernel, lifecycle=None): if lifecycle == "register": kernel.register("load/SVGLoader", SVGLoader) class SVGLoader: @staticmethod def load_types(): yield "Scalable Vector Graphics", ("svg",), "image/svg+xml" @staticmethod def load(context, elements_modifier, pathname, **kwargs): bed_dim = context.get_context("bed") bed_dim.setting(float, "bed_width", 325.0) bed_dim.setting(float, "bed_height", 220.0) if "svg_ppi" in kwargs: ppi = float(kwargs["svg_ppi"]) else: ppi = 96.0 if ppi == 0: ppi = 96.0 scale_factor = 1000.0 / ppi svg = SVG.parse( source=pathname, reify=False, width="%fmm" % (bed_dim.bed_width), height="%fmm" % (bed_dim.bed_height), ppi=ppi, color="none", transform="scale(%f)" % scale_factor, ) return SVGLoader.parse( svg, elements_modifier, pathname ) @staticmethod def parse(svg, elements_modifier, pathname): for element in svg: try: if element.values["visibility"] == "hidden": continue except KeyError: pass except AttributeError: pass # if isinstance(element, SVGText): # if element.text is None: # continue # if element.stroke == "red": # elements_modifier.cut_cutcode(element) # elif element.stroke == "blue": # elements_modifier.engrave_cutcode(element) # else: # elements_modifier.raster_cutcode(element) if isinstance(element, Path): if len(element) == 0: continue element.approximate_arcs_with_cubics() if element.stroke == "red": elements_modifier.cut_cutcode(abs(element)) elif element.stroke == "blue": elements_modifier.engrave_cutcode(abs(element)) else: elements_modifier.raster_cutcode(abs(element)) elif isinstance(element, Shape): if not element.transform.is_identity(): # Shape Reification failed. element = Path(element) element.reify() element.approximate_arcs_with_cubics() if len(element) == 0: continue # Degenerate. else: e = Path(element) if len(e) == 0: continue # Degenerate. if element.stroke == "red": elements_modifier.cut_cutcode(abs(Path(element))) elif element.stroke == "blue": elements_modifier.engrave_cutcode(abs(Path(element))) else: elements_modifier.raster_cutcode(abs(Path(element))) elif isinstance(element, SVGImage): try: element.load(os.path.dirname(pathname)) if element.image is not None: elements_modifier.raster_cutcode(abs(element)) except OSError: pass elif isinstance(element, SVG): continue elif isinstance(element, Group): SVGLoader.parse(element, elements_modifier, pathname) continue return True
PypiClean
/fangnao-0.1.0.tar.gz/FangNao-0.1.0/docs/apis/usage_of_inputfactory.py
# # Usage of `input_factory` module # + import numpy as np import matplotlib.pyplot as plt import brainpy as nn # - # ## constant_current() # `constant_current()` function helps you to format constant current in several periods. # # For example, if you want to get an input in which 0-100 ms is zero, 100-400 ms is value `1.`, # and 400-500 ms is zero, then, you can define: # + current, duration = nn.input_factory.constant_current([(0, 100), (1, 300), (0, 100)], 0.1) fig, gs = nn.visualize.get_figure(1, 1) fig.add_subplot(gs[0, 0]) ts = np.arange(0, duration, 0.1) plt.plot(ts, current) plt.title('[(0, 100), (1, 300), (0, 100)]') plt.show() # - # Another example is this: # + current, duration = nn.input_factory.constant_current([(-1, 10), (1, 3), (3, 30), (-0.5, 10)], 0.1) fig, gs = nn.visualize.get_figure(1, 1) fig.add_subplot(gs[0, 0]) ts = np.arange(0, duration, 0.1) plt.plot(ts, current) plt.title('[(-1, 10), (1, 3), (3, 30), (-0.5, 10)]') plt.show() # - # ## spike_current() # `spike_current()` function helps you to construct an input like a series of short-time spikes. # + points, length, size, duration, _dt = [10, 20, 30, 200, 300], 1., 0.5, 1000, 0.1 current = nn.input_factory.spike_current(points, length, size, duration, _dt) fig, gs = nn.visualize.get_figure(1, 1) fig.add_subplot(gs[0, 0]) ts = np.arange(0, duration, _dt) plt.plot(ts, current) plt.title(r'points=%s, duration=%d' % (points, duration)) plt.show() # - # In the above example, at 10 ms, 20 ms, 30 ms, 200 ms, 300 ms, the assumed neuron produces spikes. Each spike # lasts 1 ms, and the spike current is 0.5. # ## ramp_current() # + fig, gs = nn.visualize.get_figure(2, 1) duration, _dt = 1000, 0.1 current = nn.input_factory.ramp_current(0, 1, duration) ts = np.arange(0, duration, _dt) fig.add_subplot(gs[0, 0]) plt.plot(ts, current) plt.title(r'$c_{start}$=0, $c_{end}$=%d, duration, dt=%.1f, ' r'$t_{start}$=0, $t_{end}$=None' % (duration, _dt,)) duration, _dt, t_start, t_end = 1000, 0.1, 200, 800 current = nn.input_factory.ramp_current(0, 1, duration, t_start, t_end) ts = np.arange(0, duration, _dt) fig.add_subplot(gs[1, 0]) plt.plot(ts, current) plt.title(r'$c_{start}$=0, $c_{end}$=1, duration=%d, dt=%.1f, ' r'$t_{start}$=%d, $t_{end}$=%d' % (duration, _dt, t_start, t_end)) plt.show()
PypiClean
/360monitoringcli-1.0.19-py3-none-any.whl/cli360monitoring/lib/servernotifications.py
import json from prettytable import PrettyTable from datetime import datetime from .api import apiGet from .config import Config from .functions import printError, printWarn class ServerNotifications(object): def __init__(self, config: Config, format: str = 'table'): self.config = config self.format = format self.notifications = None self.table = PrettyTable(field_names=['Start', 'End', 'Status', 'Summary']) self.table.align['Start'] = 'c' self.table.align['End'] = 'c' self.table.align['Status'] = 'c' self.table.align['Summary'] = 'l' def fetchData(self, serverId: str, startTimestamp: float, endTimestamp: float): """Retrieve a list of all alerts of a specified server in the specified time period""" # if data is already downloaded, use cached data if self.notifications != None: return True params = self.config.params() params['start'] = int(startTimestamp) params['end'] = int(endTimestamp) response_json = apiGet('server/' + serverId + '/notifications', 200, self.config, params) if response_json: if 'data' in response_json: self.notifications = response_json['data'] return True else: printWarn('No notifications found for server', serverId) self.notifications = None return False else: self.notifications = None return False def list(self, serverId: str, startTimestamp: float, endTimestamp: float, sort: str = '', reverse: bool = False, limit: int = 0): """Iterate through list of server notifications and print details""" if self.fetchData(serverId, startTimestamp, endTimestamp): # if JSON was requested and no filters, then just print it without iterating through if self.format == 'json': print(json.dumps(self.notifications, indent=4)) return # Iterate through list of servers and print data, etc. for notification in self.notifications: self.print(notification) self.printFooter(sort=sort, reverse=reverse, limit=limit) def printFooter(self, sort: str = '', reverse: bool = False, limit: int = 0): """Print table if table format requested""" if (self.format == 'table'): # if self.config.hide_ids: # self.table.del_column('ID') if sort: # if sort contains the column index instead of the column name, get the column name instead if sort.isdecimal(): sort = self.table.get_csv_string().split(',')[int(sort) - 1] else: sort = None if limit > 0: print(self.table.get_string(sortby=sort, reversesort=reverse, start=0, end=limit)) else: print(self.table.get_string(sortby=sort, reversesort=reverse)) elif (self.format == 'csv'): print(self.table.get_csv_string(delimiter=self.config.delimiter)) def print(self, notification): """Print the data of the specified contact""" if (self.format == 'json'): print(json.dumps(notification, indent=4)) return startTimestamp = datetime.fromtimestamp(float(notification['start'])) endTimestamp = datetime.fromtimestamp(float(notification['end'])) status = notification['status'] summary = notification['summary'] self.table.add_row([startTimestamp.strftime('%Y-%m-%d %H:%M:%S'), endTimestamp.strftime('%Y-%m-%d %H:%M:%S'), status, summary])
PypiClean
/Dooders-0.0.3.tar.gz/Dooders-0.0.3/dooders/sdk/models/arena.py
from typing import TYPE_CHECKING, Generator import networkx as nx from pydantic import BaseModel from sklearn.decomposition import PCA from dooders.sdk.models import Dooder if TYPE_CHECKING: from dooders.sdk.base.reality import BaseSimulation gene_embedding = PCA(n_components=3) class Attributes(BaseModel): dooders_created: int = 0 dooders_died: int = 0 class Arena: """ Class manages Dooder objects in the simulation. The class also keeps track of the total number of Dooders created and terminated for each cycle. (The Information class will have historical data for the above stats. The counts are reset after each cycle.) Parameters ---------- simulation : Simulation object The simulation object that contains the environment, agents, and other models. Attributes ---------- dooders_created : int The total number of Dooders created (for the current cycle). dooders_terminated: int The total number of Dooders terminated (for the current cycle). graph : networkx.Graph The graph object that contains the Dooder objects and relationships. active_dooders : dict Current active Dooders indexed by their unique id. graveyard : list Terminated Dooders IDs simulation: see ``Parameters`` section. seed : function The function that generates the seed population to start the simulation. Methods ------- _setup() -> None Setup the Arena. This will reset attributes. step() -> None Step the Arena forward. Currently, this will only reset attributes. reset() -> None Reset main attributes after each cycle. generate_seed_population() -> None Generate seed population based on the selected strategy. generate_dooder(position: tuple, tag: str = 'Seed') -> Dooder Generate a new dooder and place it in the environment place_dooder(dooder: Dooder, position: tuple) -> None Place a dooder in the environment _generate_dooder(position: tuple, tag: str = 'Seed') -> Dooder Generate a new dooder with a provided position terminate_dooder(dooder: Dooder) -> None Terminate a dooder get_dooder(dooder_id: str) -> Dooder Get a dooder by its unique id dooders() -> Generator[Dooder, None, None] Get all dooders in the environment collect_dooders() -> None Collect all stats from dooders Properties ---------- active_dooder_count : int The number of active Dooders. state : dict The state of the Arena. weights : list The weights of all active Dooders. """ total_counter = 0 def __init__(self, simulation: 'BaseSimulation', settings) -> None: self.graph = nx.Graph() self.active_dooders = {} self.graveyard = {} self.simulation = simulation self.settings = settings def _setup(self) -> None: self.reset() # set attributes def step(self) -> None: """ Step the Arena forward. Currently, this will only reset attributes. """ self.reset() def reset(self) -> None: """ Reset main attributes after each cycle. """ for attribute in Attributes(): setattr(self, attribute[0], attribute[1]) def generate_seed_population(self) -> None: """ Generate seed population based on the selected strategy. """ self.initial_dooder_count = self.settings.get('SeedCount') for position in self.SeedPlacement(self.initial_dooder_count): self.generate_dooder(position) def _generate_dooder(self, position: tuple, tag: str = 'Seed') -> 'Dooder': """ Generate a new dooder with a provided position Parameters ---------- position : tuple position to place dooder, (x, y) Returns ------- Dooder: dooder object Newly generated Dooder object """ dooder = Dooder(self.simulation.generate_id(), position, self.simulation) dooder.tag = tag dooder.gene_embedding = gene_embedding return dooder def generate_dooder(self, position: tuple) -> None: """ Generate a new dooder and place it in the environment Parameters ---------- position : tuple position to place dooder, (x, y) """ dooder = self._generate_dooder(position) self.place_dooder(dooder, position) dooder.log(granularity=1, message=f"Created {dooder.id}", scope='Dooder') def place_dooder(self, dooder: 'Dooder', position: tuple) -> None: """ Place dooder in environment The method will also add the dooder to the active_dooders dictionary and add the dooder to the graph for relationship tracking. Parameters ---------- dooder : Dooder object position : tuple position to place dooder, (x, y) """ self.simulation.environment.place_object(dooder, position) self.simulation.time.add(dooder) self.active_dooders[dooder.id] = dooder #! TODO: Add more attributes to graph node self.graph.add_node(dooder.id) self.dooders_created += 1 self.total_counter += 1 dooder.number = self.total_counter def terminate_dooder(self, dooder: 'Dooder') -> None: """ Terminate dooder based on the unique id Removes from active_dooders, environment, and time Parameters ---------- dooder_id : str dooder unique id, generated by the simulation """ self.simulation.time.remove(dooder) self.simulation.environment.remove_object(dooder) self.active_dooders.pop(dooder.id) self.graveyard[dooder.id] = dooder.state self.dooders_died += 1 del dooder def get_dooder(self, dooder_id: str = None) -> 'Dooder': """ Get dooder based on the unique id, if no id is provided, a random dooder will be selected from the active dooders. If no active dooders are available, a random dooder will be selected from the graveyard. Parameters: ---------- dooder_id : str dooder unique id, generated by the simulation Returns ------- Dooder: dooder object """ if dooder_id is None: if len(self.active_dooders) == 0: return self.simulation.random.choice(list(self.graveyard.values())) else: return self.simulation.random.choice(list(self.active_dooders.values())) else: return self.active_dooders[dooder_id] def dooders(self) -> Generator['Dooder', None, None]: """ Generator that yields all active dooders Yields ------ Dooder: dooder object """ for dooder in self.active_dooders.values(): yield dooder def collect(self) -> dict: """ Collects the attributes of dooders for simulation statistics. Returns ------- dict A dictionary of the dooders' attributes. """ dooder_attributes = [ (dooder.age, dooder.hunger, dooder.energy_consumed) for dooder in self.dooders()] dooder_count = len(dooder_attributes) def median(data: list) -> float: data = sorted(data) n = len(data) mid = n // 2 return (data[mid] if n % 2 else (data[mid - 1] + data[mid]) / 2) if dooder_count > 0: ages, hunger, energy_consumed = zip(*dooder_attributes) else: ages, hunger, energy_consumed = [], [], [] return { 'active_dooder_count': self.active_dooder_count, 'terminated_dooder_count': self.dooders_died, 'created_dooder_count': self.dooders_created, 'average_dooder_hunger': round(sum(hunger) / dooder_count, 3) if hunger else 0, 'median_dooder_age': median(ages) if ages else 0, 'average_dooder_age': round(sum(ages) / dooder_count, 3) if ages else 0, 'average_energy_consumed': round(sum(energy_consumed) / dooder_count, 3) if energy_consumed else 0 } @property def active_dooder_count(self) -> int: """ Returns the number of active dooders """ return len(self.active_dooders) @property def state(self) -> dict: """ Returns the state of the Arena of all active dooders """ return {**self.graveyard, **{k: v.state for k, v in self.active_dooders.items()}} @property def weights(self) -> dict: """ Returns the weights of the Arena for all active dooders """ return [v.weights['Consume'] for v in self.active_dooders.values()] @property def current_cycle(self) -> int: """ Returns the current cycle of the simulation """ return self.simulation.cycle_number
PypiClean
/Freddie-0.9.8-py3-none-any.whl/freddie/db/fields.py
from typing import Any, Iterable, List, Type, Union from peewee import ( Expression, Field as DBField, FieldAccessor, ForeignKeyField, MetaField, Model, Query, ) class ManyToManyAccessor(FieldAccessor): field: 'ManyToManyField' def __get__( self, instance: Model, instance_type: Type[Model] = None ) -> Union[list, 'ManyToManyField']: if instance is not None: return instance.__data__.get(self.name, []) # type: ignore return self.field class ManyToManyField(MetaField): accessor_class = ManyToManyAccessor model: 'ModelType' rel_model: 'ModelType' through_model_name: str through_model: 'ModelType' def __init__(self, rel_model: 'ModelType', through_model_name: str, *args: Any, **kwargs: Any): super().__init__(*args, **kwargs) self.rel_model = rel_model self.through_model_name = through_model_name def __call__(self, pk: Any) -> 'QueryBuilder': return QueryBuilder(pk, self) @property def model_name(self) -> str: return self.model.__name__.lower() @property def rel_model_name(self) -> str: return self.rel_model.__name__.lower() @property def rel_model_keys(self) -> Iterable[str]: return tuple(self.rel_model._meta.fields.keys()) @property def rel_model_pk(self) -> DBField: return self.rel_model._meta.primary_key @property def model_fk(self) -> ForeignKeyField: return getattr(self.through_model, self.model_name) @property def rel_model_fk(self) -> ForeignKeyField: return getattr(self.through_model, self.rel_model_name) @property def property_deps(self) -> List[DBField]: '''ManyToManyField depends on field referenced by relation to join tables''' return [self.model_fk.rel_field] class QueryBuilder: pk: Any field: ManyToManyField name: str __slots__ = ('pk', 'field', 'name') def __init__(self, pk: Any, field: ManyToManyField): super().__init__() self.pk = pk self.field = field def get( self, fields: Iterable[DBField] = None, conditions: Iterable[Expression] = None, ) -> Query: related_objects_pks = self.field.through_model.select(self.field.rel_model_fk).where( self.field.model_fk == self.pk ) rel_model_fields = fields if fields else (self.field.rel_model,) query = self.field.rel_model.select(*rel_model_fields).where( self.field.rel_model_pk << related_objects_pks, *(conditions or ()) ) return query def add(self, *related_model_ids: Any) -> Query: if not related_model_ids: raise ValueError('No objects IDs passed for many-to-many relation') data = [ {self.field.rel_model_name: related_id, self.field.model_name: self.pk} for related_id in related_model_ids ] return self.field.through_model.insert_many(data) def clear(self) -> Query: return self.field.through_model.delete().where(self.field.model_fk == self.pk) ModelType = Type[Model]
PypiClean
/Bgp-0.2.tar.gz/Bgp-0.2/bgp/bgplib.py
# http://trac.secdev.org/scapy/ticket/162 # scapy.contrib.description = BGP # scapy.contrib.status = loads import pdb from scapy.packet import * from scapy.fields import * from scapy.layers.inet import TCP class BGPIPField(Field): """Represents how bgp dose an ip prefix in (length, prefix)""" def mask2iplen(self,mask): """turn the mask into the length in bytes of the ip field""" return (mask + 7) // 8 def h2i(self, pkt, h): """human x.x.x.x/y to internal""" ip,mask = re.split( '/', h) return int(mask), ip def i2h( self, pkt, i): mask, ip = i return ip + '/' + str( mask ) def i2repr( self, pkt, i): """make it look nice""" return self.i2h(pkt,i) def i2len(self, pkt, i): """rely on integer division""" mask, ip = i return self.mask2iplen(mask) + 1 def i2m(self, pkt, i): """internal (ip as bytes, mask as int) to machine""" mask, ip = i.default ip = inet_aton( ip ) return struct.pack(">B",mask) + ip[:self.mask2iplen(mask)] def addfield(self, pkt, s, val): return s+self.i2m(pkt, val) def getfield(self, pkt, s): l = self.mask2iplen( struct.unpack(">B",s[0])[0] ) + 1 return s[l:], self.m2i(pkt,s[:l]) def m2i(self,pkt,m): mask = struct.unpack(">B",m[0])[0] ip = "".join( [ m[i + 1] if i < self.mask2iplen(mask) else '\x00' for i in range(4)] ) return (mask,inet_ntoa(ip)) class BGPHeader(Packet): """The first part of any BGP packet""" name = "BGP header" fields_desc = [ XBitField("marker",0xffffffffffffffffffffffffffffffff, 0x80 ), ShortField("len", None), ByteEnumField("type", 4, {0:"none", 1:"open",2:"update",3:"notification",4:"keep_alive"}), ] def post_build(self, p, pay): if self.len is None and pay: l = len(p) + len(pay) p = p[:16]+struct.pack("!H", l)+p[18:] return p+pay class BGPOptionalParameter(Packet): """Format of optional Parameter for BGP Open""" name = "BGP Optional Parameters" fields_desc = [ ByteField("type", 2), ByteField("len", None), StrLenField("value", "", length_from = lambda x: x.len), ] def post_build(self,p,pay): if self.len is None: l = len(p) - 2 # 2 is length without value p = p[:1]+struct.pack("!B", l)+p[2:] return p+pay def extract_padding(self, p): """any thing after this packet is extracted is padding""" return "",p class BGPOpen(Packet): """ Opens a new BGP session""" name = "BGP Open Header" fields_desc = [ ByteField("version", 4), ShortField("AS", 0), ShortField("hold_time", 0), IPField("bgp_id","0.0.0.0"), ByteField("opt_parm_len", None), PacketListField("opt_parm",[], BGPOptionalParameter, length_from=lambda p:p.opt_parm_len), ] def post_build(self, p, pay): if self.opt_parm_len is None: l = len(p) - 10 # 10 is regular length with no additional options p = p[:9] + struct.pack("!B",l) +p[10:] return p+pay class BGPAuthenticationData(Packet): name = "BGP Authentication Data" fields_desc = [ ByteField("AuthenticationCode", 0), ByteField("FormMeaning", 0), FieldLenField("Algorithm", 0), ] class BGPPathAttribute(Packet): "the attribute of total path" name = "BGP Attribute fields" fields_desc = [ FlagsField("flags", 0x40, 8, ["NA0","NA1","NA2","NA3","Extended-Length","Partial","Transitive","Optional"]), #Extened leght may not work ByteEnumField("type", 1, {1:"ORIGIN", 2:"AS_PATH", 3:"NEXT_HOP", 4:"MULTI_EXIT_DISC", 5:"LOCAL_PREF", 6:"ATOMIC_AGGREGATE", 7:"AGGREGATOR"}), ByteField("attr_len", None), StrLenField("value", "", length_from = lambda p: p.attr_len), ] def post_build(self, p, pay): if self.attr_len is None: l = len(p) - 3 # 3 is regular length with no additional options p = p[:2] + struct.pack("!B",l) +p[3:] return p+pay def extract_padding(self, p): """any thing after this packet is extracted is padding""" return "",p class BGPUpdate(Packet): """Update the routes WithdrawnRoutes = UnfeasiableRoutes""" name = "BGP Update fields" fields_desc = [ ShortField("withdrawn_len", None), FieldListField("withdrawn",[], BGPIPField("","0.0.0.0/0"), length_from=lambda p:p.withdrawn_len), ShortField("tp_len", None), PacketListField("total_path", [], BGPPathAttribute, length_from = lambda p: p.tp_len), FieldListField("nlri",[], BGPIPField("","0.0.0.0/0"), length_from=lambda p:p.underlayer.len - 23 - p.tp_len - p.withdrawn_len), # len should be BGPHeader.len ] def post_build(self,p,pay): wl = self.withdrawn_len subpacklen = lambda p: len ( str( p )) subfieldlen = lambda p: BGPIPField("", "0.0.0.0/0").i2len(self, p ) if wl is None: wl = sum ( map ( subfieldlen , self.withdrawn)) p = p[:0]+struct.pack("!H", wl)+p[2:] if self.tp_len is None: l = sum ( map ( subpacklen , self.total_path)) p = p[:2+wl]+struct.pack("!H", l)+p[4+wl:] return p+pay class BGPNotification(Packet): name = "BGP Notification fields" fields_desc = [ ByteEnumField("ErrorCode",0,{1:"Message Header Error",2:"OPEN Message Error",3:"UPDATE Messsage Error",4:"Hold Timer Expired",5:"Finite State Machine",6:"Cease"}), ByteEnumField("ErrorSubCode",0,{1:"MessageHeader",2:"OPENMessage",3:"UPDATEMessage"}), LongField("Data", 0), ] class BGPErrorSubcodes(Packet): name = "BGP Error Subcodes" Fields_desc = [ ByteEnumField("MessageHeader",0,{1:"Connection Not Synchronized",2:"Bad Message Length",3:"Bad Messsage Type"}), ByteEnumField("OPENMessage",0,{1:"Unsupported Version Number",2:"Bad Peer AS",3:"Bad BGP Identifier",4:"Unsupported Optional Parameter",5:"Authentication Failure",6:"Unacceptable Hold Time"}), ByteEnumField("UPDATEMessage",0,{1:"Malformed Attribute List",2:"Unrecognized Well-Known Attribute",3:"Missing Well-Known Attribute",4:"Attribute Flags Error",5:"Attribute Length Error",6:"Invalid ORIGIN Attribute",7:"AS Routing Loop",8:"Invalid NEXT_HOP Attribute",9:"Optional Attribute Error",10:"Invalid Network Field",11:"Malformed AS_PATH"}), ] bind_layers( TCP, BGPHeader, dport=179) bind_layers( TCP, BGPHeader, sport=179) bind_layers( BGPHeader, BGPOpen, type=1) bind_layers( BGPHeader, BGPUpdate, type=2) bind_layers( BGPHeader, BGPHeader, type=4) if __name__ == "__main__": print "Bgp lib" # interact(mydict=globals(), mybanner="BGP addon .05")
PypiClean
/KqlmagicCustom-0.1.114.post13-py3-none-any.whl/Kqlmagic/kusto_client.py
from typing import Dict import re import uuid import json from .my_aad_helper_msal import _MyAadHelper, ConnKeysKCSB from .kql_response import KqlQueryResponse, KqlError from .constants import Constants, ConnStrKeys, Cloud from ._version import __version__ from .log import logger from .exceptions import KqlEngineError from .my_utils import json_dumps from .kql_client import KqlClient class KustoClient(KqlClient): """ Kusto client wrapper for Python.""" _ADX_CLIENT_BY_CLOUD = { Cloud.PUBLIC: "db662dc1-0cfe-4e1c-a843-19a68e65be58", Cloud.MOONCAKE: "db662dc1-0cfe-4e1c-a843-19a68e65be58", Cloud.FAIRFAX: "730ea9e6-1e1d-480c-9df6-0bb9a90e1a0f", Cloud.BLACKFOREST: "db662dc1-0cfe-4e1c-a843-19a68e65be58", Cloud.PPE: "db662dc1-0cfe-4e1c-a843-19a68e65be58", } _ADX_CLIENT_BY_CLOUD[Cloud.CHINA] = _ADX_CLIENT_BY_CLOUD[Cloud.MOONCAKE] _ADX_CLIENT_BY_CLOUD[Cloud.GOVERNMENT] = _ADX_CLIENT_BY_CLOUD[Cloud.FAIRFAX] _ADX_CLIENT_BY_CLOUD[Cloud.GERMANY] = _ADX_CLIENT_BY_CLOUD[Cloud.BLACKFOREST] _MGMT_ENDPOINT_VERSION = "v1" _QUERY_ENDPOINT_VERSION = "v2" _MGMT_ENDPOINT_TEMPLATE = "{0}/{1}/rest/mgmt" _QUERY_ENDPOINT_TEMPLATE = "{0}/{1}/rest/query" _ADX_PUBLIC_CLOUD_URL_SUFFIX = ".windows.net" _ADX_MOONCAKE_CLOUD_URL_SUFFIX = ".chinacloudapi.cn" _ADX_BLACKFOREST_CLOUD_URL_SUFFIX = ".cloudapi.de" _ADX_FAIRFAX_CLOUD_URL_SUFFIX = ".usgovcloudapi.net" _CLOUD_BY_ADX_HOST_SUFFIX = { _ADX_PUBLIC_CLOUD_URL_SUFFIX: Cloud.PUBLIC, _ADX_FAIRFAX_CLOUD_URL_SUFFIX: Cloud.FAIRFAX, _ADX_MOONCAKE_CLOUD_URL_SUFFIX: Cloud.MOONCAKE, _ADX_BLACKFOREST_CLOUD_URL_SUFFIX: Cloud.BLACKFOREST } _ADX_URL_SUFFIX_BY_CLOUD = { Cloud.PUBLIC: _ADX_PUBLIC_CLOUD_URL_SUFFIX, Cloud.MOONCAKE: _ADX_MOONCAKE_CLOUD_URL_SUFFIX, Cloud.FAIRFAX: _ADX_FAIRFAX_CLOUD_URL_SUFFIX, Cloud.BLACKFOREST: _ADX_BLACKFOREST_CLOUD_URL_SUFFIX } _ADX_URL_SUFFIX_BY_CLOUD[Cloud.CHINA] = _ADX_URL_SUFFIX_BY_CLOUD[Cloud.MOONCAKE] _ADX_URL_SUFFIX_BY_CLOUD[Cloud.GOVERNMENT] = _ADX_URL_SUFFIX_BY_CLOUD[Cloud.FAIRFAX] _ADX_URL_SUFFIX_BY_CLOUD[Cloud.GERMANY] = _ADX_URL_SUFFIX_BY_CLOUD[Cloud.BLACKFOREST] _DATA_SOURCE_TEMPLATE = "https://{0}.kusto{1}" _WEB_CLIENT_VERSION = __version__ _FQN_DRAFT_PROXY_CLUSTER_PATTERN = re.compile(r"http(s?)\:\/\/ade\.(int\.)?(applicationinsights|loganalytics)\.(?P<host_suffix>(io|cn|us|de)).*$") _FQN_DRAFT_PROXY_CLUSTER_PATTERN2 = re.compile(r"http(s?)\:\/\/adx\.(int\.)?monitor\.azure\.(?P<host_suffix>(com|cn|us|de)).*$") _CLOUD_BY_ADXPROXY_HOST_SUFFIX = { "com": Cloud.PUBLIC, "io": Cloud.PUBLIC, "us": Cloud.FAIRFAX, "cn": Cloud.MOONCAKE, "de": Cloud.BLACKFOREST } def __init__(self, cluster_name:str, conn_kv:Dict[str,str], **options)->None: """ Kusto Client constructor. Parameters ---------- kusto_cluster : str Kusto cluster endpoint. Example: https://help.kusto.windows.net client_id : str The AAD application ID of the application making the request to Kusto client_secret : str The AAD application key of the application making the request to Kusto. if this is given, then username/password should not be. username : str The username of the user making the request to Kusto. if this is given, then password must follow and the client_secret should not be given. password : str The password matching the username of the user making the request to Kusto authority : 'microsoft.com', optional In case your tenant is not microsoft please use this param. """ super(KustoClient, self).__init__() self.default_cloud = options.get("cloud") cluster_name = cluster_name or conn_kv[ConnStrKeys.CLUSTER] if cluster_name.find("://") > 0: data_source = cluster_name elif cluster_name.find(".kusto.") > 0: data_source = f"https://{cluster_name}" elif cluster_name.find(".kusto(mfa).") > 0: data_source = f"https://{cluster_name}" elif cluster_name.find(".kustomfa.") > 0: data_source = f"https://{cluster_name}" else: adx_url_suffix = self._ADX_URL_SUFFIX_BY_CLOUD.get(self.default_cloud) if not adx_url_suffix: raise KqlEngineError(f"adx not supported in cloud {self.default_cloud}") if cluster_name.endswith(adx_url_suffix): data_source = f"https://{cluster_name}" else: data_source = self._DATA_SOURCE_TEMPLATE.format(cluster_name, adx_url_suffix) self._mgmt_endpoint = self._MGMT_ENDPOINT_TEMPLATE.format(data_source, self._MGMT_ENDPOINT_VERSION) self._query_endpoint = self._QUERY_ENDPOINT_TEMPLATE.format(data_source, self._QUERY_ENDPOINT_VERSION) match = self._FQN_DRAFT_PROXY_CLUSTER_PATTERN.match(data_source) or self._FQN_DRAFT_PROXY_CLUSTER_PATTERN2.match(data_source) if match: cloud = self._CLOUD_BY_ADXPROXY_HOST_SUFFIX.get(match.group("host_suffix")) or self.default_cloud cloud_url_suffix = self._ADX_URL_SUFFIX_BY_CLOUD.get(cloud) auth_resource = f"https://kusto.kusto{cloud_url_suffix}" else: auth_resource = data_source cloud = self.getCloudFromHost(auth_resource) client_id = self._ADX_CLIENT_BY_CLOUD[cloud] http_client = self._http_client if options.get("auth_use_http_client") else None self._aad_helper = _MyAadHelper(ConnKeysKCSB(conn_kv, auth_resource), client_id, http_client=http_client, **options) if conn_kv.get(ConnStrKeys.ANONYMOUS) is None else None self._data_source = data_source @property def data_source(self)->str: return self._data_source @property def deep_link_data_source(self)->str: match = self._FQN_DRAFT_PROXY_CLUSTER_PATTERN.match(self.data_source) or self._FQN_DRAFT_PROXY_CLUSTER_PATTERN2.match(self.data_source) if match: cloud = self._CLOUD_BY_ADXPROXY_HOST_SUFFIX.get(match.group("host_suffix")) or self.default_cloud cloud_url_suffix = self._ADX_URL_SUFFIX_BY_CLOUD.get(cloud) return f"https://help.kusto{cloud_url_suffix}" else: return self._data_source def getCloudFromHost(self, host:str)->str: for adx_host_suffix in self._CLOUD_BY_ADX_HOST_SUFFIX: if host.endswith(adx_host_suffix): return self._CLOUD_BY_ADX_HOST_SUFFIX[adx_host_suffix] return Cloud.PUBLIC def execute(self, kusto_database:str, kusto_query:str, accept_partial_results:bool=False, **options)->KqlQueryResponse: """ Execute a simple query or management command Parameters ---------- kusto_database : str Database against query will be executed. query : str Query to be executed accept_partial_results : bool Optional parameter. If query fails, but we receive some results, we consider results as partial. If this is True, results are returned to client, even if there are exceptions. If this is False, exception is raised. Default is False. options["timeout"] : float, optional Optional parameter. Network timeout in seconds. Default is no timeout. """ if kusto_query.startswith("."): endpoint_version = self._MGMT_ENDPOINT_VERSION endpoint = self._mgmt_endpoint else: endpoint_version = self._QUERY_ENDPOINT_VERSION endpoint = self._query_endpoint # print("### db: ", kusto_database, " ###") # print("### csl: ", kusto_query, " ###") # kusto_database = kusto_database.replace(" ", "") # print("### db: ", kusto_database, " ###") request_payload = { "db": kusto_database, "csl": kusto_query, } client_version = f"{Constants.MAGIC_CLASS_NAME}.Python.Client:{self._WEB_CLIENT_VERSION}" client_request_id = f"{Constants.MAGIC_CLASS_NAME}.execute" client_request_id_tag = options.get("request_id_tag") if client_request_id_tag is not None: client_request_id = f"{client_request_id};{client_request_id_tag};{str(uuid.uuid4())}/{self._session_guid}/AzureDataExplorer" else: client_request_id = f"{client_request_id};{str(uuid.uuid4())}/{self._session_guid}/AzureDataExplorer" app = f'{Constants.MAGIC_CLASS_NAME};{options.get("notebook_app")}' app_tag = options.get("request_app_tag") if app_tag is not None: app = f"{app};{app_tag}" query_properties:dict = options.get("query_properties") or {} if type(kusto_query) == str: first_word = kusto_query.split(maxsplit=1)[0].upper() # ADX SQL mode if first_word in ["SELECT", "UPDATE", "CREATE", "DELETE", "EXPLAIN"]: # SQL to Kusto cheat sheet: https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/sqlcheatsheet # MS-TDS/T-SQL Differences between Kusto Microsoft SQL Server: https://docs.microsoft.com/en-us/azure/data-explorer/kusto/api/tds/sqlknownissues query_properties["query_language"] = "sql" cache_max_age = options.get("request_cache_max_age") if cache_max_age is not None and cache_max_age > 0: query_properties["query_results_cache_max_age"] = query_properties.get("query_results_cache_max_age")\ or f"{cache_max_age}s" if len(query_properties) > 0: properties = { "Options": query_properties, "Parameters": {}, "ClientRequestId": client_request_id } request_payload["properties"] = json_dumps(properties) request_headers = { "Accept": "application/json", "Accept-Encoding": "gzip,deflate", "Content-Type": "application/json; charset=utf-8", "x-ms-client-version": client_version, "x-ms-client-request-id": client_request_id, "x-ms-app": app } user_tag = options.get("request_user_tag") if user_tag is not None: request_headers["x-ms-user"] = user_tag if self._aad_helper is not None: request_headers["Authorization"] = self._aad_helper.acquire_token() request_headers["Fed"] = "True" cache_max_age = options.get("request_cache_max_age") if cache_max_age is not None: if cache_max_age > 0: request_headers["Cache-Control"] = f"max-age={cache_max_age}" else: request_headers["Cache-Control"] = "no-cache" # print("endpoint: ", endpoint) # print("headers: ", request_headers) # print("payload: ", request_payload) # print("timeout: ", options.get("timeout")) log_request_headers = request_headers if request_headers.get("Authorization"): log_request_headers = request_headers.copy() log_request_headers["Authorization"] = "..." logger().debug(f"KustoClient::execute - POST request - url: {endpoint}, headers: {log_request_headers}, payload: {request_payload}, timeout: {options.get('timeout')}") # collect this information, in case bug report will be generated KqlClient.last_query_info = { "request": { "endpoint": endpoint, "headers": log_request_headers, "payload": request_payload, "timeout": options.get("timeout"), } } response = self._http_client.post(endpoint, headers=request_headers, json=request_payload, timeout=options.get("timeout")) logger().debug(f"KustoClient::execute - response - status: {response.status_code}, headers: {response.headers}, payload: {response.text}") # print("response status code: ", response.status_code) # print("response", response) # print("response text", response.text) # collect this information, in case bug report will be generated self.last_query_info["response"] = { # pylint: disable=unsupported-assignment-operation "status_code": response.status_code } if response.status_code < 200 or response.status_code >= 300: # pylint: disable=E1101 try: parsed_error = json.loads(response.text) except: parsed_error = response.text # collect this information, in case bug report will be generated self.last_query_info["response"]["error"] = parsed_error # pylint: disable=unsupported-assignment-operation, unsubscriptable-object raise KqlError(response.text, response) kql_response = KqlQueryResponse(response.json(), endpoint_version) if kql_response.has_exceptions() and not accept_partial_results: try: error_message = json_dumps(kql_response.get_exceptions()) except: error_message = str(kql_response.get_exceptions()) raise KqlError(error_message, response, kql_response) return kql_response
PypiClean
/KiMoPack_noqt-6.13.7-py3-none-any.whl/KiMoPack_noqt/plot_func.py
version = "6.13.7" Copyright = '@Jens Uhlig' if 1: #Hide imports import os from os import walk import sys import pandas import numpy as np from numpy import power, log10, shape import numbers import matplotlib import matplotlib.colors as colors import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.image as mpimg from matplotlib.gridspec import GridSpec from matplotlib.ticker import FuncFormatter from matplotlib.colors import BoundaryNorm from matplotlib.patches import Rectangle from matplotlib.ticker import MaxNLocator from matplotlib.offsetbox import AnchoredText from matplotlib.ticker import AutoMinorLocator from matplotlib.patches import Rectangle from matplotlib import transforms import re import scipy import scipy.constants import scipy.interpolate as inp from scipy.signal import savgol_filter from scipy.signal import decimate from scipy.special import erf from scipy.optimize import minimize from scipy.stats import binned_statistic import scipy.stats import pathlib from pathlib import Path from tkinter import filedialog import tkinter import time as tm #sorry i use time in my code import lmfit import h5py try: import PyQt5 except: try: import PyQt4 except: try: import qt except: print('Qt was not found') try: from pptx import Presentation from pptx.util import Inches except: print('We need python-pptx to create a powerpoint file. Not essential. Either use pip or for anaconda: conda install -c conda-forge python-pptx') try: import urllib3 import shutil except: print('We need the packages urllib3 and shutil to download files from the web') plt.ion() pandas.options.mode.chained_assignment = None # I use this a lot and think I can ignore it FWHM = 2.35482 shading = 'auto' # gouraud standard_map = cm.jet print('Plot_func version %s\nwas imported from path:\n %s' % (version, os.path.dirname(os.path.realpath(__file__)))) print('The current working folder is:\n %s' % os.getcwd()) #use this to trigger a real error for DeprecationWarnings #np.warnings.filterwarnings('error', category=np.VisibleDeprecationWarning) def download_notebooks(): '''function loads the workflow notebooks into the active folder''' http = urllib3.PoolManager() list_of_tools=['TA_Advanced_Fit.ipynb', 'TA_comparative_plotting_and_data_extraction.ipynb', 'TA_Raw_plotting.ipynb', 'TA_Raw_plotting_and_Simple_Fit.ipynb', 'TA_single_scan_handling.ipynb', 'Function_library_overview.pdf', 'function_library.py', 'import_library.py'] print('Now downloading the workflow tools') for f in list_of_tools: url = "https://raw.githubusercontent.com/erdzeichen/KiMoPack/main/Workflow_tools/%s"%f print('Downloading Workflow Tools/%s'%f) with open(check_folder(path = 'Workflow_tools', current_path = os.getcwd(), filename = f), 'wb') as out: r = http.request('GET', url, preload_content=False) shutil.copyfileobj(r, out) def download_all(): ''' function loads workflow notebooks and example files and tutorials''' http = urllib3.PoolManager() list_of_tools=['TA_Advanced_Fit.ipynb', 'TA_comparative_plotting_and_data_extraction.ipynb', 'TA_Raw_plotting.ipynb', 'TA_Raw_plotting_and_Simple_Fit.ipynb', 'TA_single_scan_handling.ipynb', 'Function_library_overview.pdf', 'function_library.py', 'import_library.py', 'Tutorial_Notebooks_for_local_use.zip'] print('Now downloading the workflow tools and tutorials') for f in list_of_tools: url = "https://raw.githubusercontent.com/erdzeichen/KiMoPack/main/Workflow_tools/%s"%f print('Downloading Workflow Tools/%s'%f) with open(check_folder(path = 'Workflow_tools', current_path = os.getcwd(), filename = f), 'wb') as out: r = http.request('GET', url, preload_content=False) shutil.copyfileobj(r, out) list_of_example_data=['sample_1_chirp.dat', 'Sample_2_chirp.dat', 'sample_1.hdf5', 'sample_2.hdf5', 'Sample_1.SIA', 'Sample_2.SIA'] print('Now downloading the example files') for f in list_of_example_data: url = "https://raw.githubusercontent.com/erdzeichen/KiMoPack/main/Workflow_tools/Data/%s"%f print('Downloading Workflow Tools/Data/%s'%f) with open(check_folder(path = 'Workflow_tools'+os.sep+'Data', current_path = os.getcwd(), filename = f), 'wb') as out: r = http.request('GET', url, preload_content=False) shutil.copyfileobj(r, out) def changefonts(weight='bold', font='standard', SMALL_SIZE=11, MEDIUM_SIZE=13, LARGE_SIZE=18): ''' Small function that sets the matplotlib font sizes and fonts, written as conveniens to not need to remember all the codes and what is names what. Calling the function will change the matplotlib *rc* settings Parameters ------------ weight : str, optional 'bold' or 'normal' font : str, optional this is a meta switch that changes the family. known are: 'standard'='DejaVu Sans'\n 'arial'='Arial'\n 'helvetica'= 'Helvetica'\n 'garamond'='Garamond'\n 'verdana'='Verdana'\n 'bookman'='Bookman'\n 'times'='Times New Roman' SMALL_SIZE : int, optional (DEFAULT = 11)\n all written text, legend title and face size MEDIUM_SIZE : int, optional (DEFAULT = 13)\n tick size and tick numbers LARGE_SIZE : int, optional (DEFAULT = 18)\n axis titles, figure titles, axis labels ''' font_dict = { 'standard': {'weight': weight, 'size': SMALL_SIZE, 'family': 'DejaVu Sans'}, 'arial': {'weight': weight, 'size': SMALL_SIZE, 'family': 'Arial'}, 'helvetica': {'weight': weight, 'size': SMALL_SIZE, 'family': 'Helvetica'}, 'garamond': {'weight': weight, 'size': SMALL_SIZE, 'family': 'Garamond'}, 'verdana': {'weight': weight, 'size': SMALL_SIZE, 'family': 'Verdana'}, 'bookman': {'weight': weight, 'size': SMALL_SIZE, 'family': 'Bookman'}, 'times': {'weight': weight, 'size': SMALL_SIZE, 'family': 'Times New Roman'}, } plt.rc('font', **font_dict[font]) plt.rc('axes', titlesize=LARGE_SIZE, labelweight=weight) # fontsize of the axes title plt.rc('axes', labelsize=LARGE_SIZE, labelweight=weight) # fontsize of the x and y labels plt.rc('axes', linewidth=1) # linewidth of all axes plt.rc('axes', facecolor=(1, 1, 1, 0)) plt.rc('xtick', labelsize=MEDIUM_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=MEDIUM_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('legend', title_fontsize=SMALL_SIZE) plt.rc('legend', facecolor=(1, 1, 1, 0)) plt.rc('legend', edgecolor=(1, 1, 1, 0)) plt.rc('legend', framealpha=0) plt.rc('figure', titlesize=LARGE_SIZE) # fontsize of the figure title plt.rc('figure', facecolor=(1, 1, 1, 0)) # fontsize of the figure title changefonts() #we need to apply the font settings def clean_double_string(filename, path=None): '''Stupid function that reads and changes!!! the file. It searchers for double lines and double dots and replaces them with single''' import re if path is None: path = os.path.dirname(os.path.realpath(__file__)) with open(Path(os.sep.join([path, filename])), 'r+') as f: text = f.read() text = re.sub('--', '-', text) text = re.sub(r'\.+', '.', text) f.seek(0) f.write(text) f.truncate() def mouse_move(event): x, y = event.xdata, event.ydata print(x, y) def flatten(mainlist): return [entry for sublist in mainlist for entry in sublist] def nearest_neighbor_method3(X, q): '''returns nearest neighbour value to q''' X = X.T return np.argmin(np.sum((X - q) ** 2, axis=1)) def log_and(x, y, *args): """Returns the logical and of all 2+ arguments.""" result = np.logical_and(x, y) for a in args: result = np.logical_and(result, a) return result def s2_vs_smin2(Spectral_points = 512, Time_points = 130, number_of_species = 3, fitted_kinetic_pars = 7, target_quality = 0.95): '''dfn is numerator and number of fitted parameters, dfd is denominator and number of degrees of freedom, F-test is deciding if a set of parameters gives a statistical significant difference. T-test is if a single parameter gives statistical difference. Null hypothesis, all parameter are zero, if significant, the coefficients improve the fit the f-statistics compares the number of "fitted parameter"=number of species*number of spectral points + number of kinetic parameter "free points"=number of species*number of spectral points*number of time points - fitted parameter within the target quality, meaning, what fraction do my variances need to have, so that I'm 100% * target_quality sure that they are different from zero''' data_points = Spectral_points*Time_points fitted_parameter = Spectral_points*number_of_species+fitted_kinetic_pars Free_points = data_points-fitted_parameter f_stat = scipy.stats.f.ppf(q = target_quality, dfn = fitted_parameter, dfd = Free_points) #print('fitted points:%g\n Free points:%g\n f-stats: %g'%(fitted_parameter,Free_points,f_stat)) return 1+(fitted_parameter*f_stat/Free_points) def GUI_open(project_list = None, path = None, filename_part = None, fileending = 'hdf5', sep = "\t", decimal = '.', index_is_energy = False, transpose = False, sort_indexes = False, divide_times_by = None, shift_times_by = None, external_time = None, external_wave = None, use_same_name = True, data_type = None, units = None, baseunit = None, conversion_function = None): ''' This Function 1. opens a gui and allows the selection of multiple saved projects, which are returned as a list 2. if given a list of project names opens them 3. if given the word 'all', opens all files in a given folder The general behavior is selected by the first parameter (project_list) it is designed to open combined files that contain both the wavelength and the time. (e.g. SIA files as recorded by Pascher instruments software) or hdf5 projects saved by this software There are however a lot of additional options to open other ascii type files and adapt their format internally Important, as default the parameter "fileending" selects hdf5 files only, which are used as project files (see :meth:`plot_func.TA.Save_project`) for opening of other files the fileending parameter needs to be changed. Parameters ---------- project_list : list (of str) or 'all', optional Give a list of filenames that will be opened and returned as a list of objects if the project list is 'all' then all files in the folder specified in path. The parameter "filename_part" and "fileending" can be used to specify this selection path : str or path object (optional) if path is a string without the operation system dependent separator, it is treated as a relative path, e.g. data will look from the working directory in the sub director data. Otherwise this has to be a full path in either strong or path object form. filename_part : str, optional This parameter is only used for the option 'all', the (Default) None means do nothing. if a string is given then only files that start with this string will be read. fileending : str, optional this string is used to select the filetype that is suppose to open. For the GUI, only these files will be shown, with the option 'all' this selects the files that will be read in the folder, 'hdf5' (Default) sep : str (optional) is the separator between different numbers, typical are tap '\t' (Default) ,one or multiple white spaces '\s+' or comma ','. decimal : str (optional) sets the ascii symbol that is used for the decimal sign. In most countries this is '.'(Default) but it can be ',' in countries like Sweden or Germany index_is_energy : bool (optional) switches if the wavelength is given in nm (Default) or in eV (if True), currently everything is handled as wavelength in nm internally transpose : bool (optional) if this switch is False (Default) the wavelength are the columns and the rows the times. data_type: str (optional) data_type is the string that represents the intensity measurements. Usually this contains if absolute of differential data. This is used for the color intensity in the 2d plots and the y-axis for the 1d plots units: str (optional) this is used to identify the units on the energy axis and to label the slices, recognized is 'nm', 'eV' and 'keV' but if another unit like 'cm^-1' is used it will state energy in 'cm^-1'. Pleas observe that if you use the index_is_energy switch the program tries to convert this energy into wavelength. baseunit: str (optional) this is used to identify the units on the developing/time axis. This is name that is attached to the index of the dataframe. setting this during import is equivalent to ta.baseunit sort_indexes : bool (optional) For False (Default) I assume that the times and energies are already in a rising order. with this switch, both are sorted again. divide_times_by : None or float (optional) here a number can be given that scales the time by an arbitary factor. This is actually dividing the times by this value. Alternatively there is the variable self.baseunit. The latter only affects what is written on the axis, while this value is actually used to scale the times. None (Default) ignores this shift_times_by : None, float (optional) This a value by which the time axis is shifted during import. This is a useful option of e.g. the recording software does not compensate for t0 and the data is always shifted. None (Default) ignores this setting external_time : None or str (optional) Here a filename extension (string) can be given that contains the time vector. The file is assumed to be at the same path as the data and to contain a single type of separated data without header. If use_same_name = True (default) It assumes that this is the ending for the file. The filename itself is taken from the filename. e.g. if samp1.txt is the filename and external_time='.tid' the program searches samp1.tid for the times. The transpose setting is applied and sets where the times are to be inserted (row or column indexes) If use_same_name = False this should be the file containing the vector for the time (in the same format as the main file) external_wave : None or str (optional) Here a filename extension (string) can be given that contains the wavelength vector. If use_same_name = True (default) The file is assumed to be at the same path as the data and to contain a single type of separated data without header. This is the ending for the file. The filename itself is taken from the filename. e.g. if samp1.txt is the filename and external_wave='.wav' then the program searches samp1.wav for the wavelength. The transpose setting is applied and sets where the wavelength are to be inserted (columns or row indexes) If use_same_name = False this should be a full filename that contains the vector use_same_name : bool, optional this switches if the external filename included the loaded filename or is a separate file True(default) conversion_function: function(optional) function that receives should have the shape: return pandas Dataframe with time/frames in rows and wavelength/energy in columns, The function is tested to accept (in that order) a my_function(filename, external_time,external_wave), my_function(filename, external_time), my_function(filename,external_wave), my_function(filename) and return: the dataframe ds with the time_axis as rows and spectral axis as columns if the ds.index.name ia not empty the "time axis" is in to that name the spectral axis is in ds.columns.name the return is investigated if it is one, two, or three things. if two are returned then the second must be the name of what the intensity axis is. This value will then be set to data_type if three are returned the third is the baseunit (for the time axis) this allows to use the automatic naming in ps or nanosecond If the values units, data_type or baseunit are (manually) set in the import function the corresponding entries in datafram will be overwritten shift_times_by and divide_times_by will be applied if not None (useful to adjust for offset before chirp correction) Returns -------------- List of opened TA objects Examples -------------- >>> import plot_func as pf >>> project_list=pf.GUI_open() #start the GUI to open project Files >>> project_list=pf.GUI_open(fileending='SIA') #start the GUI to open SIA Files Opening a list of files using the file names >>> project_list=pf.GUI_open(project_list = ['file1.SIA', 'file2.SIA']) Opening all files in the folder "all_data" (relative to where the notebook is with the ending "hdf5" >>> project_list=pf.GUI_open('all',path="all_data") Opening a list of files with external time vector (of the same name) so it looks for a data file "file1.txt" and a file with the time information "file1.tid" >>> project_list=pf.GUI_open(project_list = ['file1.txt', 'file2.txt'], external_time = 'tid') ''' if project_list is None: root_window = tkinter.Tk() root_window.withdraw() root_window.attributes('-topmost',True) root_window.after(1000, lambda: root_window.focus_force()) path_list = filedialog.askopenfilename(initialdir=os.getcwd(),multiple=True,filetypes=[('TA project files','*.%s'%fileending)]) if project_list is None: project_list=[] elif project_list=='all': scan_path=check_folder(path = path, current_path = os.getcwd()) if filename_part is not None:#we specified a specific name and want only the files with this name in it path_list = sorted([os.path.join(scan_path, name) for name in os.listdir(scan_path) if name.endswith(fileending) and filename_part in name]) else:#we have not specified a specific name and want all files in the folder path_list = sorted([currentFile for currentFile in scan_path.glob("*.%s"%fileending)]) else: if len(project_list)<1: raise ValueError('The use_gui switch is ment to bypass the gui, but you still need at least some files as a list') else: if isinstance(project_list, str):project_list=[project_list] if not hasattr(project_list, '__iter__'):project_list=[project_list] path_list = [] for filename in project_list: ta=check_folder(path=path, filename=filename, current_path=os.getcwd()) path_list.append(ta) return_list = [] for entrance in path_list: try: listen=os.path.split(entrance) path=os.path.normpath(listen[0]) filename=listen[1] ta = TA(filename = filename, path = path, sep = sep, decimal = decimal, index_is_energy = index_is_energy, transpose = transpose, sort_indexes = sort_indexes, divide_times_by = divide_times_by, shift_times_by = shift_times_by, external_time = external_time, external_wave = external_wave, use_same_name = use_same_name, data_type = data_type, units = units, baseunit = baseunit, conversion_function = conversion_function) return_list.append(ta) except: print('Problem with entrance:\n %s'%entrance) return return_list def check_folder(path = None, current_path = None, filename = None): '''Helper function using robust path determination.\n In any case if a valif file name is given it is attached to the total path\n The path can be string or windows/linux path or pure path or byte type paths.\n paths that do not exists (including parents) are created\n 1. if path is given absolute, it is returned\n_colors 2. if path is a string (relative) the current_path + path is returned.\n 3. if current_path is not absolute or None, the current working directory is assumed as path.\n 4. IF all is None, the current working directory is returned Parameters ----------- path : str, purePath, absolute or relative, optional the final part of the path used current_path : None, str, purePath, absolute, optional path that sits before the "path variable, is filled with current working directory if left None filename: None, str, optional attached after path and returned if not None ''' if isinstance(path,bytes): path = '%s'%path if path is not None: path = pathlib.Path(path) if isinstance(current_path, bytes): current_path = '%s'%current_path if current_path is not None: current_path=pathlib.Path(current_path) if isinstance(filename, bytes): filename='%s'%filename if filename is not None: filename = pathlib.Path(filename) if path is None: if current_path is None: directory = Path.cwd() elif current_path.is_absolute(): directory=current_path else: print('attention, current_path was given but not absolute, replaced by cwd') directory = Path.cwd() elif path.is_absolute(): directory = path else: if current_path is None: directory = Path.cwd().joinpath(path) elif current_path.is_absolute(): directory = current_path.joinpath(path) else: print('attention, current_path was given but not absolute, replaced by cwd') directory = Path.cwd().joinpath(path) directory.mkdir( parents=True, exist_ok=True) if filename is None: return directory else: return directory.joinpath(filename) def rebin(ori_df,new_x): '''interpolation of values to new index''' if isinstance(ori_df,pandas.DataFrame): dum={'dummy':new_x} new_df=pandas.DataFrame(dum,index=new_x) for col in ori_df.columns: new_df[col]=np.interp(new_x,ori_df.index.values.astype('float'),ori_df[col].values) new_df=new_df.drop(['dummy'],1) return new_df elif isinstance(ori_df,pandas.Series): new_df=np.interp(new_x,ori_df.index.values.astype('float'),ori_df.values) return pandas.Series(new_df,index=new_x) def savitzky_golay(y, window_size, order, deriv=0, rate=1): '''Ported from a previous function''' return savgol_filter(x=y, window_length=window_size, polyorder=order, deriv=deriv, delta=rate) def Frame_golay(df, window=5, order=2,transpose=False): '''Convenience method that returns the Golay smoothed data for each column (DataFrame) or the series Parameters ----------- df : pandas.DataFrame,pandas.Series the DataFrame that has to be interpolated window_size : int,optional 5(Default) an integer that indicates how many units are to be interpolated order : int, optional 2 (Default) an integer that indicates what orderpolynoninal is to be used to interpolate the points. order=1 effectively turns this into a floating average transpose : bool,optional in which orientation is the interpolation to be done. Default is in within the column (usually timepoints) Returns --------- pandas.DataFrame or pandas.Series DataFrame or Series with the interpolation applied ''' #df=df.fillna(0) if transpose: df=df.T if isinstance(df,pandas.DataFrame): for col in df.columns: try: df.loc[:,col]=savitzky_golay(df.loc[:,col].values, window, order) except: print(col + 'was not smoothed') if transpose: df=df.T return df elif isinstance(df,pandas.Series): return pandas.Series(savitzky_golay(df.values, window, order),index=df.index) else: raise TypeError('must be series or DataFrame') def find_nearest(arr,value,con_str=False): '''returns the value in the array closest to value''' return arr[find_nearest_index(arr,value,con_str=False)] def find_nearest_index(arr,value,con_str=False): '''returns the index in the array closest to value (the first one''' if con_str: temp_array=np.array(arr,dtype='float') idx = (np.abs(temp_array-value)).argmin() else: idx = (np.abs(arr-value)).argmin() return idx def rise(x,sigma=0.1,begin=0): ''' my own implementation of the instrument response function. Based upon an error function from 0 to 1. Sigma is the width (after which it has 50%) and begin is 10% of height''' return (erf((x-sigma)*np.sqrt(2)/(sigma))+1)/2 def gauss(t,sigma=0.1,mu=0): '''Gauss function''' y=np.exp(-0.5*((t-mu)**2)/sigma**2) y/=sigma*np.sqrt(2*np.pi) return y def norm(df): '''Min max norming of a dataframe''' return df.apply(lambda x: (x - np.min(x)) / (np.max(x) - np.min(x))) def shift(df,name = None,shift = None): '''Shifts a dataframe along the columns, interpolate and then resample''' if name is None:name = df.columns if isinstance(name,type('hello')):name = [name] for nam in name: ori_dat = df[nam].values ori_en = np.array(df.index,dtype = 'float') if ori_en[0]>ori_en[1]:#oh we have inverse order dat = np.interp(ori_en[::-1],ori_en[::-1]+shift,ori_dat[::-1]) dat = dat[::-1] else: dat = np.interp(ori_en,ori_en+shift,ori_dat) df[nam] = dat return df def colm(k,cmap = standard_map): '''If a colour map is given, this is used.''' if isinstance(cmap,type(cm.jet)) or isinstance(cmap,type(cm.viridis)): if hasattr(k,'__iter__'): if min(k) >0:#we got a color offset mini = min(k)/(min(k)+1) else: mini = 0 out = [ cmap(x) for x in np.linspace(mini, 1, len(k)+1) ] out = out[:-1] return out else:# get me 10 colors out = [cmap(x) for x in np.linspace(0, 1, 10)] ret = out[k] return ret else: #we assume it is a iterable thingy if not hasattr(k,'__iter__'):k = [k] if isinstance(cmap,pandas.DataFrame): out = [list(cmap.iloc[ent,:].values) for ent in k] elif isinstance(cmap,np.ndarray): out = [cmap[int(ent),:] for ent in k] elif isinstance(cmap,list): out = [cmap[int(ent)] for ent in k] else: print('didn\'t find the right ') return out def Summarize_scans(list_of_scans = None, path_to_scans = 'Scans', list_to_dump = 'range', window1 = None, window2 = None, save_name = 'combined.SIA', fileending = 'SIA', filename_part = 'Scan', return_removed_list = False, sep = "\t", decimal = '.', index_is_energy = False, transpose = False, sort_indexes = False, divide_times_by = None, shift_times_by = None, external_time = None, external_wave = None, use_same_name = True, return_ds_only=False, data_type = None, units = None, baseunit = None, conversion_function = None, fitcoeff = None, base_TA_object = None, value_filter = None, zscore_filter_level = None, zscore_in_window = True, dump_times = True, replace_values = None, drop_scans = False): ''' Average single scans. Uses single scans of the data set and plots them as average after different conditions. Usually one defines one or two windows in which the intensity is integrated. This integrated number is then displayed for each scan in the list. There are different tools to select certain scans that are excluded from the summary. These are defined in the list_to_dump. This list can take either be a list with the number, or a string with the words 'single' or 'range' (see below) Parameters ----------- list_of_scans : None, 'gui' or list 'gui' (choose scans via gui)\n None (Default) load scan files from the specified folder (path_to_scans) with the specified file-ending (file_ending), if filename_part is a string than only files with this string in the name are taken\n list of names (strings) loads this list of files list of integers (that will be directly attached to the filename_part) to form the file name path_to_scans : None, str or path object, optional specify relative or absolute path to the scan-files (Default:'Scans') file_ending : str, optional specify the file extension of the single scan files. The Gui will only show this fileending (Default: '.SIA') filename_part : str specify a part of the string included in all scan-files (Default: 'Scan') window1: None or list of 4 floats, optional window in time and wavelength over which each scan is averaged.\n window must have the shape [start time, end time, start wavelength, end wavelength] (Default: None) window2: list of 4 floats, optional window in time and wavelength over which each scan is averaged.\n window must have the shape [start time, end time, start wavelength, end wavelength] (Default: None) IF not given then only one window will be displayed list_to_dump : list, 'single' or 'range', optional takes a list of scans to be excluded from the average, this list can be indexes (order) in which the scans come, or a list of names. if this is given as a list the option "range" is offered, which allows to add additional selection to the cut.\n **'single'** allows you (in a GUI) to click on single points in plotted window1 or two that is to be removed, useful for spike removal and makes only sense in conjunction with at least a defined window1, if none is defined window1 = [0.5,10,300,1200] will be set automatically. A right click removes the last selection a middle click applies it. An empty middle click (without selecting anything) finishes the gui\n **'range'** allows you (in a GUI) to click and define regions.\n first left click is the left side of the window, second left click the ride side of the window. Third left click the left side of the second window,... A right click removes the last set point. a middle click finishes and applies the selection\n An **empty middle click** (without selecting anything) finishes the gui\n useful for spike removal and definition of exclusion region (e.g. where the sample died) This makes only sense in conjunction with at least a defined window1 , if none is defined window1 = [0.5,10,300,1200] will be set automatically data_type: str (optional) data_type is the string that represents the intensity measurements. Usually this contains if absolute of differential data. This is used for the color intensity in the 2d plots and the y-axis for the 1d plots units: str (optional) this is used to identify the units on the energy axis and to label the slices, recognized is 'nm', 'eV' and 'keV' but if another unit like 'cm^-1' is used it will state energy in 'cm^-1'. Pleas observe that if you use the index_is_energy switch the program tries to convert this energy into wavelength. baseunit: str (optional) this is used to identify the units on the developing/time axis. This is name that is attached to the index of the dataframe. setting this during import is equivalent to ta.baseunit save_name : str, optional specify name for saving the combined scans (Default) 'combined.SIA') return_removed_list : bool, optional (Default) False, returns the list of removed scans instead of the averaged data set. (this list could then be given as "list_to_dump" to get the averaged datafile too. If a file name is given for saved file (which is Default) then the file is saved anyways. sep : str (optional) is the separator between different numbers, typical are tap (Backslash t) (Default) ,one or multiple white spaces 'backslash s+' or comma ','. decimal : str (optional) sets the ascii symbol that is used for the decimal sign. In most countries this is '.'(Default) but it can be ',' in countries like Sweden or Germany index_is_energy : bool (optional) switches if the wavelength is given in nm (Default) or in eV (if True), currently everything is handled as wavelength in nm internally transpose : bool (optional) if this switch is False (Default) the wavelength are the columns and the rows the times. sort_indexes : bool (optional) For False (Default) I assume that the times and energies are already in a rising order. with this switch, both are sorted again. divide_times_by : None or float (optional) here a number can be given that scales the time by an arbitary factor. This is actually dividing the times by this value. Alternatively there is the variable self.baseunit. The latter only affects what is written on the axis, while this value is actually used to scale the times. None (Default) ignores this shift_times_by : None, float (optional) This a value by which the time axis is shifted during import. This is a useful option of e.g. the recording software does not compensate for t0 and the data is always shifted. None (Default) ignores this setting external_time : None or str (optional) Here a filename extension (string) can be given that contains the time vector. The file is assumed to be at the same path as the data and to contain a single type of separated data without header. If use_same_name = True (default) It assumes that this is the ending for the file. The filename itself is taken from the filename. e.g. if samp1.txt is the filename and external_time='.tid' the program searches samp1.tid for the times. The transpose setting is applied and sets where the times are to be inserted (row or column indexes) If use_same_name = False this should be the file containing the vector for the time (in the same format as the main file) external_wave : None or str (optional) Here a filename extension (string) can be given that contains the wavelength vector. If use_same_name = True (default) The file is assumed to be at the same path as the data and to contain a single type of separated data without header. This is the ending for the file. The filename itself is taken from the filename. e.g. if samp1.txt is the filename and external_wave='.wav' then the program searches samp1.wav for the wavelength. The transpose setting is applied and sets where the wavelength are to be inserted (columns or row indexes) If use_same_name = False this should be a full filename that contains the vector use_same_name : bool, optional this switches if the external filename included the loaded filename or is a separate file True(default) conversion_function: function(optional) function that receives should have the shape: return pandas Dataframe with time/frames in rows and wavelength/energy in columns, The function is tested to accept (in that order) a my_function(filename, external_time,external_wave), my_function(filename, external_time), my_function(filename,external_wave), my_function(filename) and return: the dataframe ds with the time_axis as rows and spectral axis as columns if the ds.index.name ia not empty the "time axis" is in to that name the spectral axis is in ds.columns.name the return is investigated if it is one, two, or three things. if two are returned then the second must be the name of what the intensity axis is. This value will then be set to data_type if three are returned the third is the baseunit (for the time axis) this allows to use the automatic naming in ps or nanosecond If the values units, data_type or baseunit are (manually) set in the import function the corresponding entries in datafram will be overwritten shift_times_by and divide_times_by will be applied if not None (useful to adjust for offset before chirp correction) return_ds_only: boolean,(optional) if False (Dafault) returns a TA object, otherwise just a DataFrame fitcoeff: list, optional these should be the shirp parameteres that are to be applied to all sub scans in the list. base_TA_object: TA object, optional instead of the fit_coefficients a Ta object can be provided that is then used as a template, meaning that the scattercuts and bordercuts will be applied before the filtering. value_filter : None, float or iterable with two entries, optional if float, everything above that value or below -abs(value_filter) will be filtered replaced with replace_values if iterable, then first is lower treshold, second is upper treshold zscore_filter_level : float, optional if this value is set then the manual selection will be replaced with an automatic filter, the following options, dump_times = True, replace_values = None, drop_scans = False decide what is done to the values that are filtered typical value would be e.g. 3 zscore_in_window : bool, decides if the filter is applied in the windows or over the whole matrix (using statistics on the values) dump_times : bool,optional Standard True means that if the zscore filter filters a file the bad time is droped for the average replace_values : None, float, optional if dump times is False the values will be replaced with this value. = None, drop_scans = False drop_scans : bool,optional Default: = False. This is the harshest type to filter and means that the whole scan is dropped Returns --------- TA object if return_ds_only is False(Default) averaged dataset (ds) of the selected scans or (if return_removed_list = True) the list of removed scans. Examples ---------- Use use a range to select the rejected scans, look on the scans by integrating the window 0.5ps to 1ps and 450nm to 470nm >>> import plot_func as pf #import the module >>> window1=[0.5,1,450,470] #define the window >>> #use a 'GUI' to select the files >>> pf.Summarize_scans(list_of_scans='gui',window1=window1) >>> #use all scans in the subfolder scans that have the word 'Scan' in them and use the ending 'SIA' >>> pf.Summarize_scans(path_to_scans = 'Scans', filepart_name = 'Scan', window1=window1) >>> #This does the same as these are standard >>> pf.Summarize_scans(window1=window1) ''' if (base_TA_object is not None) and (conversion_function is None): if units is None:units=base_TA_object.ds.columns.name if baseunit is None:baseunit=base_TA_object.ds.index.name debug = True if list_of_scans is None: scan_path=check_folder(path = path_to_scans, current_path = os.getcwd()) if filename_part is not None:#we specified a specific name and want only the files with this name in it list_of_scans = sorted([os.path.join(scan_path, name) for name in os.listdir(scan_path) if name.endswith(fileending) and filename_part in name]) else:#we have not specified a specific name and want all files in the folder list_of_scans = sorted([currentFile for currentFile in scan_path.glob("*.%s"%fileending)]) elif list_of_scans == 'gui': root_window = tkinter.Tk() root_window.withdraw() root_window.attributes('-topmost',True) root_window.after(1000, lambda: root_window.focus_force()) path_list = filedialog.askopenfilename(initialdir = os.getcwd(),multiple = True,filetypes = [('Raw scan files',"*.%s"%fileending)]) list_of_scans = path_list elif not hasattr(list_of_scans,'__iter__'): raise ValueError('We need something to iterate for the list') if not isinstance(list_of_scans[0],TA):#we do not have opened file but most likely a list of names try: list_of_projects = [] for entrance in list_of_scans: listen = os.path.split(entrance) path = os.path.normpath(listen[0]) filename = listen[1] new_ds=TA(filename = filename,path = path, sep = sep, decimal = decimal, index_is_energy = index_is_energy, transpose = transpose, sort_indexes = sort_indexes, divide_times_by = divide_times_by, shift_times_by = shift_times_by, external_time = external_time, external_wave = external_wave, use_same_name = use_same_name, data_type = data_type, units = units, baseunit = baseunit, conversion_function = conversion_function).ds if base_TA_object is None: if fitcoeff is not None: new_ds=Fix_Chirp(ds=new_ds,fitcoeff=fitcoeff) list_of_projects.append(new_ds.values) else: if fitcoeff is not None: new_ds=Fix_Chirp(ds=new_ds,fitcoeff=fitcoeff) try: new_ds=sub_ds(new_ds, ignore_time_region = base_TA_object.ignore_time_region, wave_nm_bin = base_TA_object.wave_nm_bin, baseunit = base_TA_object.baseunit, scattercut = base_TA_object.scattercut, bordercut = base_TA_object.bordercut, timelimits = base_TA_object.timelimits, time_bin = base_TA_object.time_bin, equal_energy_bin = base_TA_object.equal_energy_bin) if (base_TA_object.wave_nm_bin is not None) or (base_TA_object.equal_energy_bin is not None): print('in the original TA objec the data was rebinned, which is now also done for the single scans. To avoid that use "ta.wave_nm_bin = None" and / or "ta.equal_energy_bin = None" before handing it to base_TA_object') except: print('applying the base_TA_object slices failed') list_of_projects.append(new_ds.values) if base_TA_object is None: ds = TA(filename = filename,path = path, sep = sep, decimal = decimal, index_is_energy = index_is_energy, transpose = transpose, sort_indexes = sort_indexes, divide_times_by = divide_times_by, shift_times_by = shift_times_by, external_time = external_time, external_wave = external_wave, use_same_name = use_same_name, data_type = data_type, units = units, baseunit = baseunit, conversion_function = conversion_function).ds else: ds=base_TA_object.ds ds = sub_ds(ds, ignore_time_region = base_TA_object.ignore_time_region, wave_nm_bin = base_TA_object.wave_nm_bin, baseunit = base_TA_object.baseunit, scattercut = base_TA_object.scattercut, bordercut = base_TA_object.bordercut, timelimits = base_TA_object.timelimits, time_bin = base_TA_object.time_bin, equal_energy_bin = base_TA_object.equal_energy_bin) ###################### try: list_of_projects = np.transpose(np.array(list_of_projects),(1, 2, 0)) except: print('the stacking of the scans failed, are you sure that all are have the same shape') ####################### except: raise ValueError('Sorry did not understand the project_list entry, use GUI_open to create one') else: try: list_of_projects = [] list_of_scans_names = [] for entrance in list_of_scans: list_of_projects.append(entrance.ds.values) list_of_scans_names.append(entrance.filename) if base_TA_object is None: ds = list_of_scans[0] else: ds=base_TA_object.ds list_of_scans = list_of_scans_names ########################## try: list_of_projects = np.transpose(np.array(list_of_projects),(1, 2, 0)) except: print('the stacking of the scans failed, are you sure that all are have the same shape') ######################### except: raise ValueError('Sorry did not understand the project_list entry, use GUI_open to create one') if window1 is None: window1 = [ds.index.values.min(),ds.index.values.max(),ds.columns.values.min(),ds.columns.values.max()] #### automatic filtering##### if (zscore_filter_level is not None) or (value_filter is not None): if replace_values is not None: cut_bad_times=False if replace_values is None: replace_values = np.nan dataset=list_of_projects if value_filter is not None: if hasattr(value_filter,'__iter__'): lowervalue=value_filter[0] uppervalue=value_filter[1] else: uppervalue = np.abs(value_filter) lowervalue = -np.abs(value_filter) outside_range=np.invert(log_and(dataset>lowervalue,dataset<uppervalue)) if dump_times:#this is default outside_range=np.tile(outside_range.all(axis=1,keepdims=True),(1,dataset.shape[1],1)) elif drop_scans: outside_range=np.tile(outside_range.any(axis=1,keepdims=True),(1,dataset.shape[1],1)) outside_range=np.tile(outside_range.any(axis=0,keepdims=True),(dataset.shape[0],1,1)) dataset[outside_range]=replace_values if zscore_filter_level is not None: if zscore_in_window: window1_index = [find_nearest_index(ds.index.values,window1[0]),find_nearest_index(ds.index.values,window1[1]),find_nearest_index(ds.columns.values,window1[2]),find_nearest_index(ds.columns.values,window1[3])] vector=np.nanmean(np.nanmean(dataset[window1_index[0]:window1_index[1],window1_index[2]:window1_index[3],:],axis=0),axis=1) good=log_and(vector>(np.nanmean(vector) - zscore_filter_level*np.nanstd(vector)),vector<(np.nanmean(vector) + zscore_filter_level*np.nanstd(vector))) if not window2 is None: window2_index = [find_nearest_index(ds.index.values,window2[0]),find_nearest_index(ds.index.values,window2[1]),find_nearest_index(ds.columns.values,window2[2]),find_nearest_index(ds.columns.values,window2[3])] vector=np.nanmean(np.nanmean(dataset[window2_index[0]:window2_index[1],window2_index[2]:window2_index[3],:],axis=0),axis=1) good2=log_and(vector>(np.nanmean(vector) - zscore_filter_level*np.nanstd(vector)),vector<(np.nanmean(vector) + zscore_filter_level*np.nanstd(vector))) good=log_and(good,good2) dataset[:,:,np.invert(good)]=replace_values else: mean=np.nanmean(dataset,axis=2) var=np.nanstd(dataset,axis=2) lower=(mean - zscore_filter_level*var).T upper=(mean + zscore_filter_level*var).T lower=np.array([lower for i in range(dataset.shape[2])]).T upper=np.array([upper for i in range(dataset.shape[2])]).T outside_range=np.invert(log_and(dataset>lower,dataset<upper)) if drop_scans: outside_range=np.tile(outside_range.any(axis=1,keepdims=True),(1,dataset.shape[1],1)) outside_range=np.tile(outside_range.any(axis=0,keepdims=True),(dataset.shape[0],1,1)) elif dump_times: outside_range=np.tile(outside_range.any(axis=1,keepdims=True),(1,dataset.shape[1],1)) dataset[outside_range]=replace_values list_of_projects=dataset #############manual filtering################ else: if baseunit is None:baseunit=ds.index.name if units is None:units=ds.columns.name if list_to_dump is not None: if list_to_dump == 'single': print('we will use a gui to select single scans to extract') elif list_to_dump == 'range': print('we will use a gui to select the first and last scan to remove') else: if not hasattr(list_to_dump,'__iter__'):#we have only a single number/name in there list_to_dump = [list_to_dump] filenames_to_dump = [] for entry in list_to_dump: try: filenames_to_dump.append(list_of_scans[entry].filename) #list_of_scans is a list of TA objects that have filename and if entry is an index of this list this goes well except: filenames_to_dump.append(entry)# we assume it is already a filename list_to_dump = [] for filename in filenames_to_dump: list_to_dump.append(list_of_scans.index(filename)) for i in range(30):#we make a maximum of 30 rounds window1_index = [find_nearest_index(ds.index.values,window1[0]),find_nearest_index(ds.index.values,window1[1]),find_nearest_index(ds.columns.values,window1[2]),find_nearest_index(ds.columns.values,window1[3])] series1 = pandas.Series(list_of_projects[window1_index[0]:window1_index[1],window1_index[2]:window1_index[3],:].mean(axis = (0,1))) series1.name = '%.3g:%.3g %s at %.1f:%.1f %s'%(window1[0],window1[1],baseunit,window1[2],window1[3],units) if not window2 is None: window2_index = [find_nearest_index(ds.index.values,window2[0]),find_nearest_index(ds.index.values,window2[1]),find_nearest_index(ds.columns.values,window2[2]),find_nearest_index(ds.columns.values,window2[3])] series2 = pandas.Series(list_of_projects[window2_index[0]:window2_index[1],window2_index[2]:window2_index[3],:].mean(axis = (0,1))) series2.name = '%.3g:%.3g %s at %.1f:%.1f %s'%(window2[0],window2[1],baseunit,window2[2],window2[3],units) fig,(ax,ax2) = plt.subplots(2,1,sharex = True,figsize = (16,12)) series1.plot(ax = ax,color = colm(1),use_index = False) series2.plot(ax = ax2,color = colm(3),use_index = False) if len(series1) >15: gol=Frame_golay(series1,window=11,order=1) gol.plot(ax=ax,use_index=False,color=colm(2)) ax.fill_between(x=range(len(series1)), y1=gol-series1.var(), y2=gol+series1.var(),color=colm(2),alpha=0.3) gol=Frame_golay(series2,window=11,order=1) gol.plot(ax=ax2,use_index=False,color=colm(4)) ax2.fill_between(x=range(len(series1)), y1=gol-2*series1.var(), y2=gol+2*series1.var(),color=colm(4),alpha=0.3) else: fig,ax=plt.subplots(1,1,sharex=True,figsize=(16,12)) series1.plot(ax=ax,color=colm(1),use_index=False) if len(series1) >15: gol=Frame_golay(series1,window=11,order=1) gol.plot(ax=ax,use_index=False,color=colm(2)) ax.fill_between(x=range(len(series1)), y1=gol-2*series1.nanvar(), y2=gol+2*series1.nanvar(),color=colm(2),alpha=0.3) if list_to_dump == 'single': ax.set_title('click on the scans that should be dropped\n left click to chose, right click to delete last point, middle click finishes selection\n an empty middle click ends the process') polypts=np.asarray(plt.ginput(n=int(len(series1)/2),timeout=300, show_clicks=True,mouse_add=1, mouse_pop=3, mouse_stop=2)) if len(polypts)<1:break to_remove=[int(a) for a in np.array(polypts)[:,0]] remove=pandas.Series(np.arange(len(series1)))+1 remove[to_remove]=0 to_remove=list(remove[remove<1].index.values) to_keep=list(remove[remove>1].index.values) elif (list_to_dump == 'range') or (i>0): ax.set_title('click on the first and last scan to be removed, repeat as long as necessary\n an empty middle click ends the process') polypts=np.asarray(plt.ginput(n=int(len(series1)/2),timeout=300, show_clicks=True,mouse_add=1, mouse_pop=3, mouse_stop=2)) if len(polypts)<1:break polypts=np.array(polypts)[:,0] remove=pandas.Series(np.arange(len(series1)))+1 for i in range(int(len(polypts)/2)): remove.loc[polypts[2*i]:polypts[2*i+1]]=0 to_remove=list(remove[remove<1].index.values) to_keep=list(remove[remove>1].index.values) elif i == 0: to_keep=list(range(len(series1))) to_keep.remove(list_to_dump) else: raise ValueError('Something is weired') list_of_projects=list_of_projects[:,:,to_keep] plt.close('all') plt.close('all') try: df=pandas.DataFrame(np.any(np.isnan(dataset),axis=1),index=ds.index) plot2d(df,levels = 2,use_colorbar = False,intensity_range=[0,1],title='rejected are red') except: print('plotting of filtered went wrong') ds=pandas.DataFrame(np.nanmean(list_of_projects,axis=2),index=ds.index,columns=ds.columns) if not save_name is None: path = str(check_folder(path=path,filename=save_name)) ds.to_csv(path,sep='\t') ta=TA(path) else: path = str(check_folder(path=path,filename='temp_combined.SIA')) ds.to_csv(path,sep='\t') ta=TA(path) try: os.remove(path) except: print('could not remove temp_combined.SIA') if return_ds_only: return ds elif return_removed_list: return filenames_to_dump else: if base_TA_object is not None: ta=base_TA_object.Copy() ta.ds_ori=ds ta.ds=ds return ta def sub_ds(ds, times = None, time_width_percent = 0, ignore_time_region = None, drop_ignore=False, wave_nm_bin = None, baseunit = None, scattercut = None, drop_scatter=False, bordercut = None, timelimits = None, wavelength_bin = None, wavelength = None, time_bin = None, equal_energy_bin = None, from_fit = False): '''This is the main function that creates all the slices of the data matrix Parameters --------------- ds : DataFrame This dataframe contains the data to be plotted. It is copied and sliced into the regions defined. The dataframe expects the time to be in Index and the wavelength/energy to be in the columns. The spectra is plotted with a second (energy) axis times : float or list/vector (of floats), optional For each entry in rel_time a spectrum is plotted. If time_width_percent=0 (Default) the nearest measured timepoint is chosen. For other values see 'time_width_percent' time_width_percent : float "rel_time" and "time_width_percent" work together for creating spectral plots at specific timepoints. For each entry in rel_time a spectrum is plotted. If however e.g. time_width_percent=10 the region between the timepoint closest to the 1.1 x timepoint and 0.9 x timepoint is averaged and shown (and the legend adjusted accordingly). This is particularly useful for the densly sampled region close to t=0. Typically for a logarithmic recorded kinetics, the timepoints at later times will be further appart than 10 percent of the value, but this allows to elegantly combine values around time=0 for better statistics. This averaging is only applied for the plotting function and not for the fits. ignore_time_region : None or list (of two floats or of lists), optional cut set a time range with a low and high limit from the fits. (Default) None nothing happens The region will be removed during the fitting process (and will be missing in the fit-result plots) Usage single region: [lower region limit,upper region limit], use for multiple regions:[[lower limit 1,upper limit 1],[lower limit 2,upper limit 2],...] drop_ignore : Bool, True or False, optional If set to True the values in ignore_time_region are removed from the dataset instead of set to zero wave_nm_bin : None or float, optional rebins the original data into even intervals. If set to None the original data will be used. If set to a width (e.g. 2nm), the wavelength axis will be divided into steps of this size and the mean of all measurements in the interval is taken. The re-binning stops as soon as the measured stepsize is wider than given here, then the original bins are used. This function is particularly useful for spectrometer with non-linear dispersion, like a prism in the infrared. equal_energy_bin : None or float(optional) if this is set the wave_nm_bin is ignored and the data is rebinned into equal energy bins. baseunit : str baseunit is a neat way to change the unit on the time axis of the plots. (Default) 'ps', but they can be frames or something similarly. This is changing only the label of the axis. During the import there is the option to divide the numbers by a factor. I have also used frames or fs as units. Important is that all time units will be labeled with this unit. scattercut : None or iterable (of floats or other iterable, always pairs!), optional intented to "cut" one or multiple scatter regions. (if (Default) None nothing happens) If it is set the spectral region between the limits is set to zero. Usage single region: [lower region limit,upper region limit], use for multiple regions:[[lower limit 1,upper limit 1],[lower limit 2,upper limit 2],...] drop_scatter : Bool, True or False, optional If set to True the values in scattercut are removed from the dataset instead of set to zero bordercut : None or iterable (with two floats), optional cut spectra at the low and high wavelength limit. (Default) None uses the limits of measurement timelimits : None or list (of 2 floats), optional cut times at the low and high time limit. (Default) None uses the limits of measurement Important: If either the background or the chirp is to be fit this must include the time before zero! Useful: It is useful to work on different regions, starting with the longest (then use the ta.Backgound function prior to fit) and expand from there wavelength : float or list (of floats), optional 'wavelength' and 'wavelength_bin' work together for the creation of kinetic plots. When plotting kinetic spectra one line will be plotted for each entrance in the list/vector rel_wave. During object generation the vector np.arange(300,1000,100) is set as standard. Another typical using style would be to define a list of interesting wavelength at which a kinetic development is to be plotted. At each selected wavelength the data between wavelength+ta.wavelength_bin and wavelength-ta.wavelength_bin is averaged for each timepoint returned wavelength_bin : float, optional the width used in kinetics, see below (Default) None time_bin : None or int, optional is dividing the points on the time-axis in even bins and averages the found values in between. This is a hard approach that also affects the fits. I do recommend to use this carefully, it is most useful for modulated data. A better choice for transient absorption that only affects the kinetics is 'time_width_percent' ''' time_label=ds.index.name energy_label=ds.columns.name if (wavelength is not None) and (times is not None):raise ValueError('can not get wavelength and times back') if (bordercut is not None) and not from_fit: ds.columns=ds.columns.astype('float') ds=ds.loc[:,bordercut[0]:bordercut[1]] if (equal_energy_bin is not None) and (wavelength is None):# we work with optical data but want to bin in equal energy x=ds.columns.values.astype('float') y=ds.index.values.astype('float') energy_label='Energy in eV' x=scipy.constants.h*scipy.constants.c/(x*1e-9*scipy.constants.electron_volt) if from_fit:#they are already binned ds.columns=x ds.sort_index(axis=1,ascending=False) elif (x[1:]-x[:-1]>equal_energy_bin).all(): raise ValueError("equal_energy_bin bins are to small for the data") else: rebin_max=np.argmin((x[1:]-x[:-1])<equal_energy_bin)#find the position where the difference is larger than the wave_nm_bin if rebin_max==0:rebin_max=len(x)# we get 0 when all teh values are ok if rebin_max<len(x): if (x[1:]-x[:-1]>equal_energy_bin).all():raise ValueError("equal_energy_bin bins are to small for the data") bins=np.arange(x.min(),x[rebin_max],equal_energy_bin) bin_means,bin_edges = binned_statistic(x[:rebin_max], ds.values[:,:rebin_max], statistic='mean',bins=bins)[:2] bins=(bin_edges[1:]+bin_edges[:-1])/2. ds=pandas.concat((pandas.DataFrame(bin_means,index=y,columns=bins),ds.iloc[:,rebin_max:]), axis=1, join='outer') else: bins=np.arange(x.min(),x.max()+equal_energy_bin,equal_energy_bin) bin_means,bins = binned_statistic(x, ds.values, statistic='mean',bins=bins)[:2] bins=(bins[1:]+bins[:-1])/2. ds=pandas.DataFrame(bin_means,index=y,columns=bins) elif (wave_nm_bin is not None) and (wavelength is None):# bin in wavelength x=ds.columns.values.astype('float') y=ds.index.values.astype('float') if (x[1:]-x[:-1]>wave_nm_bin).all():raise ValueError("wavelength_nm_bins bins are to small for the data") rebin_max=np.argmin((x[1:]-x[:-1])<wave_nm_bin)#find the position where the difference is larger than the wave_nm_bin if rebin_max==0:rebin_max=len(x)# we get 0 when all teh values are ok if rebin_max<len(x): if (x[1:]-x[:-1]>wave_nm_bin).all():raise ValueError("wavelength_nm_bins bins are to small for the data") bins=np.arange(x.min(),x[rebin_max],wave_nm_bin) bin_means,bin_edges = binned_statistic(x[:rebin_max], ds.values[:,:rebin_max], statistic='mean',bins=bins)[:2] bins=(bin_edges[1:]+bin_edges[:-1])/2. ds=pandas.concat((pandas.DataFrame(bin_means,index=y,columns=bins),ds.iloc[:,rebin_max:]), axis=1, join='outer') else: bins=np.arange(x.min(),x.max()+wave_nm_bin,wave_nm_bin) bin_means,bins = binned_statistic(x, ds.values, statistic='mean',bins=bins)[:2] bins=(bins[1:]+bins[:-1])/2. ds=pandas.DataFrame(bin_means,index=y,columns=bins) if time_bin is not None: time=ds.index.values.astype('float') y=ds.columns.values.astype('float') time_bin=int(time_bin) time_bins=time[::time_bin] bin_means,bins = binned_statistic(time, ds.values.T, statistic='mean',bins=time_bins)[:2] bins=(bins[1:]+bins[:-1])/2. ds=pandas.DataFrame(bin_means,index=y,columns=bins) ds=ds.T if timelimits is not None: ds.index=ds.index.astype('float') ds=ds.loc[timelimits[0]:timelimits[1],:] if ignore_time_region is not None: ds=ds.fillna(value=0) ds.index=ds.index.astype('float') if isinstance(ignore_time_region[0], numbers.Number): if drop_ignore: ds.loc[ignore_time_region[0]:ignore_time_region[1],:]=np.nan else: ds.loc[ignore_time_region[0]:ignore_time_region[1],:]=0 else: try: for entries in ignore_time_region: if drop_ignore: ds.loc[entries[0]:entries[1],:]=np.nan else: ds.loc[entries[0]:entries[1],:]=0 except: pass ds=ds.dropna(axis=0) if scattercut is not None: ds=ds.fillna(value=0) x=ds.columns.values.astype('float') if isinstance(scattercut[0], numbers.Number): if (equal_energy_bin is not None): scattercut=[scipy.constants.h*scipy.constants.c/(a*1e-9*scipy.constants.electron_volt) for a in scattercut] scattercut=scattercut[::-1] lower=find_nearest_index(x,scattercut[0]) upper=find_nearest_index(x,scattercut[1]) if drop_scatter: ds.iloc[:,lower:upper]=np.nan else: ds.iloc[:,lower:upper]=0 else: try: for entries in scattercut: if equal_energy_bin is not None: scattercut=[scipy.constants.h*scipy.constants.c/(a*1e-9*scipy.constants.electron_volt) for a in scattercut] scattercut=scattercut[::-1] lower=find_nearest_index(x,entries[0]) upper=find_nearest_index(x,entries[1]) if drop_scatter: ds.iloc[:,lower:upper]=np.nan else: ds.iloc[:,lower:upper]=0 except: pass ds=ds.dropna(axis=1) #until here we always have the same matrix ds.index.name=time_label ds.columns.name=energy_label if wavelength is not None:#ok we want to have singular wavelength if not hasattr(wavelength,'__iter__'):wavelength=np.array([wavelength]) if len(wavelength)>1:wavelength.sort() for i,wave in enumerate(wavelength): upper=wave+wavelength_bin/2 lower=wave-wavelength_bin/2 if equal_energy_bin is not None and from_fit: upper=scipy.constants.h*scipy.constants.c/(lower*1e-9*scipy.constants.electron_volt) lower=scipy.constants.h*scipy.constants.c/(upper*1e-9*scipy.constants.electron_volt) wave=scipy.constants.h*scipy.constants.c/(wave*1e-9*scipy.constants.electron_volt) if i == 0: out=ds.loc[:,lower:upper].mean(axis='columns').to_frame() out.columns = [wave] else: if wave in out.columns:continue out[wave] = ds.loc[:,lower:upper].mean(axis='columns') out.columns=out.columns.astype('float') out.columns.name=energy_label out.index.name=time_label ds=out if times is not None: #ok we want to have single times if not hasattr(times, '__iter__'):times=np.array([times]) if baseunit is None:baseunit = 'ps' time_scale=ds.index.values if time_width_percent>0: for i,time in enumerate(times): if time<0: limits = [find_nearest_index(time_scale,time+time*time_width_percent/100.), find_nearest_index(time_scale,time-time*time_width_percent/100.)] else: limits = [find_nearest_index(time_scale,time-time*time_width_percent/100.), find_nearest_index(time_scale,time+time*time_width_percent/100.)] time_lower = time_scale[limits[0]] time_upper = time_scale[limits[1]] time_mean = (time_lower+time_upper)/2 if i == 0: out=ds.iloc[limits[0]:limits[1],:].mean(axis='rows').to_frame() out.columns = ['%.3g %s (%.3g - %.3g %s)'%(time_mean,baseunit,time_lower,time_upper,baseunit)] else: out['%.3g %s (%3g - %.3g %s)'%(time_mean,baseunit,time_lower,time_upper,baseunit)]=ds.iloc[limits[0]:limits[1],:].mean(axis='rows').to_frame() else: for i,time in enumerate(times): index=find_nearest_index(time_scale,time) if i == 0: out=ds.iloc[index,:].to_frame() out.columns=['%.3g %s'%(time_scale[index],baseunit)] else: out['%.3g %s'%(time_scale[index],baseunit)]=ds.iloc[index,:] out.columns.name=time_label out.index.name=energy_label ds=out #ds.index.name='Wavelength in nm' ds.fillna(value=0,inplace=True)#lets fill nan values with zero to catch problems if equal_energy_bin is not None: ds.sort_index(axis=1,inplace=True,ascending=False) return ds def plot2d(ds, ax = None, title = None, intensity_range = None, baseunit = 'ps', timelimits = None, scattercut = None, bordercut = None, wave_nm_bin = None, ignore_time_region = None, time_bin = None, log_scale = False, plot_type = 'symlog', lintresh = 1, wavelength_bin = None, levels = 256, use_colorbar = True, cmap = None, data_type = 'differential Absorption in $\mathregular{\Delta OD}$', equal_energy_bin = None, from_fit = False): '''function for plotting matrix of TA data. Parameters --------------- ds : DataFrame This dataframe contains the data to be plotted. It is copied and sliced into the regions defined. The dataframe expects the time to be in Index and the wavelength/energy to be in the columns. The spectra is plotted with a second (energy) axis ax : None, matplotlib axis object optional If None (Default) a new plot is is created and a new axis, otherwise ax needs to be Matplotlib Axis data_type : str this is the datatype and effectively the unit put on the intensity axis (Default)'differential Absorption in $\mathregular{\Delta OD}$ title : None or str title to be used on top of each plot The (Default) None triggers self.filename to be used. Setting a specific title as string will be used in all plots. To remove the title all together set an empty string with this command title="" intensity_range : None, float or list [of two floats] intensity_range is a general switch that governs what intensity range the plots show. For the 1d plots this is the y-axis for the 2d-plots this is the colour scale. This parameter recognizes three settings. If set to "None" (Default) this uses the minimum and maximum of the data. A single value like in the example below and the intended use is the symmetric scale while a list with two entries an assymmetric scale e.g. intensity_range=3e-3 is converted into intensity_range=[-3e-3,3e-3] baseunit : str baseunit is a neat way to change the unit on the time axis of the plots. (Default) 'ps', but they can be frames or something similarly. This is changing only the label of the axis. During the import there is the option to divide the numbers by a factor. I have also used frames or fs as units. Important is that all time units will be labeled with this unit. timelimits : None or list (of 2 floats), optional cut times at the low and high time limit. (Default) None uses the limits of measurement Important: If either the background or the chirp is to be fit this must include the time before zero! Useful: It is useful to work on different regions, starting with the longest (then use the ta.Backgound function prior to fit) and expand from there scattercut : None or iterable (of floats or other iterable, always pairs!), optional intented to "cut" one or multiple scatter regions. (if (Default) None nothing happens) If it is set the spectral region between the limits is set to zero. Usage single region: [lower region limit,upper region limit], use for multiple regions:[[lower limit 1,upper limit 1],[lower limit 2,upper limit 2],...] bordercut : None or iterable (with two floats), optional cut spectra at the low and high wavelength limit. (Default) None uses the limits of measurement wave_nm_bin : None or float, optional rebins the original data into even intervals. If set to None the original data will be used. If set to a width (e.g. 2nm), the wavelength axis will be divided into steps of this size and the mean of all measurements in the interval is taken. The re-binning stops as soon as the measured stepsize is wider than given here, then the original bins are used. This function is particularly useful for spectrometer with non-linear dispersion, like a prism in the infrared. equal_energy_bin : None or float(optional) if this is set the wave_nm_bin is ignored and the data is rebinned into equal energy bins (based upon that the data is in nm. If dual axis is on then the lower axis is energy and the upper is wavelength ignore_time_region : None or list (of two floats or of lists), optional cut set a time range with a low and high limit from the fits. (Default) None nothing happens The region will be removed during the fitting process (and will be missing in the fit-result plots) Usage single region: [lower region limit,upper region limit], use for multiple regions:[[lower limit 1,upper limit 1],[lower limit 2,upper limit 2],...] time_bin : None or int, optional is dividing the points on the time-axis in even bins and averages the found values in between. This is a hard approach that also affects the fits. I do recommend to use this carefully, it is most useful for modulated data. A better choice for transient absorption that only affects the kinetics is 'time_width_percent' log_scale : bool, optional If True (Default), The 2D plots (Matrix) is plotted with a pseudo logarithmic intensity scale. This usually does not give good results unless the intensity scale is symmetric plot_type : None or str is a general setting that can influences what time axis will be used for the plots. "symlog" (linear around zero and logarithmic otherwise) "lin" and "log" are valid options. lintresh : float The pseudo logratihmic range "symlog" is used for most time axis. Symlog plots a range around time zero linear and beyond this linear treshold 'lintresh' on a logarithmic scale. (Default) 0.3 wavelength_bin : float, optional the width used in kinetics, see below (Default) 10nm levels : int, optional how many different colours to use in the description. less makes for more contrast but less intensity details (Default) 256 use_colorbar : bool, optional if True (Default) a colour bar is added to the 2d plot for intensity explanation, switch mostely used for creating multiple plots cmap : None or matplotlib color map, optional is a powerfull variable that chooses the colour map applied for all plots. If set to None (Default) then the self.cmap is used. As standard I use the color map "jet" from matplotlib. There are a variety of colormaps available that are very usefull. Beside "jet", "viridis" is a good choice as it is well visible under red-green blindness. Other useful maps are "prism" for high fluctuations or diverging color maps like "seismic". See https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html for a comprehensive selection. In the code the colormaps are imported so if plot_func is imported as pf then self.cmap=pf.cm.viridis sets viridis as the map to use. Internally the colors are chosen with the "colm" function. The 2d plots require a continuous color map so if something else is give 2d plots are shown automatically with "jet". For all of the 1d plots however I first select a number of colors before each plot. If cmap is a continous map then these are sampled evenly over the colourmap. Manual iterables of colours cmap=[(1,0,0),(0,1,0),(0,0,1),...] are also accepted, as are vectors or dataframes that contain as rows the colors. There must be of course sufficient colors present for the numbers of lines that will be plotted. So I recommend to provide at least 10 colours (e.g.~your university colors). colours are always given as a, list or tuple with RGA or RGBA (with the last A beeing the Alpha=transparency. All numbers are between 0 and 1. If a list/vector/DataFrame is given for the colours they will be used in the order provided. from_fit : bool optional it needed this swtich to avoid re-slicing of data in spectal axis for equal energy bins ''' if cmap is None: cmap=standard_map elif not np.array([isinstance(cmap,type(cm.viridis)),isinstance(cmap,type(cm.jet)),isinstance(cmap,type(cm.Blues)),isinstance(cmap,type(cm.coolwarm)),isinstance(cmap,type(cm.terrain))]).any():#we must have a cmap=standard_map if ax is None: ax_ori=False fig,ax=plt.subplots(figsize=(10,6),dpi=100) else: ax_ori=True fig=ax.get_images() if timelimits is None: timelimits=(ds.index.min(),ds.index.max()) ds = sub_ds(ds, scattercut = scattercut, bordercut = bordercut, timelimits = timelimits, wave_nm_bin = wave_nm_bin, wavelength_bin = wavelength_bin, time_bin = time_bin, ignore_time_region = ignore_time_region, drop_scatter = False, drop_ignore = False, equal_energy_bin = equal_energy_bin, from_fit = from_fit) if intensity_range is None: try: maxim=max([abs(ds.values.min()),abs(ds.values.max())]) intensity_range=[-maxim,maxim] except: intensity_range=[-1e-2,1e-2] else: if not hasattr(intensity_range,'__iter__'):#lets have an lazy option intensity_range=[-intensity_range,intensity_range] else: if log_scale:print('I highly recommend to make a symmetric intensity distribution for logarithmic scale, the colorbar might look strange otherwise') if log_scale: bounds0 = list(-1*np.logspace(np.log10(-intensity_range[0]), np.log10(-intensity_range[0]/(levels/2)), levels)) bounds1 = np.logspace(np.log10(intensity_range[1]/(levels/2)),np.log10(intensity_range[1]), levels) bounds0.append(0) for a in bounds1: bounds0.append(a) norm = colors.BoundaryNorm(boundaries=bounds0, ncolors=len(bounds0)) mid_color=colm(k=range(levels),cmap=cmap)[int((levels-levels%2)/2)] #norm=colors.SymLogNorm(levels,linthresh=1e-5, linscale=1e-5,vmin=intensity_range[0], vmax=intensity_range[1]) else: nbins=levels levels = MaxNLocator(nbins=levels).tick_values(intensity_range[0], intensity_range[1]) norm = BoundaryNorm(levels,clip=True,ncolors=cmap.N) mid_color_index=find_nearest_index(0,levels) mid_color=colm(k=range(nbins),cmap=cmap) mid_color=mid_color[mid_color_index] #print(ds.head()) x = ds.columns.values.astype('float') y = ds.index.values.astype('float') X, Y = np.meshgrid(x, y) img=ax.pcolormesh(X,Y,ds.values,norm=norm,cmap=cmap,shading=shading) if ignore_time_region is None: pass elif isinstance(ignore_time_region[0], numbers.Number): ds.index=ds.index.astype(float) try: upper=ds.loc[ignore_time_region[1]:,:].index.values.min() lower=ds.loc[:ignore_time_region[0],:].index.values.max() if equal_energy_bin is not None: rect = plt.Rectangle((x.max(),lower), width=abs(ax.get_xlim()[0]-ax.get_xlim()[1]), height=abs(upper-lower),facecolor=mid_color,alpha=1)#mid_color) else: rect = plt.Rectangle((x.min(),lower), width=abs(ax.get_xlim()[1]-ax.get_xlim()[0]), height=abs(upper-lower),facecolor=mid_color,alpha=1)#mid_color) ax.add_patch(rect) except: pass else: ignore_time_region_loc=flatten(ignore_time_region) for k in range(int(len(ignore_time_region_loc)/2+1)): try: upper=ds.loc[ignore_time_region[k+1]:,:].index.values.min() lower=ds.loc[:ignore_time_region[k],:].index.values.max() if equal_energy_bin is not None: rect = plt.Rectangle((x.max(),lower), width=abs(ax.get_xlim()[0]-ax.get_xlim()[1]), height=abs(upper-lower),facecolor=mid_color,alpha=1) else: rect = plt.Rectangle((x.min(),lower), width=abs(ax.get_xlim()[1]-ax.get_xlim()[0]), height=abs(upper-lower),facecolor=mid_color,alpha=1) ax.add_patch(rect) except: pass if scattercut is None: pass elif isinstance(scattercut[0], numbers.Number): try: if equal_energy_bin is not None: scattercut=[scipy.constants.h*scipy.constants.c/(a*1e-9*scipy.constants.electron_volt) for a in scattercut] scattercut=scattercut[::-1] upper=ds.loc[:,scattercut[1]:].columns.values.min() lower=ds.loc[:,:scattercut[0]].columns.values.max() width=abs(upper-lower) rect = plt.Rectangle((lower,y.min()), height=abs(ax.get_ylim()[1]-ax.get_ylim()[0]), width=width, facecolor=mid_color,alpha=1)#mid_color) ax.add_patch(rect) except: pass else: scattercut=flatten(scattercut) if equal_energy_bin is not None: scattercut=[scipy.constants.h*scipy.constants.c/(a*1e-9*scipy.constants.electron_volt) for a in scattercut] scattercut=scattercut[::-1] for k in range(int(len(scattercut)/2+1)): try: upper=ds.loc[:,scattercut[k][1]:].columns.values.min() if upper==0:raise lower=ds.loc[:,:scattercut[k][0]].columns.values.max() rect = plt.Rectangle((lower.min()), height=abs(ax.get_ylim()[1]-ax.get_ylim()[0]), width=abs(upper-lower),facecolor=mid_color,alpha=1)#mid_color) ax.add_patch(rect) except: pass if use_colorbar: mid=(intensity_range[1]+intensity_range[0])/2 if log_scale: values=[intensity_range[0],mid-abs(intensity_range[0]-mid)/10,mid,mid+abs(intensity_range[1]-mid)/10,intensity_range[1]] else: values=[intensity_range[0],intensity_range[0]+abs(intensity_range[0]-mid)/2,mid,intensity_range[1]-abs(intensity_range[1]-mid)/2,intensity_range[1]] labels=['%.2g'%(a) for a in values] labels[0]='<' + labels[0] labels[-1]='>'+labels[-1] cbar=plt.colorbar(img, ax=ax,ticks=values,pad=0.01) cbar.ax.set_yticklabels(labels) a=ax.yaxis.label fontsize=a.get_fontsize() fontsize-=4 if not data_type is None:#we use this as a switch to enable a flexible avoidance of the label setting. if log_scale: if ax_ori:cbar.set_label(data_type + '\nLog-scale', rotation=270,labelpad=20,fontsize=fontsize) else:cbar.set_label(data_type + '\nLog-scale', rotation=270,labelpad=20,fontsize=fontsize) else: if ax_ori:cbar.set_label(data_type, rotation=270,labelpad=20,fontsize=fontsize) else:cbar.set_label(data_type, rotation=270,labelpad=20,fontsize=fontsize) if "symlog" in plot_type: ax.plot(ax.get_xlim(),[lintresh,lintresh],'black',lw=0.5,alpha=0.3) ax.plot(ax.get_xlim(),[-1.0*lintresh,-1.0*lintresh],'black',lw=0.5,alpha=0.3) ax.plot(ax.get_xlim(),[0,0],'black',lw=0.5,alpha=0.6) if 1: ax.set_yscale('symlog', linthresh=lintresh) locmaj = matplotlib.ticker.LogLocator(base=10.0, subs=(0.1,1.0,10.,1e2,1e3,1e4)) ax.yaxis.set_major_locator(locmaj) locmin = matplotlib.ticker.LogLocator(base=10.0, subs=np.arange(0.1,1,0.1)) ax.yaxis.set_minor_locator(locmin) ticks=list(ax.get_yticks()) ticks.append(lintresh) [ticks.append(a) for a in [-0.3,-1,-2,-5,-10]] ticks.sort() if timelimits[1]>100: ticks=np.array(ticks) ticks=np.concatenate((ticks.clip(min=0.1),np.zeros(1),ticks.clip(max=-0.1,min=timelimits[0])),axis=0) ax.set_yticks(ticks) else: print('here2') ax.set_yscale('symlog', linthresh=lintresh,subsy=range(2,9),linscaley=lintresh) ax.set_ylim(y.min(),y.max()) elif "log" in plot_type: lower_time=max(1e-6,timelimits[0]) ax.set_ylim(lower_time,y.max()) ax.set_yscale('log') else: ax.set_yscale('linear') ax.set_ylim(timelimits) if bordercut is not None: try: if equal_energy_bin is not None: bordercut=[scipy.constants.h*scipy.constants.c/(a*1e-9*scipy.constants.electron_volt) for a in bordercut] ax.set_xlim(bordercut[0],bordercut[1]) except: print('bordercut failed') pass if equal_energy_bin is not None and False: temp=np.array(ax.get_xlim()) ax.set_xlim(temp.max(),temp.min()) ax.set_xlabel(ds.columns.name) ax.set_ylabel(ds.index.name) if title: ax.set_title(title) if ax_ori:return ax return fig def plot2d_fit(re, error_matrix_amplification=5, use_images=True, patches=False, title = None, intensity_range = None, baseunit = 'ps', timelimits = None, scattercut = None, bordercut = None, wave_nm_bin = None, ignore_time_region = None, time_bin = None, log_scale = False, scale_type = 'symlog', lintresh = 1, wavelength_bin = None, levels = 256, plot_with_colorbar = True, cmap = None, data_type = 'differential Absorption in $\mathregular{\Delta OD}$', equal_energy_bin = None): '''Plots the fit output as a single plot with meas,fitted and difference. The differnece used err_matrix_amplification as a factor. patches moves the labels from the title into white patches in the top of the figure Parameters --------------- re : dict Dictionary that contains the fit results and specific the dataframes A, AC and AE error_matrix_amplification : int, optional the error matrix AE is multiplied by this factor for the plot. use_images : bool: (Default)True converts the matrix into images, to reduce the filesize. data_type : str this is the datatype and effectively the unit put on the intensity axis (Default)'differential Absorption in $\mathregular{\Delta OD}$ patches : bool, optional If False (Default) the names "measured" "fitted" "difference" will be placed above the images. If True, then they will be included into the image (denser) title : None or str title to be used on top of each plot The (Default) None triggers self.filename to be used. Setting a specific title as string will be used in all plots. To remove the title all together set an empty string with this command title="" intensity_range : None, float or list [of two floats] intensity_range is a general switch that governs what intensity range the plots show. For the 1d plots this is the y-axis for the 2d-plots this is the colour scale. This parameter recognizes three settings. If set to "None" (Default) this uses the minimum and maximum of the data. A single value like in the example below and the intended use is the symmetric scale while a list with two entries an assymmetric scale e.g. intensity_range=3e-3 is converted into intensity_range=[-3e-3,3e-3] baseunit : str baseunit is a neat way to change the unit on the time axis of the plots. (Default) 'ps', but they can be frames or something similarly. This is changing only the label of the axis. During the import there is the option to divide the numbers by a factor. I have also used frames or fs as units. Important is that all time units will be labeled with this unit. timelimits : None or list (of 2 floats), optional cut times at the low and high time limit. (Default) None uses the limits of measurement Important: If either the background or the chirp is to be fit this must include the time before zero! Useful: It is useful to work on different regions, starting with the longest (then use the ta.Backgound function prior to fit) and expand from there scattercut : None or iterable (of floats or other iterable, always pairs!), optional intented to "cut" one or multiple scatter regions. (if (Default) None nothing happens) If it is set the spectral region between the limits is set to zero. Usage single region: [lower region limit,upper region limit], use for multiple regions:[[lower limit 1,upper limit 1],[lower limit 2,upper limit 2],...] bordercut : None or iterable (with two floats), optional cut spectra at the low and high wavelength limit. (Default) None uses the limits of measurement wave_nm_bin : None or float, optional rebins the original data into even intervals. If set to None the original data will be used. If set to a width (e.g. 2nm), the wavelength axis will be divided into steps of this size and the mean of all measurements in the interval is taken. The re-binning stops as soon as the measured stepsize is wider than given here, then the original bins are used. This function is particularly useful for spectrometer with non-linear dispersion, like a prism in the infrared. equal_energy_bin : None or float(optional) if this is set the wave_nm_bin is ignored and the data is rebinned into equal energy bins (based upon that the data is in nm. If dual axis is on then the lower axis is energy and the upper is wavelength ignore_time_region : None or list (of two floats or of lists), optional cut set a time range with a low and high limit from the fits. (Default) None nothing happens The region will be removed during the fitting process (and will be missing in the fit-result plots) Usage single region: [lower region limit,upper region limit], use for multiple regions:[[lower limit 1,upper limit 1],[lower limit 2,upper limit 2],...] time_bin : None or int, optional is dividing the points on the time-axis in even bins and averages the found values in between. This is a hard approach that also affects the fits. I do recommend to use this carefully, it is most useful for modulated data. A better choice for transient absorption that only affects the kinetics is 'time_width_percent' log_scale : bool, optional If True (Default), The 2D plots (Matrix) is plotted with a pseudo logarithmic intensity scale. This usually does not give good results unless the intensity scale is symmetric Scale_type : None or str is a general setting that can influences what time axis will be used for the plots. "symlog" (linear around zero and logarithmic otherwise) "lin" and "log" are valid options. lintresh : float The pseudo logratihmic range "symlog" is used for most time axis. Symlog plots a range around time zero linear and beyond this linear treshold 'lintresh' on a logarithmic scale. (Default) 0.3 wavelength_bin : float, optional the width used in kinetics, see below (Default) 10nm levels : int, optional how many different colours to use in the description. less makes for more contrast but less intensity details (Default) 256 plot_with_colorbar : bool, optional if True (Default) a colour bar is added to the 2d plot for intensity explanation, switch mostely used for creating multiple plots cmap : None or matplotlib color map, optional is a powerfull variable that chooses the colour map applied for all plots. If set to None (Default) then the self.cmap is used. As standard I use the color map "jet" from matplotlib. There are a variety of colormaps available that are very usefull. Beside "jet", "viridis" is a good choice as it is well visible under red-green blindness. Other useful maps are "prism" for high fluctuations or diverging color maps like "seismic". See https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html for a comprehensive selection. In the code the colormaps are imported so if plot_func is imported as pf then self.cmap=pf.cm.viridis sets viridis as the map to use. Internally the colors are chosen with the "colm" function. The 2d plots require a continuous color map so if something else is give 2d plots are shown automatically with "jet". For all of the 1d plots however I first select a number of colors before each plot. If cmap is a continous map then these are sampled evenly over the colourmap. Manual iterables of colours cmap=[(1,0,0),(0,1,0),(0,0,1),...] are also accepted, as are vectors or dataframes that contain as rows the colors. There must be of course sufficient colors present for the numbers of lines that will be plotted. So I recommend to provide at least 10 colours (e.g.~your university colors). colours are always given as a, list or tuple with RGA or RGBA (with the last A beeing the Alpha=transparency. All numbers are between 0 and 1. If a list/vector/DataFrame is given for the colours they will be used in the order provided. ''' if intensity_range is None:intensity_range=5e-3 fig,ax=plt.subplots(3,figsize=(9,11)) if patches: plot2d(re['A'], cmap = cmap, log_scale = log_scale, intensity_range = intensity_range, ax = ax[0], baseunit = baseunit, use_colorbar = plot_with_colorbar, levels = levels, plot_type = scale_type, ignore_time_region = ignore_time_region, lintresh = lintresh, bordercut = bordercut, scattercut = scattercut, timelimits = timelimits, data_type = data_type, equal_energy_bin = equal_energy_bin, from_fit = True) plot2d(re['AC'], cmap = cmap, log_scale = log_scale, intensity_range = intensity_range, ax = ax[1], baseunit = baseunit, use_colorbar = plot_with_colorbar, levels = levels, plot_type = scale_type, ignore_time_region = ignore_time_region, lintresh = lintresh, bordercut = bordercut, scattercut = scattercut, timelimits = timelimits, data_type = data_type, equal_energy_bin = equal_energy_bin, from_fit = True) plot2d(re['AE'], cmap = cmap, log_scale = log_scale, intensity_range = np.array(intensity_range)/error_matrix_amplification, ax = ax[2], baseunit = baseunit, use_colorbar = plot_with_colorbar, levels = levels, plot_type = scale_type, ignore_time_region = ignore_time_region, lintresh = lintresh, bordercut = bordercut, scattercut = scattercut, timelimits = timelimits, data_type = data_type, equal_energy_bin = equal_energy_bin, from_fit = True) for i in range(3): ax[i].set_title(label='') stringen=['measured','calculated','difference'] x_width=(ax[i].get_xlim()[1]-ax[i].get_xlim()[0])/4 if 'lin' in scale_type: y_width=(ax[i].get_ylim()[1])/8 else: y_width=(ax[i].get_ylim()[1])/1.5 rect = plt.Rectangle((ax[i].get_xlim()[1]-x_width, ax[i].get_ylim()[1]-y_width), x_width, y_width,facecolor="white", alpha=0.5) ax[i].add_patch(rect) ax[i].text(ax[i].get_xlim()[1]-x_width+x_width*0.1,ax[i].get_ylim()[1]-y_width+y_width*0.1,stringen[i],fontsize=16) fig.subplots_adjust(left=0.15, bottom=0.067, right=0.97, top=0.985, wspace=0.0, hspace=0.258) else: plot2d(re['A'], cmap = cmap, title = 'Measured', log_scale = log_scale, intensity_range = intensity_range, ax = ax[0], baseunit = baseunit, use_colorbar = plot_with_colorbar, levels = levels, plot_type = scale_type, ignore_time_region = ignore_time_region, lintresh = lintresh, bordercut = bordercut, scattercut = scattercut, timelimits = timelimits, data_type = data_type, equal_energy_bin = equal_energy_bin, from_fit = True) plot2d(re['AC'], cmap = cmap, title = 'Calculated', log_scale = log_scale, intensity_range = intensity_range, ax = ax[1], baseunit = baseunit, use_colorbar = plot_with_colorbar, levels = levels, plot_type = scale_type, ignore_time_region = ignore_time_region, lintresh = lintresh, bordercut = bordercut, scattercut = scattercut, timelimits = timelimits , data_type = data_type, equal_energy_bin = equal_energy_bin, from_fit = True) plot2d(re['AE'], cmap = cmap, title = 'Difference', log_scale = log_scale, intensity_range = np.array(intensity_range)/error_matrix_amplification, ax = ax[2], baseunit = baseunit, use_colorbar = plot_with_colorbar, levels = levels, plot_type = scale_type, ignore_time_region = ignore_time_region, lintresh = lintresh, bordercut = bordercut, scattercut = scattercut, timelimits = timelimits, data_type = data_type, equal_energy_bin = equal_energy_bin, from_fit = True) #fig.subplots_adjust(left=0.15, bottom=0.067, right=0.97, top=0.97, wspace=0.0, hspace=0.398) fig.tight_layout() return fig def plot_fit_output( re, ds, cmap = standard_map, plotting = range(6), title = None, path = None, filename = None, f = 'standard', intensity_range = 1e-2, baseunit = 'ps', timelimits = None, scattercut = None, bordercut = None, error_matrix_amplification = 20, wave_nm_bin = 5, rel_wave = None, width = 10, rel_time = [1, 5, 10], time_width_percent = 10, ignore_time_region = None, save_figures_to_folder = True, log_fit = False, mod = None, subplot = False, color_offset = 0, log_scale = True, savetype = 'png', evaluation_style = False, lintresh = 1, scale_type = 'symlog', patches = False, print_click_position = False, data_type = 'differential Absorption in $\mathregular{\Delta OD}$', plot_second_as_energy = True, units = 'nm', equal_energy_bin = None): '''Purly manual function that plots all the fit output figures. Quite cumbersome, but offers a lot of manual options. The figures can be called separately or with a list of plots. e.g. range(6) call plots 0-5 Manual plotting of certain type: This is a wrapper function that triggers the plotting of all the fitted plots. The parameter in this plot call are to control the general look and features of the plot. Which plots are printed is defined by the command (plotting) The plots are generated from the fitted Matrixes and as such only will work after a fit was actually completed (and the "re" dictionary attached to the object.) In all plots the RAW data is plotted as dots and the fit with lines *Contents of the plots* 0. DAC contains the assigned spectra for each component of the fit. For a modelling with independent exponential decays this corresponds to the "Decay Associated Spectra" (DAS). For all other models this contains the "Species Associated Spectra" (SAS). According to the model the separate spectra are labeled by time (process) or name, if a name is associated in the fitting model. The spectra are shown in the extracted strength in the right pane and normalized in the left. Extracted strength means that the measured spectral strength is the intensity (concentration matrix) times this spectral strength. As the concentration maxima for all DAS are 1 this corresponds to the spectral strength for the DAS. (please see the documentation for the fitting algorithm for further details) 1. summed intensity. All wavelength of the spectral axis are summed for data and fit. The data is plotted in a number of ways vs linear and logarithmic axis. This plot is not ment for publication but very useful to evaluate the quality of a fit. 2. plot kinetics for selected wavelength (see corresponding RAW plot) 3. plot spectra at selected times (see corresponding RAW plot) 4. plots matrix (measured, modelled and error Matrix). The parameter are the same as used for the corresponding RAW plot with the addition of "error_matrix_amplification" which is a scaling factor multiplied onto the error matrix. I recommend to play with different "cmap", "log_scale" and "intensity_scale" to create a pleasing plot 5. concentrations. In the progress of the modelling/fitting a matrix is generated that contains the relative concentrations of the species modelled. This plot is showing the temporal development of these species. Further details on how this matrix is generated can be found in the documentation of the fitting function. The modeled spectra are the convolution of these vectors (giving the time-development) and the DAS/SAS (giving the spectral development). Parameters --------------- ds : DataFrame This dataframe contains the data to be plotted. It is copied and sliced into the regions defined. The dataframe expects the time to be in Index and the wavelength/energy to be in the columns. The spectra is plotted with a second (energy) axis re : dict Dictionary that contains the fit results and specific the dataframes A, AC and AE data_type : str this is the datatype and effectively the unit put on the intensity axis (Default)'differential Absorption in $\mathregular{\Delta OD}$ error_matrix_amplification : int, optional the error matrix AE is multiplied by this factor for the plot. plotting : int or iterable (of integers), optional This parameter determines which figures are plotted the figures can be called separately with plotting = 1 or with a list of plots (Default) e.g.~plotting=range(6) calls plots 0,1,2,3,4,5 The plots have the following numbers:\ 0 - DAS or SAS\ 1 - summed intensity\ 2 - Kinetics\ 3 - Spectra\ 4 - Matrixes\ 5 - Concentrations (the c-object)\ The plotting takes all parameter from the "ta" object unless otherwise specified path : None, str or path object, optional This defines where the files are saved if the safe_figures_to_folder parameter is True, quite useful if a lot of data sets are to be printed fast. If a path is given, this is used. If a string like the (Default) "result_figures" is given, then a subfolder of this name will be used (an generated if necessary) relative to self.path. Use and empty string to use the self.path If set to None, the location of the plot_func will be used and a subfolder with title "result_figures" be generated here savetype : str or iterable (of str), optional matplotlib allows the saving of figures in various formats. (Default) "png", typical and recommendable options are "svg" and "pdf". evaluation_style : bool, optional True (Default = False) adds a lot of extra information in the plot title : None or str, optional "title=None" is in general the filename that was loaded. Setting a specific title will be used in all plots. To remove the title all together set an empty string with title="" scale_type : str, optional refers to the time-axis and takes, ’symlog’ (Default)(linear around zero and logarithmic otherwise) and ‘lin’ for linear and ‘log’ for logarithmic, switching all the time axis to this type patches : bool, optional If False (Default) the names "measured" "fitted" "difference" will be placed above the images. If True, then they will be included into the image (denser) filename : str, optional offers to replace the base-name used for all plots (to e.g.~specify what sample was used). if (Default) None is used, the self.filename is used as a base name. The filename plays only a role during saving, as does the path and savetype save_figures_to_folder : bool, optional (Default) is True, if True the Figures are automatically saved log_scale : bool, optional If True (Default), The 2D plots (Matrix) is plotted with a pseudo logarithmic intensity scale. This usually does not give good results unless the intensity scale is symmetric subplot : bool, optional If False (Default) axis labels and such are set. If True, we plot into the same axis and do not set labels color_offset : int, optional At the (Default) 0 the colours are chose from the beginning, for a larger value Color_offset colors are skipped. Usually only used if multiple plots are created, and the data/or fit is only shown for some of them. lintresh : float The pseudo logratihmic range "symlog" is used for most time axis. Symlog plots a range around time zero linear and beyond this linear treshold 'lintresh' on a logarithmic scale. (Default) 1 rel_time : float or list/vector (of floats), optional For each entry in rel_time a spectrum is plotted. If time_width_percent=0 (Default) the nearest measured timepoint is chosen. For other values see 'time_width_percent' time_width_percent : float "rel_time" and "time_width_percent" work together for creating spectral plots at specific timepoints. For each entry in rel_time a spectrum is plotted. If however e.g. time_width_percent=10 the region between the timepoint closest to the 1.1 x timepoint and 0.9 x timepoint is averaged and shown (and the legend adjusted accordingly). This is particularly useful for the densly sampled region close to t=0. Typically for a logarithmic recorded kinetics, the timepoints at later times will be further appart than 10 percent of the value, but this allows to elegantly combine values around time=0 for better statistics. This averaging is only applied for the plotting function and not for the fits. ignore_time_region : None or list (of two floats or of lists), optional cut set a time range with a low and high limit from the fits. (Default) None nothing happens The region will be removed during the fitting process (and will be missing in the fit-result plots) Usage single region: [lower region limit,upper region limit], use for multiple regions:[[lower limit 1,upper limit 1],[lower limit 2,upper limit 2],...] width : float, optional the width used in kinetics, see below (Default) 10nm rel_wave : float or list (of floats), optional 'rel_wave' and 'width' (in the object called 'wavelength_bin' work together for the creation of kinetic plots. When plotting kinetic spectra one line will be plotted for each entrance in the list/vector rel_wave. During object generation the vector np.arange(300,1000,100) is set as standard. Another typical using style would be to define a list of interesting wavelength at which a kinetic development is to be plotted. At each selected wavelength the data between wavelength+ta.wavelength_bin and wavelength-ta.wavelength_bin is averaged for each timepoint returned timelimits : None or list (of 2 floats), optional cut times at the low and high time limit. (Default) None uses the limits of measurement Important: If either the background or the chirp is to be fit this must include the time before zero! Useful: It is useful to work on different regions, starting with the longest (then use the ta.Backgound function prior to fit) and expand from there scattercut : None or iterable (of floats or other iterable, always pairs!), optional intented to "cut" one or multiple scatter regions. (if (Default) None nothing happens) If it is set the spectral region between the limits is set to zero. Usage single region: [lower region limit,upper region limit], use for multiple regions:[[lower limit 1,upper limit 1],[lower limit 2,upper limit 2],...] bordercut : None or iterable (with two floats), optional cut spectra at the low and high wavelength limit. (Default) None uses the limits of measurement wave_nm_bin : None or float, optional rebins the original data into even intervals. If set to None the original data will be used. If set to a width (e.g. 2nm), the wavelength axis will be divided into steps of this size and the mean of all measurements in the interval is taken. The re-binning stops as soon as the measured stepsize is wider than given here, then the original bins are used. This function is particularly useful for spectrometer with non-linear dispersion, like a prism in the infrared. equal_energy_bin : None or float(optional) if this is set the wave_nm_bin is ignored and the data is rebinned into equal energy bins (based upon that the data is in nm. If dual axis is on then the lower axis is energy and the upper is wavelength intensity_range : None, float or list [of two floats] intensity_range is a general switch that governs what intensity range the plots show. For the 1d plots this is the y-axis for the 2d-plots this is the colour scale. This parameter recognizes three settings. If set to "None" (Default) this uses the minimum and maximum of the data. A single value like in the example below and the intended use is the symmetric scale while a list with two entries an assymmetric scale e.g. intensity_range=3e-3 is converted into intensity_range=[-3e-3,3e-3] baseunit : str baseunit is a neat way to change the unit on the time axis of the plots. (Default) 'ps', but they can be frames or something similarly. This is changing only the label of the axis. During the import there is the option to divide the numbers by a factor. I have also used frames or fs as units. Important is that all time units will be labeled with this unit. f : str f is a replacement title that is set instead of the title. mainly used to have some options (Default) is 'standard' log_fit : bool, optional (default)= False Used for legend generation, tells if the fit was in log or lin space mod : str, optional Used for legend generation, tells what model was used for fitting cmap : None or matplotlib color map, optional is a powerfull variable that chooses the colour map applied for all plots. If set to None (Default) then the self.cmap is used. As standard I use the color map "jet" from matplotlib. There are a variety of colormaps available that are very usefull. Beside "jet", "viridis" is a good choice as it is well visible under red-green blindness. Other useful maps are "prism" for high fluctuations or diverging color maps like "seismic". See https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html for a comprehensive selection. In the code the colormaps are imported so if plot_func is imported as pf then self.cmap=pf.cm.viridis sets viridis as the map to use. Internally the colors are chosen with the "colm" function. The 2d plots require a continuous color map so if something else is give 2d plots are shown automatically with "jet". For all of the 1d plots however I first select a number of colors before each plot. If cmap is a continous map then these are sampled evenly over the colourmap. Manual iterables of colours cmap=[(1,0,0),(0,1,0),(0,0,1),...] are also accepted, as are vectors or dataframes that contain as rows the colors. There must be of course sufficient colors present for the numbers of lines that will be plotted. So I recommend to provide at least 10 colours (e.g.~your university colors). colours are always given as a, list or tuple with RGA or RGBA (with the last A beeing the Alpha=transparency. All numbers are between 0 and 1. If a list/vector/DataFrame is given for the colours they will be used in the order provided. print_click_position : bool, optional if True then the click position is printed for the spectral plots Examples ------------ >>> ta.plot_fit_output(ta.re,ta.ds) ''' if baseunit != 'ps': if baseunit == 'ns':baseunit = 'Time in ns' re['A'].index.name=baseunit re['AC'].index.name=baseunit re['AE'].index.name=baseunit ds.index.name=baseunit re['c'].index.name=baseunit if width is None:width=wave_nm_bin stringen=[] timedf=re['fit_results_times'] if mod is not None: if not isinstance(mod,type('hello')):mod='ext. func.' if evaluation_style: if mod is not None: stringen.append('Fit with Model: %s'%mod) timedf.rename(index={'resolution': "res"},inplace=True) timedf.rename(columns={'init_value': "init"},inplace=True) try: stringen.append(timedf.to_string(columns = ['value','init','vary','min','max','expr'], float_format = '{:.3g}'.format, justify = 'center')) except: print('something strange happened, most likely one value went "inf" or is set unexpectedly to None') else: if mod is not None: if mod in ['paral','exponential']:stringen.append('Fit with ind.