id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
109883
<gh_stars>0 world_cities = ['Dubai', 'New Orleans', 'Santorini', 'Gaza', 'Seoul'] print('***********') print(world_cities) print('***********') print(sorted(world_cities)) print('***********') print(world_cities) print('***********') print(sorted(world_cities, reverse=True)) print('***********') print(world_cities) print('***********') world_cities.reverse() print('***********') print(world_cities) world_cities.reverse() print('***********') print(world_cities) print('***********') world_cities.sort() print(world_cities)
StarcoderdataPython
11832
<filename>main.py import pandas as pd import numpy as np import io import time import uuid from flask import Flask, render_template, request, redirect, url_for, Response, session, send_file, make_response, send_from_directory from os.path import join, dirname, realpath from werkzeug.wsgi import FileWrapper app = Flask(__name__) app.config["DEBUG"] = True app.config["UPLOAD_FOLDER"] = 'media/dataset' app.config["EXPORT_FOLDER_CSV"] = 'media/result' app.config["SECRET_KEY"] = '<KEY>' app.config['SESSION_TYPE'] = 'filesystem' @app.route('/') def index(): return render_template('index.html') @app.route("/", methods=['POST']) def uploadExcel(): start_id = request.form['id'] uploaded_file = request.files['file'] if uploaded_file.filename != '': file_path = join(app.config['UPLOAD_FOLDER'], uploaded_file.filename) uploaded_file.save(file_path) cleanExcel(file_path, start_id) csv_name = session['csv_name'] return redirect(url_for('success', file_id=csv_name)) else: return redirect(url_for('index')) @app.route('/export/<file_id>', methods=['GET','POST']) def success(file_id): filename = session['csv_name'] if "csv_name" in session else "" return render_template('success.html', filename=file_id) @app.route('/downloads/<path:filename>', methods=['GET','POST']) def download(filename): uploads = join(app.root_path, app.config['EXPORT_FOLDER_CSV']) return send_from_directory(directory=uploads, filename=filename) def cleanExcel(file_path, start_id): xls = pd.read_excel(file_path) xls.replace(to_replace=[r"\\t|\\n|\\r", "\t|\n|\r"], value=["",""], regex=True) print("Jumlah awal: {}".format(xls.shape)) xls.rename(columns = { 'NIK':'nik', 'NAMA':'nama', 'JENIS_KELAMIN':'jkel', 'TANGGAL_LAHIR':'tgl_lahir', 'NO_HP':'telp', 'INSTANSI_PEKERJAAN':'instansi', 'ALAMAT KTP': 'alamat', 'ALAMAT_KTP': 'alamat', 'KODE_KAB_KOTA_TEMPAT_KERJA': 'kab_id', 'KODE_KATEGORI': 'kategori' }, inplace = True) xls['nik'] = xls['nik'].astype(str) xls.insert(0, 'id', range(int(start_id), int(start_id) + len(xls))) xls.insert(2, 'nama_ktp', xls['nama']) xls.insert(6, 'status', 0) # del xls['NO'] del xls['UMUR'] del xls['JENIS_PEKERJAAN'] xls.drop(xls[xls['tgl_lahir'].isnull()].index, inplace = True) xls.drop(xls[xls['nik'].isnull()].index, inplace = True) xls.drop(xls[xls['nik'].str.len() > 16].index, inplace = True) xls.drop(xls[xls['nik'].str.len() < 16].index, inplace = True) xls.drop(xls[xls.duplicated(['nik'])].index, inplace = True) if xls['tgl_lahir'].dtypes == 'object': xls['tgl_lahir'] = pd.to_datetime(xls['tgl_lahir']) if xls['telp'].dtypes == 'float64': xls['telp'] = xls['telp'].astype(str) xls['telp'] = xls['telp'].str.split('.').str[0] xls['telp'] = xls['telp'].replace('nan',np.NaN) xls['telp'] = '0' + xls['telp'] if xls['telp'].dtypes == 'object': xls['telp'] = xls['telp'].str.split('/').str[0] xls['telp'] = xls['telp'].str.replace('\+62','0') xls['telp'] = xls['telp'].str.replace(' ','') xls['telp'] = xls['telp'].str.replace('-','') if xls['kab_id'].dtypes == 'float64': xls['kab_id'] = xls['kab_id'].astype(str) xls['kab_id'] = xls['kab_id'].str.split('.').str[0] xls['kab_id'] = xls['kab_id'].replace('nan',np.NaN) if xls['kategori'].dtypes == 'int64': xls['kategori'] = xls['kategori'].astype(str) xls['kategori'] = xls['kategori'].apply(lambda x: '0' + x if len(x) == 1 else x) xls['alamat'] = xls['alamat'].replace(';','') print("Jumlah akhir: {}".format(xls.shape)) uid = str(uuid.uuid4())[:4] path_file = 'media/result/' outfile_name = '{0}{1}'.format(time.strftime("%Y%m%d-%H%M%S-"),uid) session['csv_name'] = f'{outfile_name}' xls.to_csv(f'{path_file}{outfile_name}.csv', index=False, header=True, encoding="utf-8") if __name__ == '__main__': app.run(debug=True)
StarcoderdataPython
4824277
import random from operator import add class SlipperyGrid: """ Slippery grid-world modelled as an MDP ... Attributes ---------- shape: list 1d list with two elements: 1st element is the num of row cells and the 2nd is the num of column cells (default [40, 40]) initial_state : list 1d list with two elements (default [0, 39]) slip_probability: float probability of slipping (default 0.15) sink_states : list sinks states if any (default []) Methods ------- reset() resets the MDP state step(action) changes the state of the MDP upon executing an action, where the action set is {right,up,left,down,stay} state_label(state) outputs the label of input state """ def __init__( self, shape=None, initial_state=None, slip_probability=0.15, sink_states=None ): if sink_states is None: sink_states = [] if shape is None: self.shape = [40, 40] else: self.shape = shape if initial_state is None: self.initial_state = [0, 39] else: self.initial_state = initial_state self.current_state = self.initial_state.copy() self.slip_probability = slip_probability self.sink_states = sink_states self.labels = None # directional actions self.action_space = [ "right", "up", "left", "down", "stay" ] def reset(self): self.current_state = self.initial_state.copy() def step(self, action): # check if the agent is in a sink state if self.current_state in self.sink_states: next_state = self.current_state else: # slipperiness if random.random() < self.slip_probability: action = random.choice(self.action_space) # grid movement dynamics: if action == 'right': next_state = list(map(add, self.current_state, [0, 1])) elif action == 'up': next_state = list(map(add, self.current_state, [-1, 0])) elif action == 'left': next_state = list(map(add, self.current_state, [0, -1])) elif action == 'down': next_state = list(map(add, self.current_state, [1, 0])) elif action == 'stay': next_state = self.current_state # check for boundary violations if next_state[0] == self.shape[0]: next_state[0] = self.shape[0] - 1 if next_state[1] == self.shape[1]: next_state[1] = self.shape[1] - 1 if -1 in next_state: next_state[next_state.index(-1)] = 0 # check for obstacles if 'obstacle' in self.state_label(next_state): next_state = self.current_state # update current state self.current_state = next_state return next_state def state_label(self, state): return self.labels[state[0], state[1]]
StarcoderdataPython
60797
from readthedocs.api.v2.views.footer_views import BaseFooterHTML from readthedocs.core.utils.extend import SettingsOverrideObject from readthedocs.embed.views import EmbedAPIBase class BaseProxiedFooterHTML(BaseFooterHTML): # DRF has BasicAuthentication and SessionAuthentication as default classes. # We don't support neither in the community site. authentication_classes = [] class ProxiedFooterHTML(SettingsOverrideObject): _default_class = BaseProxiedFooterHTML class ProxiedEmbedAPIBase(EmbedAPIBase): # DRF has BasicAuthentication and SessionAuthentication as default classes. # We don't support neither in the community site. authentication_classes = [] class ProxiedEmbedAPI(SettingsOverrideObject): _default_class = ProxiedEmbedAPIBase
StarcoderdataPython
3393939
<reponame>TylerYep/wolfbot<filename>tests/solvers/state_test.py<gh_stars>1-10 from tests.conftest import set_roles from wolfbot import const from wolfbot.enums import Role, SwitchPriority from wolfbot.solvers import SolverState from wolfbot.statements import Statement class TestSolverState: """Tests for the SolverState class.""" @staticmethod def test_constructor() -> None: """Should initialize a SolverState.""" result = SolverState((frozenset({Role.VILLAGER}),), path=(True,)) assert isinstance(result, SolverState) @staticmethod def test_eq(example_small_solverstate: SolverState) -> None: """Should be able to compare two identical SolverStates.""" possible_roles = ( frozenset({Role.SEER}), frozenset({Role.ROBBER, Role.VILLAGER, Role.SEER}), frozenset({Role.ROBBER}), ) switches = ((SwitchPriority.ROBBER, 2, 0),) path = (True,) result = SolverState(possible_roles, switches, path) assert result == example_small_solverstate @staticmethod def test_get_role_counts() -> None: """ Should return True if there is a a dict with counts of all certain roles. """ set_roles(Role.WOLF, Role.SEER, Role.VILLAGER, Role.ROBBER, Role.VILLAGER) possible_roles_list = ( frozenset({Role.VILLAGER}), frozenset({Role.SEER}), frozenset({Role.VILLAGER}), ) + (const.ROLE_SET,) * 2 result = SolverState(possible_roles_list).get_role_counts() assert result == {Role.SEER: 0, Role.VILLAGER: 0, Role.WOLF: 1, Role.ROBBER: 1} @staticmethod def test_repr() -> None: """Should pretty-print SolverStates using the custom formatter.""" result = SolverState((frozenset({Role.VILLAGER}),), path=(True,)) assert ( str(result) == repr(result) == ( "SolverState(\n" " possible_roles=(frozenset([Role.VILLAGER]),),\n" " path=(True,),\n" " role_counts={\n" " Role.INSOMNIAC: 1,\n" " Role.VILLAGER: 2,\n" " Role.ROBBER: 1,\n" " Role.DRUNK: 1,\n" " Role.WOLF: 2,\n" " Role.SEER: 1,\n" " Role.TANNER: 1,\n" " Role.MASON: 2,\n" " Role.MINION: 1,\n" " Role.TROUBLEMAKER: 1,\n" " Role.HUNTER: 1\n" " },\n" " count_true=1\n" ")" ) ) class TestIsConsistent: """Tests for the is_consistent function.""" @staticmethod def test_is_consistent_on_empty_state( example_small_solverstate: SolverState, example_statement: Statement ) -> None: """ Should check a new statement against an empty SolverState for consistency. """ start_state = SolverState() result = start_state.is_consistent(example_statement) assert result == example_small_solverstate @staticmethod def test_invalid_state(example_statement: Statement) -> None: """Should return None for inconsistent states.""" start_state = SolverState((frozenset({Role.VILLAGER}),) * 3, path=(True,)) invalid_state = start_state.is_consistent(example_statement) assert invalid_state is None @staticmethod def test_is_consistent_on_existing_state( example_medium_solverstate: SolverState, ) -> None: """ Should check a new statement against accumulated statements for consistency. Should not change result.path - that is done in the switching_solver function. """ possible_roles = (frozenset({Role.SEER}),) + (const.ROLE_SET,) * ( const.NUM_ROLES - 1 ) example_solverstate = SolverState(possible_roles, path=(True,)) new_statement = Statement( "next", ((2, frozenset({Role.DRUNK})),), ((SwitchPriority.DRUNK, 2, 5),) ) result = example_solverstate.is_consistent(new_statement) assert result == example_medium_solverstate @staticmethod def test_is_consistent_deepcopy_mechanics( example_medium_solverstate: SolverState, ) -> None: """ Modifying one SolverState should not affect other SolverStates created by is_consistent. """ possible_roles = (frozenset({Role.SEER}),) + (const.ROLE_SET,) * ( const.NUM_ROLES - 1 ) example = SolverState(possible_roles, path=(True,)) new_statement = Statement( "next", ((2, frozenset({Role.DRUNK})),), ((SwitchPriority.DRUNK, 2, 5),) ) result = example.is_consistent(new_statement) example.possible_roles += (frozenset({Role.NONE}),) example.switches += ((SwitchPriority.DRUNK, 5, 5),) example.possible_roles = (example.possible_roles[0] & {Role.NONE},) assert result == example_medium_solverstate
StarcoderdataPython
3391774
import random, time, sys, subprocess, threading, pycurl, os, requests from colorama import Fore class Proxy_Checker(): def __init__(self): subprocess.call('clear', shell=True) sys.setrecursionlimit(10**6) print(f"""{Fore.BLUE} ██▓███ ██▀███ ▒█████ ▒██ ██▓██ ██▓ ▄▄▄█████▓▒█████ ▒█████ ██▓ ▓██░ ██▓██ ▒ ██▒██▒ ██▒▒ █ █ ▒░▒██ ██▒ ▓ ██▒ ▓▒██▒ ██▒██▒ ██▓██▒ ▓██░ ██▓▓██ ░▄█ ▒██░ ██░░ █ ░ ▒██ ██░ ▒ ▓██░ ▒▒██░ ██▒██░ ██▒██░ ▒██▄█▓▒ ▒██▀▀█▄ ▒██ ██░░ █ █ ▒ ░ ▐██▓░ ░ ▓██▓ ░▒██ ██▒██ ██▒██░ ▒██▒ ░ ░██▓ ▒██░ ████▓▒▒██▒ ▒██▒ ░ ██▒▓░ ▒██▒ ░░ ████▓▒░ ████▓▒░██████▒ ▒▓▒░ ░ ░ ▒▓ ░▒▓░ ▒░▒░▒░▒▒ ░ ░▓ ░ ██▒▒▒ ▒ ░░ ░ ▒░▒░▒░░ ▒░▒░▒░░ ▒░▓ ░ ░▒ ░ ░▒ ░ ▒░ ░ ▒ ▒░░░ ░▒ ░▓██ ░▒░ ░ ░ ▒ ▒░ ░ ▒ ▒░░ ░ ▒ ░ ░░ ░░ ░░ ░ ░ ▒ ░ ░ ▒ ▒ ░░ ░ ░ ░ ░ ▒ ░ ░ ░ ▒ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ ░ """) self.yes = ["yes", "y", "ye", "Y", "YES", 'YE'] self.no = ["no", "n", "NO", "n"] self.thr = 100 self.TARGET = input(f"{Fore.BLUE}[CONSOLE] Please enter full target url to check the proxies: ") self.verbose = input(f"{Fore.BLUE}[CONSOLE] Input bad requests too?: ") self.proxy_type = input(f"{Fore.BLUE}[CONSOLE] Proxy type (http, socks4, socks5): ") get_proxies = input(f'{Fore.BLUE}[CONSOLE] Get the proxies or you already have http proxy list? (get/n):') if get_proxies == 'get': try: os.remove("ProxyChecker/http_proxies.txt") os.remove("ProxyChecker/good_proxies.txt") except: pass proxylist = open(f'ProxyChecker/{self.proxy_type}_proxies.txt', 'a+') try: r1 = requests.get(f'https://api.proxyscrape.com?request=getproxies&proxytype={self.proxy_type}&ssl=yes') proxylist.write(r1.text) except: pass proxylist.close() self.proxy_file = f'ProxyChecker/{self.proxy_type}_proxies.txt' else: self.proxy_file = input(f"{Fore.BLUE}[CONSOLE] Please enter the proxy filename: ") self.timeout = int(input(f"{Fore.BLUE}[CONSOLE] Please enter proxy timeout (10-100): ")) self.pro = open("ProxyChecker/good_proxies.txt", "a+") self.checked = 0 self.good = 0 self.headers= [ 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.103 Safari/537.36', 'Mozilla/5.0 (Macintosh; U; PPC Mac OS X 10.5; en-US; rv:1.9.2.15) Gecko/20110303 Firefox/3.6.15', 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.62 Safari/537.36', 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36', 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36', 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.101 Safari/537.36', 'Mozilla/5.0 (X11; U; Linux x86_64; zh-CN; rv:1.9.2.10) Gecko/20100922 Ubuntu/10.10 (maverick) Firefox/3.6.10', 'Mozilla/5.0 (Windows NT 5.1; U; en; rv:1.8.1) Gecko/20061208 Firefox/2.0.0 Opera 9.50', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36 Edge/16.16299', 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Maxthon/4.4.3.4000', "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; AcooBrowser; .NET CLR 1.1.4322; .NET CLR 2.0.50727)", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; Acoo Browser; SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506)", "Mozilla/4.0 (compatible; MSIE 7.0; AOL 9.5; AOLBuild 4337.35; Windows NT 5.1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)", "Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)", "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 2.0.50727; Media Center PC 6.0)", "Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.0.3705; .NET CLR 1.1.4322)", "Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.2; .NET CLR 1.1.4322; .NET CLR 2.0.50727; InfoPath.2; .NET CLR 3.0.04506.30)", "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Safari/419.3) Arora/0.3 (Change: 287 c9dfb30)", "Mozilla/5.0 (X11; U; Linux; en-US) AppleWebKit/527+ (KHTML, like Gecko, Safari/419.3) Arora/0.6", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.2pre) Gecko/20070215 K-Ninja/2.1.1", "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9) Gecko/20080705 Firefox/3.0 Kapiko/3.0", "Mozilla/5.0 (X11; Linux i686; U;) Gecko/20070322 Kazehakase/0.4.5", "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.8) Gecko Fedora/1.9.0.8-1.fc10 Kazehakase/0.5.6", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.20 (KHTML, like Gecko) Chrome/19.0.1036.7 Safari/535.20", "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; fr) Presto/2.9.168 Version/11.52", ] def proxy_checker(self, proxy): if self.proxy_type == "http": try: ip, port = proxy.split(":")[0].replace('\n', ''), proxy.split(":")[1].replace('\n', '') c = pycurl.Curl() c.setopt(pycurl.URL, self.TARGET) c.setopt(pycurl.PROXY, ip) c.setopt(pycurl.PROXYPORT, int(port)) c.setopt(pycurl.PROXYTYPE, pycurl.PROXYTYPE_HTTP) c.setopt(pycurl.HTTPHEADER, [f'user-agent: {random.choice(self.headers)}']) c.setopt(pycurl.CONNECTTIMEOUT, self.timeout) c.setopt(pycurl.WRITEFUNCTION, lambda x: None) c.perform() if c.getinfo(pycurl.HTTP_CODE) != 403: print(f"{Fore.GREEN}Good Proxy: {proxy}") self.good += 1 self.pro.write(f"{proxy}\n") else: if self.verbose in self.yes: print(f"{Fore.RED}Bad Proxy: {proxy}") except pycurl.error: if self.verbose in self.yes: print(f"{Fore.RED}Bad Proxy: {proxy}") except Exception as e: print(f'{Fore.RED}{e}') elif self.proxy_type == "socks4": try: ip, port = proxy.split(":")[0].replace('\n', ''), proxy.split(":")[1].replace('\n', '') c = pycurl.Curl() c.setopt(pycurl.URL, self.TARGET) c.setopt(pycurl.PROXY, ip) c.setopt(pycurl.PROXYPORT, int(port)) c.setopt(pycurl.PROXYTYPE, pycurl.PROXYTYPE_SOCKS4) c.setopt(pycurl.HTTPHEADER, [f'user-agent: {random.choice(self.headers)}']) c.setopt(pycurl.CONNECTTIMEOUT, self.timeout) c.setopt(pycurl.WRITEFUNCTION, lambda x: None) c.perform() print(f"{Fore.GREEN}Good Proxy: {proxy}") self.good += 1 self.pro.write(f"{proxy}\n") except pycurl.error: if self.verbose in self.yes: print(f"{Fore.RED}Bad Proxy: {proxy}") except Exception as e: print(f'{Fore.RED}{e}') elif self.proxy_type == "socks5": try: ip, port = proxy.split(":")[0].replace('\n', ''), proxy.split(":")[1].replace('\n', '') c = pycurl.Curl() c.setopt(pycurl.URL, self.TARGET) c.setopt(pycurl.PROXY, ip) c.setopt(pycurl.PROXYPORT, int(port)) c.setopt(pycurl.PROXYTYPE, pycurl.PROXYTYPE_SOCKS5) c.setopt(pycurl.HTTPHEADER, [f'user-agent: {random.choice(self.headers)}']) c.setopt(pycurl.CONNECTTIMEOUT, self.timeout) c.setopt(pycurl.WRITEFUNCTION, lambda x: None) c.perform() print(f"{Fore.GREEN}Good Proxy: {proxy}") self.good += 1 self.pro.write(f"{proxy}\n") except pycurl.error: if self.verbose in self.yes: print(f"{Fore.RED}Bad Proxy: {proxy}") except Exception as e: print(f'{Fore.RED}{e}') def start(self): print(f"{Fore.YELLOW}[CONSOLE] Okay! I'm searching for the best proxies. It may take some time...") proxys = open(f"{self.proxy_file}", "r", encoding="utf-8", errors='ignore') proxies = [proxy.replace("\n", "") for proxy in proxys] threads = [] length = 0 for _ in proxies: length +=1 while True: if threading.active_count() <self.thr: if self.checked < length: t = threading.Thread(target=self.proxy_checker, args=(proxies[self.checked],)) threads.append(t) t.start() self.checked +=1 else: print(f"\n\n{Fore.RED}[CONSOLE] Closing proxy threads.") for th in threads: th.join() print(f"\n\n{Fore.YELLOW}[CONSOLE] Found {self.good} proxies out of {length}.") proxys.close() self.pro.close() return
StarcoderdataPython
3340585
from math import cos, sin, pi card_w, card_h = map(int, input().split()) env_w, env_h = map(int, input().split()) eps = 1e-10 if card_w == env_h and card_h == env_w: print('Possible') exit() def check_insert(w, h): if w <= env_w + eps and h <= env_h + eps: return True else: return False def rotate_on_degree(deg): rad = pi * deg / 180 w = cos(rad) * card_w + sin(rad) * card_h h = sin(rad) * card_w + cos(rad) * card_h return w, h i = 0 while i < 90: w, h = rotate_on_degree(i) res = check_insert(w, h) if res: print('Possible') exit() i += 0.0005 print('Impossible')
StarcoderdataPython
1749863
# -*- coding: utf-8 -*- import scrapy class VisirSlurperItem(scrapy.Item): url = scrapy.Field() article_text = scrapy.Field() author = scrapy.Field() possible_authors = scrapy.Field() date_published = scrapy.Field() headline = scrapy.Field() description = scrapy.Field() body = scrapy.Field() id = scrapy.Field() category = scrapy.Field()
StarcoderdataPython
3281340
## ## controlpanels.py - part of wxfalsecolor ## ## $Id$ ## $URL$ import os import wx import wx.lib.foldpanelbar as fpb # work around for bug in some new wxPython versions if not 'FPB_DEFAULT_STYLE' in dir(fpb): fpb.FPB_DEFAULT_STYLE = fpb.FPB_VERTICAL import wx.lib.buttons as buttons class BaseControlPanel(wx.Panel): def __init__(self, parent, wxapp, *args, **kwargs): """save wxapp and call self.layout() to create buttons""" wx.Panel.__init__(self, parent, *args, **kwargs) self.wxapp = wxapp self._log = wxapp._log self._cmdLine = None self.layout() def createCenteredGrid(self, layout): """arrange controls in centered grid sizer""" ## create grid sizer grid = wx.GridBagSizer(2,2) for r,row in enumerate(layout): c1,c2 = row if c2: grid.Add( c1, (r,0), flag=wx.EXPAND|wx.LEFT|wx.RIGHT, border=5) grid.Add( c2, (r,1), flag=wx.EXPAND|wx.LEFT|wx.RIGHT, border=5) else: grid.Add( c1, (r,0), (1,2), flag=wx.EXPAND|wx.LEFT|wx.RIGHT, border=5) sizer = wx.BoxSizer(wx.HORIZONTAL) sizer.Add(wx.Panel(self), proportion=1, flag=wx.EXPAND,border=0) sizer.Add(grid) sizer.Add(wx.Panel(self), proportion=1, flag=wx.EXPAND,border=0) self.SetSizer(sizer) self.SetInitialSize() def layout(self): """create buttons here""" pass class FalsecolorControlPanel(BaseControlPanel): def __init__(self, parent, wxapp, *args, **kwargs): self.positions = ['WS','W','WN','NW','N','NE','EN','E','ES','SE','S','SW'] BaseControlPanel.__init__(self, parent, wxapp, *args, **kwargs) def layout(self): """create control elements in grid layout""" ## type choice button self.fc_type = wx.Choice(self, wx.ID_ANY, choices=["color fill", "c-lines", "c-bands"]) self.fc_type.SetStringSelection("color fill") self.Bind(wx.EVT_CHOICE, self.updateFCButton, self.fc_type) self.legpos = wx.Choice(self, wx.ID_ANY, choices=self.positions, size=(60,-1)) self.legpos.SetStringSelection("WS") self.Bind(wx.EVT_CHOICE, self.updatePosition, self.legpos) self.inside = wx.CheckBox(self, wx.ID_ANY, 'in') self.Bind(wx.EVT_CHECKBOX, self.updateFCButton, self.inside) self.label = wx.TextCtrl(self, wx.ID_ANY, "cd/m2", size=(50,-1)) self.scale = wx.TextCtrl(self, wx.ID_ANY, "1000", size=(50,-1)) self.steps = wx.TextCtrl(self, wx.ID_ANY, "8", size=(50,-1)) self.logv = wx.TextCtrl(self, wx.ID_ANY, "2", size=(50,-1)) self.maskv = wx.TextCtrl(self, wx.ID_ANY, "0.001", size=(50,-1)) self.fc_log = wx.CheckBox(self, wx.ID_ANY, 'log') self.fc_mask = wx.CheckBox(self, wx.ID_ANY, 'mask') self.fc_col = wx.CheckBox(self, wx.ID_ANY, 'old colours') self.fc_extr = wx.CheckBox(self, wx.ID_ANY, 'show extremes') self.fc_zero = wx.CheckBox(self, wx.ID_ANY, '0 based leg') self.legW = wx.TextCtrl(self, wx.ID_ANY, "100", size=(50,-1)) self.legH = wx.TextCtrl(self, wx.ID_ANY, "200", size=(50,-1)) ## 'hidden' option for background image self._background = "" ## 'falsecolor' button self.doFCButton = buttons.GenButton(self, wx.ID_ANY, label='falsecolor') self.doFCButton.Bind(wx.EVT_LEFT_DOWN, self.doFalsecolor) self.doFCButton.Disable() ## bind events self.Bind(wx.EVT_TEXT, self.updateFCButton, self.label) self.Bind(wx.EVT_TEXT, self.updateFCButton, self.scale) self.Bind(wx.EVT_TEXT, self.updateFCButton, self.steps) self.Bind(wx.EVT_TEXT, self.updateFCButton, self.logv) self.Bind(wx.EVT_TEXT, self.updateFCButton, self.maskv) self.Bind(wx.EVT_TEXT, self.updateFCButton, self.legW) self.Bind(wx.EVT_TEXT, self.updateFCButton, self.legH) self.Bind(wx.EVT_CHECKBOX, self.updateFCButton, self.fc_log) self.Bind(wx.EVT_CHECKBOX, self.updateFCButton, self.fc_mask) self.Bind(wx.EVT_CHECKBOX, self.updateFCButton, self.fc_col) self.Bind(wx.EVT_CHECKBOX, self.updateFCButton, self.fc_extr) self.Bind(wx.EVT_CHECKBOX, self.updateFCButton, self.fc_zero) layout = [(self.fc_type, None), (self.inside, self.legpos), (wx.Panel(self,wx.ID_ANY,size=(-1,10)), None), (wx.StaticText(self, wx.ID_ANY, "legend:"), self.label), (wx.StaticText(self, wx.ID_ANY, "scale:"), self.scale), (wx.StaticText(self, wx.ID_ANY, "steps:"), self.steps), (wx.Panel(self,wx.ID_ANY,size=(-1,10)), None), (self.fc_log, self.logv), (self.fc_mask, self.maskv), (self.fc_col, None), (self.fc_extr, None), (self.fc_zero, None), (wx.Panel(self,wx.ID_ANY,size=(-1,10)), None), (wx.StaticText(self, wx.ID_ANY, "leg-w:"), self.legW), (wx.StaticText(self, wx.ID_ANY, "leg-h:"), self.legH), (wx.Panel(self,wx.ID_ANY,size=(-1,10)), None), (self.doFCButton, None), (wx.Panel(self,wx.ID_ANY,size=(-1,5)), None)] ## arrange in grid self.createCenteredGrid(layout) def doFalsecolor(self, event): """start conversion to falsecolor and update button""" args = self.getFCArgs() if self.wxapp.doFalsecolor(args) == True: self._cmdLine = " ".join(self.getFCArgs()) self.doFCButton.SetLabel("update fc") self.doFCButton.Disable() self.doFCButton.SetBackgroundColour(wx.WHITE) else: self.doFCButton.SetLabel("update fc") self.doFCButton.Enable() self.doFCButton.SetBackgroundColour(wx.Colour(255,140,0)) self.doFCButton.Refresh() def enableFC(self, text=""): """enable and update doFCButton""" self._log.debug("enableFC(): text='%s'" % text) self.doFCButton.Enable() if text != "": self.doFCButton.SetLabel(text) self.doFCButton.Refresh() def getFCArgs(self): """collect command line args as list""" args = [] #args.extend(["-t", "./tempdir"]) if self.fc_type.GetCurrentSelection() > 0: args.append(["", "-cl", "-cb"][self.fc_type.GetCurrentSelection()]) position = self.positions[self.legpos.GetCurrentSelection()] if self.inside.GetValue(): position = "-" + position args.extend(["-lp", position]) args.extend(["-lw", self.legW.GetValue()]) args.extend(["-lh", self.legH.GetValue()]) args.extend(["-l", self.getFCLableText()]) args.extend(["-s", self.scale.GetValue()]) args.extend(["-n", self.steps.GetValue()]) if self.fc_log.GetValue(): args.extend(["-log", self.logv.GetValue()]) if self.fc_mask.GetValue(): args.extend(["-mask", self.maskv.GetValue()]) if self.fc_col.GetValue(): args.append("-spec") if self.fc_extr.GetValue(): args.append("-e") if self.fc_zero.GetValue(): args.append("-z") if self._background != "": args.extend(["-p", self._background]) self._log.debug("getFCArgs(): args=%s" % str(args)) return args def getFCLableText(self): """return value of label text box""" return self.label.GetValue() def reset(self, label="cd/m2"): """reset controls to initial values""" self._log.debug("resetting falsecolor controls ...") self.enableFC("convert fc") self.label.SetValue(label) self.fc_type.SetSelection(0) self.fc_log.SetValue(False) self.fc_mask.SetValue(False) self.fc_col.SetValue(False) self.fc_extr.SetValue(False) self.fc_zero.SetValue(False) self.scale.SetValue("1000") self.steps.SetValue("8") self.legpos.SetStringSelection("WS") self.inside.SetValue(False) self.legW.SetValue("100") self.legH.SetValue("200") self._background = "" self._cmdLine = None def setFromArgs(self, args): """set control values from command line args""" args.append("#") args.reverse() ignore = ["-i", "-ip", "-df", "-t", "-r", "-g", "-b"] set_cmdline = True while args: arg = args.pop() self._log.debug("setFromArgs() arg='%s'" % arg) if arg == "#": pass elif arg == "-d": pass elif arg == "-v": pass elif arg == "-m": pass elif arg == "-nofc": set_cmdline = False elif arg in ignore: v = args.pop() elif arg == "-p": self._background = self.validatePath(args.pop()) elif arg == "-cl": self.fc_type.SetSelection(1) elif arg == "-cb": self.fc_type.SetSelection(2) elif arg == "-e": self.fc_extr.SetValue(True) elif arg == "-l": self.label.SetValue(args.pop()) elif arg == "-log": self.fc_log.SetValue(True) self.logv.SetValue(args.pop()) elif arg == "-lh": self.legH.SetValue(args.pop()) elif arg == "-lw": self.legW.SetValue(args.pop()) elif arg == "-lp": v = args.pop() if v.startswith("-"): self.inside.SetValue(True) v = v[1:] self.legpos.SetStringSelection(v) elif arg == "-mask": self.fc_mask.SetValue(True) self.maskv.SetValue(args.pop()) elif arg == "-n": self.steps.SetValue(args.pop()) elif arg == "-s": self.scale.SetValue(args.pop()) elif arg == "-spec": self.fc_col.SetValue(True) elif arg == "-z": self.fc_zero.SetValue(True) if set_cmdline: self._cmdLine = " ".join(self.getFCArgs()) else: ## _cmdLine needs to be set for updateFCButton self._cmdLine = "" ## set button label self.wxapp.expandControlPanel(1) self.updateFCButton() #self.doFCButton.Disable() def updateFCButton(self, event=None): """set label of falsecolor button to 'update'""" if self._cmdLine == None: return newCmd = " ".join(self.getFCArgs()) if self._cmdLine != newCmd: self.doFCButton.SetLabel("update fc") self.doFCButton.Enable() self.doFCButton.SetBackgroundColour(wx.Colour(255,140,0)) else: self.doFCButton.Disable() self.doFCButton.SetBackgroundColour(wx.WHITE) self.doFCButton.Refresh() def updatePosition(self, event): """update height and width when position changes""" pos = self.positions[self.legpos.GetCurrentSelection()] pos = pos.replace("-", "") if pos.startswith("W") or pos.startswith("E"): self.legW.SetValue("100") self.legH.SetValue("200") else: self.legW.SetValue("400") self.legH.SetValue("50") def validatePath(self, path): """return path if file exists, otherwise empty string""" if os.path.isfile(path): return path else: return "" class DisplayControlPanel(BaseControlPanel): def layout(self): """creates layout of ximage buttons""" self.acuity = wx.CheckBox(self, wx.ID_ANY, 'acuity loss') self.glare = wx.CheckBox(self, wx.ID_ANY, 'veiling glare') self.contrast = wx.CheckBox(self, wx.ID_ANY, 'contrast') self.colour = wx.CheckBox(self, wx.ID_ANY, 'color loss') self.exposure = wx.CheckBox(self, wx.ID_ANY, 'exp') self.expvalue = wx.TextCtrl(self, wx.ID_ANY, "+0", size=(50,-1)) self.linear = wx.CheckBox(self, wx.ID_ANY, 'linear response') self.centre = wx.CheckBox(self, wx.ID_ANY, 'centre-w. avg') self.dsprange = wx.CheckBox(self, wx.ID_ANY, 'display range') self.dsp_min = wx.TextCtrl(self, wx.ID_ANY, "0.5", size=(40,-1)) self.dsp_max = wx.TextCtrl(self, wx.ID_ANY, "200", size=(40,-1)) dsp_box = wx.BoxSizer(wx.HORIZONTAL) dsp_box.Add(self.dsp_min, proportion=0, flag=wx.EXPAND|wx.ALL, border=0) dsp_box.Add(wx.StaticText(self, wx.ID_ANY, "to", style=wx.ALIGN_CENTER), proportion=1, flag=wx.EXPAND|wx.Left|wx.RIGHT, border=0) dsp_box.Add(self.dsp_max, proportion=0, flag=wx.EXPAND|wx.ALL, border=0) self.Bind(wx.EVT_CHECKBOX, self.updatePcondButton, self.acuity) self.Bind(wx.EVT_CHECKBOX, self.updatePcondButton, self.glare) self.Bind(wx.EVT_CHECKBOX, self.updatePcondButton, self.contrast) self.Bind(wx.EVT_CHECKBOX, self.updatePcondButton, self.colour) self.Bind(wx.EVT_CHECKBOX, self.OnExposure, self.exposure) self.Bind(wx.EVT_TEXT, self.OnExpValue, self.expvalue) self.Bind(wx.EVT_CHECKBOX, self.updatePcondButton, self.linear) self.Bind(wx.EVT_CHECKBOX, self.updatePcondButton, self.centre) self.Bind(wx.EVT_CHECKBOX, self.OnDspRange, self.dsprange) self.Bind(wx.EVT_TEXT, self.OnDspValue, self.dsp_min) self.Bind(wx.EVT_TEXT, self.OnDspValue, self.dsp_max) self.pcondButton = buttons.GenButton(self, wx.ID_ANY, label='apply pcond', size=(-1,24)) self.pcondButton.Bind(wx.EVT_BUTTON, self.OnDoPcond) self.pcondButton.Disable() saveBitmap = wx.Button(self, wx.ID_ANY, "save bitmap") saveBitmap.Bind(wx.EVT_BUTTON, self.OnSaveBitmap) layout = [(self.acuity, None), (self.glare, None), (self.contrast, None), (self.colour, None), (wx.Panel(self,wx.ID_ANY,size=(-1, 5)), None), (self.exposure, self.expvalue), (self.linear, None), (self.centre, None), (wx.Panel(self,wx.ID_ANY,size=(-1, 5)), None), (self.dsprange, None), (dsp_box, None), (wx.Panel(self,wx.ID_ANY,size=(-1, 5)), None), (self.pcondButton, None), (wx.Panel(self,wx.ID_ANY,size=(-1,10)), None), (saveBitmap, None), (wx.Panel(self,wx.ID_ANY,size=(-1, 5)), None)] ## arrange in grid self.createCenteredGrid(layout) def disablePcondButton(self): """disable pcond button and change colour""" self.pcondButton.Disable() self.pcondButton.SetBackgroundColour(wx.WHITE) def getPcondArgs(self): """collect pcond arguments and return as list""" args = [] if self.acuity.GetValue(): args.append("-a"); if self.glare.GetValue(): args.append("-v"); if self.contrast.GetValue(): args.append("-s"); if self.colour.GetValue(): args.append("-c"); if self.linear.GetValue(): args.append("-l"); if self.centre.GetValue(): args.append("-w"); if self.exposure.GetValue(): args.append("-e") args.append(self.expvalue.GetValue()) if self.dsprange.GetValue(): try: black = float(self.dsp_min.GetValue()) white = float(self.dsp_max.GetValue()) if black <= 0: black == 0.5 if white <= 0: white = 100 range = white/black args.extend(["-u", "%d" % white, "-d", "%d" % range]) except ValueError: pass self._log.debug("getPcondArgs() args=%s" % str(args)) return args def OnDoPcond(self, event): """run pcond and update imagepanel""" if self.wxapp.rgbeImg: args = self.getPcondArgs() if self.wxapp.doPcond(args) == True: self._cmdLine = " ".join(args) self.disablePcondButton() def OnDspRange(self, event): """check than min and max display settings are numbers""" if self.dsprange.GetValue() == False: self.updatePcondButton(event) return try: black = float(self.dsp_min.GetValue()) if black <= 0: self.dsp_min.SetValue("0.5") except ValueError: self.dsp_min.SetValue("0.5") try: white = float(self.dsp_max.GetValue()) if white <= 0: self.dsp_max.SetValue("200") except ValueError: self.dsp_max.SetValue("200") self.updatePcondButton(event) def OnDspValue(self, event): """set display range to True on dsp value change""" if self.dsp_min.GetValue() == "" or self.dsp_max.GetValue() == "": return else: try: black = float(self.dsp_min.GetValue()) white = float(self.dsp_max.GetValue()) self.dsprange.SetValue(True) self.updatePcondButton(event) except ValueError: pass def OnExposure(self, event): """select 'linear' cb if exposure is enabled""" if self.exposure.GetValue() == True: self.linear.SetValue(True) try: v = float(self.expvalue.GetValue()) except ValueError: self.expvalue.SetValue("+0") self.updatePcondButton(event) def OnExpValue(self, event): """enable exposure cb on expvalue change""" try: v = float(self.expvalue.GetValue()) self.exposure.SetValue(True) self.linear.SetValue(True) self.updatePcondButton(event) except ValueError: self.exposure.SetValue(False) def OnSaveBitmap(self, event): """call imagepanel's saveBitmap() function""" self.wxapp.imagepanel.saveBitmap() def reset(self): """set buttons to initial state""" self.acuity.SetValue(False) self.glare.SetValue(False) self.contrast.SetValue(False) self.colour.SetValue(False) self.expvalue.SetValue("+0") self.exposure.SetValue(False) self.linear.SetValue(False) self.centre.SetValue(False) self.pcondButton.Enable() self.pcondButton.SetBackgroundColour(wx.WHITE) def updatePcondButton(self, event): """enable pcond button if new options are selected""" if not self.wxapp.rgbeImg: self.disablePcondButton() return if " ".join(self.getPcondArgs()) != self._cmdLine: self.pcondButton.Enable() self.pcondButton.SetBackgroundColour(wx.Colour(255,140,0)) else: self.disablePcondButton() class LablesControlPanel(BaseControlPanel): def __init__(self, parent, wxapp, *args, **kwargs): wx.Panel.__init__(self, parent, *args, **kwargs) self.wxapp = wxapp self._log = wxapp._log self._layout() def _layout(self): sizer = wx.BoxSizer(wx.VERTICAL) self.loadClearButton = wx.Button(self, wx.ID_ANY, "no data") self.loadClearButton.Bind(wx.EVT_BUTTON, self.OnShowValues) self.loadClearButton.Disable() sizer.Add(self.loadClearButton, proportion=0, flag=wx.EXPAND|wx.LEFT|wx.RIGHT, border=5) lable = wx.StaticText(self, wx.ID_ANY, "text:") self.lableText = wx.TextCtrl(self, wx.ID_ANY, "") self.Bind(wx.EVT_TEXT, self.OnTextChange, self.lableText) hsizer = wx.BoxSizer(wx.HORIZONTAL) hsizer.Add(lable, flag=wx.ALL, border=2) hsizer.Add(self.lableText, proportion=1) sizer.Add(hsizer, proportion=0, flag=wx.EXPAND|wx.ALL, border=10) spacer = wx.Panel(self, wx.ID_ANY, size=(-1,5)) sizer.Add(spacer, proportion=0, flag=wx.EXPAND|wx.ALL, border=0) saveBitmap = wx.Button(self, wx.ID_ANY, "save bitmap") saveBitmap.Bind(wx.EVT_BUTTON, self.OnSaveBitmap) sizer.Add(saveBitmap, proportion=0, flag=wx.EXPAND|wx.LEFT|wx.RIGHT|wx.BOTTOM, border=5) ## add spacer and set size spacer = wx.Panel(self, wx.ID_ANY, size=(-1,5)) sizer.Add(spacer, proportion=0, flag=wx.EXPAND|wx.ALL, border=0) self.SetSizer(sizer) self.SetInitialSize() def getLableText(self): return self.lableText.GetValue() def OnShowValues(self, event): """load data from image and clear labels""" self.wxapp.imagepanel.clearLabels() self.loadClearButton.Disable() self.wxapp.statusbar.SetStatusText("loading image data ...") if self.wxapp.loadValues() == False: self.loadClearButton.SetLabel("no data") self.wxapp.statusbar.SetStatusText("Error loading image data!") elif self.wxapp.loadingCanceled == True: self.wxapp.statusbar.SetStatusText("Loading of image data canceled.") self.loadClearButton.SetLabel("load data") self.loadClearButton.Enable() else: ## if we have data self.loadClearButton.SetLabel("clear lables") self.wxapp.statusbar.SetStatusText("") if self.wxapp.rgbeImg.isIrridiance(): self.setLable("Lux") else: self.setLable("cd/m2") def OnSaveBitmap(self, event): """call imagepanel's saveBitmap() function""" self.wxapp.imagepanel.saveBitmap() def OnTextChange(self, event): """call imagepanel's saveBitmap() function""" self.wxapp.imagepanel.UpdateDrawing() def reset(self): self.loadClearButton.Enable() self.loadClearButton.SetLabel("load data") self.setLable(" ") def setLable(self, text): self.lableText.SetValue(text) class MiscControlPanel(wx.Panel): def __init__(self, parent, wxapp, *args, **kwargs): wx.Panel.__init__(self, parent, *args, **kwargs) self.wxapp = wxapp self._layout() def _layout(self): """create buttons for various functions""" sizer = wx.BoxSizer(wx.VERTICAL) buttons = [("show header", self.wxapp.showHeaders, 20), ("check update", self.wxapp.check_for_update, 10), ("about", self.wxapp.showAboutDialog, 5)] ## create buttons and spacers for label, func, space in buttons: button = wx.Button(self, wx.ID_ANY, label) button.Bind(wx.EVT_BUTTON, func) sizer.Add(button, proportion=0, flag=wx.EXPAND|wx.LEFT|wx.RIGHT|wx.BOTTOM, border=5) if space > 0: spacer = wx.Panel(self, wx.ID_ANY, size=(-1,space)) sizer.Add(spacer, proportion=0, flag=wx.EXPAND|wx.ALL, border=0) ## set sizer and finish self.SetSizer(sizer) self.SetInitialSize() class MyFoldPanelBar(fpb.FoldPanelBar): """base for FoldPanelBar in controlls panel""" def __init__(self, parent, id=wx.ID_ANY, pos=wx.DefaultPosition, size=wx.DefaultSize, *args,**kwargs): fpb.FoldPanelBar.__init__(self, parent, id, pos, size, *args, **kwargs) def OnPressCaption(self, event): """collapse all other panels on EVT_CAPTIONBAR event""" fpb.FoldPanelBar.OnPressCaption(self, event) for i in range(self.GetCount()): p = self.GetFoldPanel(i) if p != event._tag: self.Collapse(p) class FoldableControlsPanel(wx.Panel): """combines individual feature panels""" def __init__(self, parent, wxapp, style=wx.DEFAULT_FRAME_STYLE): wx.Panel.__init__(self, parent, id=wx.ID_ANY) self.wxapp = wxapp self.SetSize((140,350)) self._layout() self.Bind(wx.EVT_SIZE, self.setBarSize) def expand(self, idx): """expand element <idx> on self.pnl""" if not self.pnl: return False total = self.pnl.GetCount() if idx >= total: return False for i in range(total): panel = self.pnl.GetFoldPanel(i) self.pnl.Collapse(panel) panel = self.pnl.GetFoldPanel(idx) self.pnl.Expand(panel) def _layout(self, vertical=True): bar = MyFoldPanelBar(self, style=fpb.FPB_DEFAULT_STYLE|fpb.FPB_VERTICAL) item = bar.AddFoldPanel("lables", collapsed=False) self.lablecontrols = LablesControlPanel(item, self.wxapp) bar.AddFoldPanelWindow(item, self.lablecontrols, flags=fpb.FPB_ALIGN_WIDTH) item = bar.AddFoldPanel("falsecolor", collapsed=True) self.fccontrols = FalsecolorControlPanel(item, self.wxapp) bar.AddFoldPanelWindow(item, self.fccontrols, flags=fpb.FPB_ALIGN_WIDTH) item = bar.AddFoldPanel("display", collapsed=True) self.displaycontrols = DisplayControlPanel(item, self.wxapp) bar.AddFoldPanelWindow(item, self.displaycontrols, flags=fpb.FPB_ALIGN_WIDTH) item = bar.AddFoldPanel("misc", collapsed=True) pc_controls = MiscControlPanel(item, self.wxapp) bar.AddFoldPanelWindow(item, pc_controls) if hasattr(self, "pnl"): self.pnl.Destroy() self.pnl = bar size = self.GetClientSize() self.pnl.SetDimensions(0, 0, size.GetWidth(), size.GetHeight()) def setBarSize(self, event): size = event.GetSize() self.pnl.SetDimensions(0, 0, size.GetWidth(), size.GetHeight())
StarcoderdataPython
