id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
/MaterialDjango-0.2.5.tar.gz/MaterialDjango-0.2.5/bower_components/prism/plugins/command-line/prism-command-line.js
(function() { if (typeof self === 'undefined' || !self.Prism || !self.document) { return; } Prism.hooks.add('complete', function (env) { if (!env.code) { return; } // Works only for <code> wrapped inside <pre> (not inline). var pre = env.element.parentNode; var clsReg = /\s*\bcommand-line\b\s*/; if ( !pre || !/pre/i.test(pre.nodeName) || // Abort only if neither the <pre> nor the <code> have the class (!clsReg.test(pre.className) && !clsReg.test(env.element.className)) ) { return; } if (env.element.querySelector('.command-line-prompt')) { // Abort if prompt already exists. return; } if (clsReg.test(env.element.className)) { // Remove the class "command-line" from the <code> env.element.className = env.element.className.replace(clsReg, ''); } if (!clsReg.test(pre.className)) { // Add the class "command-line" to the <pre> pre.className += ' command-line'; } var getAttribute = function(key, defaultValue) { return (pre.getAttribute(key) || defaultValue).replace(/"/g, '&quot'); }; // Create the "rows" that will become the command-line prompts. -- cwells var lines = new Array(1 + env.code.split('\n').length); var promptText = getAttribute('data-prompt', ''); if (promptText !== '') { lines = lines.join('<span data-prompt="' + promptText + '"></span>'); } else { var user = getAttribute('data-user', 'user'); var host = getAttribute('data-host', 'localhost'); lines = lines.join('<span data-user="' + user + '" data-host="' + host + '"></span>'); } // Create the wrapper element. -- cwells var prompt = document.createElement('span'); prompt.className = 'command-line-prompt'; prompt.innerHTML = lines; // Mark the output lines so they can be styled differently (no prompt). -- cwells var outputSections = pre.getAttribute('data-output') || ''; outputSections = outputSections.split(','); for (var i = 0; i < outputSections.length; i++) { var outputRange = outputSections[i].split('-'); var outputStart = parseInt(outputRange[0]); var outputEnd = outputStart; // Default: end at the first line when it's not an actual range. -- cwells if (outputRange.length === 2) { outputEnd = parseInt(outputRange[1]); } if (!isNaN(outputStart) && !isNaN(outputEnd)) { for (var j = outputStart; j <= outputEnd && j <= prompt.children.length; j++) { var node = prompt.children[j - 1]; node.removeAttribute('data-user'); node.removeAttribute('data-host'); node.removeAttribute('data-prompt'); } } } env.element.innerHTML = prompt.outerHTML + env.element.innerHTML; }); }());
PypiClean
/COMPAS-1.17.5.tar.gz/COMPAS-1.17.5/src/compas/numerical/descent/descent_numpy.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function from numpy import array from numpy import eye from numpy import finfo from numpy import float64 from numpy import maximum from numpy import mean from numpy import newaxis from numpy import ones from numpy import reshape from numpy import sqrt from numpy import sum from numpy import zeros eps = finfo(float64).eps e = sqrt(eps) __all__ = ["descent_numpy"] def descent_numpy(x0, fn, iterations=1000, gtol=10 ** (-6), bounds=None, limit=0, args=()): """A gradient descent optimisation solver. Parameters ---------- x0 : array-like n x 1 starting guess of x. fn : obj The objective function to minimize. iterations : int Maximum number of iterations. gtol : float Mean residual of the gradient for convergence. bounds : list List of lower and upper bound pairs [[lb, ub], ...], None=unconstrained. limit : float Value of the objective function for which to terminate optimisation. args : tuple Additional parameters needed for fn. Returns ------- float Final value of the objective function. array Values of x at the found local minimum. """ r = 0.5 c = 0.0001 n = len(x0) x0 = reshape(array(x0), (n, 1)) if bounds: bounds = array(bounds) lb = bounds[:, 0][:, newaxis] ub = bounds[:, 1][:, newaxis] else: lb = ones((n, 1)) * -(10**20) ub = ones((n, 1)) * +(10**20) zn = zeros((n, 1)) g = zeros((n, 1)) v = eye(n) * e def phi(x, mu, *args): p = mu * (sum(maximum(lb - x, zn)) + sum(maximum(x - ub, zn))) ** 2 return fn(x, *args) + p i = 0 mu = 1 while i < iterations: p0 = phi(x0, mu, *args) for j in range(n): vj = v[:, j][:, newaxis] g[j, 0] = (phi(x0 + vj, mu, *args) - p0) / e D = sum(-g * g) a = 1 x1 = x0 - a * g while phi(x1, mu, *args) > p0 + c * a * D: a *= r x1 = x0 - a * g x0 -= a * g mu *= 10 res = mean(abs(g)) i += 1 f1 = phi(x0, mu, *args) if f1 < limit: break if res < gtol: break print("Iteration: {0} fopt: {1:.3g} gres: {2:.3g} step: {3}".format(i, f1, res, a)) return f1, x0
PypiClean
/LabJackPython-9-20-2010.tar.gz/LabJackPython-9-20-2010/src/u6.py
from LabJackPython import * import struct, ConfigParser def openAllU6(): """ A helpful function which will open all the connected U6s. Returns a dictionary where the keys are the serialNumber, and the value is the device object. """ returnDict = dict() for i in range(deviceCount(6)): d = U6(firstFound = False, devNumber = i+1) returnDict[str(d.serialNumber)] = d return returnDict def dumpPacket(buffer): """ Name: dumpPacket(buffer) Args: byte array Desc: Returns hex value of all bytes in the buffer """ return repr([ hex(x) for x in buffer ]) def getBit(n, bit): """ Name: getBit(n, bit) Args: n, the original integer you want the bit of bit, the index of the bit you want Desc: Returns the bit at position "bit" of integer "n" >>> n = 5 >>> bit = 2 >>> getBit(n, bit) 1 >>> bit = 0 >>> getBit(n, bit) 1 """ return int(bool((int(n) & (1 << bit)) >> bit)) def toBitList(inbyte): """ Name: toBitList(inbyte) Args: a byte Desc: Converts a byte into list for access to individual bits >>> inbyte = 5 >>> toBitList(inbyte) [1, 0, 1, 0, 0, 0, 0, 0] """ return [ getBit(inbyte, b) for b in range(8) ] def dictAsString(d): """Helper function that returns a string representation of a dictionary""" s = "{" for key, val in sorted(d.items()): s += "%s: %s, " % (key, val) s = s.rstrip(", ") # Nuke the trailing comma s += "}" return s class CalibrationInfo(object): """ A class to hold the calibration info for a U6 """ def __init__(self): # A flag to tell difference between nominal and actual values. self.nominal = True # Positive Channel calibration self.ain10vSlope = 3.1580578 * (10 ** -4) self.ain10vOffset = -10.5869565220 self.ain1vSlope = 3.1580578 * (10 ** -5) self.ain1vOffset = -1.05869565220 self.ain100mvSlope = 3.1580578 * (10 ** -6) self.ain100mvOffset = -0.105869565220 self.ain10mvSlope = 3.1580578 * (10 ** -7) self.ain10mvOffset = -0.0105869565220 self.ainSlope = [self.ain10vSlope, self.ain1vSlope, self.ain100mvSlope, self.ain10mvSlope] self.ainOffset = [ self.ain10vOffset, self.ain1vOffset, self.ain100mvOffset, self.ain10mvOffset ] # Negative Channel calibration self.ain10vNegSlope = -3.15805800 * (10 ** -4) self.ain10vCenter = 33523.0 self.ain1vNegSlope = -3.15805800 * (10 ** -5) self.ain1vCenter = 33523.0 self.ain100mvNegSlope = -3.15805800 * (10 ** -6) self.ain100mvCenter = 33523.0 self.ain10mvNegSlope = -3.15805800 * (10 ** -7) self.ain10mvCenter = 33523.0 self.ainNegSlope = [ self.ain10vNegSlope, self.ain1vNegSlope, self.ain100mvNegSlope, self.ain10mvNegSlope ] self.ainCenter = [ self.ain10vCenter, self.ain1vCenter, self.ain100mvCenter, self.ain10mvCenter ] # Miscellaneous self.dac0Slope = 13200.0 self.dac0Offset = 0 self.dac1Slope = 13200.0 self.dac1Offset = 0 self.currentOutput0 = 0.0000100000 self.currentOutput1 = 0.0002000000 self.temperatureSlope = -92.379 self.temperatureOffset = 465.129 # Hi-Res ADC stuff # Positive Channel calibration self.proAin10vSlope = 3.1580578 * (10 ** -4) self.proAin10vOffset = -10.5869565220 self.proAin1vSlope = 3.1580578 * (10 ** -5) self.proAin1vOffset = -1.05869565220 self.proAin100mvSlope = 3.1580578 * (10 ** -6) self.proAin100mvOffset = -0.105869565220 self.proAin10mvSlope = 3.1580578 * (10 ** -7) self.proAin10mvOffset = -0.0105869565220 # Negative Channel calibration self.proAin10vNegSlope = -3.15805800 * (10 ** -4) self.proAin10vCenter = 33523.0 self.proAin1vNegSlope = -3.15805800 * (10 ** -5) self.proAin1vCenter = 33523.0 self.proAin100mvNegSlope = -3.15805800 * (10 ** -6) self.proAin100mvCenter = 33523.0 self.proAin10mvNegSlope = -3.15805800 * (10 ** -7) self.proAin10mvCenter = 33523.0 def __str__(self): return str(self.__dict__) class U6(Device): """ U6 Class for all U6 specific low-level commands. Example: >>> import u6 >>> d = u6.U6() >>> print d.configU6() {'SerialNumber': 320032102, ... , 'FirmwareVersion': '1.26'} """ def __init__(self, debug = False, autoOpen = True, **kargs): """ Name: U6.__init__(self, debug = False, autoOpen = True, **kargs) Args: debug, Do you want debug information? autoOpen, If true, then the constructor will call open for you **kargs, The arguments to be passed to open. Desc: Your basic constructor. """ Device.__init__(self, None, devType = 6) self.firmwareVersion = 0 self.bootloaderVersion = 0 self.hardwareVersion = 0 self.productId = 0 self.fioDirection = [None] * 8 self.fioState = [None] * 8 self.eioDirection = [None] * 8 self.eioState = [None] * 8 self.cioDirection = [None] * 8 self.cioState = [None] * 8 self.dac1Enable = 0 self.dac0 = 0 self.dac1 = 0 self.calInfo = CalibrationInfo() self.productName = "U6" self.debug = debug if autoOpen: self.open(**kargs) def open(self, localId = None, firstFound = True, serial = None, devNumber = None, handleOnly = False, LJSocket = None): """ Name: U6.open(localId = None, firstFound = True, devNumber = None, handleOnly = False, LJSocket = None) Args: firstFound, If True, use the first found U6 serial, open a U6 with the given serial number localId, open a U6 with the given local id. devNumber, open a U6 with the given devNumber handleOnly, if True, LabJackPython will only open a handle LJSocket, set to "<ip>:<port>" to connect to LJSocket Desc: Opens a U6 for reading and writing. >>> myU6 = u6.U6(autoOpen = False) >>> myU6.open() """ Device.open(self, 6, firstFound = firstFound, serial = serial, localId = localId, devNumber = devNumber, handleOnly = handleOnly, LJSocket = LJSocket ) def configU6(self, LocalID = None): """ Name: U6.configU6(LocalID = None) Args: LocalID, if set, will write the new value to U6 Desc: Writes the Local ID, and reads some hardware information. >>> myU6 = u6.U6() >>> myU6.configU6() {'BootloaderVersion': '6.15', 'FirmwareVersion': '0.88', 'HardwareVersion': '2.0', 'LocalID': 1, 'ProductID': 6, 'SerialNumber': 360005087, 'VersionInfo': 4} """ command = [ 0 ] * 26 #command[0] = Checksum8 command[1] = 0xF8 command[2] = 0x0A command[3] = 0x08 #command[4] = Checksum16 (LSB) #command[5] = Checksum16 (MSB) if LocalID != None: command[6] = (1 << 3) command[8] = LocalID #command[7] = Reserved #command[9-25] = Reserved try: result = self._writeRead(command, 38, [0xF8, 0x10, 0x08]) except LabJackException, e: if e.errorCode is 4: print "NOTE: ConfigU6 returned an error of 4. This probably means you are using U6 with a *really old* firmware. Please upgrade your U6's firmware as soon as possible." result = self._writeRead(command, 38, [0xF8, 0x10, 0x08], checkBytes = False) else: raise e self.firmwareVersion = "%s.%02d" % (result[10], result[9]) self.bootloaderVersion = "%s.%02d" % (result[12], result[11]) self.hardwareVersion = "%s.%02d" % (result[14], result[13]) self.serialNumber = struct.unpack("<I", struct.pack(">BBBB", *result[15:19]))[0] self.productId = struct.unpack("<H", struct.pack(">BB", *result[19:21]))[0] self.localId = result[21] self.versionInfo = result[37] self.deviceName = 'U6' if self.versionInfo == 12: self.deviceName = 'U6-Pro' return { 'FirmwareVersion' : self.firmwareVersion, 'BootloaderVersion' : self.bootloaderVersion, 'HardwareVersion' : self.hardwareVersion, 'SerialNumber' : self.serialNumber, 'ProductID' : self.productId, 'LocalID' : self.localId, 'VersionInfo' : self.versionInfo, 'DeviceName' : self.deviceName } def configIO(self, NumberTimersEnabled = None, EnableCounter1 = None, EnableCounter0 = None, TimerCounterPinOffset = None, EnableUART = None): """ Name: U6.configIO(NumberTimersEnabled = None, EnableCounter1 = None, EnableCounter0 = None, TimerCounterPinOffset = None) Args: NumberTimersEnabled, Number of timers to enable EnableCounter1, Set to True to enable counter 1, F to disable EnableCounter0, Set to True to enable counter 0, F to disable TimerCounterPinOffset, where should the timers/counters start if all args are None, command just reads. Desc: Writes and reads the current IO configuration. >>> myU6 = u6.U6() >>> myU6.configIO() {'Counter0Enabled': False, 'Counter1Enabled': False, 'NumberTimersEnabled': 0, 'TimerCounterPinOffset': 0} """ command = [ 0 ] * 16 #command[0] = Checksum8 command[1] = 0xF8 command[2] = 0x05 command[3] = 0x0B #command[4] = Checksum16 (LSB) #command[5] = Checksum16 (MSB) if NumberTimersEnabled != None: command[6] = 1 command[7] = NumberTimersEnabled if EnableCounter0 != None: command[6] = 1 if EnableCounter0: command[8] = 1 if EnableCounter1 != None: command[6] = 1 if EnableCounter1: command[8] |= (1 << 1) if TimerCounterPinOffset != None: command[6] = 1 command[9] = TimerCounterPinOffset if EnableUART is not None: command[6] |= 1 command[6] |= (1 << 5) result = self._writeRead(command, 16, [0xf8, 0x05, 0x0B]) return { 'NumberTimersEnabled' : result[8], 'Counter0Enabled' : bool(result[9] & 1), 'Counter1Enabled' : bool( (result[9] >> 1) & 1), 'TimerCounterPinOffset' : result[10] } def configTimerClock(self, TimerClockBase = None, TimerClockDivisor = None): """ Name: U6.configTimerClock(TimerClockBase = None, TimerClockDivisor = None) Args: TimerClockBase, which timer base to use TimerClockDivisor, set the divisor if all args are None, command just reads. Also, if you cannot set the divisor without setting the base. Desc: Writes and read the timer clock configuration. >>> myU6 = u6.U6() >>> myU6.configTimerClock() {'TimerClockDivisor': 256, 'TimerClockBase': 2} """ command = [ 0 ] * 10 #command[0] = Checksum8 command[1] = 0xF8 command[2] = 0x02 command[3] = 0x0A #command[4] = Checksum16 (LSB) #command[5] = Checksum16 (MSB) #command[6] = Reserved #command[7] = Reserved if TimerClockBase != None: command[8] = (1 << 7) command[8] |= TimerClockBase & 7 if TimerClockDivisor != None: command[9] = TimerClockDivisor result = self._writeRead(command, 10, [0xF8, 0x2, 0x0A]) divisor = result[9] if divisor == 0: divisor = 256 return { 'TimerClockBase' : (result[8] & 7), 'TimerClockDivisor' : divisor } def _buildBuffer(self, sendBuffer, readLen, commandlist): for cmd in commandlist: if isinstance(cmd, FeedbackCommand): sendBuffer += cmd.cmdBytes readLen += cmd.readLen elif isinstance(cmd, list): sendBuffer, readLen = self._buildBuffer(sendBuffer, readLen, cmd) return (sendBuffer, readLen) def _buildFeedbackResults(self, rcvBuffer, commandlist, results, i): for cmd in commandlist: if isinstance(cmd, FeedbackCommand): results.append(cmd.handle(rcvBuffer[i:i+cmd.readLen])) i += cmd.readLen elif isinstance(cmd, list): self._buildFeedbackResults(rcvBuffer, cmd, results, i) return results def getFeedback(self, *commandlist): """ Name: getFeedback(commandlist) Args: the FeedbackCommands to run Desc: Forms the commandlist into a packet, sends it to the U6, and reads the response. >>> myU6 = U6() >>> ledCommand = u6.LED(False) >>> internalTempCommand = u6.AIN(30, 31, True) >>> myU6.getFeedback(ledCommand, internalTempCommand) [None, 23200] OR if you like the list version better: >>> myU6 = U6() >>> ledCommand = u6.LED(False) >>> internalTempCommand = u6.AIN(30, 31, True) >>> commandList = [ ledCommand, internalTempCommand ] >>> myU6.getFeedback(commandList) [None, 23200] """ sendBuffer = [0] * 7 sendBuffer[1] = 0xF8 readLen = 9 sendBuffer, readLen = self._buildBuffer(sendBuffer, readLen, commandlist) if len(sendBuffer) % 2: sendBuffer += [0] sendBuffer[2] = len(sendBuffer) / 2 - 3 if readLen % 2: readLen += 1 if len(sendBuffer) > MAX_USB_PACKET_LENGTH: raise LabJackException("ERROR: The feedback command you are attempting to send is bigger than 64 bytes ( %s bytes ). Break your commands up into separate calls to getFeedback()." % len(sendBuffer)) if readLen > MAX_USB_PACKET_LENGTH: raise LabJackException("ERROR: The feedback command you are attempting to send would yield a response that is greater than 64 bytes ( %s bytes ). Break your commands up into separate calls to getFeedback()." % readLen) rcvBuffer = self._writeRead(sendBuffer, readLen, [], checkBytes = False, stream = False, checksum = True) # Check the response for errors try: self._checkCommandBytes(rcvBuffer, [0xF8]) if rcvBuffer[3] != 0x00: raise LabJackException("Got incorrect command bytes") except LowlevelErrorException, e: if isinstance(commandlist[0], list): culprit = commandlist[0][ (rcvBuffer[7] -1) ] else: culprit = commandlist[ (rcvBuffer[7] -1) ] raise LowlevelErrorException("\nThis Command\n %s\nreturned an error:\n %s" % ( culprit, lowlevelErrorToString(rcvBuffer[6]) ) ) results = [] i = 9 return self._buildFeedbackResults(rcvBuffer, commandlist, results, i) def readMem(self, BlockNum, ReadCal=False): """ Name: U6.readMem(BlockNum, ReadCal=False) Args: BlockNum, which block to read ReadCal, set to True to read the calibration data Desc: Reads 1 block (32 bytes) from the non-volatile user or calibration memory. Please read section 5.2.6 of the user's guide before you do something you may regret. >>> myU6 = U6() >>> myU6.readMem(0) [ < userdata stored in block 0 > ] NOTE: Do not call this function while streaming. """ command = [ 0 ] * 8 #command[0] = Checksum8 command[1] = 0xF8 command[2] = 0x01 command[3] = 0x2A if ReadCal: command[3] = 0x2D #command[4] = Checksum16 (LSB) #command[5] = Checksum16 (MSB) command[6] = 0x00 command[7] = BlockNum result = self._writeRead(command, 40, [ 0xF8, 0x11, command[3] ]) return result[8:] def readCal(self, BlockNum): return self.readMem(BlockNum, ReadCal = True) def writeMem(self, BlockNum, Data, WriteCal=False): """ Name: U6.writeMem(BlockNum, Data, WriteCal=False) Args: BlockNum, which block to write Data, a list of bytes to write WriteCal, set to True to write calibration. Desc: Writes 1 block (32 bytes) from the non-volatile user or calibration memory. Please read section 5.2.7 of the user's guide before you do something you may regret. >>> myU6 = U6() >>> myU6.writeMem(0, [ < userdata to be stored in block 0 > ]) NOTE: Do not call this function while streaming. """ if not isinstance(Data, list): raise LabJackException("Data must be a list of bytes") command = [ 0 ] * 40 #command[0] = Checksum8 command[1] = 0xF8 command[2] = 0x11 command[3] = 0x28 if WriteCal: command[3] = 0x2B #command[4] = Checksum16 (LSB) #command[5] = Checksum16 (MSB) command[6] = 0x00 command[7] = BlockNum command[8:] = Data self._writeRead(command, 8, [0xF8, 0x11, command[3]]) def writeCal(self, BlockNum, Data): return self.writeMem(BlockNum, Data, WriteCal = True) def eraseMem(self, EraseCal=False): """ Name: U6.eraseMem(EraseCal=False) Args: EraseCal, set to True to erase the calibration memory. Desc: The U6 uses flash memory that must be erased before writing. Please read section 5.2.8 of the user's guide before you do something you may regret. >>> myU6 = U6() >>> myU6.eraseMem() NOTE: Do not call this function while streaming. """ if eraseCal: command = [ 0 ] * 8 #command[0] = Checksum8 command[1] = 0xF8 command[2] = 0x01 command[3] = 0x2C #command[4] = Checksum16 (LSB) #command[5] = Checksum16 (MSB) command[6] = 0x4C command[7] = 0x6C else: command = [ 0 ] * 6 #command[0] = Checksum8 command[1] = 0xF8 command[2] = 0x00 command[3] = 0x29 #command[4] = Checksum16 (LSB) #command[5] = Checksum16 (MSB) self._writeRead(command, 8, [0xF8, 0x01, command[3]]) def eraseCal(self): return self.eraseMem(EraseCal=True) def streamConfig(self, NumChannels = 1, ResolutionIndex = 0, SamplesPerPacket = 25, SettlingFactor = 0, InternalStreamClockFrequency = 0, DivideClockBy256 = False, ScanInterval = 1, ChannelNumbers = [0], ChannelOptions = [0], SampleFrequency = None): """ Name: U6.streamConfig( NumChannels = 1, ResolutionIndex = 0, SamplesPerPacket = 25, SettlingFactor = 0, InternalStreamClockFrequency = 0, DivideClockBy256 = False, ScanInterval = 1, ChannelNumbers = [0], ChannelOptions = [0], SampleFrequency = None ) Args: NumChannels, the number of channels to stream ResolutionIndex, the resolution of the samples SettlingFactor, the settling factor to be used ChannelNumbers, a list of channel numbers to stream ChannelOptions, a list of channel options bytes Set Either: SampleFrequency, the frequency in Hz to sample -- OR -- SamplesPerPacket, how many samples make one packet InternalStreamClockFrequency, 0 = 4 MHz, 1 = 48 MHz DivideClockBy256, True = divide the clock by 256 ScanInterval, clock/ScanInterval = frequency. Desc: Configures streaming on the U6. On a decent machine, you can expect to stream a range of 0.238 Hz to 15 Hz. Without the conversion, you can get up to 55 Hz. """ if NumChannels != len(ChannelNumbers) or NumChannels != len(ChannelOptions): raise LabJackException("NumChannels must match length of ChannelNumbers and ChannelOptions") if len(ChannelNumbers) != len(ChannelOptions): raise LabJackException("len(ChannelNumbers) doesn't match len(ChannelOptions)") if SampleFrequency != None: if SampleFrequency < 1000: if SampleFrequency < 25: SamplesPerPacket = SampleFrequency DivideClockBy256 = True ScanInterval = 15625/SampleFrequency else: DivideClockBy256 = False ScanInterval = 4000000/SampleFrequency # Force Scan Interval into correct range ScanInterval = min( ScanInterval, 65535 ) ScanInterval = int( ScanInterval ) ScanInterval = max( ScanInterval, 1 ) # Same with Samples per packet SamplesPerPacket = max( SamplesPerPacket, 1) SamplesPerPacket = int( SamplesPerPacket ) SamplesPerPacket = min ( SamplesPerPacket, 25) command = [ 0 ] * (14 + NumChannels*2) #command[0] = Checksum8 command[1] = 0xF8 command[2] = NumChannels+4 command[3] = 0x11 #command[4] = Checksum16 (LSB) #command[5] = Checksum16 (MSB) command[6] = NumChannels command[7] = ResolutionIndex command[8] = SamplesPerPacket #command[9] = Reserved command[10] = SettlingFactor command[11] = (InternalStreamClockFrequency & 1) << 3 if DivideClockBy256: command[11] |= 1 << 1 t = struct.pack("<H", ScanInterval) command[12] = ord(t[0]) command[13] = ord(t[1]) for i in range(NumChannels): command[14+(i*2)] = ChannelNumbers[i] command[15+(i*2)] = ChannelOptions[i] self._writeRead(command, 8, [0xF8, 0x01, 0x11]) # Set up the variables for future use. self.streamSamplesPerPacket = SamplesPerPacket self.streamChannelNumbers = ChannelNumbers self.streamChannelOptions = ChannelOptions self.streamConfiged = True if InternalStreamClockFrequency == 1: freq = float(48000000) else: freq = float(4000000) if DivideClockBy256: freq /= 256 freq = freq/ScanInterval self.packetsPerRequest = max(1, int(freq/SamplesPerPacket)) self.packetsPerRequest = min(self.packetsPerRequest, 48) def processStreamData(self, result, numBytes = None): """ Name: U6.processStreamData(result, numPackets = None) Args: result, the string returned from streamData() numBytes, the number of bytes per packet Desc: Breaks stream data into individual channels and applies calibrations. >>> reading = d.streamData(convert = False) >>> print proccessStreamData(reading['result']) defaultDict(list, {'AIN0' : [3.123, 3.231, 3.232, ...]}) """ if numBytes is None: numBytes = 14 + (self.streamSamplesPerPacket * 2) returnDict = collections.defaultdict(list) j = self.streamPacketOffset for packet in self.breakupPackets(result, numBytes): for sample in self.samplesFromPacket(packet): if j >= len(self.streamChannelNumbers): j = 0 if self.streamChannelNumbers[j] == 193: value = struct.unpack('<BB', sample ) else: if (self.streamChannelOptions[j] >> 7) == 1: # do signed value = struct.unpack('<H', sample )[0] else: # do unsigned value = struct.unpack('<H', sample )[0] gainIndex = (self.streamChannelOptions[j] >> 4) & 0x3 value = self.binaryToCalibratedAnalogVoltage(gainIndex, value, is16Bits=True) returnDict["AIN%s" % self.streamChannelNumbers[j]].append(value) j += 1 self.streamPacketOffset = j return returnDict def watchdog(self, Write = False, ResetOnTimeout = False, SetDIOStateOnTimeout = False, TimeoutPeriod = 60, DIOState = 0, DIONumber = 0): """ Name: U6.watchdog(Write = False, ResetOnTimeout = False, SetDIOStateOnTimeout = False, TimeoutPeriod = 60, DIOState = 0, DIONumber = 0) Args: Write, Set to True to write new values to the watchdog. ResetOnTimeout, True means reset the device on timeout SetDIOStateOnTimeout, True means set the sate of a DIO on timeout TimeoutPeriod, Time, in seconds, to wait before timing out. DIOState, 1 = High, 0 = Low DIONumber, which DIO to set. Desc: Controls a firmware based watchdog timer. """ command = [ 0 ] * 16 #command[0] = Checksum8 command[1] = 0xF8 command[2] = 0x05 command[3] = 0x09 #command[4] = Checksum16 (LSB) #command[5] = Checksum16 (MSB) if Write: command[6] = 1 if ResetOnTimeout: command[7] = (1 << 5) if SetDIOStateOnTimeout: command[7] |= (1 << 4) t = struct.pack("<H", TimeoutPeriod) command[8] = ord(t[0]) command[9] = ord(t[1]) command[10] = ((DIOState & 1 ) << 7) command[10] |= (DIONumber & 0xf) result = self._writeRead(command, 16, [ 0xF8, 0x05, 0x09]) watchdogStatus = {} if result[7] == 0: watchdogStatus['WatchDogEnabled'] = False watchdogStatus['ResetOnTimeout'] = False watchdogStatus['SetDIOStateOnTimeout'] = False else: watchdogStatus['WatchDogEnabled'] = True if (( result[7] >> 5 ) & 1): watchdogStatus['ResetOnTimeout'] = True else: watchdogStatus['ResetOnTimeout'] = False if (( result[7] >> 4 ) & 1): watchdogStatus['SetDIOStateOnTimeout'] = True else: watchdogStatus['SetDIOStateOnTimeout'] = False watchdogStatus['TimeoutPeriod'] = struct.unpack('<H', struct.pack("BB", *result[8:10])) if (( result[10] >> 7 ) & 1): watchdogStatus['DIOState'] = 1 else: watchdogStatus['DIOState'] = 0 watchdogStatus['DIONumber'] = ( result[10] & 15 ) return watchdogStatus SPIModes = { 'A' : 0, 'B' : 1, 'C' : 2, 'D' : 3 } def spi(self, SPIBytes, AutoCS=True, DisableDirConfig = False, SPIMode = 'A', SPIClockFactor = 0, CSPINNum = 0, CLKPinNum = 1, MISOPinNum = 2, MOSIPinNum = 3): """ Name: U6.spi(SPIBytes, AutoCS=True, DisableDirConfig = False, SPIMode = 'A', SPIClockFactor = 0, CSPINNum = 0, CLKPinNum = 1, MISOPinNum = 2, MOSIPinNum = 3) Args: SPIBytes, A list of bytes to send. AutoCS, If True, the CS line is automatically driven low during the SPI communication and brought back high when done. DisableDirConfig, If True, function does not set the direction of the line. SPIMode, 'A', 'B', 'C', or 'D'. SPIClockFactor, Sets the frequency of the SPI clock. CSPINNum, which pin is CS CLKPinNum, which pin is CLK MISOPinNum, which pin is MISO MOSIPinNum, which pin is MOSI Desc: Sends and receives serial data using SPI synchronous communication. See Section 5.2.17 of the user's guide. """ if not isinstance(SPIBytes, list): raise LabJackException("SPIBytes MUST be a list of bytes") numSPIBytes = len(SPIBytes) oddPacket = False if numSPIBytes%2 != 0: SPIBytes.append(0) numSPIBytes = numSPIBytes + 1 oddPacket = True command = [ 0 ] * (13 + numSPIBytes) #command[0] = Checksum8 command[1] = 0xF8 command[2] = 4 + (numSPIBytes/2) command[3] = 0x3A #command[4] = Checksum16 (LSB) #command[5] = Checksum16 (MSB) if AutoCS: command[6] |= (1 << 7) if DisableDirConfig: command[6] |= (1 << 6) command[6] |= ( self.SPIModes[SPIMode] & 3 ) command[7] = SPIClockFactor #command[8] = Reserved command[9] = CSPINNum command[10] = CLKPinNum command[11] = MISOPinNum command[12] = MOSIPinNum command[13] = numSPIBytes if oddPacket: command[13] = numSPIBytes - 1 command[14:] = SPIBytes result = self._writeRead(command, 8+numSPIBytes, [ 0xF8, 1+(numSPIBytes/2), 0x3A ]) return { 'NumSPIBytesTransferred' : result[7], 'SPIBytes' : result[8:] } def asynchConfig(self, Update = True, UARTEnable = True, DesiredBaud = None, BaudFactor = 63036): """ Name: U6.asynchConfig(Update = True, UARTEnable = True, DesiredBaud = None, BaudFactor = 63036) Args: Update, If True, new values are written. UARTEnable, If True, UART will be enabled. DesiredBaud, If set, will apply the formualt to calculate BaudFactor. BaudFactor, = 2^16 - 48000000/(2 * Desired Baud). Ignored if DesiredBaud is set. Desc: Configures the U6 UART for asynchronous communication. See section 5.2.18 of the User's Guide. """ if UARTEnable: self.configIO(EnableUART = True) command = [ 0 ] * 10 #command[0] = Checksum8 command[1] = 0xF8 command[2] = 0x02 command[3] = 0x14 #command[4] = Checksum16 (LSB) #command[5] = Checksum16 (MSB) #commmand[6] = 0x00 if Update: command[7] = (1 << 7) if UARTEnable: command[7] |= (1 << 6) if DesiredBaud != None: BaudFactor = (2**16) - 48000000/(2 * DesiredBaud) t = struct.pack("<H", BaudFactor) command[8] = ord(t[0]) command[9] = ord(t[1]) results = self._writeRead(command, 10, [0xF8, 0x02, 0x14]) if command[8] != results[8] and command[9] != results[9]: raise LabJackException("BaudFactor didn't stick.") def asynchTX(self, AsynchBytes): """ Name: U6.asynchTX(AsynchBytes) Args: AsynchBytes, List of bytes to send Desc: Sends bytes to the U6 UART which will be sent asynchronously on the transmit line. Section 5.2.19 of the User's Guide. """ numBytes = len(AsynchBytes) oddPacket = False if numBytes%2 != 0: oddPacket = True AsynchBytes.append(0) numBytes = numBytes + 1 command = [ 0 ] * (8+numBytes) #command[0] = Checksum8 command[1] = 0xF8 command[2] = 1 + (numBytes/2) command[3] = 0x15 #command[4] = Checksum16 (LSB) #command[5] = Checksum16 (MSB) #commmand[6] = 0x00 command[7] = numBytes if oddPacket: command[7] = numBytes-1 command[8:] = AsynchBytes result = self._writeRead(command, 10, [ 0xF8, 0x02, 0x15]) return { 'NumAsynchBytesSent' : result[7], 'NumAsynchBytesInRXBuffer' : result[8] } def asynchRX(self, Flush = False): """ Name: U6.asynchTX(AsynchBytes) Args: Flush, If True, empties the entire 256-byte RX buffer. Desc: Sends bytes to the U6 UART which will be sent asynchronously on the transmit line. Section 5.2.20 of the User's Guide. """ command = [ 0, 0xF8, 0x01, 0x16, 0, 0, 0, int(Flush)] result = self._writeRead(command, 40, [ 0xF8, 0x11, 0x16 ]) return { 'NumAsynchBytesInRXBuffer' : result[7], 'AsynchBytes' : result[8:] } def i2c(self, Address, I2CBytes, EnableClockStretching = False, NoStopWhenRestarting = False, ResetAtStart = False, SpeedAdjust = 0, SDAPinNum = 0, SCLPinNum = 1, NumI2CBytesToReceive = 0, AddressByte = None): """ Name: U6.i2c(Address, I2CBytes, EnableClockStretching = False, NoStopWhenRestarting = False, ResetAtStart = False, SpeedAdjust = 0, SDAPinNum = 0, SCLPinNum = 1, NumI2CBytesToReceive = 0, AddressByte = None) Args: Address, the address (Not shifted over) I2CBytes, a list of bytes to send EnableClockStretching, True enables clock stretching NoStopWhenRestarting, True means no stop sent when restarting ResetAtStart, if True, an I2C bus reset will be done before communicating. SpeedAdjust, Allows the communication frequency to be reduced. SDAPinNum, Which pin will be data SCLPinNum, Which pin is clock NumI2CBytesToReceive, Number of I2C bytes to expect back. AddressByte, The address as you would put it in the lowlevel packet. Overrides Address. Optional. Desc: Sends and receives serial data using I2C synchronous communication. Section 5.2.21 of the User's Guide. """ numBytes = len(I2CBytes) oddPacket = False if numBytes%2 != 0: oddPacket = True I2CBytes.append(0) numBytes = numBytes+1 command = [ 0 ] * (14+numBytes) #command[0] = Checksum8 command[1] = 0xF8 command[2] = 4 + (numBytes/2) command[3] = 0x3B #command[4] = Checksum16 (LSB) #command[5] = Checksum16 (MSB) if EnableClockStretching: command[6] |= (1 << 3) if NoStopWhenRestarting: command[6] |= (1 << 2) if ResetAtStart: command[6] |= (1 << 1) command[7] = SpeedAdjust command[8] = SDAPinNum command[9] = SCLPinNum if AddressByte != None: command[10] = AddressByte else: command[10] = Address << 1 #command[11] = Reserved command[12] = numBytes if oddPacket: command[12] = numBytes-1 command[13] = NumI2CBytesToReceive command[14:] = I2CBytes oddResponse = False if NumI2CBytesToReceive%2 != 0: NumI2CBytesToReceive = NumI2CBytesToReceive+1 oddResponse = True result = self._writeRead(command, (12+NumI2CBytesToReceive), [0xF8, (3+(NumI2CBytesToReceive/2)), 0x3B]) if NumI2CBytesToReceive != 0: return { 'AckArray' : result[8:12], 'I2CBytes' : result[12:] } else: return { 'AckArray' : result[8:12] } def sht1x(self, DataPinNum = 0, ClockPinNum = 1, SHTOptions = 0xc0): """ Name: U6.sht1x(DataPinNum = 0, ClockPinNum = 1, SHTOptions = 0xc0) Args: DataPinNum, Which pin is the Data line ClockPinNum, Which line is the Clock line SHTOptions (and proof people read documentation): bit 7 = Read Temperature bit 6 = Read Realtive Humidity bit 2 = Heater. 1 = on, 0 = off bit 1 = Reserved at 0 bit 0 = Resolution. 1 = 8 bit RH, 12 bit T; 0 = 12 RH, 14 bit T Desc: Reads temperature and humidity from a Sensirion SHT1X sensor. Section 5.2.22 of the User's Guide. """ command = [ 0 ] * 10 #command[0] = Checksum8 command[1] = 0xF8 command[2] = 0x02 command[3] = 0x39 #command[4] = Checksum16 (LSB) #command[5] = Checksum16 (MSB) command[6] = DataPinNum command[7] = ClockPinNum #command[8] = Reserved command[9] = SHTOptions result = self._writeRead(command, 16, [ 0xF8, 0x05, 0x39]) val = (result[11]*256) + result[10] temp = -39.60 + 0.01*val val = (result[14]*256) + result[13] humid = -4 + 0.0405*val + -.0000028*(val*val) humid = (temp - 25)*(0.01 + 0.00008*val) + humid return { 'StatusReg' : result[8], 'StatusCRC' : result[9], 'Temperature' : temp, 'TemperatureCRC' : result[12], 'Humidity' : humid, 'HumidityCRC' : result[15] } # --------------------------- Old U6 code ------------------------------- def _readCalDataBlock(self, n): """ Internal routine to read the specified calibration block (0-2) """ sendBuffer = [0] * 8 sendBuffer[1] = 0xF8 # command byte sendBuffer[2] = 0x01 # number of data words sendBuffer[3] = 0x2D # extended command number sendBuffer[6] = 0x00 sendBuffer[7] = n # Blocknum = 0 self.write(sendBuffer) buff = self.read(40) return buff[8:] def getCalibrationData(self): """ Name: getCalibrationData(self) Args: None Desc: Gets the slopes and offsets for AIN and DACs, as well as other calibration data >>> myU6 = U6() >>> myU6.getCalibrationData() >>> myU6.calInfo <ainDiffOffset: -2.46886488446,...> """ if self.debug is True: print "Calibration data retrieval" self.calInfo.nominal = False #reading block 0 from memory rcvBuffer = self._readCalDataBlock(0) # Positive Channel calibration self.calInfo.ain10vSlope = toDouble(rcvBuffer[:8]) self.calInfo.ain10vOffset = toDouble(rcvBuffer[8:16]) self.calInfo.ain1vSlope = toDouble(rcvBuffer[16:24]) self.calInfo.ain1vOffset = toDouble(rcvBuffer[24:]) #reading block 1 from memory rcvBuffer = self._readCalDataBlock(1) self.calInfo.ain100mvSlope = toDouble(rcvBuffer[:8]) self.calInfo.ain100mvOffset = toDouble(rcvBuffer[8:16]) self.calInfo.ain10mvSlope = toDouble(rcvBuffer[16:24]) self.calInfo.ain10mvOffset = toDouble(rcvBuffer[24:]) self.calInfo.ainSlope = [self.calInfo.ain10vSlope, self.calInfo.ain1vSlope, self.calInfo.ain100mvSlope, self.calInfo.ain10mvSlope] self.calInfo.ainOffset = [ self.calInfo.ain10vOffset, self.calInfo.ain1vOffset, self.calInfo.ain100mvOffset, self.calInfo.ain10mvOffset ] #reading block 2 from memory rcvBuffer = self._readCalDataBlock(2) # Negative Channel calibration self.calInfo.ain10vNegSlope = toDouble(rcvBuffer[:8]) self.calInfo.ain10vCenter = toDouble(rcvBuffer[8:16]) self.calInfo.ain1vNegSlope = toDouble(rcvBuffer[16:24]) self.calInfo.ain1vCenter = toDouble(rcvBuffer[24:]) #reading block 3 from memory rcvBuffer = self._readCalDataBlock(3) self.calInfo.ain100mvNegSlope = toDouble(rcvBuffer[:8]) self.calInfo.ain100mvCenter = toDouble(rcvBuffer[8:16]) self.calInfo.ain10mvNegSlope = toDouble(rcvBuffer[16:24]) self.calInfo.ain10mvCenter = toDouble(rcvBuffer[24:]) self.calInfo.ainNegSlope = [ self.calInfo.ain10vNegSlope, self.calInfo.ain1vNegSlope, self.calInfo.ain100mvNegSlope, self.calInfo.ain10mvNegSlope ] self.calInfo.ainCenter = [ self.calInfo.ain10vCenter, self.calInfo.ain1vCenter, self.calInfo.ain100mvCenter, self.calInfo.ain10mvCenter ] #reading block 4 from memory rcvBuffer = self._readCalDataBlock(4) # Miscellaneous self.calInfo.dac0Slope = toDouble(rcvBuffer[:8]) self.calInfo.dac0Offset = toDouble(rcvBuffer[8:16]) self.calInfo.dac1Slope = toDouble(rcvBuffer[16:24]) self.calInfo.dac1Offset = toDouble(rcvBuffer[24:]) #reading block 5 from memory rcvBuffer = self._readCalDataBlock(5) self.calInfo.currentOutput0 = toDouble(rcvBuffer[:8]) self.calInfo.currentOutput1 = toDouble(rcvBuffer[8:16]) self.calInfo.temperatureSlope = toDouble(rcvBuffer[16:24]) self.calInfo.temperatureOffset = toDouble(rcvBuffer[24:]) if self.productName == "U6-Pro": # Hi-Res ADC stuff #reading block 6 from memory rcvBuffer = self._readCalDataBlock(6) # Positive Channel calibration self.calInfo.proAin10vSlope = toDouble(rcvBuffer[:8]) self.calInfo.proAin10vOffset = toDouble(rcvBuffer[8:16]) self.calInfo.proAin1vSlope = toDouble(rcvBuffer[16:24]) self.calInfo.proAin1vOffset = toDouble(rcvBuffer[24:]) #reading block 7 from memory rcvBuffer = self._readCalDataBlock(7) self.calInfo.proAin100mvSlope = toDouble(rcvBuffer[:8]) self.calInfo.proAin100mvOffset = toDouble(rcvBuffer[8:16]) self.calInfo.proAin10mvSlope = toDouble(rcvBuffer[16:24]) self.calInfo.proAin10mvOffset = toDouble(rcvBuffer[24:]) self.calInfo.proAinSlope = [self.calInfo.proAin10vSlope, self.calInfo.proAin1vSlope, self.calInfo.proAin100mvSlope, self.calInfo.proAin10mvSlope] self.calInfo.proAinOffset = [ self.calInfo.proAin10vOffset, self.calInfo.proAin1vOffset, self.calInfo.proAin100mvOffset, self.calInfo.proAin10mvOffset ] #reading block 8 from memory rcvBuffer = self._readCalDataBlock(8) # Negative Channel calibration self.calInfo.proAin10vNegSlope = toDouble(rcvBuffer[:8]) self.calInfo.proAin10vCenter = toDouble(rcvBuffer[8:16]) self.calInfo.proAin1vNegSlope = toDouble(rcvBuffer[16:24]) self.calInfo.proAin1vCenter = toDouble(rcvBuffer[24:]) #reading block 9 from memory rcvBuffer = self._readCalDataBlock(9) self.calInfo.proAin100mvNegSlope = toDouble(rcvBuffer[:8]) self.calInfo.proAin100mvCenter = toDouble(rcvBuffer[8:16]) self.calInfo.proAin10mvNegSlope = toDouble(rcvBuffer[16:24]) self.calInfo.proAin10mvCenter = toDouble(rcvBuffer[24:]) self.calInfo.proAinNegSlope = [ self.calInfo.proAin10vNegSlope, self.calInfo.proAin1vNegSlope, self.calInfo.proAin100mvNegSlope, self.calInfo.proAin10mvNegSlope ] self.calInfo.proAinCenter = [ self.calInfo.proAin10vCenter, self.calInfo.proAin1vCenter, self.calInfo.proAin100mvCenter, self.calInfo.proAin10mvCenter ] def binaryToCalibratedAnalogVoltage(self, gainIndex, bytesVoltage, is16Bits=False): """ Name: binaryToCalibratedAnalogVoltage(gainIndex, bytesVoltage, is16Bits = False) Args: gainIndex, which gain did you use? bytesVoltage, bytes returned from the U6 is16bits, set to True if bytesVolotage is 16 bits (not 24) Desc: Converts binary voltage to an analog value. """ if not is16Bits: bits = float(bytesVoltage)/256 else: bits = float(bytesVoltage) center = self.calInfo.ainCenter[gainIndex] negSlope = self.calInfo.ainNegSlope[gainIndex] posSlope = self.calInfo.ainSlope[gainIndex] if self.productName == "U6-Pro": center = self.calInfo.proAinCenter[gainIndex] negSlope = self.calInfo.proAinNegSlope[gainIndex] posSlope = self.calInfo.proAinSlope[gainIndex] if bits < center: return (center - bits) * negSlope else: return (bits - center) * posSlope def binaryToCalibratedAnalogTemperature(self, bytesTemperature): voltage = self.binaryToCalibratedAnalogVoltage(0, bytesTemperature) return self.calInfo.temperatureSlope * float(voltage) + self.calInfo.temperatureOffset def softReset(self): """ Name: softReset Args: none Desc: Send a soft reset. >>> myU6 = U6() >>> myU6.softReset() """ command = [ 0x00, 0x99, 0x01, 0x00 ] command = setChecksum8(command, 4) self.write(command, False, False) results = self.read(4) if results[3] != 0: raise LowlevelErrorException(results[3], "The softReset command returned an error:\n %s" % lowlevelErrorToString(results[3])) def hardReset(self): """ Name: hardReset Args: none Desc: Send a hard reset. >>> myU6 = U6() >>> myU6.hardReset() """ command = [ 0x00, 0x99, 0x02, 0x00 ] command = setChecksum8(command, 4) self.write(command, False, False) results = self.read(4) if results[3] != 0: raise LowlevelErrorException(results[3], "The softHard command returned an error:\n %s" % lowlevelErrorToString(results[3])) self.close() def setLED(self, state): """ Name: setLED(self, state) Args: state: 1 = On, 0 = Off Desc: Sets the state of the LED. (5.2.5.4 of user's guide) >>> myU6 = U6() >>> myU6.setLED(0) ... (LED turns off) ... """ self.getFeedback(LED(state)) def getTemperature(self): """ Name: getTemperature Args: none Desc: Reads the U6's internal temperature sensor in Kelvin. See Section 2.6.4 of the U6 User's Guide. >>> myU6.getTemperature() 299.87723471224308 """ if self.calInfo.nominal: # Read the actual calibration constants if we haven't already. self.getCalibrationData() result = self.getFeedback(AIN24AR(14)) return self.binaryToCalibratedAnalogTemperature(result[0]['AIN']) def getAIN(self, positiveChannel, resolutionIndex = 0, gainIndex = 0, settlingFactor = 0, differential = False): """ Name: getAIN Args: positiveChannel, resolutionIndex = 0, gainIndex = 0, settlingFactor = 0, differential = False Desc: Reads an AIN and applies the calibration constants to it. >>> myU6.getAIN(14) 299.87723471224308 """ result = self.getFeedback(AIN24AR(positiveChannel, resolutionIndex, gainIndex, settlingFactor, differential)) return self.binaryToCalibratedAnalogVoltage(result[0]['GainIndex'], result[0]['AIN']) def readDefaultsConfig(self): """ Name: U6.readDefaultsConfig( ) Args: None Desc: Reads the power-up defaults stored in flash. """ results = dict() defaults = self.readDefaults(0) results['FIODirection'] = defaults[4] results['FIOState'] = defaults[5] results['EIODirection'] = defaults[8] results['EIOState'] = defaults[9] results['CIODirection'] = defaults[12] results['CIOState'] = defaults[13] results['ConfigWriteMask'] = defaults[16] results['NumOfTimersEnable'] = defaults[17] results['CounterMask'] = defaults[18] results['PinOffset'] = defaults[19] defaults = self.readDefaults(1) results['ClockSource'] = defaults[0] results['Divisor'] = defaults[1] results['TMR0Mode'] = defaults[16] results['TMR0ValueL'] = defaults[17] results['TMR0ValueH'] = defaults[18] results['TMR1Mode'] = defaults[20] results['TMR1ValueL'] = defaults[21] results['TMR1ValueH'] = defaults[22] results['TMR2Mode'] = defaults[24] results['TMR2ValueL'] = defaults[25] results['TMR2ValueH'] = defaults[26] results['TMR3Mode'] = defaults[28] results['TMR3ValueL'] = defaults[29] results['TMR3ValueH'] = defaults[30] defaults = self.readDefaults(2) results['DAC0'] = struct.unpack( ">H", struct.pack("BB", *defaults[16:18]) )[0] results['DAC1'] = struct.unpack( ">H", struct.pack("BB", *defaults[20:22]) )[0] defaults = self.readDefaults(3) for i in range(14): results["AIN%sGainRes" % i] = defaults[i] results["AIN%sOptions" % i] = defaults[i+16] return results def exportConfig(self): """ Name: U6.exportConfig( ) Args: None Desc: Takes a configuration and puts it into a ConfigParser object. """ # Make a new configuration file parser = ConfigParser.SafeConfigParser() # Change optionxform so that options preserve their case. parser.optionxform = str # Local Id and name section = "Identifiers" parser.add_section(section) parser.set(section, "Local ID", str(self.localId)) parser.set(section, "Name", str(self.getName())) parser.set(section, "Device Type", str(self.devType)) # FIO Direction / State section = "FIOs" parser.add_section(section) dirs, states = self.getFeedback( PortDirRead(), PortStateRead() ) for key, value in dirs.items(): parser.set(section, "%s Directions" % key, str(value)) for key, value in states.items(): parser.set(section, "%s States" % key, str(value)) # DACs section = "DACs" parser.add_section(section) dac0 = self.readRegister(5000) dac0 = max(dac0, 0) dac0 = min(dac0, 5) parser.set(section, "DAC0", "%0.2f" % dac0) dac1 = self.readRegister(5002) dac1 = max(dac1, 0) dac1 = min(dac1, 5) parser.set(section, "DAC1", "%0.2f" % dac1) # Timer Clock Configuration section = "Timer Clock Speed Configuration" parser.add_section(section) timerclockconfig = self.configTimerClock() for key, value in timerclockconfig.items(): parser.set(section, key, str(value)) # Timers / Counters section = "Timers And Counters" parser.add_section(section) ioconfig = self.configIO() for key, value in ioconfig.items(): parser.set(section, key, str(value)) for i in range(ioconfig['NumberTimersEnabled']): mode, value = self.readRegister(7100 + (2 * i), numReg = 2, format = ">HH") parser.set(section, "Timer%s Mode" % i, str(mode)) parser.set(section, "Timer%s Value" % i, str(value)) return parser def loadConfig(self, configParserObj): """ Name: U6.loadConfig( configParserObj ) Args: configParserObj, A Config Parser object to load in Desc: Takes a configuration and updates the U6 to match it. """ parser = configParserObj # Set Identifiers: section = "Identifiers" if parser.has_section(section): if parser.has_option(section, "device type"): if parser.getint(section, "device type") != self.devType: raise Exception("Not a U6 Config file.") if parser.has_option(section, "local id"): self.configU6( LocalID = parser.getint(section, "local id")) if parser.has_option(section, "name"): self.setName( parser.get(section, "name") ) # Set FIOs: section = "FIOs" if parser.has_section(section): fiodirs = 0 eiodirs = 0 ciodirs = 0 fiostates = 0 eiostates = 0 ciostates = 0 if parser.has_option(section, "fios directions"): fiodirs = parser.getint(section, "fios directions") if parser.has_option(section, "eios directions"): eiodirs = parser.getint(section, "eios directions") if parser.has_option(section, "cios directions"): ciodirs = parser.getint(section, "cios directions") if parser.has_option(section, "fios states"): fiostates = parser.getint(section, "fios states") if parser.has_option(section, "eios states"): eiostates = parser.getint(section, "eios states") if parser.has_option(section, "cios states"): ciostates = parser.getint(section, "cios states") self.getFeedback( PortStateWrite([fiostates, eiostates, ciostates]), PortDirWrite([fiodirs, eiodirs, ciodirs]) ) # Set DACs: section = "DACs" if parser.has_section(section): if parser.has_option(section, "dac0"): self.writeRegister(5000, parser.getfloat(section, "dac0")) if parser.has_option(section, "dac1"): self.writeRegister(5002, parser.getfloat(section, "dac1")) # Set Timer Clock Configuration section = "Timer Clock Speed Configuration" if parser.has_section(section): if parser.has_option(section, "timerclockbase") and parser.has_option(section, "timerclockdivisor"): self.configTimerClock(TimerClockBase = parser.getint(section, "timerclockbase"), TimerClockDivisor = parser.getint(section, "timerclockdivisor")) # Set Timers / Counters section = "Timers And Counters" if parser.has_section(section): nte = None c0e = None c1e = None cpo = None if parser.has_option(section, "NumberTimersEnabled"): nte = parser.getint(section, "NumberTimersEnabled") if parser.has_option(section, "TimerCounterPinOffset"): cpo = parser.getint(section, "TimerCounterPinOffset") if parser.has_option(section, "Counter0Enabled"): c0e = parser.getboolean(section, "Counter0Enabled") if parser.has_option(section, "Counter1Enabled"): c1e = parser.getboolean(section, "Counter1Enabled") self.configIO(NumberTimersEnabled = nte, EnableCounter1 = c1e, EnableCounter0 = c0e, TimerCounterPinOffset = cpo) mode = None value = None for i in range(4): if parser.has_option(section, "timer%i mode" % i): mode = parser.getint(section, "timer%i mode" % i) if parser.has_option(section, "timer%i value" % i): value = parser.getint(section, "timer%i value" % i) self.getFeedback( TimerConfig(i, mode, value) ) class FeedbackCommand(object): ''' The base FeedbackCommand class Used to make Feedback easy. Make a list of these and call getFeedback. ''' readLen = 0 def handle(self, input): return None validChannels = range(144) class AIN(FeedbackCommand): ''' Analog Input Feedback command AIN(PositiveChannel) PositiveChannel : the positive channel to use NOTE: This function kept for compatibility. Please use the new AIN24 and AIN24AR. returns 16-bit unsigned int sample >>> d.getFeedback( u6.AIN( PositiveChannel ) ) [ 19238 ] ''' def __init__(self, PositiveChannel): if PositiveChannel not in validChannels: raise LabJackException("Invalid Positive Channel specified") self.positiveChannel = PositiveChannel self.cmdBytes = [ 0x01, PositiveChannel, 0 ] readLen = 2 def __repr__(self): return "<u6.AIN( PositiveChannel = %s )>" % self.positiveChannel def handle(self, input): result = (input[1] << 8) + input[0] return result class AIN24(FeedbackCommand): ''' Analog Input 24-bit Feedback command ainCommand = AIN24(PositiveChannel, ResolutionIndex = 0, GainIndex = 0, SettlingFactor = 0, Differential = False) See section 5.2.5.2 of the user's guide. NOTE: If you use a gain index of 15 (autorange), you should be using the AIN24AR command instead. positiveChannel : The positive channel to use resolutionIndex : 0=default, 1-8 for high-speed ADC, 9-12 for high-res ADC on U6-Pro. gainIndex : 0=x1, 1=x10, 2=x100, 3=x1000, 15=autorange settlingFactor : 0=5us, 1=10us, 2=100us, 3=1ms, 4=10ms differential : If this bit is set, a differential reading is done where the negative channel is positiveChannel+1 returns 24-bit unsigned int sample >>> d.getFeedback( u6.AIN24(PositiveChannel, ResolutionIndex = 0, GainIndex = 0, SettlingFactor = 0, Differential = False ) ) [ 193847 ] ''' def __init__(self, PositiveChannel, ResolutionIndex = 0, GainIndex = 0, SettlingFactor = 0, Differential = False): if PositiveChannel not in validChannels: raise LabJackException("Invalid Positive Channel specified") self.positiveChannel = PositiveChannel self.resolutionIndex = ResolutionIndex self.gainIndex = GainIndex self.settlingFactor = SettlingFactor self.differential = Differential byte2 = ( ResolutionIndex & 0xf ) byte2 = ( ( GainIndex & 0xf ) << 4 ) + byte2 byte3 = (int(Differential) << 7) + SettlingFactor self.cmdBytes = [ 0x02, PositiveChannel, byte2, byte3 ] def __repr__(self): return "<u6.AIN24( PositiveChannel = %s, ResolutionIndex = %s, GainIndex = %s, SettlingFactor = %s, Differential = %s )>" % (self.positiveChannel, self.resolutionIndex, self.gainIndex, self.settlingFactor, self.differential) readLen = 3 def handle(self, input): #Put it all into an integer. result = (input[2] << 16 ) + (input[1] << 8 ) + input[0] return result class AIN24AR(FeedbackCommand): ''' Autorange Analog Input 24-bit Feedback command ainARCommand = AIN24AR(0, ResolutionIndex = 0, GainIndex = 0, SettlingFactor = 0, Differential = False) See section 5.2.5.3 of the user's guide PositiveChannel : The positive channel to use ResolutionIndex : 0=default, 1-8 for high-speed ADC, 9-13 for high-res ADC on U6-Pro. GainIndex : 0=x1, 1=x10, 2=x100, 3=x1000, 15=autorange SettlingFactor : 0=5us, 1=10us, 2=100us, 3=1ms, 4=10ms Differential : If this bit is set, a differential reading is done where the negative channel is positiveChannel+1 returns a dictionary: { 'AIN' : < 24-bit binary reading >, 'ResolutionIndex' : < actual resolution setting used for the reading >, 'GainIndex' : < actual gain used for the reading >, 'Status' : < reserved for future use > } >>> d.getFeedback( u6.AIN24AR( PositiveChannel, ResolutionIndex = 0, GainIndex = 0, SettlingFactor = 0, Differential = False ) ) { 'AIN' : 193847, 'ResolutionIndex' : 0, 'GainIndex' : 0, 'Status' : 0 } ''' def __init__(self, PositiveChannel, ResolutionIndex = 0, GainIndex = 0, SettlingFactor = 0, Differential = False): if PositiveChannel not in validChannels: raise LabJackException("Invalid Positive Channel specified") self.positiveChannel = PositiveChannel self.resolutionIndex = ResolutionIndex self.gainIndex = GainIndex self.settlingFactor = SettlingFactor self.differential = Differential byte2 = ( ResolutionIndex & 0xf ) byte2 = ( ( GainIndex & 0xf ) << 4 ) + byte2 byte3 = (int(Differential) << 7) + SettlingFactor self.cmdBytes = [ 0x03, PositiveChannel, byte2, byte3 ] def __repr__(self): return "<u6.AIN24AR( PositiveChannel = %s, ResolutionIndex = %s, GainIndex = %s, SettlingFactor = %s, Differential = %s )>" % (self.positiveChannel, self.resolutionIndex, self.gainIndex, self.settlingFactor, self.differential) readLen = 5 def handle(self, input): #Put it all into an integer. result = (input[2] << 16 ) + (input[1] << 8 ) + input[0] resolutionIndex = input[3] & 0xf gainIndex = ( input[3] >> 4 ) & 0xf status = input[4] return { 'AIN' : result, 'ResolutionIndex' : resolutionIndex, 'GainIndex' : gainIndex, 'Status' : status } class WaitShort(FeedbackCommand): ''' WaitShort Feedback command specify the number of 128us time increments to wait >>> d.getFeedback( u6.WaitShort( Time ) ) [ None ] ''' def __init__(self, Time): self.time = Time % 256 self.cmdBytes = [ 5, Time % 256 ] def __repr__(self): return "<u6.WaitShort( Time = %s )>" % self.time class WaitLong(FeedbackCommand): ''' WaitLong Feedback command specify the number of 32ms time increments to wait >>> d.getFeedback( u6.WaitLog( Time ) ) [ None ] ''' def __init__(self, Time): self.time = Time self.cmdBytes = [ 6, Time % 256 ] def __repr__(self): return "<u6.WaitLog( Time = %s )>" % self.time class LED(FeedbackCommand): ''' LED Toggle specify whether the LED should be on or off by truth value 1 or True = On, 0 or False = Off >>> d.getFeedback( u6.LED( State ) ) [ None ] ''' def __init__(self, State): self.state = State self.cmdBytes = [ 9, int(bool(State)) ] def __repr__(self): return "<u6.LED( State = %s )>" % self.state class BitStateRead(FeedbackCommand): ''' BitStateRead Feedback command read the state of a single bit of digital I/O. Only digital lines return valid readings. IONumber: 0-7=FIO, 8-15=EIO, 16-19=CIO return 0 or 1 >>> d.getFeedback( u6.BitStateRead( IONumber ) ) [ 1 ] ''' def __init__(self, IONumber): self.ioNumber = IONumber self.cmdBytes = [ 10, IONumber % 20 ] def __repr__(self): return "<u6.BitStateRead( IONumber = %s )>" % self.ioNumber readLen = 1 def handle(self, input): return int(bool(input[0])) class BitStateWrite(FeedbackCommand): ''' BitStateWrite Feedback command write a single bit of digital I/O. The direction of the specified line is forced to output. IONumber: 0-7=FIO, 8-15=EIO, 16-19=CIO State: 0 or 1 >>> d.getFeedback( u6.BitStateWrite( IONumber, State ) ) [ None ] ''' def __init__(self, IONumber, State): self.ioNumber = IONumber self.state = State self.cmdBytes = [ 11, (IONumber % 20) + (int(bool(State)) << 7) ] def __repr__(self): return "<u6.BitStateWrite( IONumber = %s, State = %s )>" % self.ioNumber class BitDirRead(FeedbackCommand): ''' Read the digital direction of one I/O IONumber: 0-7=FIO, 8-15=EIO, 16-19=CIO returns 1 = Output, 0 = Input >>> d.getFeedback( u6.BitDirRead( IONumber ) ) [ 1 ] ''' def __init__(self, IONumber): self.ioNumber = IONumber self.cmdBytes = [ 12, IONumber % 20 ] def __repr__(self): return "<u6.BitDirRead( IONumber = %s )>" % self.ioNumber readLen = 1 def handle(self, input): return int(bool(input[0])) class BitDirWrite(FeedbackCommand): ''' BitDirWrite Feedback command Set the digital direction of one I/O IONumber: 0-7=FIO, 8-15=EIO, 16-19=CIO Direction: 1 = Output, 0 = Input >>> d.getFeedback( u6.BitDirWrite( IONumber, Direction ) ) [ None ] ''' def __init__(self, IONumber, Direction): self.ioNumber = IONumber self.direction = Direction self.cmdBytes = [ 13, (IONumber % 20) + (int(bool(Direction)) << 7) ] def __repr__(self): return "<u6.BitDirWrite( IONumber = %s, Direction = %s )>" % (self.ioNumber, self.direction) class PortStateRead(FeedbackCommand): """ PortStateRead Feedback command Reads the state of all digital I/O. >>> d.getFeedback( u6.PortStateRead() ) [ { 'FIO' : 10, 'EIO' : 0, 'CIO' : 0 } ] """ def __init__(self): self.cmdBytes = [ 26 ] def __repr__(self): return "<u6.PortStateRead()>" readLen = 3 def handle(self, input): return {'FIO' : input[0], 'EIO' : input[1], 'CIO' : input[2] } class PortStateWrite(FeedbackCommand): """ PortStateWrite Feedback command State: A list of 3 bytes representing FIO, EIO, CIO WriteMask: A list of 3 bytes, representing which to update. The Default is all ones. >>> d.getFeedback( u6.PortStateWrite( State, WriteMask = [ 0xff, 0xff, 0xff] ) ) [ None ] """ def __init__(self, State, WriteMask = [ 0xff, 0xff, 0xff]): self.state = State self.writeMask = WriteMask self.cmdBytes = [ 27 ] + WriteMask + State def __repr__(self): return "<u6.PortStateWrite( State = %s, WriteMask = %s )>" % (self.state, self.writeMask) class PortDirRead(FeedbackCommand): """ PortDirRead Feedback command Reads the direction of all digital I/O. >>> d.getFeedback( u6.PortDirRead() ) [ { 'FIO' : 10, 'EIO' : 0, 'CIO' : 0 } ] """ def __init__(self): self.cmdBytes = [ 28 ] def __repr__(self): return "<u6.PortDirRead()>" readLen = 3 def handle(self, input): return {'FIO' : input[0], 'EIO' : input[1], 'CIO' : input[2] } class PortDirWrite(FeedbackCommand): """ PortDirWrite Feedback command Direction: A list of 3 bytes representing FIO, EIO, CIO WriteMask: A list of 3 bytes, representing which to update. Default is all ones. >>> d.getFeedback( u6.PortDirWrite( Direction, WriteMask = [ 0xff, 0xff, 0xff] ) ) [ None ] """ def __init__(self, Direction, WriteMask = [ 0xff, 0xff, 0xff]): self.direction = Direction self.writeMask = WriteMask self.cmdBytes = [ 29 ] + WriteMask + Direction def __repr__(self): return "<u6.PortDirWrite( Direction = %s, WriteMask = %s )>" % (self.direction, self.writeMask) class DAC8(FeedbackCommand): ''' 8-bit DAC Feedback command Controls a single analog output Dac: 0 or 1 Value: 0-255 >>> d.getFeedback( u6.DAC8( Dac, Value ) ) [ None ] ''' def __init__(self, Dac, Value): self.dac = Dac self.value = Value % 256 self.cmdBytes = [ 34 + (Dac % 2), Value % 256 ] def __repr__(self): return "<u6.DAC8( Dac = %s, Value = %s )>" % (self.dac, self.value) class DAC0_8(DAC8): """ 8-bit DAC Feedback command for DAC0 Controls DAC0 in 8-bit mode. Value: 0-255 >>> d.getFeedback( u6.DAC0_8( Value ) ) [ None ] """ def __init__(self, Value): DAC8.__init__(self, 0, Value) def __repr__(self): return "<u6.DAC0_8( Value = %s )>" % self.value class DAC1_8(DAC8): """ 8-bit DAC Feedback command for DAC1 Controls DAC1 in 8-bit mode. Value: 0-255 >>> d.getFeedback( u6.DAC1_8( Value ) ) [ None ] """ def __init__(self, Value): DAC8.__init__(self, 1, Value) def __repr__(self): return "<u6.DAC1_8( Value = %s )>" % self.value class DAC16(FeedbackCommand): ''' 16-bit DAC Feedback command Controls a single analog output Dac: 0 or 1 Value: 0-65535 >>> d.getFeedback( u6.DAC16( Dac, Value ) ) [ None ] ''' def __init__(self, Dac, Value): self.dac = Dac self.value = Value self.cmdBytes = [ 38 + (Dac % 2), Value % 256, Value >> 8 ] def __repr__(self): return "<u6.DAC8( Dac = %s, Value = %s )>" % (self.dac, self.value) class DAC0_16(DAC16): """ 16-bit DAC Feedback command for DAC0 Controls DAC0 in 16-bit mode. Value: 0-65535 >>> d.getFeedback( u6.DAC0_16( Value ) ) [ None ] """ def __init__(self, Value): DAC16.__init__(self, 0, Value) def __repr__(self): return "<u6.DAC0_16( Value = %s )>" % self.value class DAC1_16(DAC16): """ 16-bit DAC Feedback command for DAC1 Controls DAC1 in 16-bit mode. Value: 0-65535 >>> d.getFeedback( u6.DAC1_16( Value ) ) [ None ] """ def __init__(self, Value): DAC16.__init__(self, 1, Value) def __repr__(self): return "<u6.DAC1_16( Value = %s )>" % self.value class Timer(FeedbackCommand): """ For reading the value of the Timer. It provides the ability to update/reset a given timer, and read the timer value. ( Section 5.2.5.17 of the User's Guide) timer: Either 0 or 1 for counter0 or counter1 UpdateReset: Set True if you want to update the value Value: Only updated if the UpdateReset bit is 1. The meaning of this parameter varies with the timer mode. Mode: Set to the timer mode to handle any special processing. See classes QuadratureInputTimer and TimerStopInput1. Returns an unsigned integer of the timer value, unless Mode has been specified and there are special return values. See Section 2.9.1 for expected return values. >>> d.getFeedback( u6.Timer( timer, UpdateReset = False, Value = 0 \ ... , Mode = None ) ) [ 12314 ] """ def __init__(self, timer, UpdateReset = False, Value=0, Mode = None): if timer != 0 and timer != 1: raise LabJackException("Timer should be either 0 or 1.") if UpdateReset and Value == None: raise LabJackException("UpdateReset set but no value.") self.timer = timer self.updateReset = UpdateReset self.value = Value self.mode = Mode self.cmdBytes = [ (42 + (2*timer)), UpdateReset, Value % 256, Value >> 8 ] readLen = 4 def __repr__(self): return "<u6.Timer( timer = %s, UpdateReset = %s, Value = %s, Mode = %s )>" % (self.timer, self.updateReset, self.value, self.mode) def handle(self, input): inStr = struct.pack('B' * len(input), *input) if self.mode == 8: return struct.unpack('<i', inStr )[0] elif self.mode == 9: maxCount, current = struct.unpack('<HH', inStr ) return current, maxCount else: return struct.unpack('<I', inStr )[0] class Timer0(Timer): """ For reading the value of the Timer0. It provides the ability to update/reset Timer0, and read the timer value. ( Section 5.2.5.17 of the User's Guide) UpdateReset: Set True if you want to update the value Value: Only updated if the UpdateReset bit is 1. The meaning of this parameter varies with the timer mode. Mode: Set to the timer mode to handle any special processing. See classes QuadratureInputTimer and TimerStopInput1. >>> d.getFeedback( u6.Timer0( UpdateReset = False, Value = 0, \ ... Mode = None ) ) [ 12314 ] """ def __init__(self, UpdateReset = False, Value = 0, Mode = None): Timer.__init__(self, 0, UpdateReset, Value, Mode) def __repr__(self): return "<u6.Timer0( UpdateReset = %s, Value = %s, Mode = %s )>" % (self.updateReset, self.value, self.mode) class Timer1(Timer): """ For reading the value of the Timer1. It provides the ability to update/reset Timer1, and read the timer value. ( Section 5.2.5.17 of the User's Guide) UpdateReset: Set True if you want to update the value Value: Only updated if the UpdateReset bit is 1. The meaning of this parameter varies with the timer mode. Mode: Set to the timer mode to handle any special processing. See classes QuadratureInputTimer and TimerStopInput1. >>> d.getFeedback( u6.Timer1( UpdateReset = False, Value = 0, \ ... Mode = None ) ) [ 12314 ] """ def __init__(self, UpdateReset = False, Value = 0, Mode = None): Timer.__init__(self, 1, UpdateReset, Value, Mode) def __repr__(self): return "<u6.Timer1( UpdateReset = %s, Value = %s, Mode = %s )>" % (self.updateReset, self.value, self.mode) class QuadratureInputTimer(Timer): """ For reading Quadrature input timers. They are special because their values are signed. ( Section 2.9.1.8 of the User's Guide) Args: UpdateReset: Set True if you want to reset the counter. Value: Set to 0, and UpdateReset to True to reset the counter. Returns a signed integer. >>> # Setup the two timers to be quadrature >>> d.getFeedback( u6.Timer0Config( 8 ), u6.Timer1Config( 8 ) ) [None, None] >>> # Read the value >>> d.getFeedback( u6.QuadratureInputTimer() ) [-21] """ def __init__(self, UpdateReset = False, Value = 0): Timer.__init__(self, 0, UpdateReset, Value, Mode = 8) def __repr__(self): return "<u6.QuadratureInputTimer( UpdateReset = %s, Value = %s )>" % (self.updateReset, self.value) class TimerStopInput1(Timer1): """ For reading a stop input timer. They are special because the value returns the current edge count and the stop value. ( Section 2.9.1.9 of the User's Guide) Args: UpdateReset: Set True if you want to update the value. Value: The stop value. Only updated if the UpdateReset bit is 1. Returns a tuple where the first value is current edge count, and the second value is the stop value. >>> # Setup the timer to be Stop Input >>> d.getFeedback( u6.Timer0Config( 9, Value = 30 ) ) [None] >>> # Read the timer >>> d.getFeedback( u6.TimerStopInput1() ) [(0, 30)] """ def __init__(self, UpdateReset = False, Value = 0): Timer.__init__(self, 1, UpdateReset, Value, Mode = 9) def __repr__(self): return "<u6.TimerStopInput1( UpdateReset = %s, Value = %s )>" % (self.updateReset, self.value) class TimerConfig(FeedbackCommand): """ This IOType configures a particular timer. timer = # of the timer to configure TimerMode = See Section 2.9 for more information about the available modes. Value = The meaning of this parameter varies with the timer mode. >>> d.getFeedback( u6.TimerConfig( timer, TimerMode, Value = 0 ) ) [ None ] """ def __init__(self, timer, TimerMode, Value=0): '''Creates command bytes for configureing a Timer''' #Conditions come from pages 33-34 of user's guide if timer not in range(4): raise LabJackException("Timer should be either 0-3.") if TimerMode > 13 or TimerMode < 0: raise LabJackException("Invalid Timer Mode.") self.timer = timer self.timerMode = TimerMode self.value = Value self.cmdBytes = [43 + (timer * 2), TimerMode, Value % 256, Value >> 8] def __repr__(self): return "<u6.TimerConfig( timer = %s, TimerMode = %s, Value = %s )>" % (self.timer, self.timerMode, self.value) class Timer0Config(TimerConfig): """ This IOType configures Timer0. TimerMode = See Section 2.9 for more information about the available modes. Value = The meaning of this parameter varies with the timer mode. >>> d.getFeedback( u6.Timer0Config( TimerMode, Value = 0 ) ) [ None ] """ def __init__(self, TimerMode, Value = 0): TimerConfig.__init__(self, 0, TimerMode, Value) def __repr__(self): return "<u6.Timer0Config( TimerMode = %s, Value = %s )>" % (self.timerMode, self.value) class Timer1Config(TimerConfig): """ This IOType configures Timer1. TimerMode = See Section 2.9 for more information about the available modes. Value = The meaning of this parameter varies with the timer mode. >>> d.getFeedback( u6.Timer1Config( TimerMode, Value = 0 ) ) [ None ] """ def __init__(self, TimerMode, Value = 0): TimerConfig.__init__(self, 1, TimerMode, Value) def __repr__(self): return "<u6.Timer1Config( TimerMode = %s, Value = %s )>" % (self.timerMode, self.value) class Counter(FeedbackCommand): ''' Counter Feedback command Reads a hardware counter, optionally resetting it counter: 0 or 1 Reset: True ( or 1 ) = Reset, False ( or 0 ) = Don't Reset Returns the current count from the counter if enabled. If reset, this is the value before the reset. >>> d.getFeedback( u6.Counter( counter, Reset = False ) ) [ 2183 ] ''' def __init__(self, counter, Reset): self.counter = counter self.reset = Reset self.cmdBytes = [ 54 + (counter % 2), int(bool(Reset))] def __repr__(self): return "<u6.Counter( counter = %s, Reset = %s )>" % (self.counter, self.reset) readLen = 4 def handle(self, input): inStr = ''.join([chr(x) for x in input]) return struct.unpack('<I', inStr )[0] class Counter0(Counter): ''' Counter0 Feedback command Reads hardware counter0, optionally resetting it Reset: True ( or 1 ) = Reset, False ( or 0 ) = Don't Reset Returns the current count from the counter if enabled. If reset, this is the value before the reset. >>> d.getFeedback( u6.Counter0( Reset = False ) ) [ 2183 ] ''' def __init__(self, Reset = False): Counter.__init__(self, 0, Reset) def __repr__(self): return "<u6.Counter0( Reset = %s )>" % self.reset class Counter1(Counter): ''' Counter1 Feedback command Reads hardware counter1, optionally resetting it Reset: True ( or 1 ) = Reset, False ( or 0 ) = Don't Reset Returns the current count from the counter if enabled. If reset, this is the value before the reset. >>> d.getFeedback( u6.Counter1( Reset = False ) ) [ 2183 ] ''' def __init__(self, Reset = False): Counter.__init__(self, 1, Reset) def __repr__(self): return "<u6.Counter1( Reset = %s )>" % self.reset class DSP(FeedbackCommand): ''' DSP Feedback command Acquires 1000 samples from the specified AIN at 50us intervals and performs the specified analysis on the acquired data. AcquireNewData: True, acquire new data; False, operate on existing data DSPAnalysis: 1, True RMS; 2, DC Offset; 3, Peak To Peak; 4, Period (ms) PLine: Positive Channel Gain: The gain you would like to use Resolution: The resolution index to use SettlingFactor: The SettlingFactor to use Differential: True, do differential readings; False, single-ended readings See section 5.2.5.20 of the U3 User's Guide (http://labjack.com/support/u6/users-guide/5.2.5.20) >>> d.getFeedback( u6.DSP( PLine, Resolution = 0, Gain = 0, SettlingFactor = 0, Differential = False, DSPAnalysis = 1, AcquireNewData = True) ) [ 2183 ] ''' def __init__(self, PLine, Resolution = 0, Gain = 0, SettlingFactor = 0, Differential = False, DSPAnalysis = 1, AcquireNewData = True): self.pline = PLine self.resolution = Resolution self.gain = Gain self.settlingFactor = SettlingFactor self.differential = Differential self.dspAnalysis = DSPAnalysis self.acquireNewData = AcquireNewData byte1 = DSPAnalysis + ( int(AcquireNewData) << 7 ) byte4 = ( Gain << 4 ) + Resolution byte5 = ( int(Differential) << 7 ) + SettlingFactor self.cmdBytes = [ 62, byte1, PLine, 0, byte4, byte5, 0, 0 ] def __repr__(self): return "<u6.DSP( PLine = %s, Resolution = %s, Gain = %s, SettlingFactor = %s, Differential = %s, DSPAnalysis = %s, AcquireNewData = %s )>" % (self.pline, self.resolution, self.gain, self.settlingFactor, self.differential, self.dspAnalysis, self.acquireNewData) readLen = 4 def handle(self, input): inStr = ''.join([chr(x) for x in input]) return struct.unpack('<I', inStr )[0]
PypiClean
/Docassemble-Pattern-3.6.7.tar.gz/Docassemble-Pattern-3.6.7/docassemble_pattern/vector/stemmer.py
#################################################################################################### # The Porter2 stemming algorithm (or "Porter stemmer") is a process for removing the commoner # morphological and inflexional endings from words in English. # Its main use is as part of a term normalisation process that is usually done # when setting up Information Retrieval systems. # Reference: # C.J. van Rijsbergen, S.E. Robertson and M.F. Porter, 1980. # "New models in probabilistic information retrieval." # London: British Library. (British Library Research and Development Report, no. 5587). # # http://tartarus.org/~martin/PorterStemmer/ # Comments throughout the source code were taken from: # http://snowball.tartarus.org/algorithms/english/stemmer.html from __future__ import unicode_literals from __future__ import division import re from builtins import str, bytes, dict, int from builtins import object, range #--------------------------------------------------------------------------------------------------- # Note: this module is optimized for performance. # There is little gain in using more regular expressions. VOWELS = ["a", "e", "i", "o", "u", "y"] DOUBLE = ["bb", "dd", "ff", "gg", "mm", "nn", "pp", "rr", "tt"] VALID_LI = ["b", "c", "d", "e", "g", "h", "k", "m", "n", "r", "t"] def is_vowel(s): return s in VOWELS def is_consonant(s): return s not in VOWELS def is_double_consonant(s): return s in DOUBLE def is_short_syllable(w, before=None): """ A short syllable in a word is either: - a vowel followed by a non-vowel other than w, x or Y and preceded by a non-vowel - a vowel at the beginning of the word followed by a non-vowel. Checks the three characters before the given index in the word (or entire word if None). """ if before is not None: i = before < 0 and len(w) + before or before return is_short_syllable(w[max(0, i - 3):i]) if len(w) == 3 and is_consonant(w[0]) and is_vowel(w[1]) and is_consonant(w[2]) and w[2] not in "wxY": return True if len(w) == 2 and is_vowel(w[0]) and is_consonant(w[1]): return True return False def is_short(w): """ A word is called short if it consists of a short syllable preceded by zero or more consonants. """ return is_short_syllable(w[-3:]) and len([ch for ch in w[:-3] if ch in VOWELS]) == 0 # A point made at least twice in the literature is that words beginning with gener- # are overstemmed by the Porter stemmer: # generate => gener, generically => gener # Moving the region one vowel-consonant pair to the right fixes this: # generate => generat, generically => generic overstemmed = ("gener", "commun", "arsen") RE_R1 = re.compile(r"[aeiouy][^aeiouy]") def R1(w): """ R1 is the region after the first non-vowel following a vowel, or the end of the word if there is no such non-vowel. """ m = RE_R1.search(w) if m: return w[m.end():] return "" def R2(w): """ R2 is the region after the first non-vowel following a vowel in R1, or the end of the word if there is no such non-vowel. """ if w.startswith(tuple(overstemmed)): return R1(R1(R1(w))) return R1(R1(w)) def find_vowel(w): """ Returns the index of the first vowel in the word. When no vowel is found, returns len(word). """ for i, ch in enumerate(w): if ch in VOWELS: return i return len(w) def has_vowel(w): """ Returns True if there is a vowel in the given string. """ for ch in w: if ch in VOWELS: return True return False def vowel_consonant_pairs(w, max=None): """ Returns the number of consecutive vowel-consonant pairs in the word. """ m = 0 for i, ch in enumerate(w): if is_vowel(ch) and i < len(w) - 1 and is_consonant(w[i + 1]): m += 1 # An optimisation to stop searching once we reach the amount of <vc> pairs we need. if m == max: break return m #--- REPLACEMENT RULES ----------------------------------------------------------------------------- def step_1a(w): """ Step 1a handles -s suffixes. """ if w.endswith("s"): if w.endswith("sses"): return w[:-2] if w.endswith("ies"): # Replace by -ie if preceded by just one letter, # otherwise by -i (so ties => tie, cries => cri). return len(w) == 4 and w[:-1] or w[:-2] if w.endswith(("us", "ss")): return w if find_vowel(w) < len(w) - 2: # Delete -s if the preceding part contains a vowel not immediately before the -s # (so gas and this retain the -s, gaps and kiwis lose it). return w[:-1] return w def step_1b(w): """ Step 1b handles -ed and -ing suffixes (or -edly and -ingly). Removes double consonants at the end of the stem and adds -e to some words. """ if w.endswith("y") and w.endswith(("edly", "ingly")): w = w[:-2] # Strip -ly for next step. if w.endswith(("ed", "ing")): if w.endswith("ied"): # See -ies in step 1a. return len(w) == 4 and w[:-1] or w[:-2] if w.endswith("eed"): # Replace by -ee if preceded by at least one vowel-consonant pair. return R1(w).endswith("eed") and w[:-1] or w for suffix in ("ed", "ing"): # Delete if the preceding word part contains a vowel. # - If the word ends -at, -bl or -iz add -e (luxuriat => luxuriate). # - If the word ends with a double remove the last letter (hopp => hop). # - If the word is short, add e (hop => hope). if w.endswith(suffix) and has_vowel(w[:-len(suffix)]): w = w[:-len(suffix)] if w.endswith(("at", "bl", "iz")): return w + "e" if is_double_consonant(w[-2:]): return w[:-1] if is_short(w): return w + "e" return w def step_1c(w): """ Step 1c replaces suffix -y or -Y by -i if preceded by a non-vowel which is not the first letter of the word (cry => cri, by => by, say => say). """ if len(w) > 2 and w.endswith(("y", "Y")) and is_consonant(w[-2]): return w[:-1] + "i" return w suffixes2 = [ ("al", (("ational", "ate"), ("tional", "tion"))), ("ci", (("enci", "ence"), ("anci", "ance"))), ("er", (("izer", "ize"),)), ("li", (("bli", "ble"), ("alli", "al"), ("entli", "ent"), ("eli", "e"), ("ousli", "ous"))), ("on", (("ization", "ize"), ("isation", "ize"), ("ation", "ate"))), ("or", (("ator", "ate"),)), ("ss", (("iveness", "ive"), ("fulness", "ful"), ("ousness", "ous"))), ("sm", (("alism", "al"),)), ("ti", (("aliti", "al"), ("iviti", "ive"), ("biliti", "ble"))), ("gi", (("logi", "log"),)) ] def step_2(w): """ Step 2 replaces double suffixes (singularization => singularize). This only happens if there is at least one vowel-consonant pair before the suffix. """ for suffix, rules in suffixes2: if w.endswith(suffix): for A, B in rules: if w.endswith(A): return R1(w).endswith(A) and w[:-len(A)] + B or w if w.endswith("li") and R1(w)[-3:-2] in VALID_LI: # Delete -li if preceded by a valid li-ending. return w[:-2] return w suffixes3 = [ ("e", (("icate", "ic"), ("ative", ""), ("alize", "al"))), ("i", (("iciti", "ic"),)), ("l", (("ical", "ic"), ("ful", ""))), ("s", (("ness", ""),)) ] def step_3(w): """ Step 3 replaces -ic, -ful, -ness etc. suffixes. This only happens if there is at least one vowel-consonant pair before the suffix. """ for suffix, rules in suffixes3: if w.endswith(suffix): for A, B in rules: if w.endswith(A): return R1(w).endswith(A) and w[:-len(A)] + B or w return w suffixes4 = [ ("al", ("al",)), ("ce", ("ance", "ence")), ("er", ("er",)), ("ic", ("ic",)), ("le", ("able", "ible")), ("nt", ("ant", "ement", "ment", "ent")), ("e", ("ate", "ive", "ize")), (("m", "i", "s"), ("ism", "iti", "ous")) ] def step_4(w): """ Step 4 strips -ant, -ent etc. suffixes. This only happens if there is more than one vowel-consonant pair before the suffix. """ for suffix, rules in suffixes4: if w.endswith(suffix): for A in rules: if w.endswith(A): return R2(w).endswith(A) and w[:-len(A)] or w if R2(w).endswith("ion") and w[:-3].endswith(("s", "t")): # Delete -ion if preceded by s or t. return w[:-3] return w def step_5a(w): """ Step 5a strips suffix -e if preceded by multiple vowel-consonant pairs, or one vowel-consonant pair that is not a short syllable. """ if w.endswith("e"): if R2(w).endswith("e") or R1(w).endswith("e") and not is_short_syllable(w, before=-1): return w[:-1] return w def step_5b(w): """ Step 5b strips suffix -l if preceded by l and multiple vowel-consonant pairs, bell => bell, rebell => rebel. """ if w.endswith("ll") and R2(w).endswith("l"): return w[:-1] return w #--- EXCEPTIONS ------------------------------------------------------------------------------------ # Exceptions: # - in, out and can stems could be seen as stop words later on. # - Special -ly cases. exceptions = { "skis": "ski", "skies": "sky", "dying": "die", "lying": "lie", "tying": "tie", "innings": "inning", "outings": "outing", "cannings": "canning", "idly": "idl", "gently": "gentl", "ugly": "ugli", "early": "earli", "only": "onli", "singly": "singl" } # Words that are never stemmed: uninflected = dict.fromkeys([ "sky", "news", "howe", "inning", "outing", "canning", "proceed", "exceed", "succeed", "atlas", "cosmos", "bias", "andes" # not plural forms ], True) #--- STEMMER --------------------------------------------------------------------------------------- def case_sensitive(stem, word): """ Applies the letter case of the word to the stem: Ponies => Poni """ ch = [] for i in range(len(stem)): if word[i] == word[i].upper(): ch.append(stem[i].upper()) else: ch.append(stem[i]) return "".join(ch) def upper_consonant_y(w): """ Sets the initial y, or y after a vowel, to Y. Of course, y is interpreted as a vowel and Y as a consonant. """ a = [] p = None for ch in w: if ch == "y" and (p is None or p in VOWELS): a.append("Y") else: a.append(ch) p = ch return "".join(a) # If we stemmed a word once, we can cache the result and reuse it. # By default, keep a history of a 10000 entries (<500KB). cache = {} def stem(word, cached=True, history=10000, **kwargs): """ Returns the stem of the given word: ponies => poni. Note: it is often taken to be a crude error that a stemming algorithm does not leave a real word after removing the stem. But the purpose of stemming is to bring variant forms of a word together, not to map a word onto its "paradigm" form. """ stem = word.lower() if cached and stem in cache: return case_sensitive(cache[stem], word) if cached and len(cache) > history: # Empty cache every now and then. cache.clear() if len(stem) <= 2: # If the word has two letters or less, leave it as it is. return case_sensitive(stem, word) if stem in exceptions: return case_sensitive(exceptions[stem], word) if stem in uninflected: return case_sensitive(stem, word) # Mark y treated as a consonant as Y. stem = upper_consonant_y(stem) for f in (step_1a, step_1b, step_1c, step_2, step_3, step_4, step_5a, step_5b): stem = f(stem) # Turn any remaining Y letters in the stem back into lower case. # Apply the case of the original word to the stem. stem = stem.lower() stem = case_sensitive(stem, word) if cached: cache[word.lower()] = stem.lower() return stem
PypiClean
/IsPycharmRun-1.0.tar.gz/IsPycharmRun-1.0/airtest/core/android/ime.py
import re from airtest.core.android.yosemite import Yosemite from airtest.core.error import AdbError from .constant import YOSEMITE_IME_SERVICE from six import text_type def ensure_unicode(value): """ Decode UTF-8 values Args: value: value to be decoded Returns: decoded valued """ if type(value) is not text_type: try: value = value.decode('utf-8') except UnicodeDecodeError: value = value.decode('gbk') return value class CustomIme(object): """ Input Methods Class Object """ def __init__(self, adb, apk_path, service_name): super(CustomIme, self).__init__() self.adb = adb self.apk_path = apk_path self.service_name = service_name self.started = False def _get_ime_list(self): """ Return all the input methods on the device Returns: list of all input methods on the device """ out = self.adb.shell("ime list -a") m = re.findall("mId=(.*?/.*?) ", out) return m def __enter__(self): self.start() def __exit__(self, exc_type, exc_val, exc_tb): self.end() def start(self): """ Enable input method Returns: None """ try: self.default_ime = self.adb.shell("settings get secure default_input_method").strip() except AdbError: # settings cmd not found for older phones, e.g. Xiaomi 2A # /system/bin/sh: settings: not found self.default_ime = None self.ime_list = self._get_ime_list() if self.service_name not in self.ime_list: if self.apk_path: self.device.install_app(self.apk_path) if self.default_ime != self.service_name: self.adb.shell("ime enable %s" % self.service_name) self.adb.shell("ime set %s" % self.service_name) self.started = True def end(self): """ Disable input method Returns: None """ if self.default_ime and self.default_ime != self.service_name: self.adb.shell("ime disable %s" % self.service_name) self.adb.shell("ime set %s" % self.default_ime) self.started = False def text(self, value): raise NotImplementedError class YosemiteIme(CustomIme): """ Yosemite Input Method Class Object """ def __init__(self, adb): super(YosemiteIme, self).__init__(adb, None, YOSEMITE_IME_SERVICE) self.yosemite = Yosemite(adb) def start(self): self.yosemite.get_ready() super(YosemiteIme, self).start() def text(self, value): """ Input text with Yosemite input method Args: value: text to be inputted Returns: output form `adb shell` command """ if not self.started: self.start() # 更多的输入用法请见 https://github.com/macacajs/android-unicode#use-in-adb-shell value = ensure_unicode(value) self.adb.shell(u"am broadcast -a ADB_INPUT_TEXT --es msg '{}'".format(value)) def code(self, code): """ Sending editor action Args: code: editor action code, e.g., 2 = IME_ACTION_GO, 3 = IME_ACTION_SEARCH Editor Action Code Ref: http://developer.android.com/reference/android/view/inputmethod/EditorInfo.html Returns: output form `adb shell` command """ if not self.started: self.start() self.adb.shell("am broadcast -a ADB_EDITOR_CODE --ei code {}".format(str(code)))
PypiClean
/NIRCAM_Gsim-1.60.tar.gz/NIRCAM_Gsim-1.60/NIRCAM_Gsim/polyclip/polyclip.py
import os import sys from glob import glob import numpy.ctypeslib as npct import numpy as np import ctypes from ctypes import c_int #print __file__ this_path = os.path.split(__file__)[0] #print(this_path) so_file = glob(os.path.join(this_path,'polyclip_c*.so')) #print(so_file) if len(so_file) >= 1: so_file = so_file[0] else: print("WARNING: Cannot find polyclip_c*.so library") sys.exit() polyclip = ctypes.cdll.LoadLibrary(so_file) #polyclip = ctypes.cdll.LoadLibrary(os.path.join(this_path,"polyclip_c.so")) array_1d_int_l = npct.ndpointer(dtype=np.int32, ndim=1, flags='CONTIGUOUS') array_1d_int_r = npct.ndpointer(dtype=np.int32, ndim=1, flags='CONTIGUOUS') array_1d_int_b = npct.ndpointer(dtype=np.int32, ndim=1, flags='CONTIGUOUS') array_1d_int_t = npct.ndpointer(dtype=np.int32, ndim=1, flags='CONTIGUOUS') array_1d_double_px = npct.ndpointer(dtype=np.float32, ndim=1, flags='CONTIGUOUS') array_1d_double_py = npct.ndpointer(dtype=np.float32, ndim=1, flags='CONTIGUOUS') array_1d_double_px_out = npct.ndpointer(dtype=np.float32, ndim=1, flags='CONTIGUOUS') array_1d_double_py_out = npct.ndpointer(dtype=np.float32, ndim=1, flags='CONTIGUOUS') array_1d_double_ri_out = npct.ndpointer(dtype=np.float32, ndim=1, flags='CONTIGUOUS') array_1d_double_areas = npct.ndpointer(dtype=np.float32, ndim=1, flags='CONTIGUOUS') array_1d_double_nclip_poly = npct.ndpointer(dtype=np.int32, ndim=1, flags='CONTIGUOUS') array_1d_int_poly_inds = npct.ndpointer(dtype=np.int32, ndim=1, flags='CONTIGUOUS') array_1d_double_inds = npct.ndpointer(dtype=np.int32, ndim=2, flags='CONTIGUOUS') array_1d_double_x = npct.ndpointer(dtype=np.int32, ndim=1, flags='CONTIGUOUS') array_1d_double_y = npct.ndpointer(dtype=np.int32, ndim=1, flags='CONTIGUOUS') array_1d_double_index = npct.ndpointer(dtype=np.int32, ndim=1, flags='CONTIGUOUS') polyclip.polyclip_multi2.restype = None polyclip.polyclip_multi4.argtypes = [array_1d_int_l, # l array_1d_int_r, # r array_1d_int_b, # b array_1d_int_t, # t array_1d_double_px, # px array_1d_double_py, # py c_int, # n_poly array_1d_int_poly_inds, # poly_inds array_1d_double_x, # x array_1d_double_y, # y array_1d_double_nclip_poly, # nclip_poly array_1d_double_areas, # areas array_1d_double_index # output index ]
PypiClean
/FreePyBX-1.0-RC1.tar.gz/FreePyBX-1.0-RC1/freepybx/public/js/dojox/geo/charting/widget/Legend.js.uncompressed.js
define("dojox/geo/charting/widget/Legend", ["dojo/_base/kernel", "dojo/_base/lang","dojo/_base/array", "dojo/_base/declare","dojo/_base/html","dojo/dom", "dojo/dom-construct","dojo/dom-class", "dojo/_base/window", "dijit/_Widget"], function(dojo, lang, arr, declare, html,dom,domConstruct,domClass, win, Widget) { return declare("dojox.geo.charting.widget.Legend",Widget, { // summary: // A legend widget displaying association between colors and Feature value ranges. // // description: // This widget basically is a table comprising (icon,string) pairs, describing the color scheme // used for the map and its associated text descriptions. // // example: // | var legend = new dojox.geo.charting.widget.Legend({ // | map: map // | }); horizontal:true, legendBody:null, swatchSize:18, map:null, postCreate: function(){ // summary: // inherited Dijit's postCreate function // tags: // protected if(!this.map){return;} this.series = this.map.series; if (!this.domNode.parentNode) { // compatibility with older version : add to map domNode if not already attached to a parentNode. dom.byId(this.map.container).appendChild(this.domNode); } this.refresh(); }, buildRendering: function(){ // summary: // Construct the UI for this widget, creates the underlying real dojox.geo.charting.Map object. // tags: // protected this.domNode = domConstruct.create("table", {role: "group", "class": "dojoxLegendNode"}); this.legendBody = domConstruct.create("tbody", null, this.domNode); this.inherited(arguments); }, refresh:function(){ // summary: // Refreshes this legend contents when Map series has changed. // cleanup while(this.legendBody.lastChild){ domConstruct.destroy(this.legendBody.lastChild); } if(this.horizontal){ domClass.add(this.domNode,"dojoxLegendHorizontal"); this._tr = win.doc.createElement("tr"); this.legendBody.appendChild(this._tr); } var s = this.series; if(s.length == 0){return;} arr.forEach(s,function(x){ this._addLabel(x.color, x.name); },this); }, _addLabel:function(color,label){ var icon = win.doc.createElement("td"); var text = win.doc.createElement("td"); var div = win.doc.createElement("div"); domClass.add(icon, "dojoxLegendIcon"); domClass.add(text, "dojoxLegendText"); div.style.width = this.swatchSize + "px"; div.style.height = this.swatchSize + "px"; icon.appendChild(div); if(this.horizontal){ this._tr.appendChild(icon); this._tr.appendChild(text); }else{ var tr = win.doc.createElement("tr"); this.legendBody.appendChild(tr); tr.appendChild(icon); tr.appendChild(text); } div.style.background = color; text.innerHTML = String(label); } }); });