\nexpon. decays:') else:stringen.append('Fit with time parameters:') try: timedf.drop(index=['resolution','t0'],inplace=True) except: pass stringen.append(timedf.to_string(columns=['value'],float_format='{:.3g}'.format,header=False)) stringen='\n'.join(stringen) times=timedf[timedf.is_rate].loc[:,'value'].values time_string=timedf[timedf.is_rate].to_string(columns=['value'],float_format='{:.3g}'.format,header=False) if not hasattr(plotting,'__iter__'):plotting=[plotting] if 0 in plotting:#DAC #-------plot DAC------------ #for i,col in enumerate(re['DAC']): #re['DAC'].iloc[:,i]=re['DAC'].iloc[:,i].values*re['c'].max().iloc[i] fig1,(ax1a,ax1b,ax1c)=plt.subplots(1,3,figsize=(12,5),dpi=100) n_colors=len(re['DAC'].columns) DAC=re['DAC'] DAC_copy=DAC.copy() normed=(DAC/DAC.abs().max()) for i,col in enumerate(DAC_copy): DAC_copy.iloc[:,i]=DAC_copy.iloc[:,i].values*re['c'].max().iloc[i] if scattercut is None: DAC.plot(ax=ax1b,color=colm(range(n_colors),cmap=cmap)) normed.plot(ax=ax1a,color=colm(range(n_colors),cmap=cmap)) DAC_copy.plot(ax=ax1c,color=colm(range(n_colors),cmap=cmap)) elif isinstance(scattercut[0], numbers.Number): DAC.loc[:scattercut[0],:].plot(ax=ax1b,color=colm(range(n_colors),cmap=cmap)) DAC.loc[scattercut[1]:,:].plot(ax=ax1b,color=colm(range(n_colors),cmap=cmap), label='_nolegend_') normed.loc[:scattercut[0],:].plot(ax=ax1a,color=colm(range(n_colors),cmap=cmap)) normed.loc[scattercut[1]:,:].plot(ax=ax1a,color=colm(range(n_colors),cmap=cmap), label='_nolegend_') DAC_copy.loc[:scattercut[0],:].plot(ax=ax1c,color=colm(range(n_colors),cmap=cmap)) DAC_copy.loc[scattercut[1]:,:].plot(ax=ax1c,color=colm(range(n_colors),cmap=cmap), label='_nolegend_') else: try: scattercut=flatten(scattercut) for i in range(len(scattercut)/2+1): if i==0: DAC.loc[:scattercut[0],:].plot(ax=ax1b,color=colm(range(n_colors),cmap=cmap)) normed.loc[:scattercut[0],:].plot(ax=ax1a,color=colm(range(n_colors),cmap=cmap)) DAC_copy.loc[:scattercut[0],:].plot(ax=ax1c,color=colm(range(n_colors),cmap=cmap)) elif i<(len(scattercut)/2): DAC.loc[scattercut[2*i-1]:scattercut[2*i],:].plot(ax=ax1b,color=colm(range(n_colors),cmap=cmap), label='_nolegend_') normed.loc[scattercut[2*i-1]:scattercut[2*i],:].plot(ax=ax1a,color=colm(range(n_colors),cmap=cmap), label='_nolegend_') DAC_copy.loc[scattercut[2*i-1]:scattercut[2*i],:].plot(ax=ax1c,color=colm(range(n_colors),cmap=cmap), label='_nolegend_') else: DAC.loc[scattercut[-1]:,:].plot(ax=ax1b,color=colm(range(n_colors),cmap=cmap), label='_nolegend_') normed.loc[scattercut[-1]:,:].plot(ax=ax1a,color=colm(range(n_colors),cmap=cmap), label='_nolegend_') DAC_copy.loc[scattercut[-1]:,:].plot(ax=ax1c,color=colm(range(n_colors),cmap=cmap), label='_nolegend_') except: DAC.plot(ax=ax1b,color=colm(range(n_colors),cmap=cmap)) normed.plot(ax=ax1a,color=colm(range(n_colors),cmap=cmap)) DAC_copy.plot(ax=ax1c,color=colm(range(n_colors),cmap=cmap)) if mod in ['paral','exponential']: try: names=['decay %i: %.3g %s'%(i,a,baseunit) for i,a in enumerate(times)] except: print('something strange happened, most likely one value went "inf" or is set unexpectedly to None') names=['decay %i: %s %s'%(i,a,baseunit) for i,a in enumerate(times)] if 'background' in list(re['DAC'].columns):names.append('background') if 'Non Decaying' in list(re['DAC'].columns):names.append('Non Decaying') ax1a.legend(names,title='Model: {}'.format(mod)) ax1b.legend(names,title='Model: {}'.format(mod)) ax1c.legend(names,title='Model: {}'.format(mod)) elif mod in ['exp']: names=['species %i'%i for i,a in enumerate(re['DAC'].columns.values)] if 'background' in list(re['DAC'].columns): if 'Non Decaying' in list(re['DAC'].columns): names[-1]='background' names[-2]='Non Decaying' else: names[-1]='background' else: if 'Non Decaying' in list(re['DAC'].columns): names[-1]='Non Decaying' ax1a.legend(names,title='Model: {}'.format(mod)) ax1b.legend(names,title='Model: {}'.format(mod)) ax1c.legend(names,title='Model: {}'.format(mod)) else: names=['%s'%a for a in re['DAC'].columns.values] ax1a.legend(names,title='Model: {}'.format(mod)) ax1b.legend(names,title='Model: {}'.format(mod)) ax1c.legend(names,title='Model: {}'.format(mod)) #ax1c.legend(time_string,title='Model: {}'.format(mod)) if title is None: ax1a.set_title(f) else: if len(title)>0: ax1a.set_title(title) if title is None: ax1b.set_title(f) else: if len(title)>1:ax1b.set_title(title) if title is None: ax1c.set_title(f) else: if len(title)>1:ax1c.set_title(title) ax1a.plot(ax1a.get_xlim(),[0,0],'black',zorder=10) ax1b.plot(ax1b.get_xlim(),[0,0],'black',zorder=10) ax1c.plot(ax1b.get_xlim(),[0,0],'black',zorder=10) ax1a.set_xlabel(ds.columns.name) ax1b.set_xlabel(ds.columns.name) ax1c.set_xlabel(ds.columns.name) ax1a.set_ylabel('intensity norm.') ax1b.set_ylabel('intensity in arb. units') ax1c.set_ylabel('intensity*max(c) in arb. units') fig1.tight_layout() if 1 in plotting: #-------plot sum_sum------------ fig2 = plt.figure(figsize = (18, 5), dpi = 100) ax2a=[plt.subplot2grid((3, 3), (0, i)) for i in range(3)] ax2=[plt.subplot2grid((3, 3), (1, i), rowspan=2) for i in range(3)] dat = [pandas.DataFrame(re['A'], index = re['A'].index, columns = re['A'].columns).abs().sum(axis = 1)] dat.append(pandas.DataFrame(re['AC'], index = re['AC'].index, columns = re['AC'].columns).abs().sum(axis = 1)) dat.append(pandas.DataFrame(re['AE'], index = re['AE'].index, columns = re['AE'].columns).abs().sum(axis = 1)) dat_names=['measured','calculated','error'] dat_styles=['*','-','-'] dat_cols=colm(range(3), cmap = cmap) limits = (dat[0].min(), dat[0].max()) xlimits = (dat[0].index.min(), dat[0].index.max()) if ignore_time_region is None: for i in range(3): for j in range(3): if i==2: _ = dat[i].plot(ax = ax2a[j], label = dat_names[i], style = dat_styles[i], color = dat_cols[i]) else: _ = dat[i].plot(ax = ax2[j], label = dat_names[i], style = dat_styles[i], color = dat_cols[i]) elif isinstance(ignore_time_region[0], numbers.Number): x=dat[0].index.values.astype('float') lower=find_nearest_index(x,ignore_time_region[0]) upper=find_nearest_index(x,ignore_time_region[1]) for i in range(3): for j in range(3): if i==2: _ = dat[i].iloc[:lower].plot(ax = ax2a[j], label = dat_names[i], style = dat_styles[i], color = dat_cols[i]) _ = dat[i].iloc[upper:].plot(ax = ax2a[j], label = '_nolegend_', style = dat_styles[i], color = dat_cols[i]) else: _ = dat[i].iloc[:lower].plot(ax = ax2[j], label = dat_names[i], style = dat_styles[i], color = dat_cols[i]) _ = dat[i].iloc[upper:].plot(ax = ax2[j], label = '_nolegend_', style = dat_styles[i], color = dat_cols[i]) else: try: ignore_time_region_loc=flatten(ignore_time_region) for k in range(len(ignore_time_region_loc)/2+1): if k==0: for i in range(3): for j in range(3): if i==2: _ = dat[i].loc[:ignore_time_region_loc[k]].plot(ax = ax2a[j], label = dat_names[i], style = dat_styles[i], color = colm(i, cmap = cmap)) else: _ = dat[i].loc[:ignore_time_region_loc[k]].plot(ax = ax2[j], label = dat_names[i], style = dat_styles[i], color = colm(i, cmap = cmap)) elif k<(len(ignore_time_region)/2): for i in range(3): for j in range(3): if i==2: _ = dat[i].loc[ignore_time_region_loc[2*k-1]:ignore_time_region_loc[2*k]].plot(ax = ax2a[j], label = '_nolegend_', style = dat_styles[i], color = colm(i, cmap = cmap)) else: _ = dat[i].loc[ignore_time_region_loc[2*k-1]:ignore_time_region_loc[2*k]].plot(ax = ax2[j], label = '_nolegend_', style = dat_styles[i], color = colm(i, cmap = cmap)) else: for i in range(3): for j in range(3): if i==2: _ = dat[i].loc[ignore_time_region_loc[-1]:].plot(ax = ax2a[j], label = '_nolegend_', style = dat_styles[i], color = colm(i, cmap = cmap)) else: _ = dat[i].loc[ignore_time_region_loc[-1]:].plot(ax = ax2[j], label = '_nolegend_', style = dat_styles[i], color = colm(i, cmap = cmap)) except: for i in range(3): for j in range(3): if i==2: _ = dat[i].plot(ax = ax2a[j], label = dat_names[i], style = dat_styles[i], color = colm(i, cmap = cmap)) else: _ = dat[i].plot(ax = ax2[j], label = dat_names[i], style = dat_styles[i], color = colm(i, cmap = cmap)) ax2[0].set_xlim(xlimits) ax2[0].set_xscale('symlog', linscale=0.1) ax2[0].autoscale(axis='y', tight=True) ax2a[0].set_xlim(xlimits) ax2a[0].set_xscale('symlog', linscale=0.1) ax2a[0].autoscale(axis='y', tight=True) ax2[1].set_xlim(xlimits) ax2[1].set_xscale('linear') ax2[1].set_ylim(np.nanmax([limits[0],limits[1]/10000]),limits[1]) ax2[1].set_yscale('log') ax2a[1].set_xlim(xlimits) ax2a[1].set_xscale('linear') ax2[2].set_xscale('log') ax2[2].set_ylim(np.nanmax([limits[0],limits[1]/10000]),limits[1]) ax2[2].set_yscale('log') ax2[2].set_xlim(max(0.1, xlimits[0]), xlimits[1]) ax2a[2].set_xscale('log') ax2a[2].set_xlim(max(0.1, xlimits[0]), xlimits[1]) #draw a black line at zero ax2a[0].plot(ax2[0].get_xlim(), [0, 0], 'black', zorder=10, label = '_nolegend_') ax2a[1].plot(ax2[0].get_xlim(), [0, 0], 'black', zorder=10, label = '_nolegend_') ax2a[2].plot(ax2[0].get_xlim(), [0, 0], 'black', zorder=10, label = '_nolegend_') #plot empty to get the labels right ax2[0].plot([], [], ' ', label=stringen) ax2[0].legend(title='Model: {}'.format(mod),frameon=False) if title is None: ax2[1].legend(labels=[],title=f,frameon=False) else: if not len(title)==0: ax2[1].legend(labels=[],title=title,frameon=False) for t in times: if isinstance(t,float): ax2[0].plot([t,t],ax2[0].get_ylim(),lw=0.5,zorder=10,alpha=0.5,color='black') ax2[1].plot([t,t],ax2[1].get_ylim(),lw=0.5,zorder=10,alpha=0.5,color='black') ax2[2].plot([t,t],ax2[2].get_ylim(),lw=0.5,zorder=10,alpha=0.5,color='black') x_label=ds.index.name ax2[0].set_xlabel(x_label) ax2[1].set_xlabel(x_label) ax2[2].set_xlabel(x_label) ax2a[0].set_xlabel(x_label) ax2a[1].set_xlabel(x_label) ax2a[2].set_xlabel(x_label) fig2.tight_layout() if 2 in plotting:#---plot single wavelength---------- fig3,ax3 = plt.subplots(figsize = (15,6),dpi = 100) #fig3,ax3 = plt.subplots(figsize = (8,4),dpi = 100) _=plot1d( ds = re['AC'], cmap = cmap, ax = ax3, width = width, wavelength = rel_wave, lines_are = 'fitted', plot_type = scale_type, baseunit = baseunit, lintresh = lintresh, timelimits = timelimits, text_in_legend = time_string, title = '', ignore_time_region = ignore_time_region, data_type = data_type, units = units, from_fit = True) _=plot1d( ds = re['A'], cmap = cmap,ax = ax3, subplot = True, width = width, wavelength = rel_wave,lines_are = 'data', plot_type = scale_type, baseunit = baseunit , lintresh = lintresh , timelimits = timelimits, ignore_time_region = ignore_time_region, data_type = data_type, units = units, from_fit = True) ax3.autoscale(axis = 'y',tight = True) for t in times: if isinstance(t, float): ax3.plot([t, t], ax3.get_ylim(), lw = 0.5, zorder = 10, alpha = 0.5, color = 'black') fig3.tight_layout() if 3 in plotting: #---plot at set time---------- fig4, ax4 = plt.subplots(figsize = (15, 6), dpi = 100) _=plot_time(ds=re['A'],cmap=cmap,ax=ax4,subplot=False, rel_time=rel_time, title=title, baseunit=baseunit, time_width_percent=time_width_percent, lines_are='data', scattercut=scattercut, bordercut = bordercut, intensity_range = intensity_range, data_type = data_type, plot_second_as_energy = plot_second_as_energy, units = units, equal_energy_bin = equal_energy_bin, from_fit = True ) _=plot_time(ds=re['AC'],cmap=cmap,ax=ax4, subplot=False, rel_time=rel_time, title=title, baseunit=baseunit, time_width_percent=time_width_percent, lines_are='fitted', color_offset=color_offset, scattercut=scattercut, data_type = data_type, plot_second_as_energy = plot_second_as_energy, units = units, equal_energy_bin = equal_energy_bin, from_fit = True ) try: if equal_energy_bin is not None: bordercut=[scipy.constants.h*scipy.constants.c/(a*1e-9*scipy.constants.electron_volt) for a in bordercut] ax4.set_xlim(bordercut) except: pass if print_click_position: plt.connect('button_press_event', mouse_move) fig4.tight_layout() if 4 in plotting:#---matrix with fit and error, as figures---------- fig5 = plot2d_fit(re, cmap = cmap, intensity_range = intensity_range, baseunit = baseunit, error_matrix_amplification = error_matrix_amplification, wave_nm_bin = None, equal_energy_bin = equal_energy_bin, use_images = True, log_scale = log_scale, scale_type = scale_type, patches = patches, lintresh = lintresh, bordercut = bordercut, ignore_time_region = ignore_time_region, scattercut = scattercut, timelimits = timelimits, levels = 200, data_type = data_type) plt.ion() plt.show() if 5 in plotting: fig6=plt.figure(figsize=(12,6)) G = GridSpec(4, 4) ax6=[] ax6.append(fig6.add_subplot(G[1:,0])) ax6.append(fig6.add_subplot(G[1:,1])) ax6.append(fig6.add_subplot(G[1:,2])) ax6.append(fig6.add_subplot(G[1:,3])) ax6.append(fig6.add_subplot(G[0,2:])) ax6.append(fig6.add_subplot(G[0,0:2])) n_colors=len(re['c'].columns) for i in range(4): ax6[i]=re['c'].plot(ax=ax6[i],color=colm(range(n_colors),cmap=cmap),legend=False) if re['c'].index.name == 'time': for i in range(4): ax6[i].set_xlabel('time in %s'%baseunit) ax6[1].set_yscale('log') ax6[1].set_ylim(1e-5,1.1) ax6[2].set_yscale('log') ax6[2].set_ylim(1e-5,1.1) ax6[2].set_xscale('log') ax6[2].set_xlim(0.05,ax6[2].get_xlim()[1]) ax6[3].set_xscale('log') ax6[3].set_xlim(0.05,ax6[3].get_xlim()[1]) handles, labels = ax6[3].get_legend_handles_labels() ax6[4].axis('off') ax6[5].axis('off') if title is None: title=f else: if not len(title)==0: title=title else: title='' if len(handles)<5: ncol=2 elif len(handles)<7: ncol=3 else: ncol=4 leg=ax6[4].legend(handles,labels,loc=3, ncol=ncol,edgecolor=(0,0,0,1),framealpha=1,frameon=True,title=title) for i in range(6): ax6[i].set_title('') ax6[5].text(0,0,'This factor represents the temporal evolution\n of the components in the fit.\nThis time dependent factor multiplied with the \nspectral intensity from the SAS/DAS is re[\"AC\"]',fontsize=float(plt.rcParams['legend.fontsize'])-1) fig6.tight_layout() if 6 in plotting:#---matrix with fit and error, as contours---------- fig7 = plot2d_fit(re, cmap = cmap, intensity_range = intensity_range, baseunit = baseunit, error_matrix_amplification = error_matrix_amplification, wave_nm_bin = wave_nm_bin, use_images = False, scale_type = scale_type, data_type = data_type) plt.ion() plt.show() if save_figures_to_folder: if path is None:path=os.path.dirname(os.path.realpath(__file__)) figure_path=check_folder(path=path) if filename is None: filename='test.fig' fi=filename.split('.')[0] try: fig1.savefig(check_folder(path=figure_path,filename='%s_DAC.%s'%(fi,savetype)),bbox_inches='tight') fig2.savefig(check_folder(path=figure_path,filename='%s_SUM.%s'%(fi,savetype)),bbox_inches='tight') fig3.savefig(check_folder(path=figure_path,filename='%s_SEL.%s'%(fi,savetype)),bbox_inches='tight') fig4.savefig(check_folder(path=figure_path,filename='%s_SPEC.%s'%(fi,savetype)),bbox_inches='tight') fig5.savefig(check_folder(path=figure_path,filename='%s_FIG_MAT.%s'%(fi,savetype)),bbox_inches='tight') fig6.savefig(check_folder(path=figure_path,filename='%s_concentrations.%s'%(fi,savetype)),bbox_inches='tight') fig7.savefig(check_folder(path=figure_path,filename='%s_CONTOUR.%s'%(fi,savetype)),bbox_inches='tight') except: pass def plot_raw(ds = None, plotting = range(4), title = None, intensity_range = 1e-2, baseunit = 'ps', timelimits = None, scattercut = None, bordercut = None, wave_nm_bin = None, width = 10, rel_wave = np.arange(400, 900, 100), rel_time = [1, 5, 10], time_width_percent = 10, ignore_time_region = None, time_bin = None, cmap = None, color_offset = 0, log_scale = True, plot_type = 'symlog', lintresh = 0.3, times = None, save_figures_to_folder = False, savetype = 'png', path = None, filename = None, print_click_position = False, data_type = 'differential Absorption in $\mathregular{\Delta OD}$', plot_second_as_energy = True, units = 'nm', return_plots = False, equal_energy_bin = None): '''This is the extended plot function, for convenient object based plotting see TA.Plot_RAW This function plotts of various RAW (non fitted) plots. Based on the DataFrame ds a number of cuts are created using the shaping parameters explained below. In all plots the RAW data is plotted as dots and interpolated with lines (using Savitzky-Golay window=5, order=3 interpolation). Parameters --------------- ds : DataFrame This dataframe contains the data to be plotted. It is copied and sliced into the regions defined. The dataframe expects the time to be in Index and the wavelength/energy to be in the columns. The spectra is plotted with a second (energy) axis plotting : int or iterable (of integers), optional This parameter determines which figures are plotted the figures can be called separately with plotting = 1 or with a list of plots (Default) e.g.plotting=range(4) calls plots 0,1,2,3 The plots have the following numbers: 0. Matrix 1. Kinetics 2. Spectra 3. SVD title : None or str title to be used on top of each plot The (Default) None triggers self.filename to be used. Setting a specific title as string will be used in all plots. To remove the title all together set an empty string with this command title="" intensity_range : None, float or list [of two floats] intensity_range is a general switch that governs what intensity range the plots show. For the 1d plots this is the y-axis for the 2d-plots this is the colour scale. This parameter recognizes three settings. If set to "None" (Default) this uses the minimum and maximum of the data. A single value like in the example below and the intended use is the symmetric scale while a list with two entries an assymmetric scale e.g. intensity_range=3e-3 is converted into intensity_range=[-3e-3,3e-3] data_type : str this is the datatype and effectively the unit put on the intensity axis (Default)'differential Absorption in $\mathregular{\Delta OD}$ baseunit : str baseunit is a neat way to change the unit on the time axis of the plots. (Default) "ps", but they can be frames or something similarly. This is changing only the label of the axis. During the import there is the option to divide the numbers by a factor. I have also used frames or fs as units. Important is that all time units will be labeled with this unit. timelimits : None or list (of 2 floats), optional cut times at the low and high time limit. (Default) None uses the limits of measurement Important: If either the background or the chirp is to be fit this must include the time before zero! Useful: It is useful to work on different regions, starting with the longest (then use the ta.Backgound function prior to fit) and expand from there scattercut : None or iterable (of floats or other iterable, always pairs!), optional intented to "cut" one or multiple scatter regions. (if (Default) None nothing happens) If it is set the spectral region between the limits is set to zero. Usage single region: [lower region limit,upper region limit], use for multiple regions:[[lower limit 1,upper limit 1],[lower limit 2,upper limit 2],...] bordercut : None or iterable (with two floats), optional cut spectra at the low and high wavelength limit. (Default) None uses the limits of measurement wave_nm_bin : None or float, optional rebins the original data into even intervals. If set to None the original data will be used. If set to a width (e.g. 2nm), the wavelength axis will be divided into steps of this size and the mean of all measurements in the interval is taken. The re-binning stops as soon as the measured stepsize is wider than given here, then the original bins are used. This function is particularly useful for spectrometer with non-linear dispersion, like a prism in the infrared. equal_energy_bin : None or float(optional) if this is set the wave_nm_bin is ignored and the data is rebinned into equal energy bins (based upon that the data is in nm. If dual axis is on then the lower axis is energy and the upper is wavelength width : float, optional the width used in kinetics, see below (Default) 10nm rel_wave : float or list (of floats), optional "rel_wave" and "width" (in the object called "wavelength_bin" work together for the creation of kinetic plots. When plotting kinetic spectra one line will be plotted for each entrance in the list/vector rel_wave. During object generation the vector np.arange(300,1000,100) is set as standard. Another typical using style would be to define a list of interesting wavelength at which a kinetic development is to be plotted. At each selected wavelength the data between wavelength+ta.wavelength_bin and wavelength-ta.wavelength_bin is averaged for each timepoint returned rel_time : float or list/vector (of floats), optional For each entry in rel_time a spectrum is plotted. If time_width_percent=0 (Default) the nearest measured timepoint is chosen. For other values see "time_width_percent" time_width_percent : float "rel_time" and "time_width_percent" work together for creating spectral plots at specific timepoints. For each entry in rel_time a spectrum is plotted. If however e.g. time_width_percent=10 the region between the timepoint closest to the 1.1 x timepoint and 0.9 x timepoint is averaged and shown (and the legend adjusted accordingly). This is particularly useful for the densly sampled region close to t=0. Typically for a logarithmic recorded kinetics, the timepoints at later times will be further appart than 10 percent of the value, but this allows to elegantly combine values around time=0 for better statistics. This averaging is only applied for the plotting function and not for the fits. ignore_time_region : None or list (of two floats or of lists), optional cut set a time range with a low and high limit from the fits. (Default) None nothing happens The region will be removed during the fitting process (and will be missing in the fit-result plots) Usage single region: [lower region limit,upper region limit], use for multiple regions:[[lower limit 1,upper limit 1],[lower limit 2,upper limit 2],...] time_bin : None or int, optional is dividing the points on the time-axis in even bins and averages the found values in between. This is a hard approach that also affects the fits. I do recommend to use this carefully, it is most useful for modulated data. A better choice for transient absorption that only affects the kinetics is "time_width_percent" cmap : None or matplotlib color map, optional is a powerfull variable that chooses the colour map applied for all plots. If set to None (Default) then the self.cmap is used. As standard I use the color map "jet" from matplotlib. There are a variety of colormaps available that are very usefull. Beside "jet", "viridis" is a good choice as it is well visible under red-green blindness. Other useful maps are "prism" for high fluctuations or diverging color maps like "seismic". See https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html for a comprehensive selection. In the code the colormaps are imported so if plot_func is imported as pf then self.cmap=pf.cm.viridis sets viridis as the map to use. Internally the colors are chosen with the "colm" function. The 2d plots require a continuous color map so if something else is give 2d plots are shown automatically with "jet". For all of the 1d plots however I first select a number of colors before each plot. If cmap is a continous map then these are sampled evenly over the colourmap. Manual iterables of colours cmap=[(1,0,0),(0,1,0),(0,0,1),...] are also accepted, as are vectors or dataframes that contain as rows the colors. There must be of course sufficient colors present for the numbers of lines that will be plotted. So I recommend to provide at least 10 colours (e.g. your university colors). colours are always given as a, list or tuple with RGA or RGBA (with the last A beeing the Alpha=transparency. All numbers are between 0 and 1. If a list/vector/DataFrame is given for the colours they will be used in the order provided. color_offset : int, optional At the (Default) 0 the colours are chose from the beginning, for a larger value Color_offset colors are skipped. Usually only used if multiple plots are created, and the data/or fit is only shown for some of them. log_scale : bool, optional If True (Default), The 2D plots (Matrix) is plotted with a pseudo logarithmic intensity scale. This usually does not give good results unless the intensity scale is symmetric Scale_type : None or str is a general setting that can influences what time axis will be used for the plots. "symlog" (linear around zero and logarithmic otherwise) "lin" and "log" are valid options. lintresh : float The pseudo logratihmic range "symlog" is used for most time axis. Symlog plots a range around time zero linear and beyond this linear treshold 'lintresh' on a logarithmic scale. (Default) 0.3 times : None or int are the number of components to be used in the SVD (Default) is None (which is seen as 6) save_figures_to_folder : bool, optional (Default) is False, if True the Figures are automatically saved savetype : str or iterable (of str), optional matplotlib allows the saving of figures in various formats. (Default) "png", typical and recommendable options are "svg" and "pdf". path : None, str or path object, optional This defines where the files are saved if the safe_figures_to_folder parameter is True, quite useful if a lot of data sets are to be printed fast. If a path is given, this is used. If a string like the (Default) "result_figures" is given, then a subfolder of this name will be used (an generated if necessary) relative to self.path. Use and empty string to use the self.path If set to None, the location of the plot_func will be used and a subfolder with title "result_figures" be generated here filename : str, optional offers to replace the base-name used for all plots (to e.g.~specify what sample was used). if (Default) None is used, the self.filename is used as a base name. The filename plays only a role during saving, as does the path and savetype print_click_position : bool, optional if True then the click position is printed for the spectral plots return_plots : bool, optional (Default) False, return is ignoriert. For True a dictionary with the handles to the figures is returned ''' if ds is None:raise ValueError('We need something to plot!!!') if baseunit != 'ps': if baseunit == 'ns': ds.index.name = 'Time in ns' else: ds.index.name=baseunit if path is None:path=check_folder(path='result_figures',current_path=os.path.dirname(os.path.realpath(__file__))) if filename is None:filename='standard.sia' if not hasattr(plotting,'__iter__'):plotting=[plotting] debug=False plt.ion() if 0 in plotting:#MAtrix fig1 = plot2d(ds = ds, cmap = cmap, ignore_time_region = ignore_time_region, plot_type = plot_type, baseunit = baseunit, intensity_range = intensity_range, scattercut = scattercut, bordercut = bordercut, wave_nm_bin = wave_nm_bin, levels = 200, lintresh = lintresh, timelimits = timelimits, time_bin = time_bin, title = title, log_scale = log_scale, data_type = data_type, equal_energy_bin = equal_energy_bin) fig1.tight_layout() if debug:print('plotted Matrix') if 1 in plotting:#kinetics fig2,ax2=plt.subplots(figsize=(10,6),dpi=100) _ = plot1d(ds = ds, ax = ax2, subplot = True, cmap = cmap, width = width, wavelength = rel_wave, title = title, lines_are = 'data' , plot_type = plot_type, lintresh = lintresh, timelimits = timelimits, intensity_range = intensity_range, scattercut = scattercut, ignore_time_region = ignore_time_region, baseunit = baseunit, data_type = data_type, units = units) _ = plot1d(ds = ds, ax = ax2, subplot = False, cmap = cmap, width = width, wavelength = rel_wave, title = title, lines_are = 'smoothed', plot_type = plot_type, lintresh = lintresh, timelimits = timelimits, intensity_range = intensity_range, scattercut = scattercut, ignore_time_region = ignore_time_region, baseunit = baseunit, data_type = data_type, units = units ) if debug:print('plotted kinetics') if 2 in plotting:#Spectra fig3,ax3 = plt.subplots(figsize = (10,6),dpi = 100) _ = plot_time(ds, subplot = True, ax = ax3, plot_second_as_energy = False, cmap = cmap, rel_time = rel_time, time_width_percent = time_width_percent, title = title, baseunit = baseunit, lines_are = 'data' , scattercut = scattercut, wave_nm_bin = wave_nm_bin, bordercut = bordercut, intensity_range = intensity_range, ignore_time_region = ignore_time_region, data_type = data_type, units = units, equal_energy_bin = equal_energy_bin) if plot_second_as_energy: _ = plot_time(ds ,subplot = False, ax = ax3, plot_second_as_energy = True, cmap = cmap, rel_time = rel_time, time_width_percent = time_width_percent, title = title, baseunit = baseunit, lines_are = 'smoothed', scattercut = scattercut, wave_nm_bin = wave_nm_bin, bordercut = bordercut, intensity_range = intensity_range, ignore_time_region = ignore_time_region, data_type = data_type, units = units, equal_energy_bin = equal_energy_bin) else: _ = plot_time(ds ,subplot = False, ax = ax3, plot_second_as_energy = False, cmap = cmap, rel_time = rel_time, time_width_percent = time_width_percent, title = title, baseunit = baseunit, lines_are = 'smoothed', scattercut = scattercut, wave_nm_bin = wave_nm_bin, bordercut = bordercut, intensity_range = intensity_range, ignore_time_region = ignore_time_region, data_type = data_type, units = units, equal_energy_bin = equal_energy_bin) if print_click_position: plt.connect('button_press_event', mouse_move) fig3.tight_layout() if debug:print('plotted Spectra') if 3 in plotting: #---plot at set time---------- try: fig4 = SVD(ds , times = times , timelimits = timelimits , scattercut = scattercut , bordercut = bordercut , wave_nm_bin = wave_nm_bin, ignore_time_region = ignore_time_region, cmap = cmap) except: print("SVD failed with:",sys.exc_info()[0]) if debug:print('plotted SVD') plt.show() if save_figures_to_folder: fi=filename.split('.')[0] try: fig1.savefig(check_folder(path=path,filename='%s_RAW_MAT.%s'%(fi,savetype)),bbox_inches='tight',dpi=300) fig2.savefig(check_folder(path=path,filename='%s_RAW_SEL.%s'%(fi,savetype)),bbox_inches='tight',dpi=300) fig3.savefig(check_folder(path=path,filename='%s_RAW_SPEK.%s'%(fi,savetype)),bbox_inches='tight',dpi=300) fig4.savefig(check_folder(path=path,filename='%s_RAW_SVD.%s'%(fi,savetype)),bbox_inches='tight',dpi=300) except: pass if return_plots: return_dicten={} try: return_dicten[0]=fig1 except: pass try: return_dicten[1]=fig2 except: pass try: return_dicten[2]=fig3 except: pass try: return_dicten[3]=fig4 except: pass return return_dicten def plot_time(ds, ax = None, rel_time = None, time_width_percent = 10, ignore_time_region = None, wave_nm_bin = None, title = None, text_in_legend = None, baseunit = 'ps', lines_are = 'smoothed', scattercut = None, bordercut = None, subplot = False, linewidth = 1, color_offset = 0, intensity_range = None, plot_second_as_energy = True, cmap = standard_map, data_type = 'differential Absorption in $\mathregular{\Delta OD}$', units = 'nm', equal_energy_bin = None, from_fit = None): '''Function to create plots at a certain time. In general you give under rel_time a list of times at which yu do want to plot the time width percentage means that this function integrates ewverything plus minus 10% at this time. lines_are is a switch that regulates what is plotted. data plots the data only, smoothed plots the data and a smoothed version of the data, fitted plots only the fit. the subplot switch is for using this to plot e.g. multiple different datasets. Parameters --------------- ds : DataFrame This dataframe contains the data to be plotted. It is copied and sliced into the regions defined. The dataframe expects the time to be in Index and the wavelength/energy to be in the columns. The spectra is plotted with a second (energy) axis ax : None or matplotlib axis object, optional if None (Default), a figure and axis will be generated for the plot, if axis is given the plot will placed in there. data_type : str this is the datatype and effectively the unit put on the intensity axis (Default)'differential Absorption in $\mathregular{\Delta OD}$ rel_time : float or list/vector (of floats), optional For each entry in rel_time a spectrum is plotted. If time_width_percent=0 (Default) the nearest measured timepoint is chosen. For other values see 'time_width_percent' time_width_percent : float "rel_time" and "time_width_percent" work together for creating spectral plots at specific timepoints. For each entry in rel_time a spectrum is plotted. If however e.g. time_width_percent=10 the region between the timepoint closest to the 1.1 x timepoint and 0.9 x timepoint is averaged and shown (and the legend adjusted accordingly). This is particularly useful for the densly sampled region close to t=0. Typically for a logarithmic recorded kinetics, the timepoints at later times will be further appart than 10 percent of the value, but this allows to elegantly combine values around time=0 for better statistics. This averaging is only applied for the plotting function and not for the fits. ignore_time_region : None or list (of two floats or of lists), optional cut set a time range with a low and high limit from the fits. (Default) None nothing happens The region will be removed during the fitting process (and will be missing in the fit-result plots) Usage single region: [lower region limit,upper region limit], use for multiple regions:[[lower limit 1,upper limit 1],[lower limit 2,upper limit 2],...] wave_nm_bin : None or float, optional rebins the original data into even intervals. If set to None the original data will be used. If set to a width (e.g. 2nm), the wavelength axis will be divided into steps of this size and the mean of all measurements in the interval is taken. The re-binning stops as soon as the measured stepsize is wider than given here, then the original bins are used. This function is particularly useful for spectrometer with non-linear dispersion, like a prism in the infrared. title : None or str, optional title to be used on top of each plot The (Default) None triggers self.filename to be used. Setting a specific title as string will be used in all plots. To remove the title all together set an empty string with this command title="" linewidth : float, optional linewidth to be used for plotting text_in_legend : str, optional text to be used in legend before the actually lines and colours (set as heasder) baseunit : str baseunit is a neat way to change the unit on the time axis of the plots. (Default) 'ps', but they can be frames or something similarly. This is changing only the label of the axis. During the import there is the option to divide the numbers by a factor. I have also used frames or fs as units. Important is that all time units will be labeled with this unit. scattercut : None or iterable (of floats or other iterable, always pairs!), optional intented to "cut" one or multiple scatter regions. (if (Default) None nothing happens) If it is set the spectral region between the limits is set to zero. Usage single region: [lower region limit,upper region limit], use for multiple regions:[[lower limit 1,upper limit 1],[lower limit 2,upper limit 2],...] bordercut : None or iterable (with two floats), optional cut spectra at the low and high wavelength limit. (Default) None uses the limits of measurement subplot ; bool, optional False (Default) means this is a main plot in this axis! if True then this is the second plot in the axis and things like axis ticks should not be reset this also avoids adding the object to the legend color_offset : int, optional At the (Default) 0 the colours are chose from the beginning, for a larger value Color_offset colors are skipped. Usually only used if multiple plots are created, and the data/or fit is only shown for some of them. intensity_range : None, float or list [of two floats] intensity_range is a general switch that governs what intensity range the plots show. For the 1d plots this is the y-axis for the 2d-plots this is the colour scale. This parameter recognizes three settings. If set to "None" (Default) this uses the minimum and maximum of the data. A single value like in the example below and the intended use is the symmetric scale while a list with two entries an assymmetric scale e.g. intensity_range=3e-3 is converted into intensity_range=[-3e-3,3e-3] plot_second_as_energy : bool, optional For (Default) True a second x-axis is plotted with "eV" as unit cmap : None or matplotlib color map, optional is a powerfull variable that chooses the colour map applied for all plots. If set to None (Default) then the self.cmap is used. As standard I use the color map "jet" from matplotlib. There are a variety of colormaps available that are very usefull. Beside "jet", "viridis" is a good choice as it is well visible under red-green blindness. Other useful maps are "prism" for high fluctuations or diverging color maps like "seismic". See https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html for a comprehensive selection. In the code the colormaps are imported so if plot_func is imported as pf then self.cmap=pf.cm.viridis sets viridis as the map to use. Internally the colors are chosen with the "colm" function. The 2d plots require a continuous color map so if something else is give 2d plots are shown automatically with "jet". For all of the 1d plots however I first select a number of colors before each plot. If cmap is a continous map then these are sampled evenly over the colourmap. Manual iterables of colours cmap=[(1,0,0),(0,1,0),(0,0,1),...] are also accepted, as are vectors or dataframes that contain as rows the colors. There must be of course sufficient colors present for the numbers of lines that will be plotted. So I recommend to provide at least 10 colours (e.g.~your university colors). colours are always given as a, list or tuple with RGA or RGBA (with the last A beeing the Alpha=transparency. All numbers are between 0 and 1. If a list/vector/DataFrame is given for the colours they will be used in the order provided. ''' if not hasattr(rel_time,'__iter__'):rel_time=[rel_time] rel_time=[a for a in rel_time if a<ds.index.values.astype('float').max()] if isinstance(cmap,list): colors=cmap[color_offset:] else: colors=colm(np.arange(color_offset,len(rel_time)+color_offset),cmap=cmap) if ax is None: fig,ax1=plt.subplots(figsize=(10,6),dpi=100) else: ax1=ax ds = sub_ds(ds = ds, times = rel_time, time_width_percent = time_width_percent, scattercut = scattercut, drop_scatter=True, bordercut = bordercut, baseunit=baseunit, ignore_time_region = ignore_time_region, wave_nm_bin = wave_nm_bin, equal_energy_bin = equal_energy_bin, from_fit = from_fit) if 'smoothed' in lines_are: if scattercut is None: smoothed=Frame_golay(ds, window = 5, order = 3,transpose=False) smoothed.plot(ax = ax1, style = '-', color = colors, legend = False, lw = linewidth) elif isinstance(scattercut[0], numbers.Number):#handling single scattercut if equal_energy_bin is not None: scattercut=[scipy.constants.h*scipy.constants.c/(a*1e-9*scipy.constants.electron_volt) for a in scattercut] scattercut=scattercut[::-1] smoothed=Frame_golay(ds.loc[:scattercut[0],:], window = 5, order = 3,transpose=False) smoothed.plot(ax = ax1, style = '-', color = colors, legend = False, lw = linewidth) smoothed=Frame_golay(ds.loc[scattercut[1]:,:], window = 5, order = 3,transpose=False) smoothed.plot(ax = ax1, style = '-', color = colors, legend = False, lw = linewidth, label='_nolegend_') else:#handling multiple scattercuts try: scattercut=flatten(scattercut) if equal_energy_bin is not None: scattercut=[scipy.constants.h*scipy.constants.c/(a*1e-9*scipy.constants.electron_volt) for a in scattercut] scattercut=scattercut[::-1] for i in range(len(scattercut)): if i==0: smoothed=Frame_golay(ds.loc[:scattercut[0],:], window = 5, order = 3,transpose=False) smoothed.plot(ax = ax1, style = '-', color = colors, legend = False, lw = linewidth) elif i<(len(scattercut)/2): smoothed=Frame_golay(ds.loc[scattercut[2*i-1]:scattercut[2*i],:], window = 5, order = 3,transpose=False) smoothed.plot(ax = ax1, style = '-', color = colors, legend = False, lw = linewidth, label='_nolegend_') else: smoothed=Frame_golay(ds.loc[scattercut[-1]:,:], window = 5, order = 3,transpose=False) smoothed.plot(ax = ax1, style = '-', color = colors, legend = False, lw = linewidth, label='_nolegend_') except: print('printing the smoothed scatter interpolation created an error, using default') smoothed=Frame_golay(window = 5, order = 3,transpose=False) smoothed.plot(ax = ax1, style = '-', color = colors, legend = False, lw = linewidth) if not subplot: leg = ax1.legend(ds,title = 'lines = smoothed', loc='best', labelspacing = 0, ncol = 2, columnspacing = 1, handlelength = 1, frameon = False) elif 'data' in lines_are: if subplot: ax1 = ds.plot(ax = ax1, legend = False, style = '*', color = colors, zorder = 0) else: ax1 = ds.plot(ax = ax1, legend = False, style = '*', color = colors) leg = ax1.legend(ds,labelspacing = 0, ncol = 2, columnspacing = 1, handlelength = 1, loc = 'best', frameon = False) elif 'fitted' in lines_are: if scattercut is None: ds.plot(ax = ax1, style = '-', color = colors, legend = False, lw = linewidth, alpha = 0.7) elif isinstance(scattercut[0], numbers.Number): if equal_energy_bin is not None: scattercut=[scipy.constants.h*scipy.constants.c/(a*1e-9*scipy.constants.electron_volt) for a in scattercut] ds.loc[:scattercut[0],:].plot(ax = ax1, legend = False, style = '-', color = colors, alpha = 0.7, lw = linewidth) ds.loc[scattercut[1]:,:].plot(ax = ax1, legend = False, style = '-', color = colors, alpha = 0.7, lw = linewidth, label='_nolegend_') else: try: scattercut=flatten(scattercut) if equal_energy_bin is not None: scattercut=[scipy.constants.h*scipy.constants.c/(a*1e-9*scipy.constants.electron_volt) for a in scattercut] for i in range(len(scattercut)): if i==0: ds.loc[:scattercut[0],:].plot(ax = ax1, legend = False, style = '-', color = colors, alpha = 0.7, lw = linewidth) elif i<(len(scattercut)/2): ds.loc[scattercut[2*i-1]:scattercut[2*i],:].plot(ax = ax1, legend = False, style = '-', color = colors, alpha = 0.7, lw = linewidth, label='_nolegend_') else: ds.loc[scattercut[-1]:,:].plot(ax = ax1, legend = False, style = '-', color = colors, alpha = 0.7, lw = linewidth, label='_nolegend_') except: ds.plot(ax = ax1, legend = False, style = '-', color = colors, alpha = 0.7, lw = linewidth) if not subplot:leg = ax1.legend(ds,title = 'lines = fit', loc = 'best', labelspacing = 0, ncol = 2, columnspacing = 1, handlelength = 1, frameon = False) if not subplot: if text_in_legend is not None: stringen=leg.get_title().get_text() texten=text_in_legend leg.set_title(texten + '\n' +stringen) else:#for multiple plotting return ax1 if bordercut is None: ax1.autoscale(axis='x',tight=True) else: if equal_energy_bin is not None: bordercut=[scipy.constants.h*scipy.constants.c/(a*1e-9*scipy.constants.electron_volt) for a in bordercut] #bordercut=bordercut[::-1] ax1.set_xlim(bordercut) if (not subplot) and plot_second_as_energy: ax2=ax1.twiny() ax2.set_xlim(ax1.get_xlim()) ax2.set_xticks(ax1.get_xticks()) if equal_energy_bin is not None: labels=['%.1f'%(scipy.constants.h*scipy.constants.c/(a*1e-9*scipy.constants.electron_volt)) for a in ax2.get_xticks()] else: labels=['%.2f'%(scipy.constants.h*scipy.constants.c/(a*1e-9*scipy.constants.electron_volt)) for a in ax2.get_xticks()] _=ax2.set_xticklabels(labels) if equal_energy_bin is not None: _=ax2.set_xlabel('Wavelength in nm') else: _=ax2.set_xlabel('Energy in eV') ax1.set_zorder(ax2.get_zorder()+1) if not subplot: if not len(title)==0: try: ax2.set_title(title,pad=10) except: ax1.set_title(title,pad=10) ax1.set_ylabel(data_type) ax1.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: '%.2g'%(x))) ax1.set_xlabel(ds.index.name) ax1.minorticks_on() #ax1.xaxis.set_minor_locator(AutoMinorLocator(6)) ax1.plot(ax1.get_xlim(),[0,0],color='black',lw=0.5,zorder=0, label='_nolegend_') if intensity_range is None: ax1.autoscale(axis='y',tight=True) else: if not hasattr(intensity_range,'__iter__'):#lets have an lazy option intensity_range=np.array([-intensity_range,intensity_range]) ax1.set_ylim(intensity_range) if ax is None: return fig else: return ax1 def plot1d(ds = None, wavelength = None, width = None, ax = None, subplot = False, title = None, intensity_range = None, baseunit = 'ps', timelimits = None, scattercut = None, bordercut = None, cmap = standard_map, plot_type = 'symlog', lintresh = 0.1, text_in_legend = None, lines_are = 'smoothed', color_offset = 0, ignore_time_region = None, linewidth = 1, data_type = 'differential Absorption in $\mathregular{\Delta OD}$', units = 'nm', from_fit = False): '''Plots the single line kinetic for specific wavelength given with the parameter wavelength. Parameters --------------- ds : DataFrame This dataframe contains the data to be plotted. It is copied and sliced into the regions defined. The dataframe expects the time to be in Index and the wavelength/energy to be in the columns. The spectra is plotted with a second (energy) axis wavelength : float or list (of floats) wavelength is in the object called "rel_wave" and works with "width" (in the object called "wavelength_bin") together for the creation of kinetic plots. When plotting kinetic spectra one line will be plotted for each entrance in the list/vector rel_wave. During object generation the vector np.arange(300,1000,100) is set as standard. Another typical using style would be to define a list of interesting wavelength at which a kinetic development is to be plotted. At each selected wavelength the data between wavelength+ta.wavelength_bin and wavelength-ta.wavelength_bin is averaged for each timepoint returned data_type : str this is the datatype and effectively the unit put on the intensity axis (Default)'differential Absorption in $\mathregular{\Delta OD}$ width : float, optional the width used in kinetics, see below (Default) 10nm ax : None, matplotlib axis object optional If None (Default) a new plot is is created and a new axis, otherwise ax needs to be Matplotlib Axis subplot : bool, optional If False (Default) axis labels and such are set. If True, we plot into the same axis and do not set labels text_in_legend : None, str, optional extra text to be put into the legend (above the lines) lines_are : str, optional Depending on this parameter the plots contain: 'smoothed' = data lines of golay smoothed data (Default) 'data' = dots are data, 'fitted' = not data, just lines shown title : None or str title to be used on top of each plot The (Default) None triggers self.filename to be used. Setting a specific title as string will be used in all plots. To remove the title all together set an empty string linewidth : float, optional linewidht to be used for plotting intensity_range : None, float or list [of two floats] intensity_range is a general switch that governs what intensity range the plots show. For the 1d plots this is the y-axis for the 2d-plots this is the colour scale. This parameter recognizes three settings. If set to "None" (Default) this uses the minimum and maximum of the data. A single value like in the example below and the intended use is the symmetric scale while a list with two entries an assymmetric scale e.g. intensity_range=3e-3 is converted into intensity_range=[-3e-3,3e-3] baseunit : str baseunit is a neat way to change the unit on the time axis of the plots. (Default) 'ps', but they can be frames or something similarly. This is changing only the label of the axis. During the import there is the option to divide the numbers by a factor. I have also used frames or fs as units. Important is that all time units will be labeled with this unit. timelimits : None or list (of 2 floats), optional cut times at the low and high time limit. (Default) None uses the limits of measurement Important: If either the background or the chirp is to be fit this must include the time before zero! Useful: It is useful to work on different regions, starting with the longest (then use the ta.Backgound function prior to fit) and expand from there scattercut : None or iterable (of floats or other iterable, always pairs!), optional intented to "cut" one or multiple scatter regions. (if (Default) None nothing happens) If it is set the spectral region between the limits is set to zero. Usage single region: [lower region limit,upper region limit], use for multiple regions:[[lower limit 1,upper limit 1],[lower limit 2,upper limit 2],...] bordercut : None or iterable (with two floats), optional cut spectra at the low and high wavelength limit. (Default) None uses the limits of measurement ignore_time_region : None or list (of two floats or of lists), optional cut set a time range with a low and high limit from the fits. (Default) None nothing happens The region will be removed during the fitting process (and will be missing in the fit-result plots) Usage single region: [lower region limit,upper region limit], use for multiple regions:[[lower limit 1,upper limit 1],[lower limit 2,upper limit 2],...] cmap : None or matplotlib color map, optional is a powerfull variable that chooses the colour map applied for all plots. If set to None (Default) then the self.cmap is used. As standard I use the color map "jet" from matplotlib. There are a variety of colormaps available that are very usefull. Beside "jet", "viridis" is a good choice as it is well visible under red-green blindness. Other useful maps are "prism" for high fluctuations or diverging color maps like "seismic". See https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html for a comprehensive selection. In the code the colormaps are imported so if plot_func is imported as pf then self.cmap=pf.cm.viridis sets viridis as the map to use. Internally the colors are chosen with the "colm" function. The 2d plots require a continuous color map so if something else is give 2d plots are shown automatically with "jet". For all of the 1d plots however I first select a number of colors before each plot. If cmap is a continous map then these are sampled evenly over the colourmap. Manual iterables of colours cmap=[(1,0,0),(0,1,0),(0,0,1),...] are also accepted, as are vectors or dataframes that contain as rows the colors. There must be of course sufficient colors present for the numbers of lines that will be plotted. So I recommend to provide at least 10 colours (e.g.your university colors). colours are always given as a, list or tuple with RGA or RGBA (with the last A beeing the Alpha=transparency. All numbers are between 0 and 1. If a list/vector/DataFrame is given for the colours they will be used in the order provided. color_offset : int, optional At the (Default) 0 the colours are chose from the beginning, for a larger value Color_offset colors are skipped. Usually only used if multiple plots are created, and the data/or fit is only shown for some of them. plot_type : None or str is a general setting that can influences what time axis will be used for the plots. "symlog" (linear around zero and logarithmic otherwise) "lin" and "log" are valid options. lintresh : float The pseudo logratihmic range "symlog" is used for most time axis. Symlog plots a range around time zero linear and beyond this linear treshold 'lintresh' on a logarithmic scale. (Default) 0.3 from_fit : bool optional i needed this swtich to avoid re-slicing of data in spectal axis for equal energy bins ''' if not isinstance(ds,pandas.DataFrame): print("input format wrong") if ax is None: fig,ax1=plt.subplots(figsize=(10,6),dpi=100) else: ax1=ax if width is None:width=1 if not hasattr(wavelength, '__iter__'):wavelength = [wavelength] if isinstance(cmap,list): colors=cmap[color_offset:] else: colors = colm(np.arange(color_offset, len(wavelength)+color_offset), cmap = cmap) ds = sub_ds(ds = ds, wavelength = wavelength, wavelength_bin = width, scattercut = scattercut, ignore_time_region = ignore_time_region, drop_ignore = True, from_fit = from_fit) if 'smoothed' in lines_are: if ignore_time_region is None: smoothed=Frame_golay(ds, window = 5, order = 3) smoothed.plot(ax = ax1, style = '-', color = colors, legend = False, lw = linewidth) elif isinstance(ignore_time_region[0], numbers.Number): smoothed=Frame_golay(ds.loc[:ignore_time_region[0],:], window = 5, order = 3) smoothed.plot(ax = ax1, style = '-', color = colors, legend = False, lw = linewidth) smoothed=Frame_golay(ds.loc[ignore_time_region[1]:,:], window = 5, order = 3) smoothed.plot(ax = ax1, style = '-', color = colors, legend = False, lw = linewidth, label='_nolegend_') else: try: ignore_time_region=flatten(ignore_time_region) for i in range(len(ignore_time_region)/2+1): if i==0: smoothed=Frame_golay(ds.loc[:ignore_time_region[0],:], window = 5, order = 3,transpose=True) smoothed.plot(ax = ax1, style = '-', color = colors, legend = False, lw = linewidth) elif i<(len(ignore_time_region)/2): smoothed=Frame_golay(ds.loc[ignore_time_region[2*i-1]:ignore_time_region[2*i],:], window = 5, order = 3,transpose=True) smoothed.plot(ax = ax1, style = '-', color = colors, legend = False, lw = linewidth, label='_nolegend_') else: smoothed=Frame_golay(ds.loc[ignore_time_region[-1]:,:], window = 5, order = 3,transpose=True) smoothed.plot(ax = ax1, style = '-', color = colors, legend = False, lw = linewidth, label='_nolegend_') except: smoothed=Frame_golay(ds, window = 5, order = 3) smoothed.plot(ax = ax1, style = '-', color = colors, legend = False, lw = linewidth) elif 'data' in lines_are: if subplot:ds.plot(ax = ax1, style = '*', color = colors, legend = False, zorder = 0, label='_nolegend_') else: ds.plot(ax = ax1, style = '*', color = colors, legend = False) elif 'fitted' in lines_are: if ignore_time_region is None: ds.plot(ax = ax1, style='-', color = colors, legend = False, lw = linewidth) elif isinstance(ignore_time_region[0], numbers.Number): ds.loc[:ignore_time_region[0],:].plot(ax = ax1, style='-', color = colors, legend = False, lw = linewidth) ds.loc[ignore_time_region[1]:,:].plot(ax = ax1, style='-', color = colors, legend = False, lw = linewidth, label='_nolegend_') else: try: ignore_time_region=flatten(ignore_time_region) for i in range(len(ignore_time_region)/2+1): if i==0: ds.loc[:ignore_time_region[0],:].plot(ax = ax1, style='-', color = colors, legend = False, lw = linewidth) elif i<(len(ignore_time_region)/2): ds.loc[ignore_time_region[2*i-1]:ignore_time_region[2*i],:].plot(ax = ax1, style='-', color = colors, legend = False, lw = linewidth, label='_nolegend_') else: ds.loc[ignore_time_region[-1]:,:].plot(ax = ax1, style='-', color = colors, legend = False, lw = linewidth, label='_nolegend_') except: ds.plot(ax = ax1, style='-', color = colors, legend = False, lw = linewidth) #Legend if not subplot: handles, labels = ax1.get_legend_handles_labels() handles=handles[:len(wavelength)] labels=labels[:len(wavelength)] for i,entry in enumerate(labels): labels[i]=entry + ' %s'%units if 'smoothed' in lines_are:leg=ax1.legend(labels,title='%g %s width, lines=smoothed'%(width,units),labelspacing=0,ncol=2,columnspacing=1,handlelength=1,frameon=False) elif 'data' in lines_are: leg=ax1.legend(labels,title='%g %s width'%(width,units) ,labelspacing=0,ncol=2,columnspacing=1,handlelength=1,frameon=False) elif 'fitted' in lines_are:leg=ax1.legend(labels,title='%g %s width, lines=fit'%(width,units) ,labelspacing=0,ncol=2,columnspacing=1,handlelength=1,frameon=False) if text_in_legend is not None: stringen=leg.get_title().get_text() texten=text_in_legend leg.set_title(texten + '\n' +stringen) x=ds.index.values.astype('float') #limits and ticks if timelimits is None:timelimits=[min(x),max(x)] if "symlog" in plot_type: lintresh=lintresh ax1.set_xscale('symlog', linthresh=lintresh,subs=range(2,9),linscale=lintresh/4.) try: if lintresh>0.5: ticks=np.concatenate((np.arange(-100,0,10,),[-5,-3,-2,-1,-0.5,0,0.5],np.logspace(0,10,11))) elif lintresh>=0.3: ticks=np.concatenate((np.arange(-100,0,10,),[-5,-3,-2,-1,-0.3,0,0.3],np.logspace(0,10,11))) elif lintresh>=0.1: ticks=np.concatenate((np.arange(-100,0,10,),[-5,-3,-2,-1,-0.1,0,0.1],np.logspace(0,10,11))) else: ticks=np.concatenate((np.arange(-100,0,10,),[-5,-3,-2,-1,0],np.logspace(0,10,11))) ticks=ticks[ticks>timelimits[0]] ticks=ticks[ticks<timelimits[1]] ax1.set_xticks(ticks) except: pass ax1.set_xlim(timelimits[0],timelimits[1]) elif "log" in plot_type: lower_time=max(1e-6,timelimits[0]) ax1.set_xlim(lower_time,timelimits[1]) ax1.set_xscale('log') elif "lin" in plot_type: ax1.set_xlim(timelimits[0],timelimits[1]) if intensity_range is None: ax1.autoscale(axis='y',tight=True) else: if not hasattr(intensity_range,'__iter__'):#lets have an lazy option intensity_range=np.array([-intensity_range,intensity_range]) ax1.set_ylim(intensity_range) if not subplot: ax1.plot(ax1.get_xlim(),[0,0],'black',lw=1,zorder=10, label='_nolegend_') if title is not None: if title: try: ax2.set_title(title,pad=10) except: ax1.set_title(title,pad=10) if "symlog" in plot_type: ax1.plot([lintresh,lintresh],ax1.get_ylim(),color='black',linestyle='dashed',alpha=0.5) ax1.plot([-lintresh,-lintresh],ax1.get_ylim(),color='black',linestyle='dashed',alpha=0.5) ax1.set_xlabel(ds.index.name) ax1.set_ylabel(data_type) #ax1.set_xlabel('time in %s'%baseunit) #ax1.set_ylabel('differential Absorption in $\mathregular{\Delta OD}$') ax1.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: '%.2g'%(x))) if ax is None: return fig else: return ax1 def SVD(ds, times = None, scattercut = None, bordercut = None, timelimits = [5e-1, 150], wave_nm_bin = 10, time_bin = None, wavelength_bin = None, plotting = True, baseunit = 'ps', title = None, ignore_time_region = None, cmap = None, equal_energy_bin = None, data_type = 'differential Absorption in $\mathregular{\Delta OD}$'): '''This function calculates the SVD and plots an overview. Parameters ------------ ds : DataFrame This dataframe contains the data to be plotted. It is copied and sliced into the regions defined. The dataframe expects the time to be in Index and the wavelength/energy to be in the columns. The spectra is plotted with a second (energy) axis times : None or int are the number of components to be used in the SVD (Default) is None (which is seen as 6) plotting : bool if True (Default) the functions plots the SVD, if False it returns the vectors title : None or str title to be used on top of each plot The (Default) None triggers self.filename to be used. Setting a specific title as string will be used in all plots. To remove the title all together set an empty string with this command title="" baseunit : str baseunit is a neat way to change the unit on the time axis of the plots. (Default) 'ps', but they can be frames or something similarly. This is changing only the label of the axis. During the import there is the option to divide the numbers by a factor. I have also used frames or fs as units. Important is that all time units will be labeled with this unit. timelimits : None or list (of 2 floats), optional cut times at the low and high time limit. (Default) [5e-1 , 150] uses the limits of measurement Important: If either the background or the chirp is to be fit this must include the time before zero! Useful: It is useful to work on different regions, starting with the longest (then use the ta.Backgound function prior to fit) and expand from there scattercut : None or iterable (of floats or other iterable, always pairs!), optional intented to "cut" one or multiple scatter regions. (if (Default) None nothing happens) If it is set the spectral region between the limits is set to zero. Usage single region: [lower region limit,upper region limit], use for multiple regions:[[lower limit 1,upper limit 1],[lower limit 2,upper limit 2],...] bordercut : None or iterable (with two floats), optional cut spectra at the low and high wavelength limit. (Default) None uses the limits of measurement wave_nm_bin : None or float, optional rebins the original data into even intervals. If set to None the original data will be used. If set to a width (e.g. 2nm), the wavelength axis will be divided into steps of this size and the mean of all measurements in the interval is taken. The re-binning stops as soon as the measured stepsize is wider than given here, then the original bins are used. This function is particularly useful for spectrometer with non-linear dispersion, like a prism in the infrared. (Default = 10) wavelength_bin : float, optional the width used in kinetics, see below (Default) 10nm ignore_time_region : None or list (of two floats or of lists), optional cut set a time range with a low and high limit from the fits. (Default) None nothing happens The region will be removed during the fitting process (and will be missing in the fit-result plots) Usage single region: [lower region limit,upper region limit], use for multiple regions:[[lower limit 1,upper limit 1],[lower limit 2,upper limit 2],...] time_bin : None or int, optional is dividing the points on the time-axis in even bins and averages the found values in between. This is a hard approach that also affects the fits. I do recommend to use this carefully, it is most useful for modulated data. A better choice for transient absorption that only affects the kinetics is 'time_width_percent' cmap : None or matplotlib color map, optional is a powerfull variable that chooses the colour map applied for all plots. If set to None (Default) then the self.cmap is used. As standard I use the color map "jet" from matplotlib. There are a variety of colormaps available that are very usefull. Beside "jet", "viridis" is a good choice as it is well visible under red-green blindness. Other useful maps are "prism" for high fluctuations or diverging color maps like "seismic". See https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html for a comprehensive selection. In the code the colormaps are imported so if plot_func is imported as pf then self.cmap=pf.cm.viridis sets viridis as the map to use. Internally the colors are chosen with the "colm" function. The 2d plots require a continuous color map so if something else is give 2d plots are shown automatically with "jet". For all of the 1d plots however I first select a number of colors before each plot. If cmap is a continous map then these are sampled evenly over the colourmap. Manual iterables of colours cmap=[(1,0,0),(0,1,0),(0,0,1),...] are also accepted, as are vectors or dataframes that contain as rows the colors. There must be of course sufficient colors present for the numbers of lines that will be plotted. So I recommend to provide at least 10 colours (e.g.~your university colors). colours are always given as a, list or tuple with RGA or RGBA (with the last A beeing the Alpha=transparency. All numbers are between 0 and 1. If a list/vector/DataFrame is given for the colours they will be used in the order provided. ''' if times is None: max_order=6 else: max_order=times if cmap is None:cmap=standard_map colors=colm(np.arange(0,max_order,1),cmap=cmap) ds = sub_ds(ds, scattercut = scattercut, bordercut = bordercut, timelimits = timelimits, wave_nm_bin = wave_nm_bin, wavelength_bin = wavelength_bin, time_bin = time_bin, ignore_time_region = ignore_time_region) U, s, V = np.linalg.svd(ds.values) if plotting: fig=plt.figure(figsize=(8,8),dpi=100) G = GridSpec(2, 6) ax1=fig.add_subplot(G[0,:2]) ax2=fig.add_subplot(G[1,:]) ax3=fig.add_subplot(G[0,2:]) if title is not None: ax2.set_title(title,fontsize=plt.rcParams['figure.titlesize']-4) else: ax1.set_title("Component\nstrength",fontsize=plt.rcParams['figure.titlesize']-4) ax2.set_title("Spectral component",fontsize=plt.rcParams['figure.titlesize']-4) ax3.set_title("Temporal development\nof spectral component",fontsize=plt.rcParams['figure.titlesize']-4) s/=s.max() ax1.scatter(np.arange(max_order)+1,s[:max_order],c=colors,s=100) ax1.set_xlabel('SVD order',fontsize=plt.rcParams['axes.labelsize']-2) ax1.set_ylabel('Singular values norm.',fontsize=plt.rcParams['axes.labelsize']-2) ax1.set_xlim(0.5,max_order+0.5) if max_order == 6: ax1.set_xticks([round(a) for a in np.linspace(1,max_order,6)]) else: ax1.set_xticks([round(a) for a in np.linspace(1,max_order,5)]) V2=pandas.DataFrame(V.T,index=ds.columns.values.astype('float')) U2=pandas.DataFrame(U,index=ds.index.values.astype('float')) U2=U2.iloc[:,:len(s)].multiply(-s) V2=V2.iloc[:,:len(s)].multiply(-s) names=['SVD vector %i'%(a+1) for a in range(max_order)] U2=U2.iloc[:,:max_order] U2.columns=names V2=V2.iloc[:,:max_order] V2.columns=names V2/=V2.abs().max(axis=1).max() V2.plot(ax=ax2,color=colors) ax2.set_ylabel('Intensity norm.',fontsize=plt.rcParams['axes.labelsize']-2) U2/=U2.abs().max(axis=1).max() U2.plot(ax=ax3,color=colors) ax3.set_ylabel('Intensity norm.',fontsize=plt.rcParams['axes.labelsize']-2) ax2.set_xlabel(ds.columns.name,fontsize=plt.rcParams['axes.labelsize']-2) lims=V2.index.values.astype(float) ax2.set_xlim(lims.min(),lims.max()) #ax2.set_xticks(np.linspace(round(lims.min(),-2),round(lims.max()-2),5)) ax2.xaxis.set_major_formatter(FuncFormatter(lambda x, pos: '%.4g'%(x))) ax3.set_xlabel(ds.index.name,fontsize=plt.rcParams['axes.labelsize']-2) tims=U2.index.values.astype(float) ax3.set_xlim(max([0.01,tims.min()]),tims.max()) ax3.set_xscale('log') #ax3.set_xticks(np.logspace(-1,2,round(np.log()))) ax3.xaxis.set_major_formatter(FuncFormatter(lambda x, pos: '%1g'%(x))) ax2.legend(frameon=False,labelspacing=0,borderpad=0,numpoints=1,handlelength=1) ax3.legend(frameon=False,fontsize=11,labelspacing=0,borderpad=0,numpoints=1,handlelength=1) fig.tight_layout() return fig else: return U, s, V2,ds def Species_Spectra(ta=None,conc=None,das=None): '''useful help function that returns a dictionary that has DataFrame as entries and the names of the components as keys Parameters ----------- ta : plot_func.TA object, optional This object should contain a successful fit. The function will cycle through the fitted species and return the matrix that is formed from the dynamics and the species associated spectrum If this given, then "conc" and "das" are ignored. We cycle through the columns of the concentration and take the same column from the das Frame. conc : DataFrame, optional Is read only if ta_object is None. This should contain the concentration matrix with the species as as columns das : DataFrame, optional This should contain the spectra of the species with one column per spectrum. The position of the columns must match the columns in the conc (at least this is what is assumed) Examples --------- dicten=Species_Spectra(ta) ''' if ta is not None: try: time=ta.re['c'].index.values WL=ta.re['DAC'].index.values conc=ta.re['c'] das=ta.re['DAC'] except: print('the TA object must contain a successful fit') print(ta.re) return False else: if (conc is None) or (das is None): print('If the ta object is None, then we need both the conc and the das') return False results={} for i in range(len(conc.columns)): A,B=np.meshgrid(conc.iloc[:,i].values,das.iloc[:,i].values) C=pandas.DataFrame((A*B).T,index=time,columns=WL) results[conc.columns[i]]=C return results def Fix_Chirp(ds, save_file = None, scattercut = None, intensity_range = 5e-3, wave_nm_bin = 10, bordercut=None, shown_window = [-1.5, 1.5], filename = None, path = None, fitcoeff = None, max_points = 40, cmap = cm.prism): '''Manual selecting polynom for chirp. This function is opening a plot and allows the user to select a number of points, which are then approximated with a 4th order polynomial and finally to select a point that is declared as time zero. The observed window as well as the intensities and the colour map can be chosen to enable a good correction. Here a fast iterating colour scheme such as "prism" is often a good choice. In all of the selections a left click selects, a right click removes the last point and a middle click (sometime appreviated by clicking left and right together) finishes the selection. If no middle click exists, the process automatically ends after max_points (40 preset). Many of the parameters are from the raw plotting part Parameters ----------- ds : DataFrame This dataframe contains the data to be plotted. It is copied and sliced into the regions defined. The dataframe expects the time to be in Index and the wavelength/energy to be in the columns. The spectra is plotted with a second (energy) axis save_file : None or str, optional If a raw file was read(e.g. "data.SIA") and the chirp correction was completed, a file with the attached word "chirp" is created and stored in the same location. ("data_chirp.dat") This file contains the 5 values of the chirp correction. By selecting such a file (e.g. from another raw data) a specific chirp is applied. If a specific name is given with **chirp_file** (and optional **path**) then this file is used.\n GUI\n The word *'gui'* can be used instead of a filename to open a gui that allows the selection of a chrip file scattercut : None or iterable (of floats or other iterable, always pairs!), optional intented to "cut" one or multiple scatter regions. (if (Default) None nothing happens) If it is set the spectral region between the limits is set to zero. Usage single region: [lower region limit,upper region limit], use for multiple regions:[[lower limit 1,upper limit 1],[lower limit 2,upper limit 2],...] intensity_range : None, float or list [of two floats] intensity_range is a general switch that governs what intensity range the plots show. For the 1d plots this is the y-axis for the 2d-plots this is the colour scale. This parameter recognizes three settings. If set to "None" (Default) this uses the minimum and maximum of the data. A single value like in the example below and the intended use is the symmetric scale while a list with two entries an assymmetric scale e.g. intensity_range=3e-3 is converted into intensity_range=[-3e-3,3e-3] wave_nm_bin : None or float, optional rebins the original data into even intervals. If set to None the original data will be used. If set to a width (e.g. 2nm), the wavelength axis will be divided into steps of this size and the mean of all measurements in the interval is taken. The re-binning stops as soon as the measured stepsize is wider than given here, then the original bins are used. This function is particularly useful for spectrometer with non-linear dispersion, like a prism in the infrared. shown_window : list (with two floats), optional Defines the window that is shown during chirp correction. If the t=0 is not visible, adjust this parameter to suit the experiment. If problems arise, I recomment to use Plot_Raw to check where t=0 is located filename : str, optional name of the original file, that will be used to save the results later (with attached "_chirp") path : str or path object (optional) if path is a string without the operation system dependent separator, it is treated as a relative path, e.g. data will look from the working directory in the sub director data. Otherwise this has to be a full path in either strong or path object form. fitcoeff : list or vector (5 floats), optional One can give a vector/list with 5 numbers representing the parameter of a 4th order polynomial (in the order :math:`(a4*x^4 + a3*x^3+a2*x^2+a1*x1+a0)`. The chirp parameter are stored in ta.fitcoeff and can thus be used in other TA objects. This vector is also stored with the file and automatically applied during re-loading of a hdf5-object max_points : int, optional Default = 40 max numbers of points to use in Gui selection. Useful option in case no middle mouse button is available. (e.g. touchpad) cmap : matplotlib colourmap, optional Colourmap to be used for the chirp correction. While there is a large selection here I recommend to choose a different map than is used for the normal 2d plotting.\n cm.prism (Default) has proofen to be very usefull ''' ds=ds.fillna(0) if fitcoeff is not None:#we loaded a previous project this is a dublication, but I'm currently to lazy to make this tighter if isinstance(fitcoeff,str):fitcoeff=np.array(fitcoeff.split(','),dtype='float') if len(fitcoeff)==6:#old style parameter fitcoeff[-2]-=fitcoeff[-1] fitcoeff=fitcoeff[:5] wl=ds.columns.values.astype('float')#extract the wavelength time=ds.index.values.astype('float')#extract the time for i in range(0, len(wl), 1): correcttimeval = np.polyval(fitcoeff, wl[i]) f = scipy.interpolate.interp1d((time-correcttimeval), ds.values[:,i], bounds_error=False, fill_value=0) fixed_wave = f(time) ds.values[:, i] = fixed_wave return ds else: if save_file is None: #lets start by choosing a good intensity if hasattr(intensity_range,'__iter__'): maxim=max(abs(np.array(intensity_range))) intensity_range=maxim elif intensity_range is None: intensity_range=ds.abs().max().max() intensities=(2**np.arange(-6.,4,1.))*intensity_range window_difference=np.abs(shown_window[1]-shown_window[0])*0.1 timelimits=shown_window+np.asarray([-window_difference,window_difference]) for repeat in range(30): fig,ax=plt.subplots() ax = plot2d(ax = ax, cmap = cmap, ds = ds, wave_nm_bin = wave_nm_bin, scattercut = scattercut, bordercut = bordercut, timelimits = timelimits, intensity_range = intensity_range, title = 'select intensity where we can work,\n if happy, choose confirm or abort', use_colorbar = False, plot_type = "linear", log_scale = False) w=(ax.get_xlim()[1]-ax.get_xlim()[0]) ax.add_patch(matplotlib.patches.Rectangle((ax.get_xlim()[0],shown_window[1]),w,0.5,facecolor='white')) for i,ent in enumerate(intensities): ax.text(ax.get_xlim()[0]+i*w/10.,shown_window[1],'%.1g'%(2**np.arange(-6.,4,1.))[i],fontsize=8) ax.add_patch( matplotlib.patches.Rectangle((ax.get_xlim()[0],timelimits[0]),w/4.,0.2,facecolor='white')) ax.text(ax.get_xlim()[0],timelimits[0],'Accept',fontsize=15) ax.add_patch(matplotlib.patches.Rectangle((ax.get_xlim()[0]+w*3./4.,timelimits[0]),w/4.,0.2,facecolor='white')) ax.text(ax.get_xlim()[0]+w*3./4.,timelimits[0],'Cancel all',fontsize=15) choice =plt.ginput(1,timeout=15) factor=int((choice[0][0]-ax.get_xlim()[0])/(w/10.)) if choice[0][1] > shown_window[1]/2: intensity_range=intensities[factor] print((2**np.arange(-6.,4,1.))[factor]) intensity_range=[-intensity_range,intensity_range] plt.close(fig) continue elif choice[0][1] < shown_window[0]/2.:#we choice to finish the choices if choice[0][0] < ax.get_xlim()[0]+w/2:# print('accept') plt.close(fig) break else: plt.close(fig) return False else: print('click better please') plt.close(fig) continue for repeat in range(10): fig,ax=plt.subplots() ax = plot2d(ax = ax, cmap = cmap, ds = ds, wave_nm_bin = wave_nm_bin, scattercut = scattercut, bordercut = bordercut, timelimits = shown_window, intensity_range = intensity_range, title = 'select points, rightclick = remove last, \n middle click (or both at once finishes ', use_colorbar = False, plot_type = "linear", log_scale = False) polypts=np.asarray(plt.ginput(n=max_points,timeout=300, show_clicks=True,mouse_add=1, mouse_pop=3, mouse_stop=2)) plt.close(fig) fig,ax=plt.subplots() ax = plot2d(ax = ax, ds = ds, cmap = cmap, wave_nm_bin = wave_nm_bin, scattercut = scattercut, bordercut = bordercut, timelimits = shown_window, intensity_range = intensity_range, title = 'like it? %i more attempts'%(9-repeat), use_colorbar = False, plot_type = "linear", log_scale = False) #Fit a polynomial of the form p(x) = p[2] + p[1] + p[0] fitcoeff= np.polyfit(polypts[:, 0], polypts[:, 1], 4, full=False) correcttimeval = np.polyval(fitcoeff, ds.columns.values.astype('float')) ax.plot(ds.columns.values.astype('float'),correcttimeval) ax.add_patch( matplotlib.patches.Rectangle((ax.get_xlim()[0],ax.get_ylim()[0]),w/4,0.2,facecolor='white')) ax.text(ax.get_xlim()[0],ax.get_ylim()[0]+0.05,'Save',fontsize=20) ax.add_patch(matplotlib.patches.Rectangle((ax.get_xlim()[0]+w*3/4,ax.get_ylim()[0]),w/4,0.2,facecolor='white')) ax.text(ax.get_xlim()[0]+w*3/4,ax.get_ylim()[0]+0.05,'Redo',fontsize=20) satisfied =plt.ginput(1) plt.close(fig) if satisfied[0][0] < ax.get_xlim()[0]+w/2: print('accepted') plt.close(fig) break elif repeat<8: plt.close(fig) continue else: plt.close(fig) return False #stdev = sum(residuals**2)/8 else: with open(save_file,'r') as f: fitcoeff=f.readline() fitcoeff=np.array(fitcoeff.split(','),dtype='float') if len(fitcoeff)==6:#old style params fitcoeff[-2]-=fitcoeff[-1] fitcoeff=fitcoeff[:5] time=ds.index.values.astype('float')#extract the time ds_new=ds.apply(lambda x:np.interp(x=time+np.polyval(fitcoeff,float(x.name)),xp=time,fp=x),axis=0,raw=False) if save_file is None: #finding where zero time is for repeat in range(10): fig,ax=plt.subplots() ax = plot2d(ax = ax, cmap = cmap, ds = ds_new, wave_nm_bin = wave_nm_bin, scattercut = scattercut, bordercut = bordercut, lintresh = np.max(timelimits), timelimits = timelimits, intensity_range = intensity_range, title = 'uncorrected select new zero', plot_type = 'lin', use_colorbar = False, log_scale = False) ax.plot(ax.get_xlim(),[0,0],'black',lw=0.5) fittingto = np.array(plt.ginput(1)[0])[1] print(fittingto) fitcoeff[-1]+=fittingto ds_new=ds.apply(lambda x:np.interp(x=time+np.polyval(fitcoeff,float(x.name)),xp=time,fp=x),axis=0,raw=False) plt.close(fig) fig,ax=plt.subplots() ax = plot2d(ax = ax, ds = ds_new, cmap = cmap, wave_nm_bin = wave_nm_bin, scattercut = scattercut, bordercut = bordercut, lintresh = np.max(timelimits), timelimits = timelimits, intensity_range = intensity_range, title = 'corrected, please select', plot_type = 'lin', use_colorbar = False, log_scale = False) ax.plot(ax.get_xlim(),[0,0],'black',lw=0.5) w=(ax.get_xlim()[1]-ax.get_xlim()[0]) ax.add_patch( matplotlib.patches.Rectangle((ax.get_xlim()[0],ax.get_ylim()[0]),w/4,0.2,facecolor='white')) ax.text(ax.get_xlim()[0],ax.get_ylim()[0]+0.05,'Save',fontsize=30) ax.add_patch(matplotlib.patches.Rectangle((ax.get_xlim()[0]+w*3/4,ax.get_ylim()[0]),w/4,0.2,facecolor='white')) ax.text(ax.get_xlim()[0]+w*3/4,ax.get_ylim()[0]+0.05,'Redo',fontsize=30) satisfied =plt.ginput(1) if satisfied[0][0] < ax.get_xlim()[0]+w/2: print('accepted') plt.close(fig) break elif repeat<8: plt.close(fig) continue else: plt.close(fig) return False print(fitcoeff) if filename is None: f='chirp.dat' else: f=filename.split('.')[0] f=f+'_chirp' + '.dat' if path is None: with open(f, 'w') as opened_file: opened_file.write(','.join(map(str,np.array(fitcoeff)))) else: with open(check_folder(path=path,filename=f), 'w') as opened_file: opened_file.write(','.join(map(str,np.array(fitcoeff)))) return ds_new def build_c(times, mod = 'paral', pardf = None, sub_steps = 10): ''' Build concentration matrix after model the parameters are: resolution is the width of the rise time (at sigma 50% intensity) This function can also be used to create illustration dynamics. The parallel decays are created explicit, while the consecutive decays are created by sampling the populations at the times given in the first vector and evaluate the progression at a number of substeps defined bu sub_samples (10 by default) Parameters ----------- times : np.array array with the times at which the dataframe should be generated. In general the experimental times mod : str, optional this selects the model that is used to generate the concentrations. 1. 'paral' (Default) or 'exponential' both are equivalent 2. 'consecutive' or 'full_consecutive' In 2 the 'consecutive' and 'full_consecutive' are different in that for consecutive the optimization is done using 'exponential' (as it shoudl give the same times) and then only in the last (final) iteration the 'full consecutive' differential equation is used. This has significant speed advantages, but can lead to errors particularly for the very fast times. sub_step : int, optional defines how many times the iterative loop (used in consecutive only) is sampling the concentrations between the times given in "times" pardf : pd.DataFrame This dataframe must contain the parameter that are used for creating the dynamics the parameter must be named with the index. For the internal functions this must contain these keys: * 't0' = zero time, mandatory * 'resolution' = instrument response function, mandatory * 'background',optional = if this keyword is present a flat constant background is created (=1 over the whole time) * 'infinite',optional = if this keyword is present a new non decaying component is formed with the last decay time. * 'k0,k1,...' = with increasing integers are taken as decay times. te number of these components is used to determine how many shall be generated. Examples --------- ''' choices = {'paral':0,'exponential':0,'consecutive':1,'full_consecutive':1} model=choices[mod] param=pardf.loc[pardf.is_rate,'value'].values.astype(float) t0=float(pardf.loc['t0','value']) resolution=float(pardf.loc['resolution','value']) if model == 0:#parallel c=np.exp(-1*np.tile(times-t0,(len(param),1)).T*param) c[(times-t0)<0]=1 c*=np.tile(rise(x=times,sigma=resolution,begin=t0),(len(param),1)).T c=pandas.DataFrame(c,index=times) c.index.name='time' if 'background' in list(pardf.index.values): c['background']=1 if 'infinite' in list(pardf.index.values): c['infinite']=rise(x=times,sigma=resolution,begin=t0) if model == 1:#consecutive decays n_decays=len(param) if 'infinite' in list(pardf.index.values): infinite=True n_decays+=1 else: infinite=False decays=param c=np.zeros((len(times),n_decays),dtype='float') g=gauss(times,sigma=resolution/FWHM,mu=t0) for i in range(1,len(times)): dc=np.zeros((n_decays,1),dtype='float') dt=(times[i]-times[i-1])/(sub_steps) c_temp=c[i-1,:] for j in range(int(sub_steps)): for l in range(0,n_decays): if l>0: if infinite: if l<(n_decays-1): dc[l]=decays[l-1]*dt*c_temp[l-1]-decays[l]*dt*c_temp[l] else: dc[l]=decays[l-1]*dt*c_temp[l-1] else: dc[l]=decays[l-1]*dt*c_temp[l-1]-decays[l]*dt*c_temp[l] else: if infinite and n_decays==1: dc[l]=g[i]*dt else: dc[l]=g[i]*dt-decays[l]*dt*c_temp[l] for b in range(c.shape[1]): c_temp[b] =np.nanmax([(c_temp[b]+float(dc[b])),0.]) c[i,:] =c_temp c=pandas.DataFrame(c,index=times) c.index.name='time' if infinite: labels=list(c.columns.values) labels[-1]='Non Decaying' if 'background' in list(pardf.index.values): c['background']=1 else: if 'background' in list(pardf.index.values): c['background']=1 return c def fill_int(ds,c,final=True,baseunit='ps',return_shapes=False): '''solving the intensity an equation_way, takes the target dataframe and the concentration frame prepares the matrixes(c) the tries to solve this equation system using eps=np.linalg.lstsq(AA,Af,rcond=-1)[0] if failes it returns a dictionary with 1000 as error (only entry) if successful it returns a dictionary that contains the fit_error = (AE**2).sum() with AE beeing the difference of measured and calcuated matrix Parameters ----------- ds : DataFrame DataFrame to be fitted c: DataFrame DataFrame oontaining the concentration matrix (the concentrations as with the times as index. Each different species has a column with the species name as column name final : bool,optional if True (Default) the complete solutions will be attached otherwise only the error is attached baseunit : str,optional this string is used as unit for the time axis return_shapes : bool,optional Default = False, if True, then the concentrations and spectra are added to the re (even if not final) Returns ------------------ re : dict the dictionary "re" attached to the object containing all the matrixes and parameter. if "final" is True: * "A" Shaped measured Matrix * "AC" Shaped calculated Matrix * "AE" Difference between A and AC = linear error * "DAC" DAS or SAS, labeled after the names given in the function (the columns of c) Care must be taken that this mesured intensity is C * DAS, the product. For exponential model the concentrations are normalized * "c" The Concentrations (meaning the evolution of the concentrations over time. Care must be taken that this mesured intensity is C * DAS, the product. For exponential model the concentrations are normalized * "error" is the S2, meaning AE**2.sum().sum() else: * "error" is the S2, meaning AE**2.sum() ''' time=ds.index.values.astype('float') wl=ds.columns.values.astype('float') time_label=ds.index.name energy_label=ds.columns.name A=ds.values er=c.values ert = er.T AA = np.matmul(ert,er) Af = np.matmul(ert,A) try: eps=np.linalg.lstsq(AA,Af,rcond=-1)[0] except: re={'error':1000} return re eps[np.isnan(eps)]=0 eps[np.isinf(eps)]=0 AC = np.matmul(er,eps); AE = A-AC; fit_error = (AE**2).sum() if final: A=pandas.DataFrame(A,index=time,columns=wl) AC=pandas.DataFrame(AC,index=time,columns=wl) AE=pandas.DataFrame(AE,index=time,columns=wl) DAC=pandas.DataFrame(eps.T,index=wl) A.index.name=time_label A.columns.name=energy_label AC.index.name=time_label AC.columns.name=energy_label AE.index.name=time_label AE.columns.name=energy_label DAC.index.name=energy_label re={'A':A,'AC':AC,'AE':AE,'DAC':DAC,'error':fit_error,'c':c} elif return_shapes: re={'DAC':DAC,'error':fit_error,'c':c} else: re={'error':fit_error} return re def err_func(paras, ds, mod = 'paral', final = False, log_fit = False, dump_paras = False, filename = None, ext_spectra = None, dump_shapes = False): '''function that calculates and returns the error for the global fit. This function is intended for fitting a single dataset. Parameters -------------- ds : DataFrame This dataframe contains the data to be fitted. This has to be shaped as it is intended to (so all shping parameters already applied. The dataframe expects the time to be in Index and the wavelength/energy to be in the columns. The spectra is plotted with a second (energy) axis paras : lmfit parameter oject The parameter object that defines what is calculated mod : str or function, optional The model selection is depending if it is an internal or external model. The internal functions are triggered by calling their name Two main are currently implemented 1. 'paral' (Default) or 'exponential' 2. 'consecutive' or 'full_consecutive' In 2 the 'consecutive' and 'full_consecutive' are different in that for consecutive the optimization is done using 'exponential' (as it shoudl give the same times) and then only in the last (final) iteration the 'full consecutive' differential equation is used. This has significant speed advantages, but can lead to errors particularly for the very fast times. As external model a function is handed to this parameter, this function must accept the times and an paramater Dataframe and return a DataFrame with the concentrations (similar to build_c) for the internal functions: This datafram must contain the parameter that are used for creadting the dynamics the parameter must be named with the index. 't0' = zero time, mandatory 'resolution' = instrument response function, mandatory 'background',optional = if this keyword is present a flat constant background is created (=1 over the whole time) 'infinite',optional = if this keyword is present a new non decaying component is formed with the last decay time. 'k0,k1,...' = with increasing integers are taken as decay times. te number of these components is used to determine how many shall be generated. final : bool, optional this switch decides if just the squared error is returned (for False) (Default) or if the full matrixes are returned, including the r2 are returned. log_fit : bool, optional if False (Default) then the parameter are handed to the fitting function as they are, if true then all times are first converted to log space. dump_paras : bool, optional (Default) is False, If True creates two files in the working folder, one with the currently used parameter created at the end of each optimisation step, and one with the set of parameter that up to now gave the lowest error. Intented to store the optimisation results if the fit needs to be interrupted (if e.g. Ampgo simply needs to long to optimize.) useful option if things are slow filename : None or str, optional Only used in conjunction with 'dump_paras'. The program uses this filename to dump the parameter to disk ext_spectra : DataFrame, optional (Default) is None, if given substract this spectra from the DataMatrix using the intensity given in "C(t)" this function will only work for external models. The name of the spectral column must be same as the name of the column used. If not the spectrum will be ignored. The spectrum will be interpolated to the spectral points of the model ds before the substraction. ''' time_label=ds.index.name energy_label=ds.columns.name pardf=par_to_pardf(paras) if log_fit: pardf.loc[pardf.is_rate,'value']=pardf.loc[pardf.is_rate,'value'].apply(lambda x: 10**x) if isinstance(mod,type('hello')):#did we use a build in model? if final:#for final we really want the model c=build_c(times=ds.index.values.astype('float'),mod=mod,pardf=pardf) elif 'full_consecutive' in mod:# here we force the full consecutive modelling c=build_c(times=ds.index.values.astype('float'),mod=mod,pardf=pardf) else:#here we "bypass" the full consecutive and optimize the rates with the decays c=build_c(times=ds.index.values.astype('float'),mod='paral',pardf=pardf) c.index.name=time_label if ext_spectra is None: re=fill_int(ds=ds,c=c, return_shapes = dump_shapes) else: if 'ext_spectra_shift' in list(pardf.index.values): ext_spectra.index=ext_spectra.index.values+pardf.loc['ext_spectra_shift','value'] ext_spectra=rebin(ext_spectra,ds.columns.values.astype(float)) else: ext_spectra=rebin(ext_spectra,ds.columns.values.astype(float)) if "ext_spectra_scale" in list(pardf.index.values): ext_spectra=ext_spectra*pardf.loc['ext_spectra_scale','value'] c_temp=c.copy() for col in ext_spectra.columns: A,B=np.meshgrid(c.loc[:,col].values,ext_spectra.loc[:,col].values) C=pandas.DataFrame((A*B).T,index=c.index,columns=ext_spectra.index.values) ds=ds-C c_temp.drop(col,axis=1,inplace=True) re=fill_int(ds=ds,c=c_temp, return_shapes = dump_shapes) if final: labels=list(re['DAC'].columns.values) changed=True if 'background' in list(pardf.index.values): if 'infinite' in list(pardf.index.values): labels[-1]='Non Decaying' labels[-2]='background' else: labels[-1]='background' else: if 'infinite' in list(pardf.index.values): labels[-1]='Non Decaying' else:changed=False if changed: re['DAC'].columns=labels re['c'].columns=labels if not ext_spectra is None: for col in ext_spectra.columns: re['DAC'][col]=ext_spectra.loc[:,col].values re['c'][col]=c.loc[:,col].values A,B=np.meshgrid(c.loc[:,col].values,ext_spectra.loc[:,col].values) C=pandas.DataFrame((A*B).T,index=c.index,columns=ext_spectra.index.values) re['A']=re['A']+C re['AC']=re['AC']+C re['r2']=1-re['error']/((re['A']-re['A'].mean().mean())**2).sum().sum() if dump_paras: try: pardf.loc['error','value']=re['error'] except: pass try: pardf.loc['r2','value']=re['r2'] except: pass try: if filename is None: store_name='minimal_dump_paras.par' else: store_name='minimal_dump_paras_%s.par'%filename min_df=pandas.read_csv(store_name,sep=',',header=None,skiprows=1) if float(min_df.iloc[-1,1])>float(re['error']): pardf.to_csv(store_name) except: pass if filename is None: store_name='dump_paras.par' else: store_name='dump_paras_%s.par'%filename pardf.to_csv(store_name) return re else: if dump_paras: try: pardf.loc['error','value']=re['error'] except: pass try: pardf.loc['r2','value']=re['r2'] except: pass try: if filename is None: store_name='minimal_dump_paras.par' else: store_name='minimal_dump_paras_%s.par'%filename min_df=pandas.read_csv(store_name,sep=',',header=None,skiprows=1) if float(min_df.iloc[-1,1])>float(re['error']): pardf.to_csv(store_name) except: pass if filename is None: store_name='dump_paras.par' else: store_name='dump_paras_%s.par'%filename pardf.to_csv(store_name) if not mod in ['paral','exponential','consecutive']: print(re['error']) if dump_shapes: re['c'].to_csv(path_or_buf=filename + '_c') re['DAC'].to_csv(path_or_buf=filename + '_DAC') return re['error'] else: c=mod(times=ds.index.values.astype('float'),pardf=pardf.loc[:,'value']) if ext_spectra is None: re=fill_int(ds=ds,c=c, return_shapes = dump_shapes) else: ext_spectra=rebin(ext_spectra,ds.columns.values.astype(float)) c_temp=c.copy() for col in ext_spectra.columns: A,B=np.meshgrid(c.loc[:,col].values,ext_spectra.loc[:,col].values) C=pandas.DataFrame((A*B).T,index=c.index,columns=ext_spectra.index.values) ds=ds-C c_temp.drop(col,axis=1,inplace=True) re=fill_int(ds=ds,c=c_temp, return_shapes = dump_shapes) if final: if len(re.keys())<3:# print('error in the calculation') return re if ext_spectra is None: re['DAC'].columns=c.columns.values re['c'].columns=c.columns.values else: re['DAC'].columns=c_temp.columns.values re['c'].columns=c_temp.columns.values for col in ext_spectra.columns: re['DAC'][col]=ext_spectra.loc[:,col].values re['c'][col]=c.loc[:,col].values A,B=np.meshgrid(c.loc[:,col].values,ext_spectra.loc[:,col].values) C=pandas.DataFrame((A*B).T,index=c.index,columns=ext_spectra.index.values) re['A']=re['A']+C re['AC']=re['AC']+C re['r2']=1-re['error']/((re['A']-re['A'].mean().mean())**2).sum().sum() if dump_paras: try: pardf.loc['error','value']=re['error'] except: pass try: min_df=pandas.read_csv('minimal_dump_paras.par',sep=',',header=None,skiprows=1) if float(min_df.iloc[-1,1])>float(re['error']): pardf.to_csv('minimal_dump_paras.par') except: pass pardf.to_csv('dump_paras.par') return re else: if dump_paras: try: pardf.loc['error','value']=re['error'] except: pass try: min_df=pandas.read_csv('minimal_dump_paras.par',sep=',',header=None,skiprows=1) if float(min_df.iloc[-1,1])>float(re['error']): pardf.to_csv('minimal_dump_paras.par') except: pass pardf.to_csv('dump_paras.par') print(re['error']) if dump_shapes: re['c'].to_csv(path_or_buf=filename + '_c') re['DAC'].to_csv(path_or_buf=filename + '_DAC') return re['error'] def err_func_multi(paras, mod = 'paral', final = False, log_fit = False, multi_project = None, unique_parameter = None, weights = None, dump_paras = False, filename = None, ext_spectra = None, dump_shapes = False, same_DAS = False): '''function that calculates and returns the error for the global fit. This function is intended for fitting of multiple datasets Parameters -------------- paras : lmfit parameter oject The parameter object that defines what is calculated mod : str or function, optional The model selection is depending if it is an internal or external model. The internal functions are triggered by calling their name Two main are currently implemented 1. 'paral' (Default) or 'exponential' 2. 'consecutive' or 'full_consecutive' In 2 the 'consecutive' and 'full_consecutive' are different in that for consecutive the optimization is done using 'exponential' (as it shoudl give the same times) and then only in the last (final) iteration the 'full consecutive' differential equation is used. This has significant speed advantages, but can lead to errors particularly for the very fast times. for the internal functions: This datafram must contain the parameter that are used for creadting the dynamics the parameter must be named with the index. 't0' = zero time, mandatory 'resolution' = instrument response function, mandatory 'background',optional = if this keyword is present a flat constant background is created (=1 over the whole time) 'infinite',optional = if this keyword is present a new non decaying component is formed with the last decay time. 'k0,k1,...' = with increasing integers are taken as decay times. te number of these components is used to determine how many shall be generated. As external model a function is handed to this parameter, this function must accept the times and an paramater Dataframe and return a DataFrame with the concentrations (similar to build_c) final : bool, optional this switch decides if just the squared error is returned (for False) (Default) or if the full matrixes are returned, including the r2 are returned. log_fit : bool, optional if False (Default) then the parameter are handed to the fitting function as they are, if true then all times are first converted to log space. dump_paras : bool, optional (Default) is False, If True creates two files in the working folder, one with the currently used parameter created at the end of each optimisation step, and one with the set of parameter that up to now gave the lowest error. Intented to store the optimisation results if the fit needs to be interrupted (if e.g. Ampgo simply needs to long to optimize.) useful option if things are slow filename : None or str, optional Only used in conjunction with 'dump_paras'. The program uses this filename to dump the parameter to disk multi_project : None or list (of TA projects), optional This switch is triggering the simultaneous optimisation of multiple datasets. multi_project is as (Default) None. it expects an iterable (typically list) with other TA projects (like ta) that are then optimised with the same parameter. This means that all projects get the same parameter object for each iteration of the fit and return their individual error, which is summed linearly. The "weights" option allows to give each multi_project a specific weight (number) that is multiplied to the error. If the weight object has the same number of items as the multi_project it is assumed that the triggering object (the embedded project) has the weight of 1, otherwise the first weight is for the embedded project. The option 'unique_parameter' takes (a list) of parameter that are not to be shared between the projects (and that are not optimized either) The intended use of this is to give e.g. the pump power for multiple experiments to study non linear behaviour. Returned will be only the parameter set for the optimium combination of all parameter. Internally, we iterate through the projects and calculate for each project the error for each iteration. Important to note is that currently this means that each DAS/SAS is calculated independently! For performing the same calculation with a single DAS, the Matrixes need to be concatenated before the run and an external function used to create a combined model. As this is very difficult to implement reliably For general use (think e.g. different pump wavelength) this has to be done manually. unique_parameter : None or str or list (of strings), optional only used in conjunction with 'multi_project', it takes (a list) of parameter that are not to be shared between the projects (and that are not optimized either) The intended use of this is to give e.g. the pump power for multiple experiments to study non linear behaviour. (Default) None same_DAS : bool,optional changes the fit behavior and uses the same DAS for the optimization. This means that the ds are stacked before the fill int rounds weights : list of floats, optional only used in conjunction with 'multi_project'. The "weights" option allows to give each multi\_project a specific weight (number) that is multiplied to the error. If the weight object has the same number of items as the 'multi_project' it is assumed that ta (the embedded project) has the weight of 1, otherwise the first weight is for the embedded object ext_spectra : DataFrame, optional (Default) is None, if given substract this spectra from the DataMatrix using the intensity given in "C(t)" this function will only work for external models. The name of the spectral column must be same as the name of the column used. If not the spectrum will be ignored. The spectrum will be interpolated to the spectral points of the model ds before the substraction. ''' pardf_changing=par_to_pardf(paras) error_listen=[] r2_listen=[] slice_setting_object=multi_project[0].Copy() ####### new same DAS, I'm lazy and will doublicate te loop. ########### if same_DAS: c_stack=[] ds_stack=[] par_stack=[] height_stack=[] for i,ta in enumerate(multi_project): ds = sub_ds(ds = ta.ds, scattercut = slice_setting_object.scattercut, bordercut = slice_setting_object.bordercut, timelimits = slice_setting_object.timelimits, wave_nm_bin = slice_setting_object.wave_nm_bin, time_bin = slice_setting_object.time_bin, ignore_time_region = slice_setting_object.ignore_time_region) pardf=pardf_changing.copy() try:#let's see if the project has an parameter object pardf_ori=par_to_pardf(ta.par) except: pardf_ori=pardf if unique_parameter is not None: for key in unique_parameter: pardf.loc[key,'value']=pardf_ori.loc[key,'value'] par_stack.append(pardf) if log_fit: pardf.loc[pardf.is_rate,'value']=pardf.loc[pardf.is_rate,'value'].apply(lambda x: 10**x) if isinstance(mod,type('hello')):#did we use a build in model? c=build_c(times=ds.index.values.astype('float'),mod=mod,pardf=pardf) else: c=mod(times=ds.index.values.astype('float'),pardf=pardf.loc[:,'value']) if ext_spectra is None: c_temp=c.copy() else: if 'ext_spectra_shift' in list(pardf.index.values): ext_spectra.index=ext_spectra.index.values+pardf.loc['ext_spectra_shift','value'] ext_spectra=rebin(ext_spectra,ds.columns.values.astype(float)) else: ext_spectra=rebin(ext_spectra,ds.columns.values.astype(float)) if "ext_spectra_scale" in list(pardf.index.values): ext_spectra=ext_spectra*pardf.loc['ext_spectra_scale','value'] c_temp=c.copy() for col in ext_spectra.columns: A,B=np.meshgrid(c.loc[:,col].values,ext_spectra.loc[:,col].values) C=pandas.DataFrame((A*B).T,index=c.index,columns=ext_spectra.index.values) ds=ds-C c_temp.drop(col,axis=1,inplace=True) if not weights is None: if len(weights)==len(multi_project)-1: weights=list(weights) weights.insert(0,1) elif len(weights)!=len(multi_project): Ex = ValueError() Ex.strerror='The number of entries i the list must either be the number of all elements (including \"TA\" or the number of elements in other. In this case the element ta gets the weight=1' raise Ex ds_stack.append(ds*weights[i]) else: ds_stack.append(ds) c_stack.append(c_temp) height_stack.append(len(c_temp.index.values)) A_con=pandas.concat(ds_stack) c_con=pandas.concat(c_stack) re=fill_int(ds=A_con,c=c_con, return_shapes = dump_shapes, final =final) if dump_paras: try: pardf.loc['error','value']=re['error'] except: pass if final: try: pardf.loc['r2','value']=1-re['error']/((re['A']-re['A'].mean().mean())**2).sum().sum() except: pass try: if filename is None: store_name='minimal_dump_paras.par' else: store_name='minimal_dump_paras_%s.par'%filename min_df=pandas.read_csv(store_name,sep=',',header=None,skiprows=1) if float(min_df.iloc[-1,1])>float(combined_error): pardf.to_csv(store_name) except: pass if filename is None: store_name='dump_paras.par' else: store_name='dump_paras_%s.par'%filename try: pardf.to_csv(store_name) except: print('Saving of %s failed'%store_name) if final: if isinstance(mod,type('hello')):#did we use a build in model? labels=list(re['DAC'].columns.values) changed=True if 'background' in list(pardf.index.values): if 'infinite' in list(pardf.index.values): labels[-1]='Non Decaying' labels[-2]='background' else: labels[-1]='background' else: if 'infinite' in list(pardf.index.values): labels[-1]='Non Decaying' else:changed=False if changed: re['DAC'].columns=labels re['c'].columns=labels if not ext_spectra is None: for col in ext_spectra.columns: re['DAC'][col]=ext_spectra.loc[:,col].values re['c'][col]=c.loc[:,col].values A,B=np.meshgrid(c.loc[:,col].values,ext_spectra.loc[:,col].values) C=pandas.DataFrame((A*B).T,index=c.index,columns=ext_spectra.index.values) re['A']=re['A']+C re['AC']=re['AC']+C else: re['DAC'].columns=c.columns.values re['c'].columns=c.columns.values if not ext_spectra is None: for col in ext_spectra.columns: re['DAC'][col]=ext_spectra.loc[:,col].values re['c'][col]=c.loc[:,col].values A,B=np.meshgrid(c.loc[:,col].values,ext_spectra.loc[:,col].values) C=pandas.DataFrame((A*B).T,index=c.index,columns=ext_spectra.index.values) re['A']=re['A']+C re['AC']=re['AC']+C return_listen=[] for i,ta in enumerate(multi_project): re_local={} if i==0: lower=0 else: lower=np.array(height_stack)[:i].sum() re_local['A']=re['A'].copy().iloc[lower:lower+height_stack[i],:] re_local['AC']=re['AC'].copy().iloc[lower:lower+height_stack[i],:] re_local['AE']=re['AE'].copy().iloc[lower:lower+height_stack[i],:] re_local['c']=re['c'].copy().iloc[lower:lower+height_stack[i],:] re_local['error_total']=re['error'] re_local['error']=(re['AE']**2).sum().sum() re_local['DAC']=re['DAC'].copy() re_local['r2']=1-re_local['error']/((re_local['A']-re_local['A'].mean().mean())**2).sum().sum() re_local['r2_total']=1-re['error']/((re['A']-re['A'].mean().mean())**2).sum().sum() re_local['pardf']=par_stack[i] try: re_local['filename']=filename except: pass return_listen.append(re_local) if not mod in ['paral','exponential','consecutive']: print(re['error']) if final: return return_listen else: return re['error'] ################### not same DAS#################### else: for i,ta in enumerate(multi_project): ds = sub_ds(ds = ta.ds, scattercut = slice_setting_object.scattercut, bordercut = slice_setting_object.bordercut, timelimits = slice_setting_object.timelimits, wave_nm_bin = slice_setting_object.wave_nm_bin, time_bin = slice_setting_object.time_bin, ignore_time_region = slice_setting_object.ignore_time_region) pardf=pardf_changing.copy() try:#let's see if the project has an parameter object pardf_ori=par_to_pardf(ta.par) except: pardf_ori=pardf if unique_parameter is not None: for key in unique_parameter: pardf.loc[key,'value']=pardf_ori.loc[key,'value'] if log_fit: pardf.loc[pardf.is_rate,'value']=pardf.loc[pardf.is_rate,'value'].apply(lambda x: 10**x) if isinstance(mod,type('hello')):#did we use a build in model? c=build_c(times=ds.index.values.astype('float'),mod=mod,pardf=pardf) if ext_spectra is None: re=fill_int(ds=ds,c=c, return_shapes = dump_shapes) else: ext_spectra=rebin(ext_spectra,ds.columns.values.astype(float)) c_temp=c.copy() for col in ext_spectra.columns: A,B=np.meshgrid(c.loc[:,col].values,ext_spectra.loc[:,col].values) C=pandas.DataFrame((A*B).T,index=c.index,columns=ext_spectra.index.values) ds=ds-C c_temp.drop(col,axis=1,inplace=True) re=fill_int(ds=ds,c=c_temp, return_shapes = dump_shapes) if final: if i==0: labels=list(re['DAC'].columns.values) changed=True if 'background' in list(pardf.index.values): if 'infinite' in list(pardf.index.values): labels[-1]='Non Decaying' labels[-2]='background' else: labels[-1]='background' else: if 'infinite' in list(pardf.index.values): labels[-1]='Non Decaying' else:changed=False if changed: re['DAC'].columns=labels re['c'].columns=labels if not ext_spectra is None: for col in ext_spectra.columns: re['DAC'][col]=ext_spectra.loc[:,col].values re['c'][col]=c.loc[:,col].values A,B=np.meshgrid(c.loc[:,col].values,ext_spectra.loc[:,col].values) C=pandas.DataFrame((A*B).T,index=c.index,columns=ext_spectra.index.values) re['A']=re['A']+C re['AC']=re['AC']+C re_final=re.copy() error_listen.append(re['error']) r2_listen.append(1-re['error']/((re['A']-re['A'].mean().mean())**2).sum().sum()) else: if dump_shapes: re['c'].to_csv(path_or_buf=ta.filename + '_c') re['DAC'].to_csv(path_or_buf=ta.filename + '_DAC') error_listen.append(re['error']) else: c=mod(times=ds.index.values.astype('float'),pardf=pardf.loc[:,'value']) if ext_spectra is None: re=fill_int(ds=ds,c=c, return_shapes = dump_shapes) else: ext_spectra=rebin(ext_spectra,ds.columns.values.astype(float)) c_temp=c.copy() for col in ext_spectra.columns: A,B=np.meshgrid(c.loc[:,col].values,ext_spectra.loc[:,col].values) C=pandas.DataFrame((A*B).T,index=c.index,columns=ext_spectra.index.values) ds=ds-C c_temp.drop(col,axis=1,inplace=True) re=fill_int(ds=ds,c=c_temp, return_shapes = dump_shapes) if final: if i==0: re['DAC'].columns=c.columns.values re['c'].columns=c.columns.values if not ext_spectra is None: for col in ext_spectra.columns: re['DAC'][col]=ext_spectra.loc[:,col].values re['c'][col]=c.loc[:,col].values A,B=np.meshgrid(c.loc[:,col].values,ext_spectra.loc[:,col].values) C=pandas.DataFrame((A*B).T,index=c.index,columns=ext_spectra.index.values) re['A']=re['A']+C re['AC']=re['AC']+C re_final=re.copy() error_listen.append(re['error']) r2_listen.append(1-re['error']/((re['A']-re['A'].mean().mean())**2).sum().sum()) else: if dump_shapes: re['c'].to_csv(path_or_buf=filename + '_c') re['DAC'].to_csv(path_or_buf=filename + '_DAC') error_listen.append(re['error']) if not weights is None: if len(weights)==len(error_listen)-1: weights=list(weights) weights.insert(0,1) elif len(weights)!=len(error_listen): Ex = ValueError() Ex.strerror='The number of entries i the list must either be the number of all elements (including \"TA\" or the number of elements in other. In this case the element ta gets the weight=1' raise Ex combined_error=np.sqrt(((np.array(error_listen)*np.array(weights))**2).mean()) if final: combined_r2=np.sqrt(((np.array(r2_listen)*np.array(weights))**2).mean()) else: combined_error=np.sqrt((np.array(error_listen)**2).mean()) if final: combined_r2=np.sqrt(((np.array(r2_listen))**2).mean()) if final: re_final['error']=combined_error re_final['r2']=combined_r2 if dump_paras: try: pardf.loc['error','value']=combined_error except: pass try: pardf.loc['r2','value']=combined_r2 except: pass try: if filename is None: store_name='minimal_dump_paras.par' else: store_name='minimal_dump_paras_%s.par'%filename min_df=pandas.read_csv(store_name,sep=',',header=None,skiprows=1) if float(min_df.iloc[-1,1])>float(combined_error): pardf.to_csv(store_name) except: pass if filename is None: store_name='dump_paras.par' else: store_name='dump_paras_%s.par'%filename try: pardf.to_csv(store_name) except: print('Saving of %s failed'%store_name) if not mod in ['paral','exponential','consecutive']: print(combined_error) if final: return re_final else: return combined_error def par_to_pardf(par): '''function to convert a parameters object into a pretty DataFrame, it expects par to be a lmfit parameters object and loops through the keys''' out_dicten={} for key in par.keys(): out_dicten[key]={'value':par[key].value} if key[0] == 'k':#its a time parameter out_dicten[key]['is_rate']=True else: out_dicten[key]['is_rate']=False out_dicten[key]['min']=par[key].min out_dicten[key]['max']=par[key].max out_dicten[key]['vary']=par[key].vary out_dicten[key]['expr']=par[key].expr return pandas.DataFrame(out_dicten).T def pardf_to_par(par_df): '''converts a dataframe to lmfit object set(value=None, vary=None, min=None, max=None, expr=None, brute_step=None)''' par=lmfit.Parameters() for key in par_df.index.values: par.add(key, value=par_df.loc[key,'value'], vary=par_df.loc[key,'vary'], min=par_df.loc[key,'min'], max=par_df.loc[key,'max'], expr=par_df.loc[key,'expr']) return par def pardf_to_timedf(pardf): '''inverts all the rates to times in a dataframe''' timedf=pardf.copy() if 'upper_limit' in pardf.keys(): for key in ['init_value','value','min','max','lower_limit','upper_limit']: for row in pardf.index.values: if timedf.loc[row,'is_rate']: if key == 'min':key_in='max' elif key == 'max':key_in='min' elif key == 'lower_limit':key_in='upper_limit' elif key == 'upper_limit':key_in='lower_limit' else:key_in=key try: if pardf.loc[row,key] !=0: timedf.loc[row,key_in]=1/pardf.loc[row,key] else: timedf.loc[row,key_in]='inf' except: if key == 'init_value':pass#we don't save the init values, so we get an error when converting the saved file elif pardf.loc[row,key] is None:continue else:print('conversion of this key failed: %s %s'%(row,key)) else: for key in ['init_value','value','min','max']: if key == 'min':key_in='max' elif key == 'max':key_in='min' else:key_in=key try: timedf.loc[pardf.is_rate,key_in]=pardf.loc[pardf.is_rate,key].apply(lambda x: 1/x if x!=0 else 'inf') except: if key == 'init_value':pass#we don't save the init values, so we get an error when converting the saved file else:print('conversion of this key failed:' + key) return timedf class TA(): # object wrapper for the whole def __init__(self, filename, path = None, sep = "\t", decimal = '.', index_is_energy = False, transpose = False, sort_indexes = False, divide_times_by = None, shift_times_by = None, external_time = None, external_wave = None, use_same_name = True, data_type = None , units = None, baseunit = None, ds = None, conversion_function = None): '''Function that opens and imports data into an TA object it is designed to open combined files that contain both the wavelength and the time. (e.g. SIA files as recorded by Pascher instruments software) or hdf5 projects saved by this software There are however a lot of additional options to open other ascii type files and adapt their format internally Attention times with Nan will be completely removed during the import Parameters ---------- filename : str * expects a filename in string form for opening a single file. * alternatively 'gui' can be set as filename, then a TKinter gui is opened for select. * alternatively 'recent' can given as key word. in this case it tries to find a text file named "recent.dat" that should contain the path to the last file opened with the GUI. this file is then opened. if this file is not found the GUI is opened instead path : str or path object (optional) if path is a string without the operation system dependent separator, it is treated as a relative path, e.g. data will look from the working directory in the sub director data. Otherwise this has to be a full path in either strong or path object form. sep : str (optional) is the separator between different numbers, typical are tap (Backslash t) (Default) ,one or multiple white spaces 'backslash s+' or comma ','. decimal : str (optional) sets the ascii symbol that is used for the decimal sign. In most countries this is '.'(Default) but it can be ',' in countries like Sweden or Germany index_is_energy : bool (optional) switches if the wavelength is given in nm (Default) or in eV (if True), currently everything is handled as wavelength in nm internally data_type: str (optional) data_type is the string that represents the intensity measurements. Usually this contains if absolute of differential data. This is used for the color intensity in the 2d plots and the y-axis for the 1d plots units: str (optional) this is used to identify the units on the energy axis and to label the slices, recognized is 'nm', 'eV' and 'keV' but if another unit like 'cm^-1' is used it will state energy in 'cm^-1'. Pleas observe that if you use the index_is_energy switch the program tries to convert this energy into wavelength. baseunit: str (optional) this is used to identify the units on the developing/time axis. This is name that is attached to the index of the dataframe. setting this during import is equivalent to ta.baseunit transpose : bool (optional) if this switch is False (Default) the wavelength are the columns and the rows the times. sort_indexes : bool (optional) For False (Default) I assume that the times and energies are already in a rising order. with this switch, both are sorted again. divide_times_by : None or float (optional) here a number can be given that scales the time by an arbitary factor. This is actually dividing the times by this value. Alternatively there is the variable self.baseunit. The latter only affects what is written on the axis, while this value is actually used to scale the times. None (Default) ignores this shift_times_by : None, float (optional) This a value by which the time axis is shifted during import. This is a useful option of e.g. the recording software does not compensate for t0 and the data is always shifted. None (Default) ignores this setting data_type : str, None this is the datatype and effectively the unit put on the intensity axis (Default)'differential Absorption in $\mathregular{\Delta OD}$ external_time : None or str (optional) Here a filename extension (string) can be given that contains the time vector. The file is assumed to be at the same path as the data and to contain a single type of separated data without header. If use_same_name = True (default) It assumes that this is the ending for the file. The filename itself is taken from the filename. e.g. if samp1.txt is the filename and external_time='.tid' the program searches samp1.tid for the times. The transpose setting is applied and sets where the times are to be inserted (row or column indexes) If use_same_name = False this should be the file containing the vector for the time (in the same format as the main file) external_wave : None or str (optional) Here a filename extension (string) can be given that contains the wavelength vector. If use_same_name = True (default) The file is assumed to be at the same path as the data and to contain a single type of separated data without header. This is the ending for the file. The filename itself is taken from the filename. e.g. if samp1.txt is the filename and external_wave='.wav' then the program searches samp1.wav for the wavelength. The transpose setting is applied and sets where the wavelength are to be inserted (columns or row indexes) If use_same_name = False this should be a full filename that contains the vector use_same_name : bool, optional this switches if the external filename included the loaded filename or is a separate file True(default) ds: pandas.DataFrame (optional) feed in an external dataframe instead of opening a file conversion_function: function(optional) function that receives should have the shape: return pandas Dataframe with time/frames in rows and wavelength/energy in columns, The function is tested to accept (in that order) a my_function(filename, external_time,external_wave), my_function(filename, external_time), my_function(filename,external_wave), my_function(filename) and return: the dataframe ds with the time_axis as rows and spectral axis as columns if the ds.index.name ia not empty the "time axis" is in to that name the spectral axis is in ds.columns.name the return is investigated if it is one, two, or three things. if two are returned then the second must be the name of what the intensity axis is. This value will then be set to data_type if three are returned the third is the baseunit (for the time axis) this allows to use the automatic naming in ps or nanosecond If the values units, data_type or baseunit are (manually) set in the import function the corresponding entries in datafram will be overwritten shift_times_by and divide_times_by will be applied if not None (useful to adjust for offset before chirp correction) Returns ------- A TA object with all parameter initialized Examples -------------- Typical useage: >>> import plot_func as pf #import the module and give it a shorter name >>> ta=pf.TA('gui') #use a GUI to open >>> ta=pf.TA('sample_1.SIA') #use a filename in the same folder >>> ta=pf.TA('sample_1.hdf5',path='Data') #use a filename in the folder 'Data' Opening a list of files with external time vector (of the same name) so it looks for a data file "fite1.txt" and a file with the time information "file1.tid" >>>ta=pf.TA('file1.txt', external_time = 'tid') ''' self.path=check_folder(path=path,current_path=os.getcwd()) self.filename=filename if ds is not None: if filename is None: filename = 'external' self.filename='external' if filename == 'gui': root_window = tkinter.Tk() root_window.withdraw() root_window.attributes('-topmost',True) root_window.after(1000, lambda: root_window.focus_force()) complete_path = filedialog.askopenfilename(initialdir=os.getcwd()) listen=os.path.split(complete_path) path=os.path.normpath(listen[0]) self.path=path filename=listen[1] self.filename=filename with open('recent.dat','w') as f: f.write(complete_path) elif filename == 'recent': try: with open('recent.dat','r') as f: complete_path = f.readline() listen=os.path.split(complete_path) path=os.path.normpath(listen[0]) self.path=path filename=listen[1] self.filename=filename except: root_window = tkinter.Tk() root_window.withdraw() root_window.attributes('-topmost',True) root_window.after(1000, lambda: root_window.focus_force()) complete_path = filedialog.askopenfilename(initialdir=os.getcwd()) listen=os.path.split(complete_path) path=os.path.normpath(listen[0]) self.path=path filename=listen[1] self.filename=filename with open('recent.dat','w') as f: f.write(complete_path) if filename == 'external':#use a provided dataframe (ds) instead if data_type is not None: self.data_type = data_type if units is not None: self.units = units try: if len(ds.columns.name)==0: ds.columns.name= units except: pass else: try: if len(ds.columns.name)!=0: self.units = ds.columns.name except: pass if baseunit is not None: self.baseunit = baseunit try: if len(ds.index.name)==0: if (baseunit == 'ps') or (baseunit == 'ns'): ds.index.name='Time in %s'%baseunit else: ds.index.name= baseunit except: pass else: try: if len(ds.index.name)!=0: self.baseunit = ds.index.name except: pass self.ds_ori=ds self.ds=ds self.__make_standard_parameter() elif ('hdf5' in filename) and (conversion_function is None):#we load a conversion function to deal with the file:#we read in data from previous run self.__read_project(saved_project=check_folder(path=self.path,filename=self.filename)) self.__make_standard_parameter() self.Cor_Chirp(fitcoeff=self.fitcoeff) else:#we read in raw data from sia File if conversion_function is not None: try: ret=conversion_function(filename = filename, external_time = external_time, external_wave = external_wave) except: try: ret=conversion_function(filename = filename, external_time = external_time) except: try: ret=conversion_function(filename = filename, external_wave = external_wave) except: try: ret=conversion_function(filename = filename) except Exception as e: print(e) return False if isinstance(ret,pandas.DataFrame): ##import is what we wanted ds=ret elif isinstance(ret,pandas.Series): ds=ret.as_frame() else: if len(ret) == 2: if data_type is None: ds,data_type=ret else: ds,_=ret elif len(ret) == 3: if data_type is None: ds,data_type,baseunit=ret else: ds,_,baseunit=ret else: print('sorry the return format of the conversion_function was not understood') print('return: the dataframe ds with the time_axis as rows and spectral axis as columns\n') print('if the ds.index.name ia not empty the "time axis" is in to that name the spectral axis is in ds.columns.name\n') print('the return is investigated if it is one, two, or three things.\n ') print('if two are returned then the second must be the name of what the intensity axis is. This value will then be set to data_type\n') print('if three are returned the third is the baseunit (for the time axis) this allows to use the automatic naming in ps or ns ' ) return False ## see if we have the name a data types in the data if data_type is not None: self.data_type = data_type if units is not None: self.units = units try: if len(ds.columns.name)==0: ds.columns.name= units except: pass else: try: if len(ds.columns.name)!=0: self.units = ds.columns.name except: pass if baseunit is not None: self.baseunit = baseunit try: if len(ds.index.name)==0: if (baseunit == 'ps') or (baseunit == 'ns'): ds.index.name='Time in %s'%baseunit else: ds.index.name= baseunit except: pass else: try: if len(ds.index.name)!=0: self.baseunit = ds.index.name except: pass if shift_times_by is not None: ds.index=ds.index.values+shift_times_by if divide_times_by is not None: ds.index=ds.index.values/divide_times_by self.ds_ori=ds self.ds=ds self.__make_standard_parameter() else: self.__read_ascii_data(sep = sep, decimal = decimal, index_is_energy = index_is_energy, transpose = transpose, sort_indexes = sort_indexes, divide_times_by = divide_times_by, shift_times_by = shift_times_by, external_time = external_time, external_wave = external_wave, use_same_name = use_same_name, data_type = data_type, units = units, baseunit = baseunit) self.__make_standard_parameter() def __read_ascii_data(self, sep = "\t", decimal = '.', index_is_energy = False, transpose = False, sort_indexes = False, divide_times_by = None, shift_times_by = None, external_time = None, external_wave = None, use_same_name = True, correct_ascii_errors = True, data_type = None, units = None, baseunit = None): '''Fancy function that handles the import of pure ascii files. Parameters ---------- sep : str (optional) is the separator between different numbers, typical are tap (Backslash t) (Default) ,one or multiple white spaces 'backslash s+' or comma ','. decimal : str (optional) sets the ascii symbol that is used for the decimal sign. In most countries this is '.'(Default) but it can be ',' in countries like Sweden or Germany index_is_energy : bool (optional) switches if the wavelength is given in nm (Default) or in eV (if True), currently everything is handled as wavelength in nm internally data_type: str (optional) data_type is the string that represents the intensity measurements. Usually this contains if absolute of differential data. This is used for the color intensity in the 2d plots and the y-axis for the 1d plots units: str (optional) this is used to identify the units on the energy axis and to label the slices, recognized is 'nm', 'eV' and 'keV' but if another unit like 'cm^-1' is used it will state energy in 'cm^-1'. Pleas observe that if you use the index_is_energy switch the program tries to convert this energy into wavelength. baseunit: str (optional) this is used to identify the units on the developing/time axis. This is name that is attached to the index of the dataframe. setting this during import is equivalent to ta.baseunit transpose : bool (optional) if this switch is False (Default) the wavelength are the columns and the rows the times. sort_indexes : bool (optional) For False (Default) I assume that the times and energies are already in a rising order. with this switch, both are sorted again. divide_times_by : None or float (optional) here a number can be given that scales the time by an arbitary factor. This is actually dividing the times by this value. Alternatively there is the variable self.baseunit. The latter only affects what is written on the axis, while this value is actually used to scale the times. None (Default) ignores this shift_times_by : None, float (optional) This a value by which the time axis is shifted during import. This is a useful option of e.g. the recording software does not compensate for t0 and the data is always shifted. None (Default) ignores this setting external_time : None or str (optional) Here a filename extension (string) can be given that contains the time vector. The file is assumed to be at the same path as the data and to contain a single type of separated data without header. If use_same_name = True (default) It assumes that this is the ending for the file. The filename itself is taken from the filename. e.g. if samp1.txt is the filename and external_time='.tid' the program searches samp1.tid for the times. The transpose setting is applied and sets where the times are to be inserted (row or column indexes) If use_same_name = False this should be the file containing the vector for the time (in the same format as the main file) external_wave : None or str (optional) Here a filename extension (string) can be given that contains the wavelength vector. If use_same_name = True (default) The file is assumed to be at the same path as the data and to contain a single type of separated data without header. This is the ending for the file. The filename itself is taken from the filename. e.g. if samp1.txt is the filename and external_wave='.wav' then the program searches samp1.wav for the wavelength. The transpose setting is applied and sets where the wavelength are to be inserted (columns or row indexes) If use_same_name = False this should be a full filename that contains the vector use_same_name : bool, optional this switches if the external filename included the loaded filename or is a separate file correct_ascii_errors : bool (optional) If True (Default) then the code tries to catch some stuff like double minus signs and double dots ''' self.ds_ori=pandas.read_csv(check_folder(path=self.path,filename=self.filename), sep=sep, index_col=0) if correct_ascii_errors: if (self.ds_ori.applymap(type) == float).all().all(): pass#all columns were converted to float,nice else: print('some data bad, try filtering') try:# try forced conversion self.ds_ori=self.ds_ori.applymap(lambda x: re.sub('--', '-',x) if type(x) is str else x) self.ds_ori=self.ds_ori.applymap(lambda x: re.sub(r'\.+', '.',x) if type(x) is str else x) self.ds_ori=self.ds_ori.astype(np.float64) except Exception as e: print('force cleaning went wrong and the file %s can not be read. Error message is:'%self.filename) print(e) return False if external_time is not None: if use_same_name: time_file=check_folder(path=self.path,filename=self.filename.split('.')[0]+'.'+external_time) else: time_file=check_folder(path=self.path,filename=external_time) if external_wave is not None: if use_same_name: wave_file=check_folder(path=self.path,filename=self.filename.split('.')[0]+'.'+external_wave) else: wave_file=check_folder(path=self.path,filename=external_wave) if external_time is not None: data_file_name=check_folder(path=self.path,filename=self.filename) times=pandas.read_csv(time_file,header=None,decimal=decimal).values.ravel() if transpose: if external_wave is not None: self.ds_ori=pandas.read_csv(check_folder(path=self.path,filename=self.filename), sep=sep , decimal=decimal, header=None) waves=pandas.read_csv(wave_file,header=None,decimal=decimal).values.ravel() self.ds_ori.index=waves else: self.ds_ori=pandas.read_csv(check_folder(path=self.path,filename=self.filename), sep=sep , decimal=decimal, index_col=0,header=None) self.ds_ori.columns=times else: if external_wave is not None: self.ds_ori=pandas.read_csv(check_folder(path=self.path,filename=self.filename), sep=sep, decimal=decimal,header=None) waves=pandas.read_csv(wave_file,header=None,decimal=decimal).values.ravel() self.ds_ori.columns=waves else: self.ds_ori=pandas.read_csv(check_folder(path=self.path,filename=self.filename), sep=sep, decimal=decimal) self.ds_ori.index=times elif external_wave is not None: data_file_name=check_folder(path=self.path,filename=self.filename) waves=pandas.read_csv(wave_file,header=None,decimal=decimal).values.ravel() if transpose: self.ds_ori=pandas.read_csv(check_folder(path=self.path,filename=self.filename), sep=sep, decimal=decimal) self.ds_ori.index=waves else: self.ds_ori=pandas.read_csv(check_folder(path=self.path,filename=self.filename), sep=sep, decimal=decimal,index_col=0,header=None) self.ds_ori.columns=waves self.ds_ori.columns=self.ds_ori.columns.astype('float')#Make columns indexes numbers self.ds_ori.index=self.ds_ori.index.astype('float')#Make row indexes numbers if index_is_energy: self.ds_ori.index=scipy.constants.h*scipy.constants.c/(self.ds_ori.index*1e-9*scipy.constants.electron_volt) if transpose: self.ds_ori=self.ds_ori.T if sort_indexes: self.ds_ori.sort_index(axis=0,inplace=True) self.ds_ori.sort_index(axis=1,inplace=True) if shift_times_by is not None: self.ds_ori.index=self.ds_ori.index.values+shift_times_by if divide_times_by is not None: self.ds_ori.index=self.ds_ori.index.values/divide_times_by if data_type is not None: self.data_type = data_type if units is not None: self.units = units if baseunit is not None: self.baseunit = baseunit def __make_standard_parameter(self): '''function that sets the standard parameter. The function takes no input, but we use this docstring to explain the parameter. Parameters ------------- log_scale : bool, optional If False (Default), The 2D plots (Matrix) is plotted with a pseudo logarithmic intensity scale. This usually does not give good results unless the intensity scale is symmetric self.cmap : matplotlib.cm (Default) standard_map - global parameter cmap is a powerfull variable that chooses the colour map applied for all plots. If set to None (Default) then the self.cmap is used. As standard I use the color map "jet" from matplotlib. There are a variety of colormaps available that are very usefull. Beside "jet", "viridis" is a good choice as it is well visible under red-green blindness. Other useful maps are "prism" for high fluctuations or diverging color maps like "seismic". See https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html for a comprehensive selection. In the code the colormaps are imported so if plot_func is imported as pf then self.cmap=pf.cm.viridis sets viridis as the map to use. Internally the colors are chosen with the "colm" function. The 2d plots require a continuous color map so if something else is give 2d plots are shown automatically with "jet". For all of the 1d plots however I first select a number of colors before each plot. If cmap is a continous map then these are sampled evenly over the colourmap. Manual iterables of colours cmap=[(1,0,0),(0,1,0),(0,0,1),...] are also accepted, as are vectors or dataframes that contain as rows the colors. There must be of course sufficient colors present for the numbers of lines that will be plotted. So I recommend to provide at least 10 colours (e.g.~your university colors). colours are always given as a, list or tuple with RGA or RGBA (with the last A beeing the Alpha=transparency. All numbers are between 0 and 1. If a list/vector/DataFrame is given for the colours they will be used in the order provided. self.lintresh : float The pseudo logratihmic range "symlog" is used for most time axis. Symlog plots a range around time zero linear and beyond this linear treshold 'lintresh' on a logarithmic scale. (Default) 0.3 self.log_fit : (Default) False\n Transfer all the time-fitting parameters into log-space before the fit self.ignore_time_region : None or list (of two floats or of lists) (Default) None cut set a time range with a low and high limit from the fits. (Default) None nothing happens The region will be removed during the fitting process (and will be missing in the fit-result plots)\n Usage single region: [lower region limit,upper region limit]\n use for multiple regions:[[lower limit 1,upper limit 1],[lower limit 2,upper limit 2],...] self.error_matrix_amplification : (Default) 10 self.rel_wave : float or list (of floats) (Default) np.arange(300,1000,100)\n 'rel_wave' and 'width' (in the object called 'wavelength_bin' work together for the creation of kinetic plots. When plotting kinetic spectra one line will be plotted for each entrance in the list/vector rel_wave. During object generation the vector np.arange(300,1000,100) is set as standard. Another typical using style would be to define a list of interesting wavelength at which a kinetic development is to be plotted. At each selected wavelength the data between wavelength+ta.wavelength_bin and wavelength-ta.wavelength_bin is averaged for each timepoint returned self.rel_time : float or list/vector (of floats) (Default) [0.2,0.3,0.5,1,3,10,30,100,300,1000,3000,9000]\n For each entry in rel_time a spectrum is plotted. If time_width_percent=0 (Default) the nearest measured timepoint is chosen. For other values see 'time_width_percent' self.time_width_percent : float (Default) 0 "rel_time" and "time_width_percent" work together for creating spectral plots at specific timepoints. For each entry in rel_time a spectrum is plotted. If however e.g. time_width_percent=10 the region between the timepoint closest to the 1.1 x timepoint and 0.9 x timepoint is averaged and shown (and the legend adjusted accordingly). This is particularly useful for the densly sampled region close to t=0. Typically for a logarithmic recorded kinetics, the timepoints at later times will be further appart than 10 percent of the value, but this allows to elegantly combine values around time=0 for better statistics. This averaging is only applied for the plotting function and not for the fits. self.baseunit : str (Default) 'ps'\n baseunit is a neat way to change the unit on the time axis of the plots. (Default) 'ps', but they can be frames or something similarly. This is changing only the label of the axis. During the import there is the option to divide the numbers by a factor. I have also used frames or fs as units. Important is that all time units will be labeled with this unit. self.mod : (Default) 'exponential'\n This is the default fitting function, in general this is discussed in the fitting section self.scattercut : None or iterable (of floats or other iterable, always pairs!) (Default) None\n intented to "cut" one or multiple scatter regions. (if (Default) None nothing happens) If it is set the spectral region between the limits is set to zero. Usage single region: [lower region limit,upper region limit], use for multiple regions:[[lower limit 1,upper limit 1],[lower limit 2,upper limit 2],...] self.bordercut : None or iterable (with two floats) (Default) None\n cut spectra at the low and high wavelength limit. (Default) None uses the limits of measurement self.time_bin : None or int (Default) None is dividing the points on the time-axis in even bins and averages the found values in between. This is a hard approach that also affects the fits. I do recommend to use this carefully, it is most useful for modulated data. A better choice for transient absorption that only affects the kinetics is 'time_width_percent' self.timelimits : None or list (of 2 floats) (Default) None\n cut times at the low and high time limit. (Default) None uses the limits of measurement Important: If either the background or the chirp is to be fit this must include the time before zero! Useful: It is useful to work on different regions, starting with the longest (then use the ta.Backgound function prior to fit) and expand from there data_type : str this is the datatype and effectively the unit put on the intensity axis (Default)'differential Absorption in $\mathregular{\Delta OD}$ self.wave_nm_bin : None or float (Default) None\n rebins the original data into even intervals. If set to None the original data will be used. If set to a width (e.g. 2nm), the wavelength axis will be divided into steps of this size and the mean of all measurements in the interval is taken. The re-binning stops as soon as the measured stepsize is wider than given here, then the original bins are used. This function is particularly useful for spectrometer with non-linear dispersion, like a prism in the infrared. self.wavelength_bin : float, optional (Default) 10nm the width used in kinetics, see below self.intensity_range : None, float or list [of two floats] (Default) None - intensity_range is a general switch that governs what intensity range the plots show. For the 1d plots this is the y-axis for the 2d-plots this is the colour scale. This parameter recognizes three settings. If set to "None" (Default) this uses the minimum and maximum of the data. A single value like in the example below and the intended use is the symmetric scale while a list with two entries an assymmetric scale e.g. intensity_range=3e-3 is converted into intensity_range=[-3e-3,3e-3] self.ds_ori.columns.name : str, optional (Default) 'Wavelength in nm'\n This is the general energy axis. here we define it with the unit. Change this to energy for use in e.g x-ray science self.ds_ori.index.name : str, optional Standard 'Time in %s' % self.baseunit self.data_type: str (optional) self.data_type='diff. Absorption in $\mathregular{\Delta OD}$' self.fitcoeff : list (5 floats) chirp correction polynom self.chirp_file : str if there is a file withthe right name write it here, otherwise None self.figure_path : str Path for saving figures, if set self.save_figures_to_folder : bool if True all figures are automatically saved when any plotfunction is called Examples ----------- >>> ta.bordercut=[350,1200] #remove all data outside this limit >>> ta.scattercut=[522,605] #set data inside this limit to zero >>> ta.timelimits=[0.2,5000] #remove all data outside this limit >>> ta.wave_nm_bin=5 #rebin the data to this width >>> ta.intensity_range=3e-3 #equivalent to [-3e-3,3e-3] >>> ta.intensity_range=[-1e-3,3e-3] #intensity that is plotted in 2d plot and y-axis in 1d plots >>> ta.cmap=matplotlib.cm.prism #choose different colour map >>> ta.ignore_time_region=[-0.1,0.1] #ignore -0.1ps to 0.1ps ''' self.log_scale = False if not hasattr(self, 'log_scale') else self.log_scale self.cmap = standard_map if not hasattr(self, 'cmap') else self.cmap self.lintresh = 0.3 if not hasattr(self, 'lintresh') else self.lintresh self.log_fit = False if not hasattr(self, 'log_fit') else self.log_fit self.ignore_time_region = None if not hasattr(self, 'ignore_time_region') else self.ignore_time_region self.error_matrix_amplification = 10 if not hasattr(self, 'error_matrix_amplificatio') else self.error_matrix_amplification self.rel_wave = np.arange(300,1000,100) if not hasattr(self, 'rel_wave') else self.rel_wave self.rel_time = [0.2,0.3,0.5,1,3,10,30,100,300,1000,3000,9000] if not hasattr(self, 'rel_time') else self.rel_time self.time_width_percent = 0 if not hasattr(self, 'time_width_percent') else self.time_width_percent self.baseunit = 'ps' if not hasattr(self, 'baseunit') else self.baseunit self.mod = 'exponential' if not hasattr(self, 'mod') else self.mod self.scattercut = None if not hasattr(self, 'scattercut') else self.scattercut self.bordercut = None if not hasattr(self, 'bordercut') else self.bordercut self.time_bin = None if not hasattr(self, 'time_bin') else self.time_bin self.timelimits = None if not hasattr(self, 'timelimits') else self.timelimits self.wave_nm_bin = None if not hasattr(self, 'wave_nm_bin') else self.wave_nm_bin self.wavelength_bin = 10 if not hasattr(self, 'wavelength_bin') else self.wavelength_bin self.save_figures_to_folder = False if not hasattr(self, 'save_figures_to_folder') else self.save_figures_to_folder self.intensity_range = None if not hasattr(self, 'intensity_range') else self.intensity_range self.ds_ori.index.name = 'Time in %s' % self.baseunit if not hasattr(self, 'ds_ori.index.name') else self.ds_ori.index.name self.equal_energy_bin = None if not hasattr(self, 'equal_energy_bin') else self.equal_energy_bin self.units='nm' if not hasattr(self, 'units') else self.units if self.units == 'nm': self.ds_ori.columns.name = 'Wavelength in %s'%self.units if not hasattr(self, 'ds_ori.columns.name') else self.ds_ori.columns.name elif self.units == 'eV': self.ds_ori.columns.name = 'Energy in %s'%self.units if not hasattr(self, 'ds_ori.columns.name') else self.ds_ori.columns.name elif self.units == 'keV': self.ds_ori.columns.name = 'Energy in %s'%self.units if not hasattr(self, 'ds_ori.columns.name') else self.ds_ori.columns.name else: self.ds_ori.columns.name = 'Energy in %s'%self.units if not hasattr(self, 'ds_ori.columns.name') else self.ds_ori.columns.name self.data_type= 'diff. Absorption in $\mathregular{\Delta OD}$' if not hasattr(self, 'data_type') else self.data_type try:#self.fitcoeff self.fitcoeff if len(list(self.fitcoeff))<5:raise except: self.fitcoeff=[0,0,0,0,0] #: test comment here try:#self.chirp_file self.chirp_file except: if os.path.isfile(check_folder(path=self.path,filename=self.filename.split('.')[0] + '_chirp.dat')): self.chirp_file=self.filename.split('.')[0] + '_chirp.dat' else: self.chirp_file=False try:#self.figure_path self.figure_path except: if self.save_figures_to_folder: self.figure_path=check_folder(path="result_figures",current_path=path) else: self.figure_path=None self.ds=self.ds_ori.copy() def Filter_data(self, ds=None, cut_bad_times = True, replace_bad_values = None, value = 20, uppervalue = None, lowervalue = None, upper_matrix = None, lower_matrix = None): '''Filteres the data by applying hard replacements. if both replace_bad_values and cut_bad_times are false or None, the times above "value" are replaced by zero Parameters ------------ ds : pandas Dataframe, optional if this is None (default) then the self.ds and self.ds_ori wil be filtered value : float, optional all values above this (absolute) value are considered to be corrupted. (Default 20) as classically the setup reports optical DEnsity, an OD of 20 would be far above the typically expected OD 1e-3. Pascher instrument software uses a value of 21 to indicate an error. uppervalue : float, optional all values above this number are considered to be corrupted. (Default 20) as classically the setup reports optical DEnsity, an OD of 20 would be far above the typically expected OD 1e-3. Pascher instrument software uses a value of 21 to indicate an error. lowervalue : float, optional all values below this number are considered to be corrupted. (Default -20) as classically the setup reports optical DEnsity, an OD of -20 would be far above the typically expected OD 1e-3. Pascher instrument software uses a value of 21 to indicate an error. replace_bad_values : None of float, optional values above the treshold are replaced with this value. Ignored of None (Default) cut_bad_times = bool, optional True (Default) removes the whole time where this is true upper_matrix : Pandas DataFrame, optional all values above this treshold will be put N/A or replace by the value in replace_bad_values lower_matrix Pandas DataFrame, optional all values below this treshold will be put N/A or replace by the value in replace_bad_values the value is the upper bound. everything above will be filtered. Standard is to drop the rows(=times) where something went wrong Examples --------- typical usage >>> import plotfunc as pf >>> ta=pf.TA('testfile.SIA') >>> ta.Filter_data() >>> ta.Filter_data(value=1) #to filter times with at least one point with OD 1 ''' if uppervalue is None: uppervalue = np.abs(value) if lowervalue is None: lowervalue = -np.abs(value) if replace_bad_values is not None: cut_bad_times=False if ds is None: filtering=[self.ds,self.ds_ori] else: filtering=[ds] for dataset in filtering: if any([self.ignore_time_region is not None, self.scattercut is not None, self.bordercut is not None, self.timelimits is not None]): dataset=sub_ds(dataset, ignore_time_region = self.ignore_time_region, scattercut = self.scattercut, bordercut = self.bordercut, timelimits = self.timelimits) if cut_bad_times: #timepoint filter, delete the timepoints where value is stupid matrix_size=len(dataset.index.values) if upper_matrix is None: damaged_times=dataset[np.any(dataset.values>uppervalue,axis=1)].index else: damaged_times=dataset[np.any(dataset.values>upper_matrix,axis=1)].index dataset.drop(damaged_times,inplace = True) if lower_matrix is None: damaged_times=dataset[np.any(dataset.values<lowervalue,axis=1)].index else: damaged_times=dataset[np.any(dataset.values<lower_matrix,axis=1)].index dataset.drop(damaged_times,inplace = True) if len(dataset.index.values)<matrix_size*0.8: print('attention, more than 20% of the data was removed by this filter.') print('Please check with if the spectal borders contain regions without light (and high noise)') print('Setting a bordercut and scattercut before the filtering might be useful') else: if replace_bad_values is None: #individual data filter replace_bad_values=np.nan if upper_matrix is None: dataset.values[dataset.values>uppervalue]=replace_bad_values else: dataset.values[dataset.values>upper_matrix]=replace_bad_values if lower_matrix is None: dataset.values[dataset.values<lowervalue]=replace_bad_values else: dataset.values[dataset.values<lower_matrix]=replace_bad_values if replace_bad_values == np.nan: if dataset.isna().sum().sum()>0.2 * dataset.notna().sum().sum(): print('attention, more than 20% of the data was removed by this filter.') print('Please check with if the spectal borders contain regions without light (and high noise)') print('Setting a bordercut and scattercut before the filtering might be useful') else: if dataset[dataset==replace_bad_values].notna().sum().sum()> 0.2* dataset[dataset!