36991
<filename>ETLPipeline (1).py import sys import pandas as pd from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): ''' input: messages_filepath: The path of messages dataset. categories_filepath: The path of categories dataset. output: df: The merged dataset ''' disastermessages = pd.read_csv('disaster_messages.csv') disastermessages.head() # load categories dataset disastercategories = pd.read_csv('disaster_categories.csv') disastercategories.head() df = pd.merge(disastermessages, disastercategories, left_on='id', right_on='id', how='outer') return df def clean_data(df): ''' input: df: The merged dataset in previous step. output: df: Dataset after cleaning. ''' disastercategories = df.categories.str.split(';', expand = True) # select the first row of the categories dataframe row = disastercategories.iloc[0,:] # use this row to extract a list of new column names for categories. # one way is to apply a lambda function that takes everything # up to the second to last character of each string with slicing disastercategory_colnames = row.apply(lambda x:x[:-2]) print(disastercategory_colnames) disastercategories.columns = category_colnames for column in disastercategories: # set each value to be the last character of the string disastercategories[column] = disastercategories[column].str[-1] # convert column from string to numeric disastercategories[column] = disastercategories[column].astype(np.int) disastercategories.head() df.drop('categories', axis = 1, inplace = True) df = pd.concat([df, categories], axis = 1) # drop the original categories column from `df` df = df.drop('categories',axis=1) df.head() # check number of duplicates print('Number of duplicated rows: {} out of {} samples'.format(df.duplicated().sum(),df.shape[0])) df.drop_duplicates(subset = 'id', inplace = True) return df def save_data(df): engine = create_engine('sqlite:///disastermessages.db') df.to_sql('df', engine, index=False) def main(): df = load_data() print('Cleaning data...') df = clean_data(df) save_data(df) print('Cleaned data saved to database!') else: print('Please provide the filepaths of the messages and categories '\ 'datasets as the first and second argument respectively, as '\ 'well as the filepath of the database to save the cleaned data '\ 'to as the third argument. \n\nExample: python process_data.py '\ 'disaster_messages.csv disaster_categories.csv '\ 'DisasterResponse.db') if __name__ == '__main__': main()
StarcoderdataPython
137984
#!/usr/bin/python """Example of a guild - Qt hybrid system. This example shows three ways to connect guild pipelines to Qt objects. Version 1 (preferred) uses a normal guild pipeline with a hybrid (guild/Qt) display object. Version 2 uses a hybrid source and a standard Qt display, which is what you'd do if you don't want to modify your Qt component. Version 3 introduces a hybrid "bridge" between a guild source and a Qt display - useful if you don't want to modify either. """ from __future__ import print_function import re import subprocess import sys import time from guild.actor import * from guild.qtactor import ActorSignal, QtActorMixin from PyQt4 import QtGui, QtCore def VideoFileReader(file_name): # get video dims proc_pipe = subprocess.Popen([ 'ffmpeg', '-loglevel', 'info', '-i', file_name, ], stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=10**8) stdout, stderr = proc_pipe.communicate() pattern = re.compile('Stream.*Video.* ([0-9]{2,})x([0-9]+)') for line in str(stderr).split('\n'): match = pattern.search(line) if match: xlen, ylen = map(int, match.groups()) break else: print('Could not get video dimensions of', file_name) return try: bytes_per_frame = xlen * ylen * 3 proc_pipe = subprocess.Popen([ 'ffmpeg', '-loglevel', 'warning', '-i', file_name, '-f', 'image2pipe', '-pix_fmt', 'rgb24', '-vcodec', 'rawvideo', '-' ], stdout=subprocess.PIPE, bufsize=bytes_per_frame) while True: raw_image = proc_pipe.stdout.read(bytes_per_frame) if len(raw_image) < bytes_per_frame: break yield xlen, ylen, raw_image finally: proc_pipe.terminate() proc_pipe.stdout.close() class Player(Actor): def __init__(self, video_file): self.video_file = video_file self.paused = False super(Player, self).__init__() def gen_process(self): self.reader = VideoFileReader(self.video_file) raw_image = None while True: yield 1 if not (self.paused and raw_image): try: xlen, ylen, raw_image = next(self.reader) except StopIteration: break image = QtGui.QImage( raw_image, xlen, ylen, QtGui.QImage.Format_RGB888) self.output(image) time.sleep(1.0/25) @actor_method def set_paused(self, paused): self.paused = paused def onStop(self): self.reader.close() class PlayerQt(QtActorMixin, QtCore.QObject): signal = QtCore.pyqtSignal(QtGui.QImage) def __init__(self, video_file): self.video_file = video_file self.paused = False super(PlayerQt, self).__init__() def gen_process(self): self.reader = VideoFileReader(self.video_file) raw_image = None while True: yield 1 if not (self.paused and raw_image): try: xlen, ylen, raw_image = next(self.reader) except StopIteration: break image = QtGui.QImage( raw_image, xlen, ylen, QtGui.QImage.Format_RGB888) self.signal.emit(image) time.sleep(1.0/25) @actor_method @QtCore.pyqtSlot(bool) def set_paused(self, paused): self.paused = paused def onStop(self): self.reader.close() class Display(QtGui.QLabel): @QtCore.pyqtSlot(QtGui.QImage) def show_frame(self, frame): pixmap = QtGui.QPixmap.fromImage(frame) self.setPixmap(pixmap) class DisplayActor(QtActorMixin, QtGui.QLabel): @actor_method def show_frame(self, frame): pixmap = QtGui.QPixmap.fromImage(frame) self.setPixmap(pixmap) input = show_frame class MainWindow(QtGui.QMainWindow): def __init__(self, video_file): super(MainWindow, self).__init__() self.setWindowTitle("Guild video player") # create guild pipeline # version 1: guild player -> hybrid display self.player = Player(video_file).go() display = DisplayActor().go() pipeline(self.player, display) self.actors = [self.player, display] # version 2: hybrid player -> Qt display ## self.player = PlayerQt(video_file).go() ## display = Display() ## self.player.signal.connect(display.show_frame) ## self.actors = [self.player] # version 3: guild player -> hybrid bridge -> Qt display ## self.player = Player(video_file).go() ## bridge = ActorSignal().go() ## display = Display() ## pipeline(self.player, bridge) ## bridge.signal.connect(display.show_frame) ## self.actors = [self.player, bridge] # central widget widget = QtGui.QWidget() grid = QtGui.QGridLayout() grid.setColumnStretch(4, 1) widget.setLayout(grid) self.setCentralWidget(widget) grid.addWidget(display, 0, 0, 1, 6) # pause button pause_button = QtGui.QCheckBox('pause') pause_button.clicked.connect(self.player.set_paused) pause_button.setShortcut('Space') grid.addWidget(pause_button, 1, 0) # quit button quit_button = QtGui.QPushButton('quit') quit_button.clicked.connect(self.shutdown) quit_button.setShortcut('Ctrl+Q') grid.addWidget(quit_button, 1, 5) self.show() def shutdown(self): stop(*self.actors) wait_for(*self.actors) QtGui.QApplication.instance().quit() if len(sys.argv) != 2: print('usage: %s video_file' % sys.argv[0]) sys.exit(1) app = QtGui.QApplication([]) main = MainWindow(sys.argv[1]) app.exec_()
StarcoderdataPython
3331105
<reponame>McStasMcXtrace/ufit # -*- coding: utf-8 -*- # ***************************************************************************** # ufit, a universal scattering fitting suite # # Copyright (c) 2013-2019, <NAME> and contributors. All rights reserved. # Licensed under a 2-clause BSD license, see LICENSE. # ***************************************************************************** """Model of S(q,w) with resolution convolution for TAS.""" import inspect from numpy import matrix as zeros from ufit.rescalc import resmat, calc_MC, calc_MC_cluster, calc_MC_mcstas, \ load_cfg, load_par, PARNAMES, CFGNAMES, plot_resatpoint from ufit.models.base import Model from ufit.param import prepare_params, update_params from ufit.pycompat import string_types __all__ = ['ConvolvedScatteringLaw'] class ConvolvedScatteringLaw(Model): """Model using a scattering law given as a function and a set of resolution parameters for a triple-axis spectrometer. Signature of the S(q,w) function given by *sqw*:: sqw(h, k, l, E, QE0, Sigma, par0, par1, ...) If the function is given as a string, it it taken as ``module:function``. The calculation is then clustered using SSH and ufit.cluster. h,k,l,E are arrays of the Monte-Carlo point coordinates, QE0 is the center of the ellipse, Sigma are the ellipse widths around the center. A constant background is always included as a parameter named "bkgd". *instfiles* must be ('instr.cfg', 'instr.par'). Initial parameters can include parameters named cfg_... and par_...; this will add instrument configuration and parameters to the fitting parameters. They can be given initial values or a None value, in which case the initial value will come from the .cfg or .par file. Use cfg_ALL=1 or par_ALL=1 to add all cfg or par entries to the fit parameters (this is mostly useful to interactively play around with the resolution in one scan). """ nsamples = -1 # for plotting: plot only 4x as many points as datapoints def __init__(self, sqw, instfiles, NMC=2000, name=None, cluster=False, mcstas=None, matrix=None, mathkl=None, **init): self._cluster = False self._mcstas = mcstas if isinstance(sqw, string_types): modname, funcname = sqw.split(':') mod = __import__(modname) code = open(mod.__file__.rstrip('c')).read() self._sqwfunc = funcname self._sqwcode = code self._sqw = getattr(mod, funcname) self.name = funcname self._cluster = cluster else: # cannot cluster self._sqw = sqw self.name = name or sqw.__name__ init['NMC'] = str(NMC) # str() makes it a fixed parameter instparnames = [] par_all = False cfg_all = False self._instpars = [] cfg_orig = load_cfg(instfiles[0]) par_orig = load_par(instfiles[1]) for par in init: if par == 'par_ALL': par_all = True elif par == 'cfg_ALL': cfg_all = True elif par.startswith('par_'): if par[4:] in PARNAMES: self._instpars.append(par[4:]) instparnames.append(par) if init[par] is None: init[par] = str(par_orig[par[4:]]) else: raise Exception('invalid instrument parameter: %r' % par) elif par.startswith('cfg_'): if par[4:] in CFGNAMES: self._instpars.append(CFGNAMES.index(par[4:])) instparnames.append(par) if init[par] is None: init[par] = str(cfg_orig[CFGNAMES.index(par[4:])]) else: raise Exception('invalid instrument configuration: %r' % par) if par_all: instparnames = [pn for pn in instparnames if not pn.startswith('par_')] self._instpars = [pn for pn in self._instpars if not isinstance(pn, string_types)] instparnames.extend('par_' + pn for pn in PARNAMES) self._instpars.extend(PARNAMES) for pn in PARNAMES: init['par_' + pn] = str(par_orig[pn]) if cfg_all: instparnames = [pn for pn in instparnames if not pn.startswith('cfg_')] self._instpars = [ip for ip in self._instpars if isinstance(ip, string_types)] instparnames.extend('cfg_' + x for x in CFGNAMES) self._instpars.extend(range(len(CFGNAMES))) for i in range(len(CFGNAMES)): init['cfg_' + CFGNAMES[i]] = str(cfg_orig[i]) # numba compat arg_sqw = getattr(self._sqw, 'py_func', self._sqw) self._pvs = self._init_params(name, ['NMC', 'bkgd'] + inspect.getargspec(arg_sqw)[0][6:] + instparnames, init) self._ninstpar = len(instparnames) self._resmat = resmat(cfg_orig, par_orig) if matrix is not None: self._resmat.fixed_res = True self._resmat.setNPMatrix(matrix, mathkl) # self._resmat.NP = matrix self._resmat.R0_corrected = 1.0 def fcn(self, p, x): parvalues = [p[pv] for pv in self._pvs] # t1 = time.time() # print 'Sqw: values = ', parvalues if self._ninstpar: sqwpar = parvalues[2:-self._ninstpar] for pn, pv in zip(self._instpars, parvalues[-self._ninstpar:]): if isinstance(pn, string_types): self._resmat.par[pn] = pv else: self._resmat.cfg[pn] = pv use_caching = False else: sqwpar = parvalues[2:] use_caching = True if self._mcstas: res = calc_MC_mcstas(x, sqwpar, self._sqw, self._resmat, parvalues[0]) elif self._cluster: res = calc_MC_cluster(x, sqwpar, self._sqwcode, self._sqwfunc, self._resmat, parvalues[0], use_caching=use_caching) else: res = calc_MC(x, sqwpar, self._sqw, self._resmat, parvalues[0], use_caching=use_caching) res += parvalues[1] # background # t2 = time.time() # print 'Sqw: iteration = %.3f sec' % (t2-t1) return res def resplot(self, h, k, l, e): self._resmat.sethklen(h, k, l, e) plot_resatpoint(self._resmat.cfg, self._resmat.par, self._resmat) def simulate(self, data): varying, varynames, dependent, _ = prepare_params(self.params, data.meta) pd = dict((p.name, p.value) for p in self.params) update_params(dependent, data.meta, pd) yy = self.fcn(pd, data.x) new = data.copy() new.y = yy new.dy = zeros(len(yy)) return new
StarcoderdataPython
97329
from datetime import timedelta, datetime from celery.schedules import crontab from celery.task.base import periodic_task from couchlog.models import ExceptionRecord from django.conf import settings @periodic_task(run_every=crontab(minute=0, hour=0), queue=getattr(settings, 'CELERY_PERIODIC_QUEUE', 'celery')) def purge_old_logs(): key = datetime.now() - timedelta(weeks=52) results = ExceptionRecord.view( "couchlog/all_by_date", reduce=False, startkey=[key.isoformat()], descending=True, limit=1000, include_docs=False) db = ExceptionRecord.get_db() docs = [] for result in results: docs.append({ '_id': result['id'], '_rev': db.get_rev(result['id']), '_deleted': True, }) db.bulk_save(docs, use_uuids=False)
StarcoderdataPython
110063
<filename>tests/test_action_lib_remove_old_snapshots.py from manage_iq_base_action_test_case import ManageIQBaseActionTestCase from lib.remove_old_snapshots import RemoveOldSnapshots from st2common.runners.base_action import Action import mock import datetime import requests class TestRemoveOldSnapshots(ManageIQBaseActionTestCase): __test__ = True action_cls = RemoveOldSnapshots def _mock_response(self, status=200, content="CONTENT", json_data=None, raise_for_status=None): """Since we will be makeing alot of rest calls that all raise for status, we are creating this helper method to build the mock reponse for us to reduce duplicated code. """ mock_resp = mock.Mock() mock_resp.raise_for_status = mock.Mock() if raise_for_status: mock_resp.raise_for_status.side_effect = raise_for_status mock_resp.status_code = status mock_resp.content = content if json_data: mock_resp.json = mock.Mock( return_value=json_data ) return mock_resp def test_init(self): action = self.get_action_instance({}) self.assertIsInstance(action, RemoveOldSnapshots) self.assertIsInstance(action, Action) def test_create_session(self): action = self.get_action_instance({}) result = action.create_session('user', 'pass') self.assertIsInstance(result, requests.Session) self.assertEqual(result.auth, ('user', 'pass')) self.assertEqual(result.verify, False) def test_get_vms(self): action = self.get_action_instance({}) action.server = "server.tld" mock_response = mock.MagicMock() mock_response.json.return_value = {'resources': 'vms_json'} mock_session = mock.MagicMock() mock_session.get.return_value = mock_response action.session = mock_session result = action.get_vms() self.assertEquals(result, 'vms_json') mock_session.get.assert_called_with("https://server.tld/api/vms?" "expand=resources&attributes=id," "snapshots,name") mock_response.raise_for_status.assert_called_with() def test_compile_regexes(self): action = self.get_action_instance({}) regex_list = [".*", "^#DONTDELETE$"] result = action.compile_regexes(regex_list) self.assertIsInstance(result, list) self.assertEquals(len(result), len(regex_list)) for i in range(len(result)): self.assertEquals(result[i].pattern, regex_list[i]) def test_matches_pattern_list_match(self): action = self.get_action_instance({}) regex_list = ["abc123", "^.*#DONTDELETE$"] pattern_list = action.compile_regexes(regex_list) name = "xxx #DONTDELETE" result = action.matches_pattern_list(name, pattern_list) self.assertTrue(result) def test_matches_pattern_list_no_match(self): action = self.get_action_instance({}) regex_list = ["abc123", "^#DONTDELETE$"] pattern_list = action.compile_regexes(regex_list) name = "xxx" result = action.matches_pattern_list(name, pattern_list) self.assertFalse(result) # Test run when there are no old snapshots on any VMs @mock.patch("lib.remove_old_snapshots.RemoveOldSnapshots.create_session") @mock.patch("lib.remove_old_snapshots.RemoveOldSnapshots.current_time_utc") def test_run_no_old_snapshots(self, mock_current_time_utc, mock_create_session): action = self.get_action_instance({}) # expected kwargs_dict = {'server': 'test.dev.encore.tech', 'username': 'user', 'password': '<PASSWORD>', 'max_age_days': 3, 'name_ignore_regexes': ['^.*#DONTDELETE$']} test_get = {'resources': [{'name': 'test', 'snapshots': [{'created_on': '2018-01-04T00:00:00Z', 'vm_or_template_id': '1000000000001', 'id': '1000000000002', 'name': 'test1'}, {'created_on': '2018-01-05T00:00:00Z', 'vm_or_template_id': '1000000000003', 'id': '1000000000004', 'name': 'test2'}]}]} # mocks # One of the dates in "expected_results" is 4 days older than the following date mock_current_time_utc.return_value = datetime.datetime(2018, 1, 5, 0, 0) mock_session = mock.MagicMock() mock_create_session.return_value = mock_session mock_response = self._mock_response(json_data=test_get) mock_session.get.return_value = mock_response # execute result_value = action.run(**kwargs_dict) expected_results = (True, {'deleted_snapshots': [], 'ignored_snapshots': []}) # asserts mock_session.get.assert_called_with("https://test.dev.encore.tech/api/" "vms?expand=resources&attributes=id,snapshots,name") self.assertTrue(mock_response.raise_for_status.called) self.assertEqual(result_value, expected_results) # Test run when there are old snapshots on a VM @mock.patch("lib.remove_old_snapshots.RemoveOldSnapshots.create_session") @mock.patch("lib.remove_old_snapshots.RemoveOldSnapshots.current_time_utc") def test_run_old_snapshots(self, mock_current_time_utc, mock_create_session): action = self.get_action_instance({}) # expected kwargs_dict = {'server': 'test.dev.encore.tech', 'username': 'user', 'password': '<PASSWORD>', 'max_age_days': 3, 'name_ignore_regexes': ['^.*#DONTDELETE$']} test_get = {'resources': [{'name': 'test', 'snapshots': [{'created_on': '2018-01-01T00:00:00Z', 'vm_or_template_id': '1000000000001', 'id': '1000000000002', 'name': 'test1'}, {'created_on': '2018-01-05T00:00:00Z', 'vm_or_template_id': '1000000000003', 'id': '1000000000004', 'name': 'test2'}, {'created_on': '2018-01-01T00:00:00Z', 'vm_or_template_id': '1000000000005', 'id': '1000000000005', 'name': 'abc #DONTDELETE'}]}]} expected_results = (True, {'deleted_snapshots': ['test: test1'], 'ignored_snapshots': ['test: abc #DONTDELETE']}) # mocks # One of the dates in "expected_results" is 4 days older than the following date mock_current_time_utc.return_value = datetime.datetime(2018, 1, 5, 0, 0) mock_session = mock.MagicMock() mock_create_session.return_value = mock_session mock_response = self._mock_response(json_data=test_get) mock_session.get.return_value = mock_response # execute result_value = action.run(**kwargs_dict) # asserts mock_session.get.assert_called_with("https://test.dev.encore.tech/api/" "vms?expand=resources&attributes=id,snapshots,name") mock_session.delete.assert_called_with("https://test.dev.encore.tech/api/vms/" "1000000000001/snapshots/1000000000002") self.assertTrue(mock_response.raise_for_status.called) self.assertEqual(result_value, expected_results)
StarcoderdataPython
3282725
# Finds the root of an equation in the range [a, b] by using the Secant Method. import math def equation(x): return math.cos(x) - x #Original equation. def iterate(p1, p0, i): p = p1 - ((equation(p1) * (p1 - p0)) / (equation(p1) - equation(p0))) print("\n(p" + str(i) + ", f(p" + str(i) + ")) = " + str((p, equation(p)))) if(equation(p) != 0): iterate(p, p1, i + 1) def main(): p0 = float(input("p0 = ")) # p0 = math.radians(int(input("p0 = "))) # p1 = int(input("p1 = ")) p1 = math.radians(float(input("p1 = "))) print("\n(p0, f(p0)) = " + str((p0, equation(p0)))) print("\n(p1, f(p1)) = " + str((p1, equation(p1)))) iterate(p1, p0, 2) if __name__ == "__main__": main()
StarcoderdataPython
1795246
""" K-Means """ import logging as log import numpy as np import random log.basicConfig(format="%(message)s", level=log.INFO) def load_data(file_path): """加载数据 源数据格式为多行,每行为两个浮点数,分别表示 (x,y) """ data = [] with open(file_path, 'r', encoding='utf-8') as fr: for line in fr.read().splitlines(): line_float = list(map(float, line.split('\t'))) data.append(line_float) data = np.array(data) return data def score_euclidean(a, b): """计算两个点之间的欧式距离""" s = np.sqrt(np.sum(np.power(a - b, 2))) return s def rand_center(data, k): """随机采样 k 个样本作为聚类中心""" centers = np.array(random.sample(list(data), k)) return centers def k_means(data, k, max_iter=100, score=score_euclidean, e=1e-6): """ K-Means 算法 一般 K-Mean 算法的终止条件有如下几个: 1. 所有样本的类别不再改变 2. 达到最大迭代次数 3. 精度达到要求(?) 返回聚类中心及聚类结果 """ # 样本数 n = len(data) # 保存结果 # 每个结果为一个二元组 [label, score] 分别保存每个样本所在的簇及距离质心的距离 ret = np.array([[-1, np.inf]] * n) # 选取聚类中心 centers = rand_center(data, k) changed = True # 标记样本类别是否改变 n_iter = 0 # 记录迭代次数 while changed and n_iter < max_iter: changed = False n_iter += 1 for i in range(n): # 对每个数据 i_score = np.inf i_label = -1 for j in range(k): # 与每个质心比较 s_ij = score(data[i], centers[j]) if s_ij < i_score: i_score = s_ij i_label = j if ret[i, 0] != i_label: # 样本的类别发生了改变 changed = True ret[i, :] = i_label, i_score # 更新聚类中心 log.info(centers) for i in range(k): data_i = data[ret[:, 0] == i] # 标签为 i 的样本 centers[i, :] = np.mean(data_i, axis=0) # 按类别过滤样本 log.info(n_iter) # 迭代次数 return centers, ret def _test(): """""" file_path = r"./data.txt" data = load_data(file_path) print(data) print(np.shape(data)[1]) s = score_euclidean(data[0], data[1]) print(s) centers = rand_center(data, 3) print(centers) if __name__ == '__main__': """""" # _test() file_path = "./data.txt" data = load_data(file_path) centers, ret = k_means(data, 3) # print(ret)
StarcoderdataPython
1771281
from setuptools import setup setup( name='PyMoe', version='1.0.7', packages=['Pymoe', 'Pymoe.Anilist', 'Pymoe.Kitsu', 'Pymoe.VNDB', 'Pymoe.Bakatsuki'], url='https://github.com/ccubed/PyMoe', license='MIT', author='<NAME>', author_email='<EMAIL>', description="PyMoe is the only lib you'll ever need if you need the animu or mangu on the Python Platform. It supports AniList, VNDB, Kitsu and AniDB.", classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.5', 'Topic :: Software Development :: Libraries' ], keywords="Anime Manga LN VN VNDB Anilist Kitsu AniDB MyAnimeList MAL Bakatsuki", install_requires=['requests', 'bs4', 'ujson'] )
StarcoderdataPython
3229431
<gh_stars>0 from django.test import TestCase, Client from chat.views import * from socket import socket import os import json class UserTest(TestCase): def setUp(self) -> None: self.client = Client() self.email = '<EMAIL>' self.user_id = '' self.login_data = '' self.socket = ('127.0.0.1', int(os.environ.get('TCP_SERVER_PORT'))) def login(self, use_id=False, password='<PASSWORD>'): login_data = { "identity": self.email, "password": password } if use_id: login_data['identity'] = str(self.user_id) response = self.client.post('/users/auth', login_data, content_type='application/json') self.assertEqual(len(response.json()['data']['token']), 64) self.login_data = response.json()['data'] def register_and_login(self): """测试注册之后登录""" register_data = { "email": self.email, "nickname": "楷禅", "password": "<PASSWORD>", "code": '' } # 获取验证码 response = self.client.get('/code', {'email': self.email, 'type': 1}) self.assertEqual(response.json().get('mes'), '') register_data['code'] = VerCode.objects.get(email=self.email).content response = self.client.post('/users/', register_data, content_type='application/json') self.user_id = response.json().get('data') # 注册成功之后用户id应该在10000~99999之间 self.assertIn(self.user_id, range(10000, 100000)) # 测试邮箱登录 self.login() # 测试账号登录 self.login(use_id=True) def get_userinfo(self): """""" response = self.client.get(f'/users/{self.user_id}') self.assertEqual(response.json()['data']['email'], self.email) def reset_password(self): data = { 'email': self.email, 'password': '<PASSWORD>', 'code': '' } # 获取验证码 response = self.client.get('/code', {'email': self.email, 'type': 2}) self.assertEqual(response.json().get('mes'), '') data['code'] = VerCode.objects.get(email=self.email).content response = self.client.put('/users/password', data, content_type='application/json') self.assertEqual(response.json().get('mes'), '') def get_tcp_connection(self): client = socket() client.connect(self.socket) client.sendall(json.dumps({ 'Authorization': self.login_data.get('token') }).encode()) data = json.loads(client.recv(4096)) self.assertEqual(data.get('mes'), '') def test_user(self): self.register_and_login() self.get_userinfo() self.reset_password()
StarcoderdataPython
190987
import bpy import sys import addon_utils from pathlib import Path def get_python_path(): if bpy.app.version < (2,9,0): python_path = bpy.app.binary_path_python else: python_path = sys.executable return Path(python_path) python_path = get_python_path() blender_path = Path(bpy.app.binary_path) blender_directory = blender_path.parent use_own_python = blender_directory in python_path.parents version = bpy.app.version scripts_folder = blender_path.parent / f"{version[0]}.{version[1]}" / "scripts" user_addon_directory = Path(bpy.utils.user_resource('SCRIPTS', "addons")) addon_directories = tuple(map(Path, addon_utils.paths()))
StarcoderdataPython
87639
<reponame>mcvine/mcvine #!/usr/bin/env python # # import unittest import journal svq_f = lambda qx,qy,qz: qx*qx def createSvq(): import histogram as H qxaxis = H.axis( 'Qx', boundaries = H.arange(-5, 5.0, 0.1) ) qyaxis = H.axis( 'Qy', boundaries = H.arange(-5, 6.0, 0.1) ) qzaxis = H.axis( 'Qz', boundaries = H.arange(-5, 7.0, 0.1) ) svq = H.histogram( 'svq', [ qxaxis, qyaxis, qzaxis ], fromfunction = svq_f ) return svq import mcni, mccomposite, mccomponents.sample as ms, mccomponents.homogeneous_scatterer as mh class SvQkernel_TestCase(unittest.TestCase): def test1(self): 'SvQkernel' svq = createSvq() gridsvq = ms.gridsvq( svq ) svqkernel = ms.svqkernel( 1., 1., SvQ=gridsvq, ) csvqkernel = mh.scattererEngine( svqkernel ) ev = mcni.neutron( r = (-5,0,0), v = (3000,0,0) ) self.assertAlmostEqual( csvqkernel.scattering_coefficient(ev), 1 ) self.assertAlmostEqual( csvqkernel.absorption_coefficient(ev), 2200./3000. ) csvqkernel.scatter(ev) print(dir(csvqkernel)) return pass # end of SvQkernel_TestCase if __name__ == "__main__": unittest.main() # End of file
StarcoderdataPython
1727292
<reponame>JiriVales/orienteering-tools<filename>python-scripts/vegetation/Create-cultivated-land-(height&RUIAN).py ##Create cultivated land (height&RUIAN)=name ##ruianparcelswithattributes=vector ##expressionforextractcorrespondingpolygonsfromruianbyattribute=string"druhpozemk" IN ('2') ##vegetationheightopenland=vector ##cultivatedland=output vector outputs_QGISSELECTBYEXPRESSION_1=processing.runalg('qgis:selectbyexpression', ruianparcelswithattributes,expressionforextractcorrespondingpolygonsfromruianbyattribute,0) outputs_QGISSAVESELECTEDFEATURES_1=processing.runalg('qgis:saveselectedfeatures', outputs_QGISSELECTBYEXPRESSION_1['RESULT'],None) outputs_QGISEXTRACTBYLOCATION_1=processing.runalg('qgis:extractbylocation', vegetationheightopenland,outputs_QGISSAVESELECTEDFEATURES_1['OUTPUT_LAYER'],['intersects'],1.0,cultivatedland)
StarcoderdataPython
4825753
import pyexcel as pe import xlrd import logging def process_excel(filename): if filename.endswith(".csv"): # add merged cells here please sheet = pe.get_sheet(file_name=filename) yield sheet, "name", () else: book = pe.get_book(file_name=filename) sheets = book.to_dict() booklrd = xlrd.open_workbook(filename) for name in sheets.keys(): sheet = book[name] fill_merged_cells(sheet, booklrd.sheet_by_name(name).merged_cells) yield sheet, name, booklrd.sheet_by_name(name).merged_cells # filling the empty cells which are located in the merged cells in reality but are read as empty by pyexcel def fill_merged_cells(sheet, merged_blocks): for block in merged_blocks: val = sheet[block[0], block[2]] for row in range(block[0], block[1]): for col in range(block[2], block[3]): try: sheet[row, col] = val except: # There is a difference in the way xlrd and pyexcel handle merged cells # Sometimes we end up accessing out of range cells logging.error("Tried to access out of range cell.") break
StarcoderdataPython
1683898
import os import sys import tempfile import contextlib import shutil import distutils import setuptools import setuptools.command.build_ext import cppimport.config from cppimport.filepaths import make_absolute if sys.version_info[0] == 2: import StringIO as io else: import io @contextlib.contextmanager def stdchannel_redirected(stdchannel): """ Redirects stdout or stderr to a StringIO object. As of python 3.4, there is a standard library contextmanager for this, but backwards compatibility! """ try: s = io.StringIO() old = getattr(sys, stdchannel) setattr(sys, stdchannel, s) yield s finally: setattr(sys, stdchannel, old) # Subclass setuptools Extension to add a parameter specifying where the shared # library should be placed after being compiled class ImportCppExt(setuptools.Extension): def __init__(self, libdest, *args, **kwargs): self.libdest = libdest setuptools.Extension.__init__(self, *args, **kwargs) # Subclass setuptools build_ext to put the compiled shared library in the # appropriate place in the source tree. class BuildImportCppExt(setuptools.command.build_ext.build_ext): def copy_extensions_to_source(self): for ext in self.extensions: fullname = self.get_ext_fullname(ext.name) filename = self.get_ext_filename(fullname) src_filename = os.path.join(self.build_lib, filename) dest_filename = os.path.join(ext.libdest, os.path.basename(filename)) distutils.file_util.copy_file( src_filename, dest_filename, verbose = self.verbose, dry_run = self.dry_run ) # Patch for parallel compilation with distutils # From: http://stackoverflow.com/questions/11013851/speeding-up-build-process-with-distutils def parallel_compile(self, sources, output_dir = None, macros = None, include_dirs = None, debug = 0, extra_preargs = None, extra_postargs = None, depends = None): # these lines are copied directly from distutils.ccompiler.CCompiler macros, objects, extra_postargs, pp_opts, build = self._setup_compile( output_dir, macros, include_dirs, sources, depends, extra_postargs ) cc_args = self._get_cc_args(pp_opts, debug, extra_preargs) # Determine the number of compilation threads. Unless there are special # circumstances, this is the number of cores on the machine N = 1 try: import multiprocessing import multiprocessing.pool N = multiprocessing.cpu_count() except (ImportError, NotImplementedError): pass def _single_compile(obj): try: src, ext = build[obj] except KeyError: return # import time # start = time.time() self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts) # end = time.time() # print("took " + str(end - start) + " to compile " + str(obj)) # imap is evaluated on demand, converting to list() forces execution list(multiprocessing.pool.ThreadPool(N).imap(_single_compile,objects)) return objects def build_module(module_data): build_path = tempfile.mkdtemp() full_module_name = module_data['fullname'] filepath = module_data['filepath'] cfg = module_data['cfg'] module_data['abs_include_dirs'] = [ make_absolute(module_data['filedirname'], d) for d in cfg.get('include_dirs', []) ] + [os.path.dirname(filepath)] module_data['abs_library_dirs'] = [ make_absolute(module_data['filedirname'], d) for d in cfg.get('library_dirs', []) ] module_data['dependency_dirs'] = ( module_data['abs_include_dirs'] + [module_data['filedirname']] ) module_data['extra_source_filepaths'] = [ make_absolute(module_data['filedirname'], s) for s in cfg.get('sources', []) ] ext = ImportCppExt( os.path.dirname(filepath), full_module_name, language = 'c++', sources = ( module_data['extra_source_filepaths'] + [module_data['rendered_src_filepath']] ), include_dirs = module_data['abs_include_dirs'], extra_compile_args = cfg.get('extra_compile_args', []), extra_link_args = cfg.get('extra_link_args', []), library_dirs = module_data['abs_library_dirs'], libraries = cfg.get('libraries', []) ) args = ['build_ext', '--inplace'] args.append('--build-temp=' + build_path) args.append('--build-lib=' + build_path) if cppimport.config.quiet: args.append('-q') else: args.append('-v') setuptools_args = dict( name = full_module_name, ext_modules = [ext], script_args = args, cmdclass = { 'build_ext': BuildImportCppExt } ) # Monkey patch in the parallel compiler if requested. py33orgreater = sys.version_info[0] >= 3 and sys.version_info[1] >= 3 parallelize = cfg.get('parallel') and py33orgreater if parallelize: old_compile = distutils.ccompiler.CCompiler.compile distutils.ccompiler.CCompiler.compile = parallel_compile if cppimport.config.quiet: with stdchannel_redirected("stdout"): with stdchannel_redirected("stderr"): setuptools.setup(**setuptools_args) else: setuptools.setup(**setuptools_args) # Remove the parallel compiler to not corrupt the outside environment. if parallelize: distutils.ccompiler.CCompiler.compile = old_compile shutil.rmtree(build_path)