PypiClean
/MaterialDjango-0.2.5.tar.gz/MaterialDjango-0.2.5/materialdjango/static/materialdjango/components/bower_components/prism/components/prism-perl.min.js
Prism.languages.perl={comment:[{pattern:/(^\s*)=\w+[\s\S]*?=cut.*/m,lookbehind:!0},{pattern:/(^|[^\\$])#.*/,lookbehind:!0}],string:[{pattern:/\b(?:q|qq|qx|qw)\s*([^a-zA-Z0-9\s{(\[<])(?:(?!\1)[^\\]|\\[\s\S])*\1/,greedy:!0},{pattern:/\b(?:q|qq|qx|qw)\s+([a-zA-Z0-9])(?:(?!\1)[^\\]|\\[\s\S])*\1/,greedy:!0},{pattern:/\b(?:q|qq|qx|qw)\s*\((?:[^()\\]|\\[\s\S])*\)/,greedy:!0},{pattern:/\b(?:q|qq|qx|qw)\s*\{(?:[^{}\\]|\\[\s\S])*\}/,greedy:!0},{pattern:/\b(?:q|qq|qx|qw)\s*\[(?:[^[\]\\]|\\[\s\S])*\]/,greedy:!0},{pattern:/\b(?:q|qq|qx|qw)\s*<(?:[^<>\\]|\\[\s\S])*>/,greedy:!0},{pattern:/("|`)(?:(?!\1)[^\\]|\\[\s\S])*\1/,greedy:!0},{pattern:/'(?:[^'\\\r\n]|\\.)*'/,greedy:!0}],regex:[{pattern:/\b(?:m|qr)\s*([^a-zA-Z0-9\s{(\[<])(?:(?!\1)[^\\]|\\[\s\S])*\1[msixpodualngc]*/,greedy:!0},{pattern:/\b(?:m|qr)\s+([a-zA-Z0-9])(?:(?!\1)[^\\]|\\[\s\S])*\1[msixpodualngc]*/,greedy:!0},{pattern:/\b(?:m|qr)\s*\((?:[^()\\]|\\[\s\S])*\)[msixpodualngc]*/,greedy:!0},{pattern:/\b(?:m|qr)\s*\{(?:[^{}\\]|\\[\s\S])*\}[msixpodualngc]*/,greedy:!0},{pattern:/\b(?:m|qr)\s*\[(?:[^[\]\\]|\\[\s\S])*\][msixpodualngc]*/,greedy:!0},{pattern:/\b(?:m|qr)\s*<(?:[^<>\\]|\\[\s\S])*>[msixpodualngc]*/,greedy:!0},{pattern:/(^|[^-]\b)(?:s|tr|y)\s*([^a-zA-Z0-9\s{(\[<])(?:(?!\2)[^\\]|\\[\s\S])*\2(?:(?!\2)[^\\]|\\[\s\S])*\2[msixpodualngcer]*/,lookbehind:!0,greedy:!0},{pattern:/(^|[^-]\b)(?:s|tr|y)\s+([a-zA-Z0-9])(?:(?!\2)[^\\]|\\[\s\S])*\2(?:(?!\2)[^\\]|\\[\s\S])*\2[msixpodualngcer]*/,lookbehind:!0,greedy:!0},{pattern:/(^|[^-]\b)(?:s|tr|y)\s*\((?:[^()\\]|\\[\s\S])*\)\s*\((?:[^()\\]|\\[\s\S])*\)[msixpodualngcer]*/,lookbehind:!0,greedy:!0},{pattern:/(^|[^-]\b)(?:s|tr|y)\s*\{(?:[^{}\\]|\\[\s\S])*\}\s*\{(?:[^{}\\]|\\[\s\S])*\}[msixpodualngcer]*/,lookbehind:!0,greedy:!0},{pattern:/(^|[^-]\b)(?:s|tr|y)\s*\[(?:[^[\]\\]|\\[\s\S])*\]\s*\[(?:[^[\]\\]|\\[\s\S])*\][msixpodualngcer]*/,lookbehind:!0,greedy:!0},{pattern:/(^|[^-]\b)(?:s|tr|y)\s*<(?:[^<>\\]|\\[\s\S])*>\s*<(?:[^<>\\]|\\[\s\S])*>[msixpodualngcer]*/,lookbehind:!0,greedy:!0},{pattern:/\/(?:[^\/\\\r\n]|\\.)*\/[msixpodualngc]*(?=\s*(?:$|[\r\n,.;})&|\-+*~<>!?^]|(lt|gt|le|ge|eq|ne|cmp|not|and|or|xor|x)\b))/,greedy:!0}],variable:[/[&*$@%]\{\^[A-Z]+\}/,/[&*$@%]\^[A-Z_]/,/[&*$@%]#?(?=\{)/,/[&*$@%]#?(?:(?:::)*'?(?!\d)[\w$]+)+(?:::)*/i,/[&*$@%]\d+/,/(?!%=)[$@%][!"#$%&'()*+,\-.\/:;<=>?@[\\\]^_`{|}~]/],filehandle:{pattern:/<(?![<=])\S*>|\b_\b/,alias:"symbol"},vstring:{pattern:/v\d+(?:\.\d+)*|\d+(?:\.\d+){2,}/,alias:"string"},"function":{pattern:/sub [a-z0-9_]+/i,inside:{keyword:/sub/}},keyword:/\b(?:any|break|continue|default|delete|die|do|else|elsif|eval|for|foreach|given|goto|if|last|local|my|next|our|package|print|redo|require|say|state|sub|switch|undef|unless|until|use|when|while)\b/,number:/\b-?(?:0x[\dA-Fa-f](?:_?[\dA-Fa-f])*|0b[01](?:_?[01])*|(?:\d(?:_?\d)*)?\.?\d(?:_?\d)*(?:[Ee][+-]?\d+)?)\b/,operator:/-[rwxoRWXOezsfdlpSbctugkTBMAC]\b|\+[+=]?|-[-=>]?|\*\*?=?|\/\/?=?|=[=~>]?|~[~=]?|\|\|?=?|&&?=?|<(?:=>?|<=?)?|>>?=?|![~=]?|[%^]=?|\.(?:=|\.\.?)?|[\\?]|\bx(?:=|\b)|\b(?:lt|gt|le|ge|eq|ne|cmp|not|and|or|xor)\b/,punctuation:/[{}[\];(),:]/};
PypiClean
/Django-Pizza-16.10.1.tar.gz/Django-Pizza-16.10.1/pizza/kitchen_sink/static/ks/ckeditor/lang/bg.js
/* Copyright (c) 2003-2013, CKSource - Frederico Knabben. All rights reserved. For licensing, see LICENSE.html or http://ckeditor.com/license */ CKEDITOR.lang['bg']={"editor":"Текстов редактор за форматиран текст","editorPanel":"Rich Text Editor panel","common":{"editorHelp":"натиснете ALT 0 за помощ","browseServer":"Избор от сървъра","url":"URL","protocol":"Протокол","upload":"Качване","uploadSubmit":"Изпращане към сървъра","image":"Снимка","flash":"Флаш","form":"Форма","checkbox":"Поле за избор","radio":"Радио бутон","textField":"Текстово поле","textarea":"Текстова зона","hiddenField":"Скрито поле","button":"Бутон","select":"Поле за избор","imageButton":"Бутон за снимка","notSet":"<не е избрано>","id":"ID","name":"Име","langDir":"Посока на езика","langDirLtr":"Ляво на дясно (ЛнД)","langDirRtl":"Дясно на ляво (ДнЛ)","langCode":"Код на езика","longDescr":"Уеб адрес за дълго описание","cssClass":"Класове за CSS","advisoryTitle":"Препоръчително заглавие","cssStyle":"Стил","ok":"ОК","cancel":"Отказ","close":"Затвори","preview":"Преглед","resize":"Влачете за да оразмерите","generalTab":"Общи","advancedTab":"Разширено","validateNumberFailed":"Тази стойност не е число","confirmNewPage":"Всички незапазени промени ще бъдат изгубени. Сигурни ли сте, че желаете да заредите нова страница?","confirmCancel":"Някои от опциите са променени. Сигурни ли сте, че желаете да затворите прозореца?","options":"Опции","target":"Цел","targetNew":"Нов прозорец (_blank)","targetTop":"Горна позиция (_top)","targetSelf":"Текущия прозорец (_self)","targetParent":"Основен прозорец (_parent)","langDirLTR":"Ляво на дясно (ЛнД)","langDirRTL":"Дясно на ляво (ДнЛ)","styles":"Стил","cssClasses":"Класове за CSS","width":"Ширина","height":"Височина","align":"Подравняване","alignLeft":"Ляво","alignRight":"Дясно","alignCenter":"Център","alignTop":"Горе","alignMiddle":"По средата","alignBottom":"Долу","invalidValue":"Невалидна стойност.","invalidHeight":"Височината трябва да е число.","invalidWidth":"Ширина требе да е число.","invalidCssLength":"Стойността на полето \"%1\" трябва да бъде положително число с или без валидна CSS измервателна единица (px, %, in, cm, mm, em, ex, pt, или pc).","invalidHtmlLength":"Стойността на полето \"%1\" трябва да бъде положително число с или без валидна HTML измервателна единица (px или %).","invalidInlineStyle":"Стойността на стилa трябва да съдържат една или повече двойки във формат \"name : value\", разделени с двоеточие.","cssLengthTooltip":"Въведете числена стойност в пиксели или друга валидна CSS единица (px, %, in, cm, mm, em, ex, pt, или pc).","unavailable":"%1<span class=\"cke_accessibility\">, недостъпно</span>"},"about":{"copy":"Copyright &copy; $1. All rights reserved.","dlgTitle":"Относно CKEditor","help":"Проверете $1 за помощ.","moreInfo":"За лицензионна информация моля посетете сайта ни:","title":"Относно CKEditor","userGuide":"CKEditor User's Guide"},"basicstyles":{"bold":"Удебелен","italic":"Наклонен","strike":"Зачертан текст","subscript":"Индексиран текст","superscript":"Суперскрипт","underline":"Подчертан"},"bidi":{"ltr":"Посока на текста от ляво на дясно","rtl":"Посока на текста от дясно на ляво"},"blockquote":{"toolbar":"Блок за цитат"},"clipboard":{"copy":"Копирай","copyError":"Настройките за сигурност на вашия бразуър не разрешават на редактора да изпълни запаметяването. За целта използвайте клавиатурата (Ctrl/Cmd+C).","cut":"Отрежи","cutError":"Настройките за сигурност на Вашия браузър не позволяват на редактора автоматично да изъплни действията за отрязване. Моля ползвайте клавиатурните команди за целта (ctrl+x).","paste":"Вмъкни","pasteArea":"Зона за вмъкване","pasteMsg":"Вмъкнете тук съдъжанието с клавиатуарата (<STRONG>Ctrl/Cmd+V</STRONG>) и натиснете <STRONG>OK</STRONG>.","securityMsg":"Заради настройките за сигурност на Вашия браузър, редакторът не може да прочете данните от клипборда коректно.","title":"Вмъкни"},"colorbutton":{"auto":"Автоматично","bgColorTitle":"Фонов цвят","colors":{"000":"Черно","800000":"Кестеняво","8B4513":"Светлокафяво","2F4F4F":"Dark Slate Gray","008080":"Teal","000080":"Navy","4B0082":"Индиго","696969":"Тъмно сиво","B22222":"Огнено червено","A52A2A":"Кафяво","DAA520":"Златисто","006400":"Тъмно зелено","40E0D0":"Тюркуазено","0000CD":"Средно синьо","800080":"Пурпурно","808080":"Сиво","F00":"Червено","FF8C00":"Тъмно оранжево","FFD700":"Златно","008000":"Зелено","0FF":"Светло синьо","00F":"Blue","EE82EE":"Violet","A9A9A9":"Dim Gray","FFA07A":"Light Salmon","FFA500":"Orange","FFFF00":"Yellow","00FF00":"Lime","AFEEEE":"Pale Turquoise","ADD8E6":"Light Blue","DDA0DD":"Plum","D3D3D3":"Light Grey","FFF0F5":"Lavender Blush","FAEBD7":"Antique White","FFFFE0":"Light Yellow","F0FFF0":"Honeydew","F0FFFF":"Azure","F0F8FF":"Alice Blue","E6E6FA":"Lavender","FFF":"White"},"more":"Още цветове","panelTitle":"Цветове","textColorTitle":"Цвят на шрифт"},"colordialog":{"clear":"Изчистване","highlight":"Осветяване","options":"Цветови опции","selected":"Изберете цвят","title":"Изберете цвят"},"templates":{"button":"Шаблони","emptyListMsg":"(Няма дефинирани шаблони)","insertOption":"Препокрива актуалното съдържание","options":"Опции за шаблона","selectPromptMsg":"Изберете шаблон <br>(текущото съдържание на редактора ще бъде загубено):","title":"Шаблони"},"contextmenu":{"options":"Опции на контекстното меню"},"div":{"IdInputLabel":"ID","advisoryTitleInputLabel":"Препоръчително заглавие","cssClassInputLabel":"Класове за CSS","edit":"Промяна на Div","inlineStyleInputLabel":"Inline Style","langDirLTRLabel":"Ляво на Дясно (ЛнД)","langDirLabel":"Посока на езика","langDirRTLLabel":"Дясно на Ляво (ДнЛ)","languageCodeInputLabel":" Код на езика","remove":"Премахване на Div","styleSelectLabel":"Стил","title":"Create Div Container","toolbar":"Create Div Container"},"toolbar":{"toolbarCollapse":"Свиване на лентата с инструменти","toolbarExpand":"Разширяване на лентата с инструменти","toolbarGroups":{"document":"Документ","clipboard":"Clipboard/Undo","editing":"Промяна","forms":"Форми","basicstyles":"Базови стилове","paragraph":"Параграф","links":"Връзки","insert":"Вмъкване","styles":"Стилове","colors":"Цветове","tools":"Инструменти"},"toolbars":"Ленти с инструменти"},"elementspath":{"eleLabel":"Път за елементите","eleTitle":"%1 елемент"},"find":{"find":"Търсене","findOptions":"Find Options","findWhat":"Търси за:","matchCase":"Съвпадение","matchCyclic":"Циклично съвпадение","matchWord":"Съвпадение с дума","notFoundMsg":"Указаният текст не е намерен.","replace":"Препокриване","replaceAll":"Препокрий всички","replaceSuccessMsg":"%1 occurrence(s) replaced.","replaceWith":"Препокрива с:","title":"Търсене и препокриване"},"fakeobjects":{"anchor":"Кука","flash":"Флаш анимация","hiddenfield":"Скрито поле","iframe":"IFrame","unknown":"Неизвестен обект"},"flash":{"access":"Достъп до скрипт","accessAlways":"Винаги","accessNever":"Никога","accessSameDomain":"Същият домейн","alignAbsBottom":"Най-долу","alignAbsMiddle":"Точно по средата","alignBaseline":"Базова линия","alignTextTop":"Върху текста","bgcolor":"Цвят на фона","chkFull":"Включи на цял екран","chkLoop":"Цикъл","chkMenu":"Разрешено Flash меню","chkPlay":"Авто. пускане","flashvars":"Променливи за Флаш","hSpace":"Хоризонтален отстъп","properties":"Настройки за флаш","propertiesTab":"Настройки","quality":"Качество","qualityAutoHigh":"Авто. високо","qualityAutoLow":"Авто. ниско","qualityBest":"Отлично","qualityHigh":"Високо","qualityLow":"Ниско","qualityMedium":"Средно","scale":"Оразмеряване","scaleAll":"Показва всичко","scaleFit":"Според мястото","scaleNoBorder":"Без рамка","title":"Настройки за флаш","vSpace":"Вертикален отстъп","validateHSpace":"HSpace трябва да е число.","validateSrc":"Уеб адреса не трябва да е празен.","validateVSpace":"VSpace трябва да е число.","windowMode":"Режим на прозореца","windowModeOpaque":"Плътност","windowModeTransparent":"Прозрачност","windowModeWindow":"Прозорец"},"font":{"fontSize":{"label":"Размер","voiceLabel":"Размер на шрифт","panelTitle":"Размер на шрифт"},"label":"Шрифт","panelTitle":"Име на шрифт","voiceLabel":"Шрифт"},"forms":{"button":{"title":"Настройки на бутона","text":"Текст (стойност)","type":"Тип","typeBtn":"Бутон","typeSbm":"Добави","typeRst":"Нулиране"},"checkboxAndRadio":{"checkboxTitle":"Checkbox Properties","radioTitle":"Настройки на радиобутон","value":"Стойност","selected":"Избрано"},"form":{"title":"Настройки на формата","menu":"Настройки на формата","action":"Действие","method":"Метод","encoding":"Кодиране"},"hidden":{"title":"Настройки за скрито поле","name":"Име","value":"Стойност"},"select":{"title":"Selection Field Properties","selectInfo":"Select Info","opAvail":"Налични опции","value":"Стойност","size":"Размер","lines":"линии","chkMulti":"Allow multiple selections","opText":"Текст","opValue":"Стойност","btnAdd":"Добави","btnModify":"Промени","btnUp":"На горе","btnDown":"На долу","btnSetValue":"Set as selected value","btnDelete":"Изтриване"},"textarea":{"title":"Опции за текстовата зона","cols":"Колони","rows":"Редове"},"textfield":{"title":"Настройки за текстово поле","name":"Име","value":"Стойност","charWidth":"Ширина на знаците","maxChars":"Макс. знаци","type":"Тип","typeText":"Текст","typePass":"Парола","typeEmail":"Email","typeSearch":"Търсене","typeTel":"Телефонен номер","typeUrl":"Уеб адрес"}},"format":{"label":"Формат","panelTitle":"Формат","tag_address":"Адрес","tag_div":"Параграф (DIV)","tag_h1":"Заглавие 1","tag_h2":"Заглавие 2","tag_h3":"Заглавие 3","tag_h4":"Заглавие 4","tag_h5":"Заглавие 5","tag_h6":"Заглавие 6","tag_p":"Нормален","tag_pre":"Форматиран"},"horizontalrule":{"toolbar":"Вмъкване на хоризонтална линия"},"iframe":{"border":"Показва рамка на карето","noUrl":"Моля въведете URL за iFrame","scrolling":"Вкл. скролбаровете","title":"IFrame настройки","toolbar":"IFrame"},"image":{"alertUrl":"Моля, въведете пълния път до изображението","alt":"Алтернативен текст","border":"Рамка","btnUpload":"Изпрати я на сървъра","button2Img":"Do you want to transform the selected image button on a simple image?","hSpace":"Хоризонтален отстъп","img2Button":"Do you want to transform the selected image on a image button?","infoTab":"Инфо за снимка","linkTab":"Връзка","lockRatio":"Заключване на съотношението","menu":"Настройки за снимка","resetSize":"Нулиране на размер","title":"Настройки за снимка","titleButton":"Настойки за бутон за снимка","upload":"Качване","urlMissing":"Image source URL is missing.","vSpace":"Вертикален отстъп","validateBorder":"Border must be a whole number.","validateHSpace":"HSpace must be a whole number.","validateVSpace":"VSpace must be a whole number."},"indent":{"indent":"Увеличаване на отстъпа","outdent":"Намаляване на отстъпа"},"smiley":{"options":"Опции за усмивката","title":"Вмъкване на усмивка","toolbar":"Усмивка"},"justify":{"block":"Двустранно подравняване","center":"Център","left":"Подравни в ляво","right":"Подравни в дясно"},"link":{"acccessKey":"Ключ за достъп","advanced":"Разширено","advisoryContentType":"Препоръчителен тип на съдържанието","advisoryTitle":"Препоръчително заглавие","anchor":{"toolbar":"Котва","menu":"Промяна на котва","title":"Настройки на котва","name":"Име на котва","errorName":"Моля въведете име на котвата","remove":"Премахване на котва"},"anchorId":"По ID на елемент","anchorName":"По име на котва","charset":"Тип на свързания ресурс","cssClasses":"Класове за CSS","emailAddress":"E-mail aдрес","emailBody":"Съдържание","emailSubject":"Тема","id":"ID","info":"Инфо за връзката","langCode":"Код за езика","langDir":"Посока на езика","langDirLTR":"Ляво на Дясно (ЛнД)","langDirRTL":"Дясно на Ляво (ДнЛ)","menu":"Промяна на връзка","name":"Име","noAnchors":"(Няма котви в текущия документ)","noEmail":"Моля въведете e-mail aдрес","noUrl":"Моля въведете URL адреса","other":"<друго>","popupDependent":"Зависимост (Netscape)","popupFeatures":"Функции на изкачащ прозорец","popupFullScreen":"Цял екран (IE)","popupLeft":"Лява позиция","popupLocationBar":"Лента с локацията","popupMenuBar":"Лента за меню","popupResizable":"Оразмеряем","popupScrollBars":"Скролери","popupStatusBar":"Статусна лента","popupToolbar":"Лента с инструменти","popupTop":"Горна позиция","rel":"Връзка","selectAnchor":"Изберете котва","styles":"Стил","tabIndex":"Ред на достъп","target":"Цел","targetFrame":"<frame>","targetFrameName":"Име на целевият прозорец","targetPopup":"<изкачащ прозорец>","targetPopupName":"Име на изкачащ прозорец","title":"Връзка","toAnchor":"Връзка към котва в текста","toEmail":"E-mail","toUrl":"Уеб адрес","toolbar":"Връзка","type":"Тип на връзката","unlink":"Премахни връзката","upload":"Качване"},"list":{"bulletedlist":"Вмъкване/Премахване на точков списък","numberedlist":"Вмъкване/Премахване на номериран списък"},"liststyle":{"armenian":"Арменско номериране","bulletedTitle":"Bulleted List Properties","circle":"Кръг","decimal":"Числа (1, 2, 3 и др.)","decimalLeadingZero":"Числа с водеща нула (01, 02, 03 и т.н.)","disc":"Диск","georgian":"Грузинско номериране (an, ban, gan, и т.н.)","lowerAlpha":"Малки букви (а, б, в, г, д и т.н.)","lowerGreek":"Малки гръцки букви (алфа, бета, гама и т.н.)","lowerRoman":"Малки римски числа (i, ii, iii, iv, v и т.н.)","none":"Няма","notset":"<не е указано>","numberedTitle":"Numbered List Properties","square":"Квадрат","start":"Старт","type":"Тип","upperAlpha":"Големи букви (А, Б, В, Г, Д и т.н.)","upperRoman":"Големи римски числа (I, II, III, IV, V и т.н.)","validateStartNumber":"List start number must be a whole number."},"magicline":{"title":"Вмъкнете параграф тук"},"maximize":{"maximize":"Максимизиране","minimize":"Минимизиране"},"newpage":{"toolbar":"Нова страница"},"pagebreak":{"alt":"Разделяне на страници","toolbar":"Вмъкване на нова страница при печат"},"pastetext":{"button":"Вмъкни като чист текст","title":"Вмъкни като чист текст"},"pastefromword":{"confirmCleanup":"The text you want to paste seems to be copied from Word. Do you want to clean it before pasting?","error":"It was not possible to clean up the pasted data due to an internal error","title":"Вмъкни от MS Word","toolbar":"Вмъкни от MS Word"},"preview":{"preview":"Преглед"},"print":{"toolbar":"Печат"},"removeformat":{"toolbar":"Премахване на форматирането"},"save":{"toolbar":"Запис"},"selectall":{"toolbar":"Избери всичко"},"showblocks":{"toolbar":"Показва блокове"},"sourcearea":{"toolbar":"Източник"},"specialchar":{"options":"Опции за специален знак","title":"Избор на специален знак","toolbar":"Вмъкване на специален знак"},"scayt":{"about":"About SCAYT","aboutTab":"Относно","addWord":"Add Word","allCaps":"Ignore All-Caps Words","dic_create":"Нов","dic_delete":"Изтриване","dic_field_name":"Име на речнк","dic_info":"Initially the User Dictionary is stored in a Cookie. However, Cookies are limited in size. When the User Dictionary grows to a point where it cannot be stored in a Cookie, then the dictionary may be stored on our server. To store your personal dictionary on our server you should specify a name for your dictionary. If you already have a stored dictionary, please type its name and click the Restore button.","dic_rename":"Преименуване","dic_restore":"Възтановяване","dictionariesTab":"Речници","disable":"Disable SCAYT","emptyDic":"Dictionary name should not be empty.","enable":"Enable SCAYT","ignore":"Ignore","ignoreAll":"Ignore All","ignoreDomainNames":"Ignore Domain Names","langs":"Languages","languagesTab":"Езици","mixedCase":"Ignore Words with Mixed Case","mixedWithDigits":"Игнорирани думи и цифри","moreSuggestions":"More suggestions","opera_title":"Not supported by Opera","options":"Options","optionsTab":"Options","title":"Spell Check As You Type","toggle":"Toggle SCAYT","noSuggestions":"No suggestion"},"stylescombo":{"label":"Стилове","panelTitle":"Стилове за форматиране","panelTitle1":"Блокови стилове","panelTitle2":"Вътрешни стилове","panelTitle3":"Обектни стилове"},"table":{"border":"Размер на рамката","caption":"Заглавие","cell":{"menu":"Клетка","insertBefore":"Вмъкване на клетка преди","insertAfter":"Вмъкване на клетка след","deleteCell":"Изтриване на клетки","merge":"Сливане на клетки","mergeRight":"Сливане в дясно","mergeDown":"Merge Down","splitHorizontal":"Split Cell Horizontally","splitVertical":"Split Cell Vertically","title":"Настройки на клетката","cellType":"Тип на клетката","rowSpan":"Rows Span","colSpan":"Columns Span","wordWrap":"Авто. пренос","hAlign":"Хоризонтално подравняване","vAlign":"Вертикално подравняване","alignBaseline":"Базова линия","bgColor":"Фон","borderColor":"Цвят на рамката","data":"Данни","header":"Хедър","yes":"Да","no":"Не","invalidWidth":"Cell width must be a number.","invalidHeight":"Cell height must be a number.","invalidRowSpan":"Rows span must be a whole number.","invalidColSpan":"Columns span must be a whole number.","chooseColor":"Изберете"},"cellPad":"Отделяне на клетките","cellSpace":"Разтояние между клетките","column":{"menu":"Колона","insertBefore":"Вмъкване на колона преди","insertAfter":"Вмъкване на колона след","deleteColumn":"Изтриване на колони"},"columns":"Колони","deleteTable":"Изтриване на таблица","headers":"Хедъри","headersBoth":"Заедно","headersColumn":"Първа колона","headersNone":"Няма","headersRow":"Първи ред","invalidBorder":"Размерът на рамката трябва да е число.","invalidCellPadding":"Отстоянието на клетките трябва да е позитивно число.","invalidCellSpacing":"Интервала в клетките трябва да е позитивно число.","invalidCols":"Броят колони трябва да е по-голям от 0.","invalidHeight":"Височината на таблицата трябва да е число.","invalidRows":"Броят редове трябва да е по-голям от 0.","invalidWidth":"Ширината на таблицата трябва да е число.","menu":"Настройки на таблицата","row":{"menu":"Ред","insertBefore":"Вмъкване на ред преди","insertAfter":"Вмъкване на ред след","deleteRow":"Изтриване на редове"},"rows":"Редове","summary":"Обща информация","title":"Настройки на таблицата","toolbar":"Таблица","widthPc":"процент","widthPx":"пиксела","widthUnit":"единица за ширина"},"undo":{"redo":"Връщане на предишен статус","undo":"Възтанови"},"wsc":{"btnIgnore":"Игнорирай","btnIgnoreAll":"Игнорирай всичко","btnReplace":"Препокриване","btnReplaceAll":"Препокрий всичко","btnUndo":"Възтанови","changeTo":"Промени на","errorLoading":"Error loading application service host: %s.","ieSpellDownload":"Spell checker not installed. Do you want to download it now?","manyChanges":"Spell check complete: %1 words changed","noChanges":"Spell check complete: No words changed","noMispell":"Spell check complete: No misspellings found","noSuggestions":"- Няма препоръчани -","notAvailable":"Съжаляваме, но услугата не е достъпна за момента","notInDic":"Не е в речника","oneChange":"Spell check complete: One word changed","progress":"Проверява се правописа...","title":"Проверка на правопис","toolbar":"Проверка на правопис"}};
PypiClean
/FlaskCms-0.0.4.tar.gz/FlaskCms-0.0.4/flask_cms/static/js/ace/theme-textmate.js
ace.define("ace/theme/textmate",["require","exports","module","ace/lib/dom"], function(require, exports, module) { "use strict"; exports.isDark = false; exports.cssClass = "ace-tm"; exports.cssText = ".ace-tm .ace_gutter {\ background: #f0f0f0;\ color: #333;\ }\ .ace-tm .ace_print-margin {\ width: 1px;\ background: #e8e8e8;\ }\ .ace-tm .ace_fold {\ background-color: #6B72E6;\ }\ .ace-tm {\ background-color: #FFFFFF;\ color: black;\ }\ .ace-tm .ace_cursor {\ color: black;\ }\ .ace-tm .ace_invisible {\ color: rgb(191, 191, 191);\ }\ .ace-tm .ace_storage,\ .ace-tm .ace_keyword {\ color: blue;\ }\ .ace-tm .ace_constant {\ color: rgb(197, 6, 11);\ }\ .ace-tm .ace_constant.ace_buildin {\ color: rgb(88, 72, 246);\ }\ .ace-tm .ace_constant.ace_language {\ color: rgb(88, 92, 246);\ }\ .ace-tm .ace_constant.ace_library {\ color: rgb(6, 150, 14);\ }\ .ace-tm .ace_invalid {\ background-color: rgba(255, 0, 0, 0.1);\ color: red;\ }\ .ace-tm .ace_support.ace_function {\ color: rgb(60, 76, 114);\ }\ .ace-tm .ace_support.ace_constant {\ color: rgb(6, 150, 14);\ }\ .ace-tm .ace_support.ace_type,\ .ace-tm .ace_support.ace_class {\ color: rgb(109, 121, 222);\ }\ .ace-tm .ace_keyword.ace_operator {\ color: rgb(104, 118, 135);\ }\ .ace-tm .ace_string {\ color: rgb(3, 106, 7);\ }\ .ace-tm .ace_comment {\ color: rgb(76, 136, 107);\ }\ .ace-tm .ace_comment.ace_doc {\ color: rgb(0, 102, 255);\ }\ .ace-tm .ace_comment.ace_doc.ace_tag {\ color: rgb(128, 159, 191);\ }\ .ace-tm .ace_constant.ace_numeric {\ color: rgb(0, 0, 205);\ }\ .ace-tm .ace_variable {\ color: rgb(49, 132, 149);\ }\ .ace-tm .ace_xml-pe {\ color: rgb(104, 104, 91);\ }\ .ace-tm .ace_entity.ace_name.ace_function {\ color: #0000A2;\ }\ .ace-tm .ace_heading {\ color: rgb(12, 7, 255);\ }\ .ace-tm .ace_list {\ color:rgb(185, 6, 144);\ }\ .ace-tm .ace_meta.ace_tag {\ color:rgb(0, 22, 142);\ }\ .ace-tm .ace_string.ace_regex {\ color: rgb(255, 0, 0)\ }\ .ace-tm .ace_marker-layer .ace_selection {\ background: rgb(181, 213, 255);\ }\ .ace-tm.ace_multiselect .ace_selection.ace_start {\ box-shadow: 0 0 3px 0px white;\ border-radius: 2px;\ }\ .ace-tm .ace_marker-layer .ace_step {\ background: rgb(252, 255, 0);\ }\ .ace-tm .ace_marker-layer .ace_stack {\ background: rgb(164, 229, 101);\ }\ .ace-tm .ace_marker-layer .ace_bracket {\ margin: -1px 0 0 -1px;\ border: 1px solid rgb(192, 192, 192);\ }\ .ace-tm .ace_marker-layer .ace_active-line {\ background: rgba(0, 0, 0, 0.07);\ }\ .ace-tm .ace_gutter-active-line {\ background-color : #dcdcdc;\ }\ .ace-tm .ace_marker-layer .ace_selected-word {\ background: rgb(250, 250, 255);\ border: 1px solid rgb(200, 200, 250);\ }\ .ace-tm .ace_indent-guide {\ background: url(\"\") right repeat-y;\ }\ "; var dom = require("../lib/dom"); dom.importCssString(exports.cssText, exports.cssClass); });
PypiClean
/LZBEAT-0.13.1.tar.gz/LZBEAT-0.13.1/econml/_ortho_learner.py
import copy from collections import namedtuple from warnings import warn from abc import abstractmethod import inspect from collections import defaultdict import re import numpy as np from sklearn.base import clone from sklearn.model_selection import KFold, StratifiedKFold, check_cv from sklearn.preprocessing import (FunctionTransformer, LabelEncoder, OneHotEncoder) from sklearn.utils import check_random_state from ._cate_estimator import (BaseCateEstimator, LinearCateEstimator, TreatmentExpansionMixin) from .inference import BootstrapInference from .utilities import (_deprecate_positional, check_input_arrays, cross_product, filter_none_kwargs, inverse_onehot, ndim, reshape, shape, transpose) def _crossfit(model, folds, *args, **kwargs): """ General crossfit based calculation of nuisance parameters. Parameters ---------- model : object An object that supports fit and predict. Fit must accept all the args and the keyword arguments kwargs. Similarly predict must all accept all the args as arguments and kwards as keyword arguments. The fit function estimates a model of the nuisance function, based on the input data to fit. Predict evaluates the fitted nuisance function on the input data to predict. folds : list of tuples or None The crossfitting fold structure. Every entry in the list is a tuple whose first element are the training indices of the args and kwargs data and the second entry are the test indices. If the union of the test indices is not the full set of all indices, then the remaining nuisance parameters for the missing indices have value NaN. If folds is None, then cross fitting is not performed; all indices are used for both model fitting and prediction args : a sequence of (numpy matrices or None) Each matrix is a data variable whose first index corresponds to a sample kwargs : a sequence of key-value args, with values being (numpy matrices or None) Each keyword argument is of the form Var=x, with x a numpy array. Each of these arrays are data variables. The model fit and predict will be called with signature: `model.fit(*args, **kwargs)` and `model.predict(*args, **kwargs)`. Key-value arguments that have value None, are ommitted from the two calls. So all the args and the non None kwargs variables must be part of the models signature. Returns ------- nuisances : tuple of numpy matrices Each entry in the tuple is a nuisance parameter matrix. Each row i-th in the matrix corresponds to the value of the nuisance parameter for the i-th input sample. model_list : list of objects of same type as input model The cloned and fitted models for each fold. Can be used for inspection of the variability of the fitted models across folds. fitted_inds : np array1d The indices of the arrays for which the nuisance value was calculated. This corresponds to the union of the indices of the test part of each fold in the input fold list. scores : tuple of list of float or None The out-of-sample model scores for each nuisance model Examples -------- .. testcode:: import numpy as np from sklearn.model_selection import KFold from sklearn.linear_model import Lasso from econml._ortho_learner import _crossfit class Wrapper: def __init__(self, model): self._model = model def fit(self, X, y, W=None): self._model.fit(X, y) return self def predict(self, X, y, W=None): return self._model.predict(X) np.random.seed(123) X = np.random.normal(size=(5000, 3)) y = X[:, 0] + np.random.normal(size=(5000,)) folds = list(KFold(2).split(X, y)) model = Lasso(alpha=0.01) nuisance, model_list, fitted_inds, scores = _crossfit(Wrapper(model), folds, X, y, W=y, Z=None) >>> nuisance (array([-1.105728... , -1.537566..., -2.451827... , ..., 1.106287..., -1.829662..., -1.782273...]),) >>> model_list [<Wrapper object at 0x...>, <Wrapper object at 0x...>] >>> fitted_inds array([ 0, 1, 2, ..., 4997, 4998, 4999]) """ model_list = [] fitted_inds = [] calculate_scores = hasattr(model, 'score') # remove None arguments kwargs = filter_none_kwargs(**kwargs) if folds is None: # skip crossfitting model_list.append(clone(model, safe=False)) model_list[0].fit(*args, **kwargs) nuisances = model_list[0].predict(*args, **kwargs) scores = model_list[0].score(*args, **kwargs) if calculate_scores else None if not isinstance(nuisances, tuple): nuisances = (nuisances,) if not isinstance(scores, tuple): scores = (scores,) # scores entries should be lists of scores, so make each entry a singleton list scores = tuple([s] for s in scores) first_arr = args[0] if args else kwargs.items()[0][1] return nuisances, model_list, np.arange(first_arr.shape[0]), scores for idx, (train_idxs, test_idxs) in enumerate(folds): model_list.append(clone(model, safe=False)) if len(np.intersect1d(train_idxs, test_idxs)) > 0: raise AttributeError("Invalid crossfitting fold structure." + "Train and test indices of each fold must be disjoint.") if len(np.intersect1d(fitted_inds, test_idxs)) > 0: raise AttributeError("Invalid crossfitting fold structure. The same index appears in two test folds.") fitted_inds = np.concatenate((fitted_inds, test_idxs)) args_train = tuple(var[train_idxs] if var is not None else None for var in args) args_test = tuple(var[test_idxs] if var is not None else None for var in args) kwargs_train = {key: var[train_idxs] for key, var in kwargs.items()} kwargs_test = {key: var[test_idxs] for key, var in kwargs.items()} model_list[idx].fit(*args_train, **kwargs_train) nuisance_temp = model_list[idx].predict(*args_test, **kwargs_test) if not isinstance(nuisance_temp, tuple): nuisance_temp = (nuisance_temp,) if idx == 0: nuisances = tuple([np.full((args[0].shape[0],) + nuis.shape[1:], np.nan) for nuis in nuisance_temp]) for it, nuis in enumerate(nuisance_temp): nuisances[it][test_idxs] = nuis if calculate_scores: score_temp = model_list[idx].score(*args_test, **kwargs_test) if not isinstance(score_temp, tuple): score_temp = (score_temp,) if idx == 0: scores = tuple([] for _ in score_temp) for it, score in enumerate(score_temp): scores[it].append(score) return nuisances, model_list, np.sort(fitted_inds.astype(int)), (scores if calculate_scores else None) CachedValues = namedtuple('CachedValues', ['nuisances', 'Y', 'T', 'X', 'W', 'Z', 'sample_weight', 'freq_weight', 'sample_var', 'groups']) class _OrthoLearner(TreatmentExpansionMixin, LinearCateEstimator): """ Base class for all orthogonal learners. This class is a parent class to any method that has the following architecture: 1. The CATE :math:`\\theta(X)` is the minimizer of some expected loss function .. math :: \\mathbb{E}[\\ell(V; \\theta(X), h(V))] where :math:`V` are all the random variables and h is a vector of nuisance functions. Alternatively, the class would also work if :math:`\\theta(X)` is the solution to a set of moment equations that also depend on nuisance functions :math:`h`. 2. To estimate :math:`\\theta(X)` we first fit the h functions and calculate :math:`h(V_i)` for each sample :math:`i` in a crossfit manner: - Let (F1_train, F1_test), ..., (Fk_train, Fk_test) be any KFold partition of the data, where Ft_train, Ft_test are subsets of indices of the input samples and such that F1_train is disjoint from F1_test. The sets F1_test, ..., Fk_test form an incomplete partition of all the input indices, i.e. they are be disjoint and their union could potentially be a subset of all input indices. For instance, in a time series split F0_train could be a prefix of the data and F0_test the suffix. Typically, these folds will be created by a KFold split, i.e. if S1, ..., Sk is any partition of the data, then Ft_train is the set of all indices except St and Ft_test = St. If the union of the Ft_test is not all the data, then only the subset of the data in the union of the Ft_test sets will be used in the final stage. - Then for each t in [1, ..., k] - Estimate a model :math:`\\hat{h}_t` for :math:`h` using Ft_train - Evaluate the learned :math:`\\hat{h}_t` model on the data in Ft_test and use that value as the nuisance value/vector :math:`\\hat{U}_i=\\hat{h}(V_i)` for the indices i in Ft_test 3. Estimate the model for :math:`\\theta(X)` by minimizing the empirical (regularized) plugin loss on the subset of indices for which we have a nuisance value, i.e. the union of {F1_test, ..., Fk_test}: .. math :: \\mathbb{E}_n[\\ell(V; \\theta(X), \\hat{h}(V))]\ = \\frac{1}{n} \\sum_{i=1}^n \\ell(V_i; \\theta(X_i), \\hat{U}_i) The method is a bit more general in that the final step does not need to be a loss minimization step. The class takes as input a model for fitting an estimate of the nuisance h given a set of samples and predicting the value of the learned nuisance model on any other set of samples. It also takes as input a model for the final estimation, that takes as input the data and their associated estimated nuisance values from the first stage and fits a model for the CATE :math:`\\theta(X)`. Then at predict time, the final model given any set of samples of the X variable, returns the estimated :math:`\\theta(X)`. The method essentially implements all the crossfit and plugin logic, so that any child classes need to only implement the appropriate `model_nuisance` and `model_final` and essentially nothing more. It also implements the basic preprocessing logic behind the expansion of discrete treatments into one-hot encodings. Parameters ---------- discrete_treatment: bool Whether the treatment values should be treated as categorical, rather than continuous, quantities discrete_instrument: bool Whether the instrument values should be treated as categorical, rather than continuous, quantities categories: 'auto' or list The categories to use when encoding discrete treatments (or 'auto' to use the unique sorted values). The first category will be treated as the control treatment. cv: int, cross-validation generator or an iterable Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - :term:`CV splitter` - An iterable yielding (train, test) splits as arrays of indices. For integer/None inputs, if the treatment is discrete :class:`~sklearn.model_selection.StratifiedKFold` is used, else, :class:`~sklearn.model_selection.KFold` is used (with a random shuffle in either case). Unless an iterable is used, we call `split(concat[Z, W, X], T)` to generate the splits. If all Z, W, X are None, then we call `split(ones((T.shape[0], 1)), T)`. random_state: int, :class:`~numpy.random.mtrand.RandomState` instance or None If int, random_state is the seed used by the random number generator; If :class:`~numpy.random.mtrand.RandomState` instance, random_state is the random number generator; If None, the random number generator is the :class:`~numpy.random.mtrand.RandomState` instance used by :mod:`np.random<numpy.random>`. mc_iters: int, optional (default=None) The number of times to rerun the first stage models to reduce the variance of the nuisances. mc_agg: {'mean', 'median'}, optional (default='mean') How to aggregate the nuisance value for each sample across the `mc_iters` monte carlo iterations of cross-fitting. Examples -------- The example code below implements a very simple version of the double machine learning method on top of the :class:`._OrthoLearner` class, for expository purposes. For a more elaborate implementation of a Double Machine Learning child class of the class :class:`._OrthoLearner` check out :class:`.DML` and its child classes: .. testcode:: import numpy as np from sklearn.linear_model import LinearRegression from econml._ortho_learner import _OrthoLearner class ModelNuisance: def __init__(self, model_t, model_y): self._model_t = model_t self._model_y = model_y def fit(self, Y, T, W=None): self._model_t.fit(W, T) self._model_y.fit(W, Y) return self def predict(self, Y, T, W=None): return Y - self._model_y.predict(W), T - self._model_t.predict(W) class ModelFinal: def __init__(self): return def fit(self, Y, T, W=None, nuisances=None): Y_res, T_res = nuisances self.model = LinearRegression(fit_intercept=False).fit(T_res.reshape(-1, 1), Y_res) return self def predict(self, X=None): return self.model.coef_[0] def score(self, Y, T, W=None, nuisances=None): Y_res, T_res = nuisances return np.mean((Y_res - self.model.predict(T_res.reshape(-1, 1)))**2) class OrthoLearner(_OrthoLearner): def _gen_ortho_learner_model_nuisance(self): return ModelNuisance(LinearRegression(), LinearRegression()) def _gen_ortho_learner_model_final(self): return ModelFinal() np.random.seed(123) X = np.random.normal(size=(100, 3)) y = X[:, 0] + X[:, 1] + np.random.normal(0, 0.1, size=(100,)) est = OrthoLearner(cv=2, discrete_treatment=False, discrete_instrument=False, categories='auto', random_state=None) est.fit(y, X[:, 0], W=X[:, 1:]) >>> est.score_ 0.00756830... >>> est.const_marginal_effect() 1.02364992... >>> est.effect() array([1.023649...]) >>> est.effect(T0=0, T1=10) array([10.236499...]) >>> est.score(y, X[:, 0], W=X[:, 1:]) 0.00727995... >>> est.ortho_learner_model_final_.model LinearRegression(fit_intercept=False) >>> est.ortho_learner_model_final_.model.coef_ array([1.023649...]) The following example shows how to do double machine learning with discrete treatments, using the _OrthoLearner: .. testcode:: class ModelNuisance: def __init__(self, model_t, model_y): self._model_t = model_t self._model_y = model_y def fit(self, Y, T, W=None): self._model_t.fit(W, np.matmul(T, np.arange(1, T.shape[1]+1))) self._model_y.fit(W, Y) return self def predict(self, Y, T, W=None): return Y - self._model_y.predict(W), T - self._model_t.predict_proba(W)[:, 1:] class ModelFinal: def __init__(self): return def fit(self, Y, T, W=None, nuisances=None): Y_res, T_res = nuisances self.model = LinearRegression(fit_intercept=False).fit(T_res.reshape(-1, 1), Y_res) return self def predict(self): # theta needs to be of dimension (1, d_t) if T is (n, d_t) return np.array([[self.model.coef_[0]]]) def score(self, Y, T, W=None, nuisances=None): Y_res, T_res = nuisances return np.mean((Y_res - self.model.predict(T_res.reshape(-1, 1)))**2) from sklearn.linear_model import LogisticRegression class OrthoLearner(_OrthoLearner): def _gen_ortho_learner_model_nuisance(self): return ModelNuisance(LogisticRegression(solver='lbfgs'), LinearRegression()) def _gen_ortho_learner_model_final(self): return ModelFinal() np.random.seed(123) W = np.random.normal(size=(100, 3)) import scipy.special T = np.random.binomial(1, scipy.special.expit(W[:, 0])) y = T + W[:, 0] + np.random.normal(0, 0.01, size=(100,)) est = OrthoLearner(cv=2, discrete_treatment=True, discrete_instrument=False, categories='auto', random_state=None) est.fit(y, T, W=W) >>> est.score_ 0.00673015... >>> est.const_marginal_effect() array([[1.008401...]]) >>> est.effect() array([1.008401...]) >>> est.score(y, T, W=W) 0.00310431... >>> est.ortho_learner_model_final_.model.coef_[0] 1.00840170... Attributes ---------- models_nuisance_: nested list of objects of type(model_nuisance) A nested list of instances of the model_nuisance object. The number of sublist equals to the number of monte carlo iterations. Each element in the sublist corresponds to a crossfitting fold and is the model instance that was fitted for that training fold. ortho_learner_model_final_: object of type(model_final) An instance of the model_final object that was fitted after calling fit. score_ : float or array of floats If the model_final has a score method, then `score_` contains the outcome of the final model score when evaluated on the fitted nuisances from the first stage. Represents goodness of fit, of the final CATE model. nuisance_scores_ : tuple of nested lists of floats or None The out-of-sample scores from training each nuisance model """ def __init__(self, *, discrete_treatment, discrete_instrument, categories, cv, random_state, mc_iters=None, mc_agg='mean'): self.cv = cv self.discrete_treatment = discrete_treatment self.discrete_instrument = discrete_instrument self.random_state = random_state self.categories = categories self.mc_iters = mc_iters self.mc_agg = mc_agg super().__init__() @abstractmethod def _gen_ortho_learner_model_nuisance(self): """ Must return a fresh instance of a nuisance model Returns ------- model_nuisance: estimator The estimator for fitting the nuisance function. Must implement `fit` and `predict` methods that both have signatures:: model_nuisance.fit(Y, T, X=X, W=W, Z=Z, sample_weight=sample_weight) model_nuisance.predict(Y, T, X=X, W=W, Z=Z, sample_weight=sample_weight) In fact we allow for the model method signatures to skip any of the keyword arguments as long as the class is always called with the omitted keyword argument set to ``None``. This can be enforced in child classes by re-implementing the fit and the various effect methods. If ``discrete_treatment=True``, then the input ``T`` to both above calls will be the one-hot encoding of the original input ``T``, excluding the first column of the one-hot. If the estimator also provides a score method with the same arguments as fit, it will be used to calculate scores during training. """ pass @abstractmethod def _gen_ortho_learner_model_final(self): """ Must return a fresh instance of a final model Returns ------- model_final: estimator for fitting the response residuals to the features and treatment residuals Must implement `fit` and `predict` methods that must have signatures:: model_final.fit(Y, T, X=X, W=W, Z=Z, nuisances=nuisances, sample_weight=sample_weight, freq_weight=freq_weight, sample_var=sample_var) model_final.predict(X=X) Predict, should just take the features X and return the constant marginal effect. In fact we allow for the model method signatures to skip any of the keyword arguments as long as the class is always called with the omitted keyword argument set to ``None``. Moreover, the predict function of the final model can take no argument if the class is always called with ``X=None``. This can be enforced in child classes by re-implementing the fit and the various effect methods. If ``discrete_treatment=True``, then the input ``T`` to both above calls will be the one-hot encoding of the original input ``T``, excluding the first column of the one-hot. """ pass def _check_input_dims(self, Y, T, X=None, W=None, Z=None, *other_arrays): assert shape(Y)[0] == shape(T)[0], "Dimension mis-match!" for arr in [X, W, Z, *other_arrays]: assert (arr is None) or (arr.shape[0] == Y.shape[0]), "Dimension mismatch" self._d_x = X.shape[1:] if X is not None else None self._d_w = W.shape[1:] if W is not None else None self._d_z = Z.shape[1:] if Z is not None else None def _check_fitted_dims(self, X): if X is None: assert self._d_x is None, "X was not None when fitting, so can't be none for score or effect" else: assert self._d_x == X.shape[1:], "Dimension mis-match of X with fitted X" def _check_fitted_dims_w_z(self, W, Z): if W is None: assert self._d_w is None, "W was not None when fitting, so can't be none for score" else: assert self._d_w == W.shape[1:], "Dimension mis-match of W with fitted W" if Z is None: assert self._d_z is None, "Z was not None when fitting, so can't be none for score" else: assert self._d_z == Z.shape[1:], "Dimension mis-match of Z with fitted Z" def _subinds_check_none(self, var, inds): return var[inds] if var is not None else None def _strata(self, Y, T, X=None, W=None, Z=None, sample_weight=None, freq_weight=None, sample_var=None, groups=None, cache_values=False, only_final=False, check_input=True): if self.discrete_instrument: Z = LabelEncoder().fit_transform(np.ravel(Z)) if self.discrete_treatment: enc = LabelEncoder() T = enc.fit_transform(np.ravel(T)) if self.discrete_instrument: return T + Z * len(enc.classes_) else: return T elif self.discrete_instrument: return Z else: return None def _prefit(self, Y, T, *args, only_final=False, **kwargs): # generate an instance of the final model self._ortho_learner_model_final = self._gen_ortho_learner_model_final() if not only_final: # generate an instance of the nuisance model self._ortho_learner_model_nuisance = self._gen_ortho_learner_model_nuisance() super()._prefit(Y, T, *args, **kwargs) @BaseCateEstimator._wrap_fit def fit(self, Y, T, *, X=None, W=None, Z=None, sample_weight=None, freq_weight=None, sample_var=None, groups=None, cache_values=False, inference=None, only_final=False, check_input=True): """ Estimate the counterfactual model from data, i.e. estimates function :math:`\\theta(\\cdot)`. Parameters ---------- Y: (n, d_y) matrix or vector of length n Outcomes for each sample T: (n, d_t) matrix or vector of length n Treatments for each sample X: optional (n, d_x) matrix or None (Default=None) Features for each sample W: optional (n, d_w) matrix or None (Default=None) Controls for each sample Z: optional (n, d_z) matrix or None (Default=None) Instruments for each sample sample_weight : (n,) array like, default None Individual weights for each sample. If None, it assumes equal weight. freq_weight: (n, ) array like of integers, default None Weight for the observation. Observation i is treated as the mean outcome of freq_weight[i] independent observations. When ``sample_var`` is not None, this should be provided. sample_var : {(n,), (n, d_y)} nd array like, default None Variance of the outcome(s) of the original freq_weight[i] observations that were used to compute the mean outcome represented by observation i. groups: (n,) vector, optional All rows corresponding to the same group will be kept together during splitting. If groups is not None, the cv argument passed to this class's initializer must support a 'groups' argument to its split method. cache_values: bool, default False Whether to cache the inputs and computed nuisances, which will allow refitting a different final model inference: string, :class:`.Inference` instance, or None Method for performing inference. This estimator supports 'bootstrap' (or an instance of :class:`.BootstrapInference`). only_final: bool, defaul False Whether to fit the nuisance models or use the existing cached values Note. This parameter is only used internally by the `refit` method and should not be exposed publicly by overwrites of the `fit` method in public classes. check_input: bool, default True Whether to check if the input is valid Note. This parameter is only used internally by the `refit` method and should not be exposed publicly by overwrites of the `fit` method in public classes. Returns ------- self : object """ self._random_state = check_random_state(self.random_state) assert (freq_weight is None) == ( sample_var is None), "Sample variances and frequency weights must be provided together!" if check_input: Y, T, X, W, Z, sample_weight, freq_weight, sample_var, groups = check_input_arrays( Y, T, X, W, Z, sample_weight, freq_weight, sample_var, groups) self._check_input_dims(Y, T, X, W, Z, sample_weight, freq_weight, sample_var, groups) if not only_final: if self.discrete_treatment: categories = self.categories if categories != 'auto': categories = [categories] # OneHotEncoder expects a 2D array with features per column self.transformer = OneHotEncoder(categories=categories, sparse=False, drop='first') self.transformer.fit(reshape(T, (-1, 1))) self._d_t = (len(self.transformer.categories_[0]) - 1,) else: self.transformer = None if self.discrete_instrument: self.z_transformer = OneHotEncoder(categories='auto', sparse=False, drop='first') self.z_transformer.fit(reshape(Z, (-1, 1))) else: self.z_transformer = None all_nuisances = [] fitted_inds = None if sample_weight is None: if freq_weight is not None: sample_weight_nuisances = freq_weight else: sample_weight_nuisances = None else: if freq_weight is not None: sample_weight_nuisances = freq_weight * sample_weight else: sample_weight_nuisances = sample_weight self._models_nuisance = [] for idx in range(self.mc_iters or 1): nuisances, fitted_models, new_inds, scores = self._fit_nuisances( Y, T, X, W, Z, sample_weight=sample_weight_nuisances, groups=groups) all_nuisances.append(nuisances) self._models_nuisance.append(fitted_models) if scores is None: self.nuisance_scores_ = None else: if idx == 0: self.nuisance_scores_ = tuple([] for _ in scores) for ind, score in enumerate(scores): self.nuisance_scores_[ind].append(score) if fitted_inds is None: fitted_inds = new_inds elif not np.array_equal(fitted_inds, new_inds): raise AttributeError("Different indices were fit by different folds, so they cannot be aggregated") if self.mc_iters is not None: if self.mc_agg == 'mean': nuisances = tuple(np.mean(nuisance_mc_variants, axis=0) for nuisance_mc_variants in zip(*all_nuisances)) elif self.mc_agg == 'median': nuisances = tuple(np.median(nuisance_mc_variants, axis=0) for nuisance_mc_variants in zip(*all_nuisances)) else: raise ValueError( "Parameter `mc_agg` must be one of {'mean', 'median'}. Got {}".format(self.mc_agg)) Y, T, X, W, Z, sample_weight, freq_weight, sample_var = (self._subinds_check_none(arr, fitted_inds) for arr in (Y, T, X, W, Z, sample_weight, freq_weight, sample_var)) nuisances = tuple([self._subinds_check_none(nuis, fitted_inds) for nuis in nuisances]) self._cached_values = CachedValues(nuisances=nuisances, Y=Y, T=T, X=X, W=W, Z=Z, sample_weight=sample_weight, freq_weight=freq_weight, sample_var=sample_var, groups=groups) if cache_values else None else: nuisances = self._cached_values.nuisances # _d_t is altered by fit nuisances to what prefit does. So we need to perform the same # alteration even when we only want to fit_final. if self.transformer is not None: self._d_t = (len(self.transformer.categories_[0]) - 1,) self._fit_final(Y=Y, T=self.transformer.transform(T.reshape((-1, 1))) if self.transformer is not None else T, X=X, W=W, Z=Z, nuisances=nuisances, sample_weight=sample_weight, freq_weight=freq_weight, sample_var=sample_var, groups=groups) return self @property def _illegal_refit_inference_methods(self): return (BootstrapInference,) def refit_final(self, inference=None): """ Estimate the counterfactual model using a new final model specification but with cached first stage results. In order for this to succeed, ``fit`` must have been called with ``cache_values=True``. This call will only refit the final model. This call we use the current setting of any parameters that change the final stage estimation. If any parameters that change how the first stage nuisance estimates has also been changed then it will have no effect. You need to call fit again to change the first stage estimation results. Parameters ---------- inference : inference method, optional The string or object that represents the inference method Returns ------- self : object This instance """ assert self._cached_values, "Refit can only be called if values were cached during the original fit" if isinstance(self._get_inference(inference), self._illegal_refit_inference_methods): raise ValueError("The chosen inference method does not allow only for model final re-fitting.") cached = self._cached_values kwargs = filter_none_kwargs( Y=cached.Y, T=cached.T, X=cached.X, W=cached.W, Z=cached.Z, sample_weight=cached.sample_weight, freq_weight=cached.freq_weight, sample_var=cached.sample_var, groups=cached.groups, ) _OrthoLearner.fit(self, **kwargs, cache_values=True, inference=inference, only_final=True, check_input=False) return self def _fit_nuisances(self, Y, T, X=None, W=None, Z=None, sample_weight=None, groups=None): # use a binary array to get stratified split in case of discrete treatment stratify = self.discrete_treatment or self.discrete_instrument strata = self._strata(Y, T, X=X, W=W, Z=Z, sample_weight=sample_weight, groups=groups) if strata is None: strata = T # always safe to pass T as second arg to split even if we're not actually stratifying if self.discrete_treatment: T = self.transformer.transform(reshape(T, (-1, 1))) if self.discrete_instrument: Z = self.z_transformer.transform(reshape(Z, (-1, 1))) if self.cv == 1: # special case, no cross validation folds = None else: splitter = check_cv(self.cv, [0], classifier=stratify) # if check_cv produced a new KFold or StratifiedKFold object, we need to set shuffle and random_state # TODO: ideally, we'd also infer whether we need a GroupKFold (if groups are passed) # however, sklearn doesn't support both stratifying and grouping (see # https://github.com/scikit-learn/scikit-learn/issues/13621), so for now the user needs to supply # their own object that supports grouping if they want to use groups. if splitter != self.cv and isinstance(splitter, (KFold, StratifiedKFold)): splitter.shuffle = True splitter.random_state = self._random_state all_vars = [var if np.ndim(var) == 2 else var.reshape(-1, 1) for var in [Z, W, X] if var is not None] to_split = np.hstack(all_vars) if all_vars else np.ones((T.shape[0], 1)) if groups is not None: if isinstance(splitter, (KFold, StratifiedKFold)): raise TypeError("Groups were passed to fit while using a KFold or StratifiedKFold splitter. " "Instead you must initialize this object with a splitter that can handle groups.") folds = splitter.split(to_split, strata, groups=groups) else: folds = splitter.split(to_split, strata) nuisances, fitted_models, fitted_inds, scores = _crossfit(self._ortho_learner_model_nuisance, folds, Y, T, X=X, W=W, Z=Z, sample_weight=sample_weight, groups=groups) return nuisances, fitted_models, fitted_inds, scores def _fit_final(self, Y, T, X=None, W=None, Z=None, nuisances=None, sample_weight=None, freq_weight=None, sample_var=None, groups=None): self._ortho_learner_model_final.fit(Y, T, **filter_none_kwargs(X=X, W=W, Z=Z, nuisances=nuisances, sample_weight=sample_weight, freq_weight=freq_weight, sample_var=sample_var, groups=groups)) self.score_ = None if hasattr(self._ortho_learner_model_final, 'score'): self.score_ = self._ortho_learner_model_final.score(Y, T, **filter_none_kwargs(X=X, W=W, Z=Z, nuisances=nuisances, sample_weight=sample_weight, groups=groups)) def const_marginal_effect(self, X=None): X, = check_input_arrays(X) self._check_fitted_dims(X) if X is None: return self._ortho_learner_model_final.predict() else: return self._ortho_learner_model_final.predict(X) const_marginal_effect.__doc__ = LinearCateEstimator.const_marginal_effect.__doc__ def const_marginal_effect_interval(self, X=None, *, alpha=0.05): X, = check_input_arrays(X) self._check_fitted_dims(X) return super().const_marginal_effect_interval(X, alpha=alpha) const_marginal_effect_interval.__doc__ = LinearCateEstimator.const_marginal_effect_interval.__doc__ def const_marginal_effect_inference(self, X=None): X, = check_input_arrays(X) self._check_fitted_dims(X) return super().const_marginal_effect_inference(X) const_marginal_effect_inference.__doc__ = LinearCateEstimator.const_marginal_effect_inference.__doc__ def effect_interval(self, X=None, *, T0=0, T1=1, alpha=0.05): X, T0, T1 = check_input_arrays(X, T0, T1) self._check_fitted_dims(X) return super().effect_interval(X, T0=T0, T1=T1, alpha=alpha) effect_interval.__doc__ = LinearCateEstimator.effect_interval.__doc__ def effect_inference(self, X=None, *, T0=0, T1=1): X, T0, T1 = check_input_arrays(X, T0, T1) self._check_fitted_dims(X) return super().effect_inference(X, T0=T0, T1=T1) effect_inference.__doc__ = LinearCateEstimator.effect_inference.__doc__ def score(self, Y, T, X=None, W=None, Z=None, sample_weight=None, groups=None): """ Score the fitted CATE model on a new data set. Generates nuisance parameters for the new data set based on the fitted nuisance models created at fit time. It uses the mean prediction of the models fitted by the different crossfit folds under different iterations. Then calls the score function of the model_final and returns the calculated score. The model_final model must have a score method. If model_final does not have a score method, then it raises an :exc:`.AttributeError` Parameters ---------- Y: (n, d_y) matrix or vector of length n Outcomes for each sample T: (n, d_t) matrix or vector of length n Treatments for each sample X: optional (n, d_x) matrix or None (Default=None) Features for each sample W: optional (n, d_w) matrix or None (Default=None) Controls for each sample Z: optional (n, d_z) matrix or None (Default=None) Instruments for each sample sample_weight: optional(n,) vector or None (Default=None) Weights for each samples groups: (n,) vector, optional All rows corresponding to the same group will be kept together during splitting. Returns ------- score : float or (array of float) The score of the final CATE model on the new data. Same type as the return type of the model_final.score method. """ if not hasattr(self._ortho_learner_model_final, 'score'): raise AttributeError("Final model does not have a score method!") Y, T, X, W, Z = check_input_arrays(Y, T, X, W, Z) self._check_fitted_dims(X) self._check_fitted_dims_w_z(W, Z) X, T = self._expand_treatments(X, T) if self.z_transformer is not None: Z = self.z_transformer.transform(reshape(Z, (-1, 1))) n_iters = len(self._models_nuisance) n_splits = len(self._models_nuisance[0]) # for each mc iteration for i, models_nuisances in enumerate(self._models_nuisance): # for each model under cross fit setting for j, mdl in enumerate(models_nuisances): nuisance_temp = mdl.predict(Y, T, **filter_none_kwargs(X=X, W=W, Z=Z, groups=groups)) if not isinstance(nuisance_temp, tuple): nuisance_temp = (nuisance_temp,) if i == 0 and j == 0: nuisances = [np.zeros((n_iters * n_splits,) + nuis.shape) for nuis in nuisance_temp] for it, nuis in enumerate(nuisance_temp): nuisances[it][i * n_iters + j] = nuis for it in range(len(nuisances)): nuisances[it] = np.mean(nuisances[it], axis=0) return self._ortho_learner_model_final.score(Y, T, nuisances=nuisances, **filter_none_kwargs(X=X, W=W, Z=Z, sample_weight=sample_weight, groups=groups)) @property def ortho_learner_model_final_(self): if not hasattr(self, '_ortho_learner_model_final'): raise AttributeError("Model is not fitted!") return self._ortho_learner_model_final @property def models_nuisance_(self): if not hasattr(self, '_models_nuisance'): raise AttributeError("Model is not fitted!") return self._models_nuisance
PypiClean
/OASYS1-ShadowOui-1.5.210.tar.gz/OASYS1-ShadowOui-1.5.210/orangecontrib/shadow/util/shadow_util.py
__author__ = 'labx' import os import random import sys import copy import numpy import xraylib import h5py try: from PyQt5.QtCore import QSettings from PyQt5.QtWidgets import QWidget, QGridLayout, QLabel from PyQt5.QtGui import QFont, QPalette, QColor except: pass from matplotlib.patches import FancyArrowPatch, ArrowStyle from scipy import optimize from numpy import asarray try: from oasys.widgets import gui except: pass from oasys.widgets import congruence from oasys.util.oasys_util import get_sigma, get_fwhm, get_average try: import matplotlib import matplotlib.pyplot as plt from matplotlib import cm from matplotlib import figure as matfig import pylab except ImportError: print(sys.exc_info()[1]) pass import Shadow.ShadowToolsPrivate as stp import scipy.constants as codata class ShadowCongruence(): @classmethod def checkEmptyBeam(cls, input_beam): if input_beam is None: return False elif not hasattr(input_beam._beam, "rays"): return False elif len(input_beam._beam.rays) == 0: return False else: return True @classmethod def checkGoodBeam(cls, input_beam): return len(input_beam._beam.rays[numpy.where(input_beam._beam.rays[:, 9] == 1)]) > 0 @classmethod def checkBraggFile(cls, file_name): file = open(file_name, "r") try: rows = file.readlines() if len(rows) < 10: raise Exception("Bragg file malformed, please check input") if "# Bragg version," in rows[0]: pass # version 2 else: first_row = ShadowCongruence.__get_numbers(rows[0].strip()) if not len(first_row) == 3: raise Exception("Bragg file malformed, please check input") second_row = ShadowCongruence.__get_numbers(rows[1].strip()) if not len(second_row) == 3: raise Exception("Bragg file malformed, please check input") if not (rows[2].strip().startswith("(") and \ rows[3].strip().startswith("(") and \ rows[4].strip().startswith("(") and \ rows[5].strip().startswith("(")): raise Exception("Bragg file malformed, please check input") seventh_row = ShadowCongruence.__get_numbers(rows[6].strip()) if not len(seventh_row) == 3: raise Exception("Bragg file malformed, please check input") eighth_row = ShadowCongruence.__get_numbers(rows[7].strip()) if not len(eighth_row) == 3: raise Exception("Bragg file malformed, please check input") nineth_row = ShadowCongruence.__get_numbers(rows[8].strip()) if not len(nineth_row) == 1: raise Exception("Bragg file malformed, please check input") except Exception as e: file.close() raise e @classmethod def checkPreReflFile(cls, file_name): file = open(file_name, "r") try: rows = file.readlines() if len(rows) < 3: raise Exception("PreRefl file malformed, please check input") first_row = ShadowCongruence.__get_numbers(rows[0].strip()) if not len(first_row) == 4: raise Exception("PreRefl file malformed, please check input") second_row = ShadowCongruence.__get_numbers(rows[1].strip()) if not len(second_row) == 1: raise Exception("PreRefl file malformed, please check input") try: elements = int(second_row[0]) except: raise Exception("PreRefl file malformed, please check input") if len(rows) != (elements*2) + 2: raise Exception("PreRefl file malformed, please check input") except Exception as e: file.close() raise e @classmethod def checkPreMLayerFile(cls, file_name): file = open(file_name, "r") try: rows = file.readlines() if len(rows) < 2: raise Exception("PreMLayer file malformed, please check input") first_row = ShadowCongruence.__get_numbers(rows[0].strip()) if not len(first_row) == 1: raise Exception("PreMLayer file malformed, please check input") try: elements = int(first_row[0]) except: raise Exception("PreRefl file malformed, please check input") second_row = ShadowCongruence.__get_numbers(rows[1].strip()) if not len(second_row) == int(elements): raise Exception("PreMLayer file malformed, please check input") try: separator_row = ShadowCongruence.__get_numbers(rows[2 + elements*3].strip()) if not len(separator_row) == 1: raise Exception("PreMLayer file malformed, please check input") except: raise Exception("PreRefl file malformed, please check input") next_row = ShadowCongruence.__get_numbers(rows[2 + elements*3 + 1].strip()) if not len(next_row) == 4: raise Exception("PreMLayer file malformed, please check input") except Exception as e: file.close() raise e @classmethod def check2ColumnFormatFile(cls, file_name, specific_name): try: if file_name.startswith('/'): values = numpy.loadtxt(os.path.abspath(file_name)) else: values = numpy.loadtxt(os.path.abspath(os.path.join(os.path.curdir, file_name))) except: raise Exception(specific_name + " file malformed (should be 2 or more columns of numbers, separated by spaces), please check input") if len(values) < 2: raise Exception(specific_name + " file malformed (should be 2 or more columns of numbers, separated by spaces), please check input") @classmethod def checkErrorProfileFile(cls, file_name): file = open(file_name, "r") try: rows = file.readlines() if len(rows) < 2: raise Exception("Surface Error file malformed, please check input") first_row = ShadowCongruence.__get_numbers(rows[0].strip()) if not len(first_row) == 2: raise Exception("Surface Error file malformed, please check input") n_x = int(first_row[0]) if n_x > 500: raise Exception("Malformed file: maximum allowed point in X direction is 500") except Exception as e: file.close() raise e @classmethod def __get_numbers(cls, string): values = string.strip().split(" ") numbers = [] for value in values: if not value == "": try: numbers.append(value) except: pass return numbers class ShadowStatisticData: intensity = 0.0 total_number_of_rays = 0 total_good_rays = 0 total_lost_rays = 0 def __init__(self, intensity = 0.0, total_number_of_rays = 0, total_good_rays = 0, total_lost_rays = 0): self.intensity = intensity self.total_number_of_rays = total_number_of_rays self.total_good_rays = total_good_rays self.total_lost_rays = total_lost_rays class ShadowHistoData(ShadowStatisticData): fwhm = 0.0 x_fwhm_i = 0.0 x_fwhm_f = 0.0 y_fwhm = 0.0 def __init__(self, intensity = 0.0, total_number_of_rays = 0, total_good_rays = 0, total_lost_rays = 0, fwhm = 0.0, x_fwhm_i = 0.0, x_fwhm_f = 0.0, y_fwhm = 0.0): super().__init__(intensity, total_number_of_rays, total_good_rays, total_lost_rays) self.fwhm = fwhm self.x_fwhm_i = x_fwhm_i self.x_fwhm_f = x_fwhm_f self.y_fwhm = y_fwhm class ShadowPlotData(ShadowStatisticData): fwhm_h = 0.0 fwhm_v = 0.0 def __init__(self, intensity = 0.0, total_number_of_rays = 0, total_good_rays = 0, total_lost_rays = 0, fwhm_h = 0.0, fwhm_v = 0.0): super().__init__(intensity, total_number_of_rays, total_good_rays, total_lost_rays) self.fwhm_h = fwhm_h self.fwhm_v = fwhm_v try: class ShadowPlot: _is_conversione_active = True ######################################################################################### # # FOR TEMPORARY USE: FIX AN ERROR IN PYMCA.PLOT.IMAGEWIEW # ######################################################################################### @classmethod def set_conversion_active(cls, is_active=True): ShadowPlot._is_conversione_active = is_active """Sample code to add 2D dataset saving as text to ImageView.""" ######################################################################################### # # WIDGET FOR DETAILED PLOT # ######################################################################################### class InfoBoxWidget(QWidget): intensity_field = "" flux_field = "" total_rays_field = "" total_good_rays_field = "" total_lost_rays_field = "" fwhm_h_field = "" fwhm_v_field = "" sigma_h_field = "" sigma_v_field = "" centroid_h_field = "" centroid_v_field = "" def __init__(self, x_scale_factor = 1.0, y_scale_factor = 1.0, is_2d=True): super(ShadowPlot.InfoBoxWidget, self).__init__() info_box_inner=gui.widgetBox(self, "Info") info_box_inner.setFixedHeight(518*y_scale_factor) info_box_inner.setFixedWidth(230*x_scale_factor) self.flux_box = gui.widgetBox(info_box_inner, "", addSpace=False, orientation="horizontal") self.flux = gui.lineEdit(self.flux_box, self, "flux_field", "\u03a6 [ph/s/0.1%BW]", tooltip="Flux", labelWidth=115, valueType=str, orientation="horizontal") self.flux_box.setVisible(False) self.intensity = gui.lineEdit(info_box_inner, self, "intensity_field", "Intensity", tooltip="Intensity", labelWidth=115, valueType=str, orientation="horizontal") self.total_rays = gui.lineEdit(info_box_inner, self, "total_rays_field", "Total Rays", tooltip="Total Rays", labelWidth=115, valueType=str, orientation="horizontal") self.total_good_rays = gui.lineEdit(info_box_inner, self, "total_good_rays_field", "Total Good Rays", tooltip="Total Good Rays", labelWidth=115, valueType=str, orientation="horizontal") self.total_lost_rays = gui.lineEdit(info_box_inner, self, "total_lost_rays_field", "Total Lost Rays", tooltip="Total Lost Rays", labelWidth=115, valueType=str, orientation="horizontal") label_box_1 = gui.widgetBox(info_box_inner, "", addSpace=False, orientation="horizontal") self.label_h = QLabel("FWHM ") self.label_h.setFixedWidth(115) palette = QPalette(self.label_h.palette()) palette.setColor(QPalette.Foreground, QColor('blue')) self.label_h.setPalette(palette) label_box_1.layout().addWidget(self.label_h) self.fwhm_h = gui.lineEdit(label_box_1, self, "fwhm_h_field", "", tooltip="FWHM", labelWidth=115, valueType=str, orientation="horizontal") if is_2d: label_box_2 = gui.widgetBox(info_box_inner, "", addSpace=False, orientation="horizontal") self.label_v = QLabel("FWHM ") self.label_v.setFixedWidth(115) palette = QPalette(self.label_v.palette()) palette.setColor(QPalette.Foreground, QColor('red')) self.label_v.setPalette(palette) label_box_2.layout().addWidget(self.label_v) self.fwhm_v = gui.lineEdit(label_box_2, self, "fwhm_v_field", "", tooltip="FWHM", labelWidth=115, valueType=str, orientation="horizontal") label_box_1 = gui.widgetBox(info_box_inner, "", addSpace=False, orientation="horizontal") self.label_s_h = QLabel("\u03c3 (s.d.)") self.label_s_h.setFixedWidth(115) palette = QPalette(self.label_s_h.palette()) palette.setColor(QPalette.Foreground, QColor('blue')) self.label_s_h.setPalette(palette) label_box_1.layout().addWidget(self.label_s_h) self.sigma_h = gui.lineEdit(label_box_1, self, "sigma_h_field", "", tooltip="Sigma", labelWidth=115, valueType=str, orientation="horizontal") if is_2d: label_box_2 = gui.widgetBox(info_box_inner, "", addSpace=False, orientation="horizontal") self.label_s_v = QLabel("\u03c3 (s.d.)") self.label_s_v.setFixedWidth(115) palette = QPalette(self.label_s_v.palette()) palette.setColor(QPalette.Foreground, QColor('red')) self.label_s_v.setPalette(palette) label_box_2.layout().addWidget(self.label_s_v) self.sigma_v = gui.lineEdit(label_box_2, self, "sigma_v_field", "", tooltip="Sigma", labelWidth=115, valueType=str, orientation="horizontal") label_box_1 = gui.widgetBox(info_box_inner, "", addSpace=False, orientation="horizontal") self.label_c_h = QLabel("centroid ") self.label_c_h.setFixedWidth(115) palette = QPalette(self.label_c_h.palette()) palette.setColor(QPalette.Foreground, QColor('blue')) self.label_c_h.setPalette(palette) label_box_1.layout().addWidget(self.label_c_h) self.centroid_h = gui.lineEdit(label_box_1, self, "centroid_h_field", "", tooltip="Centroid", labelWidth=115, valueType=str, orientation="horizontal") if is_2d: label_box_2 = gui.widgetBox(info_box_inner, "", addSpace=False, orientation="horizontal") self.label_c_v = QLabel("centroid ") self.label_c_v.setFixedWidth(115) palette = QPalette(self.label_c_v.palette()) palette.setColor(QPalette.Foreground, QColor('red')) self.label_c_v.setPalette(palette) label_box_2.layout().addWidget(self.label_c_v) self.centroid_v = gui.lineEdit(label_box_2, self, "centroid_v_field", "", tooltip="Sigma", labelWidth=115, valueType=str, orientation="horizontal") self.intensity.setReadOnly(True) font = QFont(self.intensity.font()) font.setBold(True) self.intensity.setFont(font) palette = QPalette(self.intensity.palette()) palette.setColor(QPalette.Text, QColor('dark blue')) palette.setColor(QPalette.Base, QColor(243, 240, 160)) self.intensity.setPalette(palette) self.flux.setReadOnly(True) font = QFont(self.flux.font()) font.setBold(True) self.flux.setFont(font) palette = QPalette(self.flux.palette()) palette.setColor(QPalette.Text, QColor('dark blue')) palette.setColor(QPalette.Base, QColor(243, 240, 160)) self.flux.setPalette(palette) self.total_rays.setReadOnly(True) font = QFont(self.total_rays.font()) font.setBold(True) self.total_rays.setFont(font) palette = QPalette(self.intensity.palette()) palette.setColor(QPalette.Text, QColor('dark blue')) palette.setColor(QPalette.Base, QColor(243, 240, 160)) self.total_rays.setPalette(palette) self.total_good_rays.setReadOnly(True) font = QFont(self.total_good_rays.font()) font.setBold(True) self.total_good_rays.setFont(font) palette = QPalette(self.total_good_rays.palette()) palette.setColor(QPalette.Text, QColor('dark blue')) palette.setColor(QPalette.Base, QColor(243, 240, 160)) self.total_good_rays.setPalette(palette) self.total_lost_rays.setReadOnly(True) font = QFont(self.total_lost_rays.font()) font.setBold(True) self.total_lost_rays.setFont(font) palette = QPalette(self.total_lost_rays.palette()) palette.setColor(QPalette.Text, QColor('dark blue')) palette.setColor(QPalette.Base, QColor(243, 240, 160)) self.total_lost_rays.setPalette(palette) self.fwhm_h.setReadOnly(True) font = QFont(self.fwhm_h.font()) font.setBold(True) self.fwhm_h.setFont(font) palette = QPalette(self.fwhm_h.palette()) palette.setColor(QPalette.Text, QColor('dark blue')) palette.setColor(QPalette.Base, QColor(243, 240, 160)) self.fwhm_h.setPalette(palette) self.sigma_h.setReadOnly(True) font = QFont(self.sigma_h.font()) font.setBold(True) self.sigma_h.setFont(font) palette = QPalette(self.sigma_h.palette()) palette.setColor(QPalette.Text, QColor('dark blue')) palette.setColor(QPalette.Base, QColor(243, 240, 160)) self.sigma_h.setPalette(palette) self.centroid_h.setReadOnly(True) font = QFont(self.centroid_h.font()) font.setBold(True) self.centroid_h.setFont(font) palette = QPalette(self.centroid_h.palette()) palette.setColor(QPalette.Text, QColor('dark blue')) palette.setColor(QPalette.Base, QColor(243, 240, 160)) self.centroid_h.setPalette(palette) if is_2d: self.fwhm_v.setReadOnly(True) font = QFont(self.fwhm_v.font()) font.setBold(True) self.fwhm_v.setFont(font) palette = QPalette(self.fwhm_v.palette()) palette.setColor(QPalette.Text, QColor('dark blue')) palette.setColor(QPalette.Base, QColor(243, 240, 160)) self.fwhm_v.setPalette(palette) self.sigma_v.setReadOnly(True) font = QFont(self.sigma_v.font()) font.setBold(True) self.sigma_v.setFont(font) palette = QPalette(self.sigma_v.palette()) palette.setColor(QPalette.Text, QColor('dark blue')) palette.setColor(QPalette.Base, QColor(243, 240, 160)) self.sigma_v.setPalette(palette) self.centroid_v.setReadOnly(True) font = QFont(self.centroid_v.font()) font.setBold(True) self.centroid_v.setFont(font) palette = QPalette(self.centroid_v.palette()) palette.setColor(QPalette.Text, QColor('dark blue')) palette.setColor(QPalette.Base, QColor(243, 240, 160)) self.centroid_v.setPalette(palette) def set_flux(self, flux=None): if flux is None: self.flux.setText("0.0") self.flux_box.setVisible(False) else: self.flux.setText('%.3E' % flux) self.flux_box.setVisible(True) def clear(self): self.intensity.setText("0.0") self.flux.setText("0.0") self.flux_box.setVisible(False) self.total_rays.setText("0") self.total_good_rays.setText("0") self.total_lost_rays.setText("0") self.fwhm_h.setText("0.0000") if hasattr(self, "fwhm_v"): self.fwhm_v.setText("0.0000") self.sigma_h.setText("0.0000") if hasattr(self, "sigma_v"): self.sigma_v.setText("0.0000") self.centroid_h.setText("0.0000") if hasattr(self, "centroid_v"): self.centroid_v.setText("0.0000") self.boundary_h.setText("") if hasattr(self, "boundary_v"): self.centroid_v.setText("") class DetailedHistoWidget(QWidget): def __init__(self, x_scale_factor = 1.0, y_scale_factor = 1.0): super(ShadowPlot.DetailedHistoWidget, self).__init__() self.plot_canvas = gui.plotWindow(roi=False, control=False, position=True, logScale=True, fit=True) self.plot_canvas.setDefaultPlotLines(True) self.plot_canvas.setActiveCurveColor(color='blue') self.plot_canvas.setMinimumWidth(590*x_scale_factor) self.plot_canvas.setMaximumWidth(590*x_scale_factor) self.info_box = ShadowPlot.InfoBoxWidget(x_scale_factor, y_scale_factor, is_2d=False) layout = QGridLayout() layout.addWidget( self.info_box, 0, 1, 1, 1) layout.addWidget(self.plot_canvas, 0, 0, 1, 1) layout.setColumnMinimumWidth(0, 600*x_scale_factor) layout.setColumnMinimumWidth(1, 230*x_scale_factor) self.setLayout(layout) def plot_histo(self, beam, col, nolost, xrange, ref, title, xtitle, ytitle, nbins = 100, xum="", conv=1.0, ticket_to_add=None, flux=None): ticket = beam.histo1(col, nbins=nbins, xrange=xrange, nolost=nolost, ref=ref) if ref in [24, 25]: ticket['intensity'] = beam.getshonecol(ref, nolost=nolost).sum() # TODO: check congruence between tickets if not ticket_to_add is None: last_ticket = copy.deepcopy(ticket) ticket['histogram'] += ticket_to_add['histogram'] ticket['histogram_path'] += ticket_to_add['histogram_path'] ticket['intensity'] += ticket_to_add['intensity'] ticket['nrays'] += ticket_to_add['nrays'] ticket['good_rays'] += ticket_to_add['good_rays'] ticket['fwhm'], ticket['fwhm_quote'], ticket['fwhm_coordinates'] = get_fwhm(ticket['histogram'], ticket['bin_center']) ticket['sigma'] = get_sigma(ticket['histogram'], ticket['bin_center']) ticket['centroid'] = get_average(ticket['histogram'], ticket['bin_center']) factor=ShadowPlot.get_factor(col, conv) if ref != 0 and not ytitle is None: ytitle = ytitle + ' weighted by ' + ShadowPlot.get_shadow_label(ref) histogram = ticket['histogram_path'] bins = ticket['bin_path']*factor self.plot_canvas.addCurve(bins, histogram, title, symbol='', color='blue', replace=True) #'+', '^', ',' if not xtitle is None: self.plot_canvas.setGraphXLabel(xtitle) if not ytitle is None: self.plot_canvas.setGraphYLabel(ytitle) if not title is None: self.plot_canvas.setGraphTitle(title) self.plot_canvas.setInteractiveMode(mode='zoom') if ticket['fwhm'] == None: ticket['fwhm'] = 0.0 if not ticket_to_add is None: if last_ticket['fwhm'] == None: last_ticket['fwhm'] = 0.0 n_patches = len(self.plot_canvas._backend.ax.patches) if (n_patches > 0): self.plot_canvas._backend.ax.patches.remove(self.plot_canvas._backend.ax.patches[n_patches-1]) if not ticket['fwhm'] == 0.0: x_fwhm_i, x_fwhm_f = ticket['fwhm_coordinates'] x_fwhm_i, x_fwhm_f = x_fwhm_i*factor, x_fwhm_f*factor y_fwhm = ticket['fwhm_quote'] self.plot_canvas._backend.ax.add_patch(FancyArrowPatch([x_fwhm_i, y_fwhm], [x_fwhm_f, y_fwhm], arrowstyle=ArrowStyle.CurveAB(head_width=2, head_length=4), color='b', linewidth=1.5)) if min(histogram) < 0: self.plot_canvas.setGraphYLimits(min(histogram), max(histogram)) else: self.plot_canvas.setGraphYLimits(0, max(histogram)) self.plot_canvas.replot() self.info_box.intensity.setText("{:4.3f}".format(ticket['intensity'])) self.info_box.set_flux(flux) self.info_box.total_rays.setText(str(ticket['nrays'])) self.info_box.total_good_rays.setText(str(ticket['good_rays'])) self.info_box.total_lost_rays.setText(str(ticket['nrays']-ticket['good_rays'])) self.info_box.fwhm_h.setText("{:5.4f}".format(ticket['fwhm']*factor)) self.info_box.label_h.setText("FWHM " + xum) self.info_box.sigma_h.setText("{:5.4f}".format(ticket['sigma']*factor)) self.info_box.label_s_h.setText("\u03c3 " + xum) self.info_box.centroid_h.setText("{:5.4f}".format(ticket['centroid']*factor)) self.info_box.label_c_h.setText("centroid " + xum) if not ticket_to_add is None: return ticket, last_ticket else: return ticket, None def clear(self): self.plot_canvas.clear() self.info_box.clear() class DetailedPlotWidget(QWidget): def __init__(self, x_scale_factor = 1.0, y_scale_factor = 1.0): super(ShadowPlot.DetailedPlotWidget, self).__init__() self.x_scale_factor = x_scale_factor self.y_scale_factor = y_scale_factor self.plot_canvas = gui.imageWiew(parent=self) self.plot_canvas.setColormap({"name":"temperature", "normalization":"linear", "autoscale":True, "vmin":0, "vmax":0, "colors":256}) self.plot_canvas.setMinimumWidth(590 * x_scale_factor) self.plot_canvas.setMaximumWidth(590 * y_scale_factor) self.info_box = ShadowPlot.InfoBoxWidget(x_scale_factor, y_scale_factor) layout = QGridLayout() layout.addWidget(self.info_box, 0, 1, 1, 1) layout.addWidget(self.plot_canvas, 0, 0, 1, 1) layout.setColumnMinimumWidth(0, 600*x_scale_factor) layout.setColumnMinimumWidth(1, 230*x_scale_factor) self.setLayout(layout) def plot_xy(self, beam, var_x, var_y, title, xtitle, ytitle, xrange=None, yrange=None, nolost=1, nbins=100, nbins_h=None, nbins_v=None, xum="", yum="", conv=1.0, ref=23, is_footprint=False, ticket_to_add=None, flux=None): matplotlib.rcParams['axes.formatter.useoffset']='False' if nbins_h == None: nbins_h = nbins if nbins_v == None: nbins_v = nbins ticket = beam.histo2(var_x, var_y, nbins=nbins, nbins_h=nbins_h, nbins_v=nbins_v, xrange=xrange, yrange=yrange, nolost=nolost, ref=ref) if ref in [24, 25]: ticket['intensity'] = beam.getshonecol(ref, nolost=nolost).sum() # TODO: check congruence between tickets if not ticket_to_add is None: last_ticket = copy.deepcopy(ticket) ticket['histogram'] += ticket_to_add['histogram'] ticket['histogram_h'] += ticket_to_add['histogram_h'] ticket['histogram_v'] += ticket_to_add['histogram_v'] ticket['intensity'] += ticket_to_add['intensity'] ticket['nrays'] += ticket_to_add['nrays'] ticket['good_rays'] += ticket_to_add['good_rays'] ticket['fwhm_h'], ticket['fwhm_quote_h'], ticket['fwhm_coordinates_h'] = get_fwhm(ticket['histogram_h'], ticket['bin_h_center']) ticket['fwhm_v'], ticket['fwhm_quote_v'], ticket['fwhm_coordinates_v'] = get_fwhm(ticket['histogram_v'], ticket['bin_v_center']) ticket['sigma_h'] = get_sigma(ticket['histogram_h'], ticket['bin_h_center']) ticket['sigma_v'] = get_sigma(ticket['histogram_v'], ticket['bin_v_center']) ticket['centroid_h'] = get_average(ticket['histogram_h'], ticket['bin_h_center']) ticket['centroid_v'] = get_average(ticket['histogram_v'], ticket['bin_v_center']) if is_footprint: factor1 = 1.0 factor2 = 1.0 else: factor1=ShadowPlot.get_factor(var_x, conv) factor2=ShadowPlot.get_factor(var_y, conv) xx = ticket['bin_h_edges'] yy = ticket['bin_v_edges'] xmin, xmax = xx.min(), xx.max() ymin, ymax = yy.min(), yy.max() origin = (xmin*factor1, ymin*factor2) scale = (abs((xmax-xmin)/nbins_h)*factor1, abs((ymax-ymin)/nbins_v)*factor2) self.plot_canvas.setColormap({"name":QSettings().value("output/shadow-default-colormap", "temperature", str), "normalization":"linear", "autoscale":True, "vmin":0, "vmax":0, "colors":256}) # PyMCA inverts axis!!!! histogram must be calculated reversed self.plot_canvas.setImage(ticket['histogram'].T, origin=origin, scale=scale) if xtitle is None: xtitle=ShadowPlot.get_shadow_label(var_x) if ytitle is None: ytitle=ShadowPlot.get_shadow_label(var_y) self.plot_canvas.setGraphXLabel(xtitle) self.plot_canvas.setGraphYLabel(ytitle) self.plot_canvas.setGraphTitle(title) self.plot_canvas._histoHPlot.setGraphYLabel('A.U.') self.plot_canvas._histoHPlot._backend.ax.xaxis.get_label().set_color('white') self.plot_canvas._histoHPlot._backend.ax.xaxis.get_label().set_fontsize(1) for label in self.plot_canvas._histoHPlot._backend.ax.xaxis.get_ticklabels(): label.set_color('white') label.set_fontsize(1) self.plot_canvas._histoVPlot.setGraphXLabel('A.U.') self.plot_canvas._histoVPlot._backend.ax.yaxis.get_label().set_color('white') self.plot_canvas._histoVPlot._backend.ax.yaxis.get_label().set_fontsize(1) for label in self.plot_canvas._histoVPlot._backend.ax.yaxis.get_ticklabels(): label.set_color('white') label.set_fontsize(1) if ticket['fwhm_h'] == None: ticket['fwhm_h'] = 0.0 if ticket['fwhm_v'] == None: ticket['fwhm_v'] = 0.0 if not ticket_to_add is None: if last_ticket['fwhm_h'] == None: last_ticket['fwhm_h'] = 0.0 if last_ticket['fwhm_v'] == None: last_ticket['fwhm_v'] = 0.0 n_patches = len(self.plot_canvas._histoHPlot._backend.ax.patches) if (n_patches > 0): self.plot_canvas._histoHPlot._backend.ax.patches.remove(self.plot_canvas._histoHPlot._backend.ax.patches[n_patches-1]) if not ticket['fwhm_h'] == 0.0: x_fwhm_i, x_fwhm_f = ticket['fwhm_coordinates_h'] x_fwhm_i, x_fwhm_f = x_fwhm_i*factor1, x_fwhm_f*factor1 y_fwhm = ticket['fwhm_quote_h'] self.plot_canvas._histoHPlot._backend.ax.add_patch(FancyArrowPatch([x_fwhm_i, y_fwhm], [x_fwhm_f, y_fwhm], arrowstyle=ArrowStyle.CurveAB(head_width=2, head_length=4), color='b', linewidth=1.5)) n_patches = len(self.plot_canvas._histoVPlot._backend.ax.patches) if (n_patches > 0): self.plot_canvas._histoVPlot._backend.ax.patches.remove(self.plot_canvas._histoVPlot._backend.ax.patches[n_patches-1]) if not ticket['fwhm_v'] == 0.0: y_fwhm_i, y_fwhm_f = ticket['fwhm_coordinates_v'] y_fwhm_i, y_fwhm_f = y_fwhm_i*factor2, y_fwhm_f*factor2 x_fwhm = ticket['fwhm_quote_v'] self.plot_canvas._histoVPlot._backend.ax.add_patch(FancyArrowPatch([x_fwhm, y_fwhm_i], [x_fwhm, y_fwhm_f], arrowstyle=ArrowStyle.CurveAB(head_width=2, head_length=4), color='r', linewidth=1.5)) self.plot_canvas._histoHPlot.replot() self.plot_canvas._histoVPlot.replot() self.plot_canvas.replot() self.info_box.intensity.setText("{:4.3f}".format(ticket['intensity'])) self.info_box.set_flux(flux) self.info_box.total_rays.setText(str(ticket['nrays'])) self.info_box.total_good_rays.setText(str(ticket['good_rays'])) self.info_box.total_lost_rays.setText(str(ticket['nrays']-ticket['good_rays'])) self.info_box.fwhm_h.setText("{:5.4f}".format(ticket['fwhm_h'] * factor1)) self.info_box.fwhm_v.setText("{:5.4f}".format(ticket['fwhm_v'] * factor2)) self.info_box.label_h.setText("FWHM " + xum) self.info_box.label_v.setText("FWHM " + yum) self.info_box.sigma_h.setText("{:5.4f}".format(ticket['sigma_h'] * factor1)) self.info_box.sigma_v.setText("{:5.4f}".format(ticket['sigma_v'] * factor2)) self.info_box.label_s_h.setText("\u03c3 " + xum) self.info_box.label_s_v.setText("\u03c3 " + yum) self.info_box.centroid_h.setText("{:5.4f}".format(ticket['centroid_h'] * factor1)) self.info_box.centroid_v.setText("{:5.4f}".format(ticket['centroid_v'] * factor2)) self.info_box.label_c_h.setText("centroid " + xum) self.info_box.label_c_v.setText("centroid " + yum) if not ticket_to_add is None: return ticket, last_ticket else: return ticket, None def clear(self): self.plot_canvas.clear() self.plot_canvas._histoHPlot.clear() self.plot_canvas._histoVPlot.clear() self.plot_canvas._histoHPlot._backend.ax.xaxis.get_label().set_color('white') self.plot_canvas._histoHPlot._backend.ax.xaxis.get_label().set_fontsize(1) for label in self.plot_canvas._histoHPlot._backend.ax.xaxis.get_ticklabels(): label.set_color('white') label.set_fontsize(1) self.plot_canvas._histoVPlot._backend.ax.yaxis.get_label().set_color('white') self.plot_canvas._histoVPlot._backend.ax.yaxis.get_label().set_fontsize(1) for label in self.plot_canvas._histoVPlot._backend.ax.yaxis.get_ticklabels(): label.set_color('white') label.set_fontsize(1) self.plot_canvas._histoHPlot.setGraphYLabel('A.U.') self.plot_canvas._histoVPlot.setGraphXLabel('A.U.') self.plot_canvas._histoHPlot.replot() self.plot_canvas._histoVPlot.replot() self.info_box.clear() ######################################################################################### @classmethod def plotxy_preview(cls, plot_window, beam, var_x, var_y, nolost=0, title='PLOTXY', xtitle=None, ytitle=None, conv=1.0, is_footprint=False): matplotlib.rcParams['axes.formatter.useoffset']='False' col1 = beam.getshonecol(var_x, nolost=nolost) col2 = beam.getshonecol(var_y, nolost=nolost) if is_footprint: factor1 = 1.0 factor2 = 1.0 else: factor1 = ShadowPlot.get_factor(var_x, conv) factor2 = ShadowPlot.get_factor(var_y, conv) if xtitle is None: xtitle=ShadowPlot.get_shadow_label(var_x) if ytitle is None: ytitle=ShadowPlot.get_shadow_label(var_y) plot_window.addCurve(col1*factor1, col2*factor2, title, symbol='.', color='blue', replace=True) #'+', '^', ',' if not xtitle is None: plot_window.setGraphXLabel(xtitle) if not ytitle is None: plot_window.setGraphYLabel(ytitle) if not title is None: plot_window.setGraphTitle(title) plot_window.setInteractiveMode(mode='zoom') @classmethod def plot_histo_preview(cls, plot_window, beam, col, nolost, ref, title, xtitle, ytitle, conv=1.0): matplotlib.rcParams['axes.formatter.useoffset']='False' factor=ShadowPlot.get_factor(col, conv) ticket = beam.histo1(col, nbins=100, xrange=None, nolost=nolost, ref=ref) if ref != 0 and not ytitle is None: ytitle = ytitle + ' weighted by ' + ShadowPlot.get_shadow_label(ref) histogram = ticket['histogram_path'] bins = ticket['bin_path']*factor plot_window.addCurve(bins, histogram, title, symbol='', color='blue', replace=True) #'+', '^', ',' if not xtitle is None: plot_window.setGraphXLabel(xtitle) if not ytitle is None: plot_window.setGraphYLabel(ytitle) if not title is None: plot_window.setGraphTitle(title) plot_window.setInteractiveMode(mode='zoom') if min(histogram) < 0: plot_window.setGraphYLimits(min(histogram), max(histogram)) else: plot_window.setGraphYLimits(0, max(histogram)) plot_window.replot() @classmethod def get_factor(cls, var, conv): factor = 1.0 if ShadowPlot._is_conversione_active: if var == 1 or var == 2 or var == 3: factor = 1e4*conv # cm to micron elif var == 4 or var == 5 or var == 6: factor = 1e6 # rad to urad return factor @classmethod def get_shadow_label(cls, var): return (stp.getLabel(var-1))[0] ######################################################################################### # # SAVE/LOAD FILES in HDF5 Format # ######################################################################################### class PlotXYHdf5File(h5py.File): def __init__(self, file_name, mode="w"): try: super(ShadowPlot.PlotXYHdf5File, self).