=replace_bad_values].notna().sum().sum(): print('attention, more than 20% of the data was removed by this filter.') print('Please check with if the spectal borders contain regions without light (and high noise)') print('Setting a bordercut and scattercut before the filtering might be useful') if ds is not None:return filtering[0] def Background(self, lowlimit=None,uplimit=-1, use_median=False, ds=None, correction=None): '''This is the background correction. In general it for each measured wavelength averages the values from 'lowlimit' to 'uplimit' and subtracts it from the data. It rund on the object (global) or if given a specific ds local. The low and uplimit can be set anywhere to substract any background. It is important to note that many problems during measurements might be visible in the data before time zero. So I recommend to first plot without background correction and only after this inspection apply the background correction. The fit function has its own way to calculcate and apply a background That could be used instead (but making the fit less stable) Parameters ------------ lowlimit : None or float, optional this is the lower limit from which the average (or median) is taken (Default) is None, in which case the lower limit of the data is used. uplimit : None or float, optional this is the upper limit until which the average (or median) is taken (Default) is -1 (usually ps), in which case the lower limit of the data is used. use_median : bool, optional the Median is a more outlier resistant metric in comparision to the Mean (Average). However the values are not quite as close to the distribution center in case of very few values. False (Default) means the Mean is used ds : None or DataFrame, optional if None (Default) the internal Dataframe self.ds is used, otherwise the pandas DataFrame ds is corrected and returned correction : None or DataFrame, optional this is the correction applied. It must be a DataFrame with the same numbers of columns (spectral points) as the used ds Examples -------- if the object self has the name "ta" typical useage: >>> ta.Background() specify inegrated are to - inf (Default) up to -0.5ps and use the Median for computation >>> ta.Background(uplimit = -0.5, use_median = True) ''' if ds is None: run_global=True ds=self.ds else: run_global=False if correction is None:raise ValueError('We must have correction given, to slow otherhwise') if (lowlimit is None) and (correction is None): if use_median: correction=ds[:uplimit].median(axis=0) else: correction=ds[:uplimit].mean(axis=0) elif (lowlimit is not None) and (correction is None): if use_median: correction=ds[lowlimit:uplimit].median(axis=0) else: correction=ds[lowlimit:uplimit].mean(axis=0) if run_global: self.ds=ds-correction self.background_par=[lowlimit,uplimit,use_median,correction] else: return ds-correction def Man_Chirp(self,shown_window=[-1,1],path=None,max_points=40,cmap=cm.prism,ds=None): '''Triggering of Manuel Fix_Chirp. usually used when Cor_Chirp has run already. Alternatively delete the chirp file. This Function opens a plot in which the user manually selects a number of points These points will then be interpolated with a 4th order polynomial The user can then select a new t=0 point. The first option allows to fine select an intensity setting for this chirp correction. However sometimes spikes are making this things difficult. In this case set a guessed intensity with self.intensity_range=1e-3 Parameters ------------- path : str or path object (optional) if path is a string without the operation system dependent separator, it is treated as a relative path, e.g. data will look from the working directory in the sub director data. Otherwise this has to be a full path in either strong or path object form. shown_window : list (with two floats), optional Defines the window that is shown during chirp correction. If the t=0 is not visible, adjust this parameter to suit the experiment. If problems arise, I recomment to use Plot_Raw to check where t=0 is located max_points : int, optional Default = 40 max numbers of points to use in Gui selection. Useful option in case no middle mouse button is available. (e.g. touchpad) cmap : matplotlib colourmap, optional Colourmap to be used for the chirp correction. While there is a large selection here I recommend to choose a different map than is used for the normal 2d plotting.\n cm.prism (Default) has proofen to be very usefull ds: pandas dataframe,optional this allows to hand in an external ds, if this is done then the on disk saved fitcoeff are the new ones only and the function returns the new fitcoeff and the combined fitcoeff, self also has a new variable called self.combined_fitcoeff the original file on dis and self.fitcoeff are NOT overwritten (are the old ones) the self.ds is the NEW one (with the correction applied) to reverse simply run Cor_Chirp() to permanently apply change self.fitcoeff with self.combined_fitcoeff and rename the file with 'filename_second_chirp' to filename_chirp ''' if ds is None: ds=self.ds_ori original=True else: original=False if original: temp_ds = Fix_Chirp(ds, cmap = cmap, save_file = None, intensity_range = self.intensity_range, wave_nm_bin = 10, shown_window = shown_window, filename = self.filename, scattercut = self.scattercut, bordercut = self.bordercut, path = check_folder(path = path, current_path = self.path), max_points = max_points) else: temp_ds = Fix_Chirp(ds, cmap = cmap, save_file = None, intensity_range = self.intensity_range, wave_nm_bin = 10, shown_window = shown_window, filename = self.filename+'_second_chirp', scattercut = self.scattercut, bordercut = self.bordercut, path = check_folder(path = path, current_path = self.path), max_points = max_points) if isinstance(temp_ds,pandas.DataFrame): self.ds=temp_ds self.chirp_file=self.filename.split('.')[0] + '_chirp.dat' if original:#we have run from scratch self.Cor_Chirp(path=path) else: print('you provided a separate ds file. returned are the new fitcoeff and the combined fitcoeff, ta also has a new variable called ta.combined_fitcoeff') save_file=check_folder(path=path,current_path = self.path, filename=self.filename+'_second_chirp') with open(save_file,'r') as f: new_fitcoeff=f.readline() new_fitcoeff=np.array(new_fitcoeff.split(','),dtype='float') self.combined_fitcoeff=self.fitcoeff+new_fitcoeff return new_fitcoeff,self.combined_fitcoeff else: raise Warning('Man Chirp interrupted') def Cor_Chirp(self, chirp_file = None, path = None, shown_window = [-1, 1], fitcoeff = None, max_points = 40, cmap = cm.prism): '''*Cor_Chirp* is a powerful Function to correct for a different arrival times of different wavelength (sometimes call chirp). In general if a file is opened for the first time this function is opening a plot and allows the user to select a number of points, which are then approximated with a 4th order polynomial and finally to select a point that is declared as time zero. The observed window as well as the intensities and the colour map can be chosen to enable a good correction. Here a fast iterating colour scheme such as "prism" is often a good choice. In all of the selections a left click selects, a right click removes the last point and a middle click (sometime appreviated by clicking left and right together) finishes the selection. If no middle click exists, the process automatically ends after max_points (40 preset). The first option allows to fine select an intensity setting for this chirp correction. However sometimes spikes are making this things difficult. In this case set a guessed intensity with self.intensity_range=1e-3\n Note that scattercut, bordercut and intensity_range can be used After the first run the polynom is stored in self.fitcoeff, a new matrix calculated from self.ds_ori that is stored as self.ds and a file stored in the same location as the original data. The second time the function *Cor_Chirp* is run the function will find the file and apply the chirp correction automatically. If one does want to re-run the chirp correction the function *Man_Chirp* does not look for this file, but creates after finishing a new file. Alternatively the polynom or a filename can be given that load a chirp correction (e.g. from a different run with the same sample). The function *Cor_Chirp* selects in the order: # "fitcoeff" # "other files" # "stored_file" # call Man_Chirp (clicking by hand) Parameters ------------- chirp-file : None or str, optional If a raw file was read(e.g. "data.SIA") and the chirp correction was completed, a file with the attached word "chirp" is created and stored in the same location. ("data_chirp.dat") This file contains the 5 values of the chirp correction. By selecting such a file (e.g. from another raw data) a specific chirp is applied. If a specific name is given with **chirp_file** (and optional **path**) then this file is used.\n GUI\n The word *'gui'* can be used instead of a filename to open a gui that allows the selection of a chrip file path : str or path object (optional) if path is a string without the operation system dependent separator, it is treated as a relative path, e.g. data will look from the working directory in the sub director data. Otherwise this has to be a full path in either strong or path object form. shown_window : list (with two floats), optional Defines the window that is shown during chirp correction. If the t=0 is not visible, adjust this parameter to suit the experiment. If problems arise, I recomment to use Plot_Raw to check where t=0 is located fitcoeff : list or vector (5 floats), optional One can give a vector/list with 5 numbers representing the parameter of a 4th order polynomial (in the order :math:`(a4*x^4 + a3*x^3+a2*x^2+a1*x1+a0)`. The chirp parameter are stored in ta.fitcoeff and can thus be used in other TA objects. This vector is also stored with the file and automatically applied during re-loading of a hdf5-object max_points : int, optional Default = 40 max numbers of points to use in Gui selection. Useful option in case no middle mouse button is available. (e.g. touchpad) cmap : matplotlib colourmap, optional Colourmap to be used for the chirp correction. While there is a large selection here I recommend to choose a different map than is used for the normal 2d plotting.\n cm.prism (Default) has proofen to be very usefull Examples ---------- In most cases: >>> import plot_func as pf >>> ta = pf.TA('test1.SIA') #open the original project, >>> ta.Cor_Chirp() Selecting a specific correction >>> ta.Cor_Chirp(‘gui’) >>> ta.Cor_Chirp(chirp_file = 'older_data_chirp.dat') >>> #use the coefficients from a different project >>> ta.Cor_Chirp(fitcoeff = ta_old.fitcoeff) #use the coefficients from a different project ''' if chirp_file is None: chirp_file=self.chirp_file elif 'gui' in chirp_file: root_window = tkinter.Tk() root_window.withdraw() root_window.attributes('-topmost',True) root_window.after(1000, lambda: root_window.focus_force()) complete_path = filedialog.askopenfilename(initialdir=os.getcwd()) listen=os.path.split(complete_path) path=os.path.normpath(listen[0]) chirp_file=listen[1] path=check_folder(path,self.path) if fitcoeff is not None:#we use a stored project try: if len(fitcoeff)==5 or len(fitcoeff)==6:#we provide a valid list/vector if all(elem == 0 for elem in fitcoeff): self.ds=self.ds_ori print('all chirp coefficients are zero so no chirp correction applied') else: self.ds=Fix_Chirp(self.ds_ori,fitcoeff=fitcoeff) self.fitcoeff=fitcoeff #we came to here so fitcoeff must be right else: raise except: self.ds=self.ds_ori print('something went wrong with the provided fitcoeff. This should be either a list/array with 5-6 parameter or the object should contain the parameter') print('fitcoeff is currently:' + fitcoeff) else: try: self.ds=Fix_Chirp(self.ds_ori,cmap=cmap,save_file=check_folder(path=path,filename=chirp_file),scattercut=self.scattercut,bordercut=self.bordercut,intensity_range=self.intensity_range,wave_nm_bin=10,shown_window=shown_window,fitcoeff=fitcoeff,max_points=max_points) with open(check_folder(path=path,filename=chirp_file),'r') as f: self.fitcoeff=[float(a) for a in f.readline().split(',')] except: print(check_folder(path=self.path,filename=self.filename.split('.')[0] + '_chirp.dat')) if os.path.isfile(check_folder(path=self.path,filename=self.filename.split('.')[0] + '_chirp.dat')): print('somehting is wrong, try deleting old chirp file') raise else: print('No old chirp file') self.Man_Chirp(path=path,cmap=cmap,shown_window=shown_window,max_points=max_points) chirp_file=self.chirp_file with open(check_folder(path=path,filename=chirp_file),'r') as f: self.fitcoeff=[float(a) for a in f.readline().split(',')] self.ds.columns.name=self.ds_ori.columns.name self.ds.index.name=self.ds_ori.index.name def Plot_Interactive(self, fitted = False, ds = None, cmap = None, plot_on_move = False): '''interactive plotting function. it plots the matrix in the middle and two slices that are selected by the mouse (click) Parameters --------------- fitted : bool, optional this switch decides if the fitted or the RAW data is plotted with this widget to inspect the data data. If fitted is False (Default) then the raw data and an interpolation is used to plot. cmap : None or matplotlib color map, optional is a powerfull variable that chooses the colour map applied for all plots. If set to None (Default) then the self.cmap is used. As standard I use the color map "jet" from matplotlib. There are a variety of colormaps available that are very usefull. Beside "jet", "viridis" is a good choice as it is well visible under red-green blindness. Other useful maps are "prism" for high fluctuations or diverging color maps like "seismic". See https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html for a comprehensive selection. In the code the colormaps are imported so if plot_func is imported as pf then self.cmap=pf.cm.viridis sets viridis as the map to use. Internally the colors are chosen with the "colm" function. The 2d plots require a continuous color map so if something else is give 2d plots are shown automatically with "jet". For all of the 1d plots however I first select a number of colors before each plot. If cmap is a continous map then these are sampled evenly over the colourmap. Manual iterables of colours cmap=[(1,0,0),(0,1,0),(0,0,1),...] are also accepted, as are vectors or dataframes that contain as rows the colors. There must be of course sufficient colors present for the numbers of lines that will be plotted. So I recommend to provide at least 10 colours (e.g.~your university colors). colours are always given as a, list or tuple with RGA or RGBA (with the last A beeing the Alpha=transparency. All numbers are between 0 and 1. If a list/vector/DataFrame is given for the colours they will be used in the order provided. ds : DataFrame, optional if None (Default), the program first tests self.ds and if this is not there then self.ds_ori. This option was introduced to allow plotting of other matrixes with the same parameter plot_on_move : bool, optional Default: False plots the slices after click, on True the plot constantly reslices and on click The current position is written down. ''' from matplotlib.widgets import Cursor if cmap is None:cmap=self.cmap if ds is None: if not fitted: if self.ds is None: ds=self.ds_ori.copy() else: ds=self.ds.copy() else: ds=self.re['A'] modelled=self.re['AC'] intensity_range=self.intensity_range if intensity_range is None: try: maxim=max([abs(ds.values.min()),abs(ds.values.max())]) intensity_range=[-maxim,maxim] except: intensity_range=[-1e-2,1e-2] else: if not hasattr(intensity_range,'__iter__'):#lets have an lazy option intensity_range=[-intensity_range,intensity_range] class MouseMove: # initialization def __init__(self, ds, cmap, intensity_range, log_scale, baseunit, timelimits, scattercut, bordercut, wave_nm_bin, equal_energy_bin, ignore_time_region, time_bin, lintresh, data_type, width, time_width_percent): fig = plt.figure(tight_layout=True,figsize=(14,8)) gs = GridSpec(5, 4) self.ax= fig.add_subplot(gs[1:, :3]) self.ds=ds self.cmap=cmap self.intensity_range=intensity_range self.log_scale=log_scale self.baseunit=baseunit self.timelimits=timelimits self.scattercut=scattercut self.bordercut=bordercut self.wave_nm_bin=wave_nm_bin self.equal_energy_bin=equal_energy_bin self.ignore_time_region=ignore_time_region self.time_bin=time_bin self.data_type=data_type self.width=width self.lintresh=lintresh self.time_width_percent=time_width_percent self.ax = plot2d(ds=ds, ax=self.ax, cmap=cmap, intensity_range=self.intensity_range, log_scale=self.log_scale, baseunit=self.baseunit, timelimits=self.timelimits, scattercut=self.scattercut, bordercut=self.bordercut, wave_nm_bin=self.wave_nm_bin, equal_energy_bin=self.equal_energy_bin, ignore_time_region=self.ignore_time_region, time_bin=self.time_bin, lintresh=self.lintresh, data_type = self.data_type, use_colorbar = False) self.ax_time= fig.add_subplot(gs[0, :3],sharex=self.ax) self.ax_kinetic= fig.add_subplot(gs[1:, -1],sharey=self.ax) plt.subplots_adjust(wspace=0,hspace=0) if plot_on_move: fig.canvas.mpl_connect('motion_notify_event', self.move) fig.canvas.mpl_connect('button_press_event', self.click) else: fig.canvas.mpl_connect('button_press_event', self.move) def click(self, event): x, y = event.xdata, event.ydata if self.equal_energy_bin is not None: x=scipy.constants.h*scipy.constants.c/(x*1e-9*scipy.constants.electron_volt) print('x=%g, y=%g\n'%(x,y)) def move(self, event): x, y = event.xdata, event.ydata if self.equal_energy_bin is not None: x=scipy.constants.h*scipy.constants.c/(x*1e-9*scipy.constants.electron_volt) try: self.ax_time.cla() except: pass if not fitted: ds_temp1 = sub_ds(ds = Frame_golay(ds,5,3), times = y, time_width_percent = self.time_width_percent, scattercut = self.scattercut, drop_scatter=True, bordercut = self.bordercut, ignore_time_region = self.ignore_time_region, wave_nm_bin = self.wave_nm_bin, equal_energy_bin=self.equal_energy_bin, wavelength_bin = self.width) ds_temp1.plot(ax=self.ax_time,style='-',color='red') else: ds_temp1 = sub_ds(ds = modelled, times = y, time_width_percent = self.time_width_percent, scattercut = self.scattercut, drop_scatter=True, bordercut = self.bordercut, ignore_time_region = self.ignore_time_region, wave_nm_bin = self.wave_nm_bin, equal_energy_bin=self.equal_energy_bin, wavelength_bin = self.width) ds_temp1.plot(ax=self.ax_time,style='-',color='red') ds_temp = sub_ds(ds = ds, times = y, time_width_percent = self.time_width_percent, scattercut = self.scattercut, drop_scatter=True, bordercut = self.bordercut, ignore_time_region = self.ignore_time_region, wave_nm_bin = self.wave_nm_bin, equal_energy_bin=self.equal_energy_bin, wavelength_bin = self.width) ds_temp.plot(ax=self.ax_time,style='*',color='black') self.ax_time.plot(self.ax_time.get_xlim(),[0,0],'gray') if not fitted: self.ax_time.legend(['%.3g %s smoothed'%(y,self.baseunit)]) else: self.ax_time.legend(['%.3g %s fitted'%(y,self.baseunit)]) self.ax_time.set_yticks(self.ax_time.get_ylim()) self.ax_time.set_yticklabels(['%.1e'%f for f in self.ax_time.get_ylim()]) for i in range(3): try: self.ax_kinetic.lines.pop(0) except: pass if self.width is None: self.width = 10 if not fitted: ds_temp1 = sub_ds(ds = Frame_golay(ds), wavelength = x, scattercut = self.scattercut, drop_scatter=True, bordercut = self.bordercut, ignore_time_region = self.ignore_time_region, wave_nm_bin = self.wave_nm_bin,wavelength_bin = self.width) self.ax_kinetic.plot(ds_temp1.values,ds_temp1.index.values,'-',label='%.0f smoothed'%x,color='red') else: ds_temp1 = sub_ds(ds = modelled, wavelength = x, scattercut = self.scattercut, drop_scatter=True, bordercut = self.bordercut, ignore_time_region = self.ignore_time_region, wave_nm_bin = self.wave_nm_bin, wavelength_bin = self.width) self.ax_kinetic.plot(ds_temp1.values,ds_temp1.index.values,'-',label='%.0f fitted'%x,color='red') ds_temp = sub_ds(ds = ds, wavelength = x, scattercut = self.scattercut, drop_scatter=True, bordercut = self.bordercut, ignore_time_region = self.ignore_time_region, wave_nm_bin = self.wave_nm_bin, wavelength_bin = self.width) self.ax_kinetic.set_xlim(min([0,min(ds_temp.values)]),max([max(ds_temp.values),0])) self.ax_kinetic.plot(ds_temp.values,ds_temp.index.values,'*',label='%.0f'%x, color='black') self.ax_kinetic.plot([0,0],self.ax_kinetic.get_ylim(),'gray') self.ax_kinetic.legend(['%.0f'%x]) self.ax_kinetic.set_xticks(self.ax_kinetic.get_xlim()) self.ax_kinetic.set_xticklabels(['%.1e'%f for f in self.ax_kinetic.get_xlim()]) self.ax_kinetic.set_yticklabels(self.ax.get_yticklabels()) plt.subplots_adjust(wspace=0,hspace=0) eve=MouseMove(ds, cmap, self.intensity_range, self.log_scale, self.baseunit, self.timelimits, self.scattercut, self.bordercut, self.wave_nm_bin, self.equal_energy_bin, self.ignore_time_region, self.time_bin, self.lintresh, self.data_type, self.wavelength_bin, self.time_width_percent) cursor = Cursor(eve.ax, useblit=True, color='red', linewidth=2) return eve,cursor def Plot_RAW(self, plotting = range(4), title = None, scale_type = 'symlog', times = None, cmap = None, filename = None, path = "result_figures", savetype = 'png' , print_click_position = False, plot_second_as_energy = True, ds = None): '''This is a wrapper function that triggers the plotting of various RAW (non fitted) plots. The shaping parameter are taken from the object and should be defined before. The parameter in this plot call are to control the general look and features of the plot. Which plots are printed is defined byt the first command (plotting) The plots are generated on the fly using self.ds and all the shaping parameter In all plots the RAW data is plotted as dots and interpolated with lines (using Savitzky-Golay window=5, order=3 interpolation). As defined by the internal parameters at selected time-points and the kinetics for selected wavelength are shaped by the object parameter. The SVD is performed using the same shaping parameter and is commonly used as an orientation for the number of components in the data. Everything is handed over to 'plot_raw' function that can be used for extended RAW plotting. Parameters --------------- plotting : int or iterable (of integers), optional This parameter determines which figures are plotted the figures can be called separately with plotting = 1 or with a list of plots (Default) e.g. plotting=range(4) calls plots 0,1,2,3. The plots have the following numbers: 0. Matrix 1. Kinetics 2. Spectra 3. SVD The plotting takes all parameter from the "ta" object. title : None or str title to be used on top of each plot The (Default) None triggers self.filename to be used. Setting a specific title as string will. be used in all plots. To remove the title all together set an empty string with this command title="" . Scale_type : None or str is a general setting that can influences what time axis will be used for the plots. "symlog" (linear around zero and logarithmic otherwise) "lin" and "log" are valid options. times : int are the number of components to be used in the SVD (Default) is 6. cmap : None or matplotlib color map, optional is a powerfull variable that chooses the colour map applied for all plots. If set to None (Default) then the self.cmap is used. As standard I use the color map "jet" from matplotlib. There are a variety of colormaps available that are very usefull. Beside "jet", "viridis" is a good choice as it is well visible under red-green blindness. Other useful maps are "prism" for high fluctuations or diverging color maps like "seismic". See https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html for a comprehensive selection. In the code the colormaps are imported so if plot_func is imported as pf then self.cmap=pf.cm.viridis sets viridis as the map to use. Internally the colors are chosen with the "colm" function. The 2d plots require a continuous color map so if something else is give 2d plots are shown automatically with "jet". For all of the 1d plots however I first select a number of colors before each plot. If cmap is a continous map then these are sampled evenly over the colourmap. Manual iterables of colours cmap=[(1,0,0),(0,1,0),(0,0,1),...] are also accepted, as are vectors or dataframes that contain as rows the colors. There must be of course sufficient colors present for the numbers of lines that will be plotted. So I recommend to provide at least 10 colours (e.g.~your university colors). colours are always given as a, list or tuple with RGA or RGBA (with the last A beeing the Alpha=transparency. All numbers are between 0 and 1. If a list/vector/DataFrame is given for the colours they will be used in the order provided. filename : str, optional offers to replace the base-name used for all plots (to e.g.~specify what sample was used). if (Default) None is used, the self.filename is used as a base name. The filename plays only a role during saving, as does the path and savetype. path : None or str or path object, optional This defines where the files are saved if the safe_figures_to_folder parameter is True, quite useful if a lot of data sets are to be printed fast. If a path is given, this is used. If a string like the (Default) "result_figures" is given, then a subfolder of this name will be used (an generated if necessary) relative to self.path. Use and empty string to use the self.path If set to None, the location of the plot_func will be used and a subfolder with title "result_figures" be generated here. savetype : str or iterable (of str), optional matplotlib allows the saving of figures in various formats. (Default) "png", typical and recommendable options are "svg" and "pdf". print_click_position : bool, optional if True then the click position is printed for the spectral plots ds : DataFrame, optional if None (Default), the program first tests self.ds and if this is not there then self.ds_ori. This option was introduced to allow plotting of other matrixes with the same parameter Examples ------------ Typically one would call this function empty for an overview. We name the object "ta" so with >>> ta=pf.TA('testfile.SIA') This would trigger the plotting of the 4 mayor plots for an overview. >>> ta.Plot_RAW() This would plot only the kinetics. >>> ta.Plot_RAW(1) >>> ta.Plot_RAW(plotting = 1) ''' path=check_folder(path=path,current_path=self.path) if self.save_figures_to_folder: self.figure_path=path if cmap is None:cmap=self.cmap if ds is None: if self.ds is None: ds=self.ds_ori.copy() else: ds=self.ds.copy() if filename is None: filename=self.filename if not hasattr(plotting,"__iter__"):plotting=[plotting] if title is None: if filename is None: title=self.filename else: title=filename plot_raw(ds=ds, plotting=plotting, cmap=cmap, title=title, path=path, filename=filename, intensity_range=self.intensity_range, log_scale=self.log_scale, baseunit=self.baseunit, timelimits=self.timelimits, scattercut=self.scattercut, bordercut=self.bordercut, wave_nm_bin=self.wave_nm_bin, rel_wave=self.rel_wave, width=self.wavelength_bin, time_width_percent=self.time_width_percent, ignore_time_region=self.ignore_time_region, time_bin=self.time_bin, rel_time=self.rel_time, save_figures_to_folder=self.save_figures_to_folder, savetype=savetype,plot_type=scale_type,lintresh=self.lintresh, times=times, print_click_position = print_click_position, data_type = self.data_type, plot_second_as_energy = plot_second_as_energy, units=self.units, equal_energy_bin = self.equal_energy_bin) def Save_Plots(self, path = 'result_figures', savetype = None, title = None, filename = None, scale_type = 'symlog', patches = False, cmap = None): '''Convenience function that sets save_plots_to_folder temporarily to true and replots everything Parameters ---------- path : None, str or path, optional (Default) None, if left on None, then a folder "result_figures" is created in the folder of the data (self.path) savetype : str or iterable (of str), optional matplotlib allows the saving of figures in various formats. (Default) "png", typical and recommendable options are "svg" and "pdf". title : None or str, optional (Default) None, Use this title on all plots. if None, use self.filename filename : str, optional (Default) None, Base name for all plots. If None, then self.filename will be used scale_type : str, optional "symlog" (Default), "linear", "log" time axis patches : bool, optional For true use white patches to label things in the 2d matrixes, to safe space for publication cmap : None or matplotlib color map, optional is a powerfull variable that chooses the colour map applied for all plots. If set to None (Default) then the self.cmap is used. As standard I use the color map "jet" from matplotlib. There are a variety of colormaps available that are very usefull. Beside "jet", "viridis" is a good choice as it is well visible under red-green blindness. Other useful maps are "prism" for high fluctuations or diverging color maps like "seismic". See https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html for a comprehensive selection. In the code the colormaps are imported so if plot_func is imported as pf then self.cmap=pf.cm.viridis sets viridis as the map to use. Internally the colors are chosen with the "colm" function. The 2d plots require a continuous color map so if something else is give 2d plots are shown automatically with "jet". For all of the 1d plots however I first select a number of colors before each plot. If cmap is a continous map then these are sampled evenly over the colourmap. Manual iterables of colours cmap=[(1,0,0),(0,1,0),(0,0,1),...] are also accepted, as are vectors or dataframes that contain as rows the colors. There must be of course sufficient colors present for the numbers of lines that will be plotted. So I recommend to provide at least 10 colours (e.g.~your university colors). colours are always given as a, list or tuple with RGA or RGBA (with the last A beeing the Alpha=transparency. All numbers are between 0 and 1. If a list/vector/DataFrame is given for the colours they will be used in the order provided. Examples --------- >>> ta.Save_Plots() >>> ta.Save_Plots(patches = True) ''' if cmap is None:cmap=self.cmap if savetype is None: savetype=['png'] elif savetype in ['png','pdf','svg']:savetype=[savetype] elif hasattr(savetype,"__iter__"):savetype=list(savetype) else: print('Please specify a single filetype from \'png\',\'pdf\',\'svg\' or a list of those. Nothing was saved') return False if cmap is None:cmap=standard_map origin=self.save_figures_to_folder self.save_figures_to_folder=True try: for t in savetype: plt.close('all') self.Plot_RAW(savetype = t, path = path, cmap = cmap, title = title, scale_type = scale_type, filename = filename, units=self.units, equal_energy_bin = self.equal_energy_bin) plt.close('all') print('saved RAW plots type %s to %s'%(t,check_folder(path=path,current_path=self.path))) except: print('Saving of Raw plots for filetype %s failed'%t) try: for t in savetype: plt.close('all') self.Plot_fit_output(savetype=t,path=path,cmap=cmap,title=title,scale_type=scale_type,patches=patches,filename=filename) plt.close('all') print('Saved Fit plots of type %s to %s'%(t,check_folder(path=path,current_path=self.path))) except: print('Saving of Fit plots for filetype %s failed'%t) self.save_figures_to_folder=origin def __Fit_Chirp_inner( self, opt_coeff, initial_fit_coeff = None, params = None, scattercut = None, bordercut = None, timelimits = None, wave_nm_bin = None, time_bin = None, mod = None, log_fit = None, ds_back_corr = None): ''' Function to calculate a new chirp corrected matrix and return an error value, The "cost function" for the chirp optimization ''' fitcoeff = np.array([opt_coeff['p4'].value, opt_coeff['p3'].value, opt_coeff['p2'].value, opt_coeff['p1'].value, opt_coeff['p0'].value]) #fitcoeff = __shift_polynom(fitcoeff, -500) #this was an arbitrary shift of the data by 500 to make the chirp parameter time = ds_back_corr.index.values.astype('float')#extract the time ds_new = ds_back_corr.apply(lambda x:np.interp(x = time+np.polyval(fitcoeff, x.name), xp = time, fp = x), axis = 0, raw = False) re = err_func(paras = params, ds = ds_new, mod = mod, final = False, log_fit = log_fit) return re def __Fit_Chirp_outer(self, pardf, results, fit_ds, fit_chirp_iterations, mod, deep_iteration = False): '''Broken out Chirp optimization, takes the fitted parameters and performs 'fit_chirp_iterations' times the loop, (optimise chirp + optimize global) after each global iteration the error is compared to the previous. It continues until no improvement is made or until the 'fit_chirp_iterations' is reached. If the error is reduced by more than a factor of 100 in a single step, it is assumed that something fishy is going on and we restart the fit, but with a 10x smaller simplex stepsize and deep_iteraction FAlse Parameters ----------- pardf # deep_iteration uses the previous kinetic optimized parameter as the input into the next fit. #Can be great but can also run away, in general not needed and can be triggered by feeding the #results back into the global fit''' if pardf.vary.any(): initial_error = [results.residual[0]] par_into_chirpfit = results.params else: initial_error = [err_func(paras = self.par_fit, ds = fit_ds, mod = self.mod, final = False, log_fit = self.log_fit)] par_into_chirpfit = self.par par_into_chirpfit['t0'].vary = False initial_fit_coeff = self.fitcoeff if len(initial_fit_coeff) == 6: initial_fit_coeff[4] = self.fitcoeff[4]+self.fitcoeff[5] initial_fit_coeff = initial_fit_coeff[:5] chirp_par = lmfit.Parameters() for i in range(5): chirp_par.add('p%i'%(4-i), value = initial_fit_coeff[i]) chirp_par['p4'].set(min = chirp_par['p4']-0.5, max = chirp_par['p4']+0.5) try:#lets send in the background corrected matrix fails if no prior background was done correction = self.background_par[3] ds_back_corr = self.ds_ori-correction except: ds_back_corr = self.ds_ori ds_back_corr = sub_ds(ds = ds_back_corr, scattercut = self.scattercut, bordercut = self.bordercut, timelimits = self.timelimits, wave_nm_bin = self.wave_nm_bin, time_bin = self.time_bin, equal_energy_bin = self.equal_energy_bin) print('Before chirpfit the error is:{:.6e}'.format(initial_error[-1])) ################################################################################################################# #----Chirp fit loop--------------------------------------------------------------------------------- ################################################################################################################# for loop in range(fit_chirp_iterations): chirpmini = lmfit.Minimizer(self.__Fit_Chirp_inner, chirp_par, fcn_kws = {'ds_back_corr':ds_back_corr.copy(), 'initial_fit_coeff':initial_fit_coeff, 'params':par_into_chirpfit, 'mod':self.mod, 'log_fit':self.log_fit, 'scattercut':self.scattercut, 'bordercut':self.bordercut, 'timelimits':self.timelimits, 'wave_nm_bin':self.wave_nm_bin, 'time_bin':self.time_bin}) step_size = 5e-2 try: start = tm.time() simp = np.array([chirp_par['p4'].value, chirp_par['p3'].value, chirp_par['p2'].value, chirp_par['p1'].value, chirp_par['p0'].value]) simp = np.tile(simp.reshape(5, 1), 6).T for i in range(5): if simp[i+1, i] != 0: if i<4: simp[i+1, i] = simp[i+1, i]*(step_size) else: simp[i+1, i] = simp[i+1, i]+0.1 else: simp[i+1, i] = 1e-4 #we start by optimizing the chirp with fixed Global fit chirp_results = chirpmini.minimize('nelder', options = {'maxfev':1e4, 'fatol':initial_error[-1]*1e-6, 'initial_simplex':simp}) end = tm.time() opt_coeff = chirp_results.params temp = np.array([opt_coeff['p4'].value, opt_coeff['p3'].value, opt_coeff['p2'].value, opt_coeff['p1'].value, opt_coeff['p0'].value]) #Create the new chirp corrected data time = ds_back_corr.index.values.astype('float')#extract the time new_ds = ds_back_corr.copy().apply(lambda x:np.interp(x = time+np.polyval(temp, float(x.name)), xp = time, fp = x), axis = 0, raw = False) #New Global Fit fit_ds_loop = sub_ds(ds = new_ds, scattercut = self.scattercut, bordercut = self.bordercut, timelimits = self.timelimits, wave_nm_bin = self.wave_nm_bin, equal_energy_bin = self.equal_energy_bin, time_bin = self.time_bin) if pardf.vary.any(): mini = lmfit.Minimizer(err_func, par_into_chirpfit, fcn_kws = {'ds':fit_ds_loop, 'mod':mod, 'log_fit':self.log_fit, 'final':False}) results_in_chirp = mini.minimize('nelder', options = {'maxiter':1e5}) initial_error.append(results_in_chirp.residual[0]) else: initial_error.append(err_func(paras = par_into_chirpfit, ds = fit_ds_loop, mod = mod, final = False, log_fit = self.log_fit)) if initial_error[-1]<initial_error[-2]: if initial_error[-2]/initial_error[-1]>100:#something fishy going on. lets try again print('Chirp_loop {:02d} strange decrease step size'.format(loop+1)) initial_error[-1] = initial_error[-2] step_size = step_size/100 if len(initial_error)>4: if initial_error[-4] == initial_error[-1]:#we have run this trick now three times, time to break raise StopIteration deep_iteration=False else: print('Chirp_loop {:02d} resulted in :{:.8e}'.format(loop+1, initial_error[-1])) if deep_iteration: #This results in a very deep iteration of the starting parameter if pardf.vary.any(): par_into_chirpfit = results_in_chirp.params chirp_par = chirp_results.params else: raise StopIteration except StopIteration: print('iteration is not smaller finished chirp looping') break except: print('failure in chirp optimisation in iteration %i'%(loop+1)) import sys print("Unexpected error:", sys.exc_info()[0]) initial_error.append(initial_error[0])#to avoid that numbers are written break ################################################################################################################# #-----------------------------------------end chrip fit loop------------------------------------------------- ################################################################################################################# if initial_error[-1]<initial_error[0]:#lets check if we improved anything print('chirp fit improved error by %.2g percent'%(100*(1-initial_error[-1]/initial_error[0]))) if isinstance(temp, list) or isinstance(temp, type(np.arange(1))): self.fitcoeff = temp else: raise time = ds_back_corr.index.values.astype('float')#extract the time self.ds = ds_back_corr.apply(lambda x:np.interp(x = time+np.polyval(temp, float(x.name)), xp = time, fp = x), axis = 0, raw = False) fit_ds = sub_ds(ds = self.ds, scattercut = self.scattercut, bordercut = self.bordercut, timelimits = self.timelimits, wave_nm_bin = self.wave_nm_bin, equal_energy_bin = self.equal_energy_bin, time_bin = self.time_bin) if pardf.vary.any(): results.params = results_in_chirp.params return results, fit_ds def Fit_Global(self, par = None, mod = None, confidence_level = None, use_ampgo = False, fit_chirp = False, fit_chirp_iterations = 10, multi_project = None, unique_parameter = None, weights = None, same_DAS = False, dump_paras = False, dump_shapes = False, filename = None, ext_spectra = None): """This function is performing a global fit of the data. As embedded object it uses the parameter control options of the lmfit project as an essential tool. (my thanks to Matthew Newville and colleagues for creating this phantastic tool) [M. Newville, T. Stensitzki, D. B. Allen, A. Ingargiola, 2014. DOI: 10.5281/ZENODO.11813.]. The what type of fitting is performed is controlled by setting of the parameter here. The general fitting follows this routine: 1. create a copy of the Data-Matrix self.ds is created with the shaping parameters 2. Then a Matrix is created that represents the fractional population of each species (or processes in case of the paral model). This Matrix contains one entry for each timepoint and represents the kinetic model based upon the starting parameter. (see below for a description of the models). This model formation can by done by using a build in or a user supplied function. (handled in the function "pf.build_c") -> If an ext_spectra is provided this its intensity is substacted from the matrix (only for external models) 3. Then the process/species associated spectra for each of the species is calculated using the linalg.lstsq algorithm from numpy (https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html) 4. From the convoluted calculated species concentrations and spectra a calculated matrix is formed (handled in the function "pf.fill_int") 5. The difference between calculated and measured spectra is calculated, point-wise squared and summed together. (function "err_func" or "err_func_multi" if multiple datasets are fitted) 6. This difference is minimized by iterating 2-4 with changing parameters using an optimization algorithm (generally nelder-mead simplex) 7. Finally in a last run of 2-5 the final spectra are calculated (using the "final" flag) and the optimized parameter, the matrixes ("A"-measured, "AC" - calculated, "AE" - linear error), spectra (always called "DAS") the concentrations (called "c") are written in the dictionary "ta.re" together with a few result representations and other fit outputs. The optimized parameter are also written into ta.par_fit (as an parameter object) that can be re-used as input into further optimization steps. All mandatory parameters are in general taken from the internal oject (self) The optional parameter control the behaviour of the fitting function Parameters ------------------ par : lmfit parameter oject, optional Here another parameter object could be given,overwriting the (Default is self.par) mod : str or function, optional Give a extra model selection (Default uses self.mod) internal modells: 'paral','exponential','consecutive','full_consecutive' see also :meth:`plot_func.build_c` and :meth:`plot_func.err_func` confidence_level: None or float (0.5-1), optional If this is changed from None (Default) to a value between 0.5 and 1 the code will try to calculate the error of the parameter for the fit. For each parameter that can vary a separate optimization is performed, that attempts to find the upper and lower bound at which the total error of the re-optimized globally fitted results reaches the by F-statistics defined confidence bound. See :meth:`plot_func.s2_vs_smin2` for details on how this level is determined. Careful, this option might run for very long time. Meaning that it typically takes 50 optimization per variable parameter (hard coded limit 200) The confidence level is to be understood that it defines the e.g. 0.65 * 100\% area that the parameter with this set of values is within this bounds. use_ampgo : bool, optional (Default) is False Changes the optimizer from a pure Nelder mead to Ampgo with a local Nelder Mead. For using this powerfull tool all parameter need to have a "min" and a "max" set. Typically takes 10-40x longer than a standard optimization, but can due to its tunneling algorithm more reliably find global minima. see:https://lmfit.github.io/lmfit-py/fitting.html for further details fit_chirp : bool, optional (Default) is False a powerful optimization of the chirp parameter. For this to work the data needs to include timepoints before and after t=0 and one should have reached a decent fit of most features in the spectrum. We perform an Nelder-Mead optimisation of the parameter followed by a Nelder-Mead optimization of the chirp parameter as one iteration. After each consecutive optimization it is checked if the total error improved. If not the fit is ended, if yes the maximum number of iterations 'fit_chirp_iterations' is performed. Warning, this goes well in many cases, but can lead to very strange results in others, always carefully check the results. I recommend to make a copy of the object before runnning a chirp optimization. fit_chirp_iterations : int, optional maximum number of times the global - chirp loop is repeated. Typically this iterations run 2-5 times, (Default) is 10 dump_paras : bool, optional (Default) is False, If True creates two files in the working folder, one with the currently used parameter created at the end of each optimisation step, and one with the set of parameter that up to now gave the lowest error. Intented to store the optimisation results if the fit needs to be interrupted (if e.g. Ampgo simply needs to long to optimize.) useful option if things are slow this parameter also triggers the writing of fitout to a textfile on disc dump_shapes : bool, optional this option dumps the concentratoin matrix and the DAS onto disk for each round of optimization, mostly useful for multi-project fitting that wants to use the spectral or temporal intensity filename : None or str, optional Only used in conjunction with 'dump_paras'. The program uses this filename to dump the parameter to disk multi_project : None or list (of TA projects), optional This switch is triggering the simultaneous optimisation of multiple datasets. multi_project is as (Default) None. it expects an iterable (typically list) with other TA projects (like ta) that are then optimised with the same parameter. This means that all projects get the same parameter object for each iteration of the fit and return their individual error, which is summed linearly. The "weights" option allows to give each multi_project a specific weight (number) that is multiplied to the error. If the weight object has the same number of items as the multi_project it is assumed that the triggering object (the embedded project) has the weight of 1, otherwise the first weight is for the embedded project. The option 'unique_parameter' takes (a list) of parameter that are not to be shared between the projects (and that are not optimized either) The intended use of this is to give e.g. the pump power for multiple experiments to study non linear behaviour. Returned will be only the parameter set for the optimium combination of all parameter. Internally, we iterate through the projects and calculate for each project the error for each iteration. Important to note is that currently this means that each DAS/SAS is calculated independently! For performing the same calculation with a single DAS, the Matrixes need to be concatenated before the run and an external function used to create a combined model. As this is very difficult to implement reliably For general use (think e.g. different pump wavelength) this has to be done manually. unique_parameter : None or str or list (of strings), optional only used in conjunction with 'multi_project', it takes (a list) of parameter that are not to be shared between the projects (and that are not optimized either) The intended use of this is to give e.g. the pump power for multiple experiments to study non linear behaviour. (Default) None same_DAS : bool,optional changes the fit behavior and uses the same DAS for the optimization. This means that the ds are stacked before the fill_int rounds. This option is only used in multi-project fitting weights : list of floats, optional only used in conjunction with 'multi_project'. The "weights" option allows to give each multi\_project a specific weight (number) that is multiplied to the error. If the weight object has the same number of items as the 'multi_project' it is assumed that ta (the embedded project) has the weight of 1, otherwise the first weight is for the embedded object ext_spectra : DataFrame, optional (Default) is None, if given substract this spectra from the DataMatrix using the intensity given in "C(t)" this function will only work for external models. The name of the spectral column must be same as the name of the column used. If not the spectrum will be ignored. The spectrum will be interpolated to the spectral points of the model ds before the substraction. Returns ------------------ re : dict the dictionary "re" attached to the object containing all the matrixes and parameter. The usual keys are: "A" Shaped measured Matrix "AC" Shaped calculated Matrix "AE" Difference between A and AC = linear error "DAS" DAS or SAS, labeled after the names given in the function (the columns of c) Care must be taken that this mesured intensity is C * DAS, the product. For exponential model the concentrations are normalized "c" The Concentrations (meaning the evolution of the concentrations over time. Care must be taken that this mesured intensity is C * DAS, the product. For exponential model the concentrations are normalized "fit_results_rates" DataFrame with the fitted rates (and the confidence intervals if calculated) "fit_results_times" DataFrame with the fitted decay times (and the confidence intervals if calculated) "fit_output" The Fit object as returned from lmfit. (This is not saved with the project!) "error" is the S2, meaning AE**2.sum().sum() "r2"=1-"error"/(('A'-'A'.mean())**2).sum(), so the residuals scaled with the signal size par_fit : lmfit parameter object is written into the object as a lmfit parameter object with the optimized results (that can be use further) fitcoeff : list, if chirpfit is done The chirp parameter are updated ds : DataFrame, if chirpfit is done A new ds is calculated form ds_ori if ChripFit is done The rest is mainly printed on screen. Examples -------------------- Non optional: >>> ta=pf.TA('testfile.SIA') #load data >>> ta.mod='exponential' #define model >>> ta.par=lmfit.Parameters() #create empty parameter object >>> ta.par.add('k0',value=1/0.1,vary=True) #add at least one parameter to optimize Trigger simple fit: >>> ta.Fit_Global() Trigger fit with Chrip Fit: >>> ta.Fit_Global(fit_chirp=True) Trigger iterative Chirp fitting with fresh refinement of the Global kinetic parametersfor i in range(5): >>> for i in range(5): >>> start_error=ta.re['error'] >>> ta.par=ta.par_fit >>> ta.Fit_Global(fit_chirp=True) >>> if not ta.re['error'] < start_error:break Trigger fit fit error calculations >>> ta.Fit_Global(confidence_level=0.66) Trigger fit of multiple projects #use the GUI_open function to open a list of objects (leave empty for using the GUI) >>> other_projects=pf.GUI_open(['sample_1.hdf5','sample_2.hdf5'],path='Data') >>> ta.Fit_Global(multi_project=other_projects) For more examples please see the complete documentation under :ref:`Fitting, Parameter optimization and Error estimation` or :ref:`Fitting multiple measured files at once` """ if par is None:par=self.par if mod is None:mod=self.mod try: t0=par['t0'] except: try: par.add('t0',value=0,min=-0.5,max=0.5,vary=False) except: print("Unexpected error:", sys.exc_info()[0]) try: resolution=par['resolution'] except: try: par.add('resolution',value=0.086,min=0.04,max=0.5,vary=False) except: print("Unexpected error:", sys.exc_info()[0]) try: par['infinite'].value=1 par['infinite'].vary=False except: pass try: par['background'].value=1 par['background'].vary=False except: pass pardf=par_to_pardf(par) pardf.loc[np.logical_and(pardf.loc[:,'min'].values<0,pardf.is_rate),'min']=0 pardf.loc[np.logical_and(pardf.loc[:,'max'].values<0,pardf.is_rate),'max']=0 pardf['init_value']=pardf['value'] if dump_paras: pardf_temp=pardf.copy() pardf_temp.loc['error','value']=1000 pardf_temp.to_csv('minimal_dump_paras.par') if self.log_fit: for key in ['value','min','max']: pardf.loc[pardf.is_rate,key]=pardf.loc[pardf.is_rate,key].apply(lambda x: np.log10(x)) #create-shape the data to be fitted fit_ds = sub_ds(ds = self.ds.copy(), scattercut = self.scattercut, bordercut = self.bordercut, timelimits = self.timelimits, wave_nm_bin = self.wave_nm_bin, equal_energy_bin = self.equal_energy_bin, time_bin = self.time_bin, ignore_time_region = self.ignore_time_region, drop_scatter = True, drop_ignore = True) time_label=fit_ds.index.name energy_label=fit_ds.columns.name ############################################################################ #----Global optimisation------------------------------------------------------ ############################################################################ if multi_project is None: #check if there is any concentration to optimise if (filename is None) and dump_shapes: filename = self.filename if pardf.vary.any():#ok we have something to optimize mini = lmfit.Minimizer(err_func,pardf_to_par(pardf), fcn_kws={'ds':fit_ds,'mod':mod,'log_fit':self.log_fit,'final':False, 'dump_paras':dump_paras,'filename':filename,'ext_spectra':ext_spectra, 'dump_shapes':dump_shapes}) if not use_ampgo: if len(pardf[pardf.vary].index)>3: print('we use adaptive mode for nelder') results = mini.minimize('nelder',options={'maxiter':1e5,'adaptive':True}) else: results = mini.minimize('nelder',options={'maxiter':1e5}) else: results = mini.minimize('ampgo',**{'local':'Nelder-Mead'}) ############################################################################ #----Multi project Global optimisation---------------------------------------- ########################################################################## else: fit_chirp=False #chirp fitting currently only works for single problems if pardf.vary.any():#ok we have something to optimize lets return the spectra multi_project.insert(0,self) mini = lmfit.Minimizer(err_func_multi,pardf_to_par(pardf),fcn_kws={'multi_project':multi_project,'unique_parameter':unique_parameter, 'weights':weights,'mod':mod,'log_fit':self.log_fit,'final':False, 'dump_paras':dump_paras,'filename':filename,'ext_spectra':ext_spectra, 'dump_shapes':dump_shapes,'same_DAS':same_DAS}) if len(pardf[pardf.vary].index)>3: print('we use adaptive mode for nelder') results = mini.minimize('nelder',options={'maxiter':1e5,'adaptive':True}) else: results = mini.minimize('nelder',options={'maxiter':1e5}) ####################################################################### #----Fit chirp---------------------------------------------------------------------------------- #################################################################### if self.ignore_time_region is not None: if fit_chirp: print('sorry but currently you can not both ignore a time region and fit the chirp (assuming that you ignore the time-zero region)') fit_chirp=False if fit_chirp: print('Done initial fitting now chirpfit') results,fit_ds=self.__Fit_Chirp_outer(pardf,results,fit_ds,fit_chirp_iterations,mod) #################################################################### #------Write results to parameter------------------------ ############################################################ if pardf.vary.any():#we actually have optimised something pardf['value']=par_to_pardf(results.params)['value'] if self.log_fit: for key in ['value','min','max']: pardf.loc[pardf.is_rate,key]=pardf.loc[pardf.is_rate,key].apply(lambda x: 10**x) self.par_fit=pardf_to_par(pardf) else: print('ATTENTION: we have not optimized anything but just returned the parameters') self.par_fit=self.par if multi_project is None: re=err_func(paras=self.par_fit,ds=fit_ds,mod=self.mod,final=True,log_fit=self.log_fit,ext_spectra=ext_spectra) else: if same_DAS: re_listen = err_func_multi(paras = self.par_fit, mod = mod, final = True, log_fit = self.log_fit, multi_project = multi_project, unique_parameter = unique_parameter, same_DAS = same_DAS, weights = weights, ext_spectra = ext_spectra) re=re_listen[0] else: re = err_func_multi(paras = self.par_fit, mod = mod, final = True, log_fit = self.log_fit, multi_project = multi_project, unique_parameter = unique_parameter, same_DAS = same_DAS, weights = weights, ext_spectra = ext_spectra) ############################################################################ #----Estimate errors--------------------------------------------------------------------- ############################################################################ if confidence_level is not None:#ok we calculate errors to the level of the confidence_level if self.log_fit: for key in ['value','min','max']: pardf.loc[pardf.is_rate,key]=pardf.loc[pardf.is_rate,key].apply(lambda x: np.log10(x)) if pardf.vary.any():#we actually have optimised something if (0.6 < confidence_level < 1) or (1 < confidence_level < 0.6): if multi_project is None: target=s2_vs_smin2(Spectral_points=len(re['A'].columns),Time_points=len(re['A'].index),number_of_species=len(re['DAC'].columns),fitted_kinetic_pars=len(pardf[pardf.vary].index),target_quality=confidence_level) else: multi_project.insert(0,self) # we assume that we have the same number of spectal points but are stacking the times total_time_points=np.array([len(t.re['A'].index) for t in multi_project]).sum() target=s2_vs_smin2(Spectral_points=len(re['A'].columns),Time_points=total_time_points,number_of_species=len(re['DAC'].columns),fitted_kinetic_pars=len(pardf[pardf.vary].index),target_quality=confidence_level) #print(target) target_s2=re['error']*target list_of_variable_parameter=pardf[pardf.vary].index.values conf_limits={} iterative_calls=0 for fixed_par in list_of_variable_parameter: conf_limits[fixed_par]={'upper':None,'lower':None} for i in ['lower','upper']: print('Trying to find %s, %s confidence limit'%(fixed_par,i)) pardf_local=self.par_fit.copy() pardf_local[fixed_par].vary=False par_local=lmfit.Parameters() if 'lower' in i:#go below min if par_to_pardf(pardf_local).loc[fixed_par,'is_rate']: par_local.add(fixed_par,value=pardf_local[fixed_par].value*0.95,min=0,max=pardf_local[fixed_par].value,vary=True) else: par_local.add(fixed_par,value=pardf_local[fixed_par].value*0.95,max=pardf_local[fixed_par].value,vary=True) else: #go above min par_local.add(fixed_par,value=pardf_local[fixed_par].value*1.05,min=pardf_local[fixed_par].value,vary=True) def sub_problem(par_local,varied_par,pardf_local,fit_ds=None,mod=None,log_fit=None,multi_project=None,unique_parameter=None,weights=None,target_s2=None,ext_spectra=None,same_DAS=False ): pardf_local[varied_par].value=par_local[varied_par].value if par_to_pardf(pardf_local).vary.any(): if multi_project is None: mini_sub = lmfit.Minimizer(err_func,pardf_local,fcn_kws={'ds':fit_ds,'mod':mod,'log_fit':log_fit,'ext_spectra':ext_spectra}) else: mini_sub = lmfit.Minimizer(err_func_multi,pardf_local,fcn_kws={'multi_project':multi_project,'unique_parameter':unique_parameter,'weights':weights, 'same_DAS':same_DAS,'mod':mod,'log_fit':log_fit,'ext_spectra':ext_spectra}) if len(pardf[pardf.vary].index)>3: results_sub = mini_sub.minimize('Nelder',options={'maxiter':1e5,'adaptive':True}) else: results_sub = mini_sub.minimize('Nelder',options={'maxiter':1e5}) local_error=(results_sub.residual[0]-target_s2)**2 return local_error else: if multi_project is None: return err_func(pardf_local,ds=fit_ds,mod=mod,log_fit=log_fit,ext_spectra=ext_spectra) else: return err_func_multi(pardf_local,multi_project=multi_project,unique_parameter=unique_parameter,weights=weights,mod=mod,log_fit=log_fit,ext_spectra=ext_spectra) try: mini_local = lmfit.Minimizer(sub_problem,par_local,fcn_kws={'varied_par':fixed_par,'pardf_local':pardf_local,'fit_ds':fit_ds, 'multi_project':multi_project, 'unique_parameter':unique_parameter,'same_DAS':same_DAS,'weights':weights, 'mod':mod,'log_fit':self.log_fit,'target_s2':target_s2,'ext_spectra':ext_spectra}) one_percent_precission=(target-1)*0.01*re['error'] #results_local = mini_local.minimize('least_squares',ftol=one_percent_precission) results_local = mini_local.minimize(method='nelder',options={'maxiter':100,'fatol':one_percent_precission}) iterative_calls+=results_local.nfev if results_local.success: conf_limits[fixed_par][i]=results_local.params[fixed_par].value else: print("tried to optimise %i times achieved residual %g with targeted %g"%(results_local.nfev,(np.sqrt(results_local.residual[0])+target_s2),target_s2)) except: #print("Unexpected error:", sys.exc_info()[0]) print("error in %s at %s limit"%(fixed_par,i)) continue else: print("please use a confidence level between 0.6 and 1") return False print("it took %i optimisations to get the confidence"%iterative_calls) ############################################################################ #-----prepare frames for storage without confidence and store them------------------------ ############################################################################ if pardf.vary.any(): re['fit_output']=results#let's store the fit results in the re_object for now. if confidence_level is not None: re['confidence']=conf_limits pardf.insert(len(pardf.columns),'lower_limit',None) pardf.insert(len(pardf.columns),'upper_limit',None) for key in conf_limits.keys(): pardf.loc[key,'lower_limit']=conf_limits[key]['lower'] pardf.loc[key,'upper_limit']=conf_limits[key]['upper'] if self.log_fit: for key in ['value','min','max','lower_limit','upper_limit']: for row in pardf[pardf.is_rate].index.values: try: pardf.loc[row,key]=10**pardf.loc[row,key] except: if pardf.loc[row,key] is None: continue elif pardf.loc[row,key].isnan(): continue else: print('%s,%s has could not be converted and has value'%(row,key)) print(pardf.loc[row,key]) continue re['confidence']['target-level']='%.1f\n'%((confidence_level)*100) re['fit_results_rates']=pardf timedf=pardf_to_timedf(pardf) re['fit_results_times']=timedf if same_DAS: for i,re_local in enumerate(re_listen): for name in ['fit_output','fit_results_rates','fit_results_times']: re_listen[i][name]=re[name] ############################################### ##convert energy back to wavelength############# ################################################ if 1: if self.equal_energy_bin is not None: if same_DAS: for i,re_local in enumerate(re_listen): for name in ['A','AC','AE']: re_local[name].columns=(scipy.constants.h*scipy.constants.c/(re_local[name].columns.values*1e-9*scipy.constants.electron_volt)) re_local[name].columns.name='wavelength in nm' re_local[name].sort_index(inplace=True,axis=1,ascending=True) re_local['DAC'].index=(scipy.constants.h*scipy.constants.c/(re_local['DAC'].index.values*1e-9*scipy.constants.electron_volt)) re_local['DAC'].index.name='wavelength in nm' re_local['DAC'].sort_index(inplace=True,axis=0,ascending=True) re_listen[i]=re_local else: for name in ['A','AC','AE']: re[name].columns=(scipy.constants.h*scipy.constants.c/(re[name].columns.values*1e-9*scipy.constants.electron_volt)) re[name].columns.name='wavelength in nm' re[name].sort_index(inplace=True,axis=1,ascending=True) re['DAC'].index=(scipy.constants.h*scipy.constants.c/(re['DAC'].index.values*1e-9*scipy.constants.electron_volt)) re['DAC'].index.name='wavelength in nm' re['DAC'].sort_index(inplace=True,axis=0,ascending=True) ############################################################################ #---print the output--------------------------------------------------- ############################################################################ self.re=re if same_DAS: re_listen[0]=re self.multi_projects=re_listen Result_string='\nFit Results:\n' if isinstance(mod,type('hello')): Result_string+='Model Used: %s\n\n'%mod else: Result_string+='Model Used: External function\n\n' if self.ignore_time_region is not None: try: Result_string+='the time between %.3f %s and %.3f %s was excluded from the optimization\n\n'%(self.ignore_time_region[0],self.baseunit,self.ignore_time_region[1],self.baseunit) except:#we got a list for entry in self.ignore_time_region: Result_string+='the time between %.3f %s and %.3f %s was excluded from the optimization\n\n'%(entry[0],self.baseunit,entry[1],self.baseunit) Result_string+='The minimum error is:{:.8e}\n'.format(re['error']) Result_string+='The minimum R2-value is:{:.8e}\n'.format(re['r2']) if same_DAS: Result_string+='The minimum global error is:{:.8e}\n'.format(re['error_total']) Result_string+='The minimum global R2-value is:{:.8e}\n'.format(re['r2_total']) if confidence_level is not None: Result_string+='\nIn Rates with confidence interval to level of %.1f\n\n'%((confidence_level)*100) Result_string+=pardf.to_string(columns=['value','lower_limit','upper_limit','init_value','vary','min','max','expr']) Result_string+='\n\nThe rates converted to times with unit %s with confidence interval to level of %.1f\n\n'%(self.baseunit,(confidence_level)*100) Result_string+=timedf.to_string(columns=['value','lower_limit','upper_limit','init_value','vary','min','max','expr']) else: Result_string+='\nIn Rates\n\n' Result_string+=pardf.to_string(columns=['value','init_value','vary','min','max','expr']) Result_string+='\n\nThe rates converted to times with unit %s\n\n'%self.baseunit Result_string+=timedf.to_string(columns=['value','init_value','vary','min','max','expr']) if same_DAS: Result_string+='\n\nthe other objects were layed into self.multi_projects as list with the local re on position 0.\n By replacing assuming that self = ta write: \n ta.re = ta.multi_projects[1] and then ta.Plot_fit_output to look on the other fits\n ' print(Result_string) if dump_paras: with open("Fit_results_print.par", "w") as text_file: text_file.write(Result_string) def Plot_fit_output(self, plotting = range(6), path = 'result_figures', savetype = 'png', evaluation_style = False, title = None, scale_type = 'symlog', patches = False, filename = None, cmap = None , print_click_position = False, plot_second_as_energy = True): '''plots all the fit output figures. The figures can be called separately or with a list of plots. e.g. range(6) call plots 0-5 Manual plotting of certain type: This is a wrapper function that triggers the plotting of all the fitted plots. The parameter in this plot call are to control the general look and features of the plot. Which plots are printed is defined by the first command (plotting) The plots are generated from the fitted Matrixes and as such only will work after a fit was actually completed (and the "re" dictionary attached to the object.) In all plots the RAW data is plotted as dots and the fit with lines Contents of the plots 0. DAC contains the assigned spectra for each component of the fit. For a modelling with independent exponential decays this corresponds to the "Decay Associated Spectra" (DAS). For all other models this contains the "Species Associated Spectra" (SAS). According to the model the separate spectra are labeled by time (process) or name, if a name is associated in the fitting model. The spectra are shown in the extracted strength in the right pane and normalized in the left. Extracted strength means that the measured spectral strength is the intensity (concentration matrix) times this spectral strength. As the concentration maxima for all DAS are 1 this corresponds to the spectral strength for the DAS. (please see the documentation for the fitting algorithm for further details). 1. summed intensity. All wavelength of the spectral axis are summed for data and fit. The data is plotted in a number of ways vs linear and logarithmic axis. This plot is not ment for publication but very useful to evaluate the quality of a fit. 2. plot kinetics for selected wavelength (see corresponding RAW plot). 3. plot spectra at selected times (see corresponding RAW plot). 4. plots matrix (measured, modelled and error Matrix). The parameter are the same as used for the corresponding RAW plot with the addition of "error_matrix_amplification" which is a scaling factor multiplied onto the error matrix. I recommend to play with different "cmap", "log_scale" and "intensity_scale" to create a pleasing plot. 5. concentrations. In the progress of the modelling/fitting a matrix is generated that contains the relative concentrations of the species modelled. This plot is showing the temporal development of these species. Further details on how this matrix is generated can be found in the documentation of the fitting function. The modeled spectra are the convolution of these vectors (giving the time-development) and the DAS/SAS (giving the spectral development). Parameters --------------- plotting : int or iterable (of integers), optional This parameter determines which figures are plotted the figures can be called separately with plotting = 1 or with a list of plots (Default) e.g. plotting=range(6) calls plots 0,1,2,3,4,5 The plots have the following numbers: 0. DAS or SAS 1. summed intensity 2. Kinetics 3. Spectra 4. Matrixes 5. Concentrations (the c-object) The plotting takes all parameter from the "ta" object unless otherwise specified path : None, str or path object, optional This defines where the files are saved if the safe_figures_to_folder parameter is True, quite useful if a lot of data sets are to be printed fast. If a path is given, this is used. If a string like the (Default) "result_figures" is given, then a subfolder of this name will be used (an generated if necessary) relative to self.path. Use and empty string to use the self.path If set to None, the location of the plot_func will be used and a subfolder with title "result_figures" be generated here savetype : str or iterable (of str), optional matplotlib allows the saving of figures in various formats. (Default) "png", typical and recommendable options are "svg" and "pdf". evaluation_style : bool, optional True (Default = False) adds a lot of extra information in the plot title : None or str, optional "title=None" is in general the filename that was loaded. Setting a specific title will be used in all plots. To remove the title all together set an empty string with title="" scale_type : str, optional refers to the time-axis and takes, "symlog" (Default)(linear around zero and logarithmic otherwise) and "lin" for linear and "log" for logarithmic, switching all the time axis to this type patches : bool, optional If False (Default) the names "measured" "fitted" "difference" will be placed above the images. If True, then they will be included into the image (denser) filename : str, optional offers to replace the base-name used for all plots (to e.g.specify what sample was used). if (Default) None is used, the self.filename is used as a base name. The filename plays only a role during saving, as does the path and savetype cmap : None or matplotlib color map, optional is a powerfull variable that chooses the colour map applied for all plots. If set to None (Default) then the self.cmap is used. As standard I use the color map "jet" from matplotlib. There are a variety of colormaps available that are very usefull. Beside "jet", "viridis" is a good choice as it is well visible under red-green blindness. Other useful maps are "prism" for high fluctuations or diverging color maps like "seismic". See https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html for a comprehensive selection. In the code the colormaps are imported so if plot_func is imported as pf then self.cmap=pf.cm.viridis sets viridis as the map to use. Internally the colors are chosen with the "colm" function. The 2d plots require a continuous color map so if something else is give 2d plots are shown automatically with "jet". For all of the 1d plots however I first select a number of colors before each plot. If cmap is a continous map then these are sampled evenly over the colourmap. Manual iterables of colours cmap=[(1,0,0),(0,1,0),(0,0,1),...] are also accepted, as are vectors or dataframes that contain as rows the colors. There must be of course sufficient colors present for the numbers of lines that will be plotted. So I recommend to provide at least 10 colours (e.g.your university colors). colours are always given as a, list or tuple with RGA or RGBA (with the last A beeing the Alpha=transparency. All numbers are between 0 and 1. If a list/vector/DataFrame is given for the colours they will be used in the order provided. print_click_position : bool, optional if True then the click position is printed for the spectral plots Examples ------------ Typically one would call this function empty for an overview: After the minimum fit >>> ta=pf.TA('testfile.SIA') >>> ta.par=lmfit.Parameters() >>> ta.par.add('k0',value=1/0.1,vary=True) >>> ta.Fit_Global() One usually plots the an overview >>> ta.Plot_fit_output() >>> ta.Plot_fit_output(plotting=range(6)) #is the same as before >>> ta.Plot_fit_output(2) #would plot only the kinetics >>> ta.Plot_fit_output(plotting = 2) #would plot only the kinetics ''' try: re=self.re except: print('We need to have fitted something so that we can plot') return False path=check_folder(path=path,current_path=self.path) if self.save_figures_to_folder: self.figure_path=path if cmap is None:cmap=self.cmap if filename is None:filename=self.filename if title is None: if filename is None: title=self.filename else: title=filename if not hasattr(plotting,"__iter__"):plotting=[plotting] plot_fit_output(self.re, self.ds, cmap = self.cmap, plotting = plotting, title = title, path = path, f = filename, intensity_range = self.intensity_range, log_scale = self.log_scale, baseunit = self.baseunit, timelimits = self.timelimits, scattercut = self.scattercut, bordercut = self.bordercut, error_matrix_amplification = self.error_matrix_amplification, wave_nm_bin = self.wave_nm_bin, rel_wave = self.rel_wave, width = self.wavelength_bin, rel_time = self.rel_time, save_figures_to_folder = self.save_figures_to_folder, log_fit = self.log_fit,mod = self.mod, savetype = savetype, time_width_percent = self.time_width_percent, evaluation_style = evaluation_style, filename = self.filename, scale_type = scale_type, patches = patches, lintresh = self.lintresh, print_click_position = print_click_position, ignore_time_region = self.ignore_time_region, data_type = self.data_type, plot_second_as_energy = plot_second_as_energy, units= self.units, equal_energy_bin = self.equal_energy_bin) def Save_data(self, save_RAW = True, save_Fit = True, save_slices = True, save_binned = False, filename = None, save_fit_results = True, path = 'Data_export', sep = str('\t')): '''handy function to save the data on disk as dat files. The RAW labeled files contain the chirp corrected values (self.ds) the save_slices switch turns on the dump of the separate sliced figures (time and spectral) Parameters ---------- save_binned : bool, optional is also the re-binned matrix to be saved. save_slices : bool, optional save the kinetics and spectra from the fitted data (with the fits) sep : str, optional what symbol is used to separate different number. (typical either 'tab' or comma save_RAW : bool, optional (Default) True then the first slide with the RAW data is created save_Fit : bool, optional (Default) True then the second slide with the Fitted data is created path : None, str or path, optional (Default) None, if left on None, then a folder "result_figures" is created in the folder of the data (self.path) save_fit_results : bool, optional if True (Default) a neatly formated file with the fit results is created and stored with the data filename : str, optional (Default) None, Base name for all plots. If None, then self.filename will be used Examples --------- >>> ta.Save_Data ''' if filename is None:filename = self.filename.split('.')[0] if save_RAW: self.ds.to_csv(check_folder(path = path, current_path = self.path, filename = filename+'_chirp_corrected_raw_matrix.dat'), sep = sep) if save_binned: sub = sub_ds(self.ds, scattercut = self.scattercut, bordercut = self.bordercut, timelimits = self.timelimits, wave_nm_bin = self.wave_nm_bin, time_bin = self.time_bin) sub.to_csv(check_folder(path = path, current_path = self.path, filename = filename+'_chirp_corrected_rebinned_matrix.dat'), sep = sep) if save_slices: sub = sub_ds(ds = self.ds.copy(), wavelength_bin = self.wavelength_bin, wavelength = self.rel_wave) #sub.columns.name = 'wavelength [nm] in %.0f bins'%self.wavelength_bin sub.to_csv(check_folder(path = path, current_path = self.path, filename = filename+'_chirp_corrected_RAW_kinetics.dat'), sep = sep) sub = sub_ds(ds = self.ds.copy(), times = self.rel_time, time_width_percent = self.time_width_percent, scattercut = self.scattercut, bordercut = self.bordercut, wave_nm_bin = self.wave_nm_bin) sub.to_csv(check_folder(path = path, current_path = self.path, filename = filename+'_chirp_corrected_RAW_Spectra.dat'), sep = sep) if save_Fit: try: self.re.keys() except: print('no fit in data') save_Fit = False if save_Fit: self.re['A'].to_csv(check_folder(path = path, current_path = self.path, filename = filename+'_matrix used as fit input.dat'), sep = sep) self.re['AC'].to_csv(check_folder(path = path, current_path = self.path, filename = filename+'_matrix calculated during fit.dat'), sep = sep) self.re['AE'].to_csv(check_folder(path = path, current_path = self.path, filename = filename+'_error_matrix calculated during fit.dat'), sep = sep) if save_slices: sub = sub_ds(ds = self.re['AC'].copy(), wavelength_bin = self.wavelength_bin, wavelength = self.rel_wave) #sub.columns.name = 'wavelenth [nm] in %.0f bins'%self.wavelength_bin sub.to_csv(check_folder(path = path, current_path = self.path, filename = filename+'_fitted_kinetics.dat'), sep = sep) sub = sub_ds(ds = self.re['A'].copy(), wavelength_bin = self.wavelength_bin, wavelength = self.rel_wave) #sub.columns.name = 'wavelenth [nm] in %.0f bins'%self.wavelength_bin sub.to_csv(check_folder(path = path, current_path = self.path, filename = filename+'_measured_kinetics.dat'), sep = sep) sub = sub_ds(ds = self.re['AC'].copy(), times = self.rel_time, time_width_percent = self.time_width_percent, scattercut = self.scattercut, bordercut = self.bordercut, wave_nm_bin = self.wave_nm_bin) sub.to_csv(check_folder(path = path, current_path = self.path, filename = filename+'_fitted_spectra.dat'), sep = sep) sub = sub_ds(ds = self.re['A'].copy(), times = self.rel_time, time_width_percent = self.time_width_percent, scattercut = self.scattercut, bordercut = self.bordercut, wave_nm_bin = self.wave_nm_bin) sub.to_csv(check_folder(path = path, current_path = self.path, filename = filename+'_measured_spectra.dat'), sep = sep) self.re['DAC'].to_csv(check_folder(path = path, current_path = self.path, filename = filename+'_DAS-SAS.dat'), sep = sep) if save_fit_results: Result_string='\nFit Results:\n' if isinstance(self.mod,type('hello')): Result_string+='Model Used: %s\n\n'%self.mod else: Result_string+='Model Used: External function\n\n' if self.ignore_time_region is not None: Result_string+='the time between %.3f %s and %.3f %s was excluded from the optimization\n'%(self.ignore_time_region[0],self.baseunit,self.ignore_time_region[1],self.baseunit) Result_string+='The minimum error is:{:.8e}\n'.format(self.re['error']) Result_string+='The minimum R2-value is:{:.8e}\n'.format(self.re['r2']) if 'confidence' in self.re: Result_string+='\nIn Rates with confidence interval to level of %s\n'%self.re['confidence']['target-level'] Result_string+=self.re['fit_results_rates'].to_string(columns=['value','lower_limit','upper_limit','init_value','vary','min','max','expr']) Result_string+='\n\nThe rates converted to times with unit %s with confidence interval to level of %s\n'%(self.baseunit,self.re['confidence']['target-level']) Result_string+=self.re['fit_results_times'].to_string(columns=['value','lower_limit','upper_limit','init_value','vary','min','max','expr']) else: Result_string+='\nIn Rates\n' Result_string+=self.re['fit_results_rates'].to_string(columns=['value','init_value','vary','min','max','expr']) Result_string+='\n\nThe rates converted to times with unit %s\n'%self.baseunit Result_string+=self.re['fit_results_times'].to_string(columns=['value','init_value','vary','min','max','expr']) with open(check_folder(path = path, current_path = self.path, filename = filename+'_fit_results_parameter.par'), "w") as text_file: text_file.write(Result_string) def Save_Powerpoint(self, save_RAW = True, save_Fit = True, filename = None, path = 'result_figures', scale_type = 'symlog', title = None, patches = False, cmap=None , savetype = 'pptx'): '''This function creates two power point slides. On the first it summarizes the RAW plots and on the second (if existent) it summarizes the fitted results Parameters ---------- save_RAW : bool, optional (Default) True then the first slide with the RAW data is created save_Fit : bool, optional (Default) True then the second slide with the Fitted data is created path : None, str or path, optional (Default) None, if left on None, then a folder "result_figures" is created in the folder of the data (self.path) savetype : str or iterable (of str), optional triggers the additional creation of a composite file in this format. matplotlib allows the saving of figures in various formats. (Default) "png", typical and recommendable options are "svg" and "pdf". title : None or str, optional (Default) None, Use this title on all plots. if None, use self.filename filename : str, optional (Default) None, Base name for all plots. If None, then self.filename will be used scale_type : str, optional 'symlog' (Default), 'linear', 'log' time axis patches : bool, optional For true use white patches to label things in the 2d matrixes, to safe space for publication cmap : None or matplotlib color map, optional is a powerfull variable that chooses the colour map applied for all plots. If set to None (Default) then the self.cmap is used. As standard I use the color map "jet" from matplotlib. There are a variety of colormaps available that are very usefull. Beside "jet", "viridis" is a good choice as it is well visible under red-green blindness. Other useful maps are "prism" for high fluctuations or diverging color maps like "seismic". See https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html for a comprehensive selection. In the code the colormaps are imported so if plot_func is imported as pf then self.cmap=pf.cm.viridis sets viridis as the map to use. Internally the colors are chosen with the "colm" function. The 2d plots require a continuous color map so if something else is give 2d plots are shown automatically with "jet". For all of the 1d plots however I first select a number of colors before each plot. If cmap is a continous map then these are sampled evenly over the colourmap. Manual iterables of colours cmap=[(1,0,0),(0,1,0),(0,0,1),...] are also accepted, as are vectors or dataframes that contain as rows the colors. There must be of course sufficient colors present for the numbers of lines that will be plotted. So I recommend to provide at least 10 colours (e.g.~your university colors). colours are always given as a, list or tuple with RGA or RGBA (with the last A beeing the Alpha=transparency. All numbers are between 0 and 1. If a list/vector/DataFrame is given for the colours they will be used in the order provided. Examples --------- >>> ta.Save_Powerpoint() >>> ta.Save_Powerpoint(patches = True) ''' if isinstance(savetype,type('hello')):savetype=[savetype] if not hasattr(savetype,"__iter__"):savetype=[savetype] raw_names=["MAT","SEL","SPEK","SVD"] raw_names=[check_folder(current_path=self.path, path=path, filename=self.filename.split('.')[0] + "_RAW_"+str(a) +".png") for a in raw_names] fit_names=["FIG_MAT","SPEC","SEL","SUM","DAC"] fit_names=[check_folder(current_path=self.path, path=path, filename=self.filename.split('.')[0] + "_" +str(a) +".png") for a in fit_names] plt.close('all') origin=self.save_figures_to_folder if filename is None: filename=self.filename filename=filename.split('.')[0] if save_RAW: self.save_figures_to_folder=True self.Plot_RAW(savetype = 'png', scale_type = scale_type, title = title, cmap = cmap, path = path) plt.close('all') if save_Fit: try: self.save_figures_to_folder=True self.Plot_fit_output(savetype = 'png', scale_type = scale_type, title = title, patches = patches, cmap = cmap , path = path) plt.close('all') except: save_Fit = False print('run into problems with adding the fit results. Have you fitted something?') try: Result_string='\nFit Results:\n' if isinstance(self.mod,type('hello')): Result_string+='Model Used: %s\n\n'%self.mod else: Result_string+='Model Used: External function\n\n' if self.ignore_time_region is not None: Result_string+='the time between %.3f %s and %.3f %s \n was excluded from the optimization\n'%(self.ignore_time_region[0],self.baseunit,self.ignore_time_region[1],self.baseunit) Result_string+='The minimum error is:{:.8e}\n'.format(self.re['error']) Result_string+='The minimum R2-value is:{:.8e}\n'.format(self.re['r2']) if 'confidence' in self.re: Result_string+='\nIn Rates with confidence interval to level of %s\n'%self.re['confidence']['target-level'] Result_string+=self.re['fit_results_rates'].to_string(columns=['value','lower_limit','upper_limit','init_value','vary','min','max','expr']) Result_string+='\n\nThe rates converted to times with unit %s\n with confidence interval to level of %s\n'%(self.baseunit,self.re['confidence']['target-level']) Result_string+=self.re['fit_results_times'].to_string(columns=['value','lower_limit','upper_limit','init_value','vary','min','max','expr']) else: Result_string+='\nIn Rates\n' Result_string+=self.re['fit_results_rates'].to_string(columns=['value','init_value','vary','min','max','expr']) Result_string+='\n\nThe rates converted to times with unit %s\n'%self.baseunit Result_string+=self.re['fit_results_times'].to_string(columns=['value','init_value','vary','min','max','expr']) except: pass if ('pdf' in savetype) or ('png' in savetype) or ('svg' in savetype): if save_RAW: fig,ax=plt.subplots(nrows=2,ncols=2,figsize=(10,7.5)) ax[0,1].imshow(mpimg.imread(str(raw_names[0]))) ax[0,0].imshow(mpimg.imread(str(raw_names[1]))) ax[1,0].imshow(mpimg.imread(str(raw_names[2]))) ax[1,1].imshow(mpimg.imread(str(raw_names[3]))) ax[0,0].axis('off');ax[1,0].axis('off');ax[0,1].axis('off');ax[1,1].axis('off') for entry in savetype: if entry == "pptx":continue try: fig.tight_layout() fig.savefig(check_folder(path=path,current_path=self.path,filename=self.filename.split('.')[0] + '_RAW-summary.%s'%entry),dpi=600) except: print("saving in" + entry +"failed") if save_Fit: G = GridSpec(4, 8) fig1=plt.figure(figsize=(10,7.5)) ax1=fig1.add_subplot(G[0,:6]) ax2=fig1.add_subplot(G[1,:6]) ax3=fig1.add_subplot(G[2,:6]) ax4=fig1.add_subplot(G[3,:6]) ax5=fig1.add_subplot(G[0:2,5:]) ax6=fig1.add_subplot(G[2:,6:]) ax1.imshow(mpimg.imread(str(fit_names[1]))) ax2.imshow(mpimg.imread(str(fit_names[2]))) ax3.imshow(mpimg.imread(str(fit_names[3]))) ax4.imshow(mpimg.imread(str(fit_names[4]))) ax5.imshow(mpimg.imread(str(fit_names[0]))) ax6.text(0,0,Result_string,fontsize=7,fontweight='normal') ax1.axis('off');ax2.axis('off');ax3.axis('off');ax4.axis('off');ax5.axis('off');ax6.axis('off') for entry in savetype: if entry == "pptx": continue try: fig1.tight_layout() fig1.savefig(check_folder(path=path,current_path=self.path,filename=self.filename.split('.')[0] + '_Fit-summary.%s'%entry),dpi=600) except: print("saving in" + entry +"failed") if ('pptx' in savetype) or ('ppt' in savetype): left=Inches(0.2) top=Inches(0.2) prs = Presentation() blank_slide_layout = prs.slide_layouts[6] slide = prs.slides.add_slide(blank_slide_layout) if save_RAW: left = top = Inches(0.5) pic = slide.shapes.add_picture(str(raw_names[0].resolve()), left=left+Inches(4.5), top=top, width=Inches(4.5)) pic = slide.shapes.add_picture(str(raw_names[1].resolve()), left=left, top=top, width=Inches(4.5)) pic = slide.shapes.add_picture(str(raw_names[2].resolve()), left=left, top=top+Inches(3), width=Inches(4.5)) try: pic = slide.shapes.add_picture(str(raw_names[3].resolve()), left=left+Inches(4.5), top=top+Inches(3), height=Inches(3.4)) except: pass if save_Fit: try: slide2 = prs.slides.add_slide(blank_slide_layout) left = top = Inches(0.1) pic = slide2.shapes.add_picture(str(fit_names[0].resolve()), left=left+Inches(5.5), top=top, height=Inches(3.5))#Matrix pic = slide2.shapes.add_picture(str(fit_names[1].resolve()), left=left, top=top, height=Inches(2)) pic = slide2.shapes.add_picture(str(fit_names[2].resolve()), left=left, top=top+Inches(2), height=Inches(2)) pic = slide2.shapes.add_picture(str(fit_names[3].resolve()), left=left, top=top+Inches(3.9), height=Inches(1.4)) pic = slide2.shapes.add_picture(str(fit_names[4].resolve()), left=left, top=top+Inches(5.4), height=Inches(2)) text1 = slide2.shapes.add_textbox(left=left+Inches(5.5), top=top+Inches(3.5), width=Inches(4.5), height=Inches(4)) text1.text = Result_string text1.text_frame.fit_text(font_family=u'Arial', max_size=8, bold=False, italic=False) except: print('exited when saving the fit plots') plt.close('all') self.save_figures_to_folder=origin prs.save(check_folder(path=path,current_path=self.path,filename=self.filename.split('.')[0] + '.pptx')) print('All data was saved to %s'%check_folder(path=path,current_path=self.path)) def Save_project(self, filename=None,path=None): '''function to dump all the parameter of an analysis into an hdf5 file. This file contains the ds_ori and all the parameter, including fitting parameter and results. One limitation is the fitting model. If the model is build in, so the model is 'exponential' or 'parallel' then the safing works. If an external model is used then the dostring of the external function is stored, but not the function itself. Parameters ---------- path : None, str or path, optional (Default) None, if left on None, then a folder "Data" is created in the folder of the project (self.path) filename : str, optional (Default) None, Base name for all plots. If None, then self.filename will be used Examples -------- >>> ta.Save_project() ''' if filename is None: filename = self.filename hdf5_name =check_folder(path = path, current_path = self.path, filename = filename.split('.')[0]+'.hdf5') if os.path.exists(hdf5_name): try: os.remove(hdf5_name) except: try: hdf5_name.close() os.remove(hdf5_name) except: print('File exists but can not be deleted') re_switch = False with h5py.File(hdf5_name, 'w') as f: for key in self.__dict__.keys(): if key == 'mod': if self.__dict__[key] in ['paral','exponential','consecutive','full_consecutive']: f.create_dataset(name=key, data=self.__dict__[key]) else: try: docstring=self.__dict__[key].__doc__ if isinstance(docstring,type('hello')): f.create_dataset(name=key, data=docstring) except: f.create_dataset(name=key, data='external_function_without_docstring') elif key in ['rel_wave','rel_time']:#need extra, as it is bypassed by the re-switch f.create_dataset(name=key, data=self.__dict__[key]) elif key[:2] == 're' : re_switch = True for key2 in self.__dict__['re']: if key2 == 'fit_output':continue data = self.__dict__['re'][key2] if key2 == 'error': try: f.create_dataset(name='re_error', data=data) except: print('saving of ' + key2 + ' failed' ) elif isinstance(data, pandas.DataFrame): pass else: try: f.create_dataset(name='re_' + key2, data=data) except: print('saving of ' + key2 + ' failed' ) elif key == 'cmap': pass elif key == 'intensity_range': data=self.__dict__['intensity_range'] if isinstance(data, type(1e-3)): data=[-data,data] if data is None: f.create_dataset(name='intensity_range', data='None') else: f.create_dataset(name='intensity_range', data=data) elif key == 'background_par': f.create_dataset(name='back', data=self.__dict__['background_par'][3]) elif key in ['par','par_fit']: df=par_to_pardf(self.__dict__[key])#pandas has a bug and problems handling mixed type columns when saving. So we clean up. for sub_key in ['min','max','value']: try: df[sub_key]=df[sub_key].astype(float) except: pass df['is_rate']=df['is_rate'].astype(bool) df['vary']=df['vary'].astype(bool) df['expr']=df['expr'].apply(lambda x:'%s'%x) df.to_hdf(str(hdf5_name.resolve()), key=key, append=True, mode='r+', format='t') else: data = self.__dict__[key] if data is None: f.create_dataset(name=key, data='None') else: if isinstance(data, pandas.DataFrame): pass else: try: f.create_dataset(name=key, data=data) except: if key == 'path': pass elif key == 'figure_path': pass else: print('the saving of %s failed'%key) if not 'fitcoeff' in f: try: f.create_dataset(name='fitcoeff', data=self.fitcoeff) except: try: with open(self.chirp_file,'r') as f2: fitcoeff=f2.readline() f.create_dataset(name='fitcoeff', data=fitcoeff) except: pass self.ds_ori.to_hdf(str(hdf5_name.resolve()), key='ds_ori', append=True, mode='r+', format='t')#save_raw_data if re_switch: #print('re-switched') for key in ['A', 'AC', 'AE', 'DAC', 'c']: self.re[key].to_hdf(str(hdf5_name.resolve()), key='re_' + key, append=True, mode='r+', format='t') try: f.close() except: pass print('The project was saved to %s'%check_folder(path = path, current_path = self.path)) def __read_project(self, saved_project=None,current_path=None): '''function to re-read all the parameter of a previous analysis into an hdf5 file, current path is the path that the file should assume is its "home directory" after successful loading. If not set we take the filepath at which the file is currently stored as path''' if saved_project is None: raise ImportError('We do need a project to import') if current_path is None:current_path=os.path.dirname(os.path.abspath(saved_project)) try: import h5py except: print('could not import hdf5, current version requires that this is installed. IF running Anaconda open Conda promt and type: conda install h5py') data_frame_list=[] # we hav to handle the old and new type of saving with h5py.File(saved_project, 'r') as f: if 're_final_setup_par' in f.keys():old_switch=True else:old_switch=False if old_switch:print('we read an old style data_file and directly update it into the new file_type after loading') with h5py.File(saved_project, 'r') as f: for key in f.keys(): try: if "re_" in key[:3]: if not 're' in self.__dict__.keys(): self.__dict__['re']={} self.__dict__['re'][key[3:]]=f[key][()] elif "back" in key[:4]: rea=f[key][()] self.__dict__['background_par']=[None,-1,False] self.__dict__['background_par'].append(rea) elif "par" in key[:3]: if old_switch:#old type of saved data try: os.remove('temp_file.json') except: pass with open('temp_file.json','w') as g: g.write(f[key][()]) with open('temp_file.json','r') as g: self.par=lmfit.Parameters() self.par.load(g) try: os.remove('temp_file.json') except: pass else:#new type of data raise else: read=f[key][()] if isinstance(read,bytes): read=f[key].asstr()[()] elif isinstance(read,type('hello')): if (read=='None') or (read=='none'): read=None elif key in ['bordercut','timelimits','fitcoeff','scattercut']: read=[float(a) for a in read] elif key =='intensity_range': read=[float(a) for a in read] elif key in ['rel_time','rel_wave']: read=np.array(read,dtype=np.float64) elif key in ['scattercut']: try: read=[float(a) for a in read] except:#maybe we have a list of scattercuts try: out_listen=[] for listen in read: outlisten.append([float(a) for a in listen]) except:#no idea lets see what happens pass self.__dict__[key]=read except:#we'll get an exception every time there is an dataframe #print('Frame:'+key) data_frame_list.append(key) try: f.close() except: pass for key in data_frame_list: try: if "re_" in key[:3]: #print('re in list') self.__dict__['re'][key[3:]]=pandas.read_hdf(saved_project,key=key,mode='r',data_columns=True) elif key in ['ds_ori','par_fit','par']: self.__dict__[key]=pandas.read_hdf(saved_project,key=key,mode='r',data_columns=True) else: print("missing key:" + key) except: if key == 'par' and old_switch:pass # we have read it before already and the error is ok else:print("error in key:" + key) try: self.__dict__['re']['fit_results_rates']=self.__dict__['par_fit'] self.__dict__['re']['fit_results_times']=pardf_to_timedf(self.__dict__['re']['fit_results_rates']) except: pass #the par conversion function failed, quickfix for over_key in ['par_fit','par']: try: par_df=self.__dict__[over_key].loc[:,['value','min','max','vary','expr']] par=lmfit.Parameters() for key in par_df.index.values: par.add(key, value=par_df.loc[key,'value'], vary=par_df.loc[key,'vary'], min=par_df.loc[key,'min'], max=par_df.loc[key,'max']) self.__dict__[over_key]=par except: pass if old_switch: try: self.__dict__['re']['fit_results_rates']=par_to_pardf(self.par) self.__dict__['re']['fit_results_times']=pardf_to_timedf(par_to_pardf(self.par)) self.__dict__['par_fit']=self.par except: pass self.save_figures_to_folder=False self.path=current_path if old_switch:#convert project into new type #clean old files that were read wrong for key in ['re_final_int_par','re_final_setup_par','re_final_time_par','re_int_error']: try: del self.__dict__[key] except KeyError: print(f'Key {key} is not in the dictionary') for key in ['final_int_par','final_setup_par','final_time_par','int_error']: try: del self.__dict__['re'][key] except KeyError: print(f'Key {key} is not in the dictionary') try: self.save_project() print("project converted into new data type and saved again") except: print("project converted ibut could not be saved") self.path=current_path for key in ['time_bin','rel_wave','rel_time','scattercut','bordercut','timelimits','intensity_range','wave_nm_bin','wavelength_bin','ignore_time_region']: try: if isinstance(self.__dict__[key],bytes): #print(key + ' set to None') self.__dict__[key]=None elif isinstance(self.__dict__[key],str): if self.__dict__[key]=='None': self.__dict__[key]=None except: continue try: self.figure_path=str(self.figure_path) if 'None' in self.figure_path: self.figure_path=None except: pass def Copy(self): '''returns a deep copy of the object. Examples -------- >>>ta=plot_func.TA('testfile.hdf5') #open a project >>>ta1=ta.Copy() #make a copy for some tests or a differnet fit ''' import copy return copy.deepcopy(self) def Compare_at_time(self, rel_time = None, other = None, fitted = False, norm_window = None, time_width_percent = None, spectra = None, data_and_fit = False, cmap = None , print_click_position = False, linewidth = 1, title='', plot_second_as_energy = True): '''This function plots multiple spectra into the same figure at a given rel_time (timepoints) and allows for normalization. Very useful to compare the spectra for different solvents or quenchers, or e.g. different fits. The ta.time_width_percent parameter defines if this is a single time (if time_width_percent = 0) or an integrated window. Only "rel_time" is a mandatory, the rest can be taken from the original project (ta). The normalization is realized by giving a norm_window at which the intensity in the triggering object is integrated (in ta.Compare_at_time(other..) "ta" is the triggering object. The in each of the other curves the same window is integrated and the curve scaled by this value. Important to note is that this window does not need to be in the plot. e.g. the normalization can be done at a different time. Very often one would like to compare the measured spectra at a certain time to an external spectrum (e.g. spectro-electro-chemistry or steady state absorption). This can be done by loading a specific spectrum into a DataFrame and handing this data Frame to the comparision function. The function can also be used to plot e.g. the measured spectra vs. an external spectrum without giving any "other" Projects. (very useful for comparisions). Parameters ------------- rel_time : float or list/vector (of floats) Specify the times where to plot, single value or list/vector of values. For each entry in rel_time a spectrum is plotted. If time_width_percent=0 (Default) the nearest measured timepoint is chosen. For other values see parameter "time_width_percent". other : TA object or list of those, optional should be ta.plot_func objects (loaded or copied) and is what is plotted against the data use a list [ta1,ta2,... ] or generate this list using the Gui function. See section :ref:`Opening multiple files` in the documentation fitted : bool, optional True/False (Default) - use fitted data instead of raw data. If True, the fitted datapoints (without interpolation) are used. This is intended for comparing e.g. different fits norm_window : None or list/vector (with 4 floats), optional norm_window Give a list/tupel/vector with 4 entries in the order [Start - time, End - time, Start - wavelength, End - Wavelength], see section :ref:`Normalization and Scaling` in the documentation. If None (Default) no normalization is done. linewidth : float, optional linewidth to be used for plotting time_width_percent : None or float, optional "rel_time" and "time_width_percent" work together for creating spectral plots at specific timepoints. For each entry in rel_time a spectrum is plotted. If however e.g. time_width_percent=10 the region between the timepoint closest to :math:`timepoint+0.1xtimepoint´ and :math:`timepoint-0.1xtimepoint` is averaged and shown (and the legend adjusted accordingly). If None (Default) is given, the value is taken from the triggering object (self.time_width_percent) This is particularly useful for the densly sampled region close to t=0. Typically for a logarithmic recorded kinetics, the timepoints at later times will be further appart than 10 percent of the value, but this allows to elegantly combine values around time=0 for better statistics. This averaging is only applied for the plotting function and not for the fits. spectra : None or DataFrame, optional If an DataFrame with the wavelength as index is provided, Then the spectra of each column is plotted into the differential spectra 1-1 and the column names are used in the legend Prior scaling is highly suggested. These spectra are not (in general) scaled with the norm window. (see examples). data_and_fit : bool, optional True or False (Default), choose if for the Fitted plot the raw data of the other projects is to be plotting in addition to the fitted line. For False (Default) Only the fit is plotted. cmap : None or matplotlib color map, optional is a powerfull variable that chooses the colour map applied for all plots. If set to None (Default) then the self.cmap is used. As standard I use the color map "jet" from matplotlib. There are a variety of colormaps available that are very usefull. Beside "jet", "viridis" is a good choice as it is well visible under red-green blindness. Other useful maps are "prism" for high fluctuations or diverging color maps like "seismic". See https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html for a comprehensive selection. In the code the colormaps are imported so if plot_func is imported as pf then self.cmap=pf.cm.viridis sets viridis as the map to use. Internally the colors are chosen with the "colm" function. The 2d plots require a continuous color map so if something else is give 2d plots are shown automatically with "jet". For all of the 1d plots however I first select a number of colors before each plot. If cmap is a continous map then these are sampled evenly over the colourmap. Manual iterables of colours cmap=[(1,0,0),(0,1,0),(0,0,1),...] are also accepted, as are vectors or dataframes that contain as rows the colors. There must be of course sufficient colors present for the numbers of lines that will be plotted. So I recommend to provide at least 10 colours (e.g.~your university colors). colours are always given as a, list or tuple with RGA or RGBA (with the last A beeing the Alpha=transparency. All numbers are between 0 and 1. If a list/vector/DataFrame is given for the colours they will be used in the order provided. plot_second_as_energy : bool, optional For (Default) True a second x-axis is plotted with "eV" as unit print_click_position : bool, optional if True then the click position is printed for the spectral plots Examples ---------- >>> import plot_func as pf >>> ta = pf.TA("test1.hdf5") #open the original project Now open a bunch of other porjects to comare against >>> other_projects = pf.GUI_open(project_list = ["file1.SIA", "file2.SIA"]) Typical use is compare the raw data without normalization at 1ps and 6ps. >>> ta.Compare_at_time(rel_time = [1,6], others = other_project) Compare the fit withput normalization at 1ps and 6ps. >>> ta.Compare_at_time(rel_time = [1,6], others = other_project, fitted = True) Compare with normalization window between 1ps and 2ps and 400nm and 450nm. >>> norm_window=[1,2,400,450] >>> ta.Compare_at_time(rel_time = [1,6], others = other_project, norm_window = norm_window) Compare the spectrum at 1ps and 6ps with an external spectrum. >>> ext_spec = pd.read_csv("Ascii_spectrum.dat", sep = ",") >>> ta.Compare_at_time(rel_time = [1,6], spectra = ext_spec) Use example - Often there are a lot of different measurements to compare at multiple time. The normlization is performed at the ground state bleach 460 nm and early in time. Then it is better to make a new plot for each timepoint. The normalization window stays fixed. >>> plt.close("all") #make some space >>> norm_window=[0.3,0.5,450,470] #define window in ground state bleach >>> for t in [0.3,0.5,1,3,10,30]: #iterate over the wavelength >>> ta.Compare_at_time(rel_time = t, others = other_project, norm_window = norm_window) ''' if self.save_figures_to_folder:self.figure_path=check_folder(path='result_figures',current_path=self.path) if time_width_percent is None:time_width_percent=self.time_width_percent if rel_time is None:rel_time=self.rel_time if other is not None: if not hasattr(other,'__iter__'):other=[other] if rel_time is not None: if not hasattr(rel_time,'__iter__'):rel_time=[rel_time] else: rel_time=[1] if cmap is None:cmap=self.cmap if fitted: try: re=self.re except: print("No fitted results present") return False if norm_window is not None: ref_scale=re['A'].loc[norm_window[0]:norm_window[1],norm_window[2]:norm_window[3]].mean().mean() fig,ax=plt.subplots(figsize=(10,6),dpi=100) objects=len(rel_time)*(1+len(other)) colors=colm(cmap=cmap,k=range(objects)) _=plot_time(re['A'], ax = ax, rel_time = rel_time, time_width_percent = time_width_percent, baseunit = self.baseunit, lines_are = 'data', cmap = colors[:len(rel_time)], title = '', linewidth = linewidth, subplot= True, scattercut = self.scattercut) _=plot_time(re['AC'], ax = ax, rel_time = rel_time, time_width_percent = time_width_percent, baseunit = self.baseunit, lines_are = 'fitted', cmap = colors[:len(rel_time)], title = '', subplot = False, linewidth = linewidth, scattercut = self.scattercut) handles, labels=ax.get_legend_handles_labels() lab=['%g %s'%(ent,self.baseunit) + '_' + str(self.filename) for ent in rel_time] han=handles[:len(rel_time)*2] for ent in rel_time: lab.append('%g %s fit'%(ent,self.baseunit) + '_' + str(self.filename)) if other is not None: for i,o in enumerate(other): try: re=o.re except: print('%s has no fitted results'%o.filename) continue if norm_window is not None: rel_scale=re['A'].loc[norm_window[0]:norm_window[1],norm_window[2]:norm_window[3]].mean().mean() try: scaling=(rel_scale/ref_scale) ax=plot_time(re['AC']/scaling, cmap = colors, ax = ax, rel_time = rel_time, time_width_percent = time_width_percent, title = '', lines_are = 'fitted', subplot = True, color_offset = len(rel_time)*(i+1), linewidth = linewidth, scattercut = o.scattercut) handles, labels=ax.get_legend_handles_labels() for ent in rel_time: lab.append('%g %s fit'%(ent,o.baseunit) + '_' + str(o.filename)) for a in handles[-len(rel_time):]: han.append(a) if data_and_fit: ax=plot_time(re['A']/scaling, cmap = self.cmap, ax = ax, rel_time = rel_time, time_width_percent = time_width_percent, title = o.filename, baseunit = self.baseunit, lines_are = 'data', subplot = True, color_offset = len(rel_time)*(i+1), linewidth = linewidth, scattercut = o.scattercut) handles, labels=ax.get_legend_handles_labels() for ent in rel_time: lab.append('%g %s'%(ent,o.baseunit) + '_' + str(o.filename)) for a in handles[-len(rel_time):]: han.append(a) norm_failed = False except: print('scaling Failed!') norm_failed = True else: norm_failed=True if norm_failed: ax=plot_time(re['AC'], cmap = colors, ax = ax, rel_time = rel_time, time_width_percent = time_width_percent, title = '', lines_are = 'fitted', subplot = True, color_offset = len(rel_time)*(i+1), linewidth = linewidth, scattercut = o.scattercut) handles, labels=ax.get_legend_handles_labels() for ent in rel_time: lab.append('%g %s fit'%(ent,o.baseunit) + '_' + str(o.filename)) for a in handles[-len(rel_time):]: han.append(a) if data_and_fit: ax=plot_time(re['A'], cmap = self.cmap, ax = ax, rel_time = rel_time, time_width_percent = time_width_percent, title = o.filename, baseunit = self.baseunit, lines_are = 'data', subplot = True, color_offset = len(rel_time)*(i+1), linewidth = linewidth, scattercut = o.scattercut) handles, labels=ax.get_legend_handles_labels() for ent in rel_time: lab.append('%g %s'%(ent,o.baseunit) + '_' + str(o.filename)) for a in handles[-len(rel_time):]: han.append(a) if not norm_failed: ax.set_title('compare measured and fitted data at given times\n scaled to t=%g ps : %g ps , wl= %g nm: %g nm'%(norm_window[0],norm_window[1],norm_window[2],norm_window[3])) else: ax.set_title('compare measured and fitted data at given times') ax.set_xlim(re['A'].columns.values[0],re['A'].columns.values[-1]) ax.legend(han, lab ,labelspacing = 0, ncol = 2, columnspacing = 1, handlelength = 1, frameon = False) else: if norm_window is not None: ref_scale=self.ds.loc[norm_window[0]:norm_window[1],norm_window[2]:norm_window[3]].mean().mean() objects=len(rel_time)*(1+len(other)) colors=colm(cmap=cmap,k=range(objects)) fig,ax=plt.subplots(figsize=(10,6),dpi=100) _=plot_time(self.ds, ax = ax, rel_time = rel_time, time_width_percent = time_width_percent, title = title, lines_are = 'data', scattercut = self.scattercut, bordercut = self.bordercut, wave_nm_bin = self.wave_nm_bin, cmap = colors, subplot = True, linewidth = linewidth, baseunit=self.baseunit) if 1: _=plot_time(self.ds, ax = ax, rel_time = rel_time, time_width_percent = time_width_percent, title = title, lines_are = 'smoothed', scattercut = self.scattercut, bordercut = self.bordercut,wave_nm_bin = self.wave_nm_bin, cmap = colors, subplot = False, linewidth = linewidth, baseunit = self.baseunit) handles, labels=ax.get_legend_handles_labels() lab=['%g %s'%(ent,self.baseunit) + '_' + str(self.filename) for ent in rel_time] han=handles[:len(rel_time)] if other is not None: for i,o in enumerate(other): if norm_window is not None: rel_scale=o.ds.loc[norm_window[0]:norm_window[1],norm_window[2]:norm_window[3]].mean().mean() try: scaling = (rel_scale/ref_scale) ax=plot_time(o.ds/scaling, cmap = colors, ax = ax, rel_time = rel_time, time_width_percent = time_width_percent, title = title, lines_are = 'data', scattercut = o.scattercut, bordercut = o.bordercut, linewidth = linewidth, wave_nm_bin = o.wave_nm_bin, subplot = True, color_offset = len(rel_time)*(i+1)) handles, labels=ax.get_legend_handles_labels() for ent in rel_time: lab.append('%g %s'%(ent,o.baseunit) + '_' + str(o.filename)) for a in handles[-len(rel_time):]: han.append(a) if data_and_fit: ax=plot_time(o.ds/scaling, cmap = colors, ax = ax, rel_time = rel_time, time_width_percent = time_width_percent, title = title, lines_are = 'smoothed', scattercut = o.scattercut, bordercut = o.bordercut, linewidth = linewidth, wave_nm_bin = o.wave_nm_bin, subplot = True, color_offset = len(rel_time)*(i+1)) scaling_failed=False except: print('scaling Failed!') scaling_failed=True else: scaling_failed=True if scaling_failed: ax=plot_time(o.ds, cmap = colors, ax = ax, rel_time = rel_time, time_width_percent = time_width_percent, title = title, lines_are = 'data', scattercut = o.scattercut, bordercut = o.bordercut, linewidth = linewidth, wave_nm_bin = o.wave_nm_bin, subplot = True, color_offset = len(rel_time)*(i+1)) handles, labels=ax.get_legend_handles_labels() for ent in rel_time: lab.append('%g %s'%(ent,o.baseunit) + '_' + str(o.filename)) for a in handles[-len(rel_time):]: han.append(a) if data_and_fit: ax=plot_time(o.ds, cmap = colors, ax = ax, rel_time = rel_time, time_width_percent = time_width_percent, title = title, lines_are = 'smoothed', scattercut = o.scattercut, bordercut = o.bordercut, linewidth = linewidth, wave_nm_bin = o.wave_nm_bin, subplot = True, color_offset = len(rel_time)*(i+1)) if not scaling_failed: ax.set_title('compare measured and smoothed data at given times\n scaled to t=%g ps : %g ps , wl= %g nm: %g nm'%(norm_window[0],norm_window[1],norm_window[2],norm_window[3])) else: ax.set_title('compare measured and smoothed data at given times') ax.legend(han, lab, labelspacing = 0, ncol = 2, columnspacing = 1, handlelength = 1, frameon = False) if self.bordercut is None: ax.set_xlim(self.ds.columns.values[0],self.ds.columns.values[-1]) else: ax.set_xlim(self.bordercut) if spectra is not None: spectra.plot(ax=ax,legend=False) handles, labels=ax.get_legend_handles_labels() han.append(handles[-1]) lab.append(labels[-1]) ax.legend(han, lab ,labelspacing = 0, ncol = 2, columnspacing = 1, handlelength = 1, frameon = False) if plot_second_as_energy: ax2=ax.twiny() ax2.set_xlim(ax.get_xlim()) ax2.set_xticks(ax.get_xticks()) labels=['%.2f'%(scipy.constants.h*scipy.constants.c/(a*1e-9*scipy.constants.electron_volt)) for a in ax2.get_xticks()] _=ax2.set_xticklabels(labels) _=ax2.set_xlabel('Energy in eV') ax.set_zorder(ax2.get_zorder()+1) fig=plt.gcf() fig.tight_layout() if self.save_figures_to_folder: fig.savefig(check_folder(path=self.figure_path,filename='compare_at_time_%s.png'%'_'.join(['%g'%a for a in rel_time])),bbox_inches='tight') def Compare_at_wave(self, rel_wave = None, other = None, fitted = False, norm_window = None, width = None, cmap = None, data_and_fit = False, scale_type = 'symlog', linewidth = 1): '''This function plots multiple kinetics into the same figure at one or multiple given wavelength (rel_wave) and allows for :ref:`Normalization and Scaling` Very useful to compare the kinetics for different quencher concentrations or pump powers, or e.g. different fits. The parameter width or the general self.wavelength_bin which is used if width is None (Default) defines the width of the spectral window that is integrated and shown. A normalization window can be given at which all the plotted curves are normalized to. This window does not have to be in the plotted region. See :ref:`Normalization and Scaling` Parameters -------------- rel_wave : float or list/vector (of floats) Specify the wavelength where to plot the kinetics, single value or list/vector of values (only mandatory entry) For each entry in rel_wave a kinetic is plotted. 'rel_wave' and 'width' (in the object called 'wavelength_bin' work together for the creation of kinetic plots. At each selected wavelength the data between wavelength+width/2 and wavelength-width/2 is averaged for each timepoint other : TA object or list of those, optional should be ta.plot_func objects (loaded or copied) and is what is plotted against the data use a list [ta1,ta2,... ] or generate this list using the Gui function. See section :ref:`Opening multiple files` in the documentation fitted : bool, optional True/False (Default) - use fitted data instead of raw data. If True, the fitted datapoints (without interpolation) are used. This is intended for comparing e.g. different fits norm_window : None or list/vector (with 4 floats), optional norm_window Give a list/tupel/vector with 4 entries in the order [Start - time, End - time, Start - wavelength, End - Wavelength], see section :ref:`Normalization and Scaling` in the documentation. If None (Default) no normalization is done. width Specify the width above and below the given wavelength that is integrated as window. If left to (Default) "None" the value from ta is used. data_and_fit : bool, optional True or False (Default), choose if for the Fitted plot the raw data of the other projects is to be plotting in addition to the fitted line. For False (Default) Only the fit is plotted. linewidth : float, optional linewidth to be used for plotting cmap : None or matplotlib color map, optional is a powerfull variable that chooses the colour map applied for all plots. If set to None (Default) then the self.cmap is used. As standard I use the color map "jet" from matplotlib. There are a variety of colormaps available that are very usefull. Beside "jet", "viridis" is a good choice as it is well visible under red-green blindness. Other useful maps are "prism" for high fluctuations or diverging color maps like "seismic". See https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html for a comprehensive selection. In the code the colormaps are imported so if plot_func is imported as pf then self.cmap=pf.cm.viridis sets viridis as the map to use. Internally the colors are chosen with the "colm" function. The 2d plots require a continuous color map so if something else is give 2d plots are shown automatically with "jet". For all of the 1d plots however I first select a number of colors before each plot. If cmap is a continous map then these are sampled evenly over the colourmap. Manual iterables of colours cmap=[(1,0,0),(0,1,0),(0,0,1),...] are also accepted, as are vectors or dataframes that contain as rows the colors. There must be of course sufficient colors present for the numbers of lines that will be plotted. So I recommend to provide at least 10 colours (e.g.~your university colors). colours are always given as a, list or tuple with RGA or RGBA (with the last A beeing the Alpha=transparency. All numbers are between 0 and 1. If a list/vector/DataFrame is given for the colours they will be used in the order provided. Scale_type : None or str is a general setting that can influences what time axis will be used for the plots. "symlog" (linear around zero and logarithmic otherwise) "lin" and "log" are valid options. Examples -------- >>> import plot_func as pf >>> ta = pf.TA('test1.hdf5') #open the original project Now open a bunch of other projects to compare against >>> other_projects = pf.GUI_open(project_list = ['file1.SIA', 'file2.SIA']) Typical use: Compare the raw data without normalization at 400 nm and 500 nm >>> ta.Compare_at_wave(rel_wave = [400, 500], others = other_project) Compare the quality of the fit data without normalization at 400 nm and 500 nm >>> ta.Compare_at_wave(rel_wave = [400, 500], others = other_project, fitted = True) Compare with normalization window between 1ps and 2ps and 400nm and 450nm >>> norm_window=[1,2,400,450] >>> ta.Compare_at_wave(rel_wave = [400, 500], others = other_project, norm_window = norm_window) Use example: Often there are a lot of different measurements to compare at multiple wavelength. The normlization is performed at the ground state bleach 460 nm and early in time. Then it is better to make a new plot for each wavelength. The normalization window stays fixed. >>> plt.close('all') #make some space >>> norm_window=[0.3,0.5,450,470] #define window in ground state bleach >>> for wave in [300,400,500,600,700]: #iterate over the wavelength >>> ta.Compare_at_wave(rel_wave = wave, others = other_project, norm_window = norm_window) ''' if self.save_figures_to_folder:self.figure_path=check_folder(path='result_figures',current_path=self.path) if width is None:width=self.wavelength_bin if rel_wave is None: rel_wave=self.rel_wave if other is not None: if not hasattr(other,'__iter__'):other=[other] if not hasattr(rel_wave,'__iter__'): rel_wave=[rel_wave] if cmap is None:cmap=self.cmap if fitted: try: re=self.re except: print("No fitted results present") return False if norm_window is not None: ref_scale = re['A'].loc[norm_window[0]:norm_window[1], norm_window[2]:norm_window[3]].mean().mean() fig, ax = plt.subplots(figsize = (10, 6), dpi = 100) colors = colm(cmap = cmap, k = range(len(rel_wave)*(2+len(other)))) ax = plot1d(re['A'], ax = ax, wavelength = rel_wave, width = width, lines_are = 'data', cmap = colors, title = '', plot_type = scale_type, linewidth = linewidth) ax = plot1d(re['AC'], ax = ax, wavelength = rel_wave, width = width, lines_are = 'fitted', cmap = colors, title = '', subplot = True, plot_type = scale_type, linewidth = linewidth) #ax = plot1d(re['AC'], ax = ax, wavelength = rel_wave, width = width, lines_are = 'fitted', # cmap = colors, color_offset = len(rel_wave), title = '', subplot = True, plot_type = scale_type) hand, labels = ax.get_legend_handles_labels() lab=['%g nm'%a + '_' + str(self.filename) for a in rel_wave] for ent in rel_wave: lab.append('%g nm'%ent + '_' + str(self.filename)) if other is not None: for i,o in enumerate(other): i+=1 color_offset=(i+1)*len(rel_wave) try: re=o.re except: print('%s has no fitted results'%o.filename) continue if norm_window is not None: rel_scale=re['A'].loc[norm_window[0]:norm_window[1],norm_window[2]:norm_window[3]].mean().mean() try: scaling=(rel_scale / ref_scale) if data_and_fit: ax = plot1d(re['A']/scaling, cmap = colors, ax = ax, wavelength = rel_wave, width = width, title = '', lines_are = 'data', subplot = True, color_offset = color_offset, plot_type = scale_type, linewidth = linewidth) ax = plot1d(re['AC']/scaling, cmap = colors, ax = ax, wavelength = rel_wave, width = width, title = '', lines_are = 'fitted', subplot = True, color_offset = color_offset, plot_type = scale_type, linewidth = linewidth) except: print('scaling Failed!') if data_and_fit: ax = plot1d(re['A'], cmap = colors, ax = ax, wavelength = rel_wave, width = width, title = '', lines_are = 'data', subplot = True, color_offset = color_offset, plot_type = scale_type, linewidth = linewidth) ax = plot1d(re['AC'], cmap = colors, ax = ax, wavelength = rel_wave, width = width, title = '', lines_are = 'fitted', subplot = True, color_offset = color_offset, plot_type = scale_type, linewidth = linewidth) else: if data_and_fit: ax = plot1d(re['A'], cmap = colors, ax = ax, wavelength = rel_wave, width = width, title = '', lines_are = 'data', subplot = True, color_offset = color_offset, plot_type = scale_type, linewidth = linewidth) ax = plot1d(re['AC'], cmap = colors, ax = ax, wavelength = rel_wave, width = width, title = '', lines_are = 'fitted', subplot = True, color_offset = color_offset, plot_type = scale_type, linewidth = linewidth) for ent in rel_wave: if data_and_fit: lab.append('%g nm'%ent + '_' + str(o.filename)) lab.append('%g nm'%ent + '_' + str(o.filename)) handles, labels=ax.get_legend_handles_labels() if data_and_fit: for a in handles[-2*len(rel_wave):]: hand.append(a) else: for a in handles[-len(rel_wave):]: hand.append(a) if norm_window is not None: ax.set_title('compare measured and fitted data at given wavelength \n scaled to t=%g ps : %g ps , wl= %g nm: %g nm'%(norm_window[0],norm_window[1],norm_window[2],norm_window[3])) else: ax.set_title('compare measured and fitted data at given wavelength') ax.set_xlim(re['A'].index.values[0],re['A'].index.values[-1]) ax.legend(hand,lab) else: fig, ax = plt.subplots(figsize = (10, 6), dpi = 100) colors = colm(cmap = cmap, k = range(len(rel_wave)*(2+len(other)))) if norm_window is not None: ref_scale = self.ds.loc[norm_window[0]:norm_window[1], norm_window[2]:norm_window[3]].mean().mean() ax = plot1d(self.ds, cmap = colors, ax = ax, wavelength = rel_wave, width = width, title = self.filename, baseunit = self.baseunit, lines_are = 'data', scattercut = self.scattercut, bordercut = self.bordercut, subplot = False, color_offset = 0, timelimits = self.timelimits, intensity_range = self.intensity_range, plot_type = scale_type, linewidth = linewidth) ax = plot1d(self.ds, cmap = colors, ax = ax, wavelength = rel_wave, width = width, title = self.filename, baseunit = self.baseunit, lines_are = 'smoothed', scattercut = self.scattercut, bordercut = self.bordercut, subplot = False, color_offset = 0, timelimits = self.timelimits, intensity_range = self.intensity_range, plot_type = scale_type, linewidth = linewidth) if 1: handles, labels=ax.get_legend_handles_labels() lab=['%g nm'%a + '_' + str(self.filename) for a in rel_wave] hand=handles[len(rel_wave):] if other is not None: for i,o in enumerate(other): i+=1 color_offset=(i+1)*len(rel_wave) if norm_window is not None: rel_scale=o.ds.loc[norm_window[0]:norm_window[1],norm_window[2]:norm_window[3]].mean().mean() try: scaling=(rel_scale/ref_scale) ax = plot1d(o.ds/scaling, cmap = colors, ax = ax, wavelength = rel_wave, width = width, title = o.filename, baseunit = self.baseunit, timelimits = self.timelimits, lines_are = 'data', scattercut = self.scattercut, bordercut = self.bordercut, subplot = True, color_offset = color_offset, intensity_range = self.intensity_range, plot_type = scale_type, linewidth = linewidth) ax = plot1d(o.ds/scaling, cmap = colors, ax = ax, wavelength = rel_wave, width = width, title = o.filename, baseunit = self.baseunit, timelimits = self.timelimits, lines_are = 'smoothed', scattercut = self.scattercut, bordercut = self.bordercut, subplot = True, color_offset = color_offset, intensity_range = self.intensity_range, plot_type = scale_type, linewidth = linewidth) except: print('scaling failed') ax = plot1d(o.ds, cmap = colors, ax = ax, wavelength = rel_wave, width = width, title = o.filename, baseunit = self.baseunit, timelimits = self.timelimits, lines_are = 'data', scattercut = self.scattercut, bordercut = self.bordercut, subplot = True, color_offset = color_offset, intensity_range = self.intensity_range, plot_type = scale_type, linewidth = linewidth) ax = plot1d(o.ds, cmap = colors, ax = ax, wavelength = rel_wave, width = width, title = o.filename, baseunit = self.baseunit, timelimits = self.timelimits, lines_are = 'smoothed', scattercut = self.scattercut, bordercut = self.bordercut, subplot = True, color_offset = color_offset, intensity_range = self.intensity_range, plot_type = scale_type, linewidth = linewidth) else: ax = plot1d(o.ds, cmap = colors, ax = ax, wavelength = rel_wave, width = width, title = o.filename, baseunit = self.baseunit, timelimits = self.timelimits, lines_are = 'data', scattercut = self.scattercut, bordercut = self.bordercut, subplot = True, color_offset = color_offset, intensity_range = self.intensity_range, plot_type = scale_type, linewidth = linewidth) ax = plot1d(o.ds, cmap = colors, ax = ax, wavelength = rel_wave, width = width, title = o.filename, baseunit = self.baseunit, timelimits = self.timelimits, lines_are = 'smoothed', scattercut = self.scattercut, bordercut = self.bordercut, subplot = True, color_offset = color_offset, intensity_range = self.intensity_range, plot_type = scale_type, linewidth = linewidth) for ent in ['%g nm'%a + '_' + str(o.filename) for a in rel_wave]: lab.append(ent) handles, labels=ax.get_legend_handles_labels() for ha in handles[-len(rel_wave):]: hand.append(ha) ax.set_title('compare measured and smoothed data at given wavelength') if norm_window is not None: ax.set_title('compare measured and smoothed data at given wavelength \n scaled to t=%g ps : %g ps , wl= %g nm: %g nm'%(norm_window[0],norm_window[1],norm_window[2],norm_window[3])) ax.legend(hand,lab) if self.save_figures_to_folder: fig.savefig(check_folder(path=self.figure_path,filename='compare_at_wave_%s.png'%'_'.join(['%g'%a for a in rel_wave])), bbox_inches='tight') return ax def Compare_DAC(self, other = None, spectra = None, separate_plots = False, cmap = None): '''This is a convenience function to plot multiple extracted spectra (DAS or species associated) into the same figure or into a separate figure each. Other should be ta.plot_func objects (loaded or copied). By standard it plots all into the same window. If all project have the same number of components one can activate "separate_plots" and have each separated (in the order created in the projects). The "Spectra" parameter allows as before the inclusion of an external spectrum. Others is optional and I use this function often to compare species associated spectra with one or multiple steady state spectra. Parameters -------------- other : TA object or list of those, optional should be ta.plot_func objects (loaded or copied) and is what is plotted against the data use a list [ta1,ta2,... ] or generate this list using the Gui function. See section :ref:`Opening multiple files` in the documentation spectra : None or DataFrame, optional If an DataFrame with the wavelength as index is provided, Then the spectra of each column is plotted into the differential spectra 1:1 and the column names are used in the legend Prior scaling is highly suggested. These spectra are not (in general) scaled with the norm window. (see examples) separate_plots : bool, optional True or False (Default), separate plots is the switch that decides if a axis or multiple axis are used. This option will result in a crash unless all objects have the same number of DAS/SAS components cmap : None or matplotlib color map, optional is a powerfull variable that chooses the colour map applied for all plots. If set to None (Default) then the self.cmap is used. As standard I use the color map "jet" from matplotlib. There are a variety of colormaps available that are very usefull. Beside "jet", "viridis" is a good choice as it is well visible under red-green blindness. Other useful maps are "prism" for high fluctuations or diverging color maps like "seismic". See https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html for a comprehensive selection. In the code the colormaps are imported so if plot_func is imported as pf then self.cmap=pf.cm.viridis sets viridis as the map to use. Internally the colors are chosen with the "colm" function. The 2d plots require a continuous color map so if something else is give 2d plots are shown automatically with "jet". For all of the 1d plots however I first select a number of colors before each plot. If cmap is a continous map then these are sampled evenly over the colourmap. Manual iterables of colours cmap=[(1,0,0),(0,1,0),(0,0,1),...] are also accepted, as are vectors or dataframes that contain as rows the colors. There must be of course sufficient colors present for the numbers of lines that will be plotted. So I recommend to provide at least 10 colours (e.g.~your university colors). colours are always given as a, list or tuple with RGA or RGBA (with the last A beeing the Alpha=transparency. All numbers are between 0 and 1. If a list/vector/DataFrame is given for the colours they will be used in the order provided. Examples -------- >>> import plot_func as pf >>> ta = pf.TA('test1.hdf5') #open the original project, >>> this MUST contain a fit, otherwise this will raise an error Now open a bunch of other projects to compare against, >>> #compare in a single window >>> other_projects = pf.GUI_open(project_list = ['file1.hdf5', 'file2.hdf5']) >>> ta.Compare_DAC(others = other_project) >>> #comprare in separate windows, >>> #the other projects must have the same number of components >>> ta.Compare_DAC(others = other_project, separate_plots = True) Compare the DAC to an external spectrum >>> ext_spec = pd.read_csv('Ascii_spectrum.dat', sep = ',') >>> ta.Compare_DAC(spectra = ext_spec) #compare just the current solution >>> ta.Compare_DAC(spectra = ext_spec, others = other_project) #compare multiple ''' if self.save_figures_to_folder:self.figure_path = check_folder(path = 'result_figures', current_path = self.path) if other is not None: if not hasattr(other, '__iter__'):other = [other] try: re = self.re.copy() except: print("No fitted results present") return False if cmap is None:cmap = self.cmap species=re['DAC'].columns.values if other is None: col = range(len(re['DAC'].columns.values)) colors = colm(cmap = cmap, k = col) else: re['DAC'].columns = [self.filename + '\n' + '%s'%a for a in re['DAC'].columns] if separate_plots: colors = colm(cmap = cmap, k = np.arange(len(other)+1)) else: colors = colm(cmap = cmap, k = np.arange((len(other)+1)*len(species))) DAC = re['DAC'] hand=[] if separate_plots: n_cols = int(np.ceil(len(re['DAC'].columns)/2)) col = [colors[0] for a in range(len(re['DAC'].columns))] if self.scattercut is None: ax = DAC.plot(subplots = separate_plots, figsize = (12, 10), layout = (n_cols, 2), legend = False, color = col, sharex = False) a=ax.ravel() handles,labels=a[0].get_legend_handles_labels() hand.append(handles[-1]) elif isinstance(self.scattercut[0], numbers.Number): ax = DAC.loc[:self.scattercut[0], :].plot(subplots = separate_plots, figsize = (12, 10), layout = (n_cols, 2), legend = False, color = col, sharex = False) a=ax.ravel() handles,labels=a[0].get_legend_handles_labels() hand.append(handles[-1]) DAC_cut=DAC.loc[self.scattercut[1]:, :] for i,am in enumerate(DAC_cut.columns): DAC_cut.iloc[:,i].plot(ax = a[i], legend = False, color = col) else: scattercut = flatten(self.scattercut) for i in range(len(scattercut)/2+1): if i == 0: ax = DAC.loc[:scattercut[0], :].plot(subplots = separate_plots, figsize = (12, 10), layout = (n_cols, 2), legend = False, color = col, sharex = False) a=ax.ravel() handles,labels=a[0].get_legend_handles_labels() hand.append(handles[-1]) elif i<(len(scattercut)/2): for j,am in enumerate(ax): DAC.loc[scattercut[2*i-1]:scattercut[2*i], :].plot(ax = a[j], legend = False, color = col, label = '_nolegend_') else: for j,am in enumerate(ax): DAC.loc[scattercut[-1]:, :].plot(ax = a[j], legend = False, color = col, label = '_nolegend_') else: if self.scattercut is None: ax = DAC.plot(subplots = separate_plots, figsize = (16, 8), legend = False, color = colors[:len(species)], label = '_nolegend_') elif isinstance(self.scattercut[0], numbers.Number): ax = DAC.loc[:self.scattercut[0], :].plot(subplots = separate_plots, figsize = (16, 8), legend = False, color = colors[:len(species)], label = '_nolegend_') ax = DAC.loc[self.scattercut[1]:, :].plot(ax=ax, subplots = separate_plots, figsize = (16, 8), legend = False, color = colors[:len(species)], label = '_nolegend_') else: scattercut = flatten(self.scattercut) for i in range(len(scattercut)/2+1): if i == 0: ax = DAC.loc[:scattercut[0], :].plot(subplots = separate_plots, figsize = (16, 8), legend = False, color = colors[:len(species)], label = '_nolegend_') elif i<(len(scattercut)/2): ax = DAC.loc[scattercut[2*i-1]:scattercut[2*i], :].plot(ax=ax, subplots = separate_plots, figsize = (16, 8), legend = False, color = colors[:len(species)], label = '_nolegend_') else: ax = DAC.loc[scattercut[-1]:, :].plot(ax=ax, subplots = separate_plots, figsize = (16, 8), legend = False, color = colors[:len(species)], label = '_nolegend_') if other is not None: for i,o in enumerate(other): try: re=o.re.copy() except: print('%s has no fitted results'%o.filename) continue re['DAC'].columns=[o.filename + '\n' + '%s'%a for a in re['DAC'].columns] if separate_plots: col=[colors[i+1] for a in range(len(re['DAC'].columns))] for j,am in enumerate(re['DAC'].columns): if o.scattercut is None: re['DAC'].iloc[:,j].plot(subplots=False,ax=a[j],legend=False,color=col[i]) if j==0: handles,labels=a[0].get_legend_handles_labels() hand.append(handles[-1]) elif isinstance(o.scattercut[0], numbers.Number): re['DAC'].iloc[:,j].loc[:o.scattercut[0]].plot(subplots=False,ax=a[j],legend=False,color=col[i]) if j==0: handles,labels=a[0].get_legend_handles_labels() hand.append(handles[-1]) re['DAC'].iloc[:,j].loc[o.scattercut[1]:].plot(subplots=False,ax=a[j],legend=False,color=col[i],label = '_nolegend_') else: scattercut = flatten(o.scattercut) for m in range(len(scattercut)/2+1): if m == 0: re['DAC'].iloc[:,j].loc[:scattercut[0]].plot(subplots=False,ax=a[j],legend=False,color=col[i]) if j==0: handles,labels=a[j].get_legend_handles_labels() hand.append(handles[-1]) elif m<(len(scattercut)/2): re['DAC'].iloc[:,j].loc[scattercut[2*m-1]:scattercut[2*m]].plot(subplots=False,ax=a[j],legend=False,color=col[i],label = '_nolegend_') else: re['DAC'].iloc[:,j].loc[scattercut[-1]:].plot(subplots=False,ax=a[j],legend=False,color=col[i],label = '_nolegend_') a[j].set_xlabel('Wavelength in nm') a[j].set_ylabel('Spectral strength in arb. units') a[j].legend(fontsize=8,frameon=False) else: dacs=len(re['DAC'].columns) col=colors[(i+1)*dacs:(i+2)*dacs] DAC=re['DAC'] if o.scattercut is None: ax = DAC.plot(subplots=separate_plots,ax=ax,legend=False,color=colors[(i+1)*len(species):(i+2)*len(species)]) elif isinstance(o.scattercut[0], numbers.Number): ax = DAC.loc[:o.scattercut[0], :].plot(subplots=separate_plots,ax=ax,legend=False,color=colors[(i+1)*len(species):(i+2)*len(species)]) DAC.loc[o.scattercut[1]:, :].plot(subplots=separate_plots,ax=ax,legend=False,color=colors[(i+1)*len(species):(i+2)*len(species)]) else: scattercut = flatten(o.scattercut) for i in range(len(scattercut)/2+1): if i == 0: ax = DAC.loc[:scattercut[0], :].plot(subplots=separate_plots,ax=ax,legend=False,color=colors[(i+1)*len(species):(i+2)*len(species)]) elif i<(len(scattercut)/2): ax = DAC.loc[scattercut[2*i-1]:scattercut[2*i], :].plot(subplots=separate_plots,ax=ax,legend=False,color=colors[(i+1)*len(species):(i+2)*len(species)]) else: ax = DAC.loc[scattercut[-1]:, :].plot(subplots=separate_plots,ax=ax,legend=False,color=colors[(i+1)*len(species):(i+2)*len(species)]) ax.set_xlabel('Wavelength in nm') ax.set_ylabel('Spectral strength in arb. units') ax.legend(fontsize=8,frameon=False) if not hasattr(ax,'__iter__'):ax=np.array([ax]) if spectra is not None: for a in ax: spectra.plot(ax=a,subplots=separate_plots) fig=(ax.ravel())[0].figure if separate_plots: fig.set_size_inches(12,10) axes_number=fig.get_axes() names=[self.filename] if other is not None: for o in other: names.append(o.filename) for i,ax in enumerate(axes_number): try: nametemp=['%s'%species[i] + ' - ' + a for a in names] ax.legend(hand,nametemp) except: pass else: ax=fig.get_axes()[0] names=[self.filename] if other is not None: for o in other: names.append(o.filename) handles,labels=ax.get_legend_handles_labels() nametemp=[] try: for a in names: for b in species: nametemp.append('%s'%b + ' - ' + a) ax.legend(handles,nametemp) except: pass fig.set_size_inches(16,8) fig.tight_layout() if self.save_figures_to_folder: fig.savefig(check_folder(path=self.figure_path,filename='compare_DAC.png'),bbox_inches='tight')
PypiClean
/Axelrod-4.13.0.tar.gz/Axelrod-4.13.0/docs/discussion/axelrods_tournaments.rst
Background to Axelrod's Tournament ================================== `In the 1980s, professor of Political Science Robert Axelrod ran a tournament inviting strategies from collaborators all over the world for the Iterated Prisoner's Dilemma <http://en.wikipedia.org/wiki/The_Evolution_of_Cooperation#Axelrod.27s_tournaments>`_. Another nice write up of Axelrod's work and this tournament on github was put together by `Artem Kaznatcheev <https://plus.google.com/101780559173703781847/posts>`_ `here <https://egtheory.wordpress.com/2015/03/02/ipd/>`_. The Prisoner's Dilemma ---------------------- The `Prisoner's dilemma <http://en.wikipedia.org/wiki/Prisoner%27s_dilemma>`_ is the simple two player game shown below: +----------+---------------+---------------+ | | Cooperate | Defect | +==========+===============+===============+ |Cooperate | (3,3) | (0,5) | +----------+---------------+---------------+ |Defect | (5,0) | (1,1) | +----------+---------------+---------------+ If both players cooperate they will each go to prison for 2 years and receive an equivalent utility of 3. If one cooperates and the other defects: the defector does not go to prison and the cooperator goes to prison for 5 years, the cooperator receives a utility of 0 and the defector a utility of 5. If both defect: they both go to prison for 4 years and receive an equivalent utility of 1. .. note:: Years in prison doesn't equal to utility directly. The formula is U = 5 - Y for Y in [0, 5], where ``U`` is the utility, ``Y`` are years in prison. The reason is to follow the original Axelrod's scoring. By simply investigating the best responses against both possible actions of each player it is immediate to see that the Nash equilibrium for this game is for both players to defect. The Iterated Prisoner's Dilemma ------------------------------- We can use the basic Prisoner's Dilemma as a *stage* game in a repeated game. Players now aim to maximise the utility (corresponding to years in prison) over a repetition of the game. Strategies can take in to account both players history and so can take the form: "I will cooperate unless you defect 3 times in a row at which point I will defect forever." Axelrod ran such a tournament (twice) and invited strategies from anyone who would contribute. The tournament was a round robin and the winner was the strategy who had the lowest total amount of time in prison. This tournament has been used to study how cooperation can evolve from a very simple set of rules. This is mainly because the winner of both tournaments was 'tit for tat': a strategy that would never defect first (referred to as a 'nice' strategy).