StarcoderdataPython
199918
<filename>tests/generator/test_legacy_array.py from responses import RequestsMock from tests import loader def test_formula_prefix(responses: RequestsMock, tmpdir): responses.add( responses.GET, url="http://test/", json={ "swagger": "2.0", "paths": { "/test": { "get": { "responses": {200: {"description": "successful operation"}}, } } }, }, match_querystring=True, ) generated_functions = loader.load( tmpdir, { "legacy": { "open_api": {"definition": "http://test/"}, "formulas": {"legacy_array": {"lock_excel": True}}, } }, ) responses.add( responses.GET, url="http://test/test", json={}, match_querystring=True, ) assert generated_functions.legacy_legacy_get_test() == [[""]]
StarcoderdataPython
3367127
# Copyright (c) 2020. Author: <NAME>, <EMAIL> # Ref: https://github.com/yanx27/Pointnet_Pointnet2_pytorch/blob/master/data_utils/ShapeNetDataLoader.py import os, json, torch, warnings, numpy as np from PC_Augmentation import pc_normalize from torch.utils.data import Dataset warnings.filterwarnings('ignore') class PartNormalDataset(Dataset): """ Data Source: https://shapenet.cs.stanford.edu/media/shapenetcore_partanno_segmentation_benchmark_v0_normal.zip """ def __init__(self, root, num_point=2048, split='train', use_normal=False): self.catfile = os.path.join(root, 'synsetoffset2category.txt') self.use_normal = use_normal self.num_point = num_point self.cache_size = 20000 self.datapath = [] self.root = root self.cache = {} self.meta = {} self.cat = {} with open(self.catfile, 'r') as f: for line in f: ls = line.strip().split() self.cat[ls[0]] = ls[1] # self.cat -> {'class name': syn_id, ...} # self.meta -> {'class name': file list, ...} # self.classes -> {'class name': class id, ...} # self.datapath -> [('class name', single file) , ...] self.classes = dict(zip(self.cat, range(len(self.cat)))) train_ids = self.read_fns(os.path.join(self.root, 'train_test_split', 'shuffled_train_file_list.json')) test_ids = self.read_fns(os.path.join(self.root, 'train_test_split', 'shuffled_test_file_list.json')) val_ids = self.read_fns(os.path.join(self.root, 'train_test_split', 'shuffled_val_file_list.json')) for item in self.cat: dir_point = os.path.join(self.root, self.cat[item]) fns = sorted(os.listdir(dir_point)) self.meta[item] = [] if split is 'trainval': fns = [fn for fn in fns if ((fn[0:-4] in train_ids) or (fn[0:-4] in val_ids))] elif split is 'test': fns = [fn for fn in fns if fn[0:-4] in test_ids] else: print('Unknown split: %s [Option: ]. Exiting...' % split) exit(-1) for fn in fns: token = (os.path.splitext(os.path.basename(fn))[0]) self.meta[item].append(os.path.join(dir_point, token + '.txt')) for item in self.cat: for fn in self.meta[item]: self.datapath.append((item, fn)) self.seg_classes = {'Earphone': [16, 17, 18], 'Motorbike': [30, 31, 32, 33, 34, 35], 'Rocket': [41, 42, 43], 'Car': [8, 9, 10, 11], 'Laptop': [28, 29], 'Cap': [6, 7], 'Skateboard': [44, 45, 46], 'Lamp': [24, 25, 26, 27], 'Mug': [36, 37], 'Guitar': [19, 20, 21], 'Bag': [4, 5], 'Knife': [22, 23], 'Table': [47, 48, 49], 'Airplane': [0, 1, 2, 3], 'Pistol': [38, 39, 40], 'Chair': [12, 13, 14, 15]} @staticmethod def read_fns(path): with open(path, 'r') as file: ids = set([str(d.split('/')[2]) for d in json.load(file)]) return ids def __getitem__(self, index): if index in self.cache: pts, cls, seg = self.cache[index] else: fn = self.datapath[index] cat, pt = fn[0], np.loadtxt(fn[1]).astype(np.float32) cls = np.array([self.classes[cat]]).astype(np.int32) pts = pt[:, :6] if self.use_normal else pt[:, :3] seg = pt[:, -1].astype(np.int32) if len(self.cache) < self.cache_size: self.cache[index] = (pts, cls, seg) choice = np.random.choice(len(seg), self.num_point, replace=True) pts[:, 0:3] = pc_normalize(pts[:, 0:3]) pts, seg = pts[choice, :], seg[choice] return pts, cls, seg def __len__(self): return len(self.datapath) if __name__ == "__main__": root = '../data/shapenetcore_partanno_segmentation_benchmark_v0_normal/' TRAIN_DATASET = PartNormalDataset(root=root, num_point=2048, split='trainval', use_normal=False) trainDataLoader = torch.utils.data.DataLoader(TRAIN_DATASET, batch_size=24, shuffle=True, num_workers=4) for i, data in enumerate(trainDataLoader): points, label, target = data
StarcoderdataPython
4802690
import setuptools import pkg with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name=pkg.name, version=pkg.version, author=pkg.author, author_email=pkg.author_email, description=pkg.description, long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/bthornton191/adamspy", packages=setuptools.find_packages(exclude=['test', 'pkg']), package_data={'adamspy.adripy': ['templates/*'], 'adamspy.postprocess': ['aview_scripts/*']}, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: Microsoft :: Windows", ], install_requires = pkg.install_requires )
StarcoderdataPython
3374839
<reponame>MarcSkovMadsen/panel-presentation<gh_stars>10-100 import panel as pn import param from .base import ComponentBase import numpy as np class Trend(ComponentBase): component = param.Parameter(pn.indicators.Trend) reference = param.String("https://panel.holoviz.org/reference/indicators/Trend.html#indicators-gallery-trend") imports = """\ import panel as pn import numpy as np pn.extension(sizing_mode="stretch_width") """ def example(self, theme="default", accent_base_color="blue"): def get_widget(theme="default", accent_base_color="blue"): data = {'x': np.arange(50), 'y': np.random.randn(50).cumsum()} trend = pn.indicators.Trend( title='Price', data=data, plot_color=accent_base_color, sizing_mode="stretch_width", height=500 ) return "Hello" # trend = get_widget(theme=theme, accent_base_color=accent_base_color) # component = pn.Column( # trend, # sizing_mode="stretch_both", # ) component=get_widget(theme=theme, accent_base_color=accent_base_color) return component
StarcoderdataPython
1763624
import re from pydantic import BaseModel, validator def validate_image(image: str) -> str: if re.fullmatch(r"https?://[\w!?/+\-_~;.,*&@#$%()'[\]]+", image) is None: raise ValueError('malformed image url: %s' % image) return image def validate_name(name: str) -> str: if len(name) == 0: raise ValueError('name is required') return name def validate_min(min_v: int, values) -> int: if min_v > values.get('max'): raise ValueError('max must be larger than min') return min_v def validate_nat(v: int) -> int: if v < 0: raise ValueError('must be larger than 0') return v class ContainerBase(BaseModel): id: str image: str name: str max: int min: int _validate_image = validator('image', allow_reuse=True)(validate_image) _validate_name = validator('name', allow_reuse=True)(validate_name) _validate_max = validator('max', allow_reuse=True)(validate_nat) _validate_min = validator('min', allow_reuse=True)(validate_min) class Container(ContainerBase): class Config: orm_mode = True
StarcoderdataPython
106523
<filename>rtamt/exception/stl/exception.py class STLException(Exception): pass class STLParseException(Exception): pass class STLOfflineException(Exception): pass
StarcoderdataPython
3373807
<filename>ilrdc/util/__init__.py from .url_downloader import download_url from .sound_url_modifier import modify_sound_url
StarcoderdataPython
104029
"""Preprocessing of raw LAU2 data to bring it into normalised form.""" import geopandas as gpd import pandas as pd from renewablepotentialslib.shape_utils import to_multi_polygon OUTPUT_DRIVER = "GeoJSON" KOSOVO_MUNICIPALITIES = [f"RS{x:02d}" for x in range(1, 38)] def merge_lau(path_to_shapes, path_to_attributes, path_to_output): """Merge LAU shapes with attributes.""" shapes = gpd.read_file(path_to_shapes) shapes.geometry = shapes.geometry.map(to_multi_polygon) attributes = gpd.read_file(path_to_attributes) attributes = pd.DataFrame(attributes) # to be able to remove the geo information del attributes["geometry"] all_shapes = shapes.merge(attributes, on="COMM_ID", how="left") all_shapes_no_kosovo = _remove_kosovo(all_shapes) all_shapes_no_kosovo.to_file(path_to_output, driver=OUTPUT_DRIVER) def _remove_kosovo(shapes): """Identify and remove municipalities in Kosovo. Those municipalities must be removed as we do not have load data and pycountry cannot handle them at the moment (as of 2018, Kosovo does not have a standardised country code). """ return shapes.set_index("COMM_ID").drop(KOSOVO_MUNICIPALITIES).reset_index() if __name__ == "__main__": merge_lau( path_to_shapes=snakemake.input.shapes, path_to_attributes=snakemake.input.attributes, path_to_output=snakemake.output[0] )
StarcoderdataPython
1717619
""" Tests for functions in ensemble_tools.py. Authors: <NAME> & <NAME> Note that functions that start with an underscore (_) are designed for local use only by the primary functions within ensemble_tools.py. Therefore, testing of those local scripts does not include checking for irrational inputs that would cause meaningless results and/or an exception since such inputs are checked for earlier in the primary functions. """ import numpy as np import pytest import sys from ensemble.ensemble_tools import ( _gumbel_cdf, _probability_from_members, probability_from_members, _prob_from_outside_rank_gumbel, _prob_from_outside_rank_exp, _deterministic_event_prob, probability_from_members, prob_between_values, ensemble_verification_rank, _validate_arg_type ) # Define ensemble datasets to test with MEMBERS_ALPHA = np.array([[0.0, 0.0, 0.0, 0.0, 0.1, 0.2, 0.5, 0.5, 0.5, 1.0]]) MEMBERS_BRAVO = np.array([[-1.0, -1.0, 0.0, 0.0, 0.1, 0.2, 0.5, 0.5, 1.0, 1.0]]) MEMBERS_CHARLIE = np.array([[7, 7, 7, 7, 7, 7, 7, 7, 7, 7]]) # Set the roundoff decimals for testing precision ROUNDOFF = 5 # ------------------------------------------------------------------------------ # _gumbel_cdf # ------------------------------------------------------------------------------ @pytest.mark.parametrize("members, x, expected", [(MEMBERS_ALPHA[0], 1.1, 0.97949), (MEMBERS_ALPHA[0], 10.0, 1.0), (MEMBERS_ALPHA[0], -10.0, 0.0), ]) def test_gumbel_cdf(members, x, expected): print("I AM TESTING _gumbel_cdf") assert np.round(_gumbel_cdf(members, x), ROUNDOFF) == expected # ------------------------------------------------------------------------------ # _prob_from_outside_rank_gumbel # ------------------------------------------------------------------------------ @pytest.mark.parametrize("threshold, members, threshold_position, expected", [(1000, MEMBERS_ALPHA, 'above_all_members', 0.0), (-1000, MEMBERS_ALPHA, 'below_all_members', 1), (1.1, MEMBERS_ALPHA, 'mouse_burgers', 1e32), (1.1, MEMBERS_ALPHA, 'above_all_members', 'between_0_1')]) def test_prob_from_outside_rank_gumbel( threshold, members, threshold_position, expected ): prob = _prob_from_outside_rank_gumbel(threshold, members, threshold_position) if isinstance(expected, float) or isinstance(expected, int) : assert(np.round(prob, ROUNDOFF) == expected),\ (f"prob={prob}, expected={expected}") else : assert(prob < 1. and prob > 0.),\ ("Expected prob between zero and one but got {prob}") # ------------------------------------------------------------------------------ # _prob_from_outside_rank_exp # ------------------------------------------------------------------------------ # this function estimates Prob(V >= thresh | ensemble_members & exp left tail) # where V is the verifying value, thresh is a user specified threshold for some # event, and ensemble_members are predictions from e.g. crps-net. @pytest.mark.parametrize("threshold, members", [(0.5, np.array([1,2,3,4])),]) def test_prob_from_outside_rank_exp(threshold, members) : n_bins = len(members) + 1 n_prob_per_bin = 1 / n_bins assert(_prob_from_outside_rank_exp(np.min(members), members) == (1-n_prob_per_bin)),\ (f"when thresh is tied with lower member, there is a full bin of probability below") assert(_prob_from_outside_rank_exp(0, members) == 1) (f"Can't be negative, so proba greater or above 0 always 1 regardless of members") prob = _prob_from_outside_rank_exp(threshold, members) assert(prob < 1 and prob > 0),\ ("probability of this tail must be between 0 and 1") # ------------------------------------------------------------------------------ # probability_from_members # ------------------------------------------------------------------------------ # Tests for ValueErrors @pytest.mark.parametrize("threshold, members, operator_str, presorted, positive_definite", [(-0.15, MEMBERS_ALPHA, 'greater', True, True), (0.1, MEMBERS_BRAVO, 'greater', True, True), (0.1, np.array([[1, 2, 3]]), 'greater', True, True), (0.1, MEMBERS_ALPHA, '<NAME>!', True, True), (0.1, np.array([[1, 2, 3, 4, 5, 6, np.NaN, 8, 9, 10]]), 'greater', True, True), ] ) def test1_probability_from_members(threshold, members, operator_str, presorted, positive_definite): with pytest.raises(ValueError): probability_from_members(threshold, members, operator_str, presorted, positive_definite) # Tests for TypeErrors @pytest.mark.parametrize("threshold, members, operator_str, presorted, positive_definite", [('string', MEMBERS_ALPHA, 'greater', True, True), (1, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'greater', True, True), (1, MEMBERS_ALPHA, True, True, True), (1, MEMBERS_ALPHA, 'greater', 'string', True), (1, MEMBERS_ALPHA, 'greater', True, 999), ] ) def test2_probability_from_members(threshold, members, operator_str, presorted, positive_definite): with pytest.raises(TypeError): probability_from_members(threshold, members, operator_str, presorted, positive_definite) # ------------------------------------------------------------------------------ # _probability_from_members # ------------------------------------------------------------------------------ MEMBER_POSITIVE_DEF = np.array([0, 1, 2, 3, 4, 5]) # Tests for threshold between members @pytest.mark.parametrize("threshold, members, operator_str, presorted, positive_definite, expected", [(0.15, MEMBERS_ALPHA, 'greater', True, True, 0.5), (0.15, MEMBERS_ALPHA, 'greater', False, False, 0.5), (0.15, MEMBERS_ALPHA, 'greater_equal', True, True, 0.5), (0.15, MEMBERS_ALPHA, 'greater_equal', True, False, 0.5), (0.15, MEMBERS_ALPHA, 'less', True, True, 0.5), (0.15, MEMBERS_ALPHA, 'less', True, False, 0.5), (0.15, MEMBERS_ALPHA, 'less_equal', True, True, 0.5), (0.15, MEMBERS_ALPHA, 'less_equal', False, False, 0.5), (-100, MEMBER_POSITIVE_DEF, 'less', True, True, 0.0), (-100, MEMBER_POSITIVE_DEF, 'less', False, True, 0.0), ] ) def test1__probability_from_members(threshold, members, operator_str, presorted, positive_definite, expected): assert _probability_from_members(threshold, members, operator_str, presorted, positive_definite)[0][0] == expected # Tests for threshold outside of members @pytest.mark.parametrize("threshold, members, operator_str, presorted, positive_definite, expected", [(1.1, MEMBERS_ALPHA, 'greater', True, True, 0.06111), (7, MEMBERS_CHARLIE, 'greater', True, True, 0.0), (8, MEMBERS_CHARLIE, 'greater', True, True, 0.0), (8, MEMBERS_CHARLIE, 'greater_equal', True, True, 0.0), (7, MEMBERS_CHARLIE, 'greater_equal', True, True, 1.0) ] ) def test1__probability_from_members(threshold, members, operator_str, presorted, positive_definite, expected): assert np.round(_probability_from_members(threshold, members, operator_str, presorted, positive_definite)[0][0], ROUNDOFF) == expected # Tests for handling zeros @pytest.mark.parametrize("threshold, members, operator_str, presorted, positive_definite, expected", [(0.0, MEMBERS_ALPHA, 'greater', True, True, np.round(7./11, ROUNDOFF)), (0.0, MEMBERS_ALPHA, 'greater', True, False, np.round(7./11, ROUNDOFF)), (0.0, MEMBERS_ALPHA, 'greater_equal', True, False, np.round(10./11, ROUNDOFF)), (0.0, MEMBERS_ALPHA, 'greater_equal', True, True, 1.0) ] ) def test2__probability_from_members(threshold, members, operator_str, presorted, positive_definite, expected): assert np.round(_probability_from_members(threshold, members, operator_str, presorted, positive_definite)[0][0], ROUNDOFF) == expected # Tests for handling tie between threshold and members @pytest.mark.parametrize("threshold, members, operator_str, presorted, positive_definite, expected", [(0.5, MEMBERS_ALPHA, 'greater', True, True, np.round(2./11, ROUNDOFF)), (0.5, MEMBERS_ALPHA, 'greater', False, False, np.round(2./11, ROUNDOFF)), (0.5, MEMBERS_ALPHA, 'greater_equal', True, True, np.round(4./11, ROUNDOFF)), (0.5, MEMBERS_ALPHA, 'greater_equal', False, False, np.round(4./11, ROUNDOFF)), (0.5, MEMBERS_ALPHA, 'less', True, True, np.round(7./11, ROUNDOFF)), (0.5, MEMBERS_ALPHA, 'less_equal', True, True, np.round(9./11, ROUNDOFF)), (-1.0, MEMBERS_BRAVO, 'less', True, False, np.round(1./11, ROUNDOFF)), (-1.0, MEMBERS_BRAVO, 'less_equal', True, False, np.round(2./11, ROUNDOFF)), ] ) def test3__probability_from_members(threshold, members, operator_str, presorted, positive_definite, expected): assert np.round(_probability_from_members(threshold, members, operator_str, presorted, positive_definite)[0][0], ROUNDOFF) == expected # ------------------------------------------------------------------------------ # prob_between_values # ------------------------------------------------------------------------------ MEMBERS_DELTA = np.array([[0.0, 0.0, 0.0, 0.0, 0.1, 0.2, 0.5, 0.5, 0.5, 1.]]) # TODO: Break this into logical separations @pytest.mark.parametrize("members, lower, upper, bracket, positive_definite, expected", [(MEMBERS_DELTA, 0., 0.1, "()", True, np.round(1/11, ROUNDOFF)), (MEMBERS_DELTA, 0., 0.1, "[)", True, np.round(5/11, ROUNDOFF)), (MEMBERS_DELTA, 0., 0.1, "[]", True, np.round(5/11, ROUNDOFF)), (MEMBERS_DELTA, 0., 0.1, "(]", True, np.round(1/11, ROUNDOFF)), (MEMBERS_DELTA, 0., 0.5, "()", True, np.round(3/11, ROUNDOFF)), (MEMBERS_DELTA, 0., 1., "()", True, np.round(6/11, ROUNDOFF)), (MEMBERS_DELTA, 0., 1., "[]", True, np.round(10/11, ROUNDOFF)), (MEMBERS_DELTA, 0., 1., "[]", False, np.round(9/11, ROUNDOFF)), (MEMBERS_DELTA, 10., 11., "[]", False, np.round(0/11, ROUNDOFF)), (MEMBERS_CHARLIE, 0., 10., "[]", False, np.round(11/11, ROUNDOFF)), (MEMBERS_CHARLIE, 6.99, 7.01, "[]", False, np.round(11/11, ROUNDOFF)), (MEMBERS_CHARLIE, 6.99, 7.01, "()", False, np.round(11/11, ROUNDOFF)), (MEMBERS_CHARLIE, 7, 7.0001, "()", False, np.round(0/11, ROUNDOFF)), (MEMBERS_CHARLIE, 7, 7.0001, "[)", False, np.round(11/11, ROUNDOFF)), (MEMBERS_CHARLIE, 7.1, 7.2, "[]", False, np.round(0/11, ROUNDOFF)), (MEMBERS_CHARLIE, 6.9, 6.91, "[]", False, np.round(0/11, ROUNDOFF)), ]) def test1_prob_between_values(members, lower, upper, bracket, positive_definite, expected) : assert np.round(prob_between_values(members, lower, upper, bracket, positive_definite)[0][0], ROUNDOFF) == expected # Validate the parameters # ------------------------------------------------------------------------------ # ensemble_verification_rank # ------------------------------------------------------------------------------ N = int(1e6) MEMBERS_ZERO = np.zeros((N, 5)) V_ = np.zeros(shape=(N, 1)) @pytest.mark.parametrize("v_, M, expected", [(V_, MEMBERS_ZERO, np.array([0, 1, 2, 3, 4, 5])), ] ) def test1_ensemble_verification_rank(v_, M, expected) : ranks = ensemble_verification_rank(v_, M) val, count = np.unique(ranks, return_counts=True) prob_per_bin = 1 / (M.shape[1] + 1) proportion = count / M.shape[0] # TODO: assert counts roughly equal to expected value assert (val == expected).any() #and np.testing.assert_almost_equal(proportion[0], prob_per_bin, decimal=7) # ------------------------------------------------------------------------------ # ensemble_verification_rank # ------------------------------------------------------------------------------ # 1) correct int type # 2) give a str when expecting an int, catch TypeError # 3) give a list when expecting a str, catch TypeError # 4) give a dict when expecting a dict @pytest.mark.parametrize("parameter_name, parameter, expected_type, raises", [("horse_face", 1, int, None), ("horse_face", "moose", int, TypeError), ("wild horses", ["rat"], str, TypeError), ("dog gunna hunt", {"cute":"dog"}, dict, None)]) def test__validate_arg_type(parameter_name, parameter, expected_type, raises) : """Test to make sure the function fails when expected.""" if raises is not None : # We expect this to raise an error with pytest.raises(raises) : _validate_arg_type(parameter_name, parameter, expected_type) else : _validate_arg_type(parameter_name, parameter, expected_type) # ------------------------------------------------------------------------------ # _deterministic_event_prob # ------------------------------------------------------------------------------ @pytest.mark.parametrize("forecast, thresh, operator_str, expected", [(1, 1.1, "less", 0), (1, 0.9, "less", 1), (1, 1, "less", 1), (1, 1, "less_equal", 1), (1, 0, "less_equal", 1), (5, 10, "less_equal", 0), (5, 10, "not_a_valid_operator", 1e64), ]) def test_deterministic_event_prob(forecast, thresh, operator_str, expected) : prob = _deterministic_event_prob(forecast, thresh, operator_str) assert(prob == expected),\ (f"prob={prob}, expected={expected}") # THESE NEED TESTS # _deterministic_event_prob # probability_from_members
StarcoderdataPython
3337077
"""Implementation of quicksort in Python.""" def quick_sort(iter): """Sort the iterable using the merge sort method.""" if not isinstance(iter, (list, tuple)): raise TypeError("Input only a list/tuple of integers") if len(iter) < 2: return iter if not all(isinstance(x, (int, float)) for x in iter): raise ValueError("Input only a list/tuple of integers") small = [] large = [] pivot = iter[0] for idx in range(len(iter)): if iter[idx] < pivot and not idx == 0: small.append(iter[idx]) elif iter[idx] >= pivot and not idx == 0: large.append(iter[idx]) small = quick_sort(small) large = quick_sort(large) small.append(pivot) small.extend(large) return small if __name__ == '__main__': # pragma: no cover from timeit import Timer random = Timer( 'quick_sort([randint(0, 1000) for x in range(100)][::-1])', "from __main__ import quick_sort; from random import randint" ) print(""" Quicksort is a divide and conquer algorithm. Quicksort first divides a large array into two smaller sub-arrays: the low elements and the high elements. Quicksort can then recursively sort the sub-arrays. """) print("Random input (100 numbers from 0-1000 sorted) over 1000 trials:") print(random.timeit(number=1000))
StarcoderdataPython
43966
# For SSH import Exscript # For Color Font from colorama import init as colorama_init from colorama import Fore colorama_init(autoreset=True) username = "user1" password = "<PASSWORD>" ip4 = "192.168.33.3" # SSHセッションの確立 session = Exscript.protocols.SSH2() session.connect(ip4) # ルータにログイン account = Exscript.Account(name=username, password=password) session.login(account) print("===== Step 1. run show command =====") session.execute("show configuration interfaces ge-0/0/1") print(Fore.YELLOW + session.response) print("===== Step 2. configure =====") session.execute("configure") config_txt = "set interfaces ge-0/0/1 disable" session.execute(config_txt) print(Fore.YELLOW + session.response) print("===== Step 3. commit check =====") session.execute("show | compare") print(Fore.YELLOW + session.response) session.execute("commit check") print(session.response) print("===== Step 4. commit =====") # ユーザにy or nを質問 print(Fore.YELLOW + "Do you commit? y/n") choice = input() if choice == "y": session.execute("commit") print(session.response) else: session.execute("rollback") print(session.response) session.execute("exit") print(session.response) print("===== Step 5. run show command(again) =====") session.execute("show configuration interfaces ge-0/0/1") print(Fore.YELLOW + session.response) session.send("exit") session.close()
StarcoderdataPython
1660834
from oem_format_minimize.main import MinimalFormat from oem_format_msgpack.main import MessagePackFormat class MessagePackMinimalFormat(MessagePackFormat, MinimalFormat): __key__ = 'minimize+msgpack' __extension__ = 'min.mpack'
StarcoderdataPython
3252016
'''Faça um programa que leia 6 numeros inteiros e mostre a soma apenas dos que forem pares se o valor for impar desconsidere-o''' valor = 0 contador = 0 for x in range(1, 6): x = int(input('Digite um numero inteiro: ')) if x % 2 == 0: valor += x contador += 1 print('Total de numeros pares digitado: {} '.format(contador)) print('O resultado da soma dos valores foi: {}'.format(valor))
StarcoderdataPython
45375
from yuuhpizzakebab import app, admin_required, login_required from .models import Pizza, Topping from flask import render_template, session, redirect, url_for, request, flash @app.route('/pizzas') def list_pizzas(): """Shows a list of pizzas.""" return render_template('pizza/pizzas.html', pizzas=Pizza.get_all(), selecting=request.args.get('selecting')) @app.route('/pizza/create', methods=['GET', 'POST']) @admin_required def create_pizza(): """Creates a new pizza. Creates a new pizza with POST and associated any selected toppings with it. Shows a form to fill with GET. """ if request.method == 'POST': name = request.form['pizza_name'] price = request.form['pizza_price'] image_url = request.form['pizza_image_url'] selected_toppings = request.form.getlist('toppings') p = Pizza(None, name, price, image_url, []) success = p.save() if not success: flash('Some fields need to be filled', 'alert-danger') return render_template('pizza/edit_pizza.html', pizza=pizza, available_toppings=Topping.get_all()) for t in selected_toppings: topping_id = int(t) p.add_topping(topping_id) return redirect(url_for('list_pizzas')) return render_template('pizza/edit_pizza.html', available_toppings=Topping.get_all()) @app.route('/pizza/edit/<int:pizza_id>', methods=['GET', 'POST']) @admin_required def edit_pizza(pizza_id): """Edits a pizza. arguments: pizza_id -- id of the pizza Saves the information with POST. Shows a form to edit the contents with GET. """ if request.method == 'POST': name = request.form['pizza_name'] price = request.form['pizza_price'] image_url = request.form['pizza_image_url'] selected_toppings = request.form.getlist('toppings') p = Pizza(pizza_id, name, price, image_url, []) success = p.save() if not success: flash('Some fields need to be filled', 'alert-danger') return render_template('pizza/edit_pizza.html', pizza=p, available_toppings=Topping.get_all()) p.remove_toppings() for t in selected_toppings: topping_id = int(t) p.add_topping(topping_id) return redirect(url_for('list_pizzas')) pizza = Pizza.get_by_id(pizza_id) if not pizza: return redirect(url_for('list_pizzas')) return render_template('pizza/edit_pizza.html', pizza=pizza, available_toppings=Topping.get_all()) @app.route('/pizza/delete/<int:pizza_id>') @admin_required def delete_pizza(pizza_id): """Deletes a pizza. arguments: pizza_id -- id of the pizza """ Pizza.delete_by_id(pizza_id) flash('Removed pizza', 'alert-success') return redirect(url_for('list_pizzas'))
StarcoderdataPython
3226985
<filename>wmdadict/migrations/0030_auto_20170917_2104.py # -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-09-17 11:04 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('wmdadict', '0029_auto_20170917_2049'), ] operations = [ migrations.RemoveField( model_name='bmdwfield', name='element_type_old', ), migrations.RemoveField( model_name='bmdwfield', name='required_old', ), migrations.RemoveField( model_name='bmdwfield', name='type_old', ), migrations.RemoveField( model_name='emdissemantics', name='required_old', ), migrations.AlterField( model_name='bmdwfield', name='dict_field', field=models.ForeignKey(default=999, on_delete=django.db.models.deletion.PROTECT, to='wmdadict.DictionaryField', verbose_name='WMDA Dictionary Field'), preserve_default=False, ), # migrations.AlterField( # model_name='bmdwfield', # name='element_type', # field=models.ForeignKey(default=999, on_delete=django.db.models.deletion.PROTECT, to='wmdadict.BmdwElementType'), # preserve_default=False, # ), # migrations.AlterField( # model_name='bmdwfield', # name='required', # field=models.ForeignKey(default=999, on_delete=django.db.models.deletion.PROTECT, to='wmdadict.RequiredFieldType'), # preserve_default=False, # ), # migrations.AlterField( # model_name='bmdwfield', # name='type', # field=models.ForeignKey(default=999, on_delete=django.db.models.deletion.PROTECT, to='wmdadict.BmdwFieldType'), # preserve_default=False, # ), migrations.AlterField( model_name='emdisfield', name='dict_field', field=models.ForeignKey(default=999, on_delete=django.db.models.deletion.PROTECT, to='wmdadict.DictionaryField', verbose_name='WMDA Dictionary Field'), preserve_default=False, ), migrations.AlterField( model_name='emdisfield', name='emdis_type', field=models.ForeignKey(default=999, on_delete=django.db.models.deletion.PROTECT, to='wmdadict.EmdisFieldType', verbose_name='field type'), preserve_default=False, ), migrations.AlterField( model_name='emdissemantics', name='emdis_field', field=models.ForeignKey(default=999, on_delete=django.db.models.deletion.PROTECT, to='wmdadict.EmdisField'), preserve_default=False, ), migrations.AlterField( model_name='emdissemantics', name='emdis_message', field=models.ForeignKey(default=999, on_delete=django.db.models.deletion.PROTECT, to='wmdadict.EmdisMessage'), preserve_default=False, ), migrations.AlterField( model_name='emdissemantics', name='required', field=models.ForeignKey(default=999, on_delete=django.db.models.deletion.PROTECT, to='wmdadict.RequiredFieldType'), preserve_default=False, ), migrations.AlterField( model_name='formfields', name='dict_field', field=models.ForeignKey(default=999, on_delete=django.db.models.deletion.PROTECT, to='wmdadict.DictionaryField', verbose_name='WMDA Dictionary Field'), preserve_default=False, ), migrations.AlterField( model_name='formfields', name='wmda_form', field=models.ForeignKey(default=999, on_delete=django.db.models.deletion.PROTECT, to='wmdadict.WmdaForm'), preserve_default=False, ), ]
StarcoderdataPython
3204805
<reponame>thunder-/paprika<gh_stars>0 from paprika.repositories.ChunkRepository import ChunkRepository from paprika.repositories.ProcessActionPropertyRepository import ProcessActionPropertyRepository from paprika.repositories.ProcessPropertyRepository import ProcessPropertyRepository from paprika.repositories.ProcessRepository import ProcessRepository from paprika.system.logger.Logger import Logger from paprika.actions.Actionable import Actionable class State(Actionable): def __init__(self): Actionable.__init__(self) def execute(self, connector, process_action): job_name = process_action['job_name'] logger = Logger(connector, self) chunk_repository = ChunkRepository(connector) process_repository = ProcessRepository(connector) process_property_repository = ProcessPropertyRepository(connector) process_action_property_repository = ProcessActionPropertyRepository(connector) # retrieve the chunk properties process = process_repository.find_by_id(process_action['pcs_id']) chunk_id = process_property_repository.get_property(process, 'chunk_id') message = process_property_repository.get_property(process, 'message') backtrace = process_property_repository.get_property(process, 'backtrace') chunk = chunk_repository.find_by_id(chunk_id) state = process_action_property_repository.get_property(process_action, 'state') chunk['state'] = state chunk['message'] = message chunk['backtrace'] = backtrace chunk_repository.state(chunk) logger.info(job_name, 'job_name: ' + job_name + " state: " + chunk['state'])
StarcoderdataPython
3389174
<reponame>tylerclair/py3canvas """ErrorReports API Tests for Version 1.0. This is a testing template for the generated ErrorReportsAPI Class. """ import unittest import requests import secrets from py3canvas.apis.error_reports import ErrorReportsAPI from py3canvas.apis.error_reports import Errorreport class TestErrorReportsAPI(unittest.TestCase): """Tests for the ErrorReportsAPI.""" def setUp(self): self.client = ErrorReportsAPI(secrets.instance_address, secrets.access_token) def test_create_error_report(self): """Integration test for the ErrorReportsAPI.create_error_report method.""" # This method utilises the POST request method and will make changes to the Canvas instance. This needs consideration. pass
StarcoderdataPython
58518
import numpy as np import matplotlib.pyplot as plt import random s0=4.96*10**8 mtop=5.04*10**8 oneday=24*60*60 oneyear=365 t=[i for i in range(1,oneyear*30)] bprice0=6.4669 bprice=bprice0 bnum0=1000000 b0=1.0*bnum0 cw0=0.065 cw1=0.075 cw2=0.08 cw3=0.1 realmine=0 p0list=[] b0list=[] s0list=[] p1list=[] b1list=[] s1list=[] p2list=[] b2list=[] s2list=[] p3list=[] b3list=[] s3list=[] b=b0 p0=b0/(cw0*s0) percentforbancor=0.08 dotpersec=2 s=1.0*s0 newprice=p=p0 sp=s0*p0 allmine=0 for i in t: l=i/(365*4+1) mineperday=(1.0*dotpersec/(2**l))*oneday if allmine+mineperday>mtop: realmine=mtop-allmine else: realmine=mineperday allmine+=realmine s+=realmine newprice=b/(cw0*s) b+=realmine*percentforbancor*newprice newprice=b/(cw0*s) b0list.append(b/10**6) s0list.append(s/10**6) p0list.append(newprice*10**3) b=b0 s=s0 realmine=allmine=0 for i in t: l=i/(365*4+1) mineperhalfday=(1.0*dotpersec/(2**l))*oneday if allmine+mineperhalfday>mtop: realmine=mtop-allmine else: realmine=mineperhalfday allmine+=realmine s+=realmine newprice=b/(cw1*s) b+=realmine*percentforbancor*newprice newprice=b/(cw1*s) b1list.append(b/10**6) s1list.append(s/10**6) p1list.append(newprice*10**3) b=b0 s=s0 realmine=allmine=0 for i in t: l=i/(365*4+1) mineperhalfday=(1.0*dotpersec/(2**l))*oneday if allmine+mineperhalfday>mtop: realmine=mtop-allmine else: realmine=mineperhalfday allmine+=realmine s+=realmine newprice=b/(cw2*s) b+=realmine*percentforbancor*newprice newprice=b/(cw2*s) b2list.append(b/10**6) s2list.append(s/10**6) p2list.append(newprice*10**3) b=b0 s=s0 realmine=allmine=0 for i in t: l=i/(365*4+1) mineperhalfday=(1.0*dotpersec/(2**l))*oneday if allmine+mineperhalfday>mtop: realmine=mtop-allmine else: realmine=mineperhalfday allmine+=realmine s+=realmine newprice=b/(cw3*s) b+=realmine*percentforbancor*newprice newprice=b/(cw3*s) b3list.append(b/10**6) s3list.append(s/10**6) p3list.append(newprice*10**3) sp=plt.subplot(311) sp.plot(t,np.array(s0list),color="black") sp.plot(t,np.array(s1list),color="red") sp.plot(t,np.array(s2list),color="green") sp.plot(t,np.array(s3list),color="grey") bp=plt.subplot(312) bp.plot(t,np.array(b0list),color="black") bp.plot(t,np.array(b1list),color="red") bp.plot(t,np.array(b2list),color="green") bp.plot(t,np.array(b3list),color="grey") pp=plt.subplot(313) pp.plot(t,np.array(p0list),color="black") pp.plot(t,np.array(p1list),color="red") pp.plot(t,np.array(p2list),color="green") pp.plot(t,np.array(p3list),color="grey") plt.legend() plt.rcParams['font.sans-serif']=['AR PL UKai CN'] pp.set_title('Price-Day') pp.set_ylabel("10^-3EOS") sp.set_title("Supply-Day cw b="+str(cw0)+"/r"+str(cw1)+"/g"+str(cw2)+"/y"+str(cw3)+" rate="+str(percentforbancor)) sp.set_ylabel("mDOT") bp.set_title("Reserve-Day") bp.set_ylabel("mEOS") plt.tight_layout() plt.show()