__init__(name=file_name, mode=mode) except OSError as e: if "already open" in str(e) and mode=="w": super(ShadowPlot.PlotXYHdf5File, self).__init__(name=file_name, mode="a") self.close() super(ShadowPlot.PlotXYHdf5File, self).__init__(name=file_name, mode="w") if mode != "r": self.coordinates = self.create_group("coordinates") self.plots = self.create_group("xy_plots") self.additional_data = self.create_group("additional_data") self.last_plot = self.plots.create_group("last_plot") self.has_last_plot = False self.has_coordinate = False self.attrs["default"] = "coordinates/X" self.attrs["file_name"] = file_name self.attrs["file_time"] = time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime()) self.attrs["creator"] = "PlotXYHdf5File.__init__" self.attrs["code"] = "ShadowOui" self.attrs["HDF5_Version"] = h5py.version.hdf5_version self.attrs["h5py_version"] = h5py.version.version def get_last_plot(self, dataset_name="intensity"): return self.get_plot_xy(dataset_name=dataset_name) def get_coordinates(self): bin_h_center = self["coordinates/X"][()] h_label = self["coordinates"].attrs["x_label"] bin_v_center = self["coordinates/Y"][()] v_label = self["coordinates"].attrs["y_label"] return bin_h_center, bin_v_center, h_label, v_label def get_plot_xy(self, plot_name="last_plot", dataset_name="intensity"): histogram = self["/xy_plots/" + plot_name + "/" + dataset_name][()] histogram_h = self["/xy_plots/" + plot_name + "/histogram_h"][()] histogram_v = self["/xy_plots/" + plot_name + "/histogram_v"][()] return histogram, histogram_h, histogram_v, self["/xy_plots/" + plot_name].attrs def write_coordinates(self, ticket): if not self.has_coordinate: self.x = self.coordinates.create_dataset("X", data=ticket["bin_h_center"]) self.y = self.coordinates.create_dataset("Y", data=ticket["bin_v_center"]) self.has_coordinate = True else: self.x[...] = ticket["bin_h_center"] self.y[...] = ticket["bin_v_center"] try: self.coordinates.attrs["x_label"] = ShadowPlot.get_shadow_label(ticket["col_h"]) self.coordinates.attrs["y_label"] = ShadowPlot.get_shadow_label(ticket["col_v"]) except: self.coordinates.attrs["x_label"] = ticket["h_label"] self.coordinates.attrs["y_label"] = ticket["v_label"] def add_plot_xy(self, ticket, plot_name="last_plot", dataset_name="intensity", attributes={}): if plot_name is None or plot_name.strip() == "" or plot_name.strip() == "last_plot": if not self.has_last_plot: self.lp_histogram = self.last_plot.create_dataset(dataset_name, data=ticket['histogram']) self.lp_histogram_h = self.last_plot.create_dataset("histogram_h", data=ticket['histogram_h']) self.lp_histogram_v = self.last_plot.create_dataset("histogram_v", data=ticket['histogram_v']) self.has_last_plot = True else: if self.lp_histogram.name != "/xy_plots/last_plot/" + dataset_name: self.last_plot.move(self.lp_histogram.name, "/xy_plots/last_plot/" + dataset_name) self.lp_histogram[...] = ticket['histogram'] self.lp_histogram_h[...] = ticket['histogram_h'] self.lp_histogram_v[...] = ticket['histogram_v'] self.last_plot.attrs["intensity"] = ticket["intensity"] self.last_plot.attrs["total_rays"] = ticket["nrays"] self.last_plot.attrs["good_rays"] = ticket["good_rays"] self.last_plot.attrs["lost_rays"] = ticket["nrays"]-ticket["good_rays"] if not attributes is None: for key in attributes.keys(): self.last_plot.attrs[key] = attributes[key] else: plot = self.plots.create_group(plot_name) plot.create_dataset(dataset_name, data=ticket['histogram']) plot.create_dataset("histogram_h", data=ticket['histogram_h']) plot.create_dataset("histogram_v", data=ticket['histogram_v']) plot.attrs["intensity"] = ticket["intensity"] plot.attrs["total_rays"] = ticket["nrays"] plot.attrs["good_rays"] = ticket["good_rays"] plot.attrs["lost_rays"] = ticket["nrays"]-ticket["good_rays"] if not attributes is None: for key in attributes.keys(): plot.attrs[key] = attributes[key] def add_attribute(self, attribute_name, attribute_value, dataset_name=None): if not dataset_name is None: self[dataset_name].attrs[attribute_name] = attribute_value else: self.attrs[attribute_name] = attribute_value def get_attribute(self, attribute_name, dataset_name=None): if not dataset_name is None: return self[dataset_name].attrs[attribute_name] else: return self.attrs[attribute_name] class HistogramHdf5File(h5py.File): def __init__(self, file_name, mode="w"): super(ShadowPlot.HistogramHdf5File, self).__init__(name=file_name, mode=mode) self.coordinates = self.create_group("coordinates") self.plots = self.create_group("histogram_plots") self.last_plot = self.plots.create_group("last_plot") self.has_last_plot = False self.has_coordinate = False self.attrs["default"] = "coordinates/X" self.attrs["file_name"] = file_name self.attrs["file_time"] = time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime()) self.attrs["creator"] = "PlotXYHdf5File.__init__" self.attrs["code"] = "ShadowOui" self.attrs["HDF5_Version"] = h5py.version.hdf5_version self.attrs["h5py_version"] = h5py.version.version def write_coordinates(self, ticket): if not self.has_coordinate: self.x = self.coordinates.create_dataset("X", data=ticket["bin_center"]) self.has_coordinate = True else: self.x[...] = ticket["bin_center"] self.coordinates.attrs["x_label"] = ShadowPlot.get_shadow_label(ticket["col"]) def add_histogram(self, ticket, plot_name="last_plot", dataset_name="intensity", attributes={}): if plot_name is None or plot_name.strip() == "" or plot_name.strip() == "last_plot": if not self.has_last_plot: self.lp_histogram = self.last_plot.create_dataset(dataset_name, data=ticket['histogram']) self.has_last_plot = True else: if self.lp_histogram.name != "/histogram_plots/last_plot/" + dataset_name: self.last_plot.move(self.lp_histogram.name, "/histogram_plots/last_plot/" + dataset_name) self.lp_histogram[...] = ticket['histogram'] self.last_plot.attrs["intensity"] = ticket["intensity"] self.last_plot.attrs["total_rays"] = ticket["nrays"] self.last_plot.attrs["good_rays"] = ticket["good_rays"] self.last_plot.attrs["lost_rays"] = ticket["nrays"]-ticket["good_rays"] if not attributes is None: for key in attributes.keys(): self.last_plot.attrs[key] = attributes[key] else: plot = self.plots.create_group(plot_name) plot.create_dataset(dataset_name, data=ticket['histogram']) plot.attrs["intensity"] = ticket["intensity"] plot.attrs["total_rays"] = ticket["nrays"] plot.attrs["good_rays"] = ticket["good_rays"] plot.attrs["lost_rays"] = ticket["nrays"]-ticket["good_rays"] if not attributes is None: for key in attributes.keys(): plot.attrs[key] = attributes[key] except: pass from scipy.interpolate import RectBivariateSpline class ShadowPreProcessor: @classmethod def read_surface_error_file(cls, filename): file = open(congruence.checkFile(filename), "r") rows = file.readlines() dimensions = rows[0].split() n_x = int(dimensions[0]) n_y = int(dimensions[1]) if n_x > 500: raise Exception("Malformed file: maximum allowed point in X direction is 500") x_coords = numpy.zeros(0) y_coords = numpy.zeros(0) z_values = numpy.zeros((n_x, n_y)) index = 1 dim_y_row = len(rows[index].split()) is_ycoord = True first_x_row_index = 0 while(is_ycoord): y_values = rows[index].split() if len(y_values) == dim_y_row: for y_value in y_values: y_coords = numpy.append(y_coords, float(y_value)) else: first_x_row_index = index is_ycoord = False index +=1 first_x_row = rows[first_x_row_index].split() if len(first_x_row) == 2: x_index = 0 z_index = 0 for index in range(first_x_row_index, len(rows)): if z_index == 0: values = rows[index].split() x_coords = numpy.append(x_coords, float(values[0])) z_value = float(values[1]) else: z_value = float(rows[index]) z_values[x_index, z_index] = z_value z_index += 1 if z_index == n_y: x_index += 1 z_index = 0 else: x_rows = [] for index in range(2, len(rows)): x_row = rows[index].split("\t") if len(x_row) != 1 + n_y: x_row = rows[index].split() if len(x_row) != 1 + n_y: raise Exception("Malformed file: check format") x_rows.append(x_row) for x_index in range(0, len(x_rows)): x_coords = numpy.append(x_coords, float(x_rows[x_index][0])) for z_index in range(0, len(x_rows[x_index]) - 1): z_value = float(x_rows[x_index][z_index + 1]) z_values[x_index, z_index] = z_value return x_coords, y_coords, z_values @classmethod def apply_user_diffraction_profile(cls, crystal, h, k, l, asymmetry_angle, file_diffraction_profile, input_beam): values = numpy.loadtxt(os.path.abspath(os.path.curdir + "/angle." + ("0" + str(input_beam._oe_number) if (input_beam._oe_number < 10) else str(input_beam._oe_number)))) beam_incident_angles = values[:, 1] beam_wavelengths = ShadowPhysics.getWavelengthFromShadowK(input_beam._beam.rays[:, 10]) d_spacing = xraylib.Crystal_dSpacing(xraylib.Crystal_GetCrystal(crystal), h, k, l) bragg_angles = numpy.degrees(numpy.arcsin(0.5*beam_wavelengths/d_spacing)) diffraction_angles = 90 - (bragg_angles - asymmetry_angle) delta_thetas = diffraction_angles - beam_incident_angles values = numpy.loadtxt(os.path.abspath(file_diffraction_profile) if file_diffraction_profile.startswith('/') else os.path.abspath(os.path.curdir + "/" + file_diffraction_profile)) crystal_delta_thetas = values[:, 0] crystal_reflectivities_s = values[:, 1] interpolated_weight_s = numpy.sqrt(numpy.interp(delta_thetas, crystal_delta_thetas, crystal_reflectivities_s, left=crystal_reflectivities_s[0], right=crystal_reflectivities_s[-1])) if values.shape[1] == 2: interpolated_weight_p = interpolated_weight_s elif values.shape[1] >= 3: crystal_reflectivities_p = values[:, 2] interpolated_weight_p = numpy.sqrt(numpy.interp(delta_thetas, crystal_delta_thetas, crystal_reflectivities_p, left=crystal_reflectivities_p[0], right=crystal_reflectivities_p[-1])) output_beam = input_beam.duplicate() output_beam._beam.rays[:, 6] = output_beam._beam.rays[:, 6] * interpolated_weight_s output_beam._beam.rays[:, 7] = output_beam._beam.rays[:, 7] * interpolated_weight_s output_beam._beam.rays[:, 8] = output_beam._beam.rays[:, 8] * interpolated_weight_s output_beam._beam.rays[:, 15] = output_beam._beam.rays[:, 15] * interpolated_weight_p output_beam._beam.rays[:, 16] = output_beam._beam.rays[:, 16] * interpolated_weight_p output_beam._beam.rays[:, 17] = output_beam._beam.rays[:, 17] * interpolated_weight_p return output_beam @classmethod def apply_user_reflectivity(cls, file_type, angle_units, energy_units, file_reflectivity, input_beam): if file_type == 0: # angle vs refl. values = numpy.loadtxt(os.path.abspath(os.path.curdir + "/angle." + ("0" + str(input_beam._oe_number) if (input_beam._oe_number < 10) else str(input_beam._oe_number)))) beam_incident_angles = 90.0 - values[:, 1] values = numpy.loadtxt(os.path.abspath(file_reflectivity) if file_reflectivity.startswith('/') else os.path.abspath(os.path.curdir + "/" + file_reflectivity)) mirror_grazing_angles = values[:, 0] mirror_reflectivities = values[:, 1] if mirror_grazing_angles[-1] < mirror_grazing_angles[0]: # XOPPY MLayer gives angles in descendent order mirror_grazing_angles = values[:, 0][::-1] mirror_reflectivities = values[:, 1][::-1] if angle_units == 0: mirror_grazing_angles = numpy.degrees(1e-3 * mirror_grazing_angles) # mrad to deg interpolated_weight_s = numpy.sqrt(numpy.interp(beam_incident_angles, mirror_grazing_angles, mirror_reflectivities, left=mirror_reflectivities[0], right=mirror_reflectivities[-1])) interpolated_weight_p = interpolated_weight_s elif file_type == 1: # Energy vs Refl. beam_energies = ShadowPhysics.getEnergyFromShadowK(input_beam._beam.rays[:, 10]) values = numpy.loadtxt(os.path.abspath(os.path.abspath(file_reflectivity) if file_reflectivity.startswith('/') else os.path.abspath(os.path.curdir + "/" + file_reflectivity))) mirror_energies = values[:, 0] mirror_reflectivities = values[:, 1] if energy_units == 1: mirror_energies *= 1e3 # KeV to eV interpolated_weight_s = numpy.sqrt(numpy.interp(beam_energies, mirror_energies, mirror_reflectivities, left=mirror_reflectivities[0], right=mirror_reflectivities[-1])) interpolated_weight_p = interpolated_weight_s elif file_type == 2: # 2D Energy vs Angle vs Reflectivity values = numpy.loadtxt(os.path.abspath(os.path.curdir + "/angle." + ("0" + str(input_beam._oe_number) if (input_beam._oe_number < 10) else str(input_beam._oe_number)))) beam_incident_angles = 90.0 - values[:, 1] beam_energies = ShadowPhysics.getEnergyFromShadowK(input_beam._beam.rays[:, 10]) values = numpy.loadtxt(os.path.abspath(os.path.abspath(file_reflectivity) if file_reflectivity.startswith('/') else os.path.abspath(os.path.curdir + "/" + file_reflectivity))) mirror_energies = values[:, 0] mirror_grazing_angles = values[:, 1] mirror_energies = numpy.unique(mirror_energies) mirror_grazing_angles = numpy.unique(mirror_grazing_angles) if angle_units == 0: mirror_grazing_angles = numpy.degrees(1e-3 * mirror_grazing_angles) if energy_units == 1: mirror_energies *= 1e3 # KeV to eV def get_interpolator_weight_2D(mirror_energies, mirror_grazing_angles, mirror_reflectivities): mirror_reflectivities = numpy.reshape(mirror_reflectivities, (mirror_energies.shape[0], mirror_grazing_angles.shape[0])) interpolator = RectBivariateSpline(mirror_energies, mirror_grazing_angles, mirror_reflectivities, kx=2, ky=2) interpolated_weight = numpy.zeros(beam_energies.shape[0]) for energy, angle, i in zip(beam_energies, beam_incident_angles, range(interpolated_weight.shape[0])): interpolated_weight[i] = numpy.sqrt(interpolator(energy, angle)) interpolated_weight[numpy.where(numpy.isnan(interpolated_weight))] = 0.0 return interpolated_weight if values.shape[1] == 3: mirror_reflectivities = values[:, 2] interpolated_weight_s = get_interpolator_weight_2D(mirror_energies, mirror_grazing_angles, mirror_reflectivities) interpolated_weight_p = interpolated_weight_s elif values.shape[1] == 4: mirror_reflectivities_s = values[:, 2] mirror_reflectivities_p = values[:, 3] interpolated_weight_s = get_interpolator_weight_2D(mirror_energies, mirror_grazing_angles, mirror_reflectivities_s) interpolated_weight_p = get_interpolator_weight_2D(mirror_energies, mirror_grazing_angles, mirror_reflectivities_p) else: raise ValueError("User input is inconsistent: not a 2D reflectivity profile") output_beam = input_beam.duplicate() output_beam._beam.rays[:, 6] = output_beam._beam.rays[:, 6] * interpolated_weight_s output_beam._beam.rays[:, 7] = output_beam._beam.rays[:, 7] * interpolated_weight_s output_beam._beam.rays[:, 8] = output_beam._beam.rays[:, 8] * interpolated_weight_s output_beam._beam.rays[:, 15] = output_beam._beam.rays[:, 15] * interpolated_weight_p output_beam._beam.rays[:, 16] = output_beam._beam.rays[:, 16] * interpolated_weight_p output_beam._beam.rays[:, 17] = output_beam._beam.rays[:, 17] * interpolated_weight_p return output_beam @classmethod def apply_user_grating_efficiency(cls, grating_file_efficiency, input_beam): beam_energies = ShadowPhysics.getEnergyFromShadowK(input_beam._beam.rays[:, 10]) values = numpy.loadtxt(os.path.abspath(os.path.abspath(grating_file_efficiency) if grating_file_efficiency.startswith('/') else os.path.abspath(os.path.curdir + "/" + grating_file_efficiency))) grating_energies = values[:, 0] grating_efficiencies_s = values[:, 1] interpolated_weight_s = numpy.sqrt(numpy.interp(beam_energies, grating_energies, grating_efficiencies_s, left=grating_efficiencies_s[0], right=grating_efficiencies_s[-1])) if values.shape[1] == 2: interpolated_weight_p = interpolated_weight_s elif values.shape[1] >= 3: grating_efficiencies_p = values[:, 2] interpolated_weight_p = numpy.sqrt(numpy.interp(beam_energies, grating_energies, grating_efficiencies_p, left=grating_efficiencies_p[0], right=grating_efficiencies_p[-1])) output_beam = input_beam.duplicate() output_beam._beam.rays[:, 6] = output_beam._beam.rays[:, 6] * interpolated_weight_s output_beam._beam.rays[:, 7] = output_beam._beam.rays[:, 7] * interpolated_weight_s output_beam._beam.rays[:, 8] = output_beam._beam.rays[:, 8] * interpolated_weight_s output_beam._beam.rays[:, 15] = output_beam._beam.rays[:, 15] * interpolated_weight_p output_beam._beam.rays[:, 16] = output_beam._beam.rays[:, 16] * interpolated_weight_p output_beam._beam.rays[:, 17] = output_beam._beam.rays[:, 17] * interpolated_weight_p return output_beam class ShadowMath: @classmethod def gaussian_fit(cls, data_x, data_y): x = asarray(data_x) y = asarray(data_y) y_norm = y/sum(y) mean = sum(x*y_norm) sigma = numpy.sqrt(sum(y_norm*(x-mean)**2)/len(x)) amplitude = max(y) parameters, covariance_matrix = optimize.curve_fit(ShadowMath.gaussian_function, x, y, p0 = [amplitude, mean, sigma]) parameters.resize(4) parameters[3] = 2.355*parameters[2]# FWHM return parameters, covariance_matrix @classmethod def gaussian_function(cls, x, A, x0, sigma): return A*numpy.exp(-(x-x0)**2/(2*sigma**2)) @classmethod def pseudovoigt_fit(cls, data_x, data_y): x = asarray(data_x) y = asarray(data_y) y_norm = y/sum(y) amplitude = max(data_y) mean = sum(x*y_norm) fwhm = numpy.sqrt(sum(y_norm*(x-mean)**2)/len(x))*2.355 mixing = 0.1 parameters, covariance_matrix = optimize.curve_fit(ShadowMath.pseudovoigt_function, x, y, p0 = [amplitude, mean, fwhm, mixing], bounds = ([0.1*amplitude, 0.9*mean, 0.1*fwhm, 1e-3], [10.0*amplitude, 1.1*mean, 10.0*fwhm, 1.0])) return parameters, covariance_matrix @classmethod def pseudovoigt_function(cls, x, A, x0, fwhm, mixing): sigma = fwhm/2.355 gamma = fwhm/2 return A*(mixing*numpy.exp(-(x-x0)**2/(2*sigma**2)) + (1-mixing)*((gamma**2)/((x-x0)**2 + gamma**2))) @classmethod def caglioti_broadening_fit(cls, data_x, data_y): x = asarray(data_x) y = asarray(data_y) parameters, covariance_matrix = optimize.curve_fit(ShadowMath.caglioti_broadening_function, x, y, p0=[0.0001, 0.0001, 0.0001], bounds = ([ -1.0, -1.0, -1.0], [ 1.0, 1.0, 1.0])) return parameters, covariance_matrix @classmethod def caglioti_broadening_function(cls, x, U, V, W): return numpy.sqrt(W + V * (numpy.tan(x*numpy.pi/360)) + U * (numpy.tan(x*numpy.pi/360))**2) @classmethod def caglioti_shape_fit(cls, data_x, data_y): x = asarray(data_x) y = asarray(data_y) parameters, covariance_matrix = optimize.curve_fit(ShadowMath.caglioti_shape_function, x, y, p0=[0.1, 0.0, 0.0], bounds = ([ 0.0, -1.0, -1.0], [ 1.0, 1.0, 1.0])) return parameters, covariance_matrix @classmethod def caglioti_shape_function(cls, x, a, b, c): return a + b*(x*numpy.pi/360) + c*(x*numpy.pi/360)**2 @classmethod def vectorial_product(cls, vector1, vector2): result = [0.0, 0.0, 0.0] result[0] = vector1[1]*vector2[2] - vector1[2]*vector2[1] result[1] = -(vector1[0]*vector2[2] - vector1[2]*vector2[0]) result[2] = vector1[0]*vector2[1] - vector1[1]*vector2[0] return result @classmethod def scalar_product(cls, vector1, vector2): return vector1[0]*vector2[0] + vector1[1]*vector2[1] + vector1[2]*vector2[2] @classmethod def vector_modulus(cls, vector): return numpy.sqrt(cls.scalar_product(vector, vector)) @classmethod def vector_multiply(cls, vector, constant): result = [0.0, 0.0, 0.0] result[0] = vector[0] * constant result[1] = vector[1] * constant result[2] = vector[2] * constant return result @classmethod def vector_divide(cls, vector, constant): result = [0.0, 0.0, 0.0] result[0] = vector[0] / constant result[1] = vector[1] / constant result[2] = vector[2] / constant return result @classmethod def vector_normalize(cls, vector): return cls.vector_divide(vector, cls.vector_modulus(vector)) @classmethod def vector_sum(cls, vector1, vector2): result = [0.0, 0.0, 0.0] result[0] = vector1[0] + vector2[0] result[1] = vector1[1] + vector2[1] result[2] = vector1[2] + vector2[2] return result @classmethod def vector_difference(cls, vector1, vector2): result = [0.0, 0.0, 0.0] result[0] = vector1[0] - vector2[0] result[1] = vector1[1] - vector2[1] result[2] = vector1[2] - vector2[2] return result ########################################################################## # Rodrigues Formula: # # rotated = vector * cos(rotation_angle) + # (rotation_axis x vector) * sin(rotation_angle) + # rotation_axis*(rotation_axis . vector)(1 - cos(rotation_angle)) # # rotation_angle in radians # ########################################################################## @classmethod def vector_rotate(cls, rotation_axis, rotation_angle, vector): result_temp_1 = ShadowMath.vector_multiply(vector, numpy.cos(rotation_angle)) result_temp_2 = ShadowMath.vector_multiply(ShadowMath.vectorial_product(rotation_axis, vector), numpy.sin(rotation_angle)) result_temp_3 = ShadowMath.vector_multiply(ShadowMath.vector_multiply(rotation_axis, ShadowMath.scalar_product(rotation_axis, vector)), (1 - numpy.cos(rotation_angle))) result = ShadowMath.vector_sum(result_temp_1, ShadowMath.vector_sum(result_temp_2, result_temp_3)) return result @classmethod def point_distance(cls, point1, point2): return cls.vector_modulus(cls.vector_difference(point1, point2)) class ShadowPhysics: A2EV = (codata.h*codata.c/codata.e)*1e+10 K2EV = 2*numpy.pi/(codata.h*codata.c/codata.e*1e+2) @classmethod def getWavelengthFromShadowK(cls, k_mod): # in cm return (2*numpy.pi/k_mod)*1e+8 # in Angstrom @classmethod def getShadowKFromWavelength(cls, wavelength): # in A return (2*numpy.pi/wavelength)*1e+8 # in cm @classmethod def getWavelengthFromEnergy(cls, energy): #in eV return cls.A2EV/energy # in Angstrom @classmethod def getEnergyFromWavelength(cls, wavelength): # in Angstrom return cls.A2EV/wavelength # in eV @classmethod def getEnergyFromShadowK(cls, k_mod): # in cm return k_mod/cls.K2EV # in eV @classmethod def getShadowKFromEnergy(cls, energy): # in A return cls.K2EV*energy # in cm @classmethod def calculateBraggAngle(cls, wavelength, h, k, l, a): # lambda = 2 pi / |k| = 2 d sen(th) # # sen(th) = lambda / (2 d) # # d = a / sqrt(h\u00b2 + k^2 + l^2) # # sen(th) = (sqrt(h^2 + k^2 + l^2) * lambda)/(2 a) theta_bragg = -1 argument = wavelength*numpy.sqrt(h**2+k**2+l**2)/(2*a) if argument <= 1: result = numpy.arcsin(argument) if result > 0: theta_bragg = result return theta_bragg @classmethod def checkCompoundName(cls, compound_name): if compound_name is None: raise Exception("Compound Name is Empty") if str(compound_name.strip()) == "": raise Exception("Compound Name is Empty") compound_name = compound_name.strip() try: xraylib.CompoundParser(compound_name) return compound_name except: raise Exception("Compound Name is not correct") @classmethod def getMaterialDensity(cls, material_name): if material_name is None: return 0.0 if str(material_name.strip()) == "": return 0.0 try: compoundData = xraylib.CompoundParser(material_name) n_elements = compoundData["nElements"] if n_elements == 1: return xraylib.ElementDensity(compoundData["Elements"][0]) else: density = 0.0 mass_fractions = compoundData["massFractions"] elements = compoundData["Elements"] for i in range(n_elements): density += xraylib.ElementDensity(elements[i]) * mass_fractions[i] return density except: return 0.0 @classmethod def ConstatoBackgroundNoised(cls, constant_value=0, n_sigma=1.0, random_generator=random.Random()): sigma = numpy.sqrt(constant_value) # poisson statistic noise = (n_sigma*sigma)*random_generator.random() sign_marker = random_generator.random() if sign_marker > 0.5: return int(round(constant_value+noise, 0)) else: return int(round(constant_value-noise, 0)) @classmethod def Chebyshev(cls, n, x): if n==0: return 1 elif n==1: return x else: return 2*x*cls.Chebyshev(n-1, x)-cls.Chebyshev(n-2, x) @classmethod def ChebyshevBackground(cls, coefficients=[0,0,0,0,0,0], twotheta=0): coefficients_set = range(0, len(coefficients)) background = 0 for index in coefficients_set: background += coefficients[index]*cls.Chebyshev(index, twotheta) return background @classmethod def ChebyshevBackgroundNoised(cls, coefficients=[0,0,0,0,0,0], twotheta=0.0, n_sigma=1.0, random_generator=random.Random()): background = cls.ChebyshevBackground(coefficients, twotheta) sigma = numpy.sqrt(background) # poisson statistic noise = (n_sigma*sigma)*random_generator.random() sign_marker = random_generator.random() if sign_marker > 0.5: return int(round(background+noise, 0)) else: return int(round(background-noise, 0)) @classmethod def ExpDecay(cls, h, x): return numpy.exp(-h*x) @classmethod def ExpDecayBackground(cls, coefficients=[0,0,0,0,0,0], decayparams=[0,0,0,0,0,0], twotheta=0): coefficients_set = range(0, len(coefficients)) background = 0 for index in coefficients_set: background += coefficients[index]*cls.ExpDecay(decayparams[index], twotheta) return background @classmethod def ExpDecayBackgroundNoised(cls, coefficients=[0,0,0,0,0,0], decayparams=[0,0,0,0,0,0], twotheta=0, n_sigma=1, random_generator=random.Random()): background = cls.ExpDecayBackground(coefficients, decayparams, twotheta) sigma = numpy.sqrt(background) # poisson statistic noise = (n_sigma*sigma)*random_generator.random() sign_marker = random_generator.random() if sign_marker > 0.5: return int(round(background+noise, 0)) else: return int(round(background-noise, 0)) import re import time class Properties(object): def __init__(self, props=None): self._props = {} self._origprops = {} self._keymap = {} self.othercharre = re.compile(r'(?<!\\)(\s*\=)|(?<!\\)(\s*\:)') self.othercharre2 = re.compile(r'(\s*\=)|(\s*\:)') self.bspacere = re.compile(r'\\(?!\s$)') def __str__(self): s='{' for key,value in self._props.items(): s = ''.join((s,key,'=',value,', ')) s=''.join((s[:-2],'}')) return s def __parse(self, lines): # Every line in the file must consist of either a comment # or a key-value pair. A key-value pair is a line consisting # of a key which is a combination of non-white space characters # The separator character between key-value pairs is a '=', # ':' or a whitespace character not including the newline. # If the '=' or ':' characters are found, in the line, even # keys containing whitespace chars are allowed. # A line with only a key according to the rules above is also # fine. In such case, the value is considered as the empty string. # In order to include characters '=' or ':' in a key or value, # they have to be properly escaped using the backslash character. # Some examples of valid key-value pairs: # # key value # key=value # key:value # key value1,value2,value3 # key value1,value2,value3 \ # value4, value5 # key # This key= this value # key = value1 value2 value3 # Any line that starts with a '#' is considered a comment # and skipped. Also any trailing or preceding whitespaces # are removed from the key/value. # This is a line parser. It parses the # contents like by line. lineno=0 i = iter(lines) for line in i: lineno += 1 line = line.strip() if not line: continue if line[0] == '#': continue sepidx = -1 m = self.othercharre.search(line) if m: first, last = m.span() start, end = 0, first wspacere = re.compile(r'(?<![\\\=\:])(\s)') else: if self.othercharre2.search(line): wspacere = re.compile(r'(?<![\\])(\s)') start, end = 0, len(line) m2 = wspacere.search(line, start, end) if m2: first, last = m2.span() sepidx = first elif m: first, last = m.span() sepidx = last - 1 while line[-1] == '\\': nextline = i.next() nextline = nextline.strip() lineno += 1 line = line[:-1] + nextline if sepidx != -1: key, value = line[:sepidx], line[sepidx+1:] else: key,value = line,'' self.processPair(key, value) def processPair(self, key, value): oldkey = key oldvalue = value keyparts = self.bspacere.split(key) strippable = False lastpart = keyparts[-1] if lastpart.find('\\ ') != -1: keyparts[-1] = lastpart.replace('\\','') elif lastpart and lastpart[-1] == ' ': strippable = True key = ''.join(keyparts) if strippable: key = key.strip() oldkey = oldkey.strip() oldvalue = self.unescape(oldvalue) value = self.unescape(value) self._props[key] = value.strip() if self._keymap.__contains__(key): oldkey = self._keymap.get(key) self._origprops[oldkey] = oldvalue.strip() else: self._origprops[oldkey] = oldvalue.strip() self._keymap[key] = oldkey def escape(self, value): newvalue = value.replace(':','\:') newvalue = newvalue.replace('=','\=') return newvalue def unescape(self, value): newvalue = value.replace('\:',':') newvalue = newvalue.replace('\=','=') return newvalue def load(self, stream): if not hasattr(stream, 'read'): raise TypeError('Argument should be a file object!') if stream.mode != 'r': raise ValueError ('Stream should be opened in read-only mode!') try: lines = stream.readlines() self.__parse(lines) except IOError as e: raise e def getProperty(self, key): return self._props.get(key) def setProperty(self, key, value): if type(key) is str and type(value) is str: self.processPair(key, value) else: raise TypeError('both key and value should be strings!') def propertyNames(self): return self._props.keys() def list(self, out=sys.stdout): out.write('-- listing properties --\n') for key,value in self._props.items(): out.write(''.join((key,'=',value,'\n'))) def store(self, out, header=""): if out.mode[0] != 'w': raise ValueError('Steam should be opened in write mode!') try: out.write(''.join(('#',header,'\n'))) tstamp = time.strftime('%a %b %d %H:%M:%S %Z %Y', time.localtime()) out.write(''.join(('#',tstamp,'\n'))) for prop, val in self._origprops.items(): out.write(''.join((prop,'=',self.escape(val),'\n'))) out.close() except IOError as e: raise e def getPropertyDict(self): return self._props def __getitem__(self, name): return self.getProperty(name) def __setitem__(self, name, value): self.setProperty(name, value) def __getattr__(self, name): try: return self.__dict__[name] except KeyError: if hasattr(self._props,name): return getattr(self._props, name) try: from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure from mpl_toolkits.mplot3d import Axes3D # necessario per caricare i plot 3D except: pass try: from PyQt5.QtWidgets import QApplication, QVBoxLayout from PyQt5.QtCore import QCoreApplication class MathTextLabel(QWidget): def __init__(self, mathText, size=None, parent=None, **kwargs): QWidget.__init__(self, parent, **kwargs) l=QVBoxLayout(self) l.setContentsMargins(0,0,0,0) r,g,b,a=self.palette().base().color().getRgbF() self._figure=Figure(edgecolor=(r,g,b), facecolor=(r,g,b)) self._canvas=FigureCanvas(self._figure) l.addWidget(self._canvas) self._figure.clear() if not size: size = QCoreApplication.instance().font().pointSize() text=self._figure.suptitle( mathText, x=0.0, y=1.0, horizontalalignment='left', verticalalignment='top', size=size) self._canvas.draw() (x0,y0),(x1,y1)=text.get_window_extent().get_points() w=x1-x0; h=y1-y0 self._figure.set_size_inches(w/80, h/80) self.setFixedSize(w,h) except: pass if __name__ == "__main__": #print(congruence.checkFileName("pippo.dat")) #print(congruence.checkFileName("Files/pippo.dat")) #print(congruence.checkFileName("Files/pippo.dat")) #print(congruence.checkFileName("/Users/labx/Desktop/pippo.dat")) s = " 5 8095683980.2420149 3.34799999999999994E-008" print(s.strip().split(" ")) print("Bragg") ShadowCongruence.checkBraggFile("/Users/labx/Oasys/bragg.dat") print("PreRefl") ShadowCongruence.checkPreReflFile("/Users/labx/Oasys/reflec.dat") print("PreMLayer") ShadowCongruence.checkPreMLayerFile("/Users/labx/Oasys/mlayer.dat") #ShadowCongruence.checkXOPDiffractionProfileFile("/Users/labx/Oasys/mlayer.dat") ''' print(ShadowPhysics.A2EV) print(ShadowPhysics.Chebyshev(4, 21)) print(ShadowPhysics.Chebyshev(0, 35)) coefficients = [5.530814e+002, 2.487256e+000, -2.004860e-001, 2.246427e-003, -1.044517e-005, 1.721576e-008] random_generator=random.Random() print(ShadowPhysics.ChebyshevBackgroundNoised(coefficients, 10, random_generator=random_generator)) print(ShadowPhysics.ChebyshevBackgroundNoised(coefficients, 11, random_generator=random_generator)) print(ShadowPhysics.ChebyshevBackgroundNoised(coefficients, 12, random_generator=random_generator)) print(ShadowPhysics.ChebyshevBackgroundNoised(coefficients, 13, random_generator=random_generator)) print(ShadowPhysics.ChebyshevBackgroundNoised(coefficients, 14, random_generator=random_generator)) print(ShadowPhysics.ChebyshevBackgroundNoised(coefficients, 15, random_generator=random_generator)) print(ShadowPhysics.ChebyshevBackgroundNoised(coefficients, 16, random_generator=random_generator)) print(ShadowPhysics.ChebyshevBackgroundNoised(coefficients, 17, random_generator=random_generator)) print(ShadowPhysics.ChebyshevBackgroundNoised(coefficients, 18, random_generator=random_generator)) print(ShadowPhysics.ChebyshevBackgroundNoised(coefficients, 19, random_generator=random_generator)) print(ShadowPhysics.ChebyshevBackgroundNoised(coefficients, 20, random_generator=random_generator)) ''' ''' import matplotlib.pyplot as plt x_coords, y_coords, z_values = ShadowPreProcessor.read_surface_error_file("/Users/labx/Oasys/mirror.dat") fig = plt.figure() ax = fig.gca(projection='3d') X, Y = numpy.meshgrid(x_coords, y_coords) surf = ax.plot_surface(X, Y, z_values.T, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) #ax.set_zlim(-1.01, 1.01) fig.colorbar(surf, shrink=0.5, aspect=5) plt.show() app = QApplication(sys.argv) widget = QWidget() widget.setLayout(QVBoxLayout()) figure = Figure(figsize=(100, 100)) figure.patch.set_facecolor('white') axis = figure.add_subplot(111, projection='3d') axis.set_xlabel("X (cm)") axis.set_ylabel("Y (cm)") axis.set_zlabel("Z (cm)") figure_canvas = FigureCanvasQTAgg(figure) widget.layout().addWidget(figure_canvas) figure_canvas.setFixedWidth(500) figure_canvas.setFixedHeight(450) x_coords, y_coords, z_values = ShadowPreProcessor.read_surface_error_file("/Users/labx/Oasys/mirror.dat") x_to_plot, y_to_plot = numpy.meshgrid(x_coords, y_coords) axis.plot_surface(x_to_plot, y_to_plot, z_values.T, rstride=1, cstride=1, cmap=cm.autumn, linewidth=0.5, antialiased=True) figure_canvas.draw() figure_canvas.show() widget.show() app.exec() '''
PypiClean
/Flask-CKEditor-0.4.6.tar.gz/Flask-CKEditor-0.4.6/flask_ckeditor/static/full/lang/da.js
/* Copyright (c) 2003-2020, CKSource - Frederico Knabben. All rights reserved. For licensing, see LICENSE.md or https://ckeditor.com/license */ CKEDITOR.lang['da']={"editor":"Rich Text Editor","editorPanel":"Rich Text Editor panel","common":{"editorHelp":"Tryk ALT 0 for hjælp","browseServer":"Gennemse...","url":"URL","protocol":"Protokol","upload":"Upload","uploadSubmit":"Upload","image":"Indsæt billede","flash":"Indsæt Flash","form":"Indsæt formular","checkbox":"Indsæt afkrydsningsfelt","radio":"Indsæt alternativknap","textField":"Indsæt tekstfelt","textarea":"Indsæt tekstboks","hiddenField":"Indsæt skjult felt","button":"Indsæt knap","select":"Indsæt liste","imageButton":"Indsæt billedknap","notSet":"<intet valgt>","id":"Id","name":"Navn","langDir":"Tekstretning","langDirLtr":"Fra venstre mod højre (LTR)","langDirRtl":"Fra højre mod venstre (RTL)","langCode":"Sprogkode","longDescr":"Udvidet beskrivelse","cssClass":"Typografiark (CSS)","advisoryTitle":"Titel","cssStyle":"Typografi (CSS)","ok":"OK","cancel":"Annullér","close":"Luk","preview":"Forhåndsvisning","resize":"Træk for at skalere","generalTab":"Generelt","advancedTab":"Avanceret","validateNumberFailed":"Værdien er ikke et tal.","confirmNewPage":"Alt indhold, der ikke er blevet gemt, vil gå tabt. Er du sikker på, at du vil indlæse en ny side?","confirmCancel":"Nogle af indstillingerne er blevet ændret. Er du sikker på, at du vil lukke vinduet?","options":"Vis muligheder","target":"Mål","targetNew":"Nyt vindue (_blank)","targetTop":"Øverste vindue (_top)","targetSelf":"Samme vindue (_self)","targetParent":"Samme vindue (_parent)","langDirLTR":"Venstre til højre (LTR)","langDirRTL":"Højre til venstre (RTL)","styles":"Style","cssClasses":"Stylesheetklasser","width":"Bredde","height":"Højde","align":"Justering","left":"Venstre","right":"Højre","center":"Center","justify":"Lige margener","alignLeft":"Venstrestillet","alignRight":"Højrestillet","alignCenter":"Centreret","alignTop":"Øverst","alignMiddle":"Centreret","alignBottom":"Nederst","alignNone":"Ingen","invalidValue":"Ugyldig værdi.","invalidHeight":"Højde skal være et tal.","invalidWidth":"Bredde skal være et tal.","invalidLength":"Værdien angivet for feltet \"%1\" skal være et positivt heltal med eller uden en gyldig måleenhed (%2).","invalidCssLength":"Værdien specificeret for \"%1\" feltet skal være et positivt nummer med eller uden en CSS måleenhed (px, %, in, cm, mm, em, ex, pt, eller pc).","invalidHtmlLength":"Værdien specificeret for \"%1\" feltet skal være et positivt nummer med eller uden en CSS måleenhed (px eller %).","invalidInlineStyle":"Værdien specificeret for inline style skal indeholde en eller flere elementer med et format som \"name:value\", separeret af semikoloner","cssLengthTooltip":"Indsæt en numerisk værdi i pixel eller nummer med en gyldig CSS værdi (px, %, in, cm, mm, em, ex, pt, eller pc).","unavailable":"%1<span class=\"cke_accessibility\">, ikke tilgængelig</span>","keyboard":{"8":"Backspace","13":"Retur","16":"Shift","17":"Ctrl","18":"Alt","32":"Mellemrum","35":"Slut","36":"Hjem","46":"Slet","112":"F1","113":"F2","114":"F3","115":"F4","116":"F5","117":"F6","118":"F7","119":"F8","120":"F9","121":"F10","122":"F11","123":"F12","124":"F13","125":"F14","126":"F15","127":"F16","128":"F17","129":"F18","130":"F19","131":"F20","132":"F21","133":"F22","134":"F23","135":"F24","224":"Kommando"},"keyboardShortcut":"Tastatur genvej","optionDefault":"Standard"},"about":{"copy":"Copyright &copy; $1. Alle rettigheder forbeholdes.","dlgTitle":"Om CKEditor 4","moreInfo":"For informationer omkring licens, se venligst vores hjemmeside (på engelsk):"},"basicstyles":{"bold":"Fed","italic":"Kursiv","strike":"Gennemstreget","subscript":"Sænket skrift","superscript":"Hævet skrift","underline":"Understreget"},"bidi":{"ltr":"Tekstretning fra venstre til højre","rtl":"Tekstretning fra højre til venstre"},"blockquote":{"toolbar":"Blokcitat"},"notification":{"closed":"Notefikation lukket."},"toolbar":{"toolbarCollapse":"Sammenklap værktøjslinje","toolbarExpand":"Udvid værktøjslinje","toolbarGroups":{"document":"Dokument","clipboard":"Udklipsholder/Fortryd","editing":"Redigering","forms":"Formularer","basicstyles":"Basis styles","paragraph":"Paragraf","links":"Links","insert":"Indsæt","styles":"Typografier","colors":"Farver","tools":"Værktøjer"},"toolbars":"Editors værktøjslinjer"},"clipboard":{"copy":"Kopiér","copyError":"Din browsers sikkerhedsindstillinger tillader ikke editoren at få automatisk adgang til udklipsholderen. Brug i stedet tastaturet til at kopiere teksten (Ctrl/Cmd+C).","cut":"Klip","cutError":"Din browsers sikkerhedsindstillinger tillader ikke editoren at få automatisk adgang til udklipsholderen. Brug i stedet tastaturet til at klippe teksten (Ctrl/Cmd+X).","paste":"Indsæt","pasteNotification":"Tryk %1 for at sætte ind. Din browser understøtter ikke indsættelse med værktøjslinje knappen eller kontekst menuen.","pasteArea":"Indsættelses område","pasteMsg":"Indsæt dit indhold i området nedenfor og tryk OK."},"colorbutton":{"auto":"Automatisk","bgColorTitle":"Baggrundsfarve","colors":{"000":"Sort","800000":"Mørkerød","8B4513":"Mørk orange","2F4F4F":"Mørk skifer grå","008080":"Turkis","000080":"Marine","4B0082":"Indigo","696969":"Mørkegrå","B22222":"Scarlet / Rød","A52A2A":"Brun","DAA520":"Guld","006400":"Mørkegrøn","40E0D0":"Turkis","0000CD":"Mellemblå","800080":"Lilla","808080":"Grå","F00":"Rød","FF8C00":"Mørk orange","FFD700":"Guld","008000":"Grøn","0FF":"Cyan","00F":"Blå","EE82EE":"Violet","A9A9A9":"Matgrå","FFA07A":"Laksefarve","FFA500":"Orange","FFFF00":"Gul","00FF00":"Lime","AFEEEE":"Mat turkis","ADD8E6":"Lyseblå","DDA0DD":"Mørkerød","D3D3D3":"Lysegrå","FFF0F5":"Lavendelrød","FAEBD7":"Antikhvid","FFFFE0":"Lysegul","F0FFF0":"Gul / Beige","F0FFFF":"Himmeblå","F0F8FF":"Alice blue","E6E6FA":"Lavendel","FFF":"Hvid","1ABC9C":"Stærk cyan","2ECC71":"Smaragd","3498DB":"Klar blå","9B59B6":"Ametyst","4E5F70":"Glålig blå","F1C40F":"Klar gul","16A085":"Mørk cyan","27AE60":"Mørk smaragd","2980B9":"Stærk blå","8E44AD":"Mørk violet","2C3E50":"Mat blå","F39C12":"Orange","E67E22":"Gulerod","E74C3C":"Bleg rød","ECF0F1":"Klar sølv","95A5A6":"Lys grålig cyan","DDD":"Lys grå","D35400":"Græskar","C0392B":"Stærk rød","BDC3C7":"Sølv","7F8C8D":"Glålig cyan","999":"Mørk grå"},"more":"Flere farver...","panelTitle":"Farver","textColorTitle":"Tekstfarve"},"colordialog":{"clear":"Nulstil","highlight":"Markér","options":"Farvemuligheder","selected":"Valgt farve","title":"Vælg farve"},"templates":{"button":"Skabeloner","emptyListMsg":"(Der er ikke defineret nogen skabelon)","insertOption":"Erstat det faktiske indhold","options":"Skabelon muligheder","selectPromptMsg":"Vælg den skabelon, som skal åbnes i editoren (nuværende indhold vil blive overskrevet):","title":"Indholdsskabeloner"},"contextmenu":{"options":"Muligheder for hjælpemenu"},"copyformatting":{"label":"Copy Formatting","notification":{"copied":"Formatting copied","applied":"Formatting applied","canceled":"Formatting canceled","failed":"Formatting failed. You cannot apply styles without copying them first."}},"div":{"IdInputLabel":"Id","advisoryTitleInputLabel":"Vejledende titel","cssClassInputLabel":"Typografiark","edit":"Rediger Div","inlineStyleInputLabel":"Inline Style","langDirLTRLabel":"Venstre til højre (LTR)","langDirLabel":"Sprogretning","langDirRTLLabel":"Højre til venstre (RTL)","languageCodeInputLabel":" Sprogkode","remove":"Slet Div","styleSelectLabel":"Style","title":"Opret Div Container","toolbar":"Opret Div Container"},"elementspath":{"eleLabel":"Sti på element","eleTitle":"%1 element"},"filetools":{"loadError":"Der skete en fejl ved indlæsningen af filen.","networkError":"Der skete en netværks fejl under uploadingen.","httpError404":"Der skete en HTTP fejl under uploadingen (404: File not found).","httpError403":"Der skete en HTTP fejl under uploadingen (403: Forbidden).","httpError":"Der skete en HTTP fejl under uploadingen (error status: %1).","noUrlError":"Upload URL er ikke defineret.","responseError":"Ikke korrekt server svar."},"find":{"find":"Søg","findOptions":"Find muligheder","findWhat":"Søg efter:","matchCase":"Forskel på store og små bogstaver","matchCyclic":"Match cyklisk","matchWord":"Kun hele ord","notFoundMsg":"Søgeteksten blev ikke fundet","replace":"Erstat","replaceAll":"Erstat alle","replaceSuccessMsg":"%1 forekomst(er) erstattet.","replaceWith":"Erstat med:","title":"Søg og erstat"},"fakeobjects":{"anchor":"Anker","flash":"Flashanimation","hiddenfield":"Skjult felt","iframe":"Iframe","unknown":"Ukendt objekt"},"flash":{"access":"Scriptadgang","accessAlways":"Altid","accessNever":"Aldrig","accessSameDomain":"Samme domæne","alignAbsBottom":"Absolut nederst","alignAbsMiddle":"Absolut centreret","alignBaseline":"Grundlinje","alignTextTop":"Toppen af teksten","bgcolor":"Baggrundsfarve","chkFull":"Tillad fuldskærm","chkLoop":"Gentagelse","chkMenu":"Vis Flash-menu","chkPlay":"Automatisk afspilning","flashvars":"Variabler for Flash","hSpace":"Vandret margen","properties":"Egenskaber for Flash","propertiesTab":"Egenskaber","quality":"Kvalitet","qualityAutoHigh":"Auto høj","qualityAutoLow":"Auto lav","qualityBest":"Bedste","qualityHigh":"Høj","qualityLow":"Lav","qualityMedium":"Medium","scale":"Skalér","scaleAll":"Vis alt","scaleFit":"Tilpas størrelse","scaleNoBorder":"Ingen ramme","title":"Egenskaber for Flash","vSpace":"Lodret margen","validateHSpace":"Vandret margen skal være et tal.","validateSrc":"Indtast hyperlink URL!","validateVSpace":"Lodret margen skal være et tal.","windowMode":"Vinduestilstand","windowModeOpaque":"Gennemsigtig (opaque)","windowModeTransparent":"Transparent","windowModeWindow":"Vindue"},"font":{"fontSize":{"label":"Skriftstørrelse","voiceLabel":"Skriftstørrelse","panelTitle":"Skriftstørrelse"},"label":"Skrifttype","panelTitle":"Skrifttype","voiceLabel":"Skrifttype"},"forms":{"button":{"title":"Egenskaber for knap","text":"Tekst","type":"Type","typeBtn":"Knap","typeSbm":"Send","typeRst":"Nulstil"},"checkboxAndRadio":{"checkboxTitle":"Egenskaber for afkrydsningsfelt","radioTitle":"Egenskaber for alternativknap","value":"Værdi","selected":"Valgt","required":"Påkrævet"},"form":{"title":"Egenskaber for formular","menu":"Egenskaber for formular","action":"Handling","method":"Metode","encoding":"Kodning (encoding)"},"hidden":{"title":"Egenskaber for skjult felt","name":"Navn","value":"Værdi"},"select":{"title":"Egenskaber for liste","selectInfo":"Generelt","opAvail":"Valgmuligheder","value":"Værdi","size":"Størrelse","lines":"Linjer","chkMulti":"Tillad flere valg","required":"Påkrævet","opText":"Tekst","opValue":"Værdi","btnAdd":"Tilføj","btnModify":"Redigér","btnUp":"Op","btnDown":"Ned","btnSetValue":"Sæt som valgt","btnDelete":"Slet"},"textarea":{"title":"Egenskaber for tekstboks","cols":"Kolonner","rows":"Rækker"},"textfield":{"title":"Egenskaber for tekstfelt","name":"Navn","value":"Værdi","charWidth":"Bredde (tegn)","maxChars":"Max. antal tegn","required":"Påkrævet","type":"Type","typeText":"Tekst","typePass":"Adgangskode","typeEmail":"E-mail","typeSearch":"Søg","typeTel":"Telefon nummer","typeUrl":"URL"}},"format":{"label":"Formatering","panelTitle":"Formatering","tag_address":"Adresse","tag_div":"Normal (DIV)","tag_h1":"Overskrift 1","tag_h2":"Overskrift 2","tag_h3":"Overskrift 3","tag_h4":"Overskrift 4","tag_h5":"Overskrift 5","tag_h6":"Overskrift 6","tag_p":"Normal","tag_pre":"Formateret"},"horizontalrule":{"toolbar":"Indsæt vandret streg"},"iframe":{"border":"Vis kant på rammen","noUrl":"Venligst indsæt URL på iframen","scrolling":"Aktiver scrollbars","title":"Iframe egenskaber","toolbar":"Iframe"},"image":{"alt":"Alternativ tekst","border":"Ramme","btnUpload":"Upload fil til serveren","button2Img":"Vil du lave billedknappen om til et almindeligt billede?","hSpace":"Vandret margen","img2Button":"Vil du lave billedet om til en billedknap?","infoTab":"Generelt","linkTab":"Hyperlink","lockRatio":"Lås størrelsesforhold","menu":"Egenskaber for billede","resetSize":"Nulstil størrelse","title":"Egenskaber for billede","titleButton":"Egenskaber for billedknap","upload":"Upload","urlMissing":"Kilde på billed-URL mangler","vSpace":"Lodret margen","validateBorder":"Kant skal være et helt nummer.","validateHSpace":"HSpace skal være et helt nummer.","validateVSpace":"VSpace skal være et helt nummer."},"indent":{"indent":"Forøg indrykning","outdent":"Formindsk indrykning"},"smiley":{"options":"Smileymuligheder","title":"Vælg smiley","toolbar":"Smiley"},"language":{"button":"Vælg sprog","remove":"Fjern sprog"},"link":{"acccessKey":"Genvejstast","advanced":"Avanceret","advisoryContentType":"Indholdstype","advisoryTitle":"Titel","anchor":{"toolbar":"Indsæt/redigér bogmærke","menu":"Egenskaber for bogmærke","title":"Egenskaber for bogmærke","name":"Bogmærkenavn","errorName":"Indtast bogmærkenavn","remove":"Fjern bogmærke"},"anchorId":"Efter element-Id","anchorName":"Efter ankernavn","charset":"Tegnsæt","cssClasses":"Typografiark","download":"Tving Download","displayText":"Vis tekst","emailAddress":"E-mailadresse","emailBody":"Besked","emailSubject":"Emne","id":"Id","info":"Generelt","langCode":"Tekstretning","langDir":"Tekstretning","langDirLTR":"Fra venstre mod højre (LTR)","langDirRTL":"Fra højre mod venstre (RTL)","menu":"Redigér hyperlink","name":"Navn","noAnchors":"(Ingen bogmærker i dokumentet)","noEmail":"Indtast e-mailadresse!","noUrl":"Indtast hyperlink-URL!","noTel":"Please type the phone number","other":"<anden>","phoneNumber":"Phone number","popupDependent":"Koblet/dependent (Netscape)","popupFeatures":"Egenskaber for popup","popupFullScreen":"Fuld skærm (IE)","popupLeft":"Position fra venstre","popupLocationBar":"Adresselinje","popupMenuBar":"Menulinje","popupResizable":"Justérbar","popupScrollBars":"Scrollbar","popupStatusBar":"Statuslinje","popupToolbar":"Værktøjslinje","popupTop":"Position fra toppen","rel":"Relation","selectAnchor":"Vælg et anker","styles":"Typografi","tabIndex":"Tabulatorindeks","target":"Mål","targetFrame":"<ramme>","targetFrameName":"Destinationsvinduets navn","targetPopup":"<popup vindue>","targetPopupName":"Popupvinduets navn","title":"Egenskaber for hyperlink","toAnchor":"Bogmærke på denne side","toEmail":"E-mail","toUrl":"URL","toPhone":"Phone","toolbar":"Indsæt/redigér hyperlink","type":"Type","unlink":"Fjern hyperlink","upload":"Upload"},"list":{"bulletedlist":"Punktopstilling","numberedlist":"Talopstilling"},"liststyle":{"bulletedTitle":"Værdier for cirkelpunktopstilling","circle":"Cirkel","decimal":"Decimal (1, 2, 3, osv.)","disc":"Værdier for diskpunktopstilling","lowerAlpha":"Små alfabet (a, b, c, d, e, etc.)","lowerRoman":"Små romerske (i, ii, iii, iv, v, etc.)","none":"Ingen","notset":"<ikke defineret>","numberedTitle":"Egenskaber for nummereret liste","square":"Firkant","start":"Start","type":"Type","upperAlpha":"Store alfabet (A, B, C, D, E, etc.)","upperRoman":"Store romerske (I, II, III, IV, V, etc.)","validateStartNumber":"Den nummererede liste skal starte med et rundt nummer"},"magicline":{"title":"Indsæt afsnit"},"maximize":{"maximize":"Maksimér","minimize":"Minimér"},"newpage":{"toolbar":"Ny side"},"pagebreak":{"alt":"Sideskift","toolbar":"Indsæt sideskift"},"pastetext":{"button":"Indsæt som ikke-formateret tekst","pasteNotification":"Press %1 to paste. Your browser doesn‘t support pasting with the toolbar button or context menu option.","title":"Indsæt som ikke-formateret tekst"},"pastefromword":{"confirmCleanup":"Den tekst du forsøger at indsætte ser ud til at komme fra Word. Vil du rense teksten før den indsættes?","error":"Det var ikke muligt at fjerne formatteringen på den indsatte tekst grundet en intern fejl","title":"Indsæt fra Word","toolbar":"Indsæt fra Word"},"preview":{"preview":"Vis eksempel"},"print":{"toolbar":"Udskriv"},"removeformat":{"toolbar":"Fjern formatering"},"save":{"toolbar":"Gem"},"selectall":{"toolbar":"Vælg alt"},"showblocks":{"toolbar":"Vis afsnitsmærker"},"sourcearea":{"toolbar":"Kilde"},"specialchar":{"options":"Muligheder for specialkarakterer","title":"Vælg symbol","toolbar":"Indsæt symbol"},"scayt":{"btn_about":"Om SCAYT","btn_dictionaries":"Ordbøger","btn_disable":"Deaktivér SCAYT","btn_enable":"Aktivér SCAYT","btn_langs":"Sprog","btn_options":"Indstillinger","text_title":"Stavekontrol mens du skriver"},"stylescombo":{"label":"Typografi","panelTitle":"Formattering på stylesheet","panelTitle1":"Block typografi","panelTitle2":"Inline typografi","panelTitle3":"Object typografi"},"table":{"border":"Rammebredde","caption":"Titel","cell":{"menu":"Celle","insertBefore":"Indsæt celle før","insertAfter":"Indsæt celle efter","deleteCell":"Slet celle","merge":"Flet celler","mergeRight":"Flet til højre","mergeDown":"Flet nedad","splitHorizontal":"Del celle vandret","splitVertical":"Del celle lodret","title":"Celleegenskaber","cellType":"Celletype","rowSpan":"Række span (rows span)","colSpan":"Kolonne span (columns span)","wordWrap":"Tekstombrydning","hAlign":"Vandret justering","vAlign":"Lodret justering","alignBaseline":"Grundlinje","bgColor":"Baggrundsfarve","borderColor":"Rammefarve","data":"Data","header":"Hoved","yes":"Ja","no":"Nej","invalidWidth":"Cellebredde skal være et tal.","invalidHeight":"Cellehøjde skal være et tal.","invalidRowSpan":"Række span skal være et heltal.","invalidColSpan":"Kolonne span skal være et heltal.","chooseColor":"Vælg"},"cellPad":"Cellemargen","cellSpace":"Celleafstand","column":{"menu":"Kolonne","insertBefore":"Indsæt kolonne før","insertAfter":"Indsæt kolonne efter","deleteColumn":"Slet kolonne"},"columns":"Kolonner","deleteTable":"Slet tabel","headers":"Hoved","headersBoth":"Begge","headersColumn":"Første kolonne","headersNone":"Ingen","headersRow":"Første række","heightUnit":"height unit","invalidBorder":"Rammetykkelse skal være et tal.","invalidCellPadding":"Cellemargen skal være et tal.","invalidCellSpacing":"Celleafstand skal være et tal.","invalidCols":"Antallet af kolonner skal være større end 0.","invalidHeight":"Tabelhøjde skal være et tal.","invalidRows":"Antallet af rækker skal være større end 0.","invalidWidth":"Tabelbredde skal være et tal.","menu":"Egenskaber for tabel","row":{"menu":"Række","insertBefore":"Indsæt række før","insertAfter":"Indsæt række efter","deleteRow":"Slet række"},"rows":"Rækker","summary":"Resumé","title":"Egenskaber for tabel","toolbar":"Tabel","widthPc":"procent","widthPx":"pixels","widthUnit":"Bredde på enhed"},"undo":{"redo":"Annullér fortryd","undo":"Fortryd"},"widget":{"move":"Klik og træk for at flytte","label":"%1 widget"},"uploadwidget":{"abort":"Upload er afbrudt af brugen.","doneOne":"Filen er uploadet.","doneMany":"Du har uploadet %1 filer.","uploadOne":"Uploader fil ({percentage}%)...","uploadMany":"Uploader filer, {current} af {max} er uploadet ({percentage}%)..."},"wsc":{"btnIgnore":"Ignorér","btnIgnoreAll":"Ignorér alle","btnReplace":"Erstat","btnReplaceAll":"Erstat alle","btnUndo":"Tilbage","changeTo":"Forslag","errorLoading":"Fejl ved indlæsning af host: %s.","ieSpellDownload":"Stavekontrol ikke installeret. Vil du installere den nu?","manyChanges":"Stavekontrol færdig: %1 ord ændret","noChanges":"Stavekontrol færdig: Ingen ord ændret","noMispell":"Stavekontrol færdig: Ingen fejl fundet","noSuggestions":"(ingen forslag)","notAvailable":"Stavekontrol er desværre ikke tilgængelig.","notInDic":"Ikke i ordbogen","oneChange":"Stavekontrol færdig: Et ord ændret","progress":"Stavekontrollen arbejder...","title":"Stavekontrol","toolbar":"Stavekontrol"}};
PypiClean
/Multiple%20smi-2.0.3.tar.gz/Multiple smi-2.0.3/multiple_smi/client/menu_frontend/argos.py
from .default_frontend import BaseFrontend from .icon_utils import draw_icon import os import stat import json import sys argos_template = '''#!{python} import re import time import base64 import json import sys with open("{icon_path}", 'rb') as bytes: img_str = base64.b64encode(bytes.read()) print("{name} | image='{{}}'\\n---".format(img_str.decode())) try: with open("{json_path}") as f: info = json.load(f) except: sys.exit() print("{name}@{ip}") for gpu in info['GPUs']: print("{{}}, {{:.2f}} GB | color=gray".format(gpu['name'], gpu['memory'])) print("{{}}% , {{:.2f}} GB".format(gpu['utilization'], gpu['used_mem'])) print("---") print(info['cpu']['name'] + '| color=gray') print("{{}}%".format(info['cpu']['usage'])) print("---") print("RAM | color=gray") print("{{}}% ({{:.2f}} GB / {{:.2f}} GB)".format(info['ram']['usage'], info['ram']['used'], info['ram']['total'])) ''' class ArgosFrontend(BaseFrontend): """docstring for ArgosBackend""" def __init__(self, config_folder, argos_folder=None): super(ArgosFrontend, self).__init__(config_folder) self.argos_folder = argos_folder or os.path.join(os.path.expanduser('~'), ".config", "argos") assert(os.path.isdir(self.argos_folder)) def build_menu(self, machine_name, machine): icon_path_string = os.path.join(self.config_folder, "{}.png".format(machine_name)) json_path_string = os.path.join(self.config_folder, "client_{}.json".format(machine_name)) script_string = argos_template.format(python=sys.executable, home=os.path.expanduser("~"), icon_path=icon_path_string, json_path=json_path_string, name=machine_name, ip=machine['ip']) script_path = os.path.join(self.argos_folder, "{}.1s.py".format(machine_name)) with open(script_path, 'w') as f: f.write(script_string) st = os.stat(script_path) os.chmod(script_path, st.st_mode | stat.S_IEXEC) self.paths[machine_name] = script_path def update_menu(self, machine_name, machine): png_path = os.path.join(self.config_folder, "{}.png".format(machine_name)) draw_icon(machine).write_to_png(png_path) json_path = os.path.join(self.config_folder, "client_{}.json".format(machine_name)) with open(json_path, 'w') as f: json.dump(machine['summary'], f, indent=2) def new_machines(self, machine_names, machines): for name in machine_names: self.update_menu(name, machines[name]) self.build_menu(name, machines[name]) def lost_machine(self, machine_name, machine): if machine_name in self.paths.keys(): if os.path.isfile(self.paths[machine_name]): os.remove(self.paths[machine_name]) del self.paths[machine_name]
PypiClean
/FHIRkit-0.1.2.tar.gz/FHIRkit-0.1.2/fhirkit/ValueSet.py
from datetime import date, datetime try: from typing import Literal except ImportError: from typing_extensions import Literal # type: ignore from typing import Iterable, List, Optional, Sequence, Union from pydantic import Field, validator from fhirkit.BaseModel import BaseModel from fhirkit.primitive_datatypes import URI, dateTime from fhirkit.elements import ( BackboneElement, CodeableConcept, Coding, AbstractCoding, Narrative, UsageContext, ) from fhirkit.Resource import CanonicalResource class VSDesignation(BaseModel): language: Optional[str] use: Optional[Coding] value: str class VSConcept(BaseModel): code: str display: Optional[str] designation: List[VSDesignation] = Field(default=[]) class VSFilter(BackboneElement): property: str op: Literal[ "=", "is-a", "descendent-of", "is-not-a", "regex", "in", "not-in", "generalizes", "child-of", "descendent-leaf", "exists", ] value: str class VSInclude(BackboneElement): system: Optional[URI] = None version: Optional[str] = None concept: Sequence[VSConcept] = Field(default=[]) filter: Sequence[VSFilter] = Field(default=[]) valueSet: Sequence[URI] = Field(default=[]) class VSCompose(BaseModel): include: Sequence[VSInclude] = [] exclude: Sequence[VSInclude] = [] property: Sequence[str] = [] lockedDate: Optional[date] inactive: Optional[bool] class VSCodingProperty(BackboneElement): code: str valueCode: Optional[str] valueCoding: Optional[Coding] valueString: Optional[str] valueInteger: Optional[int] valueBoolean: Optional[bool] valueDateTime: Optional[dateTime] valueDecimal: Optional[float] class VSCodingWithDesignation(AbstractCoding): designation: Sequence[VSDesignation] = Field(default_factory=list) abstract: Optional[bool] = None inactive: Optional[bool] = None property: Sequence[VSCodingProperty] = Field(default_factory=list) class VSExpansion(BackboneElement): offset: Optional[int] = None total: Optional[int] = None contains: Sequence[VSCodingWithDesignation] = Field(default_factory=list) identifier: Optional[URI] = None timestamp: datetime = Field(default_factory=datetime.now) class ValueSet(CanonicalResource): resourceType: Literal["ValueSet"] = Field("ValueSet", const=True) url: Optional[URI] name: Optional[str] compose: Optional[VSCompose] expansion: Optional[VSExpansion] useContext: Sequence[UsageContext] = Field(default_factory=list, repr=True) @property def has_expanded(self): return self.expansion is not None def expand(self): """Override this method to implement expansion logic. This method should fill ValueSet.expansion.contains with concepts. Implementing this method enables you to iterate over the ValueSet in a for-loop. ```python class MyCustomValueSet(ValueSet) def expand(self): # some expansion logic vs_example = MyCustomValueSet() for coding in vs: print(coding) " """ raise NotImplementedError() def validate_code(self, code: Union[Coding, CodeableConcept]): raise NotImplementedError() def init_expansion(self): self.expansion = VSExpansion() class SimpleValueSet(ValueSet): status: Literal["active"] = Field("active", const=True) expansion: VSExpansion def __init__(self, *args: VSCodingWithDesignation, **kwargs): if len(args) > 0: assert "expansion" not in kwargs, "When passing an iterable with concepts, `expansion` should be None." super().__init__( expansion=VSExpansion.parse_obj({"contains":[c.dict() for c in args], "total":len(args)}), text=Narrative( status="generated", div=""" <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th>code</th> <th>display</th> <th>system</th> <th>version</th> </tr> </thead> <tbody>""" + "".join( [ f"<tr><th>{c.code}</th><td>{c.display}</td><td>{c.system}</td><td>{c.version}</td></tr>" for c in args ] ) + """ </tbody> </table> </div>""", ), **kwargs, ) else: super().__init__(**kwargs) def append( self, code: VSCodingWithDesignation, ): assert self.expansion is not None, "`self.expansion` is None after initialisation with `self.init_expansion`" self.expansion.contains.append(code) def extend( self, codes: Iterable[VSCodingWithDesignation], ): assert self.expansion is not None, "`self.expansion` is None after initialisation with `self.init_expansion`" self.expansion.contains.extend(codes) def validate_code(self, code: Union[Coding, CodeableConcept]): if isinstance(code, CodeableConcept): return any(self.validate_code(c) for c in code.coding) elif isinstance(code, Coding): return any(c == code for c in self) else: return False ValueSet.update_forward_refs()
PypiClean
/DI_engine-0.4.9-py3-none-any.whl/dizoo/classic_control/cartpole/entry/cartpole_ppo_offpolicy_main.py
import os import gym from tensorboardX import SummaryWriter from easydict import EasyDict from ding.config import compile_config from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, NaiveReplayBuffer from ding.envs import BaseEnvManager, DingEnvWrapper from ding.policy import PPOOffPolicy from ding.model import VAC from ding.utils import set_pkg_seed, deep_merge_dicts from dizoo.classic_control.cartpole.config.cartpole_offppo_config import cartpole_offppo_config def wrapped_cartpole_env(): return DingEnvWrapper( gym.make('CartPole-v0'), EasyDict(env_wrapper='default'), ) def main(cfg, seed=0, max_iterations=int(1e10)): cfg = compile_config( cfg, BaseEnvManager, PPOOffPolicy, BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, NaiveReplayBuffer, save_cfg=True ) collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num collector_env = BaseEnvManager(env_fn=[wrapped_cartpole_env for _ in range(collector_env_num)], cfg=cfg.env.manager) evaluator_env = BaseEnvManager(env_fn=[wrapped_cartpole_env for _ in range(evaluator_env_num)], cfg=cfg.env.manager) collector_env.seed(seed) evaluator_env.seed(seed, dynamic_seed=False) set_pkg_seed(seed, use_cuda=cfg.policy.cuda) model = VAC(**cfg.policy.model) policy = PPOOffPolicy(cfg.policy, model=model) tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) collector = SampleSerialCollector( cfg.policy.collect.collector, collector_env, policy.collect_mode, tb_logger, exp_name=cfg.exp_name ) evaluator = InteractionSerialEvaluator( cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name ) replay_buffer = NaiveReplayBuffer(cfg.policy.other.replay_buffer, exp_name=cfg.exp_name) for _ in range(max_iterations): if evaluator.should_eval(learner.train_iter): stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) if stop: break new_data = collector.collect(train_iter=learner.train_iter) replay_buffer.push(new_data, cur_collector_envstep=collector.envstep) for i in range(cfg.policy.learn.update_per_collect): train_data = replay_buffer.sample(learner.policy.get_attribute('batch_size'), learner.train_iter) if train_data is not None: learner.train(train_data, collector.envstep) if __name__ == "__main__": main(cartpole_offppo_config)
PypiClean
/FunID-0.3.16.2.tar.gz/FunID-0.3.16.2/funid/external/mmseqs_Windows/README.md
# MMseqs2: ultra fast and sensitive sequence search and clustering suite MMseqs2 (Many-against-Many sequence searching) is a software suite to search and cluster huge protein and nucleotide sequence sets. MMseqs2 is open source GPL-licensed software implemented in C++ for Linux, MacOS, and (as beta version, via cygwin) Windows. The software is designed to run on multiple cores and servers and exhibits very good scalability. MMseqs2 can run 10000 times faster than BLAST. At 100 times its speed it achieves almost the same sensitivity. It can perform profile searches with the same sensitivity as PSI-BLAST at over 400 times its speed. ## Publications [Steinegger M and Soeding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nature Biotechnology, doi: 10.1038/nbt.3988 (2017)](https://www.nature.com/articles/nbt.3988). [Steinegger M and Soeding J. Clustering huge protein sequence sets in linear time. Nature Communications, doi: 10.1038/s41467-018-04964-5 (2018)](https://www.nature.com/articles/s41467-018-04964-5). [Mirdita M, Steinegger M and Soeding J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics, doi: 10.1093/bioinformatics/bty1057 (2019)](https://academic.oup.com/bioinformatics/article/35/16/2856/5280135). [Mirdita M, Steinegger M, Breitwieser F, Soding J, Levy Karin E: Fast and sensitive taxonomic assignment to metagenomic contigs. Bioinformatics, doi: 10.1093/bioinformatics/btab184 (2021)](https://doi.org/10.1093/bioinformatics/btab184). [![BioConda Install](https://img.shields.io/conda/dn/bioconda/mmseqs2.svg?style=flag&label=BioConda%20install)](https://anaconda.org/bioconda/mmseqs2) [![Github All Releases](https://img.shields.io/github/downloads/soedinglab/mmseqs2/total.svg)](https://github.com/soedinglab/mmseqs2/releases/latest) [![Biocontainer Pulls](https://img.shields.io/endpoint?url=https%3A%2F%2Fmmseqs.com%2Fbiocontainer.php%3Fcontainer%3Dmmseqs2)](https://biocontainers.pro/#/tools/mmseqs2) [![Build Status](https://dev.azure.com/themartinsteinegger/mmseqs2/_apis/build/status/soedinglab.MMseqs2?branchName=master)](https://dev.azure.com/themartinsteinegger/mmseqs2/_build/latest?definitionId=2&branchName=master) <a href="https://chat.mmseqs.com/"><img src="https://chat.mmseqs.com/api/v1/shield.svg?type=online&name=chat&icon=false" /></a> <p align="center"><img src="https://raw.githubusercontent.com/soedinglab/mmseqs2/master/.github/mmseqs2_logo.png" height="256" /></p> ## Documentation The MMseqs2 user guide is available in our [GitHub Wiki](https://github.com/soedinglab/mmseqs2/wiki) or as a [PDF file](https://mmseqs.com/latest/userguide.pdf) (Thanks to [pandoc](https://github.com/jgm/pandoc)!). The wiki also contains [tutorials](https://github.com/soedinglab/MMseqs2/wiki/Tutorials) to learn how to use MMseqs2 with real data. For questions please open an issue on [GitHub](https://github.com/soedinglab/MMseqs2/issues) or ask in our [chat](https://chat.mmseqs.com). Keep posted about MMseqs2/Linclust updates by following Martin on [Twitter](https://twitter.com/thesteinegger). ## Installation MMseqs2 can be used by [compiling from source](https://github.com/soedinglab/MMseqs2/wiki#installation), downloading a statically compiled binary, using [Homebrew](https://github.com/Homebrew/brew), [conda](https://github.com/conda/conda) or [Docker](https://github.com/moby/moby). # install by brew brew install mmseqs2 # install via conda conda install -c conda-forge -c bioconda mmseqs2 # install docker docker pull ghcr.io/soedinglab/mmseqs2 # static build with AVX2 (fastest) wget https://mmseqs.com/latest/mmseqs-linux-avx2.tar.gz; tar xvfz mmseqs-linux-avx2.tar.gz; export PATH=$(pwd)/mmseqs/bin/:$PATH # static build with SSE4.1 wget https://mmseqs.com/latest/mmseqs-linux-sse41.tar.gz; tar xvfz mmseqs-linux-sse41.tar.gz; export PATH=$(pwd)/mmseqs/bin/:$PATH # static build with SSE2 (slowest, for very old systems) wget https://mmseqs.com/latest/mmseqs-linux-sse2.tar.gz; tar xvfz mmseqs-linux-sse2.tar.gz; export PATH=$(pwd)/mmseqs/bin/:$PATH MMseqs2 requires an AMD or Intel 64-bit system (check with `uname -a | grep x86_64`). We recommend using a system with at least the SSE4.1 instruction set (check by executing `cat /proc/cpuinfo | grep sse4_1` on Linux or `sysctl -a | grep machdep.cpu.features | grep SSE4.1` on MacOS). The AVX2 version is faster than SSE4.1, check if AVX2 is supported by executing `cat /proc/cpuinfo | grep avx2` on Linux and `sysctl -a | grep machdep.cpu.leaf7_features | grep AVX2` on MacOS). A SSE2 version is also available for very old systems. MMseqs2 also works on ARM64 systems and on PPC64LE systems with POWER8 ISA or newer. We provide static binaries for all supported platforms at [mmseqs.com/latest](https://mmseqs.com/latest). MMseqs2 comes with a bash command and parameter auto completion, which can be activated by adding the following lines to your $HOME/.bash_profile: <pre> if [ -f /<b>Path to MMseqs2</b>/util/bash-completion.sh ]; then source /<b>Path to MMseqs2</b>/util/bash-completion.sh fi </pre> ## Getting started We provide `easy` workflows to cluster, search and assign taxonomy. These `easy` workflows are a shorthand to deal directly with FASTA/FASTQ files as input and output. MMseqs2 provides many modules to transform, filter, execute external programs and search. However, these modules use the MMseqs2 database formats, instead of the FASTA/FASTQ format. For maximum flexibility, we recommend using MMseqs2 workflows and modules directly. Please read more about this in the [documentation](https://github.com/soedinglab/mmseqs2/wiki). ### Cluster For clustering, MMseqs2 `easy-cluster` and `easy-linclust` are available. `easy-cluster` by default clusters the entries of a FASTA/FASTQ file using a cascaded clustering algorithm. mmseqs easy-cluster examples/DB.fasta clusterRes tmp --min-seq-id 0.5 -c 0.8 --cov-mode 1 `easy-linclust` clusters the entries of a FASTA/FASTQ file. The runtime scales linearly with input size. This mode is recommended for huge datasets. mmseqs easy-linclust examples/DB.fasta clusterRes tmp Read more about the [clustering format](https://github.com/soedinglab/mmseqs2/wiki#clustering-format) in our user guide. Please adjust the [clustering criteria](https://github.com/soedinglab/MMseqs2/wiki#clustering-criteria) and check if temporary directory provides enough free space. For disk space requirements, see the user guide. ### Search The `easy-search` workflow searches directly with a FASTA/FASTQ files against either another FASTA/FASTQ file or an already existing MMseqs2 database. mmseqs easy-search examples/QUERY.fasta examples/DB.fasta alnRes.m8 tmp It is also possible to pre-compute the index for the target database. This reduces overhead when searching repeatedly against the same database. mmseqs createdb examples/DB.fasta targetDB mmseqs createindex targetDB tmp mmseqs easy-search examples/QUERY.fasta targetDB alnRes.m8 tmp The `databases` workflow provides download and setup procedures for many public reference databases, such as the Uniref, NR, NT, PFAM and many more (see [Downloading databases](https://github.com/soedinglab/mmseqs2/wiki#downloading-databases)). For example, to download and search against a database containing the Swiss-Prot reference proteins run: mmseqs databases UniProtKB/Swiss-Prot swissprot tmp mmseqs easy-search examples/QUERY.fasta swissprot alnRes.m8 tmp The speed and sensitivity of the `search` can be adjusted with `-s` parameter and should be adapted based on your use case (see [setting sensitivity -s parameter](https://github.com/soedinglab/mmseqs2/wiki#set-sensitivity--s-parameter)). A very fast search would use a sensitivity of `-s 1.0`, while a very sensitive search would use a sensitivity of up to `-s 7.0`. A detailed guide how to speed up searches is [here](https://github.com/soedinglab/MMseqs2/wiki#how-to-control-the-speed-of-the-search). The output can be customized with the `--format-output` option e.g. `--format-output "query,target,qaln,taln"` returns the query and target accession and the pairwise alignments in tab separated format. You can choose many different [output columns](https://github.com/soedinglab/mmseqs2/wiki#custom-alignment-format-with-convertalis). :exclamation: `easy-search` in default computes the sequence identity by dividing the number of identical residues by the alignment length (`numIdentical/alnLen`). However, `search` [estimates](https://github.com/soedinglab/MMseqs2/wiki#how-does-mmseqs2-compute-the-sequence-identity) the identity in default. To output real sequence identity use `--alignment-mode 3` or `-a`. ### Taxonomy The `easy-taxonomy` workflow can be used to assign sequences taxonomical labels. It performs a search against a sequence database with taxonomy information (seqTaxDb), chooses the most representative sets of aligned target sequences according to different strategies (according to `--lca-mode`) and computes the lowest common ancestor among those. mmseqs createdb examples/DB.fasta targetDB mmseqs createtaxdb targetDB tmp mmseqs createindex targetDB tmp mmseqs easy-taxonomy examples/QUERY.fasta targetDB alnRes tmp By default, `createtaxdb` assigns a Uniprot accession to a taxonomical identifier to every sequence and downloads the NCBI taxonomy. We also support [BLAST](https://github.com/soedinglab/MMseqs2/wiki#create-a-sequence-database-with-taxonomic-information-from-an-existing-blast-database), [SILVA](https://github.com/soedinglab/MMseqs2/wiki#create-a-sequence-database-with-taxonomic-information-for-silva) or [custom taxonomical](https://github.com/soedinglab/MMseqs2/wiki#manually-annotate-a-sequence-database-with-taxonomic-information) databases. Many common taxonomic reference databases can be easily downloaded and set up by the [`databases` workflow](https://github.com/soedinglab/mmseqs2/wiki#downloading-databases). Read more about the [taxonomy format](https://github.com/soedinglab/MMseqs2/wiki#taxonomy-format) and the [classification](https://github.com/soedinglab/MMseqs2/wiki#taxonomy-assignment-using-mmseqs-taxonomy) in our user guide. ### Supported search modes MMseqs2 provides many additional search modes: * Iterative sequences-profile searches (like PSI-BLAST) with the `--num-iterations` parameter * [Translated searches](https://github.com/soedinglab/MMseqs2/wiki#translated-sequence-searching) of nucleotides against proteins (blastx), proteins against nucleotides (tblastn) or nucleotide against nucleotide (tblastx) * [Iterative increasing sensitivity searches](https://github.com/soedinglab/MMseqs2/wiki#how-to-find-the-best-hit-the-fastest-way) to find only the best hits faster * [Taxonomic assignment](https://github.com/soedinglab/MMseqs2/wiki#taxonomy-assignment-using-mmseqs-taxonomy) using 2bLCA or LCA * Fast ungapped alignment searches to find [very similar sequence matches](https://github.com/soedinglab/MMseqs2/wiki#mapping-very-similar-sequences-using-mmseqs-map) * Very fast and sensitive searches against [profile databases such as the PFAM](https://github.com/soedinglab/MMseqs2/wiki#how-to-create-a-target-profile-database-from-pfam) * [Reciprocal best hits search](https://github.com/soedinglab/MMseqs2/wiki#reciprocal-best-hit-using-mmseqs-rbh) * [Web search API and user interface](https://github.com/soedinglab/MMseqs2-App) Many modes can also be combined. You can, for example, do a translated nucleotide against protein profile search. ### Memory requirements MMseqs2 minimum memory requirements for `cluster` or `linclust` is 1 byte per sequence residue, `search` needs 1 byte per target residue. Sequence databases can be compressed using the `--compress` flag, DNA sequences can be reduced by a factor of `~3.5` and proteins by `~1.7`. MMseqs2 checks the available system memory and automatically divides the target database in parts that fit into memory. Splitting the database will increase the runtime slightly. It is possible to control the memory usage using `--split-memory-limit`. ### How to run MMseqs2 on multiple servers using MPI MMseqs2 can run on multiple cores and servers using OpenMP and Message Passing Interface (MPI). MPI assigns database splits to each compute node, which are then computed with multiple cores (OpenMP). Make sure that MMseqs2 was compiled with MPI by using the `-DHAVE_MPI=1` flag (`cmake -DHAVE_MPI=1 -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=. ..`). Our precompiled static version of MMseqs2 cannot use MPI. The version string of MMseqs2 will have a `-MPI` suffix, if it was built successfully with MPI support. To search with multiple servers, call the `search` or `cluster` workflow with the MPI command exported in the RUNNER environment variable. The databases and temporary folder have to be shared between all nodes (e.g. through NFS): RUNNER="mpirun -pernode -np 42" mmseqs search queryDB targetDB resultDB tmp ## Contributors MMseqs2 exists thanks to all the people who contribute. <a href="https://github.com/soedinglab/mmseqs2/graphs/contributors"> <img src="https://contributors-img.firebaseapp.com/image?repo=soedinglab/mmseqs2" /> </a>
PypiClean
/NREL_reV-0.8.1-py3-none-any.whl/reV/bespoke/plotting_functions.py
import numpy as np import matplotlib.pyplot as plt def get_xy(A): """separate polygon exterior coordinates to x and y Parameters ---------- A : Polygon.exteroir.coords Exterior coordinates from a shapely Polygon Outputs ---------- x, y : array Boundary polygon x and y coordinates """ x = np.zeros(len(A)) y = np.zeros(len(A)) for i, _ in enumerate(A): x[i] = A[i][0] y[i] = A[i][1] return x, y def plot_poly(geom, ax=None, color="black", linestyle="--", linewidth=0.5): """plot the wind plant boundaries Parameters ---------- geom : Polygon | MultiPolygon The shapely.Polygon or shapely.MultiPolygon that define the wind plant boundary(ies). ax : :py:class:`matplotlib.pyplot.axes`, optional The figure axes on which the wind rose is plotted. Defaults to :obj:`None`. color : string, optional The color for the wind plant boundaries linestyle : string, optional Style to plot the boundary lines linewidth : float, optional The width of the boundary lines """ if ax is None: _, ax = plt.subplots() if geom.type == 'Polygon': exterior_coords = geom.exterior.coords[:] x, y = get_xy(exterior_coords) ax.fill(x, y, color="C0", alpha=0.25) ax.plot(x, y, color=color, linestyle=linestyle, linewidth=linewidth) for interior in geom.interiors: interior_coords = interior.coords[:] x, y = get_xy(interior_coords) ax.fill(x, y, color="white", alpha=1.0) ax.plot(x, y, "--k", linewidth=0.5) elif geom.type == 'MultiPolygon': for part in geom: exterior_coords = part.exterior.coords[:] x, y = get_xy(exterior_coords) ax.fill(x, y, color="C0", alpha=0.25) ax.plot(x, y, color=color, linestyle=linestyle, linewidth=linewidth) for interior in part.interiors: interior_coords = interior.coords[:] x, y = get_xy(interior_coords) ax.fill(x, y, color="white", alpha=1.0) ax.plot(x, y, "--k", linewidth=0.5) return ax def plot_turbines(x, y, r, ax=None, color="C0", nums=False): """plot wind turbine locations Parameters ---------- x, y : array Wind turbine x and y locations r : float Wind turbine radius ax :py:class:`matplotlib.pyplot.axes`, optional The figure axes on which the wind rose is plotted. Defaults to :obj:`None`. color : string, optional The color for the wind plant boundaries nums : bool, optional Option to show the turbine numbers next to each turbine """ # Set up figure if ax is None: _, ax = plt.subplots() n = len(x) for i in range(n): t = plt.Circle((x[i], y[i]), r, color=color) ax.add_patch(t) if nums is True: ax.text(x[i], y[i], "%s" % (i + 1)) return ax def plot_windrose(wind_directions, wind_speeds, wind_frequencies, ax=None, colors=None): """plot windrose Parameters ---------- wind_directions : 1D array Wind direction samples wind_speeds : 1D array Wind speed samples wind_frequencies : 2D array Frequency of wind direction and speed samples ax :py:class:`matplotlib.pyplot.axes`, optional The figure axes on which the wind rose is plotted. Defaults to :obj:`None`. color : array, optional The color for the different wind speed bins """ if ax is None: _, ax = plt.subplots(subplot_kw=dict(polar=True)) ndirs = len(wind_directions) nspeeds = len(wind_speeds) if colors is None: colors = [] for i in range(nspeeds): colors = np.append(colors, "C%s" % i) for i in range(ndirs): wind_directions[i] = np.deg2rad(90.0 - wind_directions[i]) width = 0.8 * 2 * np.pi / len(wind_directions) for i in range(ndirs): bottom = 0.0 for j in range(nspeeds): if i == 0: if j < nspeeds - 1: ax.bar(wind_directions[i], wind_frequencies[j, i], bottom=bottom, width=width, edgecolor="black", color=[colors[j]], label="%s-%s m/s" % (int(wind_speeds[j]), int(wind_speeds[j + 1])) ) else: ax.bar(wind_directions[i], wind_frequencies[j, i], bottom=bottom, width=width, edgecolor="black", color=[colors[j]], label="%s+ m/s" % int(wind_speeds[j]) ) else: ax.bar(wind_directions[i], wind_frequencies[j, i], bottom=bottom, width=width, edgecolor="black", color=[colors[j]]) bottom = bottom + wind_frequencies[j, i] ax.legend(bbox_to_anchor=(1.3, 1), fontsize=10) pi = np.pi ax.set_xticks((0, pi / 4, pi / 2, 3 * pi / 4, pi, 5 * pi / 4, 3 * pi / 2, 7 * pi / 4)) ax.set_xticklabels(("E", "NE", "N", "NW", "W", "SW", "S", "SE"), fontsize=10) plt.yticks(fontsize=10) plt.subplots_adjust(left=0.0, right=1.0, top=0.9, bottom=0.1) return ax
PypiClean
/CleanAdminDjango-1.5.3.1.tar.gz/CleanAdminDjango-1.5.3.1/django/contrib/flatpages/views.py
from django.conf import settings from django.contrib.flatpages.models import FlatPage from django.contrib.sites.models import get_current_site from django.core.xheaders import populate_xheaders from django.http import Http404, HttpResponse, HttpResponsePermanentRedirect from django.shortcuts import get_object_or_404 from django.template import loader, RequestContext from django.utils.safestring import mark_safe from django.views.decorators.csrf import csrf_protect DEFAULT_TEMPLATE = 'flatpages/default.html' # This view is called from FlatpageFallbackMiddleware.process_response # when a 404 is raised, which often means CsrfViewMiddleware.process_view # has not been called even if CsrfViewMiddleware is installed. So we need # to use @csrf_protect, in case the template needs {% csrf_token %}. # However, we can't just wrap this view; if no matching flatpage exists, # or a redirect is required for authentication, the 404 needs to be returned # without any CSRF checks. Therefore, we only # CSRF protect the internal implementation. def flatpage(request, url): """ Public interface to the flat page view. Models: `flatpages.flatpages` Templates: Uses the template defined by the ``template_name`` field, or :template:`flatpages/default.html` if template_name is not defined. Context: flatpage `flatpages.flatpages` object """ if not url.startswith('/'): url = '/' + url site_id = get_current_site(request).id try: f = get_object_or_404(FlatPage, url__exact=url, sites__id__exact=site_id) except Http404: if not url.endswith('/') and settings.APPEND_SLASH: url += '/' f = get_object_or_404(FlatPage, url__exact=url, sites__id__exact=site_id) return HttpResponsePermanentRedirect('%s/' % request.path) else: raise return render_flatpage(request, f) @csrf_protect def render_flatpage(request, f): """ Internal interface to the flat page view. """ # If registration is required for accessing this page, and the user isn't # logged in, redirect to the login page. if f.registration_required and not request.user.is_authenticated(): from django.contrib.auth.views import redirect_to_login return redirect_to_login(request.path) if f.template_name: t = loader.select_template((f.template_name, DEFAULT_TEMPLATE)) else: t = loader.get_template(DEFAULT_TEMPLATE) # To avoid having to always use the "|safe" filter in flatpage templates, # mark the title and content as already safe (since they are raw HTML # content in the first place). f.title = mark_safe(f.title) f.content = mark_safe(f.content) c = RequestContext(request, { 'flatpage': f, }) response = HttpResponse(t.render(c)) populate_xheaders(request, response, FlatPage, f.id) return response
PypiClean
/ExpertOp4Grid-0.1.5.post2.tar.gz/ExpertOp4Grid-0.1.5.post2/docs/README.rst
Mentions ======= Quick Overview -------- This is an Expert System which tries to solve a security issue on a power grid, that is on overload over a power line, when it happens. It uses cheap but non-linear topological actions to do so, and does not require any training. For any new overloaded situations, it computes an influence graph around the overload of interest, and rank the substations and topologies to explore, to find a solution. It simulates the top ranked topologies to eventually give a score of success: 4 - it solves all overloads, 3 - it solves only the overload of interest 2 - it partially solves the overload of interest 1 - it solves the overload of interest but worsen other overloads 0 - it fails. The expert agent is based It is an implementation of the paper: "Expert system for topological action discovery in smart grids" - https://hal.archives-ouvertes.fr/hal-01897931/file/_LARGE__bf_Expert_System_for_topological_remedial_action_discovery_in_smart_grids.pdf .. image:: ../alphaDeesp/ressources/g_over_grid2op_ltc9.PNG Influence Graph example for overloaded line 4->5. The electrical paths highlighted there will help us identify interesting topologies to reroute the flows. Features -------- - Analyse a power network when a line is in overflow - Run simulations to understand the network constraints - Return a ranking of topological actions that would solve the overflow, or reduce it - If ran manually (through command line), can also output a series of graph to help visualise the state of the network Contribute ---------- - Issue Tracker: https://github.com/marota/ExpertOp4Grid/issues - Source Code: https://github.com/marota/ExpertOp4Grid Support ------- If you are having issues, please let us know. We have a discord located at: $discordlink License ------- Copyright 2019-2020 RTE France RTE: http://www.rte-france.com This Source Code is subject to the terms of the Mozilla Public License (MPL) v2.