PypiClean
/DOMESTIC_CATS-1.0.4-py3-none-any.whl/Domestic-Cats/RFC.py
import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab pd.set_option('display.max_rows', 1000) from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier #Read in Table of Merged Features known_transients = pd.read_csv("Data_Input/Known_Transient_Types.csv", delimiter =",") firstmag_mean,GL_mean,SGSCORE_mean,color_mean = np.mean(known_transients) #Random Forest Classifier feature_names = ['First Mag','Galactic Latitude','SGSCORE','Color'] X=known_transients[feature_names] y=known_transients['Type'] # Labels # Split dataset into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # 70% training and 30% test clf=RandomForestClassifier(n_estimators=50) #Train the model using the training sets y_pred=clf.predict(X_test) clf.fit(X_train,y_train) y_pred=clf.predict(X_test) #Import scikit-learn metrics module for accuracy calculation from sklearn import metrics # Model Accuracy, how often is the classifier correct? feature_imp = pd.Series(clf.feature_importances_,index=feature_names).sort_values(ascending=False) print (feature_imp) #print ("Accuracy for training set data only:",metrics.accuracy_score(y_test, y_pred)) # On new unknown data #Fill NA Values with Mean values from training data new_transients = pd.read_csv("Data_Output/merge_features/all_features.csv", delimiter =",") new_transients['First Mag'].fillna((firstmag_mean),inplace = True) new_transients['Galactic Latitude'].fillna((GL_mean),inplace = True) new_transients['SGSCORE'].fillna((SGSCORE_mean),inplace = True) new_transients['Color'].fillna((color_mean),inplace = True) new_transients.to_csv('Data_Output/merge_features/all_features_fillNA.csv', sep=',',index=False) #make new prediction prediction = [] for i in range(0,len(new_transients)): prediction.append(clf.predict([[new_transients['First Mag'][i],new_transients['Galactic Latitude'][i],new_transients['SGSCORE'][i],new_transients['Color'][i]]])[0]) d = {'ZTF Name': new_transients['ZTF Name'], 'RFC Prediction': prediction} predictions = pd.DataFrame(data=d) print (predictions) predictions.to_csv('Data_Output/predictions.csv', sep=',',index=False)
PypiClean
/LiveSync-0.2.2-py3-none-any.whl/livesync/folder.py
import asyncio import subprocess import sys from dataclasses import dataclass from pathlib import Path from typing import List, Optional import pathspec import watchfiles KWONLY_SLOTS = {'kw_only': True, 'slots': True} if sys.version_info >= (3, 10) else {} def run_subprocess(command: str, *, quiet: bool = False) -> None: result = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, check=True) if not quiet: print(result.stdout.decode()) @dataclass(**KWONLY_SLOTS) class Target: host: str port: int root: Path def make_target_root_directory(self) -> None: print(f'make target root directory {self.root}') run_subprocess(f'ssh {self.host} -p {self.port} "mkdir -p {self.root}"') class Folder: def __init__(self, local_dir: Path, target: Target) -> None: self.local_path = local_dir.resolve() # one should avoid `absolute` if Python < 3.11 self.target = target # from https://stackoverflow.com/a/22090594/3419103 match_pattern = pathspec.patterns.gitwildmatch.GitWildMatchPattern self._ignore_spec = pathspec.PathSpec.from_lines(match_pattern, self.get_excludes()) self._stop_watching = asyncio.Event() @property def target_path(self) -> Path: return self.target.root / self.local_path.stem @property def ssh_path(self) -> str: return f'{self.target.host}:{self.target_path}' def get_excludes(self) -> List[str]: return ['.git/', '__pycache__/', '.DS_Store', '*.tmp', '.env'] + \ self._parse_ignore_file(self.local_path / '.syncignore') + \ self._parse_ignore_file(self.local_path / '.gitignore') @staticmethod def _parse_ignore_file(path: Path) -> List[str]: if not path.is_file(): return [] with path.open() as f: return [line.strip() for line in f.readlines() if not line.startswith('#')] def get_summary(self) -> str: summary = f'{self.local_path} --> {self.ssh_path}\n' if not (self.local_path / '.git').exists(): return summary try: cmd = ['git', 'log', '--pretty=format:[%h]\n', '-n', '1'] summary += subprocess.check_output(cmd, cwd=self.local_path).decode() cmd = ['git', 'status', '--short', '--branch'] summary += subprocess.check_output(cmd, cwd=self.local_path).decode().strip() + '\n' except Exception: pass # maybe git is not installed return summary async def watch(self, on_change_command: Optional[str]) -> None: try: async for changes in watchfiles.awatch(self.local_path, stop_event=self._stop_watching, watch_filter=lambda _, filepath: not self._ignore_spec.match_file(filepath)): for change, filepath in changes: print('?+U-'[change], filepath) self.sync(on_change_command) except RuntimeError as e: if 'Already borrowed' not in str(e): raise def stop_watching(self) -> None: self._stop_watching.set() def sync(self, post_sync_command: Optional[str] = None) -> None: args = '--prune-empty-dirs --delete -avz --checksum --no-t' # args += ' --mkdirs' # INFO: this option is not available in rsync < 3.2.3 args += ''.join(f' --exclude="{e}"' for e in self.get_excludes()) args += f' -e "ssh -p {self.target.port}"' run_subprocess(f'rsync {args} {self.local_path}/ {self.ssh_path}/', quiet=True) if post_sync_command: run_subprocess(f'ssh {self.target.host} -p {self.target.port} "cd {self.target_path}; {post_sync_command}"')
PypiClean
/NeuroTS-3.4.0-py3-none-any.whl/neurots/preprocess/utils.py
# Copyright (C) 2022 Blue Brain Project, EPFL # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. from collections import defaultdict from copy import deepcopy from itertools import chain _REGISTERED_FUNCTIONS = { "preprocessors": defaultdict(set), "validators": defaultdict(set), "global_preprocessors": set(), "global_validators": set(), } def register_global_preprocessor(): """Register a global preprocess function.""" def inner(func): _REGISTERED_FUNCTIONS["global_preprocessors"].add(func) return func return inner def register_preprocessor(*growth_methods): """Register a preprocess function.""" def inner(func): for i in growth_methods: _REGISTERED_FUNCTIONS["preprocessors"][i].add(func) return func return inner def register_global_validator(): """Register a global validation function.""" def inner(func): _REGISTERED_FUNCTIONS["global_validators"].add(func) return func return inner def register_validator(*growth_methods): """Register a validation function.""" def inner(func): for i in growth_methods: _REGISTERED_FUNCTIONS["validators"][i].add(func) return func return inner def preprocess_inputs(params, distrs): """Validate and preprocess all inputs.""" params = deepcopy(params) distrs = deepcopy(distrs) for preprocess_func in chain( _REGISTERED_FUNCTIONS["global_validators"], _REGISTERED_FUNCTIONS["global_preprocessors"], ): preprocess_func(params, distrs) for grow_type in params["grow_types"]: growth_method = params[grow_type]["growth_method"] for preprocess_func in chain( _REGISTERED_FUNCTIONS["validators"][growth_method], _REGISTERED_FUNCTIONS["preprocessors"][growth_method], ): preprocess_func(params[grow_type], distrs[grow_type]) return params, distrs
PypiClean
/Md-Notes-api-1.0.0.tar.gz/Md-Notes-api-1.0.0/README.md
# Getting Started with MdNotes ## Getting Started ### Introduction API for Markdown Notes app. ### Install the Package The package is compatible with Python versions `2 >=2.7.9` and `3 >=3.4`. Install the package from PyPi using the following pip command: ```python pip install Md-Notes-api==1.0.0 ``` You can also view the package at: https://pypi.python.org/pypi/Md-Notes-api ### Initialize the API Client The following parameters are configurable for the API Client: | Parameter | Type | Description | | --- | --- | --- | | `o_auth_client_id` | `string` | OAuth 2 Client ID | | `o_auth_redirect_uri` | `string` | OAuth 2 Redirection endpoint or Callback Uri | | `environment` | Environment | The API environment. <br> **Default: `Environment.PRODUCTION`** | | `timeout` | `float` | The value to use for connection timeout. <br> **Default: 60** | | `max_retries` | `int` | The number of times to retry an endpoint call if it fails. <br> **Default: 3** | | `backoff_factor` | `float` | A backoff factor to apply between attempts after the second try. <br> **Default: 0** | The API client can be initialized as follows: ```python from mdnotes.mdnotes_client import MdnotesClient from mdnotes.configuration import Environment client = MdnotesClient( o_auth_client_id='OAuthClientId', o_auth_redirect_uri='OAuthRedirectUri', environment = Environment.PRODUCTION,) ``` You must now authorize the client. ### Authorization Your application must obtain user authorization before it can execute an endpoint call. The SDK uses *OAuth 2.0 Implicit Grant* to obtain a user's consent to perform an API request on user's behalf. This process requires the presence of a client-side JavaScript code on the redirect URI page to receive the *access token* after the consent step is completed. #### 1- Obtain user consent To obtain user's consent, you must redirect the user to the authorization page. The `get_authorization_url()` method creates the URL to the authorization page. ```python auth_url = client.auth.get_authorization_url() ``` #### 2- Handle the OAuth server response Once the user responds to the consent request, the OAuth 2.0 server responds to your application's access request by redirecting the user to the redirect URI specified set in `Configuration`. The redirect URI will receive the *access token* as the `token` argument in the URL fragment. ``` https://example.com/oauth/callback#token=XXXXXXXXXXXXXXXXXXXXXXXXX ``` The access token must be extracted by the client-side JavaScript code. The access token can be used to authorize any further endpoint calls by the JavaScript code. ## Client Class Documentation ### MdNotes Client The gateway for the SDK. This class acts as a factory for the Controllers and also holds the configuration of the SDK. ### Controllers | Name | Description | | --- | --- | | service | Gets ServiceController | | user | Gets UserController | ## API Reference ### List of APIs * [Service](#service) * [User](#user) ### Service #### Overview ##### Get instance An instance of the `ServiceController` class can be accessed from the API Client. ``` service_controller = client.service ``` #### Get Status ```python def get_status(self) ``` ##### Response Type [`ServiceStatus`](#service-status) ##### Example Usage ```python result = service_controller.get_status() ``` ### User #### Overview ##### Get instance An instance of the `UserController` class can be accessed from the API Client. ``` user_controller = client.user ``` #### Get User ```python def get_user(self) ``` ##### Response Type [`User`](#user-1) ##### Example Usage ```python result = user_controller.get_user() ``` ## Model Reference ### Structures * [Note](#note) * [User](#user-1) * [Service Status](#service-status) * [O Auth Token](#o-auth-token) #### Note ##### Class Name `Note` ##### Fields | Name | Type | Tags | Description | | --- | --- | --- | --- | | `id` | `long|int` | Required | - | | `title` | `string` | Required | - | | `body` | `string` | Required | - | | `user_id` | `long|int` | Required | - | | `created_at` | `string` | Required | - | | `updated_at` | `string` | Required | - | ##### Example (as JSON) ```json { "id": 112, "title": "title4", "body": "body6", "user_id": 208, "created_at": "created_at2", "updated_at": "updated_at4" } ``` #### User ##### Class Name `User` ##### Fields | Name | Type | Tags | Description | | --- | --- | --- | --- | | `id` | `int` | Required | - | | `name` | `string` | Required | - | | `email` | `string` | Required | - | | `created_at` | `string` | Required | - | | `updated_at` | `string` | Required | - | ##### Example (as JSON) ```json { "id": 112, "name": "name0", "email": "email6", "created_at": "created_at2", "updated_at": "updated_at4" } ``` #### Service Status ##### Class Name `ServiceStatus` ##### Fields | Name | Type | Tags | Description | | --- | --- | --- | --- | | `app` | `string` | Required | - | | `moto` | `string` | Required | - | | `notes` | `int` | Required | - | | `users` | `int` | Required | - | | `time` | `string` | Required | - | | `os` | `string` | Required | - | | `php_version` | `string` | Required | - | | `status` | `string` | Required | - | ##### Example (as JSON) ```json { "app": "app2", "moto": "moto8", "notes": 134, "users": 202, "time": "time0", "os": "os8", "php_version": "php_version4", "status": "status8" } ``` #### O Auth Token OAuth 2 Authorization endpoint response ##### Class Name `OAuthToken` ##### Fields | Name | Type | Tags | Description | | --- | --- | --- | --- | | `access_token` | `string` | Required | Access token | | `token_type` | `string` | Required | Type of access token | | `expires_in` | `long|int` | Optional | Time in seconds before the access token expires | | `scope` | `string` | Optional | List of scopes granted<br>This is a space-delimited list of strings. | | `expiry` | `long|int` | Optional | Time of token expiry as unix timestamp (UTC) | ##### Example (as JSON) ```json { "access_token": "access_token8", "token_type": "token_type2", "expires_in": null, "scope": null, "expiry": null } ``` ### Enumerations * [O Auth Provider Error](#o-auth-provider-error) #### O Auth Provider Error OAuth 2 Authorization error codes ##### Class Name `OAuthProviderErrorEnum` ##### Fields | Name | Description | | --- | --- | | `INVALID_REQUEST` | The request is missing a required parameter, includes an unsupported parameter value (other than grant type), repeats a parameter, includes multiple credentials, utilizes more than one mechanism for authenticating the client, or is otherwise malformed. | | `INVALID_CLIENT` | Client authentication failed (e.g., unknown client, no client authentication included, or unsupported authentication method). | | `INVALID_GRANT` | The provided authorization grant (e.g., authorization code, resource owner credentials) or refresh token is invalid, expired, revoked, does not match the redirection URI used in the authorization request, or was issued to another client. | | `UNAUTHORIZED_CLIENT` | The authenticated client is not authorized to use this authorization grant type. | | `UNSUPPORTED_GRANT_TYPE` | The authorization grant type is not supported by the authorization server. | | `INVALID_SCOPE` | The requested scope is invalid, unknown, malformed, or exceeds the scope granted by the resource owner. | ### Exceptions * [O Auth Provider](#o-auth-provider) #### O Auth Provider OAuth 2 Authorization endpoint exception ##### Class Name `OAuthProviderException` ##### Fields | Name | Type | Tags | Description | | --- | --- | --- | --- | | `error` | [`OAuthProviderErrorEnum`](#o-auth-provider-error) | Required | Error code | | `error_description` | `string` | Optional | Human-readable text providing additional information on error.<br>Used to assist the client developer in understanding the error that occurred. | | `error_uri` | `string` | Optional | A URI identifying a human-readable web page with information about the error, used to provide the client developer with additional information about the error | ##### Example (as JSON) ```json { "error": "invalid_request", "error_description": null, "error_uri": null } ``` ## Utility Classes Documentation ### ApiHelper A utility class for processing API Calls. Also contains classes for supporting standard datetime formats. #### Methods | Name | Description | | --- | --- | | json_deserialize | Deserializes a JSON string to a Python dictionary. | #### Classes | Name | Description | | --- | --- | | HttpDateTime | A wrapper for datetime to support HTTP date format. | | UnixDateTime | A wrapper for datetime to support Unix date format. | | RFC3339DateTime | A wrapper for datetime to support RFC3339 format. | ## Common Code Documentation ### HttpResponse Http response received. #### Parameters | Name | Type | Description | | --- | --- | --- | | status_code | int | The status code returned by the server. | | reason_phrase | str | The reason phrase returned by the server. | | headers | dict | Response headers. | | text | str | Response body. | | request | HttpRequest | The request that resulted in this response. | ### HttpRequest Represents a single Http Request. #### Parameters | Name | Type | Tag | Description | | --- | --- | --- | --- | | http_method | HttpMethodEnum | | The HTTP method of the request. | | query_url | str | | The endpoint URL for the API request. | | headers | dict | optional | Request headers. | | query_parameters | dict | optional | Query parameters to add in the URL. | | parameters | dict &#124; str | optional | Request body, either as a serialized string or else a list of parameters to form encode. | | files | dict | optional | Files to be sent with the request. |
PypiClean
/LFT-0.1.1-py3-none-any.whl/lft/app/node.py
from typing import IO, Dict, Type, OrderedDict from lft.app.data import DefaultDataFactory from lft.app.epoch import RotateEpoch from lft.app.vote import DefaultVoteFactory from lft.app.network import Network from lft.app.logger import Logger from lft.consensus.messages.data import Data from lft.event import EventSystem, EventMediator from lft.event.mediators import DelayedEventMediator from lft.consensus.consensus import Consensus from lft.consensus.events import RoundStartEvent, RoundEndEvent, InitializeEvent __all__ = ("Node", ) class Node: def __init__(self, node_id: bytes): self.node_id = node_id self.logger = Logger(node_id).logger self.event_system = EventSystem(self.logger) self.event_system.set_mediator(DelayedEventMediator) self._nodes = None self._network = Network(self.event_system) self._consensus = Consensus( self.event_system, self.node_id, DefaultDataFactory(self.node_id), DefaultVoteFactory(self.node_id) ) self._epoch_num = -1 self._round_num = -1 # For store self.commit_datums: OrderedDict[int, Data] = OrderedDict() self.event_system.simulator.register_handler(InitializeEvent, self._on_init_event) self.event_system.simulator.register_handler(RoundEndEvent, self._on_round_end_event) async def _on_init_event(self, init_event: InitializeEvent): self._nodes = init_event.epoch_pool[-1].voters async def _on_round_end_event(self, round_end_event: RoundEndEvent): if round_end_event.is_success and round_end_event.commit_id: data = self._consensus._data_pool.get_data(round_end_event.commit_id) self.commit_datums[data.number] = data if (self._epoch_num, self._round_num) > (round_end_event.epoch_num, round_end_event.round_num): return self._epoch_num = round_end_event.epoch_num self._round_num = round_end_event.round_num + 1 await self._start_new_round() async def _start_new_round(self): round_start_event = RoundStartEvent( epoch=RotateEpoch(1, self._nodes), round_num=self._round_num ) round_start_event.deterministic = False mediator = self.event_system.get_mediator(DelayedEventMediator) mediator.execute(0.5, round_start_event) def __del__(self): self.close() def close(self): if self._network: self._network.close() self._network = None if self._consensus: self._consensus.close() self._consensus = None if self.event_system: self.event_system.close() self.event_system = None def start(self, blocking=True): self.event_system.start(blocking) def start_record(self, record_io: IO, mediator_ios: Dict[Type[EventMediator], IO]=None, blocking=True): self.event_system.start_record(record_io, mediator_ios, blocking) def start_replay(self, record_io: IO, mediator_ios: Dict[Type[EventMediator], IO]=None, blocking=True): self.event_system.start_replay(record_io, mediator_ios, blocking) def register_peer(self, peer: 'Node'): self._network.add_peer(peer._network) def unregister_peer(self, peer: 'Node'): self._network.remove_peer(peer._network)
PypiClean
/FuXi-1.4.production.tar.gz/FuXi-1.4.production/lib/DLP/CompletionReasoning.py
__author__ = 'chimezieogbuji' import sys from FuXi.Syntax.InfixOWL import * from FuXi.DLP import SkolemizeExistentialClasses, \ SKOLEMIZED_CLASS_NS, \ LloydToporTransformation, \ makeRule from FuXi.Horn.HornRules import HornFromN3 from FuXi.Rete.RuleStore import SetupRuleStore from FuXi.SPARQL.BackwardChainingStore import TopDownSPARQLEntailingStore from rdflib.Graph import Graph from cStringIO import StringIO from rdflib import plugin,RDF,RDFS,OWL,URIRef,URIRef,Literal,Variable,BNode, Namespace from FuXi.Horn.HornRules import HornFromN3 LIST_NS = Namespace('http://www.w3.org/2000/10/swap/list#') KOR_NS = Namespace('http://korrekt.org/') EX_NS = Namespace('http://example.com/') EX_CL = ClassNamespaceFactory(EX_NS) derivedPredicates = [ LIST_NS['in'], KOR_NS.subPropertyOf, RDFS.subClassOf, OWL.onProperty, OWL.someValuesFrom ] hybridPredicates = [ RDFS.subClassOf, OWL.onProperty, OWL.someValuesFrom ] CONDITIONAL_THING_RULE=\ """ @prefix kor: <http://korrekt.org/>. @prefix owl: <http://www.w3.org/2002/07/owl#>. @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>. @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>. @prefix list: <http://www.w3.org/2000/10/swap/list#>. #Rule 4 (needs to be added conditionally - only if owl:Thing appears in the ontology) { ?C rdfs:subClassOf ?C } => { ?C rdfs:subClassOf owl:Thing }.""" RULES=\ """ @prefix kor: <http://korrekt.org/>. @prefix owl: <http://www.w3.org/2002/07/owl#>. @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>. @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>. @prefix list: <http://www.w3.org/2000/10/swap/list#>. #ELH completion rules in N3 / RIF / Datalog {?L rdf:first ?I} => {?I list:in ?L} . {?L rdf:rest ?R. ?I list:in ?R} => {?I list:in ?L} . #CTO: Sufficient to assert ?R kor:subPropertyOf ?R for all properties ?R in ontology? { ?P1 rdfs:subPropertyOf ?P2 } => { ?P1 kor:subPropertyOf ?P2 } . #kor:subPropertyOf a owl:TransitiveProperty . { ?P1 kor:subPropertyOf ?P2 . ?P2 kor:subPropertyOf ?P3 } => { ?P1 kor:subPropertyOf ?P3 } . #Rule 1 #rdfs:subClassOf a owl:TransitiveProperty { ?C1 rdfs:subClassOf ?C2 . ?C2 rdfs:subClassOf ?C3 } => { ?C1 rdfs:subClassOf ?C3 } . #Rule 2 (CTO: Different from LL's formulation?) { ?C rdfs:subClassOf ?CLASS . ?CLASS owl:intersectionOf ?L . ?D list:in ?L } => { ?C rdfs:subClassOf ?D } . #Rule 3 { ?C rdfs:subClassOf ?RESTRICTION . ?RESTRICTION owl:onProperty ?R ; owl:someValuesFrom ?D } => { ?D rdfs:subClassOf ?D } . #Rule 5 { ?C rdfs:subClassOf ?D1, ?D2 . ?D1 list:in ?L . ?D2 list:in ?L . ?E owl:intersectionOf ?L } => { ?C rdfs:subClassOf ?E } . #Rule 6 { ?C rdfs:subClassOf ?D . ?E owl:onProperty ?S ; owl:someValuesFrom ?D } => { [ a owl:Restriction; owl:onProperty ?S ; owl:someValuesFrom ?C ] rdfs:subClassOf ?E } . #Rule 7 { ?D rdfs:subClassOf ?RESTRICTION1 . ?RESTRICTION1 owl:onProperty ?R ; owl:someValuesFrom ?C . ?RESTRICTION2 owl:onProperty ?S ; owl:someValuesFrom ?C . ?RESTRICTION2 rdfs:subClassOf ?E . ?R kor:subPropertyOf ?S } => { ?D rdfs:subClassOf ?E } . #Rule 8 { ?D rdfs:subClassOf ?RESTRICTION1 . ?RESTRICTION1 owl:onProperty ?R ; owl:someValuesFrom ?C . ?RESTRICTION2 owl:onProperty ?S ; owl:someValuesFrom ?C . ?RESTRICTION2 rdfs:subClassOf ?E . ?R kor:subPropertyOf ?T . ?T kor:subPropertyOf ?S . ?T a owl:TransitiveProperty } => { [ a owl:Restriction; owl:onProperty ?T ; owl:someValuesFrom ?D ] rdfs:subClassOf ?E } . """ LEFT_SUBSUMPTION_OPERAND = 0 RIGHT_SUBSUMPTION_OPERAND = 1 BOTH_SUBSUMPTION_OPERAND = 2 NEITHER_SUBSUMPTION_OPERAND = 3 def WhichSubsumptionOperand(term,owlGraph): topDownStore=TopDownSPARQLEntailingStore( owlGraph.store, owlGraph, idb=HornFromN3(StringIO(SUBSUMPTION_SEMANTICS)), DEBUG=False, derivedPredicates = [OWL_NS.sameAs], hybridPredicates = [OWL_NS.sameAs]) targetGraph = Graph(topDownStore) appearsLeft = targetGraph.query( "ASK { <%s> rdfs:subClassOf [] } ", initNs={u'rdfs':RDFS.RDFSNS}) appearsRight = targetGraph.query( "ASK { [] rdfs:subClassOf <%s> } ", initNs={u'rdfs':RDFS.RDFSNS}) if appearsLeft and appearsRight: return BOTH_SUBSUMPTION_OPERAND elif appearsLeft: return LEFT_SUBSUMPTION_OPERAND else: return RIGHT_SUBSUMPTION_OPERAND def StructuralTransformation(owlGraph,newOwlGraph): """ Entry point for the transformation of the given ontology >>> EX = Namespace('http://example.com/') >>> EX_CL = ClassNamespaceFactory(EX) >>> graph = Graph() >>> graph.bind('ex',EX,True) >>> Individual.factoryGraph = graph >>> kneeJoint = EX_CL.KneeJoint >>> joint = EX_CL.Joint >>> knee = EX_CL.Knee >>> isPartOf = Property(EX.isPartOf) >>> structure = EX_CL.Structure >>> leg = EX_CL.Leg >>> hasLocation = Property(EX.hasLocation) >>> kneeJoint.equivalentClass = [joint & (isPartOf|some|knee)] >>> legStructure = EX_CL.LegStructure >>> legStructure.equivalentClass = [structure & (isPartOf|some|leg)] >>> structure += leg >>> locatedInLeg = hasLocation|some|leg >>> locatedInLeg += knee >>> newGraph,conceptMap = StructuralTransformation(graph) >>> revDict = dict([(v,k) for k,v in conceptMap.items()]) >>> newGraph.bind('ex',EX,True) >>> Individual.factoryGraph = newGraph >>> for c in AllClasses(newGraph): ... if c.identifier in revDict: print "## New concept for %s ##"%revDict[c.identifier] ... print c.__repr__(True) ... print "################################" """ FreshConcept = {} newOwlGraph.bind('skolem',SKOLEMIZED_CLASS_NS,True) for cls in AllClasses(owlGraph): ProcessConcept(cls,owlGraph,FreshConcept,newOwlGraph) return newOwlGraph, FreshConcept def ProcessConcept(klass,owlGraph,FreshConcept,newOwlGraph): """ This method implements the pre-processing portion of the completion-based procedure and recursively transforms the input ontology one concept at a time """ iD = klass.identifier #maps the identifier to skolem:bnodeLabel if #the identifier is a BNode or to skolem:newBNodeLabel #if its a URI FreshConcept[iD] = SkolemizeExistentialClasses( BNode() if isinstance(iD,URIRef) else iD ) #A fresh atomic concept (A_c) newCls = Class(FreshConcept[iD],graph=newOwlGraph) cls = CastClass(klass,owlGraph) #determine if the concept is the left, right (or both) #operand of a subsumption axiom in the ontology location = WhichSubsumptionOperand(iD,owlGraph) print repr(cls) if isinstance(iD,URIRef): #An atomic concept? if location in [LEFT_SUBSUMPTION_OPERAND,BOTH_SUBSUMPTION_OPERAND]: print "Original (atomic) concept appears in the left HS of a subsumption axiom" #If class is left operand of subsumption operator, #assert (in new OWL graph) that A_c subsumes the concept _cls = Class(cls.identifier,graph=newOwlGraph) newCls += _cls print "%s subsumes %s"%(newCls,_cls) if location in [RIGHT_SUBSUMPTION_OPERAND,BOTH_SUBSUMPTION_OPERAND]: print "Original (atomic) concept appears in the right HS of a subsumption axiom" #If class is right operand of subsumption operator, #assert that it subsumes A_c _cls = Class(cls.identifier,graph=newOwlGraph) _cls += newCls print "%s subsumes %s"%(_cls,newCls) elif isinstance(cls,Restriction): if location != NEITHER_SUBSUMPTION_OPERAND: #appears in at least one subsumption operator #An existential role restriction print "Original (role restriction) appears in a subsumption axiom" role = Property(cls.onProperty,graph=newOwlGraph) fillerCls = ProcessConcept( Class(cls.restrictionRange), owlGraph, FreshConcept, newOwlGraph) #leftCls is (role SOME fillerCls) leftCls = role|some|fillerCls print "let leftCls be %s"%leftCls if location in [LEFT_SUBSUMPTION_OPERAND,BOTH_SUBSUMPTION_OPERAND]: #if appears as the left operand, we say A_c subsumes #leftCls newCls += leftCls print "%s subsumes leftCls"%newCls if location in [RIGHT_SUBSUMPTION_OPERAND,BOTH_SUBSUMPTION_OPERAND]: #if appears as right operand, we say left Cls subsumes A_c leftCls += newCls print "leftCls subsumes %s"%newCls else: assert isinstance(cls,BooleanClass),"Not ELH ontology: %r"%cls assert cls._operator == OWL_NS.intersectionOf,"Not ELH ontology" print "Original conjunction (or boolean operator wlog ) appears in a subsumption axiom" #A boolean conjunction if location != NEITHER_SUBSUMPTION_OPERAND: members = [ProcessConcept(Class(c), owlGraph, FreshConcept, newOwlGraph) for c in cls] newBoolean = BooleanClass(BNode(),members=members,graph=newOwlGraph) #create a boolean conjunction of the fresh concepts corresponding #to processing each member of the existing conjunction if location in [LEFT_SUBSUMPTION_OPERAND,BOTH_SUBSUMPTION_OPERAND]: #if appears as the left operand, we say the new conjunction #is subsumed by A_c newCls += newBoolean print "%s subsumes %s"%(newCls,newBoolean) if location in [RIGHT_SUBSUMPTION_OPERAND,BOTH_SUBSUMPTION_OPERAND]: #if appears as the right operand, we say A_c is subsumed by #the new conjunction newBoolean += newCls print "%s subsumes %s"%(newBoolean,newCls) return newCls def createTestOntGraph(): graph = Graph() graph.bind('ex',EX_NS,True) Individual.factoryGraph = graph kneeJoint = EX_CL.KneeJoint joint = EX_CL.Joint knee = EX_CL.Knee isPartOf = Property(EX_NS.isPartOf) graph.add((isPartOf.identifier,RDF.type,OWL_NS.TransitiveProperty)) structure = EX_CL.Structure leg = EX_CL.Leg hasLocation = Property(EX_NS.hasLocation,subPropertyOf=[isPartOf]) # graph.add((hasLocation.identifier,RDFS.subPropertyOf,isPartOf.identifier)) kneeJoint.equivalentClass = [joint & (isPartOf|some|knee)] legStructure = EX_CL.LegStructure legStructure.equivalentClass = [structure & (isPartOf|some|leg)] structure += leg structure += joint locatedInLeg = hasLocation|some|leg locatedInLeg += knee # print graph.serialize(format='n3') # newGraph = Graph() # newGraph.bind('ex',EX_NS,True) # newGraph,conceptMap = StructuralTransformation(graph,newGraph) # revDict = dict([(v,k) for k,v in conceptMap.items()]) # Individual.factoryGraph = newGraph # for oldConceptId ,newConceptId in conceptMap.items(): # if isinstance(oldConceptId,BNode): # oldConceptRepr = repr(Class(oldConceptId,graph=graph)) # if oldConceptRepr.strip() == 'Some Class': # oldConceptRepr = manchesterSyntax( # oldConceptId, # graph) # print "%s -> %s"%( # oldConceptRepr, # newConceptId # ) # # else: # print "%s -> %s"%( # oldConceptId, # newConceptId # ) # # for c in AllClasses(newGraph): # if isinstance(c.identifier,BNode) and c.identifier in conceptMap.values(): # print "## %s ##"%c.identifier # else: # print "##" * 10 # print c.__repr__(True) # print "################################" return graph def GetELHConsequenceProcedureRules(tBoxGraph,useThingRule=True): owlThingAppears = False if useThingRule and OWL.Thing in tBoxGraph.all_nodes(): owlThingAppears = True completionRules = HornFromN3(StringIO(RULES)) if owlThingAppears: completionRules.formulae.extend( HornFromN3(StringIO(CONDITIONAL_THING_RULE))) reducedCompletionRules = set() for rule in completionRules: for clause in LloydToporTransformation(rule.formula): rule = makeRule(clause,{}) # print rule # PrettyPrintRule(rule) reducedCompletionRules.add(rule) return reducedCompletionRules def SetupMetaInterpreter(tBoxGraph,goal,useThingRule=True): from FuXi.LP.BackwardFixpointProcedure import BackwardFixpointProcedure from FuXi.Rete.Magic import SetupDDLAndAdornProgram, PrettyPrintRule from FuXi.Horn.PositiveConditions import BuildUnitermFromTuple, Exists from FuXi.Rete.TopDown import PrepareSipCollection from FuXi.Rete.SidewaysInformationPassing import GetOp owlThingAppears = False if useThingRule and OWL.Thing in tBoxGraph.all_nodes(): owlThingAppears = True completionRules = HornFromN3(StringIO(RULES)) if owlThingAppears: completionRules.formulae.extend( HornFromN3(StringIO(CONDITIONAL_THING_RULE))) reducedCompletionRules = set() for rule in completionRules: for clause in LloydToporTransformation(rule.formula): rule = makeRule(clause,{}) # print rule # PrettyPrintRule(rule) reducedCompletionRules.add(rule) network = SetupRuleStore(makeNetwork=True)[-1] SetupDDLAndAdornProgram( tBoxGraph, reducedCompletionRules, [goal], derivedPreds=derivedPredicates, ignoreUnboundDPreds = True, hybridPreds2Replace=hybridPredicates) lit = BuildUnitermFromTuple(goal) op = GetOp(lit) lit.setOperator(URIRef(op+u'_derived')) goal = lit.toRDFTuple() sipCollection=PrepareSipCollection(reducedCompletionRules) tBoxGraph.templateMap = {} bfp = BackwardFixpointProcedure( tBoxGraph, network, derivedPredicates, goal, sipCollection, hybridPredicates=hybridPredicates, debug=True) bfp.createTopDownReteNetwork(True) pprint(reducedCompletionRules) rt=bfp.answers(debug=True) pprint(rt) print >>sys.stderr, bfp.metaInterpNetwork bfp.metaInterpNetwork.reportConflictSet(True,sys.stderr) for query in bfp.edbQueries: print >>sys.stderr, "Dispatched query against dataset: ", query.asSPARQL() pprint(list(bfp.goalSolutions)) def NormalizeSubsumption(owlGraph): operands = [(clsLHS,clsRHS) for clsLHS,p,clsRHS in owlGraph.triples((None, OWL_NS.equivalentClass, None))] for clsLHS,clsRHS in operands: if isinstance(clsLHS,URIRef) and isinstance(clsRHS,URIRef): owlGraph.add((clsLHS,RDFS.subClassOf,clsRHS)) owlGraph.add((clsRHS,RDFS.subClassOf,clsLHS)) owlGraph.remove((clsLHS,OWL_NS.equivalentClass,clsRHS)) elif isinstance(clsLHS,URIRef) and isinstance(clsRHS,BNode): owlGraph.add((clsLHS,RDFS.subClassOf,clsRHS)) owlGraph.remove((clsLHS,OWL_NS.equivalentClass,clsRHS)) elif isinstance(clsLHS,BNode) and isinstance(clsRHS,URIRef): owlGraph.add((clsRHS,RDFS.subClassOf,clsLHS)) owlGraph.remove((clsLHS,OWL_NS.equivalentClass,clsRHS)) if __name__ == '__main__': goal = (EX_NS.KneeJoint, RDFS.subClassOf, Variable('Class')) ontGraph = createTestOntGraph() # ontGraph.add((EX_NS.KneeJoint, # RDFS.subClassOf, # EX_NS.KneeJoint)) NormalizeSubsumption(ontGraph) for c in AllClasses(ontGraph): print c.__repr__(True) SetupMetaInterpreter(ontGraph,goal) # test() # import doctest # doctest.testmod()
PypiClean
/EasyModeler-2.2.6.zip/EasyModeler-2.2.6/emlib/emlib.py
import sys import os import copy import csv import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import math from scipy.integrate import odeint import scipy import logging import datetime from matplotlib.dates import MONDAY, SATURDAY from matplotlib.dates import MonthLocator , WeekdayLocator ,DateFormatter, YearLocator, num2date, date2num from sas7bdat import SAS7BDAT FORMAT = '%(levelname)s -%(lineno)s- %(message)s' logging.basicConfig(format=FORMAT, level=logging.DEBUG) emlog = logging.getLogger('EASYMODEL') def NuN(value, Type=None): ''' Tries to convert a string into a float, numpy.nan, or specified type. Returns the conversion or the original string if failed. :param value: The string to convert. :param Type: Optinal type to convert value to. :type value: str :type Type: float,int,str,... :returns: value :rtype: float,numpy.nan,str,... **Advantages**: - This function is useful in sanitizing text input files. **Drawbacks**: - Does not alert calling function if conversion failed. :Example: If value(str) is "NaN" or "None", **NuN** will return *numpy.nan* >>> toTest = "NaN" >>> sanitized = NuN(toTest) >>> numpy.isnan(sanitized) True **NuN** will try to convert value (str) into a float. If this is unsuccessful **NuN** will return the string. >>> a = "3.4" >>> b = "three point four" >>> a = NuN(a) >>> b = NuN(b) >>> type(a) <type 'float'> >>> type(b) <type 'str'> Empty strings will be returned as *numpy.nan*. This is useful for importing data tables with missing values for cells. >>> empty = '' >>> sanitized = NuN(empty) >>> print sanitized nan >>> numpy.isnan(sanitized) True Occasionally we may want to import a series of text values as int instead of float. >>> string = "5" >>> integer = NuN(string, Type=int) >>> type(integer) <type 'int'> ''' if not value: return np.nan if (value.lower() == 'nan') or (value.lower() == '') or (value.lower() == 'none'): return np.nan else: if Type: try: Type(value) return Type(value) except: return value else: try: float(value) return float(value) except ValueError: return value def mmddyyyy2date(datestr): ''' Converts mm/dd/yyyy str into a :class:`datetime.date` object :param datestr: The mm/dd/yyyy string to convert. :type datestr: str :returns: date :rtype: datetime.date Method converts a date string in the form mm/dd/yyyy into a :class:`datetime.date` object. Text deliminators are expected in the input string. :Example: Converting a datestring to :class:`datetime.date` object: >>> toTest = "05/20/2013" >>> date = mmddyy2date(toTest) >>> print date 2013-05-20 >>> type(date) <type 'datetime.date'> ''' date = datetime.date(int(datestr[6:]),int(datestr[:2]),int(datestr[3:5])) return date def GFSingle(mean,stdev,model): ''' Test fitness of single model dT :param mean: Observation Mean :type mean: float :param stdev: Observation STDEV :type stdev: float :param model: Simulated value **expected** :type model: float :returns: MSE,WMSE,RANGE,MSER :rtype: float,float,float,float This is a pattern match program which tests goodness of fit for asingle point for models against Observation results. .. note:: This function typically only called by :func:`emlib.GFModel` ''' obs = mean obsE = stdev diff = (abs(obs) - abs(model)) diff2 = diff * diff #set the stdev to 1 if less for this test if obsE < 1: WobsE = 1 else: WobsE = obsE WMSE = diff2 / (math.pow(WobsE,2)) MSE = math.pow(((obs - model)),2) SS = math.pow(((obsE - obs)),2) adjr2 = MSE/SS if (model < (obs + obsE)) and (model > (obs - obsE)): RANGE = 1 MSER = 0 else: RANGE = 0 if (model < (obs - obsE)): MSER = math.pow(((obs - obsE) - model),2) else: MSER = math.pow(((obs + obsE) - model),2) #emlog.debug(str((obs - obsE)) + "\t"+str(model)+"\t"+str((obs + obsE))+"\t"+str(RANGE)) return MSE,WMSE,RANGE,MSER,SS, adjr2 def GFModel(model, Observation): """Fits Model results to Observation :param model: Model to test :param Observation: Historical Observation :type model: emlib.Model :type Observation: emlib.Observation :returns: Fitness object :rtype: emlib.Fitness """ obsT = Observation.T obsXM = Observation.XM obsXE = Observation.XE obsX = 0 obsC = 0 for i in Observation.X: for k in i: obsC += 1 obsX += (k * k) WMSE = 0 MSE = 0 matches = 0 indexobs = 0 RANGE = 0 MSER = 0 O = [] E = [] O_mean = 1 #observed overall mean E_mean = 1 #expected overall mean SS_tot = 0 #total sum of squares (expected) SS_res = 0 #sum of squares of residuals R2 = 1 #R squared adjr2 = 0 emlog.debug("-STDEV\tEXP\t+STDEV\tISRANGE?") for i in obsT: indexsim = 0 for k in model.computedT: indexsim+=1 #we are one index ahead #obs happend at the same exact deltaT of model response if k == i : matches+=1 O.append(obsXM[indexobs]) E.append(model.computed[indexsim-1]) a,b,c,d, e, f= GFSingle(obsXM[indexobs],obsXE[indexobs],model.computed[indexsim-1][0]) MSE+=a WMSE+=b RANGE+=c MSER+=d SS_tot +=e adjr2 +=f break indexobs +=1 WMSE = round(math.sqrt(WMSE),1) if RANGE > 0: #avoid divide by zero RANGE = round((100 * float(RANGE)/matches),1) MSER = round(math.sqrt(MSER),1) Xtot = obsX/obsC Xtot= math.sqrt(Xtot) MSE = math.sqrt(MSE/matches) RMSD = 1 - (MSE/Xtot) if RMSD < 0: RMSD = 0.0 RMSD = round((RMSD * 100),1) MSE = round(MSE,3) Xtot = round(Xtot,3) Xtot= round(math.sqrt(Xtot),3) emlog.debug("GFMODEL #"+str(matches) +" Xtot"+str(Xtot)+" RMSD%:"+str(RMSD)+" RMSE:"+str(MSE)+" RANGE%"+str(RANGE)+" WMSE:"+str(WMSE)) return Fitness([matches,MSE,WMSE,RANGE,MSER,O,E,RMSD,Xtot]) def EMDraw(GraphOpt,x,y,z=None): """ The :func:`matplotlib.plt` wrapper """ fig = plt.figure plt.legend = GraphOpt.labels plt.set_xlabel = GraphOpt.xlabel plt.set_ylabel = GraphOpt.ylabel if GraphOpt.graph == "ts": plt.plot(x,y) if GraphOpt.graph == 'fp': plt.plot(x,y) if GraphOpt.graph == '3d': ax = Axes3D(fig) ax.plot(x,y,z) plt.show(block=opts.block) class dtInput: """ Internal structure for handling dTinput """ def __init__(self,labels,values): self.values = values self.labels = labels def Val(self,label): index = 0 for i in self.labels: if i == label: return self.values[index] index += 1 emlog.error('dtInput '+label + ' not found in list') class GraphOpt: """ Advanced graphing options to pass to :func:`matplotlib.plt` """ _count = 0 def __init__(self): self.__class__._count +=1 self.title = None self.labels = [] self.DPI = None self.mondays = WeekdayLocator(MONDAY) self.months = MonthLocator() self.years = YearLocator() self.monthsFmt = DateFormatter('%d %b %y') self.linecolors = [] self.linewidths = [] self.xlim = None self.ylim = None self.xlabel = None self.ylabel = None self.filename = None self.graph = None self.block = False class Calibration: """ A collection of :class:`emlib.Coefficient` for a model. :param coeffs=: list of :class:`emlib.Coefficient` :param directory=: directory :param filename=: filename :type coeffs=: list,emlib.Coefficient :type directory=: str :type filename=: str """ _count = 0 def __init__(self, coeffs=None, directory=None ,filename=None): self.__class__._count +=1 self.initial = [] self.ID = self.__class__._count emlog.info('New Calibration instance: '+str(self.ID)) self.dir = directory self.filename = filename self.C = [] if not directory: self.dir = "" if filename: self.Read(filename) if coeffs: self.C = coeffs[:] def Read(self, filename,directory=None): """ Read Coefficients from CSV file :param directory=: directory :param filename: filename :type directory=: str :type filename: str :Example: We have a CSV file called bcfile.csv in the working directory. +----------+---------+--------+--------+---------+------------+ |Label | Value | min | Max | ISConst | Desc | +==========+=========+========+========+=========+============+ |kbg | 1 | 0.5 | 1 | 0 | growth | +----------+---------+--------+--------+---------+------------+ |kbm | 0.001 | 0.0001 | .2 | 0 | mortality| +----------+---------+--------+--------+---------+------------+ |kdd | 1 | 0.05| 3 | 0 | depth mort | +----------+---------+--------+--------+---------+------------+ |Bcc | 20 | | | 1 |carrying cap| +----------+---------+--------+--------+---------+------------+ |Ktg | 0.9 | 0.5 | 15 | 0 | | +----------+---------+--------+--------+---------+------------+ |Sopt | 15 | | | 1 |opt salinity| +----------+---------+--------+--------+---------+------------+ |Ksg | 8 | 6 | 15 | 0 | | +----------+---------+--------+--------+---------+------------+ |Ksd | 2.2 | 0.9 | 7 | 0 | | +----------+---------+--------+--------+---------+------------+ >>> benthosCal = emlib.Calibration() >>> benthosCal.Read(bcfile.csv) INFO -243- New Calibration instance: 1 DEBUG -351- C:1 Kbg 1.0 DEBUG -351- C:2 Kbm 0.001 DEBUG -351- C:3 Kdd 1.0 DEBUG -351- C:4 Bcc 20.0 DEBUG -351- C:5 Ktg 0.9 DEBUG -351- C:6 Sopt 15.0 DEBUG -351- C:7 Ksg 8.0 DEBUG -351- C:8 Ksd 2.2 INFO -272- imported C file """ self.C = [] if directory: self.dir = directory if filename: self.filename = filename myspamReader = csv.reader(open(os.path.join(self.dir, self.filename),'rb'), delimiter=',') firstline = next(myspamReader) for row in myspamReader: self.C.append(Coefficient(row[0],val=NuN(row[1]),min=NuN(row[2]),max=NuN(row[3]),isconst=row[4],desc=row[5])) emlog.info('imported C file') def Add(self,label,val=None,min=None,max=None,isconst=None,desc=None): """ Add a single coefficient to the calibration set """ self.C.append(Coefficient(label,val,min,max,isconst,desc)) def Val(self,label): """ Returns value of coefficient by label """ for i in self.C: if i.label == label: return i.var emlog.error('Coefficient '+label + ' not found in list') def UpdateC(self,tag,val=None,min=None,max=None,isconst=None,desc=None): """ Update an existing Coefficient in the calibration set """ for i in self.C: if i.label == tag: if val: i.var = val if min: i.min = min if desc: i.desc = desc if max: i.max = max if (isconst == "FALSE") or (isconst == 0): i.isconst = False else: i.isconst = True break def SetCoeffs(self,Coeffs): """ Copy coefficients from array """ self.C = coeffs[:] def Write(self,directory=None,filename=None): """ Write coefficients to CSV file. Will overwrite contents if file exists. """ if directory: self.dir = directory if filename: self.filename = filename f = open(self.dir+self.filename, 'wb') spamWriter = csv.writer(f, delimiter=',',quotechar='|', quoting=csv.QUOTE_MINIMAL) index = 0 series = ["Label","Value","Min","Max","ISConst","Desc"] spamWriter.writerow(series) for i in self.C: spamWriter.writerow(i.Get()) f.close() emlog.info('Saved C file') def Print(self): """ Prints :class:`emlib.Calibration` structure to STDOUT >>> benthosCal.Print() Label Value Min Max ISConst Desc Kbg 1.0 0.5 1.0 False growth Kbm 0.001 0.0001 0.2 False mortality Kdd 1.0 0.05 3.0 False depth mort Bcc 20.0 nan nan True carrying cap Ktg 0.9 0.5 15.0 False Sopt 15.0 nan nan True opt salinity Ksg 8.0 6.0 15.0 False Ksd 2.2 0.9 7.0 False """ print "Label\tValue\tMin\tMax\tISConst\tDesc" for i in self.C: i.Print() def GetC(self,tag): """ Return a single :class:`emlib.Coefficient` structure by label :param tag: Coefficient label :type tag: str :returns: Coefficient :rtype: emlib.Coefficient """ for i in self.C: if i.label == tag: return i def Randomize(self): """ Randomizes all coefficients that have **emlib.Coefficient.isconst** set to *False* .. seealso:: :class:`emlib.Coefficient.Randomize` """ for i in self.C: i.Randomize() self.GF = [] def Get(self): """ Return a list of all :class:`emlib.Coefficient` objects. :returns: list of :class:`emlib.Coefficient` :rtype: list """ tmp = [] for i in self.C: tmp.append(i.var) return tmp def GetLabels(self): """ Return list of all :class:`emlib.Coefficient` labels :returns: : list of labels :rtype: list """ tmp = [] for i in self.C: tmp.append(i.label) return tmp class Coefficient: """ A single parameter coefficient. :param label: short description :param val=: coefficient value :param min=: minimum value :param max=: maximum value :param isconst=: is mutable coefficient? :param desc=: Long description :type label: str :type val=: float :type min=: float :type max=: float :type isconst=: bool :type desc=: str """ _count = 0 def __init__(self,label,val=None,min=None,max=None,isconst=None,desc=None): self.__class__._count +=1 self.label = label self.desc = desc self.var = val self.min = min self.max = max if (isconst): if (isconst == "False" ) or (isconst == False): self.isconst = False else: self.isconst = bool(isconst) else: self.isconst = bool(False) self.input = 0 self.index = 0 self.ID = self.__class__._count emlog.debug("C:"+str(self.ID)+" " +self.label+" "+str(self.var)+ " "+ str(self.isconst)) def Randomize(self): """ Randomizes coefficient between :class:`emlib.Coefficient.min` and :class:`emlib.Coefficient.max` using :func:`numpy.random.uniform` If **Coefficient.isconst** is *True* function returns without randomizing. .. note:: Why do we need a :mod:`boolean` value :class:`emlib.Coefficient.isconst`? Even though :class:`emlib.Coefficient.min` and :class:`emlib.Coefficient.max` could exist we may want to set this Coefficient to constant dynamically during a calibration algorithm. """ if self.isconst: return if (self.min and self.max) and (self.min <= self.max): self.var = np.random.uniform(self.min,self.max) def SetRange(self,min,max): """ Reset our min and max allowable values for Coefficient. This is useful for Monte Carlo algorithms that will tune each coefficient during the calibration process. :param min=: minimum value :param max=: maximum value :type min=: float :type max=: float """ self.min=min self.max=max def Print(self): """ Prints Coefficient structure to STDOUT. """ print self.label,'\t',self.var,'\t',self.min,'\t',self.max,'\t',self.isconst,'\t',self.desc def Get(self): """ Returns entire Coefficient structure as an array list. :returns: label,var,min,max,isconst,desc :rtype: list """ return [self.label,self.var,self.min,self.max,self.isconst,self.desc] class Observation: """ A series of observations and replicates to validate a model. :param value: :param dirname: optinal directory :param filename: filename :param fformat: optional file format :type value: str :type dirname: str :type filename: str :type filename: "csv", "sas" :returns: Observation Object :rtype: emlib.Observation This class object is the generic table structure EasyModeler uses to handle validation data via tables. This class of data differes from :class:`emlib.TimeSeries` in that replicates of measurements are made at the same time. This data is used to :func:`emlib.Model.Validate()` a model to observations. EasyModeler 2 supports comma separated value files *CSV* and *SAS* 7 binary. :SAS Example: - Data is stored in a SAS 7 binary file **testsas.sas7bdat** in the working directory. The salinity observations of this file will be used to validate a model response. >>> sasob = emlib.Observation("salinity",filename="testsas.sas7bdat",fformat="sas") DEBUG -609- New OBS for value:salinity COLMS:15 testsas.sas7bdat DEBUG -610- [u'date', u'station', u'rep', u'TSS', u'CFTSS', u'Cl_a___g_ltr_', u'NH4___mol_l_', u'Nox___mol_l_', u'SiO4___mol_l_', u'Ophos___mol_l_', u'Temp', u'Depth', u'pH', u'DO_', u'DO_mg_l', u'salinity', u'turbidity__ntu_', u'conductivity'] INFO -645- Read file testsas.sas7bdat 44 Observations for value salinity - The Observation structure stores the each variable, the mean average, and the STDEV for validation purposes. >>> sasob.Print() salinity from testsas.sas7bdat 2011-10-21 M: 40.385 E: 0.095 Values: [40.289999999999999, 40.289999999999999, 40.479999999999997, 40.479999999999997] :CSV Example: - Comma Separated Value files are imported by using the **fformat="csv"** switch, or by not using the **fformat=** option. >>> sasob = emlib.Observation("Cl_a___g_ltr_",filename="testcsv.csv") INFO -666- Read file testsas.sas7bdat 44 Observations for value salinity DEBUG -648- New OBS for value:Cl_a___g_ltr_ COLMS:5 testcsv.csv DEBUG -649- ['date', 'station', 'rep', 'TSS', 'CFTSS', 'Cl_a___g_ltr_', 'NH4___mol_l_', 'Nox___mol_l_', 'SiO4___mol_l_', 'Ophos___mol_l_', 'Temp', 'Depth', 'pH', 'DO_', 'DO_mg_l', 'salinity', 'turbidity__ntu_', 'conductivity'] INFO -666- Read file testcsv.csv 44 Observations for value Cl_a___g_ltr_ >>> sasob.Print() Cl_a___g_ltr_ from testcsv.csv 2011-10-21 M: 4.465 E: 0.429563732175 Values: [4.7999999999999998, 4.9699999999999998, 3.9500000000000002, 4.1399999999999997] """ _count = 0 def __init__(self,value,dirname=None,filename=None,fformat=None): self.__class__._count += 1 self.label = value self.T = [] self.X = [] self.XM = [] self.XE = [] self.ID = self.__class__._count self.dir = dirname self.filename = filename if not dirname: self.dir = "" sasreader = [] if (fformat == 'sas'): with SAS7BDAT(os.path.join(self.dir, self.filename)) as f: for row in f: sasreader.append(row) firstline = sasreader[0] emlog.debug(firstline) emlog.debug("Searching for "+self.label ) col = firstline.index(self.label) #setup the value of interest for row in sasreader[1:]: date = row[0] if date in self.T: # if we already have the same date then insert new obs if row[col] != '': #only insert if there is a value self.X[len(self.T)-1].append(row[col]) else: #else we make a new obsT newlist = [] if row[col] != '': newlist.append(row[col]) self.T.append(date) self.X.append(newlist) else: myspamReader = csv.reader(open(os.path.join(self.dir, self.filename),'rb'), delimiter=',') firstline = next(myspamReader) emlog.debug(firstline) col = firstline.index(self.label) #setup the value of interest emlog.debug("New OBS for value:"+str(self.label)+" COLMS:"+str(col)+" "+str(self.dir)+str(self.filename)) for row in myspamReader: date = datetime.datetime.combine(mmddyyyy2date(row[0]),datetime.time(0,0)) if date in self.T: # if we already have the same date then insert new obs if row[col] != '': #only insert if there is a value self.X[len(self.T)-1].append(NuN(row[col])) else: #else we make a new obsT newlist = [] if row[col] != '': newlist.append(NuN(row[col])) self.T.append(date) self.X.append(newlist) for i in self.X: self.XM.append(np.mean(i)) #mean value table self.XE.append(np.std(i)) #stdev values emlog.info( "Read file "+self.dir+self.filename+" "+str(len(self.X))+" Observations for value "+self.label) def Draw(self, block=True): """ Plot Observations :param block: Blocking or non-blocking :type bool: bool Simple matplotlib plotting wrapper """ plt.figure() plt.suptitle(self.filename) plt.plot(self.T,self.XM, 'ro', color='grey') plt.errorbar(self.T,self.XM, yerr=self.XE, color='grey',fmt='o', linewidth=1.4) plt.legend([self.label]) plt.show(block=block) def Print(self): index = 0 print self.label, " from ", self.dir + self.filename for i in self.T: print i, "M: ",self.XM[index], "E:", self.XE[index] print "Values:\t\t", self.X[index] index+=1 class TimeSeries: """ A series of data in time. :param dirname: optinal directory :param filename: filename :param fformat: optional file format :type dirname: str :type filename: str :type filename: "csv", "sas" :returns: TimeSeries Object :rtype: emlib.TimeSeries This class object is the generic table structure EasyModeler uses to handle dtInput data via tables. This class of data differes from :class:`emlib.Observation` in that measurements are discrete: only one measurement of a variable is made at a specific time. This data is used to feed a :class:`emlib.Model` with dtInput data. For validating model responses use :class:`emlib.Observation` . EasyModeler 2 supports comma separated value files *CSV* and *SAS* 7 binary. For CSV files the first row includes the header labels and first column is datetime in the form mm/dd/yyyy. Future planned expansions will increase this functionality. For SAS files the first column is a SAS datetime object. :CSV Example: - You have a table of data in the form of a .CSV file stored as **/mydata/monthlyphysical.csv**. Some of the cells may contain empty *Null* strings: +----------+---------+--------+ |DATE | SALINITY| TEMP | +==========+=========+========+ |01/20/2013| 30.2 | 22.5 | +----------+---------+--------+ |02/19/2013| 20.2 | 15.3 | +----------+---------+--------+ |03/20/2013| | 24.2| +----------+---------+--------+ - Creating the TimeSeries object:: >>> myData = TimeSeries(dirname="mydata",filename="monthlyphysical.csv") DEBUG -202- New INPUT table mydata\monthlyphysical.csv['DATE', 'SALINITY', 'TEMP'] DEBUG -212- Saved 3 rows and 2 columns DEBUG -214- Converted dates to contiguous np.array DEBUG -216- Converted input data to contiguous np.array - EasyModeler separates time and data arrays as a design decision. EasyModeler converts time to :mod:datetime objects. To access the date array use the member **.T** :: >>> print myData.T [2013-01-20 2013-02-19 2013-3-20] :Missing Values: EasyModeler coverts blank *missing* values in data streams as :class:`numpy.nan` objects. This is advantageous for plotting and numerical operations. Each non-date cell is passed to :func:`emlib.NuN` for conversion to :func:`float` values. .. seealso:: For more information about how :func:`emlib.NuN` handles empty strings and numerical conversions see it's documentation. :SAS Example: - File baywater.sas7bat is a SAS binary file stored in the working directory. In SAS 9.3 a snippet of the table view is: +----------+---------+--------+ |DATE | SALINITY| TEMP | +==========+=========+========+ |21OCT2011 | 40.29 | 23.03 | +----------+---------+--------+ |02NOV2011 | 20.2 | 15.3 | +----------+---------+--------+ |09NOV2011 | | 24.2| +----------+---------+--------+ - Creating the TimeSeries object:: >>> myData = TimeSeries(filename="baywater.sas7bat", fformat="sas") INFO -748- New TimeSeries instance: 1 DEBUG -778- New INPUT table testsas.sas7bdat[u'date', u'station', u'rep', u'TSS', u'CFTSS', u'Cl_a___g_ltr_', u'NH4___mol_l_', u'Nox___mol_l_', u'SiO4___mol_l_', u'Ophos___mol_l_', u'Temp', u'Depth', u'pH', u'DO_', u'DO_mg_l', u'salinity', u'turbidity__ntu_', u'conductivity'] DEBUG -805- Saved 177 rows and 17 columns DEBUG -807- Converted dates to contiguous np.array DEBUG -809- Converted input data to contiguous np.array """ _count = 0 def __init__(self,dirname=None,filename=None, fformat="csv"): self.__class__._count += 1 self.ID = self.__class__._count emlog.info('New TimeSeries instance: '+str(self.ID)) self.dir = dirname self.filename = filename self.fformat = fformat self.labels = [] if not dirname: self.dir = "" if filename: self._Read() def _Read(self, filename=None,directory=None, fformat=None): self.Rows = [] self.labels = [] self.T = [] self.sastmp = [] if directory: self.dir = directory if filename: self.filename = filename if fformat: self.fformat = fformat if self.fformat == "sas": with SAS7BDAT(os.path.join(self.dir, self.filename)) as f: for row in f: self.sastmp.append(row) self.labels = self.sastmp[0] emlog.debug("New INPUT table "+str(self.dir)+str(self.filename)+str(self.labels)) col = 0 hastime = 0 for row in self.sastmp[1:]: myrow = [] if type(row[1]) == datetime.time: hastime = 1 self.T.append(datetime.datetime.combine(row[0], row[1])) for i in range(len(self.labels))[2:]: if type(i) == None: print "found none" myrow.append(np.nan) else: myrow.append(row[i]) else: self.T.append(row[0]) for i in range(len(self.labels))[1:]: if type(i) == None: print "found none" myrow.append(np.nan) else: myrow.append(row[i]) newrow = [] for i in myrow: if i == None: newrow.append(np.nan) else: newrow.append(i) self.Rows.append(newrow) del self.labels[0] if hastime: del self.labels[0] del self.sastmp if self.fformat == "csv": myspamReader = csv.reader(open(os.path.join(self.dir, self.filename),'rb'), delimiter=',') self.labels = next(myspamReader) emlog.debug("New INPUT table "+str(self.dir)+str(self.filename)+str(self.labels)) for row in myspamReader: self.T.append(mmddyyyy2date(row[0])) myrow = [] for i in range(len(self.labels)): if i == 0: continue myrow.append(NuN(row[i])) self.Rows.append(myrow) del self.labels[0] emlog.debug("Saved "+str(len(self.T))+" rows and "+str(len(self.labels))+" columns") self.T = np.ascontiguousarray(self.T, dtype=object) emlog.debug("Converted dates to contiguous np.array") self.Rows = np.ascontiguousarray(self.Rows, dtype=object) emlog.debug("Converted input data to contiguous np.array") def Draw(self, block=True): """ Plot TimeSeries :param block: Blocking or non-blocking :type bool: bool Simple matplotlib plotting wrapper """ plt.figure() plt.plot(self.T,self.Rows) plt.legend(self.labels) plt.suptitle(self.filename) plt.show(block=block) def Print(self,column=None): """ Prints entire TimeSeries, or column, to **STDOUT**. """ if column: try: self.labels.index(column) except ValueError: emlog.warn(str(column)+" not in table. Try:"+str(self.labels)) return col = self.labels.index(column) print "Date\t"+column for i in range((len(self.T))): print self.T[i],"\t",self.Rows[i][col] else: for i in range((len(self.T))): print self.T[i],"\t",self.Rows[i] def GetLabels(self): """ Simple procedure to get array of string labels :returns: list :rtype: str :Example: - Simple print:: >>> print myTable.GetLabels() ['SALINITY', 'TEMP'] """ return self.labels def Get(self,columnLabel): """ Return a column as array. :param columnLabel: The column to return :type param: str :returns: list :rtype: float,np.Nan,str,... :Example: - Simple grab:: >>> salinity = myTable.Get("SALINITY") """ try: self.labels.index(columnLabel) except ValueError: emlog.warn(str(columnLabel)+" not in table. Try:"+str(self.labels)) return [] col = self.labels.index(columnLabel) tmp = [] for i in range((len(self.T))): tmp.append(self.Rows[i][col]) return tmp class Model: """ Class method creates a new ODE model structure. :param ODEFunction: The ODE code function to be integrated. :param jacobian: Optional jacobian matrix :param algorithm: Optional integration algorithm, default *Vode* :param method: Optional algorithm method type, default *bdf* :param order: Optinal inegrator order, default *13* :param nsteps: Optional integrator internal steps, default *3000* :type ODEFunction1: Python function :type jacobian: jacobian array :type algorithm: str :type method: str :type order: int :type nsteps: int :returns: Model object :rtype: emlib.Model :Example: - First declare an ODE_INT function. This will be passed to the :func:`scipy.integrate.odeint` integrator:: def LV_int(initial, dtinput, constants): x = initial[0] y = initial[1] A = 1 B = 1 C = 1 D = 1 x_dot = (A * x) - (B * x *y) y_dot = (D * x * y) - (C * y) return [x_dot, y_dot] .. seealso:: For help creating ODE_INT functions see :mod:`scipy.integrate` .. warning:: Use logical operators with caution inside the ODE function. Declaring a derivative *_dot* after a conditional will yield unpredictable results. - Pass the ODE function to :class:`emlib.Model` as:: >>> myModel = emlib.Model(LV_int) """ _count = 0 def __init__(self,ODEFunction,jacobian=None,algorithm=None,method=None,order=None,nsteps=None,dt=None): self.__class__._count += 1 self.ID = self.__class__._count self.dt = 1 self.myodesolve = scipy.integrate.ode(ODEFunction, jac=jacobian) emlog.info('New Model('+str(self.ID)+"): "+ODEFunction.__name__) if jacobian: emlog.debug('Jaccobian loaded') if method: self.method = method else: self.method = 'bdf' if algorithm: self.algorithm = algorithm else: self.algorithm = 'vode' if not method and not algorithm: emlog.info('No algorithm supplied assuming vode/bfd O12 Nsteps3000 dt1') if order: self.order = order else: self.order = 12 if nsteps: self.nsteps = nsteps else: self.nsteps = 3000 if dt: self.dt = dt else: self.dt = 1 self.myodesolve.set_integrator(self.algorithm, method=self.method, order=self.order,nsteps=self.nsteps) emlog.debug('Integrator:'+self.algorithm+"/"+self.method+" order:"+str(self.order)+" nsteps:"+str(self.nsteps)+" dt:"+str(self.dt)) def Integrate(self,initial,maxdt=None,Calibration=None,TimeSeries=None,start=None,end=None, dt=None): computed = [] computedT = [] self.myodesolve.set_initial_value(initial,0) emlog.debug("ODEINT Initials:"+"".join(map(str,initial))) if dt: self.dt = dt if TimeSeries and start: s = np.where(TimeSeries.T==start) if s == []: emlog.error("Supplied Start " + str(s[0]) + "does not exist, assuming 0") s = 0 else: s = s[0][0] else: s = 0 if TimeSeries and end: e = np.where(TimeSeries.T==end) if not e[0]: e = len(TimeSeries.T) - 1 emlog.error("Supplied End does not exist, assuming "+str(TimeSeries.T[e])) else: e = e[0][0] if TimeSeries and maxdt: e = maxruns + s if e > len(TimeSeries.T) - 1: e = len(TimeSeries.T) - 1 emlog.error("Maxruns > input ending, assuming "+str(TimeSeries.T[e])) if not TimeSeries: if maxdt: e = maxdt * int(1 / self.dt) + s else: emlog.error("No maxruns specified, exiting!") return if TimeSeries and (start is None) and (end is None) : print "here", start, end s = 0 e = len(TimeSeries.T) emlog.debug("Starting:"+str(TimeSeries.T[s])+" Ending:"+str(len(TimeSeries.T))) emlog.debug("Passing DtInput:"+str(TimeSeries.GetLabels())) else: emlog.debug("Ending in "+str(e)+" runs") if Calibration: emlog.debug("Passing Cs:"+str(Calibration.GetLabels())) tcount = 0 for i in range(s,e,1): #print s, e, i if TimeSeries and Calibration: self.myodesolve.set_f_params(dtInput(TimeSeries.labels,TimeSeries.Rows[i]),Calibration) elif TimeSeries and not Calibration: self.myodesolve.set_f_params(dtInput(TimeSeries.labels,TimeSeries.Rows[i]),None) elif Calibration and not TimeSeries: self.myodesolve.set_f_params(None,Calibration) elif not Calibration and not TimeSeries: self.myodesolve.set_f_params(None,None) self.myodesolve.integrate(self.myodesolve.t + self.dt) self.myodesolve.set_initial_value(self.myodesolve.y,self.myodesolve.t) if ((tcount % 500) == 0): emlog.debug( "Integration dT:"+str(tcount)+" of "+str(e - s)+" Remaining:"+str(e - s - tcount)) tcount+=1 if TimeSeries: computedT.append(TimeSeries.T[i]) else: computedT.append(i+s) computed.append(self.myodesolve.y) self.computed = np.ascontiguousarray(computed) self.computedT = computedT emlog.debug("Completed Integration, created np.array shape:"+str(self.computed.shape)) return def Draw(self, block=True,graph='ts',order=None): """ Plot Computed Series :param block: Blocking or non-blocking :type bool: bool Simple matplotlib plotting wrapper """ if graph == 'ts': plt.figure() plt.suptitle("Computed Integral") plt.plot(self.computedT,self.computed) plt.show(block=block) if graph == 'fp': plt.figure() plt.suptitle("Computed Integral") if order: plt.plot(self.computed[:,int(order[0])],self.computed[:,int(order[1])]) else: plt.plot(self.computed[:,0],self.computed[:,1]) plt.show(block=block) if graph == '3d': fig = plt.figure() fig = plt.figure() ax = Axes3D(fig) fig.suptitle("Computed Integral") if order: ax.plot(self.computed[:,int(order[0])],self.computed[:,int(order[1])],self.computed[:,int(order[2])],label="3D Plot") else: ax.plot(self.computed[:,0],self.computed[:,1],self.computed[:,2],label="3D Plot") plt.show(block=block) def Validate(self,Observation,graph=False): """ Validate model output to observed data :param Observation: The Observation class :type Observation: emlib.Observation :returns: fitness object :rtype: emlib.Fitness This function is a wrapper for the functions :func:`emlib.GFModel` and :func:`emlib.GFSingle` . Model simulation output is tested against historical Observations. A series of Goodness of Fit statistics are returned as an :class:`emlib.Fitness` structure. :Example: >>> Model.Integrate(calibration.initial, Calibration=calibration) .. note:: Model is assumed to be integrated via :func:`Model.Integrate` and results stored in Model.computed """ self.fit = GFModel(self,Observation) if graph: plt.figure() plt.suptitle("Computed Integral") plt.plot(self.computedT,self.computed) plt.plot(Observation.T,Observation.XM, 'ro', color='grey') plt.errorbar(Observation.T,Observation.XM, yerr=Observation.XE, color='grey',fmt='o', linewidth=1.4) plt.show() return self.fit def Calibrate(self,Calibration,Observation,runs=None,TimeSeries=None,Algorithm=None,start=None,end=None,dt=None): """ Wrapper to calibrate model via supplied Monte Carlo algorithm. :param Calibration: Model Coefficients :type Calibration: emlib.Calibration :param Observation: What really happend :type Observation: emlib.Observation :param maxruns: Maximum times to integrate :type maxruns: int :param TimeSeries: Optional dtInput Table :type TimeSeries: emlib.TimeSeries :param Algorithm: Calibration Function :type Algorithm: **func** :param start: Optinal simulation start :type start: datetime.date,int :param end: optional simulation end :type end: datetime.date,int :returns: Model Calibration :rtype: emlib.Calibration This function will integrate the current model *maxruns* times using the supplied **Algorithm**. If no algorithm is supplied :func:`GF_BruteForceMSE` is assumed. :Example: >>> bestCalibration = Model.Calibrate(startingCalibration, Observation, runs=5000) .. note:: Supplying a large *maxruns* may hang the terminal while the calibrator executes. Using CTRL+C will break out of the program but all progress calibrating will be lost. """ if not Algorithm: emlog.warn("No fitness method provided, assuming GF_BruteForceMSE") return GF_BruteForceMSE(self,Calibration,Observation,runs,TimeSeries,start,end,dt) else: emlog.debug("Applying fitness function:"+str(Algorithm)) return Algorithm(self,Calibration,Observation,runs,TimeSeries,start,end,dt) def GF_BruteForceMSE(Model,Calibration,Observation,maxruns,TimeSeries=None,start=None,end=None,dt=None): testingC = copy.deepcopy(Calibration) Model.Integrate(testingC.initial,Calibration=testingC, TimeSeries=TimeSeries, start=start, end=end) GF = Model.Validate(Observation) bestMSE = GF.MSE for i in range(maxruns-1): testingC.Randomize() Model.Integrate(testingC.initial,Calibration=testingC, TimeSeries=TimeSeries, start=start, end=end,dt=dt) GF = Model.Validate(Observation) if GF.MSE < bestMSE: print "New Best Calibration" Calibration = copy.deepcopy(testingC) bestMSE = GF.MSE return Calibration def GF_BruteForceMSERANGE(Model,Calibration,Observation,maxruns,TimeSeries=None,start=None,end=None,dt=None): testingC = copy.deepcopy(Calibration) Model.Integrate(testingC.initial,Calibration=testingC, TimeSeries=TimeSeries, start=start, end=end,dt=dt) GF = Model.Validate(Observation) bestMSE = GF.MSE bestRANGE = GF.RANGE for i in range(maxruns-1): testingC.Randomize() Model.Integrate(testingC.initial,Calibration=testingC, TimeSeries=TimeSeries, start=start, end=end) GF = Model.Validate(Observation) if (GF.MSE < bestMSE) and (GF.RANGE > bestRANGE) : emlog.info("New Best Calibration") Calibration = copy.deepcopy(testingC) bestMSE = GF.MSE GF.Print() return Calibration def GF_BruteForceRMSD(Model,Calibration,Observation,maxruns,TimeSeries=None,start=None,end=None,dt=None): testingC = copy.deepcopy(Calibration) Model.Integrate(testingC.initial,Calibration=testingC, TimeSeries=TimeSeries, start=start, end=end,dt=dt) GF = Model.Validate(Observation) bestRMSD = GF.RMSD orgRMSD = GF.RMSD for i in range(maxruns-1): testingC.Randomize() Model.Integrate(testingC.initial,Calibration=testingC, TimeSeries=TimeSeries, start=start, end=end) GF = Model.Validate(Observation) if (GF.RMSD > bestRMSD) : print ("New Best Calibration:" +str(GF.RMSD) + " prev:" + str(bestRMSD) + " orig:" +str(orgRMSD)) Calibration = copy.deepcopy(testingC) bestRMSD = GF.RMSD else: emlog.info("Int:" +str(i) + " RMSD Current: "+ str(GF.RMSD) + " Best:" + str(bestRMSD) + " Orig:" +str(orgRMSD)) return Calibration class Fitness: """ Goodness of Fit Structure :param fit: list of fitness measurements :type fit: list :Attributes: * *Fitness.matches* Number of fitness values * *Fitness.MSE* Mean Square Error * *Fitness.WMSE* Weighted Mean Square Error * *Fitness.RANGE* % Inside STDEV * *Fitness.MSER* Mean Square Error outside STDEV * *Fitness.O* list of observed means * *Fitness.E* list of expected values This is an internal :mod:`emlib` structure for housing Goodness of Fit statistics. """ _count = 0 def __init__(self,fit): self.__class__._count += 1 self.ID = self.__class__._count self.matches = fit[0] self.MSE = fit[1] self.WMSE = fit[2] self.RANGE = fit[3] self.MSER = fit[4] self.O = fit[5] self.E = fit[6] self.RMSD = fit[7] self.Xtot = fit[8] emlog.debug("New fitness object:"+str(self.ID)) def Print(self): """ Print all statistics to STDOUT """ print("GFMODEL #"+str(self.matches)+"Xtot:"+str(self.Xtot)+" RMSD:"+str(self.RMSD)+" RMSE:"+str(self.MSE)+" RANGE%"+str(self.RANGE)+" MSER:"+str(self.MSER)+" WMSE:"+str(self.WMSE))
PypiClean
/FullContact-AIO-0.0.8.tar.gz/FullContact-AIO-0.0.8/README.md
FullContact.py ============== [![PyPI version](https://badge.fury.io/py/FullContact-AIO.svg)](https://badge.fury.io/py/FullContact-AIO) [![Build Status](https://api.travis-ci.org/fullcontact/fullcontact.py.svg?branch=master)](https://travis-ci.org/fullcontact/fullcontact.py) A Python interface for the [FullContact API](http://docs.fullcontact.com/). Installation ------------ ``` pip install FullContact-AIO ``` Usage ----- ```python import asyncio from fullcontact_aio import FullContact async def get_person_by_email(): fc = FullContact('xgtbJvVos2xcFMX1JvXaQvx0ZaExhSCT') #returns a python dictionary r = await fc.person(email='[email protected]') # The number of requests left in the 60-second window. rate_limit_remaining = r['X-Rate-Limit-Remaining'] print(r) # {u'socialProfiles': [...], u'demographics': {...}, ... } print(rate_limit_remaining) asyncio.get_event_loop().run_until_complete(get_person_by_email()) ``` Supported Python Versions ------------------------- * 3.6 * 3.7 * 3.8 * 3.9 Official Documentation ------------------------- https://dashboard.fullcontact.com/api-ref
PypiClean
/NonlinearLeastSquares-2.0.2.tar.gz/NonlinearLeastSquares-2.0.2/ExamplesStructureFromCameraMotion/bundle_adjust_sfm_with_uncalibrated_cameras_translations_only.py
## bundle_adjust_sfm_with_uncalibrated_cameras_translations_only.py ## This script demonstrates how to use the sparse-bundle-adjustment capabilities ## of the NonlinearLeastSquares module for solving problems that require estimating ## both the scene structure and the camera parameters for the case when the data ## is collected with uncalibrated cameras. ## For any nonlinear least-squares method, you are required to supply starting value ## for the parameters you are estimating. Therefore, it is interesting to study ## at what point an algorithm starts getting trapped in a local minimum as you ## move the starting value farther and farther away from their true optimum values. ## You can perform those kinds of studies with this script by changing the values ## of the variables 'cam_pam_noise_factor' and 'structure_noise_factor'. ## Note that this script should produce results identical to those produced by ## the script ## ## sfm_with_uncalibrated_cameras_translations_only.py ## ## but, of course, much faster because it calls on the bundle-adjustment variant ## of the Levenberg-Marquardt algorithm. The results from the two scripts would ## be identical provided you use exactly the name number of world points, exactly ## the same number of camera positions, etc., in both cases. ## Calling syntax: ## ## bundle_adjust_sfm_with_uncalibrated_cameras_translations_only.py import NonlinearLeastSquares import ProjectiveCamera import numpy import random import sys random.seed('abracadabra') #cam_pam_noise_factor = 1.0 ## This creates an initial average error in the 6 ## camera parameters for each camera that is large ## enough to cause an average error of 60 pixels in ## the projections for each of the measurements. ## Note that the six parameters for a camera are ## (w_x,w_y,w_z,t_x,t_y,t_z). The pixel displacement ## error of 60 pixels is brought down to 12 units by ## LM in a couple of iterations if you start with ## zero structure noise cam_pam_noise_factor = 0.1 ## creates an initial average error of 4.96 units ## which is brought down to 0.26 units in a couple ## of iterations. #structure_noise_factor = 500 structure_noise_factor = 0 ## This controls the uncertainty in the initial ## values supplied for the structure variables. ## When set to 0, you can demonstrate how SBA ## can be used for a simultaneous calibration of ## of the camera in all its positions. optimizer = NonlinearLeastSquares.NonlinearLeastSquares( max_iterations = 400, delta_for_jacobian = 0.000001, ) # This returns a camera whose optic axis is aligned with the world-Z axis and whose # image plane is parallel to the world-XY plane. The parameters 'alpha_x' and 'alpha_y' # are for the focal length in terms of the image sampling intervals along the x-axis # and along the y-axis, respectively. The parameters 'x0' and 'y0' are for the # coordinates of the point in the camera image plane where the optic axis penetrates # the image plane with respect to the origin in the image plane (which is usually a # corner of the image): camera = ProjectiveCamera.ProjectiveCamera( camera_type = 'projective', alpha_x = 100.0, alpha_y = 100.0, x0 = 100.0, y0 = 100.0, ) camera.initialize() camera.print_camera_matrix() ## To get around the problem of "nan" values for Rodrigues params when rotation is zero: ## The argument to the 'rotate' function is in degrees camera.rotate_previously_initialized_camera_around_world_X_axis(0.5) world_points = camera.make_world_points_random(15) print(world_points) tracked_point_indexes_for_display = None if len(world_points) > 6: tracked_point_indexes_for_display = sorted(random.sample(range(len(world_points)), 6)) camera.set_tracked_point_indexes_for_display(tracked_point_indexes_for_display) print("\n\ntracked_point_indexes_for_display: %s" % str(tracked_point_indexes_for_display)) #camera.display_world_points_double_triangles(world_points) camera.set_num_world_points(len(world_points)) ## In the next statement, the first triple after 'world_points" is for the rotations ## in degrees around the three world axes and the second triple is for the translations ## along the three world axes. The large argument is to set the scale. world_points_xformed = camera.apply_transformation_to_generic_world_points(world_points, (0,0,0), (0.0,0.0,50000.0), 1.0) print("world_points_xformed: %s" % str(world_points_xformed)) ## Let us now move the camera around and collect the pixels: number_of_camera_positions = 0 camera_params_ground_truth = [] #y_motion_delta = 500.0 y_motion_delta = 1000.0 all_pixels = [] for i in range(5): if i == 0: # The 2nd arg is the y_motion_delta which we set to zero for i=0 camera.translate_a_previously_initialized_camera((0.0,0.0,0.0)) else: camera.translate_a_previously_initialized_camera((0.0,y_motion_delta,0.0)) camera.add_new_camera_to_list_of_cameras() camera_params_ground_truth.append(camera.get_current_camera_pose()) pixels = camera.get_pixels_for_a_sequence_of_world_points(world_points_xformed) all_pixels.append(pixels) number_of_camera_positions += 1 print("\n\nall pixels with Y motions of the camera: %s" % str(all_pixels)) #x_motion_delta = 500.0 x_motion_delta = 1000.0 for i in range(5): camera.translate_a_previously_initialized_camera((x_motion_delta,0.0,0.0)) camera.add_new_camera_to_list_of_cameras() camera_params_ground_truth.append(camera.get_current_camera_pose()) pixels = camera.get_pixels_for_a_sequence_of_world_points(world_points_xformed) all_pixels.append(pixels) number_of_camera_positions += 1 print("\n\nall pixels with X and Y motions of the camera: %s" % str(all_pixels)) motion_history = camera._get_camera_motion_history() print("\n\ncamera motion history: %s" % str(motion_history)) all_cameras = camera.get_all_cameras() print("\n\nDisplaying all cameras:") for item in all_cameras.items(): print("\nFor camera %d" % item[0]) print(item[1]) print("\n\nall pixels: %s" % str(all_pixels)) print("\ntotal number of camera positions: %d" % number_of_camera_positions) camera.construct_X_vector_for_bundle_adjustment(all_pixels) params_arranged_list = camera.construct_parameter_vec_for_uncalibrated_cameras_using_rodrigues_rotations() print("\nAll parameters (camera + structure) stringified for one camera position: %s" % str(params_arranged_list)) print("\nNumber of all parameters (camera + structure) for estimation: %d" % len(params_arranged_list)) structure_params = params_arranged_list[6*len(all_cameras):] print("\nStructure params: %s" % str(structure_params)) ## We will initialize the parameters by adding noise to the ground truth. By varying ## the amount of noise, we can study the power of the nonlinear-least-squares with ## regard to the uncertainty in how the parameters are initialized. But first we ## need the ground truth: ground_truth_dict = camera.set_all_parameters_to_ground_truth_for_sanity_check(world_points_xformed, camera_params_ground_truth) ## Now construct the prediction vector: camera.construct_Fvec_for_bundle_adjustment() # Get the structure ground truth: structure_ground_truth = camera.construct_structure_ground_truth() print("\n\nStructure ground truth: %s" % str(structure_ground_truth)) ## Now initialize the parameters: initial_params_dict = {} initial_params_list = [] # need this later for visualization initial_structure_params_dict = {} initial_structure_params_list = [] for param in params_arranged_list: if param not in structure_params: if param.startswith('w_'): initial_params_dict[param] = ground_truth_dict[param] + cam_pam_noise_factor*random.uniform(-1.0,1.0) else: initial_params_dict[param] = ground_truth_dict[param] + 1000*cam_pam_noise_factor*random.uniform(-1.0,1.0) else: initial_params_dict[param] = ground_truth_dict[param] + structure_noise_factor*random.uniform(-1.0,1.0) initial_structure_params_list.append(initial_params_dict[param]) initial_params_list.append(initial_params_dict[param]) camera.set_initial_values_for_structure([initial_structure_params_list[3*i:3*i+3] for i in range(len(initial_structure_params_list)//3)]) print("\n\nParameters and their initial values: %s" % str(initial_params_dict)) camera.set_params_list(params_arranged_list) camera.set_initial_val_all_params_as_dict(initial_params_dict) camera.set_initial_val_all_params(initial_params_list) camera.set_constructor_options_for_optimizer_BA(optimizer) camera.display_structure() result = camera.get_scene_structure_from_camera_motion_with_bundle_adjustment() ######################### print out the calculated structure ######################## print("\n\n\nRESULTS RETURNED BY bundle_adjust_sfm_with_calibrated_cameras_translations_only.py") num_iterations_used = result['number_of_iterations'] error_norms_with_iterations = result['error_norms_with_iterations'] final_param_values_list = result['parameter_values'] structure_param_values_list = final_param_values_list[-len(structure_ground_truth):] print("\nError norms with iterations: %s" % str(error_norms_with_iterations)) print("\nNumber of iterations used: %d" % num_iterations_used) print("\nFinal values for the parameters:\n") for i in range(len(params_arranged_list)): print("%s => %s [ground truth: %s] (initial value: %s) \n" % (params_arranged_list[i], final_param_values_list[i], ground_truth_dict[params_arranged_list[i]], initial_params_dict[params_arranged_list[i]]))
PypiClean
/BlastRadius-0.1.23.tar.gz/BlastRadius-0.1.23/blastradius/server/static/js/svg-pan-zoom.js
(function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);var f=new Error("Cannot find module '"+o+"'");throw f.code="MODULE_NOT_FOUND",f}var l=n[o]={exports:{}};t[o][0].call(l.exports,function(e){var n=t[o][1][e];return s(n?n:e)},l,l.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o<r.length;o++)s(r[o]);return s})({1:[function(require,module,exports){ var svgPanZoom = require('./svg-pan-zoom.js'); // UMD module definition (function(window, document){ // AMD if (typeof define === 'function' && define.amd) { define('svg-pan-zoom', function () { return svgPanZoom; }); // CMD } else if (typeof module !== 'undefined' && module.exports) { module.exports = svgPanZoom; // Browser // Keep exporting globally as module.exports is available because of browserify window.svgPanZoom = svgPanZoom; } })(window, document) },{"./svg-pan-zoom.js":4}],2:[function(require,module,exports){ var SvgUtils = require('./svg-utilities'); module.exports = { enable: function(instance) { // Select (and create if necessary) defs var defs = instance.svg.querySelector('defs') if (!defs) { defs = document.createElementNS(SvgUtils.svgNS, 'defs') instance.svg.appendChild(defs) } // Check for style element, and create it if it doesn't exist var styleEl = defs.querySelector('style#svg-pan-zoom-controls-styles'); if (!styleEl) { var style = document.createElementNS(SvgUtils.svgNS, 'style') style.setAttribute('id', 'svg-pan-zoom-controls-styles') style.setAttribute('type', 'text/css') style.textContent = '.svg-pan-zoom-control { cursor: pointer; fill: black; fill-opacity: 0.333; } .svg-pan-zoom-control:hover { fill-opacity: 0.8; } .svg-pan-zoom-control-background { fill: white; fill-opacity: 0.5; } .svg-pan-zoom-control-background { fill-opacity: 0.8; }' defs.appendChild(style) } // Zoom Group var zoomGroup = document.createElementNS(SvgUtils.svgNS, 'g'); zoomGroup.setAttribute('id', 'svg-pan-zoom-controls'); zoomGroup.setAttribute('transform', 'translate(' + ( instance.width - 70 ) + ' ' + ( instance.height - 76 ) + ') scale(0.75)'); zoomGroup.setAttribute('class', 'svg-pan-zoom-control'); // Control elements zoomGroup.appendChild(this._createZoomIn(instance)) zoomGroup.appendChild(this._createZoomReset(instance)) zoomGroup.appendChild(this._createZoomOut(instance)) // Finally append created element instance.svg.appendChild(zoomGroup) // Cache control instance instance.controlIcons = zoomGroup } , _createZoomIn: function(instance) { var zoomIn = document.createElementNS(SvgUtils.svgNS, 'g'); zoomIn.setAttribute('id', 'svg-pan-zoom-zoom-in'); zoomIn.setAttribute('transform', 'translate(30.5 5) scale(0.015)'); zoomIn.setAttribute('class', 'svg-pan-zoom-control'); zoomIn.addEventListener('click', function() {instance.getPublicInstance().zoomIn()}, false) zoomIn.addEventListener('touchstart', function() {instance.getPublicInstance().zoomIn()}, false) var zoomInBackground = document.createElementNS(SvgUtils.svgNS, 'rect'); // TODO change these background space fillers to rounded rectangles so they look prettier zoomInBackground.setAttribute('x', '0'); zoomInBackground.setAttribute('y', '0'); zoomInBackground.setAttribute('width', '1500'); // larger than expected because the whole group is transformed to scale down zoomInBackground.setAttribute('height', '1400'); zoomInBackground.setAttribute('class', 'svg-pan-zoom-control-background'); zoomIn.appendChild(zoomInBackground); var zoomInShape = document.createElementNS(SvgUtils.svgNS, 'path'); zoomInShape.setAttribute('d', 'M1280 576v128q0 26 -19 45t-45 19h-320v320q0 26 -19 45t-45 19h-128q-26 0 -45 -19t-19 -45v-320h-320q-26 0 -45 -19t-19 -45v-128q0 -26 19 -45t45 -19h320v-320q0 -26 19 -45t45 -19h128q26 0 45 19t19 45v320h320q26 0 45 19t19 45zM1536 1120v-960 q0 -119 -84.5 -203.5t-203.5 -84.5h-960q-119 0 -203.5 84.5t-84.5 203.5v960q0 119 84.5 203.5t203.5 84.5h960q119 0 203.5 -84.5t84.5 -203.5z'); zoomInShape.setAttribute('class', 'svg-pan-zoom-control-element'); zoomIn.appendChild(zoomInShape); return zoomIn } , _createZoomReset: function(instance){ // reset var resetPanZoomControl = document.createElementNS(SvgUtils.svgNS, 'g'); resetPanZoomControl.setAttribute('id', 'svg-pan-zoom-reset-pan-zoom'); resetPanZoomControl.setAttribute('transform', 'translate(5 35) scale(0.4)'); resetPanZoomControl.setAttribute('class', 'svg-pan-zoom-control'); resetPanZoomControl.addEventListener('click', function() {instance.getPublicInstance().reset()}, false); resetPanZoomControl.addEventListener('touchstart', function() {instance.getPublicInstance().reset()}, false); var resetPanZoomControlBackground = document.createElementNS(SvgUtils.svgNS, 'rect'); // TODO change these background space fillers to rounded rectangles so they look prettier resetPanZoomControlBackground.setAttribute('x', '2'); resetPanZoomControlBackground.setAttribute('y', '2'); resetPanZoomControlBackground.setAttribute('width', '182'); // larger than expected because the whole group is transformed to scale down resetPanZoomControlBackground.setAttribute('height', '58'); resetPanZoomControlBackground.setAttribute('class', 'svg-pan-zoom-control-background'); resetPanZoomControl.appendChild(resetPanZoomControlBackground); var resetPanZoomControlShape1 = document.createElementNS(SvgUtils.svgNS, 'path'); resetPanZoomControlShape1.setAttribute('d', 'M33.051,20.632c-0.742-0.406-1.854-0.609-3.338-0.609h-7.969v9.281h7.769c1.543,0,2.701-0.188,3.473-0.562c1.365-0.656,2.048-1.953,2.048-3.891C35.032,22.757,34.372,21.351,33.051,20.632z'); resetPanZoomControlShape1.setAttribute('class', 'svg-pan-zoom-control-element'); resetPanZoomControl.appendChild(resetPanZoomControlShape1); var resetPanZoomControlShape2 = document.createElementNS(SvgUtils.svgNS, 'path'); resetPanZoomControlShape2.setAttribute('d', 'M170.231,0.5H15.847C7.102,0.5,0.5,5.708,0.5,11.84v38.861C0.5,56.833,7.102,61.5,15.847,61.5h154.384c8.745,0,15.269-4.667,15.269-10.798V11.84C185.5,5.708,178.976,0.5,170.231,0.5z M42.837,48.569h-7.969c-0.219-0.766-0.375-1.383-0.469-1.852c-0.188-0.969-0.289-1.961-0.305-2.977l-0.047-3.211c-0.03-2.203-0.41-3.672-1.142-4.406c-0.732-0.734-2.103-1.102-4.113-1.102h-7.05v13.547h-7.055V14.022h16.524c2.361,0.047,4.178,0.344,5.45,0.891c1.272,0.547,2.351,1.352,3.234,2.414c0.731,0.875,1.31,1.844,1.737,2.906s0.64,2.273,0.64,3.633c0,1.641-0.414,3.254-1.242,4.84s-2.195,2.707-4.102,3.363c1.594,0.641,2.723,1.551,3.387,2.73s0.996,2.98,0.996,5.402v2.32c0,1.578,0.063,2.648,0.19,3.211c0.19,0.891,0.635,1.547,1.333,1.969V48.569z M75.579,48.569h-26.18V14.022h25.336v6.117H56.454v7.336h16.781v6H56.454v8.883h19.125V48.569z M104.497,46.331c-2.44,2.086-5.887,3.129-10.34,3.129c-4.548,0-8.125-1.027-10.731-3.082s-3.909-4.879-3.909-8.473h6.891c0.224,1.578,0.662,2.758,1.316,3.539c1.196,1.422,3.246,2.133,6.15,2.133c1.739,0,3.151-0.188,4.236-0.562c2.058-0.719,3.087-2.055,3.087-4.008c0-1.141-0.504-2.023-1.512-2.648c-1.008-0.609-2.607-1.148-4.796-1.617l-3.74-0.82c-3.676-0.812-6.201-1.695-7.576-2.648c-2.328-1.594-3.492-4.086-3.492-7.477c0-3.094,1.139-5.664,3.417-7.711s5.623-3.07,10.036-3.07c3.685,0,6.829,0.965,9.431,2.895c2.602,1.93,3.966,4.73,4.093,8.402h-6.938c-0.128-2.078-1.057-3.555-2.787-4.43c-1.154-0.578-2.587-0.867-4.301-0.867c-1.907,0-3.428,0.375-4.565,1.125c-1.138,0.75-1.706,1.797-1.706,3.141c0,1.234,0.561,2.156,1.682,2.766c0.721,0.406,2.25,0.883,4.589,1.43l6.063,1.43c2.657,0.625,4.648,1.461,5.975,2.508c2.059,1.625,3.089,3.977,3.089,7.055C108.157,41.624,106.937,44.245,104.497,46.331z M139.61,48.569h-26.18V14.022h25.336v6.117h-18.281v7.336h16.781v6h-16.781v8.883h19.125V48.569z M170.337,20.14h-10.336v28.43h-7.266V20.14h-10.383v-6.117h27.984V20.14z'); resetPanZoomControlShape2.setAttribute('class', 'svg-pan-zoom-control-element'); resetPanZoomControl.appendChild(resetPanZoomControlShape2); return resetPanZoomControl } , _createZoomOut: function(instance){ // zoom out var zoomOut = document.createElementNS(SvgUtils.svgNS, 'g'); zoomOut.setAttribute('id', 'svg-pan-zoom-zoom-out'); zoomOut.setAttribute('transform', 'translate(30.5 70) scale(0.015)'); zoomOut.setAttribute('class', 'svg-pan-zoom-control'); zoomOut.addEventListener('click', function() {instance.getPublicInstance().zoomOut()}, false); zoomOut.addEventListener('touchstart', function() {instance.getPublicInstance().zoomOut()}, false); var zoomOutBackground = document.createElementNS(SvgUtils.svgNS, 'rect'); // TODO change these background space fillers to rounded rectangles so they look prettier zoomOutBackground.setAttribute('x', '0'); zoomOutBackground.setAttribute('y', '0'); zoomOutBackground.setAttribute('width', '1500'); // larger than expected because the whole group is transformed to scale down zoomOutBackground.setAttribute('height', '1400'); zoomOutBackground.setAttribute('class', 'svg-pan-zoom-control-background'); zoomOut.appendChild(zoomOutBackground); var zoomOutShape = document.createElementNS(SvgUtils.svgNS, 'path'); zoomOutShape.setAttribute('d', 'M1280 576v128q0 26 -19 45t-45 19h-896q-26 0 -45 -19t-19 -45v-128q0 -26 19 -45t45 -19h896q26 0 45 19t19 45zM1536 1120v-960q0 -119 -84.5 -203.5t-203.5 -84.5h-960q-119 0 -203.5 84.5t-84.5 203.5v960q0 119 84.5 203.5t203.5 84.5h960q119 0 203.5 -84.5 t84.5 -203.5z'); zoomOutShape.setAttribute('class', 'svg-pan-zoom-control-element'); zoomOut.appendChild(zoomOutShape); return zoomOut } , disable: function(instance) { if (instance.controlIcons) { instance.controlIcons.parentNode.removeChild(instance.controlIcons) instance.controlIcons = null } } } },{"./svg-utilities":5}],3:[function(require,module,exports){ var SvgUtils = require('./svg-utilities') , Utils = require('./utilities') ; var ShadowViewport = function(viewport, options){ this.init(viewport, options) } /** * Initialization * * @param {SVGElement} viewport * @param {Object} options */ ShadowViewport.prototype.init = function(viewport, options) { // DOM Elements this.viewport = viewport this.options = options // State cache this.originalState = {zoom: 1, x: 0, y: 0} this.activeState = {zoom: 1, x: 0, y: 0} this.updateCTMCached = Utils.proxy(this.updateCTM, this) // Create a custom requestAnimationFrame taking in account refreshRate this.requestAnimationFrame = Utils.createRequestAnimationFrame(this.options.refreshRate) // ViewBox this.viewBox = {x: 0, y: 0, width: 0, height: 0} this.cacheViewBox() // Process CTM var newCTM = this.processCTM() // Update viewport CTM and cache zoom and pan this.setCTM(newCTM) // Update CTM in this frame this.updateCTM() } /** * Cache initial viewBox value * If no viewBox is defined, then use viewport size/position instead for viewBox values */ ShadowViewport.prototype.cacheViewBox = function() { var svgViewBox = this.options.svg.getAttribute('viewBox') if (svgViewBox) { var viewBoxValues = svgViewBox.split(/[\s\,]/).filter(function(v){return v}).map(parseFloat) // Cache viewbox x and y offset this.viewBox.x = viewBoxValues[0] this.viewBox.y = viewBoxValues[1] this.viewBox.width = viewBoxValues[2] this.viewBox.height = viewBoxValues[3] var zoom = Math.min(this.options.width / this.viewBox.width, this.options.height / this.viewBox.height) // Update active state this.activeState.zoom = zoom this.activeState.x = (this.options.width - this.viewBox.width * zoom) / 2 this.activeState.y = (this.options.height - this.viewBox.height * zoom) / 2 // Force updating CTM this.updateCTMOnNextFrame() this.options.svg.removeAttribute('viewBox') } else { this.simpleViewBoxCache() } } /** * Recalculate viewport sizes and update viewBox cache */ ShadowViewport.prototype.simpleViewBoxCache = function() { var bBox = this.viewport.getBBox() this.viewBox.x = bBox.x this.viewBox.y = bBox.y this.viewBox.width = bBox.width this.viewBox.height = bBox.height } /** * Returns a viewbox object. Safe to alter * * @return {Object} viewbox object */ ShadowViewport.prototype.getViewBox = function() { return Utils.extend({}, this.viewBox) } /** * Get initial zoom and pan values. Save them into originalState * Parses viewBox attribute to alter initial sizes * * @return {CTM} CTM object based on options */ ShadowViewport.prototype.processCTM = function() { var newCTM = this.getCTM() if (this.options.fit || this.options.contain) { var newScale; if (this.options.fit) { newScale = Math.min(this.options.width/this.viewBox.width, this.options.height/this.viewBox.height); } else { newScale = Math.max(this.options.width/this.viewBox.width, this.options.height/this.viewBox.height); } newCTM.a = newScale; //x-scale newCTM.d = newScale; //y-scale newCTM.e = -this.viewBox.x * newScale; //x-transform newCTM.f = -this.viewBox.y * newScale; //y-transform } if (this.options.center) { var offsetX = (this.options.width - (this.viewBox.width + this.viewBox.x * 2) * newCTM.a) * 0.5 , offsetY = (this.options.height - (this.viewBox.height + this.viewBox.y * 2) * newCTM.a) * 0.5 newCTM.e = offsetX newCTM.f = offsetY } // Cache initial values. Based on activeState and fix+center opitons this.originalState.zoom = newCTM.a this.originalState.x = newCTM.e this.originalState.y = newCTM.f return newCTM } /** * Return originalState object. Safe to alter * * @return {Object} */ ShadowViewport.prototype.getOriginalState = function() { return Utils.extend({}, this.originalState) } /** * Return actualState object. Safe to alter * * @return {Object} */ ShadowViewport.prototype.getState = function() { return Utils.extend({}, this.activeState) } /** * Get zoom scale * * @return {Float} zoom scale */ ShadowViewport.prototype.getZoom = function() { return this.activeState.zoom } /** * Get zoom scale for pubilc usage * * @return {Float} zoom scale */ ShadowViewport.prototype.getRelativeZoom = function() { return this.activeState.zoom / this.originalState.zoom } /** * Compute zoom scale for pubilc usage * * @return {Float} zoom scale */ ShadowViewport.prototype.computeRelativeZoom = function(scale) { return scale / this.originalState.zoom } /** * Get pan * * @return {Object} */ ShadowViewport.prototype.getPan = function() { return {x: this.activeState.x, y: this.activeState.y} } /** * Return cached viewport CTM value that can be safely modified * * @return {SVGMatrix} */ ShadowViewport.prototype.getCTM = function() { var safeCTM = this.options.svg.createSVGMatrix() // Copy values manually as in FF they are not itterable safeCTM.a = this.activeState.zoom safeCTM.b = 0 safeCTM.c = 0 safeCTM.d = this.activeState.zoom safeCTM.e = this.activeState.x safeCTM.f = this.activeState.y return safeCTM } /** * Set a new CTM * * @param {SVGMatrix} newCTM */ ShadowViewport.prototype.setCTM = function(newCTM) { var willZoom = this.isZoomDifferent(newCTM) , willPan = this.isPanDifferent(newCTM) if (willZoom || willPan) { // Before zoom if (willZoom) { // If returns false then cancel zooming if (this.options.beforeZoom(this.getRelativeZoom(), this.computeRelativeZoom(newCTM.a)) === false) { newCTM.a = newCTM.d = this.activeState.zoom willZoom = false } else { this.updateCache(newCTM); this.options.onZoom(this.getRelativeZoom()) } } // Before pan if (willPan) { var preventPan = this.options.beforePan(this.getPan(), {x: newCTM.e, y: newCTM.f}) // If prevent pan is an object , preventPanX = false , preventPanY = false // If prevent pan is Boolean false if (preventPan === false) { // Set x and y same as before newCTM.e = this.getPan().x newCTM.f = this.getPan().y preventPanX = preventPanY = true } else if (Utils.isObject(preventPan)) { // Check for X axes attribute if (preventPan.x === false) { // Prevent panning on x axes newCTM.e = this.getPan().x preventPanX = true } else if (Utils.isNumber(preventPan.x)) { // Set a custom pan value newCTM.e = preventPan.x } // Check for Y axes attribute if (preventPan.y === false) { // Prevent panning on x axes newCTM.f = this.getPan().y preventPanY = true } else if (Utils.isNumber(preventPan.y)) { // Set a custom pan value newCTM.f = preventPan.y } } // Update willPan flag // Check if newCTM is still different if ((preventPanX && preventPanY) || !this.isPanDifferent(newCTM)) { willPan = false } else { this.updateCache(newCTM); this.options.onPan(this.getPan()); } } // Check again if should zoom or pan if (willZoom || willPan) { this.updateCTMOnNextFrame() } } } ShadowViewport.prototype.isZoomDifferent = function(newCTM) { return this.activeState.zoom !== newCTM.a } ShadowViewport.prototype.isPanDifferent = function(newCTM) { return this.activeState.x !== newCTM.e || this.activeState.y !== newCTM.f } /** * Update cached CTM and active state * * @param {SVGMatrix} newCTM */ ShadowViewport.prototype.updateCache = function(newCTM) { this.activeState.zoom = newCTM.a this.activeState.x = newCTM.e this.activeState.y = newCTM.f } ShadowViewport.prototype.pendingUpdate = false /** * Place a request to update CTM on next Frame */ ShadowViewport.prototype.updateCTMOnNextFrame = function() { if (!this.pendingUpdate) { // Lock this.pendingUpdate = true // Throttle next update this.requestAnimationFrame.call(window, this.updateCTMCached) } } /** * Update viewport CTM with cached CTM */ ShadowViewport.prototype.updateCTM = function() { var ctm = this.getCTM() // Updates SVG element SvgUtils.setCTM(this.viewport, ctm, this.defs) // Free the lock this.pendingUpdate = false // Notify about the update if(this.options.onUpdatedCTM) { this.options.onUpdatedCTM(ctm) } } module.exports = function(viewport, options){ return new ShadowViewport(viewport, options) } },{"./svg-utilities":5,"./utilities":7}],4:[function(require,module,exports){ var Wheel = require('./uniwheel') , ControlIcons = require('./control-icons') , Utils = require('./utilities') , SvgUtils = require('./svg-utilities') , ShadowViewport = require('./shadow-viewport') var SvgPanZoom = function(svg, options) { this.init(svg, options) } var optionsDefaults = { viewportSelector: '.svg-pan-zoom_viewport' // Viewport selector. Can be querySelector string or SVGElement , panEnabled: true // enable or disable panning (default enabled) , controlIconsEnabled: false // insert icons to give user an option in addition to mouse events to control pan/zoom (default disabled) , zoomEnabled: true // enable or disable zooming (default enabled) , dblClickZoomEnabled: true // enable or disable zooming by double clicking (default enabled) , mouseWheelZoomEnabled: true // enable or disable zooming by mouse wheel (default enabled) , preventMouseEventsDefault: true // enable or disable preventDefault for mouse events , zoomScaleSensitivity: 0.1 // Zoom sensitivity , minZoom: 0.5 // Minimum Zoom level , maxZoom: 10 // Maximum Zoom level , fit: true // enable or disable viewport fit in SVG (default true) , contain: false // enable or disable viewport contain the svg (default false) , center: true // enable or disable viewport centering in SVG (default true) , refreshRate: 'auto' // Maximum number of frames per second (altering SVG's viewport) , beforeZoom: null , onZoom: null , beforePan: null , onPan: null , customEventsHandler: null , eventsListenerElement: null , onUpdatedCTM: null } SvgPanZoom.prototype.init = function(svg, options) { var that = this this.svg = svg this.defs = svg.querySelector('defs') // Add default attributes to SVG SvgUtils.setupSvgAttributes(this.svg) // Set options this.options = Utils.extend(Utils.extend({}, optionsDefaults), options) // Set default state this.state = 'none' // Get dimensions var boundingClientRectNormalized = SvgUtils.getBoundingClientRectNormalized(svg) this.width = boundingClientRectNormalized.width this.height = boundingClientRectNormalized.height // Init shadow viewport this.viewport = ShadowViewport(SvgUtils.getOrCreateViewport(this.svg, this.options.viewportSelector), { svg: this.svg , width: this.width , height: this.height , fit: this.options.fit , contain: this.options.contain , center: this.options.center , refreshRate: this.options.refreshRate // Put callbacks into functions as they can change through time , beforeZoom: function(oldScale, newScale) { if (that.viewport && that.options.beforeZoom) {return that.options.beforeZoom(oldScale, newScale)} } , onZoom: function(scale) { if (that.viewport && that.options.onZoom) {return that.options.onZoom(scale)} } , beforePan: function(oldPoint, newPoint) { if (that.viewport && that.options.beforePan) {return that.options.beforePan(oldPoint, newPoint)} } , onPan: function(point) { if (that.viewport && that.options.onPan) {return that.options.onPan(point)} } , onUpdatedCTM: function(ctm) { if (that.viewport && that.options.onUpdatedCTM) {return that.options.onUpdatedCTM(ctm)} } }) // Wrap callbacks into public API context var publicInstance = this.getPublicInstance() publicInstance.setBeforeZoom(this.options.beforeZoom) publicInstance.setOnZoom(this.options.onZoom) publicInstance.setBeforePan(this.options.beforePan) publicInstance.setOnPan(this.options.onPan) publicInstance.setOnUpdatedCTM(this.options.onUpdatedCTM) if (this.options.controlIconsEnabled) { ControlIcons.enable(this) } // Init events handlers this.lastMouseWheelEventTime = Date.now() this.setupHandlers() } /** * Register event handlers */ SvgPanZoom.prototype.setupHandlers = function() { var that = this , prevEvt = null // use for touchstart event to detect double tap ; this.eventListeners = { // Mouse down group mousedown: function(evt) { var result = that.handleMouseDown(evt, prevEvt); prevEvt = evt return result; } , touchstart: function(evt) { var result = that.handleMouseDown(evt, prevEvt); prevEvt = evt return result; } // Mouse up group , mouseup: function(evt) { return that.handleMouseUp(evt); } , touchend: function(evt) { return that.handleMouseUp(evt); } // Mouse move group , mousemove: function(evt) { return that.handleMouseMove(evt); } , touchmove: function(evt) { return that.handleMouseMove(evt); } // Mouse leave group , mouseleave: function(evt) { return that.handleMouseUp(evt); } , touchleave: function(evt) { return that.handleMouseUp(evt); } , touchcancel: function(evt) { return that.handleMouseUp(evt); } } // Init custom events handler if available if (this.options.customEventsHandler != null) { // jshint ignore:line this.options.customEventsHandler.init({ svgElement: this.svg , eventsListenerElement: this.options.eventsListenerElement , instance: this.getPublicInstance() }) // Custom event handler may halt builtin listeners var haltEventListeners = this.options.customEventsHandler.haltEventListeners if (haltEventListeners && haltEventListeners.length) { for (var i = haltEventListeners.length - 1; i >= 0; i--) { if (this.eventListeners.hasOwnProperty(haltEventListeners[i])) { delete this.eventListeners[haltEventListeners[i]] } } } } // Bind eventListeners for (var event in this.eventListeners) { // Attach event to eventsListenerElement or SVG if not available (this.options.eventsListenerElement || this.svg) .addEventListener(event, this.eventListeners[event], false) } // Zoom using mouse wheel if (this.options.mouseWheelZoomEnabled) { this.options.mouseWheelZoomEnabled = false // set to false as enable will set it back to true this.enableMouseWheelZoom() } } /** * Enable ability to zoom using mouse wheel */ SvgPanZoom.prototype.enableMouseWheelZoom = function() { if (!this.options.mouseWheelZoomEnabled) { var that = this // Mouse wheel listener this.wheelListener = function(evt) { return that.handleMouseWheel(evt); } // Bind wheelListener Wheel.on(this.options.eventsListenerElement || this.svg, this.wheelListener, false) this.options.mouseWheelZoomEnabled = true } } /** * Disable ability to zoom using mouse wheel */ SvgPanZoom.prototype.disableMouseWheelZoom = function() { if (this.options.mouseWheelZoomEnabled) { Wheel.off(this.options.eventsListenerElement || this.svg, this.wheelListener, false) this.options.mouseWheelZoomEnabled = false } } /** * Handle mouse wheel event * * @param {Event} evt */ SvgPanZoom.prototype.handleMouseWheel = function(evt) { if (!this.options.zoomEnabled || this.state !== 'none') { return; } if (this.options.preventMouseEventsDefault){ if (evt.preventDefault) { evt.preventDefault(); } else { evt.returnValue = false; } } // Default delta in case that deltaY is not available var delta = evt.deltaY || 1 , timeDelta = Date.now() - this.lastMouseWheelEventTime , divider = 3 + Math.max(0, 30 - timeDelta) // Update cache this.lastMouseWheelEventTime = Date.now() // Make empirical adjustments for browsers that give deltaY in pixels (deltaMode=0) if ('deltaMode' in evt && evt.deltaMode === 0 && evt.wheelDelta) { delta = evt.deltaY === 0 ? 0 : Math.abs(evt.wheelDelta) / evt.deltaY } delta = -0.3 < delta && delta < 0.3 ? delta : (delta > 0 ? 1 : -1) * Math.log(Math.abs(delta) + 10) / divider var inversedScreenCTM = this.svg.getScreenCTM().inverse() , relativeMousePoint = SvgUtils.getEventPoint(evt, this.svg).matrixTransform(inversedScreenCTM) , zoom = Math.pow(1 + this.options.zoomScaleSensitivity, (-1) * delta); // multiplying by neg. 1 so as to make zoom in/out behavior match Google maps behavior this.zoomAtPoint(zoom, relativeMousePoint) } /** * Zoom in at a SVG point * * @param {SVGPoint} point * @param {Float} zoomScale Number representing how much to zoom * @param {Boolean} zoomAbsolute Default false. If true, zoomScale is treated as an absolute value. * Otherwise, zoomScale is treated as a multiplied (e.g. 1.10 would zoom in 10%) */ SvgPanZoom.prototype.zoomAtPoint = function(zoomScale, point, zoomAbsolute) { var originalState = this.viewport.getOriginalState() if (!zoomAbsolute) { // Fit zoomScale in set bounds if (this.getZoom() * zoomScale < this.options.minZoom * originalState.zoom) { zoomScale = (this.options.minZoom * originalState.zoom) / this.getZoom() } else if (this.getZoom() * zoomScale > this.options.maxZoom * originalState.zoom) { zoomScale = (this.options.maxZoom * originalState.zoom) / this.getZoom() } } else { // Fit zoomScale in set bounds zoomScale = Math.max(this.options.minZoom * originalState.zoom, Math.min(this.options.maxZoom * originalState.zoom, zoomScale)) // Find relative scale to achieve desired scale zoomScale = zoomScale/this.getZoom() } var oldCTM = this.viewport.getCTM() , relativePoint = point.matrixTransform(oldCTM.inverse()) , modifier = this.svg.createSVGMatrix().translate(relativePoint.x, relativePoint.y).scale(zoomScale).translate(-relativePoint.x, -relativePoint.y) , newCTM = oldCTM.multiply(modifier) if (newCTM.a !== oldCTM.a) { this.viewport.setCTM(newCTM) } } /** * Zoom at center point * * @param {Float} scale * @param {Boolean} absolute Marks zoom scale as relative or absolute */ SvgPanZoom.prototype.zoom = function(scale, absolute) { this.zoomAtPoint(scale, SvgUtils.getSvgCenterPoint(this.svg, this.width, this.height), absolute) } /** * Zoom used by public instance * * @param {Float} scale * @param {Boolean} absolute Marks zoom scale as relative or absolute */ SvgPanZoom.prototype.publicZoom = function(scale, absolute) { if (absolute) { scale = this.computeFromRelativeZoom(scale) } this.zoom(scale, absolute) } /** * Zoom at point used by public instance * * @param {Float} scale * @param {SVGPoint|Object} point An object that has x and y attributes * @param {Boolean} absolute Marks zoom scale as relative or absolute */ SvgPanZoom.prototype.publicZoomAtPoint = function(scale, point, absolute) { if (absolute) { // Transform zoom into a relative value scale = this.computeFromRelativeZoom(scale) } // If not a SVGPoint but has x and y then create a SVGPoint if (Utils.getType(point) !== 'SVGPoint') { if('x' in point && 'y' in point) { point = SvgUtils.createSVGPoint(this.svg, point.x, point.y) } else { throw new Error('Given point is invalid') } } this.zoomAtPoint(scale, point, absolute) } /** * Get zoom scale * * @return {Float} zoom scale */ SvgPanZoom.prototype.getZoom = function() { return this.viewport.getZoom() } /** * Get zoom scale for public usage * * @return {Float} zoom scale */ SvgPanZoom.prototype.getRelativeZoom = function() { return this.viewport.getRelativeZoom() } /** * Compute actual zoom from public zoom * * @param {Float} zoom * @return {Float} zoom scale */ SvgPanZoom.prototype.computeFromRelativeZoom = function(zoom) { return zoom * this.viewport.getOriginalState().zoom } /** * Set zoom to initial state */ SvgPanZoom.prototype.resetZoom = function() { var originalState = this.viewport.getOriginalState() this.zoom(originalState.zoom, true); } /** * Set pan to initial state */ SvgPanZoom.prototype.resetPan = function() { this.pan(this.viewport.getOriginalState()); } /** * Set pan and zoom to initial state */ SvgPanZoom.prototype.reset = function() { this.resetZoom() this.resetPan() } /** * Handle double click event * See handleMouseDown() for alternate detection method * * @param {Event} evt */ SvgPanZoom.prototype.handleDblClick = function(evt) { if (this.options.preventMouseEventsDefault) { if (evt.preventDefault) { evt.preventDefault() } else { evt.returnValue = false } } // Check if target was a control button if (this.options.controlIconsEnabled) { var targetClass = evt.target.getAttribute('class') || '' if (targetClass.indexOf('svg-pan-zoom-control') > -1) { return false } } var zoomFactor if (evt.shiftKey) { zoomFactor = 1/((1 + this.options.zoomScaleSensitivity) * 2) // zoom out when shift key pressed } else { zoomFactor = (1 + this.options.zoomScaleSensitivity) * 2 } var point = SvgUtils.getEventPoint(evt, this.svg).matrixTransform(this.svg.getScreenCTM().inverse()) this.zoomAtPoint(zoomFactor, point) } /** * Handle click event * * @param {Event} evt */ SvgPanZoom.prototype.handleMouseDown = function(evt, prevEvt) { if (this.options.preventMouseEventsDefault) { if (evt.preventDefault) { evt.preventDefault() } else { evt.returnValue = false } } Utils.mouseAndTouchNormalize(evt, this.svg) // Double click detection; more consistent than ondblclick if (this.options.dblClickZoomEnabled && Utils.isDblClick(evt, prevEvt)){ this.handleDblClick(evt) } else { // Pan mode this.state = 'pan' this.firstEventCTM = this.viewport.getCTM() this.stateOrigin = SvgUtils.getEventPoint(evt, this.svg).matrixTransform(this.firstEventCTM.inverse()) } } /** * Handle mouse move event * * @param {Event} evt */ SvgPanZoom.prototype.handleMouseMove = function(evt) { if (this.options.preventMouseEventsDefault) { if (evt.preventDefault) { evt.preventDefault() } else { evt.returnValue = false } } if (this.state === 'pan' && this.options.panEnabled) { // Pan mode var point = SvgUtils.getEventPoint(evt, this.svg).matrixTransform(this.firstEventCTM.inverse()) , viewportCTM = this.firstEventCTM.translate(point.x - this.stateOrigin.x, point.y - this.stateOrigin.y) this.viewport.setCTM(viewportCTM) } } /** * Handle mouse button release event * * @param {Event} evt */ SvgPanZoom.prototype.handleMouseUp = function(evt) { if (this.options.preventMouseEventsDefault) { if (evt.preventDefault) { evt.preventDefault() } else { evt.returnValue = false } } if (this.state === 'pan') { // Quit pan mode this.state = 'none' } } /** * Adjust viewport size (only) so it will fit in SVG * Does not center image */ SvgPanZoom.prototype.fit = function() { var viewBox = this.viewport.getViewBox() , newScale = Math.min(this.width/viewBox.width, this.height/viewBox.height) this.zoom(newScale, true) } /** * Adjust viewport size (only) so it will contain the SVG * Does not center image */ SvgPanZoom.prototype.contain = function() { var viewBox = this.viewport.getViewBox() , newScale = Math.max(this.width/viewBox.width, this.height/viewBox.height) this.zoom(newScale, true) } /** * Adjust viewport pan (only) so it will be centered in SVG * Does not zoom/fit/contain image */ SvgPanZoom.prototype.center = function() { var viewBox = this.viewport.getViewBox() , offsetX = (this.width - (viewBox.width + viewBox.x * 2) * this.getZoom()) * 0.5 , offsetY = (this.height - (viewBox.height + viewBox.y * 2) * this.getZoom()) * 0.5 this.getPublicInstance().pan({x: offsetX, y: offsetY}) } /** * Update content cached BorderBox * Use when viewport contents change */ SvgPanZoom.prototype.updateBBox = function() { this.viewport.simpleViewBoxCache() } /** * Pan to a rendered position * * @param {Object} point {x: 0, y: 0} */ SvgPanZoom.prototype.pan = function(point) { var viewportCTM = this.viewport.getCTM() viewportCTM.e = point.x viewportCTM.f = point.y this.viewport.setCTM(viewportCTM) } /** * Relatively pan the graph by a specified rendered position vector * * @param {Object} point {x: 0, y: 0} */ SvgPanZoom.prototype.panBy = function(point) { var viewportCTM = this.viewport.getCTM() viewportCTM.e += point.x viewportCTM.f += point.y this.viewport.setCTM(viewportCTM) } /** * Get pan vector * * @return {Object} {x: 0, y: 0} */ SvgPanZoom.prototype.getPan = function() { var state = this.viewport.getState() return {x: state.x, y: state.y} } /** * Recalculates cached svg dimensions and controls position */ SvgPanZoom.prototype.resize = function() { // Get dimensions var boundingClientRectNormalized = SvgUtils.getBoundingClientRectNormalized(this.svg) this.width = boundingClientRectNormalized.width this.height = boundingClientRectNormalized.height // Recalculate original state var viewport = this.viewport viewport.options.width = this.width viewport.options.height = this.height viewport.processCTM() // Reposition control icons by re-enabling them if (this.options.controlIconsEnabled) { this.getPublicInstance().disableControlIcons() this.getPublicInstance().enableControlIcons() } } /** * Unbind mouse events, free callbacks and destroy public instance */ SvgPanZoom.prototype.destroy = function() { var that = this // Free callbacks this.beforeZoom = null this.onZoom = null this.beforePan = null this.onPan = null this.onUpdatedCTM = null // Destroy custom event handlers if (this.options.customEventsHandler != null) { // jshint ignore:line this.options.customEventsHandler.destroy({ svgElement: this.svg , eventsListenerElement: this.options.eventsListenerElement , instance: this.getPublicInstance() }) } // Unbind eventListeners for (var event in this.eventListeners) { (this.options.eventsListenerElement || this.svg) .removeEventListener(event, this.eventListeners[event], false) } // Unbind wheelListener this.disableMouseWheelZoom() // Remove control icons this.getPublicInstance().disableControlIcons() // Reset zoom and pan this.reset() // Remove instance from instancesStore instancesStore = instancesStore.filter(function(instance){ return instance.svg !== that.svg }) // Delete options and its contents delete this.options // Delete viewport to make public shadow viewport functions uncallable delete this.viewport // Destroy public instance and rewrite getPublicInstance delete this.publicInstance delete this.pi this.getPublicInstance = function(){ return null } } /** * Returns a public instance object * * @return {Object} Public instance object */ SvgPanZoom.prototype.getPublicInstance = function() { var that = this // Create cache if (!this.publicInstance) { this.publicInstance = this.pi = { // Pan enablePan: function() {that.options.panEnabled = true; return that.pi} , disablePan: function() {that.options.panEnabled = false; return that.pi} , isPanEnabled: function() {return !!that.options.panEnabled} , pan: function(point) {that.pan(point); return that.pi} , panBy: function(point) {that.panBy(point); return that.pi} , getPan: function() {return that.getPan()} // Pan event , setBeforePan: function(fn) {that.options.beforePan = fn === null ? null : Utils.proxy(fn, that.publicInstance); return that.pi} , setOnPan: function(fn) {that.options.onPan = fn === null ? null : Utils.proxy(fn, that.publicInstance); return that.pi} // Zoom and Control Icons , enableZoom: function() {that.options.zoomEnabled = true; return that.pi} , disableZoom: function() {that.options.zoomEnabled = false; return that.pi} , isZoomEnabled: function() {return !!that.options.zoomEnabled} , enableControlIcons: function() { if (!that.options.controlIconsEnabled) { that.options.controlIconsEnabled = true ControlIcons.enable(that) } return that.pi } , disableControlIcons: function() { if (that.options.controlIconsEnabled) { that.options.controlIconsEnabled = false; ControlIcons.disable(that) } return that.pi } , isControlIconsEnabled: function() {return !!that.options.controlIconsEnabled} // Double click zoom , enableDblClickZoom: function() {that.options.dblClickZoomEnabled = true; return that.pi} , disableDblClickZoom: function() {that.options.dblClickZoomEnabled = false; return that.pi} , isDblClickZoomEnabled: function() {return !!that.options.dblClickZoomEnabled} // Mouse wheel zoom , enableMouseWheelZoom: function() {that.enableMouseWheelZoom(); return that.pi} , disableMouseWheelZoom: function() {that.disableMouseWheelZoom(); return that.pi} , isMouseWheelZoomEnabled: function() {return !!that.options.mouseWheelZoomEnabled} // Zoom scale and bounds , setZoomScaleSensitivity: function(scale) {that.options.zoomScaleSensitivity = scale; return that.pi} , setMinZoom: function(zoom) {that.options.minZoom = zoom; return that.pi} , setMaxZoom: function(zoom) {that.options.maxZoom = zoom; return that.pi} // Zoom event , setBeforeZoom: function(fn) {that.options.beforeZoom = fn === null ? null : Utils.proxy(fn, that.publicInstance); return that.pi} , setOnZoom: function(fn) {that.options.onZoom = fn === null ? null : Utils.proxy(fn, that.publicInstance); return that.pi} // Zooming , zoom: function(scale) {that.publicZoom(scale, true); return that.pi} , zoomBy: function(scale) {that.publicZoom(scale, false); return that.pi} , zoomAtPoint: function(scale, point) {that.publicZoomAtPoint(scale, point, true); return that.pi} , zoomAtPointBy: function(scale, point) {that.publicZoomAtPoint(scale, point, false); return that.pi} , zoomIn: function() {this.zoomBy(1 + that.options.zoomScaleSensitivity); return that.pi} , zoomOut: function() {this.zoomBy(1 / (1 + that.options.zoomScaleSensitivity)); return that.pi} , getZoom: function() {return that.getRelativeZoom()} // CTM update , setOnUpdatedCTM: function(fn) {that.options.onUpdatedCTM = fn === null ? null : Utils.proxy(fn, that.publicInstance); return that.pi} // Reset , resetZoom: function() {that.resetZoom(); return that.pi} , resetPan: function() {that.resetPan(); return that.pi} , reset: function() {that.reset(); return that.pi} // Fit, Contain and Center , fit: function() {that.fit(); return that.pi} , contain: function() {that.contain(); return that.pi} , center: function() {that.center(); return that.pi} // Size and Resize , updateBBox: function() {that.updateBBox(); return that.pi} , resize: function() {that.resize(); return that.pi} , getSizes: function() { return { width: that.width , height: that.height , realZoom: that.getZoom() , viewBox: that.viewport.getViewBox() } } // Destroy , destroy: function() {that.destroy(); return that.pi} } } return this.publicInstance } /** * Stores pairs of instances of SvgPanZoom and SVG * Each pair is represented by an object {svg: SVGSVGElement, instance: SvgPanZoom} * * @type {Array} */ var instancesStore = [] var svgPanZoom = function(elementOrSelector, options){ var svg = Utils.getSvg(elementOrSelector) if (svg === null) { return null } else { // Look for existent instance for(var i = instancesStore.length - 1; i >= 0; i--) { if (instancesStore[i].svg === svg) { return instancesStore[i].instance.getPublicInstance() } } // If instance not found - create one instancesStore.push({ svg: svg , instance: new SvgPanZoom(svg, options) }) // Return just pushed instance return instancesStore[instancesStore.length - 1].instance.getPublicInstance() } } module.exports = svgPanZoom; },{"./control-icons":2,"./shadow-viewport":3,"./svg-utilities":5,"./uniwheel":6,"./utilities":7}],5:[function(require,module,exports){ var Utils = require('./utilities') , _browser = 'unknown' ; // http://stackoverflow.com/questions/9847580/how-to-detect-safari-chrome-ie-firefox-and-opera-browser if (/*@cc_on!@*/false || !!document.documentMode) { // internet explorer _browser = 'ie'; } module.exports = { svgNS: 'http://www.w3.org/2000/svg' , xmlNS: 'http://www.w3.org/XML/1998/namespace' , xmlnsNS: 'http://www.w3.org/2000/xmlns/' , xlinkNS: 'http://www.w3.org/1999/xlink' , evNS: 'http://www.w3.org/2001/xml-events' /** * Get svg dimensions: width and height * * @param {SVGSVGElement} svg * @return {Object} {width: 0, height: 0} */ , getBoundingClientRectNormalized: function(svg) { if (svg.clientWidth && svg.clientHeight) { return {width: svg.clientWidth, height: svg.clientHeight} } else if (!!svg.getBoundingClientRect()) { return svg.getBoundingClientRect(); } else { throw new Error('Cannot get BoundingClientRect for SVG.'); } } /** * Gets g element with class of "viewport" or creates it if it doesn't exist * * @param {SVGSVGElement} svg * @return {SVGElement} g (group) element */ , getOrCreateViewport: function(svg, selector) { var viewport = null if (Utils.isElement(selector)) { viewport = selector } else { viewport = svg.querySelector(selector) } // Check if there is just one main group in SVG if (!viewport) { var childNodes = Array.prototype.slice.call(svg.childNodes || svg.children).filter(function(el){ return el.nodeName !== 'defs' && el.nodeName !== '#text' }) // Node name should be SVGGElement and should have no transform attribute // Groups with transform are not used as viewport because it involves parsing of all transform possibilities if (childNodes.length === 1 && childNodes[0].nodeName === 'g' && childNodes[0].getAttribute('transform') === null) { viewport = childNodes[0] } } // If no favorable group element exists then create one if (!viewport) { var viewportId = 'viewport-' + new Date().toISOString().replace(/\D/g, ''); viewport = document.createElementNS(this.svgNS, 'g'); viewport.setAttribute('id', viewportId); // Internet Explorer (all versions?) can't use childNodes, but other browsers prefer (require?) using childNodes var svgChildren = svg.childNodes || svg.children; if (!!svgChildren && svgChildren.length > 0) { for (var i = svgChildren.length; i > 0; i--) { // Move everything into viewport except defs if (svgChildren[svgChildren.length - i].nodeName !== 'defs') { viewport.appendChild(svgChildren[svgChildren.length - i]); } } } svg.appendChild(viewport); } // Parse class names var classNames = []; if (viewport.getAttribute('class')) { classNames = viewport.getAttribute('class').split(' ') } // Set class (if not set already) if (!~classNames.indexOf('svg-pan-zoom_viewport')) { classNames.push('svg-pan-zoom_viewport') viewport.setAttribute('class', classNames.join(' ')) } return viewport } /** * Set SVG attributes * * @param {SVGSVGElement} svg */ , setupSvgAttributes: function(svg) { // Setting default attributes svg.setAttribute('xmlns', this.svgNS); svg.setAttributeNS(this.xmlnsNS, 'xmlns:xlink', this.xlinkNS); svg.setAttributeNS(this.xmlnsNS, 'xmlns:ev', this.evNS); // Needed for Internet Explorer, otherwise the viewport overflows if (svg.parentNode !== null) { var style = svg.getAttribute('style') || ''; if (style.toLowerCase().indexOf('overflow') === -1) { svg.setAttribute('style', 'overflow: hidden; ' + style); } } } /** * How long Internet Explorer takes to finish updating its display (ms). */ , internetExplorerRedisplayInterval: 300 /** * Forces the browser to redisplay all SVG elements that rely on an * element defined in a 'defs' section. It works globally, for every * available defs element on the page. * The throttling is intentionally global. * * This is only needed for IE. It is as a hack to make markers (and 'use' elements?) * visible after pan/zoom when there are multiple SVGs on the page. * See bug report: https://connect.microsoft.com/IE/feedback/details/781964/ * also see svg-pan-zoom issue: https://github.com/ariutta/svg-pan-zoom/issues/62 */ , refreshDefsGlobal: Utils.throttle(function() { var allDefs = document.querySelectorAll('defs'); var allDefsCount = allDefs.length; for (var i = 0; i < allDefsCount; i++) { var thisDefs = allDefs[i]; thisDefs.parentNode.insertBefore(thisDefs, thisDefs); } }, this.internetExplorerRedisplayInterval) /** * Sets the current transform matrix of an element * * @param {SVGElement} element * @param {SVGMatrix} matrix CTM * @param {SVGElement} defs */ , setCTM: function(element, matrix, defs) { var that = this , s = 'matrix(' + matrix.a + ',' + matrix.b + ',' + matrix.c + ',' + matrix.d + ',' + matrix.e + ',' + matrix.f + ')'; element.setAttributeNS(null, 'transform', s); if ('transform' in element.style) { element.style.transform = s; } else if ('-ms-transform' in element.style) { element.style['-ms-transform'] = s; } else if ('-webkit-transform' in element.style) { element.style['-webkit-transform'] = s; } // IE has a bug that makes markers disappear on zoom (when the matrix "a" and/or "d" elements change) // see http://stackoverflow.com/questions/17654578/svg-marker-does-not-work-in-ie9-10 // and http://srndolha.wordpress.com/2013/11/25/svg-line-markers-may-disappear-in-internet-explorer-11/ if (_browser === 'ie' && !!defs) { // this refresh is intended for redisplaying the SVG during zooming defs.parentNode.insertBefore(defs, defs); // this refresh is intended for redisplaying the other SVGs on a page when panning a given SVG // it is also needed for the given SVG itself, on zoomEnd, if the SVG contains any markers that // are located under any other element(s). window.setTimeout(function() { that.refreshDefsGlobal(); }, that.internetExplorerRedisplayInterval); } } /** * Instantiate an SVGPoint object with given event coordinates * * @param {Event} evt * @param {SVGSVGElement} svg * @return {SVGPoint} point */ , getEventPoint: function(evt, svg) { var point = svg.createSVGPoint() Utils.mouseAndTouchNormalize(evt, svg) point.x = evt.clientX point.y = evt.clientY return point } /** * Get SVG center point * * @param {SVGSVGElement} svg * @return {SVGPoint} */ , getSvgCenterPoint: function(svg, width, height) { return this.createSVGPoint(svg, width / 2, height / 2) } /** * Create a SVGPoint with given x and y * * @param {SVGSVGElement} svg * @param {Number} x * @param {Number} y * @return {SVGPoint} */ , createSVGPoint: function(svg, x, y) { var point = svg.createSVGPoint() point.x = x point.y = y return point } } },{"./utilities":7}],6:[function(require,module,exports){ // uniwheel 0.1.2 (customized) // A unified cross browser mouse wheel event handler // https://github.com/teemualap/uniwheel module.exports = (function(){ //Full details: https://developer.mozilla.org/en-US/docs/Web/Reference/Events/wheel var prefix = "", _addEventListener, _removeEventListener, onwheel, support, fns = []; // detect event model if ( window.addEventListener ) { _addEventListener = "addEventListener"; _removeEventListener = "removeEventListener"; } else { _addEventListener = "attachEvent"; _removeEventListener = "detachEvent"; prefix = "on"; } // detect available wheel event support = "onwheel" in document.createElement("div") ? "wheel" : // Modern browsers support "wheel" document.onmousewheel !== undefined ? "mousewheel" : // Webkit and IE support at least "mousewheel" "DOMMouseScroll"; // let's assume that remaining browsers are older Firefox function createCallback(element,callback,capture) { var fn = function(originalEvent) { !originalEvent && ( originalEvent = window.event ); // create a normalized event object var event = { // keep a ref to the original event object originalEvent: originalEvent, target: originalEvent.target || originalEvent.srcElement, type: "wheel", deltaMode: originalEvent.type == "MozMousePixelScroll" ? 0 : 1, deltaX: 0, delatZ: 0, preventDefault: function() { originalEvent.preventDefault ? originalEvent.preventDefault() : originalEvent.returnValue = false; } }; // calculate deltaY (and deltaX) according to the event if ( support == "mousewheel" ) { event.deltaY = - 1/40 * originalEvent.wheelDelta; // Webkit also support wheelDeltaX originalEvent.wheelDeltaX && ( event.deltaX = - 1/40 * originalEvent.wheelDeltaX ); } else { event.deltaY = originalEvent.detail; } // it's time to fire the callback return callback( event ); }; fns.push({ element: element, fn: fn, capture: capture }); return fn; } function getCallback(element,capture) { for (var i = 0; i < fns.length; i++) { if (fns[i].element === element && fns[i].capture === capture) { return fns[i].fn; } } return function(){}; } function removeCallback(element,capture) { for (var i = 0; i < fns.length; i++) { if (fns[i].element === element && fns[i].capture === capture) { return fns.splice(i,1); } } } function _addWheelListener( elem, eventName, callback, useCapture ) { var cb; if (support === "wheel") { cb = callback; } else { cb = createCallback(elem,callback,useCapture); } elem[ _addEventListener ]( prefix + eventName, cb, useCapture || false ); } function _removeWheelListener( elem, eventName, callback, useCapture ) { var cb; if (support === "wheel") { cb = callback; } else { cb = getCallback(elem,useCapture); } elem[ _removeEventListener ]( prefix + eventName, cb, useCapture || false ); removeCallback(elem,useCapture); } function addWheelListener( elem, callback, useCapture ) { _addWheelListener( elem, support, callback, useCapture ); // handle MozMousePixelScroll in older Firefox if( support == "DOMMouseScroll" ) { _addWheelListener( elem, "MozMousePixelScroll", callback, useCapture); } } function removeWheelListener(elem,callback,useCapture){ _removeWheelListener(elem,support,callback,useCapture); // handle MozMousePixelScroll in older Firefox if( support == "DOMMouseScroll" ) { _removeWheelListener(elem, "MozMousePixelScroll", callback, useCapture); } } return { on: addWheelListener, off: removeWheelListener }; })(); },{}],7:[function(require,module,exports){ module.exports = { /** * Extends an object * * @param {Object} target object to extend * @param {Object} source object to take properties from * @return {Object} extended object */ extend: function(target, source) { target = target || {}; for (var prop in source) { // Go recursively if (this.isObject(source[prop])) { target[prop] = this.extend(target[prop], source[prop]) } else { target[prop] = source[prop] } } return target; } /** * Checks if an object is a DOM element * * @param {Object} o HTML element or String * @return {Boolean} returns true if object is a DOM element */ , isElement: function(o){ return ( o instanceof HTMLElement || o instanceof SVGElement || o instanceof SVGSVGElement || //DOM2 (o && typeof o === 'object' && o !== null && o.nodeType === 1 && typeof o.nodeName === 'string') ); } /** * Checks if an object is an Object * * @param {Object} o Object * @return {Boolean} returns true if object is an Object */ , isObject: function(o){ return Object.prototype.toString.call(o) === '[object Object]'; } /** * Checks if variable is Number * * @param {Integer|Float} n * @return {Boolean} returns true if variable is Number */ , isNumber: function(n) { return !isNaN(parseFloat(n)) && isFinite(n); } /** * Search for an SVG element * * @param {Object|String} elementOrSelector DOM Element or selector String * @return {Object|Null} SVG or null */ , getSvg: function(elementOrSelector) { var element , svg; if (!this.isElement(elementOrSelector)) { // If selector provided if (typeof elementOrSelector === 'string' || elementOrSelector instanceof String) { // Try to find the element element = document.querySelector(elementOrSelector) if (!element) { throw new Error('Provided selector did not find any elements. Selector: ' + elementOrSelector) return null } } else { throw new Error('Provided selector is not an HTML object nor String') return null } } else { element = elementOrSelector } if (element.tagName.toLowerCase() === 'svg') { svg = element; } else { if (element.tagName.toLowerCase() === 'object') { svg = element.contentDocument.documentElement; } else { if (element.tagName.toLowerCase() === 'embed') { svg = element.getSVGDocument().documentElement; } else { if (element.tagName.toLowerCase() === 'img') { throw new Error('Cannot script an SVG in an "img" element. Please use an "object" element or an in-line SVG.'); } else { throw new Error('Cannot get SVG.'); } return null } } } return svg } /** * Attach a given context to a function * @param {Function} fn Function * @param {Object} context Context * @return {Function} Function with certain context */ , proxy: function(fn, context) { return function() { return fn.apply(context, arguments) } } /** * Returns object type * Uses toString that returns [object SVGPoint] * And than parses object type from string * * @param {Object} o Any object * @return {String} Object type */ , getType: function(o) { return Object.prototype.toString.apply(o).replace(/^\[object\s/, '').replace(/\]$/, '') } /** * If it is a touch event than add clientX and clientY to event object * * @param {Event} evt * @param {SVGSVGElement} svg */ , mouseAndTouchNormalize: function(evt, svg) { // If no clientX then fallback if (evt.clientX === void 0 || evt.clientX === null) { // Fallback evt.clientX = 0 evt.clientY = 0 // If it is a touch event if (evt.touches !== void 0 && evt.touches.length) { if (evt.touches[0].clientX !== void 0) { evt.clientX = evt.touches[0].clientX evt.clientY = evt.touches[0].clientY } else if (evt.touches[0].pageX !== void 0) { var rect = svg.getBoundingClientRect(); evt.clientX = evt.touches[0].pageX - rect.left evt.clientY = evt.touches[0].pageY - rect.top } // If it is a custom event } else if (evt.originalEvent !== void 0) { if (evt.originalEvent.clientX !== void 0) { evt.clientX = evt.originalEvent.clientX evt.clientY = evt.originalEvent.clientY } } } } /** * Check if an event is a double click/tap * TODO: For touch gestures use a library (hammer.js) that takes in account other events * (touchmove and touchend). It should take in account tap duration and traveled distance * * @param {Event} evt * @param {Event} prevEvt Previous Event * @return {Boolean} */ , isDblClick: function(evt, prevEvt) { // Double click detected by browser if (evt.detail === 2) { return true; } // Try to compare events else if (prevEvt !== void 0 && prevEvt !== null) { var timeStampDiff = evt.timeStamp - prevEvt.timeStamp // should be lower than 250 ms , touchesDistance = Math.sqrt(Math.pow(evt.clientX - prevEvt.clientX, 2) + Math.pow(evt.clientY - prevEvt.clientY, 2)) return timeStampDiff < 250 && touchesDistance < 10 } // Nothing found return false; } /** * Returns current timestamp as an integer * * @return {Number} */ , now: Date.now || function() { return new Date().getTime(); } // From underscore. // Returns a function, that, when invoked, will only be triggered at most once // during a given window of time. Normally, the throttled function will run // as much as it can, without ever going more than once per `wait` duration; // but if you'd like to disable the execution on the leading edge, pass // `{leading: false}`. To disable execution on the trailing edge, ditto. // jscs:disable // jshint ignore:start , throttle: function(func, wait, options) { var that = this; var context, args, result; var timeout = null; var previous = 0; if (!options) options = {}; var later = function() { previous = options.leading === false ? 0 : that.now(); timeout = null; result = func.apply(context, args); if (!timeout) context = args = null; }; return function() { var now = that.now(); if (!previous && options.leading === false) previous = now; var remaining = wait - (now - previous); context = this; args = arguments; if (remaining <= 0 || remaining > wait) { clearTimeout(timeout); timeout = null; previous = now; result = func.apply(context, args); if (!timeout) context = args = null; } else if (!timeout && options.trailing !== false) { timeout = setTimeout(later, remaining); } return result; }; } // jshint ignore:end // jscs:enable /** * Create a requestAnimationFrame simulation * * @param {Number|String} refreshRate * @return {Function} */ , createRequestAnimationFrame: function(refreshRate) { var timeout = null // Convert refreshRate to timeout if (refreshRate !== 'auto' && refreshRate < 60 && refreshRate > 1) { timeout = Math.floor(1000 / refreshRate) } if (timeout === null) { return window.requestAnimationFrame || requestTimeout(33) } else { return requestTimeout(timeout) } } } /** * Create a callback that will execute after a given timeout * * @param {Function} timeout * @return {Function} */ function requestTimeout(timeout) { return function(callback) { window.setTimeout(callback, timeout) } } },{}]},{},[1]);
PypiClean
/Django-Gtts-0.4.tar.gz/Django-Gtts-0.4/gTTS/templatetags/gTTS.py
from django import template from django.conf import settings try: # Django 2 from django.contrib.staticfiles.templatetags.staticfiles import static except ModuleNotFoundError: # Django 3 from django.templatetags.static import static from gtts import gTTS from os import path, makedirs, remove from datetime import datetime from sys import version_info from uuid import uuid4 as uuid from ..models import Speech cur_dir = path.join(path.dirname(path.abspath(__file__)), '..') dir_name = 'gTTS' temp_path = path.join( cur_dir, path.join( getattr(settings, 'STATIC_URL', ' ')[1:], dir_name ) ) register = template.Library() @register.simple_tag def say( language='en-us', text='Flask says Hi!'): for h, a in {'language': language, 'text': text}.items(): if not isinstance(a, str): # check if receiving a string raise(TypeError("gTTS.say(%s) takes string" % h)) try: ext_file = Speech.objects.get(text=text, language=language) if not isfile(path.join(temp_path, ext_file.file_name)): for file in Speech.objects.filter( text=text, language=language).all(): file.delete() ext_file = None except Exception: ext_file = None if not path.isdir(temp_path): # creating temporary directory makedirs(temp_path) if version_info.major == 2 else makedirs( # makedirs in py2 missing exist_ok temp_path, exist_ok=True ) if ext_file is None: s = gTTS(text) if language == 'skip' else gTTS( text, lang=language) while True: # making sure audio file name is truly unique fname = str(uuid()) + '.mp3' abp_fname = path.join(temp_path, fname) if not path.isfile(abp_fname): break Speech(text=text, language=language, file_name=fname).save() s.save(abp_fname) else: fname = ext_file.file_name return static('/'.join([dir_name, fname]))
PypiClean
/Cryptonet-0.0.5.tar.gz/Cryptonet-0.0.5/cryptonet/utilities.py
import hashlib import sys import sha3 import time import pprint as pprint_module from binascii import hexlify, unhexlify import cryptonet from cryptonet.debug import debug from cryptonet.errors import ChainError, ValidationError #============================================================================== # GENERAL CRYPTONET FUNCTIONS #============================================================================== def i2b(x): """ Take and integer and return bytes with no \x00 padding. :param x: input integer :return: bytes """ return x.to_bytes((x.bit_length() - 1) // 8 + 1, 'big') def num2bits(n, minlen=0): n = int(n) r = [] while n > 0: r.append(n % 2) n //= 2 pad = minlen - len(r) while pad > 0: r.append(0) pad -= 1 return r[::-1] def random_peer(p2p): p2p.peers() def global_hash(msg, length=None): ''' This is the hash function that should be used EVERYWHERE in GPDHT. Currently defined to be SHA3. Returns int, should accept int''' s = hashlib.sha3_256() if not isinstance(msg, int): s.update(bytes(msg)) else: if length == None: length = msg.bit_length() // 8 + 1 s.update(msg.to_bytes(length, 'big')) return int.from_bytes(s.digest(), 'big') def dsha256R(msg): ''' Return a dsha256 hash reversed ''' return dsha256(msg)[::-1] def dsha256(msg): ''' Input should be bytes ''' return sha256(sha256(msg)) def sha256(msg): s = hashlib.sha256() s.update(msg) return s.digest() def _split_varint_and_bytes(int_location, bytes): return (bytes[int_location[0]:int_location[1]], bytes[int_location[1]:]) def get_varint_and_remainder(bytes): if bytes[0] < 0xfd: return _split_varint_and_bytes((0, 1), bytes) if bytes[0] == 0xfd: return _split_varint_and_bytes((1, 3), bytes) if bytes[0] == 0xfe: return _split_varint_and_bytes((1, 5), bytes) if bytes[0] == 0xff: return _split_varint_and_bytes((1, 9), bytes) time_as_int = lambda: int(time.time()) def create_index(labels): # starts at 1 dict(zip(labels, [i+1 for i in range(len(labels))])) pp = pprint_module.PrettyPrinter(indent=4) def pretty_string(obj): return pp.pformat(obj)
PypiClean
/Beeswarm-0.7.18.tar.gz/Beeswarm-0.7.18/beeswarm/drones/honeypot/capabilities/ssh.py
# This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import logging import os from telnetsrv.paramiko_ssh import SSHHandler, TelnetToPtyHandler from paramiko import RSAKey from paramiko.ssh_exception import SSHException from beeswarm.drones.honeypot.capabilities.handlerbase import HandlerBase from beeswarm.drones.honeypot.capabilities.shared.shell import Commands logger = logging.getLogger(__name__) class SSH(HandlerBase): def __init__(self, options, work_dir, key='server.key'): logging.getLogger("telnetsrv.paramiko_ssh ").setLevel(logging.WARNING) logging.getLogger("paramiko").setLevel(logging.WARNING) self.key = os.path.join(work_dir, key) super(SSH, self).__init__(options, work_dir) def handle_session(self, gsocket, address): session = self.create_session(address) try: SshWrapper(address, None, gsocket, session, self.options, self.vfsystem, self.key) except (SSHException, EOFError) as ex: logger.debug('Unexpected end of ssh session: {0}. ({1})'.format(ex, session.id)) finally: self.close_session(session) class BeeTelnetHandler(Commands): def __init__(self, request, client_address, server, vfs, session): Commands.__init__(self, request, client_address, server, vfs, session) class SshWrapper(SSHHandler): """ Wraps the telnetsrv paramiko module to fit the Honeypot architecture. """ WELCOME = '...' HOSTNAME = 'host' PROMPT = None telnet_handler = BeeTelnetHandler def __init__(self, client_address, server, socket, session, options, vfs, key): self.session = session self.auth_count = 0 self.vfs = vfs self.working_dir = None self.username = None SshWrapper.host_key = RSAKey(filename=key) request = SshWrapper.dummy_request() request._sock = socket SSHHandler.__init__(self, request, client_address, server) class __MixedPtyHandler(TelnetToPtyHandler, BeeTelnetHandler): # BaseRequestHandler does not inherit from object, must call the __init__ directly def __init__(self, *args): TelnetToPtyHandler.__init__(self, *args) self.pty_handler = __MixedPtyHandler def authCallbackUsername(self, username): # make sure no one can logon raise def authCallback(self, username, password): self.session.activity() if self.session.try_auth('plaintext', username=username, password=password): self.working_dir = '/' self.username = username self.telnet_handler.PROMPT = '[{0}@{1} {2}]$ '.format(self.username, self.HOSTNAME, self.working_dir) return True raise def finish(self): self.session.end_session() def setup(self): self.transport.load_server_moduli() self.transport.add_server_key(self.host_key) self.transport.start_server(server=self) while True: channel = self.transport.accept(20) if channel is None: # check to see if any thread is running any_running = False for _, thread in self.channels.items(): if thread.is_alive(): any_running = True break if not any_running: break def start_pty_request(self, channel, term, modes): """Start a PTY - intended to run it a (green)thread.""" request = self.dummy_request() request._sock = channel request.modes = modes request.term = term request.username = self.username # This should block until the user quits the pty self.pty_handler(request, self.client_address, self.tcp_server, self.vfs, self.session) # Shutdown the entire session self.transport.close()
PypiClean
/OBITools-1.2.13.tar.gz/OBITools-1.2.13/src/obitools/options/bioseqcutter.py
from logging import debug def _beginOptionCallback(options,opt,value,parser): def beginCutPosition(seq): debug("begin = %s" % value ) if hasattr(options, 'taxonomy') and options.taxonomy is not None: environ = {'taxonomy' : options.taxonomy,'sequence':seq} else: environ = {'sequence':seq} return eval(value,environ,seq) - 1 parser.values.beginCutPosition=beginCutPosition def _endOptionCallback(options,opt,value,parser): def endCutPosition(seq): if hasattr(options, 'taxonomy') and options.taxonomy is not None: environ = {'taxonomy' : options.taxonomy,'sequence':seq} else: environ = {'sequence':seq} return eval(value,environ,seq) parser.values.endCutPosition=endCutPosition def addSequenceCuttingOptions(optionManager): group = optionManager.add_option_group('Cutting options') group.add_option('-b','--begin', action="callback", callback=_beginOptionCallback, metavar="<PYTHON_EXPRESSION>", type="string", help="python expression to be evaluated in the " "sequence context. The attribute name can be " "used in the expression as variable name. " "An extra variable named 'sequence' refers " "to the sequence object itself. ") group.add_option('-e','--end', action="callback", callback=_endOptionCallback, metavar="<PYTHON_EXPRESSION>", type="string", help="python expression to be evaluated in the " "sequence context. The attribute name can be " "used in the expression as variable name ." "An extra variable named 'sequence' refers" "to the sequence object itself. ") def cutterGenerator(options): def sequenceCutter(seq): lseq = len(seq) if hasattr(options, 'beginCutPosition'): begin = int(options.beginCutPosition(seq)) else: begin = 0 if hasattr(options, 'endCutPosition'): end = int(options.endCutPosition(seq)) else: end = lseq if begin > 0 or end < lseq: seq = seq[begin:end] seq['subsequence']="%d..%d" % (begin+1,end) return seq return sequenceCutter def cutterIteratorGenerator(options): _cutter = cutterGenerator(options) def sequenceCutterIterator(seqIterator): for seq in seqIterator: yield _cutter(seq) return sequenceCutterIterator
PypiClean
/CephQeSdk-1.0.0.tar.gz/CephQeSdk-1.0.0/src/RhcsQeSdk/core/cli/radosgw_admin/role.py
import logging from copy import deepcopy import RhcsQeSdk.core.cli.fabfile as fabfile from RhcsQeSdk.core.utilities import core_utils logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) formatter = logging.Formatter( "%(asctime)s - %(levelname)s - %(name)s:%(lineno)d - %(message)s" ) stream_handler = logging.StreamHandler() stream_handler.setFormatter(formatter) stream_handler.setLevel(logging.DEBUG) logger.addHandler(stream_handler) class Role: """ This module provides CLI interface to manage role operations. """ def __init__(self, base_cmd): self.base_cmd = base_cmd + " role" def create(self, **kw): """Create a new AWS role for use with STS. Args: kw(dict): Key/value pairs that needs to be provided to the installer Example:: Supported keys: role-name(str): takes name of the role path(str): path to role. The default value is a slash(/).(optioal) assume-role-policy-doc(str): The trust relationship policy document that grants an entity permission to assume the role.(optional) Returns: Dict(str) A mapping of host strings to the given task’s return value for that host’s execution run """ kw = kw.get("kw") kw_copy = deepcopy(kw) role_name = kw_copy.pop("role-name", "") cmd = ( self.base_cmd + f" create --role-name={role_name}" + core_utils.build_cmd_args(kw=kw_copy) ) logger.info(f"Running command {cmd}") return fabfile.run_command(cmd, config=kw.get("env_config")) def rm(self, **kw): """Remove a role. Args: kw(dict): Key/value pairs that needs to be provided to the installer Example:: Supported keys: role-name(str): takes name of the role Returns: Dict(str) A mapping of host strings to the given task’s return value for that host’s execution run """ kw = kw.get("kw") role_name = kw.get("role-name") cmd = self.base_cmd + f" rm --role-name={role_name}" logger.info(f"Running command {cmd}") return fabfile.run_command(cmd, config=kw.get("env_config")) def get_(self, **kw): """Get a role. Args: kw(dict): Key/value pairs that needs to be provided to the installer Example:: Supported keys: role-name(str): takes name of the role Returns: Dict(str) A mapping of host strings to the given task’s return value for that host’s execution run """ kw = kw.get("kw") role_name = kw.get("role-name") cmd = self.base_cmd + f" get --role-name={role_name}" logger.info(f"Running command {cmd}") return fabfile.run_command(cmd, config=kw.get("env_config")) def list_(self, **kw): """List the roles with specified path prefix. Args: kw(dict): Key/value pairs that needs to be provided to the installer Example: Supported keys: path-prefix(str): Path prefix for filtering roles. If this is not specified, all roles are listed.(optional) Returns: Dict(str) A mapping of host strings to the given task’s return value for that host’s execution run """ kw = kw.get("kw") cmd = self.base_cmd + " list" + core_utils.build_cmd_args(kw=kw) logger.info(f"Running command {cmd}") return fabfile.run_command(cmd, config=kw.get("env_config")) def modify(self, **kw): """Modify the assume role policy of an existing role. Args: kw(dict): Key/value pairs that needs to be provided to the installer Example:: Supported keys: role-name(str): takes name of the role assume-role-policy-doc(str): The trust relationship policy document that grants an entity permission to assume the role. Returns: Dict(str) A mapping of host strings to the given task’s return value for that host’s execution run """ kw = kw.get("kw") role_name = kw.get("role-name") trust_policy_document = kw.get("assume-role-policy-doc") cmd = ( self.base_cmd + f" modify --role-name={role_name} --assume-role-policy-doc={trust_policy_document}" ) logger.info(f"Running command {cmd}") return fabfile.run_command(cmd, config=kw.get("env_config"))
PypiClean
/LiPD-0.2.8.9.tar.gz/LiPD-0.2.8.9/docs/_build/html/_static/doctools.js
* select a different prefix for underscore */ $u = _.noConflict(); /** * make the code below compatible with browsers without * an installed firebug like debugger if (!window.console || !console.firebug) { var names = ["log", "debug", "info", "warn", "error", "assert", "dir", "dirxml", "group", "groupEnd", "time", "timeEnd", "count", "trace", "profile", "profileEnd"]; window.console = {}; for (var i = 0; i < names.length; ++i) window.console[names[i]] = function() {}; } */ /** * small helper function to urldecode strings */ jQuery.urldecode = function(x) { return decodeURIComponent(x).replace(/\+/g, ' '); }; /** * small helper function to urlencode strings */ jQuery.urlencode = encodeURIComponent; /** * This function returns the parsed url parameters of the * current request. Multiple values per key are supported, * it will always return arrays of strings for the value parts. */ jQuery.getQueryParameters = function(s) { if (typeof s == 'undefined') s = document.location.search; var parts = s.substr(s.indexOf('?') + 1).split('&'); var result = {}; for (var i = 0; i < parts.length; i++) { var tmp = parts[i].split('=', 2); var key = jQuery.urldecode(tmp[0]); var value = jQuery.urldecode(tmp[1]); if (key in result) result[key].push(value); else result[key] = [value]; } return result; }; /** * highlight a given string on a jquery object by wrapping it in * span elements with the given class name. */ jQuery.fn.highlightText = function(text, className) { function highlight(node) { if (node.nodeType == 3) { var val = node.nodeValue; var pos = val.toLowerCase().indexOf(text); if (pos >= 0 && !jQuery(node.parentNode).hasClass(className)) { var span = document.createElement("span"); span.className = className; span.appendChild(document.createTextNode(val.substr(pos, text.length))); node.parentNode.insertBefore(span, node.parentNode.insertBefore( document.createTextNode(val.substr(pos + text.length)), node.nextSibling)); node.nodeValue = val.substr(0, pos); } } else if (!jQuery(node).is("button, select, textarea")) { jQuery.each(node.childNodes, function() { highlight(this); }); } } return this.each(function() { highlight(this); }); }; /* * backward compatibility for jQuery.browser * This will be supported until firefox bug is fixed. */ if (!jQuery.browser) { jQuery.uaMatch = function(ua) { ua = ua.toLowerCase(); var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || /(webkit)[ \/]([\w.]+)/.exec(ua) || /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || /(msie) ([\w.]+)/.exec(ua) || ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || []; return { browser: match[ 1 ] || "", version: match[ 2 ] || "0" }; }; jQuery.browser = {}; jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; } /** * Small JavaScript module for the documentation. */ var Documentation = { init : function() { this.fixFirefoxAnchorBug(); this.highlightSearchWords(); this.initIndexTable(); }, /** * i18n support */ TRANSLATIONS : {}, PLURAL_EXPR : function(n) { return n == 1 ? 0 : 1; }, LOCALE : 'unknown', // gettext and ngettext don't access this so that the functions // can safely bound to a different name (_ = Documentation.gettext) gettext : function(string) { var translated = Documentation.TRANSLATIONS[string]; if (typeof translated == 'undefined') return string; return (typeof translated == 'string') ? translated : translated[0]; }, ngettext : function(singular, plural, n) { var translated = Documentation.TRANSLATIONS[singular]; if (typeof translated == 'undefined') return (n == 1) ? singular : plural; return translated[Documentation.PLURALEXPR(n)]; }, addTranslations : function(catalog) { for (var key in catalog.messages) this.TRANSLATIONS[key] = catalog.messages[key]; this.PLURAL_EXPR = new Function('n', 'return +(' + catalog.plural_expr + ')'); this.LOCALE = catalog.locale; }, /** * add context elements like header anchor links */ addContextElements : function() { $('div[id] > :header:first').each(function() { $('<a class="headerlink">\u00B6</a>'). attr('href', '#' + this.id). attr('title', _('Permalink to this headline')). appendTo(this); }); $('dt[id]').each(function() { $('<a class="headerlink">\u00B6</a>'). attr('href', '#' + this.id). attr('title', _('Permalink to this definition')). appendTo(this); }); }, /** * workaround a firefox stupidity * see: https://bugzilla.mozilla.org/show_bug.cgi?id=645075 */ fixFirefoxAnchorBug : function() { if (document.location.hash) window.setTimeout(function() { document.location.href += ''; }, 10); }, /** * highlight the search words provided in the url in the text */ highlightSearchWords : function() { var params = $.getQueryParameters(); var terms = (params.highlight) ? params.highlight[0].split(/\s+/) : []; if (terms.length) { var body = $('div.body'); if (!body.length) { body = $('body'); } window.setTimeout(function() { $.each(terms, function() { body.highlightText(this.toLowerCase(), 'highlighted'); }); }, 10); $('<p class="highlight-link"><a href="javascript:Documentation.' + 'hideSearchWords()">' + _('Hide Search Matches') + '</a></p>') .appendTo($('#searchbox')); } }, /** * init the domain index toggle buttons */ initIndexTable : function() { var togglers = $('img.toggler').click(function() { var src = $(this).attr('src'); var idnum = $(this).attr('id').substr(7); $('tr.cg-' + idnum).toggle(); if (src.substr(-9) == 'minus.png') $(this).attr('src', src.substr(0, src.length-9) + 'plus.png'); else $(this).attr('src', src.substr(0, src.length-8) + 'minus.png'); }).css('display', ''); if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) { togglers.click(); } }, /** * helper function to hide the search marks again */ hideSearchWords : function() { $('#searchbox .highlight-link').fadeOut(300); $('span.highlighted').removeClass('highlighted'); }, /** * make the url absolute */ makeURL : function(relativeURL) { return DOCUMENTATION_OPTIONS.URL_ROOT + '/' + relativeURL; }, /** * get the current relative url */ getCurrentURL : function() { var path = document.location.pathname; var parts = path.split(/\//); $.each(DOCUMENTATION_OPTIONS.URL_ROOT.split(/\//), function() { if (this == '..') parts.pop(); }); var url = parts.join('/'); return path.substring(url.lastIndexOf('/') + 1, path.length - 1); }, initOnKeyListeners: function() { $(document).keyup(function(event) { var activeElementType = document.activeElement.tagName; // don't navigate when in search box or textarea if (activeElementType !== 'TEXTAREA' && activeElementType !== 'INPUT' && activeElementType !== 'SELECT') { switch (event.keyCode) { case 37: // left var prevHref = $('link[rel="prev"]').prop('href'); if (prevHref) { window.location.href = prevHref; return false; } case 39: // right var nextHref = $('link[rel="next"]').prop('href'); if (nextHref) { window.location.href = nextHref; return false; } } } }); } }; // quick alias for translations _ = Documentation.gettext; $(document).ready(function() { Documentation.init(); });
PypiClean
/NuInfoSys-1.0.0.tar.gz/NuInfoSys-1.0.0/README.md
# NuInfoSys currently INCOMPLETE -- kekw malding ## Future Goals * Custom Images (DOTS files) * Custom Animations (Chaining DOTS files) * Image + Animation Designer Web App / Software * A way to know if the current animation list would require too much memory would be really cool, but would take some investigation ## Codestyle I have decided to commit to EXTREMELY STRICT typing for this project, in order to avoid confusion completely and absolutely. You MUST follow these rules or I won't even look at your code: * ALL assignments have explicit types * ALL RE-assignments have explicit types * ALL functions have return types * ALL function parameters have types * Follow any other typing conventions you have heard of If you follow all these rules and there is still something weird in your code I will mention it in the review. ## Running from the CLI In order to run NuInfoSys from the command line, use the following command: ```python3.6 -m NuInfoSys.MODULE``` Usually MODULE will be betabrite (i.e. ```python3.6 -m NuInfoSys.betabrite``` ## Current Goals, in Rank of Needed Completion * Memory management
PypiClean
/JATA-0.3.5-py3-none-any.whl/pixplot/web/assets/vendor/dist/tweenlite.min.js
!function(a,b){"use strict";var c={},d=a.document,e=a.GreenSockGlobals=a.GreenSockGlobals||a,f=e[b];if(f)return"undefined"!=typeof module&&module.exports&&(module.exports=f),f;var g,h,i,j,k,l=function(a){var b,c=a.split("."),d=e;for(b=0;b<c.length;b++)d[c[b]]=d=d[c[b]]||{};return d},m=l("com.greensock"),n=1e-10,o=function(a){var b,c=[],d=a.length;for(b=0;b!==d;c.push(a[b++]));return c},p=function(){},q=function(){var a=Object.prototype.toString,b=a.call([]);return function(c){return null!=c&&(c instanceof Array||"object"==typeof c&&!!c.push&&a.call(c)===b)}}(),r={},s=function(d,f,g,h){this.sc=r[d]?r[d].sc:[],r[d]=this,this.gsClass=null,this.func=g;var i=[];this.check=function(j){for(var k,m,n,o,p=f.length,q=p;--p>-1;)(k=r[f[p]]||new s(f[p],[])).gsClass?(i[p]=k.gsClass,q--):j&&k.sc.push(this);if(0===q&&g){if(m=("com.greensock."+d).split("."),n=m.pop(),o=l(m.join("."))[n]=this.gsClass=g.apply(g,i),h)if(e[n]=c[n]=o,"undefined"!=typeof module&&module.exports)if(d===b){module.exports=c[b]=o;for(p in c)o[p]=c[p]}else c[b]&&(c[b][n]=o);else"function"==typeof define&&define.amd&&define((a.GreenSockAMDPath?a.GreenSockAMDPath+"/":"")+d.split(".").pop(),[],function(){return o});for(p=0;p<this.sc.length;p++)this.sc[p].check()}},this.check(!0)},t=a._gsDefine=function(a,b,c,d){return new s(a,b,c,d)},u=m._class=function(a,b,c){return b=b||function(){},t(a,[],function(){return b},c),b};t.globals=e;var v=[0,0,1,1],w=u("easing.Ease",function(a,b,c,d){this._func=a,this._type=c||0,this._power=d||0,this._params=b?v.concat(b):v},!0),x=w.map={},y=w.register=function(a,b,c,d){for(var e,f,g,h,i=b.split(","),j=i.length,k=(c||"easeIn,easeOut,easeInOut").split(",");--j>-1;)for(f=i[j],e=d?u("easing."+f,null,!0):m.easing[f]||{},g=k.length;--g>-1;)h=k[g],x[f+"."+h]=x[h+f]=e[h]=a.getRatio?a:a[h]||new a};for(i=w.prototype,i._calcEnd=!1,i.getRatio=function(a){if(this._func)return this._params[0]=a,this._func.apply(null,this._params);var b=this._type,c=this._power,d=1===b?1-a:2===b?a:.5>a?2*a:2*(1-a);return 1===c?d*=d:2===c?d*=d*d:3===c?d*=d*d*d:4===c&&(d*=d*d*d*d),1===b?1-d:2===b?d:.5>a?d/2:1-d/2},g=["Linear","Quad","Cubic","Quart","Quint,Strong"],h=g.length;--h>-1;)i=g[h]+",Power"+h,y(new w(null,null,1,h),i,"easeOut",!0),y(new w(null,null,2,h),i,"easeIn"+(0===h?",easeNone":"")),y(new w(null,null,3,h),i,"easeInOut");x.linear=m.easing.Linear.easeIn,x.swing=m.easing.Quad.easeInOut;var z=u("events.EventDispatcher",function(a){this._listeners={},this._eventTarget=a||this});i=z.prototype,i.addEventListener=function(a,b,c,d,e){e=e||0;var f,g,h=this._listeners[a],i=0;for(this!==j||k||j.wake(),null==h&&(this._listeners[a]=h=[]),g=h.length;--g>-1;)f=h[g],f.c===b&&f.s===c?h.splice(g,1):0===i&&f.pr<e&&(i=g+1);h.splice(i,0,{c:b,s:c,up:d,pr:e})},i.removeEventListener=function(a,b){var c,d=this._listeners[a];if(d)for(c=d.length;--c>-1;)if(d[c].c===b)return void d.splice(c,1)},i.dispatchEvent=function(a){var b,c,d,e=this._listeners[a];if(e)for(b=e.length,b>1&&(e=e.slice(0)),c=this._eventTarget;--b>-1;)d=e[b],d&&(d.up?d.c.call(d.s||c,{type:a,target:c}):d.c.call(d.s||c))};var A=a.requestAnimationFrame,B=a.cancelAnimationFrame,C=Date.now||function(){return(new Date).getTime()},D=C();for(g=["ms","moz","webkit","o"],h=g.length;--h>-1&&!A;)A=a[g[h]+"RequestAnimationFrame"],B=a[g[h]+"CancelAnimationFrame"]||a[g[h]+"CancelRequestAnimationFrame"];u("Ticker",function(a,b){var c,e,f,g,h,i=this,l=C(),m=b!==!1&&A?"auto":!1,o=500,q=33,r="tick",s=function(a){var b,d,j=C()-D;j>o&&(l+=j-q),D+=j,i.time=(D-l)/1e3,b=i.time-h,(!c||b>0||a===!0)&&(i.frame++,h+=b+(b>=g?.004:g-b),d=!0),a!==!0&&(f=e(s)),d&&i.dispatchEvent(r)};z.call(i),i.time=i.frame=0,i.tick=function(){s(!0)},i.lagSmoothing=function(a,b){return arguments.length?(o=a||1/n,void(q=Math.min(b,o,0))):1/n>o},i.sleep=function(){null!=f&&(m&&B?B(f):clearTimeout(f),e=p,f=null,i===j&&(k=!1))},i.wake=function(a){null!==f?i.sleep():a?l+=-D+(D=C()):i.frame>10&&(D=C()-o+5),e=0===c?p:m&&A?A:function(a){return setTimeout(a,1e3*(h-i.time)+1|0)},i===j&&(k=!0),s(2)},i.fps=function(a){return arguments.length?(c=a,g=1/(c||60),h=this.time+g,void i.wake()):c},i.useRAF=function(a){return arguments.length?(i.sleep(),m=a,void i.fps(c)):m},i.fps(a),setTimeout(function(){"auto"===m&&i.frame<5&&"hidden"!==(d||{}).visibilityState&&i.useRAF(!1)},1500)}),i=m.Ticker.prototype=new m.events.EventDispatcher,i.constructor=m.Ticker;var E=u("core.Animation",function(a,b){if(this.vars=b=b||{},this._duration=this._totalDuration=a||0,this._delay=Number(b.delay)||0,this._timeScale=1,this._active=b.immediateRender===!0,this.data=b.data,this._reversed=b.reversed===!0,Y){k||j.wake();var c=this.vars.useFrames?X:Y;c.add(this,c._time),this.vars.paused&&this.paused(!0)}});j=E.ticker=new m.Ticker,i=E.prototype,i._dirty=i._gc=i._initted=i._paused=!1,i._totalTime=i._time=0,i._rawPrevTime=-1,i._next=i._last=i._onUpdate=i._timeline=i.timeline=null,i._paused=!1;var F=function(){k&&C()-D>2e3&&("hidden"!==(d||{}).visibilityState||!j.lagSmoothing())&&j.wake();var a=setTimeout(F,2e3);a.unref&&a.unref()};F(),i.play=function(a,b){return null!=a&&this.seek(a,b),this.reversed(!1).paused(!1)},i.pause=function(a,b){return null!=a&&this.seek(a,b),this.paused(!0)},i.resume=function(a,b){return null!=a&&this.seek(a,b),this.paused(!1)},i.seek=function(a,b){return this.totalTime(Number(a),b!==!1)},i.restart=function(a,b){return this.reversed(!1).paused(!1).totalTime(a?-this._delay:0,b!==!1,!0)},i.reverse=function(a,b){return null!=a&&this.seek(a||this.totalDuration(),b),this.reversed(!0).paused(!1)},i.render=function(a,b,c){},i.invalidate=function(){return this._time=this._totalTime=0,this._initted=this._gc=!1,this._rawPrevTime=-1,(this._gc||!this.timeline)&&this._enabled(!0),this},i.isActive=function(){var a,b=this._timeline,c=this._startTime;return!b||!this._gc&&!this._paused&&b.isActive()&&(a=b.rawTime(!0))>=c&&a<c+this.totalDuration()/this._timeScale-1e-7},i._enabled=function(a,b){return k||j.wake(),this._gc=!a,this._active=this.isActive(),b!==!0&&(a&&!this.timeline?this._timeline.add(this,this._startTime-this._delay):!a&&this.timeline&&this._timeline._remove(this,!0)),!1},i._kill=function(a,b){return this._enabled(!1,!1)},i.kill=function(a,b){return this._kill(a,b),this},i._uncache=function(a){for(var b=a?this:this.timeline;b;)b._dirty=!0,b=b.timeline;return this},i._swapSelfInParams=function(a){for(var b=a.length,c=a.concat();--b>-1;)"{self}"===a[b]&&(c[b]=this);return c},i._callback=function(a){var b=this.vars,c=b[a],d=b[a+"Params"],e=b[a+"Scope"]||b.callbackScope||this,f=d?d.length:0;switch(f){case 0:c.call(e);break;case 1:c.call(e,d[0]);break;case 2:c.call(e,d[0],d[1]);break;default:c.apply(e,d)}},i.eventCallback=function(a,b,c,d){if("on"===(a||"").substr(0,2)){var e=this.vars;if(1===arguments.length)return e[a];null==b?delete e[a]:(e[a]=b,e[a+"Params"]=q(c)&&-1!==c.join("").indexOf("{self}")?this._swapSelfInParams(c):c,e[a+"Scope"]=d),"onUpdate"===a&&(this._onUpdate=b)}return this},i.delay=function(a){return arguments.length?(this._timeline.smoothChildTiming&&this.startTime(this._startTime+a-this._delay),this._delay=a,this):this._delay},i.duration=function(a){return arguments.length?(this._duration=this._totalDuration=a,this._uncache(!0),this._timeline.smoothChildTiming&&this._time>0&&this._time<this._duration&&0!==a&&this.totalTime(this._totalTime*(a/this._duration),!0),this):(this._dirty=!1,this._duration)},i.totalDuration=function(a){return this._dirty=!1,arguments.length?this.duration(a):this._totalDuration},i.time=function(a,b){return arguments.length?(this._dirty&&this.totalDuration(),this.totalTime(a>this._duration?this._duration:a,b)):this._time},i.totalTime=function(a,b,c){if(k||j.wake(),!arguments.length)return this._totalTime;if(this._timeline){if(0>a&&!c&&(a+=this.totalDuration()),this._timeline.smoothChildTiming){this._dirty&&this.totalDuration();var d=this._totalDuration,e=this._timeline;if(a>d&&!c&&(a=d),this._startTime=(this._paused?this._pauseTime:e._time)-(this._reversed?d-a:a)/this._timeScale,e._dirty||this._uncache(!1),e._timeline)for(;e._timeline;)e._timeline._time!==(e._startTime+e._totalTime)/e._timeScale&&e.totalTime(e._totalTime,!0),e=e._timeline}this._gc&&this._enabled(!0,!1),(this._totalTime!==a||0===this._duration)&&(K.length&&$(),this.render(a,b,!1),K.length&&$())}return this},i.progress=i.totalProgress=function(a,b){var c=this.duration();return arguments.length?this.totalTime(c*a,b):c?this._time/c:this.ratio},i.startTime=function(a){return arguments.length?(a!==this._startTime&&(this._startTime=a,this.timeline&&this.timeline._sortChildren&&this.timeline.add(this,a-this._delay)),this):this._startTime},i.endTime=function(a){return this._startTime+(0!=a?this.totalDuration():this.duration())/this._timeScale},i.timeScale=function(a){if(!arguments.length)return this._timeScale;var b,c;for(a=a||n,this._timeline&&this._timeline.smoothChildTiming&&(b=this._pauseTime,c=b||0===b?b:this._timeline.totalTime(),this._startTime=c-(c-this._startTime)*this._timeScale/a),this._timeScale=a,c=this.timeline;c&&c.timeline;)c._dirty=!0,c.totalDuration(),c=c.timeline;return this},i.reversed=function(a){return arguments.length?(a!=this._reversed&&(this._reversed=a,this.totalTime(this._timeline&&!this._timeline.smoothChildTiming?this.totalDuration()-this._totalTime:this._totalTime,!0)),this):this._reversed},i.paused=function(a){if(!arguments.length)return this._paused;var b,c,d=this._timeline;return a!=this._paused&&d&&(k||a||j.wake(),b=d.rawTime(),c=b-this._pauseTime,!a&&d.smoothChildTiming&&(this._startTime+=c,this._uncache(!1)),this._pauseTime=a?b:null,this._paused=a,this._active=this.isActive(),!a&&0!==c&&this._initted&&this.duration()&&(b=d.smoothChildTiming?this._totalTime:(b-this._startTime)/this._timeScale,this.render(b,b===this._totalTime,!0))),this._gc&&!a&&this._enabled(!0,!1),this};var G=u("core.SimpleTimeline",function(a){E.call(this,0,a),this.autoRemoveChildren=this.smoothChildTiming=!0});i=G.prototype=new E,i.constructor=G,i.kill()._gc=!1,i._first=i._last=i._recent=null,i._sortChildren=!1,i.add=i.insert=function(a,b,c,d){var e,f;if(a._startTime=Number(b||0)+a._delay,a._paused&&this!==a._timeline&&(a._pauseTime=this.rawTime()-(a._timeline.rawTime()-a._pauseTime)),a.timeline&&a.timeline._remove(a,!0),a.timeline=a._timeline=this,a._gc&&a._enabled(!0,!0),e=this._last,this._sortChildren)for(f=a._startTime;e&&e._startTime>f;)e=e._prev;return e?(a._next=e._next,e._next=a):(a._next=this._first,this._first=a),a._next?a._next._prev=a:this._last=a,a._prev=e,this._recent=a,this._timeline&&this._uncache(!0),this},i._remove=function(a,b){return a.timeline===this&&(b||a._enabled(!1,!0),a._prev?a._prev._next=a._next:this._first===a&&(this._first=a._next),a._next?a._next._prev=a._prev:this._last===a&&(this._last=a._prev),a._next=a._prev=a.timeline=null,a===this._recent&&(this._recent=this._last),this._timeline&&this._uncache(!0)),this},i.render=function(a,b,c){var d,e=this._first;for(this._totalTime=this._time=this._rawPrevTime=a;e;)d=e._next,(e._active||a>=e._startTime&&!e._paused&&!e._gc)&&(e._reversed?e.render((e._dirty?e.totalDuration():e._totalDuration)-(a-e._startTime)*e._timeScale,b,c):e.render((a-e._startTime)*e._timeScale,b,c)),e=d},i.rawTime=function(){return k||j.wake(),this._totalTime};var H=u("TweenLite",function(b,c,d){if(E.call(this,c,d),this.render=H.prototype.render,null==b)throw"Cannot tween a null target.";this.target=b="string"!=typeof b?b:H.selector(b)||b;var e,f,g,h=b.jquery||b.length&&b!==a&&b[0]&&(b[0]===a||b[0].nodeType&&b[0].style&&!b.nodeType),i=this.vars.overwrite;if(this._overwrite=i=null==i?W[H.defaultOverwrite]:"number"==typeof i?i>>0:W[i],(h||b instanceof Array||b.push&&q(b))&&"number"!=typeof b[0])for(this._targets=g=o(b),this._propLookup=[],this._siblings=[],e=0;e<g.length;e++)f=g[e],f?"string"!=typeof f?f.length&&f!==a&&f[0]&&(f[0]===a||f[0].nodeType&&f[0].style&&!f.nodeType)?(g.splice(e--,1),this._targets=g=g.concat(o(f))):(this._siblings[e]=_(f,this,!1),1===i&&this._siblings[e].length>1&&ba(f,this,null,1,this._siblings[e])):(f=g[e--]=H.selector(f),"string"==typeof f&&g.splice(e+1,1)):g.splice(e--,1);else this._propLookup={},this._siblings=_(b,this,!1),1===i&&this._siblings.length>1&&ba(b,this,null,1,this._siblings);(this.vars.immediateRender||0===c&&0===this._delay&&this.vars.immediateRender!==!1)&&(this._time=-n,this.render(Math.min(0,-this._delay)))},!0),I=function(b){return b&&b.length&&b!==a&&b[0]&&(b[0]===a||b[0].nodeType&&b[0].style&&!b.nodeType)},J=function(a,b){var c,d={};for(c in a)V[c]||c in b&&"transform"!==c&&"x"!==c&&"y"!==c&&"width"!==c&&"height"!==c&&"className"!==c&&"border"!==c||!(!S[c]||S[c]&&S[c]._autoCSS)||(d[c]=a[c],delete a[c]);a.css=d};i=H.prototype=new E,i.constructor=H,i.kill()._gc=!1,i.ratio=0,i._firstPT=i._targets=i._overwrittenProps=i._startAt=null,i._notifyPluginsOfEnabled=i._lazy=!1,H.version="2.0.1",H.defaultEase=i._ease=new w(null,null,1,1),H.defaultOverwrite="auto",H.ticker=j,H.autoSleep=120,H.lagSmoothing=function(a,b){j.lagSmoothing(a,b)},H.selector=a.$||a.jQuery||function(b){var c=a.$||a.jQuery;return c?(H.selector=c,c(b)):(d||(d=a.document),d?d.querySelectorAll?d.querySelectorAll(b):d.getElementById("#"===b.charAt(0)?b.substr(1):b):b)};var K=[],L={},M=/(?:(-|-=|\+=)?\d*\.?\d*(?:e[\-+]?\d+)?)[0-9]/gi,N=/[\+-]=-?[\.\d]/,O=function(a){for(var b,c=this._firstPT,d=1e-6;c;)b=c.blob?1===a&&null!=this.end?this.end:a?this.join(""):this.start:c.c*a+c.s,c.m?b=c.m.call(this._tween,b,this._target||c.t,this._tween):d>b&&b>-d&&!c.blob&&(b=0),c.f?c.fp?c.t[c.p](c.fp,b):c.t[c.p](b):c.t[c.p]=b,c=c._next},P=function(a,b,c,d){var e,f,g,h,i,j,k,l=[],m=0,n="",o=0;for(l.start=a,l.end=b,a=l[0]=a+"",b=l[1]=b+"",c&&(c(l),a=l[0],b=l[1]),l.length=0,e=a.match(M)||[],f=b.match(M)||[],d&&(d._next=null,d.blob=1,l._firstPT=l._applyPT=d),i=f.length,h=0;i>h;h++)k=f[h],j=b.substr(m,b.indexOf(k,m)-m),n+=j||!h?j:",",m+=j.length,o?o=(o+1)%5:"rgba("===j.substr(-5)&&(o=1),k===e[h]||e.length<=h?n+=k:(n&&(l.push(n),n=""),g=parseFloat(e[h]),l.push(g),l._firstPT={_next:l._firstPT,t:l,p:l.length-1,s:g,c:("="===k.charAt(1)?parseInt(k.charAt(0)+"1",10)*parseFloat(k.substr(2)):parseFloat(k)-g)||0,f:0,m:o&&4>o?Math.round:0}),m+=k.length;return n+=b.substr(m),n&&l.push(n),l.setRatio=O,N.test(b)&&(l.end=null),l},Q=function(a,b,c,d,e,f,g,h,i){"function"==typeof d&&(d=d(i||0,a));var j,k=typeof a[b],l="function"!==k?"":b.indexOf("set")||"function"!=typeof a["get"+b.substr(3)]?b:"get"+b.substr(3),m="get"!==c?c:l?g?a[l](g):a[l]():a[b],n="string"==typeof d&&"="===d.charAt(1),o={t:a,p:b,s:m,f:"function"===k,pg:0,n:e||b,m:f?"function"==typeof f?f:Math.round:0,pr:0,c:n?parseInt(d.charAt(0)+"1",10)*parseFloat(d.substr(2)):parseFloat(d)-m||0};return("number"!=typeof m||"number"!=typeof d&&!n)&&(g||isNaN(m)||!n&&isNaN(d)||"boolean"==typeof m||"boolean"==typeof d?(o.fp=g,j=P(m,n?parseFloat(o.s)+o.c+(o.s+"").replace(/[0-9\-\.]/g,""):d,h||H.defaultStringFilter,o),o={t:j,p:"setRatio",s:0,c:1,f:2,pg:0,n:e||b,pr:0,m:0}):(o.s=parseFloat(m),n||(o.c=parseFloat(d)-o.s||0))),o.c?((o._next=this._firstPT)&&(o._next._prev=o),this._firstPT=o,o):void 0},R=H._internals={isArray:q,isSelector:I,lazyTweens:K,blobDif:P},S=H._plugins={},T=R.tweenLookup={},U=0,V=R.reservedProps={ease:1,delay:1,overwrite:1,onComplete:1,onCompleteParams:1,onCompleteScope:1,useFrames:1,runBackwards:1,startAt:1,onUpdate:1,onUpdateParams:1,onUpdateScope:1,onStart:1,onStartParams:1,onStartScope:1,onReverseComplete:1,onReverseCompleteParams:1,onReverseCompleteScope:1,onRepeat:1,onRepeatParams:1,onRepeatScope:1,easeParams:1,yoyo:1,immediateRender:1,repeat:1,repeatDelay:1,data:1,paused:1,reversed:1,autoCSS:1,lazy:1,onOverwrite:1,callbackScope:1,stringFilter:1,id:1,yoyoEase:1},W={none:0,all:1,auto:2,concurrent:3,allOnStart:4,preexisting:5,"true":1,"false":0},X=E._rootFramesTimeline=new G,Y=E._rootTimeline=new G,Z=30,$=R.lazyRender=function(){var a,b=K.length;for(L={};--b>-1;)a=K[b],a&&a._lazy!==!1&&(a.render(a._lazy[0],a._lazy[1],!0),a._lazy=!1);K.length=0};Y._startTime=j.time,X._startTime=j.frame,Y._active=X._active=!0,setTimeout($,1),E._updateRoot=H.render=function(){var a,b,c;if(K.length&&$(),Y.render((j.time-Y._startTime)*Y._timeScale,!1,!1),X.render((j.frame-X._startTime)*X._timeScale,!1,!1),K.length&&$(),j.frame>=Z){Z=j.frame+(parseInt(H.autoSleep,10)||120);for(c in T){for(b=T[c].tweens,a=b.length;--a>-1;)b[a]._gc&&b.splice(a,1);0===b.length&&delete T[c]}if(c=Y._first,(!c||c._paused)&&H.autoSleep&&!X._first&&1===j._listeners.tick.length){for(;c&&c._paused;)c=c._next;c||j.sleep()}}},j.addEventListener("tick",E._updateRoot);var _=function(a,b,c){var d,e,f=a._gsTweenID;if(T[f||(a._gsTweenID=f="t"+U++)]||(T[f]={target:a,tweens:[]}),b&&(d=T[f].tweens,d[e=d.length]=b,c))for(;--e>-1;)d[e]===b&&d.splice(e,1);return T[f].tweens},aa=function(a,b,c,d){var e,f,g=a.vars.onOverwrite;return g&&(e=g(a,b,c,d)),g=H.onOverwrite,g&&(f=g(a,b,c,d)),e!==!1&&f!==!1},ba=function(a,b,c,d,e){var f,g,h,i;if(1===d||d>=4){for(i=e.length,f=0;i>f;f++)if((h=e[f])!==b)h._gc||h._kill(null,a,b)&&(g=!0);else if(5===d)break;return g}var j,k=b._startTime+n,l=[],m=0,o=0===b._duration;for(f=e.length;--f>-1;)(h=e[f])===b||h._gc||h._paused||(h._timeline!==b._timeline?(j=j||ca(b,0,o),0===ca(h,j,o)&&(l[m++]=h)):h._startTime<=k&&h._startTime+h.totalDuration()/h._timeScale>k&&((o||!h._initted)&&k-h._startTime<=2e-10||(l[m++]=h)));for(f=m;--f>-1;)if(h=l[f],2===d&&h._kill(c,a,b)&&(g=!0),2!==d||!h._firstPT&&h._initted){if(2!==d&&!aa(h,b))continue;h._enabled(!1,!1)&&(g=!0)}return g},ca=function(a,b,c){for(var d=a._timeline,e=d._timeScale,f=a._startTime;d._timeline;){if(f+=d._startTime,e*=d._timeScale,d._paused)return-100;d=d._timeline}return f/=e,f>b?f-b:c&&f===b||!a._initted&&2*n>f-b?n:(f+=a.totalDuration()/a._timeScale/e)>b+n?0:f-b-n};i._init=function(){var a,b,c,d,e,f,g=this.vars,h=this._overwrittenProps,i=this._duration,j=!!g.immediateRender,k=g.ease;if(g.startAt){this._startAt&&(this._startAt.render(-1,!0),this._startAt.kill()),e={};for(d in g.startAt)e[d]=g.startAt[d];if(e.data="isStart",e.overwrite=!1,e.immediateRender=!0,e.lazy=j&&g.lazy!==!1,e.startAt=e.delay=null,e.onUpdate=g.onUpdate,e.onUpdateParams=g.onUpdateParams,e.onUpdateScope=g.onUpdateScope||g.callbackScope||this,this._startAt=H.to(this.target||{},0,e),j)if(this._time>0)this._startAt=null;else if(0!==i)return}else if(g.runBackwards&&0!==i)if(this._startAt)this._startAt.render(-1,!0),this._startAt.kill(),this._startAt=null;else{0!==this._time&&(j=!1),c={};for(d in g)V[d]&&"autoCSS"!==d||(c[d]=g[d]);if(c.overwrite=0,c.data="isFromStart",c.lazy=j&&g.lazy!==!1,c.immediateRender=j,this._startAt=H.to(this.target,0,c),j){if(0===this._time)return}else this._startAt._init(),this._startAt._enabled(!1),this.vars.immediateRender&&(this._startAt=null)}if(this._ease=k=k?k instanceof w?k:"function"==typeof k?new w(k,g.easeParams):x[k]||H.defaultEase:H.defaultEase,g.easeParams instanceof Array&&k.config&&(this._ease=k.config.apply(k,g.easeParams)),this._easeType=this._ease._type,this._easePower=this._ease._power,this._firstPT=null,this._targets)for(f=this._targets.length,a=0;f>a;a++)this._initProps(this._targets[a],this._propLookup[a]={},this._siblings[a],h?h[a]:null,a)&&(b=!0);else b=this._initProps(this.target,this._propLookup,this._siblings,h,0);if(b&&H._onPluginEvent("_onInitAllProps",this),h&&(this._firstPT||"function"!=typeof this.target&&this._enabled(!1,!1)),g.runBackwards)for(c=this._firstPT;c;)c.s+=c.c,c.c=-c.c,c=c._next;this._onUpdate=g.onUpdate,this._initted=!0},i._initProps=function(b,c,d,e,f){var g,h,i,j,k,l;if(null==b)return!1;L[b._gsTweenID]&&$(),this.vars.css||b.style&&b!==a&&b.nodeType&&S.css&&this.vars.autoCSS!==!1&&J(this.vars,b);for(g in this.vars)if(l=this.vars[g],V[g])l&&(l instanceof Array||l.push&&q(l))&&-1!==l.join("").indexOf("{self}")&&(this.vars[g]=l=this._swapSelfInParams(l,this));else if(S[g]&&(j=new S[g])._onInitTween(b,this.vars[g],this,f)){for(this._firstPT=k={_next:this._firstPT,t:j,p:"setRatio",s:0,c:1,f:1,n:g,pg:1,pr:j._priority,m:0},h=j._overwriteProps.length;--h>-1;)c[j._overwriteProps[h]]=this._firstPT;(j._priority||j._onInitAllProps)&&(i=!0),(j._onDisable||j._onEnable)&&(this._notifyPluginsOfEnabled=!0),k._next&&(k._next._prev=k)}else c[g]=Q.call(this,b,g,"get",l,g,0,null,this.vars.stringFilter,f);return e&&this._kill(e,b)?this._initProps(b,c,d,e,f):this._overwrite>1&&this._firstPT&&d.length>1&&ba(b,this,c,this._overwrite,d)?(this._kill(c,b),this._initProps(b,c,d,e,f)):(this._firstPT&&(this.vars.lazy!==!1&&this._duration||this.vars.lazy&&!this._duration)&&(L[b._gsTweenID]=!0),i)},i.render=function(a,b,c){var d,e,f,g,h=this._time,i=this._duration,j=this._rawPrevTime;if(a>=i-1e-7&&a>=0)this._totalTime=this._time=i,this.ratio=this._ease._calcEnd?this._ease.getRatio(1):1,this._reversed||(d=!0,e="onComplete",c=c||this._timeline.autoRemoveChildren),0===i&&(this._initted||!this.vars.lazy||c)&&(this._startTime===this._timeline._duration&&(a=0),(0>j||0>=a&&a>=-1e-7||j===n&&"isPause"!==this.data)&&j!==a&&(c=!0,j>n&&(e="onReverseComplete")),this._rawPrevTime=g=!b||a||j===a?a:n);else if(1e-7>a)this._totalTime=this._time=0,this.ratio=this._ease._calcEnd?this._ease.getRatio(0):0,(0!==h||0===i&&j>0)&&(e="onReverseComplete",d=this._reversed),0>a&&(this._active=!1,0===i&&(this._initted||!this.vars.lazy||c)&&(j>=0&&(j!==n||"isPause"!==this.data)&&(c=!0),this._rawPrevTime=g=!b||a||j===a?a:n)),(!this._initted||this._startAt&&this._startAt.progress())&&(c=!0);else if(this._totalTime=this._time=a,this._easeType){var k=a/i,l=this._easeType,m=this._easePower;(1===l||3===l&&k>=.5)&&(k=1-k),3===l&&(k*=2),1===m?k*=k:2===m?k*=k*k:3===m?k*=k*k*k:4===m&&(k*=k*k*k*k),1===l?this.ratio=1-k:2===l?this.ratio=k:.5>a/i?this.ratio=k/2:this.ratio=1-k/2}else this.ratio=this._ease.getRatio(a/i);if(this._time!==h||c){if(!this._initted){if(this._init(),!this._initted||this._gc)return;if(!c&&this._firstPT&&(this.vars.lazy!==!1&&this._duration||this.vars.lazy&&!this._duration))return this._time=this._totalTime=h,this._rawPrevTime=j,K.push(this),void(this._lazy=[a,b]);this._time&&!d?this.ratio=this._ease.getRatio(this._time/i):d&&this._ease._calcEnd&&(this.ratio=this._ease.getRatio(0===this._time?0:1))}for(this._lazy!==!1&&(this._lazy=!1),this._active||!this._paused&&this._time!==h&&a>=0&&(this._active=!0),0===h&&(this._startAt&&(a>=0?this._startAt.render(a,!0,c):e||(e="_dummyGS")),this.vars.onStart&&(0!==this._time||0===i)&&(b||this._callback("onStart"))),f=this._firstPT;f;)f.f?f.t[f.p](f.c*this.ratio+f.s):f.t[f.p]=f.c*this.ratio+f.s,f=f._next;this._onUpdate&&(0>a&&this._startAt&&a!==-1e-4&&this._startAt.render(a,!0,c),b||(this._time!==h||d||c)&&this._callback("onUpdate")),e&&(!this._gc||c)&&(0>a&&this._startAt&&!this._onUpdate&&a!==-1e-4&&this._startAt.render(a,!0,c),d&&(this._timeline.autoRemoveChildren&&this._enabled(!1,!1),this._active=!1),!b&&this.vars[e]&&this._callback(e),0===i&&this._rawPrevTime===n&&g!==n&&(this._rawPrevTime=0))}},i._kill=function(a,b,c){if("all"===a&&(a=null),null==a&&(null==b||b===this.target))return this._lazy=!1,this._enabled(!1,!1);b="string"!=typeof b?b||this._targets||this.target:H.selector(b)||b;var d,e,f,g,h,i,j,k,l,m=c&&this._time&&c._startTime===this._startTime&&this._timeline===c._timeline;if((q(b)||I(b))&&"number"!=typeof b[0])for(d=b.length;--d>-1;)this._kill(a,b[d],c)&&(i=!0);else{if(this._targets){for(d=this._targets.length;--d>-1;)if(b===this._targets[d]){h=this._propLookup[d]||{},this._overwrittenProps=this._overwrittenProps||[],e=this._overwrittenProps[d]=a?this._overwrittenProps[d]||{}:"all";break}}else{if(b!==this.target)return!1;h=this._propLookup,e=this._overwrittenProps=a?this._overwrittenProps||{}:"all"}if(h){if(j=a||h,k=a!==e&&"all"!==e&&a!==h&&("object"!=typeof a||!a._tempKill),c&&(H.onOverwrite||this.vars.onOverwrite)){for(f in j)h[f]&&(l||(l=[]),l.push(f));if((l||!a)&&!aa(this,c,b,l))return!1}for(f in j)(g=h[f])&&(m&&(g.f?g.t[g.p](g.s):g.t[g.p]=g.s,i=!0),g.pg&&g.t._kill(j)&&(i=!0),g.pg&&0!==g.t._overwriteProps.length||(g._prev?g._prev._next=g._next:g===this._firstPT&&(this._firstPT=g._next),g._next&&(g._next._prev=g._prev),g._next=g._prev=null),delete h[f]),k&&(e[f]=1);!this._firstPT&&this._initted&&this._enabled(!1,!1)}}return i},i.invalidate=function(){return this._notifyPluginsOfEnabled&&H._onPluginEvent("_onDisable",this),this._firstPT=this._overwrittenProps=this._startAt=this._onUpdate=null,this._notifyPluginsOfEnabled=this._active=this._lazy=!1,this._propLookup=this._targets?{}:[],E.prototype.invalidate.call(this),this.vars.immediateRender&&(this._time=-n,this.render(Math.min(0,-this._delay))),this},i._enabled=function(a,b){if(k||j.wake(),a&&this._gc){var c,d=this._targets;if(d)for(c=d.length;--c>-1;)this._siblings[c]=_(d[c],this,!0);else this._siblings=_(this.target,this,!0)}return E.prototype._enabled.call(this,a,b),this._notifyPluginsOfEnabled&&this._firstPT?H._onPluginEvent(a?"_onEnable":"_onDisable",this):!1},H.to=function(a,b,c){return new H(a,b,c)},H.from=function(a,b,c){return c.runBackwards=!0,c.immediateRender=0!=c.immediateRender,new H(a,b,c)},H.fromTo=function(a,b,c,d){return d.startAt=c,d.immediateRender=0!=d.immediateRender&&0!=c.immediateRender,new H(a,b,d)},H.delayedCall=function(a,b,c,d,e){return new H(b,0,{delay:a,onComplete:b,onCompleteParams:c,callbackScope:d,onReverseComplete:b,onReverseCompleteParams:c,immediateRender:!1,lazy:!1,useFrames:e,overwrite:0})},H.set=function(a,b){return new H(a,0,b)},H.getTweensOf=function(a,b){if(null==a)return[];a="string"!=typeof a?a:H.selector(a)||a;var c,d,e,f;if((q(a)||I(a))&&"number"!=typeof a[0]){for(c=a.length,d=[];--c>-1;)d=d.concat(H.getTweensOf(a[c],b));for(c=d.length;--c>-1;)for(f=d[c],e=c;--e>-1;)f===d[e]&&d.splice(c,1)}else if(a._gsTweenID)for(d=_(a).concat(),c=d.length;--c>-1;)(d[c]._gc||b&&!d[c].isActive())&&d.splice(c,1);return d||[]},H.killTweensOf=H.killDelayedCallsTo=function(a,b,c){"object"==typeof b&&(c=b,b=!1);for(var d=H.getTweensOf(a,b),e=d.length;--e>-1;)d[e]._kill(c,a)};var da=u("plugins.TweenPlugin",function(a,b){this._overwriteProps=(a||"").split(","),this._propName=this._overwriteProps[0],this._priority=b||0,this._super=da.prototype},!0);if(i=da.prototype,da.version="1.19.0",da.API=2,i._firstPT=null,i._addTween=Q,i.setRatio=O,i._kill=function(a){var b,c=this._overwriteProps,d=this._firstPT;if(null!=a[this._propName])this._overwriteProps=[];else for(b=c.length;--b>-1;)null!=a[c[b]]&&c.splice(b,1);for(;d;)null!=a[d.n]&&(d._next&&(d._next._prev=d._prev),d._prev?(d._prev._next=d._next,d._prev=null):this._firstPT===d&&(this._firstPT=d._next)),d=d._next;return!1},i._mod=i._roundProps=function(a){for(var b,c=this._firstPT;c;)b=a[this._propName]||null!=c.n&&a[c.n.split(this._propName+"_").join("")],b&&"function"==typeof b&&(2===c.f?c.t._applyPT.m=b:c.m=b),c=c._next},H._onPluginEvent=function(a,b){var c,d,e,f,g,h=b._firstPT;if("_onInitAllProps"===a){for(;h;){for(g=h._next,d=e;d&&d.pr>h.pr;)d=d._next;(h._prev=d?d._prev:f)?h._prev._next=h:e=h,(h._next=d)?d._prev=h:f=h,h=g}h=b._firstPT=e}for(;h;)h.pg&&"function"==typeof h.t[a]&&h.t[a]()&&(c=!0),h=h._next;return c},da.activate=function(a){for(var b=a.length;--b>-1;)a[b].API===da.API&&(S[(new a[b])._propName]=a[b]);return!0},t.plugin=function(a){if(!(a&&a.propName&&a.init&&a.API))throw"illegal plugin definition.";var b,c=a.propName,d=a.priority||0,e=a.overwriteProps,f={init:"_onInitTween",set:"setRatio",kill:"_kill",round:"_mod",mod:"_mod",initAll:"_onInitAllProps"},g=u("plugins."+c.charAt(0).toUpperCase()+c.substr(1)+"Plugin",function(){da.call(this,c,d),this._overwriteProps=e||[]},a.global===!0),h=g.prototype=new da(c);h.constructor=g,g.API=a.API;for(b in f)"function"==typeof a[b]&&(h[f[b]]=a[b]);return g.version=a.version,da.activate([g]),g},g=a._gsQueue){for(h=0;h<g.length;h++)g[h]();for(i in r)r[i].func||a.console.log("GSAP encountered missing dependency: "+i)}k=!1}("undefined"!=typeof module&&module.exports&&"undefined"!=typeof global?global:this||window,"TweenLite");
PypiClean
/Abhishek-1.0.1.tar.gz/Abhishek-1.0.1/TOPSIS/topsis.py
import sys import csv import pandas as pd import os import copy para_num=len(sys.argv) if para_num!=5: print("Incorrect number of paramters") exit(0) inputData=sys.argv[1] try: s=open(inputData) except FileNotFoundError: raise Exception("File doesn't exist") data=pd.read_csv(inputData) x,y=data.shape if y<3: raise Exception("File with three or more column is valid only!") inp_weight=sys.argv[2] inp_impact=sys.argv[3] weight=[] impact=[] for i in range(len(inp_weight)): if i%2!=0 and inp_weight[i]!=',': print("Weights aren't seperated by commas") exit(0) if i%2==0: num=int(inp_weight[i]) weight.append(num) for i in range(len(inp_impact)): if i%2!=0 and inp_impact[i]!=',': print("Impacts aren't seperated by commas") exit(0) if i%2==0: if inp_impact[i]=='+' or inp_impact[i]=='-': impact.append(inp_impact[i]) else: print("Impact is neither +ve or -ve") exit(0) if y-1!=len(weight): print("Number of weight and columns (from 2nd to last column) aren't same") exit(0) if y-1!=len(impact): print("Number of impact and columns (from 2nd to last column) aren't same") exit(0) data_columns=list(data.columns) data=data.values.tolist() c_data=copy.deepcopy(data) #normalized performance value for i in range(1,y): sum=0 for j in range(x): if(isinstance(data[j][i], str)): print("Data in the input file is not numeric") exit(0) else: sum=sum+data[j][i]**2 sum=sum**0.5 for k in range(x): data[k][i]=data[k][i]/sum #weighted normalized decision matrix for i in range(1,y): for j in range(x): data[j][i]=data[j][i]*weight[i-1] #ideal best value and ideal worst value i_best=[] i_worst=[] #calculating ideal best and worst for every feature/column for i in range(1,y): maxi=data[0][i] mini=data[0][i] for j in range(x): if data[j][i]>maxi: maxi=data[j][i] if data[j][i]<mini: mini=data[j][i] if impact[i-1]=='+': i_best.append(maxi) i_worst.append(mini) else: i_best.append(mini) i_worst.append(maxi) #Euclidean distance from ideal best value and ideal worst value s_best=[] s_worst=[] #Calculating euclidean distance for each feature/column for i in range(x): sum1=0 sum2=0 for j in range(1,y): sum1=sum1+(data[i][j]-i_best[j-1])**2 sum2=sum2+(data[i][j]-i_worst[j-1])**2 sum1=sum1**0.5 sum2=sum2**0.5 s_best.append(sum1) s_worst.append(sum2) performance_score=[] temp_score=[] #Calculating performance score for each data row for i in range(x): score=s_worst[i]/(s_best[i]+s_worst[i]) performance_score.append(score) temp_score.append(score) temp_score.sort(reverse=True) #Calculating the ranking rank=[] for i in range(x): for j in range(x): if(performance_score[i]==temp_score[j]): rank.append(j+1) result=[] for i in range (x): l=[] for j in range(y): l.append(c_data[i][j]) l.append(performance_score[i]) l.append(rank[i]) result.append(l) #adding column name to result.csv file data_columns.append("Topsis Score") data_columns.append("Rank") #creating result.csv file result_csv=open(sys.argv[4],'x') #giving column names to csv file fields=data_columns #creating a csv writer object csvwriter = csv.writer(result_csv) #writing the fields csvwriter.writerow(fields) #writing the data rows csvwriter.writerows(result) #closing log csv file result_csv.close() print() print("Result file containing all the input columns, TOPSIS SCORE and RANK is ready!")