StarcoderdataPython
152085
<reponame>City-of-Helsinki/atv<filename>services/tests/test_admin.py<gh_stars>0 from django.urls import reverse def test_admin_service_list_view_query_count_not_too_big( admin_client, django_assert_max_num_queries, service_api_key_factory ): admin_view_url = reverse("admin:services_service_changelist") with django_assert_max_num_queries(10): admin_client.get(admin_view_url) service_api_key_factory.create_batch(11) with django_assert_max_num_queries(10): admin_client.get(admin_view_url) def test_admin_service_api_key_list_view_query_count_not_too_big( admin_client, django_assert_max_num_queries, service_api_key_factory ): admin_view_url = reverse("admin:services_serviceapikey_changelist") with django_assert_max_num_queries(10): admin_client.get(admin_view_url) service_api_key_factory.create_batch(11) with django_assert_max_num_queries(10): admin_client.get(admin_view_url) def test_admin_service_api_key_change_view_query_count_not_too_big( admin_client, django_assert_max_num_queries, service_api_key, service_factory ): admin_view_url = reverse( "admin:services_serviceapikey_change", args=(service_api_key.pk,) ) with django_assert_max_num_queries(10): admin_client.get(admin_view_url) service_factory.create_batch(11) with django_assert_max_num_queries(10): admin_client.get(admin_view_url)
StarcoderdataPython
115750
<reponame>PrabhuJoseph/cloudbreak import json import logging from logging.handlers import RotatingFileHandler class MetricsLogger: def __init__(self, name, path, max_bytes, backup_count, debug=False): fmt = '%(message)s' logging.basicConfig( level=logging.INFO, format=fmt, ) formatter = logging.Formatter(fmt) handler = RotatingFileHandler(path, maxBytes=max_bytes, backupCount=backup_count, mode='a') handler.setLevel(logging.INFO) handler.setFormatter(formatter) self.metrics_logger = logging.getLogger(name) self.metrics_logger.addHandler(handler) def process(self, event): self.metrics_logger.info(json.dumps(event))
StarcoderdataPython
4819402
<filename>codes/main.py<gh_stars>1-10 import cv2 import numpy as np import tensorflow as tf from matplotlib import pyplot as plt from sklearn.model_selection import train_test_split import LeNet_modified as lenet from sklearn.utils import shuffle # import disparity image disp_gt=cv2.imread('scene1.truedisp.pgm',0) # import image, 0 indicates reading the image as a grayscale image if disp_gt is None: # check if the image has been correctly imported print('none') row,col=disp_gt.shape num_img=25 # import images img_stack=np.ndarray(shape=(row,col,25)) for i in range(5): for j in range(5): k=i*5+j im_temp=cv2.imread('scene1.row'+str(i+1)+'.col'+str(j+1)+'.ppm',0) img_stack[:, :, k]=im_temp[18:-18,18:-18] img_stack[:,:,k]=np.float64(img_stack[:,:,k]) if img_stack[:,:,k] is None: print('image not imported correctly') disp_img_stack=np.ndarray(shape=(row,col,21),dtype=np.float64) # plt.imshow(img_stack[:,:,1], cmap = 'gray', interpolation = 'bicubic') # plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis # plt.show() for i in range(0,21): disp_img_stack[:,:,i]=cv2.imread('disp_map_win_size'+str(i+5)+'.jpg',0) disp_img_stack[:,:,i]=np.float64(disp_img_stack[:,:,i]) # initialize the win_size_map, whose values are the number of windows should be used for every pixel win_size_map=np.zeros(shape=(row,col),dtype=np.int64) disp_gt_stack=np.ndarray(shape=(row,col,21),dtype=np.float64) for i in range(21): np.copyto(disp_gt_stack[:,:,i],disp_gt,casting='unsafe') diff_stack=np.abs(disp_gt_stack-disp_img_stack) np.argmin(diff_stack,axis=2,out=win_size_map) plt.imshow(win_size_map, cmap = 'gray', interpolation = 'bicubic') plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis plt.show() #print((win_size_map.shape[0]-15+1)*(win_size_map.shape[1]-15+1)) """ creating the training and testing set""" rmin=7 rmax=row-7 colmin=7 colmax=col-7 # training_set={} # training_set['image']=[] # training_set[''] X=[] Y=[] for i in range(rmin,rmax): for j in range(colmin,colmax): Y.append(win_size_map[i,j]) X.append(img_stack[i-7:i+8,j-7:j+8,:]) print(np.max(win_size_map),' ',np.min(win_size_map)) train_x,x_test,train_y,y_test=train_test_split(X,Y,test_size=0.2) # # # x_train,x_validation,y_train,y_validation=train_test_split(train_x,train_y,test_size=0.2) # # # lenet.train(x_train=x_train,y_train=y_train,x_validation=x_validation,y_validation=y_validation) # lenet.test(x_test,y_test,50) #win_size_map_pre=np.zeros(shape=(rmax-rmin,colmax-colmin),dtype=np.int64) out=lenet.predict(X,num_channel=25,batch_size=len(X)) out=out+5 # # for i in range(rmin,rmax): # # for j in range(colmin,colmax): # # #print(np.expand_dims(img_stack[i-7:i+8,j-7:j+8,:],0),np.shape(np.expand_dims(img_stack[i-7:i+8,j-7:j+8,:],0))) # # win_size_map_pre[i,j]=lenet.predict(np.expand_dims(img_stack[i-7:i+8,j-7:j+8,:],0))[0] win_size_map_pre=np.reshape(out,(rmax-rmin,colmax-colmin)) # plt.imshow(win_size_map_pre, cmap = 'gray', interpolation = 'bicubic') # plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis # plt.show() cv2.imwrite('result.jpg',np.uint8(win_size_map_pre))
StarcoderdataPython
1751576
#!/usr/bin/env python # # filter-noisy-assembler-warnings.py # Author: <NAME> # <https://stackoverflow.com/a/41515691> import sys for line in sys.stdin: # If line is a 'noisy' warning, don't print it or the following two lines. if ('warning: section' in line and 'is deprecated' in line or 'note: change section name to' in line): next(sys.stdin) next(sys.stdin) else: sys.stderr.write(line) sys.stderr.flush()
StarcoderdataPython
3235784
# Generated by Django 3.1.3 on 2020-11-26 13:55 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main', '0012_auto_20201126_1918'), ] operations = [ migrations.AddField( model_name='reservation', name='check_in', field=models.DateField(null=True), ), migrations.AddField( model_name='reservation', name='check_out', field=models.DateField(null=True), ), migrations.AlterField( model_name='reservation', name='timestamp', field=models.DateTimeField(default=datetime.datetime(2020, 11, 26, 19, 25, 30, 362943)), ), ]
StarcoderdataPython
72225
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: create_template_with_yaml.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from collector_service_sdk.model.collector_service import collector_template_pb2 as collector__service__sdk_dot_model_dot_collector__service_dot_collector__template__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='create_template_with_yaml.proto', package='template', syntax='proto3', serialized_options=None, serialized_pb=_b('\n\x1f\x63reate_template_with_yaml.proto\x12\x08template\x1a\x46\x63ollector_service_sdk/model/collector_service/collector_template.proto\"\\\n&CreateCollectorTemplateWithYamlRequest\x12\x12\n\nconfigYaml\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x10\n\x08objectId\x18\x03 \x01(\t\"\x96\x01\n.CreateCollectorTemplateWithYamlResponseWrapper\x12\x0c\n\x04\x63ode\x18\x01 \x01(\x05\x12\x13\n\x0b\x63odeExplain\x18\x02 \x01(\t\x12\r\n\x05\x65rror\x18\x03 \x01(\t\x12\x32\n\x04\x64\x61ta\x18\x04 \x01(\x0b\x32$.collector_service.CollectorTemplateb\x06proto3') , dependencies=[collector__service__sdk_dot_model_dot_collector__service_dot_collector__template__pb2.DESCRIPTOR,]) _CREATECOLLECTORTEMPLATEWITHYAMLREQUEST = _descriptor.Descriptor( name='CreateCollectorTemplateWithYamlRequest', full_name='template.CreateCollectorTemplateWithYamlRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='configYaml', full_name='template.CreateCollectorTemplateWithYamlRequest.configYaml', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='template.CreateCollectorTemplateWithYamlRequest.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='objectId', full_name='template.CreateCollectorTemplateWithYamlRequest.objectId', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=117, serialized_end=209, ) _CREATECOLLECTORTEMPLATEWITHYAMLRESPONSEWRAPPER = _descriptor.Descriptor( name='CreateCollectorTemplateWithYamlResponseWrapper', full_name='template.CreateCollectorTemplateWithYamlResponseWrapper', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='code', full_name='template.CreateCollectorTemplateWithYamlResponseWrapper.code', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='codeExplain', full_name='template.CreateCollectorTemplateWithYamlResponseWrapper.codeExplain', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='error', full_name='template.CreateCollectorTemplateWithYamlResponseWrapper.error', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='template.CreateCollectorTemplateWithYamlResponseWrapper.data', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=212, serialized_end=362, ) _CREATECOLLECTORTEMPLATEWITHYAMLRESPONSEWRAPPER.fields_by_name['data'].message_type = collector__service__sdk_dot_model_dot_collector__service_dot_collector__template__pb2._COLLECTORTEMPLATE DESCRIPTOR.message_types_by_name['CreateCollectorTemplateWithYamlRequest'] = _CREATECOLLECTORTEMPLATEWITHYAMLREQUEST DESCRIPTOR.message_types_by_name['CreateCollectorTemplateWithYamlResponseWrapper'] = _CREATECOLLECTORTEMPLATEWITHYAMLRESPONSEWRAPPER _sym_db.RegisterFileDescriptor(DESCRIPTOR) CreateCollectorTemplateWithYamlRequest = _reflection.GeneratedProtocolMessageType('CreateCollectorTemplateWithYamlRequest', (_message.Message,), { 'DESCRIPTOR' : _CREATECOLLECTORTEMPLATEWITHYAMLREQUEST, '__module__' : 'create_template_with_yaml_pb2' # @@protoc_insertion_point(class_scope:template.CreateCollectorTemplateWithYamlRequest) }) _sym_db.RegisterMessage(CreateCollectorTemplateWithYamlRequest) CreateCollectorTemplateWithYamlResponseWrapper = _reflection.GeneratedProtocolMessageType('CreateCollectorTemplateWithYamlResponseWrapper', (_message.Message,), { 'DESCRIPTOR' : _CREATECOLLECTORTEMPLATEWITHYAMLRESPONSEWRAPPER, '__module__' : 'create_template_with_yaml_pb2' # @@protoc_insertion_point(class_scope:template.CreateCollectorTemplateWithYamlResponseWrapper) }) _sym_db.RegisterMessage(CreateCollectorTemplateWithYamlResponseWrapper) # @@protoc_insertion_point(module_scope)
StarcoderdataPython
1646355
## ALL RIGHTS RESERVED. ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. ## ## Neither the name of the SONATA-NFV, 5GTANGO [, ANY ADDITIONAL AFFILIATION] ## nor the names of its contributors may be used to endorse or promote ## products derived from this software without specific prior written ## permission. ## ## This work has been performed in the framework of the SONATA project, ## funded by the European Commission under Grant number 671517 through ## the Horizon 2020 and 5G-PPP programmes. The authors would like to ## acknowledge the contributions of their colleagues of the SONATA ## partner consortium (www.sonata-nfv.eu). ## ## This work has been performed in the framework of the 5GTANGO project, ## funded by the European Commission under Grant number 761493 through ## the Horizon 2020 and 5G-PPP programmes. The authors would like to ## acknowledge the contributions of their colleagues of the 5GTANGO ## partner consortium (www.5gtango.eu). # encoding: utf-8 from rest_framework import serializers from api.models import * from api.serializers import * from django.contrib.auth.models import User from django.core import serializers as core_serializers ####################################################################################################### class SntPasMonResDetailSerializer(serializers.ModelSerializer): class Meta: model = passive_monitoring_res fields = ('service_id','test_id','created','terminated','data') class SntPasMonResSerializer(serializers.ModelSerializer): class Meta: model = passive_monitoring_res fields = ('service_id','test_id','created','terminated') class SntSNMPOidSerializer(serializers.ModelSerializer): class Meta: model = monitoring_snmp_oids fields = ('oid', 'metric_name', 'metric_type', 'unit', 'mib_name') class SntSNMPEntSerializer(serializers.ModelSerializer): #user = serializers.PrimaryKeyRelatedField(read_only=False, queryset=monitoring_users.objects.all()) #user = SntUserSerializer() oids = SntSNMPOidSerializer(many=True) class Meta: model = monitoring_snmp_entities fields = ('id', 'ip', 'port','username', 'interval', 'entity_type','oids' , 'entity_id', 'version', 'auth_protocol', 'security_level', 'status') class SntSNMPEntFullSerializer(serializers.ModelSerializer): oids = SntSNMPOidSerializer(many=True) class Meta: model = monitoring_snmp_entities fields = ('id', 'ip', 'port','username', 'password', 'interval', 'entity_type','oids' , 'entity_id', 'version', 'auth_protocol', 'security_level', 'status') lookup_field = {'ip', 'port'} def create(self, validated_data): oids_data = validated_data.pop('oids') ent_ip = validated_data['ip'] ent_port = validated_data['port'] ent = monitoring_snmp_entities.objects.all().filter(ip=ent_ip,port=ent_port) print (ent.count()) if ent.count() > 0: ent.delete() entity = monitoring_snmp_entities.objects.create(**validated_data) for oid in oids_data: monitoring_snmp_oids.objects.create(snmp_entity=entity, **oid) return entity class SntSmtpSerializerCreate(serializers.ModelSerializer): class Meta: model = monitoring_smtp fields = ('id', 'smtp_server', 'port', 'user_name', 'password', 'component', 'sec_type') class SntSmtpSerializerList(serializers.ModelSerializer): class Meta: model = monitoring_smtp fields = ('id', 'smtp_server', 'port', 'user_name', 'component', 'sec_type', 'created') class SntSmtpSerializerCred(serializers.ModelSerializer): class Meta: model = monitoring_smtp fields = ('id', 'password') class SntSPSerializer(serializers.ModelSerializer): class Meta: model = monitoring_service_platforms fields = ('id', 'sonata_sp_id', 'name', 'manager_url','created') class SntPOPSerializer(serializers.ModelSerializer): class Meta: model = monitoring_pops fields = ('id', 'sonata_pop_id','sonata_sp_id' ,'name', 'prom_url','created') lookup_field = 'sonata_pop_id' class SntUserSerializer(serializers.ModelSerializer): class Meta: model = monitoring_users fields = ('id', 'first_name', 'last_name', 'email', 'sonata_userid', 'created','type','mobile') lookup_field = {'email','mobile'} class SntServicesSerializer(serializers.ModelSerializer): #user = serializers.PrimaryKeyRelatedField(read_only=False, queryset=monitoring_users.objects.all()) #user = SntUserSerializer() ns_instance_id = serializers.CharField(source='sonata_srv_id') test_id = serializers.CharField(source='description') class Meta: model = monitoring_services fields = ('ns_instance_id', 'test_id','created','terminated') class SntServicesFullSerializer(serializers.ModelSerializer): #user = serializers.PrimaryKeyRelatedField(read_only=False, queryset=monitoring_users.objects.all()) user = SntUserSerializer() class Meta: model = monitoring_services fields = ('id', 'sonata_srv_id', 'name', 'description', 'created', 'user', 'host_id','pop_id') class SntFunctionsSerializer(serializers.ModelSerializer): service = serializers.PrimaryKeyRelatedField(read_only=False, queryset=monitoring_services.objects.all()) #service = SntServicesSerializer() class Meta: model = monitoring_functions fields = ('id', 'sonata_func_id', 'name', 'description', 'created', 'service', 'host_id','pop_id') class SntServicesDelSerializer(serializers.ModelSerializer): class Meta: model = monitoring_services fields = ('id', 'sonata_srv_id', 'name', 'description', 'created') lookup_field = 'sonata_srv_id' class SntFunctionsFullSerializer(serializers.ModelSerializer): #service = serializers.PrimaryKeyRelatedField(read_only=False, queryset=monitoring_services.objects.all()) service = SntServicesSerializer() class Meta: model = monitoring_functions fields = ('id', 'sonata_func_id', 'name', 'description', 'created', 'service', 'host_id', 'pop_id') class SntMetricsSerializer(serializers.ModelSerializer): #function = serializers.PrimaryKeyRelatedField(read_only=False, queryset=monitoring_functions.objects.all()) #function = SntFunctionsSerializer() class Meta: model = monitoring_metrics fields = ('id', 'name', 'description', 'threshold', 'interval','cmd', 'function', 'created',) class SntNewMetricsSerializer(serializers.ModelSerializer): #function = serializers.PrimaryKeyRelatedField(read_only=False, queryset=monitoring_functions.objects.all()) #function = SntFunctionsSerializer() class Meta: model = monitoring_metrics fields = ('name', 'description', 'threshold', 'interval','cmd', 'function', 'created') class SntMetricsFullSerializer(serializers.ModelSerializer): #function = serializers.PrimaryKeyRelatedField(read_only=False, queryset=monitoring_functions.objects.all()) function = SntFunctionsSerializer() class Meta: model = monitoring_metrics fields = ('id', 'name', 'description', 'threshold', 'interval','cmd', 'function', 'created',) class SntMetricsSerializer1(serializers.ModelSerializer): sonata_func_id = serializers.PrimaryKeyRelatedField(read_only=False, queryset=monitoring_functions.objects.all()) class Meta: model = monitoring_metrics fields = ('id', 'name', 'description', 'threshold', 'interval','cmd', 'sonata_func_id', 'created',) class SntNotifTypeSerializer(serializers.ModelSerializer): class Meta: model = monitoring_notif_types fields = ('id', 'type',) class SntServicesLightSerializer(serializers.ModelSerializer): class Meta: model = monitoring_services fields = ('sonata_srv_id', 'name') lookup_field = 'sonata_srv_id' class SntRulesSerializer(serializers.ModelSerializer): #service = serializers.PrimaryKeyRelatedField(read_only=False, queryset=monitoring_services.objects.all()) #notification_type = serializers.PrimaryKeyRelatedField(read_only=False, queryset=monitoring_notif_types.objects.all()) service = SntServicesLightSerializer() notification_type = SntNotifTypeSerializer() class Meta: model = monitoring_rules fields = ('id', 'name', 'duration', 'summary', 'description', 'condition', 'notification_type','service', 'created',) lookup_field = 'consumer' class SntRulesPerSrvSerializer(serializers.ModelSerializer): notification_type = SntNotifTypeSerializer() class Meta: model = monitoring_rules fields = ('id','function','vdu', 'name', 'duration', 'summary', 'description', 'condition', 'notification_type', 'created',) class SntNewFunctionsSerializer(serializers.ModelSerializer): #service = serializers.PrimaryKeyRelatedField(read_only=False, queryset=monitoring_services.objects.all()) #service = SntServicesSerializer() metrics = SntNewMetricsSerializer(many=True) class Meta: model = monitoring_functions fields = ('sonata_func_id', 'name', 'description', 'created', 'host_id', 'pop_id', 'metrics') class LightFunctionsSerializer(serializers.ModelSerializer): vnfr_id = serializers.CharField(source='sonata_func_id') vc_id = serializers.CharField(source='host_id') vim_id = serializers.CharField() vim_endpoint = serializers.CharField(source='pop_id') class Meta: model = monitoring_functions fields = ('vnfr_id','vc_id', 'vim_id', 'vim_endpoint') class SntNewRulesSerializer(serializers.ModelSerializer): #service = serializers.PrimaryKeyRelatedField(read_only=False, queryset=monitoring_services.objects.all()) #function = serializers.PrimaryKeyRelatedField(read_only=False, queryset=monitoring_functions.objects.all()) #notification_type = serializers.PrimaryKeyRelatedField(read_only=False, queryset=monitoring_notif_types.objects.all()) class Meta: model = monitoring_rules fields = ('name', 'duration', 'summary', 'description', 'condition', 'notification_type', 'created',) class NewServiceSerializer(serializers.Serializer): service = SntServicesSerializer() functions = SntNewFunctionsSerializer(many=True) rules = SntNewRulesSerializer(many=True) class LightServiceSerializer(serializers.Serializer): ns_instance_uuid = serializers.CharField() test_id = serializers.CharField() functions = LightFunctionsSerializer(many=True) class promMetricLabelSerializer(serializers.Serializer): metric_name = '' class promMetricsListSerializer(serializers.Serializer): metrics = promMetricLabelSerializer(many=True) class promLabelsSerializer(serializers.Serializer): labels = {'label':'id'} class SntPromMetricSerializer(serializers.Serializer): name = serializers.CharField() start = serializers.DateTimeField() end = serializers.DateTimeField() labels = promLabelsSerializer(many=True) step = serializers.CharField() class CommentSerializer(serializers.Serializer): email = serializers.EmailField() content = SntRulesSerializer(many=True) created = serializers.DateTimeField() class wsLabelSerializer(serializers.Serializer): label = '' class SntWSreqSerializer(serializers.Serializer): metric = serializers.CharField() filters = wsLabelSerializer(many=True) class SntSPSerializer(serializers.ModelSerializer): class Meta: model = monitoring_service_platforms fields = ('id', 'sonata_sp_id', 'name', 'manager_url','created') class SntPOPSerializer(serializers.ModelSerializer): class Meta: model = monitoring_pops fields = ('id', 'sonata_pop_id','sonata_sp_id' ,'name', 'prom_url','created') class SntRulesConfSerializer(serializers.Serializer): rules = SntRulesPerSrvSerializer(many=True) class SntActMonResSerializer(serializers.ModelSerializer): class Meta: model = active_monitoring_res fields = ('test_id', 'service_id', 'timestamp', 'config') class SntActMonResDetailSerializer(serializers.ModelSerializer): class Meta: model = active_monitoring_res fields = ('service_id','timestamp','data') class SntActMonResDataSerializer(serializers.ModelSerializer): class Meta: model = active_monitoring_res fields = ('id', 'data') class SntRulesFSerializer(serializers.ModelSerializer): notification_type = SntNotifTypeSerializer() class Meta: model = monitoring_rules fields = ( 'id', 'name', 'duration', 'summary', 'description', 'condition', 'notification_type', 'service', 'created',) class SntRulesVduSerializer(serializers.Serializer): vdu_id = serializers.CharField() rules = SntRulesFSerializer(many=True) class SntRulesVnfSerializer(serializers.Serializer): vnf_id = serializers.CharField() vdus = SntRulesVduSerializer(many=True) class SntPLCRulesConfSerializer(serializers.Serializer): plc_contract = serializers.CharField() vnfs = SntRulesVnfSerializer(many=True) class Meta: fields = ('service_id', 'plc_contract','rules') class SntSLARulesConfSerializer(serializers.Serializer): sla_contract = serializers.CharField() rules = SntRulesVnfSerializer(many=True) class Meta: fields = ('service_id', 'sla_contract','rules') class CommentSerializer(serializers.Serializer): email = serializers.EmailField() content = serializers.CharField(max_length=200) created = serializers.DateTimeField() class Meta: fields = ('email', 'content') class HealthSerializer (serializers.Serializer): alive_since = serializers.DateTimeField() class Meta: fields = ('alive_since') class SntAlertsSerializer(serializers.Serializer): alertname = serializers.CharField() topic = serializers.CharField() serviceID = serializers.CharField() functionID = serializers.CharField() resource_id = serializers.CharField() alertstate = serializers.CharField() class SntPromTargetUrlsSerializer(serializers.Serializer): MANO_TYPES = ( ('osm', 'osm'), ('sonata', 'sonata'), ('onap', 'onap'), ) sp_ip = serializers.CharField() type = serializers.ChoiceField(choices=MANO_TYPES) sp_name = serializers.CharField() targets = serializers.ListField(child=serializers.CharField(max_length=32, allow_blank=True)) class SntAlertsListSerializer(serializers.Serializer): status = serializers.CharField() alerts = SntAlertsSerializer(many=True) class SntPromTargetSerializer(serializers.Serializer): targets=SntPromTargetUrlsSerializer(many=True) class SntPromUrlsSerializer(serializers.Serializer): targets = serializers.ListField(child=serializers.CharField(max_length=32, allow_blank=True)) class SntPromTargetsSerializer(serializers.Serializer): static_configs = SntPromUrlsSerializer(many=True) job_name = serializers.CharField() class SntPromConfSerializer(serializers.Serializer): config = serializers.CharField() class SntPromConfSerialazer (serializers.Serializer): targets = serializers.JSONField class SntPromTargetListSerializer(serializers.Serializer): targets=SntPromTargetsSerializer(many=True)
StarcoderdataPython
3238200
<reponame>fpischedda/yaff """ Yaff game runner It runs a Yaff based appliction specifiyng its package name, example: $ yaff run example this script will look up the module example.main and will try to execute the run function """ import importlib.util import sys import click @click.group() def cli(): pass @cli.command() @click.option( '--module-name', default='main', help='The name of the module containing the run function') @click.argument('name') def run(module_name, name): sys.path.insert(0, '.') module = importlib.import_module(name) module = getattr(module, module_name) module.run()
StarcoderdataPython
3254138
<reponame>hcallen/python-xmatters<gh_stars>0 import requests from oauthlib.oauth2 import LegacyApplicationClient from requests_oauthlib import OAuth2Session from xmatters import errors as err from xmatters.connection import Connection class OAuth2Auth(Connection): _endpoints = {'token': '/oauth2/token'} def __init__(self, api_base_url, client_id, username=None, password=None, **kwargs): self.api_base_url = api_base_url self.client_id = client_id self.username = username self.password = password self._token = kwargs.get('token') self._refresh_token = kwargs.get('refresh_token') self.token_storage = kwargs.get('token_storage') self.session = None token_url = '{}{}'.format(self.api_base_url, self._endpoints.get('token')) client = LegacyApplicationClient(client_id=self.client_id) auto_refresh_kwargs = {'client_id': self.client_id} token_updater = self.token_storage.write_token if self.token_storage else None self.session = OAuth2Session(client=client, auto_refresh_url=token_url, auto_refresh_kwargs=auto_refresh_kwargs, token_updater=token_updater) # OAuth2Session must be initiated before inheritance inorder to process passed XMSession kwargs super(OAuth2Auth, self).__init__(self, **kwargs) self._set_token() def refresh_token(self): """ Refreshes the session token. Token is automatically applied to the session and stored in token_storage (if defined). :return: token object :rtype: dict """ refresh_token = self._refresh_token or self.token.get('refresh_token') token = self.session.refresh_token(token_url=self.session.auto_refresh_url, refresh_token=refresh_token, kwargs=self.session.auto_refresh_kwargs) self._update_storage() # Return in-case user wants it return token def fetch_token(self): """ Fetches session token. Token is automatically applied to the session and stored in token_storage (if defined). :return: token object :rtype: dict """ token = self.session.fetch_token(token_url=self.session.auto_refresh_url, username=self.username, password=self.password, include_client_id=True) self._update_storage() # Return in-case user wants it return token def _update_storage(self): if self.token_storage: self.token_storage.write_token(self.token) def _set_token(self): if self._token: self.token = self._token self._update_storage() elif self._refresh_token: self.refresh_token() elif None not in (self.username, self.password): self.fetch_token() elif self.token_storage and self.token_storage.read_token(): self.token = self.token_storage.read_token() else: raise err.AuthorizationError('Unable to obtain token with provided arguments') @property def token(self): return self.session.token if self.session else self._token @token.setter def token(self, token): if self.session: self.session.token = token else: self._token = token def __repr__(self): return '<{}>'.format(self.__class__.__name__) def __str__(self): return self.__repr__() class BasicAuth(Connection): """ Used to authentication requests using basic authentication :param base_url: xMatters instance url or xMatters instance base url :type base_url: str :param username: xMatters username :type username: str :param password: <PASSWORD> :type password: str """ def __init__(self, api_base_url, username, password, **kwargs): self.username = username self.password = password self.session = requests.Session() self.api_base_url = api_base_url self.session.auth = (self.username, self.password) super(BasicAuth, self).__init__(self, **kwargs) def __repr__(self): return '<{}>'.format(self.__class__.__name__) def __str__(self): return self.__repr__()
StarcoderdataPython
189450
from __future__ import annotations import asyncio import functools import inspect import logging import uuid from dataclasses import asdict, dataclass from enum import Enum from typing import Any, Awaitable, Callable, Optional from ocpp.charge_point import camel_to_snake_case, remove_nones, snake_to_camel_case from ocpp.exceptions import NotImplementedError, OCPPError from ocpp.messages import Call, MessageType, unpack, validate_payload log = logging.getLogger("ocpp-asgi") class Subprotocol(str, Enum): ocpp16 = "ocpp1.6" ocpp20 = "ocpp2.0" ocpp201 = "ocpp2.0.1" @dataclass class OCPPAdapter: """OCPPAdapter encapsulates OCPP version specific call and call_result methods.""" ocpp_version: str call: Awaitable[Any] call_result: Awaitable[Any] @dataclass class RouterContext: """RouterContext instance is passed to router.""" scope: dict # Store ASGI scope dictionary as is body: dict # Store ASGI content mainly to avoid parsing http event twice subprotocol: Subprotocol ocpp_adapter: OCPPAdapter send: Callable[[str, bool, RouterContext], Awaitable[None]] charging_station_id: str queue: Any call_lock: Any @dataclass class HandlerContext: """HandlerContext instance is passed to handler.""" charging_station_id: str # References to RouterContext and Router added here so that # we can send messages to specific Charging Station, which initiated messaging. _router_context: RouterContext _router: Router async def send(self, message: dataclass) -> Any: """Send message to Charging Station within action handler.""" # Use a lock to prevent make sure that only 1 message can be send at a # a time. async with self._router_context.call_lock: return await self._router.call( message=message, context=self._router_context ) def subprotocol_to_ocpp_version(subprotocol: str) -> str: """Strip away ocpp prefix from""" return subprotocol[4:] class Router: """Router is a collection of ocpp action handlers.""" subprotocol: Subprotocol = None def __init__( self, *, subprotocol: Subprotocol, response_timeout: Optional[int] = 30, create_task: bool = True, ): """Initialize Router instance. Args: subprotocol (Subprotocol): Defines the ocpp protocol version for this router response_timeout (int): When no response on a request is received within this interval, a asyncio.TimeoutError is raised. create_task (bool): Create asyncio.Task for executing "after"-handler. Does not affect "on-handler". """ self.subprotocol = subprotocol # The maximum time in seconds it may take for a CP to respond to a # CALL. An asyncio.TimeoutError will be raised if this limit has been # exceeded. self._response_timeout = response_timeout # A dictionary that hooks for Actions. So if the CS receives a it will # look up the Action into this map and execute the corresponding hooks # if exists. # Dictionary contains the following structure for each Action: # { # Action.BootNotification: { # "_on_action": <reference to "on_boot_notification">, # "_after_action": <reference to "after_boot_notification">, # "_skip_schema_validation": False, # }, # } self._route_map = {} # Function used to generate unique ids for CALLs. By default # uuid.uuid4() is used, but it can be changed. This is meant primarily # for testing purposes to have predictable unique ids. self._unique_id_generator = uuid.uuid4 # Use asyncio.create_task for "after"-handler. self._create_task = create_task self._response_queue = asyncio.Queue() # Dictionary for storing subscribers for, which are waiting for CallResult or # CallErrors. self.subscriptions = {} def on(self, action, *, skip_schema_validation=False): def decorator(func): @functools.wraps(func) def inner(*args, **kwargs): return func(*args, **kwargs) option = "_on_action" if action not in self._route_map: self._route_map[action] = {} self._route_map[action][option] = func self._route_map[action]["_skip_schema_validation"] = skip_schema_validation return inner return decorator def after(self, action): def decorator(func): @functools.wraps(func) def inner(*args, **kwargs): return func(*args, **kwargs) option = "_after_action" if action not in self._route_map: self._route_map[action] = {} self._route_map[action][option] = func return inner return decorator async def route_message(self, *, message: str, context: RouterContext): """ Route a message received from a Charging Station. If the message is a of type Call the corresponding hooks are executed. If the message is of type CallResult or CallError the message is passed to the call() function via the response_queue. """ try: msg = unpack(message) except OCPPError as e: log.exception( "Unable to parse message: '%s', it doesn't seem " "to be valid OCPP: %s", message, e, ) return if msg.message_type_id == MessageType.Call: await self._handle_call(msg, context=context) elif msg.message_type_id in [ MessageType.CallResult, MessageType.CallError, ]: if msg.unique_id in self.subscriptions: self.subscriptions[msg.unique_id].put_nowait(msg) async def _handle_call(self, msg, *, context: RouterContext = None): """ Execute all hooks installed for based on the Action of the message. First the '_on_action' hook is executed and its response is returned to the client. If there is no '_on_action' hook for Action in the message a CallError with a NotImplemtendError is returned. Next the '_after_action' hook is executed. """ ocpp_version = subprotocol_to_ocpp_version(self.subprotocol) try: handlers = self._route_map[msg.action] except KeyError: raise NotImplementedError(f"No handler for '{msg.action}' " "registered.") if not handlers.get("_skip_schema_validation", False): validate_payload(msg, ocpp_version) # OCPP uses camelCase for the keys in the payload. It's more pythonic # to use snake_case for keyword arguments. Therefore the keys must be # 'translated'. Some examples: # # * chargePointVendor becomes charge_point_vendor # * firmwareVersion becomes firmwareVersion snake_case_payload = camel_to_snake_case(msg.payload) try: handler = handlers["_on_action"] except KeyError: raise NotImplementedError(f"No handler for '{msg.action}' " "registered.") handler_context = HandlerContext( charging_station_id=context.charging_station_id, _router_context=context, _router=self, ) # Convert message to correct Call instance class_ = getattr(context.ocpp_adapter.call, f"{msg.action}Payload") payload = class_(**snake_case_payload) try: response = handler(payload=payload, context=handler_context) if inspect.isawaitable(response): response = await response except Exception as e: log.exception("Error while handling request '%s'", msg) response = msg.create_call_error(e).to_json() await self._send(message=response, is_response=True, context=context) temp_response_payload = asdict(response) # Remove nones ensures that we strip out optional arguments # which were not set and have a default value of None response_payload = remove_nones(temp_response_payload) # The response payload must be 'translated' from snake_case to # camelCase. So: # # * charge_point_vendor becomes chargePointVendor # * firmware_version becomes firmwareVersion camel_case_payload = snake_to_camel_case(response_payload) response = msg.create_call_result(camel_case_payload) if not handlers.get("_skip_schema_validation", False): validate_payload(response, ocpp_version) await self._send(message=response.to_json(), is_response=True, context=context) try: handler = handlers["_after_action"] response = handler(payload=payload, context=handler_context) if inspect.isawaitable(response): if self._create_task: # Create task to avoid blocking when making a call # inside the after handler asyncio.ensure_future(response) else: await response except KeyError: # '_on_after' hooks are not required. Therefore ignore exception # when no '_on_after' hook is installed. pass async def call(self, *, message: Any, context: RouterContext): ocpp_version = subprotocol_to_ocpp_version(self.subprotocol) camel_case_payload = snake_to_camel_case(asdict(message)) call = Call( unique_id=str(self._unique_id_generator()), action=message.__class__.__name__[:-7], payload=remove_nones(camel_case_payload), ) validate_payload(call, ocpp_version) await self._send(message=call.to_json(), is_response=False, context=context) self.subscriptions[call.unique_id] = context.queue try: response = await asyncio.wait_for( context.queue.get(), self._response_timeout ) except asyncio.TimeoutError: del self.subscriptions[call.unique_id] raise if response.message_type_id == MessageType.CallError: log.warning("Received a CALLError: %s'", response) raise response.to_exception() else: response.action = call.action validate_payload(response, ocpp_version) snake_case_payload = camel_to_snake_case(response.payload) call_result = context.ocpp_adapter.call_result cls = getattr(call_result, message.__class__.__name__) return cls(**snake_case_payload) async def _send(self, *, message: str, is_response: bool, context: RouterContext): log.debug(f"{context.charging_station_id=} {message=}") await context.send(message=message, is_response=is_response, context=context)