PypiClean
/Ageas-0.0.1a6.tar.gz/Ageas-0.0.1a6/ageas/_main.py
import re import os import sys import copy import time import threading import warnings from pkg_resources import resource_filename import ageas import ageas.tool.json as json import ageas.lib.psgrn_caster as psgrn import ageas.lib.meta_grn_caster as meta_grn import ageas.lib.config_maker as config_maker import ageas.lib.atlas_extractor as extractor import ageas.database_setup.binary_class as binary_db GRP_TYPES = ['Standard', 'Outer', 'Bridge', 'Mix'] class Launch: """ Main function to launch AGEAS Args: class1_path: <str> Default = None Path to file or folder being considered as type class 1 data class2_path: <str> Default = None Path to file or folder being considered as type class 2 data clf_keep_ratio: <float> Default = 0.5 Portion of classifier model to keep after each model selection iteration. .. note:: When performing SHA based model selection, this value is set as lower bound to keep models clf_accuracy_thread: <float> Default = 0.8 Filter thread of classifier's accuracy in local test performed at each model selection iteration .. note:: When performing SHA based model selection, this value is only used at last iteration correlation_thread: <float> Default = 0.2 Gene expression correlation thread value of GRPs Potential GRPs failed to reach this value will be dropped cpu_mode: <bool> Default = False Whether force to use CPU only or not database_path: <str> Default = None Database header. If specified, class1_path and class2_path will be rooted here. database_type: <str> Default = 'gem_files' Type of data class1_path and class1_path are directing to Supporting: 'gem_files': Each path is directing to a GEM file. Pseudo samples will be generated with sliding window algo 'gem_folders': Each path is directing to a GEM folder. Files in each folder will be used to generate pseudo samples 'mex_folders': Each path is directing to a folder consisting MEX files(***matrix.mtx***, ***genes.tsv***, ***barcodes.tsv***) Pseudo samples will be generated with sliding window tech factor_name_type: <str> Default = 'gene_name' What type of ID name to use for each gene. Supporting: 'gene_name': Gene Symbols/Names 'ens_id': Ensembl ID .. note:: If using BioGRID as interaction database, factor_name_type must be set to 'gene_name' for now. # TODO: Find a way to map gene names with Ensembl IDs feature_dropout_ratio: <float> Default = 0.1 Portion of features(GRPs) to be dropped out after each iteration of feature selection. feature_select_iteration: <int> Default = 1 Number of iteration for feature(GRP) selection before key GRP extraction interaction_database: <str> Default = 'gtrd' Which interaction database to use for confirming a GRP has a high possibility to exist. Supporting: None: No database will be used. As long as a GRP can pass all related filters, it's good to go. 'gtrd': Using GTRD as regulatory pathway reference https://gtrd.biouml.org/ 'biogrid': Using BioGRID as regulatory pathway reference https://thebiogrid.org/ impact_depth: <int> Default = 3 When assessing a TF's regulatory impact on other genes, how far the distance between TF and potential regulatory source can be. .. note:: The correlation strength of stepped correlation strength of TF and gene still need to be greater than correlation_thread. top_grp_amount: <int> Default = 100 Amount of GRPs an AGEAS unit would extract. .. note:: If outlier_thread is set, since outlier GRPs are extracted during feature selection part and will also be considered as key GRPs, actual amount of key GRPs would be greater. grp_changing_thread: <float> Default = 0.05 If changing portion of key GRPs extracted by AGEAS unit from two stabilize iterations lower than this thread, these two iterations will be considered as having consistent result. log2fc_thread: <float> Default = None Log2 fold change thread to filer non-differntial expressing genes. .. note:: It's generally not encouraged to set up this filter since it can result in lossing key TFs not having great changes on overall expression volume but having changes on expression pattern. If local computational power is relatively limited, setting up this thread can help a lot to keep program runable. link_step_allowrance: <int> Default = 1 During key atlas extraction, when finding bridge GRPs to link 2 separate regulons, how many steps will be allowed. link_step_allowrance == 1 means, no intermediate gene can be used and portential regulatory source must be able to interact with gene from another regulon. meta_load_path: <str> Default = None Path to load meta_GRN meta_save_path: <str> Default = None Path to save meta_GRN model_config_path: <str> Default = None Path to load model config file which will be used to initialize classifiers model_select_iteration: <int> Default = 2 Number of iteration for classification model selection before the mandatory filter. mute_unit: <bool> Default = True Whether AGEAS unit print out log while running. .. note:: It's not mandatory but encouraged to remain True especially when using multi protocol mww_p_val_thread: <str> Default = 0.05 Gene expression Mann–Whitney–Wilcoxon test p-value thread. To make sure one gene's expression profile is not constant among differnt classes. outlier_thread: <float> Default = 3.0 The lower bound of Z-score scaled importance value to consider a GRP as outlier need to be retain. protocol: <str> Default = 'solo' AGEAS unit launching protocol. Supporting: 'solo': All units will run separately 'multi': All units will run parallelly by multithreading patient: <int> Default = 3 If stabilize iterations continuously having consistent result for this value, an early stop on result stabilization will be executed. psgrn_load_path: <str> Default = None Path to load pseudo-sample GRNs. psgrn_save_path: <str> Default = None Path to save pseudo-sample GRNs. prediction_thread: <str> or <float> Default = 'auto' The importance thread for a GRP predicted with GRNBoost2-like algo to be included. Supporting: 'auto': Automatically set up thread value by minimum imporatnace value of a interaction database recorded GRP of TF having most amount of GRPs. If not using interaction database, it will be set by (1 / amount of genes) float type: Value will be set as thread directly report_folder_path: <str> Default = None Path to create folder for saving AGEAS report files. save_unit_reports: <bool> Default = False Whether saving key GRPs extracted by each AGEAS Unit or not. If True, reports will be saved in report_folder_path under folders named 'no_{}'.format(unit_num) starting from 0. specie: <str> Default = 'mouse' Specify which sepcie's interaction database shall be used. Supporting: 'mouse' 'human' sliding_window_size: <int> Default = 10 Number of samples a pseudo-sample generated with sliding window technique contains. sliding_window_stride: <int> Default = None Stride of sliding window when generating pseudo-samples. std_value_thread: <float> Default = None Set up gene expression standard deviation thread by value. To rule out genes having relatively constant expression in each type class. std_ratio_thread: <float> Default = None Set up gene expression standard deviation thread by portion. Only genes reaching top portion will be kept in each type class. stabilize_iteration: <int> Default = 10 Number of iteration for a AGEAS unit to repeat key GRP extraction after model and feature selections in order to find key GRPs consistently being important. max_train_size: <float> Default = 0.95 The largest portion of avaliable data can be used to train models. At the mandatory model filter, this portion of data will be given to each model to train. unit_num: <int> Default = 2 Number of AGEAS units to launch. warning_filter: <str> Default = 'ignore' How warnings should be filtered. For other options, please check 'The Warnings Filter' section in: https://docs.python.org/3/library/warnings.html#warning-filter z_score_extract_thread: <float> Default = 0.0 The lower bound of Z-score scaled importance value to extract a GRP. Inputs: None Outputs: None Attributes: Examples:: >>> easy = ageas.Launch( class1_path = 'Odysseia/2kTest/ips.csv', class2_path = 'Odysseia/2kTest/mef.csv', ) """ def __init__(self, class1_path:str = None, class2_path:str = None, clf_keep_ratio:float = 0.5, clf_accuracy_thread:float = 0.8, correlation_thread:float = 0.2, cpu_mode:bool = False, database_path:str = None, database_type:str = 'gem_files', factor_name_type:str = 'gene_name', feature_dropout_ratio:float = 0.1, feature_select_iteration:int = 1, interaction_database:str = 'gtrd', impact_depth:int = 3, top_grp_amount:int = 100, grp_changing_thread:float = 0.05, log2fc_thread:float = None, link_step_allowrance:int = 1, meta_load_path:str = None, meta_save_path:str = None, model_config_path:str= None, model_select_iteration:int = 2, mww_p_val_thread:str = 0.05, outlier_thread:float = 3.0, protocol:str = 'solo', patient:int = 3, psgrn_load_path:str = None, psgrn_save_path:str = None, prediction_thread = 'auto', report_folder_path:str = None, save_unit_reports:bool = False, specie:str = 'mouse', sliding_window_size:int = 10, sliding_window_stride:int = None, std_value_thread:float = None, std_ratio_thread:float = None, stabilize_iteration:int = 10, max_train_size:float = 0.95, unit_num:int = 2, unit_silent:bool = True, warning_filter:str = 'ignore', z_score_extract_thread:float = 0.0, ): super(Launch, self).__init__() """ Initialization """ print('Launching Ageas') warnings.filterwarnings(warning_filter) start = time.time() self.reports = list() self.protocol = protocol self.unit_num = unit_num self.silent = unit_silent self.impact_depth = impact_depth # Get database information self.database_info = binary_db.Setup( database_path, database_type, class1_path, class2_path, specie, factor_name_type, interaction_database, sliding_window_size, sliding_window_stride ) # Get model configs if model_config_path is None: path = resource_filename(__name__, 'data/config/list_config.js') self.model_config = config_maker.List_Config_Reader(path) else: self.model_config = json.decode(model_config_path) # Prepare report folder self.report_folder_path = report_folder_path if self.report_folder_path is not None: if self.report_folder_path[-1] != '/': self.report_folder_path += '/' if not os.path.exists(self.report_folder_path): os.makedirs(self.report_folder_path) self.save_unit_reports = save_unit_reports if self.save_unit_reports and self.report_folder_path is None: raise Exception('Report Path must be given to save unit reports!') print('Time to Boot: ', time.time() - start) # Make or load psGRNs and meta GRN start = time.time() if meta_load_path is not None and psgrn_load_path is not None: self.meta = meta_grn.Cast(load_path = meta_load_path) self.pseudo_grns = psgrn.Make(load_path = psgrn_load_path) else: self.meta, self.pseudo_grns = self.get_pseudo_grns( database_info = self.database_info, std_value_thread = std_value_thread, std_ratio_thread = std_ratio_thread, mww_p_val_thread = mww_p_val_thread, log2fc_thread = log2fc_thread, prediction_thread = prediction_thread, correlation_thread = correlation_thread, meta_load_path = meta_load_path, ) # Meta GRN Analysis self.meta_report = meta_grn.Analysis(self.meta.grn) # Save docs if specified path if self.report_folder_path is not None: self.meta_report.save(self.report_folder_path + 'meta_report.csv') if psgrn_save_path is not None: self.pseudo_grns.save(psgrn_save_path) if meta_save_path is not None: self.meta.grn.save_json(meta_save_path) print('Time to cast or load Pseudo-Sample GRNs : ', time.time() - start) print('\nDeck Ready') start = time.time() # Initialize a basic unit self.basic_unit = ageas.Unit( meta = self.meta, pseudo_grns = self.pseudo_grns, model_config = self.model_config, database_info = self.database_info, cpu_mode = cpu_mode, correlation_thread = correlation_thread, top_grp_amount = top_grp_amount, z_score_extract_thread = z_score_extract_thread, max_train_size = max_train_size, clf_keep_ratio = clf_keep_ratio, clf_accuracy_thread = clf_accuracy_thread, model_select_iteration = model_select_iteration, outlier_thread = outlier_thread, feature_dropout_ratio = feature_dropout_ratio, feature_select_iteration = feature_select_iteration, patient = patient, grp_changing_thread = grp_changing_thread, stabilize_iteration = stabilize_iteration, impact_depth = impact_depth, link_step_allowrance = link_step_allowrance, ) self.lockon = threading.Lock() print('Protocol:', self.protocol) print('Silent:', self.silent) # Do everything unit by unit if self.protocol == 'solo': self.proto_solo() # Multithreading protocol elif self.protocol == 'multi': self.proto_multi() self.atlas = self.combine_unit_reports() print('Operation Time: ', time.time() - start) if self.report_folder_path is not None: print('Generating Report Files') self._save_atlas_as_json( self.atlas.regulons, self.report_folder_path + 'key_atlas.js' ) self.atlas.report(self.meta.grn).to_csv( self.report_folder_path + 'report.csv', index = False ) print('\nComplete\n') # Protocol SOLO def proto_solo(self): for i in range(self.unit_num): id = 'RN_' + str(i) new_unit = copy.deepcopy(self.basic_unit) print('Unit', id, 'Ready') print('\nSending Unit', id, '\n') if self.silent: sys.stdout = open(os.devnull, 'w') new_unit.select_models() new_unit.launch() new_unit.generate_regulons() self.reports.append(new_unit.atlas) if self.silent: sys.stdout = sys.__stdout__ print(id, 'RTB\n') # Protocol MULTI def proto_multi(self): units = [] for i in range(self.unit_num): id = 'RN_' + str(i) units.append(threading.Thread(target=self.multi_unit, name=id)) print('Unit', id, 'Ready') # Time to work print('\nSending All Units\n') if self.silent: sys.stdout = open(os.devnull, 'w') # Start each unit for unit in units: unit.start() # Wait till all thread terminates for unit in units: unit.join() if self.silent: sys.stdout = sys.__stdout__ print('Units RTB\n') # Model selection and regulon contruction part run parallel def multi_unit(self,): new_unit = copy.deepcopy(self.basic_unit) new_unit.select_models() # lock here since SHAP would bring Error self.lockon.acquire() new_unit.launch() self.lockon.release() new_unit.generate_regulons() self.reports.append(new_unit.atlas) del new_unit # Combine information from reports returned by each unit def combine_unit_reports(self): all_grps = dict() for index, atlas in enumerate(self.reports): # save unit report if asking if self.save_unit_reports: report_path = self.report_folder_path + 'no_' + str(index) + '/' if not os.path.exists(report_path): os.makedirs(report_path) atlas.grps.save(report_path + 'grps_importances.txt') json.encode(atlas.outlier_grps, report_path+'outlier_grps.js') for regulon in atlas.regulons.values(): for id, record in regulon.grps.items(): if id not in all_grps: all_grps[id] = record elif id in all_grps: all_grps[id] = self._combine_grp_records( record_1 = all_grps[id], record_2 = record ) # now we build regulons regulon = extractor.Extract() for id, grp in all_grps.items(): regulon.update_regulon_with_grp( grp = grp, meta_grn = self.meta.grn ) regulon.find_bridges(meta_grn = self.meta.grn) regulon.update_genes(impact_depth = self.impact_depth) regulon.change_regulon_list_to_dict() return regulon # get pseudo-cGRNs from GEMs or GRNs def get_pseudo_grns(self, database_info = None, std_value_thread = 100, std_ratio_thread = None, mww_p_val_thread = 0.05, log2fc_thread = 0.1, prediction_thread = 'auto', correlation_thread = 0.2, meta_load_path = None ): meta = None # if reading in GEMs, we need to construct pseudo-cGRNs first # or if we are reading in MEX, make GEM first and then mimic GEM mode if (re.search(r'gem' , database_info.type) or re.search(r'mex' , database_info.type)): gem_data = binary_db.Load_GEM( database_info, mww_p_val_thread, log2fc_thread, std_value_thread ) start1 = time.time() # Let kirke casts GRN construction guidance first meta = meta_grn.Cast( gem_data = gem_data, prediction_thread = prediction_thread, correlation_thread = correlation_thread, load_path = meta_load_path ) print('Time to cast Meta GRN : ', time.time() - start1) psGRNs = psgrn.Make( database_info = database_info, std_value_thread = std_value_thread, std_ratio_thread = std_ratio_thread, correlation_thread = correlation_thread, gem_data = gem_data, meta_grn = meta.grn ) # if we are reading in GRNs directly, just process them elif re.search(r'grn' , database_info.type): psGRNs = None print('trainer.py: mode GRN need to be revised here') else: raise lib.Error('Unrecogonized database type: ', database_info.type) return meta, psGRNs # combine information of same GRP form different reports def _combine_grp_records(self, record_1, record_2): answer = copy.deepcopy(record_1) if answer.type != record_2.type: if answer.type == GRP_TYPES[2]: assert answer.score == 0 if record_2.type != GRP_TYPES[2]: answer.type = record_2.type answer.score = record_2.score else: if record_2.type != GRP_TYPES[2]: answer.type = GRP_TYPES[3] answer.score = max(answer.score, record_2.score) else: answer.score = max(answer.score, record_2.score) return answer # change class objects to dicts and save regulons in JSON format def _save_atlas_as_json(self, regulons, path): json.encode({k:v.as_dict() for k,v in regulons.items()}, path)
PypiClean
/EnergyCapSdk-8.2304.4743.tar.gz/EnergyCapSdk-8.2304.4743/energycap/sdk/models/savings_meter_bill_daily_response_py3.py
from msrest.serialization import Model class SavingsMeterBillDailyResponse(Model): """SavingsMeterBillDailyResponseDTO - This class is the DTO for a meter's bill's Cost Avoidance savings in daily format It provides the meter, bill, use unit, and then an array of daily savings values Each daily value contains date that represents this day, non-weather use, weather use, BATCC Cost, average daily unit cost, whether any of the four adjustments (special, area, weather, other) were performed and a list of messages generated by the Savings Processor for this day. :param meter_id: Unique meter identifier :type meter_id: int :param meter_code: Meter Code :type meter_code: str :param meter_info: Meter Name :type meter_info: str :param bill_id: Unique bill identifier :type bill_id: int :param period_name: Calendar Period Name (e.g. Jan) :type period_name: str :param calendar_period: Calendar period Number (e.g. 1) :type calendar_period: int :param calendar_year: Calendar year (e.g. 2019) :type calendar_year: int :param fiscal_period: Fiscal period number :type fiscal_period: int :param fiscal_year: Fiscal year :type fiscal_year: int :param native_use_unit: :type native_use_unit: ~energycap.sdk.models.UnitChild :param daily: Cost avoidance savings for this meter, day by day :type daily: list[~energycap.sdk.models.SavingsDailyData] """ _attribute_map = { 'meter_id': {'key': 'meterId', 'type': 'int'}, 'meter_code': {'key': 'meterCode', 'type': 'str'}, 'meter_info': {'key': 'meterInfo', 'type': 'str'}, 'bill_id': {'key': 'billId', 'type': 'int'}, 'period_name': {'key': 'periodName', 'type': 'str'}, 'calendar_period': {'key': 'calendarPeriod', 'type': 'int'}, 'calendar_year': {'key': 'calendarYear', 'type': 'int'}, 'fiscal_period': {'key': 'fiscalPeriod', 'type': 'int'}, 'fiscal_year': {'key': 'fiscalYear', 'type': 'int'}, 'native_use_unit': {'key': 'nativeUseUnit', 'type': 'UnitChild'}, 'daily': {'key': 'daily', 'type': '[SavingsDailyData]'}, } def __init__(self, *, meter_id: int=None, meter_code: str=None, meter_info: str=None, bill_id: int=None, period_name: str=None, calendar_period: int=None, calendar_year: int=None, fiscal_period: int=None, fiscal_year: int=None, native_use_unit=None, daily=None, **kwargs) -> None: super(SavingsMeterBillDailyResponse, self).__init__(**kwargs) self.meter_id = meter_id self.meter_code = meter_code self.meter_info = meter_info self.bill_id = bill_id self.period_name = period_name self.calendar_period = calendar_period self.calendar_year = calendar_year self.fiscal_period = fiscal_period self.fiscal_year = fiscal_year self.native_use_unit = native_use_unit self.daily = daily
PypiClean
/CodeIntel-2.0.0b19-cp34-cp34m-macosx_10_12_x86_64.whl/codeintel/codeintel2/lib_srcs/node.js/0.12/util.js
var util = {}; /** * Deprecated predecessor of console.error. * @param string */ util.debug = function(string) {} /** * Inherit the prototype methods from one constructor into another. The * prototype of constructor will be set to a new object created from * superConstructor. * @param constructor * @param superConstructor */ util.inherits = function(constructor, superConstructor) {} /** * Deprecated predecessor of stream.pipe(). * @param readableStream * @param writableStream * @param callback */ util.pump = function(readableStream, writableStream, callback) {} /** * Return a string representation of object, which is useful for debugging. * @param object * @param options */ util.inspect = function(object, options) {} /** * Output with timestamp on stdout. * @param string */ util.log = function(string) {} /** * This is used to create a function which conditionally writes to stderr * based on the existence of a NODE_DEBUG environment variable. If the * section name appears in that environment variable, then the returned * function will be similar to console.error(). If not, then the returned * function is a no-op. * @param section {String} * @returns The logging function */ util.debuglog = function(section) {} /** * Marks that a method should not be used any more. * @param function * @param string */ util.deprecate = function(function, string) {} /** * Deprecated predecessor of console.error. */ util.error = function() {} /** * Returns a formatted string using the first argument as a printf-like * format. * @param format * @returns a formatted string using the first argument as a printf-like format */ util.format = function(format) {} /** * Internal alias for Array.isArray. * @param object */ util.isArray = function(object) {} /** * Returns true if the given "object" is a Date. false otherwise. * @param object * @returns true if the given "object" is a Date */ util.isDate = function(object) {} /** * Returns true if the given "object" is an Error. false otherwise. * @param object * @returns true if the given "object" is an Error */ util.isError = function(object) {} /** * Returns true if the given "object" is a RegExp. false otherwise. * @param object * @returns true if the given "object" is a RegExp */ util.isRegExp = function(object) {} /** * Deprecated predecessor of console.log. */ util.print = function() {} /** * Deprecated predecessor of console.log. */ util.puts = function() {} exports = util;
PypiClean
/Adafruit_Blinka-8.20.1-py3-none-any.whl/adafruit_blinka/microcontroller/mcp2221/mcp2221.py
"""Chip Definition for MCP2221""" import os import time import atexit import hid # Here if you need it MCP2221_HID_DELAY = float(os.environ.get("BLINKA_MCP2221_HID_DELAY", 0)) # Use to set delay between reset and device reopen. if negative, don't reset at all MCP2221_RESET_DELAY = float(os.environ.get("BLINKA_MCP2221_RESET_DELAY", 0.5)) # from the C driver # http://ww1.microchip.com/downloads/en/DeviceDoc/mcp2221_0_1.tar.gz # others (???) determined during driver developement RESP_ERR_NOERR = 0x00 RESP_ADDR_NACK = 0x25 RESP_READ_ERR = 0x7F RESP_READ_COMPL = 0x55 RESP_READ_PARTIAL = 0x54 # ??? RESP_I2C_IDLE = 0x00 RESP_I2C_START_TOUT = 0x12 RESP_I2C_RSTART_TOUT = 0x17 RESP_I2C_WRADDRL_TOUT = 0x23 RESP_I2C_WRADDRL_WSEND = 0x21 RESP_I2C_WRADDRL_NACK = 0x25 RESP_I2C_WRDATA_TOUT = 0x44 RESP_I2C_RDDATA_TOUT = 0x52 RESP_I2C_STOP_TOUT = 0x62 RESP_I2C_MOREDATA = 0x43 # ??? RESP_I2C_PARTIALDATA = 0x41 # ??? RESP_I2C_WRITINGNOSTOP = 0x45 # ??? MCP2221_RETRY_MAX = 50 MCP2221_MAX_I2C_DATA_LEN = 60 MASK_ADDR_NACK = 0x40 class MCP2221: """MCP2221 Device Class Definition""" VID = 0x04D8 PID = 0x00DD GP_GPIO = 0b000 GP_DEDICATED = 0b001 GP_ALT0 = 0b010 GP_ALT1 = 0b011 GP_ALT2 = 0b100 def __init__(self): self._hid = hid.device() self._hid.open(MCP2221.VID, MCP2221.PID) # make sure the device gets closed before exit atexit.register(self.close) if MCP2221_RESET_DELAY >= 0: self._reset() self._gp_config = [0x07] * 4 # "don't care" initial value for pin in range(4): self.gp_set_mode(pin, self.GP_GPIO) # set to GPIO mode self.gpio_set_direction(pin, 1) # set to INPUT def close(self): """Close the hid device. Does nothing if the device is not open.""" self._hid.close() def __del__(self): # try to close the device before destroying the instance self.close() def _hid_xfer(self, report, response=True): """Perform HID Transfer""" # first byte is report ID, which =0 for MCP2221 # remaing bytes = 64 byte report data # https://github.com/libusb/hidapi/blob/083223e77952e1ef57e6b77796536a3359c1b2a3/hidapi/hidapi.h#L185 self._hid.write(b"\0" + report + b"\0" * (64 - len(report))) time.sleep(MCP2221_HID_DELAY) if response: # return is 64 byte response report return self._hid.read(64) return None # ---------------------------------------------------------------- # MISC # ---------------------------------------------------------------- def gp_get_mode(self, pin): """Get Current Pin Mode""" return self._hid_xfer(b"\x61")[22 + pin] & 0x07 def gp_set_mode(self, pin, mode): """Set Current Pin Mode""" # already set to that mode? mode &= 0x07 if mode == (self._gp_config[pin] & 0x07): return # update GP mode for pin self._gp_config[pin] = mode # empty report, this is safe since 0's = no change report = bytearray(b"\x60" + b"\x00" * 63) # set the alter GP flag byte report[7] = 0xFF # add GP setttings report[8] = self._gp_config[0] report[9] = self._gp_config[1] report[10] = self._gp_config[2] report[11] = self._gp_config[3] # and make it so self._hid_xfer(report) def _pretty_report(self, register): report = self._hid_xfer(register) print(" 0 1 2 3 4 5 6 7 8 9") index = 0 for row in range(7): print("{} : ".format(row), end="") for _ in range(10): print("{:02x} ".format(report[index]), end="") index += 1 if index > 63: break print() def _status_dump(self): self._pretty_report(b"\x10") def _sram_dump(self): self._pretty_report(b"\x61") def _reset(self): self._hid_xfer(b"\x70\xAB\xCD\xEF", response=False) self._hid.close() time.sleep(MCP2221_RESET_DELAY) start = time.monotonic() while time.monotonic() - start < 5: try: self._hid.open(MCP2221.VID, MCP2221.PID) except OSError: # try again time.sleep(0.1) continue return raise OSError("open failed") # ---------------------------------------------------------------- # GPIO # ---------------------------------------------------------------- def gpio_set_direction(self, pin, mode): """Set Current GPIO Pin Direction""" if mode: # set bit 3 for INPUT self._gp_config[pin] |= 1 << 3 else: # clear bit 3 for OUTPUT self._gp_config[pin] &= ~(1 << 3) report = bytearray(b"\x50" + b"\x00" * 63) # empty set GPIO report offset = 4 * (pin + 1) report[offset] = 0x01 # set pin direction report[offset + 1] = mode # to this self._hid_xfer(report) def gpio_set_pin(self, pin, value): """Set Current GPIO Pin Value""" if value: # set bit 4 self._gp_config[pin] |= 1 << 4 else: # clear bit 4 self._gp_config[pin] &= ~(1 << 4) report = bytearray(b"\x50" + b"\x00" * 63) # empty set GPIO report offset = 2 + 4 * pin report[offset] = 0x01 # set pin value report[offset + 1] = value # to this self._hid_xfer(report) def gpio_get_pin(self, pin): """Get Current GPIO Pin Value""" resp = self._hid_xfer(b"\x51") offset = 2 + 2 * pin if resp[offset] == 0xEE: raise RuntimeError("Pin is not set for GPIO operation.") return resp[offset] # ---------------------------------------------------------------- # I2C # ---------------------------------------------------------------- def _i2c_status(self): resp = self._hid_xfer(b"\x10") if resp[1] != 0: raise RuntimeError("Couldn't get I2C status") return resp def _i2c_state(self): return self._i2c_status()[8] def _i2c_cancel(self): resp = self._hid_xfer(b"\x10\x00\x10") if resp[1] != 0x00: raise RuntimeError("Couldn't cancel I2C") if resp[2] == 0x10: # bus release will need "a few hundred microseconds" time.sleep(0.001) # pylint: disable=too-many-arguments,too-many-branches def _i2c_write(self, cmd, address, buffer, start=0, end=None): if self._i2c_state() != 0x00: self._i2c_cancel() end = end if end else len(buffer) length = end - start retries = 0 while (end - start) > 0 or not buffer: chunk = min(end - start, MCP2221_MAX_I2C_DATA_LEN) # write out current chunk resp = self._hid_xfer( bytes([cmd, length & 0xFF, (length >> 8) & 0xFF, address << 1]) + buffer[start : (start + chunk)] ) # check for success if resp[1] != 0x00: if resp[2] in ( RESP_I2C_START_TOUT, RESP_I2C_WRADDRL_TOUT, RESP_I2C_WRADDRL_NACK, RESP_I2C_WRDATA_TOUT, RESP_I2C_STOP_TOUT, ): raise RuntimeError("Unrecoverable I2C state failure") retries += 1 if retries >= MCP2221_RETRY_MAX: raise RuntimeError("I2C write error, max retries reached.") time.sleep(0.001) continue # try again # yay chunk sent! while self._i2c_state() == RESP_I2C_PARTIALDATA: time.sleep(0.001) if not buffer: break start += chunk retries = 0 # check status in another loop for _ in range(MCP2221_RETRY_MAX): status = self._i2c_status() if status[20] & MASK_ADDR_NACK: raise RuntimeError("I2C slave address was NACK'd") usb_cmd_status = status[8] if usb_cmd_status == 0: break if usb_cmd_status == RESP_I2C_WRITINGNOSTOP and cmd == 0x94: break # this is OK too! if usb_cmd_status in ( RESP_I2C_START_TOUT, RESP_I2C_WRADDRL_TOUT, RESP_I2C_WRADDRL_NACK, RESP_I2C_WRDATA_TOUT, RESP_I2C_STOP_TOUT, ): raise RuntimeError("Unrecoverable I2C state failure") time.sleep(0.001) else: raise RuntimeError("I2C write error: max retries reached.") # whew success! def _i2c_read(self, cmd, address, buffer, start=0, end=None): if self._i2c_state() not in (RESP_I2C_WRITINGNOSTOP, 0): self._i2c_cancel() end = end if end else len(buffer) length = end - start # tell it we want to read resp = self._hid_xfer( bytes([cmd, length & 0xFF, (length >> 8) & 0xFF, (address << 1) | 0x01]) ) # check for success if resp[1] != 0x00: raise RuntimeError("Unrecoverable I2C read failure") # and now the read part while (end - start) > 0: for _ in range(MCP2221_RETRY_MAX): # the actual read resp = self._hid_xfer(b"\x40") # check for success if resp[1] == RESP_I2C_PARTIALDATA: time.sleep(0.001) continue if resp[1] != 0x00: raise RuntimeError("Unrecoverable I2C read failure") if resp[2] == RESP_ADDR_NACK: raise RuntimeError("I2C NACK") if resp[3] == 0x00 and resp[2] == 0x00: break if resp[3] == RESP_READ_ERR: time.sleep(0.001) continue if resp[2] in (RESP_READ_COMPL, RESP_READ_PARTIAL): break else: raise RuntimeError("I2C read error: max retries reached.") # move data into buffer chunk = min(end - start, 60) for i, k in enumerate(range(start, start + chunk)): buffer[k] = resp[4 + i] start += chunk # pylint: enable=too-many-arguments def _i2c_configure(self, baudrate=100000): """Configure I2C""" self._hid_xfer( bytes( [ 0x10, # set parameters 0x00, # don't care 0x00, # no effect 0x20, # next byte is clock divider 12000000 // baudrate - 3, ] ) ) def i2c_writeto(self, address, buffer, *, start=0, end=None): """Write data from the buffer to an address""" self._i2c_write(0x90, address, buffer, start, end) def i2c_readfrom_into(self, address, buffer, *, start=0, end=None): """Read data from an address and into the buffer""" self._i2c_read(0x91, address, buffer, start, end) def i2c_writeto_then_readfrom( self, address, out_buffer, in_buffer, *, out_start=0, out_end=None, in_start=0, in_end=None, ): """Write data from buffer_out to an address and then read data from an address and into buffer_in """ self._i2c_write(0x94, address, out_buffer, out_start, out_end) self._i2c_read(0x93, address, in_buffer, in_start, in_end) def i2c_scan(self, *, start=0, end=0x79): """Perform an I2C Device Scan""" found = [] for addr in range(start, end + 1): # try a write try: self.i2c_writeto(addr, b"\x00") except RuntimeError: # no reply! continue # store if success found.append(addr) return found # ---------------------------------------------------------------- # ADC # ---------------------------------------------------------------- def adc_configure(self, vref=0): """Configure the Analog-to-Digital Converter""" report = bytearray(b"\x60" + b"\x00" * 63) report[5] = 1 << 7 | (vref & 0b111) self._hid_xfer(report) def adc_read(self, pin): """Read from the Analog-to-Digital Converter""" resp = self._hid_xfer(b"\x10") return resp[49 + 2 * pin] << 8 | resp[48 + 2 * pin] # ---------------------------------------------------------------- # DAC # ---------------------------------------------------------------- def dac_configure(self, vref=0): """Configure the Digital-to-Analog Converter""" report = bytearray(b"\x60" + b"\x00" * 63) report[3] = 1 << 7 | (vref & 0b111) self._hid_xfer(report) # pylint: disable=unused-argument def dac_write(self, pin, value): """Write to the Digital-to-Analog Converter""" report = bytearray(b"\x60" + b"\x00" * 63) report[4] = 1 << 7 | (value & 0b11111) self._hid_xfer(report) # pylint: enable=unused-argument mcp2221 = MCP2221()
PypiClean
/ObjectListView2-1.0.0.tar.gz/ObjectListView2-1.0.0/Examples/BatchedUpdateExample.py
import datetime import os import os.path import threading import time import wx # Where can we find the ObjectListView module? import sys sys.path.append("..") from ObjectListView import FastObjectListView, ObjectListView, ColumnDefn, BatchedUpdate # We store our images as python code import ExampleImages class MyFrame(wx.Frame): def __init__(self, *args, **kwds): wx.Frame.__init__(self, *args, **kwds) self.Init() def Init(self): self.InitWidgets() self.InitObjectListView() wx.CallLater(1, self.InitModel) def InitWidgets(self): # Widget creations self.statusbar = self.CreateStatusBar(1, 0) panel1 = wx.Panel(self, -1) panel12 = wx.Panel(panel1, -1) self.olv = FastObjectListView(panel1, -1, style=wx.LC_REPORT|wx.SUNKEN_BORDER) rootText = wx.StaticText(panel12, -1, "&Tree walk from:") self.tcRoot = wx.DirPickerCtrl(panel12, style=wx.DIRP_USE_TEXTCTRL) self.btnStart = wx.Button(panel12, -1, "&Start") secondsText = wx.StaticText(panel12, -1, "Seconds &between updates:") self.scSeconds = wx.SpinCtrl(panel12, -1, "") # Layout sizer_3 = wx.FlexGridSizer(2, 3, 4, 4) sizer_3.AddGrowableCol(1) sizer_3.Add(rootText, 1, wx.ALIGN_CENTER_VERTICAL, 0) sizer_3.Add(self.tcRoot, 1, wx.ALL|wx.EXPAND, 0) sizer_3.Add(self.btnStart, 1, wx.ALL|wx.EXPAND, 0) sizer_3.Add(secondsText, 1, wx.ALIGN_CENTER_VERTICAL, 0) sizer_3.Add(self.scSeconds, 1) panel12.SetSizer(sizer_3) panel12.Layout() sizer_2 = wx.FlexGridSizer(3, 1, 4, 4) sizer_2.Add(panel12, 1, wx.ALL|wx.EXPAND, 4) sizer_2.Add(self.olv, 1, wx.ALL|wx.EXPAND, 4) sizer_2.AddGrowableCol(0) sizer_2.AddGrowableRow(1) panel1.SetSizer(sizer_2) panel1.Layout() sizer_1 = wx.BoxSizer(wx.VERTICAL) sizer_1.Add(panel1, 1, wx.EXPAND) self.SetSizer(sizer_1) self.Layout() # Event handling self.Bind(wx.EVT_CLOSE, self.HandleClose) self.btnStart.Bind(wx.EVT_BUTTON, self.HandleStart) self.tcRoot.Bind(wx.EVT_DIRPICKER_CHANGED, self.HandleRootText) # Widget initialization self.btnStart.SetDefault() self.scSeconds.SetRange(0, 15) self.scSeconds.SetValue(2) self.tcRoot.SetPath(wx.StandardPaths.Get().GetDocumentsDir()) # OK, This is the whole point of the example. Wrap the ObjectListView in a batch updater self.olv = BatchedUpdate(self.olv, 2) def InitModel(self): self.backgroundProcess = None def InitObjectListView(self): def sizeToNiceString(byteCount): """ Convert the given byteCount into a string like: 9.9bytes/KB/MB/GB """ for (cutoff, label) in [(1024*1024*1024, "GB"), (1024*1024, "MB"), (1024, "KB")]: if byteCount >= cutoff: return "%.1f %s" % (byteCount * 1.0 / cutoff, label) if byteCount == 1: return "1 byte" else: return "%d bytes" % byteCount self.olv.SetColumns([ ColumnDefn("Path", "left", 150, "GetPath"), ColumnDefn("Files", "left", 100, "countFiles"), ColumnDefn("File Size", "left", 100, "sizeFiles"), ColumnDefn("Total Directories", "left", 100, "CountAllDirectories"), ColumnDefn("Total Files", "left", 100, "CountAllFiles"), ColumnDefn("Total File Size", "left", 100, "SizeAllFiles", stringConverter=sizeToNiceString), ]) self.olv.SetSortColumn(0) def HandleClose(self, evt): if self.backgroundProcess: self.backgroundProcess.cancel() self.Destroy() return True def HandleStart(self, evt): if self.backgroundProcess: self.backgroundProcess.cancel() else: self.btnStart.SetLabel("&Stop") self.olv.SetObjects(None) self.olv.SetEmptyListMsg("Scanning...") self.statusbar.SetStatusText("Scanning...") # Configure the update period. 0 means unbatched if self.scSeconds.GetValue(): if isinstance(self.olv, BatchedUpdate): self.olv.updatePeriod = self.scSeconds.GetValue() else: self.olv = BatchedUpdate(olv, self.scSeconds.GetValue()) else: if isinstance(self.olv, BatchedUpdate): self.olv = self.olv.objectListView self.backgroundProcess = BackgroundProcess(work=self.Walker, done=self.DoneWalking) self.backgroundProcess.path = self.tcRoot.GetPath() self.backgroundProcess.runAsync() def HandleRootText(self, evt): pass #if os.path.isdir(self.tcRoot.GetValue()): # self.tcRoot.SetBackgroundColour(wx.WHITE) #else: # self.tcRoot.SetBackgroundColour(wx.Colour(255, 255, 0)) def Walker(self, backgroundProcess): backgroundProcess.start = time.clock() backgroundProcess.stats = list() stats = [DirectoryStats(None, backgroundProcess.path)] wx.CallAfter(self.olv.SetObjects, stats) for stat in stats: if backgroundProcess.isCancelled(): return stat.startScan = time.clock() names = os.listdir(stat.GetPath()) names.sort(key=unicode.lower) for name in names: if backgroundProcess.isCancelled(): return subPath = os.path.join(stat.GetPath(), name) if os.path.isdir(subPath): stats.append(DirectoryStats(stat, name)) else: stat.countFiles += 1 try: stat.sizeFiles += os.path.getsize(subPath) except WindowsError: pass stat.endScan = time.clock() if not backgroundProcess.isCancelled(): wx.CallAfter(self.olv.AddObjects, stat.children) wx.CallAfter(self.olv.RefreshObjects, stat.SelfPlusAncestors()) #wx.SafeYield() #for x in stats: # print x.GetPath(), x.CountAllDirectories(), x.CountAllFiles(), x.SizeAllFiles(), x.ElapsedScanTime() backgroundProcess.stats = stats def DoneWalking(self, backgroundProcess): self.btnStart.SetLabel("&Start") if backgroundProcess.isCancelled(): self.statusbar.SetStatusText("Tree walk was cancelled") else: backgroundProcess.end = time.clock() self.olv.SetObjects(backgroundProcess.stats) self.statusbar.SetStatusText("%d directories scanned in %.2f seconds" % (len(backgroundProcess.stats), backgroundProcess.end - backgroundProcess.start)) self.backgroundProcess = None class DirectoryStats(object): """ """ def __init__(self, parent, name): self.parent = parent self.name = name self.children = list() self.countFiles = 0 self.sizeFiles = 0 if self.parent: self.parent.children.append(self) self.startScan = None self.endScan = None def GetName(self): return self.name def GetPath(self): if self.parent: return os.path.join(self.parent.GetPath(), self.name) else: return self.name def SelfPlusAncestors(self): """ Return a collection containing this object plus all its ancestors """ if self.parent: return self.parent.SelfPlusAncestors() + [self] else: return [self] def CountAllDirectories(self): """ Return the total number of directories in this directory, recursively """ if self.children: return len(self.children) + sum(x.CountAllDirectories() for x in self.children) else: return 0 def CountAllFiles(self): """ Return the total number of files in this directory, recursively """ if self.children: return self.countFiles + sum(x.CountAllFiles() for x in self.children) else: return self.countFiles def SizeAllFiles(self): """ Return the total number of byes of all files in this directory, recursively """ if self.children: return self.sizeFiles + sum(x.SizeAllFiles() for x in self.children) else: return self.sizeFiles def ElapsedScanTime(self): """ Return the number of seconds it took to scan just this directory (not its descendents) """ if self.endScan and self.startScan: return self.endScan - self.startScan else: return 0 class BackgroundProcess(object): """ A BackgroundProcess is a long-running, cancellable thread that can report progress and done events. This object can be used by: 1) subclassing and overriding 'doWork' method 2) passing a callable as the "work" parameter to the constructor """ __author__ = "Phillip Piper" __date__ = "19 April 2008" __version__ = "0.1" def __init__(self, work=None, progress=None, done=None): """ Initialize a background process. Parameters: work A callable that accepts a single parameter: the process itself. This callable executes the long running process. This should periodically check to see if the process has been cancelled (using the isCancelled method), as well as reporting its progress (using the notifyProgress method). If this is None, the process will do nothing. Subclasses that override the "doWork" method should not use this parameter progress A callable that accepts two parameters: the process itself, and a value given to the notifyProgress method (often an int representing percentage done). done A callable that accepts a single parameter: the process itself. If not None, this is called when the process finishes. """ self.thread = None self.abortEvent = threading.Event() self.workCallback = work self.progressCallback = progress self.doneCallback = done #---------------------------------------------------------------------------- # Commands def run(self): """ Run the process synchronously """ self.runAsync() self.wait() def runAsync(self): """ Start a process to run asynchronously """ if self.isRunning(): return self.abortEvent.clear() self.thread = threading.Thread(target=self._worker) self.thread.setDaemon(True) self.thread.start() def wait(self): """ Wait until the process is finished """ self.thread.join() def cancel(self): """ Cancel the process """ self.abortEvent.set() def isCancelled(self): """ Has this process been cancelled? """ return self.abortEvent.isSet() def isRunning(self): """ Return true if the process is still running """ return self.thread is not None and self.thread.isAlive() #---------------------------------------------------------------------------- # Implementation def _worker(self): """ This is the actual thread process """ self.doWork() self.reportDone() def doWork(self): """ Do the real work of the thread. Subclasses should override this method to perform the long-running task. That task should call "isCancelled" regularly and "reportProgress" periodically. """ if self.workCallback: self.workCallback(self) def reportProgress(self, value): """ Report that some progress has been made """ time.sleep(0.001) # Force a switch to other threads if self.progressCallback and not self.isCancelled(): self.progressCallback(self, value) def reportDone(self): """ Report that the thread has finished """ if self.doneCallback: self.doneCallback(self) if __name__ == '__main__': #walker("c:\\temp") app = wx.PySimpleApp(0) wx.InitAllImageHandlers() frame_1 = MyFrame(None, -1, "BatchedUpdate Example") app.SetTopWindow(frame_1) frame_1.Show() app.MainLoop()
PypiClean
/Axelrod-4.13.0.tar.gz/Axelrod-4.13.0/docs/how-to/contributing/strategy/instructions.rst
Instructions ============ Here is the file structure for the Axelrod repository:: . ├── axelrod │ └── __init__.py │ └── ecosystem.py │ └── game.py │ └── player.py │ └── plot.py │ └── result_set.py │ └── round_robin.py │ └── tournament.py │ └── /strategies/ │ └── __init__.py │ └── _strategies.py │ └── cooperator.py │ └── defector.py │ └── grudger.py │ └── titfortat.py │ └── gobymajority.py │ └── ... │ └── /tests/ │ └── integration │ └── strategies │ └── unit │ └── test_*.py └── README.md To contribute a strategy you need to follow as many of the following steps as possible: 1. Fork the `github repository <https://github.com/Axelrod-Python/Axelrod>`_. 2. Add a :code:`<strategy>.py` file to the strategies directory or add a strategy to a pre existing :code:`<strategy>.py` file. 3. Update the :code:`./axelrod/strategies/_strategies.py` file. 4. If you created a new :code:`<strategy>.py` file add it to :code:`.docs/reference/all_strategies.rst`. 5. Write some unit tests in the :code:`./axelrod/tests/strategies/` directory. 6. This one is also optional: ping us a message and we'll add you to the Contributors team. This would add an Axelrod-Python organisation badge to your profile. 7. Send us a pull request. **If you would like a hand with any of the above please do get in touch: we're always delighted to have new strategies.**
PypiClean
/Django_patch-2.2.19-py3-none-any.whl/django/db/models/functions/text.py
from django.db.models.expressions import Func, Value from django.db.models.fields import IntegerField from django.db.models.functions import Coalesce from django.db.models.lookups import Transform class BytesToCharFieldConversionMixin: """ Convert CharField results from bytes to str. MySQL returns long data types (bytes) instead of chars when it can't determine the length of the result string. For example: LPAD(column1, CHAR_LENGTH(column2), ' ') returns the LONGTEXT (bytes) instead of VARCHAR. """ def convert_value(self, value, expression, connection): if connection.features.db_functions_convert_bytes_to_str: if self.output_field.get_internal_type() == 'CharField' and isinstance(value, bytes): return value.decode() return super().convert_value(value, expression, connection) class Chr(Transform): function = 'CHR' lookup_name = 'chr' def as_mysql(self, compiler, connection, **extra_context): return super().as_sql( compiler, connection, function='CHAR', template='%(function)s(%(expressions)s USING utf16)', **extra_context ) def as_oracle(self, compiler, connection, **extra_context): return super().as_sql( compiler, connection, template='%(function)s(%(expressions)s USING NCHAR_CS)', **extra_context ) def as_sqlite(self, compiler, connection, **extra_context): return super().as_sql(compiler, connection, function='CHAR', **extra_context) class ConcatPair(Func): """ Concatenate two arguments together. This is used by `Concat` because not all backend databases support more than two arguments. """ function = 'CONCAT' def as_sqlite(self, compiler, connection, **extra_context): coalesced = self.coalesce() return super(ConcatPair, coalesced).as_sql( compiler, connection, template='%(expressions)s', arg_joiner=' || ', **extra_context ) def as_mysql(self, compiler, connection, **extra_context): # Use CONCAT_WS with an empty separator so that NULLs are ignored. return super().as_sql( compiler, connection, function='CONCAT_WS', template="%(function)s('', %(expressions)s)", **extra_context ) def coalesce(self): # null on either side results in null for expression, wrap with coalesce c = self.copy() c.set_source_expressions([ Coalesce(expression, Value('')) for expression in c.get_source_expressions() ]) return c class Concat(Func): """ Concatenate text fields together. Backends that result in an entire null expression when any arguments are null will wrap each argument in coalesce functions to ensure a non-null result. """ function = None template = "%(expressions)s" def __init__(self, *expressions, **extra): if len(expressions) < 2: raise ValueError('Concat must take at least two expressions') paired = self._paired(expressions) super().__init__(paired, **extra) def _paired(self, expressions): # wrap pairs of expressions in successive concat functions # exp = [a, b, c, d] # -> ConcatPair(a, ConcatPair(b, ConcatPair(c, d)))) if len(expressions) == 2: return ConcatPair(*expressions) return ConcatPair(expressions[0], self._paired(expressions[1:])) class Left(Func): function = 'LEFT' arity = 2 def __init__(self, expression, length, **extra): """ expression: the name of a field, or an expression returning a string length: the number of characters to return from the start of the string """ if not hasattr(length, 'resolve_expression'): if length < 1: raise ValueError("'length' must be greater than 0.") super().__init__(expression, length, **extra) def get_substr(self): return Substr(self.source_expressions[0], Value(1), self.source_expressions[1]) def as_oracle(self, compiler, connection, **extra_context): return self.get_substr().as_oracle(compiler, connection, **extra_context) def as_sqlite(self, compiler, connection, **extra_context): return self.get_substr().as_sqlite(compiler, connection, **extra_context) class Length(Transform): """Return the number of characters in the expression.""" function = 'LENGTH' lookup_name = 'length' output_field = IntegerField() def as_mysql(self, compiler, connection, **extra_context): return super().as_sql(compiler, connection, function='CHAR_LENGTH', **extra_context) class Lower(Transform): function = 'LOWER' lookup_name = 'lower' class LPad(BytesToCharFieldConversionMixin, Func): function = 'LPAD' def __init__(self, expression, length, fill_text=Value(' '), **extra): if not hasattr(length, 'resolve_expression') and length is not None and length < 0: raise ValueError("'length' must be greater or equal to 0.") super().__init__(expression, length, fill_text, **extra) class LTrim(Transform): function = 'LTRIM' lookup_name = 'ltrim' class Ord(Transform): function = 'ASCII' lookup_name = 'ord' output_field = IntegerField() def as_mysql(self, compiler, connection, **extra_context): return super().as_sql(compiler, connection, function='ORD', **extra_context) def as_sqlite(self, compiler, connection, **extra_context): return super().as_sql(compiler, connection, function='UNICODE', **extra_context) class Repeat(BytesToCharFieldConversionMixin, Func): function = 'REPEAT' def __init__(self, expression, number, **extra): if not hasattr(number, 'resolve_expression') and number is not None and number < 0: raise ValueError("'number' must be greater or equal to 0.") super().__init__(expression, number, **extra) def as_oracle(self, compiler, connection, **extra_context): expression, number = self.source_expressions length = None if number is None else Length(expression) * number rpad = RPad(expression, length, expression) return rpad.as_sql(compiler, connection, **extra_context) class Replace(Func): function = 'REPLACE' def __init__(self, expression, text, replacement=Value(''), **extra): super().__init__(expression, text, replacement, **extra) class Reverse(Transform): function = 'REVERSE' lookup_name = 'reverse' def as_oracle(self, compiler, connection, **extra_context): # REVERSE in Oracle is undocumented and doesn't support multi-byte # strings. Use a special subquery instead. return super().as_sql( compiler, connection, template=( '(SELECT LISTAGG(s) WITHIN GROUP (ORDER BY n DESC) FROM ' '(SELECT LEVEL n, SUBSTR(%(expressions)s, LEVEL, 1) s ' 'FROM DUAL CONNECT BY LEVEL <= LENGTH(%(expressions)s)) ' 'GROUP BY %(expressions)s)' ), **extra_context ) class Right(Left): function = 'RIGHT' def get_substr(self): return Substr(self.source_expressions[0], self.source_expressions[1] * Value(-1)) class RPad(LPad): function = 'RPAD' class RTrim(Transform): function = 'RTRIM' lookup_name = 'rtrim' class StrIndex(Func): """ Return a positive integer corresponding to the 1-indexed position of the first occurrence of a substring inside another string, or 0 if the substring is not found. """ function = 'INSTR' arity = 2 output_field = IntegerField() def as_postgresql(self, compiler, connection, **extra_context): return super().as_sql(compiler, connection, function='STRPOS', **extra_context) class Substr(Func): function = 'SUBSTRING' def __init__(self, expression, pos, length=None, **extra): """ expression: the name of a field, or an expression returning a string pos: an integer > 0, or an expression returning an integer length: an optional number of characters to return """ if not hasattr(pos, 'resolve_expression'): if pos < 1: raise ValueError("'pos' must be greater than 0") expressions = [expression, pos] if length is not None: expressions.append(length) super().__init__(*expressions, **extra) def as_sqlite(self, compiler, connection, **extra_context): return super().as_sql(compiler, connection, function='SUBSTR', **extra_context) def as_oracle(self, compiler, connection, **extra_context): return super().as_sql(compiler, connection, function='SUBSTR', **extra_context) class Trim(Transform): function = 'TRIM' lookup_name = 'trim' class Upper(Transform): function = 'UPPER' lookup_name = 'upper'
PypiClean
/NeodroidVision-0.3.0-py36-none-any.whl/neodroidvision/utilities/skimage_utilities/line_peaks.py
__author__ = "heider" __doc__ = r""" Created on 5/5/22 """ from pathlib import Path import numpy from matplotlib import cm, pyplot from skimage import color, io from skimage.draw import line from skimage.transform import hough_line, hough_line_peaks if __name__ == "__main__": def aushd(): """description""" file = "3.jpg" # file = "NdNLO.jpg" # image = cv2.imread(str(Path.home() / "Pictures" / file)) # Constructing test image image = color.rgb2gray(io.imread(str(Path.home() / "Pictures" / file))) # Classic straight-line Hough transform # Set a precision of 0.05 degree. tested_angles = numpy.linspace(-numpy.pi / 2, numpy.pi / 2, 3600) h, theta, d = hough_line(image, theta=tested_angles) hpeaks = hough_line_peaks(h, theta, d, threshold=0.2 * h.max()) fig, ax = pyplot.subplots() ax.imshow(image, cmap=cm.gray) for _, angle, dist in zip(*hpeaks): (x0, y0) = dist * numpy.array([numpy.cos(angle), numpy.sin(angle)]) ax.axline((x0, y0), slope=numpy.tan(angle + numpy.pi / 2)) pyplot.show() def auishd(): """description""" # Constructing test image image = numpy.zeros((200, 200)) idx = numpy.arange(25, 175) image[idx, idx] = 255 image[line(45, 25, 25, 175)] = 255 image[line(25, 135, 175, 155)] = 255 # Classic straight-line Hough transform # Set a precision of 0.5 degree. tested_angles = numpy.linspace(-numpy.pi / 2, numpy.pi / 2, 360, endpoint=False) h, theta, d = hough_line(image, theta=tested_angles) # Generating figure 1 fig, axes = pyplot.subplots(1, 3, figsize=(15, 6)) ax = axes.ravel() ax[0].imshow(image, cmap=cm.gray) ax[0].set_title("Input image") ax[0].set_axis_off() angle_step = 0.5 * numpy.diff(theta).mean() d_step = 0.5 * numpy.diff(d).mean() bounds = [ numpy.rad2deg(theta[0] - angle_step), numpy.rad2deg(theta[-1] + angle_step), d[-1] + d_step, d[0] - d_step, ] ax[1].imshow(numpy.log(1 + h), extent=bounds, cmap=cm.gray, aspect=1 / 1.5) ax[1].set_title("Hough transform") ax[1].set_xlabel("Angles (degrees)") ax[1].set_ylabel("Distance (pixels)") ax[1].axis("image") ax[2].imshow(image, cmap=cm.gray) ax[2].set_ylim((image.shape[0], 0)) ax[2].set_axis_off() ax[2].set_title("Detected lines") for _, angle, dist in zip(*hough_line_peaks(h, theta, d)): (x0, y0) = dist * numpy.array([numpy.cos(angle), numpy.sin(angle)]) ax[2].axline((x0, y0), slope=numpy.tan(angle + numpy.pi / 2)) pyplot.tight_layout() pyplot.show() auishd()
PypiClean
/DjangoDav-0.0.1b16.tar.gz/DjangoDav-0.0.1b16/djangodav/utils.py
import datetime, time, calendar from wsgiref.handlers import format_date_time from django.utils.feedgenerator import rfc2822_date try: from email.utils import parsedate_tz except ImportError: from email.Utils import parsedate_tz import lxml.builder as lb # Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123 FORMAT_RFC_822 = '%a, %d %b %Y %H:%M:%S GMT' # Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036 FORMAT_RFC_850 = '%A %d-%b-%y %H:%M:%S GMT' # Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format FORMAT_ASC = '%a %b %d %H:%M:%S %Y' WEBDAV_NS = "DAV:" WEBDAV_NSMAP = {'D': WEBDAV_NS} D = lb.ElementMaker(namespace=WEBDAV_NS, nsmap=WEBDAV_NSMAP) def get_property_tag_list(res, *names): props = [] for name in names: tag = get_property_tag(res, name) if tag is None: continue props.append(tag) return props def get_property_tag(res, name): if name == 'resourcetype': if res.is_collection: return D(name, D.collection) return D(name) try: if hasattr(res, name): return D(name, unicode(getattr(res, name))) except AttributeError: return def safe_join(root, *paths): """The provided os.path.join() does not work as desired. Any path starting with / will simply be returned rather than actually being joined with the other elements.""" if not root.startswith('/'): root = '/' + root for path in paths: while root.endswith('/'): root = root[:-1] while path.startswith('/'): path = path[1:] root += '/' + path return root def url_join(base, *paths): """Assuming base is the scheme and host (and perhaps path) we will join the remaining path elements to it.""" paths = safe_join(*paths) if paths else "" while base.endswith('/'): base = base[:-1] return base + paths def ns_split(tag): """Splits the namespace and property name from a clark notation property name.""" if tag.startswith("{") and "}" in tag: ns, name = tag.split("}", 1) return ns[1:-1], name return "", tag def ns_join(ns, name): """Joins a namespace and property name into clark notation.""" return '{%s:}%s' % (ns, name) def rfc3339_date(dt): if not dt: return '' return dt.strftime('%Y-%m-%dT%H:%M:%SZ') def rfc1123_date(dt): if not dt: return '' return rfc2822_date(dt) def parse_time(timestring): value = None for fmt in (FORMAT_RFC_822, FORMAT_RFC_850, FORMAT_ASC): try: value = time.strptime(timestring, fmt) except ValueError: pass if value is None: try: # Sun Nov 6 08:49:37 1994 +0100 ; ANSI C's asctime() format with timezone value = parsedate_tz(timestring) except ValueError: pass if value is None: return return calendar.timegm(value)
PypiClean
/GNN4LP-0.1.0-py3-none-any.whl/src/graph_att_gan/train.py
import scipy.sparse as sp import numpy as np import torch import time import os from configparser import ConfigParser import sys sys.path.append('/home/shiyan/project/gnn4lp/') from src.util.load_data import load_data_with_features, load_data_without_features, sparse_to_tuple, mask_test_edges, preprocess_graph from src.util.loss import arga_loss_function, varga_loss_function from src.util.metrics import get_roc_score from src.util import define_optimizer from src.graph_att_gan.model import GATModelGAN DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class Train(): def __init__(self): pass def train_model(self, config_path): if os.path.exists(config_path) and (os.path.split(config_path)[1].split('.')[0] == 'config') and ( os.path.splitext(config_path)[1].split('.')[1] == 'cfg'): # load config file config = ConfigParser() config.read(config_path) section = config.sections()[0] # data catalog path data_catalog = config.get(section, "data_catalog") # node cites path node_cites_path = config.get(section, "node_cites_path") node_cites_path = os.path.join(data_catalog, node_cites_path) # node features path node_features_path = config.get(section, 'node_features_path') node_features_path = os.path.join(data_catalog, node_features_path) # model save/load path model_path = config.get(section, "model_path") # model param config with_feats = config.getboolean(section, 'with_feats') # 是否带有节点特征 hidden_dim1 = config.getint(section, "hidden_dim1") hidden_dim2 = config.getint(section, "hidden_dim2") hidden_dim3 = config.getint(section, 'hidden_dim3') dropout = config.getfloat(section, "dropout") vae_bool = config.getboolean(section, 'vae_bool') alpha = config.getfloat(section, 'alpha') lr = config.getfloat(section, "lr") lr_decay = config.getfloat(section, 'lr_decay') weight_decay = config.getfloat(section, "weight_decay") gamma = config.getfloat(section, "gamma") momentum = config.getfloat(section, "momentum") eps = config.getfloat(section, "eps") clip = config.getfloat(section, "clip") epochs = config.getint(section, "epochs") optimizer_name = config.get(section, "optimizer") if with_feats: # 加载带节点特征的数据集 adj, features = load_data_with_features(node_cites_path, node_features_path) else: # 加载不带节点特征的数据集 adj = load_data_without_features(node_cites_path) features = sp.identity(adj.shape[0]) num_nodes = adj.shape[0] num_edges = adj.sum() features = sparse_to_tuple(features) num_features = features[2][1] # 去除对角线元素 # 下边的右部分为:返回adj_orig的对角元素(一维),并增加一维,抽出adj_orig的对角元素并构建只有这些对角元素的对角矩阵 adj_orig = adj - sp.dia_matrix((adj.diagonal()[np.newaxis, :], [0]), shape=adj.shape) adj_orig.eliminate_zeros() adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges(adj_orig) adj = adj_train # 返回D^{-0.5}SD^{-0.5}的coords, data, shape,其中S=A+I adj_norm = preprocess_graph(adj) adj_label = adj_train + sp.eye(adj_train.shape[0]) # adj_label = sparse_to_tuple(adj_label) adj_label = torch.FloatTensor(adj_label.toarray()).to(DEVICE) ''' 注意,adj的每个元素非1即0。pos_weight是用于训练的邻接矩阵中负样本边(既不存在的边)和正样本边的倍数(即比值),这个数值在二分类交叉熵损失函数中用到, 如果正样本边所占的比例和负样本边所占比例失衡,比如正样本边很多,负样本边很少,那么在求loss的时候可以提供weight参数,将正样本边的weight设置小一点,负样本边的weight设置大一点, 此时能够很好的平衡两类在loss中的占比,任务效果可以得到进一步提升。参考:https://www.zhihu.com/question/383567632 负样本边的weight都为1,正样本边的weight都为pos_weight ''' pos_weight = float(adj.shape[0] * adj.shape[0] - num_edges) / num_edges norm = adj.shape[0] * adj.shape[0] / float((adj.shape[0] * adj.shape[0] - adj.sum()) * 2) # create model print('create model ...') model = GATModelGAN(num_features, hidden_dim1=hidden_dim1, hidden_dim2=hidden_dim2, hidden_dim3=hidden_dim3, dropout=dropout, alpha=alpha, vae_bool=vae_bool) # define optimizer if optimizer_name == 'adam': optimizer = define_optimizer.define_optimizer_adam(model, lr=lr, weight_decay=weight_decay) elif optimizer_name == 'adamw': optimizer = define_optimizer.define_optimizer_adamw(model, lr=lr, weight_decay=weight_decay) elif optimizer_name == 'sgd': optimizer = define_optimizer.define_optimizer_sgd(model, lr=lr, momentum=momentum, weight_decay=weight_decay) elif optimizer_name == 'adagrad': optimizer = define_optimizer.define_optimizer_adagrad(model, lr=lr, lr_decay=lr_decay, weight_decay=weight_decay) elif optimizer_name == 'rmsprop': optimizer = define_optimizer.define_optimizer_rmsprop(model, lr=lr, weight_decay=weight_decay, momentum=momentum) elif optimizer_name == 'adadelta': optimizer = define_optimizer.define_optimizer_adadelta(model, lr=lr, weight_decay=weight_decay) else: raise NameError('No define optimization function name!') model = model.to(DEVICE) # 稀疏张量被表示为一对致密张量:一维张量和二维张量的索引。可以通过提供这两个张量来构造稀疏张量 adj_norm = torch.sparse.FloatTensor(torch.LongTensor(adj_norm[0].T), torch.FloatTensor(adj_norm[1]), torch.Size(adj_norm[2])) features = torch.sparse.FloatTensor(torch.LongTensor(features[0].T), torch.FloatTensor(features[1]), torch.Size(features[2])).to_dense() adj_norm = adj_norm.to(DEVICE) features = features.to(DEVICE) norm = torch.FloatTensor(np.array(norm)).to(DEVICE) pos_weight = torch.tensor(pos_weight).to(DEVICE) num_nodes = torch.tensor(num_nodes).to(DEVICE) print('start training...') best_valid_roc_score = float('-inf') hidden_emb = None model.train() for epoch in range(epochs): t = time.time() optimizer.zero_grad() # 解码后的邻接矩阵,判别器 recovered, dis_real, dis_fake, mu, logvar = model(features, adj_norm) if vae_bool: loss = varga_loss_function(preds=recovered, labels=adj_label, mu=mu, logvar=logvar, dis_real=dis_real, dis_fake=dis_fake, n_nodes=num_nodes, norm=norm, pos_weight=pos_weight) else: loss = arga_loss_function(preds=recovered, labels=adj_label, dis_real=dis_real, dis_fake=dis_fake, norm=norm, pos_weight=pos_weight) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), clip) cur_loss = loss.item() optimizer.step() hidden_emb = mu.data.cpu().numpy() # 评估验证集,val set roc_score, ap_score = get_roc_score(hidden_emb, adj_orig, val_edges, val_edges_false) # 保存最好的roc score if roc_score > best_valid_roc_score: best_valid_roc_score = roc_score # 不需要保存整个model,只需保存hidden_emb,因为后面的解码是用hidden_emb内积的形式作推断 np.save(model_path, hidden_emb) print("Epoch:", '%04d' % (epoch + 1), "train_loss = ", "{:.5f}".format(cur_loss), "val_roc_score = ", "{:.5f}".format(roc_score), "average_precision_score = ", "{:.5f}".format(ap_score), "time=", "{:.5f}".format(time.time() - t) ) print("Optimization Finished!") # 评估测试集,test set roc_score, ap_score = get_roc_score(hidden_emb, adj_orig, test_edges, test_edges_false) print('test roc score: {}'.format(roc_score)) print('test ap score: {}'.format(ap_score)) else: raise FileNotFoundError('File config.cfg not found : ' + config_path) if __name__ == '__main__': config_path = os.path.join(os.getcwd(), 'config.cfg') train = Train() train.train_model(config_path)
PypiClean
/AADeepLearning-1.0.8.tar.gz/AAdeepLearning-1.0.8/develop/aa_rnn_mnist.py
from __future__ import print_function import numpy as np np.random.seed(1337) # 生产环境 # from aa_deep_learning.aadeeplearning.aadeeplearning_old import AADeepLearning from aa_deep_learning.AADeepLearning import AADeepLearning from aa_deep_learning.AADeepLearning.datasets import mnist from aa_deep_learning.AADeepLearning.datasets import np_utils # 测试环境 # from aadeeplearning import aadeeplearning as aa # 10分类 nb_classes = 10 # keras中的mnist数据集已经被划分成了60,000个训练集,10,000个测试集的形式,按以下格式调用即可 (x_train, y_train), (x_test, y_test) = mnist.load_data() x_test = x_test[:64] y_test = y_test[:64] # print(x_test[0]) # 画出minist 数字 # import matplotlib.pyplot as plt # fig = plt.figure() # plt.imshow(x_test[0],cmap = 'binary')#黑白显示 # plt.show() # 后端使用tensorflow时,即tf模式下, # 会将100张RGB三通道的16*32彩色图表示为(100,16,32,3), # 第一个维度是样本维,表示样本的数目, # 第二和第三个维度是高和宽, # 最后一个维度是通道维,表示颜色通道数 # x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) # x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) # input_shape = (img_rows, img_cols, 1) # 将x_train, x_test的数据格式转为float32 x_train = x_train.astype('float32') x_test = x_test.astype('float32') # 归一化,将值映射到 0到1区间 x_train /= 255 x_test /= 255 # 将类别向量(从0到nb_classes的整数向量)映射为二值类别矩阵, # 相当于将向量用one-hot重新编码 y_train = np_utils.to_categorical(y_train, nb_classes) y_test = np_utils.to_categorical(y_test, nb_classes) # 打印出相关信息 print('x_train shape:', x_train.shape) print('y_train shape:', y_train.shape) print('x_test shape:', x_test.shape) print('y_test shape:', y_test.shape) # 网络配置文件 config = { # 初始学习率 "learning_rate": 0.001, # 学习率衰减: 通常设置为 0.99 "learning_rate_decay": 0.9999, # 优化策略: sgd/momentum/rmsprop "optimizer": "momentum", # 使用动量的梯度下降算法做优化,可以设置这一项,默认值为 0.9 ,一般不需要调整 "momentum_coefficient": 0.95, # rmsprop优化器的衰减系数 "rmsprop_decay": 0.95, # 正则化系数 "reg_coefficient": 0, # 训练多少次 "number_iteration": 1000, # 每次用多少个样本训练 "batch_size": 64, # 预训练参数模型所在路径 "pre_train_model": "./iter5.gordonmodel" } net = [ { # 层名 "name": "rnn_1", # 层类型 "type": "rnn", # 神经元个数 "neurons_number": 60, # 权重初始化方式 msra/xavier/gaussian/xavier "weight_init": "xavier" }, { # 层名 "name": "relu_1", # 层类型 "type": "relu" }, { # 层名 "name": "fully_connected_1", # 层类型 "type": "fully_connected", # 神经元个数, 因为是10分类,所以神经元个数为10 "neurons_number": 10, # 权重初始化方式 msra/xavier/gaussian/xaver "weight_init": "msra" }, { # 层名 "name": "softmax", # 层类型 "type": "softmax" } ] AA = AADeepLearning(net=net, config=config) # 训练模型 AA.train(x_train=x_train, y_train=y_train) # 使用测试集预测,返回概率分布和准确率, score:样本在各个分类上的概率, accuracy:准确率 score, accuracy = AA.predict(x_test=x_test, y_test=y_test) print("test set accuracy:",accuracy) """ # 输出训练好的模型在测试集上的表现 print('Test score:', score[0]) print('Test accuracy:', score[1]) # Test score: 0.032927570413 # Test accuracy: 0.9892 """
PypiClean
/Bottlechest-0.7.1-cp34-cp34m-macosx_10_9_x86_64.whl/bottlechest/src/template/func/nanequal.w3d.py
"nanequal template" from copy import deepcopy import bottlechest as bn __all__ = ["nanequal"] FLOAT_DTYPES = [x for x in bn.dtypes if 'float' in x] INT_DTYPES = [x for x in bn.dtypes if 'int' in x] # Float dtypes (not axis=None) ---------------------------------------------- floats = {} floats['dtypes'] = FLOAT_DTYPES floats['axisNone'] = False floats['force_output_dtype'] = 'bool' floats['reuse_non_nan_func'] = False floats['top'] = """ @cython.boundscheck(False) @cython.wraparound(False) def NAME_NDIMd_DTYPE_axisAXIS(np.ndarray[np.DTYPE_t, ndim=NDIM] a, np.ndarray[np.DTYPE_t, ndim=NDIM] b): "Check whether two arrays are equal, ignoring NaNs, in NDIMd array with dtype=DTYPE along axis=AXIS." cdef int f = 1 cdef np.DTYPE_t ai """ loop = {} loop[2] = """\ for iINDEX0 in range(nINDEX0): f = 1 for iINDEX1 in range(nINDEX1): ai = a[INDEXALL] bi = b[INDEXALL] if ai != bi and ai == ai and bi == bi: y[INDEXPOP] = 0 f = 0 break if f == 1: y[INDEXPOP] = 1 return y """ loop[3] = """\ for iINDEX0 in range(nINDEX0): for iINDEX1 in range(nINDEX1): f = 1 for iINDEX2 in range(nINDEX2): ai = a[INDEXALL] bi = b[INDEXALL] if ai != bi and ai == ai and bi == bi: y[INDEXPOP] = 0 f = 0 break if f == 1: y[INDEXPOP] = 1 return y """ floats['loop'] = loop # Float dtypes (axis=None) -------------------------------------------------- floats_None = deepcopy(floats) floats_None['axisNone'] = True loop = {} loop[1] = """\ for iINDEX0 in range(nINDEX0): ai = a[INDEXALL] bi = b[INDEXALL] if ai != bi and ai == ai and bi == bi: return np.bool_(False) return np.bool_(True) """ loop[2] = """\ for iINDEX0 in range(nINDEX0): for iINDEX1 in range(nINDEX1): ai = a[INDEXALL] bi = b[INDEXALL] if ai != bi and ai == ai and bi == bi: return np.bool_(False) return np.bool_(True) """ loop[3] = """\ for iINDEX0 in range(nINDEX0): for iINDEX1 in range(nINDEX1): for iINDEX2 in range(nINDEX2): ai = a[INDEXALL] bi = b[INDEXALL] if ai != bi and ai == ai and bi == bi: return np.bool_(False) return np.bool_(True) """ floats_None['loop'] = loop # Int dtypes (not axis=None) ------------------------------------------------ ints = deepcopy(floats) ints['dtypes'] = INT_DTYPES loop = {} loop[2] = """\ for iINDEX0 in range(nINDEX0): f = 1 for iINDEX1 in range(nINDEX1): ai = a[INDEXALL] bi = b[INDEXALL] if ai != bi: y[INDEXPOP] = 0 f = 0 break if f == 1: y[INDEXPOP] = 1 return y """ loop[3] = """\ for iINDEX0 in range(nINDEX0): for iINDEX1 in range(nINDEX1): f = 1 for iINDEX2 in range(nINDEX2): ai = a[INDEXALL] bi = b[INDEXALL] if ai != bi: y[INDEXPOP] = 0 f = 0 break if f == 1: y[INDEXPOP] = 1 return y """ ints['loop'] = loop # Slow, unaccelerated ndim/dtype -------------------------------------------- slow = {} slow['name'] = "nanequal" slow['signature'] = "arr1, arr2" slow['func'] = "bn.slow.nanequal(arr1, arr2, axis=AXIS)" # Template ------------------------------------------------------------------ nanequal = {} nanequal['name'] = 'nanequal' nanequal['is_reducing_function'] = True nanequal['cdef_output'] = True nanequal['slow'] = slow nanequal['templates'] = {} nanequal['templates']['float'] = floats nanequal['templates']['float_None'] = floats_None nanequal['templates']['int'] = ints nanequal['pyx_file'] = 'func/%sbit/nanequal.pyx' nanequal['main'] = '''"nanequal auto-generated from template" def nanequal(arr1, arr2, axis=None): """ Test whether two array are equal along a given axis, ignoring NaNs. Returns single boolean unless `axis` is not ``None``. Parameters ---------- arr1 : array_like First input array. If `arr` is not an array, a conversion is attempted. arr2 : array_like Second input array axis : {int, None}, optional Axis along which arrays are compared. The default (`axis` = ``None``) is to compare flattened arrays. `axis` may be negative, in which case it counts from the last to the first axis. Returns ------- y : bool or ndarray A new boolean or `ndarray` is returned. See also -------- bottlechest.nancmp: Compare two arrays, ignoring NaNs Examples -- TODO: PROVIDE EXAMPLES! -------- >>> bn.nanequal(1) False >>> bn.nanequal(np.nan) True >>> bn.nanequal([1, np.nan]) True >>> a = np.array([[1, 4], [1, np.nan]]) >>> bn.nanequal(a) True >>> bn.nanequal(a, axis=0) array([False, True], dtype=bool) """ func, arr1, arr2 = nanequal_selector(arr1, arr2, axis) return func(arr1, arr2) def nanequal_selector(arr1, arr2, axis): """ Return nanequal function and array that matches `arr` and `axis`. Under the hood Bottleneck uses a separate Cython function for each combination of ndim, dtype, and axis. A lot of the overhead in bn.nanequal() is in checking that `axis` is within range, converting `arr` into an array (if it is not already an array), and selecting the function to use. You can get rid of the overhead by doing all this before you, for example, enter an inner loop, by using the this function. Parameters ---------- arr1 : array_like First input array. If `arr` is not an array, a conversion is attempted. arr2 : array_like Second input array axis : {int, None}, optional Axis along which arrays are compared. The default (`axis` = ``None``) is to compare flattened arrays. `axis` may be negative, in which case it counts from the last to the first axis. Returns ------- func : function The nanequal function that matches the number of dimensions and dtype of the input array and the axis. a1 : ndarray If the input array `arr1` is not a ndarray, then `a1` will contain the result of converting `arr1` into a ndarray. a2 : ndarray Equivalent for arr2. Examples TODO: PROVIDE EXAMPLES -------- Create a numpy array: >>> arr = np.array([1.0, 2.0, 3.0]) Obtain the function needed to determine if there are any NaN in `arr`: >>> func, a = bn.func.nanequal_selector(arr, axis=0) >>> func <function nanequal_1d_float64_axisNone> Use the returned function and array to determine if there are any NaNs: >>> func(a) False """ cdef np.ndarray a1, a2 if type(arr1) is np.ndarray: a1 = arr1 else: a1 = np.array(arr1, copy=False) if type(arr2) is np.ndarray: a2 = arr2 else: a2 = np.array(arr2, copy=False) cdef int ndim = PyArray_NDIM(a1) cdef int ndim2 = PyArray_NDIM(a1) if ndim != ndim2: raise ValueError("arrays have different dimensions, %i != %i" % (ndim, ndim2)) cdef int dtype = PyArray_TYPE(a1) cdef np.npy_intp *dim1, *dim2 cdef int i cdef tuple key = (ndim, dtype, axis) if dtype == PyArray_TYPE(a2): dim1 = PyArray_DIMS(a1) dim2 = PyArray_DIMS(a2) for i in range(ndim): if dim1[i] != dim2[i]: raise ValueError("shape mismatch"); if (axis is not None) and (axis < 0): axis += ndim try: func = nanequal_dict[key] return func, a1, a2 except KeyError: pass if axis is not None: if (axis < 0) or (axis >= ndim): raise ValueError("axis(=%d) out of bounds" % axis) try: func = nanequal_slow_dict[axis] except KeyError: tup = (str(ndim), str(a1.dtype), str(axis)) raise TypeError("Unsupported ndim/dtype/axis (%s/%s/%s)." % tup) return func, a1, a2 '''
PypiClean
/DendroPy-4.6.1.tar.gz/DendroPy-4.6.1/src/dendropy/legacy/seqsim.py
############################################################################## ## DendroPy Phylogenetic Computing Library. ## ## Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder. ## All rights reserved. ## ## See "LICENSE.rst" for terms and conditions of usage. ## ## If you use this work or any portion thereof in published work, ## please cite it as: ## ## Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library ## for phylogenetic computing. Bioinformatics 26: 1569-1571. ## ############################################################################## """ DEPRECATED IN DENDROPY 4: USE `dendropy.simulate.charsim`. """ import dendropy from dendropy.simulate import charsim from dendropy.utility import deprecate def generate_hky_dataset(seq_len, tree_model, mutation_rate=1.0, kappa=1.0, base_freqs=[0.25, 0.25, 0.25, 0.25], root_states=None, dataset=None, rng=None): deprecate.dendropy_deprecation_warning( preamble="Deprecated since DendroPy 4: The 'dendropy.seqsim.generate_hky_dataset()' function has been replaced with 'dendropy.simulate.charsim.hky85_chars()'.", old_construct="from dendropy import seqsim\ndataset = seqsim.generate_hky_dataset(...)", new_construct="import dendropy\nfrom dendropy.simulate import charsim\ndataset = dendropy.DataSet()\nchar_matrix = charsim.hky85_chars(...)\ndataset.add_char_matrix(char_matrix)") if dataset is None: dataset = dendropy.DataSet() char_matrix = dataset.new_char_matrix(char_matrix_type="dna", taxon_namespace=tree_model.taxon_namespace) charsim.hky85_chars( seq_len=seq_len, tree_model=tree_model, mutation_rate=mutation_rate, kappa=kappa, base_freqs=base_freqs, root_states=root_states, char_matrix=char_matrix, rng=rng) return dataset def generate_hky_characters(seq_len, tree_model, mutation_rate=1.0, kappa=1.0, base_freqs=[0.25, 0.25, 0.25, 0.25], root_states=None, char_matrix=None, rng=None): deprecate.dendropy_deprecation_warning( preamble="Deprecated since DendroPy 4: The 'dendropy.seqsim.generate_hky_characters()' function has been replaced with 'dendropy.simulate.charsim.hky85_chars()'.", old_construct="from dendropy import seqsim\nchar_matrix = seqsim.generate_hky_characters(...)", new_construct="from dendropy.simulate import charsim\nchar_matrix = charsim.hky85_chars(...)") return charsim.hky85_chars( seq_len=seq_len, tree_model=tree_model, mutation_rate=mutation_rate, kappa=kappa, base_freqs=base_freqs, root_states=root_states, char_matrix=char_matrix, rng=rng) # def generate_dataset(seq_len, # tree_model, # seq_model, # mutation_rate=1.0, # root_states=None, # dataset=None, # rng=None): # deprecate.dendropy_deprecation_warning( # preamble="Deprecated since DendroPy 4: The 'dendropy.seqsim.generate_hky_characters()' function has been replaced with 'dendropy.simulate.charsim.hky85_chars()'.", # old_construct="from dendropy import seqsim\nchar_matrix = seqsim.generate_hky_characters(...)", # new_construct="from dendropy.simulate import charsim\nchar_matrix = discrete.hky85_chars(...)") # def generate_char_matrix(seq_len, # tree_model, # seq_model, # mutation_rate=1.0, # root_states=None, # char_matrix=None, # rng=None): # pass # class SeqEvolver(object): # def __init__(self, # seq_model=None, # mutation_rate=None, # seq_attr='sequences', # seq_model_attr="seq_model", # edge_length_attr="length", # edge_rate_attr="mutation_rate", # seq_label_attr='taxon'): # pass
PypiClean
/GaitAnalysisToolKit-0.2.0.tar.gz/GaitAnalysisToolKit-0.2.0/gaitanalysis/markers.py
# builtin from distutils.version import LooseVersion # external import numpy as np from numpy.core.umath_tests import matrix_multiply def det3(ar): """Returns the determinants of an array of 3 x 3 matrices. Parameters ---------- ar : array_like, shape(n, 3, 3) A array of 3 x 3 arrays. Returns ------- tot : ndarray, shape(n, ) An array of determinants. Notes ----- This is extremely faster than calling numpy.linalg.det for 3 x 3 matrices and is adopted from: http://mail.scipy.org/pipermail/numpy-discussion/2008-August/036928.html """ a = ar[..., 0, 0]; b = ar[..., 0, 1]; c = ar[..., 0, 2] d = ar[..., 1, 0]; e = ar[..., 1, 1]; f = ar[..., 1, 2] g = ar[..., 2, 0]; h = ar[..., 2, 1]; i = ar[..., 2, 2] t = a.copy(); t *= e; t *= i; tot = t t = b.copy(); t *= f; t *= g; tot += t t = c.copy(); t *= d; t *= h; tot += t t = g.copy(); t *= e; t *= c; tot -= t t = h.copy(); t *= f; t *= a; tot -= t t = i.copy(); t *= d; t *= b; tot -= t return tot def soederkvist(first_positions, second_positions): """Returns the rotation matrix and translation vector that relates two sets of markers in 3D space that are assumed to be attached to the same rigid body in two different positions and orientations given noisy measurements of the marker sets' global positions. Parameters ---------- first_positions : array_like, shape(n, m, 3) or shape(1, m, 3) The x, y, and z coordinates of m markers in n positions in a global reference frame. second_positions : array_like, shape(n, m, 3) The x, y, and z coordinates of the same m markers in n positions in a global reference frame. Returns ------- rotation : ndarray, shape(n, 3, 3) These rotation matrices is defined such that v1 = R * v2 where v1 is the vector, v, expressed in a reference frame associated with the first position and v2 is the same vector expressed in a reference frame associated with the second position. translation : ndarray, shape(n, 3) The translation vector from the first position to the second position expressed in the same frame as the x and y values. Notes ----- The relationship between x, y, R and d is defined as: yi = R * xi + d This alogrithm is explicitly taken from: I. Soederkvist and P.A. Wedin (1993) Determining the movement of the skeleton using well-configured markers. J. Biomech. 26:1473-1477. But the same algorithm is described in: J.H. Challis (1995) A prodecure for determining rigid body transformation parameters, J. Biomech. 28, 733-737. with the latter also includes possibilities for scaling, reflection, and weighting of marker data. """ num_frames, num_markers, num_coordinates = first_positions.shape # TODO : This may be an uneccesary memory increase and broadcasting may # deal with this properly without having to do this explicitly. if num_frames == 1: first_positions = np.repeat(first_positions, second_positions.shape[0], 0) num_frames = first_positions.shape[0] if num_markers != first_positions.shape[1]: raise ValueError('The first and second positions must have the ' + 'same number of markers.') if num_coordinates != 3 or second_positions.shape[2] != 3: raise ValueError('You must have three coordinates for each marker.') if num_frames != second_positions.shape[0]: raise ValueError('The first and second positions must have the ' + 'same number of frames.') # This is the mean location of the markers at each position. # n x 3 mx = first_positions.mean(1) my = second_positions.mean(1) # Subtract the mean location of the markers to remove the translation # and leave the markers that have only been rotated with respect to one # another (about their mean). # n x m x 3 = n x m x 3 - n x 1 x 3 A = first_positions - np.expand_dims(mx, 1) B = second_positions - np.expand_dims(my, 1) # n x 3 x m B_T = B.transpose((0, 2, 1)) # n x 3 x 3 = n x 3 x m * n x m x 3 C = matrix_multiply(B_T, A) # TODO : The svd of a 3 x 3 may involve simple math and it would be more # efficient to hard code it like the `det3` function for determinants. # Note that svd in NumPy svd returns the transpose of Q as compared to # Matlab/Octave. # n x 3 x 3, n x 3, n x 3 x 3 = svd(n x 3 x 3) if LooseVersion(np.__version__) < LooseVersion('1.8.0'): P = np.zeros_like(C) Q = np.zeros_like(C) for i, c in enumerate(C): P[i], T, Q[i] = np.linalg.svd(c) else: P, T, Q = np.linalg.svd(C) # n x 3 x 3 = n x 3 x 3 * n x 3 x 3 rotations = matrix_multiply(P, Q) # n determinants det_P_Q = det3(rotations) # I think this construction of an identity matrix is here because the # determinants can sometimes be -1 instead of 1. This may represent a # reflection and plugging in the determinant deals with that. If the # determinants are all positive 1's then we can skip this operation. if (np.abs(det_P_Q - 1.0) < 1e-16).all(): # n x 3 x 3 I = np.zeros((num_frames, 3, 3)) I[:, 0, 0] = 1.0 I[:, 1, 1] = 1.0 I[:, 2, 2] = det_P_Q # n x 3 x 3 rotations = matrix_multiply(matrix_multiply(P, I), Q) # n x 3 = squeeze(n x 3 x 1 - n x 3 x 3 * n x 3 x 1) translations = np.squeeze(np.expand_dims(my, 2) - matrix_multiply(rotations, np.expand_dims(mx, 2))) return rotations, translations
PypiClean
/Netfoll_TL-2.0.1-py3-none-any.whl/netfoll_tl/tl/types/storage.py
from ...tl.tlobject import TLObject from typing import Optional, List, Union, TYPE_CHECKING import os import struct from datetime import datetime class FileGif(TLObject): CONSTRUCTOR_ID = 0xcae1aadf SUBCLASS_OF_ID = 0xf3a1e6f3 def to_dict(self): return { '_': 'FileGif' } def _bytes(self): return b''.join(( b'\xdf\xaa\xe1\xca', )) @classmethod def from_reader(cls, reader): return cls() class FileJpeg(TLObject): CONSTRUCTOR_ID = 0x7efe0e SUBCLASS_OF_ID = 0xf3a1e6f3 def to_dict(self): return { '_': 'FileJpeg' } def _bytes(self): return b''.join(( b'\x0e\xfe~\x00', )) @classmethod def from_reader(cls, reader): return cls() class FileMov(TLObject): CONSTRUCTOR_ID = 0x4b09ebbc SUBCLASS_OF_ID = 0xf3a1e6f3 def to_dict(self): return { '_': 'FileMov' } def _bytes(self): return b''.join(( b'\xbc\xeb\tK', )) @classmethod def from_reader(cls, reader): return cls() class FileMp3(TLObject): CONSTRUCTOR_ID = 0x528a0677 SUBCLASS_OF_ID = 0xf3a1e6f3 def to_dict(self): return { '_': 'FileMp3' } def _bytes(self): return b''.join(( b'w\x06\x8aR', )) @classmethod def from_reader(cls, reader): return cls() class FileMp4(TLObject): CONSTRUCTOR_ID = 0xb3cea0e4 SUBCLASS_OF_ID = 0xf3a1e6f3 def to_dict(self): return { '_': 'FileMp4' } def _bytes(self): return b''.join(( b'\xe4\xa0\xce\xb3', )) @classmethod def from_reader(cls, reader): return cls() class FilePartial(TLObject): CONSTRUCTOR_ID = 0x40bc6f52 SUBCLASS_OF_ID = 0xf3a1e6f3 def to_dict(self): return { '_': 'FilePartial' } def _bytes(self): return b''.join(( b'Ro\xbc@', )) @classmethod def from_reader(cls, reader): return cls() class FilePdf(TLObject): CONSTRUCTOR_ID = 0xae1e508d SUBCLASS_OF_ID = 0xf3a1e6f3 def to_dict(self): return { '_': 'FilePdf' } def _bytes(self): return b''.join(( b'\x8dP\x1e\xae', )) @classmethod def from_reader(cls, reader): return cls() class FilePng(TLObject): CONSTRUCTOR_ID = 0xa4f63c0 SUBCLASS_OF_ID = 0xf3a1e6f3 def to_dict(self): return { '_': 'FilePng' } def _bytes(self): return b''.join(( b'\xc0cO\n', )) @classmethod def from_reader(cls, reader): return cls() class FileUnknown(TLObject): CONSTRUCTOR_ID = 0xaa963b05 SUBCLASS_OF_ID = 0xf3a1e6f3 def to_dict(self): return { '_': 'FileUnknown' } def _bytes(self): return b''.join(( b'\x05;\x96\xaa', )) @classmethod def from_reader(cls, reader): return cls() class FileWebp(TLObject): CONSTRUCTOR_ID = 0x1081464c SUBCLASS_OF_ID = 0xf3a1e6f3 def to_dict(self): return { '_': 'FileWebp' } def _bytes(self): return b''.join(( b'LF\x81\x10', )) @classmethod def from_reader(cls, reader): return cls()
PypiClean
/DynamicistToolKit-0.5.3.tar.gz/DynamicistToolKit-0.5.3/dtk/process.py
# standard library from distutils.version import LooseVersion # external dependencies import numpy as np from numpy.fft import fft, fftfreq from scipy import __version__ as scipy_version from scipy.integrate import trapz, cumtrapz from scipy.interpolate import UnivariateSpline from scipy.optimize import fmin from scipy.signal import butter, filtfilt try: from scipy.stats import nanmean except ImportError: # NOTE : nanmean was removed from SciPy in version 0.18.0. from numpy import nanmean from scipy import sparse import matplotlib.pyplot as plt def sync_error(tau, signal1, signal2, time, plot=False): '''Returns the error between two signal time histories given a time shift, tau. Parameters ---------- tau : float The time shift. signal1 : ndarray, shape(n,) The signal that will be interpolated. This signal is typically "cleaner" that signal2 and/or has a higher sample rate. signal2 : ndarray, shape(n,) The signal that will be shifted to syncronize with signal 1. time : ndarray, shape(n,) The time vector for the two signals plot : boolean, optional, default=False If true a plot will be shown of the resulting signals. Returns ------- error : float Error between the two signals for the given tau. ''' # make sure tau isn't too large if np.abs(tau) >= time[-1]: raise ValueError(('abs(tau), {0}, must be less than or equal to ' + '{1}').format(str(np.abs(tau)), str(time[-1]))) # this is the time for the second signal which is assumed to lag the first # signal shiftedTime = time + tau # create time vector where the two signals overlap if tau > 0: intervalTime = shiftedTime[np.nonzero(shiftedTime < time[-1])] else: intervalTime = shiftedTime[np.nonzero(shiftedTime > time[0])] # interpolate between signal 1 samples to find points that correspond in # time to signal 2 on the shifted time sig1OnInterval = np.interp(intervalTime, time, signal1) # truncate signal 2 to the time interval if tau > 0: sig2OnInterval = signal2[np.nonzero(shiftedTime <= intervalTime[-1])] else: sig2OnInterval = signal2[np.nonzero(shiftedTime >= intervalTime[0])] if plot is True: fig, axes = plt.subplots(2, 1) axes[0].plot(time, signal1, time, signal2) axes[0].legend(('Signal 1', 'Signal 2')) axes[0].set_title("Before shifting.") axes[1].plot(intervalTime, sig1OnInterval, intervalTime, sig2OnInterval) axes[1].set_title("After shifting.") axes[1].legend(('Signal 1', 'Signal 2')) plt.show() # calculate the error between the two signals error = np.linalg.norm(sig1OnInterval - sig2OnInterval) return error def find_timeshift(signal1, signal2, sample_rate, guess=None, plot=False): '''Returns the timeshift, tau, of the second signal relative to the first signal. Parameters ---------- signal1 : array_like, shape(n, ) The base signal. signal2 : array_like, shape(n, ) A signal shifted relative to the first signal. The second signal should be leading the first signal. sample_rate : integer or float Sample rate of the signals. This should be the same for each signal. guess : float, optional, default=None If you've got a good guess for the time shift then supply it here. plot : boolean, optional, defaul=False If true, a plot of the error landscape will be shown. Returns ------- tau : float The timeshift between the two signals. ''' # raise an error if the signals are not the same length if len(signal1) != len(signal2): raise ValueError('Signals are not the same length!') # subtract the mean and normalize both signals signal1 = normalize(subtract_mean(signal1)) signal2 = normalize(subtract_mean(signal2)) time = time_vector(len(signal1), sample_rate) if guess is None: # set up the error landscape, error vs tau # We assume the time shift is tau_range = np.linspace(-time[len(time) // 4], time[len(time) // 4], num=len(time) // 10) # TODO : Can I vectorize this? error = np.zeros_like(tau_range) for i, val in enumerate(tau_range): error[i] = sync_error(val, signal1, signal2, time) if plot is True: plt.figure() plt.plot(tau_range, error) plt.xlabel('tau') plt.ylabel('error') plt.show() # find initial condition from landscape tau0 = tau_range[np.argmin(error)] else: tau0 = guess print("The minimun of the error landscape is {}.".format(tau0)) tau, fval = fmin(sync_error, tau0, args=(signal1, signal2, time), full_output=True, disp=True)[0:2] return tau def truncate_data(tau, signal1, signal2, sample_rate): '''Returns the truncated vectors with respect to the time shift tau. It assume you've found the time shift between two signals with find_time_shift or something similar. Parameters ---------- tau : float The time shift. signal1 : array_like, shape(n, ) A time series. signal2 : array_like, shape(n, ) A time series. sample_rate : integer The sample rate of the two signals. Returns ------- truncated1 : ndarray, shape(m, ) The truncated time series. truncated2 : ndarray, shape(m, ) The truncated time series. ''' t = time_vector(len(signal1), sample_rate) # shift the first signal t1 = t - tau t2 = t # make the common time interval common_interval = t2[np.nonzero(t2 < t1[-1])] truncated1 = np.interp(common_interval, t1, signal1) truncated2 = signal2[np.nonzero(t2 <= common_interval[-1])] return truncated1, truncated2 def least_squares_variance(A, sum_of_residuals): """Returns the variance in the ordinary least squares fit and the covariance matrix of the estimated parameters. Parameters ---------- A : ndarray, shape(n,d) The left hand side matrix in Ax=B. sum_of_residuals : float The sum of the residuals (residual sum of squares). Returns ------- variance : float The variance of the fit. covariance : ndarray, shape(d,d) The covariance of x in Ax = b. """ # I am pretty sure that the residuals from numpy.linalg.lstsq is the SSE # (the residual sum of squares). degrees_of_freedom = (A.shape[0] - A.shape[1]) variance = sum_of_residuals / degrees_of_freedom # There may be a way to use the pinv here for more efficient # computations. (A^T A)^-1 A^T = np.linalg.pinv(A) so np.linalg.pinv(A) # (A^T)^-1 ... or maybe not. if sparse.issparse(A): inv = sparse.linalg.inv prod = A.T * A else: inv = np.linalg.inv prod = np.dot(A.T, A) covariance = variance * inv(prod) return variance, covariance def coefficient_of_determination(measured, predicted): """Computes the coefficient of determination with respect to a measured and predicted array. Parameters ---------- measured : array_like, shape(n,) The observed or measured values. predicted : array_like, shape(n,) The values predicted by a model. Returns ------- r_squared : float The coefficient of determination. Notes ----- The coefficient of determination [also referred to as R^2 and VAF (variance accounted for)] is computed either of these two ways:: sum( [predicted - mean(measured)] ** 2 ) R^2 = ---------------------------------------- sum( [measured - mean(measured)] ** 2 ) or:: sum( [measured - predicted] ** 2 ) R^2 = 1 - --------------------------------------- sum( [measured - mean(measured)] ** 2 ) """ # 2-norm => np.sqrt(np.sum(measured - predicted)**2)) numerator = np.linalg.norm(measured - predicted) ** 2 denominator = np.linalg.norm(measured - measured.mean()) ** 2 r_squared = 1.0 - numerator / denominator return r_squared def fit_goodness(ym, yp): ''' Calculate the goodness of fit. Parameters ---------- ym : ndarray, shape(n,) The vector of measured values. yp : ndarry, shape(n,) The vector of predicted values. Returns ------- rsq : float The r squared value of the fit. SSE : float The error sum of squares. SST : float The total sum of squares. SSR : float The regression sum of squares. Notes ----- SST = SSR + SSE ''' ym_bar = np.mean(ym) SSR = sum((yp - ym_bar) ** 2) SST = sum((ym - ym_bar) ** 2) SSE = SST - SSR rsq = SSR / SST return rsq, SSE, SST, SSR def spline_over_nan(x, y): """ Returns a vector of which a cubic spline is used to fill in gaps in the data from nan values. Parameters ---------- x : ndarray, shape(n,) This x values should not contain nans. y : ndarray, shape(n,) The y values may contain nans. Returns ------- ySpline : ndarray, shape(n,) The splined y values. If `y` doesn't contain any nans then `ySpline` is `y`. Notes ----- The splined data is identical to the input data, except that the nan's are replaced by new data from the spline fit. """ # if there are nans in the data then spline away if np.isnan(y).any(): # remove the values with nans xNoNan = x[np.nonzero(np.isnan(y) == False)] yNoNan = y[np.nonzero(np.isnan(y) == False)] # fit a spline through the data spline = UnivariateSpline(xNoNan, yNoNan, k=3, s=0) return spline(x) else: return y def curve_area_stats(x, y): ''' Return the box plot stats of a curve based on area. Parameters ---------- x : ndarray, shape (n,) The x values y : ndarray, shape (n,m) The y values n are the time steps m are the various curves Returns ------- A dictionary containing: median : ndarray, shape (m,) The x value corresponding to 0.5*area under the curve lq : ndarray, shape (m,) lower quartile uq : ndarray, shape (m,) upper quartile 98p : ndarray, shape (m,) 98th percentile 2p : ndarray, shape (m,) 2nd percentile ''' area = trapz(y, x=x, axis=0) # shape (m,) percents = np.array([0.02*area, 0.25*area, 0.5*area, 0.75*area, 0.98*area]) # shape (5,m) CumArea = cumtrapz(y.T, x=x.T) # shape(m,n) xstats = {'2p':[], 'lq':[], 'median':[], 'uq':[], '98p':[]} for j, curve in enumerate(CumArea): flags = [False for flag in range(5)] for i, val in enumerate(curve): if val > percents[0][j] and flags[0] == False: xstats['2p'].append(x[i]) flags[0] = True elif val > percents[1][j] and flags[1] == False: xstats['lq'].append(x[i]) flags[1] = True elif val > percents[2][j] and flags[2] == False: xstats['median'].append(x[i]) flags[2] = True elif val > percents[3][j] and flags[3] == False: xstats['uq'].append(x[i]) flags[3] = True elif val > percents[4][j] and flags[4] == False: xstats['98p'].append(x[i]) flags[4] = True if flags[4] == False: # this is what happens if it finds none of the above xstats['2p'].append(0.) xstats['lq'].append(0.) xstats['median'].append(0.) xstats['uq'].append(0.) xstats['98p'].append(0.) for k, v in xstats.items(): xstats[k] = np.array(v) return xstats def freq_spectrum(data, sampleRate): """ Return the frequency spectrum of a data set. Parameters ---------- data : ndarray, shape (m,) or shape(n,m) The array of time signals where n is the number of variables and m is the number of time steps. sampleRate : int The signal sampling rate in hertz. Returns ------- frequency : ndarray, shape (p,) The frequencies where p is a power of 2 close to m. amplitude : ndarray, shape (p,n) The amplitude at each frequency. """ def nextpow2(i): ''' Return the next power of 2 for the given number. ''' n = 2 while n < i: n *= 2 return n time = 1. / sampleRate # sample time try: L = data.shape[1] # length of data if (n, m) except: L = data.shape[0] # length of data if (n,) # calculate the closest power of 2 for the length of the data n = nextpow2(L) Y = fft(data, n) / L # divide by L for scaling f = fftfreq(n, d=time) #f = sampleRate/2.*linspace(0, 1, n) #print 'f =', f, f.shape, type(f) frequency = f[1:n / 2] try: amplitude = 2 * abs(Y[:, 1:n / 2]).T # multiply by 2 because we take half the vector #power = abs(Y[:, 1:n/2])**2 except: amplitude = 2 * abs(Y[1:n / 2]) #power = abs(Y[1:n/2])**2 return frequency, amplitude def butterworth(data, cutoff, samplerate, order=2, axis=-1, btype='lowpass', **kwargs): """Returns the data filtered by a forward/backward Butterworth filter. Parameters ---------- data : ndarray, shape(n,) or shape(n,m) The data to filter. Only handles 1D and 2D arrays. cutoff : float The filter cutoff frequency in hertz. samplerate : float The sample rate of the data in hertz. order : int The order of the Butterworth filter. axis : int The axis to filter along. btype : {'lowpass'|'highpass'|'bandpass'|'bandstop'} The type of filter. Default is 'lowpass'. kwargs : keyword value pairs Any extra arguments to get passed to scipy.signal.filtfilt. Returns ------- filtered_data : ndarray The low pass filtered version of data. Notes ----- The provided cutoff frequency is corrected by a multiplicative factor to ensure the double pass filter cutoff frequency matches that of a single pass filter, see [Winter2009]_. References ---------- .. [Winter2009] David A. Winter (2009) Biomechanics and motor control of human movement. 4th edition. Hoboken: Wiley. """ if len(data.shape) > 2: raise ValueError('This function only works with 1D or 2D arrays.') nyquist_frequency = 0.5 * samplerate # Since we use filtfilt below, we correct the cutoff frequency to ensure # the filter**2 crosses the -3 dB line at the cutoff frequency. # |H(w)| = sqrt(1 / (1 + (w / wc)**(2n))) # wc : cutoff frequency # n : Butterworth filter order # |H**2(w)| = 1 / (1 + (w / wc)**(2n)) # |H**2(wc)| = 1 / (1 + (wc / wa)**(2n)) = 1 / sqrt(2) = -3 dB # wa : adjusted cutoff frequency for double filter # wa = (np.sqrt(2.0) - 1.0) ** (-1.0 / (2.0 * n)) correction_factor = (np.sqrt(2.0) - 1.0) ** (-1.0 / (2.0 * order)) # Wn is the ratio of the corrected cutoff frequency to the Nyquist # frequency. Wn = correction_factor * cutoff / nyquist_frequency b, a = butter(order, Wn, btype=btype) # SciPy 0.9.0 has a simple filtfilt, with no optional arguments. SciPy # 0.10.0 introduced the axis argument. So, to stay compatible with # 0.9.0, which is the SciPy installed on Ubuntu 12.04 LTS, we check the # version. The version in SciPy 0.9.0 doesn't have kwargs either. nine = LooseVersion('0.9.0') ten = LooseVersion('0.10.0') current = LooseVersion(scipy_version) if current >= nine and current < ten: print('SciPy 0.9.0 only supports 1D filtfilt, ' + 'so you get a slow version.') if len(data.shape) == 2: if axis == 0: data = data.T filtered = np.zeros_like(data) for i, vector in enumerate(data): filtered[i] = filtfilt(b, a, vector) if axis == 0: return filtered.T else: return filtered else: return filtfilt(b, a, data) elif current >= ten: return filtfilt(b, a, data, axis=axis, **kwargs) def subtract_mean(sig, hasNans=False): ''' Subtracts the mean from a signal with nanmean. Parameters ---------- sig : ndarray, shape(n,) hasNans : boolean, optional If your data has nans use this flag if you want to ignore them. Returns ------- ndarray, shape(n,) sig minus the mean of sig ''' if hasNans: return sig - nanmean(sig) else: return sig - np.mean(sig) def normalize(sig, hasNans=False): ''' Normalizes the vector with respect to the maximum value. Parameters ---------- sig : ndarray, shape(n,) hasNans : boolean, optional If your data has nans use this flag if you want to ignore them. Returns ------- normSig : ndarray, shape(n,) The signal normalized with respect to the maximum value. ''' # TODO : This could be a try/except statement instead of an optional # argument. if hasNans: normSig = sig / np.nanmax(sig) else: normSig = sig / np.max(sig) return normSig def derivative(x, y, method='forward', padding=None): """Returns the derivative of y with respect to x. Parameters ---------- x : ndarray, shape(n,) The monotonically increasing independent variable. y : ndarray, shape(n,) or shape(n, m) The dependent variable(s). method : string, optional 'forward' Use the forward difference method. 'backward' Use the backward difference method. 'central' Use the central difference method. 'combination' This is equivalent to ``method='central', padding='second order'`` and is in place for backwards compatibility. Selecting this method will ignore and user supplied padding settings. padding : None, float, 'adjacent' or 'second order', optional The default, None, will result in the derivative vector being n-a in length where a=1 for forward and backward and a=2 for central. If you provide a float this value will be used to pad the result so that len(dydx) == n. If 'adjacent' is used, the nearest neighbor will be used for padding. If 'second order' is chosen second order foward and backward difference are used to pad the end points. Returns ------- dydx : ndarray, shape(n,) or shape(n-1,) for combination else shape(n-1,) """ x = np.asarray(x) y = np.asarray(y) if method == 'combination': method = 'central' padding = 'second order' if len(x.shape) > 1: raise ValueError('x must be have shape(n,).') if len(y.shape) > 2: raise ValueError('y can at most have two dimensions.') if x.shape[0] != y.shape[0]: raise ValueError('x and y must have the same first dimension.') if method == 'forward' or method == 'backward': if x.shape[0] < 2: raise ValueError('x must have a length of at least 2.') if len(y.shape) == 1: deriv = np.diff(y) / np.diff(x) else: deriv = (np.diff(y.T) / np.diff(x)).T elif method == 'central': if x.shape[0] < 3: raise ValueError('x must have a length of at least 3.') if len(y.shape) == 1: deriv = (y[2:] - y[:-2]) / (x[2:] - x[:-2]) else: deriv = ((y[2:] - y[:-2]).T / (x[2:] - x[:-2])).T else: msg = ("There is no {} method here! Try 'forward', 'backward', " "'central', or 'combination'.").format(method) raise NotImplementedError(msg) if padding is None: dydx = deriv else: dydx = np.zeros_like(y) if padding == 'adjacent': dydx[0] = deriv[0] dydx[-1] = deriv[-1] elif padding == 'second order': dydx[0] = ((-3.0*y[0] + 4.0*y[1] - y[2]) / 2.0 / (x[1] - x[0])) dydx[-1] = ((3.0*y[-1] - 4.0*y[-2] + y[-3]) / 2.0 / (x[-1] - x[-2])) else: dydx[0] = padding dydx[-1] = padding if method == 'forward': dydx[:-1] = deriv elif method == 'backward': dydx[1:] = deriv elif method == 'central': dydx[1:-1] = deriv return dydx def time_vector(num_samples, sample_rate, start_time=0.0): '''Returns a time vector starting at zero. Parameters ---------- num_samples : int Total number of samples. sample_rate : float Sample rate of the signal in hertz. start_time : float, optional, default=0.0 The start time of the time series. Returns ------- time : ndarray, shape(numSamples,) Time vector starting at zero. ''' ns = num_samples sr = float(sample_rate) return np.linspace(start_time, (ns - 1) / sr + start_time, num=ns)
PypiClean
/Nano-CAT-0.7.2.tar.gz/Nano-CAT-0.7.2/nanoCAT/recipes/mol_filter.py
from typing import Union, Iterable, Dict, TypeVar, Callable import numpy as np from scipy.spatial.distance import cdist from scm.plams import Molecule, Atom __all__ = ['get_mol_length', 'filter_mol', 'filter_data'] T = TypeVar('T') def get_mol_length(mol: Union[np.ndarray, Molecule], atom: Union[np.ndarray, Atom]) -> float: """Return the distance between **atom** and the atom in **mol** which it is furthest removed from. Examples -------- Use the a molecules length for filtering a list of molecules: .. code:: python >>> from CAT.recipes import get_mol_length, filter_mol >>> from scm.plams import Molecule >>> mol_list = [Molecule(...), ...] >>> data = [...] >>> filter = lambda mol: get_mol_length(mol, mol.properties.get('anchor')) < 10 >>> mol_dict = filter_mol(mol_list, data, filter=filter) Parameters ---------- mol : :class:`~scm.plams.mol.molecule.Molecule` or :class:`numpy.ndarray` A PLAMS molecule or a 2D numpy array with a molecules Cartesian coordinates. atom : :class:`~scm.plams.mol.atom.Atom` or :class:`numpy.ndarray` A PLAMS atom or a 1D numpy array with an atoms Cartesian coordinates. Returns ------- :class:`float` The largest distance between **atom** and all other atoms **mol**. See Also -------- :func:`filter_mol` Filter **mol_list** and **data** based on elements from **mol_list**. """ # noqa: E501 if isinstance(atom, Atom): atom_xyz = np.fromiter(atom.coords, 3, dtype=float) atom_xyz.shape = (1, 3) else: atom_xyz = np.asarray(atom, dtype=float).reshape((1, 3)) dist = cdist(atom_xyz, mol) return dist.max() def filter_mol(mol_list: Iterable[Molecule], data: Iterable[T], filter: Callable[[Molecule], bool]) -> Dict[Molecule, T]: """Filter **mol_list** and **data** based on elements from **mol_list**. Examples -------- .. code:: python >>> from scm.plams import Molecule >>> from CAT.recipes import filter_mol >>> mol_list = [Molecule(...), ...] >>> data = [...] >>> mol_dict1 = filter_mol(mol_list, data, filter=lambda n: n < 10) >>> prop1 = [...] >>> prop2 = [...] >>> prop3 = [...] >>> multi_data = zip([prop1, prop2, prop3]) >>> mol_dict2 = filter_mol(mol_list, multi_data, filter=lambda n: n < 10) >>> keys = mol_dict1.keys() >>> values = mol_dict1.values() >>> mol_dict3 = filter_mol(keys, values, filter=lambda n: n < 5) Parameters ---------- mol_list : :class:`~collections.abc.Iterable` [:class:`~scm.plams.mol.molecule.Molecule`] An iterable of the, to-be filtered, PLAMS molecules. data : :class:`Iterable[T]<collections.abc.Iterable>` An iterable which will be assigned as values to the to-be returned dict. These parameters will be filtered in conjunction with **mol_list**. Note that **mol_list** and **data** *should* be of the same length. filter : :class:`Callable[[Molecule], bool]<collections.abc.Callable>` A callable for filtering the distance vector. An example would be :code:`lambda n: max(n) < 10`. Returns ------- :class:`dict` [:class:`~scm.plams.mol.molecule.Molecule`, :class:`T<typing.TypeVar>`] A dictionary with all (filtered) molecules as keys and elements from **data** as values. See Also -------- :func:`filter_data` Filter **mol_list** and **data** based on elements from **data**. """ return {mol: item for mol, item in zip(mol_list, data) if filter(mol)} def filter_data(mol_list: Iterable[Molecule], data: Iterable[T], filter: Callable[[T], bool]) -> Dict[Molecule, T]: """Filter **mol_list** and **data** based on elements from **data**. Examples -------- See :func:`filter_mol` for a number of input examples. Parameters ---------- mol_list : :class:`~collections.abc.Iterable` [:class:`~scm.plams.mol.molecule.Molecule`] An iterable of the, to-be filtered, PLAMS molecules. data : :class:`Iterable[T]<collections.abc.Iterable>` An iterable which will be assigned as values to the to-be returned dict. These parameters will be filtered in conjunction with **mol_list**. Note that **mol_list** and **data** *should* be of the same length. filter : :class:`Callable[[T], bool]<collections.abc.Callable>` A callable for filtering the elements of **data**. An example would be :code:`lambda n: n < 10`. Returns ------- :class:`dict` [:class:`~scm.plams.mol.molecule.Molecule`, :class:`T<typing.TypeVar>`] A dictionary with all (filtered) molecules as keys and elements from **data** as values. See Also -------- :func:`filter_mol` Filter **mol_list** and **data** based on elements from **mol_list**. """ return {mol: item for mol, item in zip(mol_list, data) if filter(item)}
PypiClean
/LGNpy-1.0.0-py3-none-any.whl/lgnpy/LinearGaussian.py
import pandas as pd import numpy as np import networkx as nx import copy from .Graph import Graph from .logging_config import Logger class LinearGaussian(Graph): """ Implemented Linear Gaussian Algorithm """ def __init__(self): """ Inherits base graph methods from Graph """ super().__init__() self.log = Logger() def __get_node_values(self, node): """ Get mean and variance of node using Linear Gaussian CPD. Calculated by finding betas """ index_to_keep = [self.nodes.index(node)] index_to_reduce = [self.nodes.index(idx) for idx in list(self.g.pred[node])] values = self.__get_parent_calculated_means(list(self.g.pred[node])) val = {n: round(v, 3) for n, v in zip(list(self.g.pred[node]), values)} mu_j = self.mean[index_to_keep] mu_i = self.mean[index_to_reduce] sig_i_j = self.cov[np.ix_(index_to_reduce, index_to_keep)] sig_j_i = self.cov[np.ix_(index_to_keep, index_to_reduce)] sig_i_i_inv = np.linalg.inv(self.cov[np.ix_(index_to_reduce, index_to_reduce)]) sig_j_j = self.cov[np.ix_(index_to_keep, index_to_keep)] covariance = sig_j_j - np.dot(np.dot(sig_j_i, sig_i_i_inv), sig_i_j) beta_0 = mu_j - np.dot(np.dot(sig_j_i, sig_i_i_inv), mu_i) beta = np.dot(sig_j_i, sig_i_i_inv) new_mu = beta_0 + np.dot(beta, values) node_values = {n: round(v, 3) for n, v in zip(list(self.g.pred[node]), values)} node_beta = list(np.around(np.array(list(beta_0) + list(beta[0])), 2)) self.parameters[node] = {"node_values": node_values, "node_betas": node_beta} return new_mu[0], covariance[0][0] def __get_parent_calculated_means(self, nodes): """ Get evidences of parents given node name list """ pa_e = [] for node in nodes: ev = self.calculated_means[node] if ev is None: ev = self.mean[self.nodes.index(node)] pa_e.append(ev) return pa_e def get_model_parameters(self): """ Get parameters for each node """ return self.parameters def __build_results(self): """ Make Pandas dataframe with the results. """ self.inf_summary = pd.DataFrame( index=self.nodes, columns=[ "Evidence", "Mean", "Mean_inferred", "Variance", "Variance_inferred", ], ) self.inf_summary.loc[:, "Mean"] = self.mean self.inf_summary["Evidence"] = self.inf_summary.index.to_series().map( self.evidences ) self.inf_summary.loc[:, "Variance"] = list(np.around(np.diag(self.cov),3)) self.inf_summary["Mean_inferred"] = self.inf_summary.index.to_series().map( self.calculated_means ) self.inf_summary["Variance_inferred"] = self.inf_summary.index.to_series().map( self.calculated_vars ) self.inf_summary["u_%change"] = ( (self.inf_summary["Mean_inferred"] - self.inf_summary["Mean"]) / self.inf_summary["Mean"] ) * 100 self.inf_summary = ( self.inf_summary.round(4) .replace(pd.np.nan, "", regex=True) .replace(0, "", regex=True) ) return self.inf_summary def __get_pure_root_nodes(self, graph): root_nodes = [ x for x in graph.nodes() if graph.out_degree(x) >= 1 and graph.in_degree(x) == 0 ] children_of_root_nodes = [] for node in root_nodes: children_of_root_nodes.extend(list(graph.succ[node])) pure_children = [] for node in children_of_root_nodes: node_parents = list(graph.pred[node]) flag = False for parent in node_parents: if graph.in_degree(parent) != 0: flag = True if not flag: pure_children.append(node) return list(set(pure_children)) def __remove_pred_edges(self, node, graph): preds = graph.pred[node] for parent in list(preds): graph.remove_edge(parent, node) def __print_message(self,log_instance,node): log_instance.debug(f"Calculated:'{node}'= {round(self.calculated_means[node], 3)}") log_instance.debug(f"Parent nodes used: {self.parameters[node]['node_values']}") log_instance.debug(f"Beta calculated: {self.parameters[node]['node_betas']}") def run_inference(self, debug=True, return_results=True): """ Run Inference on network with given evidences. """ g_temp = copy.deepcopy(self.g) self._log = self.log.setup_logger(debug=debug) self._log.debug("Started") if all(x == None for x in self.evidences.values()): self._log.debug("No evidences were set. Proceeding without evidence") self.parameters = dict.fromkeys(self.nodes) self.calculated_means = copy.deepcopy(self.evidences) self.calculated_vars = dict.fromkeys(self.nodes) self.done_flags = dict.fromkeys(self.nodes) it=0 while not nx.is_empty(g_temp): it+=1 pure_children = self.__get_pure_root_nodes(g_temp) for child in pure_children: if self.evidences[child] is None: self.calculated_means[child], self.calculated_vars[child] = self.__get_node_values(child) self.__print_message(self._log,child) else: self._log.debug(f"Skipped Calculating:'{child}' as evidence is available.") g_temp.remove_nodes_from(list(g_temp.pred[child])) return self.__build_results() def get_inference_results(self): """Get inference result Returns ------- dataframe: Dataframe with inference results. """ return self.inf_summary