PypiClean
/ModularTorch-0.1.4.tar.gz/ModularTorch-0.1.4/modular_torch/Utils.py
import torch import os from torch.utils.tensorboard import SummaryWriter import datetime import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots def save_model_weights(model: torch.nn.Module, model_name: str, save_path: str = None) -> None: """Save model to given directory. args: model: model to save weights. model_name: name of the model (convention is {model_name_epochs.pth}) save_path: directory to save the model in, (defaults to pwd, creates directories as required) return: model weights are saved at given path """ assert model_name.endswith("pth") or model_name.endswith("pt"), "model path should end with 'pt' or 'pth'" if save_path is None: save_path = "models/" os.makedirs(save_path, exist_ok = True) model_path = save_path + f"{model_name}" torch.save(model, model_path) def create_writer(experiment_name: str, model_name: str, include_time: bool = False, comments: str = None, path: str = "runs") -> SummaryWriter: """_summary_ Args: experiment_name (str): name of experiment / randomly generated. model_name (str): name of the model include_time (bool, optional): include time in run name. Defaults to False. comments (str, optional): comments to add to run (like configs or hyper params). Defaults to None. path (str, optional): path to save run to. Defaults to "runs". Returns: SummaryWriter: writer object to log metrics to a file. """ path = path + "/[d]" + datetime.datetime.now().strftime("%Y-%m-%d") if include_time: path = path + "_[t]" + datetime.datetime.now().strftime("%H_%M_%S") path = f"{path}/{experiment_name}/{model_name}" if comments: path = f"{path}/{comments}" print(f"[INFO] created summary writer, saving to {path}") return SummaryWriter(log_dir = path) def plot_loss_acc_curves_from_history_dicts(train_history: dict, test_history: dict) -> None: """plots loss and accuracy curves, given history dicts. Args: train_history (dict): train history dictionary test_history (dict): test history dictionary """ range_epochs = [*range(train_history["loss"].__len__())] fig = make_subplots(rows = 1, cols = 2, subplot_titles = ["accuracy", "loss"]) # acc plots fig.add_trace(go.Scatter(x = range_epochs, y = train_history["acc"], name = "train_accuracy", mode = "lines+markers"), row = 1, col = 1) fig.add_trace(go.Scatter(x = range_epochs, y = test_history["acc"], name = "test_accuracy", mode = "lines+markers"), row = 1, col = 1) fig.add_trace(go.Scatter(x = range_epochs, y = train_history["loss"], name = "train_loss", mode = "lines+markers"), row = 1, col = 2) fig.add_trace(go.Scatter(x = range_epochs, y = test_history["loss"], name = "test_loss", mode = "lines+markers"), row = 1, col = 2) fig.update_layout(title = "train vs test (accuracy and loss)") fig.show()
PypiClean
/Flask_Admin-1.6.1-py3-none-any.whl/flask_admin/static/admin/js/bs4_filters.js
var AdminFilters = function(element, filtersElement, filterGroups, activeFilters) { var $root = $(element); var $container = $('.filters', $root); var lastCount = 0; function getCount(name) { var idx = name.indexOf('_'); if (idx === -1) { return 0; } return parseInt(name.substr(3, idx - 3), 10); } function makeName(name) { var result = 'flt' + lastCount + '_' + name; lastCount += 1; return result; } function removeFilter() { $(this).closest('tr').remove(); if($('.filters tr').length == 0) { $('button', $root).hide(); $('a[class=btn]', $root).hide(); $('.filters tbody').remove(); } else { $('button', $root).show(); } return false; } // triggered when the filter operation (equals, not equals, etc) is changed function changeOperation(subfilters, $el, filter, $select) { // get the filter_group subfilter based on the index of the selected option var selectedFilter = subfilters[$select.select2('data').element[0].index]; var $inputContainer = $el.find('td').last(); // recreate and style the input field (turn into date range or select2 if necessary) var $field = createFilterInput($inputContainer, null, selectedFilter); styleFilterInput(selectedFilter, $field); $('button', $root).show(); } // generate HTML for filter input - allows changing filter input type to one with options or tags function createFilterInput(inputContainer, filterValue, filter) { if (filter.type == "select2-tags") { var $field = $('<input type="hidden" class="filter-val form-control" />').attr('name', makeName(filter.arg)); $field.val(filterValue); } else if (filter.options) { var $field = $('<select class="filter-val" />').attr('name', makeName(filter.arg)); $(filter.options).each(function() { // for active filter inputs with options, add "selected" if there is a matching active filter if (filterValue && (filterValue == this[0])) { $field.append($('<option/>') .val(this[0]).text(this[1]).attr('selected', true)); } else { $field.append($('<option/>') .val(this[0]).text(this[1])); } }); } else { var $field = $('<input type="text" class="filter-val form-control" />').attr('name', makeName(filter.arg)); $field.val(filterValue); } inputContainer.replaceWith($('<td/>').append($field)); return $field; } // add styling to input field, accommodates filters that change the input field's HTML function styleFilterInput(filter, field) { if (filter.type) { if ((filter.type == "datepicker") || (filter.type == "daterangepicker")) { field.attr('data-date-format', "YYYY-MM-DD"); } else if ((filter.type == "datetimepicker") || (filter.type == "datetimerangepicker")) { field.attr('data-date-format', "YYYY-MM-DD HH:mm:ss"); } else if ((filter.type == "timepicker") || (filter.type == "timerangepicker")) { field.attr('data-date-format', "HH:mm:ss"); } else if (filter.type == "select2-tags") { var options = []; if (filter.options) { filter.options.forEach(function(option) { options.push({id:option[0], text:option[1]}); }); // save tag options as json on data attribute field.attr('data-tags', JSON.stringify(options)); } } faForm.applyStyle(field, filter.type); } else if (filter.options) { filter.type = "select2"; faForm.applyStyle(field, filter.type); } return field; } function addFilter(name, subfilters, selectedIndex, filterValue) { var $el = $('<tr class="form-horizontal" />').appendTo($container); // Filter list $el.append( $('<td/>').append( $('<a href="#" class="btn btn-secondary remove-filter" />') .append($('<span class="close-icon">&times;</span>')) .append('&nbsp;') .append(name) .click(removeFilter) ) ); // Filter operation <select> (equal, not equal, etc) var $select = $('<select class="filter-op" />'); // if one of the subfilters are selected, use that subfilter to create the input field var filterSelection = 0; $.each(subfilters, function( subfilterIndex, subfilter ) { if (this.index == selectedIndex) { $select.append($('<option/>').attr('value', subfilter.arg).attr('selected', true).text(subfilter.operation)); filterSelection = subfilterIndex; } else { $select.append($('<option/>').attr('value', subfilter.arg).text(subfilter.operation)); } }); $el.append( $('<td/>').append($select) ); // select2 for filter-op (equal, not equal, etc) $select.select2({width: 'resolve'}).on("change", function(e) { changeOperation(subfilters, $el, filter, $select); }); // get filter option from filter_group, only for new filter creation var filter = subfilters[filterSelection]; var $inputContainer = $('<td/>').appendTo($el); var $newFilterField = createFilterInput($inputContainer, filterValue, filter).focus(); var $styledFilterField = styleFilterInput(filter, $newFilterField); return $styledFilterField; } // Add Filter Button, new filter $('a.filter', filtersElement).click(function() { var name = ($(this).text().trim !== undefined ? $(this).text().trim() : $(this).text().replace(/^\s+|\s+$/g,'')); addFilter(name, filterGroups[name], false, null); $('button', $root).show(); }); // on page load - add active filters $.each(activeFilters, function( activeIndex, activeFilter ) { var idx = activeFilter[0], name = activeFilter[1], filterValue = activeFilter[2]; var $activeField = addFilter(name, filterGroups[name], idx, filterValue); }); // show "Apply Filter" button when filter input is changed $('.filter-val', $root).on('input change', function() { $('button', $root).show(); }); $('.remove-filter', $root).click(removeFilter); $('.filter-val', $root).not('.select2-container').each(function() { var count = getCount($(this).attr('name')); if (count > lastCount) lastCount = count; }); lastCount += 1; }; (function($) { $('[data-role=tooltip]').tooltip({ html: true, placement: 'bottom' }); $(document).on('adminFormReady', function(evt){ if ($('#filter-groups-data').length == 1) { var filter = new AdminFilters( '#filter_form', '.field-filters', JSON.parse($('#filter-groups-data').text()), JSON.parse($('#active-filters-data').text()) ); } }); $(document).trigger('adminFormReady'); // trigger event to allow dynamic filter form to function properly })(jQuery);
PypiClean
/Django_patch-2.2.19-py3-none-any.whl/django/contrib/gis/geos/prototypes/threadsafe.py
import threading from django.contrib.gis.geos.base import GEOSBase from django.contrib.gis.geos.libgeos import ( CONTEXT_PTR, error_h, lgeos, notice_h, ) class GEOSContextHandle(GEOSBase): """Represent a GEOS context handle.""" ptr_type = CONTEXT_PTR destructor = lgeos.finishGEOS_r def __init__(self): # Initializing the context handler for this thread with # the notice and error handler. self.ptr = lgeos.initGEOS_r(notice_h, error_h) # Defining a thread-local object and creating an instance # to hold a reference to GEOSContextHandle for this thread. class GEOSContext(threading.local): handle = None thread_context = GEOSContext() class GEOSFunc: """ Serve as a wrapper for GEOS C Functions. Use thread-safe function variants when available. """ def __init__(self, func_name): # GEOS thread-safe function signatures end with '_r' and take an # additional context handle parameter. self.cfunc = getattr(lgeos, func_name + '_r') # Create a reference to thread_context so it's not garbage-collected # before an attempt to call this object. self.thread_context = thread_context def __call__(self, *args): # Create a context handle if one doesn't exist for this thread. self.thread_context.handle = self.thread_context.handle or GEOSContextHandle() # Call the threaded GEOS routine with the pointer of the context handle # as the first argument. return self.cfunc(self.thread_context.handle.ptr, *args) def __str__(self): return self.cfunc.__name__ # argtypes property def _get_argtypes(self): return self.cfunc.argtypes def _set_argtypes(self, argtypes): self.cfunc.argtypes = [CONTEXT_PTR, *argtypes] argtypes = property(_get_argtypes, _set_argtypes) # restype property def _get_restype(self): return self.cfunc.restype def _set_restype(self, restype): self.cfunc.restype = restype restype = property(_get_restype, _set_restype) # errcheck property def _get_errcheck(self): return self.cfunc.errcheck def _set_errcheck(self, errcheck): self.cfunc.errcheck = errcheck errcheck = property(_get_errcheck, _set_errcheck)
PypiClean
/DJModels-0.0.6-py3-none-any.whl/djmodels/db/migrations/operations/special.py
from djmodels.db import router from .base import Operation class SeparateDatabaseAndState(Operation): """ Take two lists of operations - ones that will be used for the database, and ones that will be used for the state change. This allows operations that don't support state change to have it applied, or have operations that affect the state or not the database, or so on. """ serialization_expand_args = ['database_operations', 'state_operations'] def __init__(self, database_operations=None, state_operations=None): self.database_operations = database_operations or [] self.state_operations = state_operations or [] def deconstruct(self): kwargs = {} if self.database_operations: kwargs['database_operations'] = self.database_operations if self.state_operations: kwargs['state_operations'] = self.state_operations return ( self.__class__.__qualname__, [], kwargs ) def state_forwards(self, app_label, state): for state_operation in self.state_operations: state_operation.state_forwards(app_label, state) def database_forwards(self, app_label, schema_editor, from_state, to_state): # We calculate state separately in here since our state functions aren't useful for database_operation in self.database_operations: to_state = from_state.clone() database_operation.state_forwards(app_label, to_state) database_operation.database_forwards(app_label, schema_editor, from_state, to_state) from_state = to_state def database_backwards(self, app_label, schema_editor, from_state, to_state): # We calculate state separately in here since our state functions aren't useful to_states = {} for dbop in self.database_operations: to_states[dbop] = to_state to_state = to_state.clone() dbop.state_forwards(app_label, to_state) # to_state now has the states of all the database_operations applied # which is the from_state for the backwards migration of the last # operation. for database_operation in reversed(self.database_operations): from_state = to_state to_state = to_states[database_operation] database_operation.database_backwards(app_label, schema_editor, from_state, to_state) def describe(self): return "Custom state/database change combination" class RunSQL(Operation): """ Run some raw SQL. A reverse SQL statement may be provided. Also accept a list of operations that represent the state change effected by this SQL change, in case it's custom column/table creation/deletion. """ noop = '' def __init__(self, sql, reverse_sql=None, state_operations=None, hints=None, elidable=False): self.sql = sql self.reverse_sql = reverse_sql self.state_operations = state_operations or [] self.hints = hints or {} self.elidable = elidable def deconstruct(self): kwargs = { 'sql': self.sql, } if self.reverse_sql is not None: kwargs['reverse_sql'] = self.reverse_sql if self.state_operations: kwargs['state_operations'] = self.state_operations if self.hints: kwargs['hints'] = self.hints return ( self.__class__.__qualname__, [], kwargs ) @property def reversible(self): return self.reverse_sql is not None def state_forwards(self, app_label, state): for state_operation in self.state_operations: state_operation.state_forwards(app_label, state) def database_forwards(self, app_label, schema_editor, from_state, to_state): if router.allow_migrate(schema_editor.connection.alias, app_label, **self.hints): self._run_sql(schema_editor, self.sql) def database_backwards(self, app_label, schema_editor, from_state, to_state): if self.reverse_sql is None: raise NotImplementedError("You cannot reverse this operation") if router.allow_migrate(schema_editor.connection.alias, app_label, **self.hints): self._run_sql(schema_editor, self.reverse_sql) def describe(self): return "Raw SQL operation" def _run_sql(self, schema_editor, sqls): if isinstance(sqls, (list, tuple)): for sql in sqls: params = None if isinstance(sql, (list, tuple)): elements = len(sql) if elements == 2: sql, params = sql else: raise ValueError("Expected a 2-tuple but got %d" % elements) schema_editor.execute(sql, params=params) elif sqls != RunSQL.noop: statements = schema_editor.connection.ops.prepare_sql_script(sqls) for statement in statements: schema_editor.execute(statement, params=None) class RunPython(Operation): """ Run Python code in a context suitable for doing versioned ORM operations. """ reduces_to_sql = False def __init__(self, code, reverse_code=None, atomic=None, hints=None, elidable=False): self.atomic = atomic # Forwards code if not callable(code): raise ValueError("RunPython must be supplied with a callable") self.code = code # Reverse code if reverse_code is None: self.reverse_code = None else: if not callable(reverse_code): raise ValueError("RunPython must be supplied with callable arguments") self.reverse_code = reverse_code self.hints = hints or {} self.elidable = elidable def deconstruct(self): kwargs = { 'code': self.code, } if self.reverse_code is not None: kwargs['reverse_code'] = self.reverse_code if self.atomic is not None: kwargs['atomic'] = self.atomic if self.hints: kwargs['hints'] = self.hints return ( self.__class__.__qualname__, [], kwargs ) @property def reversible(self): return self.reverse_code is not None def state_forwards(self, app_label, state): # RunPython objects have no state effect. To add some, combine this # with SeparateDatabaseAndState. pass def database_forwards(self, app_label, schema_editor, from_state, to_state): # RunPython has access to all models. Ensure that all models are # reloaded in case any are delayed. from_state.clear_delayed_apps_cache() if router.allow_migrate(schema_editor.connection.alias, app_label, **self.hints): # We now execute the Python code in a context that contains a 'models' # object, representing the versioned models as an app registry. # We could try to override the global cache, but then people will still # use direct imports, so we go with a documentation approach instead. self.code(from_state.apps, schema_editor) def database_backwards(self, app_label, schema_editor, from_state, to_state): if self.reverse_code is None: raise NotImplementedError("You cannot reverse this operation") if router.allow_migrate(schema_editor.connection.alias, app_label, **self.hints): self.reverse_code(from_state.apps, schema_editor) def describe(self): return "Raw Python operation" @staticmethod def noop(apps, schema_editor): return None
PypiClean
/Django_patch-2.2.19-py3-none-any.whl/django/contrib/auth/views.py
from urllib.parse import urlparse, urlunparse from django.conf import settings # Avoid shadowing the login() and logout() views below. from django.contrib.auth import ( REDIRECT_FIELD_NAME, get_user_model, login as auth_login, logout as auth_logout, update_session_auth_hash, ) from django.contrib.auth.decorators import login_required from django.contrib.auth.forms import ( AuthenticationForm, PasswordChangeForm, PasswordResetForm, SetPasswordForm, ) from django.contrib.auth.tokens import default_token_generator from django.contrib.sites.shortcuts import get_current_site from django.core.exceptions import ValidationError from django.http import HttpResponseRedirect, QueryDict from django.shortcuts import resolve_url from django.urls import reverse_lazy from django.utils.decorators import method_decorator from django.utils.http import is_safe_url, urlsafe_base64_decode from django.utils.translation import gettext_lazy as _ from django.views.decorators.cache import never_cache from django.views.decorators.csrf import csrf_protect from django.views.decorators.debug import sensitive_post_parameters from django.views.generic.base import TemplateView from django.views.generic.edit import FormView UserModel = get_user_model() class SuccessURLAllowedHostsMixin: success_url_allowed_hosts = set() def get_success_url_allowed_hosts(self): return {self.request.get_host(), *self.success_url_allowed_hosts} class LoginView(SuccessURLAllowedHostsMixin, FormView): """ Display the login form and handle the login action. """ form_class = AuthenticationForm authentication_form = None redirect_field_name = REDIRECT_FIELD_NAME template_name = 'registration/login.html' redirect_authenticated_user = False extra_context = None @method_decorator(sensitive_post_parameters()) @method_decorator(csrf_protect) @method_decorator(never_cache) def dispatch(self, request, *args, **kwargs): if self.redirect_authenticated_user and self.request.user.is_authenticated: redirect_to = self.get_success_url() if redirect_to == self.request.path: raise ValueError( "Redirection loop for authenticated user detected. Check that " "your LOGIN_REDIRECT_URL doesn't point to a login page." ) return HttpResponseRedirect(redirect_to) return super().dispatch(request, *args, **kwargs) def get_success_url(self): url = self.get_redirect_url() return url or resolve_url(settings.LOGIN_REDIRECT_URL) def get_redirect_url(self): """Return the user-originating redirect URL if it's safe.""" redirect_to = self.request.POST.get( self.redirect_field_name, self.request.GET.get(self.redirect_field_name, '') ) url_is_safe = is_safe_url( url=redirect_to, allowed_hosts=self.get_success_url_allowed_hosts(), require_https=self.request.is_secure(), ) return redirect_to if url_is_safe else '' def get_form_class(self): return self.authentication_form or self.form_class def get_form_kwargs(self): kwargs = super().get_form_kwargs() kwargs['request'] = self.request return kwargs def form_valid(self, form): """Security check complete. Log the user in.""" auth_login(self.request, form.get_user()) return HttpResponseRedirect(self.get_success_url()) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) current_site = get_current_site(self.request) context.update({ self.redirect_field_name: self.get_redirect_url(), 'site': current_site, 'site_name': current_site.name, **(self.extra_context or {}) }) return context class LogoutView(SuccessURLAllowedHostsMixin, TemplateView): """ Log out the user and display the 'You are logged out' message. """ next_page = None redirect_field_name = REDIRECT_FIELD_NAME template_name = 'registration/logged_out.html' extra_context = None @method_decorator(never_cache) def dispatch(self, request, *args, **kwargs): auth_logout(request) next_page = self.get_next_page() if next_page: # Redirect to this page until the session has been cleared. return HttpResponseRedirect(next_page) return super().dispatch(request, *args, **kwargs) def post(self, request, *args, **kwargs): """Logout may be done via POST.""" return self.get(request, *args, **kwargs) def get_next_page(self): if self.next_page is not None: next_page = resolve_url(self.next_page) elif settings.LOGOUT_REDIRECT_URL: next_page = resolve_url(settings.LOGOUT_REDIRECT_URL) else: next_page = self.next_page if (self.redirect_field_name in self.request.POST or self.redirect_field_name in self.request.GET): next_page = self.request.POST.get( self.redirect_field_name, self.request.GET.get(self.redirect_field_name) ) url_is_safe = is_safe_url( url=next_page, allowed_hosts=self.get_success_url_allowed_hosts(), require_https=self.request.is_secure(), ) # Security check -- Ensure the user-originating redirection URL is # safe. if not url_is_safe: next_page = self.request.path return next_page def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) current_site = get_current_site(self.request) context.update({ 'site': current_site, 'site_name': current_site.name, 'title': _('Logged out'), **(self.extra_context or {}) }) return context def logout_then_login(request, login_url=None): """ Log out the user if they are logged in. Then redirect to the login page. """ login_url = resolve_url(login_url or settings.LOGIN_URL) return LogoutView.as_view(next_page=login_url)(request) def redirect_to_login(next, login_url=None, redirect_field_name=REDIRECT_FIELD_NAME): """ Redirect the user to the login page, passing the given 'next' page. """ resolved_url = resolve_url(login_url or settings.LOGIN_URL) login_url_parts = list(urlparse(resolved_url)) if redirect_field_name: querystring = QueryDict(login_url_parts[4], mutable=True) querystring[redirect_field_name] = next login_url_parts[4] = querystring.urlencode(safe='/') return HttpResponseRedirect(urlunparse(login_url_parts)) # Class-based password reset views # - PasswordResetView sends the mail # - PasswordResetDoneView shows a success message for the above # - PasswordResetConfirmView checks the link the user clicked and # prompts for a new password # - PasswordResetCompleteView shows a success message for the above class PasswordContextMixin: extra_context = None def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context.update({ 'title': self.title, **(self.extra_context or {}) }) return context class PasswordResetView(PasswordContextMixin, FormView): email_template_name = 'registration/password_reset_email.html' extra_email_context = None form_class = PasswordResetForm from_email = None html_email_template_name = None subject_template_name = 'registration/password_reset_subject.txt' success_url = reverse_lazy('password_reset_done') template_name = 'registration/password_reset_form.html' title = _('Password reset') token_generator = default_token_generator @method_decorator(csrf_protect) def dispatch(self, *args, **kwargs): return super().dispatch(*args, **kwargs) def form_valid(self, form): opts = { 'use_https': self.request.is_secure(), 'token_generator': self.token_generator, 'from_email': self.from_email, 'email_template_name': self.email_template_name, 'subject_template_name': self.subject_template_name, 'request': self.request, 'html_email_template_name': self.html_email_template_name, 'extra_email_context': self.extra_email_context, } form.save(**opts) return super().form_valid(form) INTERNAL_RESET_URL_TOKEN = 'set-password' INTERNAL_RESET_SESSION_TOKEN = '_password_reset_token' class PasswordResetDoneView(PasswordContextMixin, TemplateView): template_name = 'registration/password_reset_done.html' title = _('Password reset sent') class PasswordResetConfirmView(PasswordContextMixin, FormView): form_class = SetPasswordForm post_reset_login = False post_reset_login_backend = None success_url = reverse_lazy('password_reset_complete') template_name = 'registration/password_reset_confirm.html' title = _('Enter new password') token_generator = default_token_generator @method_decorator(sensitive_post_parameters()) @method_decorator(never_cache) def dispatch(self, *args, **kwargs): assert 'uidb64' in kwargs and 'token' in kwargs self.validlink = False self.user = self.get_user(kwargs['uidb64']) if self.user is not None: token = kwargs['token'] if token == INTERNAL_RESET_URL_TOKEN: session_token = self.request.session.get(INTERNAL_RESET_SESSION_TOKEN) if self.token_generator.check_token(self.user, session_token): # If the token is valid, display the password reset form. self.validlink = True return super().dispatch(*args, **kwargs) else: if self.token_generator.check_token(self.user, token): # Store the token in the session and redirect to the # password reset form at a URL without the token. That # avoids the possibility of leaking the token in the # HTTP Referer header. self.request.session[INTERNAL_RESET_SESSION_TOKEN] = token redirect_url = self.request.path.replace(token, INTERNAL_RESET_URL_TOKEN) return HttpResponseRedirect(redirect_url) # Display the "Password reset unsuccessful" page. return self.render_to_response(self.get_context_data()) def get_user(self, uidb64): try: # urlsafe_base64_decode() decodes to bytestring uid = urlsafe_base64_decode(uidb64).decode() user = UserModel._default_manager.get(pk=uid) except (TypeError, ValueError, OverflowError, UserModel.DoesNotExist, ValidationError): user = None return user def get_form_kwargs(self): kwargs = super().get_form_kwargs() kwargs['user'] = self.user return kwargs def form_valid(self, form): user = form.save() del self.request.session[INTERNAL_RESET_SESSION_TOKEN] if self.post_reset_login: auth_login(self.request, user, self.post_reset_login_backend) return super().form_valid(form) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) if self.validlink: context['validlink'] = True else: context.update({ 'form': None, 'title': _('Password reset unsuccessful'), 'validlink': False, }) return context class PasswordResetCompleteView(PasswordContextMixin, TemplateView): template_name = 'registration/password_reset_complete.html' title = _('Password reset complete') def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['login_url'] = resolve_url(settings.LOGIN_URL) return context class PasswordChangeView(PasswordContextMixin, FormView): form_class = PasswordChangeForm success_url = reverse_lazy('password_change_done') template_name = 'registration/password_change_form.html' title = _('Password change') @method_decorator(sensitive_post_parameters()) @method_decorator(csrf_protect) @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super().dispatch(*args, **kwargs) def get_form_kwargs(self): kwargs = super().get_form_kwargs() kwargs['user'] = self.request.user return kwargs def form_valid(self, form): form.save() # Updating the password logs out all other sessions for the user # except the current one. update_session_auth_hash(self.request, form.user) return super().form_valid(form) class PasswordChangeDoneView(PasswordContextMixin, TemplateView): template_name = 'registration/password_change_done.html' title = _('Password change successful') @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super().dispatch(*args, **kwargs)
PypiClean
/GenIce2-2.1.7.1.tar.gz/GenIce2-2.1.7.1/genice2/lattices/iceR.py
from genice2.cell import cellvectors import genice2.lattices desc = {"ref": {"Methane A": 'Maynard-Casely 2010', "R": 'Mochizuki 2014'}, "usage": "No options available.", "brief": "Hypothetical ice R.", "test": ({"args": "", "options": "--depol=optimal"},) } class Lattice(genice2.lattices.Lattice): def __init__(self): self.cell = """ 7.547382417065826 0 0 0.08957203488361681 7.54685087967168 0 0.08957203488361681 0.08851523136724358 7.546331774698035 """ self.waters = """ 0.7029999999999993 0.2040000000000006 0.08500000000000085 0.08500000000000087 0.7029999999999994 0.20400000000000063 0.2040000000000006 0.08500000000000087 0.7029999999999993 0.41999999999999993 0.9380000000000006 0.07199999999999918 0.07199999999999916 0.41999999999999993 0.9380000000000005 0.9380000000000005 0.07199999999999918 0.4199999999999999 0.4350000000000005 0.5190000000000001 0.18900000000000003 0.18900000000000006 0.4350000000000005 0.5190000000000001 0.519 0.18900000000000006 0.4350000000000005 0.9529999999999994 0.7200000000000006 0.6259999999999994 0.6259999999999994 0.9529999999999994 0.7200000000000005 0.7200000000000005 0.6259999999999993 0.9529999999999994 0.8390000000000004 0.44500000000000023 0.3179999999999996 0.3179999999999996 0.8390000000000003 0.4450000000000003 0.44500000000000023 0.31799999999999967 0.8390000000000003 0.7010000000000005 0.8330000000000001 0.29100000000000037 0.29100000000000037 0.7010000000000004 0.8330000000000002 0.8330000000000002 0.29100000000000037 0.7010000000000004 0.18599999999999994 0.18599999999999994 0.18599999999999994 0.9529999999999994 0.9529999999999994 0.9529999999999994 0.5749999999999993 0.5749999999999992 0.5749999999999992 """ self.coord = "relative" self.bondlen = 3.05 self.density = 1.5 self.cell = cellvectors(a=7.547382417065826, b=7.547382417065826, c=7.547382417065826, A=89.31999999999998, B=89.31999999999998, C=89.31999999999998)
PypiClean
/OGER-1.5.tar.gz/OGER-1.5/oger/er/entity_recognition.py
# Nico Colic, September 2015 # Modified by Lenz Furrer, 2015--2016 ''' Entity Recognition core. ''' import re import csv import pickle import os.path import logging from ..ctrl import parameters from ..nlp.tokenize import Text_processing from ..util import misc, stream from . import term_normalization as normalization DEFAULT_TOKEN = ( # A token is a sequence of either numerical or alphabetical characters. r'\d+|[^\W\d_]+', # For abbreviation detection, a single parenthesis also forms a token. r'\d+|[^\W\d_]+|[()]' ) class EntityRecognizer(object): """ Dictionary-based entity recognition. """ def __init__(self, config=parameters.ERParams(), **kwargs): """ Loads the terms from file or pickle. `term_token` is a regular expression pattern defining a token for constructing a term tokenizer. It does not have to be the same tokenizer that is used to tokenize the text in the article, since the entity recognizer does not rely on that tokenization. `cache` is the default folder in which we check for cached pickle files. A cached file has the same basename as the term list, plus ".pickle". If `force_reload` is set, it will load from file in any case. Use this when the term list has changed. When loading from file, the term list will be pickled automatically for faster (up to 20 times) loading in subsequent calls. `stopwords` is either an iterable of stopwords or a path to a list of stopwords (one per line). """ self.tokenizer = Text_processing(self._tokenizer_spec(config), None) self._normalizers = normalization.load(config.normalize) self.stopwords = self.import_stopwords(config.stopwords) self.term_first, self.full_terms = self.load_termlist(config, **kwargs) @classmethod def ensure_cache(cls, *args, **kwargs): ''' Make sure there is a pickled version of the termlist. ''' # Simply create a throw-away instance with the hidden (undocumented) # kwarg `skip_loading`, which makes the constructor look for the # pickle file, but doesn't load it. kwargs['skip_loading'] = True cls(*args, **kwargs) @staticmethod def _tokenizer_spec(config): if config.term_tokenizer: return config.term_tokenizer else: token = config.term_token or DEFAULT_TOKEN[config.abbrev_detection] return 'RegexpTokenizer({})'.format(repr(token)) def import_stopwords(self, stopwords): ''' Resolve the different ways the stopwords are provided. ''' if isinstance(stopwords, str): # stopwords is a path: with open(stopwords) as f: stopwords = [l.strip() for l in f] # Any False-equivalent value is interpreted as no stopwords. stopwords = stopwords or [] # The stopwords are saved and looked up in normalized form. return frozenset(self.normalize(self.tokenizer.tokenize_words(w)) for w in stopwords) def load_termlist(self, config, skip_loading=False): ''' Check for a pickle, or else create one. After reading the term list into a dictionary, it has the following internal structure: key: first token of the term value: tuple( [0] = whole term, [1] = term_type (or category), [2] = term_preferred_form, [3] = resource of origin [4] = native ID (in the respective database), [5] = UMLS CUI ) If additional fields were defined through `extra_fields`, then the value tuple is extended correspondingly. ''' # Check if pickle with the same file name exists. if config.path is None: raise ValueError('no termlist specified') if config.cache is None: config.cache = os.path.dirname(config.path) basename = os.path.basename(config.path) pickle_file = os.path.join(config.cache, basename + '.pickle') n_fields = 5 + config.n_extra # 5 std fields besides the term if os.path.exists(pickle_file) and not config.force_reload: if skip_loading: # Optimisation feature: # Only check for a pickle, but don't load it. terms = None, None else: terms = self.load_termlist_from_pickle(pickle_file, n_fields) # Load the termlist from file. else: try: parser = getattr( self, 'termlist_format_{}'.format(config.field_format)) except AttributeError: logging.error('No such termlist format: %s', config.field_format) raise ValueError('Invalid termlist format') terms = self.load_termlist_from_file(config, parser, n_fields) try: self.write_terms_to_pickle(terms, pickle_file) except OSError as e: logging.warning('Cannot write termlist pickle: %s (%r)', pickle_file, e) return terms @staticmethod def load_termlist_from_pickle(pickle_path, n_exp): ''' Perform a shallow format check before loading. ''' logging.info('Unpickling terms from %s', pickle_path) with open(pickle_path, 'rb') as f: terms = pickle.load(f) try: # Make sure we have the right format. term_first, full_terms = terms except ValueError: logging.exception( 'Termlist pickle in obsolete format: %s\n ' 'Delete the pickle file or run with force_reload=True.', pickle_path) raise try: n_found = len(next(iter(full_terms.values()))[0]) except StopIteration: logging.warning('unpickling empty termlist') else: if n_found != n_exp: logging.error( 'Termlist pickle with wrong number of fields: ' 'expected %d, found %d\n ' 'Pickle file: %s\n ' 'Delete the pickle file or run with force_reload=True.', n_exp, n_found, pickle_path) raise ValueError('Termlist pickle with unexpected field count') logging.info('Terms loaded from pickle.') return term_first, full_terms @staticmethod def write_terms_to_pickle(terms, filename): ''' Dump everything to disk. ''' if filename.startswith(stream.REMOTE_PROTOCOLS): raise OSError('Cannot write pickle to remote location') os.makedirs(os.path.dirname(filename), exist_ok=True) with open(filename, 'wb') as f: pickle.dump(terms, f) logging.info('Terms written to pickle at %s', filename) def load_termlist_from_file(self, config, field_parser, n_fields): """ Index the term DB. The terms are indexed by the first token of the term expression. These keys point to a list of entries. """ logging.info("Loading terms from file %s", config.path) term_first, full_terms = {}, {} entry = ('',) * n_fields with stream.ropen(config.path, encoding='utf-8', newline='') as tsv: reader = csv.reader(tsv, escapechar='\\', **misc.tsv_format) if config.skip_header: next(reader) for line_no, line in enumerate(reader, 1+config.skip_header): term, std, extra = field_parser(line) # Apply text processing to the surface term. toks = tuple(self.tokenizer.tokenize_words(term)) norm = self.normalize(toks) term = self.em_filter(norm, toks, None, None) try: term_first[norm[0]].add(len(term)) except KeyError: term_first[norm[0]] = set([len(term)]) except IndexError: logging.warning( "Skipping line %d: empty term field", line_no) entry = self._cached_entry(entry, std + extra) if len(entry) != n_fields: logging.error( 'Line %d: Wrong field count: %d (expected %d)', line_no, len(entry)+1, n_fields+1) raise ValueError('Unexpected number of TSV fields') try: full_terms[term].add(entry) except KeyError: full_terms[term] = set([entry]) # For memory reasons, replace the sets with tuples. for k, v in term_first.items(): # Sort the length indicators, so that we can stop early # when reaching the end of a sentence. term_first[k] = tuple(sorted(v)) for k, v in full_terms.items(): full_terms[k] = tuple(v) logging.info("Finished loading termlist.") return term_first, full_terms @staticmethod def termlist_format_4(fields): ''' Legacy format with 4 columns, native ID first. [0] ID, [1] term, [2] type, [3] preferred form ''' term = fields[1] std = (fields[2], fields[3], 'unknown', fields[0], 'none') extra = tuple(fields[4:]) return term, std, extra @staticmethod def termlist_format_6(fields): ''' Like the legacy format, but including original DB and UMLS CUI. [0] native ID, [1] term, [2] type, [3] preferred form, [4] resource from which it comes, [5] UMLS CUI ''' term = fields[1] std = (fields[2], fields[3], fields[4], fields[0], fields[5]) extra = tuple(fields[6:]) return term, std, extra @staticmethod def termlist_format_bth(fields): ''' Format produced by the Bio Term Hub (UMLS CUI first). [0] UMLS CUI, [1] resource from which it comes, [2] native ID, [3] term, [4] preferred form, [5] type ''' term = fields[3] std = (fields[5], fields[4], fields[1], fields[2], fields[0]) extra = tuple(fields[6:]) return term, std, extra @staticmethod def _cached_entry(previous, new): return tuple(p if p == n else n for p, n in zip(previous, new)) def _normalize(self, token): ''' Call all normalizer functions in a cascade. ''' for n in self._normalizers: token = n(token) return token def normalize(self, tokens): ''' Normalize a sequence of tokens. ''' return tuple(self._normalize(t) for t in tokens) def em_filter(self, norm, exact, start, stop): ''' Enforce exact match for stopwords. ''' norm = norm[start:stop] if norm in self.stopwords: return exact[start:stop] return norm def recognize_entities(self, sentence): """ Go through all words and try to match them to the terms. A sentence is an un-tokenized string. Iterates over the found entities, yielding named tuples: [0] position: a pair of offsets (start, end) [1] type [2] preferred_form [3] resource (from which it comes) [4] native_id [5] umls_cui * [3] and [5] are only useful if the termlist_format is 6 or bth. If additional fields were defined in the constructor, the tuples are extended appropriately. """ span_toks = zip(*self.tokenizer.span_tokenize_words(sentence)) try: toks, starts, ends = span_toks except ValueError: # No tokens in this sentence: exit early. return normalized = self.normalize(toks) for i, word in enumerate(normalized): # There might be multiple entries for the first token in terms: for ntoks in self.term_first.get(word, ()): j = i+ntoks if j > len(normalized): # Not enough tokens remaining: Exit the inner loop early. break candidate = self.em_filter(normalized, toks, i, j) if candidate in self.full_terms: position = (starts[i], ends[j-1]) matches = self.full_terms[candidate] for entry in matches: yield position, entry self._match_hook(matches, sentence, toks, normalized, position, i, j) # Some placeholder methods used in subclasses. @staticmethod def _match_hook(*_): 'Do something with an entity match in context.' @staticmethod def reset(): 'Reset to initial state.' class AbbrevDetector(EntityRecognizer): ''' Entity recognizer capable of learning new abbreviations. ''' def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.abbrevs = {} self.stopwords = set(self.stopwords) # make this mutable again def _match_hook(self, *args): ''' Check for a subsequent abbreviation definition. ''' matches, _, toks, normalized, _, _, j = args if toks[j:j+3:2] == ('(', ')'): self.register_abbrev((toks[j+1],), (normalized[j+1],), matches) def register_abbrev(self, toks, norm, entries): ''' Add an abbrev to the hash tables and keep track of the changes. ''' mod_stopword, mod_first, mod_full = None, None, None # Enforce an exact match for abbreviations. if norm not in self.stopwords: mod_stopword = norm self.stopwords.add(norm) # Update the hash tables. There are 3 cases: # (1) unchanged, (2) new entry, (3) extend existing entry. # First-token hash: try: backup = self.term_first[norm[0]] except KeyError: # Case 2. mod_first = 'pop' self.term_first[norm[0]] = (len(toks),) else: if len(toks) not in backup: # Case 3. mod_first = backup self.term_first[norm[0]] = tuple(sorted((len(toks),) + backup)) # Full-term hash: try: backup = self.full_terms[toks] except KeyError: # Case 2. mod_full = 'pop' self.full_terms[toks] = entries else: union = set(backup).union(entries) if len(union) > len(backup): # Case 3. mod_full = backup self.full_terms[toks] = tuple(union) # Register the changes. self.update_registry(toks, mod_stopword, mod_first, mod_full) def update_registry(self, toks, stpw, first, full): ''' Merge the new change signature with any previous. ''' if toks in self.abbrevs: p_stpw, p_first, p_full = self.abbrevs[toks] stpw = p_stpw or stpw first = p_first or first full = p_full or full self.abbrevs[toks] = (stpw, first, full) def clear_abbrev_cache(self): 'Reset the hash tables for a new document.' for toks, (mod_stopword, mod_first, mod_full) in self.abbrevs.items(): # Undo all the modifications from .register_abbrev(). if mod_stopword: self.stopwords.remove(mod_stopword) if mod_first == 'pop': self.term_first.pop(toks[0], None) elif mod_first: self.term_first[toks[0]] = mod_first if mod_full == 'pop': self.full_terms.pop(toks, None) elif mod_full: self.full_terms[toks] = mod_full self.abbrevs.clear() def reset(self): 'Clear the abbreviation cache.' self.clear_abbrev_cache() class RegexAbbrevDetector(AbbrevDetector): ''' Regex-based, tokenisation-independet abbreviation detector. ''' def __init__(self, *args, abbrevpattern=r'\s+\((\w+)\)', **kwargs): super().__init__(*args, **kwargs) self.abbrevpattern = re.compile(abbrevpattern) def _match_hook(self, *args): matches, sentence, _, _, position, _, _ = args m = self.abbrevpattern.match(sentence[position[1]:]) if m: toks = tuple(self.tokenizer.tokenize_words(m.group(1))) norm = self.normalize(toks) self.register_abbrev(toks, norm, matches) def recognize_entities(self, sentence): for entity in super().recognize_entities(sentence): yield entity
PypiClean
/CleanAdminDjango-1.5.3.1.tar.gz/CleanAdminDjango-1.5.3.1/django/db/backends/creation.py
import hashlib import sys import time from django.conf import settings from django.db.utils import load_backend from django.utils.encoding import force_bytes from django.utils.six.moves import input # The prefix to put on the default database name when creating # the test database. TEST_DATABASE_PREFIX = 'test_' class BaseDatabaseCreation(object): """ This class encapsulates all backend-specific differences that pertain to database *creation*, such as the column types to use for particular Django Fields, the SQL used to create and destroy tables, and the creation and destruction of test databases. """ data_types = {} def __init__(self, connection): self.connection = connection def _digest(self, *args): """ Generates a 32-bit digest of a set of arguments that can be used to shorten identifying names. """ h = hashlib.md5() for arg in args: h.update(force_bytes(arg)) return h.hexdigest()[:8] def sql_create_model(self, model, style, known_models=set()): """ Returns the SQL required to create a single model, as a tuple of: (list_of_sql, pending_references_dict) """ opts = model._meta if not opts.managed or opts.proxy or opts.swapped: return [], {} final_output = [] table_output = [] pending_references = {} qn = self.connection.ops.quote_name for f in opts.local_fields: col_type = f.db_type(connection=self.connection) tablespace = f.db_tablespace or opts.db_tablespace if col_type is None: # Skip ManyToManyFields, because they're not represented as # database columns in this table. continue # Make the definition (e.g. 'foo VARCHAR(30)') for this field. field_output = [style.SQL_FIELD(qn(f.column)), style.SQL_COLTYPE(col_type)] # Oracle treats the empty string ('') as null, so coerce the null # option whenever '' is a possible value. null = f.null if (f.empty_strings_allowed and not f.primary_key and self.connection.features.interprets_empty_strings_as_nulls): null = True if not null: field_output.append(style.SQL_KEYWORD('NOT NULL')) if f.primary_key: field_output.append(style.SQL_KEYWORD('PRIMARY KEY')) elif f.unique: field_output.append(style.SQL_KEYWORD('UNIQUE')) if tablespace and f.unique: # We must specify the index tablespace inline, because we # won't be generating a CREATE INDEX statement for this field. tablespace_sql = self.connection.ops.tablespace_sql( tablespace, inline=True) if tablespace_sql: field_output.append(tablespace_sql) if f.rel: ref_output, pending = self.sql_for_inline_foreign_key_references( f, known_models, style) if pending: pending_references.setdefault(f.rel.to, []).append( (model, f)) else: field_output.extend(ref_output) table_output.append(' '.join(field_output)) for field_constraints in opts.unique_together: table_output.append(style.SQL_KEYWORD('UNIQUE') + ' (%s)' % ", ".join( [style.SQL_FIELD(qn(opts.get_field(f).column)) for f in field_constraints])) full_statement = [style.SQL_KEYWORD('CREATE TABLE') + ' ' + style.SQL_TABLE(qn(opts.db_table)) + ' ('] for i, line in enumerate(table_output): # Combine and add commas. full_statement.append( ' %s%s' % (line, i < len(table_output) - 1 and ',' or '')) full_statement.append(')') if opts.db_tablespace: tablespace_sql = self.connection.ops.tablespace_sql( opts.db_tablespace) if tablespace_sql: full_statement.append(tablespace_sql) full_statement.append(';') final_output.append('\n'.join(full_statement)) if opts.has_auto_field: # Add any extra SQL needed to support auto-incrementing primary # keys. auto_column = opts.auto_field.db_column or opts.auto_field.name autoinc_sql = self.connection.ops.autoinc_sql(opts.db_table, auto_column) if autoinc_sql: for stmt in autoinc_sql: final_output.append(stmt) return final_output, pending_references def sql_for_inline_foreign_key_references(self, field, known_models, style): """ Return the SQL snippet defining the foreign key reference for a field. """ qn = self.connection.ops.quote_name if field.rel.to in known_models: output = [style.SQL_KEYWORD('REFERENCES') + ' ' + style.SQL_TABLE(qn(field.rel.to._meta.db_table)) + ' (' + style.SQL_FIELD(qn(field.rel.to._meta.get_field( field.rel.field_name).column)) + ')' + self.connection.ops.deferrable_sql() ] pending = False else: # We haven't yet created the table to which this field # is related, so save it for later. output = [] pending = True return output, pending def sql_for_pending_references(self, model, style, pending_references): """ Returns any ALTER TABLE statements to add constraints after the fact. """ from django.db.backends.util import truncate_name opts = model._meta if not opts.managed or opts.proxy or opts.swapped: return [] qn = self.connection.ops.quote_name final_output = [] if model in pending_references: for rel_class, f in pending_references[model]: rel_opts = rel_class._meta r_table = rel_opts.db_table r_col = f.column table = opts.db_table col = opts.get_field(f.rel.field_name).column # For MySQL, r_name must be unique in the first 64 characters. # So we are careful with character usage here. r_name = '%s_refs_%s_%s' % ( r_col, col, self._digest(r_table, table)) final_output.append(style.SQL_KEYWORD('ALTER TABLE') + ' %s ADD CONSTRAINT %s FOREIGN KEY (%s) REFERENCES %s (%s)%s;' % (qn(r_table), qn(truncate_name( r_name, self.connection.ops.max_name_length())), qn(r_col), qn(table), qn(col), self.connection.ops.deferrable_sql())) del pending_references[model] return final_output def sql_indexes_for_model(self, model, style): """ Returns the CREATE INDEX SQL statements for a single model. """ if not model._meta.managed or model._meta.proxy or model._meta.swapped: return [] output = [] for f in model._meta.local_fields: output.extend(self.sql_indexes_for_field(model, f, style)) for fs in model._meta.index_together: fields = [model._meta.get_field_by_name(f)[0] for f in fs] output.extend(self.sql_indexes_for_fields(model, fields, style)) return output def sql_indexes_for_field(self, model, f, style): """ Return the CREATE INDEX SQL statements for a single model field. """ if f.db_index and not f.unique: return self.sql_indexes_for_fields(model, [f], style) else: return [] def sql_indexes_for_fields(self, model, fields, style): from django.db.backends.util import truncate_name if len(fields) == 1 and fields[0].db_tablespace: tablespace_sql = self.connection.ops.tablespace_sql(fields[0].db_tablespace) elif model._meta.db_tablespace: tablespace_sql = self.connection.ops.tablespace_sql(model._meta.db_tablespace) else: tablespace_sql = "" if tablespace_sql: tablespace_sql = " " + tablespace_sql field_names = [] qn = self.connection.ops.quote_name for f in fields: field_names.append(style.SQL_FIELD(qn(f.column))) index_name = "%s_%s" % (model._meta.db_table, self._digest([f.name for f in fields])) return [ style.SQL_KEYWORD("CREATE INDEX") + " " + style.SQL_TABLE(qn(truncate_name(index_name, self.connection.ops.max_name_length()))) + " " + style.SQL_KEYWORD("ON") + " " + style.SQL_TABLE(qn(model._meta.db_table)) + " " + "(%s)" % style.SQL_FIELD(", ".join(field_names)) + "%s;" % tablespace_sql, ] def sql_destroy_model(self, model, references_to_delete, style): """ Return the DROP TABLE and restraint dropping statements for a single model. """ if not model._meta.managed or model._meta.proxy or model._meta.swapped: return [] # Drop the table now qn = self.connection.ops.quote_name output = ['%s %s;' % (style.SQL_KEYWORD('DROP TABLE'), style.SQL_TABLE(qn(model._meta.db_table)))] if model in references_to_delete: output.extend(self.sql_remove_table_constraints( model, references_to_delete, style)) if model._meta.has_auto_field: ds = self.connection.ops.drop_sequence_sql(model._meta.db_table) if ds: output.append(ds) return output def sql_remove_table_constraints(self, model, references_to_delete, style): from django.db.backends.util import truncate_name if not model._meta.managed or model._meta.proxy or model._meta.swapped: return [] output = [] qn = self.connection.ops.quote_name for rel_class, f in references_to_delete[model]: table = rel_class._meta.db_table col = f.column r_table = model._meta.db_table r_col = model._meta.get_field(f.rel.field_name).column r_name = '%s_refs_%s_%s' % ( col, r_col, self._digest(table, r_table)) output.append('%s %s %s %s;' % \ (style.SQL_KEYWORD('ALTER TABLE'), style.SQL_TABLE(qn(table)), style.SQL_KEYWORD(self.connection.ops.drop_foreignkey_sql()), style.SQL_FIELD(qn(truncate_name( r_name, self.connection.ops.max_name_length()))))) del references_to_delete[model] return output def create_test_db(self, verbosity=1, autoclobber=False): """ Creates a test database, prompting the user for confirmation if the database already exists. Returns the name of the test database created. """ # Don't import django.core.management if it isn't needed. from django.core.management import call_command test_database_name = self._get_test_db_name() if verbosity >= 1: test_db_repr = '' if verbosity >= 2: test_db_repr = " ('%s')" % test_database_name print("Creating test database for alias '%s'%s..." % ( self.connection.alias, test_db_repr)) self._create_test_db(verbosity, autoclobber) self.connection.close() self.connection.settings_dict["NAME"] = test_database_name # Report syncdb messages at one level lower than that requested. # This ensures we don't get flooded with messages during testing # (unless you really ask to be flooded) call_command('syncdb', verbosity=max(verbosity - 1, 0), interactive=False, database=self.connection.alias, load_initial_data=False) # We need to then do a flush to ensure that any data installed by # custom SQL has been removed. The only test data should come from # test fixtures, or autogenerated from post_syncdb triggers. # This has the side effect of loading initial data (which was # intentionally skipped in the syncdb). call_command('flush', verbosity=max(verbosity - 1, 0), interactive=False, database=self.connection.alias) from django.core.cache import get_cache from django.core.cache.backends.db import BaseDatabaseCache for cache_alias in settings.CACHES: cache = get_cache(cache_alias) if isinstance(cache, BaseDatabaseCache): call_command('createcachetable', cache._table, database=self.connection.alias) # Get a cursor (even though we don't need one yet). This has # the side effect of initializing the test database. self.connection.cursor() return test_database_name def _get_test_db_name(self): """ Internal implementation - returns the name of the test DB that will be created. Only useful when called from create_test_db() and _create_test_db() and when no external munging is done with the 'NAME' or 'TEST_NAME' settings. """ if self.connection.settings_dict['TEST_NAME']: return self.connection.settings_dict['TEST_NAME'] return TEST_DATABASE_PREFIX + self.connection.settings_dict['NAME'] def _create_test_db(self, verbosity, autoclobber): """ Internal implementation - creates the test db tables. """ suffix = self.sql_table_creation_suffix() test_database_name = self._get_test_db_name() qn = self.connection.ops.quote_name # Create the test database and connect to it. We need to autocommit # if the database supports it because PostgreSQL doesn't allow # CREATE/DROP DATABASE statements within transactions. cursor = self.connection.cursor() self._prepare_for_test_db_ddl() try: cursor.execute( "CREATE DATABASE %s %s" % (qn(test_database_name), suffix)) except Exception as e: sys.stderr.write( "Got an error creating the test database: %s\n" % e) if not autoclobber: confirm = input( "Type 'yes' if you would like to try deleting the test " "database '%s', or 'no' to cancel: " % test_database_name) if autoclobber or confirm == 'yes': try: if verbosity >= 1: print("Destroying old test database '%s'..." % self.connection.alias) cursor.execute( "DROP DATABASE %s" % qn(test_database_name)) cursor.execute( "CREATE DATABASE %s %s" % (qn(test_database_name), suffix)) except Exception as e: sys.stderr.write( "Got an error recreating the test database: %s\n" % e) sys.exit(2) else: print("Tests cancelled.") sys.exit(1) return test_database_name def destroy_test_db(self, old_database_name, verbosity=1): """ Destroy a test database, prompting the user for confirmation if the database already exists. """ self.connection.close() test_database_name = self.connection.settings_dict['NAME'] if verbosity >= 1: test_db_repr = '' if verbosity >= 2: test_db_repr = " ('%s')" % test_database_name print("Destroying test database for alias '%s'%s..." % ( self.connection.alias, test_db_repr)) # Temporarily use a new connection and a copy of the settings dict. # This prevents the production database from being exposed to potential # child threads while (or after) the test database is destroyed. # Refs #10868 and #17786. settings_dict = self.connection.settings_dict.copy() settings_dict['NAME'] = old_database_name backend = load_backend(settings_dict['ENGINE']) new_connection = backend.DatabaseWrapper( settings_dict, alias='__destroy_test_db__', allow_thread_sharing=False) new_connection.creation._destroy_test_db(test_database_name, verbosity) def _destroy_test_db(self, test_database_name, verbosity): """ Internal implementation - remove the test db tables. """ # Remove the test database to clean up after # ourselves. Connect to the previous database (not the test database) # to do so, because it's not allowed to delete a database while being # connected to it. cursor = self.connection.cursor() self._prepare_for_test_db_ddl() # Wait to avoid "database is being accessed by other users" errors. time.sleep(1) cursor.execute("DROP DATABASE %s" % self.connection.ops.quote_name(test_database_name)) self.connection.close() def set_autocommit(self): """ Make sure a connection is in autocommit mode. - Deprecated, not used anymore by Django code. Kept for compatibility with user code that might use it. """ pass def _prepare_for_test_db_ddl(self): """ Internal implementation - Hook for tasks that should be performed before the ``CREATE DATABASE``/``DROP DATABASE`` clauses used by testing code to create/ destroy test databases. Needed e.g. in PostgreSQL to rollback and close any active transaction. """ pass def sql_table_creation_suffix(self): """ SQL to append to the end of the test table creation statements. """ return '' def test_db_signature(self): """ Returns a tuple with elements of self.connection.settings_dict (a DATABASES setting value) that uniquely identify a database accordingly to the RDBMS particularities. """ settings_dict = self.connection.settings_dict return ( settings_dict['HOST'], settings_dict['PORT'], settings_dict['ENGINE'], settings_dict['NAME'] )
PypiClean
/IsPycharmRun-1.0.tar.gz/IsPycharmRun-1.0/pb_py/sc_msg_dailyevent_pb2.py
from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() import msg_base_pb2 as msg__base__pb2 import msg_common_pb2 as msg__common__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='sc_msg_dailyevent.proto', package='FunPlus.Common.Config', syntax='proto2', serialized_options=b'H\001Z\022server/pkg/gen/msg', create_key=_descriptor._internal_create_key, serialized_pb=b'\n\x17sc_msg_dailyevent.proto\x12\x15\x46unPlus.Common.Config\x1a\x0emsg_base.proto\x1a\x10msg_common.proto\"6\n\x17PBAllDailyEventsRequest\x12\x13\n\x0bis_open_cmp\x18\x01 \x01(\x08:\x06\x80}\x81\xd8\x80\x05\"\x90\x01\n\x18PBAllDailyEventsResponse\x12\x41\n\x10\x64\x61ily_event_list\x18\x01 \x03(\x0b\x32\'.FunPlus.Common.Config.PBDailyEventData\x12\x12\n\nweek_index\x18\x02 \x01(\r\x12\x15\n\rnew_event_ids\x18\x03 \x03(\t:\x06\x80}\x82\xd8\x80\x05\"O\n\x1cPBDailyEventPlotBeginRequest\x12\x0f\n\x07plot_id\x18\x01 \x01(\x05\x12\x16\n\x0e\x64\x61ily_event_id\x18\x02 \x01(\t:\x06\x80}\x83\xd8\x80\x05\"\\\n\x1dPBDailyEventPlotBeginResponse\x12\x0f\n\x07plot_id\x18\x01 \x01(\x05\x12\x16\n\x0e\x64\x61ily_event_id\x18\x02 \x01(\t\x12\n\n\x02ok\x18\x03 \x01(\x08:\x06\x80}\x84\xd8\x80\x05\"M\n\x1aPBDailyEventPlotEndRequest\x12\x0f\n\x07plot_id\x18\x01 \x01(\x05\x12\x16\n\x0e\x64\x61ily_event_id\x18\x02 \x01(\t:\x06\x80}\x85\xd8\x80\x05\"N\n\x1bPBDailyEventPlotEndResponse\x12\x0f\n\x07plot_id\x18\x01 \x01(\x05\x12\x16\n\x0e\x64\x61ily_event_id\x18\x02 \x01(\t:\x06\x80}\x86\xd8\x80\x05\x42\x16H\x01Z\x12server/pkg/gen/msg' , dependencies=[msg__base__pb2.DESCRIPTOR,msg__common__pb2.DESCRIPTOR,]) _PBALLDAILYEVENTSREQUEST = _descriptor.Descriptor( name='PBAllDailyEventsRequest', full_name='FunPlus.Common.Config.PBAllDailyEventsRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='is_open_cmp', full_name='FunPlus.Common.Config.PBAllDailyEventsRequest.is_open_cmp', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'\200}\201\330\200\005', is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=84, serialized_end=138, ) _PBALLDAILYEVENTSRESPONSE = _descriptor.Descriptor( name='PBAllDailyEventsResponse', full_name='FunPlus.Common.Config.PBAllDailyEventsResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='daily_event_list', full_name='FunPlus.Common.Config.PBAllDailyEventsResponse.daily_event_list', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='week_index', full_name='FunPlus.Common.Config.PBAllDailyEventsResponse.week_index', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='new_event_ids', full_name='FunPlus.Common.Config.PBAllDailyEventsResponse.new_event_ids', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'\200}\202\330\200\005', is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=141, serialized_end=285, ) _PBDAILYEVENTPLOTBEGINREQUEST = _descriptor.Descriptor( name='PBDailyEventPlotBeginRequest', full_name='FunPlus.Common.Config.PBDailyEventPlotBeginRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='plot_id', full_name='FunPlus.Common.Config.PBDailyEventPlotBeginRequest.plot_id', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='daily_event_id', full_name='FunPlus.Common.Config.PBDailyEventPlotBeginRequest.daily_event_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'\200}\203\330\200\005', is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=287, serialized_end=366, ) _PBDAILYEVENTPLOTBEGINRESPONSE = _descriptor.Descriptor( name='PBDailyEventPlotBeginResponse', full_name='FunPlus.Common.Config.PBDailyEventPlotBeginResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='plot_id', full_name='FunPlus.Common.Config.PBDailyEventPlotBeginResponse.plot_id', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='daily_event_id', full_name='FunPlus.Common.Config.PBDailyEventPlotBeginResponse.daily_event_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='ok', full_name='FunPlus.Common.Config.PBDailyEventPlotBeginResponse.ok', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'\200}\204\330\200\005', is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=368, serialized_end=460, ) _PBDAILYEVENTPLOTENDREQUEST = _descriptor.Descriptor( name='PBDailyEventPlotEndRequest', full_name='FunPlus.Common.Config.PBDailyEventPlotEndRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='plot_id', full_name='FunPlus.Common.Config.PBDailyEventPlotEndRequest.plot_id', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='daily_event_id', full_name='FunPlus.Common.Config.PBDailyEventPlotEndRequest.daily_event_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'\200}\205\330\200\005', is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=462, serialized_end=539, ) _PBDAILYEVENTPLOTENDRESPONSE = _descriptor.Descriptor( name='PBDailyEventPlotEndResponse', full_name='FunPlus.Common.Config.PBDailyEventPlotEndResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='plot_id', full_name='FunPlus.Common.Config.PBDailyEventPlotEndResponse.plot_id', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='daily_event_id', full_name='FunPlus.Common.Config.PBDailyEventPlotEndResponse.daily_event_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'\200}\206\330\200\005', is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=541, serialized_end=619, ) _PBALLDAILYEVENTSRESPONSE.fields_by_name['daily_event_list'].message_type = msg__common__pb2._PBDAILYEVENTDATA DESCRIPTOR.message_types_by_name['PBAllDailyEventsRequest'] = _PBALLDAILYEVENTSREQUEST DESCRIPTOR.message_types_by_name['PBAllDailyEventsResponse'] = _PBALLDAILYEVENTSRESPONSE DESCRIPTOR.message_types_by_name['PBDailyEventPlotBeginRequest'] = _PBDAILYEVENTPLOTBEGINREQUEST DESCRIPTOR.message_types_by_name['PBDailyEventPlotBeginResponse'] = _PBDAILYEVENTPLOTBEGINRESPONSE DESCRIPTOR.message_types_by_name['PBDailyEventPlotEndRequest'] = _PBDAILYEVENTPLOTENDREQUEST DESCRIPTOR.message_types_by_name['PBDailyEventPlotEndResponse'] = _PBDAILYEVENTPLOTENDRESPONSE _sym_db.RegisterFileDescriptor(DESCRIPTOR) PBAllDailyEventsRequest = _reflection.GeneratedProtocolMessageType('PBAllDailyEventsRequest', (_message.Message,), { 'DESCRIPTOR' : _PBALLDAILYEVENTSREQUEST, '__module__' : 'sc_msg_dailyevent_pb2' # @@protoc_insertion_point(class_scope:FunPlus.Common.Config.PBAllDailyEventsRequest) }) _sym_db.RegisterMessage(PBAllDailyEventsRequest) PBAllDailyEventsResponse = _reflection.GeneratedProtocolMessageType('PBAllDailyEventsResponse', (_message.Message,), { 'DESCRIPTOR' : _PBALLDAILYEVENTSRESPONSE, '__module__' : 'sc_msg_dailyevent_pb2' # @@protoc_insertion_point(class_scope:FunPlus.Common.Config.PBAllDailyEventsResponse) }) _sym_db.RegisterMessage(PBAllDailyEventsResponse) PBDailyEventPlotBeginRequest = _reflection.GeneratedProtocolMessageType('PBDailyEventPlotBeginRequest', (_message.Message,), { 'DESCRIPTOR' : _PBDAILYEVENTPLOTBEGINREQUEST, '__module__' : 'sc_msg_dailyevent_pb2' # @@protoc_insertion_point(class_scope:FunPlus.Common.Config.PBDailyEventPlotBeginRequest) }) _sym_db.RegisterMessage(PBDailyEventPlotBeginRequest) PBDailyEventPlotBeginResponse = _reflection.GeneratedProtocolMessageType('PBDailyEventPlotBeginResponse', (_message.Message,), { 'DESCRIPTOR' : _PBDAILYEVENTPLOTBEGINRESPONSE, '__module__' : 'sc_msg_dailyevent_pb2' # @@protoc_insertion_point(class_scope:FunPlus.Common.Config.PBDailyEventPlotBeginResponse) }) _sym_db.RegisterMessage(PBDailyEventPlotBeginResponse) PBDailyEventPlotEndRequest = _reflection.GeneratedProtocolMessageType('PBDailyEventPlotEndRequest', (_message.Message,), { 'DESCRIPTOR' : _PBDAILYEVENTPLOTENDREQUEST, '__module__' : 'sc_msg_dailyevent_pb2' # @@protoc_insertion_point(class_scope:FunPlus.Common.Config.PBDailyEventPlotEndRequest) }) _sym_db.RegisterMessage(PBDailyEventPlotEndRequest) PBDailyEventPlotEndResponse = _reflection.GeneratedProtocolMessageType('PBDailyEventPlotEndResponse', (_message.Message,), { 'DESCRIPTOR' : _PBDAILYEVENTPLOTENDRESPONSE, '__module__' : 'sc_msg_dailyevent_pb2' # @@protoc_insertion_point(class_scope:FunPlus.Common.Config.PBDailyEventPlotEndResponse) }) _sym_db.RegisterMessage(PBDailyEventPlotEndResponse) DESCRIPTOR._options = None _PBALLDAILYEVENTSREQUEST._options = None _PBALLDAILYEVENTSRESPONSE._options = None _PBDAILYEVENTPLOTBEGINREQUEST._options = None _PBDAILYEVENTPLOTBEGINRESPONSE._options = None _PBDAILYEVENTPLOTENDREQUEST._options = None _PBDAILYEVENTPLOTENDRESPONSE._options = None # @@protoc_insertion_point(module_scope)
PypiClean
/Appium-Flutter-Finder-0.4.0.tar.gz/Appium-Flutter-Finder-0.4.0/appium_flutter_finder/flutter_finder.py
import base64 import json from appium.webdriver.webelement import WebElement class FlutterElement(WebElement): pass class FlutterFinder: def by_ancestor(self, serialized_finder, matching, match_root=False, first_match_only=False): return self._by_ancestor_or_descendant( type_='Ancestor', serialized_finder=serialized_finder, matching=matching, match_root=match_root, first_match_only=first_match_only ) def by_descendant(self, serialized_finder, matching, match_root=False, first_match_only=False): return self._by_ancestor_or_descendant( type_='Descendant', serialized_finder=serialized_finder, matching=matching, match_root=match_root, first_match_only=first_match_only ) def by_semantics_label(self, label, isRegExp=False): return self._serialize(dict( finderType='BySemanticsLabel', isRegExp=isRegExp, label=label )) def by_tooltip(self, text): return self._serialize(dict( finderType='ByTooltipMessage', text=text )) def by_text(self, text): return self._serialize(dict( finderType='ByText', text=text )) def by_type(self, type_): return self._serialize(dict( finderType='ByType', type=type_ )) def by_value_key(self, key): return self._serialize(dict( finderType='ByValueKey', keyValueString=key, keyValueType='String' if isinstance(key, str) else 'int' )) def page_back(self): return self._serialize(dict( finderType='PageBack' )) def _serialize(self, finder_dict): return base64.b64encode( bytes(json.dumps(finder_dict, separators=(',', ':')), 'UTF-8')).decode('UTF-8') def _by_ancestor_or_descendant(self, type_, serialized_finder, matching, match_root=False, first_match_only=False): param = dict(finderType=type_, matchRoot=match_root, firstMatchOnly=first_match_only) try: finder = json.loads(base64.b64decode( serialized_finder).decode('utf-8')) except Exception: finder = {} param.setdefault('of', {}) for finder_key, finder_value in finder.items(): param['of'].setdefault(finder_key, finder_value) param['of'] = json.dumps(param['of'], separators=(',', ':')) try: matching = json.loads(base64.b64decode(matching).decode('utf-8')) except Exception: matching = {} param.setdefault('matching', {}) for matching_key, matching_value in matching.items(): param['matching'].setdefault(matching_key, matching_value) param['matching'] = json.dumps(param['matching'], separators=(',', ':')) return self._serialize(param)
PypiClean
/LimeReport-qt-6-4-1.7.5.tar.gz/LimeReport-qt-6-4-1.7.5/LimeReport/translations/limereport_zh.ts
<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE TS> <TS version="2.1" language="zh_CN"> <context> <name>$ClassName$</name> <message> <source>$ClassName$</source> <translation>$ClassName$</translation> </message> </context> <context> <name>ChartAxisEditor</name> <message> <source>Axis editor</source> <translation type="unfinished"></translation> </message> <message> <source>Axis</source> <translation type="unfinished"></translation> </message> <message> <source>Reverse direction</source> <translation type="unfinished"></translation> </message> <message> <source>Enable scale calculation</source> <translation type="unfinished"></translation> </message> <message> <source>Step</source> <translation type="unfinished"></translation> </message> <message> <source>Maximum</source> <translation type="unfinished"></translation> </message> <message> <source>Minimum</source> <translation type="unfinished"></translation> </message> <message> <source>Automatic</source> <translation type="unfinished"></translation> </message> <message> <source>Cancel</source> <translation type="unfinished">取消</translation> </message> <message> <source>Ok</source> <translation type="unfinished">确定</translation> </message> </context> <context> <name>ChartItemEditor</name> <message> <source>Series editor</source> <translation>数据系列编辑器</translation> </message> <message> <source>Series</source> <translation>数据系列</translation> </message> <message> <source>Add</source> <translation>增加</translation> </message> <message> <source>Delete</source> <translation>删除</translation> </message> <message> <source>Name</source> <translation>名称</translation> </message> <message> <source>Values field</source> <translation>取值字段</translation> </message> <message> <source>Color</source> <translation>颜色</translation> </message> <message> <source>Type</source> <translation>类型</translation> </message> <message> <source>Labels field</source> <translation>标签字段</translation> </message> <message> <source>Ok</source> <translation>确定</translation> </message> <message> <source>Series name</source> <translation>系列名称</translation> </message> <message> <source>X data field</source> <translation type="unfinished"></translation> </message> </context> <context> <name>ImageItemEditor</name> <message> <source>Image Item Editor</source> <translation>图像组件编辑</translation> </message> <message> <source>Image</source> <translation>图像</translation> </message> <message> <source>...</source> <translation>...</translation> </message> <message> <source>Resource path</source> <translation>资源路径</translation> </message> <message> <source>Select image file</source> <translation>选择图像文件</translation> </message> </context> <context> <name>LRVariableDialog</name> <message> <source>Variable</source> <translation>变量</translation> </message> <message> <source>Name</source> <translation>名称</translation> </message> <message> <source>Value</source> <translation>值</translation> </message> <message> <source>Type</source> <translation>类型</translation> </message> <message> <source>Attention</source> <translation>注意</translation> </message> <message> <source>Mandatory</source> <translation>必要</translation> </message> </context> <context> <name>LanguageSelectDialog</name> <message> <source>Dialog</source> <translation>对话框</translation> </message> <message> <source>Language</source> <translation>语言</translation> </message> </context> <context> <name>LimeReport::AboutDialog</name> <message> <source>About</source> <translation>关于</translation> </message> <message> <source>Lime Report</source> <translation></translation> </message> <message> <source>Author</source> <translation>作者</translation> </message> <message> <source>&lt;!DOCTYPE HTML PUBLIC &quot;-//W3C//DTD HTML 4.0//EN&quot; &quot;http://www.w3.org/TR/REC-html40/strict.dtd&quot;&gt; &lt;html&gt;&lt;head&gt;&lt;meta name=&quot;qrichtext&quot; content=&quot;1&quot; /&gt;&lt;style type=&quot;text/css&quot;&gt; p, li { white-space: pre-wrap; } &lt;/style&gt;&lt;/head&gt;&lt;body style=&quot; font-family:&apos;Sans Serif&apos;; font-size:9pt; font-weight:400; font-style:normal;&quot;&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-weight:600;&quot;&gt;Arin Alexander&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;[email protected]&lt;/p&gt;&lt;/body&gt;&lt;/html&gt;</source> <translation></translation> </message> <message> <source>License</source> <translation>许可</translation> </message> <message> <source>&lt;!DOCTYPE HTML PUBLIC &quot;-//W3C//DTD HTML 4.0//EN&quot; &quot;http://www.w3.org/TR/REC-html40/strict.dtd&quot;&gt; &lt;html&gt;&lt;head&gt;&lt;meta name=&quot;qrichtext&quot; content=&quot;1&quot; /&gt;&lt;style type=&quot;text/css&quot;&gt; p, li { white-space: pre-wrap; } &lt;/style&gt;&lt;/head&gt;&lt;body style=&quot; font-family:&apos;Sans Serif&apos;; font-size:9pt; font-weight:400; font-style:normal;&quot;&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;(c) 2015 Arin Alexander [email protected]&lt;/p&gt; &lt;p style=&quot;-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;br /&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;a name=&quot;SEC1&quot;&gt;&lt;/a&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;G&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;NU LESSER GENERAL PUBLIC LICENSE&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;Version 2.1, February 1999&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;Copyright (C) 1991, 1999 Free Software Foundation, Inc.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;Everyone is permitted to copy and distribute verbatim copies&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;of this license document, but changing it is not allowed.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot;-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; font-family:&apos;monospace&apos;;&quot;&gt;&lt;br /&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;[This is the first released version of the Lesser GPL. It also counts&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt; as the successor of the GNU Library Public License, version 2, hence&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:15px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt; the version number 2.1.]&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:15px; margin-bottom:15px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;a name=&quot;SEC2&quot;&gt;&lt;/a&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;P&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;reamble&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;This license, the Lesser General Public License, applies to some specially designated software packages--typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use it too, but we suggest you first think carefully about whether this license or the ordinary General Public License is the better strategy to use in any particular case, based on the explanations below.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces of it in new free programs; and that you are informed that you can do these things.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library or if you modify it.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other code with the library, you must provide complete object files to the recipients, so that they can relink them with the library after making changes to the library and recompiling it. And you must show them these terms so they know their rights.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which gives you legal permission to copy, distribute and/or modify the library.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the library is modified by someone else and passed on, the recipients should know that what they have is not the original version, so that the original author&apos;s reputation will not be affected by problems that might be introduced by others.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the full freedom of use specified in this license.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries into non-free programs.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;When a program is linked with a library, whether statically or using a shared library, the combination of the two is legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking other code with the library.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;We call this license the &amp;quot;Lesser&amp;quot; General Public License because it does Less to protect the user&apos;s freedom than the ordinary General Public License. It also provides other free software developers Less of an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries. However, the Lesser license provides advantages in certain special circumstances.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public License.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;In other cases, permission to use a particular library in non-free programs enables a greater number of people to use a large body of free software. For example, permission to use the GNU C Library in non-free programs enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;Although the Lesser General Public License is Less protective of the users&apos; freedom, it does ensure that the user of a program that is linked with the Library has the freedom and the wherewithal to run that program using a modified version of the Library.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a &amp;quot;work based on the library&amp;quot; and a &amp;quot;work that uses the library&amp;quot;. The former contains code derived from the library, whereas the latter must be combined with the library in order to run.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:15px; margin-bottom:15px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;a name=&quot;SEC3&quot;&gt;&lt;/a&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600; color:#333333;&quot;&gt;T&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600; color:#333333;&quot;&gt;ERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;0.&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt; This License Agreement applies to any software library or other program which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public License (also called &amp;quot;this License&amp;quot;). Each licensee is addressed as &amp;quot;you&amp;quot;.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;A &amp;quot;library&amp;quot; means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;The &amp;quot;Library&amp;quot;, below, refers to any such software library or work which has been distributed under these terms. A &amp;quot;work based on the Library&amp;quot; means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term &amp;quot;modification&amp;quot;.)&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;&amp;quot;Source code&amp;quot; for a work means the preferred form of the work for making modifications to it. For a library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;1.&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt; You may copy and distribute verbatim copies of the Library&apos;s complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;2.&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt; You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:&lt;/span&gt;&lt;/p&gt; &lt;ul style=&quot;margin-top: 0px; margin-bottom: 0px; margin-left: 0px; margin-right: 0px; -qt-list-indent: 1;&quot;&gt;&lt;li style=&quot; font-family:&apos;sans-serif&apos;;&quot; style=&quot; margin-top:19px; margin-bottom:0px; margin-left:38px; margin-right:19px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-size:16px; font-weight:600;&quot;&gt;a)&lt;/span&gt;&lt;span style=&quot; font-size:16px;&quot;&gt; The modified work must itself be a software library.&lt;/span&gt;&lt;/li&gt; &lt;li style=&quot; font-family:&apos;sans-serif&apos;;&quot; style=&quot; margin-top:0px; margin-bottom:0px; margin-left:38px; margin-right:19px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-size:16px; font-weight:600;&quot;&gt;b)&lt;/span&gt;&lt;span style=&quot; font-size:16px;&quot;&gt; You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change.&lt;/span&gt;&lt;/li&gt; &lt;li style=&quot; font-family:&apos;sans-serif&apos;;&quot; style=&quot; margin-top:0px; margin-bottom:0px; margin-left:38px; margin-right:19px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-size:16px; font-weight:600;&quot;&gt;c)&lt;/span&gt;&lt;span style=&quot; font-size:16px;&quot;&gt; You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License.&lt;/span&gt;&lt;/li&gt; &lt;li style=&quot; font-family:&apos;sans-serif&apos;;&quot; style=&quot; margin-top:0px; margin-bottom:19px; margin-left:38px; margin-right:19px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-size:16px; font-weight:600;&quot;&gt;d)&lt;/span&gt;&lt;span style=&quot; font-size:16px;&quot;&gt; If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful.&lt;/span&gt;&lt;/li&gt;&lt;/ul&gt; &lt;p style=&quot; margin-top:15px; margin-bottom:15px; margin-left:38px; margin-right:19px; -qt-block-indent:1; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;(For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the application does not supply it, the square root function must still compute square roots.)&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Library.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;3.&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt; You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not make any other change in these notices.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all subsequent copies and derivative works made from that copy.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;This option is useful when you wish to copy part of the code of the Library into a program that is not a library.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;4.&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt; You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the source along with the object code.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;5.&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt; A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a &amp;quot;work that uses the Library&amp;quot;. Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;However, linking a &amp;quot;work that uses the Library&amp;quot; with the Library creates an executable that is a derivative of the Library (because it contains portions of the Library), rather than a &amp;quot;work that uses the library&amp;quot;. The executable is therefore covered by this License. Section 6 states terms for distribution of such executables.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;When a &amp;quot;work that uses the Library&amp;quot; uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under Section 6.)&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;6.&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt; As an exception to the Sections above, you may also combine or link a &amp;quot;work that uses the Library&amp;quot; with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer&apos;s own use and reverse engineering for debugging such modifications.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things:&lt;/span&gt;&lt;/p&gt; &lt;ul style=&quot;margin-top: 0px; margin-bottom: 0px; margin-left: 0px; margin-right: 0px; -qt-list-indent: 1;&quot;&gt;&lt;li style=&quot; font-family:&apos;sans-serif&apos;;&quot; style=&quot; margin-top:19px; margin-bottom:0px; margin-left:38px; margin-right:19px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-size:16px; font-weight:600;&quot;&gt;a)&lt;/span&gt;&lt;span style=&quot; font-size:16px;&quot;&gt; Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-readable &amp;quot;work that uses the Library&amp;quot;, as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.)&lt;/span&gt;&lt;/li&gt; &lt;li style=&quot; font-family:&apos;sans-serif&apos;;&quot; style=&quot; margin-top:0px; margin-bottom:0px; margin-left:38px; margin-right:19px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-size:16px; font-weight:600;&quot;&gt;b)&lt;/span&gt;&lt;span style=&quot; font-size:16px;&quot;&gt; Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1) uses at run time a copy of the library already present on the user&apos;s computer system, rather than copying library functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs one, as long as the modified version is interface-compatible with the version that the work was made with.&lt;/span&gt;&lt;/li&gt; &lt;li style=&quot; font-family:&apos;sans-serif&apos;;&quot; style=&quot; margin-top:0px; margin-bottom:0px; margin-left:38px; margin-right:19px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-size:16px; font-weight:600;&quot;&gt;c)&lt;/span&gt;&lt;span style=&quot; font-size:16px;&quot;&gt; Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution.&lt;/span&gt;&lt;/li&gt; &lt;li style=&quot; font-family:&apos;sans-serif&apos;;&quot; style=&quot; margin-top:0px; margin-bottom:0px; margin-left:38px; margin-right:19px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-size:16px; font-weight:600;&quot;&gt;d)&lt;/span&gt;&lt;span style=&quot; font-size:16px;&quot;&gt; If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place.&lt;/span&gt;&lt;/li&gt; &lt;li style=&quot; font-family:&apos;sans-serif&apos;;&quot; style=&quot; margin-top:0px; margin-bottom:19px; margin-left:38px; margin-right:19px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-size:16px; font-weight:600;&quot;&gt;e)&lt;/span&gt;&lt;span style=&quot; font-size:16px;&quot;&gt; Verify that the user has already received a copy of these materials or that you have already sent this user a copy.&lt;/span&gt;&lt;/li&gt;&lt;/ul&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;For an executable, the required form of the &amp;quot;work that uses the Library&amp;quot; must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;7.&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt; You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided that you do these two things:&lt;/span&gt;&lt;/p&gt; &lt;ul style=&quot;margin-top: 0px; margin-bottom: 0px; margin-left: 0px; margin-right: 0px; -qt-list-indent: 1;&quot;&gt;&lt;li style=&quot; font-family:&apos;sans-serif&apos;;&quot; style=&quot; margin-top:19px; margin-bottom:0px; margin-left:38px; margin-right:19px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-size:16px; font-weight:600;&quot;&gt;a)&lt;/span&gt;&lt;span style=&quot; font-size:16px;&quot;&gt; Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above.&lt;/span&gt;&lt;/li&gt; &lt;li style=&quot; font-family:&apos;sans-serif&apos;;&quot; style=&quot; margin-top:0px; margin-bottom:19px; margin-left:38px; margin-right:19px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-size:16px; font-weight:600;&quot;&gt;b)&lt;/span&gt;&lt;span style=&quot; font-size:16px;&quot;&gt; Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work.&lt;/span&gt;&lt;/li&gt;&lt;/ul&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;8.&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt; You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;9.&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt; You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Library or works based on it.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;10.&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt; Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions on the recipients&apos; exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties with this License.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;11.&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt; If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;12.&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt; If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;13.&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt; The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and &amp;quot;any later version&amp;quot;, you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free Software Foundation.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;14.&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt; If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;NO WARRANTY&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;15.&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt; BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY &amp;quot;AS IS&amp;quot; WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600;&quot;&gt;16.&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt; IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:15px; margin-bottom:15px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600; color:#333333;&quot;&gt;END OF TERMS AND CONDITIONS&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:15px; margin-bottom:15px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;a name=&quot;SEC4&quot;&gt;&lt;/a&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600; color:#333333;&quot;&gt;H&lt;/span&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;; font-weight:600; color:#333333;&quot;&gt;ow to Apply These Terms to Your New Libraries&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend making it free software that everyone can redistribute and change. You can do so by permitting redistribution under these terms (or, alternatively, under the terms of the ordinary General Public License).&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the &amp;quot;copyright&amp;quot; line and a pointer to where the full notice is found.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;; font-style:italic;&quot;&gt;one line to give the library&apos;s name and an idea of what it does.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;Copyright (C) &lt;/span&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;; font-style:italic;&quot;&gt;year&lt;/span&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt; &lt;/span&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;; font-style:italic;&quot;&gt;name of author&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot;-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; font-family:&apos;monospace&apos;; font-style:italic;&quot;&gt;&lt;br /&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;This library is free software; you can redistribute it and/or&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;modify it under the terms of the GNU Lesser General Public&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;License as published by the Free Software Foundation; either&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;version 2.1 of the License, or (at your option) any later version.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot;-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; font-family:&apos;monospace&apos;;&quot;&gt;&lt;br /&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;This library is distributed in the hope that it will be useful,&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;but WITHOUT ANY WARRANTY; without even the implied warranty of&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;Lesser General Public License for more details.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot;-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; font-family:&apos;monospace&apos;;&quot;&gt;&lt;br /&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;You should have received a copy of the GNU Lesser General Public&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;License along with this library; if not, write to the Free Software&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:15px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;Also add information on how to contact you by electronic and paper mail.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;You should also get your employer (if you work as a programmer) or your school, if any, to sign a &amp;quot;copyright disclaimer&amp;quot; for the library, if necessary. Here is a sample; alter the names:&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;Yoyodyne, Inc., hereby disclaims all copyright interest in&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;the library `Frob&apos; (a library for tweaking knobs) written&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;by James Random Hacker.&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot;-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; font-family:&apos;monospace&apos;;&quot;&gt;&lt;br /&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;; font-style:italic;&quot;&gt;signature of Ty Coon&lt;/span&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;, 1 April 1990&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:15px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;monospace&apos;;&quot;&gt;Ty Coon, President of Vice&lt;/span&gt;&lt;/p&gt; &lt;p style=&quot; margin-top:19px; margin-bottom:19px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-family:&apos;sans-serif&apos;;&quot;&gt;That&apos;s all there is to it!&lt;/span&gt;&lt;/p&gt;&lt;/body&gt;&lt;/html&gt;</source> <translation></translation> </message> <message> <source>Close</source> <translation>关闭</translation> </message> <message> <source>Version 1.1.1</source> <translation>版本 1.1.1</translation> </message> <message> <source>&lt;!DOCTYPE HTML PUBLIC &quot;-//W3C//DTD HTML 4.0//EN&quot; &quot;http://www.w3.org/TR/REC-html40/strict.dtd&quot;&gt; &lt;html&gt;&lt;head&gt;&lt;meta name=&quot;qrichtext&quot; content=&quot;1&quot; /&gt;&lt;style type=&quot;text/css&quot;&gt; p, li { white-space: pre-wrap; } &lt;/style&gt;&lt;/head&gt;&lt;body style=&quot; font-family:&apos;Sans Serif&apos;; font-size:9pt; font-weight:400; font-style:normal;&quot;&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;img src=&quot;:/report/images/logo_100.png&quot; height=&quot;100&quot; style=&quot;float: left;&quot; /&gt;&lt;span style=&quot; font-size:12pt; font-weight:600;&quot;&gt;Report engine for &lt;/span&gt;&lt;span style=&quot; font-size:12pt; font-weight:600; color:#7faa18;&quot;&gt;Qt&lt;/span&gt;&lt;span style=&quot; font-size:12pt; font-weight:600;&quot;&gt; framework&lt;/span&gt;&lt;/p&gt; &lt;p align=&quot;justify&quot; style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-size:11pt;&quot;&gt;LimeReport - multi-platform C++ library written using Qt framework and intended for software developers that would like to add into their application capability to form report or print forms generated using templates.&lt;/span&gt;&lt;/p&gt; &lt;p align=&quot;justify&quot; style=&quot;-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; font-size:11pt;&quot;&gt;&lt;br /&gt;&lt;/p&gt; &lt;p align=&quot;justify&quot; style=&quot;-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; font-size:11pt;&quot;&gt;&lt;br /&gt;&lt;/p&gt; &lt;p align=&quot;justify&quot; style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-size:11pt;&quot;&gt;Official web site : &lt;/span&gt;&lt;a href=&quot;www.limereport.ru&quot;&gt;&lt;span style=&quot; font-size:11pt; text-decoration: underline; color:#0000ff;&quot;&gt;www.limereport.ru&lt;/span&gt;&lt;/a&gt;&lt;/p&gt; &lt;p align=&quot;justify&quot; style=&quot;-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; font-size:11pt; text-decoration: underline; color:#0000ff;&quot;&gt;&lt;br /&gt;&lt;/p&gt; &lt;p align=&quot;justify&quot; style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-size:10pt; font-weight:600;&quot;&gt;This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.&lt;/span&gt;&lt;/p&gt; &lt;p align=&quot;justify&quot; style=&quot;-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; font-size:10pt; font-weight:600; color:#000000;&quot;&gt;&lt;br /&gt;&lt;/p&gt; &lt;p align=&quot;justify&quot; style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-size:10pt;&quot;&gt;Copyright 2021 Arin Alexander. All rights reserved.&lt;/span&gt;&lt;/p&gt;&lt;/body&gt;&lt;/html&gt;</source> <translation type="unfinished">&lt;!DOCTYPE HTML PUBLIC &quot;-//W3C//DTD HTML 4.0//EN&quot; &quot;http://www.w3.org/TR/REC-html40/strict.dtd&quot;&gt; &lt;html&gt;&lt;head&gt;&lt;meta name=&quot;qrichtext&quot; content=&quot;1&quot; /&gt;&lt;style type=&quot;text/css&quot;&gt; p, li { white-space: pre-wrap; } &lt;/style&gt;&lt;/head&gt;&lt;body style=&quot; font-family:&apos;Sans Serif&apos;; font-size:9pt; font-weight:400; font-style:normal;&quot;&gt; &lt;p style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;img src=&quot;:/report/images/logo_100.png&quot; height=&quot;100&quot; style=&quot;float: left;&quot; /&gt;&lt;span style=&quot; font-size:12pt; font-weight:600; color:#7faa18;&quot;&gt;Qt&lt;/span&gt;&lt;span style=&quot; font-size:12pt; font-weight:600;&quot;&gt;报表引擎&lt;/span&gt;&lt;/p&gt; &lt;p align=&quot;justify&quot; style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-size:11pt;&quot;&gt;LimeReport - QT框架多平台C++库,帮助开发者给应用增加基于模板生成报表及打印报表功能。&lt;/span&gt;&lt;/p&gt; &lt;p align=&quot;justify&quot; style=&quot;-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; font-size:11pt;&quot;&gt;&lt;br /&gt;&lt;/p&gt; &lt;p align=&quot;justify&quot; style=&quot;-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; font-size:11pt;&quot;&gt;&lt;br /&gt;&lt;/p&gt; &lt;p align=&quot;justify&quot; style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-size:11pt;&quot;&gt;官方网站: &lt;/span&gt;&lt;a href=&quot;www.limereport.ru&quot;&gt;&lt;span style=&quot; font-size:11pt; text-decoration: underline; color:#0000ff;&quot;&gt;www.limereport.ru&lt;/span&gt;&lt;/a&gt;&lt;/p&gt; &lt;p align=&quot;justify&quot; style=&quot;-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; font-size:11pt; text-decoration: underline; color:#0000ff;&quot;&gt;&lt;br /&gt;&lt;/p&gt; &lt;p align=&quot;justify&quot; style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-size:10pt; font-weight:600;&quot;&gt;该库基于提供帮助目的发布,但不提供任何担保,不以任何形式提供其适销性或适用于某一特定用途的默示保证。&lt;/span&gt;&lt;/p&gt; &lt;p align=&quot;justify&quot; style=&quot;-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; font-size:10pt; font-weight:600; color:#000000;&quot;&gt;&lt;br /&gt;&lt;/p&gt; &lt;p align=&quot;justify&quot; style=&quot; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;&quot;&gt;&lt;span style=&quot; font-size:10pt;&quot;&gt;版权 2015 Arin Alexander.所有权利保留.&lt;/span&gt;&lt;/p&gt;&lt;/body&gt;&lt;/html&gt; {3C?} {4.0/?} {3.?} {40/?} {1&quot;?} {9p?} {400;?} {0p?} {0p?} {0p?} {0p?} {0;?} {0p?} {100.?} {100&quot;?} {12p?} {600;?} {12p?} {600;?} {7f?} {18;?} {12p?} {600;?} {0p?} {0p?} {0p?} {0p?} {0;?} {0p?} {11p?} {0p?} {0p?} {0p?} {0p?} {0;?} {0p?} {11p?} {0p?} {0p?} {0p?} {0p?} {0;?} {0p?} {11p?} {0p?} {0p?} {0p?} {0p?} {0;?} {0p?} {11p?} {11p?} {0000f?} {0p?} {0p?} {0p?} {0p?} {0;?} {0p?} {11p?} {0000f?} {0p?} {0p?} {0p?} {0p?} {0;?} {0p?} {10p?} {600;?} {0p?} {0p?} {0p?} {0p?} {0;?} {0p?} {10p?} {600;?} {000000;?} {0p?} {0p?} {0p?} {0p?} {0;?} {0p?} {10p?} {2021 ?}</translation> </message> </context> <context> <name>LimeReport::AlignmentPropItem</name> <message> <source>Left</source> <translation>左</translation> </message> <message> <source>Right</source> <translation>右</translation> </message> <message> <source>Center</source> <translation>居中</translation> </message> <message> <source>Justify</source> <translation>对齐</translation> </message> <message> <source>Top</source> <translation>顶</translation> </message> <message> <source>Botom</source> <translation>底</translation> </message> <message> <source>horizontal</source> <translation>水平</translation> </message> <message> <source>vertical</source> <translation>垂直</translation> </message> </context> <context> <name>LimeReport::BandDesignIntf</name> <message> <source>DataBand</source> <translation>数据带</translation> </message> <message> <source>DataHeaderBand</source> <translation>数据带头</translation> </message> <message> <source>DataFooterBand</source> <translation>数据带脚</translation> </message> <message> <source>ReportHeader</source> <translation>表头</translation> </message> <message> <source>ReportFooter</source> <translation>表脚</translation> </message> <message> <source>PageHeader</source> <translation>页眉</translation> </message> <message> <source>PageFooter</source> <translation>页脚</translation> </message> <message> <source>SubDetailBand</source> <translation>子细节带</translation> </message> <message> <source>SubDetailHeaderBand</source> <translation>子细节带头</translation> </message> <message> <source>SubDetailFooterBand</source> <translation>子细节带脚</translation> </message> <message> <source>GroupBandHeader</source> <translation>组带头</translation> </message> <message> <source>GroupBandFooter</source> <translation>组带脚</translation> </message> <message> <source>TearOffBand</source> <translation>分离带</translation> </message> <message> <source> connected to </source> <translation> 连接到 </translation> </message> <message> <source>Bring to top</source> <translation>置顶</translation> </message> <message> <source>Send to back</source> <translation>置底</translation> </message> <message> <source>Auto height</source> <translation>自动高度</translation> </message> <message> <source>Splittable</source> <translation>可拆分</translation> </message> <message> <source>Keep bottom space</source> <translation>保持底部距离</translation> </message> <message> <source>Cut</source> <translation>剪切</translation> </message> <message> <source>Copy</source> <translation>复制</translation> </message> <message> <source>Print if empty</source> <translation>为空时打印</translation> </message> <message> <source>Keep top space</source> <translation>保持顶部距离</translation> </message> </context> <context> <name>LimeReport::BaseDesignIntf</name> <message> <source>Copy</source> <translation>复制</translation> </message> <message> <source>Cut</source> <translation>剪切</translation> </message> <message> <source>Paste</source> <translation>粘贴</translation> </message> <message> <source>Bring to top</source> <translation>置顶</translation> </message> <message> <source>Send to back</source> <translation>置底</translation> </message> <message> <source>No borders</source> <translation>无边框</translation> </message> <message> <source>All borders</source> <translation>所有边框</translation> </message> <message> <source>Create Horizontal Layout</source> <translation>创建水平布局</translation> </message> <message> <source>Lock item geometry</source> <translation>锁定组件形状</translation> </message> <message> <source>Create Vertical Layout</source> <translation>创建水平布局</translation> </message> <message> <source>Edit borders...</source> <translation type="unfinished"></translation> </message> </context> <context> <name>LimeReport::BorderFrameEditor</name> <message> <source>BorderFrameEditor</source> <translation type="unfinished"></translation> </message> <message> <source>Text</source> <translation type="unfinished"></translation> </message> </context> <context> <name>LimeReport::ConnectionDesc</name> <message> <source>defaultConnection</source> <translation>默认连接</translation> </message> </context> <context> <name>LimeReport::ConnectionDialog</name> <message> <source>Connection</source> <translation>数据连接</translation> </message> <message> <source>Connection Name</source> <translation>连接名称</translation> </message> <message> <source>Use default application connection</source> <translation>使用默认应用连接</translation> </message> <message> <source>Driver</source> <translation>驱动</translation> </message> <message> <source>Server </source> <translation>服务器 </translation> </message> <message> <source>Port</source> <translation>端口</translation> </message> <message> <source>User</source> <translation>用户名</translation> </message> <message> <source>Password</source> <translation>密码</translation> </message> <message> <source>Database</source> <translation>数据库</translation> </message> <message> <source>...</source> <translation></translation> </message> <message> <source>Auto connect</source> <translation>自动连接</translation> </message> <message> <source>Check connection</source> <translation>检查连接</translation> </message> <message> <source>Cancel</source> <translation>取消</translation> </message> <message> <source>Ok</source> <translation>确定</translation> </message> <message> <source>Error</source> <translation>错误</translation> </message> <message> <source>Connection succsesfully established!</source> <translation>连接成功建立!</translation> </message> <message> <source>Connection Name is empty</source> <translation>连接名为空</translation> </message> <message> <source>Connection with name </source> <translation>连接 </translation> </message> <message> <source> already exists! </source> <translation> 已经存在! </translation> </message> <message> <source>defaultConnection</source> <translation>默认连接</translation> </message> <message> <source>Don&apos;t keep credentials in lrxml</source> <translation>不在lrxml文件中保存凭证</translation> </message> </context> <context> <name>LimeReport::DataBand</name> <message> <source>Data</source> <translation>数据带</translation> </message> <message> <source>Use alternate background color</source> <translation>使用交替背景色</translation> </message> <message> <source>Keep footer together</source> <translation>保持页脚</translation> </message> <message> <source>Keep subdetail together</source> <translation>保持子细节脚</translation> </message> <message> <source>Slice last row</source> <translation>分割末行</translation> </message> <message> <source>Start from new page</source> <translation>从新页开始</translation> </message> <message> <source>Start new page</source> <translation>开始新页</translation> </message> </context> <context> <name>LimeReport::DataBrowser</name> <message> <source>Datasources</source> <translation>数据源</translation> </message> <message> <source>Add database connection</source> <translation>新建数据库连接</translation> </message> <message> <source>...</source> <translation></translation> </message> <message> <source>Add new datasource</source> <translation>新建数据源</translation> </message> <message> <source>View data</source> <translation>查看数据</translation> </message> <message> <source>Change datasource</source> <translation>编辑数据源</translation> </message> <message> <source>Delete datasource</source> <translation>删除数据源</translation> </message> <message> <source>Show error</source> <translation>显示错误</translation> </message> <message> <source>Variables</source> <translation>变量</translation> </message> <message> <source>Add new variable</source> <translation>新增变量</translation> </message> <message> <source>Edit variable</source> <translation>编辑变量</translation> </message> <message> <source>Delete variable</source> <translation>删除变量</translation> </message> <message> <source>Grab variable</source> <translation>取得变量</translation> </message> <message> <source>Attention</source> <translation>注意</translation> </message> <message> <source>Do you really want to delete &quot;%1&quot; connection?</source> <translation>是否确认删除&quot;%1&quot;连接?</translation> </message> <message> <source>Report variables</source> <translation>报表变量</translation> </message> <message> <source>System variables</source> <translation>系统变量</translation> </message> <message> <source>External variables</source> <translation>外部变量</translation> </message> <message> <source>Do you really want to delete &quot;%1&quot; datasource?</source> <translation>是否确认删除&quot;%1&quot;数据源?</translation> </message> <message> <source>Do you really want to delete variable &quot;%1&quot;?</source> <translation>是否确认删除变量&quot;%1&quot;?</translation> </message> <message> <source>Error</source> <translation>错误</translation> </message> </context> <context> <name>LimeReport::DataFooterBand</name> <message> <source>DataFooter</source> <translation>数据带脚</translation> </message> <message> <source>Print always</source> <translation>始终打印</translation> </message> </context> <context> <name>LimeReport::DataHeaderBand</name> <message> <source>DataHeader</source> <translation>数据带头</translation> </message> <message> <source>Reprint on each page</source> <translation>重新打印每页</translation> </message> <message> <source>Repeat on each row</source> <translation>每行重复</translation> </message> <message> <source>Print always</source> <translation>始终打印</translation> </message> </context> <context> <name>LimeReport::DataSourceManager</name> <message> <source>Connection &quot;%1&quot; is not open</source> <translation>连接&quot;%1&quot;没有打开</translation> </message> <message> <source>Variable &quot;%1&quot; not found!</source> <translation>未找到变量&quot;%1&quot;!</translation> </message> <message> <source>Datasource &quot;%1&quot; not found!</source> <translation>未找到数据源&quot;%1&quot;!</translation> </message> <message> <source>Connection with name &quot;%1&quot; already exists!</source> <translation>连接 &quot;%1&quot; 已存在!</translation> </message> <message> <source>Datasource with name &quot;%1&quot; already exists!</source> <translation>数据源 &quot;%1&quot; 已存在!</translation> </message> <message> <source>Database &quot;%1&quot; not found</source> <translation>未找到数据库 &quot;%1&quot;</translation> </message> <message> <source>invalid connection</source> <translation>无效连接</translation> </message> <message> <source>Unknown parameter &quot;%1&quot; for variable &quot;%2&quot; found!</source> <translation>变量&quot;%2&quot;参数&quot;%1&quot;未知!</translation> </message> </context> <context> <name>LimeReport::DataSourceModel</name> <message> <source>Datasources</source> <translation>数据源</translation> </message> <message> <source>Variables</source> <translation>变量</translation> </message> <message> <source>External variables</source> <translation>外部变量</translation> </message> </context> <context> <name>LimeReport::DialogDesignerManager</name> <message> <source>Edit Widgets</source> <translation>编辑组件</translation> </message> <message> <source>Widget Box</source> <translation>组件盒</translation> </message> <message> <source>Object Inspector</source> <translation>对象观察器</translation> </message> <message> <source>Property Editor</source> <translation>属性编辑器</translation> </message> <message> <source>Signals &amp;&amp; Slots Editor</source> <translation>信号槽编辑器</translation> </message> <message> <source>Resource Editor</source> <translation>资源编辑器</translation> </message> <message> <source>Action Editor</source> <translation>动作编辑器</translation> </message> </context> <context> <name>LimeReport::EnumPropItem</name> <message> <source>Default</source> <translation>默认</translation> </message> <message> <source>Portrait</source> <translation>纵向</translation> </message> <message> <source>Landscape</source> <translation>横向</translation> </message> <message> <source>NoneAutoWidth</source> <translation>无自动宽度</translation> </message> <message> <source>MaxWordLength</source> <translation>最大词长</translation> </message> <message> <source>MaxStringLength</source> <translation>最大字符串长</translation> </message> <message> <source>TransparentMode</source> <translation>透明模式</translation> </message> <message> <source>OpaqueMode</source> <translation>不透明模式</translation> </message> <message> <source>Angle0</source> <translation>0度</translation> </message> <message> <source>Angle90</source> <translation>90度</translation> </message> <message> <source>Angle180</source> <translation>180度</translation> </message> <message> <source>Angle270</source> <translation>270度</translation> </message> <message> <source>Angle45</source> <translation>45度</translation> </message> <message> <source>Angle315</source> <translation>315度</translation> </message> <message> <source>DateTime</source> <translation>日期时间</translation> </message> <message> <source>Double</source> <translation></translation> </message> <message> <source>NoBrush</source> <translation>无</translation> </message> <message> <source>SolidPattern</source> <translation>填充</translation> </message> <message> <source>Dense1Pattern</source> <translation>密集1</translation> </message> <message> <source>Dense2Pattern</source> <translation>密集2</translation> </message> <message> <source>Dense3Pattern</source> <translation>密集3</translation> </message> <message> <source>Dense4Pattern</source> <translation>密集4</translation> </message> <message> <source>Dense5Pattern</source> <translation>密集5</translation> </message> <message> <source>Dense6Pattern</source> <translation>密集6</translation> </message> <message> <source>Dense7Pattern</source> <translation>密集7</translation> </message> <message> <source>HorPattern</source> <translation>横条纹</translation> </message> <message> <source>VerPattern</source> <translation>竖条纹</translation> </message> <message> <source>CrossPattern</source> <translation>交叉条纹</translation> </message> <message> <source>BDiagPattern</source> <translation>斜条纹</translation> </message> <message> <source>FDiagPattern</source> <translation>反斜条纹</translation> </message> <message> <source>LeftToRight</source> <translation>从左到右</translation> </message> <message> <source>RightToLeft</source> <translation>从右到左</translation> </message> <message> <source>LayoutDirectionAuto</source> <translation>自动布局方向</translation> </message> <message> <source>LeftItemAlign</source> <translation>左对齐</translation> </message> <message> <source>RightItemAlign</source> <translation>右对齐</translation> </message> <message> <source>CenterItemAlign</source> <translation>居中对齐</translation> </message> <message> <source>ParentWidthItemAlign</source> <translation>上层宽度对齐</translation> </message> <message> <source>DesignedItemAlign</source> <translation>保持设计对齐</translation> </message> <message> <source>HorizontalLine</source> <translation>水平线</translation> </message> <message> <source>VerticalLine</source> <translation>垂直线</translation> </message> <message> <source>Ellipse</source> <translation>椭圆</translation> </message> <message> <source>Rectangle</source> <translation>矩形</translation> </message> <message> <source>Page</source> <translation>页</translation> </message> <message> <source>Band</source> <translation>带</translation> </message> <message> <source>Horizontal</source> <translation>水平</translation> </message> <message> <source>Vertical</source> <translation>垂直</translation> </message> <message> <source>VerticalUniform</source> <translation>均匀垂直</translation> </message> <message> <source>Pie</source> <translation>饼状图</translation> </message> <message> <source>VerticalBar</source> <translation>柱状图</translation> </message> <message> <source>HorizontalBar</source> <translation>条形图</translation> </message> <message> <source>LegendAlignTop</source> <translation>图例靠上对齐</translation> </message> <message> <source>LegendAlignCenter</source> <translation>图例居中</translation> </message> <message> <source>LegendAlignBottom</source> <translation>图例靠下对齐</translation> </message> <message> <source>TitleAlignLeft</source> <translation>标题左对齐</translation> </message> <message> <source>TitleAlignRight</source> <translation>标题右对齐</translation> </message> <message> <source>TitleAlignCenter</source> <translation>标题居中</translation> </message> <message> <source>Layout</source> <translation>布局</translation> </message> <message> <source>Table</source> <translation>表</translation> </message> <message> <source>Millimeters</source> <translation>毫米</translation> </message> <message> <source>Inches</source> <translation>英寸</translation> </message> <message> <source>Scale</source> <translation>比例</translation> </message> <message> <source>Split</source> <translation>划分</translation> </message> </context> <context> <name>LimeReport::FlagsPropItem</name> <message> <source>NoLine</source> <translation>无边框</translation> </message> <message> <source>TopLine</source> <translation>顶边框</translation> </message> <message> <source>BottomLine</source> <translation>底边框</translation> </message> <message> <source>LeftLine</source> <translation>左边框</translation> </message> <message> <source>RightLine</source> <translation>右边框</translation> </message> <message> <source>AllLines</source> <translation>所有边框</translation> </message> </context> <context> <name>LimeReport::FontEditorWidget</name> <message> <source>Font bold</source> <translation>粗体</translation> </message> <message> <source>Font Italic</source> <translation>斜体</translation> </message> <message> <source>Font Underline</source> <translation>下划线</translation> </message> </context> <context> <name>LimeReport::FontPropItem</name> <message> <source>bold</source> <translation>粗体</translation> </message> <message> <source>italic</source> <translation>斜体</translation> </message> <message> <source>underline</source> <translation>下划线</translation> </message> <message> <source>size</source> <translation>字号</translation> </message> <message> <source>family</source> <translation>系列</translation> </message> </context> <context> <name>LimeReport::GroupBandFooter</name> <message> <source>GroupFooter</source> <translation>组带脚</translation> </message> </context> <context> <name>LimeReport::GroupBandHeader</name> <message> <source>GroupHeader</source> <translation>组带头</translation> </message> <message> <source>Group field not found</source> <translation>未找到组字段</translation> </message> <message> <source>Datasource &quot;%1&quot; not found!</source> <translation>未找到数据源 &quot;%1&quot;!</translation> </message> </context> <context> <name>LimeReport::GroupFunction</name> <message> <source>Field &quot;%1&quot; not found</source> <translation>未找到字段 &quot;%1&quot;</translation> </message> <message> <source>Variable &quot;%1&quot; not found</source> <translation>未找到变量 &quot;%1&quot;</translation> </message> <message> <source>Wrong script syntax &quot;%1&quot; </source> <translation>脚本语法错误 &quot;%1&quot; </translation> </message> <message> <source>Item &quot;%1&quot; not found</source> <translation>未找到目标项 &quot;%1&quot;</translation> </message> </context> <context> <name>LimeReport::ImageItem</name> <message> <source>Image</source> <translation>图像</translation> </message> <message> <source>Watermark</source> <translation>水印</translation> </message> <message> <source>Ext.</source> <translation>扩展名.</translation> </message> <message> <source>Edit</source> <translation>编辑</translation> </message> <message> <source>Images (*.gif *.icns *.ico *.jpeg *.tga *.tiff *.wbmp *.webp *.png *.jpg *.bmp);;All(*.*)</source> <translation type="unfinished"></translation> </message> </context> <context> <name>LimeReport::ItemLocationPropItem</name> <message> <source>Band</source> <translation>带</translation> </message> <message> <source>Page</source> <translation>页</translation> </message> </context> <context> <name>LimeReport::ItemsAlignmentEditorWidget</name> <message> <source>Bring to top</source> <translation>置顶</translation> </message> <message> <source>Send to back</source> <translation>置底</translation> </message> <message> <source>Align to left</source> <translation>左对齐</translation> </message> <message> <source>Align to right</source> <translation>右对齐</translation> </message> <message> <source>Align to vertical center</source> <translation>居中对齐</translation> </message> <message> <source>Align to top</source> <translation>顶部对齐</translation> </message> <message> <source>Align to bottom</source> <translation>底部对齐</translation> </message> <message> <source>Align to horizontal center</source> <translation>水平居中</translation> </message> <message> <source>Set same height</source> <translation>相同高度</translation> </message> <message> <source>Set same width</source> <translation>相同宽度</translation> </message> </context> <context> <name>LimeReport::ItemsBordersEditorWidget</name> <message> <source>Top line</source> <translation>顶边框</translation> </message> <message> <source>Bottom line</source> <translation>底边框</translation> </message> <message> <source>Left line</source> <translation>左边框</translation> </message> <message> <source>Right line</source> <translation>右边框</translation> </message> <message> <source>No borders</source> <translation>无边框</translation> </message> <message> <source>All borders</source> <translation>所有边框</translation> </message> <message> <source>Edit border</source> <translation type="unfinished"></translation> </message> </context> <context> <name>LimeReport::MasterDetailProxyModel</name> <message> <source>Field: &quot;%1&quot; not found in &quot;%2&quot; child datasource</source> <translation>从数据源 &quot;%2&quot; 中未找到字段: &quot;%1&quot;</translation> </message> <message> <source>Field: &quot;%1&quot; not found in &quot;%2&quot; master datasource</source> <translation>主数据源 &quot;%2&quot; 中未找到字段: &quot;%1&quot;</translation> </message> </context> <context> <name>LimeReport::ModelToDataSource</name> <message> <source>model is destroyed</source> <translation>数据模型已销毁</translation> </message> </context> <context> <name>LimeReport::ObjectBrowser</name> <message> <source>Objects</source> <translation>对象</translation> </message> </context> <context> <name>LimeReport::ObjectInspectorWidget</name> <message> <source>Clear</source> <translation>清除</translation> </message> <message> <source>Filter</source> <translation>筛选</translation> </message> <message> <source>Translate properties</source> <translation>翻译属性</translation> </message> </context> <context> <name>LimeReport::PDFExporter</name> <message> <source>Export to PDF</source> <translation>导出为PDF文件</translation> </message> </context> <context> <name>LimeReport::PageEditor</name> <message> <source>Page setup</source> <translation type="unfinished"></translation> </message> <message> <source>Paper</source> <translation type="unfinished"></translation> </message> <message> <source>Format</source> <translation type="unfinished">格式</translation> </message> <message> <source>Dimension</source> <translation type="unfinished"></translation> </message> <message> <source>Width:</source> <translation type="unfinished"></translation> </message> <message> <source> mm</source> <translation type="unfinished"></translation> </message> <message> <source>Height:</source> <translation type="unfinished"></translation> </message> <message> <source>Orientation</source> <translation type="unfinished"></translation> </message> <message> <source>Portrait</source> <translation type="unfinished">纵向</translation> </message> <message> <source>Landscape</source> <translation type="unfinished">横向</translation> </message> <message> <source>Margins</source> <translation type="unfinished"></translation> </message> <message> <source>Bottom:</source> <translation type="unfinished"></translation> </message> <message> <source>Top:</source> <translation type="unfinished"></translation> </message> <message> <source>Right:</source> <translation type="unfinished"></translation> </message> <message> <source>Left:</source> <translation type="unfinished"></translation> </message> <message> <source>Drop printer margins</source> <translation type="unfinished"></translation> </message> <message> <source>Other</source> <translation type="unfinished"></translation> </message> <message> <source>Height options</source> <translation type="unfinished"></translation> </message> <message> <source>Endless Height</source> <translation type="unfinished"></translation> </message> <message> <source>Extended Height:</source> <translation type="unfinished"></translation> </message> <message> <source>Full page</source> <translation type="unfinished">全页</translation> </message> </context> <context> <name>LimeReport::PageFooter</name> <message> <source>Page Footer</source> <translation>页脚</translation> </message> <message> <source>Print on first page</source> <translation>首页时打印</translation> </message> <message> <source>Print on last page</source> <translation>末页时打印</translation> </message> </context> <context> <name>LimeReport::PageHeader</name> <message> <source>Page Header</source> <translation>页眉</translation> </message> </context> <context> <name>LimeReport::PageItemDesignIntf</name> <message> <source>Paste</source> <translation>粘贴</translation> </message> <message> <source>Page is TOC</source> <translation>目录页面</translation> </message> <message> <source>Reset page number</source> <translation>重置页数</translation> </message> <message> <source>Full page</source> <translation>全页</translation> </message> <message> <source>Set page size to printer</source> <translation>适合打印机纸张大小</translation> </message> <message> <source>Mix with prior page</source> <translation type="unfinished"></translation> </message> <message> <source>Edit</source> <translation type="unfinished">编辑</translation> </message> </context> <context> <name>LimeReport::PreviewReportWidget</name> <message> <source>Form</source> <translation>表格</translation> </message> <message> <source>Report file name</source> <translation>报表文件名</translation> </message> <message> <source>%1 file name</source> <translation>文件名 %1</translation> </message> </context> <context> <name>LimeReport::PreviewReportWindow</name> <message> <source>Preview</source> <translation>预览</translation> </message> <message> <source>View</source> <translation>查看</translation> </message> <message> <source>Report</source> <translation>报表</translation> </message> <message> <source>Print</source> <translation>打印</translation> </message> <message> <source>Ctrl+P</source> <translation></translation> </message> <message> <source>Zoom In</source> <translation>放大</translation> </message> <message> <source>Zoom Out</source> <translation>缩小</translation> </message> <message> <source>Prior Page</source> <translation>上一页</translation> </message> <message> <source>Next Page</source> <translation>下一页</translation> </message> <message> <source>Close Preview</source> <translation>关闭预览</translation> </message> <message> <source>Esc</source> <translation></translation> </message> <message> <source>Edit Mode</source> <translation>编辑模式</translation> </message> <message> <source>Save to file</source> <translation>保存</translation> </message> <message> <source>Show errors</source> <translation>显示错误</translation> </message> <message> <source>First Page</source> <translation>首页</translation> </message> <message> <source>First page</source> <translation>首页</translation> </message> <message> <source>Last Page</source> <translation>末页</translation> </message> <message> <source>Print To PDF</source> <translation>打印到PDF文件</translation> </message> <message> <source>Fit page width</source> <translation>适合页宽</translation> </message> <message> <source>Fit page</source> <translation>适合页高</translation> </message> <message> <source>One to one</source> <translation>原始尺寸</translation> </message> <message> <source>Show Toolbar</source> <translation>显示工具栏</translation> </message> <message> <source>Show toolbar</source> <translation>显示工具栏</translation> </message> <message> <source>Page: </source> <translation>页数: </translation> </message> <message> <source>Font</source> <translation>字体</translation> </message> <message> <source>Text align</source> <translation>文本对齐</translation> </message> <message> <source> of %1</source> <translation> / %1</translation> </message> <message> <source>InsertTextItem</source> <translation>插入文本组件</translation> </message> <message> <source>Add new TextItem</source> <translation>新增文本组件</translation> </message> <message> <source>Selection Mode</source> <translation>选择模式</translation> </message> <message> <source>Delete Item</source> <translation>删除组件</translation> </message> <message> <source>Del</source> <translation>删除</translation> </message> <message> <source>MainToolBar</source> <translation>工具条</translation> </message> <message> <source>EditModeTools</source> <translation>编辑工具</translation> </message> <message> <source>Printing</source> <translation>正在打印</translation> </message> <message> <source>Attention</source> <translation>注意</translation> </message> <message> <source>The printing is in process</source> <translation>打印正在处理</translation> </message> </context> <context> <name>LimeReport::ProxyHolder</name> <message> <source>Datasource has been invalidated</source> <translation>数据源已失效</translation> </message> </context> <context> <name>LimeReport::QObjectPropertyModel</name> <message> <source>leftMargin</source> <translation>左边距</translation> </message> <message> <source>rightMargin</source> <translation>右边距</translation> </message> <message> <source>topMargin</source> <translation>顶边距</translation> </message> <message> <source>bottomMargin</source> <translation>底边距</translation> </message> <message> <source>objectName</source> <translation>对象名称</translation> </message> <message> <source>borders</source> <translation>边框</translation> </message> <message> <source>geometry</source> <translation>形状</translation> </message> <message> <source>itemAlign</source> <translation>对齐方式</translation> </message> <message> <source>pageOrientation</source> <translation>页面布局</translation> </message> <message> <source>pageSize</source> <translation>页面规格</translation> </message> <message> <source>TopLine</source> <translation>顶边框</translation> </message> <message> <source>BottomLine</source> <translation>底边框</translation> </message> <message> <source>LeftLine</source> <translation>左边框</translation> </message> <message> <source>RightLine</source> <translation>右边框</translation> </message> <message> <source>reprintOnEachPage</source> <translation>重新打印每页</translation> </message> <message> <source>borderLineSize</source> <translation>边框线宽</translation> </message> <message> <source>autoHeight</source> <translation>自动高度</translation> </message> <message> <source>backgroundColor</source> <translation>背景颜色</translation> </message> <message> <source>columnCount</source> <translation>列数</translation> </message> <message> <source>columnsFillDirection</source> <translation>列填充方向</translation> </message> <message> <source>datasource</source> <translation>数据源</translation> </message> <message> <source>keepBottomSpace</source> <translation>保持底部空间</translation> </message> <message> <source>keepFooterTogether</source> <translation>保持页脚</translation> </message> <message> <source>keepSubdetailTogether</source> <translation>保持子细节脚</translation> </message> <message> <source>printIfEmpty</source> <translation>为空时打印</translation> </message> <message> <source>sliceLastRow</source> <translation>分割末行</translation> </message> <message> <source>splittable</source> <translation>可拆分</translation> </message> <message> <source>alignment</source> <translation>对齐</translation> </message> <message> <source>angle</source> <translation>角度</translation> </message> <message> <source>autoWidth</source> <translation>自动宽度</translation> </message> <message> <source>backgroundMode</source> <translation>背景模式</translation> </message> <message> <source>backgroundOpacity</source> <translation>背景不透明度</translation> </message> <message> <source>content</source> <translation>内容</translation> </message> <message> <source>font</source> <translation>字体</translation> </message> <message> <source>fontColor</source> <translation>字体颜色</translation> </message> <message> <source>foregroundOpacity</source> <translation>背景不透明度</translation> </message> <message> <source>itemLocation</source> <translation>组件位置</translation> </message> <message> <source>margin</source> <translation>边距</translation> </message> <message> <source>stretchToMaxHeight</source> <translation>拉伸到最大高度</translation> </message> <message> <source>trimValue</source> <translation>裁剪值</translation> </message> <message> <source>lineWidth</source> <translation>线宽</translation> </message> <message> <source>opacity</source> <translation>不透明度</translation> </message> <message> <source>penStyle</source> <translation>画笔样式</translation> </message> <message> <source>shape</source> <translation>形状</translation> </message> <message> <source>shapeBrush</source> <translation>画刷</translation> </message> <message> <source>shapeBrushColor</source> <translation>画刷颜色</translation> </message> <message> <source>gridStep</source> <translation>栅格长</translation> </message> <message> <source>fullPage</source> <translation>全页</translation> </message> <message> <source>oldPrintMode</source> <translation>旧打印模式</translation> </message> <message> <source>borderColor</source> <translation>边框颜色</translation> </message> <message> <source>resetPageNumber</source> <translation>重置页号</translation> </message> <message> <source>alternateBackgroundColor</source> <translation>变更背景色</translation> </message> <message> <source>backgroundBrushStyle</source> <translation>背景画刷样式</translation> </message> <message> <source>startFromNewPage</source> <translation>从新页开始</translation> </message> <message> <source>startNewPage</source> <translation>开始新页</translation> </message> <message> <source>adaptFontToSize</source> <translation>字体适应字号</translation> </message> <message> <source>allowHTML</source> <translation>允许HTML</translation> </message> <message> <source>allowHTMLInFields</source> <translation>允许字段HTML</translation> </message> <message> <source>followTo</source> <translation>跟随</translation> </message> <message> <source>format</source> <translation>格式</translation> </message> <message> <source>lineSpacing</source> <translation>线距</translation> </message> <message> <source>textIndent</source> <translation>文本缩进</translation> </message> <message> <source>textLayoutDirection</source> <translation>文本布局方向</translation> </message> <message> <source>underlineLineSize</source> <translation>下划线宽</translation> </message> <message> <source>underlines</source> <translation>下划线</translation> </message> <message> <source>valueType</source> <translation>值类型</translation> </message> <message> <source>securityLevel</source> <translation>安全级别</translation> </message> <message> <source>testValue</source> <translation>测试值</translation> </message> <message> <source>whitespace</source> <translation>空格</translation> </message> <message> <source>resourcePath</source> <translation>资源路径</translation> </message> <message> <source>scale</source> <translation>比例</translation> </message> <message> <source>cornerRadius</source> <translation>圆角半径</translation> </message> <message> <source>shapeColor</source> <translation>颜色</translation> </message> <message> <source>layoutType</source> <translation>布局类型</translation> </message> <message> <source>barcodeType</source> <translation>条码类型</translation> </message> <message> <source>barcodeWidth</source> <translation>条码宽度</translation> </message> <message> <source>foregroundColor</source> <translation>颜色</translation> </message> <message> <source>inputMode</source> <translation>输入法</translation> </message> <message> <source>pdf417CodeWords</source> <translation>PDF417码</translation> </message> <message> <source>autoSize</source> <translation>自动大小</translation> </message> <message> <source>center</source> <translation>居中</translation> </message> <message> <source>field</source> <translation>字段</translation> </message> <message> <source>image</source> <translation>图像</translation> </message> <message> <source>keepAspectRatio</source> <translation>保持比例</translation> </message> <message> <source>columnsCount</source> <translation>列数</translation> </message> <message> <source>useAlternateBackgroundColor</source> <translation>使用变更背景色</translation> </message> <message> <source>printBeforePageHeader</source> <translation>页眉前打印</translation> </message> <message> <source>maxScalePercent</source> <translation>最大百分比</translation> </message> <message> <source>printOnFirstPage</source> <translation>打印到首页</translation> </message> <message> <source>printOnLastPage</source> <translation>打印到尾页</translation> </message> <message> <source>printAlways</source> <translation>始终打印</translation> </message> <message> <source>repeatOnEachRow</source> <translation>每行重复</translation> </message> <message> <source>condition</source> <translation>条件</translation> </message> <message> <source>groupFieldName</source> <translation>组字段名</translation> </message> <message> <source>keepGroupTogether</source> <translation>保持组脚</translation> </message> <message> <source>Property Name</source> <translation>属性名</translation> </message> <message> <source>Property value</source> <translation>属性值</translation> </message> <message> <source>Warning</source> <translation>警告</translation> </message> <message> <source>endlessHeight</source> <translation>无限高度</translation> </message> <message> <source>extendedHeight</source> <translation>扩展高度</translation> </message> <message> <source>isExtendedInDesignMode</source> <translation>设计模式扩展</translation> </message> <message> <source>pageIsTOC</source> <translation>目录页面</translation> </message> <message> <source>setPageSizeToPrinter</source> <translation>适合打印机纸张</translation> </message> <message> <source>fillInSecondPass</source> <translation>二次填充</translation> </message> <message> <source>chartTitle</source> <translation>图表标题</translation> </message> <message> <source>chartType</source> <translation>图表类型</translation> </message> <message> <source>drawLegendBorder</source> <translation>显示图例边框</translation> </message> <message> <source>labelsField</source> <translation>标签字段</translation> </message> <message> <source>legendAlign</source> <translation>图例对齐</translation> </message> <message> <source>series</source> <translation>数据系列</translation> </message> <message> <source>titleAlign</source> <translation>标题对齐</translation> </message> <message> <source>watermark</source> <translation>水印</translation> </message> <message> <source>keepTopSpace</source> <translation>保持顶部距离</translation> </message> <message> <source>printable</source> <translation>可打印</translation> </message> <message> <source>variable</source> <translation>变量</translation> </message> <message> <source>replaceCRwithBR</source> <translation>替换回车换行</translation> </message> <message> <source>hideIfEmpty</source> <translation>为空时打印</translation> </message> <message> <source>hideEmptyItems</source> <translation>隐藏空组件</translation> </message> <message> <source>useExternalPainter</source> <translation>使用外部绘图</translation> </message> <message> <source>layoutSpacing</source> <translation>布局间距</translation> </message> <message> <source>printerName</source> <translation>打印机名称</translation> </message> <message> <source>fontLetterSpacing</source> <translation>字母间距</translation> </message> <message> <source>hideText</source> <translation>隐藏文本</translation> </message> <message> <source>option3</source> <translation>选项3</translation> </message> <message> <source>units</source> <translation>单位</translation> </message> <message> <source>geometryLocked</source> <translation>形状锁定</translation> </message> <message> <source>printBehavior</source> <translation>打印行为</translation> </message> <message> <source>shiftItems</source> <translation>偏移组件</translation> </message> <message> <source>showLegend</source> <translation type="unfinished"></translation> </message> <message> <source>removeGap</source> <translation type="unfinished"></translation> </message> <message> <source>xAxisField</source> <translation type="unfinished"></translation> </message> <message> <source>seriesLineWidth</source> <translation type="unfinished"></translation> </message> <message> <source>drawPoints</source> <translation type="unfinished"></translation> </message> <message> <source>dropPrinterMargins</source> <translation type="unfinished"></translation> </message> <message> <source>notPrintIfEmpty</source> <translation type="unfinished"></translation> </message> <message> <source>gridChartLines</source> <translation type="unfinished"></translation> </message> <message> <source>horizontalAxisOnTop</source> <translation type="unfinished"></translation> </message> <message> <source>mixWithPriorPage</source> <translation type="unfinished"></translation> </message> </context> <context> <name>LimeReport::RectPropItem</name> <message> <source>width</source> <translation>宽</translation> </message> <message> <source>height</source> <translation>高</translation> </message> </context> <context> <name>LimeReport::RectUnitPropItem</name> <message> <source>width</source> <translation>宽</translation> </message> <message> <source>height</source> <translation>高</translation> </message> </context> <context> <name>LimeReport::ReportDesignWidget</name> <message> <source>Script</source> <translation>脚本</translation> </message> <message> <source>Report file name</source> <translation>报表文件名</translation> </message> <message> <source>Error</source> <translation>错误</translation> </message> <message> <source>Wrong file format</source> <translation>文件格式错误</translation> </message> <message> <source>Translations</source> <translation>翻译</translation> </message> </context> <context> <name>LimeReport::ReportDesignWindow</name> <message> <source>New Report</source> <translation>新建报表</translation> </message> <message> <source>New Report Page</source> <translation>新建页</translation> </message> <message> <source>Delete Report Page</source> <translation>删除页</translation> </message> <message> <source>Edit Mode</source> <translation>编辑模式</translation> </message> <message> <source>Undo</source> <translation>撤销</translation> </message> <message> <source>Redo</source> <translation>重做</translation> </message> <message> <source>Copy</source> <translation>复制</translation> </message> <message> <source>Paste</source> <translation>粘贴</translation> </message> <message> <source>Cut</source> <translation>剪切</translation> </message> <message> <source>Settings</source> <translation>设置</translation> </message> <message> <source>Use grid</source> <translation>使用栅格</translation> </message> <message> <source>Use magnet</source> <translation>使用磁力</translation> </message> <message> <source>Text Item</source> <translation>文本组件</translation> </message> <message> <source>Save Report</source> <translation>保存报表</translation> </message> <message> <source>Save Report As</source> <translation>另存为</translation> </message> <message> <source>Load Report</source> <translation>读取报表</translation> </message> <message> <source>Delete item</source> <translation>删除组件</translation> </message> <message> <source>Zoom In</source> <translation>放大</translation> </message> <message> <source>Zoom Out</source> <translation>缩小</translation> </message> <message> <source>Render Report</source> <translation>生成报表</translation> </message> <message> <source>Edit layouts mode</source> <translation>编辑布局模式</translation> </message> <message> <source>Horizontal layout</source> <translation>水平布局</translation> </message> <message> <source>About</source> <translation>关于</translation> </message> <message> <source>Hide left panel | Alt+L</source> <translation>隐藏左面板 | Alt+L</translation> </message> <message> <source>Hide right panel | Alt+R</source> <translation>隐藏右面板 | Alt+R</translation> </message> <message> <source>Report Tools</source> <translation>报表工具</translation> </message> <message> <source>Main Tools</source> <translation>工具</translation> </message> <message> <source>Font</source> <translation>字体</translation> </message> <message> <source>Text alignment</source> <translation>文本对齐</translation> </message> <message> <source>Items alignment</source> <translation>组件对齐</translation> </message> <message> <source>Borders</source> <translation>边框</translation> </message> <message> <source>Report bands</source> <translation>报表带</translation> </message> <message> <source>Report Header</source> <translation>表头</translation> </message> <message> <source>Report Footer</source> <translation>表脚</translation> </message> <message> <source>Page Header</source> <translation>页眉</translation> </message> <message> <source>Page Footer</source> <translation>页脚</translation> </message> <message> <source>Data</source> <translation>数据带</translation> </message> <message> <source>Data Header</source> <translation>数据带头</translation> </message> <message> <source>Data Footer</source> <translation>数据带脚</translation> </message> <message> <source>SubDetail</source> <translation>子细节带</translation> </message> <message> <source>SubDetailHeader</source> <translation>子细节带头</translation> </message> <message> <source>SubDetailFooter</source> <translation>子细节带脚</translation> </message> <message> <source>GroupHeader</source> <translation>组带头</translation> </message> <message> <source>GroupFooter</source> <translation>组带脚</translation> </message> <message> <source>Tear-off Band</source> <translation>分离带</translation> </message> <message> <source>File</source> <translation>文件</translation> </message> <message> <source>Edit</source> <translation>编辑</translation> </message> <message> <source>Info</source> <translation>信息</translation> </message> <message> <source>Recent Files</source> <translation>最近打开文件</translation> </message> <message> <source>Object Inspector</source> <translation>对象观察器</translation> </message> <message> <source>Report structure</source> <translation>报表结构</translation> </message> <message> <source>Data Browser</source> <translation>数据浏览器</translation> </message> <message> <source>Script Browser</source> <translation>脚本浏览器</translation> </message> <message> <source>Report has been modified! Do you want save the report?