StarcoderdataPython
1740750
<reponame>ThundeRatz/vss_simulation #!/usr/bin/env python3 # coding=utf-8 """ File: keyboard_node.py Description: Simple python routine to watch the keyboard or a joystick to send velocity commands to a Gazebo simulation. """ import pygame import sys import rospy from geometry_msgs.msg import Twist # Vamos acompanhar o estado dessas teclas KEYS = [pygame.K_w, pygame.K_a, pygame.K_s, pygame.K_d] # Indice dos eixos x e y do joystick X_AXIS = 0 Y_AXIS = 4 INVERT_X_AXIS = True INVERT_Y_AXIS = True ROBOTS = 3 # Namespace dos tópicos que iremos publicar DEFAULT_NAMESPACE = "/yellow_team/robot_" DEFAULT_DEBUG = False # A vel máxima do robô é 2 m/s MAX_LIN_VEL = 1.0 # m/s # A vel máxima do robô é 40 rad/s MAX_ROT_VEL = 20 # rad/s # Define a rampa de aceleração quando usando o teclado # Valores em porcentagem da velocidade máxima KEYBOARD_LINEAR_STEP = 0.03 KEYBOARD_LINEAR_MAX = 1.0 KEYBOARD_ANGULAR_STEP = 0.03 KEYBOARD_ANGULAR_MAX = 0.6 # Os comandos vão de -126 até 126 de modo que os bytes 0xFE e 0xFF # nunca são utilizados SCALE = 126 def getNamespace(number): return DEFAULT_NAMESPACE + f'{number}' def drawConsole(win, font, console): """ Fills window console with the sentences stored in the list console :param win: pygame.display Window object to be filled :param font: pygame.Font Font style to be used :param console: list<font.render> List of text to write """ img = font.render("Event console Area", 1, (155, 155, 155), (0, 0, 0)) win.blit(img, (2, 132)) ypos = 450 h = list(console) h.reverse() for line in h: r = win.blit(line, (10, ypos)) win.fill(0, (r.right, r.top, 620, r.height)) ypos -= font.get_height() def main(debug=DEFAULT_DEBUG): vel_pub = [] rate = None current_robot = 0 # Inicia configs do ROS rospy.init_node('vss_human_controller') for i in range(ROBOTS): vel_pub.append(rospy.Publisher( getNamespace(i) + '/diff_drive_controller/cmd_vel', Twist, queue_size=2)) rate = rospy.Rate(60) # 60hz pygame.init() # Cria a janela win = pygame.display.set_mode((640, 480), pygame.RESIZABLE) pygame.display.set_caption("Keyboard Comunication Interface") # Lista de frases a serem mostradas no console console = [] font = pygame.font.Font(None, 26) # Dicionário para guardar o estado de algumas teclas state = {} for key in KEYS: state[key] = False # Vamos detectar os Joysticks conectados ao computador axis = [0.0, 0.0] using_joystick = True for x in range(pygame.joystick.get_count()): j = pygame.joystick.Joystick(x) j.init() txt = "Enabled joystick: " + j.get_name() print(txt) img = font.render(txt, 1, (50, 200, 50), (0, 0, 0)) console.append(img) if not pygame.joystick.get_count(): using_joystick = False print("No Joysticks to Initialize") img = font.render("No Joysticks to Initialize", 1, (50, 200, 50), (0, 0, 0)) console.append(img) vel_lin = 0.0 vel_ang = 0.0 running = True while running: for e in pygame.event.get(): # Movimento dos botões do teclado if e.type == pygame.KEYDOWN: if e.key == pygame.K_ESCAPE: running = False if e.key in KEYS: state[e.key] = True elif e.type == pygame.KEYUP: if e.key in KEYS: state[e.key] = False # Movimento dos direcionais do joystick if e.type == pygame.JOYAXISMOTION: if e.dict['axis'] in (X_AXIS, Y_AXIS): if e.dict['axis'] == X_AXIS: if INVERT_X_AXIS: axis[0] = -e.value else: axis[0] = e.value elif e.dict['axis'] == Y_AXIS: if INVERT_Y_AXIS: axis[1] = -e.value else: axis[1] = e.value # Caso algum botão do joystick seja apertado if e.type == pygame.JOYBUTTONDOWN \ or e.type == pygame.JOYBUTTONUP \ or e.type == pygame.JOYHATMOTION: txt = "%s: %s" % (pygame.event.event_name(e.type), e.dict) print(txt) img = font.render(txt, 1, (50, 200, 50), (0, 0, 0)) console.append(img) console = console[-13:] # L1 pressionado if (e.type == pygame.JOYBUTTONDOWN and e.dict['button'] == 4) or (e.type == pygame.KEYDOWN and e.key == pygame.K_e): current_robot += 1 current_robot %= ROBOTS # R1 pressionado if (e.type == pygame.JOYBUTTONDOWN and e.dict['button'] == 5) or (e.type == pygame.KEYDOWN and e.key == pygame.K_q): current_robot -= 1 current_robot %= ROBOTS elif e.type == pygame.VIDEORESIZE: win = pygame.display.set_mode(e.size, pygame.RESIZABLE) elif e.type == pygame.QUIT: running = False drawConsole(win, font, console) pygame.display.flip() if using_joystick: txt = f"Linear: {int(axis[1]*SCALE)} Angular: {int(axis[0]*SCALE)}" img = font.render(txt, 1, (50, 200, 50), (0, 0, 0)) console.append(img) console = console[-13:] if debug: print(txt) vel_cmd_twist = Twist() vel_cmd_twist.linear.x = axis[1]*MAX_LIN_VEL vel_cmd_twist.angular.z = axis[0]*MAX_ROT_VEL vel_pub[current_robot].publish(vel_cmd_twist) else: if state[pygame.K_w] and not state[pygame.K_s]: vel_lin += KEYBOARD_LINEAR_STEP vel_lin = min(vel_lin, KEYBOARD_LINEAR_MAX) elif state[pygame.K_s] and not state[pygame.K_w]: vel_lin -= KEYBOARD_LINEAR_STEP vel_lin = max(vel_lin, -KEYBOARD_LINEAR_MAX) else: vel_lin = 0.0 if state[pygame.K_a] and not state[pygame.K_d]: vel_ang += KEYBOARD_ANGULAR_STEP vel_ang = min(vel_ang, KEYBOARD_ANGULAR_MAX) elif state[pygame.K_d] and not state[pygame.K_a]: vel_ang -= KEYBOARD_ANGULAR_STEP vel_ang = max(vel_ang, -KEYBOARD_ANGULAR_MAX) else: vel_ang = 0.0 txt = f"Linear: {int(vel_lin*SCALE)} Angular: {int(vel_ang*SCALE)}" img = font.render(txt, 1, (50, 200, 50), (0, 0, 0)) console.append(img) console = console[-13:] if debug: print(txt) vel_cmd_twist = Twist() vel_cmd_twist.linear.x = vel_lin * MAX_LIN_VEL vel_cmd_twist.angular.z = vel_ang * MAX_ROT_VEL vel_pub[current_robot].publish(vel_cmd_twist) rate.sleep() if __name__ == "__main__": rospy.loginfo("Começando a brincadeira!") # Clean ROS parameters from command line myargv = rospy.myargv(argv=sys.argv) print(myargv) rospy.loginfo(myargv) main()
StarcoderdataPython
1660418
<filename>Django/middlewareimplement/my_middleware.py # -*- coding: utf-8 -*- # @Author: Clarence # @Date: 2020-06-10 18:39:52 # @Last Modified by: Clarence # @Last Modified time: 2020-06-10 18:46:26 # 中间件的简单实现 class Router(obejct): def __init__(self): self.path_info = {} def route(self, environ, start_response): application = self.path_infp[environ['PATH_INFO']] return application(environ, start_response) def __call__(self, path): def wrapper(application): self.path_info[path] = application return wrapper router = Router()
StarcoderdataPython
86127
<filename>icrawler/utils/session.py import requests from six.moves.urllib.parse import urlsplit class Session(requests.Session): def __init__(self, proxy_pool): super(Session, self).__init__() self.proxy_pool = proxy_pool def _url_scheme(self, url): return urlsplit(url).scheme def get(self, url, **kwargs): proxy = self.proxy_pool.get_next(protocol=self._url_scheme(url)) if proxy is None: return super(Session, self).get(url, **kwargs) try: response = super(Session, self).get(url, proxies=proxy.format(), **kwargs) except requests.exceptions.ConnectionError: self.proxy_pool.decrease_weight(proxy) raise except: raise else: self.proxy_pool.increase_weight(proxy) return response def post(self, url, data=None, json=None, **kwargs): proxy = self.proxy_pool.get_next(protocol=self._url_scheme(url)) if proxy is None: return super(Session, self).get(url, data, json, **kwargs) try: response = super(Session, self).post(url, data, json, proxies=proxy.format(), **kwargs) except requests.exceptions.ConnectionError: self.proxy_pool.decrease_weight(proxy) raise except: raise else: self.proxy_pool.increase_weight(proxy) return response
StarcoderdataPython
3322496
""" !!! Use this for ad-hoc updating of results for a known list of supplier IDs. Takes a CSV file with rows in the format: Supplier ID, Supplier Name, Result e.g: 123456, Supplier name 1, pass 123212, Supplier name 2, fail 234567, Supplier name 3, pass The supplier name is cross-referenced against the supplier name in the Digital Marketplace for that supplier ID, as a sanity check against sloppy CSV creation. If the names don't match then the script will not update the framework status. Usage: scripts/insert-framework-results.py <framework_slug> <stage> <data_api_token> <filename> [<user>] """ import getpass import sys sys.path.insert(0, '.') from docopt import docopt from dmapiclient import DataAPIClient from dmscripts.insert_framework_results import insert_results from dmutils.env_helpers import get_api_endpoint_from_stage if __name__ == '__main__': arguments = docopt(__doc__) client = DataAPIClient(get_api_endpoint_from_stage(arguments['<stage>']), arguments['<data_api_token>']) output = sys.stdout framework_slug = arguments['<framework_slug>'] filename = arguments['<filename>'] user = arguments['<user>'] or getpass.getuser() insert_results(client, output, framework_slug, filename, user)
StarcoderdataPython
46313
from setuptools import setup, find_packages from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='darch', # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/single_source_version.html version='0.1.0', description='Deep Architect', long_description=long_description, # The project's main homepage. url='https://github.com/negrinho/deep_architect', # Author details author='The Python Packaging Authority', author_email='<EMAIL>', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 3 - Alpha', # Indicate who your project is intended for 'Intended Audience :: Developers', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', ], # What does your project relate to? keywords='deep architect', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=['darch'], # List run-time dependencies here. These will be installed by pip when # your project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html install_requires=[ 'numpy', 'scipy', 'sklearn' ] )
StarcoderdataPython
163736
<reponame>CubexX/tram-bot<filename>utils.py import re import requests from telegram import (InlineKeyboardButton, InlineKeyboardMarkup, ReplyKeyboardMarkup) from stations import invert_stations, stations from storer import Storer storer = Storer('bot.db') def get_inline_keyboard(station_id): return InlineKeyboardMarkup( [[InlineKeyboardButton('Обновить 🔄', callback_data=station_id)]] ) def get_response(station_id): url = 'http://online.ettu.ru/station/{}'.format(station_id) headers = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.86 ' 'Safari/537.36', } res = requests.get(url, headers=headers).text return res def get_schedule(html): # Route name route = re.findall('<p>(.*)</p>(.*)<img', html, re.DOTALL)[0][0].strip() route = re.sub('<[^<]+?>', '', route) tram_list = [] if "мин" in html: tram_numbers = re.findall('center;"><b>(\d+)', html) a = re.findall('right;">(.*)</div>', html) i = 0 for n in tram_numbers: tram_list.append('***{}*** - {} - {}\n'.format(n, a[i], a[i + 1])) i += 2 else: tram_list = 'Нет трамваев' return '***{}***\n\n{}'.format(route, ''.join(tram_list)) def get_user_stations(uid): users = storer.restore('users') if len(users[uid]['routes']): _list = [] for s in users[uid]['routes']: _list.append('🚃 <b>{0}</b>\n' '<i>Выбрать:</i> /st_{1}\n' '<i>Удалить:</i> /fav_{1}\n\n'.format(stations[int(s)], s)) msg = '<b>Ваши остановки</b> \n\n' + ''.join(_list) else: msg = 'Список ваших остановок пуст' return msg def get_user_history(uid): users = storer.restore('users') if len(users[uid]['history']): _list = [] history = users[uid]['history'][:5] for s in history: _list.append('🚃 <b>{0}</b>\n' '<i>Выбрать:</i> /st_{1}\n' '<i>В избранное:</i> /fav_{1}\n\n'.format(stations[int(s)], s)) msg = '<b>Ваша история</b> \n\n' + ''.join(_list) else: msg = 'История пуста' return msg def get_stations_by_char(char): _list = [] for st in invert_stations: if st[0][:1] == char: _list.append('🚃 <b>{0}</b>\n' '<i>Выбрать:</i> /st_{1}\n' '<i>В избранное:</i> /fav_{1}\n\n'.format(st[0], st[1])) if len(_list): msg = '<b>Остановки на {}</b> \n\n{}'.format(char, ''.join(_list)) else: msg = 'Не найдено' return msg default_keyboard = [ ['Найти 🔎'], ['Мои остановки 📖'], ['История 📝'] ] chars = [['1', '4', '7', 'А', 'Б'], ['В', 'Г', 'Д', 'Е', 'Ж'], ['З', 'И', 'К', 'Л', 'М'], ['Н', 'О', 'П', 'Р', 'С'], ['Т', 'У', 'Ф', 'Х', 'Ц'], ['Ч', 'Ш', 'Щ', 'Э', 'Ю'], ['Я', '↩️']] default_keyboard = ReplyKeyboardMarkup(default_keyboard, resize_keyboard=True) chars_keyboard = ReplyKeyboardMarkup(chars)
StarcoderdataPython
1626373
<reponame>marnunez/ezc3d """ Test for file IO """ from pathlib import Path import numpy as np import pytest import ezc3d def test_create_c3d(): c3d = ezc3d.c3d() # Test the header assert c3d['header']['points']['size'] == 0 assert c3d['header']['points']['frame_rate'] == 0.0 assert c3d['header']['points']['first_frame'] == 0 assert c3d['header']['points']['last_frame'] == 0 assert c3d['header']['analogs']['size'] == 0 assert c3d['header']['analogs']['frame_rate'] == 0.0 assert c3d['header']['analogs']['first_frame'] == 0 assert c3d['header']['analogs']['last_frame'] == -1 assert c3d['header']['events']['size'] == 18 assert c3d['header']['events']['events_time'] \ == (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) assert c3d['header']['events']['events_label'] \ == ('', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '') # Test the parameters assert c3d['parameters']['POINT']['USED']['value'][0] == 0 assert c3d['parameters']['POINT']['SCALE']['value'][0] == -1 assert c3d['parameters']['POINT']['RATE']['value'][0] == 0.0 assert c3d['parameters']['POINT']['FRAMES']['value'][0] == 0 assert len(c3d['parameters']['POINT']['LABELS']['value']) == 0 assert len(c3d['parameters']['POINT']['DESCRIPTIONS']['value']) == 0 assert len(c3d['parameters']['POINT']['UNITS']['value']) == 0 assert c3d['parameters']['ANALOG']['USED']['value'][0] == 0 assert len(c3d['parameters']['ANALOG']['LABELS']['value']) == 0 assert len(c3d['parameters']['ANALOG']['DESCRIPTIONS']['value']) == 0 assert c3d['parameters']['ANALOG']['GEN_SCALE']['value'][0] == 1 assert len(c3d['parameters']['ANALOG']['SCALE']['value']) == 0 assert len(c3d['parameters']['ANALOG']['OFFSET']['value']) == 0 assert len(c3d['parameters']['ANALOG']['UNITS']['value']) == 0 assert c3d['parameters']['ANALOG']['RATE']['value'][0] == 0.0 assert len(c3d['parameters']['ANALOG']['FORMAT']['value']) == 0 assert len(c3d['parameters']['ANALOG']['BITS']['value']) == 0 assert c3d['parameters']['FORCE_PLATFORM']['USED']['value'][0] == 0 assert len(c3d['parameters']['FORCE_PLATFORM']['TYPE']['value']) == 0 assert np.all(c3d['parameters']['FORCE_PLATFORM']['ZERO']['value'] == (1, 0)) assert len(c3d['parameters']['FORCE_PLATFORM']['CORNERS']['value']) == 0 assert len(c3d['parameters']['FORCE_PLATFORM']['ORIGIN']['value']) == 0 assert len(c3d['parameters']['FORCE_PLATFORM']['CHANNEL']['value']) == 0 assert len(c3d['parameters']['FORCE_PLATFORM']['CAL_MATRIX']['value']) == 0 # Test the data assert c3d['data']['points'].shape == (4, 0, 0) assert c3d['data']['analogs'].shape == (1, 0, 0) def test_create_and_read_c3d(): # Load an empty c3d structure c3d = ezc3d.c3d() # Fill it with random data point_names = ('point1', 'point2', 'point3', 'point4', 'point5') point_frame_rate = 100 n_second = 2 points = np.random.rand(3, len(point_names), point_frame_rate * n_second) analog_names = ('analog1', 'analog2', 'analog3', 'analog4', 'analog5', 'analog6') analog_frame_rate = 1000 analogs = np.random.rand(1, len(analog_names), analog_frame_rate * n_second) c3d['parameters']['POINT']['RATE']['value'] = [100] c3d['parameters']['POINT']['LABELS']['value'] = point_names c3d['data']['points'] = points c3d['parameters']['ANALOG']['RATE']['value'] = [1000] c3d['parameters']['ANALOG']['LABELS']['value'] = analog_names c3d['data']['analogs'] = analogs # Add a custom parameter to the POINT group point_new_param = ("POINT", "newPointParam", (1.0, 2.0, 3.0)) c3d.add_parameter(point_new_param[0], point_new_param[1], point_new_param[2]) # Add a custom parameter a new group new_group_param = ("NewGroup", "newGroupParam", ["MyParam1", "MyParam2"]) c3d.add_parameter(new_group_param[0], new_group_param[1], new_group_param[2]) # Write and read back the data c3d.write("temporary.c3d") c3d_to_compare = ezc3d.c3d("temporary.c3d") # Test the header assert c3d_to_compare['header']['points']['size'] == len(point_names) assert c3d_to_compare['header']['points']['frame_rate'] == point_frame_rate assert c3d_to_compare['header']['points']['first_frame'] == 0 assert c3d_to_compare['header']['points']['last_frame'] == point_frame_rate * n_second - 1 assert c3d_to_compare['header']['analogs']['size'] == len(analog_names) assert c3d_to_compare['header']['analogs']['frame_rate'] == analog_frame_rate assert c3d_to_compare['header']['analogs']['first_frame'] == 0 assert c3d_to_compare['header']['analogs']['last_frame'] == analog_frame_rate * n_second - 1 assert c3d_to_compare['header']['events']['size'] == 18 assert c3d_to_compare['header']['events']['events_time'] == \ (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) assert c3d_to_compare['header']['events']['events_label'] == \ ('', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '') # Test the parameters assert c3d_to_compare['parameters']['POINT']['USED']['value'][0] == len(point_names) assert c3d_to_compare['parameters']['POINT']['SCALE']['value'][0] == -1.0 assert c3d_to_compare['parameters']['POINT']['RATE']['value'][0] == point_frame_rate assert c3d_to_compare['parameters']['POINT']['FRAMES']['value'][0] == point_frame_rate * n_second assert c3d_to_compare['parameters']['POINT']['LABELS']['value'] == list(point_names) assert c3d_to_compare['parameters']['POINT']['DESCRIPTIONS']['value'] == ["" for _ in point_names] assert len(c3d_to_compare['parameters']['POINT']['UNITS']['value']) == 0 assert np.all(c3d_to_compare['parameters'][point_new_param[0].upper()][point_new_param[1].upper()]['value'] == point_new_param[2]) assert c3d_to_compare['parameters']['ANALOG']['USED']['value'][0] == len(analog_names) assert c3d_to_compare['parameters']['ANALOG']['LABELS']['value'] == list(analog_names) assert c3d_to_compare['parameters']['ANALOG']['DESCRIPTIONS']['value'] == ["" for _ in analog_names] assert c3d_to_compare['parameters']['ANALOG']['GEN_SCALE']['value'][0] == 1 assert np.all(c3d_to_compare['parameters']['ANALOG']['SCALE']['value'] == tuple([1.0 for _ in analog_names])) assert np.all(c3d_to_compare['parameters']['ANALOG']['OFFSET']['value'] == tuple([0 for _ in analog_names])) assert c3d_to_compare['parameters']['ANALOG']['UNITS']['value'] == ["" for _ in analog_names] assert c3d_to_compare['parameters']['ANALOG']['RATE']['value'][0] == analog_frame_rate assert len(c3d_to_compare['parameters']['ANALOG']['FORMAT']['value']) == 0 assert len(c3d_to_compare['parameters']['ANALOG']['BITS']['value']) == 0 assert c3d_to_compare['parameters']['FORCE_PLATFORM']['USED']['value'][0] == 0 assert len(c3d_to_compare['parameters']['FORCE_PLATFORM']['TYPE']['value']) == 0 assert np.all(c3d_to_compare['parameters']['FORCE_PLATFORM']['ZERO']['value'] == (1, 0)) assert len(c3d_to_compare['parameters']['FORCE_PLATFORM']['CORNERS']['value']) == 0 assert len(c3d_to_compare['parameters']['FORCE_PLATFORM']['ORIGIN']['value']) == 0 assert len(c3d_to_compare['parameters']['FORCE_PLATFORM']['CHANNEL']['value']) == 0 assert len(c3d_to_compare['parameters']['FORCE_PLATFORM']['CAL_MATRIX']['value']) == 0 assert c3d_to_compare['parameters'][new_group_param[0].upper()][new_group_param[1].upper()]['value'] \ == new_group_param[2] # Test the data assert c3d_to_compare['data']['points'].shape == (4, len(point_names), point_frame_rate * n_second) assert c3d_to_compare['data']['analogs'].shape == (1, len(analog_names), analog_frame_rate * n_second) # Compare the read c3d np.testing.assert_almost_equal(c3d_to_compare['data']['points'][0:3, :, :], points) np.testing.assert_almost_equal(c3d_to_compare['data']['analogs'], analogs) def test_create_and_read_c3d_with_nan(): # Load an empty c3d structure c3d = ezc3d.c3d() # Fill it with random data point_names = ('point1', 'point2') point_frame_rate = 100 n_second = 2 points = np.random.rand(3, len(point_names), point_frame_rate * n_second) * np.nan analog_names = ('analog1', 'analog2') analog_frame_rate = 1000 analogs = np.random.rand(1, len(analog_names), analog_frame_rate * n_second) * np.nan c3d['parameters']['POINT']['RATE']['value'] = [100] c3d['parameters']['POINT']['LABELS']['value'] = point_names c3d['data']['points'] = points c3d['parameters']['ANALOG']['RATE']['value'] = [1000] c3d['parameters']['ANALOG']['LABELS']['value'] = analog_names c3d['data']['analogs'] = analogs # Write and read back the data c3d.write("temporary.c3d") c3d_to_compare = ezc3d.c3d("temporary.c3d") # Compare the read c3d np.testing.assert_equal(np.sum(np.isnan(c3d_to_compare['data']['points'])), 3 * len(point_names) * point_frame_rate * n_second) np.testing.assert_equal(np.sum(np.isnan(c3d_to_compare['data']['analogs'])), len(analog_names) * analog_frame_rate * n_second) @pytest.fixture(scope='module', params=["BTS", "Optotrak", "Qualisys", "Vicon"]) def c3d_build_rebuild(request): base_folder = Path("test/c3dTestFiles") orig_file = Path(base_folder / (request.param + ".c3d")) rebuild_file = Path(base_folder / (request.param + "_after.c3d")) original = ezc3d.c3d(orig_file.as_posix()) original.write(rebuild_file.as_posix()) rebuilt = ezc3d.c3d(rebuild_file.as_posix()) yield (original, rebuilt) Path.unlink(rebuild_file) def test_parse_and_rebuild(c3d_build_rebuild): for i in c3d_build_rebuild: assert isinstance(i, ezc3d.c3d) orig, rebuilt = c3d_build_rebuild assert orig == rebuilt def test_parse_and_rebuild_header(c3d_build_rebuild): orig, rebuilt = c3d_build_rebuild assert orig['header'] == rebuilt['header'] def test_parse_and_rebuild_parameters(c3d_build_rebuild): orig, rebuilt = c3d_build_rebuild assert orig['parameters'] == rebuilt['parameters'] def test_parse_and_rebuild_data(c3d_build_rebuild): orig, rebuilt = c3d_build_rebuild assert orig['data'] == rebuilt['data']
StarcoderdataPython
15033
<filename>tests/validation/test_is_subnational1.py import unittest from ebird.api.validation import is_subnational1 class IsSubnational1Tests(unittest.TestCase): """Tests for the is_subnational1 validation function.""" def test_is_subnational1(self): self.assertTrue(is_subnational1("US-NV")) def test_invalid_code_is_not_subnational1(self): self.assertFalse(is_subnational1("U")) self.assertFalse(is_subnational1("US-")) def test_country_is_not_subnational1(self): self.assertFalse(is_subnational1("US")) def test_subnational2_is_not_subnational1(self): self.assertFalse(is_subnational1("US-NV-VMT")) def test_location_is_not_subnational1(self): self.assertFalse(is_subnational1("L123456"))
StarcoderdataPython
3282518
<filename>autoprompt/pre_defined_prompt.py import time import argparse import json import logging from pathlib import Path import random import os import pickle import numpy as np import torch import torch.nn.functional as F from torch.utils.data import DataLoader import transformers from transformers import AutoConfig, AutoModelWithLMHead, AutoTokenizer from tqdm import tqdm import autoprompt.utils as utils logger = logging.getLogger(__name__) class PredictWrapper: """ PyTorch transformers model wrapper. Handles necc. preprocessing of inputs for triggers experiments. """ def __init__(self, model): self._model = model def __call__(self, model_inputs, trigger_ids): # Copy dict so pop operations don't have unwanted side-effects model_inputs = model_inputs.copy() trigger_mask = model_inputs.pop('trigger_mask') predict_mask = model_inputs.pop('predict_mask') model_inputs = replace_trigger_tokens(model_inputs, trigger_ids, trigger_mask) logits, *_ = self._model(**model_inputs) predict_logits = logits.masked_select(predict_mask.unsqueeze(-1)).view(logits.size(0), -1) return predict_logits class AccuracyFn: """ Computing the accuracy when a label is mapped to multiple tokens is difficult in the current framework, since the data generator only gives us the token ids. To get around this we compare the target logp to the logp of all labels. If target logp is greater than all (but) one of the label logps we know we are accurate. """ def __init__(self, tokenizer, label_map, device, tokenize_labels=False): self._all_label_ids = [] self._pred_to_label = [] logger.info(label_map) for label, label_tokens in label_map.items(): self._all_label_ids.append(utils.encode_label(tokenizer, label_tokens, tokenize_labels).to(device)) self._pred_to_label.append(label) logger.info(self._all_label_ids) def __call__(self, predict_logits, gold_label_ids): # Get total log-probability for the true label gold_logp = get_loss(predict_logits, gold_label_ids) # Get total log-probability for all labels bsz = predict_logits.size(0) all_label_logp = [] for label_ids in self._all_label_ids: label_logp = get_loss(predict_logits, label_ids.repeat(bsz, 1)) all_label_logp.append(label_logp) all_label_logp = torch.stack(all_label_logp, dim=-1) _, predictions = all_label_logp.max(dim=-1) predictions = [self._pred_to_label[x] for x in predictions.tolist()] # Add up the number of entries where loss is greater than or equal to gold_logp. ge_count = all_label_logp.le(gold_logp.unsqueeze(-1)).sum(-1) correct = ge_count.le(1) # less than in case of num. prec. issues return correct.float() # TODO: @rloganiv - This is hacky. Replace with something sensible. def predict(self, predict_logits): bsz = predict_logits.size(0) all_label_logp = [] for label_ids in self._all_label_ids: label_logp = get_loss(predict_logits, label_ids.repeat(bsz, 1)) all_label_logp.append(label_logp) all_label_logp = torch.stack(all_label_logp, dim=-1) _, predictions = all_label_logp.max(dim=-1) predictions = [self._pred_to_label[x] for x in predictions.tolist()] return predictions def load_pretrained(model_name): """ Loads pretrained HuggingFace config/model/tokenizer, as well as performs required initialization steps to facilitate working with triggers. """ config = AutoConfig.from_pretrained(model_name) model = AutoModelWithLMHead.from_pretrained(model_name) model.eval() tokenizer = AutoTokenizer.from_pretrained(model_name, add_prefix_space=True) utils.add_task_specific_tokens(tokenizer) return config, model, tokenizer def set_seed(seed: int): """Sets the relevant random seeds.""" random.seed(seed) np.random.seed(seed) torch.random.manual_seed(seed) torch.cuda.manual_seed(seed) def replace_trigger_tokens(model_inputs, trigger_ids, trigger_mask): """Replaces the trigger tokens in input_ids.""" out = model_inputs.copy() input_ids = model_inputs['input_ids'] trigger_ids = trigger_ids.repeat(trigger_mask.size(0), 1) try: filled = input_ids.masked_scatter(trigger_mask, trigger_ids) except RuntimeError: filled = input_ids out['input_ids'] = filled return out def get_loss(predict_logits, label_ids): predict_logp = F.log_softmax(predict_logits, dim=-1) target_logp = predict_logp.gather(-1, label_ids) target_logp = target_logp - 1e32 * label_ids.eq(0) # Apply mask target_logp = torch.logsumexp(target_logp, dim=-1) return -target_logp def run_model(args): set_seed(args.seed) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') logger.info('Loading model, tokenizer, etc.') config, model, tokenizer = load_pretrained(args.model_name) model.to(device) predictor = PredictWrapper(model) if args.saved_label_map is not None: with open(args.saved_label_map, 'rb') as f: label_token_list = pickle.load(f) label_map = {str(lbl_id): label_tokens for lbl_id, label_tokens in enumerate(label_token_list)} logger.info(f"Label map: {label_map}") else: logger.info('No label map') exit(-1) templatizer = utils.TriggerTemplatizer( args.template, config, tokenizer, label_map=label_map, label_field=args.label_field, tokenize_labels=args.tokenize_labels, add_special_tokens=False, use_ctx=args.use_ctx ) # Obtain the initial trigger tokens and label mapping if args.initial_trigger_path: with open(args.initial_trigger_path, 'rb') as f: triggers = pickle.load(f) best_triggers = tokenizer.tokenize(triggers[0]) print(f"best_triggers = {best_triggers}") trigger_ids = tokenizer.convert_tokens_to_ids(best_triggers) logger.debug(f'Initial trigger: {best_triggers}') logger.debug(f'Trigger ids: {trigger_ids}') assert len(trigger_ids) == templatizer.num_trigger_tokens else: logger.info('No triggers') exit(-1) trigger_ids = torch.tensor(trigger_ids, device=device).unsqueeze(0) # NOTE: Accuracy can otnly be computed if a fixed pool of labels is given, which currently # # requires the label map to be specified. Since producing a label map may be cumbersome (e.g., # # for link prediction asks), we just use (negative) loss as the evaluation metric in these cases. if label_map: evaluation_fn = AccuracyFn(tokenizer, label_map, device) else: evaluation_fn = lambda x, y: -get_loss(x, y) logger.info('Loading datasets') collator = utils.Collator(pad_token_id=tokenizer.pad_token_id) dev_dataset = utils.load_trigger_dataset(args.dev, templatizer, use_ctx=args.use_ctx) dev_loader = DataLoader(dev_dataset, batch_size=args.eval_size, shuffle=False, collate_fn=collator) all_trg_domains = args.trg_domains.split(",") all_test_loaders = [] for trg_domain in all_trg_domains: test_dataset = utils.load_trigger_dataset(Path(os.path.join(args.test, trg_domain, 'test-labeled.tsv')), templatizer, use_ctx=args.use_ctx) test_loader = DataLoader(test_dataset, batch_size=args.eval_size, shuffle=False, collate_fn=collator) all_test_loaders.append((trg_domain, test_loader)) logger.info('Evaluating') numerator = 0 denominator = 0 for model_inputs, labels in tqdm(dev_loader): model_inputs = {k: v.to(device) for k, v in model_inputs.items()} labels = labels.to(device) with torch.no_grad(): predict_logits = predictor(model_inputs, trigger_ids) numerator += evaluation_fn(predict_logits, labels).sum().item() denominator += labels.size(0) best_dev_metric = numerator / (denominator + 1e-13) logger.info(f'Dev metric: {best_dev_metric}') logger.info(f'Trigger tokens: {tokenizer.convert_ids_to_tokens(trigger_ids.squeeze(0))}') logger.info('Testing') best_test_metric = {} for (trg_domain, test_loader) in all_test_loaders: numerator = 0 denominator = 0 for model_inputs, labels in tqdm(test_loader): model_inputs = {k: v.to(device) for k, v in model_inputs.items()} labels = labels.to(device) with torch.no_grad(): predict_logits = predictor(model_inputs, trigger_ids) numerator += evaluation_fn(predict_logits, labels).sum().item() denominator += labels.size(0) best_test_metric[trg_domain] = numerator / (denominator + 1e-13) logger.info(f'test metric - {trg_domain}: {best_test_metric[trg_domain]}') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--dev', type=Path, required=True, help='Dev data path') parser.add_argument('--test', type=str, required=True, help='Test data path') parser.add_argument('--trg_domains', type=str, required=True, help='All test domains seperated with a comma.') parser.add_argument('--template', type=str, help='Template string') parser.add_argument('--saved_label_map', type=Path, default=None, help='label tokens path') # LAMA-specific parser.add_argument('--tokenize-labels', action='store_true', help='If specified labels are split into word pieces.' 'Needed for LAMA probe experiments.') parser.add_argument('--initial_trigger_path', type=Path, default=None, help='Manual prompt path.') parser.add_argument('--initial-trigger', nargs='+', type=str, default=None, help='Manual prompt') parser.add_argument('--label-field', type=str, default='label', help='Name of the label field') parser.add_argument('--bsz', type=int, default=32, help='Batch size') parser.add_argument('--eval-size', type=int, default=256, help='Eval size') parser.add_argument('--model-name', type=str, default='bert-base-cased', help='Model name passed to HuggingFace AutoX classes.') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--limit', type=int, default=None) parser.add_argument('--use-ctx', action='store_true', help='Use context sentences for relation extraction only') parser.add_argument('--debug', action='store_true') args = parser.parse_args() if args.debug: level = logging.DEBUG else: level = logging.INFO logging.basicConfig(level=level) run_model(args)
StarcoderdataPython
66412