PypiClean
/MarkDo-0.3.0.tar.gz/MarkDo-0.3.0/markdo/static/foundation/js/foundation/foundation.magellan.js
;(function ($, window, document, undefined) { 'use strict'; Foundation.libs.magellan = { name : 'magellan', version : '5.0.3', settings : { active_class: 'active', threshold: 0 }, init : function (scope, method, options) { this.fixed_magellan = $("[data-magellan-expedition]"); this.magellan_placeholder = $('<div></div>').css({ height: this.fixed_magellan.outerHeight(true) }).hide().insertAfter(this.fixed_magellan); this.set_threshold(); this.set_active_class(method); this.last_destination = $('[data-magellan-destination]').last(); this.events(); }, events : function () { var self = this; $(this.scope) .off('.magellan') .on('arrival.fndtn.magellan', '[data-magellan-arrival]', function (e) { var $destination = $(this), $expedition = $destination.closest('[data-magellan-expedition]'), active_class = $expedition.attr('data-magellan-active-class') || self.settings.active_class; $destination .closest('[data-magellan-expedition]') .find('[data-magellan-arrival]') .not($destination) .removeClass(active_class); $destination.addClass(active_class); }); this.fixed_magellan .off('.magellan') .on('update-position.fndtn.magellan', function() { var $el = $(this); }) .trigger('update-position'); $(window) .off('.magellan') .on('resize.fndtn.magellan', function() { this.fixed_magellan.trigger('update-position'); }.bind(this)) .on('scroll.fndtn.magellan', function() { var windowScrollTop = $(window).scrollTop(); self.fixed_magellan.each(function() { var $expedition = $(this); if (typeof $expedition.data('magellan-top-offset') === 'undefined') { $expedition.data('magellan-top-offset', $expedition.offset().top); } if (typeof $expedition.data('magellan-fixed-position') === 'undefined') { $expedition.data('magellan-fixed-position', false); } var fixed_position = (windowScrollTop + self.settings.threshold) > $expedition.data("magellan-top-offset"); var attr = $expedition.attr('data-magellan-top-offset'); if ($expedition.data("magellan-fixed-position") != fixed_position) { $expedition.data("magellan-fixed-position", fixed_position); if (fixed_position) { $expedition.addClass('fixed'); $expedition.css({position:"fixed", top:0}); self.magellan_placeholder.show(); } else { $expedition.removeClass('fixed'); $expedition.css({position:"", top:""}); self.magellan_placeholder.hide(); } if (fixed_position && typeof attr != 'undefined' && attr != false) { $expedition.css({position:"fixed", top:attr + "px"}); } } }); }); if (this.last_destination.length > 0) { $(window).on('scroll.fndtn.magellan', function (e) { var windowScrollTop = $(window).scrollTop(), scrolltopPlusHeight = windowScrollTop + $(window).height(), lastDestinationTop = Math.ceil(self.last_destination.offset().top); $('[data-magellan-destination]').each(function () { var $destination = $(this), destination_name = $destination.attr('data-magellan-destination'), topOffset = $destination.offset().top - $destination.outerHeight(true) - windowScrollTop; if (topOffset <= self.settings.threshold) { $("[data-magellan-arrival='" + destination_name + "']").trigger('arrival'); } // In large screens we may hit the bottom of the page and dont reach the top of the last magellan-destination, so lets force it if (scrolltopPlusHeight >= $(self.scope).height() && lastDestinationTop > windowScrollTop && lastDestinationTop < scrolltopPlusHeight) { $('[data-magellan-arrival]').last().trigger('arrival'); } }); }); } }, set_threshold : function () { if (typeof this.settings.threshold !== 'number') { this.settings.threshold = (this.fixed_magellan.length > 0) ? this.fixed_magellan.outerHeight(true) : 0; } }, set_active_class : function (options) { if (options && options.active_class && typeof options.active_class === 'string') { this.settings.active_class = options.active_class; } }, off : function () { $(this.scope).off('.fndtn.magellan'); $(window).off('.fndtn.magellan'); }, reflow : function () {} }; }(jQuery, this, this.document));
PypiClean
/Flask-Actions-0.6.6.tar.gz/Flask-Actions-0.6.6/flaskext/actions/server_actions.py
import sys,os from werkzeug import script def runfcgi(application, before_daemon=None): def action( protocol = 'fcgi', hostname = ('h', ''), port = ('p', 3001), socket = '', method = 'threaded', daemonize = False, workdir = '.', pidfile = '', maxspare = 5, minspare = 2, maxchildren = 50, maxrequests = 0, debug = False, outlog = '/dev/null', errlog = '/dev/null', umask = 022, ): """run application use flup you can choose these arguments: protocol : scgi, fcgi or ajp method : threaded or fork socket : Unix domain socket children : number of threads or processes""" from .fastcgi import runfastcgi runfastcgi( application = application, protocol = protocol, host = hostname, port = port, socket = socket, method = method, daemonize = daemonize, workdir = workdir, pidfile = pidfile, maxspare = maxspare, minspare = minspare, maxchildren = maxchildren, maxrequests = maxrequests, debug = debug, outlog = outlog, errlog = errlog, umask = umask, ) return action def run_twisted_server(app): def action(host=('h','127.0.0.1'),port=('p', 8000)): """run application use twisted http server """ from twisted.web import server, wsgi from twisted.python.threadpool import ThreadPool from twisted.internet import reactor thread_pool = ThreadPool() thread_pool.start() reactor.addSystemEventTrigger('after', 'shutdown', thread_pool.stop) factory = server.Site(wsgi.WSGIResource(reactor, thread_pool, app)) reactor.listenTCP(int(port), factory, interface=self.host) reactor.run() return action def run_appengine_server(app): def action(host=('h','127.0.0.1'),port=('p', 8000)): """run application use appengine http server """ from google.appengine.ext.webapp import util util.run_wsgi_app(app) return action def run_gunicorn_server(app): def action(bind=('b','127.0.0.1:8000'),workers=('w',4),pid=('p','tmp/flask.pid'),log_file='tmp/flask.log',log_level='info'): """run application use gunicorn http server """ from gunicorn import version_info if version_info < (0, 9, 0): from gunicorn.arbiter import Arbiter from gunicorn.config import Config arbiter = Arbiter(Config({'bind':bind,'workers': workers,'pidfile':pidfile,'logfile':logfile}), app) arbiter.run() else: from gunicorn.app.base import Application class FlaskApplication(Application): def init(self, parser, opts, args): return { 'bind': bind, 'workers': workers, 'pidfile':pid, 'logfile':log_file, 'loglevel':log_level, } def load(self): return app FlaskApplication().run() return action def run_tornado_server(app): """run application use tornado http server """ def action(port=('p', 8000)): import tornado.wsgi import tornado.httpserver import tornado.ioloop container = tornado.wsgi.WSGIContainer(app) server = tornado.httpserver.HTTPServer(container) server.listen(port=port) tornado.ioloop.IOLoop.instance().start() return action def run_fapws_server(app): def action(host=('h','127.0.0.1'),port=('p', '8000')): """run application use fapws http server """ import fapws._evwsgi as evwsgi from fapws import base evwsgi.start(host, port) evwsgi.set_base_module(base) evwsgi.wsgi_cb(('', app)) evwsgi.run() return action def run_meinheld_server(app): def action(host=('h','127.0.0.1'),port=('p', 8000)): """run application use Meinheld http server """ from meinheld import server server.listen((host, port)) server.run(app) return action def run_cherrypy_server(app): def action(host=('h','127.0.0.1'),port=('p', 8000)): """run application use CherryPy http server """ from cherrypy import wsgiserver server = wsgiserver.CherryPyWSGIServer((host, port), app) server.start() return action def run_paste_server(app): def action(host=('h','127.0.0.1'),port=('p', '8000')): """run application use Paste http server """ from paste import httpserver httpserver.serve(app, host=host, port=port) return action def run_diesel_server(app): def action(host=('h','127.0.0.1'),port=('p', 8000)): """run application use diesel http server """ from diesel.protocols.wsgi import WSGIApplication application = WSGIApplication(app, port=self.port) application.run() return action def run_gevent_server(app): def action(host=('h','127.0.0.1'),port=('p', 8000)): """run application use gevent http server """ from gevent import wsgi wsgi.WSGIServer((host, port), app).serve_forever() return action def run_eventlet_server(app): def action(host=('h','127.0.0.1'),port=('p', 8000)): """run application use eventlet http server """ from eventlet import wsgi, listen wsgi.server(listen((host, port)), app) return action def run_eurasia_server(app): def action(hostname=('h', '0.0.0.0'), port=('p', 8000)): """run application use eurasia http server""" try: from eurasia import WSGIServer except ImportError: print "You need to install eurasia" sys.exit() server = WSGIServer(app, bindAddress=(hostname, port)) server.run() return action def run_rocket_server(app): def action(host=('h','127.0.0.1'),port=('p', 8000)): """run application use rocket http server """ from rocket import Rocket server = Rocket((host, port), 'wsgi', { 'wsgi_app' : app }) server.start() return action server_actionnames = { 'runfcgi':runfcgi, 'runtwisted':run_twisted_server, 'run_appengine':run_appengine_server, 'run_gevent':run_gevent_server, 'run_eventlet':run_eventlet_server, 'run_gunicorn':run_gunicorn_server, 'run_rocket':run_rocket_server, 'run_eurasia':run_eurasia_server, 'run_tornado':run_tornado_server, 'run_fapws':run_fapws_server, 'run_meinheld':run_meinheld_server, 'run_cherrypy':run_cherrypy_server, 'run_paste_server':run_paste_server, 'run_diesel':run_diesel_server, }
PypiClean
/Congo-0.0.1.tar.gz/Congo-0.0.1/portfolio/component/static/portfolio/js/portfolio.js
var Portfolio = { /** Google Analytics tracking **/ trackEvent: function(category, action, label, value) { if (typeof ga !== 'undefined') { ga("send", "event", category, action, label, value) } }, //------ /** BASIC Login **/ basic_login: function() { var that = this $("#portfolio-login-login-form").submit(function(e){ e.preventDefault(); that.trackEvent("User", "LOGIN", "Email") this.submit() }) $("#portfolio-login-signup-form").submit(function(e){ e.preventDefault(); that.trackEvent("User", "SIGNUP", "Email") this.submit() }) $("#portfolio-login-lostpassword-form").submit(function(e){ e.preventDefault(); that.trackEvent("User", "LOSTPASSWORD", "Email") this.submit() }) }, //------- /** OAUTH Login Requires hello.js for front end authentication **/ oauth_login: function(config, redirect) { var that = this hello.init(config, {redirect_uri: redirect, scope: "email"}) $("[portfolio\\:oauth-login]").click(function(){ var el = $(this) var form = el.closest("form") var status = form.find(".status-message") var provider = el.attr("pilot:oauth-login") if (provider == "google-plus") { provider = "google" } hello(provider).login({"force": true}).then( function(p){ hello(provider).api( '/me' ).then( function(r){ var msg = form.data("success-message") || "Signing in..." status.removeClass("alert alert-danger") .addClass("alert alert-success").html(msg) var image_url = r.thumbnail switch(provider) { case "facebook": image_url += "?type=large" break case "google": image_url = image_url.split("?")[0] } form.find("[name='provider']").val(provider) form.find("[name='provider_user_id']").val(r.id) form.find("[name='name']").val(r.name) form.find("[name='email']").val(r.email) form.find("[name='image_url']").val(image_url) that.trackEvent("User", "LOGIN", "SOCIAL:" + provider) form.submit() }); }, function( e ){ var msg = form.data("error-message") || "Unable to signin..." status.removeClass("alert alert-success") .addClass("alert alert-danger").html(msg) }); }) } }
PypiClean
/Leytonium-10.tar.gz/Leytonium-10/diffuse/viewer/undo.py
# This file is part of Leytonium. # # Leytonium is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Leytonium is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Leytonium. If not, see <http://www.gnu.org/licenses/>. # This file incorporates work covered by the following copyright and # permission notice: # Copyright (C) 2006-2019 Derrick Moser <[email protected]> # Copyright (C) 2015-2020 Romain Failliot <[email protected]> # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 2 of the license, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program. You may also obtain a copy of the GNU General Public License # from the Free Software Foundation by visiting their web site # (http://www.fsf.org/) or by writing to the Free Software Foundation, Inc., # 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # Undo for changes to the cached line ending style class SetFormatUndo: def __init__(self, f, format, old_format): self.data = (f, format, old_format) def undo(self, viewer): f, _, old_format = self.data viewer.setFormat(f, old_format) def redo(self, viewer): f, format, _ = self.data viewer.setFormat(f, format) # Undo for the creation of Line objects class InstanceLineUndo: def __init__(self, f, i, reverse): self.data = (f, i, reverse) def undo(self, viewer): f, i, reverse = self.data viewer.instanceLine(f, i, not reverse) def redo(self, viewer): f, i, reverse = self.data viewer.instanceLine(f, i, reverse) # Undo for changing the text for a Line object class UpdateLineTextUndo: def __init__(self, f, i, old_is_modified, old_text, is_modified, text): self.data = (f, i, old_is_modified, old_text, is_modified, text) def undo(self, viewer): f, i, old_is_modified, old_text, _, _ = self.data viewer.updateLineText(f, i, old_is_modified, old_text) def redo(self, viewer): f, i, _, _, is_modified, text = self.data viewer.updateLineText(f, i, is_modified, text) # Undo for inserting a spacing line in a single pane class InsertNullUndo: def __init__(self, f, i, reverse): self.data = (f, i, reverse) def undo(self, viewer): f, i, reverse = self.data viewer.insertNull(f, i, not reverse) def redo(self, viewer): f, i, reverse = self.data viewer.insertNull(f, i, reverse) # Undo for manipulating a section of the line matching data class InvalidateLineMatchingUndo: def __init__(self, i, n, new_n): self.data = (i, n, new_n) def undo(self, viewer): i, n, new_n = self.data viewer.invalidateLineMatching(i, new_n, n) def redo(self, viewer): i, n, new_n = self.data viewer.invalidateLineMatching(i, n, new_n) # Undo for alignment changes class AlignmentChangeUndo: def __init__(self, finished): self.data = finished def undo(self, viewer): finished = self.data viewer.alignmentChange(not finished) def redo(self, viewer): finished = self.data viewer.alignmentChange(finished) # Undo for changing how lines are cut into blocks for alignment class UpdateBlocksUndo: def __init__(self, old_blocks, blocks): self.data = (old_blocks, blocks) def undo(self, viewer): old_blocks, _ = self.data viewer.updateBlocks(old_blocks) def redo(self, viewer): _, blocks = self.data viewer.updateBlocks(blocks) # Undo for replacing the lines for a single pane with a new set class ReplaceLinesUndo: def __init__(self, f, lines, new_lines, max_num, new_max_num): self.data = (f, lines, new_lines, max_num, new_max_num) def undo(self, viewer): f, lines, new_lines, max_num, new_max_num = self.data viewer.replaceLines(f, new_lines, lines, new_max_num, max_num) def redo(self, viewer): f, lines, new_lines, max_num, new_max_num = self.data viewer.replaceLines(f, lines, new_lines, max_num, new_max_num) # Undo for changing the selection mode and range class EditModeUndo: def __init__(self, mode, current_pane, current_line, current_char, selection_line, selection_char, cursor_column): self.data = (mode, current_pane, current_line, current_char, selection_line, selection_char, cursor_column) def undo(self, viewer): mode, current_pane, current_line, current_char, selection_line, selection_char, cursor_column = self.data viewer.setEditMode(mode, current_pane, current_line, current_char, selection_line, selection_char, cursor_column) def redo(self, viewer): self.undo(viewer) # Undo for changes to the pane ordering class SwapPanesUndo: def __init__(self, f_dst, f_src): self.data = (f_dst, f_src) def undo(self, viewer): f_dst, f_src = self.data viewer.swapPanes(f_src, f_dst) def redo(self, viewer): f_dst, f_src = self.data viewer.swapPanes(f_dst, f_src)
PypiClean
/CGF-0.0.7-py3-none-any.whl/CGFCore/opengameframework/deterministic.py
import time import matplotlib.pyplot as plt import numpy as np class OpenGame: def __init__(self, players): self.players = players self.strategies = {player: None for player in players} self.history = [] self.future = [] def set_strategy(self, player, strategy): self.strategies[player] = strategy def play(self, history): raise NotImplementedError("Each game must implement its own play function.") def coplay(self, future, outcome): raise NotImplementedError("Each game must implement its own coplay function.") def utility(self, history, future, outcome, player): raise NotImplementedError("Each game must implement its own utility function.") class PrisonersDilemma(OpenGame): def __init__(self, agents): player_names = [f"player{i+1}" for i in range(len(agents))] super().__init__(player_names) self.agents = agents self.payoffs = {("cooperate", "cooperate"): {player: 2 + np.random.normal(0, 0.1) for player in player_names}, ("cooperate", "defect"): {player: 0 if player == "player1" else 3 for player in player_names}, ("defect", "cooperate"): {player: 3 if player == "player1" else 0 for player in player_names}, ("defect", "defect"): {player: 1 for player in player_names} } def play(self, history): state = tuple(history) actions = [agent.choose_action(state) for agent in self.agents] return tuple(actions) def coplay(self, future, outcome): return future def feedback(self, outcome): rewards = [self.payoffs[outcome][player] for player in self.players] return rewards def choose_action(self, state): prob_cooperate = 0.5 + 0.01 * len(self.history) # As an example, increase the probability of cooperation over time return np.random.choice(["cooperate", "defect"], p=[prob_cooperate, 1-prob_cooperate]) def utility(self, history, future, outcome, player): return self.payoffs[outcome][player] class CompositeOpenGame(OpenGame): def __init__(self, game1, game2, composition_type="sequential"): super().__init__(game1.players + game2.players) self.game1 = game1 self.game2 = game2 self.composition_type = composition_type def play(self, history): if np.random.rand() > 0.5: self.composition_type = "sequential" else: self.composition_type = "parallel" if self.composition_type == "sequential": outcome1 = self.game1.play(history) outcome2 = self.game2.play(history + [outcome1]) return outcome1, outcome2 elif self.composition_type == "parallel": outcome1 = self.game1.play(history) outcome2 = self.game2.play(history) return outcome1, outcome2 else: raise ValueError("Invalid composition type") def coplay(self, future, outcome): future1, future2 = future outcome1, outcome2 = outcome coplayed_future1 = self.game1.coplay(future1, outcome1) coplayed_future2 = self.game2.coplay(future2, outcome2) return coplayed_future1, coplayed_future2 def utility(self, history, future, outcome, player): outcome1, outcome2 = outcome if player in self.game1.players: coplayed_future1, _ = self.coplay(future, outcome) return self.game1.utility(history, coplayed_future1, outcome1, player) elif player in self.game2.players: _, coplayed_future2 = self.coplay(future, outcome) return self.game2.utility(history, coplayed_future2, outcome2, player) else: raise ValueError(f"{player} is not a player in this composite game") class RLAgent: def __init__(self, actions): self.actions = actions self.q_table = {} self.learning_rate = 0.1 self.discount_factor = 0.9 self.epsilon = 0.1 def choose_action(self, state): if np.random.uniform(0, 1) < self.epsilon: return np.random.choice(self.actions) q_values = [self.get_q_value(state, action) for action in self.actions] return self.actions[np.argmax(q_values)] def get_q_value(self, state, action): return self.q_table.get((state, action), 0) def learn(self, state, action, reward, next_state): predict = self.get_q_value(state, action) target = reward + self.discount_factor * np.max([self.get_q_value(next_state, next_action) for next_action in self.actions]) self.q_table[(state, action)] = predict + self.learning_rate * (target - predict) self.learning_rate = 0.1 + np.random.normal(0, 0.01) def train_rl_agents(episodes=None): if not episodes: episodes = 1000 + np.random.randint(-100, 100) agents = [RLAgent(actions=["cooperate", "defect"]) for _ in range(2)] game = PrisonersDilemma(agents) rewards_over_time = [] # Store average rewards for each episode action_counts = {"cooperate": 0, "defect": 0} for episode in range(episodes): history = ["previous_play"] outcome = game.play(history) rewards = game.feedback(outcome) avg_reward = np.mean(rewards) # Calculate average reward for the episode rewards_over_time.append(avg_reward) # Append to the list for agent, reward in zip(agents, rewards): state = tuple(history) action = agent.choose_action(state) action_counts[action] += 1 next_history = history + list(outcome) next_state = tuple(next_history) agent.learn(state, action, reward, next_state) history = next_history return agents, rewards_over_time, action_counts trained_agents, rewards_over_time, action_counts = train_rl_agents() def test_open_games(): # Create RLAgent instances agent1 = RLAgent(actions=["cooperate", "defect"]) agent2 = RLAgent(actions=["cooperate", "defect"]) # Test PrisonersDilemma with RLAgent instances game = PrisonersDilemma([agent1, agent2]) history = ["previous_play"] outcome = game.play(history) future = game.coplay(["potential_future"], outcome) utilities = {player: game.utility(history, future, outcome, player) for player in game.players} print(f"Outcome: {outcome}") print(f"Utilities: {utilities}") test_open_games() def test_composite_open_games(): # Create RLAgent instances agent1 = RLAgent(actions=["cooperate", "defect"]) agent2 = RLAgent(actions=["cooperate", "defect"]) agent3 = RLAgent(actions=["cooperate", "defect"]) agent4 = RLAgent(actions=["cooperate", "defect"]) game1 = PrisonersDilemma([agent1, agent2]) game2 = PrisonersDilemma([agent3, agent4]) composite_game = CompositeOpenGame(game1, game2, "parallel") history = ["previous_play"] outcome = composite_game.play(history) future = composite_game.coplay(["potential_future1", "potential_future2"], outcome) utilities = {player: composite_game.utility(history, future, outcome, player) for player in composite_game.players} print(f"Outcome: {outcome}") print(f"Utilities: {utilities}") test_composite_open_games() # Outside the function, you can measure the time and call the function: start_time_train = time.time() trained_agents = train_rl_agents() end_time_train = time.time() print(f"Training Execution time: {end_time_train - start_time_train} seconds") # Plotting the average reward over time plt.figure() # Create a new figure for the first plot plt.plot(rewards_over_time) plt.xlabel('Episode') plt.ylabel('Average Reward') plt.title('Average Reward per Episode') plt.tight_layout() # Adjust layout to ensure no overlap plt.show() # Plotting the action counts plt.figure() # Create a new figure for the second plot actions = list(action_counts.keys()) counts = list(action_counts.values()) plt.bar(actions, counts) plt.xlabel('Action') plt.ylabel('Count') plt.title('Action Distribution') plt.tight_layout() # Adjust layout to ensure no overlap plt.show()
PypiClean
/Flask-Statics-Helper-1.0.0.tar.gz/Flask-Statics-Helper-1.0.0/flask_statics/static/angular/i18n/angular-locale_dyo.js
'use strict'; angular.module("ngLocale", [], ["$provide", function($provide) { var PLURAL_CATEGORY = {ZERO: "zero", ONE: "one", TWO: "two", FEW: "few", MANY: "many", OTHER: "other"}; function getDecimals(n) { n = n + ''; var i = n.indexOf('.'); return (i == -1) ? 0 : n.length - i - 1; } function getVF(n, opt_precision) { var v = opt_precision; if (undefined === v) { v = Math.min(getDecimals(n), 3); } var base = Math.pow(10, v); var f = ((n * base) | 0) % base; return {v: v, f: f}; } $provide.value("$locale", { "DATETIME_FORMATS": { "AMPMS": [ "AM", "PM" ], "DAY": [ "Dimas", "Tene\u014b", "Talata", "Alarbay", "Aramisay", "Arjuma", "Sibiti" ], "MONTH": [ "Sanvie", "F\u00e9birie", "Mars", "Aburil", "Mee", "Sue\u014b", "S\u00fauyee", "Ut", "Settembar", "Oktobar", "Novembar", "Disambar" ], "SHORTDAY": [ "Dim", "Ten", "Tal", "Ala", "Ara", "Arj", "Sib" ], "SHORTMONTH": [ "Sa", "Fe", "Ma", "Ab", "Me", "Su", "S\u00fa", "Ut", "Se", "Ok", "No", "De" ], "fullDate": "EEEE d MMMM y", "longDate": "d MMMM y", "medium": "d MMM y HH:mm:ss", "mediumDate": "d MMM y", "mediumTime": "HH:mm:ss", "short": "d/M/y HH:mm", "shortDate": "d/M/y", "shortTime": "HH:mm" }, "NUMBER_FORMATS": { "CURRENCY_SYM": "CFA", "DECIMAL_SEP": ",", "GROUP_SEP": "\u00a0", "PATTERNS": [ { "gSize": 3, "lgSize": 3, "maxFrac": 3, "minFrac": 0, "minInt": 1, "negPre": "-", "negSuf": "", "posPre": "", "posSuf": "" }, { "gSize": 3, "lgSize": 3, "maxFrac": 2, "minFrac": 2, "minInt": 1, "negPre": "-", "negSuf": "\u00a0\u00a4", "posPre": "", "posSuf": "\u00a0\u00a4" } ] }, "id": "dyo", "pluralCat": function(n, opt_precision) { var i = n | 0; var vf = getVF(n, opt_precision); if (i == 1 && vf.v == 0) { return PLURAL_CATEGORY.ONE; } return PLURAL_CATEGORY.OTHER;} }); }]);
PypiClean
/FFTA-0.3.5.1-py3-none-any.whl/ffta/gkpfm/transfer_func.py
import time from math import pi import numpy as np import pandas as pd import pyUSID as usid from igor2 import binarywave as bw from matplotlib import pyplot as plt from pyUSID import Dimension from scipy import signal as sg import ffta from ..analysis.fft import get_noise_floor def transfer_function(h5_file, tf_file='', params_file='', psd_freq=1e6, offset=0.0016, sample_freq=10e6, plot=False): ''' Reads in the transfer function .ibw, then creates two datasets within a parent folder 'Transfer_Function' This will destructively overwrite an existing Transfer Function in there 1) TF (transfer function) 2) Freq (frequency axis for computing Fourier Transforms) :param h5_file: :type h5_file: :param tf_file: Transfer Function .ibw File :type tf_file: ibw :param params_file: The filepath in string format for the parameters file containing Q, AMPINVOLS, etc. :type params_file: string :param psd_freq: The maximum range of the Power Spectral Density. For Asylum Thermal Tunes, this is often 1 MHz on MFPs and 2 MHz on Cyphers :type psd_freq: float :param offset: To avoid divide-by-zero effects since we will divide by the transfer function when generating GKPFM data :type offset: float :param sample_freq: The desired output sampling. This should match your data. :type sample_freq: float :param plot: :type plot: bool, optional :returns: the Transfer Function group :rtype: ''' if not any(tf_file): tf_file = usid.io_utils.file_dialog(caption='Select Transfer Function file ', file_filter='IBW Files (*.ibw)') data = bw.load(tf_file) tf = data.get('wave').get('wData') if 'Transfer_Function' in h5_file: del h5_file['/Transfer_Function'] h5_file.create_group('Transfer_Function') h5_file['Transfer_Function'].create_dataset('TF', data=tf) freq = np.linspace(0, psd_freq, len(tf)) h5_file['Transfer_Function'].create_dataset('Freq', data=freq) parms = params_list(params_file, psd_freq=psd_freq) for k in parms: h5_file['Transfer_Function'].attrs[k] = float(parms[k]) tfnorm = float(parms['Q']) * (tf - np.min(tf)) / (np.max(tf) - np.min(tf)) tfnorm += offset h5_file['Transfer_Function'].create_dataset('TFnorm', data=tfnorm) TFN_RS, FQ_RS = resample_tf(h5_file, psd_freq=psd_freq, sample_freq=sample_freq) TFN_RS = float(parms['Q']) * (TFN_RS - np.min(TFN_RS)) / (np.max(TFN_RS) - np.min(TFN_RS)) TFN_RS += offset h5_file['Transfer_Function'].create_dataset('TFnorm_resampled', data=TFN_RS) h5_file['Transfer_Function'].create_dataset('Freq_resampled', data=FQ_RS) if plot: plt.figure() plt.plot(freq, tfnorm, 'b') plt.plot(FQ_RS, TFN_RS, 'r') plt.xlabel('Frequency (Hz)') plt.ylabel('Amplitude (m)') plt.yscale('log') plt.title('Transfer Function') return h5_file['Transfer_Function'] def resample_tf(h5_file, psd_freq=1e6, sample_freq=10e6): ''' Resamples the Transfer Function based on the desired target frequency This is important for dividing the transfer function elements together :param h5_file: :type h5_file: :param psd_freq: The maximum range of the Power Spectral Density. For Asylum Thermal Tunes, this is often 1 MHz on MFPs and 2 MHz on Cyphers :type psd_freq: float :param sample_freq: The desired output sampling. This should match your data. :type sample_freq: float :returns: tuple (TFN_RS, FQ_RS) WHERE [type] TFN_RS is... [type] FQ_RS is... ''' TFN = h5_file['Transfer_Function/TFnorm'][()] # FQ = h5_file['Transfer_Function/Freq'][()] # Generate the iFFT from the thermal tune data tfn = np.fft.ifft(TFN) # tq = np.linspace(0, 1/np.abs(FQ[1] - FQ[0]), len(tfn)) # Resample scale = int(sample_freq / psd_freq) print('Rescaling by', scale, 'X') tfn_rs = sg.resample(tfn, len(tfn) * scale) # from 1 MHz to 10 MHz TFN_RS = np.fft.fft(tfn_rs) FQ_RS = np.linspace(0, sample_freq, len(tfn_rs)) return TFN_RS, FQ_RS def params_list(path='', psd_freq=1e6, lift=50): ''' Reads in a Parameters file as saved in Igor as a dictionary For use in creating attributes of transfer Function :param path: :type path: str :param psd_freq: :type psd_freq: :param lift: :type lift: :returns: parameters dictionary :rtype: dict ''' if not any(path): path = usid.io.io_utils.file_dialog(caption='Select Parameters Files ', file_filter='Text (*.txt)') df = pd.read_csv(path, sep='\t', header=1) df = df.set_index(df['Unnamed: 0']) df = df.drop(columns='Unnamed: 0') parm_dict = df.to_dict()['Initial'] parm_dict['PSDFreq'] = psd_freq parm_dict['Lift'] = lift return parm_dict def test_Ycalc(h5_main, pixel_ind=[0, 0], transfer_func=None, resampled=True, ratios=None, verbose=True, noise_floor=1e-3, phase=-pi, plot=False, scaling=1): ''' Divides the response by the transfer function :param h5_main: :type h5_main: h5py dataset of USIDataset :param pixel_ind: :type pixel_ind: list :param transfer_func: This can be the resampled or normal transfer function For best results, use the "normalized" transfer function "None" will default to /Transfer_Function folder :type transfer_func: transfer function, optional :param resampled: Whether to use the upsampled Transfer Function or the original :type resampled: bool, optional :param ratios: :type ratios: :param verbose: Gives user feedback during processing :type verbose: bool, optional :param noise_floor: For calculating what values to filter as the noise floor of the data 0 or None circumvents this :type noise_floor: float, optional :param phase: Practically any value between -pi and +pi works :type phase: float, optional :param plot: :type plot: bool, optional :param scaling: scales the transfer function by this number if, for example, the TF was acquired on a line and you're dividing by a point (or vice versa)' :type scaling: int, optional :returns: tuple (TFratios, Yout, yout) WHERE [type] TFratios is... [type] Yout is... [type] yout is... ''' t0 = time.time() parm_dict = usid.hdf_utils.get_attributes(h5_main) drive_freq = parm_dict['drive_freq'] response = ffta.hdf_utils.get_utils.get_pixel(h5_main, pixel_ind, array_form=True, transpose=False).flatten() response -= np.mean(response) RESP = np.fft.fft(response) Yout = np.zeros(len(RESP), dtype=complex) # Create frequency axis for the pixel samp = parm_dict['sampling_rate'] fq_y = np.linspace(0, samp, len(Yout)) noise_limit = np.ceil(get_noise_floor(RESP, noise_floor)[0]) # Get the transfer function and transfer function frequency values fq_tf = h5_main.file['Transfer_Function/Freq'][()] if not transfer_func: if resampled: transfer_func = h5_main.file['Transfer_Function/TFnorm_resampled'][()] fq_tf = h5_main.file['Transfer_Function/Freq_resampled'][()] else: transfer_func = h5_main.file['Transfer_Function/TFnorm'][()] if verbose: t1 = time.time() print('Time for pixels:', t1 - t0) Yout_divided = np.zeros(len(RESP), dtype=bool) TFratios = np.ones(len(RESP)) # Calculate the TF scaled to the sample size of response function for x, f in zip(transfer_func, fq_tf): if np.abs(x) > noise_floor: xx = np.searchsorted(fq_y, f) if not Yout_divided[xx]: TFratios[xx] = x TFratios[-xx] = x Yout_divided[xx] = True signal_bins = np.arange(len(TFratios)) signal_kill = np.where(np.abs(RESP) < noise_limit) pass_frequencies = np.delete(signal_bins, signal_kill) drive_bin = (np.abs(fq_y - drive_freq)).argmin() RESP_ph = (RESP) * np.exp(-1j * fq_y / (fq_y[drive_bin]) * phase) # Step 3C) iFFT the response above a user defined noise floor to recover Force in time domain. Yout[pass_frequencies] = RESP_ph[pass_frequencies] Yout = Yout / (TFratios * scaling) yout = np.real(np.fft.ifft(np.fft.ifftshift(Yout))) if verbose: t2 = time.time() print('Time for pixels:', t2 - t1) if plot: fig, ax = plt.subplots(figsize=(12, 7)) ax.semilogy(fq_y, np.abs(Yout), 'b', label='F3R') ax.semilogy(fq_y[signal_bins], np.abs(Yout[signal_bins]), 'og', label='F3R') ax.semilogy(fq_y[signal_bins], np.abs(RESP[signal_bins]), '.r', label='Response') ax.set_xlabel('Frequency (kHz)', fontsize=16) ax.set_ylabel('Amplitude (a.u.)', fontsize=16) ax.legend(fontsize=14) ax.set_yscale('log') ax.set_xlim(0, 3 * drive_freq) ax.set_title('Noise Spectrum', fontsize=16) return TFratios, Yout, yout def Y_calc(h5_main, transfer_func=None, resampled=True, ratios=None, verbose=False, noise_floor=1e-3, phase=-pi, plot=False, scaling=1): ''' Divides the response by the transfer function :param h5_main: :type h5_main: h5py dataset of USIDataset :param transfer_func: This can be supplied or use the calculated version For best results, use the "normalized" transfer function "None" will default to /Transfer_Function folder :type transfer_func: transfer function, optional :param resampled: Whether to use the upsampled Transfer Function or the original :type resampled: bool, optional :param ratios: Array of the size of h5_main (1-D) with the transfer function data If not given, it's found via the test_Y_calc function :type ratios: array, optional :param verbose: Gives user feedback during processing :type verbose: bool, optional :param noise_floor: For calculating what values to filter as the noise floor of the data 0 or None circumvents this :type noise_floor: float, optional :param phase: Practically any value between -pi and +pi works :type phase: float, optional :param plot: :type plot: bool, optional :param scaling: scales the transfer function by this number if, for example, the TF was acquired on a line and you're dividing by a point (or vice versa)' scaling : int, optional :returns: tuple (Yout, yout) WHERE [type] Yout is... [type] yout is... ''' parm_dict = usid.hdf_utils.get_attributes(h5_main) drive_freq = parm_dict['drive_freq'] ds = h5_main[()] Yout = np.zeros(ds.shape, dtype=complex) yout = np.zeros(ds.shape) # Create frequency axis for the pixel samp = parm_dict['sampling_rate'] fq_y = np.linspace(0, samp, Yout.shape[1]) response = ds[0, :] response -= np.mean(response) RESP = np.fft.fft(response) noise_limit = np.ceil(get_noise_floor(RESP, noise_floor)[0]) # Get the transfer function and transfer function frequency values # Use test calc to scale the transfer function to the correct size if not transfer_func: if resampled: transfer_func, _, _ = test_Ycalc(h5_main, resampled=True, verbose=verbose, noise_floor=noise_floor) else: transfer_func, _, _ = test_Ycalc(h5_main, resampled=False, verbose=verbose, noise_floor=noise_floor) import time t0 = time.time() signal_bins = np.arange(len(transfer_func)) for c in np.arange(h5_main.shape[0]): if verbose: if c % 100 == 0: print('Pixel:', c) response = ds[c, :] response -= np.mean(response) RESP = np.fft.fft(response) signal_kill = np.where(np.abs(RESP) < noise_limit) pass_frequencies = np.delete(signal_bins, signal_kill) drive_bin = (np.abs(fq_y - drive_freq)).argmin() RESP_ph = (RESP) * np.exp(-1j * fq_y / (fq_y[drive_bin]) * phase) Yout[c, pass_frequencies] = RESP_ph[pass_frequencies] Yout[c, :] = Yout[c, :] / (transfer_func * scaling) yout[c, :] = np.real(np.fft.ifft(Yout[c, :])) t1 = time.time() print('Time for pixels:', t1 - t0) return Yout, yout def check_phase(h5_main, transfer_func, phase_list=[-pi, -pi / 2, 0], plot=True, noise_tolerance=1e-6, samp_rate=10e6): ''' Uses the list of phases in phase_list to plot the various phase offsets relative to the driving excitation :param h5_main: :type h5_main: h5py dataset of USIDataset :param transfer_func: This can be supplied or use the calculated version For best results, use the "normalized" transfer function "None" will default to /Transfer_Function folder :type transfer_func: transfer function, optional :param phase_list: :type phase_list: List of float :param plot: :type plot: bool, optional :param noise_tolerance: :type noise_tolerance: :param samp_rate: :type samp_rate: ''' ph = -3.492 # phase from cable delays between excitation and response row_ind = 0 test_row = np.fft.fftshift(np.fft.fft(h5_main[row_ind])) noise_floor = get_noise_floor(test_row, noise_tolerance)[0] print('Noise floor = ', noise_floor) Noiselimit = np.ceil(noise_floor) parm_dict = usid.hdf_utils.get_attributes(h5_main) drive_freq = parm_dict['drive_freq'] freq = np.arange(-samp_rate / 2, samp_rate / 2, samp_rate / len(test_row)) tx = np.arange(0, parm_dict['total_time'], parm_dict['total_time'] / len(freq)) exc_params = {'ac': 1, 'dc': 0, 'phase': 0, 'frequency': drive_freq} exc_params['ac'] excitation = (exc_params['ac'] * np.sin(tx * 2 * pi * exc_params['frequency'] \ + exc_params['phase']) + exc_params['dc']) for ph in phase_list: # Try Force Conversion on Filtered data of single line (row_ind above) G_line = np.zeros(freq.size, dtype=complex) # G = raw G_wPhase_line = np.zeros(freq.size, dtype=complex) # G_wphase = phase-shifted signal_ind_vec = np.arange(freq.size) ind_drive = (np.abs(freq - drive_freq)).argmin() # filt_line is from filtered data above test_line = test_row - np.mean(test_row) test_line = np.fft.fftshift(np.fft.fft(test_line)) signal_kill = np.where(np.abs(test_line) < Noiselimit) signal_ind_vec = np.delete(signal_ind_vec, signal_kill) # Original/raw data; TF_norm is from the Tune file transfer function G_line[signal_ind_vec] = test_line[signal_ind_vec] G_line = (G_line / transfer_func) G_time_line = np.real(np.fft.ifft(np.fft.ifftshift(G_line))) # time-domain # Phase-shifted data test_shifted = (test_line) * np.exp(-1j * freq / (freq[ind_drive]) * ph) G_wPhase_line[signal_ind_vec] = test_shifted[signal_ind_vec] G_wPhase_line = (G_wPhase_line / transfer_func) G_wPhase_time_line = np.real(np.fft.ifft(np.fft.ifftshift(G_wPhase_line))) phaseshifted = np.reshape(G_wPhase_time_line, (parm_dict['num_cols'], parm_dict['num_rows'])) fig, axes = usid.plot_utils.plot_curves(excitation, phaseshifted, use_rainbow_plots=True, x_label='Voltage (Vac)', title='Phase Shifted', num_plots=4, y_label='Deflection (a.u.)') axes[0][0].set_title('Phase ' + str(ph)) return def save_Yout(h5_main, Yout, yout): ''' Writes the results to teh HDF5 file :param h5_main: :type h5_main: h5py dataset of USIDataset :param Yout: :type Yout: :param yout: :type yout: ''' parm_dict = usid.hdf_utils.get_attributes(h5_main) # Get relevant parameters num_rows = parm_dict['num_rows'] num_cols = parm_dict['num_cols'] pnts_per_avg = parm_dict['pnts_per_avg'] h5_gp = h5_main.parent h5_meas_group = usid.hdf_utils.create_indexed_group(h5_gp, 'GKPFM_Frequency') # Create dimensions pos_desc = [Dimension('X', 'm', np.linspace(0, parm_dict['FastScanSize'], num_cols)), Dimension('Y', 'm', np.linspace(0, parm_dict['SlowScanSize'], num_rows))] # ds_pos_ind, ds_pos_val = build_ind_val_matrices(pos_desc, is_spectral=False) spec_desc = [Dimension('Frequency', 'Hz', np.linspace(0, parm_dict['sampling_rate'], pnts_per_avg))] # ds_spec_inds, ds_spec_vals = build_ind_val_matrices(spec_desc, is_spectral=True) # Writes main dataset h5_y = usid.hdf_utils.write_main_dataset(h5_meas_group, Yout, 'Y', # Name of main dataset 'Deflection', # Physical quantity contained in Main dataset 'V', # Units for the physical quantity pos_desc, # Position dimensions spec_desc, # Spectroscopic dimensions dtype=np.cdouble, # data type / precision main_dset_attrs=parm_dict) usid.hdf_utils.copy_attributes(h5_y, h5_gp) h5_meas_group = usid.hdf_utils.create_indexed_group(h5_gp, 'GKPFM_Time') spec_desc = [Dimension('Time', 's', np.linspace(0, parm_dict['total_time'], pnts_per_avg))] h5_y = usid.hdf_utils.write_main_dataset(h5_meas_group, yout, 'y_time', # Name of main dataset 'Deflection', # Physical quantity contained in Main dataset 'V', # Units for the physical quantity pos_desc, # Position dimensions spec_desc, # Spectroscopic dimensions dtype=np.float32, # data type / precision main_dset_attrs=parm_dict) usid.hdf_utils.copy_attributes(h5_y, h5_gp) h5_y.file.flush() return def check_response(h5_main, pixel=0, ph=0): """ :param h5_main: :type h5_main: h5py dataset of USIDataset :param pixel: :type pixel: :param ph: :type ph: """ parm_dict = usid.hdf_utils.get_attributes(h5_main) freq = parm_dict['drive_freq'] txl = np.linspace(0, parm_dict['total_time'], h5_main[pixel, :].shape[0]) resp_wfm = np.sin(txl * 2 * pi * freq + ph) plt.figure() plt.plot(resp_wfm, h5_main[()][pixel, :]) return
PypiClean
/utils/huetoolkit.py
import os import numpy as np import pandas as pd def check_reserved_field_name(cols): cols = set(cols) res = {'file_name', 'load_dt'} ident = res.intersection(cols) if len(ident) > 0: print('Reserved Column Name Exists', ident) else: print('No Issue') def check_dup_columns(cols): cols_lower = np.array([c.lower() for c in cols]) unq, cnt = np.unique(cols_lower, return_counts=True) dup = unq[cnt > 1] dup = [c for c in cols if c.lower() in dup] print(f'Duplicated Columns: {dup}') def generate_hue_dict(fp: list, ins: list = None): """ Args: fp (list): [description] ins (dict, optional): [description]. Defaults to None. dict_file_name (str, optional): [description]. Defaults to 'prod_audit_header_info.dic'. """ def generate_hue_dict_item(fp: str, ins: dict = None): fc = os.path.basename(fp).split('.') fn = fc[0] fe = fc[1] if fe.lower() != 'csv': raise IOError(f'File {fp} is not a csv file') try: df = pd.read_csv(fp, nrows=1) except: raise IOError(f'Error when reading file {fp}') if ins is None: col_def = ','.join( ['"' + col + ' string' + '"' for col in df.columns]) else: col_def = ','.join(['"' + col + f' {ins[col]}' + '"' if col in ins.keys() else '"' + col + ' string' + '"' for col in df.columns]) dict_rec = '"' + fn + '":[' + col_def + ']' return dict_rec dict_items = [] for p, i in zip(fp, ins): dict_items.append(generate_hue_dict_item(p, i)) dict_items = ',\n'.join(dict_items) dict_export = '{\n' + dict_items + '\n}' return dict_export def generate_hue_csv(file_dir: list, file_name: list, table_name: list): cols = ['flow_type', 'lob', 'subject_area', 'ingestion_type', 'load_type', 'is_control_file', 'destination_type', 'source_db', 'source_table', 'target_table', 'target_db', 'lake_db', 'select_columns', 'lake_partitions', 'partition_deriving_columns', 'lake_partition_logic', 'bucket_columns', 'no_of_buckets', 'storage_type', 'lake_storage_type', 'no_of_mappers', 'file_format', 'header_avail', 'part_file', 'delimiter', 'mask_columns', 'timestamp_format', 'split_column'] df = pd.DataFrame(columns=cols) def _add_row(df, file_dir, file_name, table_name): new_row = np.array( ['fs_hv', 'audit', 'audit', 'file-based', 'full', 'N', 'hive-table', file_dir, file_name, table_name, 'p_audit_users_db', np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 'parquetfile', 'parquet', 8, 'CSV', True, False, ',', np.nan, '%Y%m%d%H%M%S', np.nan], dtype=object) df.loc[df.shape[0], :] = new_row return df for i in range(len(file_dir)): df = _add_row(df, file_dir[i], file_name[i], table_name[i]) return df def prepare_hue_files(path_file_in: list, file_dir: list, table_name: list, ins: list): dir_file_out = os.path.dirname(path_file_in[0]) file_name = [os.path.basename(fn).split('.')[0] for fn in path_file_in] try: dict_file_path = os.path.join( dir_file_out, 'prod_audit_header_info.dic') dict_export = generate_hue_dict(path_file_in, ins) with open(dict_file_path, 'w') as f: f.write(dict_export) print(f'HUE DICT was generated: {dict_file_path}') except: print('Error - HUE DICT') try: csv_file_path = os.path.join(dir_file_out, 'prod_audit_full.csv') df_csv = generate_hue_csv(file_dir, file_name, table_name) df_csv.to_csv(csv_file_path, index=False) print(f'HUE CSV was generated: {csv_file_path}') except: print('Error - HUE CSV')
PypiClean
/DOCBRPY-0.1.3.tar.gz/DOCBRPY-0.1.3/src/PYBRDOC/cnpj.py
import re import requests import json from itertools import chain from random import randint from .documentoidentificacao import DocumentoIdentificacao class Cnpj(DocumentoIdentificacao): """docstring for Cnpj""" def __init__(self, arg): super().__init__(arg) def __str__(self): """ Formatará uma string CNPJ somente de números formatada adequadamente, adicionando visual de formatação padrão símbolos de ajuda para exibição. Se a string do CNPJ for menor que 14 dígitos ou contiver caracteres que não sejam dígitos, retornará o valor bruto Cadeia CNPJ não formatada. """ if self.rawValue == None: return str() x = self.rawValue if not x.isdigit() or len(x) != 14 or len(set(x)) == 1: return self.rawValue return '{}.{}.{}/{}-{}'.format(x[:2], x[2:5], x[5:8], x[8:12], x[12:]) @property def isValid(self): """ Retorna se os dígitos de checksum de verificação do `cnpj` fornecido correspondem ou não ao seu número base. A entrada deve ser uma string de dígitos de comprimento adequado. """ return ValidadorCnpj.validar(self) class ValidadorCnpj(object): """docstring for ValidadorCnpj""" def __call__(self, value): return ValidadorCnpj.validar(value) def __validarCnpj(self, arg): return self.__validarStr(arg.rawValue) def __validarStr(self, arg): if arg == None: return False p = re.compile('[^0-9]') x = p.sub('', arg) if len(x) != 14 or len(set(x)) == 1: return False return all(self.__hashDigit(x, i + 13) == int(v) for i, v in enumerate(x[12:])) def __hashDigit(self, cnpj, position): # type: (str, int) -> int """ Calculará o dígito de soma de verificação `position` fornecido para a entrada `cnpj`. A entrada deve conter todos os elementos anteriores a `position` senão a computação produzirá o resultado errado. """ weighten = chain(range(position - 8, 1, -1), range(9, 1, -1)) val = sum(int(digit) * weight for digit, weight in zip(cnpj, weighten)) % 11 return 0 if val < 2 else 11 - val @staticmethod def validar(arg): v = ValidadorCnpj() if type(arg) == Cnpj: return v.__validarCnpj(arg) if type(arg) == str: return v.__validarStr(arg) return False def consulta_cnpj(cnpj): url = "https://www.sintegraws.com.br/api/v1/execute-api.php" querystring = {"token":"XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX","cnpj":"06990590000123","plugin":"RF"} response = requests.request("GET", url, params=querystring) print(response.text) validar_cnpj = ValidadorCnpj() class GeradorCnpj(object): def __hashdigit(self, cnpj, position): """ Calculará o dígito de soma de verificação `position` fornecido para a entrada `cnpj`. A entrada deve conter todos os elementos anteriores a `position` senão a computação produzirá o resultado errado. """ weighten = chain(range(position - 8, 1, -1), range(9, 1, -1)) val = sum(int(digit) * weight for digit, weight in zip(cnpj, weighten)) % 11 return 0 if val < 2 else 11 - val def __checksum(self, basenum): """ Calculará os dígitos da soma de verificação para um determinado número base do CNPJ. `basenum` precisa ser uma string de dígitos de comprimento adequado. """ digitos = str(self.__hashdigit(basenum, 13)) digitos += str(self.__hashdigit(basenum + digitos, 14)) return digitos @staticmethod def gerar(branch = 1): """ Gera uma string de dígitos CNPJ válida aleatória. Um parâmetro opcional de número de ramal pode ser fornecido, o padrão é 1. """ branch %= 10000 branch += int(branch == 0) branch = str(branch).zfill(4) base = str(randint(0, 99999999)).zfill(8) + branch while len(set(base)) == 1: base = str(randint(0, 99999999)).zfill(8) + branch gerador = GeradorCnpj() return Cnpj(base + gerador.__checksum(base))
PypiClean
/0x-sra-client-4.0.0.tar.gz/0x-sra-client-4.0.0/src/zero_ex/sra_client/api_client.py
from __future__ import absolute_import import datetime import json import mimetypes from multiprocessing.pool import ThreadPool import os import re import tempfile # python 2 and python 3 compatibility library import six from six.moves.urllib.parse import quote from zero_ex.sra_client.configuration import Configuration import zero_ex.sra_client.models from zero_ex.sra_client import rest class ApiClient(object): """Generic API client for OpenAPI client library builds. OpenAPI generic API client. This client handles the client- server communication, and is invariant across implementations. Specifics of the methods and models for each application are generated from the OpenAPI templates. NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. :param configuration: .Configuration object for this client :param header_name: a header to pass when making calls to the API. :param header_value: a header value to pass when making calls to the API. :param cookie: a cookie to include in the header when making calls to the API :param pool_threads: The number of threads to use for async requests to the API. More threads means more concurrent API requests. """ PRIMITIVE_TYPES = (float, bool, bytes, six.text_type) + six.integer_types NATIVE_TYPES_MAPPING = { "int": int, "long": int if six.PY3 else long, # noqa: F821 "float": float, "str": str, "bool": bool, "date": datetime.date, "datetime": datetime.datetime, "object": object, } _pool = None def __init__( self, configuration=None, header_name=None, header_value=None, cookie=None, pool_threads=None, ): if configuration is None: configuration = Configuration() self.configuration = configuration self.pool_threads = pool_threads self.rest_client = rest.RESTClientObject(configuration) self.default_headers = {} if header_name is not None: self.default_headers[header_name] = header_value self.cookie = cookie # Set default User-Agent. self.user_agent = "OpenAPI-Generator/1.0.0/python" def __del__(self): if self._pool: self._pool.close() self._pool.join() self._pool = None @property def pool(self): """Create thread pool on first request avoids instantiating unused threadpool for blocking clients. """ if self._pool is None: self._pool = ThreadPool(self.pool_threads) return self._pool @property def user_agent(self): """User agent for this API client""" return self.default_headers["User-Agent"] @user_agent.setter def user_agent(self, value): self.default_headers["User-Agent"] = value def set_default_header(self, header_name, header_value): self.default_headers[header_name] = header_value def __call_api( self, resource_path, method, path_params=None, query_params=None, header_params=None, body=None, post_params=None, files=None, response_type=None, auth_settings=None, _return_http_data_only=None, collection_formats=None, _preload_content=True, _request_timeout=None, ): config = self.configuration # header parameters header_params = header_params or {} header_params.update(self.default_headers) if self.cookie: header_params["Cookie"] = self.cookie if header_params: header_params = self.sanitize_for_serialization(header_params) header_params = dict( self.parameters_to_tuples(header_params, collection_formats) ) # path parameters if path_params: path_params = self.sanitize_for_serialization(path_params) path_params = self.parameters_to_tuples( path_params, collection_formats ) for k, v in path_params: # specified safe chars, encode everything resource_path = resource_path.replace( "{%s}" % k, quote(str(v), safe=config.safe_chars_for_path_param), ) # query parameters if query_params: query_params = self.sanitize_for_serialization(query_params) query_params = self.parameters_to_tuples( query_params, collection_formats ) # post parameters if post_params or files: post_params = self.prepare_post_parameters(post_params, files) post_params = self.sanitize_for_serialization(post_params) post_params = self.parameters_to_tuples( post_params, collection_formats ) # auth setting self.update_params_for_auth(header_params, query_params, auth_settings) # body if body: body = self.sanitize_for_serialization(body) # request url url = self.configuration.host + resource_path # perform request and return response response_data = self.request( method, url, query_params=query_params, headers=header_params, post_params=post_params, body=body, _preload_content=_preload_content, _request_timeout=_request_timeout, ) self.last_response = response_data return_data = response_data if _preload_content: # deserialize response data if response_type: return_data = self.deserialize(response_data, response_type) else: return_data = None if _return_http_data_only: return return_data else: return ( return_data, response_data.status, response_data.getheaders(), ) def sanitize_for_serialization(self, obj): """Builds a JSON POST object. If obj is None, return None. If obj is str, int, long, float, bool, return directly. If obj is datetime.datetime, datetime.date convert to string in iso8601 format. If obj is list, sanitize each element in the list. If obj is dict, return the dict. If obj is OpenAPI model, return the properties dict. :param obj: The data to serialize. :return: The serialized form of data. """ if obj is None: return None elif isinstance(obj, self.PRIMITIVE_TYPES): return obj elif isinstance(obj, list): return [ self.sanitize_for_serialization(sub_obj) for sub_obj in obj ] elif isinstance(obj, tuple): return tuple( self.sanitize_for_serialization(sub_obj) for sub_obj in obj ) elif isinstance(obj, (datetime.datetime, datetime.date)): return obj.isoformat() if isinstance(obj, dict): obj_dict = obj else: # Convert model obj to dict except # attributes `openapi_types`, `attribute_map` # and attributes which value is not None. # Convert attribute name to json key in # model definition for request. obj_dict = { obj.attribute_map[attr]: getattr(obj, attr) for attr, _ in six.iteritems(obj.openapi_types) if getattr(obj, attr) is not None } return { key: self.sanitize_for_serialization(val) for key, val in six.iteritems(obj_dict) } def deserialize(self, response, response_type): """Deserializes response into an object. :param response: RESTResponse object to be deserialized. :param response_type: class literal for deserialized object, or string of class name. :return: deserialized object. """ # handle file downloading # save response body into a tmp file and return the instance if response_type == "file": return self.__deserialize_file(response) # fetch data from response object try: data = json.loads(response.data) except ValueError: data = response.data return self.__deserialize(data, response_type) def __deserialize(self, data, klass): """Deserializes dict, list, str into an object. :param data: dict, list or str. :param klass: class literal, or string of class name. :return: object. """ if data is None: return None if type(klass) == str: if klass.startswith("list["): sub_kls = re.match(r"list\[(.*)\]", klass).group(1) return [ self.__deserialize(sub_data, sub_kls) for sub_data in data ] if klass.startswith("dict("): sub_kls = re.match(r"dict\(([^,]*), (.*)\)", klass).group(2) return { k: self.__deserialize(v, sub_kls) for k, v in six.iteritems(data) } # convert str to class if klass in self.NATIVE_TYPES_MAPPING: klass = self.NATIVE_TYPES_MAPPING[klass] else: klass = getattr(zero_ex.sra_client.models, klass) if klass in self.PRIMITIVE_TYPES: return self.__deserialize_primitive(data, klass) elif klass == object: return self.__deserialize_object(data) elif klass == datetime.date: return self.__deserialize_date(data) elif klass == datetime.datetime: return self.__deserialize_datatime(data) else: return self.__deserialize_model(data, klass) def call_api( self, resource_path, method, path_params=None, query_params=None, header_params=None, body=None, post_params=None, files=None, response_type=None, auth_settings=None, async_req=None, _return_http_data_only=None, collection_formats=None, _preload_content=True, _request_timeout=None, ): """Makes the HTTP request (synchronous) and returns deserialized data. To make an async_req request, set the async_req parameter. :param resource_path: Path to method endpoint. :param method: Method to call. :param path_params: Path parameters in the url. :param query_params: Query parameters in the url. :param header_params: Header parameters to be placed in the request header. :param body: Request body. :param post_params dict: Request post form parameters, for `application/x-www-form-urlencoded`, `multipart/form-data`. :param auth_settings list: Auth Settings names for the request. :param response: Response data type. :param files dict: key -> filename, value -> filepath, for `multipart/form-data`. :param async_req bool: execute request asynchronously :param _return_http_data_only: response data without head status code and headers :param collection_formats: dict of collection formats for path, query, header, and post parameters. :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: If async_req parameter is True, the request will be called asynchronously. The method will return the request thread. If parameter async_req is False or missing, then the method will return the response directly. """ if not async_req: return self.__call_api( resource_path, method, path_params, query_params, header_params, body, post_params, files, response_type, auth_settings, _return_http_data_only, collection_formats, _preload_content, _request_timeout, ) else: thread = self.pool.apply_async( self.__call_api, ( resource_path, method, path_params, query_params, header_params, body, post_params, files, response_type, auth_settings, _return_http_data_only, collection_formats, _preload_content, _request_timeout, ), ) return thread def request( self, method, url, query_params=None, headers=None, post_params=None, body=None, _preload_content=True, _request_timeout=None, ): """Makes the HTTP request using RESTClient.""" if method == "GET": return self.rest_client.GET( url, query_params=query_params, _preload_content=_preload_content, _request_timeout=_request_timeout, headers=headers, ) elif method == "HEAD": return self.rest_client.HEAD( url, query_params=query_params, _preload_content=_preload_content, _request_timeout=_request_timeout, headers=headers, ) elif method == "OPTIONS": return self.rest_client.OPTIONS( url, query_params=query_params, headers=headers, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body, ) elif method == "POST": return self.rest_client.POST( url, query_params=query_params, headers=headers, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body, ) elif method == "PUT": return self.rest_client.PUT( url, query_params=query_params, headers=headers, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body, ) elif method == "PATCH": return self.rest_client.PATCH( url, query_params=query_params, headers=headers, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body, ) elif method == "DELETE": return self.rest_client.DELETE( url, query_params=query_params, headers=headers, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body, ) else: raise ValueError( "http method must be `GET`, `HEAD`, `OPTIONS`," " `POST`, `PATCH`, `PUT` or `DELETE`." ) def parameters_to_tuples(self, params, collection_formats): """Get parameters as list of tuples, formatting collections. :param params: Parameters as dict or list of two-tuples :param dict collection_formats: Parameter collection formats :return: Parameters as list of tuples, collections formatted """ new_params = [] if collection_formats is None: collection_formats = {} for k, v in ( six.iteritems(params) if isinstance(params, dict) else params ): # noqa: E501 if k in collection_formats: collection_format = collection_formats[k] if collection_format == "multi": new_params.extend((k, value) for value in v) else: if collection_format == "ssv": delimiter = " " elif collection_format == "tsv": delimiter = "\t" elif collection_format == "pipes": delimiter = "|" else: # csv is the default delimiter = "," new_params.append( (k, delimiter.join(str(value) for value in v)) ) else: new_params.append((k, v)) return new_params def prepare_post_parameters(self, post_params=None, files=None): """Builds form parameters. :param post_params: Normal form parameters. :param files: File parameters. :return: Form parameters with files. """ params = [] if post_params: params = post_params if files: for k, v in six.iteritems(files): if not v: continue file_names = v if type(v) is list else [v] for n in file_names: with open(n, "rb") as f: filename = os.path.basename(f.name) filedata = f.read() mimetype = ( mimetypes.guess_type(filename)[0] or "application/octet-stream" ) params.append( tuple([k, tuple([filename, filedata, mimetype])]) ) return params def select_header_accept(self, accepts): """Returns `Accept` based on an array of accepts provided. :param accepts: List of headers. :return: Accept (e.g. application/json). """ if not accepts: return accepts = [x.lower() for x in accepts] if "application/json" in accepts: return "application/json" else: return ", ".join(accepts) def select_header_content_type(self, content_types): """Returns `Content-Type` based on an array of content_types provided. :param content_types: List of content-types. :return: Content-Type (e.g. application/json). """ if not content_types: return "application/json" content_types = [x.lower() for x in content_types] if "application/json" in content_types or "*/*" in content_types: return "application/json" else: return content_types[0] def update_params_for_auth(self, headers, querys, auth_settings): """Updates header and query params based on authentication setting. :param headers: Header parameters dict to be updated. :param querys: Query parameters tuple list to be updated. :param auth_settings: Authentication setting identifiers list. """ if not auth_settings: return for auth in auth_settings: auth_setting = self.configuration.auth_settings().get(auth) if auth_setting: if not auth_setting["value"]: continue elif auth_setting["in"] == "header": headers[auth_setting["key"]] = auth_setting["value"] elif auth_setting["in"] == "query": querys.append((auth_setting["key"], auth_setting["value"])) else: raise ValueError( "Authentication token must be in `query` or `header`" ) def __deserialize_file(self, response): """Deserializes body to file Saves response body into a file in a temporary folder, using the filename from the `Content-Disposition` header if provided. :param response: RESTResponse. :return: file path. """ fd, path = tempfile.mkstemp(dir=self.configuration.temp_folder_path) os.close(fd) os.remove(path) content_disposition = response.getheader("Content-Disposition") if content_disposition: filename = re.search( r'filename=[\'"]?([^\'"\s]+)[\'"]?', content_disposition ).group(1) path = os.path.join(os.path.dirname(path), filename) with open(path, "wb") as f: f.write(response.data) return path def __deserialize_primitive(self, data, klass): """Deserializes string to primitive type. :param data: str. :param klass: class literal. :return: int, long, float, str, bool. """ try: return klass(data) except UnicodeEncodeError: return six.text_type(data) except TypeError: return data def __deserialize_object(self, value): """Return an original value. :return: object. """ return value def __deserialize_date(self, string): """Deserializes string to date. :param string: str. :return: date. """ try: from dateutil.parser import parse return parse(string).date() except ImportError: return string except ValueError: raise rest.ApiException( status=0, reason="Failed to parse `{0}` as date object".format(string), ) def __deserialize_datatime(self, string): """Deserializes string to datetime. The string should be in iso8601 datetime format. :param string: str. :return: datetime. """ try: from dateutil.parser import parse return parse(string) except ImportError: return string except ValueError: raise rest.ApiException( status=0, reason=( "Failed to parse `{0}` as datetime object".format(string) ), ) def __deserialize_model(self, data, klass): """Deserializes list or dict to model. :param data: dict, list. :param klass: class literal. :return: model object. """ if not klass.openapi_types and not hasattr( klass, "get_real_child_model" ): return data kwargs = {} if klass.openapi_types is not None: for attr, attr_type in six.iteritems(klass.openapi_types): if ( data is not None and klass.attribute_map[attr] in data and isinstance(data, (list, dict)) ): value = data[klass.attribute_map[attr]] kwargs[attr] = self.__deserialize(value, attr_type) instance = klass(**kwargs) if hasattr(instance, "get_real_child_model"): klass_name = instance.get_real_child_model(data) if klass_name: instance = self.__deserialize(data, klass_name) return instance
PypiClean
/Office365-REST-Python-Client-2.4.3.tar.gz/Office365-REST-Python-Client-2.4.3/office365/sharepoint/ui/applicationpages/peoplepicker/query_parameters.py
from office365.runtime.client_value import ClientValue from office365.sharepoint.principal.source import PrincipalSource from office365.sharepoint.principal.type import PrincipalType class ClientPeoplePickerQueryParameters(ClientValue): def __init__(self, query_string, allow_emai_addresses=True, allow_multiple_entities=True, allow_only_email_addresses=False, all_url_zones=False, enabled_claim_providers=None, force_claims=False, maximum_entity_suggestions=1, principal_source=PrincipalSource.All, principal_type=PrincipalType.All, url_zone=0, url_zone_specified=False, sharepoint_group_id=0): """ Specifies the properties of a principal query :type int urlZone: Specifies a location in the topology of the farm for the principal query. :param int sharepoint_group_id: specifies a group containing allowed principals to be used in the principal query. :param str query_string: Specifies the value to be used in the principal query. :param int principal_type: Specifies the type to be used in the principal query. :param int principal_source: Specifies the source to be used in the principal query. :param int maximum_entity_suggestions: Specifies the maximum number of principals to be returned by the principal query. :param bool force_claims: Specifies whether the principal query SHOULD be handled by claims providers. :param bool enabled_claim_providers: Specifies the claims providers to be used in the principal query. :param bool all_url_zones: Specifies whether the principal query will search all locations in the topology of the farm. :param bool allow_only_email_addresses: Specifies whether to allow the picker to resolve only email addresses as valid entities. This property is only used when AllowEmailAddresses (section 3.2.5.217.1.1.1) is set to True. Otherwise it is ignored. :param bool allow_multiple_entities: Specifies whether the principal query allows multiple values. :param bool allow_emai_addresses: Specifies whether the principal query can return a resolved principal matching an unverified e-mail address when unable to resolve to a known principal. """ super(ClientPeoplePickerQueryParameters, self).__init__() self.QueryString = query_string self.AllowEmailAddresses = allow_emai_addresses self.AllowMultipleEntities = allow_multiple_entities self.AllowOnlyEmailAddresses = allow_only_email_addresses self.AllUrlZones = all_url_zones self.EnabledClaimProviders = enabled_claim_providers self.ForceClaims = force_claims self.MaximumEntitySuggestions = maximum_entity_suggestions self.PrincipalSource = principal_source self.PrincipalType = principal_type self.UrlZone = url_zone self.UrlZoneSpecified = url_zone_specified self.SharePointGroupID = sharepoint_group_id @property def entity_type_name(self): return "SP.UI.ApplicationPages.ClientPeoplePickerQueryParameters"
PypiClean
/BitEx-2.0.0b3.zip/BitEx-2.0.0b3/bitex/pairs.py
import logging # Import Third-Party # Import Homebrew # Init Logging Facilities log = logging.getLogger(__name__) class PairFormatter: """Container Class which features formatting function for all supported exchanges. These Formatter functions apply any changes to make a given pair, pased as quote and base currency, compatible with an exchange. This does NOT include an availability check of the pair. It is therefore possible to format a given pair, even though it is not supported by the requested exchange. """ def __init__(self, base, quote): self._base = base self._quote = quote self.formatters = {'Kraken': self.kraken_formatter, 'Bitstamp': self.bitstamp_formatter, 'Bitfinex': self.bitfinex_formatter, 'Bittrex': self.bittrex_formatter, 'CoinCheck': self.coincheck_formatter, 'GDAX': self.gdax_formatter, 'ITBit': self.itbit_formatter, 'OKCoin': self.okcoin_formatter, 'BTC-E': self.btce_formatter, 'C-CEX': self.ccex_formatter, 'Cryptopia': self.cryptopia_formatter, 'Gemini': self.gemini_formatter, 'The Rock Trading Ltd.': self.rocktrading_formatter, 'Poloniex': self.poloniex_formatter, 'Quoine': self.quoine_formatter, 'QuadrigaCX': self.quadriga_formatter, 'HitBTC': self.hitbtc_formatter, 'Vaultoro': self.vaultoro_formatter, 'Bter': self.bter_formatter, 'Yunbi': self.yunbi_formatter, "Binance": self.binance_formatter } def __str__(self, *args, **kwargs): return self._base + self._quote def __call__(self): return self.__str__() def format_for(self, exchange_name): return self.formatters[exchange_name](self._base, self._quote) @staticmethod def kraken_formatter(base, quote): base = 'XBT' if base == 'BTC' else base quote = 'XBT' if quote == 'BTC' else quote def add_prefix(cur): if 'BCH' in (base, quote): return cur elif cur in ('USD', 'EUR', 'GBP', 'JPY', 'CAD'): return 'Z' + cur else: return 'X' + cur return add_prefix(base) + add_prefix(quote) @staticmethod def bitstamp_formatter(base, quote): return base.lower() + quote.lower() @staticmethod def bitfinex_formatter(base, quote): base = 'DSH' if base == 'DASH' else base quote = 'DSH' if quote == 'DASH' else quote return base + quote @staticmethod def bittrex_formatter(base, quote): return quote + '-' + base @staticmethod def binance_formatter(base, quote): return base + quote @staticmethod def coincheck_formatter(base, quote): return base.lower() + '_' + quote.lower() @staticmethod def gdax_formatter(base, quote): return base + '-' + quote @staticmethod def itbit_formatter(base, quote): base = 'XBT' if base == 'BTC' else base quote = 'XBT' if base == 'BTC' else quote return base + quote @staticmethod def okcoin_formatter(base, quote): return base.lower() + '_' + quote.lower() @staticmethod def btce_formatter(base, quote): return base.lower() + '_' + quote.lower() @staticmethod def ccex_formatter(base, quote): return base.lower() + '-' + quote.lower() @staticmethod def cryptopia_formatter(base, quote): return base + '_' + quote @staticmethod def gemini_formatter(base, quote): return base.lower() + quote.lower() @staticmethod def yunbi_formatter(base, quote): return base.lower() + quote.lower() @staticmethod def rocktrading_formatter(base, quote): return base + quote @staticmethod def poloniex_formatter(base, quote): if ((quote == 'BTC') or (quote == 'USDT') or (quote == 'XMR' and not(base == 'BTC' or base == 'USDT'))): return quote + '_' + base else: return base + '_' + quote @staticmethod def quoine_formatter(base, quote): return base + quote @staticmethod def quadriga_formatter(base, quote): return base.lower() + '_' + quote.lower() @staticmethod def hitbtc_formatter(base, quote): return base + quote @staticmethod def vaultoro_formatter(base, quote): return base + '-' + quote @staticmethod def bter_formatter(base, quote): return base.lower() + '_' + quote.lower() class BTCUSDFormatter(PairFormatter): def __init__(self): super(BTCUSDFormatter, self).__init__('BTC', 'USD') class ETHUSDFormatter(PairFormatter): def __init__(self): super(ETHUSDFormatter, self).__init__('ETH', 'USD') class XMRUSDFormatter(PairFormatter): def __init__(self): super(XMRUSDFormatter, self).__init__('XMR', 'USD') class ETCUSDFormatter(PairFormatter): def __init__(self): super(ETCUSDFormatter, self).__init__('ETC', 'USD') class ZECUSDFormatter(PairFormatter): def __init__(self): super(ZECUSDFormatter, self).__init__('ZEC', 'USD') class DASHUSDFormatter(PairFormatter): def __init__(self): super(DASHUSDFormatter, self).__init__('DASH', 'USD') class BCHUSDFormatter(PairFormatter): def __init__(self): super(BCHUSDFormatter, self).__init__('BCH', 'USD') class ETHBTCFormatter(PairFormatter): def __init__(self): super(ETHBTCFormatter, self).__init__('ETH', 'BTC') class LTCBTCFormatter(PairFormatter): def __init__(self): super(LTCBTCFormatter, self).__init__('LTC', 'BTC') class XMRBTCFormatter(PairFormatter): def __init__(self): super(XMRBTCFormatter, self).__init__('XMR', 'BTC') class ETCBTCFormatter(PairFormatter): def __init__(self): super(ETCBTCFormatter, self).__init__('ETC', 'BTC') class ZECBTCFormatter(PairFormatter): def __init__(self): super(ZECBTCFormatter, self).__init__('ZEC', 'BTC') class DASHBTCFormatter(PairFormatter): def __init__(self): super(DASHBTCFormatter, self).__init__('DASH', 'BTC') class BCHBTCFormatter(PairFormatter): def __init__(self): super(BCHBTCFormatter, self).__init__('BCH', 'BTC') BTCUSD = BTCUSDFormatter() ETHUSD = ETHUSDFormatter() XMRUSD = XMRUSDFormatter() ETCUSD = ETCUSDFormatter() ZECUSD = ZECUSDFormatter() DASHUSD = DASHUSDFormatter() BCHUSD = BCHUSDFormatter() ETHBTC = ETHBTCFormatter() LTCBTC = LTCBTCFormatter() XMRBTC = XMRBTCFormatter() ETCBTC = ETCBTCFormatter() ZECBTC = ZECBTCFormatter() DASHBTC = DASHBTCFormatter() BCHBTC = BCHBTCFormatter()
PypiClean
/Django_patch-2.2.19-py3-none-any.whl/django/contrib/auth/management/__init__.py
import getpass import unicodedata from django.apps import apps as global_apps from django.contrib.auth import get_permission_codename from django.contrib.contenttypes.management import create_contenttypes from django.core import exceptions from django.db import DEFAULT_DB_ALIAS, router def _get_all_permissions(opts): """ Return (codename, name) for all permissions in the given opts. """ return [*_get_builtin_permissions(opts), *opts.permissions] def _get_builtin_permissions(opts): """ Return (codename, name) for all autogenerated permissions. By default, this is ('add', 'change', 'delete', 'view') """ perms = [] for action in opts.default_permissions: perms.append(( get_permission_codename(action, opts), 'Can %s %s' % (action, opts.verbose_name_raw) )) return perms def create_permissions(app_config, verbosity=2, interactive=True, using=DEFAULT_DB_ALIAS, apps=global_apps, **kwargs): if not app_config.models_module: return # Ensure that contenttypes are created for this app. Needed if # 'django.contrib.auth' is in INSTALLED_APPS before # 'django.contrib.contenttypes'. create_contenttypes(app_config, verbosity=verbosity, interactive=interactive, using=using, apps=apps, **kwargs) app_label = app_config.label try: app_config = apps.get_app_config(app_label) ContentType = apps.get_model('contenttypes', 'ContentType') Permission = apps.get_model('auth', 'Permission') except LookupError: return if not router.allow_migrate_model(using, Permission): return # This will hold the permissions we're looking for as # (content_type, (codename, name)) searched_perms = [] # The codenames and ctypes that should exist. ctypes = set() for klass in app_config.get_models(): # Force looking up the content types in the current database # before creating foreign keys to them. ctype = ContentType.objects.db_manager(using).get_for_model(klass, for_concrete_model=False) ctypes.add(ctype) for perm in _get_all_permissions(klass._meta): searched_perms.append((ctype, perm)) # Find all the Permissions that have a content_type for a model we're # looking for. We don't need to check for codenames since we already have # a list of the ones we're going to create. all_perms = set(Permission.objects.using(using).filter( content_type__in=ctypes, ).values_list( "content_type", "codename" )) perms = [ Permission(codename=codename, name=name, content_type=ct) for ct, (codename, name) in searched_perms if (ct.pk, codename) not in all_perms ] Permission.objects.using(using).bulk_create(perms) if verbosity >= 2: for perm in perms: print("Adding permission '%s'" % perm) def get_system_username(): """ Return the current system user's username, or an empty string if the username could not be determined. """ try: result = getpass.getuser() except (ImportError, KeyError): # KeyError will be raised by os.getpwuid() (called by getuser()) # if there is no corresponding entry in the /etc/passwd file # (a very restricted chroot environment, for example). return '' return result def get_default_username(check_db=True): """ Try to determine the current system user's username to use as a default. :param check_db: If ``True``, requires that the username does not match an existing ``auth.User`` (otherwise returns an empty string). :returns: The username, or an empty string if no username can be determined. """ # This file is used in apps.py, it should not trigger models import. from django.contrib.auth import models as auth_app # If the User model has been swapped out, we can't make any assumptions # about the default user name. if auth_app.User._meta.swapped: return '' default_username = get_system_username() try: default_username = ( unicodedata.normalize('NFKD', default_username) .encode('ascii', 'ignore').decode('ascii') .replace(' ', '').lower() ) except UnicodeDecodeError: return '' # Run the username validator try: auth_app.User._meta.get_field('username').run_validators(default_username) except exceptions.ValidationError: return '' # Don't return the default username if it is already taken. if check_db and default_username: try: auth_app.User._default_manager.get(username=default_username) except auth_app.User.DoesNotExist: pass else: return '' return default_username
PypiClean
/Mathics-1.0.tar.gz/Mathics-1.0/mathics/builtin/system.py
from __future__ import unicode_literals from __future__ import absolute_import import sys from mathics.core.expression import Expression, String, strip_context from mathics.builtin.base import Builtin, Predefined from mathics import version_string class Version(Predefined): """ <dl> <dt>'$Version' <dd>returns a string with the current Mathics version and the versions of relevant libraries. </dl> >> $Version = Mathics ... """ name = '$Version' def evaluate(self, evaluation): return String(version_string.replace('\n', ' ')) class Names(Builtin): """ <dl> <dt>'Names["$pattern$"]' <dd>returns the list of names matching $pattern$. </dl> >> Names["List"] = {List} The wildcard '*' matches any character: >> Names["List*"] = {List, ListLinePlot, ListPlot, ListQ, Listable} The wildcard '@' matches only lowercase characters: >> Names["List@"] = {Listable} >> x = 5; >> Names["Global`*"] = {x} The number of built-in symbols: >> Length[Names["System`*"]] = ... #> Length[Names["System`*"]] > 350 = True """ def apply(self, pattern, evaluation): 'Names[pattern_]' pattern = pattern.get_string_value() if pattern is None: return names = set([]) for full_name in evaluation.definitions.get_matching_names(pattern): short_name = strip_context(full_name) names.add(short_name if short_name not in names else full_name) # TODO: Mathematica ignores contexts when it sorts the list of # names. return Expression('List', *[String(name) for name in sorted(names)]) class Aborted(Predefined): """ <dl> <dt>'$Aborted' <dd>is returned by a calculation that has been aborted. </dl> """ name = '$Aborted' class Failed(Predefined): """ <dl> <dt>'$Failed' <dd>is returned by some functions in the event of an error. </dl> >> Get["nonexistent_file.m"] : Cannot open nonexistent_file.m. = $Failed """ name = '$Failed' class CommandLine(Predefined): ''' <dl> <dt>'$CommandLine' <dd>is a list of strings passed on the command line to launch the Mathics session. </dl> >> $CommandLine = {...} ''' name = '$CommandLine' def evaluate(self, evaluation): return Expression('List', *(String(arg) for arg in sys.argv)) class ScriptCommandLine(Predefined): ''' <dl> <dt>'$ScriptCommandLine' <dd>is a list of string arguments when running the kernel is script mode. </dl> >> $ScriptCommandLine = {...} ''' name = '$ScriptCommandLine' def evaluate(self, evaluation): try: dash_index = sys.argv.index('--') except ValueError: # not run in script mode return Expression('List') return Expression('List', *(String(arg) for arg in sys.argv[dash_index + 1:]))
PypiClean
/ConnectorDB-0.3.5.tar.gz/ConnectorDB-0.3.5/connectordb/_stream.py
from __future__ import absolute_import import json import os from ._connectorobject import ConnectorObject from ._datapointarray import DatapointArray from jsonschema import Draft4Validator import json import time # https://github.com/oxplot/fysom/issues/1 try: unicode = unicode except NameError: basestring = (str, bytes) DATAPOINT_INSERT_LIMIT = 5000 def query_maker(t1=None, t2=None, limit=None, i1=None, i2=None, transform=None, downlink=False): """query_maker takes the optional arguments and constructs a json query for a stream's datapoints using it:: #{"t1": 5, "transform": "if $ > 5"} print query_maker(t1=5,transform="if $ > 5") """ params = {} if t1 is not None: params["t1"] = t1 if t2 is not None: params["t2"] = t2 if limit is not None: params["limit"] = limit if i1 is not None or i2 is not None: if len(params) > 0: raise AssertionError( "Stream cannot be accessed both by index and by timestamp at the same time.") if i1 is not None: params["i1"] = i1 if i2 is not None: params["i2"] = i2 # If no range is given, query whole stream if len(params) == 0: params["i1"] = 0 params["i2"] = 0 if transform is not None: params["transform"] = transform if downlink: params["downlink"] = True return params class Stream(ConnectorObject): def create(self, schema="{}", **kwargs): """Creates a stream given an optional JSON schema encoded as a python dict. You can also add other properties of the stream, such as the icon, datatype or description. Create accepts both a string schema and a dict-encoded schema.""" if isinstance(schema, basestring): strschema = schema schema = json.loads(schema) else: strschema = json.dumps(schema) Draft4Validator.check_schema(schema) kwargs["schema"] = strschema self.metadata = self.db.create(self.path, kwargs).json() def insert_array(self, datapoint_array, restamp=False): """given an array of datapoints, inserts them to the stream. This is different from insert(), because it requires an array of valid datapoints, whereas insert only requires the data portion of the datapoint, and fills out the rest:: s = cdb["mystream"] s.create({"type": "number"}) s.insert_array([{"d": 4, "t": time.time()},{"d": 5, "t": time.time()}], restamp=False) The optional `restamp` parameter specifies whether or not the database should rewrite the timestamps of datapoints which have a timestamp that is less than one that already exists in the database. That is, if restamp is False, and a datapoint has a timestamp less than a datapoint that already exists in the database, then the insert will fail. If restamp is True, then all datapoints with timestamps below the datapoints already in the database will have their timestamps overwritten to the same timestamp as the most recent datapoint hat already exists in the database, and the insert will succeed. """ # To be safe, we split into chunks while (len(datapoint_array) > DATAPOINT_INSERT_LIMIT): # We insert datapoints in chunks of a couple thousand so that they # fit in the insert size limit of ConnectorDB a = datapoint_array[:DATAPOINT_INSERT_LIMIT] if restamp: self.db.update(self.path + "/data", a) else: self.db.create(self.path + "/data", a) # Clear the written datapoints datapoint_array = datapoint_array[DATAPOINT_INSERT_LIMIT:] if restamp: self.db.update(self.path + "/data", datapoint_array) else: self.db.create(self.path + "/data", datapoint_array) def insert(self, data): """insert inserts one datapoint with the given data, and appends it to the end of the stream:: s = cdb["mystream"] s.create({"type": "string"}) s.insert("Hello World!") """ self.insert_array([{"d": data, "t": time.time()}], restamp=True) def append(self, data): """ Same as insert, using the pythonic array name """ self.insert(data) def subscribe(self, callback, transform="", downlink=False): """Subscribes to the stream, running the callback function each time datapoints are inserted into the given stream. There is an optional transform to the datapoints, and a downlink parameter.:: s = cdb["mystream"] def subscription_callback(stream,data): print stream, data s.subscribe(subscription_callback) The downlink parameter is for downlink streams - it allows to subscribe to the downlink substream, before it is acknowledged. This is especially useful for something like lights - have lights be a boolean downlink stream, and the light itself be subscribed to the downlink, so that other devices can write to the light, turning it on and off:: def light_control(stream,data): light_boolean = data[0]["d"] print "Setting light to", light_boolean set_light(light_boolean) #Acknowledge the write return True # We don't care about intermediate values, we only want the most recent setting # of the light, meaning we want the "if last" transform s.subscribe(light_control, downlink=True, transform="if last") """ streampath = self.path if downlink: streampath += "/downlink" return self.db.subscribe(streampath, callback, transform) def unsubscribe(self, transform="", downlink=False): """Unsubscribes from a previously subscribed stream. Note that the same values of transform and downlink must be passed in order to do the correct unsubscribe:: s.subscribe(callback,transform="if last") s.unsubscribe(transform="if last") """ streampath = self.path if downlink: streampath += "/downlink" return self.db.unsubscribe(streampath, transform) def __call__(self, t1=None, t2=None, limit=None, i1=None, i2=None, downlink=False, transform=None): """By calling the stream as a function, you can query it by either time range or index, and further you can perform a custom transform on the stream:: #Returns all datapoints with their data < 50 from the past minute stream(t1=time.time()-60, transform="if $ < 50") #Performs an aggregation on the stream, returning a single datapoint #which contains the sum of the datapoints stream(transform="sum | if last") """ params = query_maker(t1, t2, limit, i1, i2, transform, downlink) # In order to avoid accidental requests for full streams, ConnectorDB does not permit requests # without any url parameters, so we set i1=0 if we are requesting the # full stream if len(params) == 0: params["i1"] = 0 return DatapointArray(self.db.read(self.path + "/data", params).json()) def __getitem__(self, getrange): """Allows accessing the stream just as if it were just one big python array. An example:: #Returns the most recent 5 datapoints from the stream stream[-5:] #Returns all the data the stream holds. stream[:] In order to perform transforms on the stream and to aggreagate data, look at __call__, which allows getting index ranges along with a transform. """ if not isinstance(getrange, slice): # Return the single datapoint return self(i1=getrange, i2=getrange + 1)[0] # The query is a slice - return the range return self(i1=getrange.start, i2=getrange.stop) def length(self, downlink=False): return int(self.db.read(self.path + "/data", {"q": "length", "downlink": downlink}).text) def __len__(self): """taking len(stream) returns the number of datapoints saved within the database for the stream""" return self.length() def __repr__(self): """Returns a string representation of the stream""" return "[Stream:%s]" % (self.path, ) def export(self, directory): """Exports the stream to the given directory. The directory can't exist. You can later import this device by running import_stream on a device. """ if os.path.exists(directory): raise FileExistsError( "The stream export directory already exists") os.mkdir(directory) # Write the stream's info with open(os.path.join(directory, "stream.json"), "w") as f: json.dump(self.data, f) # Now write the stream's data # We sort it first, since older versions of ConnectorDB had a bug # where sometimes datapoints would be returned out of order. self[:].sort().writeJSON(os.path.join(directory, "data.json")) # And if the stream is a downlink, write the downlink data if self.downlink: self(i1=0, i2=0, downlink=True).sort().writeJSON(os.path.join(directory, "downlink.json")) # ----------------------------------------------------------------------- # Following are getters and setters of the stream's properties @property def datatype(self): """returns the stream's registered datatype. The datatype suggests how the stream can be processed.""" if "datatype" in self.data: return self.data["datatype"] return "" @datatype.setter def datatype(self, set_datatype): self.set({"datatype": set_datatype}) @property def downlink(self): """returns whether the stream is a downlink, meaning that it accepts input (like turning lights on/off)""" if "downlink" in self.data: return self.data["downlink"] return False @downlink.setter def downlink(self, is_downlink): self.set({"downlink": is_downlink}) @property def ephemeral(self): """returns whether the stream is ephemeral, meaning that data is not saved, but just passes through the messaging system.""" if "ephemeral" in self.data: return self.data["ephemeral"] return False @ephemeral.setter def ephemeral(self, is_ephemeral): """sets whether the stream is ephemeral, meaning that it sets whether the datapoints are saved in the database. an ephemeral stream is useful for things which are set very frequently, and which could want a subscription, but which are not important enough to be saved in the database""" self.set({"ephemeral": is_ephemeral}) @property def schema(self): """Returns the JSON schema of the stream as a python dict.""" if "schema" in self.data: return json.loads(self.data["schema"]) return None @property def sschema(self): """Returns the JSON schema of the stream as a string""" if "schema" in self.data: return self.data["schema"] return None @schema.setter def schema(self, schema): """sets the stream's schema. An empty schema is "{}". The schemas allow you to set a specific data type. Both python dicts and strings are accepted.""" if isinstance(schema, basestring): strschema = schema schema = json.loads(schema) else: strschema = json.dumps(schema) Draft4Validator.check_schema(schema) self.set({"schema": strschema}) @property def user(self): """user returns the user which owns the given stream""" return User(self.db, self.path.split("/")[0]) @property def device(self): """returns the device which owns the given stream""" splitted_path = self.path.split("/") return Device(self.db, splitted_path[0] + "/" + splitted_path[1]) # The import has to go on the bottom because py3 imports are annoying from ._user import User from ._device import Device
PypiClean
/Flask-Flacro-0.0.8.tar.gz/Flask-Flacro-0.0.8/flask_flacro/flacro.py
import re from flask import current_app, Blueprint, _app_ctx_stack from werkzeug import LocalProxy, MultiDict, CombinedMultiDict from .compat import with_metaclass from collections import defaultdict import weakref _flacro_jinja = LocalProxy(lambda: current_app.jinja_env) _glo = LocalProxy(lambda: current_app.jinja_env.globals) ATTR_BLACKLIST = re.compile("mwhere|mname|mattr|macros|^_") class FlacroForMeta(type): def __new__(cls, name, bases, dct): new_class = super(FlacroForMeta, cls).__new__(cls, name, bases, dct) if not hasattr(cls, '_instances'): new_class._instances = defaultdict(weakref.WeakSet) if not hasattr(cls, '_manager'): cls._manager = {} cls._manager[new_class.__name__] = new_class return new_class def __init__(cls, name, bases, dct): if not hasattr(cls, '_registry'): cls._registry = {} else: cls._registry[name] = cls._instances super(FlacroForMeta, cls).__init__(name, bases, dct) class FlacroFor(with_metaclass(FlacroForMeta)): """ A container class for managing, holding and returning Jinja2 macros within a Flask application. Instance as-is or use as a mixin. m = FlacroFor(mwhere="macros/my_macro.html", mname="my_macro") class MyMacro(FlacroFor): def __init__(self, a, b): self.a = a self.b = b super(MyMacro, self).__init__(mwhere="macros/my_macro.html", mname="my_macro") where "macros/my_macro.html" is a file in your templates directory and "my_macro" is a defined macro within that file. :param mwhere: the jinja template file location of your macro :param mname: the name of the macro within the macro file :param mattr: a dict of items you might want to access e.g. {'a': 'AAAAAA', 'b': 'BBBBB'} :param macros: a dict of macros within the same file specified above as mwhere in the form {mname: mattr} e.g. {'my_macro_1': {1: 'x', 2: 'y'}, 'my_macro_2': None} """ def __init__(self, **kwargs): self.tag = kwargs.get('tag', None) self.mwhere = kwargs.get('mwhere', None) self.mname = kwargs.get('mname', None) self._mattr = kwargs.get('mattr', None) self._macros = kwargs.get('macros', None) if self._mattr: for k, v in self._mattr.items(): setattr(self, k, v) if self._macros: for k, v in self._macros.items(): setattr(self, k, self.get_macro(k, mattr=v)) self.register_instance(self) @classmethod def register_instance(cls, instance): if getattr(instance, 'tag', None): cls._instances[instance.tag] = weakref.ref(instance, instance) #viable or stupid else: cls._instances[None].add(instance) @property def ctx_prc(self): def ctx_prc(macro): return LocalProxy(lambda: getattr(macro, 'render', None)) return {self.tag: ctx_prc(self)} def _public(self): return [k for k in self.__dict__.keys() if not ATTR_BLACKLIST.search(k)] @property def public(self): return {k: getattr(self, k, None) for k in self._public()} def update(self, **kwargs): [setattr(self, k, v) for k,v in kwargs.items()] def get_macro(self, mname, mattr=None, replicate=False): """returns another MacroFor instance with a differently named macro from the template location of this instance""" if replicate: mattr=self.public return FlacroFor(mwhere=self.mwhere, mname=mname, mattr=mattr) def jinja_template(self, mwhere): return _flacro_jinja.get_template(mwhere, globals=_glo).module def get_template_attribute(self, mwhere, mname): return getattr(self.jinja_template(mwhere), mname) @property def renderable(self): """the macro held but not called""" try: return self.get_template_attribute(self.mwhere, self.mname) except RuntimeError: return LocalProxy(lambda: self.get_template_attribute(self.mwhere, self.mname)) @property def render(self): """calls the macro, passing itself as accessible within""" return self.renderable(self) @property def render_static(self): """calls the macro passing in no variable""" return self.renderable() def render_with(self, content): """calls the macro with the content specified as parameter(s)""" return self.renderable(content) def __repr__(self): return "<MacroFor {} ({}: {})>".format(getattr(self, 'tag', None), self.mwhere, self.mname) class Flacro(object): """flask/jinja2 tools for managing template macros""" def __init__(self, app=None, register_blueprint=True): self.app = app self.register_blueprint = register_blueprint self._registry = FlacroFor._registry self._managed = FlacroFor._manager if self.app is not None: self.init_app(self.app) @property def provides(self): return CombinedMultiDict([(MultiDict([(k,v),(k, self._registry.get(k, None))])) for k,v in self._managed.items()]) def init_app(self, app): app.extensions['flacro'] = self app.before_request(self.make_ctx_prc) if self.register_blueprint: app.register_blueprint(self._blueprint) def make_ctx_prc(self): [[self.app.jinja_env.globals.update(macro().ctx_prc) for m, macro in mf.items() if m] for mf in self._registry.values()] @property def _blueprint(self): return Blueprint('flacro', __name__, template_folder='templates')
PypiClean
/Flask-SQLAlchemy-Meiqia-2016.8.1.zip/Flask-SQLAlchemy-Meiqia-2016.8.1/docs/index.rst
:orphan: Flask-SQLAlchemy ================ .. module:: flask_sqlalchemy Flask-SQLAlchemy is an extension for `Flask`_ that adds support for `SQLAlchemy`_ to your application. It requires SQLAlchemy 0.8 or higher. It aims to simplify using SQLAlchemy with Flask by providing useful defaults and extra helpers that make it easier to accomplish common tasks. .. _SQLAlchemy: http://www.sqlalchemy.org/ .. _Flask: http://flask.pocoo.org/ .. _example sourcecode: http://github.com/mitsuhiko/flask-sqlalchemy/tree/master/examples/ See `the SQLAlchemy documentation`_ to learn how to work with the ORM in depth. The following documentation is a brief overview of the most common tasks, as well as the features specific to Flask-SQLAlchemy. .. _the SQLAlchemy documentation: http://docs.sqlalchemy.org/ .. include:: contents.rst.inc
PypiClean
/MASSA_Algorithm-0.9.1-py3-none-any.whl/MASSA_Algorithm/MASSA.py
from MASSA_Algorithm import MASSAlogos from MASSA_Algorithm import MASSAargs from MASSA_Algorithm import MASSAod from MASSA_Algorithm import MASSAopen_files from MASSA_Algorithm import MASSAextraction from MASSA_Algorithm import MASSAdescriptors from MASSA_Algorithm import MASSApreparation from MASSA_Algorithm import MASSAcluster from MASSA_Algorithm import MASSAsplit from MASSA_Algorithm import MASSAmoloutput def returns_zero(total, test): # It evaluates if the distribution is not adequate = the iterated cluster has a percentage greater than 0.5% in the complete data set, but a percentage lower than 0.5% in the test set. definer = False for i in total.keys(): if (total[i] > 0.5) and (test[i] <= 0.5): definer = True # Definer = True (Distribution was not done properly). return definer def main(): # Main subroutine, allows the program to run directly from the command line after installed via pip. ## Initializing from the command line: MASSAlogos.initial_print() # Print the program logo. FileInput, FileOutput, directoryFileOutput, extension_type, dendrogram_Xfont_size, barplot_Xfont_size, training_percent, test_percent, numberBioAct, BioActAsArgs, nPCS, svd_parameter, linkage_method, flag_dendrogram = MASSAargs.capture_args() # It captures command line arguments. print('Initializing, wait...\n') ## Create log.txt file in directory: ArqLog = directoryFileOutput+'/log.txt' WriteLog = open(ArqLog, 'w') ## Initial file management: MASSAod.output_directory(directoryFileOutput) # It creates the output directories. mols = MASSAopen_files.read_molecules(FileInput, WriteLog) # Read molecules. sdf_property_names = MASSAopen_files.get_sdf_property_names(mols) # Extracting the property names from the ".sdf" input file. molsH = MASSAopen_files.hydrogen_add(mols) # Structure 3D management - It adds hydrogens keeping 3D coordenates. ## Extraction properties from ".sdf": names, dataframe = MASSAextraction.name_extraction(molsH) # It extracts the names of the molecules and creates a name:molecule dictionary and a dataframe. biological_activity = MASSAextraction.the_biological_handler(sdf_property_names, numberBioAct, BioActAsArgs) # It defines a list of what biological activities are being extracted. dataframe = MASSAextraction.list_activities(dataframe, biological_activity) # It adds the biological activities to the dataframe. ## Get fingeprint and other descriptors: dataframe = MASSAdescriptors.physicochemical_descriptors(dataframe) # Get physicochemical descriptors. dataframe = MASSAdescriptors.atompairs_fingerprint(dataframe) # Get AtomPairs fingerprint. ## Normalizes physicochemical and biological properties and creates matrices for the three domains: bio_matrix, PhCh_matrix, FP_matrix = MASSApreparation.normalizer_or_matrix(dataframe, biological_activity) ## PCA: bio_PCA = MASSApreparation.pca_maker(bio_matrix, nPCS, svd_parameter) # PCA for the biological domain. PhCh_PCA = MASSApreparation.pca_maker(PhCh_matrix, nPCS, svd_parameter) # PCA for the physicochemical domain. FP_PCA = MASSApreparation.pca_maker(FP_matrix, nPCS, svd_parameter) # PCA for the structural domain. ## First clustering (HCA): leaves_cluster_bio, bioHCA, linkage_bio, CutOff_bio = MASSAcluster.hca_clusters(bio_PCA, names, 'bio', directoryFileOutput, extension_type, linkage_method) # It performs HCA clustering without generating the dendrogram for the biological domain. leaves_cluster_phch, phchHCA, linkage_phch, CutOff_phch = MASSAcluster.hca_clusters(PhCh_PCA, names, 'PhCh', directoryFileOutput, extension_type, linkage_method) # It performs HCA clustering without generating the dendrogram for the physicochemical domain. leaves_cluster_fp, fpHCA, linkage_fp, CutOff_fp = MASSAcluster.hca_clusters(FP_PCA, names, 'FP', directoryFileOutput, extension_type, linkage_method) # It performs HCA clustering without generating the dendrogram for the structural domain. dataframe = MASSApreparation.organize_df_clusterization(dataframe, bioHCA, 'bio') # It adds the biological cluster identification to the spreadsheet. dataframe = MASSApreparation.organize_df_clusterization(dataframe, phchHCA, 'PhCh') # It adds the physicochemical cluster identification to the spreadsheet. dataframe = MASSApreparation.organize_df_clusterization(dataframe, fpHCA, 'FP') # It adds the structural cluster identification to the spreadsheet. ## Second clustering (Kmodes): matrix_for_kmodes = MASSApreparation.organize_for_kmodes(dataframe) # It creates a matrix with cluster identifications for each of the three domains, in order to prepare for Kmodes. allHCA = MASSAcluster.kmodes_clusters(matrix_for_kmodes, names) # It performs Kmodes clustering for the general domain. dataframe = MASSApreparation.organize_df_clusterization(dataframe, allHCA, 'all') # It adds the general cluster identification to the spreadsheet. ## Split into training, test: dataframe, test_molecules = MASSAsplit.split_train_test_sets(dataframe, training_percent, test_percent) ## Bar plot of frequencies (Calculates the percentages of molecules in each cluster for each dataset and generates a bar graph for each domain): bio_total, bio_training, bio_test = MASSAsplit.freq_clusters(dataframe, directoryFileOutput, extension_type, 'Cluster_Biological', barplot_Xfont_size) # Biological Bar Plot PhCh_total, PhCh_training, PhCh_test = MASSAsplit.freq_clusters(dataframe, directoryFileOutput, extension_type, 'Cluster_Physicochemical', barplot_Xfont_size) # Physicochemical Bar Plot FP_total, FP_training, FP_test = MASSAsplit.freq_clusters(dataframe, directoryFileOutput, extension_type, 'Cluster_Structural', barplot_Xfont_size) # Structural Bar Plot all_total, all_training, all_test = MASSAsplit.freq_clusters(dataframe, directoryFileOutput, extension_type, 'Cluster_General', barplot_Xfont_size) # General Bar Plot ## Verifying percentages: bio_ok = returns_zero(bio_total, bio_test) # For biological domain. PhCh_ok = returns_zero(PhCh_total, PhCh_test) # For physicochemical domain. FP_ok = returns_zero(FP_total, FP_test) # For structural domain. ok = [bio_ok, PhCh_ok, FP_ok] max_iters = 0 # Redo the distribution in case of errors (up to 10 times): while (True in ok) and (max_iters < 10): ## Split into training, test: dataframe, test_molecules = MASSAsplit.split_train_test_sets(dataframe, training_percent, test_percent) ## Bar plot of frequencies (Calculates the percentages of molecules in each cluster for each dataset and generates a bar graph for each domain): bio_total, bio_training, bio_test = MASSAsplit.freq_clusters(dataframe, directoryFileOutput, extension_type, 'Cluster_Biological', barplot_Xfont_size) # Biological Bar Plot PhCh_total, PhCh_training, PhCh_test = MASSAsplit.freq_clusters(dataframe, directoryFileOutput, extension_type, 'Cluster_Physicochemical', barplot_Xfont_size) # Physicochemical Bar Plot FP_total, FP_training, FP_test = MASSAsplit.freq_clusters(dataframe, directoryFileOutput, extension_type, 'Cluster_Structural', barplot_Xfont_size) # Structural Bar Plot all_total, all_training, all_test = MASSAsplit.freq_clusters(dataframe, directoryFileOutput, extension_type, 'Cluster_General', barplot_Xfont_size) # General Bar Plot ## Verifying percentages: bio_ok = returns_zero(bio_total, bio_test) # For biological domain. PhCh_ok = returns_zero(PhCh_total, PhCh_test) # For physicochemical domain. FP_ok = returns_zero(FP_total, FP_test) # For structural domain. ok = [bio_ok, PhCh_ok, FP_ok] max_iters += 1 ## Write distribution information to log file: bio_distr = 'Biological Distribution' MASSAsplit.log_of_distributions(bio_distr, bio_total, bio_training, bio_test, WriteLog) PhCh_distr = 'Physicochemical Distribution' MASSAsplit.log_of_distributions(PhCh_distr, PhCh_total, PhCh_training, PhCh_test, WriteLog) FP_distr = 'Structural (FP) Distribution' MASSAsplit.log_of_distributions(FP_distr, FP_total, FP_training, FP_test, WriteLog) all_distr = 'General Distribution' MASSAsplit.log_of_distributions(all_distr, all_total, all_training, all_test, WriteLog) WriteLog.close() ## Plot HCAs: if flag_dendrogram == True: print('\nGenerating dendrogram images. Please wait...') MASSAcluster.hca_plot(linkage_bio, names, leaves_cluster_bio, CutOff_bio, 'bio', directoryFileOutput, extension_type, dendrogram_Xfont_size, test_molecules) #Bio_Plot: Plot the HCA dendrogram MASSAcluster.hca_plot(linkage_phch, names, leaves_cluster_phch, CutOff_phch, 'PhCh', directoryFileOutput, extension_type, dendrogram_Xfont_size, test_molecules) #PhCh_Plot: Plot the HCA dendrogram MASSAcluster.hca_plot(linkage_fp, names, leaves_cluster_fp, CutOff_fp, 'FP', directoryFileOutput, extension_type, dendrogram_Xfont_size, test_molecules) #FP_Plot: Plot the HCA dendrogram ## Output management: MASSAmoloutput.output_mols(dataframe, FileOutput) # It adds, for each molecule, the values of the calculated properties, the identifications of each cluster and which set the molecule belongs to. print('Completed')
PypiClean
/Draugr-1.0.9.tar.gz/Draugr-1.0.9/draugr/opencv_utilities/namespaces/flags.py
__author__ = "heider" __doc__ = r""" Created on 01/02/2022 """ __all__ = [ "ThresholdTypeFlag", "WindowPropertyFlag", "DrawMatchesFlagEnum", "MouseEventFlag", "TermCriteriaFlag", ] from enum import Flag import cv2 class TermCriteriaFlag(Flag): """ """ count = ( cv2.TERM_CRITERIA_COUNT ) # the maximum number of iterations or elements to compute eps = ( cv2.TERM_CRITERIA_EPS ) # the desired accuracy or change in parameters at which the iterative algorithm stops max_iter = cv2.TERM_CRITERIA_MAX_ITER # the maximum number of iterations to compute class DrawMatchesFlagEnum(Flag): """ """ default = cv2.DRAW_MATCHES_FLAGS_DEFAULT # Output image matrix will be created (Mat::create), i.e. existing memory of output image may be reused. Two source image, matches and single keypoints will be drawn. For each keypoint only the center point will be drawn (without the circle around keypoint with keypoint size and orientation). over_outimg = cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG # Output image matrix will not be created (Mat::create). Matches will be drawn on existing content of output image. not_draw_single_points = cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS # Single keypoints will not be drawn. rich_keypoints = cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS # For each keypoint the circle around keypoint with keypoint size and orientation will be drawn. class ThresholdTypeFlag(Flag): """ """ binary = cv2.THRESH_BINARY # dst(x,y)={maxval0if src(x,y)>threshotherwise inverse_binary = ( cv2.THRESH_BINARY_INV ) # dst(x,y)={0maxvalif src(x,y)>threshotherwise truncate = ( cv2.THRESH_TRUNC ) # dst(x,y)={thresholdsrc(x,y)if src(x,y)>threshotherwise to_zero = cv2.THRESH_TOZERO # dst(x,y)={src(x,y)0if src(x,y)>threshotherwise inverse_to_zero = ( cv2.THRESH_TOZERO_INV ) # dst(x,y)={0src(x,y)if src(x,y)>threshotherwise mask = cv2.THRESH_MASK otsu = ( cv2.THRESH_OTSU ) # flag, use Otsu algorithm to choose the optimal threshold value triangle = ( cv2.THRESH_TRIANGLE ) # flag, use Triangle algorithm to choose the optimal threshold value class WindowPropertyFlag(Flag): """ """ fullscreen = ( cv2.WND_PROP_FULLSCREEN ) # fullscreen property (can be WINDOW_NORMAL or WINDOW_FULLSCREEN). autosize = ( cv2.WND_PROP_AUTOSIZE ) # autosize property (can be WINDOW_NORMAL or WINDOW_AUTOSIZE). keep_ratio = ( cv2.WND_PROP_ASPECT_RATIO ) # window's aspect ration (can be set to WINDOW_FREERATIO or WINDOW_KEEPRATIO). opengl = cv2.WND_PROP_OPENGL # opengl support. visible = cv2.WND_PROP_VISIBLE # checks whether the window exists and is visible topmost = ( cv2.WND_PROP_TOPMOST ) # property to toggle normal window being topmost or not class MouseEventFlag(Flag): """ """ ctrl_down = cv2.EVENT_FLAG_CTRLKEY # indicates that CTRL Key is pressed. shift_down = cv2.EVENT_FLAG_SHIFTKEY # indicates that SHIFT Key is pressed. alt_down = cv2.EVENT_FLAG_ALTKEY # indicates that ALT Key is pressed. left_down = cv2.EVENT_FLAG_LBUTTON # indicates that the left mouse button is down. right_down = ( cv2.EVENT_FLAG_RBUTTON ) # indicates that the right mouse button is down. middle_down = ( cv2.EVENT_FLAG_MBUTTON ) # indicates that the middle mouse button is down.