</source> <translation>报表已修改! 是否保存?</translation> </message> <message> <source>Report file name</source> <translation>报表文件名</translation> </message> <message> <source>Warning</source> <translation>警告</translation> </message> <message> <source>File &quot;%1&quot; not found!</source> <translation>未找到文件 &quot;%1&quot;!</translation> </message> <message> <source>Delete dialog</source> <translation>删除对话框</translation> </message> <message> <source>Add new dialog</source> <translation>新增对话框</translation> </message> <message> <source>Widget Box</source> <translation>组件盒</translation> </message> <message> <source>Property Editor</source> <translation>属性编辑器</translation> </message> <message> <source>Action Editor</source> <translation>动作编辑器</translation> </message> <message> <source>Resource Editor</source> <translation>资源编辑器</translation> </message> <message> <source>SignalSlot Editor</source> <translation>信号槽编辑器</translation> </message> <message> <source>Dialog Designer Tools</source> <translation>对话框设计工具</translation> </message> <message> <source>Vertical layout</source> <translation>水平布局</translation> </message> <message> <source>Lock selected items</source> <translation>锁定选定组件</translation> </message> <message> <source>Unlock selected items</source> <translation>解锁选定组件</translation> </message> <message> <source>Select one level items</source> <translation>选择一级组件</translation> </message> <message> <source>Rendered %1 pages</source> <translation>已处理%1页</translation> </message> <message> <source>Cancel report rendering</source> <translation>取消打印</translation> </message> <message> <source>Attention</source> <translation>注意</translation> </message> <message> <source>The rendering is in process</source> <translation>正在处理中</translation> </message> </context> <context> <name>LimeReport::ReportEnginePrivate</name> <message> <source>Preview</source> <translation>预览</translation> </message> <message> <source>Error</source> <translation>错误</translation> </message> <message> <source>Report File Change</source> <translation>报表文件改变</translation> </message> <message> <source>The report file &quot;%1&quot; has changed names or been deleted. This preview is no longer valid.</source> <translation>报表文件 &quot;%1&quot; 重命名或删除。 预览已无效。</translation> </message> <message> <source>Designer not found!</source> <translation>设计器未找到!</translation> </message> <message> <source>Language %1 already exists</source> <translation>语言 %1 已存在</translation> </message> <message> <source>%1 file name</source> <translation>文件名 %1</translation> </message> </context> <context> <name>LimeReport::ReportFooter</name> <message> <source>Report Footer</source> <translation>表脚</translation> </message> </context> <context> <name>LimeReport::ReportHeader</name> <message> <source>Report Header</source> <translation>表头</translation> </message> </context> <context> <name>LimeReport::ReportRender</name> <message> <source>Error</source> <translation>错误</translation> </message> <message> <source>page index out of range</source> <translation>页索引越界</translation> </message> <message> <source>Databand &quot;%1&quot; not found</source> <translation>未找到数据带 &quot;%1&quot;</translation> </message> <message> <source>Wrong using function %1</source> <translation>函数 %1 使用错误</translation> </message> </context> <context> <name>LimeReport::SQLEditDialog</name> <message> <source>Datasource</source> <translation>数据源</translation> </message> <message> <source>Connection</source> <translation>数据连接</translation> </message> <message> <source>Datasource Name</source> <translation>数据源名</translation> </message> <message> <source>Subdetail</source> <translation>子细节</translation> </message> <message> <source>Master datasource</source> <translation>主数据源</translation> </message> <message> <source>Subquery mode</source> <translation>子查询模式</translation> </message> <message> <source>Filter mode</source> <translation>筛选模式</translation> </message> <message> <source>SQL</source> <translation></translation> </message> <message> <source>Preview</source> <translation>预览</translation> </message> <message> <source>Hide Preview</source> <translation>隐藏预览</translation> </message> <message> <source>Child datasource</source> <translation>子数据源</translation> </message> <message> <source>Fields map</source> <translation>字段映射</translation> </message> <message> <source>...</source> <translation></translation> </message> <message> <source>Data preview</source> <translation>数据预览</translation> </message> <message> <source>Cancel</source> <translation>取消</translation> </message> <message> <source>Ok</source> <translation>确定</translation> </message> <message> <source>Error</source> <translation>错误</translation> </message> <message> <source>Datasource Name is empty!</source> <translation>数据源名为空!</translation> </message> <message> <source>SQL is empty!</source> <translation>SQL语句为空!</translation> </message> <message> <source>Datasource with name: &quot;%1&quot; already exists!</source> <translation>数据源 &quot;%1&quot; 已存在!</translation> </message> <message> <source>defaultConnection</source> <translation>默认连接</translation> </message> <message> <source>Datasource with name %1 already exist</source> <translation>数据源 &quot;%1&quot; 已存在</translation> </message> <message> <source>Attention</source> <translation>注意</translation> </message> <message> <source>Connection is not specified</source> <translation>未指定连接</translation> </message> <message> <source>Refresh</source> <translation>刷新</translation> </message> <message> <source>CSV</source> <translation>CSV</translation> </message> <message> <source>Separator</source> <translation>分隔符</translation> </message> <message> <source>;</source> <translation>;</translation> </message> <message> <source>Use first row as header</source> <translation>第一行为头</translation> </message> </context> <context> <name>LimeReport::SVGItem</name> <message> <source>SVG Image</source> <translation type="unfinished"></translation> </message> <message> <source>SVG (*.svg)</source> <translation type="unfinished"></translation> </message> <message> <source>Edit</source> <translation type="unfinished">编辑</translation> </message> <message> <source>Watermark</source> <translation type="unfinished">水印</translation> </message> </context> <context> <name>LimeReport::ScriptBrowser</name> <message> <source>Form</source> <translation>表单</translation> </message> <message> <source>Functions</source> <translation>函数</translation> </message> <message> <source>...</source> <translation></translation> </message> <message> <source>Dialogs</source> <translation>对话框</translation> </message> <message> <source>Type</source> <translation>类型</translation> </message> <message> <source>Name</source> <translation>名称</translation> </message> <message> <source>NO CATEGORY</source> <translation>无类别</translation> </message> <message> <source>Error</source> <translation>错误</translation> </message> <message> <source>Dialog with name: %1 already exists</source> <translation>对话框 %1 已存在</translation> </message> <message> <source>ui file must cointain QDialog instead QWidget or QMainWindow</source> <translation>ui 文件必须包含 QDialog 而不是 QWidget 或 QMainWindow</translation> </message> <message> <source>wrong file format</source> <translation>文件格式错误</translation> </message> </context> <context> <name>LimeReport::ScriptEditor</name> <message> <source>Form</source> <translation>表格</translation> </message> <message> <source>Data</source> <translation>数据</translation> </message> <message> <source>Functions</source> <translation>函数</translation> </message> </context> <context> <name>LimeReport::ScriptEngineContext</name> <message> <source>Dialog with name: %1 can`t be created</source> <translation>无法创建对话框 %1</translation> </message> <message> <source>Error</source> <translation>错误</translation> </message> </context> <context> <name>LimeReport::ScriptEngineManager</name> <message> <source>GROUP FUNCTIONS</source> <translation>组函数</translation> </message> <message> <source>Value</source> <translation>值</translation> </message> <message> <source>BandName</source> <translation>带名称</translation> </message> <message> <source>Variable %1 not found</source> <translation>未找到变量 %1</translation> </message> <message> <source>SYSTEM</source> <translation>系统</translation> </message> <message> <source>NUMBER</source> <translation>数字</translation> </message> <message> <source>Format</source> <translation>格式</translation> </message> <message> <source>Precision</source> <translation>精度</translation> </message> <message> <source>Locale</source> <translation>区域</translation> </message> <message> <source>DATE&amp;TIME</source> <translation>日期&amp;时间</translation> </message> <message> <source>CurrencySymbol</source> <translation>货币符号</translation> </message> <message> <source>GENERAL</source> <translation>通用</translation> </message> <message> <source>Name</source> <translation>名称</translation> </message> <message> <source>Function manager with name &quot;%1&quot; already exists!</source> <translation>函数管理器 %1 已存在!</translation> </message> <message> <source>FieldName</source> <translation>字段名</translation> </message> <message> <source>Field %1 not found in %2!</source> <translation>在 %2 中找不到字段 %1 !</translation> </message> <message> <source>Datasource</source> <translation>数据源</translation> </message> <message> <source>ValueField</source> <translation>值字段</translation> </message> <message> <source>KeyField</source> <translation>键名字段</translation> </message> <message> <source>KeyFieldValue</source> <translation>键字段值</translation> </message> <message> <source>Unique identifier</source> <translation>唯一标识符</translation> </message> <message> <source>Content</source> <translation>内容内容</translation> </message> <message> <source>Indent</source> <translation>缩进</translation> </message> <message> <source>datasourceName</source> <translation>数据源名称</translation> </message> <message> <source>RowIndex</source> <translation>行索引</translation> </message> </context> <context> <name>LimeReport::SettingDialog</name> <message> <source>Designer setting</source> <translation>设计器设置</translation> </message> <message> <source>Default font</source> <translation>默认字体</translation> </message> <message> <source>Grid</source> <translation>栅格</translation> </message> <message> <source>Vertical grid step</source> <translation>竖栅格</translation> </message> <message> <source>Horizontal grid step</source> <translation>横栅格</translation> </message> <message> <source>Suppress absent fields and variables warning</source> <translation>抑制缺失字段及变量警告</translation> </message> <message> <source>Language</source> <translation>语言</translation> </message> <message> <source>Designer settings</source> <translation>设计器设置</translation> </message> <message> <source>Theme</source> <translation>主题</translation> </message> <message> <source>Report units</source> <translation>报表单位</translation> </message> <message> <source>Script editor settings</source> <translation>脚本编辑器设置</translation> </message> <message> <source>Font</source> <translation>字体</translation> </message> <message> <source>Indent size</source> <translation>缩进尺寸</translation> </message> <message> <source>Report settings</source> <translation>报表设置</translation> </message> </context> <context> <name>LimeReport::SubDetailBand</name> <message> <source>SubDetail</source> <translation>子细节</translation> </message> </context> <context> <name>LimeReport::SubDetailHeaderBand</name> <message> <source>SubDetailHeader</source> <translation>子细节头</translation> </message> </context> <context> <name>LimeReport::SvgEditor</name> <message> <source>Select image file</source> <translation type="unfinished">选择图像文件</translation> </message> </context> <context> <name>LimeReport::TearOffBand</name> <message> <source>Tear-off Band</source> <translation>分离带</translation> </message> </context> <context> <name>LimeReport::TextAlignmentEditorWidget</name> <message> <source>Text align left</source> <translation>文本左对齐</translation> </message> <message> <source>Text align center</source> <translation>文本居中对齐</translation> </message> <message> <source>Text align right</source> <translation>文本右对齐</translation> </message> <message> <source>Text align justify</source> <translation>文本行对齐</translation> </message> <message> <source>Text align top</source> <translation>文本顶部对齐</translation> </message> <message> <source>Text align bottom</source> <translation>文本底部对齐</translation> </message> </context> <context> <name>LimeReport::TextItem</name> <message> <source>Edit</source> <translation>编辑</translation> </message> <message> <source>Auto height</source> <translation>自动高度</translation> </message> <message> <source>Allow HTML</source> <translation>允许HTML</translation> </message> <message> <source>Allow HTML in fields</source> <translation>允许字段HTML</translation> </message> <message> <source>Stretch to max height</source> <translation>拉伸至最大高度</translation> </message> <message> <source>Error</source> <translation>错误</translation> </message> <message> <source>TextItem &quot; %1 &quot; already has folower &quot; %2 &quot; </source> <translation>文本框 &quot;%1 &quot; 已有 &quot;%2 &quot; </translation> </message> <message> <source>TextItem &quot; %1 &quot; not found!</source> <translation>未找到文本框 &quot;%1&quot;!</translation> </message> <message> <source>Transparent</source> <translation>透明</translation> </message> <message> <source>Watermark</source> <translation>水印</translation> </message> <message> <source>Hide if empty</source> <translation>为空时隐藏</translation> </message> </context> <context> <name>LimeReport::TextItemEditor</name> <message> <source>Text Item Editor</source> <translation>文本编辑器</translation> </message> <message> <source>Content</source> <translation>内容</translation> </message> <message> <source>Ok</source> <translation>确定</translation> </message> <message> <source>Ctrl+Return</source> <translation></translation> </message> <message> <source>Cancel</source> <translation>取消</translation> </message> </context> <context> <name>LimeReport::TranslationEditor</name> <message> <source>Form</source> <translation>表格</translation> </message> <message> <source>Languages</source> <translation>语言</translation> </message> <message> <source>...</source> <translation>...</translation> </message> <message> <source>Pages</source> <translation>页</translation> </message> <message> <source>Strings</source> <translation>字符串</translation> </message> <message> <source>Source Text</source> <translation>源文</translation> </message> <message> <source>Translation</source> <translation>译文</translation> </message> <message> <source>Checked</source> <translation>选中</translation> </message> <message> <source>Report Item</source> <translation>报表组件</translation> </message> <message> <source>Property</source> <translation>属性</translation> </message> <message> <source>Source text</source> <translation>源文</translation> </message> </context> <context> <name>LimeReport::VariablesHolder</name> <message> <source>variable with name </source> <translation>变量 </translation> </message> <message> <source> already exists!</source> <translation> 已存在!</translation> </message> <message> <source> does not exists!</source> <translation> 不存在!</translation> </message> </context> <context> <name>QObject</name> <message> <source>Data</source> <translation>数据带</translation> </message> <message> <source>DataHeader</source> <translation>数据带头</translation> </message> <message> <source>DataFooter</source> <translation>数据带脚</translation> </message> <message> <source>GroupHeader</source> <translation>组带头</translation> </message> <message> <source>GroupFooter</source> <translation>组带脚</translation> </message> <message> <source>Page Footer</source> <translation>页脚</translation> </message> <message> <source>Page Header</source> <translation>页眉</translation> </message> <message> <source>Report Footer</source> <translation>表脚</translation> </message> <message> <source>Report Header</source> <translation>表头</translation> </message> <message> <source>SubDetail</source> <translation>子细节</translation> </message> <message> <source>SubDetailHeader</source> <translation>子细节头</translation> </message> <message> <source>SubDetailFooter</source> <translation>子细节带脚</translation> </message> <message> <source>Tear-off Band</source> <translation>分离带</translation> </message> <message> <source>alignment</source> <translation>对齐</translation> </message> <message> <source>Barcode Item</source> <translation>条码组件</translation> </message> <message> <source>HLayout</source> <translation>水平布局</translation> </message> <message> <source>Image Item</source> <translation>图像组件</translation> </message> <message> <source>Shape Item</source> <translation>图形组件</translation> </message> <message> <source>itemLocation</source> <translation>组件位置</translation> </message> <message> <source>Text Item</source> <translation>文本组件</translation> </message> <message> <source>Invalid connection! %1</source> <translation>无效连接 %1</translation> </message> <message> <source>Master datasource &quot;%1&quot; not found!</source> <translation>未找到主数据源 &quot;%1&quot;!</translation> </message> <message> <source>Master datasouce &quot;%1&quot; not found!</source> <translation>未找到主数据源 &quot;%1&quot;!</translation> </message> <message> <source>Child</source> <translation>子</translation> </message> <message> <source> and child </source> <translation> 子数据源 </translation> </message> <message> <source>datasouce &quot;%1&quot; not found!</source> <translation>未找到子数据源&quot;%1&quot;!</translation> </message> <message> <source>bool</source> <translation></translation> </message> <message> <source>QColor</source> <translation></translation> </message> <message> <source>content</source> <translation>内容</translation> </message> <message> <source>datasource</source> <translation>数据源</translation> </message> <message> <source>field</source> <translation>字段映射</translation> </message> <message> <source>enum</source> <translation></translation> </message> <message> <source>flags</source> <translation></translation> </message> <message> <source>QFont</source> <translation></translation> </message> <message> <source>QImage</source> <translation></translation> </message> <message> <source>int</source> <translation></translation> </message> <message> <source>qreal</source> <translation></translation> </message> <message> <source>QRect</source> <translation></translation> </message> <message> <source>QRectF</source> <translation></translation> </message> <message> <source>geometry</source> <translation>形状</translation> </message> <message> <source>QString</source> <translation></translation> </message> <message> <source>Attention!</source> <translation>注意!</translation> </message> <message> <source>Selected elements have different parent containers</source> <translation>选中元素有不同的容器</translation> </message> <message> <source>Object with name %1 already exists!</source> <translation>对象 %1 已存在!</translation> </message> <message> <source>Function %1 not found or have wrong arguments</source> <translation>未找到函数 %1 或参数错误</translation> </message> <message> <source>mm</source> <translation>毫米</translation> </message> <message> <source>Wrong file format</source> <translation>文件格式错误</translation> </message> <message> <source>File %1 not opened</source> <translation>无法打开文件 %1</translation> </message> <message> <source>Content string is empty</source> <translation>字符串为空</translation> </message> <message> <source>Content is empty</source> <translation>字符串为空</translation> </message> <message> <source>Chart Item</source> <translation>图表组件</translation> </message> <message> <source>First</source> <translation>第一</translation> </message> <message> <source>Second</source> <translation>第二</translation> </message> <message> <source>Thrid</source> <translation>第三</translation> </message> <message> <source>Datasource manager not found</source> <translation>数据源管理器未找到</translation> </message> <message> <source>Export to PDF</source> <translation>导出为PDF文件</translation> </message> <message> <source>VLayout</source> <translation>水平布局</translation> </message> <message> <source>Dark</source> <translation>暗</translation> </message> <message> <source>Light</source> <translation>亮</translation> </message> <message> <source>Default</source> <translation>默认</translation> </message> <message> <source>Millimeters</source> <translation>毫米</translation> </message> <message> <source>Inches</source> <translation>英寸</translation> </message> <message> <source>margin</source> <translation>边距</translation> </message> <message> <source>&apos;&apos;</source> <translation>&apos;&apos;</translation> </message> <message> <source>SVG Item</source> <translation type="unfinished"></translation> </message> <message> <source>image</source> <translation type="unfinished">图像</translation> </message> <message> <source>series</source> <translation type="unfinished">数据系列</translation> </message> <message> <source>Series</source> <translation type="unfinished">数据系列</translation> </message> <message> <source>X Axis</source> <translation type="unfinished"></translation> </message> <message> <source>Y Axis</source> <translation type="unfinished"></translation> </message> <message> <source>X axis</source> <translation type="unfinished"></translation> </message> <message> <source>Y axis</source> <translation type="unfinished"></translation> </message> <message> <source>Axis</source> <translation type="unfinished"></translation> </message> </context> </TS>
PypiClean
/IntelliCoder-0.5.2.tar.gz/IntelliCoder-0.5.2/intellicoder/msbuild/builders.py
from __future__ import division, absolute_import, print_function from logging import getLogger import os from itertools import chain from subprocess import CalledProcessError from ..init import _ from ..utils import replace_ext from .locators import VSPath, VCPath, SDKPath logging = getLogger(__name__) class Builder(object): """ Represent a builder. """ def __init__(self): self.vs = VSPath() self.sdk = SDKPath(self.vs.sdk_dir, self.vs.sdk_version) self.vc = VCPath(self.vs.vc_dir, self.sdk) def build(self, filenames, cl_args=None, link_args=None, x64=False, out_dir=''): """ Compile source files and link object files. """ if not cl_args: cl_args = [] if not link_args: link_args = [] msvc, lib = self.vc.get_bin_and_lib(x64) lib = self.make_lib(lib) if out_dir: cl_args.append('/Fo:' + out_dir + '\\') include = self.make_inc(self.vc.inc + self.sdk.inc) cl_args.extend(include + filenames) try: msvc.run_cl('/c', *cl_args) except CalledProcessError as error: logging.error(_('failed to compile: %s'), filenames) logging.error(_('cl.exe returned:\n%s'), error.output) return False link_args.extend(lib + self.make_objs(filenames, out_dir)) try: msvc.run_link(*link_args) except CalledProcessError as error: logging.error(_('failed to link: %s'), filenames) logging.error(_('link.exe returned:\n%s'), error.output) return False return True def native_build(self, filenames, cl_args=None, link_args=None, x64=False, out_dir=''): """ Compile source files and link object files to native binaries. """ if not cl_args: cl_args = [] if not link_args: link_args = [] cl_args.append('/D_AMD64_' if x64 else '/D_X86_') link_args.extend( ['/driver', '/entry:DriverEntry', '/subsystem:native', '/defaultlib:ntoskrnl']) msvc, lib = self.vc.get_bin_and_lib(x64, native=True) lib = self.make_lib(lib) if out_dir: cl_args.append('/Fo:' + out_dir + '\\') inc = self.make_inc( self.sdk.inc + self.sdk.get_inc(native=True) ) cl_args.extend(filenames + inc) try: msvc.run_cl('/c', *cl_args) except CalledProcessError as error: logging.error(_('failed to compile: %s'), filenames) logging.error(_('cl.exe returned:\n%s'), error.output) return False link_args.extend(lib + self.make_objs(filenames, out_dir)) try: msvc.run_link(*link_args) except CalledProcessError as error: logging.error(_('failed to link: %s'), filenames) logging.error(_('link.exe returned:\n%s'), error.output) return False return True @staticmethod def make_inc(incs): """ Make include directory for link.exe. """ inc_args = [['/I', inc] for inc in incs] return list(chain.from_iterable(inc_args)) @staticmethod def make_lib(libs): """ Make lib directory for link.exe. """ lib_args = ['/libpath:' + lib for lib in libs] return lib_args @staticmethod def make_objs(names, out_dir=''): """ Make object file names for cl.exe and link.exe. """ objs = [replace_ext(name, '.obj') for name in names] if out_dir: objs = [os.path.join(out_dir, obj) for obj in objs] return objs def local_build(native, *args, **kwargs): """ Compile source files and link object files. """ method = 'native_build' if native else 'build' logging.debug(_('build type: %s'), method) return getattr(Builder(), method)(*args, **kwargs)
PypiClean
/EnergyCapSdk-8.2304.4743.tar.gz/EnergyCapSdk-8.2304.4743/energycap/sdk/models/bill_history_response.py
from msrest.serialization import Model class BillHistoryResponse(Model): """BillHistoryResponse. :param bill_id: The bill's bill id :type bill_id: int :param billing_period: The bill's billing period :type billing_period: int :param begin_date: The bill's begin date :type begin_date: datetime :param end_date: The bill's end date :type end_date: datetime :param created_date: The bill's created date :type created_date: datetime :param total_cost: The bill's total cost :type total_cost: float :param total_cost_unit: :type total_cost_unit: ~energycap.sdk.models.UnitChild :param void: The bill's void indicator :type void: bool :param accrual: The bill's accrual indicator :type accrual: bool :param invoice_number: The bill's invoice number :type invoice_number: str :param estimated: Indicates if the bill is estimated or not :type estimated: bool :param due_date: The bill's due date :type due_date: datetime :param statement_date: The bill's statement date :type statement_date: datetime :param bill_account_meters: The bill's account-meter summaries :type bill_account_meters: list[~energycap.sdk.models.BillAccountMeterChild] """ _attribute_map = { 'bill_id': {'key': 'billId', 'type': 'int'}, 'billing_period': {'key': 'billingPeriod', 'type': 'int'}, 'begin_date': {'key': 'beginDate', 'type': 'iso-8601'}, 'end_date': {'key': 'endDate', 'type': 'iso-8601'}, 'created_date': {'key': 'createdDate', 'type': 'iso-8601'}, 'total_cost': {'key': 'totalCost', 'type': 'float'}, 'total_cost_unit': {'key': 'totalCostUnit', 'type': 'UnitChild'}, 'void': {'key': 'void', 'type': 'bool'}, 'accrual': {'key': 'accrual', 'type': 'bool'}, 'invoice_number': {'key': 'invoiceNumber', 'type': 'str'}, 'estimated': {'key': 'estimated', 'type': 'bool'}, 'due_date': {'key': 'dueDate', 'type': 'iso-8601'}, 'statement_date': {'key': 'statementDate', 'type': 'iso-8601'}, 'bill_account_meters': {'key': 'billAccountMeters', 'type': '[BillAccountMeterChild]'}, } def __init__(self, **kwargs): super(BillHistoryResponse, self).__init__(**kwargs) self.bill_id = kwargs.get('bill_id', None) self.billing_period = kwargs.get('billing_period', None) self.begin_date = kwargs.get('begin_date', None) self.end_date = kwargs.get('end_date', None) self.created_date = kwargs.get('created_date', None) self.total_cost = kwargs.get('total_cost', None) self.total_cost_unit = kwargs.get('total_cost_unit', None) self.void = kwargs.get('void', None) self.accrual = kwargs.get('accrual', None) self.invoice_number = kwargs.get('invoice_number', None) self.estimated = kwargs.get('estimated', None) self.due_date = kwargs.get('due_date', None) self.statement_date = kwargs.get('statement_date', None) self.bill_account_meters = kwargs.get('bill_account_meters', None)
PypiClean
/NCParse-1.0.1.tar.gz/NCParse-1.0.1/src/gcode.py
from operator import truediv import re from typing import Type from src.gcodesegment import GCodeSegment # extract letter-digit pairs g_pattern = re.compile('([A-Z])([-+]?[0-9.]+)') # white spaces and comments start with ';' and in '()' clean_pattern = re.compile('\(.*?\)|;.*') class GCode(object): # represents a single line of GCode def __init__(self, segments, raw_line): self.segments = [] self.parse_segments(segments) self.raw_line = raw_line def parse_segments(self, segments): for i in range(0, len(segments)): try: x = None y = None z = None m = g_pattern.findall(segments[i]) for j in range(0, len(m)): if m[j][0] != 'X' and m[j][0] != 'Y' and m[j][0] != 'Z': #1) see if the next part of this command are dimensions #2) if not, just add the segment normally if len(segments) > 1: for k in range(i + 1, len(segments)): if segments[k][0].startswith('X') or segments[k][0].startswith('Y') or segments[k][0].startswith('Z'): m2 = g_pattern.findall(segments[k]) if m2[0][0] == 'X': x = m2[0][1] elif m2[0][0] == 'Y': y = m2[0][1] elif m2[0][0] == 'Z': z = m2[0][1] else: break self.segments.append(GCodeSegment(m[0][0],m[0][1], x, y, z, segments[j])) except TypeError as e: print (f'ERROR PARSING SEGMENT {s} :: {e}') @staticmethod def parse_line(line): line = re.sub(clean_pattern, '', line) segments = line.split() gCode = GCode(segments, line) return gCode
PypiClean
/NlpToolkit-Math-1.0.18.tar.gz/NlpToolkit-Math-1.0.18/Math/Matrix.py
from __future__ import annotations import copy import random import math from Math.MatrixNotPositiveDefinite import MatrixNotPositiveDefinite from Math.MatrixNotSquare import MatrixNotSquare from Math.Eigenvector import Eigenvector from Math.MatrixDimensionMismatch import MatrixDimensionMismatch from Math.Vector import Vector from Math.MatrixRowMismatch import MatrixRowMismatch from Math.DeterminantZero import DeterminantZero from Math.MatrixRowColumnMismatch import MatrixRowColumnMismatch from Math.MatrixColumnMismatch import MatrixColumnMismatch from Math.MatrixNotSymmetric import MatrixNotSymmetric class Matrix(object): __row: int __col: int __values: list def __init__(self, row, col=None, minValue=None, maxValue=None, seed=None): """ Constructor of Matrix class which takes row and column numbers (Vectors) as inputs. PARAMETERS ---------- row : int (or Vector) is used to create matrix. col : int (or Vector) is used to create matrix. minValue : float minimum Value for the initialization maxValue : float maximum Value for the initialization seed : int seed for the random """ if isinstance(row, int): self.__row = row if col is not None: self.__col = col if minValue is None: self.initZeros() elif maxValue is None: self.initZeros() for i in range(self.__row): self.__values[i][i] = minValue else: random.seed(seed) self.__values = [[random.uniform(minValue, maxValue) for _ in range(self.__col)] for _ in range(self.__row)] else: self.__col = row self.initZeros() for i in range(self.__row): self.__values[i][i] = 1.0 elif isinstance(row, Vector) and isinstance(col, Vector): self.__row = row.size() self.__col = col.size() self.initZeros() for i in range(row.size()): for j in range(col.size()): self.__values[i][j] = row.getValue(i) * col.getValue(j) def initZeros(self): self.__values = [[0 for _ in range(self.__col)] for _ in range(self.__row)] def clone(self) -> Matrix: return copy.deepcopy(self) def getValue(self, rowNo: int, colNo: int) -> float: """ The getter for the index at given rowNo and colNo of values list. PARAMETERS ---------- rowNo : int integer input for row number. colNo : int integer input for column number. RETURNS ------- double item at given index of values list. """ return self.__values[rowNo][colNo] def setValue(self, rowNo: int, colNo: int, value: float): """ The setter for the value at given index of values list. PARAMETERS ---------- rowNo : int integer input for row number. colNo : int integer input for column number. value : double is used to set at given index. """ self.__values[rowNo][colNo] = value def addValue(self, rowNo: int, colNo: int, value: float): """ The addValue method adds the given value to the item at given index of values list. PARAMETERS ---------- rowNo : int integer input for row number. colNo : int integer input for column number. value : double is used to add to given item at given index. """ self.__values[rowNo][colNo] += value def increment(self, rowNo: int, colNo: int): """ The increment method adds 1 to the item at given index of values list. PARAMETERS ---------- rowNo : int integer input for row number. colNo : int integer input for column number. """ self.__values[rowNo][colNo] += 1 def getRow(self) -> int: """ The getter for the row variable. RETURNS ------- int row number. """ return self.__row def getRowVector(self, row: int) -> Vector: """ The getRowVector method returns the vector of values list at given row input. PARAMETERS ---------- row : int row integer input for row number. RETURNS ------- Vector Vector of values list at given row input. """ rowList = self.__values[row] rowVector = Vector(rowList) return rowVector def getColumn(self) -> int: """ The getter for the col variable. RETURNS ------- int column number. """ return self.__col def getColumnVector(self, column: int) -> list: """ * The getColumnVector method creates a Vector and adds items at given column number of values list * to the Vector. PARAMETERS ---------- column : int column integer input for column number. RETURNS ------- Vector Vector of given column number. """ columnVector = [] for i in range(self.__row): columnVector.append(self.__values[i][column]) return columnVector def columnWiseNormalize(self): """ The columnWiseNormalize method, first accumulates items column by column then divides items by the summation. """ for i in range(self.__row): total = sum(self.__values[i]) self.__values[i][:] = [x / total for x in self.__values[i]] def multiplyWithConstant(self, constant: float): """ The multiplyWithConstant method takes a constant as an input and multiplies each item of values list with given constant. PARAMETERS ---------- constant : double constant value to multiply items of values list. """ for i in range(self.__row): self.__values[i][:] = [x * constant for x in self.__values[i]] def divideByConstant(self, constant: float): """ The divideByConstant method takes a constant as an input and divides each item of values list with given constant. PARAMETERS ---------- constant : double constant value to divide items of values list. """ for i in range(self.__row): self.__values[i][:] = [x / constant for x in self.__values[i]] def add(self, m: Matrix): """ The add method takes a Matrix as an input and accumulates values list with the corresponding items of given Matrix. If the sizes of both Matrix and values list do not match, it throws MatrixDimensionMismatch exception. PARAMETERS ---------- m : Matrix Matrix type input. """ if self.__row != m.__row or self.__col != m.__col: raise MatrixDimensionMismatch for i in range(self.__row): for j in range(self.__col): self.__values[i][j] += m.__values[i][j] def addRowVector(self, rowNo: int, v: Vector): """ The add method which takes a row number and a Vector as inputs. It sums up the corresponding values at the given row of values list and given Vector. If the sizes of both Matrix and values list do not match, it throws MatrixColumnMismatch exception. PARAMETERS ---------- rowNo : int integer input for row number. v : Vector Vector type input. """ if self.__col != v.size(): raise MatrixColumnMismatch for i in range(self.__col): self.__values[rowNo][i] += v.getValue(i) def subtract(self, m: Matrix): """ The subtract method takes a Matrix as an input and subtracts from values list the corresponding items of given Matrix. If the sizes of both Matrix and values list do not match, it throws {@link MatrixDimensionMismatch} exception. PARAMETERS ---------- m : Matrix Matrix type input. """ if self.__row != m.__row or self.__col != m.__col: raise MatrixDimensionMismatch for i in range(self.__row): for j in range(self.__col): self.__values[i][j] -= m.__values[i][j] def multiplyWithVectorFromLeft(self, v: Vector) -> Vector: """ The multiplyWithVectorFromLeft method takes a Vector as an input and creates a result list. Then, multiplies values of input Vector starting from the left side with the values list, accumulates the multiplication, and assigns to the result list. If the sizes of both Vector and row number do not match, it throws MatrixRowMismatch exception. PARAMETERS ---------- v : Vector Vector type input. RETURNS ------- Vector Vector that holds the result. """ if self.__row != v.size(): raise MatrixRowMismatch result = Vector() for i in range(self.__col): total = 0.0 for j in range(self.__row): total += v.getValue(j) * self.__values[j][i] result.add(total) return result def multiplyWithVectorFromRight(self, v: Vector) -> Vector: """ The multiplyWithVectorFromRight method takes a Vector as an input and creates a result list. Then, multiplies values of input Vector starting from the right side with the values list, accumulates the multiplication, and assigns to the result list. If the sizes of both Vector and row number do not match, it throws MatrixColumnMismatch exception. PARAMETERS ---------- v : Vector Vector type input. RETURNS ------- Vector Vector that holds the result. """ if self.__col != v.size(): raise MatrixColumnMismatch result = Vector() for i in range(self.__row): total = 0.0 for j in range(self.__col): total += v.getValue(j) * self.__values[i][j] result.add(total) return result def columnSum(self, columnNo: int) -> float: """ The columnSum method takes a column number as an input and accumulates items at given column number of values list. PARAMETERS ---------- columnNo : int Column number input. RETURNS ------- double summation of given column of values list. """ total = 0 for i in range(self.__row): total += self.__values[i][columnNo] return total def sumOfRows(self) -> Vector: """ The sumOfRows method creates a mew result Vector and adds the result of columnDum method's corresponding index to the newly created result Vector. RETURNS ------- Vector Vector that holds column sum. """ result = Vector() for i in range(self.__col): result.add(self.columnSum(i)) return result def rowSum(self, rowNo: int) -> float: """ The rowSum method takes a row number as an input and accumulates items at given row number of values list. * @param rowNo Row number input. * @return summation of given row of values {@link java.lang.reflect.Array}. """ return sum(self.__values[rowNo]) def multiply(self, m: Matrix) -> Matrix: """ The multiply method takes a Matrix as an input. First it creates a result Matrix and puts the accumulatated multiplication of values list and given Matrix into result Matrix. If the size of Matrix's row size and values list's column size do not match, it throws MatrixRowColumnMismatch exception. PARAMETERS ---------- m : Matrix Matrix type input. RETURNS ------- Matrix result Matrix. """ if self.__col != m.__row: raise MatrixRowColumnMismatch result = Matrix(self.__row, m.__col) for i in range(self.__row): for j in range(m.__col): total = 0.0 for k in range(self.__col): total += self.__values[i][k] * m.__values[k][j] result.__values[i][j] = total return result def elementProduct(self, m: Matrix) -> Matrix: """ The elementProduct method takes a Matrix as an input and performs element wise multiplication. Puts result to the newly created Matrix. If the size of Matrix's row and column size does not match with the values list's row and column size, it throws MatrixDimensionMismatch exception. PARAMETERS ---------- m : Matrix Matrix type input. RETURNS ------- Matrix result Matrix. """ if self.__row != m.__row or self.__col != m.__col: raise MatrixDimensionMismatch result = Matrix(self.__row, self.__col) for i in range(self.__row): for j in range(self.__col): result.__values[i][j] = self.__values[i][j] * m.__values[i][j] return result def sumOfElements(self) -> float: """ The sumOfElements method accumulates all the items in values list and returns this summation. RETURNS ------- float sum of the items of values list. """ total = 0.0 for i in range(self.__row): total += sum(self.__values[i]) return total def trace(self) -> float: """ The trace method accumulates items of values list at the diagonal. RETURNS ------- float sum of items at diagonal. """ if self.__row != self.__col: raise MatrixNotSquare total = 0.0 for i in range(self.__row): total += self.__values[i][i] return total def transpose(self) -> Matrix: """ The transpose method creates a new Matrix, then takes the transpose of values list and puts transposition to the Matrix. RETURNS ------- Matrix Matrix type output. """ result = Matrix(self.__col, self.__row) for i in range(self.__row): for j in range(self.__col): result.__values[j][i] = self.__values[i][j] return result def partial(self, rowStart: int, rowEnd: int, colStart: int, colEnd: int) -> Matrix: """ The partial method takes 4 integer inputs; rowStart, rowEnd, colStart, colEnd and creates a Matrix size of rowEnd - rowStart + 1 x colEnd - colStart + 1. Then, puts corresponding items of values list to the new result Matrix. PARAMETERS ---------- rowStart : int integer input for defining starting index of row. rowEnd : int integer input for defining ending index of row. colStart : int integer input for defining starting index of column. colEnd : int integer input for defining ending index of column. RETURNS ------- Matrix result Matrix. """ result = Matrix(rowEnd - rowStart + 1, colEnd - colStart + 1) for i in range(rowStart, rowEnd + 1): for j in range(colStart, colEnd + 1): result.__values[i - rowStart][j - colStart] = self.__values[i][j] return result def isSymmetric(self) -> bool: """ The isSymmetric method compares each item of values list at positions (i, j) with (j, i) and returns true if they are equal, false otherwise. RETURNS ------- bool true if items are equal, false otherwise. """ if self.__row != self.__col: raise MatrixNotSquare for i in range(self.__row - 1): for j in range(self.__row): if self.__values[i][j] != self.__values[j][i]: return False return True def determinant(self) -> float: """ The determinant method first creates a new list, and copies the items of values list into new list. Then, calculates the determinant of this new list. RETURNS ------- float determinant of values list. """ if self.__row != self.__col: raise MatrixNotSquare det = 1.0 copyOfMatrix = copy.deepcopy(self) for i in range(self.__row): det *= copyOfMatrix.__values[i][i] if det == 0.0: break for j in range(i + 1, self.__row): ratio = copyOfMatrix.__values[j][i] / copyOfMatrix.__values[i][i] for k in range(i, self.__col): copyOfMatrix.__values[j][k] = copyOfMatrix.__values[j][k] - copyOfMatrix.__values[i][k] * ratio return det def inverse(self): """ The inverse method finds the inverse of values list. """ if self.__row != self.__col: raise MatrixNotSquare b = Matrix(self.__row, self.__row) indxc = [] indxr = [] ipiv = [] for j in range(self.__row): ipiv.append(0) for i in range(1, self.__row + 1): big = 0.0 irow = -1 icol = -1 for j in range(1, self.__row + 1): if ipiv[j - 1] != 1: for k in range(1, self.__row + 1): if ipiv[k - 1] == 0: if abs(self.__values[j - 1][k - 1]) >= big: big = abs(self.__values[j - 1][k - 1]) irow = j icol = k if irow == -1 or icol == -1: raise DeterminantZero ipiv[icol - 1] = ipiv[icol - 1] + 1 if irow != icol: for l in range(1, self.__row + 1): dum = self.__values[irow - 1][l - 1] self.__values[irow - 1][l - 1] = self.__values[icol - 1][l - 1] self.__values[icol - 1][l - 1] = dum for l in range(1, self.__row + 1): dum = b.__values[irow - 1][l - 1] b.__values[irow - 1][l - 1] = b.__values[icol - 1][l - 1] b.__values[icol - 1][l - 1] = dum indxr.append(irow) indxc.append(icol) if self.__values[icol - 1][icol - 1] == 0: raise DeterminantZero pivinv = 1.0 / self.__values[icol - 1][icol - 1] self.__values[icol - 1][icol - 1] = 1.0 for l in range(1, self.__row + 1): self.__values[icol - 1][l - 1] = self.__values[icol - 1][l - 1] * pivinv for l in range(1, self.__row + 1): b.__values[icol - 1][l - 1] = b.__values[icol - 1][l - 1] * pivinv for ll in range(1, self.__row + 1): if ll != icol: dum = self.__values[ll - 1][icol - 1] self.__values[ll - 1][icol - 1] = 0.0 for l in range(1, self.__row + 1): self.__values[ll - 1][l - 1] = self.__values[ll - 1][l - 1] - self.__values[icol - 1][ l - 1] * dum for l in range(1, self.__row + 1): b.__values[ll - 1][l - 1] = b.__values[ll - 1][l - 1] - b.__values[icol - 1][l - 1] * dum for l in range(self.__row, 0, -1): if indxr[l - 1] != indxc[l - 1]: for k in range(1, self.__row + 1): dum = self.__values[k - 1][indxr[l - 1] - 1] self.__values[k - 1][indxr[l - 1] - 1] = self.__values[k - 1][indxc[l - 1] - 1] self.__values[k - 1][indxc[l - 1] - 1] = dum def choleskyDecomposition(self) -> Matrix: """ The choleskyDecomposition method creates a new Matrix and puts the Cholesky Decomposition of values Array into this Matrix. Also, it throws MatrixNotSymmetric exception if it is not symmetric and MatrixNotPositiveDefinite exception if the summation is negative. RETURNS ------- Matrix Matrix type output. """ if not self.isSymmetric(): raise MatrixNotSymmetric b = Matrix(self.__row, self.__col) for i in range(self.__row): for j in range(i, self.__row): total = self.__values[i][j] for k in range(i - 1, -1, -1): total -= self.__values[i][k] * self.__values[j][k] if i == j: if total <= 0.0: raise MatrixNotPositiveDefinite b.__values[i][i] = math.sqrt(total) else: b.__values[j][i] = total / b.__values[i][i] return b def __rotate(self, s: float, tau: float, i: int, j: int, k: int, l: int): """ The rotate method rotates values list according to given inputs. PARAMETERS ---------- s : double double input. tau : double double input. i : int integer input. j : int integer input. k : int integer input. l : int integer input. """ g = self.__values[i][j] h = self.__values[k][l] self.__values[i][j] = g - s * (h + g * tau) self.__values[k][l] = h + s * (g - h * tau) def characteristics(self) -> list: """ The characteristics method finds and returns a sorted list of Eigenvecto}s. And it throws MatrixNotSymmetric exception if it is not symmetric. RETURNS ------- list A sorted list of Eigenvectors. """ if not self.isSymmetric(): raise MatrixNotSymmetric matrix1 = copy.deepcopy(self) v = Matrix(self.__row, self.__row, 1.0) d = [] b = [] z = [] EPS = 0.000000000000000001 for ip in range(self.__row): b.append(matrix1.__values[ip][ip]) d.append(matrix1.__values[ip][ip]) z.append(0.0) for i in range(1, 51): sm = 0.0 for ip in range(self.__row - 1): for iq in range(ip + 1, self.__row): sm += abs(matrix1.__values[ip][iq]) if sm == 0.0: break if i < 4: threshold = 0.2 * sm / (self.__row ** 2) else: threshold = 0.0 for ip in range(self.__row - 1): for iq in range(ip + 1, self.__row): g = 100.0 * abs(matrix1.__values[ip][iq]) if i > 4 and g <= EPS * abs(d[ip]) and g <= EPS * abs(d[iq]): matrix1.__values[ip][iq] = 0.0 else: if abs(matrix1.__values[ip][iq]) > threshold: h = d[iq] - d[ip] if g <= EPS * abs(h): t = matrix1.__values[ip][iq] / h else: theta = 0.5 * h / matrix1.__values[ip][iq] t = 1.0 / (abs(theta) + math.sqrt(1.0 + theta ** 2)) if theta < 0.0: t = -t c = 1.0 / math.sqrt(1 + t ** 2) s = t * c tau = s / (1.0 + c) h = t * matrix1.__values[ip][iq] z[ip] -= h z[iq] += h d[ip] -= h d[iq] += h matrix1.__values[ip][iq] = 0.0 for j in range(ip): matrix1.__rotate(s, tau, j, ip, j, iq) for j in range(ip + 1, iq): matrix1.__rotate(s, tau, ip, j, j, iq) for j in range(iq + 1, self.__row): matrix1.__rotate(s, tau, ip, j, iq, j) for j in range(self.__row): v.__rotate(s, tau, j, ip, j, iq) for ip in range(self.__row): b[ip] = b[ip] + z[ip] d[ip] = b[ip] z[ip] = 0.0 result = [] for i in range(self.__row): if d[i] > 0: result.append(Eigenvector(d[i], v.getColumnVector(i))) result.sort(key=lambda eigenvector: eigenvector.eigenvalue, reverse=True) return result def __repr__(self): return f"{self.__values}"
PypiClean
/Flask-WebSub-0.4.tar.gz/Flask-WebSub-0.4/flask_websub/hub/__init__.py
import functools import itertools from .blueprint import build_blueprint, A_DAY from .tasks import make_request_retrying, send_change_notification, \ subscribe, unsubscribe from .storage import SQLite3HubStorage __all__ = ('Hub', 'SQLite3HubStorage') class Hub: """This is the API to the hub package. The constructor requires a storage object, and also accepts a couple of optional configuration values (the defaults are shown as well): - BACKOFF_BASE=8.0: When a hub URL cannot be reached, exponential backoff is used to control retrying. This parameter scales the whole process. Lowering it means trying more frequently, but also for a shorter time. Highering it means the reverse. - MAX_ATTEMPTS=10: The amount of attempts the retrying process makes. - PUBLISH_SUPPORTED=False: makes it possible to do a POST request to the hub endpoint with mode=publish. This is nice for testing, but as it does no input validation, you should not leave this enabled in production. - SIGNATURE_ALGORITHM='sha512': The algorithm to sign a content notification body with. Other possible values are sha1, sha256 and sha384. - REQUEST_TIMEOUT=3: Specifies how long to wait before considering a request to have failed. - HUB_MIN_LEASE_SECONDS: The minimal lease_seconds value the hub will accept - HUB_DEFAULT_LEASE_SECONDS: The lease_seconds value the hub will use if the subscriber does not have a preference - HUB_MAX_LEASE_SECONDS: The maximum lease_seconds value the hub will accept You can pass in a celery object too, or do that later using init_celery. It is required to do so before actually using the hub, though. User-facing properties have doc strings. Other properties should be considered implementation details. """ counter = itertools.count() def __init__(self, storage, celery=None, **config): self.validators = [] self.storage = storage self.config = config if celery: self.init_celery(celery) def endpoint_hook(self): """Override this method to hook into the endpoint handling. Anything this method returns will be forwarded to validation functions when subscribing. """ def build_blueprint(hub, url_prefix=''): """Build a blueprint containing a Flask route that is the hub endpoint. """ return build_blueprint(hub, url_prefix) def init_celery(self, celery): """Registers the celery tasks on the hub object.""" count = next(self.counter) def task_with_hub(f, **opts): @functools.wraps(f) def wrapper(*args, **kwargs): return f(self, *args, **kwargs) # Make sure newer instances don't overwride older ones. wrapper.__name__ = wrapper.__name__ + '_' + str(count) return celery.task(**opts)(wrapper) # tasks for internal use: self.subscribe = task_with_hub(subscribe) self.unsubscribe = task_with_hub(unsubscribe) max_attempts = self.config.get('MAX_ATTEMPTS', 10) make_req = task_with_hub(make_request_retrying, bind=True, max_retries=max_attempts) self.make_request_retrying = make_req # user facing tasks # wrapped by send_change_notification: self.send_change = task_with_hub(send_change_notification) # wrapped by cleanup_expired_subscriptions @task_with_hub def cleanup(hub): self.storage.cleanup_expired_subscriptions() self.cleanup = cleanup # wrapped by schedule_cleanup def schedule(every_x_seconds=A_DAY): celery.add_periodic_task(every_x_seconds, self.cleanup_expired_subscriptions.s()) self.schedule = schedule @property def send_change_notification(self): """Allows you to notify subscribers of a change to a `topic_url`. This is a celery task, so you probably will actually want to call hub.send_change_notification.delay(topic_url, updated_content). The last argument is optional. If passed in, it should be an object with two properties: `headers` (dict-like), and `content` (a base64-encoded string). If left out, the updated content will be fetched from the topic url directly. """ return self.send_change @property def cleanup_expired_subscriptions(self): """Removes any expired subscriptions from the backing data store. It takes no arguments, and is a celery task. """ return self.cleanup @property def schedule_cleanup(self): """schedule_cleanup(every_x_seconds=A_DAY): schedules the celery task `cleanup_expired_subscriptions` as a recurring event, the frequency of which is determined by its parameter. This is not a celery task itself (as the cleanup is only scheduled), and is a convenience function. """ return self.schedule def register_validator(self, f): """Register `f` as a validation function for subscription requests. It gets a callback_url and topic_url as its arguments, and should return None if the validation succeeded, or a string describing the problem otherwise. """ self.validators.append(f)
PypiClean
/FamcyDev-0.3.71-py3-none-any.whl/Famcy/node_modules/bower/packages/bower-config/CHANGELOG.md
# Changelog ## 1.4.2 - Prevent errors when expanded env variable does not exist ## 1.4.2 - Update minimist to 0.2.1 to fix security issue ## 1.4.0 - Change default shorthand resolver from git:// to https:// ## 1.3.1 - Ignore hook scripts for environment variable expansion ## 1.3.0 - 2015-12-07 - Allow the use of environment variables in .bowerrc. Fixes [#41](https://github.com/bower/config/issues/41) - Loads the .bowerrc file from the cwd specified on the command line. Fixes [bower/bower#1993](https://github.com/bower/bower/issues/1993) - Allwow for array notation in ENV variables [#44](https://github.com/bower/config/issues/44) ## 1.2.3 - 2015-11-27 - Restores env variables if they are undefined at the beginning - Handles default setting for config.ca. Together with [bower/bower PR #1972](https://github.com/bower/bower/pull/1972), fixes downloading with `strict-ssl` using custom CA - Displays an error message if .bowerrc is a directory instead of file. Fixes [bower/bower#2022](https://github.com/bower/bower/issues/2022) ## 1.2.2 - 2015-10-16 - Fixes registry configurartion expanding [bower/bower#1950](https://github.com/bower/bower/issues/1950) ## 1.2.1 - 2015-10-15 - Fixes case insenstivity HTTP_PROXY setting issue on Windows ## 1.2.0 - 2015-09-28 - Prevent defaulting cwd to process.cwd() ## 1.1.2 - 2015-09-27 - Performs only camel case normalisation before merging ## 1.1.1 - 2015-09-27 - Fix: Merge extra options after camel-case normalisation, instead of before it ## 1.1.0 - 2015-09-27 - Allow for overwriting options with .load(overwrites) / .read(cwd, overwrites) ## 1.0.1 - 2015-09-27 - Update dependencies and relax "mout" version range - Most significant changes: - graceful-fs updated from 2.x version to 4.x - osenv updated to from 0.0.x to 0.1.x, [tmp location changed](https://github.com/npm/osenv/commit/d6eddbc026538b09026b1dbd60fbc081a8c67e03) ## 1.0.0 - 2015-09-27 - Support for no-proxy configuration variable - Overwrite HTTP_PROXY, HTTPS_PROXY, and NO_PROXY env variables in load method - Normalise paths to certificates with contents of them, [#28](https://github.com/bower/config/pull/28) ## 0.6.1 - 2015-04-1 - Fixes merging .bowerrc files upward directory tree. [#25](https://github.com/bower/config/issues/25) ## 0.6.0 - 2015-03-30 - Merge .bowerrc files upward directory tree (fixes [bower/bower#1689](https://github.com/bower/bower/issues/1689)) [#24](https://github.com/bower/config/pull/24) - Allow NPM config variables (resolves [bower/bower#1711](https://github.com/bower/bower/issues/1711)) [#23](https://github.com/bower/config/pull/23) ## 0.5.2 - 2014-06-09 - Fixes downloading of bower modules with ignores when .bowerrc is overridden with a relative tmp path. [#17](https://github.com/bower/config/issues/17) [bower/bower#1299](https://github.com/bower/bower/issues/1299) ## 0.5.1 - 2014-05-21 - [perf] Uses the same mout version as bower - [perf] Uses only relevant parts of mout. Related [bower/bower#1134](https://github.com/bower/bower/pull/1134) ## 0.5.0 - 2013-08-30 - Adds a DEFAULT_REGISTRY key to the Config class that exposes the bower registry UR. [#6](https://github.com/bower/config/issues/6) ## 0.4.5 - 2013-08-28 - Fixes crashing when home is not set ## 0.4.4 - 2013-08-21 - Supports nested environment variables [#8](https://github.com/bower/config/issues/8) ## 0.4.3 - 2013-08-19 - Improvement in argv.config parsing ## 0.4.2 - 2013-08-18 - Sets interative to auto ## 0.4.1 - 2013-08-18 - Generates a fake user instead of using 'unknown' ## 0.4.0 - 2013-08-16 - Suffixes temp folder with the user and 'bower' ## 0.3.5 - 2013-08-14 - Casts buffer to string ## 0.3.4 - 2013-08-11 - Empty .bowerrc files no longer throw an error. ## 0.3.3 - 2013-08-11 - Changes git folder to empty (was not being used anyway) ## 0.3.2 - 2013-08-07 - Uses a known user agent by default when a proxy. ## 0.3.1 - 2013-08-06 - Fixes Typo ## 0.3.0 - 2013-08-06 - Appends the username when using the temporary folder.
PypiClean
/AaioAPI-1.0.2.tar.gz/AaioAPI-1.0.2/README.md
<h1><img src="https://aaio.io/assets/landing/img/logo-m.svg" width=30 height=30> AAIO</h1> A Library for easy work with [Aaio API](https://wiki.aaio.io/), in the Python programming language. Библиотека для легкой работы с [Aaio API](https://wiki.aaio.io/), на языке программирования Python. ## What is available in this library? - Что имеется в данной библиотеке? - Creating a bill for payment - Создание счета для оплаты - Quick check of payment status - Быстрая проверка статуса оплаты - Get balance - Получение баланса - The largest number of payment methods - Наибольшее количество способов оплаты ## Installation - Установка Required version [Python](https://www.python.org/): not lower than 3.7 Требуемая версия [Python](https://www.python.org/): не ниже 3.7 ```cmd pip install AaioAPI ``` ## Using - Использование To get started, you need to register and get all the necessary store data [via this link on the official AAIO website](https://aaio.io/cabinet/merchants/) Чтобы начать работу, вам необходимо зарегистрироваться и получить все необходимые данные магазина [по этой ссылке на оф.сайте AAIO](https://aaio.io/cabinet/merchants/) ### Get balance - Получение баланса Чтобы получить доступ к балансу, скопируйте ваш [API Ключ](https://aaio.io/cabinet/api/) ``` python import AaioAPI client = 'your_api_key' balance = AaioAPI.get_balance(client) balance = balance['balance'] # balance = { # "type": "success", # "balance": 50.43, // Текущий доступный баланс # "referral": 0, // Текущий реферальный баланс # "hold": 1.57 // Текущий замороженный баланс # } print(balance) ``` ### Example of creating an invoice and receiving a payment link - Пример создания счета и получения ссылки на оплату Здесь вам понадобятся данные вашего магазина ``` python from AaioAPI import Aaio import AaioAPI, time payment = Aaio() merchant_id = 'your_shop_id' # ID магазина amount = 25 # Сумма к оплате currency = 'RUB' # Валюта заказа secret = 'your_secret_key' # Секретный ключ №1 из настроек магазина desc = 'Test payment.' # Описание заказа url_aaio = AaioAPI.pay(merchant_id, amount, currency, secret, desc) print(url_aaio) # Ссылка на оплату ``` ### Example of a status check - Пример проверки статуса Проверяем статус платежа каждые 5 секунд с помощью цикла ```python while True: AaioAPI.check_payment(url_aaio, payment) if payment.is_expired(): # Если счет просрочен print("Invoice was expired") break elif payment.is_success(): # Если оплата прошла успешно print("Payment was succesful") break else: # Или если счет ожидает оплаты print("Invoice wasn't paid. Please pay the bill") time.sleep(5) ``` ### Full Code - Полный код ```python from AaioAPI import Aaio import AaioAPI, time payment = Aaio() merchant_id = 'your_shop_id' # ID магазина amount = 25 # Сумма к оплате currency = 'RUB' # Валюта заказа secret = 'your_secret_key' # Секретный ключ №1 из настроек магазина desc = 'Test payment.' # Описание заказа url_aaio = AaioAPI.pay(merchant_id, amount, currency, secret, desc) print(url_aaio) # Ссылка на оплату while True: AaioAPI.check_payment(url_aaio, payment) if payment.is_expired(): # Если счет просрочен print("Invoice was expired") break elif payment.is_success(): # Если оплата прошла успешно print("Payment was succesful") break else: # Или если счет ожидает оплаты print("Invoice wasn't paid. Please pay the bill") time.sleep(5) ``` ## License MIT
PypiClean
/Flask%20of%20Cinema-1.0.0.tar.gz/Flask of Cinema-1.0.0/static/js/toasts.js
(function($, anim) { 'use strict'; let _defaults = { html: '', displayLength: 4000, inDuration: 300, outDuration: 375, classes: '', completeCallback: null, activationPercent: 0.8 }; class Toast { constructor(options) { /** * Options for the toast * @member Toast#options */ this.options = $.extend({}, Toast.defaults, options); this.message = this.options.html; /** * Describes current pan state toast * @type {Boolean} */ this.panning = false; /** * Time remaining until toast is removed */ this.timeRemaining = this.options.displayLength; if (Toast._toasts.length === 0) { Toast._createContainer(); } // Create new toast Toast._toasts.push(this); let toastElement = this._createToast(); toastElement.M_Toast = this; this.el = toastElement; this.$el = $(toastElement); this._animateIn(); this._setTimer(); } static get defaults() { return _defaults; } /** * Get Instance */ static getInstance(el) { let domElem = !!el.jquery ? el[0] : el; return domElem.M_Toast; } /** * Append toast container and add event handlers */ static _createContainer() { let container = document.createElement('div'); container.setAttribute('id', 'toast-container'); // Add event handler container.addEventListener('touchstart', Toast._onDragStart); container.addEventListener('touchmove', Toast._onDragMove); container.addEventListener('touchend', Toast._onDragEnd); container.addEventListener('mousedown', Toast._onDragStart); document.addEventListener('mousemove', Toast._onDragMove); document.addEventListener('mouseup', Toast._onDragEnd); document.body.appendChild(container); Toast._container = container; } /** * Remove toast container and event handlers */ static _removeContainer() { // Add event handler document.removeEventListener('mousemove', Toast._onDragMove); document.removeEventListener('mouseup', Toast._onDragEnd); $(Toast._container).remove(); Toast._container = null; } /** * Begin drag handler * @param {Event} e */ static _onDragStart(e) { if (e.target && $(e.target).closest('.toast').length) { let $toast = $(e.target).closest('.toast'); let toast = $toast[0].M_Toast; toast.panning = true; Toast._draggedToast = toast; toast.el.classList.add('panning'); toast.el.style.transition = ''; toast.startingXPos = Toast._xPos(e); toast.time = Date.now(); toast.xPos = Toast._xPos(e); } } /** * Drag move handler * @param {Event} e */ static _onDragMove(e) { if (!!Toast._draggedToast) { e.preventDefault(); let toast = Toast._draggedToast; toast.deltaX = Math.abs(toast.xPos - Toast._xPos(e)); toast.xPos = Toast._xPos(e); toast.velocityX = toast.deltaX / (Date.now() - toast.time); toast.time = Date.now(); let totalDeltaX = toast.xPos - toast.startingXPos; let activationDistance = toast.el.offsetWidth * toast.options.activationPercent; toast.el.style.transform = `translateX(${totalDeltaX}px)`; toast.el.style.opacity = 1 - Math.abs(totalDeltaX / activationDistance); } } /** * End drag handler */ static _onDragEnd() { if (!!Toast._draggedToast) { let toast = Toast._draggedToast; toast.panning = false; toast.el.classList.remove('panning'); let totalDeltaX = toast.xPos - toast.startingXPos; let activationDistance = toast.el.offsetWidth * toast.options.activationPercent; let shouldBeDismissed = Math.abs(totalDeltaX) > activationDistance || toast.velocityX > 1; // Remove toast if (shouldBeDismissed) { toast.wasSwiped = true; toast.dismiss(); // Animate toast back to original position } else { toast.el.style.transition = 'transform .2s, opacity .2s'; toast.el.style.transform = ''; toast.el.style.opacity = ''; } Toast._draggedToast = null; } } /** * Get x position of mouse or touch event * @param {Event} e */ static _xPos(e) { if (e.targetTouches && e.targetTouches.length >= 1) { return e.targetTouches[0].clientX; } // mouse event return e.clientX; } /** * Remove all toasts */ static dismissAll() { for (let toastIndex in Toast._toasts) { Toast._toasts[toastIndex].dismiss(); } } /** * Create toast and append it to toast container */ _createToast() { let toast = document.createElement('div'); toast.classList.add('toast'); // Add custom classes onto toast if (!!this.options.classes.length) { $(toast).addClass(this.options.classes); } // Set content if ( typeof HTMLElement === 'object' ? this.message instanceof HTMLElement : this.message && typeof this.message === 'object' && this.message !== null && this.message.nodeType === 1 && typeof this.message.nodeName === 'string' ) { toast.appendChild(this.message); // Check if it is jQuery object } else if (!!this.message.jquery) { $(toast).append(this.message[0]); // Insert as html; } else { toast.innerHTML = this.message; } // Append toasft Toast._container.appendChild(toast); return toast; } /** * Animate in toast */ _animateIn() { // Animate toast in anim({ targets: this.el, top: 0, opacity: 1, duration: this.options.inDuration, easing: 'easeOutCubic' }); } /** * Create setInterval which automatically removes toast when timeRemaining >= 0 * has been reached */ _setTimer() { if (this.timeRemaining !== Infinity) { this.counterInterval = setInterval(() => { // If toast is not being dragged, decrease its time remaining if (!this.panning) { this.timeRemaining -= 20; } // Animate toast out if (this.timeRemaining <= 0) { this.dismiss(); } }, 20); } } /** * Dismiss toast with animation */ dismiss() { window.clearInterval(this.counterInterval); let activationDistance = this.el.offsetWidth * this.options.activationPercent; if (this.wasSwiped) { this.el.style.transition = 'transform .05s, opacity .05s'; this.el.style.transform = `translateX(${activationDistance}px)`; this.el.style.opacity = 0; } anim({ targets: this.el, opacity: 0, marginTop: -40, duration: this.options.outDuration, easing: 'easeOutExpo', complete: () => { // Call the optional callback if (typeof this.options.completeCallback === 'function') { this.options.completeCallback(); } // Remove toast from DOM this.$el.remove(); Toast._toasts.splice(Toast._toasts.indexOf(this), 1); if (Toast._toasts.length === 0) { Toast._removeContainer(); } } }); } } /** * @static * @memberof Toast * @type {Array.<Toast>} */ Toast._toasts = []; /** * @static * @memberof Toast */ Toast._container = null; /** * @static * @memberof Toast * @type {Toast} */ Toast._draggedToast = null; M.Toast = Toast; M.toast = function(options) { return new Toast(options); }; })(cash, M.anime);
PypiClean
/BifacialSimu-1.2.0-py3-none-any.whl/BifacialSimu_src/Vendor/bifacial_radiance/spectral_utils.py
import numpy as np import pandas as pd from collections.abc import Iterable import os from scipy import integrate class spectral_property(object): """ WRITE DOCSTRING HERE """ def load_file(filepath): with open(filepath, 'r') as infile: meta = next(infile)[:-1] data = pd.read_csv(infile) return spectral_property(data['value'], data['wavelength'], interpolation=meta.split(':')[1]) def to_nm(wavelength, units): unit_conversion = { 'nm': 1, 'um': 1000 } # Verify units are in conversion table if units not in unit_conversion: print("Warning: Unknown unit specified. Options are {}.".format( unit_conversion.keys())) units = 'nm' return wavelength * unit_conversion[units] def _linear_interpolation(self, wavelength_nm): # Find upper and lower index upper_bound = self.data[self.data.index > wavelength_nm].index.min() lower_bound = self.data[self.data.index < wavelength_nm].index.max() # Determine values of surrounding indices upper_val = self.data['value'][upper_bound] lower_val = self.data['value'][lower_bound] # Calculate deltas delta_lambda = upper_bound - lower_bound delta_val = upper_val - lower_val return lower_val + delta_val*(wavelength_nm - lower_bound)/delta_lambda def _nearest_interpolation(self, wavelength_nm): # Find upper and lower index upper_bound = self.data[self.data.index > wavelength_nm].index.min() lower_bound = self.data[self.data.index < wavelength_nm].index.max() # Determine which index is closer if (upper_bound - wavelength_nm) < (wavelength_nm - lower_bound): return self.data['value'][upper_bound] return self.data['value'][lower_bound] def _lower_interpolation(self, wavelength_nm): # Find lower index lower_bound = self.data[self.data.index < wavelength_nm].index.max() return self.data['value'][lower_bound] def _upper_interpolation(self, wavelength_nm): # Find upper index upper_bound = self.data[self.data.index > wavelength_nm].index.min() return self.data['value'][upper_bound] interpolation_methods = { 'linear': _linear_interpolation, 'nearest': _nearest_interpolation, 'lower': _lower_interpolation, 'upper': _upper_interpolation } def __init__(self, values, index, index_units='nm', interpolation=None): # Verify lengths match if len(values) != len(index): print("Warning: Length of values and index must match.") return # Convert inputs to list values = [ val for val in values ] index = [ spectral_property.to_nm(idx, index_units) for idx in index ] # Create DataFrame self.data = pd.DataFrame() self.data['value'] = values self.data['wavelength'] = index self.data = self.data.set_index('wavelength') self.interpolation = None if interpolation in spectral_property.interpolation_methods: self.interpolation = \ spectral_property.interpolation_methods[interpolation] self.interpolation_type = interpolation elif interpolation: print("Warning: Specified interpolation type unknown.") def _get_single(self, wavelength, units): # Convert wavelength to nm wavelength = spectral_property.to_nm(wavelength, units) if wavelength in self.data.index: # If the value for that wavelength is known, return it return self.data['value'][wavelength] elif self.interpolation: # Check wavelength is within range if wavelength < self.data.index.min() or \ wavelength > self.data.index.max(): print("Warning: Requested wavelength outside spectrum.") return None # Return interpolated value return self.interpolation(self, wavelength) return None def __getitem__(self, wavelength, units='nm'): if isinstance(wavelength, Iterable): return np.array([ self._get_single(wl, units) for wl in wavelength ]) return self._get_single(wavelength, units) def to_file(self, filepath, append=False): mode = 'w' if append: mode = 'a' with open(filepath, mode) as outfile: outfile.write(f"interpolation:{self.interpolation_type}\n") self.data.to_csv(outfile) def range(self): # Find upper and lower index upper_bound = self.data.index.max() lower_bound = self.data.index.min() return (lower_bound, upper_bound) def scale_values(self, scaling_factor): self.data['value'] *= scaling_factor def spectral_albedo_smarts(zen, azm, material, min_wavelength=300, max_wavelength=4000): import pySMARTS smarts_res = pySMARTS.SMARTSSpectraZenAzm('30 31', str(zen), str(azm), material, min_wvl=str(min_wavelength), max_wvl=str(max_wavelength)) return spectral_property(smarts_res['Zonal_ground_reflectance'], smarts_res['Wvlgth'], interpolation='linear') def spectral_irradiance_smarts(zen, azm, material='LiteSoil', min_wavelength=300, max_wavelength=4000): import pySMARTS smarts_res = pySMARTS.SMARTSSpectraZenAzm('2 3 4', str(zen), str(azm), material=material, min_wvl=str(min_wavelength), max_wvl=str(max_wavelength)) dni_spectrum = spectral_property(smarts_res['Direct_normal_irradiance'], smarts_res['Wvlgth'], interpolation='linear') dhi_spectrum = spectral_property(smarts_res['Difuse_horizn_irradiance'], smarts_res['Wvlgth'], interpolation='linear') ghi_spectrum = spectral_property(smarts_res['Global_horizn_irradiance'], smarts_res['Wvlgth'], interpolation='linear') return (dni_spectrum, dhi_spectrum, ghi_spectrum) def spectral_irradiance_smarts_SRRL(YEAR, MONTH, DAY, HOUR, ZONE, LATIT, LONGIT, ALTIT, RH, TAIR, SEASON, TDAY, SPR, W, TILT, WAZIM, HEIGHT, ALPHA1, ALPHA2, OMEGL, GG, BETA, TAU5, RHOG, material, IOUT='2 3 4', min_wvl='280', max_wvl='4000'): import pySMARTS smarts_res = pySMARTS.SMARTSSRRL(IOUT=IOUT, YEAR=YEAR,MONTH=MONTH,DAY=DAY,HOUR=HOUR, ZONE=ZONE, LATIT=LATIT, LONGIT=LONGIT, ALTIT=ALTIT, RH=RH, TAIR=TAIR, SEASON=SEASON, TDAY=TDAY, SPR=SPR, W=W, TILT=TILT, WAZIM=WAZIM, HEIGHT=HEIGHT, ALPHA1 = ALPHA1, ALPHA2 = ALPHA2, OMEGL = OMEGL, GG = GG, BETA = BETA, TAU5= TAU5, RHOG=RHOG, material=material, min_wvl=min_wvl, max_wvl=max_wvl) dni_spectrum = spectral_property(smarts_res[smarts_res.keys()[1]], smarts_res['Wvlgth'], interpolation='linear') dhi_spectrum = spectral_property(smarts_res[smarts_res.keys()[2]], smarts_res['Wvlgth'], interpolation='linear') ghi_spectrum = spectral_property(smarts_res[smarts_res.keys()[3]], smarts_res['Wvlgth'], interpolation='linear') return (dni_spectrum, dhi_spectrum, ghi_spectrum) def spectral_albedo_smarts_SRRL(YEAR, MONTH, DAY, HOUR, ZONE, LATIT, LONGIT, ALTIT, RH, TAIR, SEASON, TDAY, SPR, W, TILT, WAZIM, HEIGHT, ALPHA1, ALPHA2, OMEGL, GG, BETA, TAU5, RHOG, material, IOUT='30 31', min_wvl='280', max_wvl='4000'): import pySMARTS smarts_res = pySMARTS.SMARTSSRRL(IOUT=IOUT, YEAR=YEAR,MONTH=MONTH,DAY=DAY,HOUR=HOUR, ZONE=ZONE, LATIT=LATIT, LONGIT=LONGIT, ALTIT=ALTIT, RH=RH, TAIR=TAIR, SEASON=SEASON, TDAY=TDAY, SPR=SPR, W=W, TILT=TILT, WAZIM=WAZIM, HEIGHT=HEIGHT, ALPHA1 = ALPHA1, ALPHA2 = ALPHA2, OMEGL = OMEGL, GG = GG, BETA = BETA, TAU5= TAU5, RHOG=RHOG, material=material, min_wvl=min_wvl, max_wvl=max_wvl) return spectral_property(smarts_res['Zonal_ground_reflectance'], smarts_res['Wvlgth'], interpolation='linear') def generate_spectra(idx, metdata, material=None, spectra_folder=None, scale_spectra=False, scale_albedo=False, scale_albedo_nonspectral_sim=False): """ generate spectral curve for particular material. Requires pySMARTS Parameters ---------- idx : int index of the metdata file to run pySMARTS. metdata : bifacial_radiance MetObj DESCRIPTION. material : string, optional type of material for spectral simulation. Options include: Grass, Gravel, etc. The default is None. spectra_folder : path, optional location to save spectral data. The default is None. scale_spectra : bool, optional DESCRIPTION. The default is False. scale_albedo : bool, optional DESCRIPTION. The default is False. scale_albedo_nonspectral_sim : bool, optional DESCRIPTION. The default is False. Returns ------- spectral_alb : spectral_property class spectral_alb.data: dataframe with frequency and magnitude data. spectral_dni : spectral_property class spectral_dni.data: dataframe with frequency and magnitude data. spectral_dhi : spectral_property class spectral_dhi.data: dataframe with frequency and magnitude data. """ if material is None: material = 'Gravel' # Extract data from metdata dni = metdata.dni[idx] dhi = metdata.dhi[idx] ghi = metdata.ghi[idx] try: alb = metdata.albedo[idx] except TypeError: raise Exception("Error - No 'metdata.albedo' value passed.") solpos = metdata.solpos.iloc[idx] zen = float(solpos.zenith) azm = float(solpos.azimuth) - 180 #lat = metdata.latitude #lon = metdata.longitude #elev = metdata.elevation / 1000 #t = metdata.datetime[idx] # Verify sun up if zen > 90: print("Sun below horizon. Skipping.") return None # Define file suffix # -- CHANGE -- suffix = f'_{idx:04}.txt' # Generate/Load dni and dhi dni_file = os.path.join(spectra_folder, "dni"+suffix) dhi_file = os.path.join(spectra_folder, "dhi"+suffix) ghi_file = os.path.join(spectra_folder, "ghi"+suffix) spectral_dni, spectral_dhi, spectral_ghi = spectral_irradiance_smarts(zen, azm, min_wavelength=300) # SCALING: # If specifed, scale the irradiance spectra based on their respective # measured value. if scale_spectra: dni_scale = dni / spectral_dni.data.apply(lambda g: integrate.trapz(spectral_dni.data.value, x=spectral_dni.data.index)) dhi_scale = dhi / spectral_dhi.data.apply(lambda g: integrate.trapz(spectral_dhi.data.value, x=spectral_dhi.data.index)) ghi_scale = ghi / spectral_ghi.data.apply(lambda g: integrate.trapz(spectral_ghi.data.value, x=spectral_ghi.data.index)) # dni_scale = dni / (10*np.sum(spectral_dni[range(280, 4000, 10)])) # dhi_scale = dhi / (10*np.sum(spectral_dhi[range(280, 4000, 10)])) # ghi_scale = ghi / (10*np.sum(spectral_ghi[range(280, 2501, 10)])) spectral_dni.scale_values(dni_scale.value) spectral_dhi.scale_values(dhi_scale.value) spectral_ghi.scale_values(ghi_scale.value) # Write irradiance spectra #''' spectral_dni.to_file(dni_file) spectral_dhi.to_file(dhi_file) spectral_ghi.to_file(ghi_file) #''' # Generate/Load albedo alb_file = os.path.join(spectra_folder, "alb"+suffix) if material == 'Seasonal': MONTH = metdata.datetime[idx].month if 4 <= MONTH <= 7: material = 'Grass' else: material = 'DryGrass' spectral_alb = spectral_albedo_smarts(zen, azm, material, min_wavelength=300) # If specifed, scale the spectral albedo to have a mean value matching the # measured albedo. if scale_albedo: # option A denom = spectral_alb.data.value * spectral_ghi.data.value # option B #denom = spectral_alb.data # TODO: # Add test to if alb > 1 or alb == 0: print("albedo measured is an incorrect number, not scaling albedo generated") else: alb_scale = alb / denom.apply(lambda g: integrate.trapz(denom.values, x=spectral_alb.data.index)) spectral_alb.scale_values(alb_scale.values) if scale_albedo_nonspectral_sim: sim_alb = np.sum(spectral_alb[range(280, 2501, 10)] * spectral_ghi[range(280, 2501, 10)])/np.sum(spectral_ghi[range(280, 2501, 10)]) if alb > 1: print("albedo measured is an incorrect number, not scaling albedo generated") else: alb_scale = alb / sim_alb spectral_alb.scale_values(alb_scale) print(alb, sim_alb, alb_scale) # Write albedo file spectral_alb.to_file(alb_file) return (spectral_alb, spectral_dni, spectral_dhi)
PypiClean
/CsuPTMD-1.0.12.tar.gz/CsuPTMD-1.0.12/PTMD/maskrcnn_benchmark/apex/apex/amp/opt.py
import contextlib import warnings from .scaler import LossScaler, master_params from ._amp_state import maybe_print import numpy as np class OptimWrapper(object): def __init__(self, optimizer, amp_handle, num_loss): self._optimizer = optimizer self._amp_handle = amp_handle self._num_loss = num_loss self._loss_idx = 0 self._skip_next = [False] * num_loss self._loss_scaler = [LossScaler('dynamic') for _ in range(num_loss)] @contextlib.contextmanager def scale_loss(self, loss): if not self._amp_handle.is_active(): yield loss return # When there are multiple losses per-optimizer, we need # to save out current grad accumulation, since we won't be # able to unscale this particulare loss once the grads are # all mixed together. cached_grads = [] if self._loss_idx > 0: for p in master_params(self._optimizer): if p.grad is not None: cached_grads.append(p.grad.data.detach().clone()) else: cached_grads.append(None) self._optimizer.zero_grad() loss_scale = self._cur_loss_scaler().loss_scale() yield loss * loss_scale self._cur_loss_scaler().clear_overflow_state() self._cur_loss_scaler().unscale( master_params(self._optimizer), master_params(self._optimizer), loss_scale) self._skip_next[self._loss_idx] = self._cur_loss_scaler().update_scale() self._loss_idx += 1 if len(cached_grads) > 0: for p, cached_grad in zip(master_params(self._optimizer), cached_grads): if cached_grad is not None: p.grad.data.add_(cached_grad) cached_grads = [] def _cur_loss_scaler(self): assert 0 <= self._loss_idx < self._num_loss return self._loss_scaler[self._loss_idx] def step(self, closure=None): if not self._amp_handle.is_active(): return self._optimizer.step(closure=closure) self._loss_idx = 0 for group in self._optimizer.param_groups: for p in group['params']: self._amp_handle.remove_cache(p) if closure is not None: raise NotImplementedError( 'The `closure` argument is unsupported by the amp ' + 'optimizer wrapper.') if any(self._skip_next): maybe_print('Gradient overflow, skipping update') self._skip_next = [False] * self._num_loss else: return self._optimizer.step(closure=closure) # Forward any attribute lookups def __getattr__(self, attr): return getattr(self._optimizer, attr) # Forward all torch.optim.Optimizer methods def __getstate__(self): return self._optimizer.__getstate__() def __setstate__(self): return self._optimizer.__setstate__() def __repr__(self): return self._optimizer.__repr__() def state_dict(self): return self._optimizer.state_dict() def load_state_dict(self, state_dict): return self._optimizer.load_state_dict(state_dict) def zero_grad(self): return self._optimizer.zero_grad() def add_param_group(self, param_group): return self._optimizer.add_param_group(param_group)
PypiClean
/IPFX-1.0.8.tar.gz/IPFX-1.0.8/ipfx/x_to_nwb/conversion_utils.py
import math from pkg_resources import get_distribution, DistributionNotFound import os from subprocess import Popen, PIPE import numpy as np from pynwb.icephys import CurrentClampStimulusSeries, VoltageClampStimulusSeries, CurrentClampSeries, \ VoltageClampSeries, IZeroClampSeries try: from pynwb.form.backends.hdf5.h5_utils import H5DataIO except ModuleNotFoundError: from hdmf.backends.hdf5.h5_utils import H5DataIO PLACEHOLDER = "PLACEHOLDER" V_CLAMP_MODE = 0 I_CLAMP_MODE = 1 I0_CLAMP_MODE = 2 # TODO Use the pint package if doing that manually gets too involved def parseUnit(unitString): """ Split a SI unit string with prefix into the base unit and the prefix (as number). """ if unitString == "pA": return 1e-12, "A" elif unitString == "nA": return 1e-9, "A" elif unitString == "A": return 1.0, "A" elif unitString == "mV": return 1e-3, "V" elif unitString == "V": return 1.0, "V" else: raise ValueError(f"Unsupported unit string {unitString}.") def getStimulusSeriesClass(clampMode): """ Return the appropriate pynwb stimulus class for the given clamp mode. """ if clampMode == V_CLAMP_MODE: return VoltageClampStimulusSeries elif clampMode == I_CLAMP_MODE: return CurrentClampStimulusSeries elif clampMode == I0_CLAMP_MODE: return None else: raise ValueError(f"Unsupported clamp mode {clampMode}.") def getAcquiredSeriesClass(clampMode): """ Return the appropriate pynwb acquisition class for the given clamp mode. """ if clampMode == V_CLAMP_MODE: return VoltageClampSeries elif clampMode == I_CLAMP_MODE: return CurrentClampSeries elif clampMode == I0_CLAMP_MODE: return IZeroClampSeries else: raise ValueError(f"Unsupported clamp mode {clampMode}.") def createSeriesName(prefix, number, total): """ Format a unique series group name of the form `prefix_XXX` where `XXX` is the formatted `number` long enough for `total` number of groups. """ return f"{prefix}_{number:0{math.ceil(math.log(total, 10))}d}", number + 1 def createCycleID(numbers, total): """ Create an integer from all numbers which is unique for that combination. :param: numbers: Iterable holding non-negative integer numbers :param: total: Total number of TimeSeries written to the NWB file """ assert total > 0, f"Unexpected value for total {total}" places = max(math.ceil(math.log(total, 10)), 1) result = 0 for idx, n in enumerate(reversed(numbers)): assert n >= 0, f"Unexpected value {n} at index {idx}" assert n < 10**places, f"Unexpected value {n} which is larger than {total}" result += n * (10**(idx * places)) return result def convertDataset(array, compression): """ Convert to FP32 and optionally request compression for the given array and return it wrapped. """ data = array.astype(np.float32) if compression: return H5DataIO(data=data, compression=True, chunks=True, shuffle=True, fletcher32=True) return data def getPackageInfo(): """ Return a dictionary with version information for the allensdk package """ def get_git_version(): """ Returns the project version as derived by git. """ path = os.path.dirname(__file__) branch = Popen(f'git -C "{path}" rev-parse --abbrev-ref HEAD', stdout=PIPE, shell=True).stdout.read().rstrip().decode('ascii') rev = Popen(f'git -C "{path}" describe --always --tags', stdout=PIPE, shell=True).stdout.read().rstrip().decode('ascii') if branch.startswith('fatal') or rev.startswith('fatal'): raise ValueError("Could not determine git version") return f"({branch}) {rev}" try: package_version = get_distribution('allensdk').version except DistributionNotFound: # not installed as a package package_version = None try: git_version = get_git_version() except ValueError: # not in a git repostitory git_version = None version_info = {"repo": "https://github.com/AllenInstitute/ipfx", "package_version": "Unknown", "git_revision": "Unknown"} if package_version: version_info["package_version"] = package_version if git_version: version_info["git_revision"] = git_version return version_info def getStimulusRecordIndex(sweep): return sweep.StimCount - 1 def getChannelRecordIndex(pgf, sweep, trace): """ Given a pgf node, a SweepRecord and TraceRecord this returns the corresponding `ChannelRecordStimulus` node as index. """ stimRec = pgf[getStimulusRecordIndex(sweep)] for idx, channelRec in enumerate(stimRec): if channelRec.AdcChannel == trace.AdcChannel: return idx return None def clampModeToString(clampMode): """ Return the given clamp mode as human readable string. Useful for error messages. """ if clampMode == I_CLAMP_MODE: return "I_CLAMP_MODE" elif clampMode == V_CLAMP_MODE: return "V_CLAMP_MODE" elif clampMode == I0_CLAMP_MODE: return "I0_CLAMP_MODE" else: raise ValueError(f"Unknown clampMode {clampMode}")
PypiClean
/NlvWxPython-4.2.0-cp37-cp37m-win_amd64.whl/wx/lib/editor/editor.py
import os import time import wx from . import selection from . import images #---------------------------- def ForceBetween(min, val, max): if val > max: return max if val < min: return min return val def LineTrimmer(lineOfText): if len(lineOfText) == 0: return "" elif lineOfText[-1] == '\r': return lineOfText[:-1] else: return lineOfText def LineSplitter(text): return map (LineTrimmer, text.split('\n')) #---------------------------- class Scroller: def __init__(self, parent): self.parent = parent self.ow = 0 self.oh = 0 self.ox = 0 self.oy = 0 def SetScrollbars(self, fw, fh, w, h, x, y): if (self.ow != w or self.oh != h or self.ox != x or self.oy != y): self.parent.SetScrollbars(fw, fh, w, h, x, y) self.ow = w self.oh = h self.ox = x self.oy = y #---------------------------------------------------------------------- class Editor(wx.ScrolledWindow): def __init__(self, parent, id, pos=wx.DefaultPosition, size=wx.DefaultSize, style=0): wx.ScrolledWindow.__init__(self, parent, id, pos, size, style|wx.WANTS_CHARS) self.isDrawing = False self.InitCoords() self.InitFonts() self.SetColors() self.MapEvents() self.LoadImages() self.InitDoubleBuffering() self.InitScrolling() self.SelectOff() self.SetFocus() self.SetText([""]) self.SpacesPerTab = 4 ##------------------ Init stuff def InitCoords(self): self.cx = 0 self.cy = 0 self.oldCx = 0 self.oldCy = 0 self.sx = 0 self.sy = 0 self.sw = 0 self.sh = 0 self.sco_x = 0 self.sco_y = 0 def MapEvents(self): self.Bind(wx.EVT_LEFT_DOWN, self.OnLeftDown) self.Bind(wx.EVT_LEFT_UP, self.OnLeftUp) self.Bind(wx.EVT_MOTION, self.OnMotion) self.Bind(wx.EVT_SCROLLWIN, self.OnScroll) self.Bind(wx.EVT_CHAR, self.OnChar) self.Bind(wx.EVT_PAINT, self.OnPaint) self.Bind(wx.EVT_SIZE, self.OnSize) self.Bind(wx.EVT_WINDOW_DESTROY, self.OnDestroy) self.Bind(wx.EVT_ERASE_BACKGROUND, self.OnEraseBackground) ##------------------- Platform-specific stuff def NiceFontForPlatform(self): if wx.Platform == "__WXMSW__": font = wx.Font(10, wx.FONTFAMILY_MODERN, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL) else: font = wx.Font(12, wx.FONTFAMILY_MODERN, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL, False) return font def UnixKeyHack(self, key): # # this will be obsolete when we get the new wxWindows patch # # 12/14/03 - jmg # # Which patch? I don't know if this is needed, but I don't know # why it's here either. Play it safe; leave it in. # if key <= 26: key += ord('a') - 1 return key ##-------------------- UpdateView/Cursor code def OnSize(self, event): self.AdjustScrollbars() self.SetFocus() def SetCharDimensions(self): # TODO: We need a code review on this. It appears that Linux # improperly reports window dimensions when the scrollbar's there. self.bw, self.bh = self.GetClientSize() if wx.Platform == "__WXMSW__": self.sh = int(self.bh / self.fh) self.sw = int(self.bw / self.fw) - 1 else: self.sh = int(self.bh / self.fh) if self.LinesInFile() >= self.sh: self.bw = self.bw - wx.SystemSettings.GetMetric(wx.SYS_VSCROLL_X) self.sw = int(self.bw / self.fw) - 1 self.sw = int(self.bw / self.fw) - 1 if self.CalcMaxLineLen() >= self.sw: self.bh = self.bh - wx.SystemSettings.GetMetric(wx.SYS_HSCROLL_Y) self.sh = int(self.bh / self.fh) def UpdateView(self, dc = None): if dc is None: dc = wx.ClientDC(self) if dc.IsOk(): self.SetCharDimensions() self.KeepCursorOnScreen() self.DrawSimpleCursor(0,0, dc, True) self.Draw(dc) def OnPaint(self, event): dc = wx.PaintDC(self) if self.isDrawing: return self.isDrawing = True self.UpdateView(dc) wx.CallAfter(self.AdjustScrollbars) self.isDrawing = False def OnEraseBackground(self, evt): pass ##-------------------- Drawing code def InitFonts(self): dc = wx.ClientDC(self) self.font = self.NiceFontForPlatform() dc.SetFont(self.font) self.fw = dc.GetCharWidth() self.fh = dc.GetCharHeight() def SetColors(self): self.fgColor = wx.BLACK self.bgColor = wx.WHITE self.selectColor = wx.Colour(238, 220, 120) # r, g, b = emacsOrange def InitDoubleBuffering(self): pass def DrawEditText(self, t, x, y, dc): dc.DrawText(t, x * self.fw, y * self.fh) def DrawLine(self, line, dc): if self.IsLine(line): l = line t = self.lines[l] dc.SetTextForeground(self.fgColor) fragments = selection.Selection( self.SelectBegin, self.SelectEnd, self.sx, self.sw, line, t) x = 0 for (data, selected) in fragments: if selected: dc.SetTextBackground(self.selectColor) if x == 0 and len(data) == 0 and len(fragments) == 1: data = ' ' else: dc.SetTextBackground(self.bgColor) self.DrawEditText(data, x, line - self.sy, dc) x += len(data) def Draw(self, odc=None): if not odc: odc = wx.ClientDC(self) dc = wx.BufferedDC(odc) if dc.IsOk(): dc.SetFont(self.font) dc.SetBackgroundMode(wx.SOLID) dc.SetTextBackground(self.bgColor) dc.SetTextForeground(self.fgColor) dc.SetBackground(wx.Brush(self.bgColor)) dc.Clear() for line in range(self.sy, self.sy + self.sh): self.DrawLine(line, dc) if len(self.lines) < self.sh + self.sy: self.DrawEofMarker(dc) self.DrawCursor(dc) ##------------------ eofMarker stuff def LoadImages(self): self.eofMarker = images.EofImage.GetBitmap() def DrawEofMarker(self,dc): x = 0 y = (len(self.lines) - self.sy) * self.fh hasTransparency = 1 dc.DrawBitmap(self.eofMarker, x, y, hasTransparency) ##------------------ cursor-related functions def DrawCursor(self, dc = None): if not dc: dc = wx.ClientDC(self) if (self.LinesInFile())<self.cy: #-1 ? self.cy = self.LinesInFile()-1 s = self.lines[self.cy] x = self.cx - self.sx y = self.cy - self.sy self.DrawSimpleCursor(x, y, dc) def DrawSimpleCursor(self, xp, yp, dc = None, old=False): if not dc: dc = wx.ClientDC(self) if old: xp = self.sco_x yp = self.sco_y szx = self.fw szy = self.fh x = xp * szx y = yp * szy dc.Blit(x,y, szx,szy, dc, x,y, wx.XOR) self.sco_x = xp self.sco_y = yp ##-------- Enforcing screen boundaries, cursor movement def CalcMaxLineLen(self): """get length of longest line on screen""" maxlen = 0 for line in self.lines[self.sy:self.sy+self.sh]: if len(line) >maxlen: maxlen = len(line) return maxlen def KeepCursorOnScreen(self): self.sy = ForceBetween(max(0, self.cy-self.sh), self.sy, self.cy) self.sx = ForceBetween(max(0, self.cx-self.sw), self.sx, self.cx) self.AdjustScrollbars() def HorizBoundaries(self): self.SetCharDimensions() maxLineLen = self.CalcMaxLineLen() self.sx = ForceBetween(0, self.sx, max(self.sw, maxLineLen - self.sw + 1)) self.cx = ForceBetween(self.sx, self.cx, self.sx + self.sw - 1) def VertBoundaries(self): self.SetCharDimensions() self.sy = ForceBetween(0, self.sy, max(self.sh, self.LinesInFile() - self.sh + 1)) self.cy = ForceBetween(self.sy, self.cy, self.sy + self.sh - 1) def cVert(self, num): self.cy = self.cy + num self.cy = ForceBetween(0, self.cy, self.LinesInFile() - 1) self.sy = ForceBetween(self.cy - self.sh + 1, self.sy, self.cy) self.cx = min(self.cx, self.CurrentLineLength()) def cHoriz(self, num): self.cx = self.cx + num self.cx = ForceBetween(0, self.cx, self.CurrentLineLength()) self.sx = ForceBetween(self.cx - self.sw + 1, self.sx, self.cx) def AboveScreen(self, row): return row < self.sy def BelowScreen(self, row): return row >= self.sy + self.sh def LeftOfScreen(self, col): return col < self.sx def RightOfScreen(self, col): return col >= self.sx + self.sw ##----------------- data structure helper functions def GetText(self): return self.lines def SetText(self, lines): self.InitCoords() self.lines = lines self.UnTouchBuffer() self.SelectOff() self.AdjustScrollbars() self.UpdateView(None) def IsLine(self, lineNum): return (0<=lineNum) and (lineNum<self.LinesInFile()) def GetTextLine(self, lineNum): if self.IsLine(lineNum): return self.lines[lineNum] return "" def SetTextLine(self, lineNum, text): if self.IsLine(lineNum): self.lines[lineNum] = text def CurrentLineLength(self): return len(self.lines[self.cy]) def LinesInFile(self): return len(self.lines) def UnTouchBuffer(self): self.bufferTouched = False def BufferWasTouched(self): return self.bufferTouched def TouchBuffer(self): self.bufferTouched = True ##-------------------------- Mouse scroll timing functions def InitScrolling(self): # we don't rely on the windows system to scroll for us; we just # redraw the screen manually every time self.EnableScrolling(False, False) self.nextScrollTime = 0 self.SCROLLDELAY = 0.050 # seconds self.scrollTimer = wx.Timer(self) self.scroller = Scroller(self) def CanScroll(self): if time.time() > self.nextScrollTime: self.nextScrollTime = time.time() + self.SCROLLDELAY return True else: return False def SetScrollTimer(self): oneShot = True self.scrollTimer.Start(1000*self.SCROLLDELAY/2, oneShot) self.Bind(wx.EVT_TIMER, self.OnTimer) def OnTimer(self, event): screenX, screenY = wx.GetMousePosition() x, y = self.ScreenToClient((screenX, screenY)) self.MouseToRow(y) self.MouseToCol(x) self.SelectUpdate() ##-------------------------- Mouse off screen functions def HandleAboveScreen(self, row): self.SetScrollTimer() if self.CanScroll(): row = self.sy - 1 row = max(0, row) self.cy = row def HandleBelowScreen(self, row): self.SetScrollTimer() if self.CanScroll(): row = self.sy + self.sh row = min(row, self.LinesInFile() - 1) self.cy = row def HandleLeftOfScreen(self, col): self.SetScrollTimer() if self.CanScroll(): col = self.sx - 1 col = max(0,col) self.cx = col def HandleRightOfScreen(self, col): self.SetScrollTimer() if self.CanScroll(): col = self.sx + self.sw col = min(col, self.CurrentLineLength()) self.cx = col ##------------------------ mousing functions def MouseToRow(self, mouseY): row = self.sy + int(mouseY / self.fh) if self.AboveScreen(row): self.HandleAboveScreen(row) elif self.BelowScreen(row): self.HandleBelowScreen(row) else: self.cy = min(row, self.LinesInFile() - 1) def MouseToCol(self, mouseX): col = self.sx + int(mouseX / self.fw) if self.LeftOfScreen(col): self.HandleLeftOfScreen(col) elif self.RightOfScreen(col): self.HandleRightOfScreen(col) else: self.cx = min(col, self.CurrentLineLength()) def MouseToCursor(self, event): self.MouseToRow(event.GetY()) self.MouseToCol(event.GetX()) def OnMotion(self, event): if event.LeftIsDown() and self.HasCapture(): self.Selecting = True self.MouseToCursor(event) self.SelectUpdate() def OnLeftDown(self, event): self.MouseToCursor(event) self.SelectBegin = (self.cy, self.cx) self.SelectEnd = None self.UpdateView() self.CaptureMouse() self.SetFocus() def OnLeftUp(self, event): if not self.HasCapture(): return if self.SelectEnd is None: self.OnClick() else: self.Selecting = False self.SelectNotify(False, self.SelectBegin, self.SelectEnd) self.ReleaseMouse() self.scrollTimer.Stop() #------------------------- Scrolling def HorizScroll(self, event, eventType): maxLineLen = self.CalcMaxLineLen() if eventType == wx.wxEVT_SCROLLWIN_LINEUP: self.sx -= 1 elif eventType == wx.wxEVT_SCROLLWIN_LINEDOWN: self.sx += 1 elif eventType == wx.wxEVT_SCROLLWIN_PAGEUP: self.sx -= self.sw elif eventType == wx.wxEVT_SCROLLWIN_PAGEDOWN: self.sx += self.sw elif eventType == wx.wxEVT_SCROLLWIN_TOP: self.sx = self.cx = 0 elif eventType == wx.wxEVT_SCROLLWIN_BOTTOM: self.sx = maxLineLen - self.sw self.cx = maxLineLen else: self.sx = event.GetPosition() self.HorizBoundaries() def VertScroll(self, event, eventType): if eventType == wx.wxEVT_SCROLLWIN_LINEUP: self.sy -= 1 elif eventType == wx.wxEVT_SCROLLWIN_LINEDOWN: self.sy += 1 elif eventType == wx.wxEVT_SCROLLWIN_PAGEUP: self.sy -= self.sh elif eventType == wx.wxEVT_SCROLLWIN_PAGEDOWN: self.sy += self.sh elif eventType == wx.wxEVT_SCROLLWIN_TOP: self.sy = self.cy = 0 elif eventType == wx.wxEVT_SCROLLWIN_BOTTOM: self.sy = self.LinesInFile() - self.sh self.cy = self.LinesInFile() else: self.sy = event.GetPosition() self.VertBoundaries() def OnScroll(self, event): dir = event.GetOrientation() eventType = event.GetEventType() if dir == wx.HORIZONTAL: self.HorizScroll(event, eventType) else: self.VertScroll(event, eventType) self.UpdateView() def AdjustScrollbars(self): if self: for i in range(2): self.SetCharDimensions() self.scroller.SetScrollbars( self.fw, self.fh, self.CalcMaxLineLen()+3, max(self.LinesInFile()+1, self.sh), self.sx, self.sy) #------------ backspace, delete, return def BreakLine(self, event): if self.IsLine(self.cy): t = self.lines[self.cy] self.lines = self.lines[:self.cy] + [t[:self.cx],t[self.cx:]] + self.lines[self.cy+1:] self.cVert(1) self.cx = 0 self.TouchBuffer() def InsertChar(self,char): if self.IsLine(self.cy): t = self.lines[self.cy] t = t[:self.cx] + char + t[self.cx:] self.SetTextLine(self.cy, t) self.cHoriz(1) self.TouchBuffer() def JoinLines(self): t1 = self.lines[self.cy] t2 = self.lines[self.cy+1] self.cx = len(t1) self.lines = self.lines[:self.cy] + [t1 + t2] + self.lines[self.cy+2:] self.TouchBuffer() def DeleteChar(self,x,y,oldtext): newtext = oldtext[:x] + oldtext[x+1:] self.SetTextLine(y, newtext) self.TouchBuffer() def BackSpace(self, event): t = self.GetTextLine(self.cy) if self.cx>0: self.DeleteChar(self.cx-1,self.cy,t) self.cHoriz(-1) self.TouchBuffer() elif self.cx == 0: if self.cy > 0: self.cy -= 1 self.JoinLines() self.TouchBuffer() else: wx.Bell() def Delete(self, event): t = self.GetTextLine(self.cy) if self.cx<len(t): self.DeleteChar(self.cx,self.cy,t) self.TouchBuffer() else: if self.cy < len(self.lines) - 1: self.JoinLines() self.TouchBuffer() def Escape(self, event): self.SelectOff() def TabKey(self, event): numSpaces = self.SpacesPerTab - (self.cx % self.SpacesPerTab) self.SingleLineInsert(' ' * numSpaces) ##----------- selection routines def SelectUpdate(self): self.SelectEnd = (self.cy, self.cx) self.SelectNotify(self.Selecting, self.SelectBegin, self.SelectEnd) self.UpdateView() def NormalizedSelect(self): (begin, end) = (self.SelectBegin, self.SelectEnd) (bRow, bCol) = begin (eRow, eCol) = end if (bRow < eRow): return (begin, end) elif (eRow < bRow): return (end, begin) else: if (bCol < eCol): return (begin, end) else: return (end, begin) def FindSelection(self): if self.SelectEnd is None or self.SelectBegin is None: wx.Bell() return None (begin, end) = self.NormalizedSelect() (bRow, bCol) = begin (eRow, eCol) = end return (bRow, bCol, eRow, eCol) def SelectOff(self): self.SelectBegin = None self.SelectEnd = None self.Selecting = False self.SelectNotify(False,None,None) def CopySelection(self, event): selection = self.FindSelection() if selection is None: return (bRow, bCol, eRow, eCol) = selection if bRow == eRow: self.SingleLineCopy(bRow, bCol, eCol) else: self.MultipleLineCopy(bRow, bCol, eRow, eCol) def OnCopySelection(self, event): self.CopySelection(event) self.SelectOff() def CopyToClipboard(self, linesOfText): do = wx.TextDataObject() do.SetText(os.linesep.join(linesOfText)) wx.TheClipboard.Open() wx.TheClipboard.SetData(do) wx.TheClipboard.Close() def SingleLineCopy(self, Row, bCol, eCol): Line = self.GetTextLine(Row) self.CopyToClipboard([Line[bCol:eCol]]) def MultipleLineCopy(self, bRow, bCol, eRow, eCol): bLine = self.GetTextLine(bRow)[bCol:] eLine = self.GetTextLine(eRow)[:eCol] self.CopyToClipboard([bLine] + [l for l in self.lines[bRow + 1:eRow]] + [eLine]) def OnDeleteSelection(self, event): selection = self.FindSelection() if selection is None: return (bRow, bCol, eRow, eCol) = selection if bRow == eRow: self.SingleLineDelete(bRow, bCol, eCol) else: self.MultipleLineDelete(bRow, bCol, eRow, eCol) self.TouchBuffer() self.cy = bRow self.cx = bCol self.SelectOff() self.UpdateView() def SingleLineDelete(self, Row, bCol, eCol): ModLine = self.GetTextLine(Row) ModLine = ModLine[:bCol] + ModLine[eCol:] self.SetTextLine(Row,ModLine) def MultipleLineDelete(self, bRow, bCol, eRow, eCol): bLine = self.GetTextLine(bRow) eLine = self.GetTextLine(eRow) ModLine = bLine[:bCol] + eLine[eCol:] self.lines[bRow:eRow + 1] = [ModLine] def OnPaste(self, event): do = wx.TextDataObject() wx.TheClipboard.Open() success = wx.TheClipboard.GetData(do) wx.TheClipboard.Close() if success: pastedLines = LineSplitter(do.GetText()) else: wx.Bell() return if len(pastedLines) == 0: wx.Bell() return elif len(pastedLines) == 1: self.SingleLineInsert(pastedLines[0]) else: self.MultipleLinePaste(pastedLines) def SingleLineInsert(self, newText): ModLine = self.GetTextLine(self.cy) ModLine = ModLine[:self.cx] + newText + ModLine[self.cx:] self.SetTextLine(self.cy, ModLine) self.cHoriz(len(newText)) self.TouchBuffer() self.UpdateView() def MultipleLinePaste(self, pastedLines): FirstLine = LastLine = self.GetTextLine(self.cy) FirstLine = FirstLine[:self.cx] + pastedLines[0] LastLine = pastedLines[-1] + LastLine[self.cx:] NewSlice = [FirstLine] NewSlice += [l for l in pastedLines[1:-1]] NewSlice += [LastLine] self.lines[self.cy:self.cy + 1] = NewSlice self.cy = self.cy + len(pastedLines)-1 self.cx = len(pastedLines[-1]) self.TouchBuffer() self.UpdateView() def OnCutSelection(self,event): self.CopySelection(event) self.OnDeleteSelection(event) #-------------- Keyboard movement implementations def MoveDown(self, event): self.cVert(+1) def MoveUp(self, event): self.cVert(-1) def MoveLeft(self, event): if self.cx == 0: if self.cy == 0: wx.Bell() else: self.cVert(-1) self.cx = self.CurrentLineLength() else: self.cx -= 1 def MoveRight(self, event): linelen = self.CurrentLineLength() if self.cx == linelen: if self.cy == len(self.lines) - 1: wx.Bell() else: self.cx = 0 self.cVert(1) else: self.cx += 1 def MovePageDown(self, event): self.cVert(self.sh) def MovePageUp(self, event): self.cVert(-self.sh) def MoveHome(self, event): self.cx = 0 def MoveEnd(self, event): self.cx = self.CurrentLineLength() def MoveStartOfFile(self, event): self.cy = 0 self.cx = 0 def MoveEndOfFile(self, event): self.cy = len(self.lines) - 1 self.cx = self.CurrentLineLength() #-------------- Key handler mapping tables def SetMoveSpecialFuncs(self, action): action[wx.WXK_DOWN] = self.MoveDown action[wx.WXK_UP] = self.MoveUp action[wx.WXK_LEFT] = self.MoveLeft action[wx.WXK_RIGHT] = self.MoveRight action[wx.WXK_PAGEDOWN] = self.MovePageDown action[wx.WXK_PAGEUP] = self.MovePageUp action[wx.WXK_HOME] = self.MoveHome action[wx.WXK_END] = self.MoveEnd def SetMoveSpecialControlFuncs(self, action): action[wx.WXK_HOME] = self.MoveStartOfFile action[wx.WXK_END] = self.MoveEndOfFile def SetAltFuncs(self, action): # subclass implements pass def SetControlFuncs(self, action): action['c'] = self.OnCopySelection action['d'] = self.OnDeleteSelection action['v'] = self.OnPaste action['x'] = self.OnCutSelection def SetSpecialControlFuncs(self, action): action[wx.WXK_INSERT] = self.OnCopySelection def SetShiftFuncs(self, action): action[wx.WXK_DELETE] = self.OnCutSelection action[wx.WXK_INSERT] = self.OnPaste def SetSpecialFuncs(self, action): action[wx.WXK_BACK] = self.BackSpace action[wx.WXK_DELETE] = self.Delete action[wx.WXK_RETURN] = self.BreakLine action[wx.WXK_ESCAPE] = self.Escape action[wx.WXK_TAB] = self.TabKey ##-------------- Logic for key handlers def Move(self, keySettingFunction, key, event): action = {} keySettingFunction(action) if not key in action: return False if event.ShiftDown(): if not self.Selecting: self.Selecting = True self.SelectBegin = (self.cy, self.cx) action[key](event) self.SelectEnd = (self.cy, self.cx) else: action[key](event) if self.Selecting: self.Selecting = False self.SelectNotify(self.Selecting, self.SelectBegin, self.SelectEnd) self.UpdateView() return True def MoveSpecialKey(self, event, key): return self.Move(self.SetMoveSpecialFuncs, key, event) def MoveSpecialControlKey(self, event, key): if not event.ControlDown(): return False return self.Move(self.SetMoveSpecialControlFuncs, key, event) def Dispatch(self, keySettingFunction, key, event): action = {} keySettingFunction(action) if key in action: action[key](event) self.UpdateView() return True return False def ModifierKey(self, key, event, modifierKeyDown, MappingFunc): if not modifierKeyDown: return False key = self.UnixKeyHack(key) try: key = chr(key) except Exception: return False if not self.Dispatch(MappingFunc, key, event): wx.Bell() return True def ControlKey(self, event, key): return self.ModifierKey(key, event, event.ControlDown(), self.SetControlFuncs) def AltKey(self, event, key): return self.ModifierKey(key, event, event.AltDown(), self.SetAltFuncs) def SpecialControlKey(self, event, key): if not event.ControlDown(): return False if not self.Dispatch(self.SetSpecialControlFuncs, key, event): wx.Bell() return True def ShiftKey(self, event, key): if not event.ShiftDown(): return False return self.Dispatch(self.SetShiftFuncs, key, event) def NormalChar(self, event, key): self.SelectOff() # regular ascii if not self.Dispatch(self.SetSpecialFuncs, key, event): if (key>31) and (key<256): self.InsertChar(chr(key)) else: wx.Bell() return self.UpdateView() self.AdjustScrollbars() def OnChar(self, event): key = event.GetKeyCode() filters = [self.AltKey, self.MoveSpecialControlKey, self.ControlKey, self.SpecialControlKey, self.MoveSpecialKey, self.ShiftKey, self.NormalChar] for filter in filters: if filter(event,key): break return 0 #----------------------- Eliminate memory leaks def OnDestroy(self, event): self.mdc = None self.odc = None self.bgColor = None self.fgColor = None self.font = None self.selectColor = None self.scrollTimer = None self.eofMarker = None #-------------------- Abstract methods for subclasses def OnClick(self): pass def SelectNotify(self, Selecting, SelectionBegin, SelectionEnd): pass
PypiClean
/CSUMMDET-1.0.23.tar.gz/CSUMMDET-1.0.23/mmdet/models/backbones/hrnet.py
import logging import torch.nn as nn from mmcv.cnn import constant_init, kaiming_init from mmcv.runner import load_checkpoint from torch.nn.modules.batchnorm import _BatchNorm from ..registry import BACKBONES from ..utils import build_conv_layer, build_norm_layer from .resnet import BasicBlock, Bottleneck class HRModule(nn.Module): """ High-Resolution Module for HRNet. In this module, every branch has 4 BasicBlocks/Bottlenecks. Fusion/Exchange is in this module. """ def __init__(self, num_branches, blocks, num_blocks, in_channels, num_channels, multiscale_output=True, with_cp=False, conv_cfg=None, norm_cfg=dict(type='BN')): super(HRModule, self).__init__() self._check_branches(num_branches, num_blocks, in_channels, num_channels) self.in_channels = in_channels self.num_branches = num_branches self.multiscale_output = multiscale_output self.norm_cfg = norm_cfg self.conv_cfg = conv_cfg self.with_cp = with_cp self.branches = self._make_branches(num_branches, blocks, num_blocks, num_channels) self.fuse_layers = self._make_fuse_layers() self.relu = nn.ReLU(inplace=False) def _check_branches(self, num_branches, num_blocks, in_channels, num_channels): if num_branches != len(num_blocks): error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format( num_branches, len(num_blocks)) raise ValueError(error_msg) if num_branches != len(num_channels): error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format( num_branches, len(num_channels)) raise ValueError(error_msg) if num_branches != len(in_channels): error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format( num_branches, len(in_channels)) raise ValueError(error_msg) def _make_one_branch(self, branch_index, block, num_blocks, num_channels, stride=1): downsample = None if stride != 1 or \ self.in_channels[branch_index] != \ num_channels[branch_index] * block.expansion: downsample = nn.Sequential( build_conv_layer( self.conv_cfg, self.in_channels[branch_index], num_channels[branch_index] * block.expansion, kernel_size=1, stride=stride, bias=False), build_norm_layer(self.norm_cfg, num_channels[branch_index] * block.expansion)[1]) layers = [] layers.append( block( self.in_channels[branch_index], num_channels[branch_index], stride, downsample=downsample, with_cp=self.with_cp, norm_cfg=self.norm_cfg, conv_cfg=self.conv_cfg)) self.in_channels[branch_index] = \ num_channels[branch_index] * block.expansion for i in range(1, num_blocks[branch_index]): layers.append( block( self.in_channels[branch_index], num_channels[branch_index], with_cp=self.with_cp, norm_cfg=self.norm_cfg, conv_cfg=self.conv_cfg)) return nn.Sequential(*layers) def _make_branches(self, num_branches, block, num_blocks, num_channels): branches = [] for i in range(num_branches): branches.append( self._make_one_branch(i, block, num_blocks, num_channels)) return nn.ModuleList(branches) def _make_fuse_layers(self): if self.num_branches == 1: return None num_branches = self.num_branches in_channels = self.in_channels fuse_layers = [] num_out_branches = num_branches if self.multiscale_output else 1 for i in range(num_out_branches): fuse_layer = [] for j in range(num_branches): if j > i: fuse_layer.append( nn.Sequential( build_conv_layer( self.conv_cfg, in_channels[j], in_channels[i], kernel_size=1, stride=1, padding=0, bias=False), build_norm_layer(self.norm_cfg, in_channels[i])[1], nn.Upsample( scale_factor=2**(j - i), mode='nearest'))) elif j == i: fuse_layer.append(None) else: conv_downsamples = [] for k in range(i - j): if k == i - j - 1: conv_downsamples.append( nn.Sequential( build_conv_layer( self.conv_cfg, in_channels[j], in_channels[i], kernel_size=3, stride=2, padding=1, bias=False), build_norm_layer(self.norm_cfg, in_channels[i])[1])) else: conv_downsamples.append( nn.Sequential( build_conv_layer( self.conv_cfg, in_channels[j], in_channels[j], kernel_size=3, stride=2, padding=1, bias=False), build_norm_layer(self.norm_cfg, in_channels[j])[1], nn.ReLU(inplace=False))) fuse_layer.append(nn.Sequential(*conv_downsamples)) fuse_layers.append(nn.ModuleList(fuse_layer)) return nn.ModuleList(fuse_layers) def forward(self, x): if self.num_branches == 1: return [self.branches[0](x[0])] for i in range(self.num_branches): x[i] = self.branches[i](x[i]) x_fuse = [] for i in range(len(self.fuse_layers)): y = 0 for j in range(self.num_branches): if i == j: y += x[j] else: y += self.fuse_layers[i][j](x[j]) x_fuse.append(self.relu(y)) return x_fuse @BACKBONES.register_module class HRNet(nn.Module): """HRNet backbone. High-Resolution Representations for Labeling Pixels and Regions arXiv: https://arxiv.org/abs/1904.04514 Args: extra (dict): detailed configuration for each stage of HRNet. conv_cfg (dict): dictionary to construct and config conv layer. norm_cfg (dict): dictionary to construct and config norm layer. norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. zero_init_residual (bool): whether to use zero init for last norm layer in resblocks to let them behave as identity. """ blocks_dict = {'BASIC': BasicBlock, 'BOTTLENECK': Bottleneck} def __init__(self, extra, conv_cfg=None, norm_cfg=dict(type='BN'), norm_eval=True, with_cp=False, zero_init_residual=False): super(HRNet, self).__init__() self.extra = extra self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.norm_eval = norm_eval self.with_cp = with_cp self.zero_init_residual = zero_init_residual # stem net self.norm1_name, norm1 = build_norm_layer(self.norm_cfg, 64, postfix=1) self.norm2_name, norm2 = build_norm_layer(self.norm_cfg, 64, postfix=2) self.conv1 = build_conv_layer( self.conv_cfg, 3, 64, kernel_size=3, stride=2, padding=1, bias=False) self.add_module(self.norm1_name, norm1) self.conv2 = build_conv_layer( self.conv_cfg, 64, 64, kernel_size=3, stride=2, padding=1, bias=False) self.add_module(self.norm2_name, norm2) self.relu = nn.ReLU(inplace=True) # stage 1 self.stage1_cfg = self.extra['stage1'] num_channels = self.stage1_cfg['num_channels'][0] block_type = self.stage1_cfg['block'] num_blocks = self.stage1_cfg['num_blocks'][0] block = self.blocks_dict[block_type] stage1_out_channels = num_channels * block.expansion self.layer1 = self._make_layer(block, 64, num_channels, num_blocks) # stage 2 self.stage2_cfg = self.extra['stage2'] num_channels = self.stage2_cfg['num_channels'] block_type = self.stage2_cfg['block'] block = self.blocks_dict[block_type] num_channels = [channel * block.expansion for channel in num_channels] self.transition1 = self._make_transition_layer([stage1_out_channels], num_channels) self.stage2, pre_stage_channels = self._make_stage( self.stage2_cfg, num_channels) # stage 3 self.stage3_cfg = self.extra['stage3'] num_channels = self.stage3_cfg['num_channels'] block_type = self.stage3_cfg['block'] block = self.blocks_dict[block_type] num_channels = [channel * block.expansion for channel in num_channels] self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels) self.stage3, pre_stage_channels = self._make_stage( self.stage3_cfg, num_channels) # stage 4 self.stage4_cfg = self.extra['stage4'] num_channels = self.stage4_cfg['num_channels'] block_type = self.stage4_cfg['block'] block = self.blocks_dict[block_type] num_channels = [channel * block.expansion for channel in num_channels] self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels) self.stage4, pre_stage_channels = self._make_stage( self.stage4_cfg, num_channels) @property def norm1(self): return getattr(self, self.norm1_name) @property def norm2(self): return getattr(self, self.norm2_name) def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): num_branches_cur = len(num_channels_cur_layer) num_branches_pre = len(num_channels_pre_layer) transition_layers = [] for i in range(num_branches_cur): if i < num_branches_pre: if num_channels_cur_layer[i] != num_channels_pre_layer[i]: transition_layers.append( nn.Sequential( build_conv_layer( self.conv_cfg, num_channels_pre_layer[i], num_channels_cur_layer[i], kernel_size=3, stride=1, padding=1, bias=False), build_norm_layer(self.norm_cfg, num_channels_cur_layer[i])[1], nn.ReLU(inplace=True))) else: transition_layers.append(None) else: conv_downsamples = [] for j in range(i + 1 - num_branches_pre): in_channels = num_channels_pre_layer[-1] out_channels = num_channels_cur_layer[i] \ if j == i - num_branches_pre else in_channels conv_downsamples.append( nn.Sequential( build_conv_layer( self.conv_cfg, in_channels, out_channels, kernel_size=3, stride=2, padding=1, bias=False), build_norm_layer(self.norm_cfg, out_channels)[1], nn.ReLU(inplace=True))) transition_layers.append(nn.Sequential(*conv_downsamples)) return nn.ModuleList(transition_layers) def _make_layer(self, block, inplanes, planes, blocks, stride=1): downsample = None if stride != 1 or inplanes != planes * block.expansion: downsample = nn.Sequential( build_conv_layer( self.conv_cfg, inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), build_norm_layer(self.norm_cfg, planes * block.expansion)[1]) layers = [] layers.append( block( inplanes, planes, stride, downsample=downsample, with_cp=self.with_cp, norm_cfg=self.norm_cfg, conv_cfg=self.conv_cfg)) inplanes = planes * block.expansion for i in range(1, blocks): layers.append( block( inplanes, planes, with_cp=self.with_cp, norm_cfg=self.norm_cfg, conv_cfg=self.conv_cfg)) return nn.Sequential(*layers) def _make_stage(self, layer_config, in_channels, multiscale_output=True): num_modules = layer_config['num_modules'] num_branches = layer_config['num_branches'] num_blocks = layer_config['num_blocks'] num_channels = layer_config['num_channels'] block = self.blocks_dict[layer_config['block']] hr_modules = [] for i in range(num_modules): # multi_scale_output is only used for the last module if not multiscale_output and i == num_modules - 1: reset_multiscale_output = False else: reset_multiscale_output = True hr_modules.append( HRModule( num_branches, block, num_blocks, in_channels, num_channels, reset_multiscale_output, with_cp=self.with_cp, norm_cfg=self.norm_cfg, conv_cfg=self.conv_cfg)) return nn.Sequential(*hr_modules), in_channels def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = logging.getLogger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) if self.zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): constant_init(m.norm3, 0) elif isinstance(m, BasicBlock): constant_init(m.norm2, 0) else: raise TypeError('pretrained must be a str or None') def forward(self, x): x = self.conv1(x) x = self.norm1(x) x = self.relu(x) x = self.conv2(x) x = self.norm2(x) x = self.relu(x) x = self.layer1(x) x_list = [] for i in range(self.stage2_cfg['num_branches']): if self.transition1[i] is not None: x_list.append(self.transition1[i](x)) else: x_list.append(x) y_list = self.stage2(x_list) x_list = [] for i in range(self.stage3_cfg['num_branches']): if self.transition2[i] is not None: x_list.append(self.transition2[i](y_list[-1])) else: x_list.append(y_list[i]) y_list = self.stage3(x_list) x_list = [] for i in range(self.stage4_cfg['num_branches']): if self.transition3[i] is not None: x_list.append(self.transition3[i](y_list[-1])) else: x_list.append(y_list[i]) y_list = self.stage4(x_list) return y_list def train(self, mode=True): super(HRNet, self).train(mode) if mode and self.norm_eval: for m in self.modules(): # trick: eval have effect on BatchNorm only if isinstance(m, _BatchNorm): m.eval()
PypiClean
/FireSpark-0.0.26.tar.gz/FireSpark-0.0.26/README.md
FireSpark ========= FireSpark aims to provide Magna ML/MAS team a flexible and standardized library supporting data processing, management, dataset curation, and ETL related activities. A dataset created using FireSpark is stored in [Apache Parquet](https://parquet.apache.org/) format. On top of a Parquet schema, FireSpark takes advantage of open source [Petastorm](https://github.com/uber/petastorm) library to support multidimensional arrays. **This repo is at its early phase development stage. Please contact [me]([email protected]) if you have question, especially on contributing use case specification, requirements, suggestions.** :innocent: Usage Instructions ------------ If you are not a `FireSpark` developer and you would like to have some quick instruction to get started with `FireSpark`, you can stop here and got the [FireSpar-Sandbox](https://elc-github.magna.global/Magna-Autonomous-Systems/FireSpark-Sandbox) repository to have more practical usage guide. The [FireSpar-Sandbox](https://elc-github.magna.global/Magna-Autonomous-Systems/FireSpark-Sandbox) repository is maintained in a par with the `FireSpark` library developments. If you have new feature or functionality request, please use the repository's `issues` to discuss your idea with us. For advanced users and developers, please use the following guides: [Installation](./docs/installation.md) [Protobuf Definitions](./docs/mas_protobuf_def.md) [Get Started](./docs/get_started.md) [Development Guide](./docs/development.md) [Lyftbag Reader](./docs/lyftbag.md) [Dataset Stories -- Downtwon Dataset](./docs/Brampton_Dataset_Information.md) ## Development and Dataset Processing Logs ### 2020.03.19 Brampton Downtown dataset had been successfully processed both to MAS standard databse in **protobuf** message format and to ML trian/eval **Paruqet** file format dataset. Check out and take a look at: - MAS standard database: [mas-standard-database](https://s3.console.aws.amazon.com/s3/buckets/mas-standard-database/?region=us-east-1&tab=overview)/[protobuf_database](https://s3.console.aws.amazon.com/s3/buckets/mas-standard-database/protobuf_database/?region=us-east-1&tab=overview)/[Downtown](https://s3.console.aws.amazon.com/s3/#) - Parquet datalake: [mas-standard-database](https://s3.console.aws.amazon.com/s3/buckets/mas-standard-database/?region=us-east-1&tab=overview)/[parquet_datalake](https://s3.console.aws.amazon.com/s3/buckets/mas-standard-database/parquet_datalake/?region=us-east-1&tab=overview)/[Downtown](https://s3.console.aws.amazon.com/s3/#) #### Parquet Dataset Example The result parquet files can be loaded in `PyTorch`, `Pythong`, and `Tensorflow` platform. Demonstration of Downtown dataset from Parquet files (Front Camera): ![](./docs/demo.gif) #### Dataloader **PyTorch**: Please refer to `/test/dataloader_torch.py` to see how to load and preprocess examples from parquet dataset. **Tensorflow**: Please refer to `/test/dataloader_tf.py` to see how to load and preprocess examples from parquet dataset. **FireflyML**: Please refer to `/test/dataloader_python.py` to see how to load and preprocess examples from parquet dataset.