# -*- coding: utf-8 -* # Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import requests import os from astropy.coordinates import SkyCoord import astropy.units as u from astropy.table import Table, Column from astropy.io.votable import parse from astroquery import log from astroquery.casda import Casda try: from unittest.mock import Mock, patch, PropertyMock, MagicMock except ImportError: pytest.skip("Install mock for the casda tests.", allow_module_level=True) DATA_FILES = {'CIRCLE': 'cone.xml', 'RANGE': 'box.xml', 'DATALINK': 'datalink.xml', 'RUN_JOB': 'run_job.xml', 'COMPLETED_JOB': 'completed_job.xml', 'DATALINK_NOACCESS': 'datalink_noaccess.xml'} class MockResponse: def __init__(self, content): self.content = content self.text = content.decode() def raise_for_status(self): return first_job_pass = True def get_mockreturn(self, method, url, data=None, timeout=10, files=None, params=None, headers=None, **kwargs): log.debug("get_mockreturn url:{} params:{} kwargs:{}".format(url, params, kwargs)) if kwargs and 'auth' in kwargs: auth = kwargs['auth'] if auth and (auth[0] != 'user' or auth[1] != 'password'): log.debug("Rejecting credentials") return create_auth_failure_response() if 'data/async' in str(url): # Responses for an asynchronous SODA job if str(url).endswith('data/async'): self.first_job_pass = True return create_soda_create_response('111-000-111-000') elif str(url).endswith('/phase') and method == 'POST': key = "RUN_JOB" elif str(url).endswith('111-000-111-000') and method == 'GET': key = "RUN_JOB" if self.first_job_pass else "COMPLETED_JOB" self.first_job_pass = False else: raise ValueError("Unexpected SODA async {} call to url {}".format(method, url)) elif 'datalink' in str(url): if 'cube-244' in str(url): key = 'DATALINK' else: key = 'DATALINK_NOACCESS' else: key = params['POS'].split()[0] if params['POS'] else None filename = data_path(DATA_FILES[key]) log.debug('providing ' + filename) content = open(filename, 'rb').read() return MockResponse(content) def create_soda_create_response(jobid): job_url = 'https://casda.csiro.au/casda_data_access/data/async/' + jobid create_response_headers = [ ['location', job_url] ] create_response = Mock(spec=requests.Response) create_response.configure_mock(status_code=303, message='OK', headers=create_response_headers, url=job_url) return create_response def create_auth_failure_response(): unauthenticated_headers = [ ['WWW-Authenticate', 'Basic realm="ATNF OPAL Login"'] ] create_response = MagicMock(spec=requests.Response) attrs = {'raise_for_status.side_effect': requests.exceptions.HTTPError()} create_response.configure_mock(status_code=401, message='OK', headers=unauthenticated_headers, **attrs) return create_response @pytest.fixture def patch_get(request): try: mp = request.getfixturevalue("monkeypatch") except AttributeError: # pytest < 3 mp = request.getfuncargvalue("monkeypatch") mp.setattr(requests.Session, 'request', get_mockreturn) return mp def data_path(filename): data_dir = os.path.join(os.path.dirname(__file__), 'data') return os.path.join(data_dir, filename) def isclose(value1, value2, abs_tol=1e-09): return abs(value1 - value2) < abs_tol def test_query_region_text_radius(patch_get): ra = 333.9092 dec = -45.8418 radius = 0.5 query_payload = Casda.query_region('22h15m38.2s -45d50m30.5s', radius=radius * u.deg, cache=False, get_query_payload=True) assert isinstance(query_payload, dict) assert 'POS' in query_payload assert query_payload['POS'].startswith('CIRCLE 333') pos_parts = query_payload['POS'].split(' ') assert pos_parts[0] == 'CIRCLE' assert isclose(float(pos_parts[1]), ra, abs_tol=1e-4) assert isclose(float(pos_parts[2]), dec, abs_tol=1e-4) assert isclose(float(pos_parts[3]), radius) assert len(pos_parts) == 4 responses = Casda.query_region('22h15m38.2s -45d50m30.5s', radius=0.5 * u.deg, cache=False) assert isinstance(responses, Table) assert len(responses) == 3 def test_query_region_radius(patch_get): ra = 333.9092 dec = -45.8418 radius = 0.5 centre = SkyCoord(ra, dec, unit=('deg', 'deg')) query_payload = Casda.query_region(centre, radius=radius * u.deg, cache=False, get_query_payload=True) assert isinstance(query_payload, dict) assert 'POS' in query_payload assert query_payload['POS'].startswith('CIRCLE 333') pos_parts = query_payload['POS'].split(' ') assert pos_parts[0] == 'CIRCLE' assert isclose(float(pos_parts[1]), ra, abs_tol=1e-5) assert isclose(float(pos_parts[2]), dec, abs_tol=1e-5) assert isclose(float(pos_parts[3]), radius) assert len(pos_parts) == 4 responses = Casda.query_region(centre, radius=0.5 * u.deg, cache=False) assert isinstance(responses, Table) assert len(responses) == 3 def test_query_region_async_radius(patch_get): ra = 333.9092 dec = -45.8418 radius = 0.5 centre = SkyCoord(ra, dec, unit=('deg', 'deg')) query_payload = Casda.query_region_async(centre, radius=radius * u.deg, cache=False, get_query_payload=True) assert isinstance(query_payload, dict) assert 'POS' in query_payload assert query_payload['POS'].startswith('CIRCLE 333') pos_parts = query_payload['POS'].split(' ') assert pos_parts[0] == 'CIRCLE' assert isclose(float(pos_parts[1]), ra, abs_tol=1e-5) assert isclose(float(pos_parts[2]), dec, abs_tol=1e-5) assert isclose(float(pos_parts[3]), radius) assert len(pos_parts) == 4 responses = Casda.query_region_async(centre, radius=0.5 * u.deg, cache=False) assert isinstance(responses, MockResponse) def test_query_region_box(patch_get): ra = 333.9092 dec = -45.8418 width = 0.5 height = 0.2 centre = SkyCoord(ra, dec, unit=('deg', 'deg')) query_payload = Casda.query_region(centre, width=width * u.deg, height=height * u.deg, cache=False, get_query_payload=True) assert isinstance(query_payload, dict) assert 'POS' in query_payload assert query_payload['POS'].startswith('RANGE 333') pos_parts = query_payload['POS'].split(' ') assert pos_parts[0] == 'RANGE' assert isclose(float(pos_parts[1]), ra - width / 2, abs_tol=1e-5) assert isclose(float(pos_parts[2]), ra + width / 2, abs_tol=1e-5) assert isclose(float(pos_parts[3]), dec - height / 2, abs_tol=1e-5) assert isclose(float(pos_parts[4]), dec + height / 2, abs_tol=1e-5) assert len(pos_parts) == 5 responses = Casda.query_region(centre, width=width * u.deg, height=height * u.deg, cache=False) assert isinstance(responses, Table) assert len(responses) == 2 def test_query_region_async_box(patch_get): ra = 333.9092 dec = -45.8418 width = 0.5 height = 0.2 centre = SkyCoord(ra, dec, unit=('deg', 'deg')) query_payload = Casda.query_region_async(centre, width=width * u.deg, height=height * u.deg, cache=False, get_query_payload=True) assert isinstance(query_payload, dict) assert 'POS' in query_payload assert query_payload['POS'].startswith('RANGE 333') pos_parts = query_payload['POS'].split(' ') assert pos_parts[0] == 'RANGE' assert isclose(float(pos_parts[1]), ra - width / 2, abs_tol=1e-5) assert isclose(float(pos_parts[2]), ra + width / 2, abs_tol=1e-5) assert isclose(float(pos_parts[3]), dec - height / 2, abs_tol=1e-5) assert isclose(float(pos_parts[4]), dec + height / 2, abs_tol=1e-5) assert len(pos_parts) == 5 responses = Casda.query_region_async(centre, width=width * u.deg, height=height * u.deg, cache=False) assert isinstance(responses, MockResponse) def test_filter_out_unreleased(): all_records = parse(data_path('partial_unreleased.xml'), verify='warn').get_first_table().to_table() assert all_records[0]['obs_release_date'] == '2017-08-02T03:51:19.728Z' assert all_records[1]['obs_release_date'] == '2218-01-02T16:51:00.728Z' assert all_records[2]['obs_release_date'] == '' assert len(all_records) == 3 # This should filter out the rows with either a future obs_release_date or no obs_release_date filtered = Casda.filter_out_unreleased(all_records) assert filtered[0]['obs_release_date'] == '2017-08-02T03:51:19.728Z' assert filtered[0]['obs_publisher_did'] == 'cube-502' assert len(filtered) == 1 def test_stage_data_unauthorised(patch_get): table = Table() with pytest.raises(ValueError) as excinfo: Casda.stage_data(table) assert "Credentials must be supplied" in str(excinfo.value) def test_stage_data_empty(patch_get): table = Table() casda = Casda('user', 'password') urls = casda.stage_data(table) assert urls == [] def test_stage_data_invalid_credentials(patch_get): prefix = 'https://somewhere/casda/datalink/links?' access_urls = [prefix + 'cube-220'] table = Table([Column(data=access_urls, name='access_url')]) casda = Casda('user', '<PASSWORD>') with pytest.raises(requests.exceptions.HTTPError) as excinfo: casda.stage_data(table) def test_stage_data_no_link(patch_get): prefix = 'https://somewhere/casda/datalink/links?' access_urls = [prefix + 'cube-240'] table = Table([Column(data=access_urls, name='access_url')]) casda = Casda('user', 'password') casda.POLL_INTERVAL = 1 with pytest.raises(ValueError) as excinfo: casda.stage_data(table) assert "You do not have access to any of the requested data files." in str(excinfo.value) def test_stage_data(patch_get): prefix = 'https://somewhere/casda/datalink/links?' access_urls = [prefix + 'cube-244'] table = Table([Column(data=access_urls, name='access_url')]) casda = Casda('user', 'password') casda.POLL_INTERVAL = 1 urls = casda.stage_data(table, verbose=True) assert urls == ['http://casda.csiro.au/download/web/111-000-111-000/askap_img.fits.checksum', 'http://casda.csiro.au/download/web/111-000-111-000/askap_img.fits']
StarcoderdataPython
1663482
<gh_stars>0 """ this is a program intend to let usr to sort list @author: <NAME> """ def insertion_sort(l): """ scan each item in a list and findout if the current position number is less than target """ sorted_list = [] for item_compare in l: for offset, sorted_number in enumerate(sorted_list.copy()): if item_compare <= sorted_number: sorted_list.insert(offset, item_compare) break else: sorted_list.append(item_compare) return sorted_list def list_copy(l): # this is the function using list comprehension return [item for item in l] def list_intersect(l1, l2): # this is a function return two list common item into a list return [item for item in l1 if item in l2] def list_difference(l1, l2): # this is a function return two list difference item into a lisst return [item for item in l1 if item not in l2] def remove_vowels(string): # this is a function return the string without the vowels return "".join([item for item in string if item.lower() not in ['a', 'e', 'i', 'o', 'u']]) def check_pwd(password): # pwd checker return len([item for item in password if item.isupper()]) > 0 and len([item for item in password if item.islower()]) > 0 and len([item for item in password if item.isdigit()]) > 0
StarcoderdataPython
1718375
<reponame>Pcosmin/Optimus from pyspark.sql import DataFrame as SparkDataFrame from dask.dataframe.core import DataFrame as DaskDataFrame from optimus.helpers.columns import check_column_numbers from optimus.helpers.columns import parse_columns from optimus.plots.functions import plot_scatterplot, plot_boxplot, plot_frequency, plot_hist, \ plot_correlation, plot_qqplot def plot(self): df = self class Plot: @staticmethod def hist(columns=None, buckets=10, output_format="plot", output_path=None): """ Plot histogram :param columns: Columns to be printed :param buckets: Number of buckets :param output_format: :param output_path: path where the image is going to be saved :return: """ columns = parse_columns(self, columns) data = self.cols.hist(columns, buckets) for col_name in data.keys(): plot_hist({col_name: data[col_name]["hist"]}, output=output_format, path=output_path) @staticmethod def scatter(columns=None, buckets=30, output_format="plot", output_path=None): """ Plot scatter :param columns: columns to be printed :param buckets: number of buckets :param output_format: :param output_path: path where the image is going to be saved :return: """ columns = parse_columns(self, columns, filter_by_column_dtypes=df.constants.NUMERIC_TYPES) check_column_numbers(columns, "*") data = self.cols.scatter(columns, buckets) plot_scatterplot(data, output=output_format, path=output_path) @staticmethod def box(columns=None, output_format="plot", output_path=None): """ Plot boxplot :param columns: Columns to be printed :param output_format: :param output_path: path where the image is going to be saved :return: """ columns = parse_columns(self, columns, filter_by_column_dtypes=df.constants.NUMERIC_TYPES) check_column_numbers(columns, "*") for col_name in columns: stats = self.cols.boxplot(col_name) plot_boxplot({col_name: stats}, output=output_format, path=output_path) @staticmethod def frequency(columns=None, buckets=10, output_format="plot", output_path=None): """ Plot frequency chart :param columns: Columns to be printed :param buckets: Number of buckets :param output_format: :param output_path: path where the image is going to be saved :return: """ columns = parse_columns(self, columns) data = self.cols.frequency(columns, buckets) for k, v in data.items(): plot_frequency({k: v}, output=output_format, path=output_path) @staticmethod def correlation(col_name, method="pearson", output_format="plot", output_path=None): """ Compute the correlation matrix for the input data set of Vectors using the specified method. Method mapped from pyspark.ml.stat.Correlation. :param col_name: The name of the column for which the correlation coefficient needs to be computed. :param method: String specifying the method to use for computing correlation. Supported: pearson (default), spearman. :param output_format: Output image format :param output_path: Output path :return: Heatmap plot of the corr matrix using seaborn. """ cols_data = self.cols.correlation(col_name, method, output="array") plot_correlation(cols_data, output=output_format, path=output_path) @staticmethod def qqplot(columns, n=100, output_format="plot", output_path=None): """ QQ plot :param columns: :param n: Sample size :param output_format: Output format :param output_path: Path to the output file :return: """ df = self columns = parse_columns(self, cols_args=columns, filter_by_column_dtypes=df.constants.NUMERIC_TYPES) if columns is not None: sample_data = df.ext.sample(n=n, random=True) for col_name in columns: plot_qqplot(col_name, sample_data, output=output_format, path=output_path) return Plot() SparkDataFrame.plot = property(plot) DaskDataFrame.plot = property(plot)
StarcoderdataPython
122453
<filename>min_heap.py<gh_stars>1-10 #!/usr/bin/env python # encoding: utf-8 ''' @author: <NAME> @license: (C) Copyright @ <NAME> @contact: <EMAIL> @file: min_heap.py @time: 2019/4/29 20:23 @desc: ''' # please see the comments in max_heap.py def min_heap(array): if not array: return None length = len(array) if length == 1: return array for i in range(length // 2 - 1, -1, -1): current_idx = i temp = array[current_idx] flag = False while not flag and 2 * current_idx + 1 < length: left_idx = 2 * current_idx + 1 idx = left_idx if left_idx + 1 < length and array[left_idx] > array[left_idx + 1]: idx = left_idx + 1 if temp > array[idx]: array[current_idx] = array[idx] current_idx = idx else: flag = True array[current_idx] = temp if __name__ == '__main__': array = [7,6,5,4,3,2,1] min_heap(array) print(array)
StarcoderdataPython
3244994
""" Picklify is a function that works similar to memoization; it is meant for functions that return a dictionary. Often, such functions will parse a file to generate a dictionary that maps certain keys to values. To save on such overhead costs, we "picklify" them the first time they are called (save the dictionary in a pickle file), and then simply load the dictionary from the saved pickle files the next time around. """ import pickle import sys from pathlib import Path from .config import PICKLE_PATH def picklify(dict_generator, *args, **kwargs): """ Given a function that returns an object such as a dictionary (only dict fully supported), returns the dictionary generated by the function. The function is only called if it has not been "picklified" (passed as an argument to this function) before. Otherwise, its cached dictionary is returned instead. Thus getting the dicttionary by wrapping this function speeds up the dictionary creation overall. Note that this function should not be called by two different functions with the same name. :param dict_generator: the function which generates a dictionary. :param *args: Any args to pass to the dictionary :param **kwargs: Any keyword args to pass to the dictionary. :returns: dictionary returned by dict_generator(). """ # Danger! Never call picklify with functions that have the same name! pickle_path = f"{PICKLE_PATH}/{dict_generator.__name__}.pickle" try: with open(pickle_path, "rb") as pickle_handle: dict_to_return = pickle.load(pickle_handle) except FileNotFoundError: dict_to_return = dict_generator(*args, **kwargs) try: Path(pickle_path).parent.mkdir(parents=True, exist_ok=True) with open(pickle_path, "wb") as pickle_handle: pickle.dump( dict_to_return, pickle_handle, protocol=pickle.HIGHEST_PROTOCOL, ) except PermissionError: print( "Caching failed due to permission errors...", file=sys.stderr ) return dict_to_return
StarcoderdataPython
3333379
#!/usr/bin/env python3 # Copyright (C) 2021, RTE (http://www.rte-france.com) # SPDX-License-Identifier: CC-BY-4.0 """ Script to test Pacemaker module: stop VM """ from vm_manager.helpers.pacemaker import Pacemaker VM_NAME = "vm1" SLEEP = 1 if __name__ == "__main__": with Pacemaker(VM_NAME) as p: state = p.show() print(VM_NAME + " state: " + state) if state == "Started": print("Stop " + VM_NAME) p.stop() p.wait_for("Stopped") print("VM " + VM_NAME + " stopped") else: raise Exception("Machine is already stopped")
StarcoderdataPython
1779302
# Based on the 'util/collect_env.py' script from PyTorch. # <https://github.com/pytorch/pytorch> # # From PyTorch: # # Copyright (c) 2016- Facebook, Inc (<NAME>) # Copyright (c) 2014- Facebook, Inc (<NAME>) # Copyright (c) 2011-2014 Idiap Research Institute (<NAME>) # Copyright (c) 2012-2014 Deepmind Technologies (<NAME>) # Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu) # Copyright (c) 2011-2013 NYU (<NAME>) # Copyright (c) 2006-2010 NEC Laboratories America (<NAME>, <NAME>, <NAME>, <NAME>) # Copyright (c) 2006 Idiap Research Institute (<NAME>) # Copyright (c) 2001-2004 Idiap Research Institute (<NAME>, <NAME>, <NAME>) # # From Caffe2: # # Copyright (c) 2016-present, Facebook Inc. All rights reserved. # # All contributions by Facebook: # Copyright (c) 2016 Facebook Inc. # # All contributions by Google: # Copyright (c) 2015 Google Inc. # All rights reserved. # # All contributions by Yangqing Jia: # Copyright (c) 2015 Yangqing Jia # All rights reserved. # # All contributions by Kakao Brain: # Copyright 2019-2020 Kakao Brain # # All contributions by Cruise LLC: # Copyright (c) 2022 Cruise LLC. # All rights reserved. # # All contributions from Caffe: # Copyright(c) 2013, 2014, 2015, the respective contributors # All rights reserved. # # All other contributions: # Copyright(c) 2015, 2016 the respective contributors # All rights reserved. # # Caffe2 uses a copyright model similar to Caffe: each contributor holds # copyright over their contributions to Caffe2. The project versioning records # all such contribution and copyright details. If a contributor wants to further # mark their specific copyright on a particular contribution, they should # indicate their copyright solely in the commit message of the change when it is # committed. # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories America # and IDIAP Research Institute nor the names of its contributors may be # used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # from __future__ import print_function # Unlike the rest of the PyTorch this file must be python2 compliant. # This script outputs relevant system environment info # Run it with `python collect_env.py`. import locale import os import re import subprocess import sys from collections import namedtuple try: import compiler_gym COMPILER_GYM_AVAILABLE = True except (ImportError, NameError, AttributeError, OSError): COMPILER_GYM_AVAILABLE = False # System Environment Information SystemEnv = namedtuple( "SystemEnv", [ "compiler_gym_version", "is_debug_build", "gcc_version", "clang_version", "cmake_version", "os", "libc_version", "python_version", "python_platform", "pip_version", # 'pip' or 'pip3' "pip_packages", "conda_packages", ], ) def run(command): """Returns (return-code, stdout, stderr)""" p = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True ) raw_output, raw_err = p.communicate() rc = p.returncode if get_platform() == "win32": enc = "oem" else: enc = locale.getpreferredencoding() output = raw_output.decode(enc) err = raw_err.decode(enc) return rc, output.strip(), err.strip() def run_and_read_all(run_lambda, command): """Runs command using run_lambda; reads and returns entire output if rc is 0""" rc, out, _ = run_lambda(command) if rc != 0: return None return out def run_and_parse_first_match(run_lambda, command, regex): """Runs command using run_lambda, returns the first regex match if it exists""" rc, out, _ = run_lambda(command) if rc != 0: return None match = re.search(regex, out) if match is None: return None return match.group(1) def run_and_return_first_line(run_lambda, command): """Runs command using run_lambda and returns first line if output is not empty""" rc, out, _ = run_lambda(command) if rc != 0: return None return out.split("\n")[0] def get_conda_packages(run_lambda): conda = os.environ.get("CONDA_EXE", "conda") out = run_and_read_all(run_lambda, conda + " list") if out is None: return out # Comment starting at beginning of line comment_regex = re.compile(r"^#.*\n") return re.sub(comment_regex, "", out) def get_gcc_version(run_lambda): return run_and_parse_first_match(run_lambda, "gcc --version", r"gcc (.*)") def get_clang_version(run_lambda): return run_and_parse_first_match( run_lambda, "clang --version", r"clang version (.*)" ) def get_cmake_version(run_lambda): return run_and_parse_first_match(run_lambda, "cmake --version", r"cmake (.*)") def get_platform(): if sys.platform.startswith("linux"): return "linux" elif sys.platform.startswith("win32"): return "win32" elif sys.platform.startswith("cygwin"): return "cygwin" elif sys.platform.startswith("darwin"): return "darwin" else: return sys.platform def get_mac_version(run_lambda): return run_and_parse_first_match(run_lambda, "sw_vers -productVersion", r"(.*)") def get_windows_version(run_lambda): system_root = os.environ.get("SYSTEMROOT", "C:\\Windows") wmic_cmd = os.path.join(system_root, "System32", "Wbem", "wmic") findstr_cmd = os.path.join(system_root, "System32", "findstr") return run_and_read_all( run_lambda, "{} os get Caption | {} /v Caption".format(wmic_cmd, findstr_cmd) ) def get_lsb_version(run_lambda): return run_and_parse_first_match( run_lambda, "lsb_release -a", r"Description:\t(.*)" ) def check_release_file(run_lambda): return run_and_parse_first_match( run_lambda, "cat /etc/*-release", r'PRETTY_NAME="(.*)"' ) def get_os(run_lambda): from platform import machine platform = get_platform() if platform == "win32" or platform == "cygwin": return get_windows_version(run_lambda) if platform == "darwin": version = get_mac_version(run_lambda) if version is None: return None return "macOS {} ({})".format(version, machine()) if platform == "linux": # Ubuntu/Debian based desc = get_lsb_version(run_lambda) if desc is not None: return "{} ({})".format(desc, machine()) # Try reading /etc/*-release desc = check_release_file(run_lambda) if desc is not None: return "{} ({})".format(desc, machine()) return "{} ({})".format(platform, machine()) # Unknown platform return platform def get_python_platform(): import platform return platform.platform() def get_libc_version(): import platform if get_platform() != "linux": return "N/A" return "-".join(platform.libc_ver()) def indent(s): return " " + "\n ".join(s.split("\n")) def get_pip_packages(run_lambda): """Returns `pip list` output. Note: will also find conda-installed pytorch and numpy packages.""" # People generally have `pip` as `pip` or `pip3` # But here it is incoved as `python -mpip` def run_with_pip(pip): return run_and_read_all(run_lambda, pip + " list --format=freeze") pip_version = "pip3" if sys.version[0] == "3" else "pip" out = run_with_pip(sys.executable + " -mpip") return pip_version, out def get_cachingallocator_config(): ca_config = os.environ.get("PYTORCH_CUDA_ALLOC_CONF", "") return ca_config def get_env_info(): run_lambda = run pip_version, pip_list_output = get_pip_packages(run_lambda) if COMPILER_GYM_AVAILABLE: version_str = compiler_gym.__version__ # NOTE(cummins): CompilerGym does not yet have a debug string. debug_mode_str = "N/A" else: version_str = debug_mode_str = "N/A" sys_version = sys.version.replace("\n", " ") return SystemEnv( compiler_gym_version=version_str, is_debug_build=debug_mode_str, python_version="{} ({}-bit runtime)".format( sys_version, sys.maxsize.bit_length() + 1 ), python_platform=get_python_platform(), pip_version=pip_version, pip_packages=pip_list_output, conda_packages=get_conda_packages(run_lambda), os=get_os(run_lambda), libc_version=get_libc_version(), gcc_version=get_gcc_version(run_lambda), clang_version=get_clang_version(run_lambda), cmake_version=get_cmake_version(run_lambda), ) env_info_fmt = """ CompilerGym: {compiler_gym_version} Is debug build: {is_debug_build} Python version: {python_version} Python platform: {python_platform} OS: {os} GCC version: {gcc_version} Clang version: {clang_version} CMake version: {cmake_version} Libc version: {libc_version} Versions of all installed libraries: {pip_packages} {conda_packages} """.strip() def pretty_str(envinfo): def replace_nones(dct, replacement="Could not collect"): for key in dct.keys(): if dct[key] is not None: continue dct[key] = replacement return dct def replace_bools(dct, true="Yes", false="No"): for key in dct.keys(): if dct[key] is True: dct[key] = true elif dct[key] is False: dct[key] = false return dct def prepend(text, tag="[prepend]"): lines = text.split("\n") updated_lines = [tag + line for line in lines] return "\n".join(updated_lines) def replace_if_empty(text, replacement="No relevant packages"): if text is not None and len(text) == 0: return replacement return text def maybe_start_on_next_line(string): # If `string` is multiline, prepend a \n to it. if string is not None and len(string.split("\n")) > 1: return "\n{}\n".format(string) return string mutable_dict = envinfo._asdict() # Replace True with Yes, False with No mutable_dict = replace_bools(mutable_dict) # Replace all None objects with 'Could not collect' mutable_dict = replace_nones(mutable_dict) # If either of these are '', replace with 'No relevant packages' mutable_dict["pip_packages"] = replace_if_empty(mutable_dict["pip_packages"]) mutable_dict["conda_packages"] = replace_if_empty(mutable_dict["conda_packages"]) # Tag conda and pip packages with a prefix # If they were previously None, they'll show up as ie '[conda] Could not collect' if mutable_dict["pip_packages"]: mutable_dict["pip_packages"] = prepend( mutable_dict["pip_packages"], " [{}] ".format(envinfo.pip_version) ) if mutable_dict["conda_packages"]: mutable_dict["conda_packages"] = prepend( mutable_dict["conda_packages"], " [conda] " ) return env_info_fmt.format(**mutable_dict) def get_pretty_env_info(): return pretty_str(get_env_info()) def main(): print("Collecting environment information...") print() print(pretty_str(get_env_info())) if __name__ == "__main__": main()
StarcoderdataPython
1685521
from setuptools import setup, find_packages VERSION = "1.0" DESCRIPTION = "DeepTile" LONG_DESCRIPTION = "Large image tiling and stitching algorithm for deep learning libraries." setup( name="deeptile", version=VERSION, author="<NAME>", author_email="<<EMAIL>>", description=DESCRIPTION, long_description_content_type="text/markdown", long_description=LONG_DESCRIPTION, packages=find_packages(), install_requires=['dask', 'dask-image', 'nd2', 'numpy', 'scikit-image', 'tifffile'], keywords=["segmentation", "stitching"], classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "Programming Language :: Python :: 3", "Operating System :: Unix", "Operating System :: MacOS :: MacOS X", "Operating System :: Microsoft :: Windows", ] )
StarcoderdataPython
1771365
<filename>{{cookiecutter.project_slug}}/app/users/managers.py<gh_stars>0 from django.contrib.auth.models import BaseUserManager class UserManager(BaseUserManager): def __create_user(self, email, name, password=<PASSWORD>, is_staff=False, is_active=False, is_superuser=False): if not name: raise ValueError('Users must have a name') if not email: raise ValueError('Users must have an email address') email = self.normalize_email(email) user = self.model(email=email.lower(), name=name, is_staff=is_staff, is_active=is_active, is_superuser=is_superuser) if password is not None: user.set_password(password) else: user.set_unusable_password() user.save(using=self._db) return user def create_user(self, email, name, password): return self.__create_user(email, name, password, is_staff=False, is_active=False, is_superuser=False) def create_superuser(self, email, name, password): return self.__create_user(email, name, password, is_staff=True, is_active=True, is_superuser=True) def get_by_natural_key(self, email): return self.get(email__iexact=self.normalize_email(email).lower()) def create(self, **kwargs): """ Important to have this to get factories working by default """ return self.create_user(**kwargs)
StarcoderdataPython
3235248
''' 超分辨率数据库 ''' import os import glob import imageio import cv2 import numpy as np from torch.utils.data import Dataset, DataLoader # 来自 sr_utils def im_to_batch(im, sub_im_hw=(640, 640)): ''' 输入一张图像,输出分块图像序列 :param im: np.array [h, w, c] :param sub_im_hw: 分块大小 :return: ''' ori_hw = im.shape[:2] h_c = int(np.ceil(ori_hw[0] / sub_im_hw[0])) w_c = int(np.ceil(ori_hw[1] / sub_im_hw[1])) sub_ims = [] for h_i in range(h_c): for w_i in range(w_c): nim = im[sub_im_hw[0] * h_i: sub_im_hw[0] * (h_i + 1), sub_im_hw[1] * w_i: sub_im_hw[1] * (w_i + 1)] sub_ims.append(nim) return sub_ims, (h_c, w_c) def padding_im_with_multiples_of_n(im, n=32, borderType=cv2.BORDER_CONSTANT, value=None): h_pad = im.shape[0] % n w_pad = im.shape[1] % n if h_pad > 0: h_pad = n - h_pad if w_pad > 0: w_pad = n - w_pad im = cv2.copyMakeBorder(im, 0, h_pad, 0, w_pad, borderType, value=value) return im, [h_pad, w_pad] class SrDatasetReader(Dataset): def __init__(self, path=r'../datasets/faces', img_hw=(128, 128), iter_count=1000000): # assert mini_dataset >= 0, 'mini_dataset must be equal or big than 0' # self.use_random = use_random suffix = {'.jpg', '.png', '.bmp'} self.imgs_path = [] # for p in glob.iglob('%s/**' % path, recursive=True): # if os.path.splitext(p)[1].lower() in suffix: # self.imgs_path.append(p) for p in os.listdir(path): if os.path.splitext(p)[1].lower() in suffix: self.imgs_path.append(os.path.join(path, p)) # if mini_dataset > 0: # np.random.shuffle(self.imgs_path) # self.imgs_path = self.imgs_path[:mini_dataset] self.img_hw = img_hw self.iter_count = iter_count self.cache = [] # self.random_horizontal_flip = random_horizontal_flip def __getitem__(self, _): # if self.use_random: # im = center_crop(im) # im = cv2.resize(im, self.img_hw, interpolation=cv2.INTER_CUBIC) # if self.random_horizontal_flip and np.random.uniform() > 0.5: # im = np.array(im[:, ::-1]) if len(self.cache) == 0: item = np.random.randint(0, len(self.imgs_path)) impath = self.imgs_path[item] im = imageio.imread(impath) if im.ndim == 2: im = np.tile(im[..., None], (1, 1, 3)) elif im.shape[-1] == 4: im = im[..., :3] # 根据边长比例,自动缩放 # 缩放最大比例为1 h_scale_min = self.img_hw[0] / im.shape[0] w_scale_min = self.img_hw[1] / im.shape[1] scale_percent = np.random.uniform(min(h_scale_min, w_scale_min, 1.), 1.) dst_wh = (int(im.shape[1] * scale_percent), int(im.shape[0] * scale_percent)) im = cv2.resize(im, dst_wh, interpolation=cv2.INTER_AREA) # 填充,确保图像边长为要求图像大小的倍数 h_pad = im.shape[0] % self.img_hw[0] w_pad = im.shape[1] % self.img_hw[1] if h_pad > 0: h_pad = self.img_hw[0] - h_pad if w_pad > 0: w_pad = self.img_hw[1] - w_pad im = cv2.copyMakeBorder(im, 0, h_pad, 0, w_pad, cv2.BORDER_CONSTANT, value=0.) ca = im_to_batch(im, self.img_hw)[0] self.cache.extend(ca) im = self.cache.pop(0) return im def __len__(self): # if self.use_random: # return self.iter_count # else: return self.iter_count if __name__ == '__main__': data = SrDatasetReader(r'../datasets/绮丽') for i in range(len(data)): a = data[i] print(a.shape) if a.shape != (128, 128, 3): raise AssertionError('img shape is not equal (3, 128, 128)') cv2.imshow('test', cv2.cvtColor(a, cv2.COLOR_RGB2BGR)) cv2.waitKey(16)
StarcoderdataPython
15214
from os import path import autolens as al import autolens.plot as aplt from test_autogalaxy.simulators.imaging import instrument_util test_path = path.join("{}".format(path.dirname(path.realpath(__file__))), "..", "..") def pixel_scale_from_instrument(instrument): """ Returns the pixel scale from an instrument type based on real observations. These options are representative of VRO, Euclid, HST, over-sampled HST and Adaptive Optics image. Parameters ---------- instrument : str A string giving the resolution of the desired instrument (VRO | Euclid | HST | HST_Up | AO). """ if instrument in "vro": return (0.2, 0.2) elif instrument in "euclid": return (0.1, 0.1) elif instrument in "hst": return (0.05, 0.05) elif instrument in "hst_up": return (0.03, 0.03) elif instrument in "ao": return (0.01, 0.01) else: raise ValueError("An invalid instrument was entered - ", instrument) def grid_from_instrument(instrument): """ Returns the `Grid` from an instrument type based on real observations. These options are representative of VRO, Euclid, HST, over-sampled HST and Adaptive Optics image. Parameters ---------- instrument : str A string giving the resolution of the desired instrument (VRO | Euclid | HST | HST_Up | AO). """ if instrument in "vro": return al.GridIterate.uniform(shape_2d=(80, 80), pixel_scales=0.2) elif instrument in "euclid": return al.GridIterate.uniform(shape_2d=(120, 120), pixel_scales=0.1) elif instrument in "hst": return al.GridIterate.uniform(shape_2d=(200, 200), pixel_scales=0.05) elif instrument in "hst_up": return al.GridIterate.uniform(shape_2d=(300, 300), pixel_scales=0.03) elif instrument in "ao": return al.GridIterate.uniform(shape_2d=(800, 800), pixel_scales=0.01) else: raise ValueError("An invalid instrument was entered - ", instrument) def psf_from_instrument(instrument): """ Returns the *PSF* from an instrument type based on real observations. These options are representative of VRO, Euclid, HST, over-sampled HST and Adaptive Optics image. Parameters ---------- instrument : str A string giving the resolution of the desired instrument (VRO | Euclid | HST | HST_Up | AO). """ if instrument in "vro": return al.Kernel.from_gaussian( shape_2d=(31, 31), sigma=0.5, pixel_scales=0.2, renormalize=True ) elif instrument in "euclid": return al.Kernel.from_gaussian( shape_2d=(31, 31), sigma=0.1, pixel_scales=0.1, renormalize=True ) elif instrument in "hst": return al.Kernel.from_gaussian( shape_2d=(31, 31), sigma=0.05, pixel_scales=0.05, renormalize=True ) elif instrument in "hst_up": return al.Kernel.from_gaussian( shape_2d=(31, 31), sigma=0.05, pixel_scales=0.03, renormalize=True ) elif instrument in "ao": return al.Kernel.from_gaussian( shape_2d=(31, 31), sigma=0.025, pixel_scales=0.01, renormalize=True ) else: raise ValueError("An invalid instrument was entered - ", instrument) def simulator_from_instrument(instrument): """ Returns the *Simulator* from an instrument type based on real observations. These options are representative of VRO, Euclid, HST, over-sampled HST and Adaptive Optics image. Parameters ---------- instrument : str A string giving the resolution of the desired instrument (VRO | Euclid | HST | HST_Up | AO). """ grid = grid_from_instrument(instrument=instrument) psf = psf_from_instrument(instrument=instrument) if instrument in "vro": return al.SimulatorImaging( exposure_time=100.0, psf=psf, background_sky_level=1.0, add_poisson_noise=True, ) elif instrument in "euclid": return al.SimulatorImaging( exposure_time=2260.0, psf=psf, background_sky_level=1.0, add_poisson_noise=True, ) elif instrument in "hst": return al.SimulatorImaging( exposure_time=2000.0, psf=psf, background_sky_level=1.0, add_poisson_noise=True, ) elif instrument in "hst_up": return al.SimulatorImaging( exposure_time=2000.0, psf=psf, background_sky_level=1.0, add_poisson_noise=True, ) elif instrument in "ao": return al.SimulatorImaging( exposure_time=1000.0, psf=psf, background_sky_level=1.0, add_poisson_noise=True, ) else: raise ValueError("An invalid instrument was entered - ", instrument) def simulate_imaging_from_instrument(instrument, dataset_name, galaxies): # Simulate the imaging data, remembering that we use a special image which ensures edge-effects don't # degrade our modeling of the telescope optics (e.al. the PSF convolution). grid = instrument_util.grid_from_instrument(instrument=instrument) simulator = simulator_from_instrument(instrument=instrument) # Use the input galaxies to setup a tracer, which will generate the image for the simulated imaging data. tracer = al.Tracer.from_galaxies(galaxies=galaxies) imaging = simulator.from_tracer_and_grid(tracer=tracer, grid=grid) # Now, lets output this simulated imaging-data to the test_autoarray/simulator folder. test_path = path.join( "{}".format(path.dirname(path.realpath(__file__))), "..", ".." ) dataset_path = path.join(test_path, "dataset", "imaging", dataset_name, instrument) imaging.output_to_fits( image_path=path.join(dataset_path, "image.fits"), psf_path=path.join(dataset_path, "psf.fits"), noise_map_path=path.join(dataset_path, "noise_map.fits"), overwrite=True, ) plotter = aplt.MatPlot2D(output=aplt.Output(path=dataset_path, format="png")) plotter = aplt.MatPlot2D(output=aplt.Output(path=dataset_path, format="png")) aplt.Imaging.subplot_imaging(imaging=imaging, plotter=plotter) aplt.imaging.individual( imaging=imaging, image=True, noise_map=True, psf=True, signal_to_noise_map=True, plotter=plotter, ) aplt.Tracer.subplot_tracer(tracer=tracer, grid=grid, plotter=plotter) aplt.Tracer.figures( tracer=tracer, grid=grid, image=True, source_plane=True, convergence=True, potential=True, deflections=True, plotter=plotter, ) def load_test_imaging(dataset_name, instrument, name=None): pixel_scales = instrument_util.pixel_scale_from_instrument(instrument=instrument) test_path = path.join( "{}".format(path.dirname(path.realpath(__file__))), "..", ".." ) dataset_path = path.join(test_path, "dataset", "imaging", dataset_name, instrument) return al.Imaging.from_fits( image_path=path.join(dataset_path, "image.fits"), psf_path=path.join(dataset_path, "psf.fits"), noise_map_path=path.join(dataset_path, "noise_map.fits"), pixel_scales=pixel_scales, name=name, )