PypiClean
/EOxServer-1.2.12-py3-none-any.whl/eoxserver/services/mapserver/wms/feature_info_renderer.py
from eoxserver.core import implements from eoxserver.core.config import get_eoxserver_config from eoxserver.core.decoders import xml from eoxserver.contrib import mapserver as ms from eoxserver.resources.coverages import models from eoxserver.services.ows.common.config import CapabilitiesConfigReader from eoxserver.services.mapserver.wms.util import MapServerWMSBaseComponent from eoxserver.services.ows.wms.interfaces import ( WMSFeatureInfoRendererInterface ) from eoxserver.services.ows.wcs.v20.encoders import WCS20EOXMLEncoder from eoxserver.services.result import ( result_set_from_raw_data, get_content_type, ResultBuffer ) from eoxserver.services.urls import get_http_service_url class MapServerWMSFeatureInfoRenderer(MapServerWMSBaseComponent): """ A WMS feature info renderer using MapServer. """ implements(WMSFeatureInfoRendererInterface) def render(self, layer_groups, request_values, request, **options): config = CapabilitiesConfigReader(get_eoxserver_config()) http_service_url = get_http_service_url(request) map_ = ms.Map() map_.setMetaData({ "enable_request": "*", "onlineresource": http_service_url, }, namespace="ows") map_.setMetaData("wms_getfeatureinfo_formatlist", "text/html") map_.setProjection("EPSG:4326") session = self.setup_map(layer_groups, map_, options) # check if the required format is EO O&M frmt = pop_param(request_values, "info_format") use_eoom = False if frmt in ("application/xml", "text/xml"): request_values.append(("info_format", "application/vnd.ogc.gml")) use_eoom = True else: request_values.append(("info_format", frmt)) with session: request = ms.create_request(request_values) raw_result = map_.dispatch(request) result = result_set_from_raw_data(raw_result) if not use_eoom: # just return the response return result, get_content_type(result) else: # do a postprocessing step and get all identifiers in order # to encode them with EO O&M decoder = GMLFeatureDecoder(result[0].data_file.read()) identifiers = decoder.identifiers coverages = models.Coverage.objects.filter( identifier__in=identifiers ) # sort the result with the returned order of coverages lookup_table = dict((c.identifier, c) for c in coverages) coverages = [ lookup_table[identifier] for identifier in identifiers ] # encode the coverages with the EO O&M encoder = WCS20EOXMLEncoder() return [ ResultBuffer( encoder.serialize( encoder.encode_coverage_descriptions(coverages) ), encoder.content_type ) ], encoder.content_type def pop_param(request_values, name, default=None): """ Helper to pop one param from a key-value list """ for param_name, value in request_values: if param_name.lower() == name: request_values.remove((param_name, value)) return value return default class GMLFeatureDecoder(xml.Decoder): identifiers = xml.Parameter("//identifier/text()", num="*")
PypiClean
/GaitAnalysisToolKit-0.2.0.tar.gz/GaitAnalysisToolKit-0.2.0/README.rst
Introduction ============ This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at Cleveland State University but other portions may have potential for general use. It is relatively modular so you can use what you want. It is primarily structured as a Python distribution but the Octave files are also accessible independently. .. image:: https://img.shields.io/pypi/v/gaitanalysistoolkit.svg :target: https://pypi.python.org/pypi/gaitanalysistoolkit/ :alt: Latest Version .. image:: https://zenodo.org/badge/6017/csu-hmc/GaitAnalysisToolKit.svg :target: http://dx.doi.org/10.5281/zenodo.13006 .. image:: https://travis-ci.org/csu-hmc/GaitAnalysisToolKit.png?branch=master :target: http://travis-ci.org/csu-hmc/GaitAnalysisToolKit Python Packages =============== The main Python package is ``gaitanalysis`` and it contains five modules listed below. ``oct2py`` is used to call Octave routines in the Python code where needed. ``gait.py`` General tools for working with gait data such as gait landmark identification and 2D inverse dynamics. The main class is ``GaitData``. ``controlid.py`` Tools for identifying control mechanisms in human locomotion. ``markers.py`` Routines for processing marker data. ``motek.py`` Tools for processing and cleaning data from `Motek Medical`_'s products, e.g. the D-Flow software outputs. ``utils.py`` Helper functions for the other modules. .. _Motek Medical: http://www.motekmedical.com Each module has a corresponding test module in ``gaitanalysis/tests`` sub-package which contain unit tests for the classes and functions in the respective module. Octave Libraries ================ Several Octave routines are included in the ``gaitanalysis/octave`` directory. ``2d_inverse_dynamics`` Implements joint angle and moment computations of a 2D lower body human. ``inertial_compensation`` Compensates force plate forces and moments for inertial effects and re-expresses the forces and moments in the camera reference frame. ``mmat`` Fast matrix multiplication. ``soder`` Computes the rigid body orientation and location of a group of markers. ``time_delay`` Deals with the analog signal time delays. Installation ============ You will need Python 2.7 or 3.7+ and setuptools to install the packages. Its best to install the dependencies first (NumPy, SciPy, matplotlib, Pandas, PyTables). Supported versions: - python >= 2.7 or >= 3.7 - numpy >= 1.8.2 - scipy >= 0.13.3 - matplotlib >= 1.3.1 - tables >= 3.1.1 - pandas >= 0.13.1, <= 0.24.0 - pyyaml >= 3.10 - DynamicistToolKit >= 0.4.0 - oct2py >= 2.4.2 - octave >= 3.8.1 We recommend installing Anaconda_ for users in our lab to get all of the dependencies. .. _Anaconda: http://docs.continuum.io/anaconda/ We also utilize Octave code, so an install of Octave with is also required. See http://octave.sourceforge.net/index.html for installation instructions. You can install using pip (or easy_install). Pip will theoretically [#]_ get the dependencies for you (or at least check if you have them):: $ pip install https://github.com/csu-hmc/GaitAnalysisToolKit/zipball/master Or download the source with your preferred method and install manually. Using Git:: $ git clone [email protected]:csu-hmc/GaitAnalysisToolKit.git $ cd GaitAnalysisToolKit Or wget:: $ wget https://github.com/csu-hmc/GaitAnalysisToolKit/archive/master.zip $ unzip master.zip $ cd GaitAnalysisToolKit-master Then for basic installation:: $ python setup.py install Or install for development purposes:: $ python setup.py develop .. [#] You will need all build dependencies and also note that matplotlib doesn't play nice with pip. Dependencies ------------ It is recommended to install the software dependencies as follows: Octave can be installed from your package manager or from a downloadable binary, for example on Debian based Linux:: $ sudo apt-get install octave For oct2py to work, calling Octave from the command line should work after Octave is installed. For example, :: $ octave GNU Octave, version 3.8.1 Copyright (C) 2014 John W. Eaton and others. This is free software; see the source code for copying conditions. There is ABSOLUTELY NO WARRANTY; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. For details, type 'warranty'. Octave was configured for "x86_64-pc-linux-gnu". Additional information about Octave is available at http://www.octave.org. Please contribute if you find this software useful. For more information, visit http://www.octave.org/get-involved.html Read http://www.octave.org/bugs.html to learn how to submit bug reports. For information about changes from previous versions, type 'news'. octave:1> The core dependencies can be installed with conda in a conda environment:: $ conda create -n gait python=2.7 pip numpy scipy matplotlib pytables pandas pyyaml nose sphinx numpydoc oct2py mock $ source activate gait And the dependencies which do not have conda packages can be installed into the environment with pip:: (gait)$ pip install DynamicistToolKit Tests ===== When in the repository directory, run the tests with nose:: $ nosetests Vagrant ======= A vagrant file and provisioning script are included to test the code on both a Ubuntu 12.04 and Ubuntu 13.10 box. To load the box and run the tests simply type:: $ cd vagrant $ vagrant up See ``VagrantFile`` and the ``*bootstrap.sh`` files to see what's going on. Documentation ============= The documentation is hosted at ReadTheDocs: http://gait-analysis-toolkit.readthedocs.org You can build the documentation (currently sparse) if you have Sphinx and numpydoc:: $ cd docs $ make html $ firefox _build/html/index.html Release Notes ============= 0.2.0 ----- - Support Python 3. [PR `#149`_] - Minimum dependencies bumped to Ubuntu 14.04 LTS versions and tests run on latest conda forge packages as of 2018/08/30. [PR `#140`_] - The minimum version of the required dependency, DynamicistToolKit, was bumped to 0.4.0. [PR `#134`_] - Reworked the DFlowData class so that interpolation and resampling is based on the FrameNumber column in the mocap data instead of the unreliable TimeStamp column. [PR `#135`_] - Added note and setup.py check about higher oct2py versions required for Windows. .. _#149: https://github.com/csu-hmc/GaitAnalysisToolKit/pull/149 .. _#134: https://github.com/csu-hmc/GaitAnalysisToolKit/pull/134 .. _#135: https://github.com/csu-hmc/GaitAnalysisToolKit/pull/135 .. _#140: https://github.com/csu-hmc/GaitAnalysisToolKit/pull/140 0.1.2 ----- - Fixed bug preventing GaitData.plot_grf_landmarks from working. - Removed inverse_data.mat from the source distribution. 0.1.1 ----- - Fixed installation issue where the octave and data files were not included in the installation directory. 0.1.0 ----- - Initial release - Copied the walk module from DynamicistToolKit @ eecaebd31940179fe25e99a68c91b75d8b8f191f
PypiClean
/EARL-pytorch-0.5.1.tar.gz/EARL-pytorch-0.5.1/earl_pytorch/dataset/create_dataset_v3.py
import json import os import subprocess import sys import ballchasing as bc import numpy as np import pandas as pd from earl_pytorch import EARL command = r'carball.exe -i "{}" -o "{}" parquet' ENV = os.environ.copy() ENV["NO_COLOR"] = "1" class CarballAnalysis: METADATA_FNAME = "metadata.json" ANALYZER_FNAME = "analyzer.json" BALL_FNAME = "__ball.parquet" GAME_FNAME = "__game.parquet" PLAYER_FNAME = "player_{}.parquet" def __init__(self, processed_folder: str): # print(processed_folder, self.METADATA_FNAME) self.metadata = json.load(open(os.path.join(processed_folder, self.METADATA_FNAME))) self.analyzer = json.load(open(os.path.join(processed_folder, self.ANALYZER_FNAME))) self.ball = pd.read_parquet(os.path.join(processed_folder, self.BALL_FNAME)) self.game = pd.read_parquet(os.path.join(processed_folder, self.GAME_FNAME)) self.players = {} for player in self.metadata["players"]: uid = player["unique_id"] player_path = os.path.join(processed_folder, self.PLAYER_FNAME.format(uid)) if os.path.exists(player_path): self.players[uid] = pd.read_parquet(player_path) def download_replays(n=1_000): for gamemode in bc.Playlist.RANKED: gm_folder = os.path.join(working_dir, "replays", gamemode) os.makedirs(gm_folder, exist_ok=True) replay_iter = api.get_replays( min_rank=bc.Rank.SUPERSONIC_LEGEND, max_rank=bc.Rank.SUPERSONIC_LEGEND, season=bc.Season.SEASON_5_FTP, count=n ) for replay in replay_iter: if not os.path.exists(os.path.join(gm_folder, replay["id"])): api.download_replay(replay["id"], gm_folder) print(replay["id"], "downloaded") def process_replay(replay_path, output_folder): folder, fn = os.path.split(replay_path) replay_name = fn.replace(".replay", "") processed_folder = os.path.join(output_folder, replay_name) os.makedirs(processed_folder, exist_ok=True) with open(os.path.join(processed_folder, "carball.o.log"), "w", encoding="utf8") as stdout_f: with open(os.path.join(processed_folder, "carball.e.log"), "w", encoding="utf8") as stderr_f: return subprocess.run( command.format(replay_path, processed_folder), stdout=stdout_f, stderr=stderr_f, env=ENV ) def parse_replays(): for gamemode in bc.Playlist.RANKED: replay_folder = os.path.join(working_dir, "replays", gamemode) parsed_folder = os.path.join(working_dir, "parsed", gamemode) for replay in os.listdir(replay_folder): process_replay(os.path.join(replay_folder, replay), parsed_folder) print(replay, "processed") def train_model(): model = EARL() shard_size = 1_000_000 for epoch in range(100): data = np.zeros((shard_size, 41, 24)) analysis = CarballAnalysis() def main(): download_replays() parse_replays() if __name__ == '__main__': working_dir = sys.argv[1] api = bc.Api(sys.argv[2]) main()
PypiClean
/matchengine-V2-2.0.1.tar.gz/matchengine-V2-2.0.1/matchengine/internals/typing/matchengine_types.py
from __future__ import annotations import copy import datetime from itertools import chain from typing import ( NewType, Tuple, Union, List, Dict, Any, Set ) from bson import ObjectId from networkx import DiGraph from matchengine.internals.utilities.object_comparison import nested_object_hash Trial = NewType("Trial", dict) ParentPath = NewType("ParentPath", Tuple[Union[str, int]]) MatchClause = NewType("MatchClause", List[Dict[str, Any]]) MatchTree = NewType("MatchTree", DiGraph) NodeID = NewType("NodeID", int) MatchClauseLevel = NewType("MatchClauseLevel", str) MongoQueryResult = NewType("MongoQueryResult", Dict[str, Any]) MongoQuery = NewType("MongoQuery", Dict[str, Any]) GenomicID = NewType("GenomicID", ObjectId) ClinicalID = NewType("ClinicalID", ObjectId) Collection = NewType("Collection", str) class PoisonPill(object): __slots__ = () class CheckIndicesTask(object): __slots__ = () class IndexUpdateTask(object): __slots__ = ( "collection", "index" ) def __init__( self, collection: str, index: str ): self.index = index self.collection = collection class QueryTask(object): __slots__ = ( "trial", "match_clause_data", "match_path", "query", "clinical_ids" ) def __init__( self, trial: Trial, match_clause_data: MatchClauseData, match_path: MatchCriterion, query: MultiCollectionQuery, clinical_ids: Set[ClinicalID] ): self.clinical_ids = clinical_ids self.query = query self.match_path = match_path self.match_clause_data = match_clause_data self.trial = trial class UpdateTask(object): __slots__ = ( "ops", "protocol_no" ) def __init__( self, ops: List, protocol_no: str ): self.ops = ops self.protocol_no = protocol_no class RunLogUpdateTask(object): __slots__ = ( "protocol_no" ) def __init__( self, protocol_no: str ): self.protocol_no = protocol_no Task = NewType("Task", Union[PoisonPill, CheckIndicesTask, IndexUpdateTask, QueryTask, UpdateTask, RunLogUpdateTask]) class MatchCriteria(object): __slots__ = ( "criteria", "depth", "node_id" ) def __init__( self, criteria: Dict, depth: int, node_id: int ): self.criteria = criteria self.depth = depth self.node_id = node_id class MatchCriterion(object): __slots__ = ( "criteria_list", "_hash" ) def __init__( self, criteria_list: List[MatchCriteria] ): self.criteria_list = criteria_list self._hash = None def add_criteria(self, criteria: MatchCriteria): self._hash = None self.criteria_list.append(criteria) def hash(self) -> str: if self._hash is None: self._hash = nested_object_hash({"query": [criteria.criteria for criteria in self.criteria_list]}) return self._hash class QueryPart(object): __slots__ = ( "mcq_invalidating", "render", "negate", "_query", "_hash" ) def __init__( self, query: Dict, negate: bool, render: bool, mcq_invalidating: bool, _hash: str = None ): self.mcq_invalidating = mcq_invalidating self.render = render self.negate = negate self._query = query self._hash = _hash def hash(self) -> str: if self._hash is None: self._hash = nested_object_hash(self.query) return self._hash def set_query_attr( self, key, value ): self._query[key] = value def __copy__(self): return QueryPart( self.query, self.negate, self.render, self.mcq_invalidating, self._hash ) @property def query(self): return self._query class QueryNode(object): __slots__ = ( "query_level", "query_depth", "query_parts", "exclusion", "is_finalized", "_hash", "_raw_query", "_raw_query_hash", "sibling_nodes", "node_id", "criterion_ancestor" ) def __init__( self, query_level: str, node_id: int, criterion_ancestor: MatchCriteria, query_depth: int, query_parts: List[QueryPart], exclusion: Union[None, bool] = None, is_finalized: bool = False, _hash: str = None, _raw_query: Dict = None, _raw_query_hash: str = None ): self.node_id = node_id self.criterion_ancestor = criterion_ancestor self.is_finalized = is_finalized self.query_level = query_level self.query_depth = query_depth self.query_parts = query_parts self.exclusion = exclusion self._hash = _hash self._raw_query = _raw_query self._raw_query_hash = _raw_query_hash self.sibling_nodes = None def hash(self) -> str: if self._hash is None: self._hash = nested_object_hash({ "_tmp1": [query_part.hash() for query_part in self.query_parts], '_tmp2': self.exclusion }) return self._hash def add_query_part(self, query_part: QueryPart): self._hash = None self._raw_query = None self._raw_query_hash = None self.query_parts.append(query_part) def _extract_raw_query(self): return { key: value for query_part in self.query_parts for key, value in query_part.query.items() if query_part.render } def extract_raw_query(self): if self.is_finalized: if self._raw_query is None: self._raw_query = self._extract_raw_query() return self._raw_query else: return self._extract_raw_query() def raw_query_hash(self): if self._raw_query_hash is None: if not self.is_finalized: raise Exception("Query node is not finalized") else: self._raw_query_hash = nested_object_hash(self.extract_raw_query()) return self._raw_query_hash def finalize(self): self.is_finalized = True def get_query_part_by_key(self, key: str) -> QueryPart: return next(chain((query_part for query_part in self.query_parts if key in query_part.query), iter([None]))) def get_query_part_value_by_key(self, key: str, default: Any = None) -> Any: query_part = self.get_query_part_by_key(key) if query_part is not None: return query_part.query.get(key, default) @property def mcq_invalidating(self): return True if any([query_part.mcq_invalidating for query_part in self.query_parts]) else False def __copy__(self): return QueryNode( self.query_level, self.node_id, self.criterion_ancestor, self.query_depth, [query_part.__copy__() for query_part in self.query_parts], self.exclusion, self.is_finalized, self._hash, self._raw_query, self._raw_query_hash ) class QueryNodeContainer(object): __slots__ = ( "query_nodes" ) def __init__( self, query_nodes: List[QueryNode] ): self.query_nodes = query_nodes def __copy__(self): return QueryNodeContainer( [query_node.__copy__() for query_node in self.query_nodes] ) class MultiCollectionQuery(object): __slots__ = ( "genomic", "clinical" ) def __init__( self, genomic: List[QueryNodeContainer], clinical=List[QueryNodeContainer] ): self.genomic = genomic self.clinical = clinical def __copy__(self): return MultiCollectionQuery( [query_node_container.__copy__() for query_node_container in self.genomic], [query_node_container.__copy__() for query_node_container in self.clinical], ) class MatchClauseData(object): __slots__ = ( "match_clause", "internal_id", "code", "coordinating_center", "is_suspended", "status", "parent_path", "match_clause_level", "match_clause_additional_attributes", "protocol_no" ) def __init__(self, match_clause: MatchClause, internal_id: str, code: str, coordinating_center: str, is_suspended: bool, status: str, parent_path: ParentPath, match_clause_level: MatchClauseLevel, match_clause_additional_attributes: dict, protocol_no: str): self.code = code self.coordinating_center = coordinating_center self.is_suspended = is_suspended self.status = status self.parent_path = parent_path self.match_clause_level = match_clause_level self.internal_id = internal_id self.match_clause_additional_attributes = match_clause_additional_attributes self.protocol_no = protocol_no self.match_clause = match_clause class GenomicMatchReason(object): __slots__ = ( "query_node", "width", "clinical_id", "genomic_id", "clinical_width", "depth", "show_in_ui" ) reason_name = "genomic" def __init__( self, query_node: QueryNode, width: int, clinical_width: int, clinical_id: ClinicalID, genomic_id: Union[GenomicID, None], show_in_ui: bool ): self.show_in_ui = show_in_ui self.clinical_width = clinical_width self.genomic_id = genomic_id self.clinical_id = clinical_id self.width = width self.query_node = query_node self.depth = query_node.query_depth def extract_raw_query(self): return self.query_node.extract_raw_query() class ClinicalMatchReason(object): __slots__ = ( "query_part", "clinical_id", "depth", "show_in_ui" ) reason_name = "clinical" width = 1 def __init__( self, query_part: QueryPart, clinical_id: ClinicalID, depth: int, show_in_ui: bool ): self.show_in_ui = show_in_ui self.clinical_id = clinical_id self.query_part = query_part self.depth = depth def extract_raw_query(self): return self.query_part.query MatchReason = NewType("MatchReason", Union[GenomicMatchReason, ClinicalMatchReason]) class TrialMatch(object): __slots__ = ( "trial", "match_clause_data", "match_criterion", "match_clause_data", "multi_collection_query", "match_reason", "run_log" ) def __init__( self, trial: Trial, match_clause_data: MatchClauseData, match_criterion: MatchCriterion, multi_collection_query: MultiCollectionQuery, match_reason: MatchReason, run_log: datetime.datetime, ): self.run_log = run_log self.match_reason = match_reason self.multi_collection_query = multi_collection_query self.match_criterion = match_criterion self.match_clause_data = match_clause_data self.trial = trial class Cache(object): __slots__ = ( "docs", "ids", "in_process" ) docs: Dict ids: Dict in_process: Dict def __init__(self): self.docs = dict() self.ids = dict() self.in_process = dict() class Secrets(object): __slots__ = ( "HOST", "PORT", "DB", "AUTH_DB", "RO_USERNAME", "RO_PASSWORD", "RW_USERNAME", "RW_PASSWORD", "REPLICA_SET", "MAX_POOL_SIZE", "MIN_POOL_SIZE" ) def __init__( self, host: str, port: int, db: str, auth_db: str, ro_username: str, ro_password: str, rw_username: str, rw_password: str, replica_set: str, max_pool_size: str, min_pool_size: str ): self.MIN_POOL_SIZE = min_pool_size self.MAX_POOL_SIZE = max_pool_size self.REPLICA_SET = replica_set self.RW_PASSWORD = rw_password self.RW_USERNAME = rw_username self.RO_PASSWORD = ro_password self.RO_USERNAME = ro_username self.AUTH_DB = auth_db self.DB = db self.PORT = port self.HOST = host class QueryTransformerResult(object): __slots__ = ( "results" ) results: List[QueryPart] def __init__( self, query_clause: Dict = None, negate: bool = None, render: bool = True, mcq_invalidating: bool = False ): self.results = list() if query_clause is not None: if negate is not None: self.results.append(QueryPart(query_clause, negate, render, mcq_invalidating)) else: raise Exception("If adding query result directly to results container, " "both Negate and Query must be specified") def add_result( self, query_clause: Dict, negate: bool, render: bool = True, mcq_invalidating: bool = False ): self.results.append(QueryPart(query_clause, negate, render, mcq_invalidating))
PypiClean
/Flask-RESTbolt-0.1.0.tar.gz/Flask-RESTbolt-0.1.0/docs/installation.rst
.. _installation: Installation ============ .. currentmodule:: flask_restful Install Flask-RESTful with ``pip`` :: pip install flask-restful The development version can be downloaded from `its page at GitHub <https://github.com/flask-restful/flask-restful>`_. :: git clone https://github.com/flask-restful/flask-restful.git cd flask-restful python setup.py develop Flask-RESTful has the following dependencies (which will be automatically installed if you use ``pip``): * `Flask <http://flask.pocoo.org>`_ version 0.8 or greater Flask-RESTful requires Python version 2.6, 2.7, 3.3, or 3.4.
PypiClean
/MaterialDjango-0.2.5.tar.gz/MaterialDjango-0.2.5/bower_components/iron-iconset/.github/ISSUE_TEMPLATE.md
<!-- Instructions: https://github.com/PolymerElements/iron-iconset/CONTRIBUTING.md#filing-issues --> ### Description <!-- Example: The `paper-foo` element causes the page to turn pink when clicked. --> ### Expected outcome <!-- Example: The page stays the same color. --> ### Actual outcome <!-- Example: The page turns pink. --> ### Live Demo <!-- Example: https://jsbin.com/cagaye/edit?html,output --> ### Steps to reproduce <!-- Example 1. Put a `paper-foo` element in the page. 2. Open the page in a web browser. 3. Click the `paper-foo` element. --> ### Browsers Affected <!-- Check all that apply --> - [ ] Chrome - [ ] Firefox - [ ] Safari 9 - [ ] Safari 8 - [ ] Safari 7 - [ ] Edge - [ ] IE 11 - [ ] IE 10
PypiClean
/DMS_APP-0.2.1-py3-none-any.whl/dms_app/resources/login_register/super_login.py
import logging from flask import request, Flask from ...db.db_connection import database_access from flask_restx import Resource, fields from ...namespace import api from ...response_helper import get_response import hashlib import jwt from datetime import datetime, timedelta from ...config import Config sec_key = Config.SEC_KEY flask_app = Flask(__name__) flask_app.config['SECRET_KEY'] = 'cc6e455f0b76439d99cc8e1669232518' super_login = api.model("SuperLogin", { "email": fields.String, "password": fields.String}) role = "super_admin" dashboard = "both_dashboard" first_name = "Admin" privileges = [{ "Roles_Privileges": [ { "read": "true", "write": "true" } ] }, { "Users": [ { "read": "true", "write": "true" } ] }, { "Create_Violation": [ { "read": "true", "write": "true" } ] }, { "Customize_Form": [ { "read": "true", "write": "true" } ] }, { "Checklist_Master": [ { "read": "true", "write": "true" } ] },{ "Checklist_Configure": [ { "read": "true", "write": "true" } ] },{ "Checklist_Approval": [ { "read": "true", "write": "true" } ] }, { "Checklist_History": [ { "read": "true", "write": "true" } ] }, { "Fingerprint_Authentication": [ { "read": "true", "write": "true" } ] }, { "Fingerprint_Enrollment": [ { "read": "true", "write": "true" } ] }, { "Add_New_Profile": [ { "read": "true", "write": "true" } ] }, { "View_Profiles": [ { "read": "true", "write": "true" } ] }, { "Edit_Profile": [ { "read": "true", "write": "true" } ] }, { "Person_Profile": [ { "read": "true", "write": "true" } ] },{ "Security_Checklist": [ { "read": "true", "write": "true" } ] }] class SuperLogin(Resource): @api.expect(super_login, validate=True) def post(self): args = request.get_json() try: database_connection = database_access() dms_super_admin = database_connection["dms_super_admin"] password = hashlib.md5("dmsautoplant@987".encode('utf-8')).digest() data = dms_super_admin.find_one({"email": args["email"]}) if data: if data["password"] == password: _response = get_response(200) session_id = jwt.encode({ 'email': data['email'], 'exp': datetime.utcnow() + timedelta(days=1) }, sec_key) _response["session_id"] = session_id _response["email"] = data["email"] _response["role"] = role _response["first_name"] = first_name _response["dashboard"] = dashboard _response["privileges"] = privileges return _response else: logging.error(get_response(401)) return get_response(401) else: logging.error(get_response(404)) return get_response(404) except Exception as e: logging.error(e)
PypiClean
/Mathics_Django-6.0.0-py3-none-any.whl/mathics_django/web/media/js/mathjax/jax/output/SVG/fonts/Neo-Euler/Size2/Regular/Main.js
MathJax.OutputJax.SVG.FONTDATA.FONTS.NeoEulerMathJax_Size2={directory:"Size2/Regular",family:"NeoEulerMathJax_Size2",id:"NEOEULERSIZE2",32:[0,0,333,0,0,""],40:[1599,199,596,180,574,"180 700c0 336 89 675 346 899h48l-17 -17c-230 -225 -301 -556 -301 -882s71 -657 301 -882l17 -17h-48c-257 224 -346 563 -346 899"],41:[1599,199,595,22,415,"415 700c0 -336 -89 -675 -346 -899h-47l16 17c231 225 301 556 301 882s-70 657 -301 882l-16 17h47c257 -224 346 -563 346 -899"],47:[1599,200,811,53,759,"759 1583l-662 -1783l-41 8l-3 14l660 1775l12 2l29 -5"],91:[1674,125,472,226,453,"226 -125v1799h227v-47h-180v-1705h180v-47h-227"],92:[1599,200,811,53,759,"53 1583l662 -1783l41 8l3 14l-660 1775l-12 2l-29 -5"],93:[1674,125,472,18,245,"198 -78v1705h-180v47h227v-1799h-227v47h180"],123:[1599,200,667,119,547,"296 61v416c0 24 -7 127 -167 201c-10 5 -10 7 -10 22c0 12 0 16 8 20c38 17 157 72 168 196c1 8 1 65 1 98v312c0 83 0 120 69 189c35 35 128 84 162 84c19 0 20 -1 20 -20c0 -13 0 -17 -7 -20c-41 -17 -170 -71 -170 -188v-450c-1 -75 -56 -161 -194 -222 c119 -49 192 -133 194 -220v-425c0 -56 0 -145 168 -214c9 -3 9 -6 9 -20c0 -19 -1 -20 -20 -20c-37 0 -127 51 -160 82c-71 69 -71 114 -71 179"],124:[1897,208,213,86,126,"126 -200l-40 -8v2097l40 8v-2097"],125:[1599,200,667,119,547,"296 28v450c1 75 56 161 194 222c-119 49 -192 133 -194 220v425c0 59 0 143 -167 213c-10 4 -10 9 -10 21c0 19 3 20 21 20c34 0 124 -49 159 -82c71 -69 71 -114 71 -179v-416c0 -7 0 -9 3 -26c19 -109 135 -162 167 -177c7 -3 7 -8 7 -20c0 -10 0 -16 -6 -19 c-40 -18 -159 -73 -170 -197c-1 -8 -1 -65 -1 -98v-312c0 -83 0 -120 -69 -189c-36 -36 -129 -84 -161 -84c-18 0 -21 1 -21 20c0 10 0 16 8 20c42 18 169 72 169 188"],160:[0,0,333,0,0,""],8214:[1897,208,403,86,316,"316 -200l-40 -8v2097l40 8v-2097zM126 -200l-40 -8v2097l40 8v-2097"],8260:[1599,200,811,53,759,"759 1583l-662 -1783l-41 8l-3 14l660 1775l12 2l29 -5"],8725:[1599,200,811,53,759,"759 1583l-662 -1783l-41 8l-3 14l660 1775l12 2l29 -5"],8730:[1800,1,1000,110,1024,"458 -1h-34l-230 802l-68 -80l-16 15l139 163l215 -750l522 1651l38 -12"],8739:[1897,208,213,86,126,"126 -200l-40 -8v2097l40 8v-2097"],8741:[1297,208,403,86,316,"316 -200l-40 -8v1497l40 8v-1497zM126 -200l-40 -8v1497l40 8v-1497"],8743:[1128,267,1549,56,1492,"1492 -238l-681 1360l-24 6l-731 -1373l21 -22l76 2l641 1197l606 -1199"],8744:[1069,326,1549,56,1492,"1492 1040l-681 -1360l-24 -6l-731 1373l21 22l76 -2l641 -1197l606 1199"],8745:[1359,-1,1110,56,1053,"56 878c0 271 228 481 499 481c270 0 498 -210 498 -481v-877h-83v877c0 222 -187 398 -415 398s-416 -176 -416 -398v-877h-83v877"],8746:[1317,41,1110,56,1053,"139 440c0 -222 188 -398 416 -398s415 176 415 398v877h83v-877c0 -271 -228 -481 -498 -481c-271 0 -499 210 -499 481v877h83v-877"],8846:[1317,41,1110,56,1053,"139 440c0 -222 188 -398 416 -398s415 176 415 398v877h83v-877c0 -271 -228 -481 -498 -481c-271 0 -499 210 -499 481v877h83v-877zM513 989h83v-249h249v-83h-249v-249h-83v249h-249v83h249v249"],8896:[1128,267,1549,56,1492,"1492 -238l-681 1360l-24 6l-731 -1373l21 -22l76 2l641 1197l606 -1199"],8897:[1069,326,1549,56,1492,"1492 1040l-681 -1360l-24 -6l-731 1373l21 22l76 -2l641 -1197l606 1199"],8898:[1359,-1,1110,56,1053,"56 878c0 271 228 481 499 481c270 0 498 -210 498 -481v-877h-83v877c0 222 -187 398 -415 398s-416 -176 -416 -398v-877h-83v877"],8899:[1317,41,1110,56,1053,"139 440c0 -222 188 -398 416 -398s415 176 415 398v877h83v-877c0 -271 -228 -481 -498 -481c-271 0 -499 210 -499 481v877h83v-877"],8968:[1599,200,527,226,509,"226 -200v1799h283v-47h-236v-1752h-47"],8969:[1599,200,527,18,301,"254 -200v1752h-236v47h283v-1799h-47"],8970:[1599,200,527,226,509,"226 -200v1799h47v-1752h236v-47h-283"],8971:[1599,200,527,18,301,"254 -153v1752h47v-1799h-283v47h236"],9001:[1536,234,629,109,520,"160 651l360 -867l-43 -18l-368 885l368 885l43 -18"],9002:[1536,234,693,89,500,"133 1536l367 -885l-367 -885l-44 18l360 867l-360 867"],9180:[794,-414,1911,56,1855,"67 458l36 40c7 8 23 22 35 32c1 0 42 36 81 64c232 156 500 200 737 200c166 0 327 -24 459 -66c211 -70 350 -176 432 -272c8 -8 8 -10 8 -24c0 -12 0 -18 -10 -18c-2 0 -5 0 -8 2c-177 176 -438 302 -882 302c-240 0 -487 -40 -679 -148c-110 -62 -165 -116 -201 -152 c-3 -2 -5 -4 -9 -4c-9 0 -10 8 -10 10v22c0 2 10 10 11 12"],9181:[144,236,1911,56,1855,"956 -236c-161 0 -323 22 -460 66c-211 70 -350 176 -432 272c-8 8 -8 10 -8 24c0 10 0 18 10 18c3 0 6 -2 8 -4c183 -180 448 -300 882 -300c240 0 487 40 679 148c110 62 165 116 200 150c2 2 6 6 10 6c10 0 10 -8 10 -18c0 -14 0 -16 -6 -22c-21 -24 -60 -62 -76 -76 c-225 -196 -530 -264 -817 -264"],9182:[912,-484,1911,56,1855,"317 736h416c24 0 127 6 201 166c5 10 7 10 22 10c12 0 16 0 20 -8c17 -38 72 -156 196 -168h98h312c83 0 120 0 189 -70c35 -34 84 -128 84 -162c0 -18 -1 -20 -20 -20c-13 0 -17 0 -20 8c-17 40 -71 170 -188 170h-450c-75 0 -161 56 -222 194 c-49 -120 -133 -192 -220 -194h-425c-56 0 -145 0 -214 -168c-3 -10 -6 -10 -20 -10c-19 0 -20 2 -20 20c0 38 51 128 82 160c69 72 114 72 179 72"],9183:[70,358,1911,56,1855,"284 -106h450c75 -2 161 -56 222 -194c49 118 133 192 220 194h425c59 0 143 0 213 166c4 10 9 10 21 10c19 0 20 -2 20 -20c0 -34 -49 -124 -82 -160c-69 -70 -114 -70 -179 -70h-416c-7 0 -9 0 -26 -4c-109 -18 -162 -134 -177 -166c-3 -8 -8 -8 -20 -8 c-10 0 -16 0 -19 6c-18 40 -73 160 -197 170c-8 2 -65 2 -98 2h-312c-83 0 -120 0 -189 68c-36 36 -84 130 -84 162c0 18 1 20 20 20c10 0 16 0 20 -8c18 -42 72 -168 188 -168"],10216:[939,237,501,95,392,"139 351l253 -572l-37 -16l-260 588l260 588l37 -16"],10217:[939,237,568,79,375,"115 939l260 -588l-260 -588l-36 16l252 572l-252 572"]};MathJax.Ajax.loadComplete(MathJax.OutputJax.SVG.fontDir+"/Size2/Regular/Main.js");
PypiClean
/Keras28Models-0.1.0.tar.gz/Keras28Models-0.1.0/README.md
# Keras28 Models This is a Python package for easy build deep learning applications by using transfer learning pre trainined 28 models in easy few line code. to avoid wasting time scripting in your deep learning .You can read about keras models in complex code scriptining [keras document for Models API](https://keras.io/api/) .that is easy code for training your custom dataset in faster code not complex scripting code. more than 25% of time spent on deep learning projects is collecting and cleaning data and building convolution neural network (CNN)..but this package is very easy for images classifiction and recognition application and save final weights models .and compare all pre trainined models results for choice the best accurecy one convert results to DataFrame for easy viewing...(CSV format file spreadsheet) contains model name and number model parameters and validation accurcy ..and final code it is plot the num model params vs validation_accuracy for choosing benchmark ## Installation ``` pip install keras28model==0.1.0 or in colab google cloud !pip install keras28model==0.1.0 ``` ## Tutorial [Colab Google Drive](https://colab.research.google.com/drive/1IVzMGgpm-KQQqhQU3brVl331FyP7Ueke?usp=sharing) ``` u can see tutorial in colab google drive ```
PypiClean
/Flask-State-test-1.0.2b1.tar.gz/Flask-State-test-1.0.2b1/README.md
![](https://github.com/yoobool/flask-state/blob/master/src/flask_state/static/flask_state.png) [![](https://img.shields.io/badge/Contributions-Welcome-0059b3)](https://github.com/yoobool/flask-state/tree/master/.github/ISSUE_TEMPLATE) [![](https://img.shields.io/badge/Chat-Gitter-ff69b4.svg?label=Chat&logo=gitter)](https://gitter.im/flaskstate/community) [![](https://img.shields.io/npm/v/flask-state)](https://www.npmjs.com/package/flask-state) [![](https://img.shields.io/badge/license-BSD-green)](https://github.com/yoobool/flask-state/blob/master/LICENSE) [![](https://img.shields.io/badge/python-3.5%20%7C%203.6%20%7C%203.7%20%7C%203.8%20%7C%203.9-blue)](https://pypi.org/project/Flask-State/) # Flask-State Flask-State is a visual plug-in based on flask. It can record the local state every minute and read the status of redis if you have configured redis, and generate data chart to show to users through [Echarts](https://github.com/apache/incubator-echarts). ![](https://github.com/yoobool/flask-state/blob/master/examples/static/flask_state.png) ## Installation Install and update using [pip](https://pip.pypa.io/en/stable/quickstart/): ``` $ pip install Flask-State ``` Display components can use ```<script>``` tag from a CDN, or as a flask-state package on npm. ```html <script src="https://cdn.jsdelivr.net/gh/yoobool/[email protected]/packages/umd/flask-state.min.js"></script> ``` ``` npm install flask-state --save ``` ## Usage After the Flask-State is installed, you also need to import JavaScript file and CSS file to bind a convention ID value for your element. In some configurations, you can also choose to modify them. ### Firstly:we'll set up a Flask app. ```python from flask import Flask app = Flask(__name__) ``` ### Secondly:Bind database address. ```python from flask_state import DEFAULT_BIND_SQLITE app.config['SQLALCHEMY_BINDS'] = {DEFAULT_BIND_SQLITE: 'sqlite:///path'} ``` ### Thirdly:Call the init_app method of the flask-state to initialize the configuration. ```python import flask_state flask_state.init_app(app) ``` ### Lastly:Select the appropriate method to import the view file. ```html <!--CDN--> <link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/yoobool/[email protected]/packages/flask-state.css"> <script src="https://cdn.jsdelivr.net/gh/yoobool/[email protected]/packages/umd/flask-state.min.js"></script> <script type="text/javascript"> // Create a DOM node with ID 'test'. After init() binds the node, click to open the listening window flaskState.init({dom:document.getElementById('test')}); </script> ``` ```javascript // npm import 'flask-state/flask-state.css'; import {init} from 'flask-state'; // Create a DOM node with ID 'test'. After init() binds the node, click to open the listening window init({dom:document.getElementById('test')}); ``` ### Extra:You can also customize some configuration(non-essential). #### Monitor the redis status. ```python app.config['REDIS_CONF'] = {'REDIS_STATUS': True, 'REDIS_HOST': '192.168.1.1', 'REDIS_PORT':16380, 'REDIS_PASSWORD': 'psw'} ``` #### Modify the time interval for saving monitoring records. ```python # The minimum interval is 60 seconds. The default interval is 60 seconds import flask_state SECS = 60 flask_state.init_app(app, SECS) ``` #### Custom logger object. ```python import flask_state import logging custom_logger = logging.getLogger(__name__) flask_state.init_app(app, interval=60, log_instance=custom_logger) ``` #### Custom binding triggers the object of the window. ```javascript /* When the initialization plug-in does not pass in an object, the plug-in will automatically create a right-hand suspension ball */ /* Note: all pages share a plug-in instance. Calling init() method multiple times will only trigger plug-in events for new object binding */ flaskState.init(); ``` #### Select the language in which the plug-in is displayed, now support en, zh. ```html <!--Note: the language file imported through the tag must be after the plug-in is imported--> <script src="https://cdn.jsdelivr.net/gh/yoobool/[email protected]/packages/umd/flask-state.min.js"></script> <script src="https://cdn.jsdelivr.net/gh/yoobool/[email protected]/packages/umd/zh.js"></script> <script type="text/javascript"> flaskState.init({lang:flaskState.zh}); </script> ``` ```javascript import {init} from 'flask-state'; import {zh} from 'flask-state/i18n.js'; init({lang:zh}); ``` ## Contributing Welcome to [open an issue](https://github.com/yoobool/flask-state/issues/new)! Flask-State follows the [Contributor Covenant](https://www.contributor-covenant.org/version/1/3/0/code-of-conduct/) Code of Conduct. ## Community Channel We're on [Gitter](https://gitter.im/flaskstate/community) ! Please join us. ## License Flask-State is available under the BSD-3-Clause License.
PypiClean
/LIBTwinSVM-0.3.0-cp35-cp35m-manylinux1_x86_64.whl/libtsvm/estimators.py
# LIBTwinSVM: A Library for Twin Support Vector Machines # Developers: Mir, A. and Mahdi Rahbar # License: GNU General Public License v3.0 """ In this module, Standard TwinSVM and Least Squares TwinSVM estimators are defined. """ from sklearn.base import BaseEstimator from sklearn.utils.validation import check_X_y from libtsvm.optimizer import clipdcd import numpy as np class BaseTSVM(BaseEstimator): """ Base class for TSVM-based estimators Parameters ---------- kernel : str Type of the kernel function which is either 'linear' or 'RBF'. rect_kernel : float Percentage of training samples for Rectangular kernel. C1 : float Penalty parameter of first optimization problem. C2 : float Penalty parameter of second optimization problem. gamma : float Parameter of the RBF kernel function. Attributes ---------- mat_C_t : array-like, shape = [n_samples, n_samples] A matrix that contains kernel values. cls_name : str Name of the classifier. w1 : array-like, shape=[n_features] Weight vector of class +1's hyperplane. b1 : float Bias of class +1's hyperplane. w2 : array-like, shape=[n_features] Weight vector of class -1's hyperplane. b2 : float Bias of class -1's hyperplane. """ def __init__(self, kernel, rect_kernel, C1, C2, gamma): self.C1 = C1 self.C2 = C2 self.gamma = gamma self.kernel = kernel self.rect_kernel = rect_kernel self.mat_C_t = None self.clf_name = None # Two hyperplanes attributes self.w1, self.b1, self.w2, self.b2 = None, None, None, None self.check_clf_params() def check_clf_params(self): """ Checks whether the estimator's input parameters are valid. """ if not(self.kernel in ['linear', 'RBF']): raise ValueError("\"%s\" is an invalid kernel. \"linear\" and" " \"RBF\" values are valid." % self.kernel) def get_params_names(self): """ For retrieving the names of hyper-parameters of the TSVM-based estimator. Returns ------- parameters : list of str, {['C1', 'C2'], ['C1', 'C2', 'gamma']} Returns the names of the hyperparameters which are same as the class' attributes. """ return ['C1', 'C2'] if self.kernel == 'linear' else ['C1', 'C2', 'gamma'] def fit(self, X, y): """ It fits a TSVM-based estimator. THIS METHOD SHOULD BE IMPLEMENTED IN CHILD CLASS. Parameters ---------- X : array-like, shape (n_samples, n_features) Training feature vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape(n_samples,) Target values or class labels. """ pass # Impelement fit method in child class def predict(self, X): """ Performs classification on samples in X using the TSVM-based model. Parameters ---------- X : array-like, shape (n_samples, n_features) Feature vectors of test data. Returns ------- array, shape (n_samples,) Predicted class lables of test data. """ # Assign data points to class +1 or -1 based on distance from # hyperplanes return 2 * np.argmin(self.decision_function(X), axis=1) - 1 def decision_function(self, X): """ Computes distance of test samples from both non-parallel hyperplanes Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- array-like, shape(n_samples, 2) distance from both hyperplanes. """ # dist = np.zeros((X.shape[0], 2), dtype=np.float64) # # kernel_f = {'linear': lambda i: X[i, :], # 'RBF': lambda i: rbf_kernel(X[i, :], self.mat_C_t, # self.gamma)} # # for i in range(X.shape[0]): # # # Prependicular distance of data pint i from hyperplanes # dist[i, 1] = np.abs(np.dot(kernel_f[self.kernel](i), self.w1) \ # + self.b1) # # dist[i, 0] = np.abs(np.dot(kernel_f[self.kernel](i), self.w2) \ # + self.b2) # # return dist kernel_f = {'linear': lambda: X, 'RBF': lambda: rbf_kernel(X, self.mat_C_t, self.gamma)} return np.column_stack((np.abs(np.dot(kernel_f[self.kernel](), self.w2) + self.b2), np.abs(np.dot(kernel_f[self.kernel](), self.w1) + self.b1))) class TSVM(BaseTSVM): """ Standard Twin Support Vector Machine for binary classification. It inherits attributes of :class:`BaseTSVM`. Parameters ---------- kernel : str, optional (default='linear') Type of the kernel function which is either 'linear' or 'RBF'. rect_kernel : float, optional (default=1.0) Percentage of training samples for Rectangular kernel. C1 : float, optional (default=1.0) Penalty parameter of first optimization problem. C2 : float, optional (default=1.0) Penalty parameter of second optimization problem. gamma : float, optional (default=1.0) Parameter of the RBF kernel function. """ def __init__(self, kernel='linear', rect_kernel=1, C1=2**0, C2=2**0, gamma=2**0): super(TSVM, self).__init__(kernel, rect_kernel, C1, C2, gamma) self.clf_name = 'TSVM' # @profile def fit(self, X_train, y_train): """ It fits the binary TwinSVM model according to the given training data. Parameters ---------- X_train : array-like, shape (n_samples, n_features) Training feature vectors, where n_samples is the number of samples and n_features is the number of features. y_train : array-like, shape(n_samples,) Target values or class labels. """ X_train = np.array(X_train, dtype=np.float64) if isinstance(X_train, list) else X_train y_train = np.array(y_train) if isinstance(y_train, list) else y_train # Matrix A or class 1 samples mat_A = X_train[y_train == 1] # Matrix B or class -1 data mat_B = X_train[y_train == -1] # Vectors of ones mat_e1 = np.ones((mat_A.shape[0], 1)) mat_e2 = np.ones((mat_B.shape[0], 1)) if self.kernel == 'linear': # Linear kernel mat_H = np.column_stack((mat_A, mat_e1)) mat_G = np.column_stack((mat_B, mat_e2)) elif self.kernel == 'RBF': # Non-linear # class 1 & class -1 mat_C = np.row_stack((mat_A, mat_B)) self.mat_C_t = np.transpose(mat_C)[:, :int(mat_C.shape[0] * self.rect_kernel)] mat_H = np.column_stack((rbf_kernel(mat_A, self.mat_C_t, self.gamma), mat_e1)) mat_G = np.column_stack((rbf_kernel(mat_B, self.mat_C_t, self.gamma), mat_e2)) mat_H_t = np.transpose(mat_H) mat_G_t = np.transpose(mat_G) # Compute inverses: # Regulariztion term used for ill-possible condition reg_term = 2 ** float(-7) mat_H_H = np.linalg.inv(np.dot(mat_H_t, mat_H) + (reg_term * np.identity(mat_H.shape[1]))) # Wolfe dual problem of class 1 mat_dual1 = np.dot(np.dot(mat_G, mat_H_H), mat_G_t) # Obtaining Lagrange multipliers using ClipDCD optimizer alpha_d1 = clipdcd.optimize(mat_dual1, self.C1).reshape(mat_dual1.shape[0], 1) # Obtain hyperplanes hyper_p_1 = -1 * np.dot(np.dot(mat_H_H, mat_G_t), alpha_d1) # Free memory del mat_dual1, mat_H_H mat_G_G = np.linalg.inv(np.dot(mat_G_t, mat_G) + (reg_term * np.identity(mat_G.shape[1]))) # Wolfe dual problem of class -1 mat_dual2 = np.dot(np.dot(mat_H, mat_G_G), mat_H_t) alpha_d2 = clipdcd.optimize(mat_dual2, self.C2).reshape(mat_dual2.shape[0], 1) hyper_p_2 = np.dot(np.dot(mat_G_G, mat_H_t), alpha_d2) # Class 1 self.w1 = hyper_p_1[:hyper_p_1.shape[0] - 1, :] self.b1 = hyper_p_1[-1, :] # Class -1 self.w2 = hyper_p_2[:hyper_p_2.shape[0] - 1, :] self.b2 = hyper_p_2[-1, :] class LSTSVM(BaseTSVM): """ Least Squares Twin Support Vector Machine (LSTSVM) for binary classification. It inherits attributes of :class:`BaseTSVM`. Parameters ---------- kernel : str, optional (default='linear') Type of the kernel function which is either 'linear' or 'RBF'. rect_kernel : float, optional (default=1.0) Percentage of training samples for Rectangular kernel. C1 : float, optional (default=1.0) Penalty parameter of first optimization problem. C2 : float, optional (default=1.0) Penalty parameter of second optimization problem. gamma : float, optional (default=1.0) Parameter of the RBF kernel function. mem_optimize : boolean, optional (default=False) If it's True, it optimizes the memory consumption siginificantly. However, the memory optimization increases the CPU time. """ def __init__(self, kernel='linear', rect_kernel=1, C1=2**0, C2=2**0, gamma=2**0, mem_optimize=False): super(LSTSVM, self).__init__(kernel, rect_kernel, C1, C2, gamma) self.mem_optimize = mem_optimize self.clf_name = 'LSTSVM' # @profile def fit(self, X, y): """ It fits the binary Least Squares TwinSVM model according to the given training data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training feature vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape(n_samples,) Target values or class labels. """ X = np.array(X, dtype=np.float64) if isinstance(X, list) else X y = np.array(y) if isinstance(y, list) else y # Matrix A or class 1 data mat_A = X[y == 1] # Matrix B or class -1 data mat_B = X[y == -1] # Vectors of ones mat_e1 = np.ones((mat_A.shape[0], 1)) mat_e2 = np.ones((mat_B.shape[0], 1)) # Regularization term used for ill-possible condition reg_term = 2 ** float(-7) if self.kernel == 'linear': mat_H = np.column_stack((mat_A, mat_e1)) mat_G = np.column_stack((mat_B, mat_e2)) elif self.kernel == 'RBF': # class 1 & class -1 mat_C = np.row_stack((mat_A, mat_B)) self.mat_C_t = np.transpose(mat_C)[:, :int(mat_C.shape[0] * self.rect_kernel)] mat_H = np.column_stack((rbf_kernel(mat_A, self.mat_C_t, self.gamma), mat_e1)) mat_G = np.column_stack((rbf_kernel(mat_B, self.mat_C_t, self.gamma), mat_e2)) mat_H_t = np.transpose(mat_H) mat_G_t = np.transpose(mat_G) if self.mem_optimize: inv_p_1 = np.linalg.inv((np.dot(mat_G_t, mat_G) + (1 / self.C1) \ * np.dot(mat_H_t,mat_H)) + (reg_term * np.identity(mat_H.shape[1]))) # Determine parameters of two non-parallel hyperplanes hyper_p_1 = -1 * np.dot(inv_p_1, np.dot(mat_G_t, mat_e2)) # Free memory del inv_p_1 inv_p_2 = np.linalg.inv((np.dot(mat_H_t,mat_H) + (1 / self.C2) \ * np.dot(mat_G_t, mat_G)) + (reg_term * np.identity(mat_H.shape[1]))) hyper_p_2 = np.dot(inv_p_2, np.dot(mat_H_t, mat_e1)) else: stabilizer = reg_term * np.identity(mat_H.shape[1]) mat_G_G_t = np.dot(mat_G_t, mat_G) mat_H_H_t = np.dot(mat_H_t,mat_H) inv_p_1 = np.linalg.inv((mat_G_G_t + (1 / self.C1) * mat_H_H_t) \ + stabilizer) # Determine parameters of two non-parallel hyperplanes hyper_p_1 = -1 * np.dot(inv_p_1, np.dot(mat_G_t, mat_e2)) # Free memory del inv_p_1 inv_p_2 = np.linalg.inv((mat_H_H_t + (1 / self.C2) * mat_G_G_t) \ + stabilizer) hyper_p_2 = np.dot(inv_p_2, np.dot(mat_H_t, mat_e1)) self.w1 = hyper_p_1[:hyper_p_1.shape[0] - 1, :] self.b1 = hyper_p_1[-1, :] self.w2 = hyper_p_2[:hyper_p_2.shape[0] - 1, :] self.b2 = hyper_p_2[-1, :] # @profile # def fit_2(self, X, y): # """ # It fits the binary Least Squares TwinSVM model according to the given # training data. # # Parameters # ---------- # X : array-like, shape (n_samples, n_features) # Training feature vectors, where n_samples is the number of samples # and n_features is the number of features. # # y : array-like, shape(n_samples,) # Target values or class labels. # """ # # X, y = check_X_y(X, y, dtype=np.float64) # # # Matrix A or class 1 data # mat_A = X[y == 1] # # # Matrix B or class -1 data # mat_B = X[y == -1] # # # Vectors of ones # mat_e1 = np.ones((mat_A.shape[0], 1)) # mat_e2 = np.ones((mat_B.shape[0], 1)) # # # Regularization term used for ill-possible condition # reg_term = 2 ** float(-7) # # if self.kernel == 'linear': # # mat_H = np.column_stack((mat_A, mat_e1)) # mat_G = np.column_stack((mat_B, mat_e2)) # # mat_H_t = np.transpose(mat_H) # mat_G_t = np.transpose(mat_G) # # stabilizer = reg_term * np.identity(mat_H.shape[1]) # # # Determine parameters of two non-parallel hyperplanes # hyper_p_1 = -1 * np.dot(np.linalg.inv((np.dot(mat_G_t, mat_G) + # (1 / self.C1) * np.dot(mat_H_t,mat_H)) + stabilizer), # np.dot(mat_G_t, mat_e2)) # # self.w1 = hyper_p_1[:hyper_p_1.shape[0] - 1, :] # self.b1 = hyper_p_1[-1, :] # # hyper_p_2 = np.dot(np.linalg.inv((np.dot(mat_H_t, mat_H) + (1 / self.C2) # * np.dot(mat_G_t, mat_G)) + stabilizer), np.dot(mat_H_t, mat_e1)) # # self.w2 = hyper_p_2[:hyper_p_2.shape[0] - 1, :] # self.b2 = hyper_p_2[-1, :] # # elif self.kernel == 'RBF': # # # class 1 & class -1 # mat_C = np.row_stack((mat_A, mat_B)) # # self.mat_C_t = np.transpose(mat_C)[:, :int(mat_C.shape[0] * # self.rect_kernel)] # # mat_H = np.column_stack((rbf_kernel(mat_A, self.mat_C_t, # self.gamma), mat_e1)) # # mat_G = np.column_stack((rbf_kernel(mat_B, self.mat_C_t, # self.gamma), mat_e2)) # # mat_H_t = np.transpose(mat_H) # mat_G_t = np.transpose(mat_G) # # mat_I_H = np.identity(mat_H.shape[0]) # (m_1 x m_1) # mat_I_G = np.identity(mat_G.shape[0]) # (m_2 x m_2) # # mat_I = np.identity(mat_G.shape[1]) # (n x n) # # # Determine parameters of hypersurfaces # Using SMW formula # if mat_A.shape[0] < mat_B.shape[0]: # # y = (1 / reg_term) * (mat_I - np.dot(np.dot(mat_G_t, \ # np.linalg.inv((reg_term * mat_I_G) + np.dot(mat_G, mat_G_t))), # mat_G)) # # mat_H_y = np.dot(mat_H, y) # mat_y_Ht = np.dot(y, mat_H_t) # mat_H_y_Ht = np.dot(mat_H_y, mat_H_t) # # h_surf1_inv = np.linalg.inv(self.C1 * mat_I_H + mat_H_y_Ht) # h_surf2_inv = np.linalg.inv((mat_I_H / self.C2) + mat_H_y_Ht) # # hyper_surf1 = np.dot(-1 * (y - np.dot(np.dot(mat_y_Ht, h_surf1_inv), # mat_H_y)), np.dot(mat_G_t, mat_e2)) # # hyper_surf2 = np.dot(self.C2 * (y - np.dot(np.dot(mat_y_Ht, # h_surf2_inv), mat_H_y)), np.dot(mat_H_t, mat_e1)) # # # Parameters of hypersurfaces # self.w1 = hyper_surf1[:hyper_surf1.shape[0] - 1, :] # self.b1 = hyper_surf1[-1, :] # # self.w2 = hyper_surf2[:hyper_surf2.shape[0] - 1, :] # self.b2 = hyper_surf2[-1, :] # # else: # # z = (1 / reg_term) * (mat_I - np.dot(np.dot(mat_H_t, \ # np.linalg.inv(reg_term * mat_I_H + np.dot(mat_H, mat_H_t))), # mat_H)) # # mat_G_z = np.dot(mat_G, z) # mat_z_Gt = np.dot(z, mat_G_t) # mat_G_y_Gt = np.dot(mat_G_z, mat_G_t) # # g_surf1_inv = np.linalg.inv((mat_I_G / self.C1) + mat_G_y_Gt) # g_surf2_inv = np.linalg.inv(self.C2 * mat_I_G + mat_G_y_Gt) # # hyper_surf1 = np.dot(-self.C1 * (z - np.dot(np.dot(mat_z_Gt, # g_surf1_inv), mat_G_z)), np.dot(mat_G_t, mat_e2)) # # hyper_surf2 = np.dot((z - np.dot(np.dot(mat_z_Gt, g_surf2_inv), # mat_G_z)), np.dot(mat_H_t, mat_e1)) # # self.w1 = hyper_surf1[:hyper_surf1.shape[0] - 1, :] # self.b1 = hyper_surf1[-1, :] # # self.w2 = hyper_surf2[:hyper_surf2.shape[0] - 1, :] # self.b2 = hyper_surf2[-1, :] def rbf_kernel(x, y, u): """ It transforms samples into higher dimension using Gaussian (RBF) kernel. Parameters ---------- x, y : array-like, shape (n_features,) A feature vector or sample. u : float Parameter of the RBF kernel function. Returns ------- float Value of kernel matrix for feature vector x and y. """ return np.exp(-2 * u) * np.exp(2 * u * np.dot(x, y)) # GPU implementation of estimators ############################################ # # try: # # from cupy import prof # import cupy as cp # # def GPU_rbf_kernel(x, y, u): # """ # It transforms samples into higher dimension using Gaussian (RBF) # kernel. # # Parameters # ---------- # x, y : array-like, shape (n_features,) # A feature vector or sample. # # u : float # Parameter of the RBF kernel function. # # Returns # ------- # float # Value of kernel matrix for feature vector x and y. # """ # # return cp.exp(-2 * u) * cp.exp(2 * u * cp.dot(x, y)) # # class GPU_LSTSVM(): # """ # GPU implementation of least squares twin support vector machine # # Parameters # ---------- # kernel : str # Type of the kernel function which is either 'linear' or 'RBF'. # # rect_kernel : float # Percentage of training samples for Rectangular kernel. # # C1 : float # Penalty parameter of first optimization problem. # # C2 : float # Penalty parameter of second optimization problem. # # gamma : float # Parameter of the RBF kernel function. # # Attributes # ---------- # mat_C_t : array-like, shape = [n_samples, n_samples] # A matrix that contains kernel values. # # cls_name : str # Name of the classifier. # # w1 : array-like, shape=[n_features] # Weight vector of class +1's hyperplane. # # b1 : float # Bias of class +1's hyperplane. # # w2 : array-like, shape=[n_features] # Weight vector of class -1's hyperplane. # # b2 : float # Bias of class -1's hyperplane. # """ # # def __init__(self, kernel='linear', rect_kernel=1, C1=2**0, C2=2**0, # gamma=2**0): # # self.C1 = C1 # self.C2 = C2 # self.gamma = gamma # self.kernel = kernel # self.rect_kernel = rect_kernel # self.mat_C_t = None # self.clf_name = None # # # Two hyperplanes attributes # self.w1, self.b1, self.w2, self.b2 = None, None, None, None # # #@prof.TimeRangeDecorator() # def fit(self, X, y): # """ # It fits the binary Least Squares TwinSVM model according to # the given # training data. # # Parameters # ---------- # X : array-like, shape (n_samples, n_features) # Training feature vectors, where n_samples is the number of # samples # and n_features is the number of features. # # y : array-like, shape(n_samples,) # Target values or class labels. # """ # # X = cp.asarray(X) # y = cp.asarray(y) # # # Matrix A or class 1 data # mat_A = X[y == 1] # # # Matrix B or class -1 data # mat_B = X[y == -1] # # # Vectors of ones # mat_e1 = cp.ones((mat_A.shape[0], 1)) # mat_e2 = cp.ones((mat_B.shape[0], 1)) # # mat_H = cp.column_stack((mat_A, mat_e1)) # mat_G = cp.column_stack((mat_B, mat_e2)) # # mat_H_t = cp.transpose(mat_H) # mat_G_t = cp.transpose(mat_G) # # # Determine parameters of two non-parallel hyperplanes # hyper_p_1 = -1 * cp.dot(cp.linalg.inv(cp.dot(mat_G_t, mat_G) + \ # (1 / self.C1) * cp.dot(mat_H_t, mat_H)), \ # cp.dot(mat_G_t, mat_e2)) # # self.w1 = hyper_p_1[:hyper_p_1.shape[0] - 1, :] # self.b1 = hyper_p_1[-1, :] # # hyper_p_2 = cp.dot(cp.linalg.inv(cp.dot(mat_H_t, mat_H) + # (1 / self.C2) * cp.dot(mat_G_t, mat_G)), cp.dot(mat_H_t, mat_e1)) # # self.w2 = hyper_p_2[:hyper_p_2.shape[0] - 1, :] # self.b2 = hyper_p_2[-1, :] # # #@prof.TimeRangeDecorator() # def predict(self, X): # """ # Performs classification on samples in X using the Least Squares # TwinSVM model. # # Parameters # ---------- # X_test : array-like, shape (n_samples, n_features) # Feature vectors of test data. # # Returns # ------- # output : array, shape (n_samples,) # Predicted class lables of test data. # # """ # # X = cp.asarray(X) # # # Calculate prependicular distances for new data points # # prepen_distance = cp.zeros((X.shape[0], 2)) # # # # kernel_f = {'linear': lambda i: X[i, :] , # # 'RBF': lambda i: GPU_rbf_kernel(X[i, :], # self.mat_C_t, self.gamma)} # # # # for i in range(X.shape[0]): # # # # # Prependicular distance of data pint i from hyperplanes # # prepen_distance[i, 1] = cp.abs(cp.dot(kernel_f[self.kernel](i), # self.w1) + self.b1)[0] # # # # prepen_distance[i, 0] = cp.abs(cp.dot(kernel_f[self.kernel](i), self.w2) + self.b2)[0] # # dist = cp.column_stack((cp.abs(cp.dot(X, self.w2) + self.b2), # cp.abs(cp.dot(X, self.w1) + self.b1))) # # # # # Assign data points to class +1 or -1 based on distance from # hyperplanes # output = 2 * cp.argmin(dist, axis=1) - 1 # # return cp.asnumpy(output) # # except ImportError: # # print("Cannot run GPU implementation. Install CuPy package.") ############################################################################## if __name__ == '__main__': pass # from preprocess import read_data # from sklearn.model_selection import train_test_split # from sklearn.metrics import accuracy_score # # X, y, filename = read_data('../dataset/australian.csv') # # x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # # tsvm_model = TSVM('linear', 0.25, 0.5) # # tsvm_model.fit(x_train, y_train) # pred = tsvm_model.predict(x_test) # # print("Accuracy: %.2f" % (accuracy_score(y_test, pred) * 100))
PypiClean
/Eskapade-1.0.0-py3-none-any.whl/eskapade/tutorials/esk303_hgr_filler_plotter.py
from eskapade import analysis, core_ops, process_manager, resources, visualization, ConfigObject, Chain from eskapade.logger import Logger, LogLevel logger = Logger() logger.debug('Now parsing configuration file esk303_hgr_filler_plotter.py.') ######################################################################################### # --- minimal analysis information settings = process_manager.service(ConfigObject) settings['analysisName'] = 'esk303_hgr_filler_plotter' settings['version'] = 0 ######################################################################################### msg = r""" The plots and latex files produced by link hist_summary can be found in dir: {path} """ logger.info(msg, path=settings['resultsDir'] + '/' + settings['analysisName'] + '/data/v0/report/') # --- Analysis configuration flags. # E.g. use these flags turn on or off certain chains with links. # by default all set to false, unless already configured in # configobject or vars() settings['do_loop'] = True settings['do_plotting'] = True chunk_size = 400 ######################################################################################### # --- create dummy example dataset, which is read in below input_files = [resources.fixture('mock_accounts.csv.gz')] def to_date(x): """Convert to timestamp.""" import pandas as pd try: ts = pd.Timestamp(x.split()[0]) return ts except BaseException: pass return x ######################################################################################### # --- now set up the chains and links, based on configuration flags # --- example 2: readdata loops over the input files, with file chunking. if settings['do_loop']: ch = Chain('Data') # --- a loop is set up in the chain MyChain. # we iterate over (chunks of) the next file in the list until the iterator is done. # then move on to the next chain (Overview) # --- readdata keeps on opening the next 400 lines of the open or next file in the file list. # all kwargs are passed on to pandas file reader. read_data = analysis.ReadToDf(name='dflooper', key='rc', reader='csv') read_data.chunksize = chunk_size read_data.path = input_files ch.add(read_data) # add conversion functions to "Data" chain # here, convert column 'registered', an integer, to an actual timestamp. conv_funcs = [{'func': to_date, 'colin': 'registered', 'colout': 'date'}] transform = analysis.ApplyFuncToDf(name='Transform', read_key=read_data.key, apply_funcs=conv_funcs) ch.add(transform) # --- As an example, will fill histogram iteratively over the file loop hf = analysis.HistogrammarFiller() hf.read_key = 'rc' hf.store_key = 'hist' hf.logger.log_level = LogLevel.DEBUG # colums that are picked up to do value_counting on in the input dataset # note: can also be 2-dim: ['isActive','age'] # in this example, the rest are one-dimensional histograms hf.columns = ['date', 'isActive', 'age', 'eyeColor', 'gender', 'company', 'latitude', 'longitude', ['isActive', 'age'], ['latitude', 'longitude']] # binning is apply to all input columns that are numeric or timestamps. # default binning is: bin_width = 1, bin_offset = 0 # for timestamps, default binning is: { 'bin_width': np.timedelta64(30,'D'), # 'bin_offset': np.datetime64('2010-01-04') } } hf.bin_specs = {'longitude': {'bin_width': 5, 'bin_offset': 0}, 'latitude': {'bin_width': 5, 'bin_offset': 0}} ch.add(hf) # --- this serves as the continue statement of the loop. go back to start of the chain. repeater = core_ops.RepeatChain() # repeat until readdata says halt. repeater.listen_to = 'chainRepeatRequestBy_' + read_data.name ch.add(repeater) link = core_ops.DsObjectDeleter() link.keep_only = ['hist', 'n_sum_rc', 'rc'] ch.add(link) # --- print contents of the datastore if settings['do_plotting']: ch = Chain('Overview') pds = core_ops.PrintDs(name='End') pds.keys = ['n_sum_rc'] ch.add(pds) # --- make a nice summary report of the created histograms hist_summary = visualization.DfSummary(name='HistogramSummary', read_key=hf.store_key) ch.add(hist_summary) ######################################################################################### logger.debug('Done parsing configuration file esk303_hgr_filler_plotter.py.')