PypiClean
/AbPyTools-0.3.2.tar.gz/AbPyTools-0.3.2/abpytools/core/chain_collection.py
from .chain import Chain import numpy as np import logging from abpytools.utils import PythonConfig, Download import json import os import pandas as pd from .helper_functions import numbering_table_sequences, numbering_table_region, numbering_table_multiindex from operator import itemgetter from urllib import parse from math import ceil from .base import CollectionBase from ..features.composition import * from ..analysis.distance_metrics import * from ..core.cache import Cache from multiprocessing import Manager, Process from inspect import signature from .utils import (json_ChainCollection_formatter, pb2_ChainCollection_formatter, pb2_ChainCollection_parser, fasta_ChainCollection_parser, json_ChainCollection_parser) from .flags import * # setting up debugging messages logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG) ipython_config = PythonConfig() if ipython_config.ipython_info == 'notebook': from tqdm import tqdm_notebook as tqdm # pragma: no cover else: from tqdm import tqdm if BACKEND_FLAGS.HAS_PROTO: from abpytools.core.formats import ChainCollectionProto class ChainCollection(CollectionBase): """ Object containing Chain objects and to perform analysis on the ensemble. """ def __init__(self, antibody_objects=None, load=True, **kwargs): """ Args: antibody_objects: load: **kwargs: """ if antibody_objects is None: self.antibody_objects = [] else: if isinstance(antibody_objects, ChainCollection): antibody_objects = antibody_objects.antibody_objects elif not isinstance(antibody_objects, list): raise ValueError("Expected a list, instead got object of type {}".format(type(antibody_objects))) elif not all(isinstance(obj, Chain) for obj in antibody_objects) and len(antibody_objects) > 0: raise ValueError("Expected a list containing objects of type Chain") self.antibody_objects = antibody_objects if len(set(x.numbering_scheme for x in antibody_objects)) == 1: self._numbering_scheme = antibody_objects[0].numbering_scheme else: raise ValueError("ChainCollection only support Chain objects with the same numbering scheme.") if len(set(x.chain for x in antibody_objects)) == 1: self._chain = antibody_objects[0].chain elif len(set(x.chain for x in antibody_objects)) == 0: self._chain = '' else: raise ValueError("ChainCollection only support Chain objects with the same chain type.") if load: self.load(**kwargs) def load(self, show_progressbar=True, n_threads=4, verbose=True): self.antibody_objects, self._chain = load_from_antibody_object( antibody_objects=self.antibody_objects, show_progressbar=show_progressbar, n_threads=n_threads, verbose=verbose) @classmethod def load_from_fasta(cls, path, numbering_scheme=NUMBERING_FLAGS.CHOTHIA, n_threads=20, verbose=True, show_progressbar=True): if not os.path.isfile(path): raise ValueError("File does not exist!") with open(path, 'r') as f: antibody_objects = fasta_ChainCollection_parser(f, numbering_scheme=numbering_scheme) chain_collection = cls(antibody_objects=antibody_objects, load=True, n_threads=n_threads, verbose=verbose, show_progressbar=show_progressbar) return chain_collection @classmethod def load_from_pb2(cls, path, n_threads=20, verbose=True, show_progressbar=True): with open(path, 'rb') as f: proto_parser = ChainCollectionProto() proto_parser.ParseFromString(f.read()) antibody_objects = pb2_ChainCollection_parser(proto_parser) chain_collection = cls(antibody_objects=antibody_objects, load=True, n_threads=n_threads, verbose=verbose, show_progressbar=show_progressbar) return chain_collection @classmethod def load_from_json(cls, path, n_threads=20, verbose=True, show_progressbar=True): with open(path, 'r') as f: data = json.load(f) antibody_objects = json_ChainCollection_parser(data) chain_collection = cls(antibody_objects=antibody_objects, load=True, n_threads=n_threads, verbose=verbose, show_progressbar=show_progressbar) return chain_collection def save_to_json(self, path, update=True): with open(os.path.join(path + '.json'), 'w') as f: data = json_ChainCollection_formatter(self.antibody_objects) json.dump(data, f, indent=2) def save_to_pb2(self, path, update=True): proto_parser = ChainCollectionProto() try: with open(os.path.join(path + '.pb2'), 'rb') as f: proto_parser.ParseFromString(f.read()) except IOError: # print("Creating new file") pass pb2_ChainCollection_formatter(self.antibody_objects, proto_parser) with open(os.path.join(path + '.pb2'), 'wb') as f: f.write(proto_parser.SerializeToString()) def save_to_fasta(self, path, update=True): with open(os.path.join(path + '.fasta'), 'w') as f: f.writelines(make_fasta(self.names, self.sequences)) def molecular_weights(self, monoisotopic=False): """ :param monoisotopic: bool whether to use monoisotopic values :return: list """ return [x.ab_molecular_weight(monoisotopic=monoisotopic) for x in self.antibody_objects] def extinction_coefficients(self, extinction_coefficient_database='Standard', reduced=False): """ :param extinction_coefficient_database: string with the name of the database to use :param reduced: bool whether to consider the cysteines to be reduced :return: list """ return [x.ab_ec(extinction_coefficient_database=extinction_coefficient_database, reduced=reduced) for x in self.antibody_objects] def hydrophobicity_matrix(self): if self._chain == CHAIN_FLAGS.HEAVY_CHAIN: num_columns = 158 else: num_columns = 138 abs_hydrophobicity_matrix = np.zeros((len(self.antibody_objects), num_columns)) for row in range(abs_hydrophobicity_matrix.shape[0]): abs_hydrophobicity_matrix[row] = self.antibody_objects[row].hydrophobicity_matrix return abs_hydrophobicity_matrix def get_object(self, name=''): """ :param name: str :return: """ if name in self.names: index = self.names.index(name) return self[index] else: raise ValueError('Could not find sequence with specified name') def ab_region_index(self): """ method to determine index of amino acids in CDR regions :return: dictionary with names as keys and each value is a dictionary with keys CDR and FR 'CDR' entry contains dictionaries with CDR1, CDR2 and CDR3 regions 'FR' entry contains dictionaries with FR1, FR2, FR3 and FR4 regions """ return {x.name: {'CDR': x.ab_regions()[0], 'FR': x.ab_regions()[1]} for x in self.antibody_objects} def numbering_table(self, as_array=False, region='all'): region = numbering_table_region(region) table = np.row_stack( [x.ab_numbering_table(as_array=True, region=region) for x in self.antibody_objects]) if as_array: return table else: # return the data as a pandas.DataFrame -> it's slower but looks nicer and makes it easier to get # the data of interest whole_sequence_dict, whole_sequence = numbering_table_sequences(region, self._numbering_scheme, self._chain) multi_index = numbering_table_multiindex(region=region, whole_sequence_dict=whole_sequence_dict) # create the DataFrame and assign the columns and index names data = pd.DataFrame(data=table) data.columns = multi_index data.index = self.names return data def igblast_server_query(self, chunk_size=50, show_progressbar=True, **kwargs): """ :param show_progressbar: :param chunk_size: :param kwargs: keyword arguments to pass to igblast_options :return: """ # check if query is larger than 50 sequences # if so split into several queries query_list = self._split_to_chunks(chunk_size=chunk_size) n_chunks = ceil(len(self) / chunk_size) - 1 if show_progressbar: for query in tqdm(query_list, total=n_chunks): self._igblast_server_query(query, **kwargs) else: for query in query_list: self._igblast_server_query(query, **kwargs) def _igblast_server_query(self, query, **kwargs): # prepare raw data fasta_query = make_fasta(names=query.names, sequences=query.sequences) # get url with igblast options url = igblast_options(sequences=fasta_query, **kwargs) # send and download query q = Download(url, verbose=False) try: q.download() except ValueError: # pragma: no cover raise ValueError("Check the internet connection.") # pragma: no cover igblast_result = q.html self._parse_igblast_query(igblast_result, query.names) def igblast_local_query(self, file_path): # load in file with open(file_path, 'r') as f: igblast_result = f.readlines() self._parse_igblast_query(igblast_result, self.names) def append(self, antibody_obj): self.antibody_objects += antibody_obj def pop(self, index=-1): if index > len(self): raise ValueError("The given index is outside the range of the object.") element_to_pop = self[index] self._destroy(index=index) return element_to_pop def _destroy(self, index): del self.antibody_objects[index] # def filter(self): # # # TODO: complete method # pass # def set_numbering_scheme(self, numbering_scheme, realign=True): if realign: try: self._numbering_scheme = numbering_scheme self.antibody_objects, self._chain = load_from_antibody_object(self.antibody_objects) except: print("Could not realign sequences, nothing has been changed.") else: self._numbering_scheme = numbering_scheme @property def names(self): return [x.name for x in self.antibody_objects] @property def sequences(self): return [x.sequence for x in self.antibody_objects] @property def aligned_sequences(self): return [x.aligned_sequence for x in self.antibody_objects] @property def n_ab(self): return len(self.sequences) @property def chain(self): if self._chain == '': chains = set([x.chain for x in self.antibody_objects]) if len(chains) == 1: self._chain = next(iter(chains)) return self._chain else: raise ValueError('Different types of chains found in collection!') else: return self._chain @property def numbering_scheme(self): return self._numbering_scheme @property def charge(self): return np.array([x.ab_charge() for x in self.antibody_objects]) @property def total_charge(self): return {x.name: x.ab_total_charge() for x in self.antibody_objects} @property def germline_identity(self): return {x.name: x.germline_identity for x in self.antibody_objects} @property def germline(self): return {x.name: x.germline for x in self.antibody_objects} def _string_summary_basic(self): return "abpytools.ChainCollection Chain type: {}, Number of sequences: {}".format(self._chain, len(self.antibody_objects)) def __repr__(self): return "<%s at 0x%02x>" % (self._string_summary_basic(), id(self)) def __len__(self): return len(self.antibody_objects) def __getitem__(self, indices): if isinstance(indices, int): return self.antibody_objects[indices] else: return ChainCollection(antibody_objects=list(itemgetter(*indices)(self.antibody_objects))) def __add__(self, other): if isinstance(other, ChainCollection): if self.numbering_scheme != other.numbering_scheme: raise ValueError("Concatenation requires ChainCollection " "objects to use the same numbering scheme.") else: new_object_list = self.antibody_objects + other.antibody_objects elif isinstance(other, Chain): if self.numbering_scheme != other.numbering_scheme: raise ValueError("Concatenation requires Chain object to use " "the same numbering scheme as ChainCollection.") else: new_object_list = self.antibody_objects + [other] else: raise ValueError("Concatenation requires other to be of type " "ChainCollection, got {} instead".format(type(other))) return ChainCollection(antibody_objects=new_object_list, load=False) def _split_to_chunks(self, chunk_size=50): """ Helper function to split ChainCollection into size chunk_size and returns generator :param chunk_size: int, size of each chunk :return: generator to iterate of each chunk of size chunk_size """ if self.n_ab > chunk_size: for x in range(0, self.n_ab, chunk_size): yield self[range(x, min(x + chunk_size, self.n_ab))] else: yield self def _parse_igblast_query(self, igblast_result, names): igblast_result_dict = load_igblast_query(igblast_result, names) # unpack results for name in names: obj_i = self.get_object(name=name) obj_i.germline = igblast_result_dict[name][1] obj_i.germline_identity = igblast_result_dict[name][0] def loading_status(self): return [x.status for x in self.antibody_objects] def composition(self, method='count'): """ Amino acid composition of each sequence. Each resulting list is organised alphabetically (see composition.py) :param method: :return: """ if method == 'count': return [order_seq(aa_composition(seq)) for seq in self.sequences] elif method == 'freq': return [order_seq(aa_frequency(seq)) for seq in self.sequences] elif method == 'chou': return chou_pseudo_aa_composition(self.sequences) elif method == 'triad': return triad_method(self.sequences) elif method == 'hydrophobicity': return self.hydrophobicity_matrix() elif method == 'volume': return side_chain_volume(self.sequences) else: raise ValueError("Unknown method") def distance_matrix(self, feature=None, metric='cosine_similarity', multiprocessing=False): """ Returns the distance matrix using a given feature and distance metric :param feature: string with the name of the feature to use :param metric: string with the name of the metric to use :param multiprocessing: bool to turn multiprocessing on/off (True/False) :return: list of lists with distances between all sequences of len(data) with each list of len(data) when i==j M_i,j = 0 """ if feature is None: transformed_data = self.sequences elif isinstance(feature, str): # in this case the features are calculated using a predefined featurisation method (see self.composition) transformed_data = self.composition(method=feature) elif isinstance(feature, list): # a user defined list with vectors if len(feature) != self.n_ab: raise ValueError("Expected a list of size {}, instead got {}.".format(self.n_ab, len(feature))) else: transformed_data = feature else: raise TypeError("Unexpected input for feature argument.") if metric == 'cosine_similarity': distances = self._run_distance_matrix(transformed_data, cosine_similarity, multiprocessing=multiprocessing) elif metric == 'cosine_distance': distances = self._run_distance_matrix(transformed_data, cosine_distance, multiprocessing=multiprocessing) elif metric == 'hamming_distance': # be careful hamming distance only works when all sequences have the same length distances = self._run_distance_matrix(transformed_data, hamming_distance, multiprocessing=multiprocessing) elif metric == 'levenshtein_distance': distances = self._run_distance_matrix(transformed_data, levenshtein_distance, multiprocessing=multiprocessing) elif metric == 'euclidean_distance': distances = self._run_distance_matrix(transformed_data, euclidean_distance, multiprocessing=multiprocessing) elif metric == 'manhattan_distance': distances = self._run_distance_matrix(transformed_data, manhattan_distance, multiprocessing=multiprocessing) elif callable(metric): # user defined metric function user_function_signature = signature(metric) # number of params should be two, can take args with defaults though default_params = sum(['=' in x for x in user_function_signature.parameters]) if len(user_function_signature.parameters) - default_params > 2: raise ValueError("Expected a function with two parameters") else: distances = self._run_distance_matrix(transformed_data, metric, multiprocessing=multiprocessing) else: raise ValueError("Unknown distance metric.") return distances def _run_distance_matrix(self, data, metric, multiprocessing=False): """ Helper function to setup the calculation of each entry in the distance matrix :param data: list with all sequences :param metric: function that takes two string and calculates distance :param multiprocessing: bool to turn multiprocessing on/off (True/False) :return: list of lists with distances between all sequences of len(data) with each list of len(data) when i==j M_i,j = 0 """ if multiprocessing: with Manager() as manager: cache = manager.dict() matrix = manager.dict() jobs = [Process(target=self._distance_matrix, args=(data, i, metric, cache, matrix)) for i in range(len(data))] for j in jobs: j.start() for j in jobs: j.join() # order the data return [matrix[x] for x in range(len(data))] else: cache = Cache(max_cache_size=(len(data) * (len(data) - 1)) / 2) matrix = Cache(max_cache_size=len(data)) for i in range(len(data)): cache.update(i, self._distance_matrix(data, i, metric, cache, matrix)) return [matrix[x] for x in range(len(data))] @staticmethod def _distance_matrix(data, i, metric, cache, matrix): """ Function to calculate distance from the ith sequence of the ith row to the remaining entries in the same row :param data: list with all sequences :param i: int that indicates the matrix row being processed :param metric: function that takes two string and calculates distance :param cache: either a Manager or Cache object to cache results :param matrix: either a Manager or Cache object to store results in a matrix :return: None """ row = [] seq_1 = data[i] for j, seq_2 in enumerate(data): if i == j: row.append(0) continue keys = ('{}-{}'.format(i, j), '{}-{}'.format(j, i)) if keys[0] not in cache or keys[1] not in cache: cache['{}-{}'.format(i, j)] = metric(seq_1, seq_2) if keys[0] in cache: row.append(cache[keys[0]]) elif keys[1] in cache: row.append(cache[keys[0]]) else: raise ValueError("Bug in row {} and column {}".format(i, j)) matrix[i] = row def load_antibody_object(antibody_object): antibody_object.load() return antibody_object def load_from_antibody_object(antibody_objects, show_progressbar=True, n_threads=20, verbose=True): """ Args: antibody_objects (list): show_progressbar (bool): n_threads (int): verbose (bool): Returns: """ if verbose: print("Loading in antibody objects") from queue import Queue import threading q = Queue() for i in range(n_threads): t = threading.Thread(target=worker, args=(q,)) t.daemon = True t.start() if show_progressbar: for antibody_object in tqdm(antibody_objects): q.put(antibody_object) else: for antibody_object in antibody_objects: q.put(antibody_object) q.join() # if show_progressbar: # aprun = parallelexecutor(use_bar='tqdm', n_jobs=n_jobs, timeout=timeout) # else: # aprun = parallelexecutor(use_bar='None', n_jobs=n_jobs, timeout=timeout) # # # load in objects in parallel # antibody_objects = aprun(total=len(antibody_objects))( # delayed(load_antibody_object)(obj) for obj in antibody_objects) status = [x.status for x in antibody_objects] failed = sum([1 if x == 'Not Loaded' or x == 'Failed' else 0 for x in status]) # remove objects that did not load while 'Not Loaded' in status: i = status.index('Not Loaded') del antibody_objects[i], status[i] while 'Failed' in status: i = status.index('Failed') del antibody_objects[i], status[i] if verbose: print("Failed to load {} objects in list".format(failed)) loaded_obj_chains = [x.chain for x in antibody_objects if x.status == 'Loaded'] if len(set(loaded_obj_chains)) == 1: chain = loaded_obj_chains[0] else: raise ValueError("All sequences must be of the same chain type: Light or Heavy", set([x.chain for x in loaded_obj_chains])) n_ab = len(loaded_obj_chains) if n_ab == 0: raise ValueError("Could not find any heavy or light chains in provided file or list of objects") return antibody_objects, chain def load_igblast_query(igblast_result, names): """ :param names: :param igblast_result: :return: """ try: from bs4 import BeautifulSoup except ImportError: raise ImportError("Please install bs4 to parse the IGBLAST html file:" "pip install beautifulsoup4") # instantiate BeautifulSoup object to make life easier with the html text! if isinstance(igblast_result, list): soup = BeautifulSoup(''.join(igblast_result), "lxml") else: soup = BeautifulSoup(igblast_result, "lxml") # get the results found in <div id="content"> and return the text as a string results = soup.find(attrs={'id': "content"}).text # get query names query = re.compile('Query: (.*)') query_ids = query.findall(results) # make sure that all the query names in query are in self.names if not set(names).issubset(set(query_ids)): raise ValueError('Make sure that you gave the same names in ChainCollection as you gave' 'in the query submitted to IGBLAST') # regular expression to get tabular data from each region all_queries = re.compile('(Query: .*?)\n\n\n\n', re.DOTALL) # parse the results with regex and get a list with each query data parsed_results = all_queries.findall(results) # regex to get the FR and CDR information for each string in parsed results region_finder = re.compile('^([CDR\d|FR\d|Total].*)', re.MULTILINE) result_dict = {} # iterate over each string in parsed result which contains the result for individual queries for query_result in parsed_results: # get query name and get the relevant object query_i = query.findall(query_result)[0] # check if the query being parsed is part of the object # (not all queries have to be part of the object, but the object names must be a subset of the queries) if query_i not in set(names): continue # list with CDR and FR info for query result region_info = region_finder.findall(query_result) # get the data from region info with dict comprehension germline_identity = {x.split()[0].split('-')[0]: float(x.split()[-1]) for x in region_info} # get the top germline assignment v_line_assignment = re.compile('V\s{}\t.*'.format(query_i)) # the top germline assignment is at the top (index 0) germline_result = v_line_assignment.findall(results)[0].split() # store the germline assignment and the bit score in a tuple as the germline attribute of Chain germline = (germline_result[2], float(germline_result[-2])) result_dict[query_i] = (germline_identity, germline) return result_dict def worker(q): while True: item = q.get() load_antibody_object(item) q.task_done() def make_fasta(names, sequences): file_string = '' for name, sequence in zip(names, sequences): file_string += '>{}\n'.format(name) file_string += '{}\n'.format(sequence) return file_string def igblast_options(sequences, domain='imgt', germline_db_V='IG_DB/imgt.Homo_sapiens.V.f.orf.p', germline_db_D='IG_DB/imgt.Homo_sapiens.D.f.orf', germline_db_J='IG_DB / imgt.Homo_sapiens.J.f.orf', num_alignments_V=1, num_alignments_D=1, num_alignments_J=1): values = {"queryseq": sequences, "germline_db_V": germline_db_V, "germline_db_D": germline_db_D, "germline_db_J": germline_db_J, "num_alignments_V": str(num_alignments_V), "num_alignments_D": str(num_alignments_D), "num_alignments_J": str(num_alignments_J), "outfmt": "7", "domain": domain, "program": "blastp"} url = "http://www.ncbi.nlm.nih.gov/igblast/igblast.cgi?" url += parse.urlencode(values) return url
PypiClean
/FreePyBX-1.0-RC1.tar.gz/FreePyBX-1.0-RC1/freepybx/public/js/dojox/timing/Streamer.js.uncompressed.js
define("dojox/timing/Streamer", ["./_base"], function(){ dojo.experimental("dojox.timing.Streamer"); dojox.timing.Streamer = function( /* function */input, /* function */output, /* int */interval, /* int */minimum, /* array */initialData ){ // summary // Streamer will take an input function that pushes N datapoints into a // queue, and will pass the next point in that queue out to an // output function at the passed interval; this way you can emulate // a constant buffered stream of data. // input: the function executed when the internal queue reaches minimumSize // output: the function executed on internal tick // interval: the interval in ms at which the output function is fired. // minimum: the minimum number of elements in the internal queue. var self = this; var queue = []; // public properties this.interval = interval || 1000; this.minimumSize = minimum || 10; // latency usually == interval * minimumSize this.inputFunction = input || function(q){ }; this.outputFunction = output || function(point){ }; // more setup var timer = new dojox.timing.Timer(this.interval); var tick = function(){ self.onTick(self); if(queue.length < self.minimumSize){ self.inputFunction(queue); } var obj = queue.shift(); while(typeof(obj) == "undefined" && queue.length > 0){ obj = queue.shift(); } // check to see if the input function needs to be fired // stop before firing the output function // TODO: relegate this to the output function? if(typeof(obj) == "undefined"){ self.stop(); return; } // call the output function. self.outputFunction(obj); }; this.setInterval = function(/* int */ms){ // summary // sets the interval in milliseconds of the internal timer this.interval = ms; timer.setInterval(ms); }; this.onTick = function(/* dojox.timing.Streamer */obj){ }; // wrap the timer functions so that we can connect to them if needed. this.start = function(){ // summary // starts the Streamer if(typeof(this.inputFunction) == "function" && typeof(this.outputFunction) == "function"){ timer.start(); return; } throw new Error("You cannot start a Streamer without an input and an output function."); }; this.onStart = function(){ }; this.stop = function(){ // summary // stops the Streamer timer.stop(); }; this.onStop = function(){ }; // finish initialization timer.onTick = this.tick; timer.onStart = this.onStart; timer.onStop = this.onStop; if(initialData){ queue.concat(initialData); } }; return dojox.timing.Streamer; });
PypiClean
/MnemoPwd-1.2.1-py3-none-any.whl/mnemopwd/client/uilayer/uicomponents/VertScrollBar.py
# Copyright (c) 2017, Thierry Lemeunier <thierry at lemeunier dot net> # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import curses import math from .Component import Component class VertScrollBar(Component): """A vertical scrolling bar""" def __init__(self, parent, h, y, x, colour=False): """Initialization of a VertScrollBar instance""" Component.__init__(self, parent, h, 2, y, x, False) self.size = 0 # Vertical length of the scrolling bar self.pos = 0 # Position of the scrolling bar self.count = 0 # Counter for scrolling up or scrolling down self.counter = 0 # Counter of 'up' and 'down' movements self.content_size = 0 # Save content size for adjusting self.colour = colour self._create() def is_actionable(self): """See mother class""" return False def update(self, content_size): """Update scrolling bar size""" self.content_size = content_size # Compute scrolling bar length size = max(1, int(math.floor(self.h * self.h / content_size))) do_redraw = self.size != size if size < self.h: self.size = size # New scrolling bar length else: self.size = 0 # No scrolling bar if do_redraw: self._create() def scroll(self, direction): """ Try to scrolling up or scrolling down Scrolling depends on the number of 'up' or 'down' done by user """ self.counter += direction # Counter of 'up' and 'down' do_redraw = self.counter == self.content_size - self.h if self.size > 0: self.count += direction pos = self.pos if math.fabs(self.count) == math.floor(self.content_size / self.h): pos += direction self.count = 0 pos = max(0, pos) # Top limit pos = min(pos, self.h - self.size) # Bottom limit do_redraw = pos != self.pos # Redraw if pos has changed self.pos = pos if do_redraw: self._create() def redraw(self): """See the mother class""" self._create() def reset(self): """Re-initialize attributes""" self.pos = self.size = self.content_size = self.count = self.counter = 0 def _create(self): """Draw the widget content""" if self.h >= 2: # Draw standard shape for i in range(1, self.h - 1): self.window.addch(i, 0, curses.ACS_VLINE | self.colour) # '|' # Draw scrolling bar if necessary if self.size > 0: end = min(self.pos + self.size, self.h) for i in range(self.pos, end): self.window.addch(i, 0, chr(0x2588), self.colour) # '█' # Draw arrows if necessary if self.counter > 0: self.window.addch(0, 0, chr(0x25B2), self.colour) # '▲' if self.counter < self.content_size - self.h: self.window.addch(self.h - 1, 0, chr(0x25BC), self.colour) # '▼' # Finally refresh window self.window.refresh()
PypiClean
/Ibidas-0.1.26.tar.gz/Ibidas-0.1.26/ibidas/__init__.py
__all__ = ["Rep","Read", "Write", "Import", "Export", "Connect","_","CyNetwork",'Unpack', "Addformat", "Array","Tuple","Combine","HArray", "Stack","Intersect","Union","Except","Difference", "Pos","Argsort","Rank","IsMissing","CumSum", "Any","All", "Max","Min", "Argmin","Argmax", "Mean","Median", "Sum","Prod", "Count","Match", "Blast", "Join", "Broadcast","CreateType","MatchType", "newdim","NEWDIM","LCDIM","LASTCOMMONDIM","COMMON_NAME",'COMMON_POS', "Missing", "Corr","In","Contains", "Fetch","Serve","Get","Alg", "Load","Save", "Invert","Abs", "Negative","Log","Log2","Log10","Sqrt","Upper","Lower", "Add","Subtract","Multiply","Modulo","Divide","FloorDivide","And","Or","Xor","Power","Equal","NotEqual","LessEqual","Less","GreaterEqual","Greater","Each", "Like","SplitOnPattern","HasPattern" ] from utils import delay_import from utils.util import save_rep, load_rep, save_csv from utils.context import _ from utils.missing import Missing from utils.infix import Infix from itypes import createType as CreateType, matchType as MatchType from wrappers.python import Rep from constants import * from repops import Detect import repops_dim from repops_multi import Broadcast, Combine, Sort import repops_slice import repops_funcs from download_cache import DownloadCache, Unpack from pre import predefined_sources as Get from algs import predefined_algs as Alg from wrappers.cytoscape import CyNetwork from server import Serve from constants import * Fetch = DownloadCache() In = Infix(repops_funcs.Within) Contains = Infix(repops_funcs.Contains) Join = Infix(repops_multi.Join) Match = Infix(repops_multi.Match) Blast = Infix(repops_multi.Blast) Stack = Infix(repops_multi.Stack) Intersect = Infix(repops_multi.Intersect) Union = Infix(repops_multi.Union) Except = Infix(repops_multi.Except) Difference = Infix(repops_multi.Difference) Pos = repops.delayable(default_params="#")(repops_funcs.Pos) IsMissing = repops.delayable()(repops_funcs.IsMissing) Argsort = repops.delayable()(repops_funcs.Argsort) Rank = repops.delayable()(repops_funcs.Rank) CumSum = repops.delayable()(repops_funcs.CumSum) Argmax = repops.delayable()(repops_funcs.Argmin) Argmin = repops.delayable()(repops_funcs.Argmax) Sum = repops.delayable()(repops_funcs.Sum) Prod = repops.delayable()(repops_funcs.Prod) Any = repops.delayable()(repops_funcs.Any) All = repops.delayable()(repops_funcs.All) Max = repops.delayable()(repops_funcs.Max) Min = repops.delayable()(repops_funcs.Min) Mean = repops.delayable()(repops_funcs.Mean) Median = repops.delayable()(repops_funcs.Median) Count = repops.delayable()(repops_funcs.Count) Corr = repops.delayable()(repops_funcs.Corr) Invert = repops.delayable()(repops_funcs.Invert) Abs = repops.delayable()(repops_funcs.Abs) Negative = repops.delayable()(repops_funcs.Negative) Log = repops.delayable()(repops_funcs.Log) Log2 = repops.delayable()(repops_funcs.Log2) Log10 = repops.delayable()(repops_funcs.Log10) Sqrt = repops.delayable()(repops_funcs.Sqrt) Upper = repops.delayable()(repops_funcs.Upper) Lower = repops.delayable()(repops_funcs.Lower) Like = repops.delayable()(repops_funcs.Like) SplitOnPattern = repops.delayable()(repops_funcs.SplitOnPattern) HasPattern = repops.delayable()(repops_funcs.HasPattern) Add = repops.delayable()(repops_funcs.Add) Subtract = repops.delayable()(repops_funcs.Subtract) Multiply = repops.delayable()(repops_funcs.Multiply) Modulo= repops.delayable()(repops_funcs.Modulo) Divide = repops.delayable()(repops_funcs.Divide) FloorDivide = repops.delayable()(repops_funcs.FloorDivide) And = repops.delayable()(repops_funcs.And) Or = repops.delayable()(repops_funcs.Or) Xor = repops.delayable()(repops_funcs.Xor) Power = repops.delayable()(repops_funcs.Power) Equal = repops.delayable()(repops_funcs.Equal) NotEqual = repops.delayable()(repops_funcs.NotEqual) LessEqual = repops.delayable()(repops_funcs.LessEqual) Less = repops.delayable()(repops_funcs.Less) GreaterEqual = repops.delayable()(repops_funcs.GreaterEqual) Greater = repops.delayable()(repops_funcs.Greater) Each = repops.delayable()(repops_slice.Each) HArray = repops.delayable(nsources=UNDEFINED)(repops_slice.HArray) Tuple = repops.delayable(nsources=UNDEFINED)(repops_slice.Tuple) Array = repops.delayable()(repops_dim.Array) ########################################################################## def fimport_tsv(url, **kwargs): from wrappers.tsv import TSVRepresentor return TSVRepresentor(url, **kwargs) def fimport_matrixtsv(url, **kwargs): from wrappers.matrix_tsv import MatrixTSVRepresentor return MatrixTSVRepresentor(url, **kwargs) def fimport_xml(url, **kwargs): from wrappers.xml_wrapper import XMLRepresentor return XMLRepresentor(url, **kwargs) def fimport_psimi(url, **kwargs): from wrappers.psimi import read_psimi return read_psimi(url, **kwargs) def fimport_fasta(url, **kwargs): from wrappers.fasta import read_fasta; return read_fasta(url, **kwargs); def fimport_fastq(url, **kwargs): from wrappers.fasta import read_fastq; return read_fastq(url, **kwargs) def fimport_vcf(url, **kwargs): from wrappers.vcf import VCFRepresentor return VCFRepresentor(url, **kwargs) def fimport_genbank(url, **kwargs): from wrappers.genbank_embl import GERepresentor return GERepresentor(url, type='genbank', **kwargs) def fimport_embl(url, **kwargs): from wrappers.genbank_embl import GERepresentor return GERepresentor(url, type='embl', **kwargs) ########################################################################## def fexport_tsv(data, url, **kwargs): #from wrappers.tsv import TSVRepresentor return save_csv(data, url, **kwargs) def fexport_matrixtsv(data, url, **kwargs): from wrappers.matrix_tsv import MatrixTSVRepresentor return MatrixTSVRepresentor(data, url, **kwargs) def fexport_xml(data, url, **kwargs): from wrappers.xml_wrapper import XMLRepresentor return XMLRepresentor(data, url, **kwargs) def fexport_psimi(data, url, **kwargs): from wrappers.psimi import write_psimi return write_psimi(data, url, **kwargs) def fexport_fasta(data, url, **kwargs): from wrappers.fasta import write_fasta; return write_fasta(data, url, **kwargs); ########################################################################## formats_import = { 'tsv' : fimport_tsv, 'csv' : fimport_tsv, 'tsv_matrix' : fimport_matrixtsv, 'xml' : fimport_xml, 'psimi' : fimport_psimi, 'fasta' : fimport_fasta, 'fa' : fimport_fasta, 'fas' : fimport_fasta, 'fastq' : fimport_fastq, 'vcf': fimport_vcf, 'gbff':fimport_genbank, 'gb': fimport_genbank, 'genbank': fimport_genbank, 'gbk':fimport_genbank, 'embl':fimport_embl, }; formats_export = { 'tsv' : fexport_tsv, 'csv' : fexport_tsv, 'tsv_matrix' : fexport_matrixtsv, 'xml' : fexport_xml, 'psimi' : fexport_psimi, 'fasta' : fexport_fasta, 'fa' : fexport_fasta, 'fas' : fexport_fasta }; def Addformat(ext, read_fn, write_fn=None): formats_import[ext] = read_fn; formats_export[ext] = write_fn; def Import(url, **kwargs): from os.path import splitext; detect=kwargs.pop('detect', False); base = url; while True: (base, ext) = splitext(base); ext = ext.split('.')[1] if ext else 'tsv'; format = kwargs.pop('format', ext).lower(); if not format: raise RuntimeError("Unknown format specified") if format not in formats_import: continue; else: data = formats_import[format](url, **kwargs); return data.Detect() if detect else data; Read = Import def Export(r, url, **kwargs): from os.path import splitext; base = url; while True: (base, ext) = splitext(base); ext = ext.split('.')[1] if ext else 'tsv'; format = kwargs.pop('format', ext).lower(); if not format: raise RuntimeError("Unknown format specified") if format not in formats_export: continue; else: return formats_export[format](r, url, **kwargs); Write = Export; def Connect(url, **kwargs): format = kwargs.pop('format','db') if(format == "db"): from wrappers.sql import open_db return open_db(url, **kwargs) else: raise RuntimeError("Unknown format specified") def Save(r, filename, **kwargs): if filename.endswith('tsv') or filename.endswith('csv') or filename.endswith('tab'): save_csv(r, filename, **kwargs); else: save_rep(r, filename, **kwargs); def Load(filename,**kwargs): if filename.endswith('tsv') or filename.endswith('csv') or filename.endswith('tab'): from wrappers.tsv import TSVRepresentor return TSVRepresentor(filename, **kwargs) else: return load_rep(filename) delay_import.perform_delayed_imports()
PypiClean
/Divisi-0.6.10.tar.gz/Divisi-0.6.10/csc/divisi/blend.py
from csc.divisi.tensor import DictTensor, Tensor from csc.divisi.ordered_set import OrderedSet from csc.divisi.labeled_view import LabeledView from csc.divisi.normalized_view import MeanSubtractedView from itertools import chain, izip import logging from math import sqrt, ceil def partial_list_repr(lst, max_len): if len(lst) <= max_len: return repr(lst) else: return u'[%s, ... (%d total)]' % ( ', '.join(repr(item) for item in lst[:max_len]), len(lst)) class Blend(LabeledView): def __init__(self, tensors, weights=None, factor=None, k_values=1, svals=None, auto_build_tensor=True): ''' Create a new Blend from a list of tensors. tensors : [Tensor] a list of tensors to blend weights : [float] how much to weight each tensor factor : float the blending factor, only valid if len(tensors)==2. weights=[1-factor, factor]. k_values : int or [int] number of singular values to consider for each matrix's variance svals : [[float]] If you know the svals of any of the tensors, pass them in here. Use ``None`` or ``[]`` if you don't know a value. Various optimizations are possible if keys never overlap. This case is automatically detected -- though it may be overly cautious. ''' self.logger = logging.getLogger('csc.divisi.Blend') self.k_values = k_values self.tensors = tensors self._svals = svals # Can't call __init__ for either LabeledView or View 's init, # because they expect the tensor to be passed. #View.__init__(self) if factor is not None: if weights is not None: raise TypeError('Cannot simultaneously specify factor and weights.') self.factor = factor else: self.weights = weights self.auto_build_tensor = auto_build_tensor def __repr__(self): return u'<Blend of %s, weights=%s>' % (partial_list_repr(self.names, 3), partial_list_repr(self.weights, 3)) def __getstate__(self): return dict( version=1, tensors=self.tensors, weights=self.weights, k_values=self.k_values, svals=self._svals, auto_build_tensor=self.auto_build_tensor) def __setstate__(self, state): version = state.pop('version', 1) if version > 1: raise TypeError('Blend pickle was created by a newer version.') self.logger = logging.getLogger('csc.divisi.Blend') self.tensors = state['tensors'] self.k_values = state.get('k_values', 1) self._svals = state.get('svals', None) self.weights = state['weights'] self.auto_build_tensor = state.get('auto_build_tensor', True) def bake(self): ''' Return a normal LabeledView with the current contents of the blend. ''' if self._tensor is None: self.build_tensor() return LabeledView(self.tensor, self._labels) def _set_tensors(self, tensors): ''' Set the input tensors. Computes the label lists also. You should not call this function directly; rather, assign to blend.tensors. You can pass a ``dict`` or sequence of ``(label, tensor)`` pairs; the tensors will be labeled according to the keys. ''' if isinstance(tensors, Tensor): raise TypeError('Give Blend a _list_ (or dict or whatever) of tensors.') if hasattr(tensors, 'items'): # Extract the items, if we have some. tensors = tensors.items() if isinstance(tensors[0], (list, tuple)): # Assign names. Don't call `dict()`, in case a sequence # was passed and two tensors have the same label. names, tensors = zip(*tensors) else: names = map(repr, tensors) for tensor in tensors: if tensor.stack_contains(MeanSubtractedView): raise TypeError("You can't blend MeanSubtractedViews. Try mean-subtracting the resulting blend.") self._tensors = tuple(tensors) self.names = tuple(names) self.logger.info('tensors: %s', ', '.join(self.names)) self.ndim = ndim = tensors[0].ndim if not all(tensor.ndim == ndim for tensor in tensors): raise TypeError('Blended tensors must have the same dimensionality.') self.logger.info('Making ordered sets') self._labels = labels = [OrderedSet() for _ in xrange(ndim)] self.label_overlap = label_overlap = [0]*ndim for tensor in self._tensors: for dim, label_list in enumerate(labels): for key in tensor.label_list(dim): # XXX(kcarnold) This checks containment twice. if key in label_list: label_overlap[dim] += 1 else: label_list.add(key) self._shape = tuple(map(len, labels)) self._keys_never_overlap = not all(label_overlap) self.logger.info('Done making ordered sets. label_overlap: %r', label_overlap) if not any(label_overlap): self.logger.warn('No labels overlap.') # Invalidate other data self._weights = self._tensor = self._svals = None tensors = property(lambda self: self._tensors, _set_tensors) @property # necessary because it's a property on the parent class def shape(self): return self._shape def tensor_svals(self, tensor_idx, num_svals): ''' Get the top num_svals singular values for one of the input tensors. ''' if self._svals is None: self._svals = [[]]*len(self._tensors) if num_svals > len(self._svals[tensor_idx] or []): self.logger.info('computing SVD(k=%d) for %s', num_svals, self.names[tensor_idx]) self._svals[tensor_idx] = self._tensors[tensor_idx].svd(k=num_svals).svals.values() return self._svals[tensor_idx][:num_svals] def rough_weight(self, tensor_idx): ''' Compute the rough weight for one of the input tensors. ''' k = self.k_values if isinstance(k, (list, tuple)): k = k[tensor_idx] return 1.0/sqrt(sum([x*x for x in self.tensor_svals(tensor_idx, k)[:k]])) def _set_weights(self, weights): if weights is None: # Rough blend self._weights = [self.rough_weight(tensor) for tensor in xrange(len(self.tensors))] self.normalize_weights() elif weights == '=': # Equal weights, summing to 1 self._weights = [1]*len(self.tensors) self.normalize_weights() elif isinstance(weights, (int, long, float)): # Equal weights of the given value self._weights = [float(weights)]*len(self.tensors) else: # Explicit if weights == self._weights: return # If same, no-op. if len(weights) != len(self._tensors): raise TypeError('Weight length mismatch') self._weights = tuple(weights) self._tensor = None # invalidate the tensor weights = property(lambda self: self._weights, _set_weights) def _get_factor(self): if len(self._tensors) != 2: raise TypeError('Only blends of 2 tensors have a single factor.') return self._weights[1] def _set_factor(self, factor): if len(self._tensors) != 2: raise TypeError('Only blends of 2 tensors have a single factor.') if not 0 <= factor <= 1: raise ValueError('factor must be between 0 and 1.') self.weights = [1.0-factor, float(factor)] factor = property(_get_factor, _set_factor) def normalize_weights(self): ''' Make the weights sum to 1. ''' self.logger.info('Normalizing weights') scale = 1.0 / float(sum(self._weights)) self._weights = tuple(factor * scale for factor in self._weights) @property def tensor(self): if self._tensor is None: if not self.auto_build_tensor: raise TypeError("Tensor not yet built. Run 'build_tensor'.") self.build_tensor() return self._tensor def build_tensor(self, tensor=None): ''' Build the combined tensor. Done explicitly because it's slow. If `tensor` is not None, it is used as the underlying numeric storage tensor. It should have the same number of dimensions as the blend. It defaults to a new DictTensor. ''' self.logger.info('building combined tensor.') labels = self._labels if tensor is None: tensor = DictTensor(ndim=self.ndim) assert tensor.ndim == self.ndim if self._keys_never_overlap: self.logger.info('fast-merging.') tensor.update((tuple(label_list.index(label) for label_list, label in izip(labels, key)), val) for key, val in self._fast_iteritems()) else: for factor, cur_tensor, name in zip(self._weights, self._tensors, self.names): self.logger.info('slow-merging %s' % name) for key, val in cur_tensor.iteritems(): tensor.inc(tuple(label_list.index(label) for label_list, label in izip(labels, key)), factor*val) self._tensor = tensor self.logger.info('done building tensor.') def svd(self, *a, **kw): ''' Computes the SVD of the blend. Builds the tensor if necessary and it is not yet built. When the keys never overlap, this uses an optimized routine. ''' if not self._keys_never_overlap or self._tensor is not None: # Slow case self.logger.info('Non-optimized svd') if self._tensor is None: self.build_tensor() return super(Blend, self).svd(*a, **kw) # No overlap, so iteritems is straightforward. Exploit that # for some speed. from csc.divisi.svd import svd_sparse from csc.divisi.labeled_view import LabeledSVD2DResults self.logger.info('Optimized svd') _svd = svd_sparse(self.fake_tensor(), *a, **kw) return LabeledSVD2DResults.layer_on(_svd, self) # Optimizations def fake_tensor(self): ''' Return a tensor that only knows how to do iteritems. But fast. Used for :meth:`svd`. ''' if not self._keys_never_overlap: raise TypeError('Can only get a fake tensor if keys never overlap.') length = len(self) class FakeTensor(object): ndim = self.ndim shape = self.shape def __len__(ft): return length def iteritems(ft): labels = self._labels for factor, cur_tensor in zip(self._weights, self._tensors): for key, val in cur_tensor.iteritems(): yield (tuple(label_list.index(label) for label_list, label in izip(labels, key)), factor*val) def _svd(ft, *a, **kw): from csc.divisi._svdlib import svd return svd(ft, *a, **kw) return FakeTensor() def __iter__(self): if self._keys_never_overlap: return chain(*self.tensors) else: return (self.labels(idx) for idx in self.tensor) def _fast_iteritems(self): return ((key, factor*val) for factor, cur_tensor in zip(self._weights, self._tensors) for key, val in cur_tensor.iteritems()) def iteritems(self): if self._keys_never_overlap: return self._fast_iteritems() else: return super(Blend, self).iteritems() def __len__(self): if self._keys_never_overlap: return sum(map(len, self.tensors)) else: return len(self.tensor) # Visualization def coverage(self, bin_size=50): ''' Compute the coverage of the blend space by the input tensors. Returns NumPy 2D arrays ``(fill, magnitude, src)``. ``fill`` indicates how densely filled each "bin" is, from 0.0 (empty) to 1.0 (full). ``magnitude`` accumulates the absolute values of the items within the bin. ``src`` indicates which tensor each item comes from, specified by its index in the ``tensors`` array. (If multiple tensors write in the same bin, the last one wins.) ''' if not isinstance(bin_size, (list, tuple)): bin_size = [bin_size]*self.ndim import numpy src = numpy.zeros(tuple(numpy.ceil(float(items) / float(bins)) for items, bins in izip(self.shape, bin_size)), dtype=numpy.uint8) magnitude = numpy.zeros(src.shape) fill = numpy.zeros(src.shape) inc = 1.0 / numpy.product(bin_size) # This loop should look a lot like the one in FakeTensor. labels = self._labels for tensor_idx, tensor in enumerate(self._tensors): for key, val in tensor.iteritems(): idx = tuple(label_list.index(label) // bins for label_list, label, bins in izip(labels, key, bin_size)) src[idx] = tensor_idx fill[idx] += inc magnitude[idx] += abs(val) return fill, magnitude, src def coverage_image(self, width=None, height=None, pixel_size=None, *a, **kw): ''' Generate a coverage image of this blend. You can specify the size of the image in one of two ways: ``pixel_size``: the size of a pixel in rows and columns (defaults to square if a single number is passed) ``width`` and/or ``height``: the target width and height of the image. If it doesn't fit evenly, the image may be slightly bigger than you specify. Defaults to square pixels if one or the other is unspecified. Or if you give no parameters, the width defaults to 1000 pixels. For more information, see ``csc.divisi.blend.CoverageImage``. ''' # Compute the image size. if pixel_size is None and width is None and height is None: # Default to 1000 pixels wide. width = 1000 if pixel_size is None: # Compute the dimensions that are specified. pixel_width = pixel_height = None if width is not None: pixel_width = int(ceil(float(self.shape[1]) / width)) if height is not None: pixel_height = int(ceil(float(self.shape[0]) / height)) # Fill in, defaulting to square. pixel_size = (pixel_height if pixel_height is not None else pixel_width, pixel_width if pixel_width is not None else pixel_height) else: if width is not None or height is not None: raise TypeError("Can't specify both pixel_size and width/height.") self.logger.debug('Making coverage image with pixel_size=%r', pixel_size) # Generate the raw coverage data. fill, magnitude, src = self.coverage(pixel_size) return CoverageImage(fill, magnitude, src, self.names, *a, **kw) # Blend analysis utilities def predicted_svals(self, num=50, for_each_tensor=None, track_origin=False): ''' Predict the resulting singular values by multiplying the original singular values by the corresponding blend factor and sorting. Parameters ---------- num : int Total number of svals to return for_each_tensor : int, optional number of singular values to consider for each tensor. If this is too small, some extraneous svals may make it into the top `num`. If not given, values `num` are considered. track_origin : boolean, default False If true, returns a list of (sval, tensor_idx). ''' if for_each_tensor is None: for_each_tensor = num if track_origin: elt = lambda sval, factor, idx: (sval*factor, idx) else: elt = lambda sval, factor, idx: sval*factor svals = [elt(sval, factor, idx) for idx, factor in enumerate(self.weights) for sval in self.tensor_svals(idx, for_each_tensor)] svals.sort(reverse=True) return svals[:num] def total_veering(self, num=50, for_each_tensor=None, actual_svals=None): ''' Calculate total veering. If you already have the singular values, pass them in as a list / array for a faster result. ''' predicted_svals = self.predicted_svals(num, for_each_tensor) if actual_svals is None: self.logger.info('computing actual singular values') actual_svals = self.tensor.svd(num).svals.values() num = min(num, len(actual_svals)) return sum((actual_svals[idx] - predicted_svals[idx][0])**2 for idx in xrange(num)) def total_veering_at_factor(self, factor, **kw): "Calculates the total veering at a particular factor." return self.at_factor(factor).total_veering(**kw) def predicted_svals_at_factor(self, factor, **kw): return self.at_factor(factor).predicted_svals(**kw) def svals_at_factor(self, factor, *a, **kw): return self.at_factor(factor).svd(*a, **kw).svals.values() def at_factor(self, factor): # FIXME: take advantage of the fact that the labels don't change. return Blend(self.tensors, factor=factor, k_values=self.k_values, svals=self._svals) def compressed_svd_u(self, k=100): """ Not done yet. --Rob """ labelset = set() for t in self.weights: labelset += set(t.label_list(0)) ulabels = OrderedSet(list(labelset)) svds = [t.svd(k) for t in self.weights] class CoverageImage(object): def __init__(self, fill, magnitude, src, names): ''' Create a coverage image. Each input gets a color. Intensity indicates density. If you have PIL, you can call ``.save(filename)`` on the resulting object to save an image. Otherwise, there will be a plain NumPy array at ``.arr``. ''' from colorsys import hsv_to_rgb import numpy # Create the hues array. n = len(names) hues = numpy.linspace(0, 1, n+1) # Re-order the hues for the maximum separation between adjacent items. increment = (n+1)/2.0 hues = [hues[int(i*increment) % n] for i in xrange(n)] rows, cols = src.shape # Scale "fill" values to the dynamic range. fill_scale = self.fill_scale = 1.0/fill.max() ## Scale "magnitude" values to the dynamic range. Avoid having ## too low saturation, so we set a minimum. #min_saturation = 0.5 #magnitude_scale = self.magnitude_scale = (1.0-min_saturation)/magnitude.max() # Create an empty white image. img = numpy.zeros((rows, cols, 3), dtype=numpy.uint8) img[:,:,:] = 255 # Fill it. for row in xrange(rows): for col in xrange(cols): idx = row, col fill_amt = fill[idx] if not fill_amt: continue # skip if empty. rgb = numpy.array(hsv_to_rgb(hues[src[idx]], 1,#magnitude[idx] * magnitude_scale + min_saturation, 1-fill_amt*fill_scale)) img[row, col, :] = rgb*255 self.names = names self.arr = img self.hues = hues @property def img(self): import Image return Image.fromarray(self.arr) def save(self, filename, *a, **kw): return self.img.save(filename, *a, **kw) @property def colors(self): from colorsys import hsv_to_rgb return [hsv_to_rgb(hue, 1, 1) for hue in self.hues] def save_pdf(self, filename, margins=(1,1)): ''' Make and save a PDF of this coverage plot, including a legend. Margins are expressed in inches: (top-bottom, left-right). ''' from reportlab.lib.units import inch from reportlab.lib.pagesizes import letter from reportlab.pdfgen.canvas import Canvas c = Canvas(filename, pagesize=letter) # Compute margins. margin_top, margin_left = margins margin_top *= inch; margin_left *= inch whole_page_width, whole_page_height = letter page_top = whole_page_height - margin_top page_left = margin_left page_width = whole_page_width - 2*margin_left # Show the main image. image = self.img image_width = page_width image_height = image_width / image.size[0] * image.size[1] image_x = page_left image_y = page_top - image_height c.drawInlineImage(image, image_x, image_y, width=image_width, height=image_height) # Draw legends beneath the image. textobject = c.beginText() textobject.setTextOrigin(page_left, image_y - .5*inch) textobject.setFont('Helvetica', 14) for name, color in izip(self.names, self.colors): textobject.setFillColorRGB(*color) textobject.textLine(name) c.drawText(textobject) # Done. c.showPage() c.save()
PypiClean
/Elpotrero-1.6.2.tar.gz/Elpotrero-1.6.2/elpotrero/_files/tree/scripts/readmes/install.README
Make sure to set remotehost.prd in /etc/hosts file, otherwise you are going to be trying to connect to it and not getting the right server address. You should also temporarily set up remotehost.com as well while you are waiting for the DNS file to be propagated through the system, just make sure to change it back to normal later! Useful link: https://help.ubuntu.com/community/AptGet/Howto#Commands https://help.ubuntu.com/community/AddUsersHowto This is a really great tutorial on setting up a django/gunicorn/nginx stack. Very thorough http://michal.karzynski.pl/blog/2013/06/09/django-nginx-gunicorn-virtualenv-supervisor/ sudo useradd riendas -m -s /bin/bash sudo passwd riendas sudo addgroup webdev sudo adduser riendas webdev ----------------------------------- SUDOERS - DO THIS SO YOU CAN PROPERLY EXECUTE PYTHON AS "sudo": https://help.ubuntu.com/community/Sudoers#Editing_the_sudoers_file edit the /home/user/.bashrc file with the following addition: export EDITOR="vim" sudo -E visudo add the following in the file: Defaults env_keep += "PYTHONPATH" Defaults editor=/usr/bin/vim" riendas ALL=(ALL:ALL) ALL --------------------------------------- https://help.ubuntu.com/lts/serverguide/mysql.html sudo apt-get install mysql-server sudo apt-get install libmysqlclient-dev https://www.digitalocean.com/community/tutorials/how-to-install-and-use-postgresql-on-ubuntu-14-04 sudo apt-get install postgresql sudo apt-get install postgresql-server-dev-X.Y https://help.ubuntu.com/community/Mercurial sudo apt-get install mercurial meld ****READ THE NOTES ON NGINX INSTALLATION****** sometimes there is a problem with installing nginx, because ubuntu by default installs the nginx-core, and what you want is nginx-extras (or nginx-full, didn't test). If you don't use the proper nginx install, the module you need to work with django will not be there. https://www.digitalocean.com/community/articles/how-to-install-nginx-on-ubuntu-12-04-lts-precise-pangolin sudo apt-get install nginx sudo service nginx start sudo apt-get install bind9 sudo apt-get install dnsutils GO CHECK OUT readme_bind for the rest!!!!!!! you'll need to create this directory, because the new bind install doesn't mkdir /etc/bind/zones https://nicolas.perriault.net/code/2012/gandi-standard-ssl-certificate-nginx/ https://help.ubuntu.com/community/FilePermissions sudo mkdir /var/www sudo chgrp webdev /var/www sudo chmod -R 775 /var/www NOTE: when installing python, you wnat the python-dev so you can compile the python-mysql code sudo apt-get install python sudo apt-get install python-dev sudo apt-get install python-pip sudo apt-get install supervisor http://virtualenvwrapper.readthedocs.org/en/latest/ sudo pip install virtualenvwrapper NOte: this is to get PIL working properly. You must install these apt-get install libjpeg-dev apt-get install zlib1g-dev apt-get install libpng12-dev set up ssh so you can easily log in: http://www.thegeekstuff.com/2008/11/3-steps-to-perform-ssh-login-without-password-using-ssh-keygen-ssh-copy-id/ http://www.thegeekstuff.com/2010/04/how-to-fix-offending-key-in-sshknown_hosts-file/ NOTE: ssh-copy-id is not always available. Go here to get it: http://stackoverflow.com/questions/15185566/usr-bin-ssh-copy-id-line-1-ucgi-command-not-found Here are the commands from that site: sudo curl "hg.mindrot.org/openssh/raw-file/c746d1a70cfa/contrib/ssh-copy-id" -o /usr/bin/ssh-copy-id sudo chmod +x /usr/bin/ssh-copy-id ****UPDATE**** ssh-copy-id is now a part of the openssh-client package. So just install it: sudo apt-get install openssh-client in case you have to replace an off ssh key: --on linux-- ssh-keygen -f "/home/ronny/.ssh/known_hosts" -R dosriendas.com --on a mac-- ssh-keygen -f "/Users/ronny/.ssh/known_hosts" -R dosriendas.com Set up bitbucket: https://confluence.atlassian.com/pages/viewpage.action?pageId=270827678 At this point you probably don't have an ssh key on the gandi server (I'm assuming a clean install here) so make sure you ssh-keygen After you've done all that, and you've registered the new ssh key with bitbucket, find the "clone" option on the repository you want and pull it: in the case of dosriendas you'll need these files: hg clone ssh://[email protected]/ronnyabraham/elpotrero hg clone ssh://[email protected]/ronnyabraham/django_initialize_project hg clone ssh://[email protected]/ronnyabraham/dosriendas.prj NOTE: keep in mind that the *.sh files are BASH files. DO NOT USE the "sh" command to execute them! Use "bash"!!! NOTE: e.g. bash command.sh bash bootstrap.sh python publicdirectory.py sudo python installconfs.py mkdir /var/www/PROJECT.DOMAIN/logs/django GEM_HOME=$ENVDIR (check out gunicorn.sh) sudo apt-get install ruby sudo apt-get install rubygems http://honza.ca/2011/06/install-ruby-gems-into-virtualenv NOTE: they say I should install those commands in the postactivate script. TRY TO SET IT UP gem install sass gem install compass gem install zen-grids NOTE: also install forward from forwardhq.com gem install forward http://stackoverflow.com/questions/13257431/django-mediagenerator-cant-find-sass you have to set the compass files up for django-mediagenerator python importsassframeworks
PypiClean
/MaterialDjango-0.2.5.tar.gz/MaterialDjango-0.2.5/bower_components/prism/components/prism-textile.js
(function(Prism) { // We don't allow for pipes inside parentheses // to not break table pattern |(. foo |). bar | var modifierRegex = '(?:\\([^|)]+\\)|\\[[^\\]]+\\]|\\{[^}]+\\})+'; var modifierTokens = { 'css': { pattern: /\{[^}]+\}/, inside: { rest: Prism.languages.css } }, 'class-id': { pattern: /(\()[^)]+(?=\))/, lookbehind: true, alias: 'attr-value' }, 'lang': { pattern: /(\[)[^\]]+(?=\])/, lookbehind: true, alias: 'attr-value' }, // Anything else is punctuation (the first pattern is for row/col spans inside tables) 'punctuation': /[\\\/]\d+|\S/ }; Prism.languages.textile = Prism.languages.extend('markup', { 'phrase': { pattern: /(^|\r|\n)\S[\s\S]*?(?=$|\r?\n\r?\n|\r\r)/, lookbehind: true, inside: { // h1. Header 1 'block-tag': { pattern: RegExp('^[a-z]\\w*(?:' + modifierRegex + '|[<>=()])*\\.'), inside: { 'modifier': { pattern: RegExp('(^[a-z]\\w*)(?:' + modifierRegex + '|[<>=()])+(?=\\.)'), lookbehind: true, inside: Prism.util.clone(modifierTokens) }, 'tag': /^[a-z]\w*/, 'punctuation': /\.$/ } }, // # List item // * List item 'list': { pattern: RegExp('^[*#]+(?:' + modifierRegex + ')?\\s+.+', 'm'), inside: { 'modifier': { pattern: RegExp('(^[*#]+)' + modifierRegex), lookbehind: true, inside: Prism.util.clone(modifierTokens) }, 'punctuation': /^[*#]+/ } }, // | cell | cell | cell | 'table': { // Modifiers can be applied to the row: {color:red}.|1|2|3| // or the cell: |{color:red}.1|2|3| pattern: RegExp('^(?:(?:' + modifierRegex + '|[<>=()^~])+\\.\\s*)?(?:\\|(?:(?:' + modifierRegex + '|[<>=()^~_]|[\\\\/]\\d+)+\\.)?[^|]*)+\\|', 'm'), inside: { 'modifier': { // Modifiers for rows after the first one are // preceded by a pipe and a line feed pattern: RegExp('(^|\\|(?:\\r?\\n|\\r)?)(?:' + modifierRegex + '|[<>=()^~_]|[\\\\/]\\d+)+(?=\\.)'), lookbehind: true, inside: Prism.util.clone(modifierTokens) }, 'punctuation': /\||^\./ } }, 'inline': { pattern: RegExp('(\\*\\*|__|\\?\\?|[*_%@+\\-^~])(?:' + modifierRegex + ')?.+?\\1'), inside: { // Note: superscripts and subscripts are not handled specifically // *bold*, **bold** 'bold': { pattern: RegExp('(^(\\*\\*?)(?:' + modifierRegex + ')?).+?(?=\\2)'), lookbehind: true }, // _italic_, __italic__ 'italic': { pattern: RegExp('(^(__?)(?:' + modifierRegex + ')?).+?(?=\\2)'), lookbehind: true }, // ??cite?? 'cite': { pattern: RegExp('(^\\?\\?(?:' + modifierRegex + ')?).+?(?=\\?\\?)'), lookbehind: true, alias: 'string' }, // @code@ 'code': { pattern: RegExp('(^@(?:' + modifierRegex + ')?).+?(?=@)'), lookbehind: true, alias: 'keyword' }, // +inserted+ 'inserted': { pattern: RegExp('(^\\+(?:' + modifierRegex + ')?).+?(?=\\+)'), lookbehind: true }, // -deleted- 'deleted': { pattern: RegExp('(^-(?:' + modifierRegex + ')?).+?(?=-)'), lookbehind: true }, // %span% 'span': { pattern: RegExp('(^%(?:' + modifierRegex + ')?).+?(?=%)'), lookbehind: true }, 'modifier': { pattern: RegExp('(^\\*\\*|__|\\?\\?|[*_%@+\\-^~])' + modifierRegex), lookbehind: true, inside: Prism.util.clone(modifierTokens) }, 'punctuation': /[*_%?@+\-^~]+/ } }, // [alias]http://example.com 'link-ref': { pattern: /^\[[^\]]+\]\S+$/m, inside: { 'string': { pattern: /(\[)[^\]]+(?=\])/, lookbehind: true }, 'url': { pattern: /(\])\S+$/, lookbehind: true }, 'punctuation': /[\[\]]/ } }, // "text":http://example.com // "text":link-ref 'link': { pattern: RegExp('"(?:' + modifierRegex + ')?[^"]+":.+?(?=[^\\w/]?(?:\\s|$))'), inside: { 'text': { pattern: RegExp('(^"(?:' + modifierRegex + ')?)[^"]+(?=")'), lookbehind: true }, 'modifier': { pattern: RegExp('(^")' + modifierRegex), lookbehind: true, inside: Prism.util.clone(modifierTokens) }, 'url': { pattern: /(:).+/, lookbehind: true }, 'punctuation': /[":]/ } }, // !image.jpg! // !image.jpg(Title)!:http://example.com 'image': { pattern: RegExp('!(?:' + modifierRegex + '|[<>=()])*[^!\\s()]+(?:\\([^)]+\\))?!(?::.+?(?=[^\\w/]?(?:\\s|$)))?'), inside: { 'source': { pattern: RegExp('(^!(?:' + modifierRegex + '|[<>=()])*)[^!\\s()]+(?:\\([^)]+\\))?(?=!)'), lookbehind: true, alias: 'url' }, 'modifier': { pattern: RegExp('(^!)(?:' + modifierRegex + '|[<>=()])+'), lookbehind: true, inside: Prism.util.clone(modifierTokens) }, 'url': { pattern: /(:).+/, lookbehind: true }, 'punctuation': /[!:]/ } }, // Footnote[1] 'footnote': { pattern: /\b\[\d+\]/, alias: 'comment', inside: { 'punctuation': /\[|\]/ } }, // CSS(Cascading Style Sheet) 'acronym': { pattern: /\b[A-Z\d]+\([^)]+\)/, inside: { 'comment': { pattern: /(\()[^)]+(?=\))/, lookbehind: true }, 'punctuation': /[()]/ } }, // Prism(C) 'mark': { pattern: /\b\((?:TM|R|C)\)/, alias: 'comment', inside: { 'punctuation':/[()]/ } } } } }); var nestedPatterns = { 'inline': Prism.util.clone(Prism.languages.textile['phrase'].inside['inline']), 'link': Prism.util.clone(Prism.languages.textile['phrase'].inside['link']), 'image': Prism.util.clone(Prism.languages.textile['phrase'].inside['image']), 'footnote': Prism.util.clone(Prism.languages.textile['phrase'].inside['footnote']), 'acronym': Prism.util.clone(Prism.languages.textile['phrase'].inside['acronym']), 'mark': Prism.util.clone(Prism.languages.textile['phrase'].inside['mark']) }; // Only allow alpha-numeric HTML tags, not XML tags Prism.languages.textile.tag.pattern = /<\/?(?!\d)[a-z0-9]+(?:\s+[^\s>\/=]+(?:=(?:("|')(?:\\[\s\S]|(?!\1)[^\\])*\1|[^\s'">=]+))?)*\s*\/?>/i; // Allow some nesting Prism.languages.textile['phrase'].inside['inline'].inside['bold'].inside = nestedPatterns; Prism.languages.textile['phrase'].inside['inline'].inside['italic'].inside = nestedPatterns; Prism.languages.textile['phrase'].inside['inline'].inside['inserted'].inside = nestedPatterns; Prism.languages.textile['phrase'].inside['inline'].inside['deleted'].inside = nestedPatterns; Prism.languages.textile['phrase'].inside['inline'].inside['span'].inside = nestedPatterns; // Allow some styles inside table cells Prism.languages.textile['phrase'].inside['table'].inside['inline'] = nestedPatterns['inline']; Prism.languages.textile['phrase'].inside['table'].inside['link'] = nestedPatterns['link']; Prism.languages.textile['phrase'].inside['table'].inside['image'] = nestedPatterns['image']; Prism.languages.textile['phrase'].inside['table'].inside['footnote'] = nestedPatterns['footnote']; Prism.languages.textile['phrase'].inside['table'].inside['acronym'] = nestedPatterns['acronym']; Prism.languages.textile['phrase'].inside['table'].inside['mark'] = nestedPatterns['mark']; }(Prism));
PypiClean
/NNGT-2.7.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl/nngt/geometry/svgtools.py
from copy import deepcopy from itertools import chain from xml.dom.minidom import parse from svg.path import (parse_path, CubicBezier, QuadraticBezier, Arc, Move, Close, Path) import shapely from shapely.affinity import scale, affine_transform, translate from shapely.geometry import Point, Polygon import numpy as np from .shape import Shape ''' Shape generation from SVG files. ''' __all__ = ["polygons_from_svg"] # predefined svg shapes and their parameters _predefined = { 'path': None, 'ellipse': ("cx", "cy", "rx", "ry"), 'circle': ("cx", "cy", "r"), 'rect': ("x", "y", "width", "height") } _valid_nodes = _predefined.keys() def polygons_from_svg(filename, interpolate_curve=50, parent=None, return_points=False): ''' Generate :class:`shapely.geometry.Polygon` objects from an SVG file. ''' svg = parse(filename) elt_structs = {k: [] for k in _valid_nodes} elt_points = {k: [] for k in _valid_nodes} # get the properties of all predefined elements for elt_type, elt_prop in _predefined.items(): _build_struct(svg, elt_structs[elt_type], elt_type, elt_prop) # build all shapes polygons = [] for elt_type, instructions in elt_structs.items(): for struct in instructions: polygon, points = _make_polygon( elt_type, struct, parent=parent, return_points=True) polygons.append(polygon) elt_points[elt_type].append(points) if return_points: return polygons, elt_points return polygons # ----- # # Tools # # ----- # def _get_closed_subpaths(path): ''' Generates all closed subpaths raises error if open subpaths exist. Credit to @tatarize: https://github.com/regebro/svg.path/issues/54#issuecomment-570101018 ''' segments = None for p in path: if isinstance(p, Move): if segments is not None: raise RuntimeError("Only closed shapes accepted.") segments = [] segments.append(p) if isinstance(p, Close): yield Path(*segments) segments = None def _get_points(path, interpolate_curve=50): ''' Get points from path. ''' points = [] for item in path: if isinstance(item, (Arc, CubicBezier, QuadraticBezier)): istart = 1. / interpolate_curve for frac in np.linspace(istart, 1, interpolate_curve): points.append( (item.point(frac).real, item.point(frac).imag)) else: points.append((item.start.real, item.start.imag)) return points def _get_outer_shell(paths_points): ''' Returns the index of the container subpath ''' minx, maxx, miny, maxy = np.inf, -np.inf, np.inf, -np.inf container_idx = None for i, pp in enumerate(paths_points): arr = np.array(pp) x_min = np.min(arr[:, 0]) x_max = np.max(arr[:, 0]) y_min = np.min(arr[:, 1]) y_max = np.max(arr[:, 1]) winner = True if x_min <= minx: minx = x_min else: winner = False if x_max >= maxx: maxx = x_max else: winner = False if y_min <= miny: miny = y_min else: winner = False if y_max >= maxy: maxy = y_max else: winner = False if winner: container_idx = i return container_idx def _build_struct(svg, container, elt_type, elt_properties): root = svg.documentElement for elt in root.getElementsByTagName(elt_type): struct = { "transf": [], "transfdata": [] } parent = elt.parentNode while parent is not None: _get_transform(parent, struct) parent = parent.parentNode _get_transform(elt, struct) if elt_type == 'path': path, trans = elt.getAttribute('d'), None struct["path"] = path else: for item in elt_properties: struct[item] = float(elt.getAttribute(item)) container.append(struct) def _make_polygon(elt_type, instructions, parent=None, interpolate_curve=50, return_points=False): container = None shell = [] # outer points defining the polygon's outer shell holes = [] # inner points defining holes idx_start = 0 if elt_type == "path": # build polygons from custom paths path_data = parse_path(instructions["path"]) subpaths = [subpath for subpath in _get_closed_subpaths(path_data)] points = [_get_points(subpath) for subpath in subpaths] # get the container idx_container = _get_outer_shell(points) shell = np.array(points[idx_container]) # get the holes and make the shape holes = [pp for i, pp in enumerate(points) if i!= idx_container] container = Polygon(shell, holes=holes) elif elt_type == "ellipse": # build ellipses circle = Point((instructions["cx"], instructions["cy"])).buffer(1) rx, ry = instructions["rx"], instructions["ry"] container = scale(circle, rx, ry) elif elt_type == "circle": # build circles r = instructions["r"] container = Point((instructions["cx"], instructions["cy"])).buffer(r) elif elt_type == "rect": # build rectangles x, y = instructions["x"], instructions["y"] w, h = instructions["width"], instructions["height"] shell = np.array([(x, y), (x + w, y), (x + w, y + h), (x, y + h)]) container = Polygon(shell) else: raise RuntimeError("Unexpected element type: '{}'.".format(elt_type)) # transforms nn, dd = instructions["transf"][::-1], instructions["transfdata"][::-1] for name, data in zip(nn, dd): if name == "matrix": container = affine_transform(container, data) elif name == "translate": container = translate(container, *data) # y axis is inverted in SVG, so make mirror transform container = affine_transform(container, (1, 0, 0, -1, 0, 0)) shell = np.array(container.exterior.coords) if return_points: return container, shell return container def _get_transform(obj, tdict): ''' Get the transformation properties and name into `tdict` ''' try: if obj.hasAttribute("transform"): trans = obj.getAttribute('transform') if trans.startswith("translate"): start = trans.find("(") + 1 stop = trans.find(")") tdict["transf"].append("translate") tdict["transfdata"].append( [float(f) for f in trans[start:stop].split(",")]) elif trans.startswith("matrix"): start = trans.find("(") + 1 stop = trans.find(")") trans = [float(f) for f in trans[start:stop].split(",")] tdict["transf"].append("matrix") tdict["transfdata"].append(trans) else: raise RuntimeError("Uknown transform: " + trans) except: pass
PypiClean
/InvokeAI-3.1.0-py3-none-any.whl/invokeai/backend/model_management/models/__init__.py
import inspect from enum import Enum from pydantic import BaseModel from typing import Literal, get_origin from .base import ( # noqa: F401 BaseModelType, ModelType, SubModelType, ModelBase, ModelConfigBase, ModelVariantType, SchedulerPredictionType, ModelError, SilenceWarnings, ModelNotFoundException, InvalidModelException, DuplicateModelException, ) from .stable_diffusion import StableDiffusion1Model, StableDiffusion2Model from .sdxl import StableDiffusionXLModel from .vae import VaeModel from .lora import LoRAModel from .controlnet import ControlNetModel # TODO: from .textual_inversion import TextualInversionModel from .stable_diffusion_onnx import ONNXStableDiffusion1Model, ONNXStableDiffusion2Model MODEL_CLASSES = { BaseModelType.StableDiffusion1: { ModelType.ONNX: ONNXStableDiffusion1Model, ModelType.Main: StableDiffusion1Model, ModelType.Vae: VaeModel, ModelType.Lora: LoRAModel, ModelType.ControlNet: ControlNetModel, ModelType.TextualInversion: TextualInversionModel, }, BaseModelType.StableDiffusion2: { ModelType.ONNX: ONNXStableDiffusion2Model, ModelType.Main: StableDiffusion2Model, ModelType.Vae: VaeModel, ModelType.Lora: LoRAModel, ModelType.ControlNet: ControlNetModel, ModelType.TextualInversion: TextualInversionModel, }, BaseModelType.StableDiffusionXL: { ModelType.Main: StableDiffusionXLModel, ModelType.Vae: VaeModel, # will not work until support written ModelType.Lora: LoRAModel, ModelType.ControlNet: ControlNetModel, ModelType.TextualInversion: TextualInversionModel, ModelType.ONNX: ONNXStableDiffusion2Model, }, BaseModelType.StableDiffusionXLRefiner: { ModelType.Main: StableDiffusionXLModel, ModelType.Vae: VaeModel, # will not work until support written ModelType.Lora: LoRAModel, ModelType.ControlNet: ControlNetModel, ModelType.TextualInversion: TextualInversionModel, ModelType.ONNX: ONNXStableDiffusion2Model, }, # BaseModelType.Kandinsky2_1: { # ModelType.Main: Kandinsky2_1Model, # ModelType.MoVQ: MoVQModel, # ModelType.Lora: LoRAModel, # ModelType.ControlNet: ControlNetModel, # ModelType.TextualInversion: TextualInversionModel, # }, } MODEL_CONFIGS = list() OPENAPI_MODEL_CONFIGS = list() class OpenAPIModelInfoBase(BaseModel): model_name: str base_model: BaseModelType model_type: ModelType for base_model, models in MODEL_CLASSES.items(): for model_type, model_class in models.items(): model_configs = set(model_class._get_configs().values()) model_configs.discard(None) MODEL_CONFIGS.extend(model_configs) # LS: sort to get the checkpoint configs first, which makes # for a better template in the Swagger docs for cfg in sorted(model_configs, key=lambda x: str(x)): model_name, cfg_name = cfg.__qualname__.split(".")[-2:] openapi_cfg_name = model_name + cfg_name if openapi_cfg_name in vars(): continue api_wrapper = type( openapi_cfg_name, (cfg, OpenAPIModelInfoBase), dict( __annotations__=dict( model_type=Literal[model_type.value], ), ), ) # globals()[openapi_cfg_name] = api_wrapper vars()[openapi_cfg_name] = api_wrapper OPENAPI_MODEL_CONFIGS.append(api_wrapper) def get_model_config_enums(): enums = list() for model_config in MODEL_CONFIGS: if hasattr(inspect, "get_annotations"): fields = inspect.get_annotations(model_config) else: fields = model_config.__annotations__ try: field = fields["model_format"] except Exception: raise Exception("format field not found") # model_format: None # model_format: SomeModelFormat # model_format: Literal[SomeModelFormat.Diffusers] # model_format: Literal[SomeModelFormat.Diffusers, SomeModelFormat.Checkpoint] if isinstance(field, type) and issubclass(field, str) and issubclass(field, Enum): enums.append(field) elif get_origin(field) is Literal and all( isinstance(arg, str) and isinstance(arg, Enum) for arg in field.__args__ ): enums.append(type(field.__args__[0])) elif field is None: pass else: raise Exception(f"Unsupported format definition in {model_configs.__qualname__}") return enums
PypiClean
/JumpScale-core-6.0.0.tar.gz/JumpScale-core-6.0.0/lib/JumpScale/baselib/jpackages/JPackageClient.py
import math from JumpScale import j from JPackageObject import JPackageObject from Domain import Domain try: import JumpScale.baselib.circus except: pass try: import JumpScale.baselib.expect except: pass from JumpScale.baselib import platforms class JPackageClient(): sourcesFile = None """ methods to deal with jpackages, seen from client level @qlocation j.packages """ def __init__(self): """ """ j.system.fs.createDir(j.system.fs.joinPaths(j.dirs.packageDir, "metadata")) j.system.fs.createDir(j.system.fs.joinPaths(j.dirs.packageDir, "files")) j.system.fs.createDir(j.system.fs.joinPaths(j.dirs.packageDir, "metatars")) self.domains=[] self._metadatadirTmp=j.system.fs.joinPaths(j.dirs.varDir,"tmp","jpackages","md") j.system.fs.createDir(self._metadatadirTmp) # can't ask username here # because jumpscale is not interactive yet # So we ask the username/passwd lazy in the domain object # j.packages.markConfigurationPending=self._runPendingReconfigeFiles self.reloadconfig() self.enableConsoleLogging() self.logenable=True self.loglevel=5 self.errors=[] def reportError(self,msg): self.errors.append(msg) def log(self,msg,category="",level=5): if level<self.loglevel+1 and self.logenable: j.logger.log(msg,category="jpackage.%s"%category,level=level) def enableConsoleLogging(self): j.logger.consoleloglevel=6 j.logger.consolelogCategories.append("jpackage") j.logger.consolelogCategories.append("blobstor") def getJPackageMetadataScanner(self): """ returns tool which can be used to scan the jpackages repo's and manipulate them """ from core.jpackages.JPackageMetadataScanner import JPackageMetadataScanner return JPackageMetadataScanner() def _renew(self): j.packages = JPackageClient() def checkProtectedDirs(self,redo=True,checkInteractive=True): """ recreate the config file for protected dirs (means directories linked to code repo's) by executing this command you are sure that no development data will be overwritten @param redo means, restart from existing links in qbase, do not use the config file @checkInteractive if False, will not ask just execute on it """ result,llist=j.system.process.execute("find /opt/qbase5 -type l") lines=[item for item in llist.split("\n") if item.strip()<>""] if len(lines)>0: cfgpath=j.system.fs.joinPaths(j.dirs.cfgDir,"debug","protecteddirs","protected.cfg") if redo==False and j.system.fs.exists(cfgpath): llist=j.system.fs.fileGetContents(cfgpath) lines.extend([item for item in llist.split("\n") if item.strip()<>""]) prev="" lines2=[] lines.sort() for line in lines: if line<>prev: lines2.append(line) prev=line out="\n".join(lines2) do=False if checkInteractive: if j.console.askYesNo("Do you want to make sure that existing linked dirs are not overwritten by installer? \n(if yes the linked dirs will be put in protected dir configuration)\n"): do=True else: do=True if do: j.system.fs.writeFile(cfgpath,out) def reloadconfig(self): """ Reload all jpackages config data from disk """ cfgpath=j.system.fs.joinPaths(j.dirs.cfgDir, 'jpackages', 'sources.cfg') if not j.system.fs.exists(cfgpath): #check if there is old jpackages dir cfgpathOld=j.system.fs.joinPaths(j.dirs.cfgDir, 'jpackages', 'sources.cfg') if j.system.fs.exists(cfgpathOld): j.system.fs.renameDir(j.system.fs.joinPaths(j.dirs.cfgDir, 'jpackages'),j.system.fs.joinPaths(j.dirs.cfgDir, 'jpackages')) if not j.system.fs.exists(cfgpath): j.system.fs.createDir(j.system.fs.getDirName(cfgpath)) else: cfg = j.tools.inifile.open(cfgpath) self.sourcesConfig=cfg domainDict = dict() for domains in self.domains: domainDict[domains.domainname] = domains for domain in cfg.getSections(): if domain in domainDict.keys(): self.domains.remove(domainDict[domain]) self.domains.append(Domain(domainname=domain)) def create(self, domain="", name="", version="1.0", description="", supportedPlatforms=None): """ Creates a new jpackages4, this includes all standard tasklets, a config file and a description.wiki file @param domain: string - The domain the new jpackages should reside in @param name: string - The name of the new jpackages @param version: string - The version of the new jpackages @param description: string - The description of the new jpackages (is stored in the description.wiki file) @param supportedPlatforms ["linux",...] other examples win,win32,linux64 see j.system.platformtype """ if j.application.shellconfig.interactive: domain = j.console.askChoice(j.packages.getDomainNames(), "Please select a domain") j.packages.getDomainObject(domain)._ensureDomainCanBeUpdated() #@question what does this do? name = j.console.askString("Please provide a name") version = j.console.askString("Please provide a version","1.0") descr = j.console.askString("Please provide a description","") while not supportedPlatforms: supportedPlatforms = j.console.askChoiceMultiple(sorted(j.system.platformtype.getPlatforms()), 'Please enumerate the supported platforms') if domain=="" or name=="": raise RuntimeError("domain or name at least needs to be specified") supportedPlatforms=[str(item) for item in supportedPlatforms] # Create one in the repo if not domain in j.packages.getDomainNames(): raise RuntimeError('Provided domain is nonexistent on this system') if self.getDomainObject(domain).metadataFromTgz: raise RuntimeError('The meta data for domain ' + domain + ' is coming from a tgz, you cannot create new packages in it.') jp = JPackageObject(domain, name, version) #jp.prepareForUpdatingFiles(suppressErrors=True) jp.supportedPlatforms = supportedPlatforms jp.description=description jp.save() j.system.fs.createDir(jp.getPathFiles()) j.system.fs.createDir(j.system.fs.joinPaths(jp.getPathFiles(),"generic")) for pl in supportedPlatforms: j.system.fs.createDir(j.system.fs.joinPaths(jp.getPathFiles(),"%s"%pl)) return jp ############################################################ ################## GET FUNCTIONS ######################### ############################################################ def get(self, domain, name, version): """ Returns a jpackages @param domain: string - The domain the jpackages is part from @param name: string - The name of the jpackages @param version: string - The version of the jpackages """ # return a package from the default repo key = '%s%s%s' % (domain,name,version) if self._getcache.has_key(key): return self._getcache[key] if self.exists(domain,name,version)==False: raise RuntimeError("Could not find package %s." % self.getMetadataPath(domain,name,version)) self._getcache[key]=JPackageObject(domain, name, version) return self._getcache[key] def exists(self,domain,name,version): """ Checks whether the jpackages's metadata path is currently present on your system """ return j.system.fs.exists(self.getMetadataPath(domain,name,version)) def getInstalledPackages(self): """ Returns a list of all currently installed packages on your system """ return [p for p in self.getJPackageObjects(j.system.platformtype.myplatform) if p.isInstalled()] def getDebugPackages(self): """ Returns a list of all currently installed packages on your system """ return [p for p in self.getJPackageObjects(j.system.platformtype.myplatform) if int(p.state.debugMode)==1] def getPackagesWithBrokenDependencies(self): """ Returns a list of all jpackages which have dependencies that cannot be resolved """ return [package for package in self.getJPackageObjects() if len(package.getBrokenDependencies()) > 0] def getPendingReconfigurationPackages(self): """ Returns a List of all jpackages that are pending for configuration """ return filter(lambda jpackages: jpackages.isPendingReconfiguration(), self.getJPackageObjects()) ############################################################# ###################### DOMAINS ############################ ############################################################# def getDomainObject(self,domain,qualityLevel=None): """ Get provided domain as an object """ if qualityLevel==None: for item in self.domains: if item.domainname.lower()==domain.lower().strip(): return item else: return Domain(domain,qualityLevel) raise RuntimeError("Could not find jpackages domain %s" % domain) def getDomainNames(self): """ Returns a list of all domains present in the sources.cfg file """ result=[] for item in self.domains: result.append(item.domainname) return result ############################################################ ################### GET PATH FUNCTIONS ################### ############################################################ def getJPActionsPath(self,domain,name,version,fromtmp=False): """ Returns the metadatapath for the provided jpackages if fromtmp is True, then tmp directorypath will be returned @param domain: string - The domain of the jpackages @param name: string - The name of the jpackages @param version: string - The version of the jpackages @param fromtmp: boolean """ if fromtmp: self._metadatadirTmp return j.system.fs.joinPaths(self._metadatadirTmp,domain,name,version,"actions") else: return j.system.fs.joinPaths(j.dirs.packageDir, "active", domain,name,version,"actions") def getJPActiveHRDPath(self,domain,name,version,fromtmp=False): """ Returns the metadatapath for the provided jpackages if fromtmp is True, then tmp directorypath will be returned @param domain: string - The domain of the jpackages @param name: string - The name of the jpackages @param version: string - The version of the jpackages @param fromtmp: boolean """ if fromtmp: self._metadatadirTmp return j.system.fs.joinPaths(self._metadatadirTmp,domain,name,version,"hrd") else: return j.system.fs.joinPaths(j.dirs.packageDir, "active", domain,name,version,"hrd") def getMetadataPath(self,domain,name,version): """ Returns the metadatapath for the provided jpackages for active state @param domain: string - The domain of the jpackages @param name: string - The name of the jpackages @param version: string - The version of the jpackages @param fromtmp: boolean """ return j.system.fs.joinPaths(j.dirs.packageDir, "metadata", domain,name,version) def getDataPath(self,domain,name,version): """ Returns the filesdatapath for the provided jpackages @param domain: string - The domain of the jpackages @param name: string - The name of the jpackages @param version: string - The version of the jpackages """ return j.system.fs.joinPaths(j.dirs.packageDir, "files", domain,name,version) def getMetaTarPath(self, domainName): """ Returns the metatarsdatapath for the provided domain """ return j.system.fs.joinPaths(j.dirs.packageDir, "metatars", domainName) ############################################################ ###################### CACHING ########################### ############################################################ _getcache = {} def _deleteFromCache(self, domain, name, version): #called by a package when we call delete on it so it can be garbage collected key = '%s%s%s' % (domain, name, version) self._getcache.remove(key) ############################################################ ########################## FIND ########################## ############################################################ def findNewest(self, domain="",name="", minversion="",maxversion="",platform=None, returnNoneIfNotFound=False): """ Find the newest jpackages which matches the criteria If more than 1 jpackages matches -> error If no jpackages match and not returnNoneIfNotFound -> error @param name: string - The name of jpackages you are looking for @param domain: string - The domain of the jpackages you are looking for @param minversion: string - The minimum version the jpackages must have @param maxversion: string - The maximum version the jpackages can have @param platform: string - Which platform the jpackages must run on @param returnNoneIfNotFound: boolean - if true, will return None object if no jpackages have been found """ results=self.find(domain=domain,name=name) # results=[] # for item in results0: # if item.supportsPlatform(platform=None): # results.append(item) namefound="" domainfound="" if minversion=="": minversion="0" if maxversion=="" or maxversion=="0": maxversion="100.100.100" #look for duplicates for jp in results: if namefound=="": namefound=jp.name if domainfound=="": domainfound=jp.domain if jp.domain<>domainfound or jp.name<>namefound: packagesStr="\n" for jp2 in results: packagesStr=" %s\n" % str(jp2) raise RuntimeError("Found more than 1 jpackages matching the criteria.\n %s" % packagesStr) #check for version match if len(results)==0: if returnNoneIfNotFound: return None raise RuntimeError("Did not find jpackages with criteria domain:%s, name:%s, platform:%s (independant from version)" % (domain,name,platform)) # filter packages so they are between min and max version bounds result=[jp for jp in results if self._getVersionAsInt(minversion)<=self._getVersionAsInt(jp.version)<=self._getVersionAsInt(maxversion)] result.sort(lambda jp1, jp2: - int(self._getVersionAsInt(jp1.version) - self._getVersionAsInt(jp2.version))) if not result: if returnNoneIfNotFound: return None raise RuntimeError("Did not find jpackages with criteria domain:%s, name:%s, minversion:%s, maxversion:%s, platform:%s" % (domain,name,minversion,maxversion,platform)) return result[0] def findByName(self,name): ''' name is part of jpackage, if none found return None, if more than 1 found raise error, name is part of name ''' if name.find("*")==-1: name+="*" return self.find(name=name,domain="") def find(self, domain=None,name=None , version="", platform=None,onlyone=False,installed=None): """ @domain, if none will ask for domain """ if domain==None: domains=j.console.askChoiceMultiple(j.packages.getDomainNames()) result=[] for domain in domains: result+=self.find(domain=domain,name=name , version=version, platform=platform,onlyone=onlyone,installed=installed) return result if name==None: name = j.console.askString("Please provide the name or part of the name of the package to search for (e.g *extension* -> lots of extensions)") res = self._find(domain=domain, name=name, version=version) if not res: j.console.echo('No packages found, did you forget to run jpackage_update?') if installed==True: res=[item for item in res if item.isInstalled()] if onlyone: if len(res) > 1: res = [j.console.askChoice(res, "Multiple packages found, please choose one")] return res def _find(self, domain="",name="", version=""): """ Tries to find a package based on the provided criteria You may also use a wildcard to provide the name or domain (*partofname*) @param domain: string - The name of jpackages domain, when using * means partial name @param name: string - The name of the jpackages you are looking for @param version: string - The version of the jpackages you are looking for """ j.logger.log("Find jpackages domain:%s name:%s version:%s" %(domain,name,version)) #work with some functional methods works faster than doing the check everytime def findPartial(pattern,text): pattern=pattern.replace("*","") if text.lower().find(pattern.lower().strip())<>-1: return True return False def findFull(pattern,text): return pattern.strip().lower()==text.strip().lower() def alwaysReturnTrue(pattern,text): return True domainFindMethod=alwaysReturnTrue nameFindMethod=alwaysReturnTrue versionFindMethod=alwaysReturnTrue if domain: if domain.find("*")<>-1: domainFindMethod=findPartial else: domainFindMethod=findFull if name: if name.find("*")<>-1: nameFindMethod=findPartial else: nameFindMethod=findFull if version: if version.find("*")<>-1: versionFindMethod=findPartial else: versionFindMethod=findFull result=[] for p_domain, p_name, p_version in self._getJPackageTuples(): # print (p_domain, p_name, p_version) if domainFindMethod(domain,p_domain) and nameFindMethod(name,p_name) and versionFindMethod(version,p_version): result.append([p_domain, p_name, p_version]) result2=[] for item in result: result2.append(self.get(item[0],item[1], item[2])) return result2 # Used in getJPackageObjects and that is use in find def _getJPackageTuples(self): res = list() domains=self.getDomainNames() for domainName in domains: domainpath=j.system.fs.joinPaths(j.dirs.packageDir, "metadata", domainName) if j.system.fs.exists(domainpath): #this follows the link packages= [p for p in j.system.fs.listDirsInDir(domainpath,dirNameOnly=True) if p != '.hg'] # skip hg file for packagename in packages: packagepath=j.system.fs.joinPaths(domainpath,packagename) versions=j.system.fs.listDirsInDir(packagepath,dirNameOnly=True) for version in versions: res.append([domainName,packagename,version]) return res def getJPackageObjects(self, platform=None, domain=None): """ Returns a list of jpackages objects for specified platform & domain """ packageObjects = [self.get(*p) for p in self._getJPackageTuples()] if platform==None: return [p for p in packageObjects if (domain == None or p.domain == domain)] def hasPlatform(package): return any([supported in j.system.platformtype.getParents(platform) for supported in package.supportedPlatforms]) return [p for p in packageObjects if hasPlatform(p) and (domain == None or p.domain == domain)] def getPackagesWithBrokenDependencies(self): return [p for p in j.packages.find('*') if len(p.getBrokenDependencies()) > 0] ############################################################ ################# UPDATE / PUBLISH ####################### ############################################################ def init(self): pass def updateAll(self): ''' Updates all installed jpackages to the latest builds. The latest meta information is retrieved from the repository and based on this information, The install packages that have a buildnr that has been outdated our reinstall, thust updating them to the latest build. ''' # update all meta information: self.updateMetaData() # iterate over all install packages and install them # only when they are outdated will they truly install for p in self.getInstalledPackages(): p.install() def updateMetaDataAll(self,force=False): """ Updates the metadata information of all jpackages This used to be called updateJPackage list @param is force True then local changes will be lost if any """ self.updateMetaData("",force) def mergeMetaDataAll(self,): """ Tries to merge the metadata information of all jpackages with info on remote repo. This used to be called updateJPackage list """ j.packages.mergeMetaData("") def updateMetaDataForDomain(self,domainName=""): """ Updates the meta information of specific domain This used to be called updateJPackage list """ if domainName=="": domainName = j.console.askChoice(j.packages.getDomainNames(), "Please choose a domain") j.packages.getDomainObject(domainName).updateMetadata("") def linkMetaData(self,domain=""): """ Does an link of the meta information repo for each domain """ self.resetState() if domain<>"": j.logger.log("link metadata information for jpackages domain %s" % domain, 1) d=self.getDomainObject(domain) d.linkMetadata() else: domainnames=self.getDomainNames() for domainName in domainnames: self.linkMetaData(domainName) def updateMetaData(self,domain="",force=False): """ Does an update of the meta information repo for each domain """ # self.resetState() if domain<>"": j.logger.log("Update metadata information for jpackages domain %s" % domain, 1) d=self.getDomainObject(domain) d.updateMetadata(force=force) else: domainnames=self.getDomainNames() for domainName in domainnames: self.updateMetaData(domainName, force=force) def mergeMetaData(self,domain="", commitMessage=''): """ Does an update of the meta information repo for each domain """ if not j.application.shellconfig.interactive: if commitMessage == '': raise RuntimeError('Need commit message') if domain<>"": j.logger.log("Merge metadata information for jpackages domain %s" % domain, 1) d=self.getDomainObject(domain) d.mergeMetadata(commitMessage=commitMessage) else: for domainName in self.getDomainNames(): self.mergeMetaData(domainName, commitMessage=commitMessage) def _getQualityLevels(self,domain): cfg=self.sourcesConfig bitbucketreponame=cfg.getValue( domain, 'bitbucketreponame') bitbucketaccount=cfg.getValue( domain, 'bitbucketaccount') qualityLevels=j.system.fs.listDirsInDir(j.system.fs.joinPaths(j.dirs.codeDir,bitbucketaccount,bitbucketreponame),dirNameOnly=True) qualityLevels=[item for item in qualityLevels if item<>".hg"] return qualityLevels def _getMetadataDir(self,domain,qualityLevel=None,descr=""): cfg=self.sourcesConfig bitbucketreponame=cfg.getValue( domain, 'bitbucketreponame') bitbucketaccount=cfg.getValue( domain, 'bitbucketaccount') if descr=="": descr="please select your qualitylevel" if qualityLevel==None or qualityLevel=="": qualityLevel=j.console.askChoice(self._getQualityLevels(domain),descr) return j.system.fs.joinPaths(j.dirs.codeDir,bitbucketaccount,bitbucketreponame,qualityLevel) def metadataDeleteQualityLevel(self, domain="",qualityLevel=None): """ Delete a quality level """ if domain<>"": j.logger.log("Delete quality level %s for %s." % (qualityLevel,domain), 1) metadataPath=self._getMetadataDir(domain,qualityLevel) j.system.fs.removeDirTree(metadataPath) else: if j.application.shellconfig.interactive: domainnames=j.console.askChoiceMultiple(j.packages.getDomainNames()) else: domainnames=self.getDomainNames() for domainName in domainnames: self.metadataDeleteQualityLevel(domainName,qualityLevel) def metadataCreateQualityLevel(self, domain="",qualityLevelFrom=None,qualityLevelTo=None,force=False,link=True): """ Create a quality level starting from the qualitylevelFrom e.g. unstable to beta @param link if True will link the jpackages otherwise copy @param force, will delete the destination """ if domain<>"": j.logger.log("Create quality level for %s from %s to %s" % (domain,qualityLevelFrom,qualityLevelTo), 1) metadataFrom=self._getMetadataDir(domain,qualityLevelFrom,"please select your qualitylevel where you want to copy from for domain %s." % domain) if qualityLevelTo==None or qualityLevelTo=="": qualityLevelTo=j.console.askString("Please specify qualitylevel you would like to create for domain %s" % domain) metadataTo=self._getMetadataDir(domain,qualityLevelTo) dirsfrom=j.system.fs.listDirsInDir(metadataFrom) if j.system.fs.exists(metadataTo): if force or j.console.askYesNo("metadata dir %s exists, ok to remove?" % metadataTo): j.system.fs.removeDirTree(metadataTo) else: raise RuntimeError("Cannot continue to create metadata for new qualitylevel, because dest dir exists") j.system.fs.createDir(metadataTo) for item in dirsfrom: while j.system.fs.isLink(item): #look for source of link item=j.system.fs.readlink(item) dirname=j.system.fs.getDirName( item+"/", lastOnly=True) if link: j.system.fs.symlink( item,j.system.fs.joinPaths(metadataTo,dirname),overwriteTarget=True) else: j.system.fs.copyDirTree(item, j.system.fs.joinPaths(metadataTo,dirname), keepsymlinks=False, eraseDestination=True) else: if j.application.shellconfig.interactive: domainnames=j.console.askChoiceMultiple(j.packages.getDomainNames()) else: domainnames=self.getDomainNames() for domainName in domainnames: self.metadataCreateQualityLevel(domainName,qualityLevelFrom,qualityLevelTo,force,link) def publishMetaDataAsTarGz(self, domain="",qualityLevel=None): """ Compresses the meta data of a domain into a tar and upload that tar to the bundleUpload server. After this the that uptain there metadata as a tar can download the latest metadata. """ if domains==[]: domains=j.console.askChoiceMultiple(j.packages.getDomainNames(), "Please select a domain") if len(domains)>1: for domain in domains: self.publishMetaDataAsTarGz(domain=domain,qualityLevel=qualityLevel) else: j.logger.log("Push metadata information for jpackages domain %s to reposerver." % domain, 1) if qualityLevel=="all": for ql in self._getQualityLevels(domain): d = self.getDomainObject(domain,qualityLevel=ql) d.publishMetaDataAsTarGz() else: d = self.getDomainObject(domain,qualityLevel=qualityLevel) d.publishMetaDataAsTarGz() def publish(self, commitMessage,domain=""): """ Publishes all domains' bundles & metadata (if no domain specified) @param commitMessage: string - The commit message you want to assign to the publish """ if domain=="": for domain in j.packages.getDomainNames(): self.publish( commitMessage=commitMessage,domain=domain) else: domainobject=j.packages.getDomainObject(domain) domainobject.publish(commitMessage=commitMessage) def publishAll(self, commitMessage=None): """ Publish metadata & bundles for all domains, for more informartion see publishDomain """ if not commitMessage: commitMessage = j.console.askString('please enter a commit message') for domain in j.packages.getDomainNames(): self.publishDomain(domain, commitMessage=commitMessage) def publishDomain(self, domain="", commitMessage=None): """ Publish metadata & bundles for a domain. To publish a domain means to make your local changes to the corresponding domain available to other users. A domain can be changed in the following ways: a new package is created in it, a package in it is modified, a package in it is deleted. To make the changes available to others the new metadata is uploaded to the mercurial servers and for the packages whos files have been modified, new bundles are created and uploaded to the blobstor server """ if domain=="": domain=j.console.askChoice(j.packages.getDomainNames(), "Please select a domain") self.getDomainObject(domain)._ensureDomainCanBeUpdated() self.getDomainObject(domain).publish(commitMessage=commitMessage) ########################################################## #################### RECONFIGURE ####################### ########################################################## def _setHasPackagesPendingConfiguration(self, value=True): file = j.system.fs.joinPaths(j.dirs.baseDir, 'cfg', 'jpackages', 'reconfigure.cfg') if not j.system.fs.exists(file): ini_file = j.tools.inifile.new(file) else: ini_file = j.tools.inifile.open(file) if not ini_file.checkSection('main'): ini_file.addSection('main') ini_file.setParam("main","hasPackagesPendingConfiguration", "1" if value else "0") ini_file.write() def _hasPackagesPendingConfiguration(self): file = j.system.fs.joinPaths(j.dirs.baseDir, 'cfg', 'jpackages', 'reconfigure.cfg') if not j.system.fs.exists(file): return False ini_file = j.tools.inifile.open(file) if ini_file.checkSection('main'): return ini_file.getValue("main","hasPackagesPendingConfiguration") == '1' return False def runConfigurationPending(self): if not self._hasPackagesPendingConfiguration(): return # Get all packages that need reconfiguring and reconfigure them # We store the state to reconfigure them in their state files configuredPackages = set() currentPlatform = PlatformType.findPlatformType() def configure(package): # If already processed return if package in configuredPackages: return True configuredPackages.add(package) # first make sure depending packages are configured for dp in package.getDependencies(recursive=False, platform=currentPlatform): if not configure(dp): return False # now configure the package if package.isPendingReconfiguration(): j.logger.log("jpackages %s %s %s needs reconfiguration" % (package.domain,package.name,package.version),3) try: package.configure() except: j.debugging.printTraceBack('Got error while reconfiguring ' + str(package)) if j.console.askChoice(['Skip this one', 'Go to shell'], 'What do you want to do?') == 'Skip this one': return True else: return False return True pendingPackages = self.getPendingReconfigurationPackages() hasPendingConfiguration = False for p in pendingPackages: if not configure(p): hasPendingConfiguration = True break self._setHasPackagesPendingConfiguration(hasPendingConfiguration) ############################################################ ################ SUPPORTING FUNCTIONS #################### ############################################################ def _getVersionAsInt(self,version): """ @param version is string """ if version.find(",")<>-1: raise RuntimeError("version string can only contain numbers and . e.g. 1.1.1") if version=="": version="0" if version.find(".")<>-1: versions=version.split(".") else: versions=[version] if len(versions)>4: raise RuntimeError("max level of versionlevels = 4 e.g. max 1.1.1.1") #make sure always 4 levels of versions for comparison while(len(versions)<4): versions.append("0") result=0 for counter in range(0,len(versions)): level=len(versions)-counter-1 if versions[counter]=="": versions[counter]="0" result=int(result+(math.pow(1000,level)*int(versions[counter].strip()))) return result def pm_getJPackageConfig(self, jpackagesMDPath): return JPackageConfig(jpackagesMDPath) def makeDependencyGraph(self): ''' Creates a graphical visualization of all dependencies between the JPackackages of all domains. This helps to quickly view and debug the dependencies and avoid errors. The target audience are the developers of accross groups and domains that depend on each others packages. The graph can be found here: /opt/qbase5/var/jpackages/metadata/dependencyGraph.png Notes: The graph omits the constraints, such as version numbers and platform. For completeness, a second graph is created that shows packages without andy dependencies (both ways). See: dependencyGraph_singleNodes.png ''' from pygraphviz import AGraph #import only here to avoid overhead def _getPackageTagName(obj, separator=' - '): n = obj.name #n += '\\n' #n += obj.domain return n j.console.echo("Making Dependency graph ... please wait.") platform = PlatformType.getByName('generic') g=AGraph(strict=True,directed=True, compound=True) g.graph_attr['rankdir']='LR' g.graph_attr['ratio']=1.3 #Generate the graph for pack in j.packages.getJPackageObjects(): dn= 'cluster_'+pack.domain s= g.add_subgraph(name = dn) s.add_node(_getPackageTagName(pack)) x=g.get_node(_getPackageTagName(pack)) x.attr['label']=_getPackageTagName(pack) depList= pack.getDependencies(platform, recursive=False) for dep in depList: g.add_node(_getPackageTagName(dep)) g.add_edge(_getPackageTagName(pack),_getPackageTagName(dep)) #Separate nodes with and without links singleNodes=[] linkedNodes=[] for n in g.nodes(): c=[] c=g.neighbors(n) if c==[]: singleNodes.append(n) else: linkedNodes.append(n) #Add the domain name to the graph for pack in j.packages.getJPackageObjects(): n=pack.domain dn= 'cluster_'+pack.domain s= g.add_subgraph(name=dn) s.add_node(n) x=g.get_node(n) x.attr['label']=n x.attr['style']='filled' x.attr['shape']='box' #Create a second version, for the graph of single nodes stemp=g.to_string() s=AGraph(stemp) for n in singleNodes: g.delete_node(n) for n in linkedNodes: s.delete_node(n) g.layout(prog='dot') graphPath = j.system.fs.joinPaths(j.dirs.packageDir, 'metadata','dependencyGraph.png') g.draw(graphPath) s.layout(prog='dot') graphPath = j.system.fs.joinPaths(j.dirs.packageDir, 'metadata','dependencyGraph_singleNodes.png') s.draw(graphPath) j.console.echo("Dependency graph successfully created. Open file at /opt/qbase5/var/jpackages/metadata/dependencyGraph.png")
PypiClean
/Newsroom-1.0-py3-none-any.whl/newsroom/static/dist/navigations_js.9448ce7dce72c6bc137f.js
webpackJsonp([7],{ /***/ 1: /***/ (function(module, exports, __webpack_require__) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.notify = exports.now = undefined; exports.createStore = createStore; exports.render = render; exports.gettext = gettext; exports.getProductQuery = getProductQuery; exports.shortDate = shortDate; exports.getDateInputDate = getDateInputDate; exports.getLocaleDate = getLocaleDate; exports.isInPast = isInPast; exports.fullDate = fullDate; exports.formatTime = formatTime; exports.formatDate = formatDate; exports.getTextFromHtml = getTextFromHtml; exports.wordCount = wordCount; exports.toggleValue = toggleValue; exports.updateRouteParams = updateRouteParams; exports.formatHTML = formatHTML; exports.initWebSocket = initWebSocket; exports.errorHandler = errorHandler; exports.getConfig = getConfig; exports.getTimezoneOffset = getTimezoneOffset; exports.isTouchDevice = isTouchDevice; var _react = __webpack_require__(0); var _react2 = _interopRequireDefault(_react); var _lodash = __webpack_require__(7); var _reactRedux = __webpack_require__(6); var _redux = __webpack_require__(43); var _reduxLogger = __webpack_require__(47); var _reduxThunk = __webpack_require__(48); var _reduxThunk2 = _interopRequireDefault(_reduxThunk); var _reactDom = __webpack_require__(25); var _alertifyjs = __webpack_require__(49); var _alertifyjs2 = _interopRequireDefault(_alertifyjs); var _moment = __webpack_require__(3); var _moment2 = _interopRequireDefault(_moment); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } var now = exports.now = (0, _moment2.default)(); // to enable mocking in tests var TIME_FORMAT = getConfig('time_format'); var DATE_FORMAT = getConfig('date_format'); var DATETIME_FORMAT = TIME_FORMAT + ' ' + DATE_FORMAT; /** * Create redux store with default middleware * * @param {func} reducer * @return {Store} */ function createStore(reducer) { var logger = (0, _reduxLogger.createLogger)({ duration: true, collapsed: true, timestamp: false }); return (0, _redux.createStore)(reducer, (0, _redux.applyMiddleware)(_reduxThunk2.default, logger)); } /** * Render helper * * @param {Store} store * @param {Component} App * @param {Element} element */ function render(store, App, element) { return (0, _reactDom.render)(_react2.default.createElement( _reactRedux.Provider, { store: store }, _react2.default.createElement(App, null) ), element); } /** * Noop for now, but it's better to use it from beginning. * * It handles interpolation: * * gettext('Hello {{ name }}', {name: 'John'}); * * @param {String} text * @param {Object} params * @return {String} */ function gettext(text, params) { var translated = text; // temporary if (params) { Object.keys(params).forEach(function (param) { var paramRegexp = new RegExp('{{ ?' + param + ' ?}}', 'g'); translated = translated.replace(paramRegexp, params[param] || ''); }); } return translated; } /** * Returns query string query for a given product * * @param {Object} product * @return {string} */ function getProductQuery(product) { var q = product.sd_product_id ? 'products.code:' + product.sd_product_id : ''; q += product.query ? product.sd_product_id ? ' OR (' + product.query + ')' : product.query : ''; return q; } /** * Parse given date string and return Date instance * * @param {String} dateString * @return {Date} */ function parseDate(dateString) { return (0, _moment2.default)(dateString); } /** * Return date formatted for lists * * @param {String} dateString * @return {String} */ function shortDate(dateString) { var parsed = parseDate(dateString); return parsed.format(isToday(parsed) ? TIME_FORMAT : DATE_FORMAT); } /** * Return date formatted for date inputs * * @param {String} dateString * @return {String} */ function getDateInputDate(dateString) { if (dateString) { var parsed = parseDate(dateString); return parsed.format('YYYY-MM-DD'); } return ''; } /** * Return locale date * * @param {String} dateString * @return {String} */ function getLocaleDate(dateString) { return parseDate(dateString).format(DATETIME_FORMAT); } /** * Test if given day is today * * @param {Date} date * @return {Boolean} */ function isToday(date) { return date.format('YYYY-MM-DD') === now.format('YYYY-MM-DD'); } /** * Test if given day is in the past * * @param {Date} date * @return {Boolean} */ function isInPast(dateString) { if (!dateString) { return false; } var parsed = parseDate(dateString); return parsed.format('YYYY-MM-DD') < now.format('YYYY-MM-DD'); } /** * Return full date representation * * @param {String} dateString * @return {String} */ function fullDate(dateString) { return parseDate(dateString).format(DATETIME_FORMAT); } /** * Format time of a date * * @param {String} dateString * @return {String} */ function formatTime(dateString) { return parseDate(dateString).format(TIME_FORMAT); } /** * Format date of a date (without time) * * @param {String} dateString * @return {String} */ function formatDate(dateString) { return parseDate(dateString).format(DATE_FORMAT); } /** * Wrapper for alertifyjs */ var notify = exports.notify = { success: function success(message) { return _alertifyjs2.default.success(message); }, error: function error(message) { return _alertifyjs2.default.error(message); } }; /** * Get text from html * * @param {string} html * @return {string} */ function getTextFromHtml(html) { var div = document.createElement('div'); div.innerHTML = formatHTML(html); var tree = document.createTreeWalker(div, NodeFilter.SHOW_TEXT, null, false); // ie requires all params var text = []; while (tree.nextNode()) { text.push(tree.currentNode.textContent); if (tree.currentNode.nextSibling) { switch (tree.currentNode.nextSibling.nodeName) { case 'BR': case 'HR': text.push('\n'); } continue; } switch (tree.currentNode.parentNode.nodeName) { case 'P': case 'LI': case 'H1': case 'H2': case 'H3': case 'H4': case 'H5': case 'DIV': case 'TABLE': case 'BLOCKQUOTE': text.push('\n'); } } return text.join(''); } /** * Get word count for given item * * @param {Object} item * @return {number} */ function wordCount(item) { if ((0, _lodash.isInteger)(item.wordcount)) { return item.wordcount; } if (!item.body_html) { return 0; } var text = getTextFromHtml(item.body_html); return text.split(' ').filter(function (x) { return x.trim(); }).length || 0; } /** * Toggle value within array * * returns a new array so can be used with setState * * @param {Array} items * @param {mixed} value * @return {Array} */ function toggleValue(items, value) { if (!items) { return [value]; } var without = items.filter(function (x) { return value !== x; }); return without.length === items.length ? without.concat([value]) : without; } function updateRouteParams(updates, state) { var params = new URLSearchParams(window.location.search); var dirty = false; Object.keys(updates).forEach(function (key) { if (updates[key]) { dirty = dirty || updates[key] !== params.get(key); params.set(key, updates[key]); } else { dirty = dirty || params.has(key) || params.entries.length == 0; params.delete(key); } }); if (dirty) { history.pushState(state, null, '?' + params.toString()); } } var SHIFT_OUT_REGEXP = new RegExp(String.fromCharCode(14), 'g'); /** * Replace some white characters in html * * @param {String} html * @return {String} */ function formatHTML(html) { return html.replace(SHIFT_OUT_REGEXP, html.indexOf('<pre>') === -1 ? '<br>' : '\n'); } /** * Initializes the web socket listener * @param store */ function initWebSocket(store, action) { if (window.newsroom) { var ws = new WebSocket(window.newsroom.websocket); ws.onmessage = function (message) { var data = JSON.parse(message.data); if (data.event) { store.dispatch(action(data)); } }; } } /** * Generic error handler for http requests * @param error * @param dispatch * @param setError */ function errorHandler(error, dispatch, setError) { console.error('error', error); if (error.response.status !== 400) { notify.error(error.response.statusText); return; } if (setError) { error.response.json().then(function (data) { dispatch(setError(data)); }); } } /** * Get config value * * @param {String} key * @param {Mixed} defaultValue * @return {Mixed} */ function getConfig(key, defaultValue) { return (0, _lodash.get)(window.newsroom, key, defaultValue); } function getTimezoneOffset() { return now.utcOffset() ? now.utcOffset() * -1 : 0; // it's oposite to Date.getTimezoneOffset } function isTouchDevice() { return 'ontouchstart' in window // works on most browsers || navigator.maxTouchPoints; // works on IE10/11 and Surface } /***/ }), /***/ 100: /***/ (function(module, exports, __webpack_require__) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } return function (Constructor, protoProps, staticProps) { if (protoProps) defineProperties(Constructor.prototype, protoProps); if (staticProps) defineProperties(Constructor, staticProps); return Constructor; }; }(); var _react = __webpack_require__(0); var _react2 = _interopRequireDefault(_react); var _propTypes = __webpack_require__(2); var _propTypes2 = _interopRequireDefault(_propTypes); var _utils = __webpack_require__(1); var _lodash = __webpack_require__(7); var _CheckboxInput = __webpack_require__(27); var _CheckboxInput2 = _interopRequireDefault(_CheckboxInput); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } function _possibleConstructorReturn(self, call) { if (!self) { throw new ReferenceError("this hasn't been initialised - super() hasn't been called"); } return call && (typeof call === "object" || typeof call === "function") ? call : self; } function _inherits(subClass, superClass) { if (typeof superClass !== "function" && superClass !== null) { throw new TypeError("Super expression must either be null or a function, not " + typeof superClass); } subClass.prototype = Object.create(superClass && superClass.prototype, { constructor: { value: subClass, enumerable: false, writable: true, configurable: true } }); if (superClass) Object.setPrototypeOf ? Object.setPrototypeOf(subClass, superClass) : subClass.__proto__ = superClass; } var EditPanel = function (_React$Component) { _inherits(EditPanel, _React$Component); function EditPanel(props) { _classCallCheck(this, EditPanel); var _this = _possibleConstructorReturn(this, (EditPanel.__proto__ || Object.getPrototypeOf(EditPanel)).call(this, props)); _this.onItemChange = _this.onItemChange.bind(_this); _this.saveItems = _this.saveItems.bind(_this); _this.initItems = _this.initItems.bind(_this); _this.state = { activeParent: props.parent._id, items: {} }; return _this; } _createClass(EditPanel, [{ key: 'onItemChange', value: function onItemChange(event) { var item = event.target.name; var items = Object.assign({}, this.state.items); items[item] = !items[item]; this.setState({ items: items }); } }, { key: 'saveItems', value: function saveItems(event) { event.preventDefault(); this.props.onSave(Object.keys((0, _lodash.pickBy)(this.state.items))); } }, { key: 'initItems', value: function initItems(props) { var items = {}; props.items.map(function (item) { return items[item._id] = (props.parent[props.field] || []).includes(item._id); }); this.setState({ activeParent: props.parent._id, items: items }); } }, { key: 'componentWillMount', value: function componentWillMount() { this.initItems(this.props); } }, { key: 'componentWillReceiveProps', value: function componentWillReceiveProps(nextProps) { if (this.state.activeParent !== nextProps.parent._id) { this.initItems(nextProps); } } }, { key: 'render', value: function render() { var _this2 = this; return _react2.default.createElement( 'div', { className: 'tab-pane active', id: 'navigations' }, _react2.default.createElement( 'form', { onSubmit: this.saveItems }, _react2.default.createElement( 'div', { className: 'list-item__preview-form' }, _react2.default.createElement( 'ul', { className: 'list-unstyled' }, this.props.items.map(function (item) { return _react2.default.createElement( 'li', { key: item._id }, _react2.default.createElement(_CheckboxInput2.default, { name: item._id, label: item.name, value: !!_this2.state.items[item._id], onChange: _this2.onItemChange }) ); }) ) ), _react2.default.createElement( 'div', { className: 'list-item__preview-footer' }, _react2.default.createElement('input', { type: 'submit', className: 'btn btn-outline-primary', value: (0, _utils.gettext)('Save') }) ) ) ); } }]); return EditPanel; }(_react2.default.Component); EditPanel.propTypes = { parent: _propTypes2.default.object.isRequired, items: _propTypes2.default.arrayOf(_propTypes2.default.object), field: _propTypes2.default.string, onSave: _propTypes2.default.func.isRequired }; exports.default = EditPanel; /***/ }), /***/ 11: /***/ (function(module, exports, __webpack_require__) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.DISPLAY_ABSTRACT = undefined; exports.getReadItems = getReadItems; exports.markItemAsRead = markItemAsRead; exports.getNewsOnlyParam = getNewsOnlyParam; exports.toggleNewsOnlyParam = toggleNewsOnlyParam; exports.getActiveFilterTab = getActiveFilterTab; exports.setActiveFilterTab = setActiveFilterTab; exports.getMaxVersion = getMaxVersion; exports.getIntVersion = getIntVersion; exports.getPicture = getPicture; exports.getThumbnailRendition = getThumbnailRendition; exports.getPreviewRendition = getPreviewRendition; exports.getDetailRendition = getDetailRendition; exports.isKilled = isKilled; exports.isPreformatted = isPreformatted; exports.showItemVersions = showItemVersions; exports.shortText = shortText; exports.getCaption = getCaption; exports.getActiveQuery = getActiveQuery; exports.isTopicActive = isTopicActive; exports.isEqualItem = isEqualItem; var _store = __webpack_require__(31); var _store2 = _interopRequireDefault(_store); var _localStorage = __webpack_require__(18); var _localStorage2 = _interopRequireDefault(_localStorage); var _operations = __webpack_require__(41); var _operations2 = _interopRequireDefault(_operations); var _lodash = __webpack_require__(7); var _utils = __webpack_require__(1); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } function _defineProperty(obj, key, value) { if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; } var STATUS_KILLED = 'canceled'; var READ_ITEMS_STORE = 'read_items'; var NEWS_ONLY_STORE = 'news_only'; var FILTER_TAB = 'filter_tab'; var DISPLAY_ABSTRACT = exports.DISPLAY_ABSTRACT = (0, _utils.getConfig)('display_abstract'); var store = _store2.default.createStore([_localStorage2.default], [_operations2.default]); /** * Get read items * * @returns {Object} */ function getReadItems() { return store.get(READ_ITEMS_STORE); } /** * Marks the given item as read * * @param {Object} item * @param {Object} state */ function markItemAsRead(item, state) { if (item && item._id && item.version) { var readItems = (0, _lodash.get)(state, 'readItems', getReadItems()) || {}; store.assign(READ_ITEMS_STORE, _defineProperty({}, item._id, getMaxVersion(readItems[item._id], item.version))); } } /** * Get news only value * * @returns {boolean} */ function getNewsOnlyParam() { return !!(store.get(NEWS_ONLY_STORE) || {}).value; } /** * Toggles news only value * */ function toggleNewsOnlyParam() { store.assign(NEWS_ONLY_STORE, { value: !getNewsOnlyParam() }); } /** * Get active filter tab * * @returns {boolean} */ function getActiveFilterTab() { return (store.get(FILTER_TAB) || {}).value; } /** * Set active filter tab * */ function setActiveFilterTab(tab) { store.assign(FILTER_TAB, { value: tab }); } /** * Returns the greater version * * @param versionA * @param versionB * @returns {number} */ function getMaxVersion(versionA, versionB) { return Math.max(parseInt(versionA, 10) || 0, parseInt(versionB, 10) || 0); } /** * Returns the item version as integer * * @param {Object} item * @returns {number} */ function getIntVersion(item) { if (item) { return parseInt(item.version, 10) || 0; } } /** * Get picture for an item * * if item is picture return it, otherwise look for featuremedia * * @param {Object} item * @return {Object} */ function getPicture(item) { return item.type === 'picture' ? item : (0, _lodash.get)(item, 'associations.featuremedia', getBodyPicture(item)); } function getBodyPicture(item) { var pictures = Object.values((0, _lodash.get)(item, 'associations', {})).filter(function (assoc) { return (0, _lodash.get)(assoc, 'type') === 'picture'; }); return pictures.length ? pictures[0] : null; } /** * Get picture thumbnail rendition specs * * @param {Object} picture * @param {Boolean} large * @return {Object} */ function getThumbnailRendition(picture, large) { var rendition = large ? 'renditions._newsroom_thumbnail_large' : 'renditions._newsroom_thumbnail'; return (0, _lodash.get)(picture, rendition, (0, _lodash.get)(picture, 'renditions.thumbnail')); } /** * Get picture preview rendition * * @param {Object} picture * @return {Object} */ function getPreviewRendition(picture) { return (0, _lodash.get)(picture, 'renditions._newsroom_view', (0, _lodash.get)(picture, 'renditions.viewImage')); } /** * Get picture detail rendition * * @param {Object} picture * @return {Object} */ function getDetailRendition(picture) { return (0, _lodash.get)(picture, 'renditions._newsroom_base', (0, _lodash.get)(picture, 'renditions.baseImage')); } /** * Test if an item is killed * * @param {Object} item * @return {Boolean} */ function isKilled(item) { return item.pubstatus === STATUS_KILLED; } /** * Checks if item is preformatted * * @param {Object} item * @return {Boolean} */ function isPreformatted(item) { return item.body_html.includes('<pre>'); } /** * Test if other item versions should be visible * * @param {Object} item * @param {bool} next toggle if checking for next or previous versions * @return {Boolean} */ function showItemVersions(item, next) { return !isKilled(item) && (next || item.ancestors && item.ancestors.length); } /** * Get short text for lists * * @param {Item} item * @return {Node} */ function shortText(item) { var length = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : 40; var html = item.description_html || item.body_html || '<p></p>'; var text = item.description_text || (0, _utils.getTextFromHtml)(html); var words = text.split(/\s/).filter(function (w) { return w; }); return words.slice(0, length).join(' ') + (words.length > length ? '...' : ''); } /** * Get caption for picture * * @param {Object} picture * @return {String} */ function getCaption(picture) { return (0, _utils.getTextFromHtml)(picture.body_text || picture.description_text || '').trim(); } function getActiveQuery(query, activeFilter, createdFilter) { var queryParams = { query: query || null, filter: (0, _lodash.pickBy)(activeFilter), created: (0, _lodash.pickBy)(createdFilter) }; return (0, _lodash.pickBy)(queryParams, function (val) { return !(0, _lodash.isEmpty)(val); }); } function isTopicActive(topic, activeQuery) { var topicQuery = getActiveQuery(topic.query, topic.filter, topic.created); return !(0, _lodash.isEmpty)(activeQuery) && (0, _lodash.isEqual)(topicQuery, activeQuery); } /** * Test if 2 items are equal * * @param {Object} a * @param {Object} b * @return {Boolean} */ function isEqualItem(a, b) { return a && b && a._id === b._id && a.version === b.version; } /***/ }), /***/ 125: /***/ (function(module, exports, __webpack_require__) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.SET_ERROR = exports.GET_PRODUCTS = exports.GET_NAVIGATIONS = exports.QUERY_NAVIGATIONS = exports.SET_QUERY = exports.CANCEL_EDIT = exports.NEW_NAVIGATION = exports.EDIT_NAVIGATION = exports.SELECT_NAVIGATION = undefined; exports.selectNavigation = selectNavigation; exports.editNavigation = editNavigation; exports.newNavigation = newNavigation; exports.cancelEdit = cancelEdit; exports.setQuery = setQuery; exports.queryNavigations = queryNavigations; exports.getNavigations = getNavigations; exports.getProducts = getProducts; exports.setError = setError; exports.fetchNavigations = fetchNavigations; exports.postNavigation = postNavigation; exports.deleteNavigation = deleteNavigation; exports.fetchProducts = fetchProducts; exports.saveProducts = saveProducts; exports.initViewData = initViewData; var _utils = __webpack_require__(1); var _server = __webpack_require__(15); var _server2 = _interopRequireDefault(_server); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } var SELECT_NAVIGATION = exports.SELECT_NAVIGATION = 'SELECT_NAVIGATION'; function selectNavigation(id) { return { type: SELECT_NAVIGATION, id: id }; } var EDIT_NAVIGATION = exports.EDIT_NAVIGATION = 'EDIT_NAVIGATION'; function editNavigation(event) { return { type: EDIT_NAVIGATION, event: event }; } var NEW_NAVIGATION = exports.NEW_NAVIGATION = 'NEW_NAVIGATION'; function newNavigation() { return { type: NEW_NAVIGATION }; } var CANCEL_EDIT = exports.CANCEL_EDIT = 'CANCEL_EDIT'; function cancelEdit(event) { return { type: CANCEL_EDIT, event: event }; } var SET_QUERY = exports.SET_QUERY = 'SET_QUERY'; function setQuery(query) { return { type: SET_QUERY, query: query }; } var QUERY_NAVIGATIONS = exports.QUERY_NAVIGATIONS = 'QUERY_NAVIGATIONS'; function queryNavigations() { return { type: QUERY_NAVIGATIONS }; } var GET_NAVIGATIONS = exports.GET_NAVIGATIONS = 'GET_NAVIGATIONS'; function getNavigations(data) { return { type: GET_NAVIGATIONS, data: data }; } var GET_PRODUCTS = exports.GET_PRODUCTS = 'GET_PRODUCTS'; function getProducts(data) { return { type: GET_PRODUCTS, data: data }; } var SET_ERROR = exports.SET_ERROR = 'SET_ERROR'; function setError(errors) { return { type: SET_ERROR, errors: errors }; } /** * Fetches navigations * */ function fetchNavigations() { return function (dispatch, getState) { dispatch(queryNavigations()); var query = getState().query || ''; return _server2.default.get('/navigations/search?q=' + query).then(function (data) { return dispatch(getNavigations(data)); }).catch(function (error) { return (0, _utils.errorHandler)(error, dispatch, setError); }); }; } /** * Creates new navigations * */ function postNavigation() { return function (dispatch, getState) { var navigation = getState().navigationToEdit; var url = '/navigations/' + (navigation._id ? navigation._id : 'new'); return _server2.default.post(url, navigation).then(function () { if (navigation._id) { _utils.notify.success((0, _utils.gettext)('Navigation updated successfully')); } else { _utils.notify.success((0, _utils.gettext)('Navigation created successfully')); } dispatch(fetchNavigations()); }).catch(function (error) { return (0, _utils.errorHandler)(error, dispatch, setError); }); }; } /** * Deletes a navigation * */ function deleteNavigation() { return function (dispatch, getState) { var navigation = getState().navigationToEdit; var url = '/navigations/' + navigation._id; return _server2.default.del(url).then(function () { _utils.notify.success((0, _utils.gettext)('Navigation deleted successfully')); dispatch(fetchNavigations()); }).catch(function (error) { return (0, _utils.errorHandler)(error, dispatch, setError); }); }; } /** * Fetches products * */ function fetchProducts() { return function (dispatch) { return _server2.default.get('/products/search').then(function (data) { dispatch(getProducts(data)); }).catch(function (error) { return (0, _utils.errorHandler)(error, dispatch, setError); }); }; } /** * Saves products for a navigation * */ function saveProducts(products) { return function (dispatch, getState) { var navigation = getState().navigationToEdit; return _server2.default.post('/navigations/' + navigation._id + '/products', { products: products }).then(function () { _utils.notify.success((0, _utils.gettext)('Navigation updated successfully')); dispatch(fetchProducts()); }).catch(function (error) { return (0, _utils.errorHandler)(error, dispatch, setError); }); }; } function initViewData(data) { return function (dispatch) { dispatch(getNavigations(data.navigations)); dispatch(getProducts(data.products)); }; } /***/ }), /***/ 15: /***/ (function(module, exports, __webpack_require__) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } return function (Constructor, protoProps, staticProps) { if (protoProps) defineProperties(Constructor.prototype, protoProps); if (staticProps) defineProperties(Constructor, staticProps); return Constructor; }; }(); function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } var defaultOptions = { credentials: 'same-origin' }; function options() { var custom = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : {}; return Object.assign({}, defaultOptions, custom); } function checkStatus(response) { if (response.status >= 200 && response.status < 300) { return response.json(); } else { var error = new Error(response.statusText); error.response = response; throw error; } } var Server = function () { function Server() { _classCallCheck(this, Server); } _createClass(Server, [{ key: 'get', /** * Make GET request * * @param {String} url * @return {Promise} */ value: function get(url) { return fetch(url, options({})).then(checkStatus); } /** * Make POST request to url * * @param {String} url * @param {Object} data * @return {Promise} */ }, { key: 'post', value: function post(url, data) { return fetch(url, options({ method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify(data) })).then(checkStatus); } /** * Make POST request to url in keeps the format of the input * * @param {String} url * @param {Object} data * @return {Promise} */ }, { key: 'postFiles', value: function postFiles(url, data) { return fetch(url, options({ method: 'POST', body: data })).then(checkStatus); } /** * Make DELETE request to url * * @param {String} url * @return {Promise} */ }, { key: 'del', value: function del(url, data) { return fetch(url, options({ method: 'DELETE', headers: { 'Content-Type': 'application/json' }, body: data ? JSON.stringify(data) : null })).then(checkStatus); } }]); return Server; }(); exports.default = new Server(); /***/ }), /***/ 16: /***/ (function(module, exports, __webpack_require__) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.renderModal = renderModal; exports.closeModal = closeModal; var RENDER_MODAL = exports.RENDER_MODAL = 'RENDER_MODAL'; function renderModal(modal, data) { return { type: RENDER_MODAL, modal: modal, data: data }; } var CLOSE_MODAL = exports.CLOSE_MODAL = 'CLOSE_MODAL'; function closeModal() { return { type: CLOSE_MODAL }; } /***/ }), /***/ 18: /***/ (function(module, exports, __webpack_require__) { var util = __webpack_require__(5) var Global = util.Global module.exports = { name: 'localStorage', read: read, write: write, each: each, remove: remove, clearAll: clearAll, } function localStorage() { return Global.localStorage } function read(key) { return localStorage().getItem(key) } function write(key, data) { return localStorage().setItem(key, data) } function each(fn) { for (var i = localStorage().length - 1; i >= 0; i--) { var key = localStorage().key(i) fn(read(key), key) } } function remove(key) { return localStorage().removeItem(key) } function clearAll() { return localStorage().clear() } /***/ }), /***/ 26: /***/ (function(module, exports, __webpack_require__) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); var _react = __webpack_require__(0); var _react2 = _interopRequireDefault(_react); var _propTypes = __webpack_require__(2); var _propTypes2 = _interopRequireDefault(_propTypes); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } function TextInput(_ref) { var type = _ref.type, name = _ref.name, label = _ref.label, onChange = _ref.onChange, value = _ref.value, error = _ref.error, required = _ref.required, readOnly = _ref.readOnly, maxLength = _ref.maxLength; var wrapperClass = 'form-group'; if (error && error.length > 0) { wrapperClass += ' has-error'; } if (!name) { name = 'input-' + label; } return _react2.default.createElement( 'div', { className: wrapperClass }, _react2.default.createElement( 'label', { htmlFor: name }, label ), _react2.default.createElement( 'div', { className: 'field' }, _react2.default.createElement('input', { type: type || 'text', id: name, name: name, className: 'form-control', value: value, onChange: onChange, required: required, maxLength: maxLength, readOnly: readOnly }), error && _react2.default.createElement( 'div', { className: 'alert alert-danger' }, error ) ) ); } TextInput.propTypes = { type: _propTypes2.default.string, label: _propTypes2.default.string.isRequired, name: _propTypes2.default.string, value: _propTypes2.default.string, error: _propTypes2.default.arrayOf(_propTypes2.default.string), onChange: _propTypes2.default.func, required: _propTypes2.default.bool, readOnly: _propTypes2.default.bool, maxLength: _propTypes2.default.number }; exports.default = TextInput; /***/ }), /***/ 27: /***/ (function(module, exports, __webpack_require__) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); var _react = __webpack_require__(0); var _react2 = _interopRequireDefault(_react); var _classnames = __webpack_require__(14); var _classnames2 = _interopRequireDefault(_classnames); var _propTypes = __webpack_require__(2); var _propTypes2 = _interopRequireDefault(_propTypes); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } function CheckboxInput(_ref) { var name = _ref.name, label = _ref.label, onChange = _ref.onChange, value = _ref.value, labelClass = _ref.labelClass; if (!name) { name = 'input-' + label; } return _react2.default.createElement( 'div', { className: 'form-check p-0' }, _react2.default.createElement( 'div', { className: 'custom-control custom-checkbox' }, _react2.default.createElement('input', { type: 'checkbox', name: name, className: 'custom-control-input', checked: value, id: name, onChange: onChange }), _react2.default.createElement( 'label', { className: (0, _classnames2.default)('custom-control-label', labelClass), htmlFor: name }, label ) ) ); } CheckboxInput.propTypes = { name: _propTypes2.default.string, label: _propTypes2.default.string.isRequired, onChange: _propTypes2.default.func.isRequired, value: _propTypes2.default.bool.isRequired, labelClass: _propTypes2.default.string }; exports.default = CheckboxInput; /***/ }), /***/ 29: /***/ (function(module, exports, __webpack_require__) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } return function (Constructor, protoProps, staticProps) { if (protoProps) defineProperties(Constructor.prototype, protoProps); if (staticProps) defineProperties(Constructor, staticProps); return Constructor; }; }(); var _lodash = __webpack_require__(7); function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } var Analytics = function () { function Analytics() { _classCallCheck(this, Analytics); } _createClass(Analytics, [{ key: '_event', value: function _event(name, params) { if (window.gtag) { var company = (0, _lodash.get)(window, 'profileData.companyName', 'none'); var user = (0, _lodash.get)(window, 'profileData.user.first_name', 'unknown'); var userParams = { event_category: company, company: company, user: user }; window.gtag('event', name, Object.assign(userParams, params)); } } }, { key: 'event', value: function event(name, label, params) { this._event(name, Object.assign({ event_label: label }, params)); } }, { key: 'itemEvent', value: function itemEvent(name, item, params) { this.event(name, item.headline || item.slugline, params); } }, { key: 'timingComplete', value: function timingComplete(name, value) { this._event('timing_complete', { name: name, value: value }); } }, { key: 'pageview', value: function pageview(title, path) { if (window.gtag) { window.gtag('config', (0, _lodash.get)(window, 'newsroom.analytics'), { page_title: title, page_path: path }); } } }, { key: 'itemView', value: function itemView(item) { if (item) { this.pageview(item.headline || item.slugline, '/wire?item=' + item._id); } else { this.pageview(); } } }, { key: 'sendEvents', value: function sendEvents(events) { var _this = this; events.forEach(function (event) { _this._event(event); }); } }]); return Analytics; }(); // make it available window.analytics = new Analytics(); exports.default = window.analytics; /***/ }), /***/ 31: /***/ (function(module, exports, __webpack_require__) { var engine = __webpack_require__(32) var storages = __webpack_require__(33) var plugins = [__webpack_require__(39)] module.exports = engine.createStore(storages, plugins) /***/ }), /***/ 32: /***/ (function(module, exports, __webpack_require__) { var util = __webpack_require__(5) var slice = util.slice var pluck = util.pluck var each = util.each var bind = util.bind var create = util.create var isList = util.isList var isFunction = util.isFunction var isObject = util.isObject module.exports = { createStore: createStore } var storeAPI = { version: '2.0.12', enabled: false, // get returns the value of the given key. If that value // is undefined, it returns optionalDefaultValue instead. get: function(key, optionalDefaultValue) { var data = this.storage.read(this._namespacePrefix + key) return this._deserialize(data, optionalDefaultValue) }, // set will store the given value at key and returns value. // Calling set with value === undefined is equivalent to calling remove. set: function(key, value) { if (value === undefined) { return this.remove(key) } this.storage.write(this._namespacePrefix + key, this._serialize(value)) return value }, // remove deletes the key and value stored at the given key. remove: function(key) { this.storage.remove(this._namespacePrefix + key) }, // each will call the given callback once for each key-value pair // in this store. each: function(callback) { var self = this this.storage.each(function(val, namespacedKey) { callback.call(self, self._deserialize(val), (namespacedKey || '').replace(self._namespaceRegexp, '')) }) }, // clearAll will remove all the stored key-value pairs in this store. clearAll: function() { this.storage.clearAll() }, // additional functionality that can't live in plugins // --------------------------------------------------- // hasNamespace returns true if this store instance has the given namespace. hasNamespace: function(namespace) { return (this._namespacePrefix == '__storejs_'+namespace+'_') }, // createStore creates a store.js instance with the first // functioning storage in the list of storage candidates, // and applies the the given mixins to the instance. createStore: function() { return createStore.apply(this, arguments) }, addPlugin: function(plugin) { this._addPlugin(plugin) }, namespace: function(namespace) { return createStore(this.storage, this.plugins, namespace) } } function _warn() { var _console = (typeof console == 'undefined' ? null : console) if (!_console) { return } var fn = (_console.warn ? _console.warn : _console.log) fn.apply(_console, arguments) } function createStore(storages, plugins, namespace) { if (!namespace) { namespace = '' } if (storages && !isList(storages)) { storages = [storages] } if (plugins && !isList(plugins)) { plugins = [plugins] } var namespacePrefix = (namespace ? '__storejs_'+namespace+'_' : '') var namespaceRegexp = (namespace ? new RegExp('^'+namespacePrefix) : null) var legalNamespaces = /^[a-zA-Z0-9_\-]*$/ // alpha-numeric + underscore and dash if (!legalNamespaces.test(namespace)) { throw new Error('store.js namespaces can only have alphanumerics + underscores and dashes') } var _privateStoreProps = { _namespacePrefix: namespacePrefix, _namespaceRegexp: namespaceRegexp, _testStorage: function(storage) { try { var testStr = '__storejs__test__' storage.write(testStr, testStr) var ok = (storage.read(testStr) === testStr) storage.remove(testStr) return ok } catch(e) { return false } }, _assignPluginFnProp: function(pluginFnProp, propName) { var oldFn = this[propName] this[propName] = function pluginFn() { var args = slice(arguments, 0) var self = this // super_fn calls the old function which was overwritten by // this mixin. function super_fn() { if (!oldFn) { return } each(arguments, function(arg, i) { args[i] = arg }) return oldFn.apply(self, args) } // Give mixing function access to super_fn by prefixing all mixin function // arguments with super_fn. var newFnArgs = [super_fn].concat(args) return pluginFnProp.apply(self, newFnArgs) } }, _serialize: function(obj) { return JSON.stringify(obj) }, _deserialize: function(strVal, defaultVal) { if (!strVal) { return defaultVal } // It is possible that a raw string value has been previously stored // in a storage without using store.js, meaning it will be a raw // string value instead of a JSON serialized string. By defaulting // to the raw string value in case of a JSON parse error, we allow // for past stored values to be forwards-compatible with store.js var val = '' try { val = JSON.parse(strVal) } catch(e) { val = strVal } return (val !== undefined ? val : defaultVal) }, _addStorage: function(storage) { if (this.enabled) { return } if (this._testStorage(storage)) { this.storage = storage this.enabled = true } }, _addPlugin: function(plugin) { var self = this // If the plugin is an array, then add all plugins in the array. // This allows for a plugin to depend on other plugins. if (isList(plugin)) { each(plugin, function(plugin) { self._addPlugin(plugin) }) return } // Keep track of all plugins we've seen so far, so that we // don't add any of them twice. var seenPlugin = pluck(this.plugins, function(seenPlugin) { return (plugin === seenPlugin) }) if (seenPlugin) { return } this.plugins.push(plugin) // Check that the plugin is properly formed if (!isFunction(plugin)) { throw new Error('Plugins must be function values that return objects') } var pluginProperties = plugin.call(this) if (!isObject(pluginProperties)) { throw new Error('Plugins must return an object of function properties') } // Add the plugin function properties to this store instance. each(pluginProperties, function(pluginFnProp, propName) { if (!isFunction(pluginFnProp)) { throw new Error('Bad plugin property: '+propName+' from plugin '+plugin.name+'. Plugins should only return functions.') } self._assignPluginFnProp(pluginFnProp, propName) }) }, // Put deprecated properties in the private API, so as to not expose it to accidential // discovery through inspection of the store object. // Deprecated: addStorage addStorage: function(storage) { _warn('store.addStorage(storage) is deprecated. Use createStore([storages])') this._addStorage(storage) } } var store = create(_privateStoreProps, storeAPI, { plugins: [] }) store.raw = {} each(store, function(prop, propName) { if (isFunction(prop)) { store.raw[propName] = bind(store, prop) } }) each(storages, function(storage) { store._addStorage(storage) }) each(plugins, function(plugin) { store._addPlugin(plugin) }) return store } /***/ }), /***/ 33: /***/ (function(module, exports, __webpack_require__) { module.exports = [ // Listed in order of usage preference __webpack_require__(18), __webpack_require__(34), __webpack_require__(35), __webpack_require__(36), __webpack_require__(37), __webpack_require__(38) ] /***/ }), /***/ 34: /***/ (function(module, exports, __webpack_require__) { // oldFF-globalStorage provides storage for Firefox // versions 6 and 7, where no localStorage, etc // is available. var util = __webpack_require__(5) var Global = util.Global module.exports = { name: 'oldFF-globalStorage', read: read, write: write, each: each, remove: remove, clearAll: clearAll, } var globalStorage = Global.globalStorage function read(key) { return globalStorage[key] } function write(key, data) { globalStorage[key] = data } function each(fn) { for (var i = globalStorage.length - 1; i >= 0; i--) { var key = globalStorage.key(i) fn(globalStorage[key], key) } } function remove(key) { return globalStorage.removeItem(key) } function clearAll() { each(function(key, _) { delete globalStorage[key] }) } /***/ }), /***/ 35: /***/ (function(module, exports, __webpack_require__) { // oldIE-userDataStorage provides storage for Internet Explorer // versions 6 and 7, where no localStorage, sessionStorage, etc // is available. var util = __webpack_require__(5) var Global = util.Global module.exports = { name: 'oldIE-userDataStorage', write: write, read: read, each: each, remove: remove, clearAll: clearAll, } var storageName = 'storejs' var doc = Global.document var _withStorageEl = _makeIEStorageElFunction() var disable = (Global.navigator ? Global.navigator.userAgent : '').match(/ (MSIE 8|MSIE 9|MSIE 10)\./) // MSIE 9.x, MSIE 10.x function write(unfixedKey, data) { if (disable) { return } var fixedKey = fixKey(unfixedKey) _withStorageEl(function(storageEl) { storageEl.setAttribute(fixedKey, data) storageEl.save(storageName) }) } function read(unfixedKey) { if (disable) { return } var fixedKey = fixKey(unfixedKey) var res = null _withStorageEl(function(storageEl) { res = storageEl.getAttribute(fixedKey) }) return res } function each(callback) { _withStorageEl(function(storageEl) { var attributes = storageEl.XMLDocument.documentElement.attributes for (var i=attributes.length-1; i>=0; i--) { var attr = attributes[i] callback(storageEl.getAttribute(attr.name), attr.name) } }) } function remove(unfixedKey) { var fixedKey = fixKey(unfixedKey) _withStorageEl(function(storageEl) { storageEl.removeAttribute(fixedKey) storageEl.save(storageName) }) } function clearAll() { _withStorageEl(function(storageEl) { var attributes = storageEl.XMLDocument.documentElement.attributes storageEl.load(storageName) for (var i=attributes.length-1; i>=0; i--) { storageEl.removeAttribute(attributes[i].name) } storageEl.save(storageName) }) } // Helpers ////////// // In IE7, keys cannot start with a digit or contain certain chars. // See https://github.com/marcuswestin/store.js/issues/40 // See https://github.com/marcuswestin/store.js/issues/83 var forbiddenCharsRegex = new RegExp("[!\"#$%&'()*+,/\\\\:;<=>?@[\\]^`{|}~]", "g") function fixKey(key) { return key.replace(/^\d/, '___$&').replace(forbiddenCharsRegex, '___') } function _makeIEStorageElFunction() { if (!doc || !doc.documentElement || !doc.documentElement.addBehavior) { return null } var scriptTag = 'script', storageOwner, storageContainer, storageEl // Since #userData storage applies only to specific paths, we need to // somehow link our data to a specific path. We choose /favicon.ico // as a pretty safe option, since all browsers already make a request to // this URL anyway and being a 404 will not hurt us here. We wrap an // iframe pointing to the favicon in an ActiveXObject(htmlfile) object // (see: http://msdn.microsoft.com/en-us/library/aa752574(v=VS.85).aspx) // since the iframe access rules appear to allow direct access and // manipulation of the document element, even for a 404 page. This // document can be used instead of the current document (which would // have been limited to the current path) to perform #userData storage. try { /* global ActiveXObject */ storageContainer = new ActiveXObject('htmlfile') storageContainer.open() storageContainer.write('<'+scriptTag+'>document.w=window</'+scriptTag+'><iframe src="/favicon.ico"></iframe>') storageContainer.close() storageOwner = storageContainer.w.frames[0].document storageEl = storageOwner.createElement('div') } catch(e) { // somehow ActiveXObject instantiation failed (perhaps some special // security settings or otherwse), fall back to per-path storage storageEl = doc.createElement('div') storageOwner = doc.body } return function(storeFunction) { var args = [].slice.call(arguments, 0) args.unshift(storageEl) // See http://msdn.microsoft.com/en-us/library/ms531081(v=VS.85).aspx // and http://msdn.microsoft.com/en-us/library/ms531424(v=VS.85).aspx storageOwner.appendChild(storageEl) storageEl.addBehavior('#default#userData') storageEl.load(storageName) storeFunction.apply(this, args) storageOwner.removeChild(storageEl) return } } /***/ }), /***/ 36: /***/ (function(module, exports, __webpack_require__) { // cookieStorage is useful Safari private browser mode, where localStorage // doesn't work but cookies do. This implementation is adopted from // https://developer.mozilla.org/en-US/docs/Web/API/Storage/LocalStorage var util = __webpack_require__(5) var Global = util.Global var trim = util.trim module.exports = { name: 'cookieStorage', read: read, write: write, each: each, remove: remove, clearAll: clearAll, } var doc = Global.document function read(key) { if (!key || !