StarcoderdataPython
4800618
import keras.backend as K import numpy as np import matplotlib.pylab as plt import cPickle as pickle import sys import os def find_top9_mean_act(data, Dec, target_layer, feat_map, batch_size=32): """ Find images with highest mean activation args: data (numpy array) the image data shape : (n_samples, n_channels, img_dim1, img_dim2) Dec (DeconvNet) instance of the DeconvNet class target_layer (str) Layer name we want to visualise feat_map (int) index of the filter to visualise batch_size (int) batch size returns: top9 (numpy array) index of the top9 images that activate feat_map """ # Theano function to get the layer output T_in, T_out = Dec[Dec.model.layers[0].name].input, Dec[target_layer].output get_activation = K.function([T_in], T_out) list_max = [] # Loop over batches and store the max activation value for each # image in data for the target layer and target feature map for nbatch in range(data.shape[0] / batch_size): sys.stdout.write("\rProcessing batch %s/%s" % (nbatch + 1, len(range(data.shape[0] / batch_size)))) sys.stdout.flush() X = data[nbatch * batch_size: (nbatch + 1) * batch_size] Dec.model.predict(X) X_activ = get_activation([X])[:, feat_map, :, :] X_sum = np.sum(X_activ, axis=(1,2)) list_max += X_sum.tolist() # Only keep the top 9 activations list_max = np.array(list_max) i_sort = np.argsort(list_max) top9 = i_sort[-9:] print return top9 def get_deconv_images(d_act_path, d_deconv_path, data, Dec): """ Deconvolve images specified in d_act. Then pickle these images for future use args: d_act_path (str) path to the dict that for each target layer and for a selection of feature maps, holds the index of the top9 images activating said feature maps d_deconv_path (str) path to the dict that for each target layer and for a selection of feature maps, holds the deconv result of the top9 images activating said feature maps data (numpy array) the image data shape : (n_samples, n_channels, img_dim1, img_dim2) Dec (DeconvNet) instance of the DeconvNet class """ # Load d_act with open(d_act_path, 'r') as f: d_act = pickle.load(f) # Get the list of target layers list_target = d_act.keys() # Store deconv images in d_deconv d_deconv = {} # Iterate over target layers and feature maps # and store the deconv image for target_layer in list_target: list_feat_map = d_act[target_layer].keys() for feat_map in list_feat_map: top9 = d_act[target_layer][feat_map] X = data[top9] X_out = Dec.get_deconv(X, target_layer, feat_map=feat_map) key = target_layer + "_feat_" + str(feat_map) d_deconv[key] = X_out np.savez("./Data/dict_top9_deconv.npz", **d_deconv) def format_array(arr): """ Utility to format array for tiled plot args: arr (numpy array) shape : (n_samples, n_channels, img_dim1, img_dim2) """ n_channels = arr.shape[1] len_arr = arr.shape[0] assert (n_channels == 1 or n_channels == 3), "n_channels should be 1 (Greyscale) or 3 (Color)" if n_channels == 1: arr = np.repeat(arr, 3, axis=1) shape1, shape2 = arr.shape[-2:] arr = np.transpose(arr, [1, 0, 2, 3]) arr = arr.reshape([3, len_arr, shape1 * shape2]).astype(np.float64) arr = tuple([arr[i] for i in xrange(3)] + [None]) return arr, shape1, shape2 def scale_to_unit_interval(ndar, eps=1e-8): """ Scales all values in the ndarray ndar to be between 0 and 1 """ ndar = ndar.copy() ndar -= ndar.min() ndar *= 1.0 / (ndar.max() + eps) return ndar def tile_raster_images(X, img_shape, tile_shape, tile_spacing=(0, 0), scale_rows_to_unit_interval=True, output_pixel_vals=True): """ Transform an array with one flattened image per row, into an array in which images are reshaped and layed out like tiles on a floor. This function is useful for visualizing datasets whose rows are images, and also columns of matrices for transforming those rows (such as the first layer of a neural net). :type X: a 2-D ndarray or a tuple of 4 channels, elements of which can be 2-D ndarrays or None; :param X: a 2-D array in which every row is a flattened image. :type img_shape: tuple; (height, width) :param img_shape: the original shape of each image :type tile_shape: tuple; (rows, cols) :param tile_shape: the number of images to tile (rows, cols) :param output_pixel_vals: if output should be pixel values (i.e. int8 values) or floats :param scale_rows_to_unit_interval: if the values need to be scaled before being plotted to [0,1] or not :returns: array suitable for viewing as an image. (See:`Image.fromarray`.) :rtype: a 2-d array with same dtype as X. """ assert len(img_shape) == 2 assert len(tile_shape) == 2 assert len(tile_spacing) == 2 out_shape = [(ishp + tsp) * tshp - tsp for ishp, tshp, tsp in zip(img_shape, tile_shape, tile_spacing)] if isinstance(X, tuple): assert len(X) == 4 # Create an output numpy ndarray to store the image if output_pixel_vals: # Convert to uint to make it look like an image indeed out_array = np.zeros((out_shape[0], out_shape[1], 4), dtype='uint8') else: out_array = np.zeros((out_shape[0], out_shape[1], 4), dtype=X.dtype) # colors default to 0, alpha defaults to 1 (opaque) if output_pixel_vals: channel_defaults = [0, 0, 0, 255] else: channel_defaults = [0., 0., 0., 1.] for i in range(4): if X[i] is None: # if channel is None, fill it with zeros of the correct # dtype out_array[:, :, i] = np.zeros(out_shape, dtype='uint8' if output_pixel_vals else out_array.dtype ) + channel_defaults[i] else: # use a recurrent call to compute the channel and store it # in the output out_array[:, :, i] = tile_raster_images( X[i], img_shape, tile_shape, tile_spacing, scale_rows_to_unit_interval, output_pixel_vals) return out_array else: # if we are dealing with only one channel H, W = img_shape Hs, Ws = tile_spacing # generate a matrix to store the output out_array = np.zeros(out_shape, dtype='uint8' if output_pixel_vals else X.dtype) for tile_row in range(tile_shape[0]): for tile_col in range(tile_shape[1]): if tile_row * tile_shape[1] + tile_col < X.shape[0]: if scale_rows_to_unit_interval: # if we should scale values to be between 0 and 1 # do this by calling the `scale_to_unit_interval` # function this_img = scale_to_unit_interval( X[tile_row * tile_shape[1] + tile_col].reshape(img_shape)) else: this_img = X[tile_row * tile_shape[1] + tile_col].reshape(img_shape) # add the slice to the corresponding position in the # output array out_array[ tile_row * (H + Hs): tile_row * (H + Hs) + H, tile_col * (W + Ws): tile_col * (W + Ws) + W ] \ = this_img * (255 if output_pixel_vals else 1) return out_array def plot_max_activation(d_act_path, d_deconv_path, data, target_layer, save=False): """ Plot original images (or cropped versions) and the deconvolution result for images specified in d_act_path / d_dedeconv_path args: d_act_path (str) path to the dict that for each target layer and for a selection of feature maps, holds the index of the top9 images activating said feature maps d_deconv_path (str) path to the dict that for each target layer and for a selection of feature maps, holds the deconv result of the top9 images activating said feature maps data (numpy array) the image data shape : (n_samples, n_channels, img_dim1, img_dim2) target_layer (str) name of the layer we want to visualise save (bool) whether or not to save the result to a Figures folder """ # Load d_deconv d_deconv = {} arr_deconv = np.load(d_deconv_path) for key in arr_deconv.keys(): layer, fmap = key.split("_feat_") fmap = int(fmap) try: d_deconv[layer][fmap] = arr_deconv[key] except KeyError: d_deconv[layer] = {fmap: arr_deconv[key]} # Load d_act with open(d_act_path, 'r') as f: d_act = pickle.load(f) # Get the list of feature maps list_feat_map = d_act[target_layer].keys() # We'll crop images to identify the region # the neuron has activated on # dict to store cropped images d_crop_deconv = {i: [] for i in list_feat_map} d_crop_ori = {i: [] for i in list_feat_map} # This will hold the image dimensions max_delta_x = 0 max_delta_y = 0 # To crop images: # First loop to get the largest image size required (bounding box) for feat_map in list_feat_map: X_deconv = d_deconv[target_layer][feat_map] for k in range(X_deconv.shape[0]): arr = np.argwhere(np.max(X_deconv[k], axis=0)) try: (ystart, xstart), (ystop, xstop) = arr.min(0), arr.max(0) + 1 except ValueError: print "Encountered a dead filter" return delta_x = xstop - xstart delta_y = ystop - ystart if delta_x > max_delta_x: max_delta_x = delta_x if delta_y > max_delta_y: max_delta_y = delta_y # Then loop to crop all images to the same size for feat_map in range(len(list_feat_map)): X_deconv = d_deconv[target_layer][feat_map] X_ori = data[d_act[target_layer][feat_map]] for k in range(X_deconv.shape[0]): arr = np.argwhere(np.max(X_deconv[k], axis=0)) try: (ystart, xstart), (ystop, xstop) = arr.min(0), arr.max(0) + 1 except ValueError: print "Encountered a dead filter" return # Specific case to avoid array boundary issues y_min, y_max = ystart, ystart + max_delta_y if y_max >= X_deconv[k].shape[-2]: y_min = y_min - (y_max - X_deconv[k].shape[-2]) y_max = X_deconv[k].shape[-2] x_min, x_max = xstart, xstart + max_delta_x if x_max >= X_deconv[k].shape[-1]: x_min = x_min - (x_max - X_deconv[k].shape[-1]) x_max = X_deconv[k].shape[-1] # Store the images in the dict arr_deconv = X_deconv[k, :, y_min: y_max, x_min: x_max] d_crop_deconv[feat_map].append(arr_deconv) arr_ori = X_ori[k, :, y_min: y_max, x_min: x_max] d_crop_ori[feat_map].append(arr_ori) d_crop_deconv[feat_map] = np.array(d_crop_deconv[feat_map]) d_crop_ori[feat_map] = np.array(d_crop_ori[feat_map]) # List to hold the images in the tiled plot list_input_img = [] list_output_img = [] # Loop over the feat maps to fill the lists above for feat_map in list_feat_map: arr_ori = d_crop_ori[feat_map] arr_deconv = d_crop_deconv[feat_map] arr_ori, shape1, shape2 = format_array(arr_ori) arr_deconv, shape1, shape2 = format_array(arr_deconv) input_map = tile_raster_images(arr_ori, img_shape=(shape1, shape2), tile_shape=(3, 3), tile_spacing=(1,1), scale_rows_to_unit_interval=True, output_pixel_vals=True) output_map = tile_raster_images(arr_deconv, img_shape=(shape1, shape2), tile_shape=(3, 3), tile_spacing=(1,1), scale_rows_to_unit_interval=True, output_pixel_vals=True) list_input_img.append(input_map) list_output_img.append(output_map) # Format the arrays for the plot arr_ori1 = np.vstack(list_input_img[::2]) arr_ori2 = np.vstack(list_input_img[1::2]) arr_dec1 = np.vstack(list_output_img[::2]) arr_dec2 = np.vstack(list_output_img[1::2]) arr_ori = np.hstack((arr_ori1, arr_dec1)) arr_dec = np.hstack((arr_ori2, arr_dec2)) arr_full = np.hstack((arr_dec, arr_ori)) # RGB/GBR reordering arr_full_copy = arr_full.copy() arr_full[:, :, 0] = arr_full_copy[:, :, 2] arr_full[:, :, 1] = arr_full_copy[:, :, 1] arr_full[:, :, 2] = arr_full_copy[:, :, 0] del arr_full_copy # Plot and prettify plt.imshow(arr_full, aspect='auto') plt.tick_params(axis='both', which='both', bottom='off', top='off', labelbottom='off', right='off', left='off', labelleft='off') plt.xlabel(target_layer, fontsize=26) # plt.axis("off") plt.tight_layout() if save: if not os.path.exists("./Figures/"): os.makedirs("./Figures") plt.savefig("./Figures/%s.png" % target_layer, format='png', dpi=200) else: plt.show() raw_input() def plot_deconv(img_index, data, Dec, target_layer, feat_map, save=False): """ Plot original images (or cropped versions) and the deconvolution result for images specified in img_index, for the target layer and feat_map specified in the arguments args: img_index (list/arr) array or list of index. These are the indices of the images we want to plot data (numpy array) the image data shape : (n_samples, n_channels, img_dim1, img_dim2) Dec (DeconvNet) instance of the DeconvNet class target_layer (str) name of the layer we want to visualise feat_map (int) index of the filter to visualise """ num_img = len(img_index) assert np.isclose(np.sqrt(num_img), int( np.sqrt(num_img))), "len(img_index) must be a perfect square" mosaic_size = int(np.sqrt(num_img)) X_ori = data[img_index] X_deconv = Dec.get_deconv(data[img_index], target_layer, feat_map=feat_map) max_delta_x = 0 max_delta_y = 0 # To crop images: # First loop to get the largest image size required (bounding box) for k in range(X_deconv.shape[0]): arr = np.argwhere(np.max(X_deconv[k], axis=0)) try: (ystart, xstart), (ystop, xstop) = arr.min(0), arr.max(0) + 1 except ValueError: print "Encountered a dead filter, retry with different img/filter" return delta_x = xstop - xstart delta_y = ystop - ystart if delta_x > max_delta_x: max_delta_x = delta_x if delta_y > max_delta_y: max_delta_y = delta_y list_deconv = [] list_ori = [] # Then loop to crop all images to the same size for k in range(X_deconv.shape[0]): arr = np.argwhere(np.max(X_deconv[k], axis=0)) try: (ystart, xstart), (ystop, xstop) = arr.min(0), arr.max(0) + 1 except ValueError: print "Encountered a dead filter, retry with different img/filter" return # Specific case to avoid array boundary issues y_min, y_max = ystart, ystart + max_delta_y if y_max >= X_deconv[k].shape[-2]: y_min = y_min - (y_max - X_deconv[k].shape[-2]) y_max = X_deconv[k].shape[-2] x_min, x_max = xstart, xstart + max_delta_x if x_max >= X_deconv[k].shape[-1]: x_min = x_min - (x_max - X_deconv[k].shape[-1]) x_max = X_deconv[k].shape[-1] # Store the images in the dict arr_deconv = X_deconv[k, :, y_min: y_max, x_min: x_max] arr_ori = X_ori[k, :, y_min: y_max, x_min: x_max] list_ori.append(arr_ori) list_deconv.append(arr_deconv) arr_deconv = np.array(list_deconv) arr_ori = np.array(list_ori) arr_ori, shape1, shape2 = format_array(arr_ori) arr_deconv, _, _ = format_array(arr_deconv) input_map = tile_raster_images(arr_ori, img_shape=(shape1, shape2), tile_shape=(mosaic_size, mosaic_size), tile_spacing=(1, 1), scale_rows_to_unit_interval=True, output_pixel_vals=True) output_map = tile_raster_images(arr_deconv, img_shape=(shape1, shape2), tile_shape=(mosaic_size, mosaic_size), tile_spacing=(1, 1), scale_rows_to_unit_interval=True, output_pixel_vals=True) arr_full = np.append(input_map, output_map, axis=1) # RGB/GBR reordering arr_full_copy = arr_full.copy() arr_full[:, :, 0] = arr_full_copy[:, :, 2] arr_full[:, :, 1] = arr_full_copy[:, :, 1] arr_full[:, :, 2] = arr_full_copy[:, :, 0] del arr_full_copy # Plot and prettify plt.imshow(arr_full, aspect='auto') plt.tick_params(axis='both', which='both', bottom='off', top='off', labelbottom='off', right='off', left='off', labelleft='off') plt.xlabel(target_layer + "Filter: %s" % feat_map, fontsize=26) # plt.axis("off") plt.tight_layout() if save: if not os.path.exists("./Figures/"): os.makedirs("./Figures") plt.savefig("./Figures/sample_%s.png" % target_layer, format='png', dpi=200) else: plt.show() raw_input()
StarcoderdataPython
4806321
import cv2 import scipy import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from datetime import datetime from pprint import pprint from skimage import transform from utils import detect_faces, detect_landmarks, generate_embedding, recognize output_path = 'outputs' test_file = 'videos/ongiocaudayroi1.mp4' result_file = output_path+'/ongiocaudayroi1_detected.mp4' tflite_model_path = 'tflite_models' ishape = [512, 512, 3] ID_map = [ 'shark_do_thi_kim_lien', 'phung_dang_khoa', 'tu_long', 'manh_quynh', 'huong_giang', 'luxstay_van_dung', 'mi_du', 'truong_giang', 'map_vai_phu', 'vo_hoang_yen', 'hoang_thuy_linh', 'dieu_nhi', 'erik', 'le_duong_bao_lam', 'xuan_bac', 'lan_ngoc', 'tran_thanh', 'shark_nguyen_ngoc_thuy', 'duc_phuc', 'hari_won', 'tien_luat', 'tuan_tran', 'shark_pham_thanh_hung', 'miu_le', 'chi_tai', 'shark_nguyen_manh_dung', 'viet_huong', 'le_giang', 'le_tin', 'hong_kim_hanh', 'hoai_linh', 'vi_da', 'shark_nguyen_thanh_viet', 'linh_ngoc_dam'] interpreter1 = tf.lite.Interpreter(model_path=tflite_model_path+'/det_xsml_model.tflite') interpreter1.allocate_tensors() input_details1 = interpreter1.get_input_details() output_details1 = interpreter1.get_output_details() # pprint(input_details1) # pprint(output_details1) interpreter2 = tf.lite.Interpreter(model_path=tflite_model_path+'/ali_model08.tflite') interpreter2.allocate_tensors() input_details2 = interpreter2.get_input_details() output_details2 = interpreter2.get_output_details() # pprint(input_details2) # pprint(output_details2) interpreter3 = tf.lite.Interpreter(model_path=tflite_model_path+'/rec_model.tflite') interpreter3.allocate_tensors() input_details3 = interpreter3.get_input_details() output_details3 = interpreter3.get_output_details() # pprint(input_details2) # pprint(output_details2) cap = cv2.VideoCapture(test_file) cap.set(cv2.CAP_PROP_POS_FRAMES, 10000) # cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1024) # cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 1024) processed_images = [] embedding2d = np.load(output_path+'/embedding2d.npy') while True: # Quit with 'q' press if cv2.waitKey(1) & 0xFF == ord('q'): break success, pix = cap.read() if success is not True: break pix = pix[:, :, :] h, w, _ = pix.shape size = min(h, w) origin_y = 0 origin_x = (w - h)//2 if h > w: origin_y = (h - w)//2 origin_x = 0 pix = pix[origin_y:origin_y+size, origin_x:origin_x+size, :] pix = cv2.resize(pix, (ishape[1], ishape[0])) pix = pix/np.max(pix) pix = pix*255 # print('Start: {}'.format(datetime.now().time())) imgpix = tf.constant(value=pix, dtype='float32') bbox2d = detect_faces( interpreter=interpreter1, input_details=input_details1, output_details=output_details1, pix=imgpix) # print('End: {}'.format(datetime.now().time())) bboxes = [] for y1, x1, y2, x2, _ in bbox2d: h, w = y2 - y1, x2 - x1 y, x = int(y1 + 0.5*h), int(x1 + 0.5*w) half_edge = int(1.1*max(h, w)/2) edge = 2*half_edge y1, x1, y2, x2 = int(y-half_edge), int(x-half_edge), int(y+half_edge), int(x+half_edge) if y1+half_edge < 0 or x1+half_edge < 0 or y2-half_edge > ishape[0] or x2-half_edge > ishape[1]: continue iobject = np.zeros((edge, edge, 3)) _y1, _x1, _y2, _x2 = 0, 0, edge, edge __y1, __x1, __y2, __x2 = y1, x1, y2, x2 if y1 < 0 and y1+half_edge > 0: _y1 = -y1 __y1 = 0 if x1 < 0 and x1+half_edge > 0: _x1 = -x1 __x1 = 0 if y2 > ishape[0] and y2-half_edge < ishape[0]: _y2 = edge - (y2-ishape[0]) __y2 = ishape[0] if x2 > ishape[1] and x2-half_edge < ishape[1]: _x2 = edge - (x2-ishape[1]) __x2 = ishape[1] iobject[_y1:_y2, _x1:_x2, :] = pix[__y1:__y2, __x1:__x2, :] iobject = transform.resize(image=iobject, output_shape=[134, 134]) _iobject = np.mean(iobject, axis=-1, keepdims=True) _iobject = _iobject/np.max(_iobject) _iobject = _iobject*255 _iobject = np.array(_iobject, dtype='int32') _iobject = _iobject[11:-11, 11:-11, :] ya, xa, yb, xb, yc, xc, yd, xd, ye, xe = detect_landmarks( interpreter=interpreter2, input_details=input_details2, output_details=output_details2, pix=_iobject, ishape=[112, 112, 1]) # (5, h, w) likely_face = False eye = ya != 0 or yb != 0 mouth = yc != 0 or yd != 0 left = ya != 0 or yc != 0 right = yb != 0 or yd != 0 left_eye_and_nose = ya != 0 or ye != 0 right_eye_and_nose = yb != 0 or ye != 0 left_mouth_and_nose = yc != 0 or ye != 0 right_mouth_and_nose = yd != 0 or ye != 0 if eye is True or mouth is True or left is True or right is True or left_eye_and_nose is True or right_eye_and_nose is True or left_mouth_and_nose is True or right_mouth_and_nose is True: likely_face = True name = '' iobject = transform.resize(image=iobject, output_shape=[112, 112]) iobject = np.mean(iobject, axis=-1, keepdims=True) iobject = np.concatenate([iobject, iobject, iobject], axis=-1) iobject = np.array(iobject, dtype='int32') embedding1d = generate_embedding( interpreter=interpreter3, input_details=input_details3, output_details=output_details3, pix=iobject) oid = recognize(embedding2d=embedding2d, embedding1d=embedding1d) name = '' if oid == -1 else ID_map[oid] if likely_face is not True and name == '': continue scale = edge/112 ya, xa = y1 + int(scale*ya), x1 + int(scale*xa) yb, xb = y1 + int(scale*yb), x1 + int(scale*xb) yc, xc = y1 + int(scale*yc), x1 + int(scale*xc) yd, xd = y1 + int(scale*yd), x1 + int(scale*xd) ye, xe = y1 + int(scale*ye), x1 + int(scale*xe) bboxes.append([y1, x1, y2, x2, ya, xa, yb, xb, yc, xc, yd, xd, ye, xe, name]) for y1, x1, y2, x2, ya, xa, yb, xb, yc, xc, yd, xd, ye, xe, name in bboxes: cv2.circle(pix, (int(x1 + 0.5*(x2 - x1)), int(y1 + 0.5*(y2 - y1))), int(0.5*(y2 - y1)), [255, 255, 255], 1) if ya != y1 and yb != y1 and yc != y1 and yd != y1 and ye != y1: cv2.circle(pix, (xa, ya), 4, [255, 255, 0], -1) cv2.circle(pix, (xb, yb), 4, [255, 255, 0], -1) cv2.circle(pix, (xc, yc), 4, [0, 255, 255], -1) cv2.circle(pix, (xd, yd), 4, [0, 255, 255], -1) cv2.circle(pix, (xe, ye), 4, [255, 128, 255], -1) cv2.putText(pix, name, (x1, y1-8), cv2.FONT_HERSHEY_SIMPLEX, 0.5, [255, 255, 0], 1) # Display frame pix = np.array(pix, dtype='uint8') cv2.imshow('frame', pix) processed_images.append(pix) cap.release() cv2.destroyAllWindows() out = cv2.VideoWriter(result_file, cv2.VideoWriter_fourcc(*'MP4V'), 24, (ishape[1], ishape[0])) for i in range(len(processed_images)): out.write(processed_images[i]) out.release()
StarcoderdataPython
62881
import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from perlin import generate_perlin def gaussian_2d_fast(size, amp, mu_x, mu_y, sigma): x = np.arange(0, 1, 1/size[0]) y = np.arange(0, 1, 1/size[1]) xs, ys = np.meshgrid(x,y) dxs = np.minimum(np.abs(xs-mu_x), 1-np.abs(xs-mu_x)) dys = np.minimum(np.abs(ys-mu_y), 1-np.abs(ys-mu_y)) heat_map = amp*np.exp(-(dxs**2+dys**2)/(2*sigma**2)) return heat_map def excitability_matrix(sigma_e, sigma_i, perlin_scale, grid_offset, p_e=0.05, p_i=0.05, we=0.22, g=4, n_row_e=120, n_row_i=60, mu_gwn=0, multiple_connections=True, expected_connectivity=True, is_plot=True): n_pop_e = n_row_e**2 n_pop_i = n_row_i**2 gL = 25 * 1e-9 # Siemens p_max_e = p_e / (2 * np.pi * sigma_e**2) p_max_i = p_i / (2 * np.pi * sigma_i**2) # Two landscapes: e and i. The contribution of each neuron is stored separately in the n_row_e**2 matrices e_landscape = np.zeros((n_row_e**2, n_row_e, n_row_e)) i_landscape = np.zeros((n_row_i**2, n_row_e, n_row_e)) perlin = generate_perlin(n_row_e, perlin_scale, seed_value=0) x = np.arange(0,1,1/n_row_e) y = np.arange(0,1,1/n_row_e) X, Y = np.meshgrid(x,y) U = np.cos(perlin) V = np.sin(perlin) # Excitatory mu_xs = np.arange(0,1,1/n_row_e) mu_ys = np.arange(0,1,1/n_row_e) counter = 0 for i, mu_x in enumerate(mu_xs): for j, mu_y in enumerate(mu_ys): x_offset = grid_offset / n_row_e * np.cos(perlin[i,j]) y_offset = grid_offset / n_row_e * np.sin(perlin[i,j]) mh = gaussian_2d_fast((n_row_e, n_row_e), p_max_e, mu_x+x_offset, mu_y+y_offset, sigma_e) if not multiple_connections: #clip probabilities at 1 e_landscape[counter] = np.minimum(mh, np.ones(mh.shape)) else: e_landscape[counter] = mh counter += 1 # Inhibitory mu_xs = np.arange(1/n_row_e,1+1/n_row_e,1/n_row_i) mu_ys = np.arange(1/n_row_e,1+1/n_row_e,1/n_row_i) counter = 0 for mu_x in mu_xs: for mu_y in mu_ys: mh = gaussian_2d_fast((n_row_e, n_row_e), p_max_i, mu_x, mu_y, sigma_i) if not multiple_connections: #clip probabilities at 1 i_landscape[counter] = np.minimum(mh, np.ones(mh.shape)) else: i_landscape[counter] = mh counter += 1 # in total there should be n_pop_e * (n_pop_e * p_max_e) = 10 368 000 e-connections # and n_pop_i * (n_pop_e * 0.05) = 2 592 000 i-connections num_e_connections = np.sum(e_landscape) num_i_connections = np.sum(i_landscape) if multiple_connections: e_calibration = 1 i_calibration = 1 else: e_calibration = n_pop_e * n_pop_e * p_e / num_e_connections i_calibration = n_pop_i * n_pop_e * p_i / num_i_connections print('e_calibration is ', e_calibration) print('i_calibration is ', i_calibration) if expected_connectivity: # calculate expected number of connections e_landscape = n_row_e**2*np.mean(e_landscape, axis=0) i_landscape = n_row_i**2*np.mean(i_landscape, axis=0) else: # we sample sample_e_landscape = np.zeros((n_row_e, n_row_e)) for i in range(n_row_e): for j in range(n_row_e): neuron = e_landscape[:, i, j] random_numbers = np.random.random(n_row_e**2) num_connected = len(np.where(random_numbers<neuron)[0]) sample_e_landscape[i, j] = num_connected sample_i_landscape = np.zeros((n_row_e, n_row_e)) for i in range(n_row_e): for j in range(n_row_e): neuron = i_landscape[:, i, j] random_numbers = np.random.random(n_row_i**2) num_connected = len(np.where(random_numbers<neuron)[0]) sample_i_landscape[i, j] = num_connected e_landscape = sample_e_landscape i_landscape = sample_i_landscape # Now we fill a landscape with physical units (mV) rest_pot = -70 # mV thres_pot = -55 # mV ext_pot = mu_gwn / gL * 1e3 #mV no_activity_pot = rest_pot + ext_pot # -56 mV when mu_gwn = 350 pA landscape = no_activity_pot * np.ones((n_row_e, n_row_e)) # Synapse strengths we = we * e_calibration #mV wi = -g * we * i_calibration / e_calibration #mV landscape += we * e_landscape landscape += wi * i_landscape # scale X and Y quiver according to values in ei_landscape. first normalize landscape norm_landscape = np.copy(landscape) norm_landscape -= np.amin(norm_landscape) norm_landscape /= np.amax(norm_landscape) U = 0.5*np.multiply(U, norm_landscape) V = 0.5*np.multiply(V, norm_landscape) if is_plot: # Plot plt.figure(figsize=(8,8)) if expected_connectivity: mode = 'Expected ' else: mode = 'Sampled ' plt.title(mode+'EI landscape') plt.imshow(landscape, origin='lower', extent=[0,1,0,1]) norm = mpl.colors.Normalize(vmin=round(np.amin(landscape)), vmax=round(np.amax(landscape))) plt.colorbar(mpl.cm.ScalarMappable(norm=norm), label='mV') plt.quiver(X, Y, U, V, units='xy', scale=50) plt.suptitle(r'$\sigma_e=$'+str(sigma_e)+r', $\sigma_i=$'+str(sigma_i)+', perlin scale='+str(perlin_scale)+', g='+str(g), fontsize=15) plt.show() # Plot binary landscape (below/above threshold) above_thres = np.where(np.reshape(landscape, 14400)>thres_pot) binary_landscape = np.zeros(14400) binary_landscape[above_thres] = 1 binary_landscape = np.reshape(binary_landscape,(120, 120)) plt.figure(figsize=(8,8)) plt.title(mode+'EI landscape (binary)') plt.imshow(binary_landscape, origin='lower', extent=[0,1,0,1]) plt.quiver(X, Y, U, V, units='xy', scale=50) plt.suptitle(r'$\sigma_e=$'+str(sigma_e)+r', $\sigma_i=$'+str(sigma_i)+', perlin scale='+str(perlin_scale)+', g='+str(g), fontsize=15) plt.show() return landscape, X, Y, U, V
StarcoderdataPython
1783457
<gh_stars>1-10 # Copyright 2019 <NAME> (<EMAIL>) # --------------------------- # Distributed under the MIT License: # ================================== # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ============================================================================== # [SimpleFEMPy] A basic Python PDE solver with the finite elements method # ------------------------------------------------------------------------------ # Utils: Subpackage with various util tools # ------------------------------------------------------------------------------ # logger.py - Logger manager (with a built-in static instance) # ============================================================================== import logging import sys import inspect import copy from simplefempy.settings import LIB_SETTINGS, TK_INSTANCE class SimpleFemPyError(Exception): pass # ---- ** ---- # From: https://stackoverflow.com/questions/384076/how-can-i-color-python-logging-output K, R, G, Y, B, M, C, W = range(8) # These are the sequences need to get colored ouput RESET_SEQ = '\033[0m' COLOR_SEQ = '\033[0;%dm' BOLD_SEQ = '\033[1m' def formatter_message(message, use_color=True): if use_color: message = message.replace('$RESET', RESET_SEQ).replace('$BOLD', BOLD_SEQ) else: message = message.replace('$RESET', '').replace('$BOLD', '') return message COLORS = { 'WARNING': Y, 'INFO': C, 'DEBUG': M, 'ERROR': R } class ColoredFormatter(logging.Formatter): def __init__(self, msg, use_color=True): logging.Formatter.__init__(self, msg) self.use_color = use_color def format(self, record): rec = copy.copy(record) # copy the record object to avoid confusion between streams lvl = rec.levelname if self.use_color and lvl in COLORS: levelname_color = COLOR_SEQ % (30 + COLORS[lvl]) + lvl + RESET_SEQ rec.levelname = levelname_color return logging.Formatter.format(self, rec) # ---- ** ---- class Logger(object): """Object to log information according to given level (uses Python base logger). Parameters ---------- logging_level : str or int, optional Level of display (to be checked). prefix : str, optional Specific project name to show at the beginning of all logs. 'mplibs' by default. use_color : bool, optional If true, color is used to distinguish between the different levels of logging. stream : IO.stream or None, optional If it is not None, then this Logger's output is redirected to the given stream. Else, logging is done in the sys.stdout stream. abort_errors : bool, optional If false (by default), critical errors trigger an instant exit of the program. """ LOGGING_LEVELS = { 'error': 40, 'warning': 30, 'info': 20, 'debug': 10, 40: 'error', 30: 'warning', 20: 'info', 10: 'debug' } def __init__(self, logging_level='info', prefix='FEM', use_color=True, stream=None, abort_errors=False): self.prefix = prefix self.logger = logging.getLogger() self.set_level(logging_level) self.set_stream(stream, use_color) self.abort_errors = abort_errors @staticmethod def _check_logging_level(logging_level, no_switch=False): """Returns the logging level after checking if it is valid or switching to default 'info' mode. Parameters ---------- logging_level : str or int Level of display. If it is a string, it is converted to the matching values if it is one of: 'critical', 'error', 'warning', 'info', 'debug'; else if switching is enabled, the default setting 'info' is taken. If it is an int, it must be one of: 50, 40, 30, 20, 10; else if switching is enabled the default setting 20 is taken. no_switch : bool, optional If true, an unknown logging level will be returned as is (cannot be used but can be spotted as wrong). Else, it is switched to the default setting ('info' mode). """ if no_switch: if isinstance(logging_level, str): try: logging_level = Logger.LOGGING_LEVELS[logging_level] except KeyError: pass return logging_level else: if isinstance(logging_level, int) and not logging_level in [10,20,30,40,50]: logging_level = 20 if isinstance(logging_level, str): try: logging_level = Logger.LOGGING_LEVELS[logging_level] except KeyError: logging_level = Logger.LOGGING_LEVELS['info'] return logging_level def get_level(self): """Gets the current display level.""" return self.logger.getEffectiveLevel() def set_level(self, logging_level): """Sets the display level. Parameters ---------- logging_level : str or int, optional Level of display (to be checked). """ l = Logger._check_logging_level(logging_level) self.logger.setLevel(l) def set_stream(self, stream, use_color): """Sets the output stream. Parameters ---------- stream : IO.stream Stream to output to. """ indent = 18 if use_color else 7 form = '[$BOLD{}$RESET.%(levelname){}s] %(message)s'.format(self.prefix, indent) color_formatter = ColoredFormatter(formatter_message(form, use_color), use_color) stream_handler = logging.StreamHandler(stream) stream_handler.setFormatter(color_formatter) l = Logger._check_logging_level(self.get_level()) stream_handler.setLevel(l) self.logger.addHandler(stream_handler) def set_errors(self, abort): """Sets the 'abort_errors' flag (if false, errors trigger an exit of the program; else, the error must be handled elsewhere). Parameters ---------- abort : bool New value for the 'abort_errors' flag. """ self.abort_errors = abort def log(self, msg, level='info', stackoffset=2): """Logs a message. Parameters ---------- msg : str Message to display. level : str or int, optional Level of logging for the message (can be: error', 'warning', 'info' or 'debug' for a string; or 40, 30, 20 or 10 for an int). """ try: stackdata = inspect.stack()[1+stackoffset] except IndexError: stackdata = inspect.stack()[-1] # use tuple direct indexing for Python 2.x compatibility caller_file = stackdata[1].split('/')[-1] caller_func = stackdata[3] lineno = stackdata[2] if caller_func == '<module>': caller_func = '' else: caller_func = ' - {}()'.format(caller_func) msg = '({}:{}{}): {}'.format(caller_file, lineno, caller_func, msg) l = Logger._check_logging_level(level, no_switch=True) if l == logging.DEBUG: self.logger.debug(msg) elif l == logging.INFO: self.logger.info(msg) elif l == logging.WARNING: self.logger.warning(msg) elif l == logging.ERROR: self.logger.error(msg) else: self.error('Unknown level of logging: "%s".' % level) def error(self, msg, stackoffset=2): """Warns the user of a fatal error and exists the program with error return code (1). Parameters ---------- msg : str Error message to display. """ self.log(msg, level='error', stackoffset=stackoffset+1) if TK_INSTANCE['app'] is not None: TK_INSTANCE['app'].exit() if not self.abort_errors: sys.exit(1) else: raise SimpleFemPyError @staticmethod def sget_level(): """Static equivalent of :func:`.Logger.get_level`.""" return STATIC_LOGGER.get_level() @staticmethod def sset_level(logging_level): """Static equivalent of :func:`.Logger.set_level`.""" STATIC_LOGGER.set_level(logging_level) @staticmethod def sset_stream(stream, use_color=False): """Static equivalent of :func:`.Logger.set_stream`.""" STATIC_LOGGER.set_stream(stream, use_color) @staticmethod def sset_errors(abort): """Static equivalent of :func:`.Logger.set_errors`.""" STATIC_LOGGER.set_errors(abort) @staticmethod def slog(msg, level='info', stackoffset=1): """Static equivalent of :func:`.Logger.log`.""" STATIC_LOGGER.log(msg, level, stackoffset=stackoffset+1) @staticmethod def serror(msg, stackoffset=1): """Static equivalent of :func:`.Logger.error`.""" STATIC_LOGGER.error(msg, stackoffset=stackoffset+1) @staticmethod def sset_prefix(prefix): """Sets the prefix of the static logger. Parameters ---------- prefix : str Specific project name to show at the beginning of all logs. """ STATIC_LOGGER.prefix = prefix formatter = logging.Formatter('[ {} ] . %(asctime)s :: %(levelname)s ' ':: %(message)s'.format(prefix), datefmt='%Y-%m-%d %H:%M:%S') STATIC_LOGGER.stream_handler.setFormatter(formatter) STATIC_LOGGER = Logger()
StarcoderdataPython
4815730