PypiClean
/BeanCommonUtils-1.1.7.tar.gz/BeanCommonUtils-1.1.7/common_utils/mysql_pool.py
import pymysql from DBUtils.PooledDB import PooledDB class MysqlPool(object): pool = None # 数据库连接池连接 def init_mysql_pool(self, mysql_info): if self.pool is None: self.pool = PooledDB(creator=pymysql, mincached=10, host=mysql_info['host'], user=mysql_info['user'], passwd=mysql_info['passwd'], db=mysql_info['db'], port=mysql_info['port'], maxcached=20, # 链接池中最多闲置的链接,0和None不限制 blocking=True, ping=0, charset=mysql_info.get('charset', 'utf8'), maxconnections=6) def get_mysql_conn(self): mysql_conn = self.pool.connection() cur = mysql_conn.cursor(cursor=pymysql.cursors.DictCursor) return cur, mysql_conn # 插入\更新\删除sql @staticmethod def op_insert(sql, cur, mysql_conn, sql_type): mysql_conn.ping() try: insert_num = cur.execute(sql) mysql_conn.commit() except Exception as e: raise Exception("%s sql execute error, err_msg: %s" % (sql_type, e)) return insert_num, True # 查询 @staticmethod def op_select(sql, cur, mysql_conn): mysql_conn.ping() cur.execute(sql) try: select_res = cur.fetchall() except Exception as e: return e, False return select_res, True def sql_operate(self, sql, cur, mysql_conn, sql_type): sql_operate_list = ["insert", "update", "delete", "select"] if not isinstance(sql_type, str) and sql_type not in sql_operate_list: raise ValueError("input sql_type error, sql_type may be: %s" % sql_operate_list) if sql_type == "select": return self.op_select(sql, cur, mysql_conn) else: return self.op_insert(sql, cur, mysql_conn, sql_type) # 释放资源 @staticmethod def dispose(mysql_conn): mysql_conn.close()
PypiClean
/Notus-0.0.3-py36-none-any.whl/notus/win10/win10_toaster.py
__author__ = "Christian Heider Nielsen" __doc__ = r""" Created on 25-10-2020 """ __all__ = ["Win10Toaster"] import logging from os import path, remove from pathlib import Path from random import randint from threading import Thread from time import sleep from typing import Optional from pkg_resources import Requirement, resource_filename from notus import PROJECT_NAME try: from PIL import Image except ImportError: Image = None """ CW_USEDEFAULT = -0x80000000 IDI_APPLICATION = 0x7f00 IMAGE_ICON = 0x1 LR_LOADFROMFILE = 0x16 LR_DEFAULTSIZE = 0x40 NIM_ADD = 0x0 NIM_MODIFY = 0x1 NIM_DELETE = 0x2 NIF_MESSAGE = 0x1 NIF_ICON = 0x2 NIF_TIP = 0x4 NIF_INFO = 0x10 WM_USER = 0x400 WS_OVERLAPPED = 0x0 WS_SYSMENU = 0x80000 """ from winsound import SND_FILENAME, PlaySound from win32api import ( GetModuleHandle, PostQuitMessage, ) from win32con import ( BS_DEFPUSHBUTTON, CW_USEDEFAULT, IDI_APPLICATION, IMAGE_ICON, LR_DEFAULTSIZE, LR_LOADFROMFILE, WM_USER, WS_CHILD, WS_OVERLAPPED, WS_SYSMENU, WS_TABSTOP, WS_VISIBLE, ) from win32gui import ( CreateWindow, DestroyWindow, LoadIcon, LoadImage, NIF_ICON, NIF_INFO, NIF_MESSAGE, NIF_TIP, NIM_ADD, NIM_DELETE, NIIF_NOSOUND, NIM_MODIFY, RegisterClass, UnregisterClass, Shell_NotifyIcon, UpdateWindow, WNDCLASS, PumpMessages, ) from pywintypes import error as WinTypesException SPIF_SENDCHANGE = 0x2 SPI_SETMESSAGEDURATION = 0x2017 SPI_GETMESSAGEDURATION = 0x2016 PARAM_DESTROY = 0x404 PARAM_CLICKED = 0x405 MOUSE_UP = 0x202 # PARAM_DESTROY = 1028 # PARAM_CLICKED = 1029 # Class class Win10Toaster(object): """Create a Windows 10 toast notification. #TODO: Add progress bar notification type """ def __init__(self): self._thread = None @staticmethod def _decorator(func: callable, callback: callable = None): """ :param func: callable to decorate :param callback: callable to run on mouse click within notification window :return: callable """ def inner(*args, **kwargs): """ :param args: :param kwargs: """ kwargs.update({"callback": callback}) func(*args, **kwargs) return inner def _show_toast( self, title: str, msg: str = "No msg", icon_path: Path = None, duration: float = None, sound_path=None, callback_on_click: callable = None, tooltip: Optional[str] = None, ) -> None: """Notification settings. :param title: notification title :param msg: notification message :param icon_path: path to the .ico file to custom notification :param duration: delay in seconds before notification self-destruction, None for no-self-destruction :param sound_path: path to the .wav file to custom notification """ self.duration = duration def callback(): """ """ self.duration = 0 if callback_on_click is not None: callback_on_click() if tooltip is None: tooltip = PROJECT_NAME # Register the window class. self.window_class = WNDCLASS() self.instance_handle = self.window_class.hInstance = GetModuleHandle(None) self.window_class.lpszClassName = f"{PROJECT_NAME}-{title}" # must be a string self.window_class.lpfnWndProc = self._decorator( self.wnd_proc, callback ) # could instead specify simple mapping try: self.classAtom = RegisterClass(self.window_class) except Exception as e: logging.error("Some trouble with classAtom (%s)", e) style = WS_OVERLAPPED | WS_SYSMENU button_style = WS_TABSTOP | WS_VISIBLE | WS_CHILD | BS_DEFPUSHBUTTON # TODO: Unused for now self.window_handle = CreateWindow( self.classAtom, "Taskbar", style, 0, 0, CW_USEDEFAULT, CW_USEDEFAULT, 0, 0, self.instance_handle, None, ) UpdateWindow(self.window_handle) # icon new_name = "" if icon_path is not None: icon_path = path.realpath(icon_path) converted = False if Image is not None and icon_path.split(".")[-1] != ".ico": img = Image.open(icon_path) new_name = f'{str(icon_path.split(".")[:-1])}.ico' img.save(new_name) icon_path = new_name converted = True else: icon_path = resource_filename( Requirement.parse(PROJECT_NAME), str(Path(PROJECT_NAME) / "data" / "python.ico"), ) converted = False try: hicon = LoadImage( self.instance_handle, icon_path, IMAGE_ICON, 0, 0, LR_LOADFROMFILE | LR_DEFAULTSIZE, ) if Image and path.exists(new_name and converted): remove(new_name) except Exception as e: logging.error("Some trouble with the icon (%s): %s", icon_path, e) hicon = LoadIcon(0, IDI_APPLICATION) # Set the duration """ buff = create_unicode_buffer(10) windll.user32.SystemParametersInfoW(SPI_GETMESSAGEDURATION, 0, buff, 0) try: oldlength = int(buff.value.encode("unicode_escape").decode().replace("\\", "0"), 16) except ValueError: oldlength = 5 # Default notification length duration_output = windll.user32.SystemParametersInfoW(SPI_SETMESSAGEDURATION, 0, self.duration, SPIF_SENDCHANGE) windll.user32.SystemParametersInfoW(SPI_GETMESSAGEDURATION, 0, buff, 0) duration_error = False try: int(buff.value.encode("unicode_escape").decode().replace("\\", "0"), 16) except ValueError: duration_error = True if duration_output == 0 or self.duration > 255 or duration_error: windll.user32.SystemParametersInfoW(SPI_SETMESSAGEDURATION, 0, oldlength, SPIF_SENDCHANGE) self.active = False raise RuntimeError(f"Some trouble with the duration ({self.duration})" ": Invalid duration length") """ title += " " * randint(0, 63 - len(title)) msg += " " * randint(0, 128 - len(msg)) Shell_NotifyIcon( NIM_ADD, ( self.window_handle, 0, NIF_ICON | NIF_MESSAGE | NIF_TIP, WM_USER + 20, hicon, tooltip, ), ) Shell_NotifyIcon( NIM_MODIFY, ( self.window_handle, 0, NIF_INFO, WM_USER + 20, hicon, tooltip, msg, 200, title, 0 if sound_path is None else NIIF_NOSOUND, ), ) if sound_path is not None: # play the custom sound sound_path = path.realpath(sound_path) if not path.exists(sound_path): logging.error(f"Some trouble with the sound file ({sound_path}): [Errno 2] No such file") try: PlaySound(sound_path, SND_FILENAME) except Exception as e: logging.error(f"Some trouble with the sound file ({sound_path}): {e}") PumpMessages() """ # Put the notification duration back to normal SystemParametersInfoW(SPI_SETMESSAGEDURATION, 0, oldlength, SPIF_SENDCHANGE) """ if duration is not None: # take a rest then destroy # sleep(duration) while self.duration > 0: sleep(0.1) self.duration -= 0.1 DestroyWindow(self.window_handle) UnregisterClass(self.window_class.lpszClassName, self.instance_handle) try: # Sometimes the try icon sticks around until you click it - this should stop that Shell_NotifyIcon(NIM_DELETE, (self.window_handle, 0)) except WinTypesException: pass self.active = False def show( self, title: str, message: str = "No msg", *, icon_path: Optional[Path] = None, duration: Optional[float] = None, threaded: bool = False, callback_on_click: Optional[callable] = None, wait_for_active_notification: bool = True, tooltip: Optional[str] = None, ) -> bool: """Notification settings. :param tooltip: :param wait_for_active_notification: :param duration: :param threaded: :param callback_on_click: :param title: notification title :param message: notification message :param icon_path: path to the .ico file to custom notification :para mduration: delay in seconds before notification self-destruction, None for no-self-destruction """ args = title, message, icon_path, duration, None, callback_on_click, tooltip if not threaded: self._show_toast(*args) else: if ( self.notification_active and wait_for_active_notification ): # We have an active notification, let is finish so we don't spam them # TODO: FIGURE OUT if sleeping here is a better solution return False self._thread = Thread(target=self._show_toast, args=args) self._thread.start() return True @property def notification_active(self) -> bool: """See if we have an active notification showing""" if ( self._thread is not None and self._thread.is_alive() ): # We have an active notification, let is finish we don't spam them return True return False def wnd_proc(self, hwnd, msg, wparam, lparam, **kwargs) -> None: """Messages handler method""" if lparam == PARAM_CLICKED: if kwargs.get("callback"): kwargs.pop("callback")() self.on_destroy(hwnd, msg, wparam, lparam) elif lparam == PARAM_DESTROY: self.on_destroy(hwnd, msg, wparam, lparam) def on_destroy(self, hwnd, msg, wparam, lparam) -> None: """Clean after notification ended.""" Shell_NotifyIcon(NIM_DELETE, (self.window_handle, 0)) PostQuitMessage(0) if __name__ == "__main__": def main(): """ """ import time def p_callback(): """ """ print("clicked toast") toaster = Win10Toaster() toaster.show("Hello World", "Python Here!", callback_on_click=p_callback, duration=3) toaster.show("Buh", "DOUBLE TROUBLE", duration=2) toaster.show( "Example two", "This notification is in it's own thread!", icon_path=None, duration=5, threaded=True, ) toaster.show("Do it", "Good!", icon_path=None, duration=5, threaded=True) # TODO: MAKE THIS APPEAR! while toaster.notification_active: # Wait for threaded notification to finish time.sleep(0.1) main()
PypiClean
/CouchDB3-1.2.0-py3-none-any.whl/couchdb3/utils.py
import base64 from collections.abc import Generator import re import requests from typing import Any, Dict, Optional, Set from urllib import parse from urllib3.util import Url, parse_url from . import exceptions __all__ = [ "basic_auth", "build_query", "build_url", "user_name_to_id", "validate_auth_method", "validate_db_name", "validate_proxy", "validate_user_id", "check_response", "content_type_getter", "extract_url_data", "partitioned_db_resource_parser", "COUCHDB_USERS_DB_NAME", "COUCHDB_REPLICATOR_DB_NAME", "COUCHDB_GLOBAL_CHANGES_DB_NAME", "COUCH_DB_RESERVED_DB_NAMES", "DEFAULT_AUTH_METHOD", "DEFAULT_TIMEOUT", "MIME_TYPES_MAPPING", "PATTERN_DB_NAME", "PATTERN_USER_ID", "VALID_AUTH_METHODS", "VALID_SCHEMES", ] COUCHDB_USERS_DB_NAME: str = "_users" """Reserved CouchDB users database name.""" COUCHDB_REPLICATOR_DB_NAME: str = "_replicator" """Reserved CouchDB replicator database name.""" COUCHDB_GLOBAL_CHANGES_DB_NAME: str = "_global_changes" """Reserved CouchDB global changes database name.""" COUCH_DB_RESERVED_DB_NAMES: Set[str] = { COUCHDB_USERS_DB_NAME, COUCHDB_REPLICATOR_DB_NAME, COUCHDB_GLOBAL_CHANGES_DB_NAME } """Reserved CouchDB database names.""" DEFAULT_AUTH_METHOD: str = "cookie" """The default authentication method - values to `\"cookie\"`.""" DEFAULT_TEXTUAL_MIME_TYPE: str = "text/plain" DEFAULT_FALLBACK_MIME_TYPE: str = "application/octet-stream" DEFAULT_TIMEOUT: int = 300 """The default timeout set in requests - values to `300`.""" MIME_TYPES_MAPPING: Dict = { "aac": "audio/aac", "abw": "application/x-abiword", "arc": "application/x-freearc", "avi": "video/x-msvideo", "azw": "application/vnd.amazon.ebook", "bin": "application/octet-stream", "bmp": "image/bmp", "bz": "application/x-bzip", "bz2": "application/x-bzip2", "cda": "application/x-cdf", "csh": "application/x-csh", "css": "text/css", "csv": "text/csv", "doc": "application/msword", "docx": "application/vnd.openxmlformats-officedocument.wordprocessingml.document", "eot": "application/vnd.ms-fontobject", "epub": "application/epub+zip", "gz": "application/gzip", "gif": "image/gif", "htm": "text/html", "html": "text/html", "ico": "image/vnd.microsoft.icon", "ics": "text/calendar", "jar": "application/java-archive", "jpeg": "image/jpeg", "jpg": "image/jpeg", "js": "text/javascript", "json": "application/json", "jsonld": "application/ld+json", "mid": "audio/midi audio/x-midi", "midi": "audio/midi audio/x-midi", "mjs": "text/javascript", "mp3": "audio/mpeg", "mp4": "video/mp4", "mpeg": "video/mpeg", "mpkg": "application/vnd.apple.installer+xml", "odp": "application/vnd.oasis.opendocument.presentation", "ods": "application/vnd.oasis.opendocument.spreadsheet", "odt": "application/vnd.oasis.opendocument.text", "oga": "audio/ogg", "ogv": "video/ogg", "ogx": "application/ogg", "opus": "audio/opus", "otf": "font/otf", "png": "image/png", "pdf": "application/pdf", "php": "application/x-httpd-php", "ppt": "application/vnd.ms-powerpoint", "pptx": "application/vnd.openxmlformats-officedocument.presentationml.presentation", "rar": "application/vnd.rar", "rtf": "application/rtf", "sh": "application/x-sh", "svg": "image/svg+xml", "swf": "application/x-shockwave-flash", "tar": "application/x-tar", "tif .tiff": "image/tiff", "ts": "video/mp2t", "ttf": "font/ttf", "txt": "text/plain", "vsd": "application/vnd.visio", "wav": "audio/wav", "weba": "audio/webm", "webm": "video/webm", "webp": "image/webp", "woff": "font/woff", "woff2": "font/woff2", "xhtml": "application/xhtml+xml", "xls": "application/vnd.ms-excel", "xlsx": "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", "xml": "application/xml", "xul": "application/vnd.mozilla.xul+xml", "zip": "application/zip", "3gp": "video/3gpp", "3g2": "video/3gpp2", "7z": "application/x-7z-compressed" } """A dictionary mapping file extensions to their appropriate content-type.""" PATTERN_DB_NAME: re.Pattern = re.compile(r"^[a-z][a-z0-9_$()+/-]*$") """The pattern for valid database names.""" PATTERN_USER_ID: re.Pattern = re.compile(r"^org\.couchdb\.user:.*") """The pattern for valid user IDs.""" VALID_AUTH_METHODS: Set[str] = {"basic", "cookie"} """The valid auth method arguments. Possible values are `\"basic\"` or `\"cookie\"`.""" VALID_SCHEMES: Set[str] = {"http", "https", "socks5"} """The valid TCP schemes. Possible values are `\"http\"` or `\"https\"` or `\"socks5\"`.""" def _handler(x: Any) -> str: if isinstance(x, (Generator, map, list, set, tuple)): return "[%s]" % ",".join(f"\"{_handler(_)}\"" for _ in x) elif isinstance(x, dict): return str({key: _handler(val) for key, val in x.items()}) elif isinstance(x, bool): return str(x).lower() return str(x) def basic_auth( user: str, password: str ) -> str: """ Create basic authentication headers value. Parameters ---------- user : str A CouchDB user name. password : str A corresponding CouchDB user password. Returns ------- str : The credentials concatenated with a colon and base64 encoded. """ return base64.b64encode(f"{user}:{password}".encode()).decode() def build_query( **kwargs, ) -> Optional[str]: """ Parameters ---------- kwargs Arbitrary keyword-args to be passed as query-params in a URL. Returns ------- str : A string containing the keyword-args encoded as URL query-params. """ return parse.urlencode({key: _handler(val) for key, val in kwargs.items() if val is not None}) def build_url( *, scheme: str, host: str, path: str = None, port: int = None, **kwargs, ) -> Url: """ Build a URL using the provided scheme, host, path & kwargs. Parameters ---------- scheme : str The URL scheme (e.g `http`). host : str The URL host (e.g. `example.com`). path : str The URL path (e.g. `/api/data`). Default `None`. port : int The port to connect to (e.g. `5984`). Default `None`. kwargs Arbitrary keyword-args to be passed as query-params in a URL. Returns ------- Url : An instance of `Url`. """ return Url( scheme=scheme, host=host, port=port, path=path, query=build_query(**kwargs), ) def validate_db_name(name: str) -> bool: """ Checks a name for CouchDB name-compliance. Parameters ---------- name : str A prospective database name. Returns ------- bool : `True` if the provided name is CouchDB compliant. """ return name in COUCH_DB_RESERVED_DB_NAMES or bool(PATTERN_DB_NAME.fullmatch(name)) def validate_auth_method(auth_method: str) -> bool: """ Checks if the provided authentication method is valid. Parameters ---------- auth_method : str Returns ------- bool: `True` if `auth_method` is in `VALID_AUTH_METHODS`. """ return auth_method in VALID_AUTH_METHODS def validate_proxy(proxy: str) -> bool: """ Check a proxy scheme for CouchDB proxy-scheme-compliance Parameters ---------- proxy : str A prospective proxy. Returns ------- bool : `True` if the provided proxy is CouchDB compliant. """ return parse_url(proxy).scheme in VALID_SCHEMES def validate_user_id(user_id: str) -> bool: """ Checks a user ID for CouchDB user-id-compliance. Parameters ---------- user_id : str A prospective user ID. Returns ------- bool : `True` if the provided user ID is CouchDB compliant. """ return bool(PATTERN_USER_ID.fullmatch(user_id)) def user_name_to_id(name: str) -> str: """ Convert a name into a valid CouchDB user ID. Parameters ---------- name : str A user name. Returns ------- str : A valid CouchDB ID, i.e. of the form `org.couchdb.user:{name}`. """ return f"org.couchdb.user:{name}" def check_response(response: requests.Response) -> None: """ Check if a request yields a successful response. Parameters ---------- response : requests.Response A `requests.Response` object. Returns ------- None Raises ------ One of the following exceptions: - couchdb3.error.CouchDBError - ConnectionError - TimeoutError - requests.exceptions.ConnectionError - requests.exceptions.HTTPError """ try: response.raise_for_status() except ( ConnectionError, TimeoutError, requests.exceptions.ConnectionError, requests.exceptions.HTTPError, ) as err: if response.status_code in exceptions.STATUS_CODE_ERROR_MAPPING: _ = exceptions.STATUS_CODE_ERROR_MAPPING[response.status_code] if _: raise _(response.text) else: return None raise err def content_type_getter( file_name: str = None, data: Any = None ) -> Optional[str]: """ Get the appropriate content-type. If the argument `file_name` is provided, the content-type will be determined by matching the file extension against keys of `MIME_TYPES_MAPPING`. If no match was found, then `"application/octet-stream"` will be returned. Alternatively, if the argument `data` is provided the conent-type returned will be - `"application/json"` if `data` is a dictionary or a list - `"text/plain"` else Parameters ---------- file_name : str A file name. data : Any A Python object. Returns ------- str : A valid content-type. """ if file_name: for ext, mime_type in MIME_TYPES_MAPPING.items(): if file_name.endswith(f".{ext}"): return mime_type return DEFAULT_FALLBACK_MIME_TYPE elif data: if isinstance(data, (dict, list)): return "application/json" else: return DEFAULT_TEXTUAL_MIME_TYPE def extract_url_data(url: str) -> Dict: """ Extract scheme, credentials, host, port & path from a URL. Parameters ---------- url : str A URL string. Returns ------- Dict : A dictionary containing with the following items. - scheme - user - password - host - port - path """ if not any(url.startswith(_) for _ in VALID_SCHEMES): url = f"http://{url}" parsed = parse_url(url) return { "scheme": parsed.scheme, "user": parsed.auth.split(":")[0] if hasattr(parsed.auth, "split") else None, "password": parsed.auth.split(":")[1] if hasattr(parsed.auth, "split") else None, "host": parsed.host, "port": parsed.port, "path": parsed.path } def partitioned_db_resource_parser( resource: str = None, partition: str = None, ) -> Optional[str]: """ Build resource path with optional partition ID. Parameters ---------- resource : str The resource to fetch (relative to the host). Default `None`. partition: str An optional partition ID. Only valid for partitioned databases. (Default `None`.) Returns ---------- The (relative) path of the resource. """ return f"_partition/{partition}/{resource}" if partition else resource
PypiClean
/Booktype-1.5.tar.gz/Booktype-1.5/lib/booki/site_static/xinha/modules/Dialogs/XinhaDialog.js
Xinha.Dialog=function(g,k,a,m,f){var r=this;this.id={};this.r_id={};this.editor=g;this.document=document;this.size=m;this.modal=(f&&f.modal===false)?false:true;this.closable=(f&&f.closable===false)?false:true;this.resizable=(f&&f.resizable===false)?false:true;this.layer=(f&&f.layer)?f.layer:0;this.centered=(f&&f.centered===true)?true:false;this.closeOnEscape=(f&&f.closeOnEscape===true)?true:false;this.rootElem=null;this.captionBar=null;this.main=null;this.background=null;this.centered=null;this.greyout=null;this.buttons=null;this.closer=null;this.icon=null;this.resizer=null;this.initialZ=null;var b=g.config.dialogOptions;if(b){if(typeof b.centered!="undefined"){this.centered=b.centered}if(typeof b.resizable!="undefined"){this.resizable=b.resizable}if(typeof b.closable!="undefined"){this.closable=b.closable}if(typeof b.greyout!="undefined"){this.greyout=b.greyout}if(typeof b.closeOnEscape!="undefined"){this.closeOnEscape=b.closeOnEscape}}var n;if(Xinha.is_ie){n=document.createElement("iframe");n.src="about:blank";n.onreadystatechange=function(){var w=window.event.srcElement.contentWindow.document;if(this.readyState=="complete"&&w&&w.body){var y=w.createElement("div");var s,x=document.styleSheets;for(var p=0;p<x.length;p++){if(x[p].id.indexOf("Xinha")!=-1&&x[p].cssText){s+=x[p].cssText}}y.innerHTML='<br><style type="text/css">\n'+s+"\n</style>";w.getElementsByTagName("body")[0].appendChild(y);w.body.className="xinha_dialog_background";if(r.modal){w.body.className+="_modal"}if(r.greyout){w.body.className+="_greyout"}}}}else{n=document.createElement("div")}n.className="xinha_dialog_background";if(this.modal){n.className+="_modal"}if(this.greyout){n.className+="_greyout"}var j=1000;if(!Xinha.Dialog.initialZ){var o=g._htmlArea;while(o){if(o.style&&parseInt(o.style.zIndex,10)>j){j=parseInt(o.style.zIndex,10)}o=o.parentNode}Xinha.Dialog.initialZ=j}j=Xinha.Dialog.initialZ;var l=n.style;l.position="absolute";l.top=0;l.left=0;l.border="none";l.overflow="hidden";l.display="none";l.zIndex=(this.modal?j+25:j+1)+this.layer;document.body.appendChild(n);this.background=n;n=null;Xinha.freeLater(this,"background");var c=document.createElement("div");c.style.position=(Xinha.is_ie||!this.modal)?"absolute":"fixed";c.style.zIndex=(this.modal?j+27:j+3)+this.layer;c.style.display="none";if(!this.modal){Xinha._addEvent(c,"mousedown",function(){Xinha.Dialog.activateModeless(r)})}c.className="dialog"+(this.modal?"":" modeless");if(Xinha.is_chrome){c.className+=" chrome"}document.body.appendChild(c);c.style.paddingBottom="10px";c.style.width=(m&&m.width)?m.width+"px":"";if(m&&m.height){if(Xinha.ie_version<7){c.style.height=m.height+"px"}else{c.style.minHeight=m.height+"px"}}k=this.translateHtml(k,a);var h=document.createElement("div");c.appendChild(h);h.innerHTML=k;this.fixupDOM(h,a);var u=h.removeChild(h.getElementsByTagName("h1")[0]);c.insertBefore(u,h);Xinha._addEvent(u,"mousedown",function(i){r.dragStart(i)});u.style.MozUserSelect="none";u.style.WebkitUserSelect="none";u.unselectable="on";u.onselectstart=function(){return false};this.buttons=document.createElement("div");l=this.buttons.style;l.position="absolute";l.top="0";l.right="2px";c.appendChild(this.buttons);if(this.closable&&this.closeOnEscape){Xinha._addEvent(document,"keypress",function(i){if(i.keyCode==27){if(Xinha.Dialog.activeModeless==r||r.modal){r.hide();return true}}})}this.closer=null;if(this.closable){this.closer=document.createElement("div");this.closer.className="closeButton";this.closer.onmousedown=function(i){this.className="closeButton buttonClick";Xinha._stopEvent(Xinha.getEvent(i));return false};this.closer.onmouseout=function(i){this.className="closeButton";Xinha._stopEvent(Xinha.getEvent(i));return false};this.closer.onmouseup=function(){this.className="closeButton";r.hide();return false};this.buttons.appendChild(this.closer);var v=document.createElement("span");v.className="innerX";v.style.position="relative";v.style.top="-3px";v.appendChild(document.createTextNode("\u00D7"));this.closer.appendChild(v);v=null}this.icon=document.createElement("img");var t=this.icon;t.className="icon";t.src=g.config.iconList.dialogCaption;t.style.position="absolute";t.style.top="3px";t.style.left="2px";t.ondrag=function(){return false};u.style.paddingLeft="22px";c.appendChild(this.icon);var e=c.getElementsByTagName("*");for(var q=0;q<e.length;q++){var d=e[q];if(d.tagName.toLowerCase()=="textarea"||d.tagName.toLowerCase()=="input"){}else{d.unselectable="on"}}this.resizer=null;if(this.resizable){this.resizer=document.createElement("div");this.resizer.className="resizeHandle";l=this.resizer.style;l.position="absolute";l.bottom="0px";l.right="0px";l.MozUserSelect="none";Xinha._addEvent(this.resizer,"mousedown",function(i){r.resizeStart(i)});c.appendChild(this.resizer)}this.rootElem=c;this.captionBar=u;this.main=h;u=null;c=null;h=null;Xinha.freeLater(this,"rootElem");Xinha.freeLater(this,"captionBar");Xinha.freeLater(this,"main");Xinha.freeLater(this,"buttons");Xinha.freeLater(this,"closer");Xinha.freeLater(this,"icon");Xinha.freeLater(this,"resizer");Xinha.freeLater(this,"document");this.size={}};Xinha.Dialog.prototype.onresize=function(){return true};Xinha.Dialog.prototype.show=function(m){var c=this.rootElem;var n=c.style;var l=this.modal;var b=this.editor.scrollPos();this.scrollPos=b;var i=this;if(this.attached){this.editor.showPanel(c)}if(Xinha._someEditorHasBeenActivated){this._lastRange=this.editor.saveSelection();if(Xinha.is_ie&&!l){i.saveSelection=function(){i._lastRange=i.editor.saveSelection()};Xinha._addEvent(this.editor._doc,"mouseup",i.saveSelection)}}if(l){this.editor.deactivateEditor();this.editor.suspendUpdateToolbar=true;this.editor.currentModal=i}if(Xinha.is_ff2&&l){this._restoreTo=[this.editor._textArea.style.display,this.editor._iframe.style.visibility,this.editor.hidePanels()];this.editor._textArea.style.display="none";this.editor._iframe.style.visibility="hidden"}if(!this.attached){if(l){this.showBackground();this.posBackground({top:0,left:0});this.resizeBackground(Xinha.Dialog.calcFullBgSize())}else{this.background.style.display=""}Xinha.Dialog.fadeIn(this.rootElem,100,function(){if(l){var o=i.rootElem.getElementsByTagName("input");for(var p=0;p<o.length;p++){if(o[p].type=="text"){o[p].focus();break}}}});var k=c.offsetHeight;var e=c.offsetWidth;var h=Xinha.viewportSize();var f=h.y;var g=h.x;if(k>f){n.height=f+"px";if(c.scrollHeight>k){i.main.style.overflowY="auto"}}if(this.size.top&&this.size.left){n.top=parseInt(this.size.top,10)+"px";n.left=parseInt(this.size.left,10)+"px"}else{if(this.editor.btnClickEvent&&!this.centered){var a=this.editor.btnClickEvent;if(n.position=="absolute"){n.top=a.clientY+this.scrollPos.y+"px"}else{n.top=a.clientY+"px"}if(k+c.offsetTop>f){n.top=(n.position=="absolute"?this.scrollPos.y:0)+"px"}if(n.position=="absolute"){n.left=a.clientX+this.scrollPos.x+"px"}else{n.left=a.clientX+"px"}if(e+c.offsetLeft>g){n.left=a.clientX-e+"px";if(c.offsetLeft<0){n.left=0}}this.editor.btnClickEvent=null}else{var j=(f-k)/2;var d=(g-e)/2;n.top=((j>0)?j:0)+"px";n.left=((d>0)?d:0)+"px"}}}this.width=e;this.height=k;if(!l){this.resizeBackground({width:e+"px",height:k+"px"});this.posBackground({top:n.top,left:n.left})}if(typeof m!="undefined"){this.setValues(m)}this.dialogShown=true};Xinha.Dialog.prototype.hide=function(){if(this.attached){this.editor.hidePanel(this.rootElem)}else{Xinha.Dialog.fadeOut(this.rootElem);this.hideBackground();var a=this;if(Xinha.is_ff2&&this.modal){this.editor._textArea.style.display=this._restoreTo[0];this.editor._iframe.style.visibility=this._restoreTo[1];this.editor.showPanels(this._restoreTo[2])}if(!this.editor._isFullScreen&&this.modal){window.scroll(this.scrollPos.x,this.scrollPos.y)}if(Xinha.is_ie&&!this.modal){Xinha._removeEvent(this.editor._doc,"mouseup",a.saveSelection)}if(this.modal){this.editor.suspendUpdateToolbar=false;this.editor.currentModal=null;this.editor.activateEditor()}}if(this.modal){this.editor.restoreSelection(this._lastRange)}this.dialogShown=false;this.editor.updateToolbar();this.editor.focusEditor();return this.getValues()};Xinha.Dialog.prototype.toggle=function(){if(this.rootElem.style.display=="none"){this.show()}else{this.hide()}};Xinha.Dialog.prototype.collapse=function(){if(this.collapsed){this.collapsed=false;this.show()}else{this.main.style.height=0;this.collapsed=true}};Xinha.Dialog.prototype.getElementById=function(a){return this.document.getElementById(this.id[a]?this.id[a]:a)};Xinha.Dialog.prototype.getElementsByName=function(a){var b=this.document.getElementsByName(this.id[a]?this.id[a]:a);return Xinha.collectionToArray(b)};Xinha.Dialog.prototype.getElementsByClassName=function(a){return Xinha.getElementsByClassName(this.rootElem,a)};Xinha.Dialog.prototype.dragStart=function(c){if(this.attached||this.dragging){return}if(!this.modal){this.posBackground({top:0,left:0});this.resizeBackground(Xinha.Dialog.calcFullBgSize());this.editor.suspendUpdateToolbar=true}c=Xinha.getEvent(c);var b=this;b.dragging=true;b.scrollPos=b.editor.scrollPos();var a=b.rootElem.style;b.xOffs=c.offsetX||c.layerX;b.yOffs=c.offsetY||c.layerY;b.mouseMove=function(d){b.dragIt(d)};Xinha._addEvent(document,"mousemove",b.mouseMove);if(Xinha.is_ie){Xinha._addEvent(this.background.contentWindow.document,"mousemove",b.mouseMove)}b.mouseUp=function(d){b.dragEnd(d)};Xinha._addEvent(document,"mouseup",b.mouseUp);if(Xinha.is_ie){Xinha._addEvent(this.background.contentWindow.document,"mouseup",b.mouseUp)}};Xinha.Dialog.prototype.dragIt=function(c){var b=this;if(!b.dragging){return false}var d,e,a;if(b.rootElem.style.position=="absolute"){d=(c.clientY+this.scrollPos.y)-b.yOffs+"px";e=(c.clientX+this.scrollPos.x)-b.xOffs+"px";a={top:d,left:e}}else{if(b.rootElem.style.position=="fixed"){d=c.clientY-b.yOffs+"px";e=c.clientX-b.xOffs+"px";a={top:d,left:e}}}b.posDialog(a)};Xinha.Dialog.prototype.dragEnd=function(b){var a=this;if(!this.modal){this.editor.suspendUpdateToolbar=false}if(!a.dragging){return false}a.dragging=false;Xinha._removeEvent(document,"mousemove",a.mouseMove);if(Xinha.is_ie){Xinha._removeEvent(this.background.contentWindow.document,"mousemove",a.mouseMove)}Xinha._removeEvent(document,"mouseup",a.mouseUp);if(Xinha.is_ie){Xinha._removeEvent(this.background.contentWindow.document,"mouseup",a.mouseUp)}var c=a.rootElem.style;a.size.top=c.top;a.size.left=c.left;if(!this.modal){this.sizeBgToDialog()}};Xinha.Dialog.prototype.resizeStart=function(c){var b=this;if(b.resizing){return}b.resizing=true;if(!this.modal){this.editor.suspendUpdateToolbar=true;this.posBackground({top:0,left:0});this.resizeBackground(Xinha.Dialog.calcFullBgSize())}b.scrollPos=b.editor.scrollPos();var a=b.rootElem.style;a.minHeight="";a.overflow="hidden";b.xOffs=parseInt(a.left,10);b.yOffs=parseInt(a.top,10);b.mouseMove=function(d){b.resizeIt(d)};Xinha._addEvent(document,"mousemove",b.mouseMove);if(Xinha.is_ie){Xinha._addEvent(this.background.contentWindow.document,"mousemove",b.mouseMove)}b.mouseUp=function(d){b.resizeEnd(d)};Xinha._addEvent(document,"mouseup",b.mouseUp);if(Xinha.is_ie){Xinha._addEvent(this.background.contentWindow.document,"mouseup",b.mouseUp)}};Xinha.Dialog.prototype.resizeIt=function(c){var b=this;if(!b.resizing){return false}var d,e;if(b.rootElem.style.position=="absolute"){d=c.clientY+b.scrollPos.y;e=c.clientX+b.scrollPos.x}else{d=c.clientY;e=c.clientX}e-=b.xOffs;d-=b.yOffs;var a={};a.width=((e>10)?e:10)+8+"px";a.height=((d>10)?d:10)+"px";b.sizeDialog(a);b.width=b.rootElem.offsetWidth;b.height=b.rootElem.offsetHeight;b.onresize()};Xinha.Dialog.prototype.resizeEnd=function(b){var a=this;a.resizing=false;if(!this.modal){this.editor.suspendUpdateToolbar=false}Xinha._removeEvent(document,"mousemove",a.mouseMove);if(Xinha.is_ie){Xinha._removeEvent(this.background.contentWindow.document,"mouseup",a.mouseUp)}Xinha._removeEvent(document,"mouseup",a.mouseUp);if(Xinha.is_ie){Xinha._removeEvent(this.background.contentWindow.document,"mouseup",a.mouseUp)}a.size.width=a.rootElem.offsetWidth;a.size.height=a.rootElem.offsetHeight;if(!this.modal){this.sizeBgToDialog()}};Xinha.Dialog.prototype.attachToPanel=function(c){var b=this;var a=this.rootElem;var d=this.editor;this.attached=true;this.rootElem.side=c;this.captionBar.ondblclick=function(e){b.detachFromPanel(Xinha.getEvent(e))};a.style.position="static";a.parentNode.removeChild(a);this.background.style.display="none";this.captionBar.style.paddingLeft="3px";this.resizer.style.display="none";if(this.closable){this.closer.style.display="none"}this.icon.style.display="none";if(c=="left"||c=="right"){a.style.width=d.config.panel_dimensions[c]}else{a.style.width=""}Xinha.addClasses(a,"panel");d._panels[c].panels.push(a);d._panels[c].div.appendChild(a);d.notifyOf("panel_change",{action:"add",panel:a})};Xinha.Dialog.prototype.detachFromPanel=function(){var b=this;var a=b.rootElem;var d=a.style;var c=b.editor;b.attached=false;var e=Xinha.getElementTopLeft(a);d.position="absolute";d.top=e.top+"px";d.left=e.left+"px";b.captionBar.style.paddingLeft="22px";b.resizer.style.display="";if(b.closable){b.closer.style.display=""}b.icon.style.display="";if(b.size.width){a.style.width=b.size.width+"px"}Xinha.removeClasses(a,"panel");c.removePanel(a);document.body.appendChild(a);b.captionBar.ondblclick=function(){b.attachToPanel(a.side)};this.background.style.display="";this.sizeBgToDialog()};Xinha.Dialog.calcFullBgSize=function(){var b=Xinha.pageSize();var a=Xinha.viewportSize();return{width:(b.x>a.x?b.x:a.x)+"px",height:(b.x>a.y?b.y:a.y)+"px"}};Xinha.Dialog.prototype.sizeBgToDialog=function(){var a=this.rootElem.style;var b=this.background.style;b.top=a.top;b.left=a.left;b.width=a.width;b.height=a.height};Xinha.Dialog.prototype.hideBackground=function(){Xinha.Dialog.fadeOut(this.background)};Xinha.Dialog.prototype.showBackground=function(){Xinha.Dialog.fadeIn(this.background,70)};Xinha.Dialog.prototype.posBackground=function(a){if(this.background.style.display!="none"){this.background.style.top=a.top;this.background.style.left=a.left}};Xinha.Dialog.prototype.resizeBackground=function(a){if(this.background.style.display!="none"){this.background.style.width=a.width;this.background.style.height=a.height}};Xinha.Dialog.prototype.posDialog=function(b){var a=this.rootElem.style;a.left=b.left;a.top=b.top};Xinha.Dialog.prototype.sizeDialog=function(c){var b=this.rootElem.style;b.height=c.height;b.width=c.width;var d=parseInt(c.width,10);var a=parseInt(c.height,10)-this.captionBar.offsetHeight;this.main.style.height=(a>20)?a:20+"px";this.main.style.width=(d>10)?d:10+"px"};Xinha.Dialog.prototype.setValues=function(d){for(var g in d){if(typeof g=="string"){var c=this.getElementsByName(g);if(!c){continue}for(var a=0;a<c.length;a++){var h=c[a];switch(h.tagName.toLowerCase()){case"select":for(var f=0;f<h.options.length;f++){if(typeof d[g]=="object"){for(var b=0;b<d[g].length;b++){if(d[g][b]==h.options[f].value){h.options[f].selected=true}}}else{if(d[g]==h.options[f].value){h.options[f].selected=true}}}break;case"textarea":case"input":switch(h.getAttribute("type")){case"radio":if(h.value==d[g]){h.checked=true}break;case"checkbox":if(typeof d[g]=="object"){for(f in d[g]){if(d[g][f]==h.value){h.checked=true}}}else{if(d[g]==h.value){h.checked=true}}break;default:h.value=d[g];break}}}}}};Xinha.Dialog.prototype.getValues=function(){var d=[];var b=Xinha.collectionToArray(this.rootElem.getElementsByTagName("input")).append(Xinha.collectionToArray(this.rootElem.getElementsByTagName("textarea"))).append(Xinha.collectionToArray(this.rootElem.getElementsByTagName("select")));for(var a=0;a<b.length;a++){var f=b[a];if(!(f.name&&this.r_id[f.name])){continue}if(typeof d[this.r_id[f.name]]=="undefined"){d[this.r_id[f.name]]=null}var c=d[this.r_id[f.name]];switch(f.tagName.toLowerCase()){case"select":if(f.multiple){if(!c.push){if(c!==null){c=[c]}else{c=[]}}for(var e=0;e<f.options.length;e++){if(f.options[e].selected){c.push(f.options[e].value)}}}else{if(f.selectedIndex>=0){c=f.options[f.selectedIndex]}}break;default:switch(f.type.toLowerCase()){case"radio":if(f.checked){c=f.value}break;case"checkbox":if(c===null){if(this.getElementsByName(this.r_id[f.name]).length>1){c=[]}}if(f.checked){if(c!==null&&typeof c=="object"&&c.push){c.push(f.value)}else{c=f.value}}break;default:c=f.value;break}}d[this.r_id[f.name]]=c}return d};Xinha.Dialog.prototype.translateHtml=function(c,a){var b=this;if(typeof a=="function"){b._lc=a}else{if(a){this._lc=function(d){return Xinha._lc(d,a)}}else{this._lc=function(d){return d}}}c=c.replace(/((?:name)|(?:id))=(['"])\[([a-z0-9_]+)\]\2/ig,function(f,e,d,g){return e+"="+d+b.createId(g)+d}).replace(/<l10n>(.*?)<\/l10n>/ig,function(d,e){return b._lc(e)}).replace(/\="_\((.*?)\)"/g,function(d,e){return'="'+b._lc(e)+'"'});return c};Xinha.Dialog.prototype.fixupDOM=function(j,e){var g=this;if(typeof e!="string"){e="GenericPlugin"}var a=function(l,m){switch(m){case"editor":return _editor_url;case"plugin":return Xinha.getPluginDir(e);case"images":return g.editor.imgURL("images")}};var h=Xinha.collectionToArray(j.getElementsByTagName("img"));for(var f=0;f<h.length;++f){var b=h[f];var c=b.getAttribute("src");if(c){var d=c.replace(/^\[(editor|plugin|images)\]/,a);if(d!=c){b.setAttribute("src",d)}}}var k=Xinha.collectionToArray(j.getElementsByTagName("a"));for(var f=0;f<k.length;++f){var i=k[f];var c=i.getAttribute("href");if(c){var d=c.replace(/^\[(editor|plugin|images)\]/,a);if(d!=c){i.setAttribute("href",d)}}}};Xinha.Dialog.prototype.createId=function(b){var a=this;if(typeof a.id[b]=="undefined"){a.id[b]=Xinha.uniq("Dialog");a.r_id[a.id[b]]=b}return a.id[b]};Xinha.Dialog.activateModeless=function(a){if(Xinha.Dialog.activeModeless==a||a.attached){return}if(Xinha.Dialog.activeModeless){Xinha.Dialog.activeModeless.rootElem.style.zIndex=parseInt(Xinha.Dialog.activeModeless.rootElem.style.zIndex,10)-10}Xinha.Dialog.activeModeless=a;Xinha.Dialog.activeModeless.rootElem.style.zIndex=parseInt(Xinha.Dialog.activeModeless.rootElem.style.zIndex,10)+10};Xinha.Dialog.setOpacity=function(a,b){if(typeof a.style.filter!="undefined"){a.style.filter=(b<100)?"alpha(opacity="+b+")":""}else{a.style.opacity=b/100}};Xinha.Dialog.fadeIn=function(c,b,f,a,d){a=a||1;d=d||25;b=b||100;c.op=c.op||0;var e=c.op;if(c.style.display=="none"){Xinha.Dialog.setOpacity(c,0);c.style.display=""}if(e<b){c.op+=d;Xinha.Dialog.setOpacity(c,e);c.timeOut=setTimeout(function(){Xinha.Dialog.fadeIn(c,b,f,a,d)},a)}else{Xinha.Dialog.setOpacity(c,b);c.op=b;c.timeOut=null;if(typeof f=="function"){f.call()}}};Xinha.Dialog.fadeOut=function(b,a,c){a=a||1;c=c||30;if(typeof b.op=="undefined"){b.op=100}var d=b.op;if(d>=0){b.op-=c;Xinha.Dialog.setOpacity(b,d);b.timeOut=setTimeout(function(){Xinha.Dialog.fadeOut(b,a,c)},a)}else{Xinha.Dialog.setOpacity(b,0);b.style.display="none";b.op=0;b.timeOut=null}};
PypiClean
/django-chuck-0.2.3.tar.gz/django-chuck/modules/django-cms/project/apps/cmsplugin_filer_image/migrations/0007_rename_caption_to_caption_text.py
import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): db.rename_column('cmsplugin_filerimage', 'caption', 'caption_text') def backwards(self, orm): db.rename_column('cmsplugin_filerimage', 'caption_text', 'caption') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'cms.cmsplugin': { 'Meta': {'object_name': 'CMSPlugin'}, 'creation_date': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'max_length': '15', 'db_index': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'lft': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cms.CMSPlugin']", 'null': 'True', 'blank': 'True'}), 'placeholder': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cms.Placeholder']", 'null': 'True'}), 'plugin_type': ('django.db.models.fields.CharField', [], {'max_length': '50', 'db_index': 'True'}), 'position': ('django.db.models.fields.PositiveSmallIntegerField', [], {'null': 'True', 'blank': 'True'}), 'rght': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'tree_id': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}) }, 'cms.page': { 'Meta': {'ordering': "('site', 'tree_id', 'lft')", 'object_name': 'Page'}, 'changed_by': ('django.db.models.fields.CharField', [], {'max_length': '70'}), 'created_by': ('django.db.models.fields.CharField', [], {'max_length': '70'}), 'creation_date': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'in_navigation': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'db_index': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'lft': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'limit_visibility_in_menu': ('django.db.models.fields.SmallIntegerField', [], {'default': 'None', 'null': 'True', 'db_index': 'True', 'blank': 'True'}), 'login_required': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'moderator_state': ('django.db.models.fields.SmallIntegerField', [], {'default': '1', 'blank': 'True'}), 'navigation_extenders': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '80', 'null': 'True', 'blank': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'children'", 'null': 'True', 'to': "orm['cms.Page']"}), 'placeholders': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['cms.Placeholder']", 'symmetrical': 'False'}), 'publication_date': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'publication_end_date': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'publisher_is_draft': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'db_index': 'True'}), 'publisher_public': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "'publisher_draft'", 'unique': 'True', 'null': 'True', 'to': "orm['cms.Page']"}), 'publisher_state': ('django.db.models.fields.SmallIntegerField', [], {'default': '0', 'db_index': 'True'}), 'reverse_id': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '40', 'null': 'True', 'blank': 'True'}), 'rght': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'site': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sites.Site']"}), 'soft_root': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'template': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'tree_id': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}) }, 'cms.placeholder': { 'Meta': {'object_name': 'Placeholder'}, 'default_width': ('django.db.models.fields.PositiveSmallIntegerField', [], {'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slot': ('django.db.models.fields.CharField', [], {'max_length': '50', 'db_index': 'True'}) }, 'cmsplugin_filer_image.filerimage': { 'Meta': {'object_name': 'FilerImage', 'db_table': "'cmsplugin_filerimage'", '_ormbases': ['cms.CMSPlugin']}, 'alignment': ('django.db.models.fields.CharField', [], {'max_length': '10', 'null': 'True', 'blank': 'True'}), 'alt_text': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'caption_text': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['cms.CMSPlugin']", 'unique': 'True', 'primary_key': 'True'}), 'crop': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'free_link': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'height': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'image': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['filer.Image']", 'null': 'True', 'blank': 'True'}), 'image_url': ('django.db.models.fields.URLField', [], {'default': 'None', 'max_length': '200', 'null': 'True', 'blank': 'True'}), 'original_link': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'page_link': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cms.Page']", 'null': 'True', 'blank': 'True'}), 'thumbnail_option': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cmsplugin_filer_image.ThumbnailOption']", 'null': 'True', 'blank': 'True'}), 'upscale': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'use_autoscale': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'width': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}) }, 'cmsplugin_filer_image.thumbnailoption': { 'Meta': {'ordering': "('width', 'height')", 'object_name': 'ThumbnailOption'}, 'crop': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'height': ('django.db.models.fields.IntegerField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'upscale': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'width': ('django.db.models.fields.IntegerField', [], {}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'filer.file': { 'Meta': {'object_name': 'File'}, '_file_size': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'file': ('django.db.models.fields.files.FileField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'folder': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'all_files'", 'null': 'True', 'to': "orm['filer.Folder']"}), 'has_all_mandatory_data': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_public': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'modified_at': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'original_filename': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'owned_files'", 'null': 'True', 'to': "orm['auth.User']"}), 'polymorphic_ctype': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'polymorphic_filer.file_set'", 'null': 'True', 'to': "orm['contenttypes.ContentType']"}), 'sha1': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '40', 'blank': 'True'}), 'uploaded_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}) }, 'filer.folder': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('parent', 'name'),)", 'object_name': 'Folder'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'lft': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'modified_at': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'filer_owned_folders'", 'null': 'True', 'to': "orm['auth.User']"}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'children'", 'null': 'True', 'to': "orm['filer.Folder']"}), 'rght': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'tree_id': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'uploaded_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}) }, 'filer.image': { 'Meta': {'object_name': 'Image', '_ormbases': ['filer.File']}, '_height': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), '_width': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'author': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'date_taken': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'default_alt_text': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'default_caption': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'file_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['filer.File']", 'unique': 'True', 'primary_key': 'True'}), 'must_always_publish_author_credit': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'must_always_publish_copyright': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'subject_location': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '64', 'null': 'True', 'blank': 'True'}) }, 'sites.site': { 'Meta': {'ordering': "('domain',)", 'object_name': 'Site', 'db_table': "'django_site'"}, 'domain': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) } } complete_apps = ['cmsplugin_filer_image']
PypiClean
/BlueWhale3_Bioinformatics-4.1.32-py3-none-any.whl/orangecontrib/bioinformatics/widgets/OWGEODatasets.py
import sys from types import SimpleNamespace from typing import Any, Optional, DefaultDict from functools import lru_cache from collections import OrderedDict, defaultdict import numpy as np import requests from AnyQt.QtGui import QFont, QColor from AnyQt.QtCore import Qt, QSize, QVariant, QModelIndex from AnyQt.QtWidgets import ( QStyle, QSplitter, QTableView, QTreeWidget, QTreeWidgetItem, QAbstractItemView, QAbstractScrollArea, ) from Orange.data import Table from Orange.widgets.gui import ( LinkRole, IndicatorItemDelegate, LinkStyledItemDelegate, rubber, lineEdit, separator, widgetBox, auto_commit, widgetLabel, radioButtonsInBox, ) from Orange.widgets.utils import itemmodels from Orange.widgets.widget import Msg, OWWidget from Orange.widgets.settings import Setting from Orange.widgets.utils.signals import Output from Orange.widgets.utils.concurrent import TaskState, ConcurrentWidgetMixin from orangecontrib.bioinformatics.geo import is_cached, pubmed_url, local_files from orangecontrib.bioinformatics.geo.dataset import GDSInfo, get_samples, dataset_download from orangecontrib.bioinformatics.i18n_config import * def __(key): return i18n.t('bioinformatics.owgEODatasets.' + key) class Result(SimpleNamespace): gds_dataset: Optional[Table] = None def run_download_task(gds_id: str, samples: DefaultDict[str, list], transpose: bool, state: TaskState): res = Result() current_iter = 0 max_iter = 102 def callback(): nonlocal current_iter current_iter += 1 state.set_progress_value(100 * (current_iter / max_iter)) state.set_status(__("state.downloading")) res.gds_dataset = dataset_download(gds_id, samples, transpose=transpose, callback=callback) return res class GEODatasetsModel(itemmodels.PyTableModel): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.setHorizontalHeaderLabels( ['', __("label.id"), __("label.pubmed_id"), __("label.organism"), __("label.sample"), __("label.feature"), __("label.gene"), __("label.subset"), __("label.title")] ) ( self.indicator_col, self.gds_id_col, self.pubmed_id_col, self.organism_col, self.samples_col, self.features_col, self.genes_col, self.subsets_col, self.title_col, ) = range(9) self.info = None self.table = None self._sort_column = self.gds_id_col self._sort_order = Qt.AscendingOrder self.font = QFont() self.font.setUnderline(True) self.color = QColor(Qt.blue) @lru_cache(maxsize=10000) def _row_instance(row, column): return self[int(row)][int(column)] self._row_instance = _row_instance def initialize(self, info: OrderedDict): self.info = info def _gds_to_row(gds: dict): gds_id = gds['name'] title = gds['title'] organism = gds['sample_organism'] samples = len(get_samples(gds)) features = gds['variables'] genes = gds['genes'] subsets = len(gds['subsets']) pubmed = gds.get('pubmed_id', '') pubmed_id = pubmed if isinstance(pubmed, list) and len(pubmed) > 0: pubmed_id = pubmed[0] return [ ' ' if is_cached(gds_id) else '', gds_id, pubmed_id, organism, samples, features, genes, subsets, title, ] self.table = np.asarray([_gds_to_row(gds) for gds in info.values()]) self.show_table() def _argsortData(self, data: np.ndarray, order) -> Optional[np.ndarray]: if not data.size: return # store order choice. self._sort_column = column = self.sortColumn() self._sort_order = self.sortOrder() if column == self.gds_id_col: data = np.char.replace(data, 'GDS', '') data = data.astype(int) elif column in (self.samples_col, self.features_col, self.genes_col, self.subsets_col, self.pubmed_id_col): data[data == ''] = '0' data = data.astype(int) indices = np.argsort(data, kind='mergesort') if order == Qt.DescendingOrder: indices = indices[::-1] return indices def columnCount(self, parent=QModelIndex()): return 0 if parent.isValid() else self._table.shape[1] def data( self, index, role, _str=str, _Qt_DisplayRole=Qt.DisplayRole, # noqa: N803 _Qt_EditRole=Qt.EditRole, _Qt_FontRole=Qt.FontRole, _Qt_ForegroundRole=Qt.ForegroundRole, _LinkRolee=LinkRole, _recognizedRoles=frozenset([Qt.DisplayRole, Qt.EditRole, Qt.FontRole, Qt.ForegroundRole, LinkRole]), ): if role not in _recognizedRoles: return None row, col = index.row(), index.column() if not 0 <= row <= self.rowCount(): return None row = self.mapToSourceRows(row) try: # value = self[row][col] value = self._row_instance(row, col) except IndexError: return if role == Qt.DisplayRole: return QVariant(str(value)) elif role == Qt.ToolTipRole: return QVariant(str(value)) if col == self.pubmed_id_col: if role == _Qt_ForegroundRole: return self.color elif role == _Qt_FontRole: return self.font elif role == _LinkRolee: return pubmed_url.format(value) def get_row_index(self, gds_name): # test = self._table[self._table[:, 1] == gds_name, :] rows, _ = np.where(np.isin(self._table, gds_name)) if rows is not None and len(rows) > 0: return self.mapFromSourceRows(rows[0]) def filter_table(self, filter_pattern: str): selection = np.full(self.table.shape, True) for search_word in filter_pattern.split(): match_result = np.core.defchararray.find(np.char.lower(self.table), search_word.lower()) >= 0 selection = selection & match_result return selection def update_cache_indicator(self): self.table[:, 0] = [' ' if is_cached(gid) else '' for gid in self.table[:, self.gds_id_col]] def show_table(self, filter_pattern=''): # clear cache if model changes self._row_instance.cache_clear() self.wrap(self.table[self.filter_table(filter_pattern).any(axis=1), :]) self.sort(self._sort_column, self._sort_order) class OWGEODatasets(OWWidget, ConcurrentWidgetMixin): name = __("name") description = __("desc") icon = "icons/OWGEODatasets.svg" priority = 10 class Warning(OWWidget.Warning): using_local_files = Msg(__("msg_using_local_files")) class Error(OWWidget.Error): no_connection = Msg(__("msg_no_connection")) class Outputs: gds_data = Output("Expression Data", Table, label=i18n.t("bioinformatics.common.expression_data")) search_pattern = Setting('') auto_commit = Setting(True) genes_as_rows = Setting(False) selected_gds = Setting(None) gds_selection_states = Setting({}) splitter_settings = Setting( ( b'\x00\x00\x00\xff\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x01' b'\xea\x00\x00\x00\xd7\x01\x00\x00\x00\x07\x01\x00\x00\x00\x02', b'\x00\x00\x00\xff\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x01' b'\xb5\x00\x00\x02\x10\x01\x00\x00\x00\x07\x01\x00\x00\x00\x01', ) ) def __init__(self): OWWidget.__init__(self) ConcurrentWidgetMixin.__init__(self) try: self.gds_info: Optional[GDSInfo] = GDSInfo() except requests.exceptions.ConnectionError: self.gds_info = {} self.Error.no_connection() return self.gds_data: Optional[Table] = None # Control area box = widgetBox(self.controlArea, __("box.info"), addSpace=True) self.infoBox = widgetLabel(box, 'Initializing\n\n') box = widgetBox(self.controlArea, __("box.output"), addSpace=True) radioButtonsInBox(box, self, 'genes_as_rows', [__("btn_sample_row"), __("btn_gene_row")], callback=self._run) separator(box) rubber(self.controlArea) auto_commit(self.controlArea, self, 'auto_commit', __("btn_commit"), box=False) # Main Area # Filter widget self.filter = lineEdit( self.mainArea, self, 'search_pattern', __("box.filter"), callbackOnType=True, callback=self._apply_filter ) self.mainArea.layout().addWidget(self.filter) splitter_vertical = QSplitter(Qt.Vertical, self.mainArea) self.mainArea.layout().addWidget(splitter_vertical) # set table view self.table_view = QTableView(splitter_vertical) self.table_view.setShowGrid(False) self.table_view.setSortingEnabled(True) self.table_view.sortByColumn(1, Qt.AscendingOrder) self.table_view.setAlternatingRowColors(True) self.table_view.verticalHeader().setVisible(False) self.table_view.setSelectionBehavior(QAbstractItemView.SelectRows) self.table_view.setSelectionMode(QAbstractItemView.SingleSelection) self.table_view.viewport().setMouseTracking(True) self.table_view.setSizeAdjustPolicy(QAbstractScrollArea.AdjustToContents) self.table_model = GEODatasetsModel() self.table_model.initialize(self.gds_info) self.table_view.setModel(self.table_model) self.table_view.horizontalHeader().setStretchLastSection(True) self.table_view.resizeColumnsToContents() v_header = self.table_view.verticalHeader() option = self.table_view.viewOptions() size = self.table_view.style().sizeFromContents(QStyle.CT_ItemViewItem, option, QSize(20, 20), self.table_view) v_header.setDefaultSectionSize(size.height() + 2) v_header.setMinimumSectionSize(5) # set item delegates self.table_view.setItemDelegateForColumn( self.table_model.pubmed_id_col, LinkStyledItemDelegate(self.table_view) ) self.table_view.setItemDelegateForColumn(self.table_model.gds_id_col, LinkStyledItemDelegate(self.table_view)) self.table_view.setItemDelegateForColumn( self.table_model.indicator_col, IndicatorItemDelegate(self.table_view, role=Qt.DisplayRole) ) splitter_horizontal = QSplitter(Qt.Horizontal, splitter_vertical) # Description Widget box = widgetBox(splitter_horizontal, __("box.desc")) self.description_widget = widgetLabel(box, '') self.description_widget.setWordWrap(True) rubber(box) # Sample Annotations Widget box = widgetBox(splitter_horizontal, __("box.sample_annotation")) self.annotations_widget = QTreeWidget(box) self.annotations_widget.setHeaderLabels([__("label.type"), __("label.sample_count")]) self.annotations_widget.setRootIsDecorated(True) box.layout().addWidget(self.annotations_widget) self._annotations_updating = False self.annotations_widget.itemChanged.connect(self.on_annotation_selection_changed) self.splitters = splitter_vertical, splitter_horizontal for sp, setting in zip(self.splitters, self.splitter_settings): sp.splitterMoved.connect(self._splitter_moved) sp.restoreState(setting) self.table_view.selectionModel().selectionChanged.connect(self.on_gds_selection_changed) self._apply_filter() self.commit() def _splitter_moved(self, *args): self.splitter_settings = [bytes(sp.saveState()) for sp in self.splitters] def _set_description_widget(self): self.description_widget.setText(self.selected_gds.get('description', 'Description not available.')) def _set_annotations_widget(self, gds): self._annotations_updating = True self.annotations_widget.clear() annotations = defaultdict(set) subsets_count = {} for desc in gds['subsets']: annotations[desc['type']].add(desc['description']) subsets_count[desc['description']] = str(len(desc['sample_id'])) for _type, subsets in annotations.items(): key = (gds["name"], _type) parent = QTreeWidgetItem(self.annotations_widget, [_type]) parent.key = key for subset in subsets: key = (gds['name'], _type, subset) item = QTreeWidgetItem(parent, [subset, subsets_count.get(subset, '')]) item.setFlags(item.flags() | Qt.ItemIsUserCheckable) item.setCheckState(0, self.gds_selection_states.get(key, Qt.Checked)) item.key = key self._annotations_updating = False self.annotations_widget.expandAll() for i in range(self.annotations_widget.columnCount()): self.annotations_widget.resizeColumnToContents(i) def _set_selection(self): if self.selected_gds is not None: index = self.table_model.get_row_index(self.selected_gds.get('name')) if index is not None: self.table_view.selectionModel().blockSignals(True) self.table_view.selectRow(index) self._handle_selection_changed() self.table_view.selectionModel().blockSignals(False) def _handle_selection_changed(self): if self.table_model.table is not None: selection = self.table_view.selectionModel().selectedRows(self.table_model.gds_id_col) selected_gds_name = selection[0].data() if len(selection) > 0 else None if selected_gds_name: self.selected_gds = self.table_model.info.get(selected_gds_name) self._set_annotations_widget(self.selected_gds) self._set_description_widget() else: self.annotations_widget.clear() self.description_widget.clear() self.update_info() def _apply_filter(self): if self.table_model.table is not None: self.table_model.show_table(filter_pattern=str(self.search_pattern)) self._set_selection() self.update_info() def _run(self): self.Warning.using_local_files.clear() if self.selected_gds is not None: self.gds_data = None self.start( run_download_task, self.selected_gds.get('name'), self.get_selected_samples(), self.genes_as_rows ) def on_gds_selection_changed(self): self._handle_selection_changed() self.commit() def on_annotation_selection_changed(self): if self._annotations_updating: return for i in range(self.annotations_widget.topLevelItemCount()): item = self.annotations_widget.topLevelItem(i) if 'key' in item.__dict__: self.gds_selection_states[item.key] = item.checkState(0) for j in range(item.childCount()): child = item.child(j) if 'key' in child.__dict__: self.gds_selection_states[child.key] = child.checkState(0) self.commit() def update_info(self): all_gds = len(self.table_model.info) text = __("row_data_info").format(all_gds, len(local_files.listfiles())) filtered = self.table_view.model().rowCount() if all_gds != filtered: text += __("row_after_filter").format(filtered) self.infoBox.setText(text) def get_selected_samples(self): """ Return the currently selected sample annotations. The return value is a list of selected (sample type, sample value) tuples. .. note:: if some Sample annotation type has no selected values. this method will return all values for it. TODO: this could probably be simplified. """ def childiter(item): """ Iterate over the children of an QTreeWidgetItem instance. """ for i in range(item.childCount()): yield item.child(i) samples = [] unused_types = [] used_types = [] for stype in childiter(self.annotations_widget.invisibleRootItem()): selected_values = [] all_values = [] for sval in childiter(stype): value = (str(stype.text(0)), str(sval.text(0))) if self.gds_selection_states.get(sval.key, True): selected_values.append(value) all_values.append(value) if selected_values: samples.extend(selected_values) used_types.append(str(stype.text(0))) else: # If no sample of sample type is selected we don't filter on it. samples.extend(all_values) unused_types.append(str(stype.text(0))) _samples = defaultdict(list) for sample, sample_type in samples: _samples[sample].append(sample_type) return _samples def commit(self): self._run() def on_exception(self, ex: Exception): self.Warning.using_local_files() def on_done(self, result: Result): assert isinstance(result.gds_dataset, Table) self.gds_data = result.gds_dataset if self.gds_info: self.table_model.update_cache_indicator() self._apply_filter() self.Outputs.gds_data.send(self.gds_data) def on_partial_result(self, result: Any) -> None: pass def onDeleteWidget(self): self.shutdown() super().onDeleteWidget() def send_report(self): self.report_items( __("report.geo_dataset"), [ (__("report.id"), self.selected_gds['name']), (__("report.title"), self.selected_gds['title']), (__("report.organism"), self.selected_gds['sample_organism']), ], ) self.report_items( __("report.data"), [ (__("report.samples"), self.selected_gds['sample_count']), (__("report.features"), self.selected_gds['variables']), (__("report.genes"), self.selected_gds['genes']), ], ) self.report_name(__("report.sample_annotations")) subsets = defaultdict(list) for subset in self.selected_gds['subsets']: subsets[subset['type']].append((subset['description'], len(subset['sample_id']))) self.report_html += "<ul>" for _type in subsets: self.report_html += "<b>" + _type + ":</b></br>" for desc, count in subsets[_type]: self.report_html += 9 * "&nbsp" + "<b>{}:</b> {}</br>".format(desc, count) self.report_html += "</ul>" if __name__ == "__main__": def main_test(): from AnyQt.QtWidgets import QApplication app = QApplication([]) w = OWGEODatasets() w.show() w.raise_() r = app.exec_() w.saveSettings() return r sys.exit(main_test())
PypiClean
/BCPy2000-1.6.tar.gz/BCPy2000-1.6/src/BCI2000Tools/NIASourceModule.py
import time import numpy import SigTools import pylibusb as usb # NB: the original pynia-0.0.2.py uses a module named usb for usb access, but usb is for python 2.6 only. import ctypes class NIA_Interface(object): """ Attaches the NIA device, and provides low level data collection and information """### def __init__(self,): self.VENDOR_ID = 0x1234 #: Vendor Id self.PRODUCT_ID = 0x0000 #: Product Id for the bridged usb cable self.TIME_OUT = 1000 self.handle = None self.device = None found =False usb.init() if not usb.get_busses(): usb.find_busses() usb.find_devices() buses = usb.get_busses() for bus in buses : for device in bus.devices : if device.descriptor.idVendor == self.VENDOR_ID and device.descriptor.idProduct == self.PRODUCT_ID: found = True break if found: break if not found: raise RuntimeError("Cannot find device") interface_nr = 0 self.device = device self.config = self.device.config[0] self.interface = interface_nr #self.interface = self.config.interfaces[0][0] self.ENDPOINT1 = 0x81 #self.interface.endpoint[0].bEndpointAddress #self.ENDPOINT1 = self.interface.endpoints[0].address self.ENDPOINT2 = 0x01 #self.interface.endpoints[1].address self.PACKET_LENGTH = 56 #self.interface.endpoints[0].maxPacketSize def open(self) : """ Attache NIA interface """### if not self.device: raise RuntimeError("Cable isn't plugged in") self.handle = usb.open(self.device) if hasattr(usb,'get_driver_np'): # non-portable libusb extension name = usb.get_driver_np(self.handle,self.interface) if name != '': debug("attached to kernel driver '%s', detaching."%name ) usb.detach_kernel_driver_np(self.handle,self.interface) #self.handle.detachKernelDriver(0) #self.handle.detachKernelDriver(1) usb.set_configuration(self.handle, self.config.bConfigurationValue) #self.handle.setConfiguration(self.config) usb.claim_interface(self.handle, self.interface) #self.handle.claimInterface(self.interface) #self.handle.setAltInterface(self.interface) self.INPUT_BUFFER = ctypes.create_string_buffer(self.PACKET_LENGTH) def close(self): """ Release NIA interface """### usb.close(self.handle) #self.handle.reset() # self.handle.releaseInterface() self.handle, self.device = None, None def read(self): """ Read data off the NIA from its internal buffer of up to 16 samples """### usb.interrupt_read(self.handle,self.ENDPOINT1,self.INPUT_BUFFER,self.TIME_OUT); return self.INPUT_BUFFER ################################################################# ################################################################# class BciSource(BciGenericSource): ############################################################# def Description(self): return "records from the NIA" ############################################################# def Construct(self): parameters = [ "Source:Signal%20Properties:DataIOFilter int SourceCh= 1 1 1 % // number of digitized and stored channels", "Source:Signal%20Properties:DataIOFilter list ChannelNames= 1 NIA % % % // list of channel names", "Source:Signal%20Properties:DataIOFilter floatlist SourceChOffset= 1 0 0 % % // Offset for channels in A/D units", "Source:Signal%20Properties:DataIOFilter floatlist SourceChGain= 1 1e-3 1 % % // gain for each channel (A/D units -> muV)", "Source:Online%20Processing:TransmissionFilter list TransmitChList= 1 1 % % % // list of transmitted channels", "Source:NIA%20Recording int HardwareSamplingRate= 3900 3900 1 % // sampling rate at which the NIA natively runs", "Source:NIA%20Recording float HardwareChunkMsec= 2.0 2.0 0 % // milliseconds of signal to record at a time", "Source:NIA%20Recording float NIABufferSizeMsec= 10000 10000 0 % // size of ring buffer", "Source:NIA%20Recording int DSFilterOrder= 10 10 2 % // order of pre-decimation lowpass-filter used before decimation", "Source:NIA%20Recording float DSFilterFreqFactor= 0.4 0.4 0 1 // lowpass cutoff of pre-decimation filter expressed as a proportion of the desired Nyquist frequency", ] states = [ ] self._add_thread('listen', self.Listen).start() return (parameters, states) ############################################################# def Initialize(self, indim, outdim): self.warp = 1000.0 # let the samples flowing into the ring buffer set the pace self.eegfs = self.samplingrate() self.hwfs = int(self.params['HardwareSamplingRate']) self.chunk = SigTools.msec2samples(float(self.params['HardwareChunkMsec']), self.hwfs) ringsize = SigTools.msec2samples(float(self.params['NIABufferSizeMsec']), self.hwfs) self.ring = SigTools.ring(ringsize, indim[0]) self.ring.allow_overflow = True self.nominal['HardwareSamplesPerPacket'] = SigTools.msec2samples(self.nominal['SecondsPerPacket']*1000.0, self.hwfs) cutoff = float(self.params['DSFilterFreqFactor']) * self.eegfs / 2.0 order = int(self.params['DSFilterOrder']) if order > 0 and cutoff > 0.0: self.filter = SigTools.causalfilter(freq_hz=cutoff, samplingfreq_hz=self.hwfs, order=order, type='lowpass') #, method=SigTools.firdesign) else: self.filter = None self.dsind = numpy.linspace(0.0, self.nominal['HardwareSamplesPerPacket'], self.nominal['SamplesPerPacket']+1, endpoint=True) self.dsind = numpy.round(self.dsind).astype(numpy.int).tolist() self._threads['listen'].post('start') self._threads['listen'].read('ready', wait=True, remove=True) self._check_threads() ############################################################# def Halt(self): self._threads['listen'].post('stop') self._check_threads() ############################################################# def Process(self, sig): ns = int(self.nominal['HardwareSamplesPerPacket']) while self.ring.to_read() < ns: time.sleep(0.001) if self._check_threads(): break x = self.ring.read(ns) nch = min([x.shape[0], sig.shape[0]]) x = numpy.asarray(x[:nch, :]) out = numpy.asarray(sig[:nch, :]) #sig[nch:, :] = 0 packetsize = int(self.nominal['SamplesPerPacket']) sig[nch:, :] = self.packet_count * packetsize + numpy.array(list(range(packetsize)), ndmin=2, dtype='float').repeat(sig.shape[0]-nch, axis=0) # low-pass if self.filter != None: x = self.filter.apply(x, axis=1) # downsample out[:, :] = x[:, self.dsind[:-1]] # out is a view into a slice of sig return sig ############################################################# def Listen(self, mythread): mythread.read('stop', remove=True) mythread.read('start', wait=True, remove=True) nchan = self.ring.channels() nsamp = int(round(self.chunk)) # initialization of NIA self.interface = NIA_Interface() self.interface.open() mythread.read('stop', remove=True) mythread.post('ready', wait=True) while not mythread.read('stop'): data = [] # prepares a new list to store the read NIA data while len(data) < nsamp: # was set to perform self.Points=25 reads at a time---why 25, we don't know exactly time.sleep(0.001) raw = self.interface.read() nread = ord(raw[54]) # byte 54 gives the number of samples for t in range(nread): val = ord(raw[t*3+2])*65536 + ord(raw[t*3+1])*256 + ord(raw[t*3]) data.append(val) data = numpy.array([data]) self.ring.write(data) # de-initialization of NIA self.interface.close() self.interface = None ################################################################# #################################################################
PypiClean
/Argonaut-0.3.4.tar.gz/Argonaut-0.3.4/argonaut/public/ckeditor/plugins/clipboard/dialogs/paste.js
/* Copyright (c) 2003-2010, CKSource - Frederico Knabben. All rights reserved. For licensing, see LICENSE.html or http://ckeditor.com/license */ CKEDITOR.dialog.add('paste',function(a){var b=a.lang.clipboard,c=CKEDITOR.env.isCustomDomain();function d(e){var f=new CKEDITOR.dom.document(e.document),g=f.$;f.getById('cke_actscrpt').remove();CKEDITOR.env.ie?g.body.contentEditable='true':g.designMode='on';if(CKEDITOR.env.ie&&CKEDITOR.env.version<8)f.getWindow().on('blur',function(){g.selection.empty();});f.on('keydown',function(h){var i=h.data,j=i.getKeystroke(),k;switch(j){case 27:this.hide();k=1;break;case 9:case CKEDITOR.SHIFT+9:this.changeFocus(true);k=1;}k&&i.preventDefault();},this);a.fire('ariaWidget',new CKEDITOR.dom.element(e.frameElement));};return{title:b.title,minWidth:CKEDITOR.env.ie&&CKEDITOR.env.quirks?370:350,minHeight:CKEDITOR.env.quirks?250:245,onShow:function(){this.parts.dialog.$.offsetHeight;var e='<html dir="'+a.config.contentsLangDirection+'"'+' lang="'+(a.config.contentsLanguage||a.langCode)+'">'+'<head><style>body { margin: 3px; height: 95%; } </style></head><body>'+'<script id="cke_actscrpt" type="text/javascript">'+'window.parent.CKEDITOR.tools.callFunction( '+CKEDITOR.tools.addFunction(d,this)+', this );'+'</script></body>'+'</html>',f=CKEDITOR.dom.element.createFromHtml('<iframe class="cke_pasteframe" frameborder="0" allowTransparency="true"'+(c?" src=\"javascript:void((function(){document.open();document.domain='"+document.domain+"';"+'document.close();'+'})())"':'')+' role="region"'+' aria-label="'+b.pasteArea+'"'+' aria-describedby="'+this.getContentElement('general','pasteMsg').domId+'"'+' aria-multiple="true"'+'></iframe>');f.on('load',function(j){j.removeListener();var k=f.getFrameDocument().$;k.open();if(c)k.domain=document.domain;k.write(e);k.close();},this);f.setCustomData('dialog',this);var g=this.getContentElement('general','editing_area'),h=g.getElement();h.setHtml('');h.append(f);if(CKEDITOR.env.ie){var i=CKEDITOR.dom.element.createFromHtml('<span tabindex="-1" style="position:absolute;" role="presentation"></span>');i.on('focus',function(){f.$.contentWindow.focus();});h.append(i);g.focus=function(){i.focus();this.fire('focus');};}g.getInputElement=function(){return f;};if(CKEDITOR.env.ie){h.setStyle('display','block');h.setStyle('height',f.$.offsetHeight+2+'px');}},onHide:function(){if(CKEDITOR.env.ie)this.getParentEditor().document.getBody().$.contentEditable='true';},onLoad:function(){if((CKEDITOR.env.ie7Compat||CKEDITOR.env.ie6Compat)&&a.lang.dir=='rtl')this.parts.contents.setStyle('overflow','hidden');},onOk:function(){var e=this.getContentElement('general','editing_area').getElement(),f=e.getElementsByTag('iframe').getItem(0),g=this.getParentEditor(),h=f.$.contentWindow.document.body.innerHTML; setTimeout(function(){g.fire('paste',{html:h});},0);},contents:[{id:'general',label:a.lang.common.generalTab,elements:[{type:'html',id:'securityMsg',html:'<div style="white-space:normal;width:340px;">'+b.securityMsg+'</div>'},{type:'html',id:'pasteMsg',html:'<div style="white-space:normal;width:340px;">'+b.pasteMsg+'</div>'},{type:'html',id:'editing_area',style:'width: 100%; height: 100%;',html:'',focus:function(){var e=this.getInputElement().$.contentWindow;setTimeout(function(){e.focus();},500);}}]}]};});
PypiClean
/Biomatters-Azimuth-2-0.1.tar.gz/Biomatters-Azimuth-2-0.1/azimuth/features/microhomology.py
from math import exp from re import findall def compute_score(seq, tmpfile1="1.before removing duplication.txt", tmpfile2="2.all microhomology patterns.txt", verbose=False): length_weight=20.0 left=30 # Insert the position expected to be broken. right=len(seq)-int(left) #print 'length of seq = '+str(len(seq)) file_temp=open(tmpfile1, "w") for k in range(2,left)[::-1]: for j in range(left,left+right-k+1): for i in range(0,left-k+1): if seq[i:i+k]==seq[j:j+k]: length=j-i file_temp.write(seq[i:i+k]+'\t'+str(i)+'\t'+str(i+k)+'\t'+str(j)+'\t'+str(j+k)+'\t'+str(length)+'\n') file_temp.close() ### After searching out all microhomology patterns, duplication should be removed!! f1=open(tmpfile1, "r") s1=f1.read() f2=open(tmpfile2, "w") #After removing duplication f2.write(seq+'\t'+'microhomology\t'+'deletion length\t'+'score of a pattern\n') if s1!="": list_f1=s1.strip().split('\n') sum_score_3=0 sum_score_not_3=0 for i in range(len(list_f1)): n=0 score_3=0 score_not_3=0 line=list_f1[i].split('\t') scrap=line[0] left_start=int(line[1]) left_end=int(line[2]) right_start=int(line[3]) right_end=int(line[4]) length=int(line[5]) for j in range(i): line_ref=list_f1[j].split('\t') left_start_ref=int(line_ref[1]) left_end_ref=int(line_ref[2]) right_start_ref=int(line_ref[3]) right_end_ref=int(line_ref[4]) if (left_start >= left_start_ref) and (left_end <= left_end_ref) and (right_start >= right_start_ref) and (right_end <= right_end_ref): if (left_start - left_start_ref)==(right_start - right_start_ref) and (left_end - left_end_ref)==(right_end - right_end_ref): n+=1 else: pass if n == 0: if (length % 3)==0: length_factor = round(1/exp((length)/(length_weight)),3) num_GC=len(findall('G',scrap))+len(findall('C',scrap)) score_3=100*length_factor*((len(scrap)-num_GC)+(num_GC*2)) elif (length % 3)!=0: length_factor = round(1/exp((length)/(length_weight)),3) num_GC=len(findall('G',scrap))+len(findall('C',scrap)) score_not_3=100*length_factor*((len(scrap)-num_GC)+(num_GC*2)) f2.write(seq[0:left_end]+'-'*length+seq[right_end:]+'\t'+scrap+'\t'+str(length)+'\t'+str(100*length_factor*((len(scrap)-num_GC)+(num_GC*2)))+'\n') sum_score_3+=score_3 sum_score_not_3+=score_not_3 mh_score = sum_score_3+sum_score_not_3 oof_score = (sum_score_not_3)*100/(sum_score_3+sum_score_not_3) if verbose: print 'Microhomology score = ' + str(mh_score) print 'Out-of-frame score = ' + str(oof_score) f1.close() f2.close() return mh_score, oof_score if __name__ == '__main__': seq='GGAGGAAGGGCCTGAGTCCGAGCAGAAGAAGAAGGGCTCCCATCACATCAACCGGTGGCG' # The length of sequence is recommend within 60~80 bases. tmpfile1 = "1.before removing duplication.txt" tmpfile2 = "2.all microhomology patterns.txt" mh_score, oof_score = compute_score(seq, tmpfile1=tmpfile1, tmpfile2=tmpfile2, verbose=True) # The row of output file is consist of (full sequence, microhomology scrap, deletion length, score of pattern). #correct output is #Microhomology score = 4662.9 #Out-of-frame score = 50.7473889639 #GGAGGAAGGGCCTGAGTCCGAGCAGAAGAAGAAGGGCTCCCATCACATCAACCGGTGGCG print seq
PypiClean
/Django_patch-2.2.19-py3-none-any.whl/django/contrib/gis/admin/options.py
from django.contrib.admin import ModelAdmin from django.contrib.gis.admin.widgets import OpenLayersWidget from django.contrib.gis.db import models from django.contrib.gis.gdal import OGRGeomType from django.forms import Media spherical_mercator_srid = 3857 class GeoModelAdmin(ModelAdmin): """ The administration options class for Geographic models. Map settings may be overloaded from their defaults to create custom maps. """ # The default map settings that may be overloaded -- still subject # to API changes. default_lon = 0 default_lat = 0 default_zoom = 4 display_wkt = False display_srid = False extra_js = [] num_zoom = 18 max_zoom = False min_zoom = False units = False max_resolution = False max_extent = False modifiable = True mouse_position = True scale_text = True layerswitcher = True scrollable = True map_width = 600 map_height = 400 map_srid = 4326 map_template = 'gis/admin/openlayers.html' openlayers_url = 'https://cdnjs.cloudflare.com/ajax/libs/openlayers/2.13.1/OpenLayers.js' point_zoom = num_zoom - 6 wms_url = 'http://vmap0.tiles.osgeo.org/wms/vmap0' wms_layer = 'basic' wms_name = 'OpenLayers WMS' wms_options = {'format': 'image/jpeg'} debug = False widget = OpenLayersWidget @property def media(self): "Injects OpenLayers JavaScript into the admin." return super().media + Media(js=[self.openlayers_url] + self.extra_js) def formfield_for_dbfield(self, db_field, request, **kwargs): """ Overloaded from ModelAdmin so that an OpenLayersWidget is used for viewing/editing 2D GeometryFields (OpenLayers 2 does not support 3D editing). """ if isinstance(db_field, models.GeometryField) and db_field.dim < 3: # Setting the widget with the newly defined widget. kwargs['widget'] = self.get_map_widget(db_field) return db_field.formfield(**kwargs) else: return super().formfield_for_dbfield(db_field, request, **kwargs) def get_map_widget(self, db_field): """ Return a subclass of the OpenLayersWidget (or whatever was specified in the `widget` attribute) using the settings from the attributes set in this class. """ is_collection = db_field.geom_type in ('MULTIPOINT', 'MULTILINESTRING', 'MULTIPOLYGON', 'GEOMETRYCOLLECTION') if is_collection: if db_field.geom_type == 'GEOMETRYCOLLECTION': collection_type = 'Any' else: collection_type = OGRGeomType(db_field.geom_type.replace('MULTI', '')) else: collection_type = 'None' class OLMap(self.widget): template_name = self.map_template geom_type = db_field.geom_type wms_options = '' if self.wms_options: wms_options = ["%s: '%s'" % pair for pair in self.wms_options.items()] wms_options = ', %s' % ', '.join(wms_options) params = { 'default_lon': self.default_lon, 'default_lat': self.default_lat, 'default_zoom': self.default_zoom, 'display_wkt': self.debug or self.display_wkt, 'geom_type': OGRGeomType(db_field.geom_type), 'field_name': db_field.name, 'is_collection': is_collection, 'scrollable': self.scrollable, 'layerswitcher': self.layerswitcher, 'collection_type': collection_type, 'is_generic': db_field.geom_type == 'GEOMETRY', 'is_linestring': db_field.geom_type in ('LINESTRING', 'MULTILINESTRING'), 'is_polygon': db_field.geom_type in ('POLYGON', 'MULTIPOLYGON'), 'is_point': db_field.geom_type in ('POINT', 'MULTIPOINT'), 'num_zoom': self.num_zoom, 'max_zoom': self.max_zoom, 'min_zoom': self.min_zoom, 'units': self.units, # likely should get from object 'max_resolution': self.max_resolution, 'max_extent': self.max_extent, 'modifiable': self.modifiable, 'mouse_position': self.mouse_position, 'scale_text': self.scale_text, 'map_width': self.map_width, 'map_height': self.map_height, 'point_zoom': self.point_zoom, 'srid': self.map_srid, 'display_srid': self.display_srid, 'wms_url': self.wms_url, 'wms_layer': self.wms_layer, 'wms_name': self.wms_name, 'wms_options': wms_options, 'debug': self.debug, } return OLMap class OSMGeoAdmin(GeoModelAdmin): map_template = 'gis/admin/osm.html' num_zoom = 20 map_srid = spherical_mercator_srid max_extent = '-20037508,-20037508,20037508,20037508' max_resolution = '156543.0339' point_zoom = num_zoom - 6 units = 'm'
PypiClean
/APScheduler-4.0.0a1.tar.gz/APScheduler-4.0.0a1/docs/api.rst
API reference ============= Data structures --------------- .. autoclass:: apscheduler.Task .. autoclass:: apscheduler.Schedule .. autoclass:: apscheduler.Job .. autoclass:: apscheduler.JobInfo .. autoclass:: apscheduler.JobResult .. autoclass:: apscheduler.RetrySettings Schedulers ---------- .. autoclass:: apscheduler.schedulers.sync.Scheduler .. autoclass:: apscheduler.schedulers.async_.AsyncScheduler Workers ------- .. autoclass:: apscheduler.workers.sync.Worker .. autoclass:: apscheduler.workers.async_.AsyncWorker Data stores ----------- .. autoclass:: apscheduler.abc.DataStore .. autoclass:: apscheduler.abc.AsyncDataStore .. autoclass:: apscheduler.datastores.memory.MemoryDataStore .. autoclass:: apscheduler.datastores.sqlalchemy.SQLAlchemyDataStore .. autoclass:: apscheduler.datastores.async_sqlalchemy.AsyncSQLAlchemyDataStore .. autoclass:: apscheduler.datastores.mongodb.MongoDBDataStore Event brokers ------------- .. autoclass:: apscheduler.abc.EventBroker .. autoclass:: apscheduler.abc.AsyncEventBroker .. autoclass:: apscheduler.eventbrokers.local.LocalEventBroker .. autoclass:: apscheduler.eventbrokers.async_local.LocalAsyncEventBroker .. autoclass:: apscheduler.eventbrokers.asyncpg.AsyncpgEventBroker .. autoclass:: apscheduler.eventbrokers.mqtt.MQTTEventBroker .. autoclass:: apscheduler.eventbrokers.redis.RedisEventBroker Serializers ----------- .. autoclass:: apscheduler.abc.Serializer .. autoclass:: apscheduler.serializers.cbor.CBORSerializer .. autoclass:: apscheduler.serializers.json.JSONSerializer .. autoclass:: apscheduler.serializers.pickle.PickleSerializer Triggers -------- .. autoclass:: apscheduler.abc.Trigger .. autoclass:: apscheduler.triggers.date.DateTrigger .. autoclass:: apscheduler.triggers.interval.IntervalTrigger .. autoclass:: apscheduler.triggers.calendarinterval.CalendarIntervalTrigger .. autoclass:: apscheduler.triggers.combining.AndTrigger .. autoclass:: apscheduler.triggers.combining.OrTrigger .. autoclass:: apscheduler.triggers.cron.CronTrigger Events ------ .. autoclass:: apscheduler.Event .. autoclass:: apscheduler.DataStoreEvent .. autoclass:: apscheduler.TaskAdded .. autoclass:: apscheduler.TaskUpdated .. autoclass:: apscheduler.TaskRemoved .. autoclass:: apscheduler.ScheduleAdded .. autoclass:: apscheduler.ScheduleUpdated .. autoclass:: apscheduler.ScheduleRemoved .. autoclass:: apscheduler.JobAdded .. autoclass:: apscheduler.JobRemoved .. autoclass:: apscheduler.ScheduleDeserializationFailed .. autoclass:: apscheduler.JobDeserializationFailed .. autoclass:: apscheduler.SchedulerEvent .. autoclass:: apscheduler.SchedulerStarted .. autoclass:: apscheduler.SchedulerStopped .. autoclass:: apscheduler.WorkerEvent .. autoclass:: apscheduler.WorkerStarted .. autoclass:: apscheduler.WorkerStopped .. autoclass:: apscheduler.JobAcquired .. autoclass:: apscheduler.JobReleased Enumerated types ---------------- .. autoclass:: apscheduler.RunState .. autoclass:: apscheduler.JobOutcome .. autoclass:: apscheduler.ConflictPolicy .. autoclass:: apscheduler.CoalescePolicy Context variables ----------------- See the :mod:`contextvars` module for information on how to work with context variables. .. data:: apscheduler.current_scheduler :annotation: the current scheduler :type: ~contextvars.ContextVar[~typing.Union[Scheduler, AsyncScheduler]] .. data:: apscheduler.current_worker :annotation: the current scheduler :type: ~contextvars.ContextVar[~typing.Union[Worker, AsyncWorker]] .. data:: apscheduler.current_job :annotation: information on the job being currently run :type: ~contextvars.ContextVar[JobInfo] Exceptions ---------- .. autoexception:: apscheduler.TaskLookupError .. autoexception:: apscheduler.ScheduleLookupError .. autoexception:: apscheduler.JobLookupError .. autoexception:: apscheduler.JobResultNotReady .. autoexception:: apscheduler.JobCancelled .. autoexception:: apscheduler.JobDeadlineMissed .. autoexception:: apscheduler.ConflictingIdError .. autoexception:: apscheduler.SerializationError .. autoexception:: apscheduler.DeserializationError .. autoexception:: apscheduler.MaxIterationsReached
PypiClean
/Django-Bootstrap3-Validator-0.3.3.zip/Django-Bootstrap3-Validator-0.3.3/bootstrap_validator/static/validator/js/language/pt_PT.js
(function ($) { /** * Portuguese (Portugal) language package * Translated by @rtbfreitas */ $.fn.bootstrapValidator.i18n = $.extend(true, $.fn.bootstrapValidator.i18n, { base64: { 'default': 'Por favor insira um código base 64 válido' }, between: { 'default': 'Por favor insira um valor entre %s e %s', notInclusive: 'Por favor insira um valor estritamente entre %s e %s' }, callback: { 'default': 'Por favor insira um valor válido' }, choice: { 'default': 'Por favor insira um valor válido', less: 'Por favor escolha %s opções no mínimo', more: 'Por favor escolha %s opções no máximo', between: 'Por favor escolha de %s a %s opções' }, color: { 'default': 'Por favor insira uma cor válida' }, creditCard: { 'default': 'Por favor insira um número de cartão de crédito válido' }, cusip: { 'default': 'Por favor insira um número CUSIP válido' }, cvv: { 'default': 'Por favor insira um número CVV válido' }, date: { 'default': 'Por favor insira uma data válida', min: 'Por favor insira uma data posterior a %s', max: 'Por favor insira uma data anterior a %s', range: 'Por favor insira uma data entre %s e %s' }, different: { 'default': 'Por favor insira valores diferentes' }, digits: { 'default': 'Por favor insira somente dígitos' }, ean: { 'default': 'Por favor insira um número EAN válido' }, emailAddress: { 'default': 'Por favor insira um email válido' }, file: { 'default': 'Por favor escolha um arquivo válido' }, greaterThan: { 'default': 'Por favor insira um valor maior ou igual a %s', notInclusive: 'Por favor insira um valor maior do que %s' }, grid: { 'default': 'Por favor insira uma GRID válida' }, hex: { 'default': 'Por favor insira um hexadecimal válido' }, hexColor: { 'default': 'Por favor insira uma cor hexadecimal válida' }, iban: { 'default': 'Por favor insira um número IBAN válido', countryNotSupported: 'O código do país %s não é suportado', country: 'Por favor insira um número IBAN válido em %s', countries: { AD: 'Andorra', AE: 'Emirados Árabes', AL: 'Albânia', AO: 'Angola', AT: 'Áustria', AZ: 'Azerbaijão', BA: 'Bósnia-Herzegovina', BE: 'Bélgica', BF: 'Burkina Faso', BG: 'Bulgária', BH: 'Bahrain', BI: 'Burundi', BJ: 'Benin', BR: 'Brasil', CH: 'Suíça', IC: 'Costa do Marfim', CM: 'Camarões', CR: 'Costa Rica', CV: 'Cabo Verde', CY: 'Chipre', CZ: 'República Checa', DE: 'Alemanha', DK: 'Dinamarca', DO: 'República Dominicana', DZ: 'Argélia', EE: 'Estónia', ES: 'Espanha', FI: 'Finlândia', FO: 'Ilhas Faroé', FR: 'França', GB: 'Reino Unido', GE: 'Georgia', GI: 'Gibraltar', GL: 'Groenlândia', GR: 'Grécia', GT: 'Guatemala', HR: 'Croácia', HU: 'Hungria', IE: 'Ireland', IL: 'Israel', IR: 'Irão', IS: 'Islândia', TI: 'Itália', JO: 'Jordan', KW: 'Kuwait', KZ: 'Cazaquistão', LB: 'Líbano', LI: 'Liechtenstein', LT: 'Lituânia', LU: 'Luxemburgo', LV: 'Letónia', MC: 'Mônaco', MD: 'Moldávia', ME: 'Montenegro', MG: 'Madagascar', MK: 'Macedónia', ML: 'Mali', MR: 'Mauritânia', MT: 'Malta', MU: 'Maurício', MZ: 'Moçambique', NL: 'Países Baixos', NO: 'Noruega', PK: 'Paquistão', PL: 'Polônia', PS: 'Palestino', PT: 'Portugal', QA: 'Qatar', RO: 'Roménia', RS: 'Sérvia', SA: 'Arábia Saudita', SE: 'Suécia', SI: 'Eslovénia', SK: 'Eslováquia', SM: 'San Marino', SN: 'Senegal', TN: 'Tunísia', TR: 'Turquia', VG: 'Ilhas Virgens Britânicas' } }, id: { 'default': 'Por favor insira um código de identificação válido', countryNotSupported: 'O código do país %s não é suportado', country: 'Por favor insira um número de indentificação válido em %s', countries: { BA: 'Bósnia e Herzegovina', BG: 'Bulgária', BR: 'Brasil', CH: 'Suíça', CL: 'Chile', CN: 'China', CZ: 'República Checa', DK: 'Dinamarca', EE: 'Estônia', ES: 'Espanha', FI: 'Finlândia', HR: 'Croácia', IE: 'Irlanda', IS: 'Islândia', LT: 'Lituânia', LV: 'Letónia', ME: 'Montenegro', MK: 'Macedónia', NL: 'Holanda', RO: 'Roménia', RS: 'Sérvia', SE: 'Suécia', SI: 'Eslovênia', SK: 'Eslováquia', SM: 'San Marino', TH: 'Tailândia', ZA: 'África do Sul' } }, identical: { 'default': 'Por favor, insira o mesmo valor' }, imei: { 'default': 'Por favor insira um IMEI válido' }, imo: { 'default': 'Por favor insira um IMO válido' }, integer: { 'default': 'Por favor insira um número inteiro válido' }, ip: { 'default': 'Por favor insira um IP válido', ipv4: 'Por favor insira um endereço de IPv4 válido', ipv6: 'Por favor insira um endereço de IPv6 válido' }, isbn: { 'default': 'Por favor insira um ISBN válido' }, isin: { 'default': 'Por favor insira um ISIN válido' }, ismn: { 'default': 'Por favor insira um ISMN válido' }, issn: { 'default': 'Por favor insira um ISSN válido' }, lessThan: { 'default': 'Por favor insira um valor menor ou igual a %s', notInclusive: 'Por favor insira um valor menor do que %s' }, mac: { 'default': 'Por favor insira um endereço MAC válido' }, meid: { 'default': 'Por favor insira um MEID válido' }, notEmpty: { 'default': 'Por favor insira um valor' }, numeric: { 'default': 'Por favor insira um número real válido' }, phone: { 'default': 'Por favor insira um número de telefone válido', countryNotSupported: 'O código de país %s não é suportado', country: 'Por favor insira um número de telefone válido em %s', countries: { BR: 'Brasil', CN: 'China', CZ: 'República Checa', DE: 'Alemanha', DK: 'Dinamarca', ES: 'Espanha', FR: 'França', GB: 'Reino Unido', MA: 'Marrocos', PK: 'Paquistão', RO: 'Roménia', RU: 'Rússia', SK: 'Eslováquia', TH: 'Tailândia', US: 'EUA', VE: 'Venezuela' } }, regexp: { 'default': 'Por favor insira um valor correspondente ao padrão' }, remote: { 'default': 'Por favor insira um valor válido' }, rtn: { 'default': 'Por favor insira um número válido RTN' }, sedol: { 'default': 'Por favor insira um número válido SEDOL' }, siren: { 'default': 'Por favor insira um número válido SIREN' }, siret: { 'default': 'Por favor insira um número válido SIRET' }, step: { 'default': 'Por favor insira um passo válido %s' }, stringCase: { 'default': 'Por favor, digite apenas caracteres minúsculos', upper: 'Por favor, digite apenas caracteres maiúsculos' }, stringLength: { 'default': 'Por favor insira um valor com comprimento válido', less: 'Por favor insira menos de %s caracteres', more: 'Por favor insira mais de %s caracteres', between: 'Por favor insira um valor entre %s e %s caracteres' }, uri: { 'default': 'Por favor insira um URI válido' }, uuid: { 'default': 'Por favor insira um número válido UUID', version: 'Por favor insira uma versão %s UUID válida' }, vat: { 'default': 'Por favor insira um VAT válido', countryNotSupported: 'O código do país %s não é suportado', country: 'Por favor insira um número VAT válido em %s', countries: { AT: 'Áustria', BE: 'Bélgica', BG: 'Bulgária', BR: 'Brasil', CH: 'Suíça', CY: 'Chipre', CZ: 'República Checa', DE: 'Alemanha', DK: 'Dinamarca', EE: 'Estônia', ES: 'Espanha', FI: 'Finlândia', FR: 'França', GB: 'Reino Unido', GR: 'Grécia', EL: 'Grécia', HU: 'Hungria', HR: 'Croácia', IE: 'Irlanda', IS: 'Islândia', IT: 'Itália', LT: 'Lituânia', LU: 'Luxemburgo', LV: 'Letónia', MT: 'Malta', NL: 'Holanda', NO: 'Norway', PL: 'Polônia', PT: 'Portugal', RO: 'Roménia', RU: 'Rússia', RS: 'Sérvia', SE: 'Suécia', SI: 'Eslovênia', SK: 'Eslováquia', VE: 'Venezuela', ZA: 'África do Sul' } }, vin: { 'default': 'Por favor insira um VIN válido' }, zipCode: { 'default': 'Por favor insira um código postal válido', countryNotSupported: 'O código postal do país %s não é suportado', country: 'Por favor insira um código postal válido em %s', countries: { AT: 'Áustria', BR: 'Brasil', CA: 'Canadá', CH: 'Suíça', CZ: 'República Checa', DE: 'Alemanha', DK: 'Dinamarca', FR: 'França', GB: 'Reino Unido', IE: 'Irlanda', IT: 'Itália', MA: 'Marrocos', NL: 'Holanda', PT: 'Portugal', RO: 'Roménia', RU: 'Rússia', SE: 'Suécia', SG: 'Cingapura', SK: 'Eslováquia', US: 'EUA' } } }); }(window.jQuery));
PypiClean
/Diofant-0.14.0a2.tar.gz/Diofant-0.14.0a2/docs/modules/vector/coordsys.rst
============================= More about Coordinate Systems ============================= We will now look at how we can initialize new coordinate systems in :mod:`diofant.vector`, positioned and oriented in user-defined ways with respect to already-existing systems. Locating new systems ==================== We already know that the ``origin`` property of a ``CoordSysCartesian`` corresponds to the ``Point`` instance denoting its origin reference point. Consider a coordinate system `N`. Suppose we want to define a new system `M`, whose origin is located at `\mathbf{3\hat{i} + 4\hat{j} + 5\hat{k}}` from `N`'s origin. In other words, the coordinates of `M`'s origin from N's perspective happen to be `(3, 4, 5)`. Moreover, this would also mean that the coordinates of `N`'s origin with respect to `M` would be `(-3, -4, -5)`. This can be achieved programmatically as follows - >>> from diofant.vector import CoordSysCartesian >>> N = CoordSysCartesian('N') >>> M = N.locate_new('M', 3*N.i + 4*N.j + 5*N.k) >>> M.position_wrt(N) 3*N.i + 4*N.j + 5*N.k >>> N.origin.express_coordinates(M) (-3, -4, -5) It is worth noting that `M`'s orientation is the same as that of `N`. This means that the rotation matrix of `N` with respect to `M`, and also vice versa, is equal to the identity matrix of dimensions 3x3. The ``locate_new`` method initializes a ``CoordSysCartesian`` that is only translated in space, not re-oriented, relative to the 'parent' system. Orienting new systems ===================== Similar to 'locating' new systems, :mod:`diofant.vector` also allows for initialization of new ``CoordSysCartesian`` instances that are oriented in user-defined ways with respect to existing systems. Suppose you have a coordinate system `A`. >>> from diofant.vector import CoordSysCartesian >>> A = CoordSysCartesian('A') You want to initialize a new coordinate system `B`, that is rotated with respect to `A`'s Z-axis by an angle `\theta`. >>> theta = Symbol('theta') .. only:: html The orientation is shown in the diagram below: .. image:: coordsys_rot.* :height: 250 :width: 250 :align: center There are two ways to achieve this. Using a method of CoordSysCartesian directly -------------------------------------------- This is the easiest, cleanest, and hence the recommended way of doing it. >>> B = A.orient_new_axis('B', theta, A.k) This initializes `B` with the required orientation information with respect to `A`. ``CoordSysCartesian`` provides the following direct orientation methods in its API- 1. ``orient_new_axis`` 2. ``orient_new_body`` 3. ``orient_new_space`` 4. ``orient_new_quaternion`` Please look at the ``CoordSysCartesian`` class API given in the docs of this module, to know their functionality and required arguments in detail. Using Orienter(s) and the orient_new method ------------------------------------------- You would first have to initialize an ``AxisOrienter`` instance for storing the rotation information. >>> from diofant.vector import AxisOrienter >>> axis_orienter = AxisOrienter(theta, A.k) And then apply it using the ``orient_new`` method, to obtain `B`. >>> B = A.orient_new('B', axis_orienter) ``orient_new`` also lets you orient new systems using multiple ``Orienter`` instances, provided in an iterable. The rotations/orientations are applied to the new system in the order the ``Orienter`` instances appear in the iterable. >>> from diofant.vector import BodyOrienter >>> body_orienter = BodyOrienter(a, b, c, 'XYZ') >>> C = A.orient_new('C', (axis_orienter, body_orienter)) The :mod:`diofant.vector` API provides the following four ``Orienter`` classes for orientation purposes- 1. ``AxisOrienter`` 2. ``BodyOrienter`` 3. ``SpaceOrienter`` 4. ``QuaternionOrienter`` Please refer to the API of the respective classes in the docs of this module to know more. In each of the above examples, the origin of the new coordinate system coincides with the origin of the 'parent' system. >>> B.position_wrt(A) 0 To compute the rotation matrix of any coordinate system with respect to another one, use the ``rotation_matrix`` method. >>> B = A.orient_new_axis('B', a, A.k) >>> B.rotation_matrix(A) Matrix([ [ cos(a), sin(a), 0], [-sin(a), cos(a), 0], [ 0, 0, 1]]) >>> B.rotation_matrix(B) Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) Orienting AND Locating new systems ================================== What if you want to initialize a new system that is not only oriented in a pre-defined way, but also translated with respect to the parent? Each of the ``orient_new_<method of orientation>`` methods, as well as the ``orient_new`` method, support a ``location`` keyword argument. If a ``Vector`` is supplied as the value for this ``kwarg``, the new system's origin is automatically defined to be located at that position vector with respect to the parent coordinate system. Thus, the orientation methods also act as methods to support orientation+ location of the new systems. >>> C = A.orient_new_axis('C', a, A.k, location=2*A.j) >>> C.position_wrt(A) 2*A.j >>> from diofant.vector import express >>> express(A.position_wrt(C), C) (-2*sin(a))*C.i + (-2*cos(a))*C.j More on the ``express`` function in a bit. Expression of quantities in different coordinate systems ======================================================== Vectors and Dyadics ------------------- As mentioned earlier, the same vector attains different expressions in different coordinate systems. In general, the same is true for scalar expressions and dyadic tensors. :mod:`diofant.vector` supports the expression of vector/scalar quantities in different coordinate systems using the ``express`` function. For purposes of this section, assume the following initializations- >>> from diofant.vector import CoordSysCartesian, express >>> N = CoordSysCartesian('N') >>> M = N.orient_new_axis('M', a, N.k) ``Vector`` instances can be expressed in user defined systems using ``express``. >>> v1 = N.i + N.j + N.k >>> express(v1, M) (sin(a) + cos(a))*M.i + (-sin(a) + cos(a))*M.j + M.k >>> v2 = N.i + M.j >>> express(v2, N) (-sin(a) + 1)*N.i + (cos(a))*N.j Apart from ``Vector`` instances, ``express`` also supports reexpression of scalars (general Diofant ``Expr``) and ``Dyadic`` objects. ``express`` also accepts a second coordinate system for re-expressing ``Dyadic`` instances. >>> d = 2*(M.i | N.j) + 3*(M.j | N.k) >>> express(d, M) (2*sin(a))*(M.i|M.i) + (2*cos(a))*(M.i|M.j) + 3*(M.j|M.k) >>> express(d, M, N) 2*(M.i|N.j) + 3*(M.j|N.k) Coordinate Variables -------------------- The location of a coordinate system's origin does not affect the re-expression of ``BaseVector`` instances. However, it does affect the way ``BaseScalar`` instances are expressed in different systems. ``BaseScalar`` instances, are coordinate 'symbols' meant to denote the variables used in the definition of vector/scalar fields in :mod:`diofant.vector`. For example, consider the scalar field `\mathbf{{T}_{N}(x, y, z) = x + y + z}` defined in system `N`. Thus, at a point with coordinates `(a, b, c)`, the value of the field would be `a + b + c`. Now consider system `R`, whose origin is located at `(1, 2, 3)` with respect to `N` (no change of orientation). A point with coordinates `(a, b, c)` in `R` has coordinates `(a + 1, b + 2, c + 3)` in `N`. Therefore, the expression for `\mathbf{{T}_{N}}` in `R` becomes `\mathbf{{T}_{R}}(x, y, z) = x + y + z + 6`. Coordinate variables, if present in a vector/scalar/dyadic expression, can also be re-expressed in a given coordinate system, by setting the ``variables`` keyword argument of ``express`` to ``True``. The above mentioned example, done programmatically, would look like this - >>> R = N.locate_new('R', N.i + 2*N.j + 3*N.k) >>> T_N = N.x + N.y + N.z >>> express(T_N, R, variables=True) R.x + R.y + R.z + 6 Other expression-dependent methods ---------------------------------- The ``to_matrix`` method of ``Vector`` and ``express_coordinates`` method of ``Point`` also return different results depending on the coordinate system being provided. >>> P = R.origin.locate_new('P', a*R.i + b*R.j + c*R.k) >>> P.express_coordinates(N) (a + 1, b + 2, c + 3) >>> P.express_coordinates(R) (a, b, c) >>> v = N.i + N.j + N.k >>> v.to_matrix(M) Matrix([ [ sin(a) + cos(a)], [-sin(a) + cos(a)], [ 1]]) >>> v.to_matrix(N) Matrix([ [1], [1], [1]])
PypiClean
/DESPOTIC-2.1.tar.gz/DESPOTIC-2.1/despotic/chemistry/NL99_old.py