_has(key)) { return null } var regexpStr = "(?:^|.*;\\s*)" + escape(key).replace(/[\-\.\+\*]/g, "\\$&") + "\\s*\\=\\s*((?:[^;](?!;))*[^;]?).*" return unescape(doc.cookie.replace(new RegExp(regexpStr), "$1")) } function each(callback) { var cookies = doc.cookie.split(/; ?/g) for (var i = cookies.length - 1; i >= 0; i--) { if (!trim(cookies[i])) { continue } var kvp = cookies[i].split('=') var key = unescape(kvp[0]) var val = unescape(kvp[1]) callback(val, key) } } function write(key, data) { if(!key) { return } doc.cookie = escape(key) + "=" + escape(data) + "; expires=Tue, 19 Jan 2038 03:14:07 GMT; path=/" } function remove(key) { if (!key || !_has(key)) { return } doc.cookie = escape(key) + "=; expires=Thu, 01 Jan 1970 00:00:00 GMT; path=/" } function clearAll() { each(function(_, key) { remove(key) }) } function _has(key) { return (new RegExp("(?:^|;\\s*)" + escape(key).replace(/[\-\.\+\*]/g, "\\$&") + "\\s*\\=")).test(doc.cookie) } /***/ }), /***/ 37: /***/ (function(module, exports, __webpack_require__) { var util = __webpack_require__(5) var Global = util.Global module.exports = { name: 'sessionStorage', read: read, write: write, each: each, remove: remove, clearAll: clearAll } function sessionStorage() { return Global.sessionStorage } function read(key) { return sessionStorage().getItem(key) } function write(key, data) { return sessionStorage().setItem(key, data) } function each(fn) { for (var i = sessionStorage().length - 1; i >= 0; i--) { var key = sessionStorage().key(i) fn(read(key), key) } } function remove(key) { return sessionStorage().removeItem(key) } function clearAll() { return sessionStorage().clear() } /***/ }), /***/ 38: /***/ (function(module, exports) { // memoryStorage is a useful last fallback to ensure that the store // is functions (meaning store.get(), store.set(), etc will all function). // However, stored values will not persist when the browser navigates to // a new page or reloads the current page. module.exports = { name: 'memoryStorage', read: read, write: write, each: each, remove: remove, clearAll: clearAll, } var memoryStorage = {} function read(key) { return memoryStorage[key] } function write(key, data) { memoryStorage[key] = data } function each(callback) { for (var key in memoryStorage) { if (memoryStorage.hasOwnProperty(key)) { callback(memoryStorage[key], key) } } } function remove(key) { delete memoryStorage[key] } function clearAll(key) { memoryStorage = {} } /***/ }), /***/ 39: /***/ (function(module, exports, __webpack_require__) { module.exports = json2Plugin function json2Plugin() { __webpack_require__(40) return {} } /***/ }), /***/ 40: /***/ (function(module, exports) { /* eslint-disable */ // json2.js // 2016-10-28 // Public Domain. // NO WARRANTY EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. // See http://www.JSON.org/js.html // This code should be minified before deployment. // See http://javascript.crockford.com/jsmin.html // USE YOUR OWN COPY. IT IS EXTREMELY UNWISE TO LOAD CODE FROM SERVERS YOU DO // NOT CONTROL. // This file creates a global JSON object containing two methods: stringify // and parse. This file provides the ES5 JSON capability to ES3 systems. // If a project might run on IE8 or earlier, then this file should be included. // This file does nothing on ES5 systems. // JSON.stringify(value, replacer, space) // value any JavaScript value, usually an object or array. // replacer an optional parameter that determines how object // values are stringified for objects. It can be a // function or an array of strings. // space an optional parameter that specifies the indentation // of nested structures. If it is omitted, the text will // be packed without extra whitespace. If it is a number, // it will specify the number of spaces to indent at each // level. If it is a string (such as "\t" or "&nbsp;"), // it contains the characters used to indent at each level. // This method produces a JSON text from a JavaScript value. // When an object value is found, if the object contains a toJSON // method, its toJSON method will be called and the result will be // stringified. A toJSON method does not serialize: it returns the // value represented by the name/value pair that should be serialized, // or undefined if nothing should be serialized. The toJSON method // will be passed the key associated with the value, and this will be // bound to the value. // For example, this would serialize Dates as ISO strings. // Date.prototype.toJSON = function (key) { // function f(n) { // // Format integers to have at least two digits. // return (n < 10) // ? "0" + n // : n; // } // return this.getUTCFullYear() + "-" + // f(this.getUTCMonth() + 1) + "-" + // f(this.getUTCDate()) + "T" + // f(this.getUTCHours()) + ":" + // f(this.getUTCMinutes()) + ":" + // f(this.getUTCSeconds()) + "Z"; // }; // You can provide an optional replacer method. It will be passed the // key and value of each member, with this bound to the containing // object. The value that is returned from your method will be // serialized. If your method returns undefined, then the member will // be excluded from the serialization. // If the replacer parameter is an array of strings, then it will be // used to select the members to be serialized. It filters the results // such that only members with keys listed in the replacer array are // stringified. // Values that do not have JSON representations, such as undefined or // functions, will not be serialized. Such values in objects will be // dropped; in arrays they will be replaced with null. You can use // a replacer function to replace those with JSON values. // JSON.stringify(undefined) returns undefined. // The optional space parameter produces a stringification of the // value that is filled with line breaks and indentation to make it // easier to read. // If the space parameter is a non-empty string, then that string will // be used for indentation. If the space parameter is a number, then // the indentation will be that many spaces. // Example: // text = JSON.stringify(["e", {pluribus: "unum"}]); // // text is '["e",{"pluribus":"unum"}]' // text = JSON.stringify(["e", {pluribus: "unum"}], null, "\t"); // // text is '[\n\t"e",\n\t{\n\t\t"pluribus": "unum"\n\t}\n]' // text = JSON.stringify([new Date()], function (key, value) { // return this[key] instanceof Date // ? "Date(" + this[key] + ")" // : value; // }); // // text is '["Date(---current time---)"]' // JSON.parse(text, reviver) // This method parses a JSON text to produce an object or array. // It can throw a SyntaxError exception. // The optional reviver parameter is a function that can filter and // transform the results. It receives each of the keys and values, // and its return value is used instead of the original value. // If it returns what it received, then the structure is not modified. // If it returns undefined then the member is deleted. // Example: // // Parse the text. Values that look like ISO date strings will // // be converted to Date objects. // myData = JSON.parse(text, function (key, value) { // var a; // if (typeof value === "string") { // a = // /^(\d{4})-(\d{2})-(\d{2})T(\d{2}):(\d{2}):(\d{2}(?:\.\d*)?)Z$/.exec(value); // if (a) { // return new Date(Date.UTC(+a[1], +a[2] - 1, +a[3], +a[4], // +a[5], +a[6])); // } // } // return value; // }); // myData = JSON.parse('["Date(09/09/2001)"]', function (key, value) { // var d; // if (typeof value === "string" && // value.slice(0, 5) === "Date(" && // value.slice(-1) === ")") { // d = new Date(value.slice(5, -1)); // if (d) { // return d; // } // } // return value; // }); // This is a reference implementation. You are free to copy, modify, or // redistribute. /*jslint eval, for, this */ /*property JSON, apply, call, charCodeAt, getUTCDate, getUTCFullYear, getUTCHours, getUTCMinutes, getUTCMonth, getUTCSeconds, hasOwnProperty, join, lastIndex, length, parse, prototype, push, replace, slice, stringify, test, toJSON, toString, valueOf */ // Create a JSON object only if one does not already exist. We create the // methods in a closure to avoid creating global variables. if (typeof JSON !== "object") { JSON = {}; } (function () { "use strict"; var rx_one = /^[\],:{}\s]*$/; var rx_two = /\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g; var rx_three = /"[^"\\\n\r]*"|true|false|null|-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g; var rx_four = /(?:^|:|,)(?:\s*\[)+/g; var rx_escapable = /[\\"\u0000-\u001f\u007f-\u009f\u00ad\u0600-\u0604\u070f\u17b4\u17b5\u200c-\u200f\u2028-\u202f\u2060-\u206f\ufeff\ufff0-\uffff]/g; var rx_dangerous = /[\u0000\u00ad\u0600-\u0604\u070f\u17b4\u17b5\u200c-\u200f\u2028-\u202f\u2060-\u206f\ufeff\ufff0-\uffff]/g; function f(n) { // Format integers to have at least two digits. return n < 10 ? "0" + n : n; } function this_value() { return this.valueOf(); } if (typeof Date.prototype.toJSON !== "function") { Date.prototype.toJSON = function () { return isFinite(this.valueOf()) ? this.getUTCFullYear() + "-" + f(this.getUTCMonth() + 1) + "-" + f(this.getUTCDate()) + "T" + f(this.getUTCHours()) + ":" + f(this.getUTCMinutes()) + ":" + f(this.getUTCSeconds()) + "Z" : null; }; Boolean.prototype.toJSON = this_value; Number.prototype.toJSON = this_value; String.prototype.toJSON = this_value; } var gap; var indent; var meta; var rep; function quote(string) { // If the string contains no control characters, no quote characters, and no // backslash characters, then we can safely slap some quotes around it. // Otherwise we must also replace the offending characters with safe escape // sequences. rx_escapable.lastIndex = 0; return rx_escapable.test(string) ? "\"" + string.replace(rx_escapable, function (a) { var c = meta[a]; return typeof c === "string" ? c : "\\u" + ("0000" + a.charCodeAt(0).toString(16)).slice(-4); }) + "\"" : "\"" + string + "\""; } function str(key, holder) { // Produce a string from holder[key]. var i; // The loop counter. var k; // The member key. var v; // The member value. var length; var mind = gap; var partial; var value = holder[key]; // If the value has a toJSON method, call it to obtain a replacement value. if (value && typeof value === "object" && typeof value.toJSON === "function") { value = value.toJSON(key); } // If we were called with a replacer function, then call the replacer to // obtain a replacement value. if (typeof rep === "function") { value = rep.call(holder, key, value); } // What happens next depends on the value's type. switch (typeof value) { case "string": return quote(value); case "number": // JSON numbers must be finite. Encode non-finite numbers as null. return isFinite(value) ? String(value) : "null"; case "boolean": case "null": // If the value is a boolean or null, convert it to a string. Note: // typeof null does not produce "null". The case is included here in // the remote chance that this gets fixed someday. return String(value); // If the type is "object", we might be dealing with an object or an array or // null. case "object": // Due to a specification blunder in ECMAScript, typeof null is "object", // so watch out for that case. if (!value) { return "null"; } // Make an array to hold the partial results of stringifying this object value. gap += indent; partial = []; // Is the value an array? if (Object.prototype.toString.apply(value) === "[object Array]") { // The value is an array. Stringify every element. Use null as a placeholder // for non-JSON values. length = value.length; for (i = 0; i < length; i += 1) { partial[i] = str(i, value) || "null"; } // Join all of the elements together, separated with commas, and wrap them in // brackets. v = partial.length === 0 ? "[]" : gap ? "[\n" + gap + partial.join(",\n" + gap) + "\n" + mind + "]" : "[" + partial.join(",") + "]"; gap = mind; return v; } // If the replacer is an array, use it to select the members to be stringified. if (rep && typeof rep === "object") { length = rep.length; for (i = 0; i < length; i += 1) { if (typeof rep[i] === "string") { k = rep[i]; v = str(k, value); if (v) { partial.push(quote(k) + ( gap ? ": " : ":" ) + v); } } } } else { // Otherwise, iterate through all of the keys in the object. for (k in value) { if (Object.prototype.hasOwnProperty.call(value, k)) { v = str(k, value); if (v) { partial.push(quote(k) + ( gap ? ": " : ":" ) + v); } } } } // Join all of the member texts together, separated with commas, // and wrap them in braces. v = partial.length === 0 ? "{}" : gap ? "{\n" + gap + partial.join(",\n" + gap) + "\n" + mind + "}" : "{" + partial.join(",") + "}"; gap = mind; return v; } } // If the JSON object does not yet have a stringify method, give it one. if (typeof JSON.stringify !== "function") { meta = { // table of character substitutions "\b": "\\b", "\t": "\\t", "\n": "\\n", "\f": "\\f", "\r": "\\r", "\"": "\\\"", "\\": "\\\\" }; JSON.stringify = function (value, replacer, space) { // The stringify method takes a value and an optional replacer, and an optional // space parameter, and returns a JSON text. The replacer can be a function // that can replace values, or an array of strings that will select the keys. // A default replacer method can be provided. Use of the space parameter can // produce text that is more easily readable. var i; gap = ""; indent = ""; // If the space parameter is a number, make an indent string containing that // many spaces. if (typeof space === "number") { for (i = 0; i < space; i += 1) { indent += " "; } // If the space parameter is a string, it will be used as the indent string. } else if (typeof space === "string") { indent = space; } // If there is a replacer, it must be a function or an array. // Otherwise, throw an error. rep = replacer; if (replacer && typeof replacer !== "function" && (typeof replacer !== "object" || typeof replacer.length !== "number")) { throw new Error("JSON.stringify"); } // Make a fake root object containing our value under the key of "". // Return the result of stringifying the value. return str("", {"": value}); }; } // If the JSON object does not yet have a parse method, give it one. if (typeof JSON.parse !== "function") { JSON.parse = function (text, reviver) { // The parse method takes a text and an optional reviver function, and returns // a JavaScript value if the text is a valid JSON text. var j; function walk(holder, key) { // The walk method is used to recursively walk the resulting structure so // that modifications can be made. var k; var v; var value = holder[key]; if (value && typeof value === "object") { for (k in value) { if (Object.prototype.hasOwnProperty.call(value, k)) { v = walk(value, k); if (v !== undefined) { value[k] = v; } else { delete value[k]; } } } } return reviver.call(holder, key, value); } // Parsing happens in four stages. In the first stage, we replace certain // Unicode characters with escape sequences. JavaScript handles many characters // incorrectly, either silently deleting them, or treating them as line endings. text = String(text); rx_dangerous.lastIndex = 0; if (rx_dangerous.test(text)) { text = text.replace(rx_dangerous, function (a) { return "\\u" + ("0000" + a.charCodeAt(0).toString(16)).slice(-4); }); } // In the second stage, we run the text against regular expressions that look // for non-JSON patterns. We are especially concerned with "()" and "new" // because they can cause invocation, and "=" because it can cause mutation. // But just to be safe, we want to reject all unexpected forms. // We split the second stage into 4 regexp operations in order to work around // crippling inefficiencies in IE's and Safari's regexp engines. First we // replace the JSON backslash pairs with "@" (a non-JSON character). Second, we // replace all simple value tokens with "]" characters. Third, we delete all // open brackets that follow a colon or comma or that begin the text. Finally, // we look to see that the remaining characters are only whitespace or "]" or // "," or ":" or "{" or "}". If that is so, then the text is safe for eval. if ( rx_one.test( text .replace(rx_two, "@") .replace(rx_three, "]") .replace(rx_four, "") ) ) { // In the third stage we use the eval function to compile the text into a // JavaScript structure. The "{" operator is subject to a syntactic ambiguity // in JavaScript: it can begin a block or an object literal. We wrap the text // in parens to eliminate the ambiguity. j = eval("(" + text + ")"); // In the optional fourth stage, we recursively walk the new structure, passing // each name/value pair to a reviver function for possible transformation. return (typeof reviver === "function") ? walk({"": j}, "") : j; } // If the text is not JSON parseable, then a SyntaxError is thrown. throw new SyntaxError("JSON.parse"); }; } }()); /***/ }), /***/ 41: /***/ (function(module, exports, __webpack_require__) { var util = __webpack_require__(5) var slice = util.slice var assign = util.assign var updatePlugin = __webpack_require__(42) module.exports = [updatePlugin, operationsPlugin] function operationsPlugin() { return { // array push: push, pop: pop, shift: shift, unshift: unshift, // obj assign: assign_, } // array function push(_, key, val1, val2, val3, etc) { return _arrayOp.call(this, 'push', arguments) } function pop(_, key) { return _arrayOp.call(this, 'pop', arguments) } function shift(_, key) { return _arrayOp.call(this, 'shift', arguments) } function unshift(_, key, val1, val2, val3, etc) { return _arrayOp.call(this, 'unshift', arguments) } // obj function assign_(_, key, props1, props2, props3, etc) { var varArgs = slice(arguments, 2) return this.update(key, {}, function(val) { if (typeof val != 'object') { throw new Error('store.assign called for non-object value with key "'+key+'"') } varArgs.unshift(val) return assign.apply(Object, varArgs) }) } // internal /////////// function _arrayOp(arrayFn, opArgs) { var res var key = opArgs[1] var rest = slice(opArgs, 2) this.update(key, [], function(arrVal) { res = Array.prototype[arrayFn].apply(arrVal, rest) }) return res } } /***/ }), /***/ 42: /***/ (function(module, exports) { module.exports = updatePlugin function updatePlugin() { return { update: update } function update(_, key, optDefaultVal, updateFn) { if (arguments.length == 3) { updateFn = optDefaultVal optDefaultVal = undefined } var val = this.get(key, optDefaultVal) var retVal = updateFn(val) this.set(key, retVal != undefined ? retVal : val) } } /***/ }), /***/ 5: /***/ (function(module, exports, __webpack_require__) { /* WEBPACK VAR INJECTION */(function(global) {var assign = make_assign() var create = make_create() var trim = make_trim() var Global = (typeof window !== 'undefined' ? window : global) module.exports = { assign: assign, create: create, trim: trim, bind: bind, slice: slice, each: each, map: map, pluck: pluck, isList: isList, isFunction: isFunction, isObject: isObject, Global: Global } function make_assign() { if (Object.assign) { return Object.assign } else { return function shimAssign(obj, props1, props2, etc) { for (var i = 1; i < arguments.length; i++) { each(Object(arguments[i]), function(val, key) { obj[key] = val }) } return obj } } } function make_create() { if (Object.create) { return function create(obj, assignProps1, assignProps2, etc) { var assignArgsList = slice(arguments, 1) return assign.apply(this, [Object.create(obj)].concat(assignArgsList)) } } else { function F() {} // eslint-disable-line no-inner-declarations return function create(obj, assignProps1, assignProps2, etc) { var assignArgsList = slice(arguments, 1) F.prototype = obj return assign.apply(this, [new F()].concat(assignArgsList)) } } } function make_trim() { if (String.prototype.trim) { return function trim(str) { return String.prototype.trim.call(str) } } else { return function trim(str) { return str.replace(/^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g, '') } } } function bind(obj, fn) { return function() { return fn.apply(obj, Array.prototype.slice.call(arguments, 0)) } } function slice(arr, index) { return Array.prototype.slice.call(arr, index || 0) } function each(obj, fn) { pluck(obj, function(val, key) { fn(val, key) return false }) } function map(obj, fn) { var res = (isList(obj) ? [] : {}) pluck(obj, function(v, k) { res[k] = fn(v, k) return false }) return res } function pluck(obj, fn) { if (isList(obj)) { for (var i=0; i<obj.length; i++) { if (fn(obj[i], i)) { return obj[i] } } } else { for (var key in obj) { if (obj.hasOwnProperty(key)) { if (fn(obj[key], key)) { return obj[key] } } } } } function isList(val) { return (val != null && typeof val != 'function' && typeof val.length == 'number') } function isFunction(val) { return val && {}.toString.call(val) === '[object Function]' } function isObject(val) { return val && {}.toString.call(val) === '[object Object]' } /* WEBPACK VAR INJECTION */}.call(exports, __webpack_require__(28))) /***/ }), /***/ 50: /***/ (function(module, exports) { /* MIT License http://www.opensource.org/licenses/mit-license.php Author Tobias Koppers @sokra */ // css base code, injected by the css-loader module.exports = function(useSourceMap) { var list = []; // return the list of modules as css string list.toString = function toString() { return this.map(function (item) { var content = cssWithMappingToString(item, useSourceMap); if(item[2]) { return "@media " + item[2] + "{" + content + "}"; } else { return content; } }).join(""); }; // import a list of modules into the list list.i = function(modules, mediaQuery) { if(typeof modules === "string") modules = [[null, modules, ""]]; var alreadyImportedModules = {}; for(var i = 0; i < this.length; i++) { var id = this[i][0]; if(typeof id === "number") alreadyImportedModules[id] = true; } for(i = 0; i < modules.length; i++) { var item = modules[i]; // skip already imported module // this implementation is not 100% perfect for weird media query combinations // when a module is imported multiple times with different media queries. // I hope this will never occur (Hey this way we have smaller bundles) if(typeof item[0] !== "number" || !alreadyImportedModules[item[0]]) { if(mediaQuery && !item[2]) { item[2] = mediaQuery; } else if(mediaQuery) { item[2] = "(" + item[2] + ") and (" + mediaQuery + ")"; } list.push(item); } } }; return list; }; function cssWithMappingToString(item, useSourceMap) { var content = item[1] || ''; var cssMapping = item[3]; if (!cssMapping) { return content; } if (useSourceMap && typeof btoa === 'function') { var sourceMapping = toComment(cssMapping); var sourceURLs = cssMapping.sources.map(function (source) { return '/*# sourceURL=' + cssMapping.sourceRoot + source + ' */' }); return [content].concat(sourceURLs).concat([sourceMapping]).join('\n'); } return [content].join('\n'); } // Adapted from convert-source-map (MIT) function toComment(sourceMap) { // eslint-disable-next-line no-undef var base64 = btoa(unescape(encodeURIComponent(JSON.stringify(sourceMap)))); var data = 'sourceMappingURL=data:application/json;charset=utf-8;base64,' + base64; return '/*# ' + data + ' */'; } /***/ }), /***/ 51: /***/ (function(module, exports, __webpack_require__) { /* MIT License http://www.opensource.org/licenses/mit-license.php Author Tobias Koppers @sokra */ var stylesInDom = {}; var memoize = function (fn) { var memo; return function () { if (typeof memo === "undefined") memo = fn.apply(this, arguments); return memo; }; }; var isOldIE = memoize(function () { // Test for IE <= 9 as proposed by Browserhacks // @see http://browserhacks.com/#hack-e71d8692f65334173fee715c222cb805 // Tests for existence of standard globals is to allow style-loader // to operate correctly into non-standard environments // @see https://github.com/webpack-contrib/style-loader/issues/177 return window && document && document.all && !window.atob; }); var getElement = (function (fn) { var memo = {}; return function(selector) { if (typeof memo[selector] === "undefined") { var styleTarget = fn.call(this, selector); // Special case to return head of iframe instead of iframe itself if (styleTarget instanceof window.HTMLIFrameElement) { try { // This will throw an exception if access to iframe is blocked // due to cross-origin restrictions styleTarget = styleTarget.contentDocument.head; } catch(e) { styleTarget = null; } } memo[selector] = styleTarget; } return memo[selector] }; })(function (target) { return document.querySelector(target) }); var singleton = null; var singletonCounter = 0; var stylesInsertedAtTop = []; var fixUrls = __webpack_require__(52); module.exports = function(list, options) { if (typeof DEBUG !== "undefined" && DEBUG) { if (typeof document !== "object") throw new Error("The style-loader cannot be used in a non-browser environment"); } options = options || {}; options.attrs = typeof options.attrs === "object" ? options.attrs : {}; // Force single-tag solution on IE6-9, which has a hard limit on the # of <style> // tags it will allow on a page if (!options.singleton && typeof options.singleton !== "boolean") options.singleton = isOldIE(); // By default, add <style> tags to the <head> element if (!options.insertInto) options.insertInto = "head"; // By default, add <style> tags to the bottom of the target if (!options.insertAt) options.insertAt = "bottom"; var styles = listToStyles(list, options); addStylesToDom(styles, options); return function update (newList) { var mayRemove = []; for (var i = 0; i < styles.length; i++) { var item = styles[i]; var domStyle = stylesInDom[item.id]; domStyle.refs--; mayRemove.push(domStyle); } if(newList) { var newStyles = listToStyles(newList, options); addStylesToDom(newStyles, options); } for (var i = 0; i < mayRemove.length; i++) { var domStyle = mayRemove[i]; if(domStyle.refs === 0) { for (var j = 0; j < domStyle.parts.length; j++) domStyle.parts[j](); delete stylesInDom[domStyle.id]; } } }; }; function addStylesToDom (styles, options) { for (var i = 0; i < styles.length; i++) { var item = styles[i]; var domStyle = stylesInDom[item.id]; if(domStyle) { domStyle.refs++; for(var j = 0; j < domStyle.parts.length; j++) { domStyle.parts[j](item.parts[j]); } for(; j < item.parts.length; j++) { domStyle.parts.push(addStyle(item.parts[j], options)); } } else { var parts = []; for(var j = 0; j < item.parts.length; j++) { parts.push(addStyle(item.parts[j], options)); } stylesInDom[item.id] = {id: item.id, refs: 1, parts: parts}; } } } function listToStyles (list, options) { var styles = []; var newStyles = {}; for (var i = 0; i < list.length; i++) { var item = list[i]; var id = options.base ? item[0] + options.base : item[0]; var css = item[1]; var media = item[2]; var sourceMap = item[3]; var part = {css: css, media: media, sourceMap: sourceMap}; if(!newStyles[id]) styles.push(newStyles[id] = {id: id, parts: [part]}); else newStyles[id].parts.push(part); } return styles; } function insertStyleElement (options, style) { var target = getElement(options.insertInto) if (!target) { throw new Error("Couldn't find a style target. This probably means that the value for the 'insertInto' parameter is invalid."); } var lastStyleElementInsertedAtTop = stylesInsertedAtTop[stylesInsertedAtTop.length - 1]; if (options.insertAt === "top") { if (!lastStyleElementInsertedAtTop) { target.insertBefore(style, target.firstChild); } else if (lastStyleElementInsertedAtTop.nextSibling) { target.insertBefore(style, lastStyleElementInsertedAtTop.nextSibling); } else { target.appendChild(style); } stylesInsertedAtTop.push(style); } else if (options.insertAt === "bottom") { target.appendChild(style); } else if (typeof options.insertAt === "object" && options.insertAt.before) { var nextSibling = getElement(options.insertInto + " " + options.insertAt.before); target.insertBefore(style, nextSibling); } else { throw new Error("[Style Loader]\n\n Invalid value for parameter 'insertAt' ('options.insertAt') found.\n Must be 'top', 'bottom', or Object.\n (https://github.com/webpack-contrib/style-loader#insertat)\n"); } } function removeStyleElement (style) { if (style.parentNode === null) return false; style.parentNode.removeChild(style); var idx = stylesInsertedAtTop.indexOf(style); if(idx >= 0) { stylesInsertedAtTop.splice(idx, 1); } } function createStyleElement (options) { var style = document.createElement("style"); options.attrs.type = "text/css"; addAttrs(style, options.attrs); insertStyleElement(options, style); return style; } function createLinkElement (options) { var link = document.createElement("link"); options.attrs.type = "text/css"; options.attrs.rel = "stylesheet"; addAttrs(link, options.attrs); insertStyleElement(options, link); return link; } function addAttrs (el, attrs) { Object.keys(attrs).forEach(function (key) { el.setAttribute(key, attrs[key]); }); } function addStyle (obj, options) { var style, update, remove, result; // If a transform function was defined, run it on the css if (options.transform && obj.css) { result = options.transform(obj.css); if (result) { // If transform returns a value, use that instead of the original css. // This allows running runtime transformations on the css. obj.css = result; } else { // If the transform function returns a falsy value, don't add this css. // This allows conditional loading of css return function() { // noop }; } } if (options.singleton) { var styleIndex = singletonCounter++; style = singleton || (singleton = createStyleElement(options)); update = applyToSingletonTag.bind(null, style, styleIndex, false); remove = applyToSingletonTag.bind(null, style, styleIndex, true); } else if ( obj.sourceMap && typeof URL === "function" && typeof URL.createObjectURL === "function" && typeof URL.revokeObjectURL === "function" && typeof Blob === "function" && typeof btoa === "function" ) { style = createLinkElement(options); update = updateLink.bind(null, style, options); remove = function () { removeStyleElement(style); if(style.href) URL.revokeObjectURL(style.href); }; } else { style = createStyleElement(options); update = applyToTag.bind(null, style); remove = function () { removeStyleElement(style); }; } update(obj); return function updateStyle (newObj) { if (newObj) { if ( newObj.css === obj.css && newObj.media === obj.media && newObj.sourceMap === obj.sourceMap ) { return; } update(obj = newObj); } else { remove(); } }; } var replaceText = (function () { var textStore = []; return function (index, replacement) { textStore[index] = replacement; return textStore.filter(Boolean).join('\n'); }; })(); function applyToSingletonTag (style, index, remove, obj) { var css = remove ? "" : obj.css; if (style.styleSheet) { style.styleSheet.cssText = replaceText(index, css); } else { var cssNode = document.createTextNode(css); var childNodes = style.childNodes; if (childNodes[index]) style.removeChild(childNodes[index]); if (childNodes.length) { style.insertBefore(cssNode, childNodes[index]); } else { style.appendChild(cssNode); } } } function applyToTag (style, obj) { var css = obj.css; var media = obj.media; if(media) { style.setAttribute("media", media) } if(style.styleSheet) { style.styleSheet.cssText = css; } else { while(style.firstChild) { style.removeChild(style.firstChild); } style.appendChild(document.createTextNode(css)); } } function updateLink (link, options, obj) { var css = obj.css; var sourceMap = obj.sourceMap; /* If convertToAbsoluteUrls isn't defined, but sourcemaps are enabled and there is no publicPath defined then lets turn convertToAbsoluteUrls on by default. Otherwise default to the convertToAbsoluteUrls option directly */ var autoFixUrls = options.convertToAbsoluteUrls === undefined && sourceMap; if (options.convertToAbsoluteUrls || autoFixUrls) { css = fixUrls(css); } if (sourceMap) { // http://stackoverflow.com/a/26603875 css += "\n/*# sourceMappingURL=data:application/json;base64," + btoa(unescape(encodeURIComponent(JSON.stringify(sourceMap)))) + " */"; } var blob = new Blob([css], { type: "text/css" }); var oldSrc = link.href; link.href = URL.createObjectURL(blob); if(oldSrc) URL.revokeObjectURL(oldSrc); } /***/ }), /***/ 52: /***/ (function(module, exports) { /** * When source maps are enabled, `style-loader` uses a link element with a data-uri to * embed the css on the page. This breaks all relative urls because now they are relative to a * bundle instead of the current page. * * One solution is to only use full urls, but that may be impossible. * * Instead, this function "fixes" the relative urls to be absolute according to the current page location. * * A rudimentary test suite is located at `test/fixUrls.js` and can be run via the `npm test` command. * */ module.exports = function (css) { // get current location var location = typeof window !== "undefined" && window.location; if (!location) { throw new Error("fixUrls requires window.location"); } // blank or null? if (!css || typeof css !== "string") { return css; } var baseUrl = location.protocol + "//" + location.host; var currentDir = baseUrl + location.pathname.replace(/\/[^\/]*$/, "/"); // convert each url(...) /* This regular expression is just a way to recursively match brackets within a string. /url\s*\( = Match on the word "url" with any whitespace after it and then a parens ( = Start a capturing group (?: = Start a non-capturing group [^)(] = Match anything that isn't a parentheses | = OR \( = Match a start parentheses (?: = Start another non-capturing groups [^)(]+ = Match anything that isn't a parentheses | = OR \( = Match a start parentheses [^)(]* = Match anything that isn't a parentheses \) = Match a end parentheses ) = End Group *\) = Match anything and then a close parens ) = Close non-capturing group * = Match anything ) = Close capturing group \) = Match a close parens /gi = Get all matches, not the first. Be case insensitive. */ var fixedCss = css.replace(/url\s*\(((?:[^)(]|\((?:[^)(]+|\([^)(]*\))*\))*)\)/gi, function(fullMatch, origUrl) { // strip quotes (if they exist) var unquotedOrigUrl = origUrl .trim() .replace(/^"(.*)"$/, function(o, $1){ return $1; }) .replace(/^'(.*)'$/, function(o, $1){ return $1; }); // already a full url? no change if (/^(#|data:|http:\/\/|https:\/\/|file:\/\/\/)/i.test(unquotedOrigUrl)) { return fullMatch; } // convert the url to a full url var newUrl; if (unquotedOrigUrl.indexOf("//") === 0) { //TODO: should we add protocol? newUrl = unquotedOrigUrl; } else if (unquotedOrigUrl.indexOf("/") === 0) { // path should be relative to the base url newUrl = baseUrl + unquotedOrigUrl; // already starts with '/' } else { // path should be relative to current directory newUrl = currentDir + unquotedOrigUrl.replace(/^\.\//, ""); // Strip leading './' } // send back the fixed url(...) return "url(" + JSON.stringify(newUrl) + ")"; }); // send back the fixed css return fixedCss; }; /***/ }), /***/ 610: /***/ (function(module, exports, __webpack_require__) { "use strict"; var _utils = __webpack_require__(1); var _reducers = __webpack_require__(611); var _reducers2 = _interopRequireDefault(_reducers); var _NavigationsApp = __webpack_require__(612); var _NavigationsApp2 = _interopRequireDefault(_NavigationsApp); var _actions = __webpack_require__(125); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } var store = (0, _utils.createStore)(_reducers2.default); if (window.viewData) { store.dispatch((0, _actions.initViewData)(window.viewData)); } (0, _utils.render)(store, _NavigationsApp2.default, document.getElementById('settings-app')); /***/ }), /***/ 611: /***/ (function(module, exports, __webpack_require__) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); var _extends = Object.assign || function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; exports.default = navigationReducer; var _actions = __webpack_require__(125); var initialState = { query: null, navigations: [], navigationsById: {}, activeNavigationId: null, isLoading: false, totalNavigations: null, activeQuery: null, products: [] }; function navigationReducer() { var state = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : initialState; var action = arguments[1]; switch (action.type) { case _actions.SELECT_NAVIGATION: { var defaultNavigation = { is_enabled: true, name: '', description: '' }; return _extends({}, state, { activeNavigationId: action.id || null, navigationToEdit: action.id ? Object.assign(defaultNavigation, state.navigationsById[action.id]) : null, errors: null }); } case _actions.EDIT_NAVIGATION: { var target = action.event.target; var field = target.name; var navigation = state.navigationToEdit; navigation[field] = target.type === 'checkbox' ? target.checked : target.value; return _extends({}, state, { navigationToEdit: navigation, errors: null }); } case _actions.NEW_NAVIGATION: { var navigationToEdit = { is_enabled: true, name: '', description: '' }; return _extends({}, state, { navigationToEdit: navigationToEdit, errors: null }); } case _actions.CANCEL_EDIT: { return _extends({}, state, { navigationToEdit: null, errors: null }); } case _actions.SET_QUERY: return _extends({}, state, { query: action.query }); case _actions.SET_ERROR: return _extends({}, state, { errors: action.errors }); case _actions.QUERY_NAVIGATIONS: return _extends({}, state, { isLoading: true, totalNavigations: null, navigationToEdit: null, activeQuery: state.query }); case _actions.GET_NAVIGATIONS: { var navigationsById = Object.assign({}, state.navigationsById); var navigations = action.data.map(function (navigation) { navigationsById[navigation._id] = navigation; return navigation._id; }); return _extends({}, state, { navigations: navigations, navigationsById: navigationsById, isLoading: false, totalNavigations: navigations.length }); } case _actions.GET_PRODUCTS: { return _extends({}, state, { products: action.data }); } default: return state; } } /***/ }), /***/ 612: /***/ (function(module, exports, __webpack_require__) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } return function (Constructor, protoProps, staticProps) { if (protoProps) defineProperties(Constructor.prototype, protoProps); if (staticProps) defineProperties(Constructor, staticProps); return Constructor; }; }(); var _react = __webpack_require__(0); var _react2 = _interopRequireDefault(_react); var _propTypes = __webpack_require__(2); var _propTypes2 = _interopRequireDefault(_propTypes); var _reactRedux = __webpack_require__(6); var _actions = __webpack_require__(125); var _Navigations = __webpack_require__(613); var _Navigations2 = _interopRequireDefault(_Navigations); var _ListBar = __webpack_require__(75); var _ListBar2 = _interopRequireDefault(_ListBar); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } function _possibleConstructorReturn(self, call) { if (!self) { throw new ReferenceError("this hasn't been initialised - super() hasn't been called"); } return call && (typeof call === "object" || typeof call === "function") ? call : self; } function _inherits(subClass, superClass) { if (typeof superClass !== "function" && superClass !== null) { throw new TypeError("Super expression must either be null or a function, not " + typeof superClass); } subClass.prototype = Object.create(superClass && superClass.prototype, { constructor: { value: subClass, enumerable: false, writable: true, configurable: true } }); if (superClass) Object.setPrototypeOf ? Object.setPrototypeOf(subClass, superClass) : subClass.__proto__ = superClass; } var NavigationsApp = function (_React$Component) { _inherits(NavigationsApp, _React$Component); function NavigationsApp(props, context) { _classCallCheck(this, NavigationsApp); return _possibleConstructorReturn(this, (NavigationsApp.__proto__ || Object.getPrototypeOf(NavigationsApp)).call(this, props, context)); } _createClass(NavigationsApp, [{ key: 'render', value: function render() { return [_react2.default.createElement(_ListBar2.default, { key: 'NavigationBar', onNewItem: this.props.newNavigation, setQuery: this.props.setQuery, fetch: this.props.fetchNavigations, buttonName: 'Navigation' }), _react2.default.createElement(_Navigations2.default, { key: 'Navigations' })]; } }]); return NavigationsApp; }(_react2.default.Component); NavigationsApp.propTypes = { newNavigation: _propTypes2.default.func, fetchNavigations: _propTypes2.default.func, setQuery: _propTypes2.default.func }; var mapDispatchToProps = { newNavigation: _actions.newNavigation, fetchNavigations: _actions.fetchNavigations, setQuery: _actions.setQuery }; exports.default = (0, _reactRedux.connect)(null, mapDispatchToProps)(NavigationsApp); /***/ }), /***/ 613: /***/ (function(module, exports, __webpack_require__) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } return function (Constructor, protoProps, staticProps) { if (protoProps) defineProperties(Constructor.prototype, protoProps); if (staticProps) defineProperties(Constructor, staticProps); return Constructor; }; }(); var _react = __webpack_require__(0); var _react2 = _interopRequireDefault(_react); var _propTypes = __webpack_require__(2); var _propTypes2 = _interopRequireDefault(_propTypes); var _reactRedux = __webpack_require__(6); var _EditNavigation = __webpack_require__(614); var _EditNavigation2 = _interopRequireDefault(_EditNavigation); var _NavigationList = __webpack_require__(615); var _NavigationList2 = _interopRequireDefault(_NavigationList); var _SearchResultsInfo = __webpack_require__(62); var _SearchResultsInfo2 = _interopRequireDefault(_SearchResultsInfo); var _actions = __webpack_require__(125); var _utils = __webpack_require__(1); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } function _possibleConstructorReturn(self, call) { if (!self) { throw new ReferenceError("this hasn't been initialised - super() hasn't been called"); } return call && (typeof call === "object" || typeof call === "function") ? call : self; } function _inherits(subClass, superClass) { if (typeof superClass !== "function" && superClass !== null) { throw new TypeError("Super expression must either be null or a function, not " + typeof superClass); } subClass.prototype = Object.create(superClass && superClass.prototype, { constructor: { value: subClass, enumerable: false, writable: true, configurable: true } }); if (superClass) Object.setPrototypeOf ? Object.setPrototypeOf(subClass, superClass) : subClass.__proto__ = superClass; } var Navigations = function (_React$Component) { _inherits(Navigations, _React$Component); function Navigations(props, context) { _classCallCheck(this, Navigations); var _this = _possibleConstructorReturn(this, (Navigations.__proto__ || Object.getPrototypeOf(Navigations)).call(this, props, context)); _this.isFormValid = _this.isFormValid.bind(_this); _this.save = _this.save.bind(_this); _this.deleteNavigation = _this.deleteNavigation.bind(_this); return _this; } _createClass(Navigations, [{ key: 'isFormValid', value: function isFormValid() { var valid = true; var errors = {}; if (!this.props.navigationToEdit.name) { errors.name = ['Please provide navigation name']; valid = false; } this.props.dispatch((0, _actions.setError)(errors)); return valid; } }, { key: 'save', value: function save(event) { event.preventDefault(); if (!this.isFormValid()) { return; } this.props.saveNavigation(); } }, { key: 'deleteNavigation', value: function deleteNavigation(event) { event.preventDefault(); if (confirm((0, _utils.gettext)('Would you like to delete navigation: {{name}}', { name: this.props.navigationToEdit.name }))) { this.props.deleteNavigation(); } } }, { key: 'render', value: function render() { var progressStyle = { width: '25%' }; return _react2.default.createElement( 'div', { className: 'flex-row' }, this.props.isLoading ? _react2.default.createElement( 'div', { className: 'col d' }, _react2.default.createElement( 'div', { className: 'progress' }, _react2.default.createElement('div', { className: 'progress-bar', style: progressStyle }) ) ) : _react2.default.createElement( 'div', { className: 'flex-col flex-column' }, this.props.activeQuery && _react2.default.createElement(_SearchResultsInfo2.default, { totalItems: this.props.totalNavigations, query: this.props.activeQuery }), _react2.default.createElement(_NavigationList2.default, { navigations: this.props.navigations, onClick: this.props.selectNavigation, activeNavigationId: this.props.activeNavigationId }) ), this.props.navigationToEdit && _react2.default.createElement(_EditNavigation2.default, { navigation: this.props.navigationToEdit, onChange: this.props.editNavigation, errors: this.props.errors, onSave: this.save, onClose: this.props.cancelEdit, onDelete: this.deleteNavigation, products: this.props.products, saveProducts: this.props.saveProducts, fetchProducts: this.props.fetchProducts }) ); } }]); return Navigations; }(_react2.default.Component); Navigations.propTypes = { navigations: _propTypes2.default.arrayOf(_propTypes2.default.object), navigationToEdit: _propTypes2.default.object, activeNavigationId: _propTypes2.default.string, selectNavigation: _propTypes2.default.func, editNavigation: _propTypes2.default.func, saveNavigation: _propTypes2.default.func, deleteNavigation: _propTypes2.default.func, newNavigation: _propTypes2.default.func, cancelEdit: _propTypes2.default.func, isLoading: _propTypes2.default.bool, activeQuery: _propTypes2.default.string, totalNavigations: _propTypes2.default.number, errors: _propTypes2.default.object, dispatch: _propTypes2.default.func, products: _propTypes2.default.arrayOf(_propTypes2.default.object), saveProducts: _propTypes2.default.func.isRequired, fetchProducts: _propTypes2.default.func.isRequired }; var mapStateToProps = function mapStateToProps(state) { return { navigations: state.navigations.map(function (id) { return state.navigationsById[id]; }), navigationToEdit: state.navigationToEdit, activeNavigationId: state.activeNavigationId, isLoading: state.isLoading, activeQuery: state.activeQuery, totalNavigations: state.totalNavigations, errors: state.errors, products: state.products }; }; var mapDispatchToProps = function mapDispatchToProps(dispatch) { return { selectNavigation: function selectNavigation(_id) { return dispatch((0, _actions.selectNavigation)(_id)); }, editNavigation: function editNavigation(event) { return dispatch((0, _actions.editNavigation)(event)); }, saveNavigation: function saveNavigation(type) { return dispatch((0, _actions.postNavigation)(type)); }, deleteNavigation: function deleteNavigation(type) { return dispatch((0, _actions.deleteNavigation)(type)); }, newNavigation: function newNavigation() { return dispatch((0, _actions.newNavigation)()); }, cancelEdit: function cancelEdit(event) { return dispatch((0, _actions.cancelEdit)(event)); }, saveProducts: function saveProducts(products) { return dispatch((0, _actions.saveProducts)(products)); }, fetchProducts: function fetchProducts() { return dispatch((0, _actions.fetchProducts)()); }, dispatch: dispatch }; }; exports.default = (0, _reactRedux.connect)(mapStateToProps, mapDispatchToProps)(Navigations); /***/ }), /***/ 614: /***/ (function(module, exports, __webpack_require__) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } return function (Constructor, protoProps, staticProps) { if (protoProps) defineProperties(Constructor.prototype, protoProps); if (staticProps) defineProperties(Constructor, staticProps); return Constructor; }; }(); var _react = __webpack_require__(0); var _react2 = _interopRequireDefault(_react); var _propTypes = __webpack_require__(2); var _propTypes2 = _interopRequireDefault(_propTypes); var _TextInput = __webpack_require__(26); var _TextInput2 = _interopRequireDefault(_TextInput); var _CheckboxInput = __webpack_require__(27); var _CheckboxInput2 = _interopRequireDefault(_CheckboxInput); var _EditPanel = __webpack_require__(100); var _EditPanel2 = _interopRequireDefault(_EditPanel); var _utils = __webpack_require__(1); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } function _possibleConstructorReturn(self, call) { if (!self) { throw new ReferenceError("this hasn't been initialised - super() hasn't been called"); } return call && (typeof call === "object" || typeof call === "function") ? call : self; } function _inherits(subClass, superClass) { if (typeof superClass !== "function" && superClass !== null) { throw new TypeError("Super expression must either be null or a function, not " + typeof superClass); } subClass.prototype = Object.create(superClass && superClass.prototype, { constructor: { value: subClass, enumerable: false, writable: true, configurable: true } }); if (superClass) Object.setPrototypeOf ? Object.setPrototypeOf(subClass, superClass) : subClass.__proto__ = superClass; } var EditNavigation = function (_React$Component) { _inherits(EditNavigation, _React$Component); function EditNavigation(props) { _classCallCheck(this, EditNavigation); var _this = _possibleConstructorReturn(this, (EditNavigation.__proto__ || Object.getPrototypeOf(EditNavigation)).call(this, props)); _this.handleTabClick = _this.handleTabClick.bind(_this); _this.state = { activeTab: 'navigation-details' }; _this.tabs = [{ label: (0, _utils.gettext)('Navigation'), name: 'navigation-details' }, { label: (0, _utils.gettext)('Products'), name: 'products' }]; return _this; } _createClass(EditNavigation, [{ key: 'handleTabClick', value: function handleTabClick(event) { this.setState({ activeTab: event.target.name }); if (event.target.name === 'products' && this.props.navigation._id) { this.props.fetchProducts(); } } }, { key: 'getNavigationProducts', value: function getNavigationProducts() { var _this2 = this; var products = this.props.products.filter(function (product) { return product.navigations && product.navigations.includes(_this2.props.navigation._id); }).map(function (p) { return p._id; }); return { _id: this.props.navigation._id, products: products }; } }, { key: 'render', value: function render() { var _this3 = this; return _react2.default.createElement( 'div', { className: 'list-item__preview' }, _react2.default.createElement( 'div', { className: 'list-item__preview-header' }, _react2.default.createElement( 'h3', null, this.props.navigation.name ), _react2.default.createElement( 'button', { id: 'hide-sidebar', type: 'button', className: 'icon-button', 'data-dismiss': 'modal', 'aria-label': 'Close', onClick: this.props.onClose }, _react2.default.createElement('i', { className: 'icon--close-thin icon--gray', 'aria-hidden': 'true' }) ) ), _react2.default.createElement( 'ul', { className: 'nav nav-tabs' }, this.tabs.map(function (tab) { return _react2.default.createElement( 'li', { key: tab.name, className: 'nav-item' }, _react2.default.createElement( 'a', { name: tab.name, className: 'nav-link ' + (_this3.state.activeTab === tab.name && 'active'), href: '#', onClick: _this3.handleTabClick }, tab.label ) ); }) ), _react2.default.createElement( 'div', { className: 'tab-content' }, this.state.activeTab === 'navigation-details' && _react2.default.createElement( 'div', { className: 'tab-pane active', id: 'navigation-details' }, _react2.default.createElement( 'form', null, _react2.default.createElement( 'div', { className: 'list-item__preview-form' }, _react2.default.createElement(_TextInput2.default, { name: 'name', label: (0, _utils.gettext)('Name'), value: this.props.navigation.name, onChange: this.props.onChange, error: this.props.errors ? this.props.errors.name : null }), _react2.default.createElement(_TextInput2.default, { name: 'description', label: (0, _utils.gettext)('Description'), value: this.props.navigation.description, onChange: this.props.onChange, error: this.props.errors ? this.props.errors.description : null }), _react2.default.createElement(_CheckboxInput2.default, { name: 'is_enabled', label: (0, _utils.gettext)('Enabled'), value: this.props.navigation.is_enabled, onChange: this.props.onChange }) ), _react2.default.createElement( 'div', { className: 'list-item__preview-footer' }, _react2.default.createElement('input', { type: 'button', className: 'btn btn-outline-primary', value: (0, _utils.gettext)('Save'), onClick: this.props.onSave }), _react2.default.createElement('input', { type: 'button', className: 'btn btn-outline-secondary', value: (0, _utils.gettext)('Delete'), onClick: this.props.onDelete }) ) ) ), this.state.activeTab === 'products' && _react2.default.createElement(_EditPanel2.default, { parent: this.getNavigationProducts(), items: this.props.products, field: 'products', onSave: this.props.saveProducts }) ) ); } }]); return EditNavigation; }(_react2.default.Component); EditNavigation.propTypes = { navigation: _propTypes2.default.object.isRequired, onChange: _propTypes2.default.func, errors: _propTypes2.default.object, products: _propTypes2.default.arrayOf(_propTypes2.default.object), onSave: _propTypes2.default.func.isRequired, onClose: _propTypes2.default.func.isRequired, onDelete: _propTypes2.default.func.isRequired, saveProducts: _propTypes2.default.func.isRequired, fetchProducts: _propTypes2.default.func.isRequired }; exports.default = EditNavigation; /***/ }), /***/ 615: /***/ (function(module, exports, __webpack_require__) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); var _react = __webpack_require__(0); var _react2 = _interopRequireDefault(_react); var _propTypes = __webpack_require__(2); var _propTypes2 = _interopRequireDefault(_propTypes); var _NavigationListItem = __webpack_require__(616); var _NavigationListItem2 = _interopRequireDefault(_NavigationListItem); var _utils = __webpack_require__(1); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } function NavigationList(_ref) { var navigations = _ref.navigations, onClick = _ref.onClick, activeNavigationId = _ref.activeNavigationId; var list = navigations.map(function (navigation) { return _react2.default.createElement(_NavigationListItem2.default, { key: navigation._id, navigation: navigation, onClick: onClick, isActive: activeNavigationId === navigation._id }); }); return _react2.default.createElement( 'section', { className: 'content-main' }, _react2.default.createElement( 'div', { className: 'list-items-container' }, _react2.default.createElement( 'table', { className: 'table table-hover' }, _react2.default.createElement( 'thead', null, _react2.default.createElement( 'tr', null, _react2.default.createElement( 'th', null, (0, _utils.gettext)('Name') ), _react2.default.createElement( 'th', null, (0, _utils.gettext)('Description') ), _react2.default.createElement( 'th', null, (0, _utils.gettext)('Status') ), _react2.default.createElement( 'th', null, (0, _utils.gettext)('Created On') ) ) ), _react2.default.createElement( 'tbody', null, list ) ) ) ); } NavigationList.propTypes = { navigations: _propTypes2.default.array.isRequired, onClick: _propTypes2.default.func.isRequired, activeNavigationId: _propTypes2.default.string }; exports.default = NavigationList; /***/ }), /***/ 616: /***/ (function(module, exports, __webpack_require__) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); var _react = __webpack_require__(0); var _react2 = _interopRequireDefault(_react); var _propTypes = __webpack_require__(2); var _propTypes2 = _interopRequireDefault(_propTypes); var _utils = __webpack_require__(1); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } function NavigationListItem(_ref) { var navigation = _ref.navigation, isActive = _ref.isActive, _onClick = _ref.onClick; return _react2.default.createElement( 'tr', { key: navigation._id, className: isActive ? 'table--selected' : null, onClick: function onClick() { return _onClick(navigation._id); } }, _react2.default.createElement( 'td', { className: 'name' }, navigation.name ), _react2.default.createElement( 'td', null, navigation.description ), _react2.default.createElement( 'td', null, navigation.is_enabled ? (0, _utils.gettext)('Enabled') : (0, _utils.gettext)('Disabled') ), _react2.default.createElement( 'td', null, (0, _utils.shortDate)(navigation._created) ) ); } NavigationListItem.propTypes = { navigation: _propTypes2.default.object, isActive: _propTypes2.default.bool, onClick: _propTypes2.default.func }; exports.default = NavigationListItem; /***/ }), /***/ 62: /***/ (function(module, exports, __webpack_require__) { "use strict"; /* WEBPACK VAR INJECTION */(function($) { Object.defineProperty(exports, "__esModule", { value: true }); var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } return function (Constructor, protoProps, staticProps) { if (protoProps) defineProperties(Constructor.prototype, protoProps); if (staticProps) defineProperties(Constructor, staticProps); return Constructor; }; }(); var _react = __webpack_require__(0); var _react2 = _interopRequireDefault(_react); var _propTypes = __webpack_require__(2); var _propTypes2 = _interopRequireDefault(_propTypes); var _classnames = __webpack_require__(14); var _classnames2 = _interopRequireDefault(_classnames); __webpack_require__(63); var _lodash = __webpack_require__(7); var _utils = __webpack_require__(1); var _utils2 = __webpack_require__(1); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } function _possibleConstructorReturn(self, call) { if (!self) { throw new ReferenceError("this hasn't been initialised - super() hasn't been called"); } return call && (typeof call === "object" || typeof call === "function") ? call : self; } function _inherits(subClass, superClass) { if (typeof superClass !== "function" && superClass !== null) { throw new TypeError("Super expression must either be null or a function, not " + typeof superClass); } subClass.prototype = Object.create(superClass && superClass.prototype, { constructor: { value: subClass, enumerable: false, writable: true, configurable: true } }); if (superClass) Object.setPrototypeOf ? Object.setPrototypeOf(subClass, superClass) : subClass.__proto__ = superClass; } var SearchResultsInfo = function (_React$Component) { _inherits(SearchResultsInfo, _React$Component); function SearchResultsInfo() { _classCallCheck(this, SearchResultsInfo); return _possibleConstructorReturn(this, (SearchResultsInfo.__proto__ || Object.getPrototypeOf(SearchResultsInfo)).apply(this, arguments)); } _createClass(SearchResultsInfo, [{ key: 'componentDidMount', value: function componentDidMount() { if (!(0, _utils2.isTouchDevice)()) { this.elem && $(this.elem).tooltip(); } } }, { key: 'componentWillUnmount', value: function componentWillUnmount() { this.elem && $(this.elem).tooltip('dispose'); // make sure it's gone } }, { key: 'componentWillUpdate', value: function componentWillUpdate() { this.componentWillUnmount(); } }, { key: 'componentDidUpdate', value: function componentDidUpdate() { this.componentDidMount(); } }, { key: 'render', value: function render() { var _this2 = this; var isFollowing = this.props.user && this.props.activeTopic; var displayFollowTopic = this.props.user && !this.props.bookmarks && !(0, _lodash.isEmpty)(this.props.searchCriteria); var displayTotalItems = this.props.bookmarks || !(0, _lodash.isEmpty)(this.props.searchCriteria) || this.props.activeTopic || this.props.resultsFiltered; var displayHeader = !(0, _lodash.isEmpty)(this.props.newItems) || displayTotalItems || displayFollowTopic || this.props.query; return displayHeader ? _react2.default.createElement( 'div', { className: (0, _classnames2.default)('wire-column__main-header d-flex mt-0 px-3 align-items-center flex-wrap flex-sm-nowrap', this.props.scrollClass) }, _react2.default.createElement( 'div', { className: 'navbar-text search-results-info' }, displayTotalItems && _react2.default.createElement( 'span', { className: 'search-results-info__num' }, this.props.totalItems ), this.props.query && _react2.default.createElement( 'span', { className: 'search-results-info__text' }, (0, _utils.gettext)('search results for:'), _react2.default.createElement('br', null), _react2.default.createElement( 'b', null, this.props.query ) ) ), displayFollowTopic && _react2.default.createElement( 'button', { disabled: isFollowing, className: 'btn btn-outline-primary btn-sm d-none d-sm-block', onClick: function onClick() { return _this2.props.followTopic(_this2.props.searchCriteria); } }, (0, _utils.gettext)('Save as topic') ), displayFollowTopic && _react2.default.createElement( 'button', { disabled: isFollowing, className: 'btn btn-outline-primary btn-sm d-block d-sm-none', onClick: function onClick() { return _this2.props.followTopic(_this2.props.searchCriteria); } }, (0, _utils.gettext)('S') ), _react2.default.createElement( 'div', { className: 'd-flex align-items-center ml-auto' }, !(0, _lodash.isEmpty)(this.props.newItems) && _react2.default.createElement( 'button', { type: 'button', ref: function ref(elem) { return _this2.elem = elem; }, title: (0, _utils.gettext)('New stories available to load'), className: 'button__reset-styles d-flex align-items-center ml-3', onClick: this.props.refresh }, _react2.default.createElement('i', { className: 'icon--refresh icon--pink' }), _react2.default.createElement( 'span', { className: 'badge badge-pill badge-info badge-secondary ml-2' }, this.props.newItems.length ) ) ) ) : null; } }]); return SearchResultsInfo; }(_react2.default.Component); SearchResultsInfo.propTypes = { user: _propTypes2.default.string, query: _propTypes2.default.string, totalItems: _propTypes2.default.number, followTopic: _propTypes2.default.func, bookmarks: _propTypes2.default.bool, newItems: _propTypes2.default.array, refresh: _propTypes2.default.func, searchCriteria: _propTypes2.default.object, activeTopic: _propTypes2.default.object, toggleNews: _propTypes2.default.func, activeNavigation: _propTypes2.default.string, newsOnly: _propTypes2.default.bool, scrollClass: _propTypes2.default.string, resultsFiltered: _propTypes2.default.bool }; exports.default = SearchResultsInfo; /* WEBPACK VAR INJECTION */}.call(exports, __webpack_require__(23))) /***/ }), /***/ 63: /***/ (function(module, exports, __webpack_require__) { // style-loader: Adds some css to the DOM by adding a <style> tag // load the styles var content = __webpack_require__(64); if(typeof content === 'string') content = [[module.i, content, '']]; // Prepare cssTransformation var transform; var options = {"hmr":true} options.transform = transform // add the styles to the DOM var update = __webpack_require__(51)(content, options); if(content.locals) module.exports = content.locals; // Hot Module Replacement if(false) { // When the styles change, update the <style> tags if(!content.locals) { module.hot.accept("!!../css-loader/index.js!./style.css", function() { var newContent = require("!!../css-loader/index.js!./style.css"); if(typeof newContent === 'string') newContent = [[module.id, newContent, '']]; update(newContent); }); } // When the module is disposed, remove the <style> tags module.hot.dispose(function() { update(); }); } /***/ }), /***/ 64: /***/ (function(module, exports, __webpack_require__) { exports = module.exports = __webpack_require__(50)(false); // imports // module exports.push([module.i, ".react-toggle {\n touch-action: pan-x;\n\n display: inline-block;\n position: relative;\n cursor: pointer;\n background-color: transparent;\n border: 0;\n padding: 0;\n\n -webkit-touch-callout: none;\n -webkit-user-select: none;\n -khtml-user-select: none;\n -moz-user-select: none;\n -ms-user-select: none;\n user-select: none;\n\n -webkit-tap-highlight-color: rgba(0,0,0,0);\n -webkit-tap-highlight-color: transparent;\n}\n\n.react-toggle-screenreader-only {\n border: 0;\n clip: rect(0 0 0 0);\n height: 1px;\n margin: -1px;\n overflow: hidden;\n padding: 0;\n position: absolute;\n width: 1px;\n}\n\n.react-toggle--disabled {\n cursor: not-allowed;\n opacity: 0.5;\n -webkit-transition: opacity 0.25s;\n transition: opacity 0.25s;\n}\n\n.react-toggle-track {\n width: 50px;\n height: 24px;\n padding: 0;\n border-radius: 30px;\n background-color: #4D4D4D;\n -webkit-transition: all 0.2s ease;\n -moz-transition: all 0.2s ease;\n transition: all 0.2s ease;\n}\n\n.react-toggle:hover:not(.react-toggle--disabled) .react-toggle-track {\n background-color: #000000;\n}\n\n.react-toggle--checked .react-toggle-track {\n background-color: #19AB27;\n}\n\n.react-toggle--checked:hover:not(.react-toggle--disabled) .react-toggle-track {\n background-color: #128D15;\n}\n\n.react-toggle-track-check {\n position: absolute;\n width: 14px;\n height: 10px;\n top: 0px;\n bottom: 0px;\n margin-top: auto;\n margin-bottom: auto;\n line-height: 0;\n left: 8px;\n opacity: 0;\n -webkit-transition: opacity 0.25s ease;\n -moz-transition: opacity 0.25s ease;\n transition: opacity 0.25s ease;\n}\n\n.react-toggle--checked .react-toggle-track-check {\n opacity: 1;\n -webkit-transition: opacity 0.25s ease;\n -moz-transition: opacity 0.25s ease;\n transition: opacity 0.25s ease;\n}\n\n.react-toggle-track-x {\n position: absolute;\n width: 10px;\n height: 10px;\n top: 0px;\n bottom: 0px;\n margin-top: auto;\n margin-bottom: auto;\n line-height: 0;\n right: 10px;\n opacity: 1;\n -webkit-transition: opacity 0.25s ease;\n -moz-transition: opacity 0.25s ease;\n transition: opacity 0.25s ease;\n}\n\n.react-toggle--checked .react-toggle-track-x {\n opacity: 0;\n}\n\n.react-toggle-thumb {\n transition: all 0.5s cubic-bezier(0.23, 1, 0.32, 1) 0ms;\n position: absolute;\n top: 1px;\n left: 1px;\n width: 22px;\n height: 22px;\n border: 1px solid #4D4D4D;\n border-radius: 50%;\n background-color: #FAFAFA;\n\n -webkit-box-sizing: border-box;\n -moz-box-sizing: border-box;\n box-sizing: border-box;\n\n -webkit-transition: all 0.25s ease;\n -moz-transition: all 0.25s ease;\n transition: all 0.25s ease;\n}\n\n.react-toggle--checked .react-toggle-thumb {\n left: 27px;\n border-color: #19AB27;\n}\n\n.react-toggle--focus .react-toggle-thumb {\n -webkit-box-shadow: 0px 0px 3px 2px #0099E0;\n -moz-box-shadow: 0px 0px 3px 2px #0099E0;\n box-shadow: 0px 0px 2px 3px #0099E0;\n}\n\n.react-toggle:active:not(.react-toggle--disabled) .react-toggle-thumb {\n -webkit-box-shadow: 0px 0px 5px 5px #0099E0;\n -moz-box-shadow: 0px 0px 5px 5px #0099E0;\n box-shadow: 0px 0px 5px 5px #0099E0;\n}\n", ""]); // exports /***/ }), /***/ 65: /***/ (function(module, exports, __webpack_require__) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } return function (Constructor, protoProps, staticProps) { if (protoProps) defineProperties(Constructor.prototype, protoProps); if (staticProps) defineProperties(Constructor, staticProps); return Constructor; }; }(); var _react = __webpack_require__(0); var _react2 = _interopRequireDefault(_react); var _propTypes = __webpack_require__(2); var _propTypes2 = _interopRequireDefault(_propTypes); var _classnames = __webpack_require__(14); var _classnames2 = _interopRequireDefault(_classnames); var _reactRedux = __webpack_require__(6); var _utils = __webpack_require__(1); var _actions = __webpack_require__(9); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } function _possibleConstructorReturn(self, call) { if (!self) { throw new ReferenceError("this hasn't been initialised - super() hasn't been called"); } return call && (typeof call === "object" || typeof call === "function") ? call : self; } function _inherits(subClass, superClass) { if (typeof superClass !== "function" && superClass !== null) { throw new TypeError("Super expression must either be null or a function, not " + typeof superClass); } subClass.prototype = Object.create(superClass && superClass.prototype, { constructor: { value: subClass, enumerable: false, writable: true, configurable: true } }); if (superClass) Object.setPrototypeOf ? Object.setPrototypeOf(subClass, superClass) : subClass.__proto__ = superClass; } var SearchBar = function (_React$Component) { _inherits(SearchBar, _React$Component); function SearchBar(props) { _classCallCheck(this, SearchBar); var _this = _possibleConstructorReturn(this, (SearchBar.__proto__ || Object.getPrototypeOf(SearchBar)).call(this, props)); _this.onChange = _this.onChange.bind(_this); _this.onSubmit = _this.onSubmit.bind(_this); _this.onClear = _this.onClear.bind(_this); _this.state = { query: props.query || '' }; return _this; } _createClass(SearchBar, [{ key: 'onChange', value: function onChange(event) { this.setState({ query: event.target.value }); } }, { key: 'onSubmit', value: function onSubmit(event) { event.preventDefault(); this.props.setQuery(this.state.query); this.props.fetchItems(); } }, { key: 'onClear', value: function onClear() { this.props.setQuery(''); this.props.fetchItems(); this.setState({ query: '' }); } }, { key: 'componentWillReceiveProps', value: function componentWillReceiveProps(nextProps) { this.setState({ query: nextProps.query }); } }, { key: 'render', value: function render() { return _react2.default.createElement( 'div', { className: 'search form-inline' }, _react2.default.createElement( 'span', { className: 'search__icon' }, _react2.default.createElement('i', { className: 'icon--search icon--gray-light' }) ), _react2.default.createElement( 'div', { className: (0, _classnames2.default)('search__form input-group', { 'searchForm--active': !!this.state.query }) }, _react2.default.createElement( 'form', { className: 'form-inline', onSubmit: this.onSubmit }, _react2.default.createElement('input', { type: 'text', name: 'q', className: 'search__input form-control', placeholder: 'Search for...', 'aria-label': 'Search for...', value: this.state.query || '', onChange: this.onChange }), _react2.default.createElement( 'div', { className: 'search__form__buttons' }, _react2.default.createElement( 'span', { className: 'search__clear', onClick: this.onClear }, _react2.default.createElement('img', { src: '/static/search_clear.png', width: '16', height: '16' }) ), _react2.default.createElement( 'button', { className: 'btn btn-outline-secondary', type: 'submit' }, (0, _utils.gettext)('Search') ) ) ) ) ); } }]); return SearchBar; }(_react2.default.Component); SearchBar.propTypes = { query: _propTypes2.default.string, setQuery: _propTypes2.default.func, fetchItems: _propTypes2.default.func }; var mapStateToProps = function mapStateToProps(state) { return { query: state.activeQuery }; }; var mapDispatchToProps = function mapDispatchToProps(dispatch) { return { setQuery: function setQuery(query) { return dispatch((0, _actions.setQuery)(query)); } }; }; exports.default = (0, _reactRedux.connect)(mapStateToProps, mapDispatchToProps)(SearchBar); /***/ }), /***/ 75: /***/ (function(module, exports, __webpack_require__) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } return function (Constructor, protoProps, staticProps) { if (protoProps) defineProperties(Constructor.prototype, protoProps); if (staticProps) defineProperties(Constructor, staticProps); return Constructor; }; }(); var _react = __webpack_require__(0); var _react2 = _interopRequireDefault(_react); var _propTypes = __webpack_require__(2); var _propTypes2 = _interopRequireDefault(_propTypes); var _utils = __webpack_require__(1); var _SearchBar = __webpack_require__(65); var _SearchBar2 = _interopRequireDefault(_SearchBar); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } function _possibleConstructorReturn(self, call) { if (!self) { throw new ReferenceError("this hasn't been initialised - super() hasn't been called"); } return call && (typeof call === "object" || typeof call === "function") ? call : self; } function _inherits(subClass, superClass) { if (typeof superClass !== "function" && superClass !== null) { throw new TypeError("Super expression must either be null or a function, not " + typeof superClass); } subClass.prototype = Object.create(superClass && superClass.prototype, { constructor: { value: subClass, enumerable: false, writable: true, configurable: true } }); if (superClass) Object.setPrototypeOf ? Object.setPrototypeOf(subClass, superClass) : subClass.__proto__ = superClass; } var ListBar = function (_React$Component) { _inherits(ListBar, _React$Component); function ListBar() { _classCallCheck(this, ListBar); return _possibleConstructorReturn(this, (ListBar.__proto__ || Object.getPrototypeOf(ListBar)).apply(this, arguments)); } _createClass(ListBar, [{ key: 'render', value: function render() { var _this2 = this; return _react2.default.createElement( 'section', { className: 'content-header' }, _react2.default.createElement( 'nav', { className: 'content-bar navbar content-bar--side-padding' }, _react2.default.createElement(_SearchBar2.default, { setQuery: this.props.setQuery, fetchItems: function fetchItems() { return _this2.props.fetch(); } }), _react2.default.createElement( 'div', { className: 'content-bar__right' }, _react2.default.createElement( 'button', { className: 'btn btn-outline-secondary btn-responsive', onClick: function onClick() { return _this2.props.onNewItem(); } }, (0, _utils.gettext)('New {{ buttonName }}', { buttonName: this.props.buttonName }) ) ) ) ); } }]); return ListBar; }(_react2.default.Component); ListBar.propTypes = { setQuery: _propTypes2.default.func, fetch: _propTypes2.default.func, buttonName: _propTypes2.default.string, onNewItem: _propTypes2.default.func }; exports.default = ListBar; /***/ }), /***/ 9: /***/ (function(module, exports, __webpack_require__) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.SET_VIEW = exports.RESET_FILTER = exports.SET_CREATED_FILTER = exports.RECIEVE_NEXT_ITEMS = exports.START_LOADING = exports.TOGGLE_FILTER = exports.TOGGLE_NAVIGATION = exports.SET_NEW_ITEMS = exports.SET_TOPICS = exports.REMOVE_NEW_ITEMS = exports.SET_NEW_ITEMS_BY_TOPIC = exports.REMOVE_BOOKMARK = exports.BOOKMARK_ITEMS = exports.PRINT_ITEMS = exports.COPY_ITEMS = exports.DOWNLOAD_ITEMS = exports.SHARE_ITEMS = exports.SELECT_NONE = exports.SELECT_ALL = exports.TOGGLE_SELECTED = exports.TOGGLE_NEWS = exports.ADD_TOPIC = exports.INIT_DATA = exports.RECIEVE_ITEM = exports.RECIEVE_ITEMS = exports.QUERY_ITEMS = exports.SET_QUERY = exports.OPEN_ITEM = exports.PREVIEW_ITEM = exports.SET_ACTIVE = exports.SET_ITEMS = exports.SET_STATE = undefined; exports.setState = setState; exports.setItems = setItems; exports.setActive = setActive; exports.preview = preview; exports.previewAndCopy = previewAndCopy; exports.previewItem = previewItem; exports.openItemDetails = openItemDetails; exports.openItem = openItem; exports.setQuery = setQuery; exports.queryItems = queryItems; exports.recieveItems = recieveItems; exports.recieveItem = recieveItem; exports.initData = initData; exports.addTopic = addTopic; exports.toggleNews = toggleNews; exports.copyPreviewContents = copyPreviewContents; exports.printItem = printItem; exports.fetchItems = fetchItems; exports.fetchItem = fetchItem; exports.followTopic = followTopic; exports.submitFollowTopic = submitFollowTopic; exports.shareItems = shareItems; exports.submitShareItem = submitShareItem; exports.toggleSelected = toggleSelected; exports.selectAll = selectAll; exports.selectNone = selectNone; exports.setShareItems = setShareItems; exports.setDownloadItems = setDownloadItems; exports.setCopyItem = setCopyItem; exports.setPrintItem = setPrintItem; exports.setBookmarkItems = setBookmarkItems; exports.removeBookmarkItems = removeBookmarkItems; exports.bookmarkItems = bookmarkItems; exports.removeBookmarks = removeBookmarks; exports.fetchVersions = fetchVersions; exports.downloadItems = downloadItems; exports.submitDownloadItems = submitDownloadItems; exports.setNewItemsByTopic = setNewItemsByTopic; exports.removeNewItems = removeNewItems; exports.pushNotification = pushNotification; exports.setNewItems = setNewItems; exports.fetchNewItems = fetchNewItems; exports.fetchNext = fetchNext; exports.toggleNavigation = toggleNavigation; exports.toggleFilter = toggleFilter; exports.startLoading = startLoading; exports.recieveNextItems = recieveNextItems; exports.fetchMoreItems = fetchMoreItems; exports.initParams = initParams; exports.setCreatedFilter = setCreatedFilter; exports.resetFilter = resetFilter; exports.setTopicQuery = setTopicQuery; exports.setView = setView; exports.refresh = refresh; var _lodash = __webpack_require__(7); var _server = __webpack_require__(15); var _server2 = _interopRequireDefault(_server); var _analytics = __webpack_require__(29); var _analytics2 = _interopRequireDefault(_analytics); var _utils = __webpack_require__(1); var _utils2 = __webpack_require__(11); var _actions = __webpack_require__(16); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } var SET_STATE = exports.SET_STATE = 'SET_STATE'; function setState(state) { return { type: SET_STATE, state: state }; } var SET_ITEMS = exports.SET_ITEMS = 'SET_ITEMS'; function setItems(items) { return { type: SET_ITEMS, items: items }; } var SET_ACTIVE = exports.SET_ACTIVE = 'SET_ACTIVE'; function setActive(item) { return { type: SET_ACTIVE, item: item }; } var PREVIEW_ITEM = exports.PREVIEW_ITEM = 'PREVIEW_ITEM'; function preview(item) { return { type: PREVIEW_ITEM, item: item }; } function previewAndCopy(item) { return function (dispatch) { dispatch(previewItem(item)); dispatch(copyPreviewContents(item)); }; } function previewItem(item) { return function (dispatch, getState) { (0, _utils2.markItemAsRead)(item, getState()); dispatch(preview(item)); item && _analytics2.default.itemEvent('preview', item); }; } var OPEN_ITEM = exports.OPEN_ITEM = 'OPEN_ITEM'; function openItemDetails(item) { return { type: OPEN_ITEM, item: item }; } function openItem(item) { return function (dispatch, getState) { (0, _utils2.markItemAsRead)(item, getState()); dispatch(openItemDetails(item)); (0, _utils.updateRouteParams)({ item: item ? item._id : null }, getState()); item && _analytics2.default.itemEvent('open', item); _analytics2.default.itemView(item); }; } var SET_QUERY = exports.SET_QUERY = 'SET_QUERY'; function setQuery(query) { query && _analytics2.default.event('search', query); return { type: SET_QUERY, query: query }; } var QUERY_ITEMS = exports.QUERY_ITEMS = 'QUERY_ITEMS'; function queryItems() { return { type: QUERY_ITEMS }; } var RECIEVE_ITEMS = exports.RECIEVE_ITEMS = 'RECIEVE_ITEMS'; function recieveItems(data) { return { type: RECIEVE_ITEMS, data: data }; } var RECIEVE_ITEM = exports.RECIEVE_ITEM = 'RECIEVE_ITEM'; function recieveItem(data) { return { type: RECIEVE_ITEM, data: data }; } var INIT_DATA = exports.INIT_DATA = 'INIT_DATA'; function initData(wireData, readData, newsOnly) { return { type: INIT_DATA, wireData: wireData, readData: readData, newsOnly: newsOnly }; } var ADD_TOPIC = exports.ADD_TOPIC = 'ADD_TOPIC'; function addTopic(topic) { return { type: ADD_TOPIC, topic: topic }; } var TOGGLE_NEWS = exports.TOGGLE_NEWS = 'TOGGLE_NEWS'; function toggleNews() { (0, _utils2.toggleNewsOnlyParam)(); return { type: TOGGLE_NEWS }; } /** * Copy contents of item preview. * * This is an initial version, should be updated with preview markup changes. */ function copyPreviewContents(item) { return function (dispatch, getState) { var textarea = document.getElementById('copy-area'); var contents = []; contents.push((0, _utils.fullDate)(item.versioncreated)); item.slugline && contents.push(item.slugline); item.headline && contents.push(item.headline); item.byline && contents.push((0, _utils.gettext)('By: {{ byline }}', { byline: (0, _lodash.get)(item, 'byline') })); item.source && contents.push((0, _utils.gettext)('Source: {{ source }}', { source: item.source })); contents.push(''); if (item.description_text) { contents.push(item.description_text); } else if (item.description_html) { contents.push((0, _utils.getTextFromHtml)(item.description_html)); } contents.push(''); if (item.body_text) { contents.push(item.body_text); } else if (item.body_html) { contents.push((0, _utils.getTextFromHtml)(item.body_html)); } textarea.value = contents.join('\n'); textarea.select(); if (document.execCommand('copy')) { _utils.notify.success((0, _utils.gettext)('Item copied successfully.')); item && _analytics2.default.itemEvent('copy', item); } else { _utils.notify.error((0, _utils.gettext)('Sorry, Copy is not supported.')); } if (getState().user) { _server2.default.post('/wire/' + item._id + '/copy').then(dispatch(setCopyItem(item._id))).catch(errorHandler); } }; } function printItem(item) { return function (dispatch, getState) { window.open('/wire/' + item._id + '?print', '_blank'); item && _analytics2.default.itemEvent('print', item); if (getState().user) { dispatch(setPrintItem(item._id)); } }; } /** * Search server request * * @param {Object} state * @param {bool} next * @return {Promise} */ function search(state, next) { var activeFilter = (0, _lodash.get)(state, 'wire.activeFilter', {}); var activeNavigation = (0, _lodash.get)(state, 'wire.activeNavigation'); var createdFilter = (0, _lodash.get)(state, 'wire.createdFilter', {}); var newsOnly = !!state.newsOnly; var params = { q: state.query, bookmarks: state.bookmarks && state.user, navigation: activeNavigation, filter: !(0, _lodash.isEmpty)(activeFilter) && JSON.stringify(activeFilter), from: next ? state.items.length : 0, created_from: createdFilter.from, created_to: createdFilter.to, timezone_offset: (0, _utils.getTimezoneOffset)(), newsOnly: newsOnly }; var queryString = Object.keys(params).filter(function (key) { return params[key]; }).map(function (key) { return [key, params[key]].join('='); }).join('&'); return _server2.default.get('/search?' + queryString); } /** * Fetch items for current query */ function fetchItems() { return function (dispatch, getState) { var start = Date.now(); dispatch(queryItems()); return search(getState()).then(function (data) { return dispatch(recieveItems(data)); }).then(function () { var state = getState(); (0, _utils.updateRouteParams)({ q: state.query }, state); _analytics2.default.timingComplete('search', Date.now() - start); }).catch(errorHandler); }; } function fetchItem(id) { return function (dispatch) { return _server2.default.get('/wire/' + id + '?format=json').then(function (data) { return dispatch(recieveItem(data)); }).catch(errorHandler); }; } /** * Start a follow topic action * * @param {String} topic */ function followTopic(topic) { return (0, _actions.renderModal)('followTopic', { topic: topic }); } function submitFollowTopic(data) { return function (dispatch, getState) { var user = getState().user; var url = '/api/users/' + user + '/topics'; data.timezone_offset = (0, _utils.getTimezoneOffset)(); return _server2.default.post(url, data).then(function (updates) { return dispatch(addTopic(Object.assign(data, updates))); }).then(function () { return dispatch((0, _actions.closeModal)()); }).catch(errorHandler); }; } /** * Start share item action - display modal to pick users * * @return {function} */ function shareItems(items) { return function (dispatch, getState) { var user = getState().user; var company = getState().company; return _server2.default.get('/companies/' + company + '/users').then(function (users) { return users.filter(function (u) { return u._id !== user; }); }).then(function (users) { return dispatch((0, _actions.renderModal)('shareItem', { items: items, users: users })); }).catch(errorHandler); }; } /** * Submit share item form and close modal if that works * * @param {Object} data */ function submitShareItem(data) { return function (dispatch, getState) { return _server2.default.post('/wire_share', data).then(function () { if (data.items.length > 1) { _utils.notify.success((0, _utils.gettext)('Items were shared successfully.')); } else { _utils.notify.success((0, _utils.gettext)('Item was shared successfully.')); } dispatch((0, _actions.closeModal)()); }).then(function () { return multiItemEvent('share', data.items, getState()); }).then(function () { return dispatch(setShareItems(data.items)); }).catch(errorHandler); }; } var TOGGLE_SELECTED = exports.TOGGLE_SELECTED = 'TOGGLE_SELECTED'; function toggleSelected(item) { return { type: TOGGLE_SELECTED, item: item }; } var SELECT_ALL = exports.SELECT_ALL = 'SELECT_ALL'; function selectAll() { return { type: SELECT_ALL }; } var SELECT_NONE = exports.SELECT_NONE = 'SELECT_NONE'; function selectNone() { return { type: SELECT_NONE }; } var SHARE_ITEMS = exports.SHARE_ITEMS = 'SHARE_ITEMS'; function setShareItems(items) { return { type: SHARE_ITEMS, items: items }; } var DOWNLOAD_ITEMS = exports.DOWNLOAD_ITEMS = 'DOWNLOAD_ITEMS'; function setDownloadItems(items) { return { type: DOWNLOAD_ITEMS, items: items }; } var COPY_ITEMS = exports.COPY_ITEMS = 'COPY_ITEMS'; function setCopyItem(item) { return { type: COPY_ITEMS, items: [item] }; } var PRINT_ITEMS = exports.PRINT_ITEMS = 'PRINT_ITEMS'; function setPrintItem(item) { return { type: PRINT_ITEMS, items: [item] }; } var BOOKMARK_ITEMS = exports.BOOKMARK_ITEMS = 'BOOKMARK_ITEMS'; function setBookmarkItems(items) { return { type: BOOKMARK_ITEMS, items: items }; } var REMOVE_BOOKMARK = exports.REMOVE_BOOKMARK = 'REMOVE_BOOKMARK'; function removeBookmarkItems(items) { return { type: REMOVE_BOOKMARK, items: items }; } function bookmarkItems(items) { return function (dispatch, getState) { return _server2.default.post('/wire_bookmark', { items: items }).then(function () { if (items.length > 1) { _utils.notify.success((0, _utils.gettext)('Items were bookmarked successfully.')); } else { _utils.notify.success((0, _utils.gettext)('Item was bookmarked successfully.')); } }).then(function () { multiItemEvent('bookmark', items, getState()); }).then(function () { return dispatch(setBookmarkItems(items)); }).catch(errorHandler); }; } function removeBookmarks(items) { return function (dispatch, getState) { return _server2.default.del('/wire_bookmark', { items: items }).then(function () { if (items.length > 1) { _utils.notify.success((0, _utils.gettext)('Items were removed from bookmarks successfully.')); } else { _utils.notify.success((0, _utils.gettext)('Item was removed from bookmarks successfully.')); } }).then(function () { return dispatch(removeBookmarkItems(items)); }).then(function () { return getState().bookmarks && dispatch(fetchItems()); }).catch(errorHandler); }; } function errorHandler(reason) { console.error('error', reason); } /** * Fetch item versions. * * @param {Object} item * @return {Promise} */ function fetchVersions(item) { return function () { return _server2.default.get('/wire/' + item._id + '/versions').then(function (data) { return data._items; }); }; } /** * Download items - display modal to pick a format * * @param {Array} items */ function downloadItems(items) { return (0, _actions.renderModal)('downloadItems', { items: items }); } /** * Start download - open download view in new window. * * @param {Array} items * @param {String} format */ function submitDownloadItems(items, format) { return function (dispatch, getState) { window.open('/download/' + items.join(',') + '?format=' + format, '_blank'); dispatch(setDownloadItems(items)); dispatch((0, _actions.closeModal)()); multiItemEvent('download', items, getState()); }; } var SET_NEW_ITEMS_BY_TOPIC = exports.SET_NEW_ITEMS_BY_TOPIC = 'SET_NEW_ITEMS_BY_TOPIC'; function setNewItemsByTopic(data) { return { type: SET_NEW_ITEMS_BY_TOPIC, data: data }; } var REMOVE_NEW_ITEMS = exports.REMOVE_NEW_ITEMS = 'REMOVE_NEW_ITEMS'; function removeNewItems(data) { return { type: REMOVE_NEW_ITEMS, data: data }; } /** * Handle server push notification * * @param {Object} data */ function pushNotification(push) { return function (dispatch, getState) { var user = getState().user; switch (push.event) { case 'topic_matches': return dispatch(setNewItemsByTopic(push.extra)); case 'new_item': return new Promise(function (resolve, reject) { dispatch(fetchNewItems()).then(resolve).catch(reject); }); case 'topics:' + user: return dispatch(reloadTopics(user)); } }; } function reloadTopics(user) { return function (dispatch) { return _server2.default.get('/users/' + user + '/topics').then(function (data) { return dispatch(setTopics(data._items)); }).catch(errorHandler); }; } var SET_TOPICS = exports.SET_TOPICS = 'SET_TOPICS'; function setTopics(topics) { return { type: SET_TOPICS, topics: topics }; } var SET_NEW_ITEMS = exports.SET_NEW_ITEMS = 'SET_NEW_ITEMS'; function setNewItems(data) { return { type: SET_NEW_ITEMS, data: data }; } function fetchNewItems() { return function (dispatch, getState) { return search(getState()).then(function (response) { return dispatch(setNewItems(response)); }); }; } function fetchNext(item) { return function () { if (!item.nextversion) { return Promise.reject(); } return _server2.default.get('/wire/' + item.nextversion + '?format=json'); }; } var TOGGLE_NAVIGATION = exports.TOGGLE_NAVIGATION = 'TOGGLE_NAVIGATION'; function _toggleNavigation(navigation) { return { type: TOGGLE_NAVIGATION, navigation: navigation }; } function toggleNavigation(navigation) { return function (dispatch) { dispatch(setQuery('')); dispatch(_toggleNavigation(navigation)); return dispatch(fetchItems()); }; } var TOGGLE_FILTER = exports.TOGGLE_FILTER = 'TOGGLE_FILTER'; function toggleFilter(key, val, single) { return function (dispatch) { setTimeout(function () { return dispatch({ type: TOGGLE_FILTER, key: key, val: val, single: single }); }); }; } var START_LOADING = exports.START_LOADING = 'START_LOADING'; function startLoading() { return { type: START_LOADING }; } var RECIEVE_NEXT_ITEMS = exports.RECIEVE_NEXT_ITEMS = 'RECIEVE_NEXT_ITEMS'; function recieveNextItems(data) { return { type: RECIEVE_NEXT_ITEMS, data: data }; } var MAX_ITEMS = 1000; // server limit function fetchMoreItems() { return function (dispatch, getState) { var state = getState(); var limit = Math.min(MAX_ITEMS, state.totalItems); if (state.isLoading || state.items.length >= limit) { return Promise.reject(); } dispatch(startLoading()); return search(getState(), true).then(function (data) { return dispatch(recieveNextItems(data)); }).catch(errorHandler); }; } /** * Set state on app init using url params * * @param {URLSearchParams} params */ function initParams(params) { return function (dispatch, getState) { if (params.get('q')) { dispatch(setQuery(params.get('q'))); } if (params.get('item')) { dispatch(fetchItem(params.get('item'))).then(function () { var item = getState().itemsById[params.get('item')]; dispatch(openItem(item)); }); } }; } function _setCreatedFilter(filter) { return { type: SET_CREATED_FILTER, filter: filter }; } var SET_CREATED_FILTER = exports.SET_CREATED_FILTER = 'SET_CREATED_FILTER'; function setCreatedFilter(filter) { return function (dispatch) { dispatch(_setCreatedFilter(filter)); }; } function _resetFilter(filter) { return { type: RESET_FILTER, filter: filter }; } var RESET_FILTER = exports.RESET_FILTER = 'RESET_FILTER'; function resetFilter(filter) { return function (dispatch) { dispatch(_resetFilter(filter)); dispatch(fetchItems()); }; } /** * Set query for given topic * * @param {Object} topic * @return {Promise} */ function setTopicQuery(topic) { return function (dispatch) { dispatch(_toggleNavigation()); dispatch(setQuery(topic.query || '')); dispatch(_resetFilter(topic.filter)); dispatch(_setCreatedFilter(topic.created)); return dispatch(fetchItems()); }; } var SET_VIEW = exports.SET_VIEW = 'SET_VIEW'; function setView(view) { localStorage.setItem('view', view); return { type: SET_VIEW, view: view }; } function refresh() { return function (dispatch, getState) { return dispatch(recieveItems(getState().newItemsData)); }; } function multiItemEvent(event, items, state) { items.forEach(function (itemId) { var item = state.itemsById[itemId]; item && _analytics2.default.itemEvent(event, item); }); } /***/ }) },[610]);
PypiClean
/Camelot-13.04.13-gpl-pyqt.tar.gz/Camelot-13.04.13-gpl-pyqt/doc/sphinx/source/doc/delegates.rst
.. _doc-delegates: ############# Delegates ############# `Delegates` are a cornerstone of the Qt model/delegate/view framework. A delegate is used to display and edit data from a `model`. In the Camelot framework, every field of an `Entity` has an associated delegate that specifies how the field will be displayed and edited. When a new form or table is constructed, the delegates of all fields on the form or table will construct `editors` for their fields and fill them with data from the model. When the data has been edited in the form, the delegates will take care of updating the model with the new data. All Camelot delegates are subclasses of :class:`QtGui.QAbstractItemDelegate`. The `Qt website <http://www.qt-project.org>`_ provides detailed information the differenct classes involved in the model/delegate/view framework. .. _specifying-delegates: Specifying delegates ==================== The use of a specific delegate can be forced by using the ``delegate`` field attribute. Suppose ``rating`` is a field of type :c:type:`integer`, then it can be forced to be visualized as stars:: from camelot.view.controls import delegates class Movie( Entity ): title = Column( Unicode(50) ) rating = Column( Integer ) class Admin( EntityAdmin ): list_display = ['title', 'rating'] field_attributes = {'rating':{'delegate':delegates.StarDelegate}} The above code will result in: .. image:: ../_static/editors/StarEditor_editable.png If no `delegate` field attribute is given, a default one will be taken depending on the sqlalchemy field type. All available delegates can be found in :mod:`camelot.view.controls.delegates`
PypiClean
/CartiMorph_nnUNet-1.7.14.tar.gz/CartiMorph_nnUNet-1.7.14/CartiMorph_nnUNet/preprocessing/cropping.py
import SimpleITK as sitk import numpy as np import shutil from batchgenerators.utilities.file_and_folder_operations import * from multiprocessing import Pool from collections import OrderedDict def create_nonzero_mask(data): from scipy.ndimage import binary_fill_holes assert len(data.shape) == 4 or len(data.shape) == 3, "data must have shape (C, X, Y, Z) or shape (C, X, Y)" nonzero_mask = np.zeros(data.shape[1:], dtype=bool) for c in range(data.shape[0]): this_mask = data[c] != 0 nonzero_mask = nonzero_mask | this_mask nonzero_mask = binary_fill_holes(nonzero_mask) return nonzero_mask def get_bbox_from_mask(mask, outside_value=0): mask_voxel_coords = np.where(mask != outside_value) minzidx = int(np.min(mask_voxel_coords[0])) maxzidx = int(np.max(mask_voxel_coords[0])) + 1 minxidx = int(np.min(mask_voxel_coords[1])) maxxidx = int(np.max(mask_voxel_coords[1])) + 1 minyidx = int(np.min(mask_voxel_coords[2])) maxyidx = int(np.max(mask_voxel_coords[2])) + 1 return [[minzidx, maxzidx], [minxidx, maxxidx], [minyidx, maxyidx]] def crop_to_bbox(image, bbox): assert len(image.shape) == 3, "only supports 3d images" resizer = (slice(bbox[0][0], bbox[0][1]), slice(bbox[1][0], bbox[1][1]), slice(bbox[2][0], bbox[2][1])) return image[resizer] def get_case_identifier(case): case_identifier = case[0].split("/")[-1].split(".nii.gz")[0][:-5] return case_identifier def get_case_identifier_from_npz(case): case_identifier = case.split("/")[-1][:-4] return case_identifier def load_case_from_list_of_files(data_files, seg_file=None): assert isinstance(data_files, list) or isinstance(data_files, tuple), "case must be either a list or a tuple" properties = OrderedDict() data_itk = [sitk.ReadImage(f) for f in data_files] properties["original_size_of_raw_data"] = np.array(data_itk[0].GetSize())[[2, 1, 0]] properties["original_spacing"] = np.array(data_itk[0].GetSpacing())[[2, 1, 0]] properties["list_of_data_files"] = data_files properties["seg_file"] = seg_file properties["itk_origin"] = data_itk[0].GetOrigin() properties["itk_spacing"] = data_itk[0].GetSpacing() properties["itk_direction"] = data_itk[0].GetDirection() data_npy = np.vstack([sitk.GetArrayFromImage(d)[None] for d in data_itk]) if seg_file is not None: seg_itk = sitk.ReadImage(seg_file) seg_npy = sitk.GetArrayFromImage(seg_itk)[None].astype(np.float32) else: seg_npy = None return data_npy.astype(np.float32), seg_npy, properties def crop_to_nonzero(data, seg=None, nonzero_label=-1): """ :param data: :param seg: :param nonzero_label: this will be written into the segmentation map :return: """ nonzero_mask = create_nonzero_mask(data) bbox = get_bbox_from_mask(nonzero_mask, 0) cropped_data = [] for c in range(data.shape[0]): cropped = crop_to_bbox(data[c], bbox) cropped_data.append(cropped[None]) data = np.vstack(cropped_data) if seg is not None: cropped_seg = [] for c in range(seg.shape[0]): cropped = crop_to_bbox(seg[c], bbox) cropped_seg.append(cropped[None]) seg = np.vstack(cropped_seg) nonzero_mask = crop_to_bbox(nonzero_mask, bbox)[None] if seg is not None: seg[(seg == 0) & (nonzero_mask == 0)] = nonzero_label else: nonzero_mask = nonzero_mask.astype(int) nonzero_mask[nonzero_mask == 0] = nonzero_label nonzero_mask[nonzero_mask > 0] = 0 seg = nonzero_mask return data, seg, bbox def get_patient_identifiers_from_cropped_files(folder): return [i.split("/")[-1][:-4] for i in subfiles(folder, join=True, suffix=".npz")] class ImageCropper(object): def __init__(self, num_threads, output_folder=None): """ This one finds a mask of nonzero elements (must be nonzero in all modalities) and crops the image to that mask. In the case of BRaTS and ISLES data this results in a significant reduction in image size :param num_threads: :param output_folder: whete to store the cropped data :param list_of_files: """ self.output_folder = output_folder self.num_threads = num_threads if self.output_folder is not None: maybe_mkdir_p(self.output_folder) @staticmethod def crop(data, properties, seg=None): shape_before = data.shape data, seg, bbox = crop_to_nonzero(data, seg, nonzero_label=-1) shape_after = data.shape print("before crop:", shape_before, "after crop:", shape_after, "spacing:", np.array(properties["original_spacing"]), "\n") properties["crop_bbox"] = bbox properties['classes'] = np.unique(seg) seg[seg < -1] = 0 properties["size_after_cropping"] = data[0].shape return data, seg, properties @staticmethod def crop_from_list_of_files(data_files, seg_file=None): data, seg, properties = load_case_from_list_of_files(data_files, seg_file) return ImageCropper.crop(data, properties, seg) def load_crop_save(self, case, case_identifier, overwrite_existing=False): try: print(case_identifier) if overwrite_existing \ or (not os.path.isfile(os.path.join(self.output_folder, "%s.npz" % case_identifier)) or not os.path.isfile(os.path.join(self.output_folder, "%s.pkl" % case_identifier))): data, seg, properties = self.crop_from_list_of_files(case[:-1], case[-1]) all_data = np.vstack((data, seg)) np.savez_compressed(os.path.join(self.output_folder, "%s.npz" % case_identifier), data=all_data) with open(os.path.join(self.output_folder, "%s.pkl" % case_identifier), 'wb') as f: pickle.dump(properties, f) except Exception as e: print("Exception in", case_identifier, ":") print(e) raise e def get_list_of_cropped_files(self): return subfiles(self.output_folder, join=True, suffix=".npz") def get_patient_identifiers_from_cropped_files(self): return [i.split("/")[-1][:-4] for i in self.get_list_of_cropped_files()] def run_cropping(self, list_of_files, overwrite_existing=False, output_folder=None): """ also copied ground truth nifti segmentation into the preprocessed folder so that we can use them for evaluation on the cluster :param list_of_files: list of list of files [[PATIENTID_TIMESTEP_0000.nii.gz], [PATIENTID_TIMESTEP_0000.nii.gz]] :param overwrite_existing: :param output_folder: :return: """ if output_folder is not None: self.output_folder = output_folder output_folder_gt = os.path.join(self.output_folder, "gt_segmentations") maybe_mkdir_p(output_folder_gt) for j, case in enumerate(list_of_files): if case[-1] is not None: shutil.copy(case[-1], output_folder_gt) list_of_args = [] for j, case in enumerate(list_of_files): case_identifier = get_case_identifier(case) list_of_args.append((case, case_identifier, overwrite_existing)) p = Pool(self.num_threads) p.starmap(self.load_crop_save, list_of_args) p.close() p.join() def load_properties(self, case_identifier): with open(os.path.join(self.output_folder, "%s.pkl" % case_identifier), 'rb') as f: properties = pickle.load(f) return properties def save_properties(self, case_identifier, properties): with open(os.path.join(self.output_folder, "%s.pkl" % case_identifier), 'wb') as f: pickle.dump(properties, f)
PypiClean
/AyiinXd-0.0.8-cp311-cp311-macosx_10_9_universal2.whl/fipper/types/messages_and_media/video_note.py
from datetime import datetime from typing import List import fipper from fipper import raw, utils from fipper import types from fipper.file_id import FileId, FileType, FileUniqueId, FileUniqueType from ..object import Object class VideoNote(Object): """A video note. Parameters: file_id (``str``): Identifier for this file, which can be used to download or reuse the file. file_unique_id (``str``): Unique identifier for this file, which is supposed to be the same over time and for different accounts. Can't be used to download or reuse the file. length (``int``): Video width and height as defined by sender. duration (``int``): Duration of the video in seconds as defined by sender. mime_type (``str``, *optional*): MIME type of the file as defined by sender. file_size (``int``, *optional*): File size. date (:py:obj:`~datetime.datetime`, *optional*): Date the video note was sent. thumbs (List of :obj:`~fipper.types.Thumbnail`, *optional*): Video thumbnails. """ def __init__( self, *, client: "fipper.Client" = None, file_id: str, file_unique_id: str, length: int, duration: int, thumbs: List["types.Thumbnail"] = None, mime_type: str = None, file_size: int = None, date: datetime = None ): super().__init__(client) self.file_id = file_id self.file_unique_id = file_unique_id self.mime_type = mime_type self.file_size = file_size self.date = date self.length = length self.duration = duration self.thumbs = thumbs @staticmethod def _parse( client, video_note: "raw.types.Document", video_attributes: "raw.types.DocumentAttributeVideo" ) -> "VideoNote": return VideoNote( file_id=FileId( file_type=FileType.VIDEO_NOTE, dc_id=video_note.dc_id, media_id=video_note.id, access_hash=video_note.access_hash, file_reference=video_note.file_reference ).encode(), file_unique_id=FileUniqueId( file_unique_type=FileUniqueType.DOCUMENT, media_id=video_note.id ).encode(), length=video_attributes.w, duration=video_attributes.duration, file_size=video_note.size, mime_type=video_note.mime_type, date=utils.timestamp_to_datetime(video_note.date), thumbs=types.Thumbnail._parse(client, video_note), client=client )
PypiClean
/MergePythonSDK.ticketing-2.2.2-py3-none-any.whl/MergePythonSDK/ats/model/job.py
import re # noqa: F401 import sys # noqa: F401 from typing import ( Optional, Union, List, Dict, ) from MergePythonSDK.shared.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, OpenApiModel, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) from MergePythonSDK.shared.exceptions import ApiAttributeError from MergePythonSDK.shared.model_utils import import_model_by_name def lazy_import(): from MergePythonSDK.ats.model.job_status_enum import JobStatusEnum from MergePythonSDK.shared.model.remote_data import RemoteData from MergePythonSDK.ats.model.url import Url globals()['JobStatusEnum'] = JobStatusEnum globals()['RemoteData'] = RemoteData globals()['Url'] = Url class Job(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ return (bool, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() defined_types = { 'id': (str, none_type,), # noqa: E501 'remote_id': (str, none_type, none_type,), # noqa: E501 'name': (str, none_type, none_type,), # noqa: E501 'description': (str, none_type, none_type,), # noqa: E501 'code': (str, none_type, none_type,), # noqa: E501 'status': (JobStatusEnum, str, none_type,), 'job_posting_urls': ([Url], none_type,), # noqa: E501 'remote_created_at': (datetime, none_type, none_type,), # noqa: E501 'remote_updated_at': (datetime, none_type, none_type,), # noqa: E501 'confidential': (bool, none_type, none_type,), # noqa: E501 'departments': ([str, none_type], none_type,), # noqa: E501 'offices': ([str, none_type], none_type,), # noqa: E501 'hiring_managers': ([str, none_type], none_type,), # noqa: E501 'recruiters': ([str, none_type], none_type,), # noqa: E501 'remote_data': ([RemoteData], none_type, none_type,), # noqa: E501 'remote_was_deleted': (bool, none_type,), # noqa: E501 } expands_types = {"departments": "Department", "hiring_managers": "RemoteUser", "offices": "Office", "recruiters": "RemoteUser"} # update types with expands for key, val in expands_types.items(): if key in defined_types.keys(): expands_model = import_model_by_name(val, "ats") if len(defined_types[key]) > 0 and isinstance(defined_types[key][0], list): defined_types[key][0].insert(0, expands_model) defined_types[key] = (*defined_types[key], expands_model) return defined_types @cached_property def discriminator(): return None attribute_map = { 'id': 'id', # noqa: E501 'remote_id': 'remote_id', # noqa: E501 'name': 'name', # noqa: E501 'description': 'description', # noqa: E501 'code': 'code', # noqa: E501 'status': 'status', # noqa: E501 'job_posting_urls': 'job_posting_urls', # noqa: E501 'remote_created_at': 'remote_created_at', # noqa: E501 'remote_updated_at': 'remote_updated_at', # noqa: E501 'confidential': 'confidential', # noqa: E501 'departments': 'departments', # noqa: E501 'offices': 'offices', # noqa: E501 'hiring_managers': 'hiring_managers', # noqa: E501 'recruiters': 'recruiters', # noqa: E501 'remote_data': 'remote_data', # noqa: E501 'remote_was_deleted': 'remote_was_deleted', # noqa: E501 } read_only_vars = { 'id', # noqa: E501 'remote_data', # noqa: E501 'remote_was_deleted', # noqa: E501 } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """Job - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) id (str): [optional] # noqa: E501 remote_id (str, none_type): The third-party API ID of the matching object.. [optional] # noqa: E501 name (str, none_type): The job's name.. [optional] # noqa: E501 description (str, none_type): The job's description.. [optional] # noqa: E501 code (str, none_type): The job's code. Typically an additional identifier used to reference the particular job that is displayed on the ATS.. [optional] # noqa: E501 status (bool, dict, float, int, list, str, none_type): The job's status.. [optional] # noqa: E501 job_posting_urls ([Url]): [optional] # noqa: E501 remote_created_at (datetime, none_type): When the third party's job was created.. [optional] # noqa: E501 remote_updated_at (datetime, none_type): When the third party's job was updated.. [optional] # noqa: E501 confidential (bool, none_type): Whether the job is confidential.. [optional] # noqa: E501 departments ([str, none_type]): IDs of `Department` objects for this `Job`.. [optional] # noqa: E501 offices ([str, none_type]): IDs of `Office` objects for this `Job`.. [optional] # noqa: E501 hiring_managers ([str, none_type]): IDs of `RemoteUser` objects that serve as hiring managers for this `Job`.. [optional] # noqa: E501 recruiters ([str, none_type]): IDs of `RemoteUser` objects that serve as recruiters for this `Job`.. [optional] # noqa: E501 remote_data ([RemoteData], none_type): [optional] # noqa: E501 remote_was_deleted (bool): Indicates whether or not this object has been deleted by third party webhooks.. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', True) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: for arg in args: if isinstance(arg, dict): kwargs.update(arg) else: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.remote_id = kwargs.get("remote_id", None) self.name = kwargs.get("name", None) self.description = kwargs.get("description", None) self.code = kwargs.get("code", None) self.status = kwargs.get("status", None) self.job_posting_urls = kwargs.get("job_posting_urls", None) self.remote_created_at = kwargs.get("remote_created_at", None) self.remote_updated_at = kwargs.get("remote_updated_at", None) self.confidential = kwargs.get("confidential", None) self.departments = kwargs.get("departments", None) self.offices = kwargs.get("offices", None) self.hiring_managers = kwargs.get("hiring_managers", None) self.recruiters = kwargs.get("recruiters", None) # Read only properties self._id = kwargs.get("id", str()) self._remote_data = kwargs.get("remote_data", None) self._remote_was_deleted = kwargs.get("remote_was_deleted", bool()) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """Job - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) id (str): [optional] # noqa: E501 remote_id (str, none_type): The third-party API ID of the matching object.. [optional] # noqa: E501 name (str, none_type): The job's name.. [optional] # noqa: E501 description (str, none_type): The job's description.. [optional] # noqa: E501 code (str, none_type): The job's code. Typically an additional identifier used to reference the particular job that is displayed on the ATS.. [optional] # noqa: E501 status (bool, dict, float, int, list, str, none_type): The job's status.. [optional] # noqa: E501 job_posting_urls ([Url]): [optional] # noqa: E501 remote_created_at (datetime, none_type): When the third party's job was created.. [optional] # noqa: E501 remote_updated_at (datetime, none_type): When the third party's job was updated.. [optional] # noqa: E501 confidential (bool, none_type): Whether the job is confidential.. [optional] # noqa: E501 departments ([str, none_type]): IDs of `Department` objects for this `Job`.. [optional] # noqa: E501 offices ([str, none_type]): IDs of `Office` objects for this `Job`.. [optional] # noqa: E501 hiring_managers ([str, none_type]): IDs of `RemoteUser` objects that serve as hiring managers for this `Job`.. [optional] # noqa: E501 recruiters ([str, none_type]): IDs of `RemoteUser` objects that serve as recruiters for this `Job`.. [optional] # noqa: E501 remote_data ([RemoteData], none_type): [optional] # noqa: E501 remote_was_deleted (bool): Indicates whether or not this object has been deleted by third party webhooks.. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: for arg in args: if isinstance(arg, dict): kwargs.update(arg) else: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.remote_id: Union[str, none_type] = kwargs.get("remote_id", None) self.name: Union[str, none_type] = kwargs.get("name", None) self.description: Union[str, none_type] = kwargs.get("description", None) self.code: Union[str, none_type] = kwargs.get("code", None) self.status: Union[bool, dict, float, int, list, str, none_type] = kwargs.get("status", None) self.job_posting_urls: Union[List["Url"]] = kwargs.get("job_posting_urls", None) self.remote_created_at: Union[datetime, none_type] = kwargs.get("remote_created_at", None) self.remote_updated_at: Union[datetime, none_type] = kwargs.get("remote_updated_at", None) self.confidential: Union[bool, none_type] = kwargs.get("confidential", None) self.departments: Union[List[str, none_type]] = kwargs.get("departments", list()) self.offices: Union[List[str, none_type]] = kwargs.get("offices", list()) self.hiring_managers: Union[List[str, none_type]] = kwargs.get("hiring_managers", list()) self.recruiters: Union[List[str, none_type]] = kwargs.get("recruiters", list()) # Read only properties self._id: Union[str] = kwargs.get("id", str()) self._remote_data: Union[List["RemoteData"]] = kwargs.get("remote_data", None) self._remote_was_deleted: Union[bool] = kwargs.get("remote_was_deleted", bool()) # Read only property getters @property def id(self): return self._id @property def remote_data(self): return self._remote_data @property def remote_was_deleted(self): return self._remote_was_deleted
PypiClean
/FreePyBX-1.0-RC1.tar.gz/FreePyBX-1.0-RC1/freepybx/public/js/dojox/editor/plugins/EntityPalette.js
define("dojox/editor/plugins/EntityPalette",["dojo","dijit","dojox","dijit/_Widget","dijit/_TemplatedMixin","dijit/_PaletteMixin","dojo/_base/connect","dojo/_base/declare","dojo/i18n","dojo/i18n!dojox/editor/plugins/nls/latinEntities"],function(_1,_2,_3){ _1.experimental("dojox.editor.plugins.EntityPalette"); _1.declare("dojox.editor.plugins.EntityPalette",[_2._Widget,_2._TemplatedMixin,_2._PaletteMixin],{templateString:"<div class=\"dojoxEntityPalette\">\n"+"\t<table>\n"+"\t\t<tbody>\n"+"\t\t\t<tr>\n"+"\t\t\t\t<td>\n"+"\t\t\t\t\t<table class=\"dijitPaletteTable\">\n"+"\t\t\t\t\t\t<tbody dojoAttachPoint=\"gridNode\"></tbody>\n"+"\t\t\t\t </table>\n"+"\t\t\t\t</td>\n"+"\t\t\t</tr>\n"+"\t\t\t<tr>\n"+"\t\t\t\t<td>\n"+"\t\t\t\t\t<table dojoAttachPoint=\"previewPane\" class=\"dojoxEntityPalettePreviewTable\">\n"+"\t\t\t\t\t\t<tbody>\n"+"\t\t\t\t\t\t\t<tr>\n"+"\t\t\t\t\t\t\t\t<th class=\"dojoxEntityPalettePreviewHeader\">Preview</th>\n"+"\t\t\t\t\t\t\t\t<th class=\"dojoxEntityPalettePreviewHeader\" dojoAttachPoint=\"codeHeader\">Code</th>\n"+"\t\t\t\t\t\t\t\t<th class=\"dojoxEntityPalettePreviewHeader\" dojoAttachPoint=\"entityHeader\">Name</th>\n"+"\t\t\t\t\t\t\t\t<th class=\"dojoxEntityPalettePreviewHeader\">Description</th>\n"+"\t\t\t\t\t\t\t</tr>\n"+"\t\t\t\t\t\t\t<tr>\n"+"\t\t\t\t\t\t\t\t<td class=\"dojoxEntityPalettePreviewDetailEntity\" dojoAttachPoint=\"previewNode\"></td>\n"+"\t\t\t\t\t\t\t\t<td class=\"dojoxEntityPalettePreviewDetail\" dojoAttachPoint=\"codeNode\"></td>\n"+"\t\t\t\t\t\t\t\t<td class=\"dojoxEntityPalettePreviewDetail\" dojoAttachPoint=\"entityNode\"></td>\n"+"\t\t\t\t\t\t\t\t<td class=\"dojoxEntityPalettePreviewDetail\" dojoAttachPoint=\"descNode\"></td>\n"+"\t\t\t\t\t\t\t</tr>\n"+"\t\t\t\t\t\t</tbody>\n"+"\t\t\t\t\t</table>\n"+"\t\t\t\t</td>\n"+"\t\t\t</tr>\n"+"\t\t</tbody>\n"+"\t</table>\n"+"</div>",baseClass:"dojoxEntityPalette",showPreview:true,showCode:false,showEntityName:false,palette:"latin",dyeClass:"dojox.editor.plugins.LatinEntity",paletteClass:"editorLatinEntityPalette",cellClass:"dojoxEntityPaletteCell",postMixInProperties:function(){ var _4=_1.i18n.getLocalization("dojox.editor.plugins","latinEntities"); var _5=0; var _6; for(_6 in _4){ _5++; } var _7=Math.floor(Math.sqrt(_5)); var _8=_7; var _9=0; var _a=[]; var _b=[]; for(_6 in _4){ _9++; _b.push(_6); if(_9%_8===0){ _a.push(_b); _b=[]; } } if(_b.length>0){ _a.push(_b); } this._palette=_a; },buildRendering:function(){ this.inherited(arguments); var _c=_1.i18n.getLocalization("dojox.editor.plugins","latinEntities"); this._preparePalette(this._palette,_c); var _d=_1.query(".dojoxEntityPaletteCell",this.gridNode); _1.forEach(_d,function(_e){ this.connect(_e,"onmouseenter","_onCellMouseEnter"); },this); },_onCellMouseEnter:function(e){ this._displayDetails(e.target); },postCreate:function(){ this.inherited(arguments); _1.style(this.codeHeader,"display",this.showCode?"":"none"); _1.style(this.codeNode,"display",this.showCode?"":"none"); _1.style(this.entityHeader,"display",this.showEntityName?"":"none"); _1.style(this.entityNode,"display",this.showEntityName?"":"none"); if(!this.showPreview){ _1.style(this.previewNode,"display","none"); } },_setCurrent:function(_f){ this.inherited(arguments); if(this.showPreview){ this._displayDetails(_f); } },_displayDetails:function(_10){ var dye=this._getDye(_10); if(dye){ var _11=dye.getValue(); var _12=dye._alias; this.previewNode.innerHTML=_11; this.codeNode.innerHTML="&amp;#"+parseInt(_11.charCodeAt(0),10)+";"; this.entityNode.innerHTML="&amp;"+_12+";"; var _13=_1.i18n.getLocalization("dojox.editor.plugins","latinEntities"); this.descNode.innerHTML=_13[_12].replace("\n","<br>"); }else{ this.previewNode.innerHTML=""; this.codeNode.innerHTML=""; this.entityNode.innerHTML=""; this.descNode.innerHTML=""; } }}); _1.declare("dojox.editor.plugins.LatinEntity",null,{constructor:function(_14){ this._alias=_14; },getValue:function(){ return "&"+this._alias+";"; },fillCell:function(_15){ _15.innerHTML=this.getValue(); }}); return _3.editor.plugins.EntityPalette; });
PypiClean
/NiMARE-0.2.0rc2.tar.gz/NiMARE-0.2.0rc2/nimare/extract/utils.py
from __future__ import division import logging import os import os.path as op import numpy as np import pandas as pd import requests from fuzzywuzzy import fuzz from nimare.utils import _uk_to_us LGR = logging.getLogger(__name__) def get_data_dirs(data_dir=None): """Return the directories in which NiMARE looks for data. .. versionadded:: 0.0.2 This is typically useful for the end-user to check where the data is downloaded and stored. Parameters ---------- data_dir: :obj:`pathlib.Path` or :obj:`str`, optional Path of the data directory. Used to force data storage in a specified location. Default: None Returns ------- paths : :obj:`list` of :obj:`str` Paths of the dataset directories. Notes ----- Taken from Nilearn. This function retrieves the datasets directories using the following priority : 1. defaults system paths 2. the keyword argument data_dir 3. the global environment variable NIMARE_SHARED_DATA 4. the user environment variable NIMARE_DATA 5. nimare_data in the user home folder """ # We build an array of successive paths by priority # The boolean indicates if it is a pre_dir: in that case, we won't add the # dataset name to the path. paths = [] # Check data_dir which force storage in a specific location if data_dir is not None: paths.extend(str(data_dir).split(os.pathsep)) # If data_dir has not been specified, then we crawl default locations if data_dir is None: global_data = os.getenv("NIMARE_SHARED_DATA") if global_data is not None: paths.extend(global_data.split(os.pathsep)) local_data = os.getenv("NIMARE_DATA") if local_data is not None: paths.extend(local_data.split(os.pathsep)) paths.append(os.path.expanduser("~/.nimare")) return paths def _get_dataset_dir(dataset_name, data_dir=None, default_paths=None): """Create if necessary and returns data directory of given dataset. .. versionadded:: 0.0.2 Parameters ---------- dataset_name : :obj:`str` The unique name of the dataset. data_dir : :obj:`pathlib.Path` or :obj:`str`, optional Path of the data directory. Used to force data storage in a specified location. Default: None default_paths : :obj:`list` of :obj:`str`, optional Default system paths in which the dataset may already have been installed by a third party software. They will be checked first. Returns ------- data_dir : :obj:`str` Path of the given dataset directory. Notes ----- Taken from Nilearn. This function retrieves the datasets directory (or data directory) using the following priority : 1. defaults system paths 2. the keyword argument data_dir 3. the global environment variable NIMARE_SHARED_DATA 4. the user environment variable NIMARE_DATA 5. nimare_data in the user home folder """ paths = [] # Search possible data-specific system paths if default_paths is not None: for default_path in default_paths: paths.extend([(d, True) for d in str(default_path).split(os.pathsep)]) paths.extend([(d, False) for d in get_data_dirs(data_dir=data_dir)]) LGR.debug(f"Dataset search paths: {paths}") # Check if the dataset exists somewhere for path, is_pre_dir in paths: if not is_pre_dir: path = os.path.join(path, dataset_name) if os.path.islink(path): # Resolve path path = readlinkabs(path) if os.path.exists(path) and os.path.isdir(path): LGR.info(f"Dataset found in {path}\n") return path # If not, create a folder in the first writeable directory errors = [] for path, is_pre_dir in paths: if not is_pre_dir: path = os.path.join(path, dataset_name) if not os.path.exists(path): try: os.makedirs(path) LGR.info(f"Dataset created in {path}") return path except Exception as exc: short_error_message = getattr(exc, "strerror", str(exc)) errors.append(f"\n -{path} ({short_error_message})") raise OSError( "NiMARE tried to store the dataset in the following directories, but: " + "".join(errors) ) def readlinkabs(link): """Return an absolute path for the destination of a symlink. .. versionadded:: 0.0.2 From nilearn. """ path = os.readlink(link) if os.path.isabs(path): return path return os.path.join(os.path.dirname(link), path) def _download_zipped_file(url, filename=None): """Download from a URL to a file. .. versionadded:: 0.0.2 """ if filename is None: data_dir = op.abspath(op.getcwd()) filename = op.join(data_dir, url.split("/")[-1]) # NOTE the stream=True parameter req = requests.get(url, stream=True) with open(filename, "wb") as f_obj: for chunk in req.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks f_obj.write(chunk) return filename def _longify(df): """Expand comma-separated lists of aliases in DataFrame into separate rows. .. versionadded:: 0.0.2 """ reduced = df[["id", "name", "alias"]] rows = [] for index, row in reduced.iterrows(): if isinstance(row["alias"], str) and "," in row["alias"]: aliases = row["alias"].split(", ") + [row["name"]] else: aliases = [row["name"]] for alias in aliases: rows.append([row["id"], row["name"].lower(), alias.lower()]) out_df = pd.DataFrame(columns=["id", "name", "alias"], data=rows) out_df = out_df.replace("", np.nan) return out_df def _get_ratio(tup): """Get fuzzy ratio. .. versionadded:: 0.0.2 """ if all(isinstance(t, str) for t in tup): return fuzz.ratio(tup[0], tup[1]) else: return 100 def _gen_alt_forms(term): """Generate a list of alternate forms for a given term. .. versionadded:: 0.0.2 """ if not isinstance(term, str) or len(term) == 0: return [None] alt_forms = [] # For one alternate form, put contents of parentheses at beginning of term if "(" in term: prefix = term[term.find("(") + 1 : term.find(")")] temp_term = term.replace(f"({prefix})", "").replace(" ", " ") alt_forms.append(temp_term) alt_forms.append(f"{prefix} {temp_term}") else: prefix = "" # Remove extra spaces alt_forms = [s.strip() for s in alt_forms] # Allow plurals # temp = [s+'s' for s in alt_forms] # temp += [s+'es' for s in alt_forms] # alt_forms += temp # Remove words "task" and/or "paradigm" alt_forms += [term.replace(" task", "") for term in alt_forms] alt_forms += [term.replace(" paradigm", "") for term in alt_forms] # Remove duplicates alt_forms = list(set(alt_forms)) return alt_forms def _get_concept_reltype(relationship, direction): """Convert two-part relationship info to more parsimonious representation. .. versionadded:: 0.0.2 The two part representation includes relationship type and direction. """ new_rel = None if relationship == "PARTOF": if direction == "child": new_rel = "hasPart" elif direction == "parent": new_rel = "isPartOf" elif relationship == "KINDOF": if direction == "child": new_rel = "hasKind" elif direction == "parent": new_rel = "isKindOf" return new_rel def _expand_df(df): """Add alternate forms to DataFrame, then sort DataFrame by alias length and similarity. .. versionadded:: 0.0.2 Sorting by alias length is done for order of extraction from text. Sorting by similarity to original name is done in order to select most appropriate term to associate with alias. """ df = df.copy() df["alias"] = df["alias"].apply(_uk_to_us) new_rows = [] for index, row in df.iterrows(): alias = row["alias"] alt_forms = _gen_alt_forms(alias) for alt_form in alt_forms: temp_row = row.copy() temp_row["alias"] = alt_form new_rows.append(temp_row.tolist()) alt_df = pd.DataFrame(columns=df.columns, data=new_rows) df = pd.concat((df, alt_df), axis=0) # Sort by name length and similarity of alternate form to preferred term # For example, "task switching" the concept should take priority over the # "task switching" version of the "task-switching" task. df["length"] = df["alias"].str.len() df["ratio"] = df[["alias", "name"]].apply(_get_ratio, axis=1) df = df.sort_values(by=["length", "ratio"], ascending=[False, False]) return df
PypiClean
/Djblets-3.3.tar.gz/Djblets-3.3/djblets/htdocs/static/djblets/js/extensions/views/extensionManagerView.es6.172b5ba315a2.js
(function() { /** * An item in the list of registered extensions. * * This will contain information on the extension and actions for toggling * the enabled state, reloading the extension, or configuring the extension. */ const ExtensionItem = Djblets.Config.ListItem.extend({ defaults: _.defaults({ extension: null, }, Djblets.Config.ListItem.prototype.defaults), /** * Initialize the item. * * This will set up the initial state and then listen for any changes * to the extension's state (caused by enabling/disabling/reloading the * extension). */ initialize() { Djblets.Config.ListItem.prototype.initialize.apply(this, arguments); this._updateActions(); this._updateItemState(); this.listenTo( this.get('extension'), 'change:loadable change:loadError change:enabled', () => { this._updateItemState(); this._updateActions(); }); }, /** * Update the actions for the extension. * * If the extension is disabled, this will add an Enabled action. * * If it's enabled, but has a load error, it will add a Reload action. * * If it's enabled, it will provide actions for Configure and Database, * if enabled by the extension, along with a Disable action. */ _updateActions() { const extension = this.get('extension'); const actions = []; if (!extension.get('loadable')) { /* Add an action for reloading the extension. */ actions.push({ id: 'reload', label: _`Reload`, }); } else if (extension.get('enabled')) { /* * Show all the actions for enabled extensions. * * Note that the order used is here to ensure visual alignment * for most-frequently-used options. */ const configURL = extension.get('configURL'); const dbURL = extension.get('dbURL'); if (dbURL) { actions.push({ id: 'database', label: _`Database`, url: dbURL, }); } if (configURL) { actions.push({ id: 'configure', label: _`Configure`, primary: true, url: configURL, }); } actions.push({ id: 'disable', label: _`Disable`, danger: true, }); } else { /* Add an action for enabling a disabled extension. */ actions.push({ id: 'enable', label: _`Enable`, primary: true, }); } this.setActions(actions); }, /** * Update the state of this item. * * This will set the "error", "enabled", or "disabled" state of the * item, depending on the corresponding state in the extension. */ _updateItemState() { const extension = this.get('extension'); let itemState; if (!extension.get('loadable')) { itemState = 'error'; } else if (extension.get('enabled')) { itemState = 'enabled'; } else { itemState = 'disabled'; } this.set('itemState', itemState); }, }); /** * Displays an extension in the Manage Extensions list. * * This will show information about the extension, and provide links for * enabling/disabling the extension, and (depending on the extension's * capabilities) configuring it or viewing its database. */ const ExtensionItemView = Djblets.Config.TableItemView.extend({ className: 'djblets-c-extension-item djblets-c-config-forms-list__item', actionHandlers: { 'disable': '_onDisableClicked', 'enable': '_onEnableClicked', 'reload': '_onReloadClicked', }, template: _.template(dedent` <td class="djblets-c-config-forms-list__item-main"> <div class="djblets-c-extension-item__header"> <h3 class="djblets-c-extension-item__name"><%- name %></h3> <span class="djblets-c-extension-item__version"><%- version %></span> <div class="djblets-c-extension-item__author"> <% if (authorURL) { %> <a href="<%- authorURL %>"><%- author %></a> <% } else { %> <%- author %> <% } %> </div> </div> <p class="djblets-c-extension-item__description"> <%- summary %> </p> <% if (!loadable) { %> <pre class="djblets-c-extension-item__load-error"><%- loadError %></pre> <% } %> </td> <td class="djblets-c-config-forms-list__item-state"></td> <td></td> `), /** * Return context data for rendering the item's template. * * Returns: * object: * Context data for the render. */ getRenderContext() { return this.model.get('extension').attributes; }, /** * Handle a click on the Disable action. * * This will make an asynchronous request to disable the extension. * * Returns: * Promise: * A promise for the disable request. This will resolve once the * API has handled the request. */ _onDisableClicked() { return this.model.get('extension').disable() .catch(error => { alert(_`Failed to disable the extension: ${error.message}.`); }); }, /** * Handle a click on the Enable action. * * This will make an asynchronous request to enable the extension. * * Returns: * Promise: * A promise for the enable request. This will resolve once the * API has handled the request. */ _onEnableClicked() { return this.model.get('extension').enable() .catch(error => { alert(_`Failed to enable the extension: ${error.message}.`); }); }, /** * Handle a click on the Reload action. * * This will trigger an event on the item that tells the extension * manager to perform a full reload of all extensions, this one included. * * Returns: * Promise: * A promise for the enable request. This will never resolve, in * practice, but is returned to enable the action's spinner until * the page reloads. */ _onReloadClicked() { return new Promise(() => this.model.trigger('needsReload')); }, }); /** * Displays the interface showing all installed extensions. * * This loads the list of installed extensions and displays each in a list. */ Djblets.ExtensionManagerView = Backbone.View.extend({ events: { 'click .djblets-c-extensions__reload': '_reloadFull', }, listItemsCollectionType: Djblets.Config.ListItems, listItemType: ExtensionItem, listItemViewType: ExtensionItemView, listViewType: Djblets.Config.TableView, /** * Initialize the view. */ initialize() { this.list = new Djblets.Config.List( {}, { collection: new this.listItemsCollectionType( [], { model: this.listItemType, }) }); }, /** * Render the view. * * Returns: * Djblets.ExtensionManagerView: * This object, for chaining. */ render() { const model = this.model; const list = this.list; this.listView = new this.listViewType({ el: this.$('.djblets-c-config-forms-list'), model: list, ItemView: this.listItemViewType, }); this.listView.render().$el .removeAttr('aria-busy') .addClass('-all-items-are-multiline'); this._$listContainer = this.listView.$el.parent(); this.listenTo(model, 'loading', () => list.collection.reset()); this.listenTo(model, 'loaded', this._onLoaded); model.load(); return this; }, /** * Handler for when the list of extensions is loaded. * * Renders each extension in the list. If the list is empty, this will * display that there are no extensions installed. */ _onLoaded() { const items = this.list.collection; this.model.installedExtensions.each(extension => { const item = items.add({ extension: extension, }); this.listenTo(item, 'needsReload', this._reloadFull); }); }, /** * Perform a full reload of the list of extensions on the server. * * This submits our form, which is set in the template to tell the * ExtensionManager to do a full reload. */ _reloadFull() { this.el.submit(); }, }); })();
PypiClean
/FireWorks-2.0.3.tar.gz/FireWorks-2.0.3/fireworks/utilities/fw_utilities.py
import contextlib import datetime import errno import logging import multiprocessing import os import socket import string import sys import traceback from logging import Formatter, Logger from multiprocessing.managers import BaseManager from typing import Tuple from fireworks.fw_config import DS_PASSWORD, FW_BLOCK_FORMAT, FW_LOGGING_FORMAT, FWData __author__ = "Anubhav Jain, Xiaohui Qu" __copyright__ = "Copyright 2012, The Materials Project" __maintainer__ = "Anubhav Jain" __email__ = "[email protected]" __date__ = "Dec 12, 2012" PREVIOUS_STREAM_LOGGERS = [] # contains the name of loggers that have already been initialized PREVIOUS_FILE_LOGGERS = [] # contains the name of file loggers that have already been initialized DEFAULT_FORMATTER = Formatter(FW_LOGGING_FORMAT) def get_fw_logger( name: str, l_dir: None = None, file_levels: Tuple[str, str] = ("DEBUG", "ERROR"), stream_level: str = "DEBUG", formatter: Formatter = DEFAULT_FORMATTER, clear_logs: bool = False, ) -> Logger: """ Convenience method to return a logger. Args: name: name of the logger that sets the groups, e.g. 'group1.set2' l_dir: the directory to put the log file file_levels: iterable describing level(s) to log to file(s). default: ('DEBUG', 'ERROR') stream_level: level to log to standard output. default: 'DEBUG' formatter: logging format. default: FW_LOGGING_FORMATTER clear_logs: whether to clear the logger with the same name """ logger = logging.getLogger(name) logger.setLevel(logging.DEBUG) # anything debug and above passes through to the handler level stream_level = stream_level if stream_level else "CRITICAL" # add handlers for the file_levels if l_dir: for lvl in file_levels: f_name = os.path.join(l_dir, name.replace(".", "_") + "-" + lvl.lower() + ".log") mode = "w" if clear_logs else "a" fh = logging.FileHandler(f_name, mode=mode) fh.setLevel(getattr(logging, lvl)) fh.setFormatter(formatter) if f_name not in PREVIOUS_FILE_LOGGERS: logger.addHandler(fh) PREVIOUS_FILE_LOGGERS.append(f_name) if (name, stream_level) not in PREVIOUS_STREAM_LOGGERS: # add stream handler sh = logging.StreamHandler(stream=sys.stdout) sh.setLevel(getattr(logging, stream_level)) sh.setFormatter(formatter) logger.addHandler(sh) PREVIOUS_STREAM_LOGGERS.append((name, stream_level)) return logger def log_multi(m_logger, msg, log_lvl="info"): """ Args: m_logger (logger): The logger object msg (str): a String to log log_lvl (str): The level to log at """ _log_fnc = getattr(m_logger, log_lvl.lower()) if FWData().MULTIPROCESSING: _log_fnc(f"{msg} : ({multiprocessing.current_process().name})") else: _log_fnc(msg) def log_fancy(m_logger, msgs, log_lvl="info", add_traceback=False): """ A wrapper around the logger messages useful for multi-line logs. Helps to group log messages by adding a fancy border around it, which enhances readability of log lines meant to be read as a unit. Args: m_logger (logger): The logger object log_lvl (str): The level to log at msgs ([str]): a String or iterable of Strings add_traceback (bool): add traceback text, useful when logging exceptions (default False) """ if isinstance(msgs, str): msgs = [msgs] _log_fnc = getattr(m_logger, log_lvl.lower()) _log_fnc("----|vvv|----") _log_fnc("\n".join(msgs)) if add_traceback: _log_fnc(traceback.format_exc()) _log_fnc("----|^^^|----") def log_exception(m_logger, msgs): """ A shortcut wrapper around log_fancy for exceptions Args: m_logger (logger): The logger object msgs ([str]): String or iterable of Strings, will be joined by newlines """ return log_fancy(m_logger, msgs, "error", add_traceback=True) def create_datestamp_dir(root_dir, l_logger, prefix="block_"): """ Internal method to create a new block or launcher directory. The dir name is based on the time and the FW_BLOCK_FORMAT Args: root_dir: directory to create the new dir in l_logger: the logger to use prefix: the prefix for the new dir, default="block_" """ def get_path(): time_now = datetime.datetime.utcnow().strftime(FW_BLOCK_FORMAT) block_path = prefix + time_now return os.path.join(root_dir, block_path) ctn = 0 max_try = 10 full_path = None while full_path is None: full_path = get_path() if os.path.exists(full_path): full_path = None import random import time time.sleep(random.random() / 3 + 0.1) continue else: try: os.mkdir(full_path) break except OSError as e: if ctn > max_try or e.errno != errno.EEXIST: raise e ctn += 1 full_path = None continue l_logger.info(f"Created new dir {full_path}") return full_path _g_ip, _g_host = None, None def get_my_ip(): global _g_ip if _g_ip is None: try: _g_ip = socket.gethostbyname(socket.gethostname()) except Exception: _g_ip = "127.0.0.1" return _g_ip def get_my_host(): global _g_host if _g_host is None: _g_host = socket.gethostname() return _g_host def get_slug(m_str): valid_chars = f"-_.() {string.ascii_letters}{string.digits}" m_str = "".join(c for c in m_str if c in valid_chars) return m_str.replace(" ", "_") class DataServer(BaseManager): """ Provide a server that can host shared objects between multiprocessing Processes (that normally can't share data). For example, a common LaunchPad is shared between processes and pinging launches is coordinated to limit DB hits. """ @classmethod def setup(cls, launchpad): """ Args: launchpad (LaunchPad) Returns: DataServer """ DataServer.register("LaunchPad", callable=lambda: launchpad) m = DataServer(address=("127.0.0.1", 0), authkey=DS_PASSWORD) # random port m.start() return m class NestedClassGetter: """ Used to help pickle inner classes, e.g. see Workflow.Links When called with the containing class as the first argument, and the name of the nested class as the second argument, returns an instance of the nested class. """ def __call__(self, containing_class, class_name): nested_class = getattr(containing_class, class_name) # return an instance of a nested_class. Some more intelligence could be # applied for class construction if necessary. # To support for Pickling of Workflow.Links return nested_class() def explicit_serialize(o): module_name = o.__module__ if module_name == "__main__": import __main__ module_name = os.path.splitext(os.path.basename(__main__.__file__))[0] o._fw_name = f"{{{{{module_name}.{o.__name__}}}}}" return o @contextlib.contextmanager def redirect_local(): """ temporarily redirect stdout or stderr to fws.error and fws.out """ try: old_err = os.dup(sys.stderr.fileno()) old_out = os.dup(sys.stdout.fileno()) new_err = open("FW_job.error", "w") new_out = open("FW_job.out", "w") os.dup2(new_err.fileno(), sys.stderr.fileno()) os.dup2(new_out.fileno(), sys.stdout.fileno()) yield finally: os.dup2(old_err, sys.stderr.fileno()) os.dup2(old_out, sys.stdout.fileno()) new_err.close() new_out.close()
PypiClean
/Abhilash1_optimizers-0.1.tar.gz/Abhilash1_optimizers-0.1/Abhilash1_optimizers/ClassicMomentum.py
import math import numpy as np import Abhilash1_optimizers.Activation as Activation import Abhilash1_optimizers.hyperparameters as hyperparameters import Abhilash1_optimizers.Moment_Initializer as Moment_Initializer #Adamax varaiation of ADAM with L**p norm over L**2 norm(p->infinity) class Momentum(): def __init__(alpha,b_1,b_2,epsilon,noise_g): return hyperparameters.hyperparameter.initialise(alpha,b_1,b_2,epsilon,noise_g) def init(m_t,v_t,t,theta): return Moment_Initializer.Moment_Initializer.initialize(m_t,v_t,t,theta) def Momentum_optimizer(data,len_data,max_itr,alpha,b_1,b_2,epsilon,noise_g,act_func,scale): alpha,b_1,b_2,epsilon,noise_g=Momentum.__init__(alpha,b_1,b_2,epsilon,noise_g) m_t,v_t,t,theta_0=Momentum.init(0,0,0,0) final_weight_vector=[] for i in range(len_data): theta_0=data[i] for i in range(max_itr): t+=1 if(act_func=="softPlus"): g_t=Activation.Activation.softplus(theta_0) elif (act_func=="relu"): g_t=Activation.Activation.relu(theta_0) elif (act_func=="elu"): g_t=Activation.Activation.elu(theta_0,alpha) elif (act_func=="selu"): g_t=Activation.Activation.selu(scale,theta_0,theta) elif (act_func=="tanh"): g_t=Activation.Activation.tanh(theta_0) elif (act_func=="hardSigmoid"): g_t=Activation.Activation.hard_sigmoid(theta_0) elif (act_func=="softSign"): g_t=Activation.Activation.softsign(theta_0) elif (act_func=="linear"): g_t=Activation.Activation.linear(theta_0) elif (act_func=="exponential"): g_t=Activation.Activation.exponential(theta_0) m_t=b_1*m_t + 1.0*g_t theta_prev=theta_0 alpha_t=(alpha*(m_t)) theta_0=theta_prev-(alpha_t) print("Intrermediate gradients") print("==========================================") print("Previous gradient",theta_prev) print("Present gradient",theta_0) print("==========================================") #if theta_0==theta_prev: # break; final_weight_vector.append(theta_0) return final_weight_vector def initialize(data,max_itr): len_data=len(data) optimized_weights=Momentum.Momentum_optimizer(data,len_data,max_itr,alpha,b_1,b_2,epsilon,noise_g,act_func,scale) print("Optimized Weight Vector") print("=====================================") for i in range(len(optimized_weights)): print("=====",optimized_weights[i]) if __name__=='__main__': print("Verbose") #t_0=Adagrad_optimizer() #print("gradient coefficient",t_0) #solve_grad=poly_func(t_0) #print("Gradient Value",solve_grad) sample_data=[1,0.5,0.7,0.1] Momentum.initialize(sample_data,100)
PypiClean
/Behaviour-0.1a4.tar.gz/Behaviour-0.1a4/example/machine/readme.txt
Machine Example --------------- This is the same example as used in "Behaviour-Driven Testing with RSpec" by Bruce Tate, translated from RSpec (Ruby) to Behaviour (Python). The original article may be found at http://www.ibm.com/developerworks/web/library/wa-rspec/. Listing 10 differs as it is impossible to get the specification to fail due to some appallingly bad design in Python (in my view a client module should *NEVER* be able to create new data elements -- this is reverting back to the bad old days of COBOL and FORTRAN). Ditto for Listing 15. Note that I renamed the behaviours to get them to work with nose and pinocchio for listing 23.
PypiClean
/DLTA-AI-1.1.tar.gz/DLTA-AI-1.1/DLTA_AI_app/trackers/botsort/reid_multibackend.py
import torch.nn as nn import torch from pathlib import Path import numpy as np from itertools import islice import torchvision.transforms as transforms import cv2 import sys import torchvision.transforms as T from collections import OrderedDict, namedtuple import gdown from os.path import exists as file_exists from ultralytics.yolo.utils.checks import check_requirements, check_version from ultralytics.yolo.utils import LOGGER from trackers.strongsort.deep.reid_model_factory import (show_downloadeable_models, get_model_url, get_model_name, download_url, load_pretrained_weights) from trackers.strongsort.deep.models import build_model def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''): # Check file(s) for acceptable suffix if file and suffix: if isinstance(suffix, str): suffix = [suffix] for f in file if isinstance(file, (list, tuple)) else [file]: s = Path(f).suffix.lower() # file suffix if len(s): assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}" class ReIDDetectMultiBackend(nn.Module): # ReID models MultiBackend class for python inference on various backends def __init__(self, weights='osnet_x0_25_msmt17.pt', device=torch.device('cpu'), fp16=False): super().__init__() w = weights[0] if isinstance(weights, list) else weights self.pt, self.jit, self.onnx, self.xml, self.engine, self.tflite = self.model_type(w) # get backend self.fp16 = fp16 self.fp16 &= self.pt or self.jit or self.engine # FP16 # Build transform functions self.device = device self.image_size=(256, 128) self.pixel_mean=[0.485, 0.456, 0.406] self.pixel_std=[0.229, 0.224, 0.225] self.transforms = [] self.transforms += [T.Resize(self.image_size)] self.transforms += [T.ToTensor()] self.transforms += [T.Normalize(mean=self.pixel_mean, std=self.pixel_std)] self.preprocess = T.Compose(self.transforms) self.to_pil = T.ToPILImage() model_name = get_model_name(w) if w.suffix == '.pt': model_url = get_model_url(w) if not file_exists(w) and model_url is not None: gdown.download(model_url, str(w), quiet=False) elif file_exists(w): pass else: print(f'No URL associated to the chosen StrongSORT weights ({w}). Choose between:') show_downloadeable_models() exit() # Build model self.model = build_model( model_name, num_classes=1, pretrained=not (w and w.is_file()), use_gpu=device ) if self.pt: # PyTorch # populate model arch with weights if w and w.is_file() and w.suffix == '.pt': load_pretrained_weights(self.model, w) self.model.to(device).eval() self.model.half() if self.fp16 else self.model.float() elif self.jit: LOGGER.info(f'Loading {w} for TorchScript inference...') self.model = torch.jit.load(w) self.model.half() if self.fp16 else self.model.float() elif self.onnx: # ONNX Runtime LOGGER.info(f'Loading {w} for ONNX Runtime inference...') cuda = torch.cuda.is_available() and device.type != 'cpu' #check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime')) import onnxruntime providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider'] self.session = onnxruntime.InferenceSession(str(w), providers=providers) elif self.engine: # TensorRT LOGGER.info(f'Loading {w} for TensorRT inference...') import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0 if device.type == 'cpu': device = torch.device('cuda:0') Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr')) logger = trt.Logger(trt.Logger.INFO) with open(w, 'rb') as f, trt.Runtime(logger) as runtime: self.model_ = runtime.deserialize_cuda_engine(f.read()) self.context = self.model_.create_execution_context() self.bindings = OrderedDict() self.fp16 = False # default updated below dynamic = False for index in range(self.model_.num_bindings): name = self.model_.get_binding_name(index) dtype = trt.nptype(self.model_.get_binding_dtype(index)) if self.model_.binding_is_input(index): if -1 in tuple(self.model_.get_binding_shape(index)): # dynamic dynamic = True self.context.set_binding_shape(index, tuple(self.model_.get_profile_shape(0, index)[2])) if dtype == np.float16: self.fp16 = True shape = tuple(self.context.get_binding_shape(index)) im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device) self.bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr())) self.binding_addrs = OrderedDict((n, d.ptr) for n, d in self.bindings.items()) batch_size = self.bindings['images'].shape[0] # if dynamic, this is instead max batch size elif self.xml: # OpenVINO LOGGER.info(f'Loading {w} for OpenVINO inference...') check_requirements(('openvino',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/ from openvino.runtime import Core, Layout, get_batch ie = Core() if not Path(w).is_file(): # if not *.xml w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin')) if network.get_parameters()[0].get_layout().empty: network.get_parameters()[0].set_layout(Layout("NCWH")) batch_dim = get_batch(network) if batch_dim.is_static: batch_size = batch_dim.get_length() self.executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2 self.output_layer = next(iter(self.executable_network.outputs)) elif self.tflite: LOGGER.info(f'Loading {w} for TensorFlow Lite inference...') try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu from tflite_runtime.interpreter import Interpreter, load_delegate except ImportError: import tensorflow as tf Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate, self.interpreter = tf.lite.Interpreter(model_path=w) self.interpreter.allocate_tensors() # Get input and output tensors. self.input_details = self.interpreter.get_input_details() self.output_details = self.interpreter.get_output_details() # Test model on random input data. input_data = np.array(np.random.random_sample((1,256,128,3)), dtype=np.float32) self.interpreter.set_tensor(self.input_details[0]['index'], input_data) self.interpreter.invoke() # The function `get_tensor()` returns a copy of the tensor data. output_data = self.interpreter.get_tensor(self.output_details[0]['index']) else: print('This model framework is not supported yet!') exit() @staticmethod def model_type(p='path/to/model.pt'): # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx from trackers.reid_export import export_formats sf = list(export_formats().Suffix) # export suffixes check_suffix(p, sf) # checks types = [s in Path(p).name for s in sf] return types def _preprocess(self, im_batch): images = [] for element in im_batch: image = self.to_pil(element) image = self.preprocess(image) images.append(image) images = torch.stack(images, dim=0) images = images.to(self.device) return images def forward(self, im_batch): # preprocess batch im_batch = self._preprocess(im_batch) # batch to half if self.fp16 and im_batch.dtype != torch.float16: im_batch = im_batch.half() # batch processing features = [] if self.pt: features = self.model(im_batch) elif self.jit: # TorchScript features = self.model(im_batch) elif self.onnx: # ONNX Runtime im_batch = im_batch.cpu().numpy() # torch to numpy features = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im_batch})[0] elif self.engine: # TensorRT if True and im_batch.shape != self.bindings['images'].shape: i_in, i_out = (self.model_.get_binding_index(x) for x in ('images', 'output')) self.context.set_binding_shape(i_in, im_batch.shape) # reshape if dynamic self.bindings['images'] = self.bindings['images']._replace(shape=im_batch.shape) self.bindings['output'].data.resize_(tuple(self.context.get_binding_shape(i_out))) s = self.bindings['images'].shape assert im_batch.shape == s, f"input size {im_batch.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}" self.binding_addrs['images'] = int(im_batch.data_ptr()) self.context.execute_v2(list(self.binding_addrs.values())) features = self.bindings['output'].data elif self.xml: # OpenVINO im_batch = im_batch.cpu().numpy() # FP32 features = self.executable_network([im_batch])[self.output_layer] else: print('Framework not supported at the moment, we are working on it...') exit() if isinstance(features, (list, tuple)): return self.from_numpy(features[0]) if len(features) == 1 else [self.from_numpy(x) for x in features] else: return self.from_numpy(features) def from_numpy(self, x): return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x def warmup(self, imgsz=[(256, 128, 3)]): # Warmup model by running inference once warmup_types = self.pt, self.jit, self.onnx, self.engine, self.tflite if any(warmup_types) and self.device.type != 'cpu': im = [np.empty(*imgsz).astype(np.uint8)] # input for _ in range(2 if self.jit else 1): # self.forward(im) # warmup
PypiClean