import numpy as np import string from despotic.despoticError import despoticError from shielding import fShield_CO_vDB from despotic.chemistry import abundanceDict from despotic.chemistry import chemNetwork import scipy.constants as physcons import warnings ######################################################################## # Physical and numerical constants ######################################################################## kB = physcons.k/physcons.erg mH = (physcons.m_p+physcons.m_e)/physcons.gram _small = 1e-100 ######################################################################## # List of species used in this chemistry network ######################################################################## specList = ['He+', 'H3+', 'OHx', 'CHx', 'CO', 'C', 'C+', 'HCO+', 'O', 'M+'] specListExtended = specList + ['H2', 'He', 'M', 'e-'] ######################################################################## # Data on photoreactions # Reactions are, in order: # h nu + CI -> C+ + e # h nu + CHx -> CI + H # h nu + CO -> CI + O # h nu + OHx -> OI + H # h nu + M -> M+ + e # h nu + HCO+ -> CO + H ######################################################################## _kph = np.array([ 3.0e-10, 1.0e-9, 1.0e-10, 5.0e-10, 2.0e-10, 1.5e-10]) _avfac = np.array([3.0, 1.5, 3.0, 1.7, 1.9, 2.5]) _inph = np.array([5, 3, 4, 2, 12, 7], dtype='int') _outph1 = np.array([6, 5, 5, 8, 9, 4], dtype='int') _outph2 = np.array([10, 10, 8, 10, 10, 10], dtype='int') ######################################################################## # Data on two-body reactions # Reactions are, in order: # (0) H3+ + CI -> CHx + H2 # (1) H3+ + OI -> OHx + H2 # (2) H3+ + CO -> HCO+ + H2 # (3) He+ + H2 -> He + H + H+ # (4) He+ + CO -> C+ + O + He # (5) C+ + H2 -> CHx + H # (6) C+ + OHx -> HCO+ # (7) OI + CHx -> CO + H # (8) CI + OHx -> CO + H # (9) He+ + e -> He + h nu # (10) H3+ + e -> H2 + H # (11) C+ + e -> CI + h nu # (12) HCO+ + e -> CO + H # (13) M+ + e -> M + h nu # (14) H3+ + M -> M+ + H + H2 ######################################################################## _k2 = np.array([ 2.0e-9, 8.0e-10, 1.7e-9, 7.0e-15, 1.6e-9, 4.0e-16, 1.0e-9, 2.0e-10, 5.8e-12, 9.0e-11, 1.9e-6, 1.4e-10, 3.3e-5, 3.8e-10, 2.0e-9]) _k2Texp = np.array([ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, -0.64, -0.54, -0.61, -1.0, -0.65, 0.0]) _in2bdy1 = np.array([1, 1, 1, 0, 0, 6, 6, 8, 5, 0, 1, 6, 7, 9, 1], dtype='int') _in2bdy2 = np.array([5, 8, 4, 10, 4, 10, 2, 3, 2, 13, 13, 13, 13, 13, 12], dtype='int') _out2bdy1 = np.array([3, 2, 7, 10, 6, 3, 7, 4, 4, 10, 10, 5, 4, 10, 9], dtype='int') _out2bdy2 = np.array([10, 10, 10, 10, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10], dtype='int') ######################################################################## # Set some default abundances ######################################################################## _xHedefault = 0.1 _xCdefault = 2.0e-4 _xOdefault = 4.0e-4 _xMdefault = 2.0e-7 _xH2 = 0.5 ######################################################################## # Define the NL99 class ######################################################################## class NL99(chemNetwork): """ This class the implements the chemistry network of Nelson & Langer (1999, ApJ, 524, 923). """ #################################################################### # Method to initialize #################################################################### def __init__(self, cloud=None, info=None): """ Parameters ---------- cloud : class cloud a DESPOTIC cloud object from which initial data are to be taken info : dict a dict containing additional parameters Returns ------- Nothing Raises ------ despoticError, if the dict info contains non-allowed entries Remarks ------- The dict info may contain the following key - value pairs: 'xC' : float giving the total C abundance per H nucleus; defaults to 2.0e-4 'xO' : float giving the total H abundance per H nucleus; defaults to 4.0e-4 'xM' : float giving the total refractory metal abundance per H nucleus; defaults to 2.0e-7 'sigmaDustV' : float giving the V band dust extinction cross section per H nucleus; if not set, the default behavior is to assume that sigmaDustV = 0.4 * cloud.dust.sigmaPE 'AV' : float giving the total visual extinction; ignored if sigmaDustV is set 'noClump' : a Boolean; if True, the clump factor is set to 1.0; defaults to False """ # List of species for this network; provide a pointer here so # that it can be accessed through the class self.specList = specList self.specListExtended = specListExtended # Store the input info dict self.info = info # Array to hold abundances self.x = np.zeros(10) # Total metal abundance if info is None: self.xM = _xMdefault else: if 'xM' in info: self.xM = info['xM'] else: self.xM = _xMdefault # Extract information from the cloud if one is given if cloud is None: # No cloud given, so set some defaults self.cloud = None # Physical properties self._xHe = _xHedefault self._ionRate = 2.0e-17 self._NH = _small self._temp = _small self._chi = 1.0 self._nH = _small self._AV = 0.0 if info is not None: if 'AV' in info: self._AV = info['AV'] # Set initial abundances if info is None: self.x[6] = _xCdefault self.x[8] = _xOdefault else: if 'xC' in info: self.x[6] = info['xC'] else: self.x[6] = _xCdefault if 'xO' in info: self.x[8] = info['xO'] else: self.x[8] = _xOdefault self.x[9] = self.xM else: # Cloud is given, so get information out of it self.cloud = cloud # Sanity check: make sure cloud is pure H2 if cloud.comp.xH2 != 0.5: raise despoticError, "NL99 network only valid " + \ "for pure H2 composition" # Sanity check: make sure cloud contains some He, since # network will not function properly at He abundance of 0 if cloud.comp.xHe == 0.0: raise despoticError, "NL99 network requires " + \ "non-zero He abundance" # Set abundances # Make a case-insensitive version of the emitter list for # convenience emList = dict(zip(map(string.lower, cloud.emitters.keys()), cloud.emitters.values())) # OH and H2O if 'oh' in emList: self.x[2] += emList['oh'].abundance if 'ph2o' in emList: self.x[2] += emList['ph2o'].abundance if 'oh2o' in emList: self.x[2] += emList['oh2o'].abundance if 'p-h2o' in emList: self.x[2] += emList['p-h2o'].abundance if 'o-h2o' in emList: self.x[2] += emList['o-h2o'].abundance # CO if 'co' in emList: self.x[4] = emList['co'].abundance # Neutral carbon if 'c' in emList: self.x[5] = emList['c'].abundance # Ionized carbon if 'c+' in emList: self.x[6] = emList['c+'].abundance # HCO+ if 'hco+' in emList: self.x[7] = emList['hco+'].abundance # Sum input abundances of C, C+, CO, HCO+ to ensure that # all carbon is accounted for. If there is too little, # assume the excess is C+. If there is too much, throw an # error. if info is None: xC = _xCdefault elif 'xC' in info: xC = info['xC'] else: xC = _xCdefault xCtot = self.x[4] + self.x[5] + self.x[6] + self.x[7] if xCtot < xC: # Print warning if we're altering existing C+ # abundance. if 'c' in emList: print "Warning: input C abundance is " + \ str(xC) + ", but total input C, C+, CHx, CO, " + \ "HCO+ abundance is " + str(xCtot) + \ "; increasing xC+ to " + str(self.x[6]+xC-xCtot) self.x[6] += xC - xCtot elif xCtot > xC: # Throw an error if input C abundance is smaller than # what is accounted for in initial conditions raise despoticError, "input C abundance is " + \ str(xC) + ", but total input C, C+, CHx, CO, " + \ "HCO+ abundance is " + str(xCtot) # O if 'o' in emList: self.x[8] = emList['o'].abundance elif info is None: self.x[8] = _xOdefault - self.x[2] - self.x[4] - \ self.x[7] elif 'xO' in info: self.x[8] = info['xO'] - self.x[2] - self.x[4] - \ self.x[7] else: self.x[8] = _xOdefault - self.x[2] - self.x[4] - \ self.x[7] # As with C, make sure all O is accounted for, and if not # park the extra in OI if info is None: xO = _xOdefault elif 'xC' in info: xO = info['xO'] else: xO = _xOdefault xOtot = self.x[2] + self.x[4] + self.x[7] + self.x[8] if xOtot < xO: # Print warning if we're altering existing O # abundance. if 'o' in emList: print "Warning: input O abundance is " + \ str(xO) + ", but total input O, OHx, CO, " + \ "HCO+ abundance is " + str(xOtot) + \ "; increasing xO to " + str(self.x[8]+xO-xOtot) self.x[8] += xO - xOtot elif xOtot > xO: # Throw an error if input O abundance is smaller than # what is accounted for in initial conditions raise despoticError, "input C abundance is " + \ str(xO) + ", but total input O, OHx, CO, " + \ "HCO+ abundance is " + str(xOtot) # Initial electrons = metals + C+ + HCO+ xeinit = self.xM + self.x[6] + self.x[7] # Initial He+ self.x[0] = self.xHe*self.ionRate / \ (self.nH*(_k2[9]*self.temp**_k2Texp[9]*xeinit+_k2[3]*_xH2)) # Initial H3+ self.x[1] = _xH2*self.ionRate / \ (self.nH*(_k2[10]*self.temp**_k2Texp[10]*xeinit+_k2[2]*self.x[8])) # Initial M+ self.x[9] = self.xM #################################################################### # Define some properties so that, if we have a cloud, quantities # that are stored in the cloud point back to it #################################################################### @property def nH(self): if self.cloud is None: return self._nH else: return self.cloud.nH @nH.setter def nH(self, value): if self.cloud is None: self._nH = value else: self.cloud.nH = value @property def temp(self): if self.cloud is None: return self._temp else: return self.cloud.Tg @temp.setter def temp(self, value): if self.cloud is None: self._temp = value else: self.cloud.Tg = value @property def cfac(self): if self.cloud is None: return 1.0 else: if self.info is None: cs2 = kB * self.cloud.Tg / (self.cloud.comp.mu * mH) return np.sqrt(1.0 + 0.75*self.cloud.sigmaNT**2/cs2) elif 'noClump' in self.info: if self.info['noClump'] == True: return 1.0 else: cs2 = kB * self.cloud.Tg / (self.cloud.comp.mu * mH) return np.sqrt(1.0 + 0.75*self.cloud.sigmaNT**2/cs2) else: cs2 = kB * self.cloud.Tg / (self.cloud.comp.mu * mH) return np.sqrt(1.0 + 0.75*self.cloud.sigmaNT**2/cs2) @cfac.setter def cfac(self, value): raise despoticError, "cannot set cfac directly" @property def xHe(self): if self.cloud is None: return self._xHe else: return self.cloud.comp.xHe @xHe.setter def xHe(self, value): if self.cloud is None: self._xHe = value else: self.cloud.comp.xHe = value @property def ionRate(self): if self.cloud is None: return self._ionRate else: return self.cloud.rad.ionRate @ionRate.setter def ionRate(self, value): if self.cloud is None: self._ionRate = value else: self.cloud.rad.ionRate = value @property def chi(self): if self.cloud is None: return self._chi else: return self.cloud.rad.chi @chi.setter def chi(self, value): if self.cloud is None: self._chi = value else: self.cloud.rad.chi = value @property def NH(self): if self.cloud is None: return self._NH else: return self.cloud.colDen / 2.0 @NH.setter def NH(self, value): if self.cloud is None: self._NH = value else: self.cloud.colDen = 2.0*value @property def AV(self): if self.cloud is None: if self.info is None: return self._AV elif 'AV' in self.info: return self.info['AV'] else: return self._AV else: if self.info is None: return 0.4 * self.cloud.dust.sigmaPE * self.NH elif 'sigmaDustV' in self.info: # Note factor to convert from mag to true # dimensionless units return self.NH * self.info['sigmaDustV'] / \ np.log(100**0.2) elif 'AV' in self.info: return self.info['AV'] else: return 0.4 * self.cloud.dust.sigmaPE * self.NH @AV.setter def AV(self, value): if self.cloud is None: if self.info is None: self._AV = value elif 'AV' in self.info: self.info['AV'] = value else: self._AV = value else: if self.info is None: raise despoticError, "cannot set AV directly " + \ "unless it is part of info" elif 'AV' not in self.info: raise despoticError, "cannot set AV directly " + \ "unless it is part of info" else: self.info['AV'] = value #################################################################### # Override the abundances property of the base chemNetwork class # so that we return the derived abundances as well as the # variables ones. For the setter, let users set abundances, but if # they try to set ones that are derived, issue a warning. #################################################################### @property def abundances(self): self._abundances = abundanceDict(self.specListExtended, self.extendAbundances()) return self._abundances @abundances.setter def abundances(self, value): if len(value.x)==10: self.x = value.x elif len(value.x)==14: self.x = value.x[:10] warnings.warn('For NL99 network, cannot set abundances of H2, He, M, e-; abundances set only for other species') else: raise ValueError("abundnaces for NL99 network must have 10 species!") #################################################################### # Method to get derived abundances from ones being stored; this # adds slots for H2, HeI, MI, and e #################################################################### def extendAbundances(self, xin=None): # Object we'll be returning xgrow = np.zeros(14) # Copy abundances if passed in; otherwise user stored ones if xin is None: xgrow[:10] = self.x else: xgrow[:10] = xin # H2 abundances is hardwired for NL99 network xgrow[10] = _xH2 # He abundance = total He abundance - He+ abundance xgrow[11] = self.xHe - xgrow[0] # Neutral metal abundance = total metal abundance - ionized # metal abundance xgrow[12] = self.xM - xgrow[9] # e abundance = He+ + H3+ + C+ + HCO+ + M+ xgrow[13] = xgrow[0] + xgrow[1] + xgrow[6] + xgrow[7] \ + xgrow[9] # Return return xgrow #################################################################### # Method to return the time derivative of all chemical rates #################################################################### def dxdt(self, xin, time): """ This method returns the time derivative of all abundances for this chemical network. Parameters ---------- xin : array(10) current abundances of all species time : float current time; not actually used, but included as an argument for compatibility with odeint Returns ------- dxdt : array(10) time derivative of x """ # Vector to store results; it is convenient for this to have # some phantom slots; slots 10, 11, 12, and 13 store # abundances of H2, HeI, MI, and e, respectively xdot = np.zeros(14) xgrow = self.extendAbundances(xin) # Cosmic ray / x-ray ionization reactions xdot[0] = xgrow[11]*self.ionRate xdot[1] = self.ionRate # Photon reactions ratecoef = 1.7*self.chi*np.exp(-_avfac*self.AV)*_kph rate = ratecoef*xgrow[_inph] # Apply CO line shielding factor rate[2] = rate[2] * fShield_CO_vDB(xgrow[4]*self.NH, self.NH/2.0) for i, n in enumerate(_inph): xdot[_inph[i]] -= rate[i] xdot[_outph1[i]] += rate[i] xdot[_outph2[i]] += rate[i] # Two-body reactions rate = _k2*self.temp**_k2Texp*self.cfac*self.nH * \ xgrow[_in2bdy1]*xgrow[_in2bdy2] for i, n in enumerate(_in2bdy1): xdot[_in2bdy1[i]] -= rate[i] xdot[_in2bdy2[i]] -= rate[i] xdot[_out2bdy1[i]] += rate[i] xdot[_out2bdy2[i]] += rate[i] # Return results return xdot[:10] #################################################################### # Method to write the currently stored abundances to a cloud #################################################################### def applyAbundances(self, addEmitters=False): """ This method writes the abundances produced by the chemical network to the cloud's emitter list. Parameters ---------- addEmitters : Boolean if True, emitters that are included in the chemical network but not in the cloud's existing emitter list will be added; if False, abundances of emitters already in the emitter list will be updated, but new emiters will not be added to the cloud Returns ------- Nothing Remarks ------- If there is no cloud associated with this chemical network, this routine does nothing and silently returns. """ # SAFETY check: make sure we have an associated cloud to which # we can write if self.cloud == None: return # Make a case-insensitive version of the emitter list for # convenience emList = dict(zip(map(string.lower, self.cloud.emitters.keys()), self.cloud.emitters.values())) # Save rtios of ^12C to ^13C, and ^16O to ^18O if '13co' in emList and 'co' in emList: c13_12 = emList['13co'].abundance / \ emList['co'].abundance if 'c18o' in emList and 'co' in emList: o18_16 = emList['c18o'].abundance / \ emList['co'].abundance # OH, assuming OHx is half OH if 'oh' in emList: emList['oh'].abundance = self.x[2]/2.0 elif addEmitters: try: self.cloud.addEmitter('oh', self.x[2]/2.0) except despoticError: print 'Warning: unable to add OH; cannot find LAMDA file' # H2O, assuming OHx is half H2O, and that oH2O and pH2O are # equally abundance if 'ph2o' in emList: emList['ph2o'].abundance = self.x[2]/4.0 elif 'p-h2o' in emList: emList['p-h2o'].abundance = self.x[2]/4.0 elif addEmitters: try: self.cloud.addEmitter('ph2o', self.x[2]/4.0) except despoticError: print 'Warning: unable to add p-H2O; cannot find LAMDA file' if 'oh2o' in emList: emList['oh2o'].abundance = self.x[2]/4.0 elif 'o-h2o' in emList: emList['o-h2o'].abundance = self.x[2]/4.0 elif addEmitters: try: self.cloud.addEmitter('oh2o', self.x[2]/4.0) except despoticError: print 'Warning: unable to add o-H2O; cannot find LAMDA file' # CO if 'co' in emList: emList['co'].abundance = self.x[4] elif addEmitters: try: self.cloud.addEmitter('co', self.x[4]) except despoticError: print 'Warning: unable to add CO; cannot find LAMDA file' # if we have 13CO or C18O, make their abundances match that of CO # multiplied by the appropriate isotopic abundances if '13co' in emList: emList['13co'].abundance = self.x[4]*c13_12 if 'c18o' in emList: emList['c18o'].abundance = self.x[4]*o18_16 # C if 'c' in emList: emList['c'].abundance = self.x[5] elif addEmitters: try: self.cloud.addEmitter('c', self.x[5]) except despoticError: print 'Warning: unable to add C; cannot find LAMDA file' # C+ if 'c+' in emList: emList['c+'].abundance = self.x[6] elif addEmitters: try: self.cloud.addEmitter('c+', self.x[6]) except despoticError: print 'Warning: unable to add C+; cannot find LAMDA file' # HCO+ if 'hco+' in emList: emList['hco+'].abundance = self.x[7] elif addEmitters: try: self.cloud.addEmitter('hco+', self.x[7]) except despoticError: print 'Warning: unable to add HCO+; cannot find LAMDA file' # O if 'o' in emList: emList['o'].abundance = self.x[8] elif addEmitters: try: self.cloud.addEmitter('o', self.x[8]) except despoticError: print 'Warning: unable to add O; cannot find LAMDA file'
PypiClean
/Automated_cartography-0.0.2-py3-none-any.whl/robot/robot.py
import time # import LSC_Client from robot import LSC_Client import threading from inspect import signature from functools import wraps def typeassert(*type_args, **type_kwargs): def decorate(func): sig = signature(func) bound_types = sig.bind_partial(*type_args, **type_kwargs).arguments @wraps(func) def wrapper(*args, **kwargs): bound_values = sig.bind(*args, **kwargs) for name, value in bound_values.arguments.items(): if name in bound_types: if not isinstance(value, bound_types[name]): raise TypeError('Argument {} must be {}'.format(name, bound_types[name])) return func(*args, **kwargs) return wrapper return decorate lsc = LSC_Client.LSC_Client() class robot(object): lsc.MoveServo(6, 1500, 1000) lsc.MoveServo(7, 1500, 1000) time.sleep(1.1) def up(self, step): lsc.RunActionGroup(0, step) lsc.WaitForFinish(int(step * 20000)) def check(self, step): lsc.RunActionGroup(188, step) lsc.WaitForFinish(int(step * 20000)) def forward(self, step): lsc.RunActionGroup(1, step) lsc.WaitForFinish(int(step * 20000)) def backward(self, step): lsc.RunActionGroup(2, step) lsc.WaitForFinish(int(step * 20000)) def left(self, step): lsc.RunActionGroup(3, step) lsc.WaitForFinish(int(step * 20000)) def right(self, step): lsc.RunActionGroup(4, step) lsc.WaitForFinish(int(step * 20000)) def circle(self, step, radius): for j in range(0, step): for i in range(0, 10): self.right(2) self.forward(radius) self.up(1) def shaking_head(self, step): lsc.RunActionGroup(50, step) lsc.WaitForFinish(int(step * 20000)) def nod(self, step): lsc.RunActionGroup(51, step) lsc.WaitForFinish(int(step * 20000)) # ------------福利区,暂时不对外开放-------------- ''' 还没想好写些什么 ''' class show(object): lsc.RunActionGroup(0, 1) lsc.WaitForFinish(int(20000)) def hiphop(self): lsc.RunActionGroup(16, 1) lsc.WaitForFinish(60000) def jiangnanstyle(self): lsc.RunActionGroup(17, 1) lsc.WaitForFinish(60000) def smallapple(self): lsc.RunActionGroup(18, 1) lsc.WaitForFinish(60000) def lasong(self): lsc.RunActionGroup(19, 1) lsc.WaitForFinish(60000) def feelgood(self): lsc.RunActionGroup(20, 1) lsc.WaitForFinish(60000) # ----------------测试区------------------ from robot import voice class speak(object): def speak(self, viocenum): if viocenum >= 48 or viocenum <= 25: return "超出语音模块区域" else: lsc.RunActionGroup(viocenum, 1) vlist=voice.voicelist() lsc.WaitForFinish(int(20000)) time.sleep(int(vlist.voicelist()[viocenum]))
PypiClean
/Eskapade_Core-1.0.0-py3-none-any.whl/escore/core_ops/links/to_ds_dict.py
from escore import DataStore from escore import Link from escore import StatusCode from escore import process_manager class ToDsDict(Link): """Stores one object in the DataStore dict during run time.""" def __init__(self, **kwargs): """Link to store one external object in the DataStore dict during run time. :param str name: name of link :param str store_key: key of object to store in data store :param obj: object to store :param bool force: overwrite if already present in datastore. default is false. (optional) :param bool at_initialize: store at initialize of link. Default is false. :param bool at_execute: store at execute of link. Default is true. :param bool copydict: if true and obj is a dict, copy all key value pairs into datastore. Default is false. """ Link.__init__(self, kwargs.pop('name', 'ToDsDict')) # process keyword arguments self._process_kwargs(kwargs, store_key=None, obj=None, at_initialize=False, at_execute=True, force=False, copydict=False) self.check_extra_kwargs(kwargs) def initialize(self): """Initialize the link.""" # perform basic checks. if self.obj is None: raise RuntimeError('object "{}" to store is of type None'.format(self.store_key)) # storage key needs to be set in nearly all cases if not (self.copydict and isinstance(self.obj, dict)): if not (isinstance(self.store_key, str) and self.store_key): raise RuntimeError('object storage key has not been set') ds = process_manager.service(DataStore) return StatusCode.Success if not self.at_initialize else self.do_storage(ds) def execute(self): """Execute the link.""" ds = process_manager.service(DataStore) return StatusCode.Success if not self.at_execute else self.do_storage(ds) def do_storage(self, ds): """Perform storage in datastore. Function makes a distinction been dicts and any other object. """ # if dict and copydict==true, store all individual items if self.copydict and isinstance(self.obj, dict): stats = [(self.store(ds, v, k, force=self.force)).value for k, v in self.obj.items()] return StatusCode(max(stats)) # default: store obj under store_key return self.store(ds, self.obj, force=self.force)
PypiClean
/DeckenMagicPlugin-0.2.0.tar.gz/DeckenMagicPlugin-0.2.0/deckenmagicplugin/magicplugin.py
from urllib import urlretrieve import urlparse import sqlite3 import os import conjunto formatos = ['', 'Standard', 'Block', 'Extended', 'Legacy', 'Vintage'] standard = ['', 'roe','wwk','zen','m10','arb','cfx','ala' ] extended = standard + ['9e','eve','shm', 'mt','lw','fut','pc','ts','tsts','cs','ai','ia','di','gp','rav','sok','bok', 'chk','5dn','ds','mi'] others = ['sc','le','on','ju','tr','od','ap','ps','in','pr','ne','mm','ud','ui','us', 'ex','sh','tp','wl','vi','mr','hl','fe','dk','lg','aq','an','8e','7e','6e','5e', '4e','rv','un','be','al'] legacy = extended + others vintage = legacy sets_por_formato = { 'Standard' : standard, 'Block': ['roe','wwk','zen'], 'Extended': extended, 'Legacy': legacy, 'Vintage': vintage, } palavras_tipos = { '' : '', 'Creature' : r" (tipo like '%Creature%' and tipo not like '%Enchant Creature%') ", 'Artifact' : r" (tipo like '%Artifact%' and tipo not like '%Creature%' )", 'Planeswalker' : r" tipo like '%Planeswalker%' ", 'Enchantment' : r" tipo like '%Enchant%' ", 'Sorcery' : r" tipo = 'Sorcery' ", 'Instant' : r" tipo like '%Instant%' ", 'Land' : r" (tipo like '%Land%' and tipo not like '%Enchant Land%') " } class Card(dict): def __init__(self, **attributes): for i in attributes: self[i] = attributes[i] def query_to_cards(scroll): cards = [] for i in scroll: card = Card(nome=i[0], sigla=i[1], numero=i[2], tipo=i[3], mana=i[4], raridade=i[5], texto=i[6]) cards.append(card) return cards def montar_filtros(filtros): clausules = [] for filtro in filtros: combo = filtros[filtro] model = combo.get_model() active = combo.get_active() if active < 0: continue else: valor = model[active][0] if not valor: continue if filtro == 'Card Type': clausules.append( palavras_tipos[ model[active][0] ] ) elif filtro == 'Card Format': lista = [ "'%s'" % x for x in sets_por_formato[valor] if x ] clausules.append( " sigla in (%s) " % ','.join(lista) ) else: clausules.append( " sigla in (select sigla from colecao where descricao = '%s') " % valor ) print ' and '.join( clausules ) return ' and '.join( clausules ) class Query: def __init__(self, conn): self.conn = conn self.c = self.conn.cursor() self.select = "select nome, sigla, numero, tipo, mana, raridade, texto from card" def all_cards(self, filtros): if filtros: self.c.execute(self.select + r" where %s order by nome" % filtros) else: self.c.execute(self.select + " order by nome") return query_to_cards(self.c.fetchall()) def find_by(self, **criteria): scroll = [] for i in criteria: scroll.append("%s=?" % i) clause = " and ".join(scroll) query = "%s where %s order by nome" % (self.select, clause) print 'QUERY', query print 'CRITERIOS', criteria self.c.execute(query, criteria.values()) return query_to_cards(self.c.fetchall()) def find_by_name(self, name, filtros): if filtros: query = "%s where upper(nome) like '%s%%' and ( " % (self.select, name.upper()) + filtros + ") order by nome" else: query = "%s where upper(nome) like '%s%%' order by nome" % (self.select, name.upper()) print query self.c.execute(query) return query_to_cards(self.c.fetchall()) class MagicPlugin: number_columns = 2 number_columns_invisibles = 3 columns_names = [ 'Card', 'Set' ] attributes_card_columns = [ 'name', 'sigla', 'numero' ] select_filters = ['Card Format','Card Set','Card Type'] def get_select_filter_values(self, name, conn): filter_values = { 'Card Format' : formatos, 'Card Set' : [''] + conjunto.names_sets(conn, legacy), 'Card Type' : palavras_tipos.keys(), } return filter_values[name] def get_image_back(self): return os.path.join(os.path.dirname(__file__), 'images', 'back.jpg') def value_columns_by_card(self, card): return [ card['nome'], card['sigla'], card['numero'] ] def download_image(self, card, path): url = "http://magiccards.info/scans/en/%s/%s.jpg" % (card['sigla'], card['numero']) parsed = list(urlparse.urlparse(url)) print 'Baixando ', parsed urlretrieve(urlparse.urlunparse(parsed), path) def find_card(self, conn, column_values): query = Query(conn) posicao_sigla = column_values[self.attributes_card_columns.index('sigla')] posicao_numero = column_values[self.attributes_card_columns.index('numero')] result = query.find_by(sigla = posicao_sigla, numero= posicao_numero) print result return result def description_card(self, card): return "%s - %s" % (card['nome'], card['sigla']) def detail_card(self, card): texto = '%s\t\t%s\n\n%s\t\t%s - %s\n\n%s\n\n%s' % (card['nome'], card['mana'], card['tipo'], card['sigla'], card['raridade'], card['texto'], card['numero'] ) return texto def find_or_create_path(self, local, card): if card['sigla'] not in os.listdir(local): os.mkdir(os.path.join(local,card['sigla'])) caminho = "%s/%s/%s.jpg" % (local, card[ 'sigla'], card['numero']) return caminho def find_by_name(self, conn, name, filtros): query = Query(conn) return query.find_by_name(name, montar_filtros(filtros)) def all_cards(self, conn, filtros): query = Query(conn) return query.all_cards( montar_filtros(filtros) ) def update_sets(self, conn): return conjunto.update_sets(conn) def load_sets(self, conn): conjunto.load_sets(conn) def create_tables(self, conn): conjunto.create_tables(conn) def teste(self): conjunto.teste()
PypiClean
/KalturaApiClient-19.3.0.tar.gz/KalturaApiClient-19.3.0/KalturaClient/Plugins/CuePoint.py
from __future__ import absolute_import from .Core import * from ..Base import ( getXmlNodeBool, getXmlNodeFloat, getXmlNodeInt, getXmlNodeText, KalturaClientPlugin, KalturaEnumsFactory, KalturaObjectBase, KalturaObjectFactory, KalturaParams, KalturaServiceBase, ) ########## enums ########## # @package Kaltura # @subpackage Client class KalturaCuePointStatus(object): READY = 1 DELETED = 2 HANDLED = 3 PENDING = 4 def __init__(self, value): self.value = value def getValue(self): return self.value # @package Kaltura # @subpackage Client class KalturaQuestionType(object): MULTIPLE_CHOICE_ANSWER = 1 TRUE_FALSE = 2 REFLECTION_POINT = 3 MULTIPLE_ANSWER_QUESTION = 4 FILL_IN_BLANK = 5 HOT_SPOT = 6 GO_TO = 7 OPEN_QUESTION = 8 def __init__(self, value): self.value = value def getValue(self): return self.value # @package Kaltura # @subpackage Client class KalturaQuizOutputType(object): PDF = 1 def __init__(self, value): self.value = value def getValue(self): return self.value # @package Kaltura # @subpackage Client class KalturaScoreType(object): HIGHEST = 1 LOWEST = 2 LATEST = 3 FIRST = 4 AVERAGE = 5 def __init__(self, value): self.value = value def getValue(self): return self.value # @package Kaltura # @subpackage Client class KalturaThumbCuePointSubType(object): SLIDE = 1 CHAPTER = 2 def __init__(self, value): self.value = value def getValue(self): return self.value # @package Kaltura # @subpackage Client class KalturaCuePointOrderBy(object): CREATED_AT_ASC = "+createdAt" INT_ID_ASC = "+intId" PARTNER_SORT_VALUE_ASC = "+partnerSortValue" START_TIME_ASC = "+startTime" TRIGGERED_AT_ASC = "+triggeredAt" UPDATED_AT_ASC = "+updatedAt" CREATED_AT_DESC = "-createdAt" INT_ID_DESC = "-intId" PARTNER_SORT_VALUE_DESC = "-partnerSortValue" START_TIME_DESC = "-startTime" TRIGGERED_AT_DESC = "-triggeredAt" UPDATED_AT_DESC = "-updatedAt" def __init__(self, value): self.value = value def getValue(self): return self.value # @package Kaltura # @subpackage Client class KalturaCuePointType(object): AD = "adCuePoint.Ad" ANNOTATION = "annotation.Annotation" CODE = "codeCuePoint.Code" EVENT = "eventCuePoint.Event" QUIZ_ANSWER = "quiz.QUIZ_ANSWER" QUIZ_QUESTION = "quiz.QUIZ_QUESTION" THUMB = "thumbCuePoint.Thumb" def __init__(self, value): self.value = value def getValue(self): return self.value ########## classes ########## # @package Kaltura # @subpackage Client class KalturaCuePoint(KalturaObjectBase): def __init__(self, id=NotImplemented, intId=NotImplemented, cuePointType=NotImplemented, status=NotImplemented, entryId=NotImplemented, partnerId=NotImplemented, createdAt=NotImplemented, updatedAt=NotImplemented, triggeredAt=NotImplemented, tags=NotImplemented, startTime=NotImplemented, userId=NotImplemented, partnerData=NotImplemented, partnerSortValue=NotImplemented, forceStop=NotImplemented, thumbOffset=NotImplemented, systemName=NotImplemented, isMomentary=NotImplemented, copiedFrom=NotImplemented): KalturaObjectBase.__init__(self) # @var string # @readonly self.id = id # @var int # @readonly self.intId = intId # @var KalturaCuePointType # @readonly self.cuePointType = cuePointType # @var KalturaCuePointStatus # @readonly self.status = status # @var string # @insertonly self.entryId = entryId # @var int # @readonly self.partnerId = partnerId # @var int # @readonly self.createdAt = createdAt # @var int # @readonly self.updatedAt = updatedAt # @var int self.triggeredAt = triggeredAt # @var string self.tags = tags # Start time in milliseconds # @var int self.startTime = startTime # @var string self.userId = userId # @var string self.partnerData = partnerData # @var int self.partnerSortValue = partnerSortValue # @var KalturaNullableBoolean self.forceStop = forceStop # @var int self.thumbOffset = thumbOffset # @var string self.systemName = systemName # @var bool # @readonly self.isMomentary = isMomentary # @var string # @readonly self.copiedFrom = copiedFrom PROPERTY_LOADERS = { 'id': getXmlNodeText, 'intId': getXmlNodeInt, 'cuePointType': (KalturaEnumsFactory.createString, "KalturaCuePointType"), 'status': (KalturaEnumsFactory.createInt, "KalturaCuePointStatus"), 'entryId': getXmlNodeText, 'partnerId': getXmlNodeInt, 'createdAt': getXmlNodeInt, 'updatedAt': getXmlNodeInt, 'triggeredAt': getXmlNodeInt, 'tags': getXmlNodeText, 'startTime': getXmlNodeInt, 'userId': getXmlNodeText, 'partnerData': getXmlNodeText, 'partnerSortValue': getXmlNodeInt, 'forceStop': (KalturaEnumsFactory.createInt, "KalturaNullableBoolean"), 'thumbOffset': getXmlNodeInt, 'systemName': getXmlNodeText, 'isMomentary': getXmlNodeBool, 'copiedFrom': getXmlNodeText, } def fromXml(self, node): KalturaObjectBase.fromXml(self, node) self.fromXmlImpl(node, KalturaCuePoint.PROPERTY_LOADERS) def toParams(self): kparams = KalturaObjectBase.toParams(self) kparams.put("objectType", "KalturaCuePoint") kparams.addStringIfDefined("entryId", self.entryId) kparams.addIntIfDefined("triggeredAt", self.triggeredAt) kparams.addStringIfDefined("tags", self.tags) kparams.addIntIfDefined("startTime", self.startTime) kparams.addStringIfDefined("userId", self.userId) kparams.addStringIfDefined("partnerData", self.partnerData) kparams.addIntIfDefined("partnerSortValue", self.partnerSortValue) kparams.addIntEnumIfDefined("forceStop", self.forceStop) kparams.addIntIfDefined("thumbOffset", self.thumbOffset) kparams.addStringIfDefined("systemName", self.systemName) return kparams def getId(self): return self.id def getIntId(self): return self.intId def getCuePointType(self): return self.cuePointType def getStatus(self): return self.status def getEntryId(self): return self.entryId def setEntryId(self, newEntryId): self.entryId = newEntryId def getPartnerId(self): return self.partnerId def getCreatedAt(self): return self.createdAt def getUpdatedAt(self): return self.updatedAt def getTriggeredAt(self): return self.triggeredAt def setTriggeredAt(self, newTriggeredAt): self.triggeredAt = newTriggeredAt def getTags(self): return self.tags def setTags(self, newTags): self.tags = newTags def getStartTime(self): return self.startTime def setStartTime(self, newStartTime): self.startTime = newStartTime def getUserId(self): return self.userId def setUserId(self, newUserId): self.userId = newUserId def getPartnerData(self): return self.partnerData def setPartnerData(self, newPartnerData): self.partnerData = newPartnerData def getPartnerSortValue(self): return self.partnerSortValue def setPartnerSortValue(self, newPartnerSortValue): self.partnerSortValue = newPartnerSortValue def getForceStop(self): return self.forceStop def setForceStop(self, newForceStop): self.forceStop = newForceStop def getThumbOffset(self): return self.thumbOffset def setThumbOffset(self, newThumbOffset): self.thumbOffset = newThumbOffset def getSystemName(self): return self.systemName def setSystemName(self, newSystemName): self.systemName = newSystemName def getIsMomentary(self): return self.isMomentary def getCopiedFrom(self): return self.copiedFrom # @package Kaltura # @subpackage Client class KalturaCuePointListResponse(KalturaListResponse): def __init__(self, totalCount=NotImplemented, objects=NotImplemented): KalturaListResponse.__init__(self, totalCount) # @var array of KalturaCuePoint # @readonly self.objects = objects PROPERTY_LOADERS = { 'objects': (KalturaObjectFactory.createArray, 'KalturaCuePoint'), } def fromXml(self, node): KalturaListResponse.fromXml(self, node) self.fromXmlImpl(node, KalturaCuePointListResponse.PROPERTY_LOADERS) def toParams(self): kparams = KalturaListResponse.toParams(self) kparams.put("objectType", "KalturaCuePointListResponse") return kparams def getObjects(self): return self.objects # @package Kaltura # @subpackage Client class KalturaCuePointBaseFilter(KalturaRelatedFilter): def __init__(self, orderBy=NotImplemented, advancedSearch=NotImplemented, idEqual=NotImplemented, idIn=NotImplemented, cuePointTypeEqual=NotImplemented, cuePointTypeIn=NotImplemented, statusEqual=NotImplemented, statusIn=NotImplemented, entryIdEqual=NotImplemented, entryIdIn=NotImplemented, createdAtGreaterThanOrEqual=NotImplemented, createdAtLessThanOrEqual=NotImplemented, updatedAtGreaterThanOrEqual=NotImplemented, updatedAtLessThanOrEqual=NotImplemented, triggeredAtGreaterThanOrEqual=NotImplemented, triggeredAtLessThanOrEqual=NotImplemented, tagsLike=NotImplemented, tagsMultiLikeOr=NotImplemented, tagsMultiLikeAnd=NotImplemented, startTimeGreaterThanOrEqual=NotImplemented, startTimeLessThanOrEqual=NotImplemented, userIdEqual=NotImplemented, userIdIn=NotImplemented, partnerSortValueEqual=NotImplemented, partnerSortValueIn=NotImplemented, partnerSortValueGreaterThanOrEqual=NotImplemented, partnerSortValueLessThanOrEqual=NotImplemented, forceStopEqual=NotImplemented, systemNameEqual=NotImplemented, systemNameIn=NotImplemented): KalturaRelatedFilter.__init__(self, orderBy, advancedSearch) # @var string self.idEqual = idEqual # @var string self.idIn = idIn # @var KalturaCuePointType self.cuePointTypeEqual = cuePointTypeEqual # @var string self.cuePointTypeIn = cuePointTypeIn # @var KalturaCuePointStatus self.statusEqual = statusEqual # @var string self.statusIn = statusIn # @var string self.entryIdEqual = entryIdEqual # @var string self.entryIdIn = entryIdIn # @var int self.createdAtGreaterThanOrEqual = createdAtGreaterThanOrEqual # @var int self.createdAtLessThanOrEqual = createdAtLessThanOrEqual # @var int self.updatedAtGreaterThanOrEqual = updatedAtGreaterThanOrEqual # @var int self.updatedAtLessThanOrEqual = updatedAtLessThanOrEqual # @var int self.triggeredAtGreaterThanOrEqual = triggeredAtGreaterThanOrEqual # @var int self.triggeredAtLessThanOrEqual = triggeredAtLessThanOrEqual # @var string self.tagsLike = tagsLike # @var string self.tagsMultiLikeOr = tagsMultiLikeOr # @var string self.tagsMultiLikeAnd = tagsMultiLikeAnd # @var int self.startTimeGreaterThanOrEqual = startTimeGreaterThanOrEqual # @var int self.startTimeLessThanOrEqual = startTimeLessThanOrEqual # @var string self.userIdEqual = userIdEqual # @var string self.userIdIn = userIdIn # @var int self.partnerSortValueEqual = partnerSortValueEqual # @var string self.partnerSortValueIn = partnerSortValueIn # @var int self.partnerSortValueGreaterThanOrEqual = partnerSortValueGreaterThanOrEqual # @var int self.partnerSortValueLessThanOrEqual = partnerSortValueLessThanOrEqual # @var KalturaNullableBoolean self.forceStopEqual = forceStopEqual # @var string self.systemNameEqual = systemNameEqual # @var string self.systemNameIn = systemNameIn PROPERTY_LOADERS = { 'idEqual': getXmlNodeText, 'idIn': getXmlNodeText, 'cuePointTypeEqual': (KalturaEnumsFactory.createString, "KalturaCuePointType"), 'cuePointTypeIn': getXmlNodeText, 'statusEqual': (KalturaEnumsFactory.createInt, "KalturaCuePointStatus"), 'statusIn': getXmlNodeText, 'entryIdEqual': getXmlNodeText, 'entryIdIn': getXmlNodeText, 'createdAtGreaterThanOrEqual': getXmlNodeInt, 'createdAtLessThanOrEqual': getXmlNodeInt, 'updatedAtGreaterThanOrEqual': getXmlNodeInt, 'updatedAtLessThanOrEqual': getXmlNodeInt, 'triggeredAtGreaterThanOrEqual': getXmlNodeInt, 'triggeredAtLessThanOrEqual': getXmlNodeInt, 'tagsLike': getXmlNodeText, 'tagsMultiLikeOr': getXmlNodeText, 'tagsMultiLikeAnd': getXmlNodeText, 'startTimeGreaterThanOrEqual': getXmlNodeInt, 'startTimeLessThanOrEqual': getXmlNodeInt, 'userIdEqual': getXmlNodeText, 'userIdIn': getXmlNodeText, 'partnerSortValueEqual': getXmlNodeInt, 'partnerSortValueIn': getXmlNodeText, 'partnerSortValueGreaterThanOrEqual': getXmlNodeInt, 'partnerSortValueLessThanOrEqual': getXmlNodeInt, 'forceStopEqual': (KalturaEnumsFactory.createInt, "KalturaNullableBoolean"), 'systemNameEqual': getXmlNodeText, 'systemNameIn': getXmlNodeText, } def fromXml(self, node): KalturaRelatedFilter.fromXml(self, node) self.fromXmlImpl(node, KalturaCuePointBaseFilter.PROPERTY_LOADERS) def toParams(self): kparams = KalturaRelatedFilter.toParams(self) kparams.put("objectType", "KalturaCuePointBaseFilter") kparams.addStringIfDefined("idEqual", self.idEqual) kparams.addStringIfDefined("idIn", self.idIn) kparams.addStringEnumIfDefined("cuePointTypeEqual", self.cuePointTypeEqual) kparams.addStringIfDefined("cuePointTypeIn", self.cuePointTypeIn) kparams.addIntEnumIfDefined("statusEqual", self.statusEqual) kparams.addStringIfDefined("statusIn", self.statusIn) kparams.addStringIfDefined("entryIdEqual", self.entryIdEqual) kparams.addStringIfDefined("entryIdIn", self.entryIdIn) kparams.addIntIfDefined("createdAtGreaterThanOrEqual", self.createdAtGreaterThanOrEqual) kparams.addIntIfDefined("createdAtLessThanOrEqual", self.createdAtLessThanOrEqual) kparams.addIntIfDefined("updatedAtGreaterThanOrEqual", self.updatedAtGreaterThanOrEqual) kparams.addIntIfDefined("updatedAtLessThanOrEqual", self.updatedAtLessThanOrEqual) kparams.addIntIfDefined("triggeredAtGreaterThanOrEqual", self.triggeredAtGreaterThanOrEqual) kparams.addIntIfDefined("triggeredAtLessThanOrEqual", self.triggeredAtLessThanOrEqual) kparams.addStringIfDefined("tagsLike", self.tagsLike) kparams.addStringIfDefined("tagsMultiLikeOr", self.tagsMultiLikeOr) kparams.addStringIfDefined("tagsMultiLikeAnd", self.tagsMultiLikeAnd) kparams.addIntIfDefined("startTimeGreaterThanOrEqual", self.startTimeGreaterThanOrEqual) kparams.addIntIfDefined("startTimeLessThanOrEqual", self.startTimeLessThanOrEqual) kparams.addStringIfDefined("userIdEqual", self.userIdEqual) kparams.addStringIfDefined("userIdIn", self.userIdIn) kparams.addIntIfDefined("partnerSortValueEqual", self.partnerSortValueEqual) kparams.addStringIfDefined("partnerSortValueIn", self.partnerSortValueIn) kparams.addIntIfDefined("partnerSortValueGreaterThanOrEqual", self.partnerSortValueGreaterThanOrEqual) kparams.addIntIfDefined("partnerSortValueLessThanOrEqual", self.partnerSortValueLessThanOrEqual) kparams.addIntEnumIfDefined("forceStopEqual", self.forceStopEqual) kparams.addStringIfDefined("systemNameEqual", self.systemNameEqual) kparams.addStringIfDefined("systemNameIn", self.systemNameIn) return kparams def getIdEqual(self): return self.idEqual def setIdEqual(self, newIdEqual): self.idEqual = newIdEqual def getIdIn(self): return self.idIn def setIdIn(self, newIdIn): self.idIn = newIdIn def getCuePointTypeEqual(self): return self.cuePointTypeEqual def setCuePointTypeEqual(self, newCuePointTypeEqual): self.cuePointTypeEqual = newCuePointTypeEqual def getCuePointTypeIn(self): return self.cuePointTypeIn def setCuePointTypeIn(self, newCuePointTypeIn): self.cuePointTypeIn = newCuePointTypeIn def getStatusEqual(self): return self.statusEqual def setStatusEqual(self, newStatusEqual): self.statusEqual = newStatusEqual def getStatusIn(self): return self.statusIn def setStatusIn(self, newStatusIn): self.statusIn = newStatusIn def getEntryIdEqual(self): return self.entryIdEqual def setEntryIdEqual(self, newEntryIdEqual): self.entryIdEqual = newEntryIdEqual def getEntryIdIn(self): return self.entryIdIn def setEntryIdIn(self, newEntryIdIn): self.entryIdIn = newEntryIdIn def getCreatedAtGreaterThanOrEqual(self): return self.createdAtGreaterThanOrEqual def setCreatedAtGreaterThanOrEqual(self, newCreatedAtGreaterThanOrEqual): self.createdAtGreaterThanOrEqual = newCreatedAtGreaterThanOrEqual def getCreatedAtLessThanOrEqual(self): return self.createdAtLessThanOrEqual def setCreatedAtLessThanOrEqual(self, newCreatedAtLessThanOrEqual): self.createdAtLessThanOrEqual = newCreatedAtLessThanOrEqual def getUpdatedAtGreaterThanOrEqual(self): return self.updatedAtGreaterThanOrEqual def setUpdatedAtGreaterThanOrEqual(self, newUpdatedAtGreaterThanOrEqual): self.updatedAtGreaterThanOrEqual = newUpdatedAtGreaterThanOrEqual def getUpdatedAtLessThanOrEqual(self): return self.updatedAtLessThanOrEqual def setUpdatedAtLessThanOrEqual(self, newUpdatedAtLessThanOrEqual): self.updatedAtLessThanOrEqual = newUpdatedAtLessThanOrEqual def getTriggeredAtGreaterThanOrEqual(self): return self.triggeredAtGreaterThanOrEqual def setTriggeredAtGreaterThanOrEqual(self, newTriggeredAtGreaterThanOrEqual): self.triggeredAtGreaterThanOrEqual = newTriggeredAtGreaterThanOrEqual def getTriggeredAtLessThanOrEqual(self): return self.triggeredAtLessThanOrEqual def setTriggeredAtLessThanOrEqual(self, newTriggeredAtLessThanOrEqual): self.triggeredAtLessThanOrEqual = newTriggeredAtLessThanOrEqual def getTagsLike(self): return self.tagsLike def setTagsLike(self, newTagsLike): self.tagsLike = newTagsLike def getTagsMultiLikeOr(self): return self.tagsMultiLikeOr def setTagsMultiLikeOr(self, newTagsMultiLikeOr): self.tagsMultiLikeOr = newTagsMultiLikeOr def getTagsMultiLikeAnd(self): return self.tagsMultiLikeAnd def setTagsMultiLikeAnd(self, newTagsMultiLikeAnd): self.tagsMultiLikeAnd = newTagsMultiLikeAnd def getStartTimeGreaterThanOrEqual(self): return self.startTimeGreaterThanOrEqual def setStartTimeGreaterThanOrEqual(self, newStartTimeGreaterThanOrEqual): self.startTimeGreaterThanOrEqual = newStartTimeGreaterThanOrEqual def getStartTimeLessThanOrEqual(self): return self.startTimeLessThanOrEqual def setStartTimeLessThanOrEqual(self, newStartTimeLessThanOrEqual): self.startTimeLessThanOrEqual = newStartTimeLessThanOrEqual def getUserIdEqual(self): return self.userIdEqual def setUserIdEqual(self, newUserIdEqual): self.userIdEqual = newUserIdEqual def getUserIdIn(self): return self.userIdIn def setUserIdIn(self, newUserIdIn): self.userIdIn = newUserIdIn def getPartnerSortValueEqual(self): return self.partnerSortValueEqual def setPartnerSortValueEqual(self, newPartnerSortValueEqual): self.partnerSortValueEqual = newPartnerSortValueEqual def getPartnerSortValueIn(self): return self.partnerSortValueIn def setPartnerSortValueIn(self, newPartnerSortValueIn): self.partnerSortValueIn = newPartnerSortValueIn def getPartnerSortValueGreaterThanOrEqual(self): return self.partnerSortValueGreaterThanOrEqual def setPartnerSortValueGreaterThanOrEqual(self, newPartnerSortValueGreaterThanOrEqual): self.partnerSortValueGreaterThanOrEqual = newPartnerSortValueGreaterThanOrEqual def getPartnerSortValueLessThanOrEqual(self): return self.partnerSortValueLessThanOrEqual def setPartnerSortValueLessThanOrEqual(self, newPartnerSortValueLessThanOrEqual): self.partnerSortValueLessThanOrEqual = newPartnerSortValueLessThanOrEqual def getForceStopEqual(self): return self.forceStopEqual def setForceStopEqual(self, newForceStopEqual): self.forceStopEqual = newForceStopEqual def getSystemNameEqual(self): return self.systemNameEqual def setSystemNameEqual(self, newSystemNameEqual): self.systemNameEqual = newSystemNameEqual def getSystemNameIn(self): return self.systemNameIn def setSystemNameIn(self, newSystemNameIn): self.systemNameIn = newSystemNameIn # @package Kaltura # @subpackage Client class KalturaCuePointFilter(KalturaCuePointBaseFilter): def __init__(self, orderBy=NotImplemented, advancedSearch=NotImplemented, idEqual=NotImplemented, idIn=NotImplemented, cuePointTypeEqual=NotImplemented, cuePointTypeIn=NotImplemented, statusEqual=NotImplemented, statusIn=NotImplemented, entryIdEqual=NotImplemented, entryIdIn=NotImplemented, createdAtGreaterThanOrEqual=NotImplemented, createdAtLessThanOrEqual=NotImplemented, updatedAtGreaterThanOrEqual=NotImplemented, updatedAtLessThanOrEqual=NotImplemented, triggeredAtGreaterThanOrEqual=NotImplemented, triggeredAtLessThanOrEqual=NotImplemented, tagsLike=NotImplemented, tagsMultiLikeOr=NotImplemented, tagsMultiLikeAnd=NotImplemented, startTimeGreaterThanOrEqual=NotImplemented, startTimeLessThanOrEqual=NotImplemented, userIdEqual=NotImplemented, userIdIn=NotImplemented, partnerSortValueEqual=NotImplemented, partnerSortValueIn=NotImplemented, partnerSortValueGreaterThanOrEqual=NotImplemented, partnerSortValueLessThanOrEqual=NotImplemented, forceStopEqual=NotImplemented, systemNameEqual=NotImplemented, systemNameIn=NotImplemented, freeText=NotImplemented, userIdEqualCurrent=NotImplemented, userIdCurrent=NotImplemented): KalturaCuePointBaseFilter.__init__(self, orderBy, advancedSearch, idEqual, idIn, cuePointTypeEqual, cuePointTypeIn, statusEqual, statusIn, entryIdEqual, entryIdIn, createdAtGreaterThanOrEqual, createdAtLessThanOrEqual, updatedAtGreaterThanOrEqual, updatedAtLessThanOrEqual, triggeredAtGreaterThanOrEqual, triggeredAtLessThanOrEqual, tagsLike, tagsMultiLikeOr, tagsMultiLikeAnd, startTimeGreaterThanOrEqual, startTimeLessThanOrEqual, userIdEqual, userIdIn, partnerSortValueEqual, partnerSortValueIn, partnerSortValueGreaterThanOrEqual, partnerSortValueLessThanOrEqual, forceStopEqual, systemNameEqual, systemNameIn) # @var string self.freeText = freeText # @var KalturaNullableBoolean self.userIdEqualCurrent = userIdEqualCurrent # @var KalturaNullableBoolean self.userIdCurrent = userIdCurrent PROPERTY_LOADERS = { 'freeText': getXmlNodeText, 'userIdEqualCurrent': (KalturaEnumsFactory.createInt, "KalturaNullableBoolean"), 'userIdCurrent': (KalturaEnumsFactory.createInt, "KalturaNullableBoolean"), } def fromXml(self, node): KalturaCuePointBaseFilter.fromXml(self, node) self.fromXmlImpl(node, KalturaCuePointFilter.PROPERTY_LOADERS) def toParams(self): kparams = KalturaCuePointBaseFilter.toParams(self) kparams.put("objectType", "KalturaCuePointFilter") kparams.addStringIfDefined("freeText", self.freeText) kparams.addIntEnumIfDefined("userIdEqualCurrent", self.userIdEqualCurrent) kparams.addIntEnumIfDefined("userIdCurrent", self.userIdCurrent) return kparams def getFreeText(self): return self.freeText def setFreeText(self, newFreeText): self.freeText = newFreeText def getUserIdEqualCurrent(self): return self.userIdEqualCurrent def setUserIdEqualCurrent(self, newUserIdEqualCurrent): self.userIdEqualCurrent = newUserIdEqualCurrent def getUserIdCurrent(self): return self.userIdCurrent def setUserIdCurrent(self, newUserIdCurrent): self.userIdCurrent = newUserIdCurrent ########## services ########## # @package Kaltura # @subpackage Client class KalturaCuePointService(KalturaServiceBase): """Cue Point service""" def __init__(self, client = None): KalturaServiceBase.__init__(self, client) def add(self, cuePoint): """Allows you to add an cue point object associated with an entry""" kparams = KalturaParams() kparams.addObjectIfDefined("cuePoint", cuePoint) self.client.queueServiceActionCall("cuepoint_cuepoint", "add", "KalturaCuePoint", kparams) if self.client.isMultiRequest(): return self.client.getMultiRequestResult() resultNode = self.client.doQueue() return KalturaObjectFactory.create(resultNode, 'KalturaCuePoint') def addFromBulk(self, fileData): """Allows you to add multiple cue points objects by uploading XML that contains multiple cue point definitions""" kparams = KalturaParams() kfiles = {"fileData": fileData} self.client.queueServiceActionCall("cuepoint_cuepoint", "addFromBulk", "KalturaCuePointListResponse", kparams, kfiles) if self.client.isMultiRequest(): return self.client.getMultiRequestResult() resultNode = self.client.doQueue() return KalturaObjectFactory.create(resultNode, 'KalturaCuePointListResponse') def clone(self, id, entryId): """Clone cuePoint with id to given entry""" kparams = KalturaParams() kparams.addStringIfDefined("id", id) kparams.addStringIfDefined("entryId", entryId) self.client.queueServiceActionCall("cuepoint_cuepoint", "clone", "KalturaCuePoint", kparams) if self.client.isMultiRequest(): return self.client.getMultiRequestResult() resultNode = self.client.doQueue() return KalturaObjectFactory.create(resultNode, 'KalturaCuePoint') def count(self, filter = NotImplemented): """count cue point objects by filter""" kparams = KalturaParams() kparams.addObjectIfDefined("filter", filter) self.client.queueServiceActionCall("cuepoint_cuepoint", "count", "None", kparams) if self.client.isMultiRequest(): return self.client.getMultiRequestResult() resultNode = self.client.doQueue() return getXmlNodeInt(resultNode) def delete(self, id): """delete cue point by id, and delete all children cue points""" kparams = KalturaParams() kparams.addStringIfDefined("id", id) self.client.queueServiceActionCall("cuepoint_cuepoint", "delete", "None", kparams) if self.client.isMultiRequest(): return self.client.getMultiRequestResult() resultNode = self.client.doQueue() def get(self, id): """Retrieve an CuePoint object by id""" kparams = KalturaParams() kparams.addStringIfDefined("id", id) self.client.queueServiceActionCall("cuepoint_cuepoint", "get", "KalturaCuePoint", kparams) if self.client.isMultiRequest(): return self.client.getMultiRequestResult() resultNode = self.client.doQueue() return KalturaObjectFactory.create(resultNode, 'KalturaCuePoint') def list(self, filter = NotImplemented, pager = NotImplemented): """List cue point objects by filter and pager""" kparams = KalturaParams() kparams.addObjectIfDefined("filter", filter) kparams.addObjectIfDefined("pager", pager) self.client.queueServiceActionCall("cuepoint_cuepoint", "list", "KalturaCuePointListResponse", kparams) if self.client.isMultiRequest(): return self.client.getMultiRequestResult() resultNode = self.client.doQueue() return KalturaObjectFactory.create(resultNode, 'KalturaCuePointListResponse') def serveBulk(self, filter = NotImplemented, pager = NotImplemented): """Download multiple cue points objects as XML definitions""" kparams = KalturaParams() kparams.addObjectIfDefined("filter", filter) kparams.addObjectIfDefined("pager", pager) self.client.queueServiceActionCall('cuepoint_cuepoint', 'serveBulk', None ,kparams) return self.client.getServeUrl() def update(self, id, cuePoint): """Update cue point by id""" kparams = KalturaParams() kparams.addStringIfDefined("id", id) kparams.addObjectIfDefined("cuePoint", cuePoint) self.client.queueServiceActionCall("cuepoint_cuepoint", "update", "KalturaCuePoint", kparams) if self.client.isMultiRequest(): return self.client.getMultiRequestResult() resultNode = self.client.doQueue() return KalturaObjectFactory.create(resultNode, 'KalturaCuePoint') def updateCuePointsTimes(self, id, startTime, endTime = NotImplemented): kparams = KalturaParams() kparams.addStringIfDefined("id", id) kparams.addIntIfDefined("startTime", startTime); kparams.addIntIfDefined("endTime", endTime); self.client.queueServiceActionCall("cuepoint_cuepoint", "updateCuePointsTimes", "KalturaCuePoint", kparams) if self.client.isMultiRequest(): return self.client.getMultiRequestResult() resultNode = self.client.doQueue() return KalturaObjectFactory.create(resultNode, 'KalturaCuePoint') def updateStatus(self, id, status): """Update cuePoint status by id""" kparams = KalturaParams() kparams.addStringIfDefined("id", id) kparams.addIntIfDefined("status", status); self.client.queueServiceActionCall("cuepoint_cuepoint", "updateStatus", "None", kparams) if self.client.isMultiRequest(): return self.client.getMultiRequestResult() resultNode = self.client.doQueue() ########## main ########## class KalturaCuePointClientPlugin(KalturaClientPlugin): # KalturaCuePointClientPlugin instance = None # @return KalturaCuePointClientPlugin @staticmethod def get(): if KalturaCuePointClientPlugin.instance == None: KalturaCuePointClientPlugin.instance = KalturaCuePointClientPlugin() return KalturaCuePointClientPlugin.instance # @return array<KalturaServiceBase> def getServices(self): return { 'cuePoint': KalturaCuePointService, } def getEnums(self): return { 'KalturaCuePointStatus': KalturaCuePointStatus, 'KalturaQuestionType': KalturaQuestionType, 'KalturaQuizOutputType': KalturaQuizOutputType, 'KalturaScoreType': KalturaScoreType, 'KalturaThumbCuePointSubType': KalturaThumbCuePointSubType, 'KalturaCuePointOrderBy': KalturaCuePointOrderBy, 'KalturaCuePointType': KalturaCuePointType, } def getTypes(self): return { 'KalturaCuePoint': KalturaCuePoint, 'KalturaCuePointListResponse': KalturaCuePointListResponse, 'KalturaCuePointBaseFilter': KalturaCuePointBaseFilter, 'KalturaCuePointFilter': KalturaCuePointFilter, } # @return string def getName(self): return 'cuePoint'
PypiClean
/MPT5.0.1-0.1.tar.gz/MPT5.0.1-0.1/src/MPT5/Database/PostGet.py
import sqlite3 from . import wxsq as sq from . import srcsql as ss from Config.Init import * class Get: def __init__(self, DBF, Data, file): self.DBF = DBF self.Data = Data if file != '': sqlfile = DATABASE_PATH + 'sqls' + SLASH + file #sqlfile = Src_dbf + 'sqls' + SLASH + file self.SQLtxt = self.openSql(sqlfile) def openSql(self, sqlfile): with open(sqlfile) as f: alltxt = f.readlines() #print(alltxt) return alltxt[0] def GetFromDbf(self): return sq.wxsqltxt(self.DBF, self.SQLtxt) def GetFromDbfWithData(self): return sq.wxsqltxt(self.DBF, self.SQLtxt + self.Data ) def GetFromString(self, string): return sq.wxsqltxt(self.DBF, string) def __del__(self): pass def __hash__(self): pass class Post: def __init__(self, DBF, Tabel, Field, Data): self.DBF = DBF self.Tabel = Tabel #self.Field = Field #self.Data = Data def Addrecord(self,Field,Data): return sq.wxsqins(self.DBF, self.Tabel, Field, Data) def Addrecord2(self,Field,Data): return sq.wxsqins2(self.DBF, self.Tabel, Field, Data) def Updaterecord(self,Field,Data): return sq.wxsqlup(self.DBF, self.Tabel, Field, Data) def Updaterecord2(self,Field,Data): return sq.wxsqlup2(self.DBF, self.Tabel, Field, Data) def Deleterecord(self,Data): return sq.wxsqdel(self.DBF, self.Tabel, Data) def DeleteAllrecord(self,Field): return sq.wxsqdall(self.DBF, Field) def __del__(self): pass def __hash__(self): pass class Get2: def __init__(self, DBF, Data, file): self.DBF = DBF self.Data = Data if file != '': sqlfile = DATABASE_PATH + 'sqls' + SLASH + file #sqlfile = Src_dbf + 'sqls' + SLASH + file self.SQLtxt = self.openSql(sqlfile) def openSql(self, sqlfile): with open(sqlfile) as f: alltxt = f.readlines() #print(alltxt) return alltxt[0] def GetFromDbf(self): return ss.wxsqltxt(self.DBF, self.SQLtxt) def GetFromDbfWithData(self): return ss.wxsqltxt(self.DBF, self.SQLtxt + self.Data ) def GetFromString(self, string): return ss.wxsqltxt(self.DBF, string) def GetFromString2(self, string, fields): cur = ss.SFDB(self.DBF) return cur.cursor.execute(string,fields) def GetCommandStr(self, database , string): cur = ss.MyDB_Path(database) cur.execute(string) def __del__(self): pass def __hash__(self): pass class Post2: def __init__(self, DBF, Tabel, Field, Data): self.DBF = DBF self.Tabel = Tabel #self.Field = Field #self.Data = Data def Addrecord(self,Field,Data): return ss.wxsqins(self.DBF, self.Tabel, Field, Data) def Addrecord2(self,Field,Data): return ss.wxsqins2(self.DBF, self.Tabel, Field, Data) def Addrecord3(self,Field,Data): return ss.wxsqins3(self.DBF, self.Tabel, Field, Data) def Updaterecord(self,Field,Data): return ss.wxsqlup(self.DBF, self.Tabel, Field, Data) def Updaterecord2(self,Field,Data): return ss.wxsqlup2(self.DBF, self.Tabel, Field, Data) def Deleterecord(self,Data): return ss.wxsqdel(self.DBF, self.Tabel, Data) def DeleteAllrecord(self,Field): return ss.wxsqdall(self.DBF, Field) def __del__(self): pass def __hash__(self): pass
PypiClean
/Mopidy-Muse-0.0.27.tar.gz/Mopidy-Muse-0.0.27/mopidy_muse/static/client/legacy/client.9a1e6cd3.js
import"core-js/modules/es.array.iterator.js";import"core-js/modules/es.object.to-string.js";import"core-js/modules/es.promise.js";import"core-js/modules/es.string.iterator.js";import"core-js/modules/web.dom-collections.iterator.js";import"core-js/modules/es.array.map.js";import"core-js/modules/web.url.js";import"./client.4760e5ea.js";import"core-js/modules/es.symbol.js";import"core-js/modules/es.symbol.description.js";import"core-js/modules/es.symbol.iterator.js";import"core-js/modules/es.symbol.async-iterator.js";import"core-js/modules/es.symbol.to-string-tag.js";import"core-js/modules/es.json.to-string-tag.js";import"core-js/modules/es.math.to-string-tag.js";import"core-js/modules/es.object.get-prototype-of.js";import"core-js/modules/es.function.name.js";import"core-js/modules/es.object.set-prototype-of.js";import"core-js/modules/web.dom-collections.for-each.js";import"core-js/modules/es.array.slice.js";import"core-js/modules/es.regexp.exec.js";import"core-js/modules/es.string.split.js";import"core-js/modules/es.string.replace.js";import"core-js/modules/es.string.starts-with.js";import"core-js/modules/es.string.search.js";import"core-js/modules/es.object.assign.js";import"core-js/modules/es.string.match.js";import"core-js/modules/es.array.filter.js";import"core-js/modules/es.regexp.to-string.js";import"core-js/modules/es.array.reduce.js";import"core-js/modules/es.reflect.construct.js";import"core-js/modules/es.object.keys.js";import"core-js/modules/es.set.js";import"core-js/modules/es.array.concat.js";import"core-js/modules/es.typed-array.int32-array.js";import"core-js/modules/es.typed-array.copy-within.js";import"core-js/modules/es.typed-array.every.js";import"core-js/modules/es.typed-array.fill.js";import"core-js/modules/es.typed-array.filter.js";import"core-js/modules/es.typed-array.find.js";import"core-js/modules/es.typed-array.find-index.js";import"core-js/modules/es.typed-array.for-each.js";import"core-js/modules/es.typed-array.includes.js";import"core-js/modules/es.typed-array.index-of.js";import"core-js/modules/es.typed-array.iterator.js";import"core-js/modules/es.typed-array.join.js";import"core-js/modules/es.typed-array.last-index-of.js";import"core-js/modules/es.typed-array.map.js";import"core-js/modules/es.typed-array.reduce.js";import"core-js/modules/es.typed-array.reduce-right.js";import"core-js/modules/es.typed-array.reverse.js";import"core-js/modules/es.typed-array.set.js";import"core-js/modules/es.typed-array.slice.js";import"core-js/modules/es.typed-array.some.js";import"core-js/modules/es.typed-array.sort.js";import"core-js/modules/es.typed-array.subarray.js";import"core-js/modules/es.typed-array.to-locale-string.js";import"core-js/modules/es.typed-array.to-string.js";import"core-js/modules/es.array.sort.js";import"core-js/modules/es.array.index-of.js";import"core-js/modules/es.object.get-own-property-descriptors.js";import"core-js/modules/es.array.from.js";import"core-js/modules/es.array.splice.js";import"core-js/modules/es.string.trim.js";import"core-js/modules/es.array.join.js";import"core-js/modules/es.string.anchor.js";import"core-js/modules/es.map.js";import"core-js/modules/es.array.fill.js";import"core-js/modules/es.parse-float.js";import"core-js/modules/es.string.pad-start.js";import"core-js/modules/es.object.values.js";import"core-js/modules/es.array.find.js";import"core-js/modules/es.object.get-own-property-descriptor.js";import"core-js/modules/es.reflect.own-keys.js";
PypiClean
/Corrfunc-2.5.1.tar.gz/Corrfunc-2.5.1/docs/source/development/contributing.rst
.. _contributing: ========================= Contributing to Corrfunc ========================= Corrfunc is written in a very modular fashion with minimal interaction between the various calculations. The algorithm presented in Corrfunc is applicable to a broad-range of astrophysical problems, viz., any situation that requires looking at *all* objects around a target and performing some analysis with this group of objects. Here are the basic steps to get your statistic into the Corrfunc package: * Fork the repo and add your statistic * Add exhaustive tests. The output of your statistic should **exactly** agree with a brute-force implementation (under double-precision). Look at ``test_periodic.c`` and ``test_nonperiodic.c`` under ``theory/tests/`` for tests on simulation volumes. For mock catalogs, look at ``mocks/tests/tests_mocks.c``. * Add a python extension for the new statistic. This extension should reside in file ``theory/python_bindings/_countpairs.c`` or ``mocks/python_bindings/_countpairs_mocks.c`` for statistics relevant for simulations and mocks respectively. It is preferred to have the extension documented but not necessary. * Add a call to this new *extension* in the ``python_bindings/call_correlation_functions*.py`` script. .. note:: Different from corresponding script in ``Corrfunc/`` directory. * Add a python wrapper for the previous python extension. This wrapper should exist in ``Corrfunc/theory/`` or ``Corrfunc/mocks/``. Wrapper **must** have inline API docs. * Add the new wrapper to ``__all__`` in ``__init__.py`` within the relevant directory. * Add an example call to this *wrapper* in ``Corrfunc/call_correlation_functions.py`` or ``Corrfunc/call_correlation_functions_mocks.py`` for simulations and mocks respectively. .. note:: Different from corresponding script in ``python_bindings`` directory. * Add the new wrapper to the API docs within ``ROOT_DIR/docs/source/theory_functions.rst`` or ``ROOT_DIR/docs/source/mocks_functions.rst``. * Add to the contributors list under ``ROOT_DIR/docs/source/development/contributors.rst``. * Submit pull request .. note:: Please feel free to email the `author <mailto:[email protected]>`_ or the `Corrfunc Google Groups <https://groups.google.com/forum/#!forum/corrfunc>`_ if you need help at any stage. Corrfunc Design ~~~~~~~~~~~~~~~~ All of the algorithms in Corrfunc have the following components: * Reading in data. Relevant routines are in the ``io/`` directory with a mapping within ``io.c`` to handle the file format * Creating the 3-D lattice structure. Relevant routines are in the ``utils/gridlink_impl.c.src`` and ``utils/gridlink_mocks.c.src``. This lattice grids up the particle distribution on cell-sizes of ``rmax`` (the maximum search radius). .. note:: The current lattice code duplicates the particle memory. If you need a lattice that does not duplicate the particle memory, then please email the `author <mailto:[email protected]>`_. Relevant code existed in Corrfunc but has been removed in the current incarnation. * Setting up the OpenMP sections such that threads have local copies of histogram arrays. If OpenMP is not enabled, then this section should not produce any compilable code. * Looping over all cells in the 3-D lattice and then looping over all neighbouring cells for each cell. * For a pair of cells, hand over the two sets of arrays into a specialized kernel (``count*kernel.c.src``) for computing pairs. * Aggregate the results, if OpenMP was enabled. Directory and file layout ~~~~~~~~~~~~~~~~~~~~~~~~~~ * Codes that compute statistics on simulation volumes (Cartesian XYZ as input) go into a separate directory within ``theory`` * Codes that compute statistics on mock catalogs (RA, DEC [CZ]) go into a separate directory within ``mocks`` * Public API in a ``count*.h`` file. Corresponding C file simply dispatches to appropriate floating point implementation. * Floating point implmentation in file ``count*_impl.c.src``. This file is processed via ``sed`` to generate both single and double precision implementations. * A kernel named ``count*kernels.c.src`` containing implementations for counting pairs on two sets of arrays. This kernel file is also preprocessed to produce both the single and double precision kernels. * Tests go within ``tests`` directory under ``theory`` or ``mocks``, as appropriate. For simulation routines, tests with and without periodic boundaries go into ``test_periodic.c`` and ``test_nonperiodic.c`` * C code to generate the python extensions goes under ``python_bindings`` directory into the file ``_countpairs*.c`` * Each python extension has a python wrapper within ``Corrfunc`` directory Coding Guidelines ~~~~~~~~~~~~~~~~~ C guidelines ============ Code contents ------------- * **Always** check for error conditions when calling a function * If an error condition occurs when making an kernel/external library call, first call ``perror`` and then return the error status. If calling a wrapper from within Corrfunc, assume that ``perror`` has already been called and simply return the status. Clean up memory before returning status. * Declare variables in the smallest possible scope. * Add ``const`` qualifiers liberally * There **must** not be any compiler warnings (with ``gcc6.0``) under the given set of Warnings already enabled within ``common.mk``. If the warning can not be avoided because of logic issues, then suppress the warning but note why that suppression is required. Warnings are treated as errors on the continuous integration platform (TRAVIS) * Valgrind should not report any fixable memory or file leaks (memory leaks in OpenMP library, e.g., ``libgomp``, are fine) Style ------ The coding style is loosely based on `Linux Kernel Guideline <https://www.kernel.org/doc/Documentation/CodingStyle>`_. These are recommended but not strictly enforced. However, note that if you do contribute code to Corrfunc, the style may get converted. * Braces - Opening braces start at the same line, except for functions - Closing braces on new line - Even single line conditionals must have opening and closing braces * Comments - Explanatory comments on top of code segment enclosed with ``/**/`` - Inline comments must be single-line on the right * Indentation is ``tab:=4 spaces`` * Avoid ``typedef`` for ``structs`` and ``unions`` Python guidelines ================= * Follow the `astropy python code guide <http://docs.astropy.org/en/stable/development/codeguide_emacs.html>`_ * Docs are in ``numpydocs`` format. Follow any of the wrapper routines in ``Corrfunc`` (which are, in turn, taken from `halotools <http://halotools.readthedocs.io/>`_)
PypiClean
/BlackLager-1.0.14.tar.gz/BlackLager-1.0.14/blackLager/textwindow.py
from client_utils import error_handler import curses from datetime import datetime import traceback class TextWindow(object): def __init__(self, name, rows, columns, y1, x1, y2, x2, ShowBorder, BorderColor, TitleColor, stdscr): self.name = name self.rows = rows self.columns = columns self.y1 = y1 self.x1 = x1 self.y2 = y2 self.x2 = x2 self.ShowBorder = ShowBorder self.BorderColor = BorderColor # pre defined text colors 1-7 self.TextWindow = curses.newwin( self.rows, self.columns, self.y1, self.x1) self.CurrentRow = 1 self.StartColumn = 1 # we will modify this later, based on if we show borders or not self.DisplayRows = self.rows # we will modify this later, based on if we show borders or not self.DisplayColumns = self.columns self.PreviousLineText = "" self.PreviousLineRow = 0 self.PreviousLineColor = 2 self.Title = "" self.TitleColor = TitleColor self.stdscr = stdscr # If we are showing border, we only print inside the lines if (self.ShowBorder == 'Y'): self.CurrentRow = 1 self.StartColumn = 1 self.DisplayRows = self.rows - 2 # we don't want to print over the border # we don't want to print over the border self.DisplayColumns = self.columns - 2 self.TextWindow.attron(curses.color_pair(BorderColor)) self.TextWindow.border() self.TextWindow.attroff(curses.color_pair(BorderColor)) self.TextWindow.refresh() else: self.CurrentRow = 0 self.StartColumn = 0 def scroll_print(self, PrintLine, Color=2, TimeStamp=False, BoldLine=True): # print(PrintLine) # for now the string is printed in the window and the current row is incremented # when the counter reaches the end of the window, we will wrap around to the top # we don't print on the window border # make sure to pad the new string with spaces to overwrite any old text current_time = datetime.now().strftime("%H:%M:%S") if (TimeStamp): PrintLine = current_time + ": {}".format(PrintLine) # expand tabs to X spaces, pad the string with space PrintLine = PrintLine.expandtabs(4) # adjust strings # Get a part of the big string that will fit in the window PrintableString = PrintLine[0:self.DisplayColumns] RemainingString = PrintLine[self.DisplayColumns+1:] try: while (len(PrintableString) > 0): # padd with spaces PrintableString = PrintableString.ljust( self.DisplayColumns, ' ') # if (self.rows == 1): # #if you print on the last character of a window you get an error # PrintableString = PrintableString[0:-2] # self.TextWindow.addstr(0,0,PrintableString) # else: # unbold Previous line self.TextWindow.attron( curses.color_pair(self.PreviousLineColor)) self.TextWindow.addstr( self.PreviousLineRow, self.StartColumn, self.PreviousLineText) self.TextWindow.attroff( curses.color_pair(self.PreviousLineColor)) if BoldLine: # A_NORMAL Normal display (no highlight) # A_STANDOUT Best highlighting mode of the terminal # A_UNDERLINE Underlining # A_REVERSE Reverse video # A_BLINK Blinking # A_DIM Half bright # A_BOLD Extra bright or bold # A_PROTECT Protected mode # A_INVIS Invisible or blank mode # A_ALTCHARSET Alternate character set # A_CHARTEXT Bit-mask to extract a character # COLOR_PAIR(n) Color-pair number n # print new line in bold self.TextWindow.attron(curses.color_pair(Color)) self.TextWindow.addstr( self.CurrentRow, self.StartColumn, PrintableString, curses.A_BOLD) self.TextWindow.attroff(curses.color_pair(Color)) else: # print new line in Regular self.TextWindow.attron(curses.color_pair(Color)) self.TextWindow.addstr( self.CurrentRow, self.StartColumn, PrintableString) self.TextWindow.attroff(curses.color_pair(Color)) self.PreviousLineText = PrintableString self.PreviousLineColor = Color self.PreviousLineRow = self.CurrentRow self.CurrentRow = self.CurrentRow + 1 # Adjust strings PrintableString = RemainingString[0:self.DisplayColumns] RemainingString = RemainingString[self.DisplayColumns:] if (self.CurrentRow > (self.DisplayRows)): if (self.ShowBorder == 'Y'): self.CurrentRow = 1 else: self.CurrentRow = 0 # erase to end of line # self.TextWindow.clrtoeol() self.TextWindow.refresh() except Exception as ErrorMessage: TraceMessage = traceback.format_exc() AdditionalInfo = "PrintLine: {}".format(PrintLine) error_handler(ErrorMessage, TraceMessage, AdditionalInfo, self.stdscr) def window_print(self, y, x, PrintLine, Color=2): # print at a specific coordinate within the window # try: # expand tabs to X spaces, pad the string with space then truncate PrintLine = PrintLine.expandtabs(4) # pad the print line with spaces then truncate at the display length PrintLine = PrintLine.ljust(self.DisplayColumns - 1) PrintLine = PrintLine[0:self.DisplayColumns - x] self.TextWindow.attron(curses.color_pair(Color)) self.TextWindow.addstr(y, x, PrintLine) self.TextWindow.attroff(curses.color_pair(Color)) self.TextWindow.refresh() def display_title(self): # display the window title title = '' try: # expand tabs to X spaces, pad the string with space then truncate title = self.Title[0:self.DisplayColumns-3] self.TextWindow.attron(curses.color_pair(self.TitleColor)) if (self.rows > 2): # print new line in bold self.TextWindow.addstr(0, 2, title) else: print("ERROR - You cannot display title on a window smaller than 3 rows") self.TextWindow.attroff(curses.color_pair(self.TitleColor)) self.TextWindow.refresh() except Exception as ErrorMessage: TraceMessage = traceback.format_exc() AdditionalInfo = "Title: " + title error_handler(ErrorMessage, TraceMessage, AdditionalInfo, self.stdscr) def clear(self): self.TextWindow.erase() self.TextWindow.attron(curses.color_pair(self.BorderColor)) self.TextWindow.border() self.TextWindow.attroff(curses.color_pair(self.BorderColor)) self.display_title() if self.ShowBorder == 'Y': self.CurrentRow = 1 self.StartColumn = 1 else: self.CurrentRow = 0 self.StartColumn = 0
PypiClean
/DJModels-0.0.6-py3-none-any.whl/djmodels/contrib/gis/feeds.py
from djmodels.contrib.syndication.views import Feed as BaseFeed from djmodels.utils.feedgenerator import Atom1Feed, Rss201rev2Feed class GeoFeedMixin: """ This mixin provides the necessary routines for SyndicationFeed subclasses to produce simple GeoRSS or W3C Geo elements. """ def georss_coords(self, coords): """ In GeoRSS coordinate pairs are ordered by lat/lon and separated by a single white space. Given a tuple of coordinates, return a string GeoRSS representation. """ return ' '.join('%f %f' % (coord[1], coord[0]) for coord in coords) def add_georss_point(self, handler, coords, w3c_geo=False): """ Adds a GeoRSS point with the given coords using the given handler. Handles the differences between simple GeoRSS and the more popular W3C Geo specification. """ if w3c_geo: lon, lat = coords[:2] handler.addQuickElement('geo:lat', '%f' % lat) handler.addQuickElement('geo:lon', '%f' % lon) else: handler.addQuickElement('georss:point', self.georss_coords((coords,))) def add_georss_element(self, handler, item, w3c_geo=False): """Add a GeoRSS XML element using the given item and handler.""" # Getting the Geometry object. geom = item.get('geometry') if geom is not None: if isinstance(geom, (list, tuple)): # Special case if a tuple/list was passed in. The tuple may be # a point or a box box_coords = None if isinstance(geom[0], (list, tuple)): # Box: ( (X0, Y0), (X1, Y1) ) if len(geom) == 2: box_coords = geom else: raise ValueError('Only should be two sets of coordinates.') else: if len(geom) == 2: # Point: (X, Y) self.add_georss_point(handler, geom, w3c_geo=w3c_geo) elif len(geom) == 4: # Box: (X0, Y0, X1, Y1) box_coords = (geom[:2], geom[2:]) else: raise ValueError('Only should be 2 or 4 numeric elements.') # If a GeoRSS box was given via tuple. if box_coords is not None: if w3c_geo: raise ValueError('Cannot use simple GeoRSS box in W3C Geo feeds.') handler.addQuickElement('georss:box', self.georss_coords(box_coords)) else: # Getting the lower-case geometry type. gtype = str(geom.geom_type).lower() if gtype == 'point': self.add_georss_point(handler, geom.coords, w3c_geo=w3c_geo) else: if w3c_geo: raise ValueError('W3C Geo only supports Point geometries.') # For formatting consistent w/the GeoRSS simple standard: # http://georss.org/1.0#simple if gtype in ('linestring', 'linearring'): handler.addQuickElement('georss:line', self.georss_coords(geom.coords)) elif gtype in ('polygon',): # Only support the exterior ring. handler.addQuickElement('georss:polygon', self.georss_coords(geom[0].coords)) else: raise ValueError('Geometry type "%s" not supported.' % geom.geom_type) # ### SyndicationFeed subclasses ### class GeoRSSFeed(Rss201rev2Feed, GeoFeedMixin): def rss_attributes(self): attrs = super().rss_attributes() attrs['xmlns:georss'] = 'http://www.georss.org/georss' return attrs def add_item_elements(self, handler, item): super().add_item_elements(handler, item) self.add_georss_element(handler, item) def add_root_elements(self, handler): super().add_root_elements(handler) self.add_georss_element(handler, self.feed) class GeoAtom1Feed(Atom1Feed, GeoFeedMixin): def root_attributes(self): attrs = super().root_attributes() attrs['xmlns:georss'] = 'http://www.georss.org/georss' return attrs def add_item_elements(self, handler, item): super().add_item_elements(handler, item) self.add_georss_element(handler, item) def add_root_elements(self, handler): super().add_root_elements(handler) self.add_georss_element(handler, self.feed) class W3CGeoFeed(Rss201rev2Feed, GeoFeedMixin): def rss_attributes(self): attrs = super().rss_attributes() attrs['xmlns:geo'] = 'http://www.w3.org/2003/01/geo/wgs84_pos#' return attrs def add_item_elements(self, handler, item): super().add_item_elements(handler, item) self.add_georss_element(handler, item, w3c_geo=True) def add_root_elements(self, handler): super().add_root_elements(handler) self.add_georss_element(handler, self.feed, w3c_geo=True) # ### Feed subclass ### class Feed(BaseFeed): """ This is a subclass of the `Feed` from `djmodels.contrib.syndication`. This allows users to define a `geometry(obj)` and/or `item_geometry(item)` methods on their own subclasses so that geo-referenced information may placed in the feed. """ feed_type = GeoRSSFeed def feed_extra_kwargs(self, obj): return {'geometry': self._get_dynamic_attr('geometry', obj)} def item_extra_kwargs(self, item): return {'geometry': self._get_dynamic_attr('item_geometry', item)}
PypiClean
/Natume-0.1.0.tar.gz/Natume-0.1.0/natume/client.py
import urllib2 import base64 from natume.connection import HTTPConnection, HTTPSConnection, urlsplit, urljoin, urlencode from natume.util import decompress from natume.compat import SimpleCookie from json import loads class WebClient(object): DEFAULT_HEADERS = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.114 Safari/537.36', 'Accept-Encoding': 'gzip', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8' } def __init__(self, url, headers=None, auth=None, ca=None): scheme, uri, path, query, fragment = urlsplit(url) http_class = scheme == 'http' and HTTPConnection or HTTPSConnection self.connection = http_class(uri) self.default_headers = self.DEFAULT_HEADERS.copy() if headers: self.default_headers.update(headers) self.path = path self.headers = {} self.cookies = {} self.etags = {} self.status_code = 0 self.body = None self.__content = None self.__json = None self.auth = auth # todo: add ca handle #self.ca = ca def ajax(self, method, path, **kwargs): """ GET HTTP AJAX request.""" headers = headers or {} headers['X-Requested-With'] = 'XMLHttpRequest' return self.do_request(method, path, headers=headers, **kwargs) def get(self, path, **kwargs): """ GET HTTP request.""" return self.do_request('GET', path, **kwargs) def head(self, path, **kwargs): """ HEAD HTTP request.""" return self.do_request('HEAD', path, **kwargs) def post(self, path, **kwargs): """ POST HTTP request.""" return self.do_request('POST', path, **kwargs) def follow(self): sc = self.status_code assert sc in [207, 301, 302, 303, 307] location = self.headers['location'][0] scheme, netloc, path, query, fragment = urlsplit(location) method = sc == 307 and self.method or 'GET' return self.do_request(method, path) def do_request(self, method, path, payload=None, headers={}, auth=None): headers = self.default_headers.copy() headers.update(headers) auth = auth or self.auth if auth: self.handle_auth_header(auth[0], auth[1]) if self.cookies: headers['Cookie'] = '; '.join( '%s=%s' % cookie for cookie in self.cookies.items()) path = urljoin(self.path, path) if path in self.etags: headers['If-None-Match'] = self.etags[path] body = '' if payload: if method == 'GET': path += '?' + urlencode(payload, doseq=True) else: body = urlencode(payload, doseq=True) headers['Content-Type'] = 'application/x-www-form-urlencoded' self.status_code = 0 self.body = None self.__content = None self.__json = None self.connection.connect() self.connection.request(method, path, body, headers) r = self.connection.getresponse() self.body = r.read() self.connection.close() self.status_code = r.status self.headers = {} for name, value in r.getheaders(): self.headers[name] = value self.handle_content_encoding() self.handle_etag(path) self.handle_cookies() return self.status_code def handle_auth_header(self, username, password): auth_base64 = base64.encodestring('%s:%s' % (username, password)).replace('\n', '') self.heades.add_header("Authorization", "Basic %s" % base64string) def handle_content_encoding(self): if 'content-encoding' in self.headers \ and 'gzip' in self.headers['content-encoding']: self.body = decompress(self.body) def handle_etag(self, path): """Etags process""" if 'etag' in self.headers: self.etags[path] = self.headers['etag'][-1] def handle_cookies(self): if 'set-cookie' in self.headers: cookie_string = self.headers['set-cookie'] cookies = SimpleCookie(cookie_string) for name in cookies: value = cookies[name].value if value: self.cookies[name] = value elif name in self.cookies: del self.cookies[name] def clear_cookies(self): """Clear cookies""" self.cookies = {} @property def content(self): """ Returns a content of the response. """ if self.__content is None: self.__content = self.body.decode('utf-8') return self.__content @property def json(self): """ Returns a json response.""" assert 'application/json' in self.headers['content-type'] if self.__json is None: self.__json = loads(self.body) return self.__json def show(self): """Opens the current page in real web browser.""" with open('page.html', 'w') as fp: fp.write(self.body) import webbrowser import os url = 'file://' + os.path.abspath('page.html') webbrowser.open(url) def get_header(self, key): key = key.replace('_', '-') if key in self.headers: return self.headers[key] @property def content_type(self): """Get Content type""" value = self.get_header('content-type') c = value.split(';') return c[0] @property def charset(self): """Get http chaset encoding""" value = self.get_header('content-type') c = value.split(';') if len(c) == 2: return c[1].split('=')[1]
PypiClean
/DoorPi-2.4.1.8.tar.gz/DoorPi-2.4.1.8/doorpi/status/webserver_lib/session_handler.py
import logging logger = logging.getLogger(__name__) logger.debug("%s loaded", __name__) import time # session timestamp from doorpi.action.base import SingleAction import doorpi CONF_AREA_PREFIX = 'AREA_' class SessionHandler: _Sessions = {} @property def config(self): return doorpi.DoorPi().config @property def session_ids(self): return self._Sessions.keys() @property def sessions(self): return self._Sessions def __init__(self): doorpi.DoorPi().event_handler.register_event('WebServerCreateNewSession', __name__) doorpi.DoorPi().event_handler.register_event('WebServerAuthUnknownUser', __name__) doorpi.DoorPi().event_handler.register_event('WebServerAuthWrongPassword', __name__) def destroy(self): doorpi.DoorPi().event_handler.unregister_source(__name__, True) __del__ = destroy def get_session(self, session_id): if session_id in self._Sessions: logger.trace('session %s found: %s', session_id, self._Sessions[session_id]) return self._Sessions[session_id] else: logger.trace('no session with session id %s found', session_id) return None __call__ = get_session def exists_session(self, session_id): return session_id in self._Sessions def build_security_object(self, username, password, remote_client = ''): if not len(self.config.get_keys('User')): self.config.set_value(section = 'User', key = 'door', value = 'pi', password = True) self.config.set_value(section = 'Group', key = 'administrator', value = 'door') self.config.set_value(section = 'WritePermission', key = 'administrator', value = 'installer') self.config.set_value(section = 'AREA_installer', key = '.*', value = '') groups_with_write_permissions = self.config.get_keys('WritePermission') groups_with_read_permissions = self.config.get_keys('ReadPermission') groups = self.config.get_keys('Group') users = self.config.get_keys('User') if not username in users: doorpi.DoorPi().event_handler('WebServerAuthUnknownUser', __name__, { 'username': username, 'remote_client': remote_client }) return None real_password = self.config.get('User', username, password = True) if real_password != password: doorpi.DoorPi().event_handler('WebServerAuthWrongPassword', __name__, { 'username': username, 'password': password, 'remote_client': remote_client }) return None web_session = dict( username = username, remote_client = remote_client, session_starttime = time.time(), readpermissions = [], writepermissions = [], groups = [] ) for group in groups: users_in_group = self.config.get_list('Group', group) if username in users_in_group: web_session['groups'].append(group) for group in groups_with_read_permissions: if group in web_session['groups']: modules = self.config.get_list('ReadPermission', group) for modul in modules: web_session['readpermissions'].extend( self.config.get_keys(CONF_AREA_PREFIX+modul) ) for group in groups_with_write_permissions: if group in web_session['groups']: modules = self.config.get_list('WritePermission', group) for modul in modules: web_session['writepermissions'].extend( self.config.get_keys(CONF_AREA_PREFIX+modul) ) web_session['readpermissions'].extend( self.config.get_keys(CONF_AREA_PREFIX+modul) ) web_session['readpermissions'] = list(set(web_session['readpermissions'])) web_session['readpermissions'].sort() web_session['writepermissions'] = list(set(web_session['writepermissions'])) web_session['writepermissions'].sort() doorpi.DoorPi().event_handler('WebServerCreateNewSession', __name__, { 'session': web_session }) self._Sessions[web_session['username']] = web_session return web_session
PypiClean
/Mathics3-6.0.2.tar.gz/Mathics3-6.0.2/README.rst
Welcome to Mathics Core! ======================== |Pypi Installs| |Latest Version| |Supported Python Versions| |SlackStatus|_ |Packaging status| Mathics is a general-purpose computer algebra system (CAS). However this repository contains just the Python modules for WL Built-in functions, variables, core primitives, e.g. Symbol, a parser to create Expressions, and an evaluator to execute them. The home page for Mathics is https://mathics.org where you will find a list of screenshots and components making up the system. Installing ---------- Installing locally, requires a number of dependencies and OS package dependencies. See the `Installing Mathics <https://mathics-development-guide.readthedocs.io/en/latest/installing.html>`_ for instructions on installing Mathics3. Running: -------- Mathics3, the core library comes with a very simple command-line program called ``mathics``:: $ mathics Mathics 5.0.3dev0 on CPython 3.8.12 (heads/v2.3.4.1_release:4a6b4d3504, Jun 3 2022, 15:46:12) using SymPy 1.10.1, mpmath 1.2.1, numpy 1.23.1, cython 0.29.30 Copyright (C) 2011-2022 The Mathics Team. This program comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to redistribute it under certain conditions. See the documentation for the full license. Quit by evaluating Quit[] or by pressing CONTROL-D. In[1]:= Type ``mathics --help`` for options that can be provided. For a more featureful frontend, see `mathicsscript <https://pypi.org/project/mathicsscript/>`_. For a Django front-end based web front-end see `<https://pypi.org/project/Mathics-Django/>`_. Contributing ------------ Please feel encouraged to contribute to Mathics! Create your own fork, make the desired changes, commit, and make a pull request. License ------- Mathics is released under the GNU General Public License Version 3 (GPL3). .. |SlackStatus| image:: https://mathics-slackin.herokuapp.com/badge.svg .. _SlackStatus: https://mathics-slackin.herokuapp.com/ .. |Travis| image:: https://secure.travis-ci.org/Mathics3/mathics-core.svg?branch=master .. _Travis: https://travis-ci.org/Mathics3/mathics-core .. _PyPI: https://pypi.org/project/Mathics/ .. |mathicsscript| image:: https://github.com/Mathics3/mathicsscript/blob/master/screenshots/mathicsscript1.gif .. |mathicssserver| image:: https://mathics.org/images/mathicsserver.png .. |Latest Version| image:: https://badge.fury.io/py/Mathics3.svg :target: https://badge.fury.io/py/Mathics3 .. |Pypi Installs| image:: https://pepy.tech/badge/Mathics3 .. |Supported Python Versions| image:: https://img.shields.io/pypi/pyversions/Mathics3.svg .. |Packaging status| image:: https://repology.org/badge/vertical-allrepos/mathics.svg :target: https://repology.org/project/mathics/versions
PypiClean
/Babel-2.12.1.tar.gz/Babel-2.12.1/docs/support.rst
.. -*- mode: rst; encoding: utf-8 -*- ============================= Support Classes and Functions ============================= The ``babel.support`` modules contains a number of classes and functions that can help with integrating Babel, and internationalization in general, into your application or framework. The code in this module is not used by Babel itself, but instead is provided to address common requirements of applications that should handle internationalization. --------------- Lazy Evaluation --------------- One such requirement is lazy evaluation of translations. Many web-based applications define some localizable message at the module level, or in general at some level where the locale of the remote user is not yet known. For such cases, web frameworks generally provide a "lazy" variant of the ``gettext`` functions, which basically translates the message not when the ``gettext`` function is invoked, but when the string is accessed in some manner. --------------------------- Extended Translations Class --------------------------- Many web-based applications are composed of a variety of different components (possibly using some kind of plugin system), and some of those components may provide their own message catalogs that need to be integrated into the larger system. To support this usage pattern, Babel provides a ``Translations`` class that is derived from the ``GNUTranslations`` class in the ``gettext`` module. This class adds a ``merge()`` method that takes another ``Translations`` instance, and merges the content of the latter into the main catalog: .. code-block:: python translations = Translations.load('main') translations.merge(Translations.load('plugin1'))
PypiClean
/Bis-Miner-3.11.1.tar.gz/Bis-Miner-3.11.0/Orange/widgets/data/owpurgedomain.py
from AnyQt.QtCore import Qt from Orange.data import Table from Orange.preprocess.remove import Remove from Orange.widgets import gui, widget from Orange.widgets.settings import Setting from Orange.widgets.utils.sql import check_sql_input from Orange.widgets.widget import Input, Output class OWPurgeDomain(widget.OWWidget): name = "清理特征域" description = "从数据集中去除冗余的数值和特征;给数值排序" icon = "icons/PurgeDomain.svg" category = "Data" keywords = ["data", "purge", "domain"] class Inputs: data = Input("数据", Table) class Outputs: data = Output("数据", Table) removeValues = Setting(1) removeAttributes = Setting(1) removeClasses = Setting(1) removeClassAttribute = Setting(1) removeMetaAttributeValues = Setting(1) removeMetaAttributes = Setting(1) autoSend = Setting(True) sortValues = Setting(True) sortClasses = Setting(True) want_main_area = False resizing_enabled = False buttons_area_orientation = Qt.Vertical feature_options = (('sortValues', 'Sort categorical feature values'), ('removeValues', 'Remove unused feature values'), ('removeAttributes', 'Remove constant features')) class_options = (('sortClasses', 'Sort categorical class values'), ('removeClasses', 'Remove unused class variable values'), ('removeClassAttribute', 'Remove constant class variables')) meta_options = (('removeMetaAttributeValues', 'Remove unused meta attribute values'), ('removeMetaAttributes', 'Remove constant meta attributes')) stat_labels = (('Sorted features', 'resortedAttrs'), ('Reduced features', 'reducedAttrs'), ('Removed features', 'removedAttrs'), ('Sorted classes', 'resortedClasses'), ('Reduced classes', 'reducedClasses'), ('Removed classes', 'removedClasses'), ('Reduced metas', 'reducedMetas'), ('Removed metas', 'removedMetas')) def __init__(self): super().__init__() self.data = None self.removedAttrs = "-" self.reducedAttrs = "-" self.resortedAttrs = "-" self.removedClasses = "-" self.reducedClasses = "-" self.resortedClasses = "-" self.removedMetas = "-" self.reducedMetas = "-" boxAt = gui.vBox(self.controlArea, "Features") for not_first, (value, label) in enumerate(self.feature_options): if not_first: gui.separator(boxAt, 2) gui.checkBox(boxAt, self, value, label, callback=self.optionsChanged) boxAt = gui.vBox(self.controlArea, "Classes", addSpace=True) for not_first, (value, label) in enumerate(self.class_options): if not_first: gui.separator(boxAt, 2) gui.checkBox(boxAt, self, value, label, callback=self.optionsChanged) boxAt = gui.vBox(self.controlArea, "Meta attributes", addSpace=True) for not_first, (value, label) in enumerate(self.meta_options): if not_first: gui.separator(boxAt, 2) gui.checkBox(boxAt, self, value, label, callback=self.optionsChanged) box3 = gui.vBox(self.controlArea, 'Statistics', addSpace=True) for i, (label, value) in enumerate(self.stat_labels): # add a separator after each group of three if i != 0 and i % 3 == 0: gui.separator(box3, 2) gui.label(box3, self, "{}: %({})s".format(label, value)) gui.auto_commit(self.buttonsArea, self, "autoSend", "Apply", orientation=Qt.Horizontal) gui.rubber(self.controlArea) @Inputs.data @check_sql_input def setData(self, dataset): if dataset is not None: self.data = dataset self.unconditional_commit() else: self.removedAttrs = "-" self.reducedAttrs = "-" self.resortedAttrs = "-" self.removedClasses = "-" self.reducedClasses = "-" self.resortedClasses = "-" self.removedMetas = "-" self.reducedMetas = "-" self.Outputs.data.send(None) self.data = None def optionsChanged(self): self.commit() def commit(self): if self.data is None: return attr_flags = sum([Remove.SortValues * self.sortValues, Remove.RemoveConstant * self.removeAttributes, Remove.RemoveUnusedValues * self.removeValues]) class_flags = sum([Remove.SortValues * self.sortClasses, Remove.RemoveConstant * self.removeClassAttribute, Remove.RemoveUnusedValues * self.removeClasses]) meta_flags = sum([Remove.RemoveConstant * self.removeMetaAttributes, Remove.RemoveUnusedValues * self.removeMetaAttributeValues]) remover = Remove(attr_flags, class_flags, meta_flags) data = remover(self.data) attr_res, class_res, meta_res = \ remover.attr_results, remover.class_results, remover.meta_results self.removedAttrs = attr_res['removed'] self.reducedAttrs = attr_res['reduced'] self.resortedAttrs = attr_res['sorted'] self.removedClasses = class_res['removed'] self.reducedClasses = class_res['reduced'] self.resortedClasses = class_res['sorted'] self.removedMetas = meta_res['removed'] self.reducedMetas = meta_res['reduced'] self.Outputs.data.send(data) def send_report(self): def list_opts(opts): return "; ".join(label.lower() for value, label in opts if getattr(self, value)) or "no changes" self.report_items("Settings", ( ("Features", list_opts(self.feature_options)), ("Classes", list_opts(self.class_options)), ("Metas", list_opts(self.meta_options)))) if self.data: self.report_items("Statistics", ( (label, getattr(self, value)) for label, value in self.stat_labels )) if __name__ == "__main__": from AnyQt.QtWidgets import QApplication appl = QApplication([]) ow = OWPurgeDomain() data = Table("car.tab") subset = [inst for inst in data if inst["buying"] == "v-high"] subset = Table(data.domain, subset) # The "buying" should be removed and the class "y" reduced ow.setData(subset) ow.show() appl.exec_() ow.saveSettings()
PypiClean
/Infomericaclass-1.0.0.tar.gz/Infomericaclass-1.0.0/inf/examples/ethnicolr_app_contrib2000.ipynb
## Application: Illustrating the use of the package by imputing the race of the campaign contributors recorded by FEC for the years 2000 and 2010 a) what proportion of contributors were black, whites, hispanics, asian etc. b) and proportion of total donation given by blacks, hispanics, whites, and asians. c) get amount contributed by people of each race and divide it by total amount contributed. ``` import pandas as pd df = pd.read_csv('/opt/names/fec_contrib/contribDB_2000.csv', nrows=100) df.columns ``` amount, date, contributor_name, contributor_lname, contributor_fname, contributor_type == 'I' ``` #df = pd.read_csv('/opt/names/fec_contrib/contribDB_2000.csv', usecols=['date', 'amount', 'contributor_type', 'contributor_lname', 'contributor_fname', 'contributor_name'], nrows=300000) df = pd.read_csv('/opt/names/fec_contrib/contribDB_2000.csv', usecols=['date', 'amount', 'contributor_type', 'contributor_lname', 'contributor_fname', 'contributor_name']) df #sdf = df[df.contributor_type=='I'].sample(1000) sdf = df[df.contributor_type=='I'].copy() sdf from clean_names import clean_name def do_clean_name(n): n = str(n) return clean_name(n) #sdf['clean_name'] = sdf['contributor_name'].apply(lambda c: do_clean_name(c)) #sdf from ethnicolr import census_ln, pred_census_ln rdf = pred_census_ln(sdf, 'contributor_lname', 2000) rdf #rdf.to_csv('output-pred-contrib2000-ln.csv', index_label='idx') ``` ### a) what proportion of contributors were black, whites, hispanics, asian etc. ``` adf = rdf.groupby(['race']).agg({'contributor_lname': 'count'}) adf *100 / adf.sum() ``` ### b) and proportion of total donation given by blacks, hispanics, whites, and asians. ``` bdf = rdf.groupby(['race']).agg({'amount': 'sum'}) bdf * 100 / bdf.sum() ``` ### c) get amount contributed by people of each race and divide it by total amount contributed. ``` contrib_white = sum(rdf.amount * rdf.white) contrib_black = sum(rdf.amount * rdf.black) contrib_api = sum(rdf.amount * rdf.api) contrib_hispanic = sum(rdf.amount * rdf.hispanic) contrib_amount = [{'race': 'white', 'amount': contrib_white}, {'race': 'black', 'amount': contrib_black}, {'race': 'api', 'amount': contrib_api}, {'race': 'hispanic', 'amount': contrib_hispanic}] contrib_df = pd.DataFrame(contrib_amount, columns=['race', 'amount']) contrib_df.amount /= 10e6 contrib_df.columns = ['race', 'amount($1M)'] contrib_df contrib_df.set_index('race', inplace=True, drop=True) contrib_df.columns = ['% amount'] contrib_df * 100 / contrib_df.sum() ```
PypiClean
/FEADRE_AI-1.0.7.tar.gz/FEADRE_AI-1.0.7/FEADRE_AI/ai/calc/x_nms.py
import numpy as np import random import cv2 def non_max_suppress(predicts_dict, threshold): for object_name, bbox in predicts_dict.items(): # 对每一个类别分别进行NMS;一次读取一对键值(即某个类别的所有框) bbox_array = np.array(bbox, dtype=np.float) # 下面分别获取框的左上角坐标(x1,y1),右下角坐标(x2,y2)及此框的置信度;这里需要注意的是图像左上角可以看做坐标点(0,0),右下角可以看做坐标点(1,1),也就是说从左往右x值增大,从上往下y值增大 x1 = bbox_array[:, 0] y1 = bbox_array[:, 1] x2 = bbox_array[:, 2] y2 = bbox_array[:, 3] scores = bbox_array[:, 4] order = scores.argsort()[::-1] # argsort函数返回的是数组值从小到大的索引值,[::-1]表示取反。即这里返回的是数组值从大到小的索引值 areas = (x2 - x1 + 1) * ( y2 - y1 + 1) # 当前类所有框的面积(python会自动使用广播机制,相当于MATLAB中的.*即两矩阵对应元素相乘);x1=3,x2=5,习惯上计算x方向长度就是x=3、4、5这三个像素,即5-3+1=3,而不是5-3=2,所以需要加1 keep = [] # 按confidence从高到低遍历bbx,移除所有与该矩形框的IoU值大于threshold的矩形框 while order.shape_hwc > 0: i = order[0] keep.append(i) # 保留当前最大confidence对应的bbx索引 # 获取所有与当前bbx的交集对应的左上角和右下角坐标,并计算IoU(注意这里是同时计算一个bbx与其他所有bbx的IoU) xx1 = np.maximum(x1[i], x1[order[1:]]) # 最大置信度的左上角坐标分别与剩余所有的框的左上角坐标进行比较,分别保存较大值;因此这里的xx1的维数应该是当前类的框的个数减1 yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) inter = np.maximum(0.0, xx2 - xx1 + 1) * np.maximum(0.0, yy2 - yy1 + 1) iou = inter / (areas[i] + areas[order[1:]] - inter) # 注意这里都是采用广播机制,同时计算了置信度最高的框与其余框的IoU inds = np.where(iou <= threshold)[0] # 保留iou小于等于阙值的框的索引值 order = order[inds + 1] # 将order中的第inds+1处的值重新赋值给order;即更新保留下来的索引,加1是因为因为没有计算与自身的IOU,所以索引相差1,需要加上 bbox = bbox_array[keep] predicts_dict[object_name] = bbox.tolist() # predicts_dict = predicts_dict return predicts_dict if __name__ == '__main__': # 下面在一张全黑图片上测试非极大值抑制的效果 img = np.zeros((600, 600), np.uint8) # predicts_dict = {'black1': [[83, 54, 165, 163, 0.8], [67, 48, 118, 132, 0.5], [91, 38, 192, 171, 0.6]]} predicts_dict = {'black1': [[83, 54, 165, 163, 0.8], [67, 48, 118, 132, 0.5], [91, 38, 192, 171, 0.6]], 'black2': [[59, 120, 137, 368, 0.12], [54, 154, 148, 382, 0.13]]} # 在全黑的图像上画出设定的几个框 for object_name, bbox in predicts_dict.items(): for box in bbox: x1, y1, x2, y2, score = box[0], box[1], box[2], box[3], box[-1] y_text = int(random.uniform(y1, y2)) # uniform()是不能直接访问的,需要导入 random 模块,然后通过 random 静态对象调用该方法。uniform() 方法将随机生成下一个实数,它在 [x, y) 范围内 cv2.rectangle(img, (x1, y1), (x2, y2), (255, 255, 255), 2) cv2.putText(img, str(score), (x2 - 30, y_text), 2, 1, (255, 255, 0)) cv2.namedWindow("black1_roi") # 创建一个显示图像的窗口 cv2.imshow("black1_roi", img) # 在窗口中显示图像;注意这里的窗口名字如果不是刚刚创建的窗口的名字则会自动创建一个新的窗口并将图像显示在这个窗口 cv2.waitKey(0) # 如果不添这一句,在IDLE中执行窗口直接无响应。在命令行中执行的话,则是一闪而过。 cv2.destroyAllWindows() # 最后释放窗口是个好习惯! # 在全黑图片上画出经过非极大值抑制后的框 img_cp = np.zeros((600, 600), np.uint8) predicts_dict_nms = non_max_suppress(predicts_dict, 0.1) for object_name, bbox in predicts_dict_nms.items(): for box in bbox: x1, y1, x2, y2, score = int(box[0]), int(box[1]), int(box[2]), int(box[3]), box[-1] y_text = int(random.uniform(y1, y2)) # uniform()是不能直接访问的,需要导入 random 模块,然后通过 random 静态对象调用该方法。uniform() 方法将随机生成下一个实数,它在 [x, y) 范围内 cv2.rectangle(img_cp, (x1, y1), (x2, y2), (255, 255, 255), 2) cv2.putText(img_cp, str(score), (x2 - 30, y_text), 2, 1, (255, 255, 0)) cv2.namedWindow("black1_nms") # 创建一个显示图像的窗口 cv2.imshow("black1_nms", img_cp) # 在窗口中显示图像;注意这里的窗口名字如果不是刚刚创建的窗口的名字则会自动创建一个新的窗口并将图像显示在这个窗口 cv2.waitKey(0) # 如果不添这一句,在IDLE中执行窗口直接无响应。在命令行中执行的话,则是一闪而过。 cv2.destroyAllWindows() # 最后释放窗口是个好习惯!
PypiClean
/KonFoo-3.0.0-py3-none-any.whl/konfoo/__init__.py
# Categories from .categories import Category # Core classes from .core import ( is_any, is_field, is_container, is_array, is_structure, is_pointer, is_mixin, Patch, Index, Alignment, Container, Structure, Sequence, Array, Field, Stream, String, Float, Double, Decimal, Bit, Byte, Char, Signed, Unsigned, Bitset, Bool, Enum, Scaled, Fraction, Bipolar, Unipolar, Datetime, IPv4Address, Pointer, StructurePointer, SequencePointer, ArrayPointer, StreamPointer, StringPointer, AutoStringPointer, RelativePointer, StructureRelativePointer, SequenceRelativePointer, ArrayRelativePointer, StreamRelativePointer, StringRelativePointer ) # Enumerations from .enums import Enumeration # Exceptions from .exceptions import ( ByteOrderTypeError, ByteOrderValueError, EnumTypeError, FactoryTypeError, MemberTypeError, ProviderTypeError, ContainerLengthError, FieldAddressError, FieldAlignmentError, FieldByteOrderError, FieldIndexError, FieldSizeError, FieldTypeError, FieldValueError, FieldValueEncodingError, FieldGroupByteOrderError, FieldGroupOffsetError, FieldGroupSizeError ) # Field classes from .fields import ( Decimal8, Decimal16, Decimal24, Decimal32, Decimal64, Signed8, Signed16, Signed24, Signed32, Signed64, Unsigned8, Unsigned16, Unsigned24, Unsigned32, Unsigned64, Bool8, Bool16, Bool24, Bool32, Bool64, Antivalent, Enum4, Enum8, Enum16, Enum24, Enum32, Enum64, Bitset8, Bitset16, Bitset24, Bitset32, Bitset64, Scaled8, Scaled16, Scaled24, Scaled32, Scaled64, Bipolar2, Bipolar4, Unipolar2 ) # Globals from .globals import Byteorder, BYTEORDER # Pointer classes from .pointers import ( Pointer8, Pointer16, Pointer24, Pointer32, Pointer48, Pointer64, StructurePointer8, StructurePointer16, StructurePointer24, StructurePointer32, StructurePointer48, StructurePointer64, ArrayPointer8, ArrayPointer16, ArrayPointer24, ArrayPointer32, ArrayPointer48, ArrayPointer64, StreamPointer8, StreamPointer16, StreamPointer24, StreamPointer32, StreamPointer48, StreamPointer64, StringPointer8, StringPointer16, StringPointer24, StringPointer32, StringPointer48, StringPointer64, FloatPointer, Signed8Pointer, Signed16Pointer, Signed32Pointer, Unsigned8Pointer, Unsigned16Pointer, Unsigned32Pointer ) # Relative pointer classes from .pointers import ( RelativePointer8, RelativePointer16, RelativePointer24, RelativePointer32, RelativePointer48, RelativePointer64, StructureRelativePointer8, StructureRelativePointer16, StructureRelativePointer24, StructureRelativePointer32, StructureRelativePointer48, StructureRelativePointer64, ArrayRelativePointer8, ArrayRelativePointer16, ArrayRelativePointer24, ArrayRelativePointer32, ArrayRelativePointer48, ArrayRelativePointer64, StreamRelativePointer8, StreamRelativePointer16, StreamRelativePointer24, StreamRelativePointer32, StreamRelativePointer48, StreamRelativePointer64, StringRelativePointer8, StringRelativePointer16, StringRelativePointer24, StringRelativePointer32, StringRelativePointer48, StringRelativePointer64, ) # Providers from .providers import Provider, FileProvider # Utilities from .utils import d3flare_json, HexViewer __all__ = [ # Enumerations 'Enumeration', # Categories 'Category', # Globals 'Byteorder', 'BYTEORDER', # Exceptions 'ByteOrderTypeError', 'ByteOrderValueError', 'EnumTypeError', 'FactoryTypeError', 'MemberTypeError', 'ProviderTypeError', 'ContainerLengthError', 'FieldAddressError', 'FieldAlignmentError', 'FieldByteOrderError', 'FieldIndexError', 'FieldSizeError', 'FieldValueError', 'FieldTypeError', 'FieldValueEncodingError', 'FieldGroupByteOrderError', 'FieldGroupOffsetError', 'FieldGroupSizeError', # Provider 'Provider', 'FileProvider', # Core classes 'is_any', 'is_field', 'is_container', 'is_array', 'is_structure', 'is_pointer', 'is_mixin', 'Patch', 'Index', 'Alignment', 'Container', 'Structure', 'Sequence', 'Array', 'Field', 'Stream', 'String', 'Float', 'Double', 'Decimal', 'Bit', 'Byte', 'Char', 'Signed', 'Unsigned', 'Bitset', 'Bool', 'Enum', 'Scaled', 'Fraction', 'Bipolar', 'Unipolar', 'Datetime', 'IPv4Address', 'Pointer', 'StructurePointer', 'SequencePointer', 'ArrayPointer', 'StreamPointer', 'StringPointer', 'AutoStringPointer', 'RelativePointer', 'StructureRelativePointer', 'SequenceRelativePointer', 'ArrayRelativePointer', 'StreamRelativePointer', 'StringRelativePointer', # Field classes 'Decimal8', 'Decimal16', 'Decimal24', 'Decimal32', 'Decimal64', 'Signed8', 'Signed16', 'Signed24', 'Signed32', 'Signed64', 'Unsigned8', 'Unsigned16', 'Unsigned24', 'Unsigned32', 'Unsigned64', 'Bool8', 'Bool16', 'Bool24', 'Bool32', 'Bool64', 'Antivalent', 'Enum4', 'Enum8', 'Enum16', 'Enum24', 'Enum32', 'Enum64', 'Bitset8', 'Bitset16', 'Bitset24', 'Bitset32', 'Bitset64', 'Scaled8', 'Scaled16', 'Scaled24', 'Scaled32', 'Scaled64', 'Bipolar2', 'Bipolar4', 'Unipolar2', # Pointer classes 'Pointer8', 'Pointer16', 'Pointer24', 'Pointer32', 'Pointer48', 'Pointer64', 'StructurePointer8', 'StructurePointer16', 'StructurePointer24', 'StructurePointer32', 'StructurePointer48', 'StructurePointer64', 'ArrayPointer8', 'ArrayPointer16', 'ArrayPointer24', 'ArrayPointer32', 'ArrayPointer48', 'ArrayPointer64', 'StreamPointer8', 'StreamPointer16', 'StreamPointer24', 'StreamPointer32', 'StreamPointer48', 'StreamPointer64', 'StringPointer8', 'StringPointer16', 'StringPointer24', 'StringPointer32', 'StringPointer48', 'StringPointer64', 'FloatPointer', 'Signed8Pointer', 'Signed16Pointer', 'Signed32Pointer', 'Unsigned8Pointer', 'Unsigned16Pointer', 'Unsigned32Pointer', # Relative pointer classes 'RelativePointer8', 'RelativePointer16', 'RelativePointer24', 'RelativePointer32', 'RelativePointer48', 'RelativePointer64', 'StructureRelativePointer8', 'StructureRelativePointer16', 'StructureRelativePointer24', 'StructureRelativePointer32', 'StructureRelativePointer48', 'StructureRelativePointer64', 'ArrayRelativePointer8', 'ArrayRelativePointer16', 'ArrayRelativePointer24', 'ArrayRelativePointer32', 'ArrayRelativePointer48', 'ArrayRelativePointer64', 'StreamRelativePointer8', 'StreamRelativePointer16', 'StreamRelativePointer24', 'StreamRelativePointer32', 'StreamRelativePointer48', 'StreamRelativePointer64', 'StringRelativePointer8', 'StringRelativePointer16', 'StringRelativePointer24', 'StringRelativePointer32', 'StringRelativePointer48', 'StringRelativePointer64', # Utilities 'd3flare_json', 'HexViewer', ] __version__ = '3.0.0'
PypiClean