import torch import numpy as np import torch.nn as nn from torch.nn import functional as F __all__ = ['BCELoss', 'BalancedBCELoss', 'DiceLoss', 'BCEDiceLoss', 'GeneralizedDiceLoss', 'BinaryFocalLoss', 'TverskyLoss'] # todo: 学习一下 https://github.com/LIVIAETS/surface-loss/blob/master/losses.py # todo: 再总结一下 https://github.com/Hsuxu/Loss_ToolBox-PyTorch # todo: 对比学习下 https://github.com/JunMa11/SegLoss/tree/master/losses_pytorch """ 连接 https://www.cnblogs.com/banshaohuan/p/9493024.html https://zhuanlan.zhihu.com/p/87959967?utm_source=wechat_session&utm_medium=social&utm_oi=999439652683530240 https://github.com/JunMa11/SegLoss https://github.com/JunMa11/SegLoss/blob/master/losses_pytorch/dice_loss.py https://github.com/Hsuxu/Loss_ToolBox-PyTorch/blob/master/FocalLoss/focal_loss.py https://github.com/wolny/pytorch-3dunet/blob/master/pytorch3dunet/unet3d/losses.py#L110 https://github.com/LIVIAETS/surface-loss/blob/108bd9892adca476e6cdf424124bc6268707498e/losses.py https://www.jianshu.com/p/30043bcc90b6 https://blog.csdn.net/CaiDaoqing/article/details/90457197 https://blog.csdn.net/m0_37477175/article/details/83004746#Dice_loss_70 https://blog.csdn.net/qq_42450404/article/details/92800575 https://blog.csdn.net/JMU_Ma/article/details/97533768 语义分割常用loss介绍及pytorch实现 https://blog.csdn.net/CaiDaoqing/article/details/90457197 https://blog.csdn.net/m0_37477175/article/details/83004746 """ """pytorch 实现dice loss的讨论: https://github.com/pytorch/pytorch/issues/1249 nn.CrossEntropyLoss -> 多分类 nn.BCELoss -> 二分类 """ # TODO: 规范 模型的输出为logits 重新写 `loss function` # TODO: 如果使用softmax的目标函数,需要根据原始gt生成label数据 4分类问题, [0,1,2,4] ---> 4化为3 # import niftynet.layer.loss_segmentation as loss_segmentation # loss_segmentation.dice() # ---------------------- 以二分类的方式进行处理 ----------------------------------- # """ 模型的输入是(batch-size, 4, patch-size) 模型的输出是(batch-size, 3, patch-size) 4是四种模态都使用,3是输出的标签种类数[1,2,4] 注意生成truth数据与值对应 !!!! idx=0标签值为1的病灶 idx=1标签值为2的病灶 idx=2标签值为4的病灶 """ # 1 BCELoss BCELoss = nn.BCEWithLogitsLoss # nn.CrossEntropyLoss todo: 注意 在pytorch中,多分类交叉熵 的输入不需要经过softmax处理 # 原因详见pytorch实现`多分类交叉熵`源代码 https://zhuanlan.zhihu.com/p/98785902 class BalancedBCELoss(nn.Module): # 2 BalancedBCELoss def __init__(self): """ 参考链接 https://blog.csdn.net/qq_34914551/article/details/101644942 """ super(BalancedBCELoss, self).__init__() def forward(self, logits, target, reduction='mean'): pos = torch.eq(target, 1).float() neg = torch.eq(target, 0).float() num_pos = torch.sum(pos) num_neg = torch.sum(neg) num_total = num_pos + num_neg alpha_pos = num_neg / num_total alpha_neg = num_pos / num_total weights = alpha_pos * pos + alpha_neg * neg return F.binary_cross_entropy_with_logits(logits, target, weights, reduction=reduction) class DiceLoss(nn.Module): # 3 DiceLoss """ 医学图像分割之 Dice Loss https://blog.csdn.net/JMU_Ma/article/details/97533768 from https://blog.csdn.net/CaiDaoqing/article/details/90457197 """ def __init__(self): super(DiceLoss, self).__init__() def forward(self, logits, target): probs = torch.sigmoid(logits) # 转换成概率 N = target.size(0) smooth = 1 input_flat = probs.view(N, -1) target_flat = target.view(N, -1) intersection = input_flat * target_flat dice_loss = 2 * (intersection.sum(1) + smooth) / (input_flat.sum(1) + target_flat.sum(1) + smooth) dice_loss = 1 - dice_loss.sum() / N return dice_loss class BCEDiceLoss(nn.Module): """Linear combination of BCE and Dice losses from https://github.com/wolny/pytorch-3dunet/blob/master/pytorch3dunet/unet3d/losses.py#L165 """ def __init__(self, alpha, beta): super(BCEDiceLoss, self).__init__() self.alpha = alpha self.beta = beta self.bce = nn.BCEWithLogitsLoss() self.dice = DiceLoss() def forward(self, logits, target): return self.alpha * self.bce(logits, target) + self.beta * self.dice(logits, target) class GeneralizedDiceLoss(nn.Module): def __init__(self, epsilon=1e-6): super(GeneralizedDiceLoss, self).__init__() self.epsilon = epsilon @staticmethod def flatten(tensor): """Flattens a given tensor such that the channel axis is first. The shapes are transformed as follows: (N, C, D, H, W) -> (C, N * D * H * W) """ # number of channels C = tensor.size(1) # new axis order axis_order = (1, 0) + tuple(range(2, tensor.dim())) # Transpose: (N, C, D, H, W) -> (C, N, D, H, W) transposed = tensor.permute(axis_order) # Flatten: (C, N, D, H, W) -> (C, N * D * H * W) return transposed.contiguous().view(C, -1) def forward(self, logits, target): probs = torch.sigmoid(logits) # 转换成概率 probs = self.flatten(probs) target = self.flatten(target) if probs.size(0) == 1: # for GDL to make sense we need at least 2 channels (see https://arxiv.org/pdf/1707.03237.pdf) # put foreground and background voxels in separate channels probs = torch.cat((probs, 1 - probs), dim=0) target = torch.cat((target, 1 - target), dim=0) # GDL weighting: the contribution of each label is corrected by the inverse of its volume w_l = target.sum(-1) w_l = 1 / (w_l * w_l).clamp(min=self.epsilon) w_l.requires_grad = False intersect = (probs * target).sum(-1) intersect = intersect * w_l denominator = (probs + target).sum(-1) denominator = (denominator * w_l).clamp(min=self.epsilon) # compute per channel Dice coefficient per_channel_dice = 2 * (intersect.sum() / denominator.sum()) # average Dice score across all channels/classes generalized_dice_loss = 1. - torch.mean(per_channel_dice) return generalized_dice_loss # class FocalLoss(nn.Module): # 4 FocalLoss # """ # 使用下面的binaryFocalLoss! 原因见focal loss详解: # https://www.cnblogs.com/king-lps/p/9497836.html # """ # def __init__(self, alpha=0.25, gamma=2, weight=None, ignore=255): # # from https://blog.csdn.net/CaiDaoqing/article/details/90457197 # super(FocalLoss, self).__init__() # self.alpha = alpha # self.gamma = gamma # self.weight = weight # self.ignore = ignore # self.bce_fn = nn.BCEWithLogitsLoss(weight=self.weight) # # def forward(self, logits, target): # if self.ignore is not None: # mask = target != self.ignore # target = target[mask] # logits = logits[mask] # # logpt = -self.bce_fn(logits, target) # pt = torch.exp(logpt) # focal_loss = -((1 - pt) ** self.gamma) * self.alpha * logpt # return focal_loss class BinaryFocalLoss(nn.Module): """ link: https://github.com/Hsuxu/Loss_ToolBox-PyTorch/blob/master/FocalLoss/focal_loss.py This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in 'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)' Focal_Loss= -1*alpha*(1-pt)*log(pt) :param num_class: :param alpha: (tensor) 3D or 4D the scalar factor for this criterion :param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more focus on hard misclassified example :param reduction: `none`|`mean`|`sum` :param **kwargs balance_index: (int) balance class index, should be specific when alpha is float """ def __init__(self, alpha=None, gamma=2, ignore_index=None, reduction='mean'): super(BinaryFocalLoss, self).__init__() self.alpha = alpha self.gamma = gamma self.ignore_index = ignore_index self.reduction = reduction if self.alpha is None: # raw default: [1.0, 1.0] self.alpha = [0.25, 0.75] self.smooth = 1e-6 assert self.reduction in ['none', 'mean', 'sum'] if self.alpha is None: self.alpha = torch.ones(2) elif isinstance(self.alpha, (list, np.ndarray)): self.alpha = np.asarray(self.alpha) self.alpha = np.reshape(self.alpha, (2, )) assert self.alpha.shape[0] == 2, \ 'the `alpha` shape is not match the number of class' elif isinstance(self.alpha, (float, int)): self.alpha = np.asarray([self.alpha, 1.0 - self.alpha], dtype=np.float).view(2) else: raise TypeError('{} not supported'.format(type(self.alpha))) def forward(self, logits, target): probs = torch.sigmoid(logits) probs = torch.clamp(probs, self.smooth, 1.0 - self.smooth) pos_mask = (target == 1).float() neg_mask = (target == 0).float() pos_loss = -self.alpha[0] * torch.pow(torch.sub(1.0, probs), self.gamma) * torch.log(probs) * pos_mask neg_loss = -self.alpha[1] * torch.pow(probs, self.gamma) * torch.log(torch.sub(1.0, probs)) * neg_mask neg_loss = neg_loss.sum() pos_loss = pos_loss.sum() num_pos = pos_mask.view(pos_mask.size(0), -1).sum() num_neg = neg_mask.view(neg_mask.size(0), -1).sum() if num_pos == 0: # todo: 只检查了不含有病灶的 要是全是病灶呢? num_neg=0 bianry_focal_loss = neg_loss else: bianry_focal_loss = pos_loss / num_pos + neg_loss / num_neg return bianry_focal_loss class TverskyLoss(nn.Module): def __init__(self, apply_nonlin=torch.sigmoid, batch_dice=False, do_bg=True, smooth=1., square=False, alpha=0.3, beta=0.7): """ from https://github.com/JunMa11/SegLoss/blob/master/losses_pytorch/dice_loss.py paper: https://arxiv.org/pdf/1706.05721.pdf 修改apply_nonlin=torch.sigmoid 原来默认值为None """ super(TverskyLoss, self).__init__() self.square = square self.do_bg = do_bg self.batch_dice = batch_dice self.apply_nonlin = apply_nonlin self.smooth = smooth self.alpha = alpha self.beta = beta @staticmethod def sum_tensor(inp, axes, keepdim=False): # copy from: https://github.com/MIC-DKFZ/nnUNet/blob/master/nnunet/utilities/tensor_utilities.py axes = np.unique(axes).astype(int) if keepdim: for ax in axes: inp = inp.sum(int(ax), keepdim=True) else: for ax in sorted(axes, reverse=True): inp = inp.sum(int(ax)) return inp def get_tp_fp_fn(self, net_output, gt, axes=None, mask=None, square=False): """ net_output must be (b, c, x, y(, z))) gt must be a label map (shape (b, 1, x, y(, z)) OR shape (b, x, y(, z))) or one hot encoding (b, c, x, y(, z)) if mask is provided it must have shape (b, 1, x, y(, z))) :param net_output: :param gt: :param axes: :param mask: mask must be 1 for valid pixels and 0 for invalid pixels :param square: if True then fp, tp and fn will be squared before summation :return: """ if axes is None: axes = tuple(range(2, len(net_output.size()))) shp_x = net_output.shape shp_y = gt.shape with torch.no_grad(): if len(shp_x) != len(shp_y): gt = gt.view((shp_y[0], 1, *shp_y[1:])) if all([i == j for i, j in zip(net_output.shape, gt.shape)]): # if this is the case then gt is probably already a one hot encoding y_onehot = gt else: gt = gt.long() y_onehot = torch.zeros(shp_x) if net_output.device.type == "cuda": y_onehot = y_onehot.cuda(net_output.device.index) y_onehot.scatter_(1, gt, 1) tp = net_output * y_onehot fp = net_output * (1 - y_onehot) fn = (1 - net_output) * y_onehot if mask is not None: tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp, dim=1)), dim=1) fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp, dim=1)), dim=1) fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn, dim=1)), dim=1) if square: tp = tp ** 2 fp = fp ** 2 fn = fn ** 2 tp = self.sum_tensor(tp, axes, keepdim=False) fp = self.sum_tensor(fp, axes, keepdim=False) fn = self.sum_tensor(fn, axes, keepdim=False) return tp, fp, fn def forward(self, logits, target, loss_mask=None): shp_x = logits.shape if self.batch_dice: axes = [0] + list(range(2, len(shp_x))) else: axes = list(range(2, len(shp_x))) if self.apply_nonlin is not None: logits = self.apply_nonlin(logits) tp, fp, fn = self.get_tp_fp_fn(logits, target, axes, loss_mask, self.square) tversky = (tp + self.smooth) / (tp + self.alpha*fp + self.beta*fn + self.smooth) if not self.do_bg: if self.batch_dice: tversky = tversky[1:] else: tversky = tversky[:, 1:] tversky = tversky.mean() return 1 - tversky class BinaryTverskyLossV2(nn.Module): def __init__(self, alpha=0.3, beta=0.7, ignore_index=None, reduction='mean'): """ todo: 和上面是一样的 from https://github.com/Hsuxu/Loss_ToolBox-PyTorch/blob/master/TverskyLoss/binarytverskyloss.py """ """Dice loss of binary class Args: alpha: controls the penalty for false positives. beta: penalty for false negative. ignore_index: Specifies a target value that is ignored and does not contribute to the input gradient reduction: Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum' Shapes: output: A tensor of shape [N, 1,(d,) h, w] without sigmoid activation function applied target: A tensor of shape same with output Returns: Loss tensor according to arg reduction Raise: Exception if unexpected reduction """ super(BinaryTverskyLossV2, self).__init__() self.alpha = alpha self.beta = beta self.ignore_index = ignore_index self.epsilon = 1e-6 self.reduction = reduction s = self.beta + self.alpha if s != 1: self.beta = self.beta / s self.alpha = self.alpha / s def forward(self, logits, target): batch_size = logits.size(0) if self.ignore_index is not None: valid_mask = (target != self.ignore_index).float() logits = logits.float().mul(valid_mask) # can not use inplace for bp target = target.float().mul(valid_mask) probs = torch.sigmoid(logits).view(batch_size, -1) target = target.view(batch_size, -1) P_G = torch.sum(probs * target, 1) # TP P_NG = torch.sum(probs * (1 - target), 1) # FP NP_G = torch.sum((1 - probs) * target, 1) # FN tversky_index = P_G / (P_G + self.alpha * P_NG + self.beta * NP_G + self.epsilon) loss = 1. - tversky_index # target_area = torch.sum(target_label, 1) # loss[target_area == 0] = 0 if self.reduction == 'none': loss = loss elif self.reduction == 'sum': loss = torch.sum(loss) else: loss = torch.mean(loss) return loss class LovaszSoftmaxLoss(nn.Module): def __init__(self): """ from https://blog.csdn.net/CaiDaoqing/article/details/90457197 https://github.com/bermanmaxim/LovaszSoftmax/blob/7d48792d35a04d3167de488dd00daabbccd8334b/pytorch/lovasz_losses.py """ super(LovaszSoftmaxLoss, self).__init__() def forward(self, logits, target): pass def lovasz_hinge(self, logits, labels, per_image=True, ignore=None): """ Binary Lovasz hinge loss logits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty) labels: [B, H, W] Tensor, binary ground truth masks (0 or 1) per_image: compute the loss per image instead of per batch ignore: void class id """ if per_image: loss = mean(self.lovasz_hinge_flat(* self.flatten_binary_scores(log.unsqueeze(0), lab.unsqueeze(0), ignore)) for log, lab in zip(logits, labels)) else: loss = lovasz_hinge_flat(*flatten_binary_scores(logits, labels, ignore)) return loss @staticmethod def lovasz_hinge_flat(logits, labels): """ Binary Lovasz hinge loss logits: [P] Variable, logits at each prediction (between -\infty and +\infty) labels: [P] Tensor, binary ground truth labels (0 or 1) ignore: label to ignore """ if len(labels) == 0: # only void pixels, the gradients should be 0 return logits.sum() * 0. signs = 2. * labels.float() - 1. errors = (1. - logits * Variable(signs)) errors_sorted, perm = torch.sort(errors, dim=0, descending=True) perm = perm.data gt_sorted = labels[perm] grad = lovasz_grad(gt_sorted) loss = torch.dot(F.relu(errors_sorted), Variable(grad)) return loss @staticmethod def flatten_binary_scores(scores, labels, ignore=None): """ Flattens predictions in the batch (binary case) Remove labels equal to 'ignore' """ scores = scores.view(-1) labels = labels.view(-1) if ignore is None: return scores, labels valid = (labels != ignore) vscores = scores[valid] vlabels = labels[valid] return vscores, vlabels # todo: 结合 九、BCE + Dice loss 十、Dice + Focal loss # ---------------------- 以多分类的方式进行处理 ----------------------------------- # """ 模型的输入是(batch-size, 4, patch-size) 模型的输出是(batch-size, 4, patch-size) 这是一个四分类问题实际标签0/1/2/3 需要对truth进一步处理为,[0,0,0,1] 表示为第四类(one-hot 独热编码) 3实际上在truth中为'4' ---------------------- 分割问题不需要全连接层的 F.softmax(logits, dim=1) 【注意】dim=1 !!!! """ if __name__ == '__main__': loss_function1 = FocalLoss() loss_function2 = BinaryFocalLoss(alpha=None) loss_function3 = TverskyLoss() loss_function4 = BinaryTverskyLossV2() x = torch.rand((1, 3, 32, 32, 32)) y = (torch.randn(1, 3, 32, 32, 32) > 0.5).float() loss1 = loss_function1(x, y) loss2 = loss_function2(x, y) loss3 = loss_function3(x, y) loss4 = loss_function4(x, y) print(loss1, loss2, loss3, loss4) """Discard - 丢弃不用 有参考价值的代码 class DiceLoss(nn.Module): # todo: 需要重新实现 def __init__(self): super(DiceLoss, self).__init__() def forward(self, inputs, target, loss_type='jaccard'): smooth = 1e-5 inse = torch.sum(inputs * target) if loss_type == 'jaccard': xl = torch.sum(inputs * inputs) r = torch.sum(target * target) elif loss_type == 'sorensen': xl = torch.sum(inputs) r = torch.sum(target) else: raise Exception("Unknown loss_type") dice = (2. * inse + smooth) / (xl + r + smooth) dice_loss = 1.0 - float(torch.mean(dice)) return dice_loss class FocalLoss(nn.Module): """ """ copy from: https://github.com/Hsuxu/Loss_ToolBox-PyTorch/blob/master/FocalLoss/FocalLoss.py This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in 'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)' Focal_Loss= -1*alpha*(1-pt)*log(pt) :param num_class: :param alpha: (tensor) 3D or 4D the scalar factor for this criterion :param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more focus on hard misclassified example :param smooth: (float,double) smooth value when cross entropy :param balance_index: (int) balance class index, should be specific when alpha is float :param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch. """ """ def __init__(self, apply_nonlin=None, alpha=None, gamma=2, balance_index=0, smooth=1e-5, size_average=True): super(FocalLoss, self).__init__() self.apply_nonlin = apply_nonlin self.alpha = alpha self.gamma = gamma self.balance_index = balance_index self.smooth = smooth self.size_average = size_average if self.smooth is not None: if self.smooth < 0 or self.smooth > 1.0: raise ValueError('smooth value should be in [0,1]') def forward(self, logit, target): if self.apply_nonlin is not None: logit = self.apply_nonlin(logit) num_class = logit.shape[1] if logit.dim() > 2: # N,C,d1,d2 -> N,C,m (m=d1*d2*...) logit = logit.view(logit.size(0), logit.size(1), -1) logit = logit.permute(0, 2, 1).contiguous() logit = logit.view(-1, logit.size(-1)) target = torch.squeeze(target, 1) target = target.view(-1, 1) print(logit.shape, target.shape) # alpha = self.alpha if alpha is None: alpha = torch.ones(num_class, 1) elif isinstance(alpha, (list, np.ndarray)): assert len(alpha) == num_class alpha = torch.FloatTensor(alpha).view(num_class, 1) alpha = alpha / alpha.sum() elif isinstance(alpha, float): alpha = torch.ones(num_class, 1) alpha = alpha * (1 - self.alpha) alpha[self.balance_index] = self.alpha else: raise TypeError('Not support alpha type') if alpha.device != logit.device: alpha = alpha.to(logit.device) idx = target.cpu().long() one_hot_key = torch.FloatTensor(target.size(0), num_class).zero_() print(one_hot_key) one_hot_key = one_hot_key.scatter_(1, idx, 1) if one_hot_key.device != logit.device: one_hot_key = one_hot_key.to(logit.device) if self.smooth: one_hot_key = torch.clamp( one_hot_key, self.smooth / (num_class - 1), 1.0 - self.smooth) pt = (one_hot_key * logit).sum(1) + self.smooth logpt = pt.log() gamma = self.gamma alpha = alpha[idx] alpha = torch.squeeze(alpha) loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt if self.size_average: loss = loss.mean() else: loss = loss.sum() return loss class FocalLoss2(nn.Module): r"""""" This criterion is a implemenation of Focal Loss, which is proposed in Focal Loss for Dense Object Detection. Loss(x, class) = - \alpha (1-softmax(x)[class])^gamma \log(softmax(x)[class]) The losses are averaged across observations for each minibatch. Args: alpha(1D Tensor, Variable) : the scalar factor for this criterion gamma(float, double) : gamma > 0; reduces the relative loss for well-classified examples (p > .5), putting more focus on hard, misclassified examples size_average(bool): By default, the losses are averaged over observations for each minibatch. However, if the field size_average is set to False, the losses are instead summed for each minibatch. """ """ def __init__(self, class_num, alpha=None, gamma=2, size_average=True): super(FocalLoss2, self).__init__() if alpha is None: self.alpha = torch.ones(class_num, 1) else: if isinstance(alpha, Variable): self.alpha = alpha else: self.alpha = alpha self.gamma = gamma self.class_num = class_num self.size_average = size_average def forward(self, inputs, targets): N = inputs.size(0) C = inputs.size(1) P = inputs class_mask = inputs.data.new(N, C).fill_(0) print(class_mask.size()) ids = targets.view(-1, 1).cpu().long() print(ids.size()) class_mask.scatter_(1, ids.data, 1.) # print(class_mask) if inputs.is_cuda and not self.alpha.is_cuda: self.alpha = self.alpha.cuda() alpha = self.alpha[ids.data.view(-1)] probs = (P * class_mask).sum(1).view(-1, 1) log_p = probs.log() # print('probs size= {}'.format(probs.size())) # print(probs) batch_loss = -alpha * (torch.pow((1 - probs), self.gamma)) * log_p # print('-----bacth_loss------') # print(batch_loss) if self.size_average: loss = batch_loss.mean() else: loss = batch_loss.sum() return loss """
StarcoderdataPython
1602146
start, end = map(int, input().split()) if start == end: print('O JOGO DUROU 24 HORA(S)') elif start > end: time = (24 - start) + end if time >= 24: day = time // 24 hours = time % 24 print(day, 'JOGO DUROU', hours, 'HORA(S)') else: print('O JOGO DUROU', time, 'HORA(S)') elif start < end: time = end - start if time >= 24: day = time // 24 hours = time % 24 print(day, 'JOGO DUROU', hours, 'HORA(S)') else: print('O JOGO DUROU', time, 'HORA(S)')
StarcoderdataPython
1781783
<gh_stars>0 # Generated by Django 3.1.4 on 2021-03-21 19:09 from django.db import migrations, models import wagtail.core.fields class Migration(migrations.Migration): dependencies = [ ('flex', '0007_auto_20210321_1830'), ] operations = [ migrations.AddField( model_name='formpage', name='subject_de', field=models.CharField(blank=True, max_length=255, null=True, verbose_name='subject'), ), migrations.AddField( model_name='formpage', name='subject_en', field=models.CharField(blank=True, max_length=255, null=True, verbose_name='subject'), ), migrations.AddField( model_name='formpage', name='thank_you_text_de', field=wagtail.core.fields.RichTextField(blank=True, null=True), ), migrations.AddField( model_name='formpage', name='thank_you_text_en', field=wagtail.core.fields.RichTextField(blank=True, null=True), ), ]
StarcoderdataPython
1609257
# Copyright 2021 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import multiprocessing import time from typing import Dict, Any, Optional from typing import Sequence import numpy as np import pandas as pd import pytest import cirq import cirq.experiments.random_quantum_circuit_generation as rqcg from cirq.experiments.xeb_simulation import simulate_2q_xeb_circuits def test_simulate_2q_xeb_circuits(): q0, q1 = cirq.LineQubit.range(2) circuits = [ rqcg.random_rotations_between_two_qubit_circuit( q0, q1, depth=50, two_qubit_op_factory=lambda a, b, _: cirq.SQRT_ISWAP(a, b) ) for _ in range(2) ] cycle_depths = np.arange(3, 50, 9) df = simulate_2q_xeb_circuits(circuits=circuits, cycle_depths=cycle_depths) assert len(df) == len(cycle_depths) * len(circuits) for (circuit_i, cycle_depth), row in df.iterrows(): assert 0 <= circuit_i < len(circuits) assert cycle_depth in cycle_depths assert len(row['pure_probs']) == 4 assert np.isclose(np.sum(row['pure_probs']), 1) with multiprocessing.Pool() as pool: df2 = simulate_2q_xeb_circuits(circuits, cycle_depths, pool=pool) pd.testing.assert_frame_equal(df, df2) def test_simulate_circuit_length_validation(): q0, q1 = cirq.LineQubit.range(2) circuits = [ rqcg.random_rotations_between_two_qubit_circuit( q0, q1, depth=10, # not long enough! two_qubit_op_factory=lambda a, b, _: cirq.SQRT_ISWAP(a, b), ) for _ in range(2) ] cycle_depths = np.arange(3, 50, 9) with pytest.raises(ValueError, match='.*not long enough.*'): _ = simulate_2q_xeb_circuits(circuits=circuits, cycle_depths=cycle_depths) def _ref_simulate_2q_xeb_circuit(task: Dict[str, Any]): """Helper function for simulating a given (circuit, cycle_depth).""" circuit_i = task['circuit_i'] cycle_depth = task['cycle_depth'] circuit = task['circuit'] param_resolver = task['param_resolver'] circuit_depth = cycle_depth * 2 + 1 assert circuit_depth <= len(circuit) tcircuit = circuit[:circuit_depth] tcircuit = cirq.resolve_parameters_once(tcircuit, param_resolver=param_resolver) pure_sim = cirq.Simulator() psi = pure_sim.simulate(tcircuit) psi = psi.final_state_vector pure_probs = cirq.state_vector_to_probabilities(psi) return {'circuit_i': circuit_i, 'cycle_depth': cycle_depth, 'pure_probs': pure_probs} def _ref_simulate_2q_xeb_circuits( circuits: Sequence['cirq.Circuit'], cycle_depths: Sequence[int], param_resolver: 'cirq.ParamResolverOrSimilarType' = None, pool: Optional['multiprocessing.pool.Pool'] = None, ): """Reference implementation for `simulate_2q_xeb_circuits` that does each circuit independently instead of using intermediate states. You can also try editing the helper function to use QSimSimulator() for benchmarking. This simulator does not support intermediate states, so you can't use it with the new functionality. https://github.com/quantumlib/qsim/issues/101 """ tasks = [] for cycle_depth in cycle_depths: for circuit_i, circuit in enumerate(circuits): tasks += [ { 'circuit_i': circuit_i, 'cycle_depth': cycle_depth, 'circuit': circuit, 'param_resolver': param_resolver, } ] if pool is not None: records = pool.map(_ref_simulate_2q_xeb_circuit, tasks, chunksize=4) else: records = [_ref_simulate_2q_xeb_circuit(record) for record in tasks] return pd.DataFrame(records).set_index(['circuit_i', 'cycle_depth']).sort_index() @pytest.mark.parametrize('multiprocess', (True, False)) def test_incremental_simulate(multiprocess): q0, q1 = cirq.LineQubit.range(2) circuits = [ rqcg.random_rotations_between_two_qubit_circuit( q0, q1, depth=100, two_qubit_op_factory=lambda a, b, _: cirq.SQRT_ISWAP(a, b) ) for _ in range(20) ] cycle_depths = np.arange(3, 100, 9) if multiprocess: pool = multiprocessing.Pool() else: pool = None start = time.perf_counter() df_ref = _ref_simulate_2q_xeb_circuits(circuits=circuits, cycle_depths=cycle_depths, pool=pool) end1 = time.perf_counter() df = simulate_2q_xeb_circuits(circuits=circuits, cycle_depths=cycle_depths, pool=pool) end2 = time.perf_counter() if pool is not None: pool.terminate() print("\nnew:", end2 - end1, "old:", end1 - start) pd.testing.assert_frame_equal(df_ref, df) # Use below for approximate equality, if e.g. you're using qsim: # assert len(df_ref) == len(df) # assert df_ref.columns == df.columns # for (i1, row1), (i2, row2) in zip(df_ref.iterrows(), df.iterrows()): # assert i1 == i2 # np.testing.assert_allclose(row1['pure_probs'], row2['pure_probs'], atol=5e-5)
StarcoderdataPython
1767929
<filename>02-Libraries-Implementation/csv/MergeCSV.py<gh_stars>1-10 import csv def merge_csv(csv_list, output_path): fieldnamese = list() for file in csv_list: with open(file, 'r') as input_csv: fn = csv.DictReader(input_csv).fieldnames fieldnamese.extend(x for x in fn if x not in fieldnamese) with open(output_path, 'w', newline='') as output_csv: writer = csv.DictWriter(output_csv, fieldnames=fieldnamese) writer.writeheader() for file in csv_list: with open(file, 'r') as input_csv: reader = csv.DictReader(input_csv) for row in reader: writer.writerow(row) from string import Template info = { "title": "Algebra Engine", "author": "<NAME>" } print(Template("This engine is ${title} writen by ${author}").substitute(info)) import collections from collections import Counter from collections import deque def calculate_next_price(*args): ''' This function is used to predict the next price of stock :param args: list of input data :return: integer value ''' pass def counter_implementation(): class1 = ["Edward", "Miyuki"] counter_1 = Counter(class1) print(counter_1.value()) print(calculate_next_price.__doc__) def namedtuple_implementation(): Info = collections.namedtuple("Ìnformation", "Name Address Telephone") info1 = Info("Edward", "Nagaoka", "0949619772") print(info1) def deque_implementation(): list_of_numbers = deque() for i in range(10): list_of_numbers.append(i) for i in range(10): list_of_numbers.appendleft(i) print(list_of_numbers) list_of_numbers.rotate(10) print(list_of_numbers) def main(): deque_implementation() if __name__ == "__main__": main()
StarcoderdataPython
440
#!/usr/bin/env python # -*- coding: utf-8 -* import os from setuptools import find_packages, setup # allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) with open('requirements.txt') as f: install_requires = f.read().splitlines() setup( name='persistent-celery-beat-scheduler', version='0.1.1.dev0', packages=find_packages('src', exclude=('tests',)), package_dir={'': 'src'}, include_package_data=True, zip_safe=False, description=( 'Celery Beat Scheduler that stores the scheduler data in Redis.' ), author='<NAME>', author_email='<EMAIL>', license='Apache 2', long_description='https://github.com/richardasaurus/persistent-celery-beat-scheduler', install_requires=install_requires, classifiers=[ 'Intended Audience :: Developers', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Internet :: WWW/HTTP', ], )
StarcoderdataPython
87469
<filename>plasma/child_chain/child_chain.py import rlp from ethereum import utils from web3 import Web3 import json from plasma.utils.utils import unpack_utxo_pos, get_sender, recoverPersonalSignature from .block import Block from .exceptions import (InvalidBlockMerkleException, InvalidBlockSignatureException, InvalidTxSignatureException, TxAlreadySpentException, TxAmountMismatchException, InvalidOutputIndexNumberException, InvalidTxCurrencyMismatch, InvalidUTXOOutput) from .transaction import Transaction from .root_event_listener import RootEventListener ZERO_ADDRESS = b'\x00' * 20 ZERO_SIGNATURE = b'0x00' * 65 class ChildChain(object): def __init__(self, root_chain, eth_node_endpoint): self.root_chain = root_chain self.blocks = {} self.child_block_interval = 1000 self.current_block_number = self.child_block_interval self.current_block = Block() self.root_chain_event_listener = RootEventListener(root_chain, ['Deposit', 'ExitStarted'], eth_node_endpoint, confirmations=0) # Register event listeners self.root_chain_event_listener.on('Deposit', self.apply_deposit) self.root_chain_event_listener.on('ExitStarted', self.apply_exit) self.unspent_utxos = {} self.open_orders = {} def apply_exit(self, event): event_args = event['args'] utxo_pos = event_args['utxoPos'] self.mark_utxo_spent(*unpack_utxo_pos(utxo_pos)) def apply_deposit(self, event): event_args = event['args'] depositor = event_args['depositor'] blknum = event_args['depositBlock'] token = event_args['token'] amount = event_args['amount'] deposit_tx = Transaction(Transaction.TxnType.transfer, 0, 0, 0, 0, 0, 0, Transaction.UTXOType.transfer, depositor, amount, 0, token, 0, ZERO_ADDRESS, 0, 0, ZERO_ADDRESS, 0, ZERO_ADDRESS, 0, 0, ZERO_ADDRESS, 0, ZERO_ADDRESS, 0, 0, ZERO_ADDRESS) deposit_block = Block([deposit_tx]) self.blocks[blknum] = deposit_block print("Child Chain: Applied Deposit on blknum %d\n %s" % (blknum, deposit_tx)) if depositor not in self.unspent_utxos: self.unspent_utxos[Web3.toChecksumAddress(depositor)] = {} self.unspent_utxos[Web3.toChecksumAddress(depositor)][(blknum, 0, 0)] = True def apply_transaction(self, transaction): tx = rlp.decode(utils.decode_hex(transaction), Transaction) # Validate the transaction self.validate_tx(tx) # Mark the inputs as spent self.mark_utxo_spent(tx.blknum1, tx.txindex1, tx.oindex1) self.mark_utxo_spent(tx.blknum2, tx.txindex2, tx.oindex2) self.current_block.transaction_set.append(tx) print("Child Chain: Applied Transaction\n %s" % tx) if tx.blknum1 != 0: utxo1 = self._get_input_info(tx.blknum1, tx.txindex1, tx.oindex1, tx, 1) if utxo1['utxotype'] == Transaction.UTXOType.make_order: self.open_orders.pop((tx.blknum1, tx.txindex1, tx.oindex1)) else: self.unspent_utxos[Web3.toChecksumAddress(utxo1['owner'])].pop((tx.blknum1, tx.txindex1, tx.oindex1)) if tx.blknum2 != 0: utxo2 = self._get_input_info(tx.blknum2, tx.txindex2, tx.oindex2, tx, 2) if utxo2['utxotype'] == Transaction.UTXOType.make_order: self.open_orders.pop((tx.blknum2, tx.txindex2, tx.oindex2)) else: self.unspent_utxos[Web3.toChecksumAddress(utxo2['owner'])].pop((tx.blknum2, tx.txindex2, tx.oindex2)) def _get_input_info(self, blknum, txidx, oindex, spending_tx, spending_utxo_num): transaction = self.blocks[blknum].transaction_set[txidx] if oindex == 0: utxotype = transaction.utxotype1 owner = transaction.newowner1 amount = transaction.amount1 tokenprice = transaction.tokenprice1 spent = transaction.spent1 cur = transaction.cur1 elif oindex == 1: utxotype = transaction.utxotype2 owner = transaction.newowner2 amount = transaction.amount2 tokenprice = transaction.tokenprice2 spent = transaction.spent2 cur = transaction.cur2 elif oindex == 2: utxotype = transaction.utxotype3 owner = transaction.newowner3 amount = transaction.amount3 tokenprice = transaction.tokenprice3 spent = transaction.spent3 cur = transaction.cur3 elif oindex == 3: utxotype = transaction.utxotype4 owner = transaction.newowner4 amount = transaction.amount4 tokenprice = transaction.tokenprice4 spent = transaction.spent4 cur = transaction.cur4 else: raise InvalidOutputIndexNumberException("invalid utxo oindex number: %d" % oindex) spending_tx_hash = None spending_sig = None if spending_tx and spending_utxo_num: spending_tx_hash = spending_tx.hash if spending_utxo_num == 1: spending_sig = spending_tx.sig1 elif spending_utxo_num == 2: spending_sig = spending_tx.sig2 return {'utxotype': Transaction.UTXOType(utxotype), 'owner': owner, 'amount': amount, 'currency': cur, 'tokenprice': tokenprice, 'spent': spent, 'spending_tx_hash': spending_tx_hash, 'spending_sig': spending_sig} def _verify_signature(self, inputs, tx): if (tx.sigtype == Transaction.SigType.utxo): for input_utxo in inputs: if (input_utxo['spending_sig'] == ZERO_SIGNATURE or get_sender(input_utxo['spending_tx_hash'], input_utxo['spending_sig']) != input_utxo['owner']): raise InvalidTxSignatureException() elif (tx.sigtype == Transaction.SigType.txn): if (tx.txnsig == ZERO_SIGNATURE): raise InvalidTxSignatureException() signature_address = recoverPersonalSignature(tx.readable_str, tx.txnsig) print("signature_address is %s" % signature_address.hex()) for input_utxo in inputs: if input_utxo['utxotype'] == Transaction.UTXOType.transfer: if input_utxo['owner'] != signature_address: raise InvalidTxSignatureException() def _validate_transfer_tx(self, tx, inputs, outputs): input_amount = 0 tx_cur = None self._verify_signature(inputs, tx) for input in inputs: if input['utxotype'] != Transaction.UTXOType.transfer: raise InvalidUTXOType("invalid utxo input type (%s) for tx type (%s)" % (input['utxotype'].name, tx.txntype.name)) if input['spent']: raise TxAlreadySpentException('failed to validate tx') if tx_cur == None: tx_cur = input['currency'] if input['currency'] != tx_cur: raise InvalidTxCurrencyMismatch("currency mismatch in txn. txn currency (%s); utxo currency (%s)" % (tx_cur, input['currency'])) input_amount += input['amount'] output_amount = 0 for output in outputs: if output['utxotype'] != Transaction.UTXOType.transfer: raise InvalidUTXOType("invalid utxo output type (%s) for tx type (%s)" % (output['utxotype'].name, tx.txntype.name)) output_amount += output['amount'] if output['currency'] != tx_cur: raise InvalidTxCurrencyMismatch("currency mismatch in txn. txn currency (%s); utxo currency (%s)" % (tx_cur, output['currency'])) if input_amount < output_amount: raise TxAmountMismatchException('failed to validate tx') def _validate_make_order_tx(self, tx, inputs, outputs): input_amount = 0 tx_cur = None self._verify_signature(inputs, tx) for input in inputs: if input['utxotype'] != Transaction.UTXOType.transfer: raise InvalidUTXOType("invalid utxo input type (%s) for tx type (%s)" % (input['utxotype'].name, tx.txntype.name)) if input['spent']: raise TxAlreadySpentException('failed to validate tx') if tx_cur == None: tx_cur = input['currency'] if tx_cur == ZERO_ADDRESS: raise InvalidUTXOInputType("currency for input UTXO to make_order tx must NOT be Eth") if input['currency'] != tx_cur: raise InvalidTxCurrencyMismatch("currency mismatch in txn. txn currency (%s); utxo currency (%s)" % (tx_cur, input['currency'])) input_amount += input['amount'] # At least one of the outputs must be a make_order utxo. output_amount = 0 has_make_order_utxo = False for output in outputs: if output['utxotype'] == Transaction.UTXOType.make_order: has_make_order_utxo = True if output['currency'] != tx_cur: raise InvalidTxCurrencyMismatch("currency mismatch in txn. txn currency (%s); utxo currency (%s)" % (tx_cur, output['currency'])) output_amount += output['amount'] if not has_make_order_utxo: raise InvalidTx() if input_amount < output_amount: raise TxAmountMismatchException('failed to validate tx') def _validate_take_order_tx(self, tx, inputs, outputs): make_order_utxo_input = None transfer_eth_utxo_input = None self._verify_signature(inputs, tx) for input in inputs: # This transaction type requires the following inputs # 1) one of the inputs is a make_order utxo. # 2) one of the inputs is a transfer utxo with currency eth. if input['utxotype'] == Transaction.UTXOType.make_order: make_order_utxo_input = input if input['utxotype'] == Transaction.UTXOType.transfer: transfer_eth_utxo_input = input if input['currency'] != ZERO_ADDRESS: raise InvalidTxCurrencyMismatch("in take_order tx, utxo transfer input must have Eth currency") if input['spent']: raise TxAlreadySpentException('failed to validate tx') if make_order_utxo_input == None or \ transfer_eth_utxo_input == None: raise InvalidUTXOType("invalid utxo input types for take_order tx") token_transfer_utxo_output = None eth_transfer_outputs = [] remainder_make_order_output = None for output in outputs: if output['utxotype'] == Transaction.UTXOType.transfer: if output['currency'] != ZERO_ADDRESS: # Is the the token_transfer_utxo_output if output['currency'] != make_order_utxo_input['currency']: raise InvalidTxCurrencyMismatch("currency mismatch in txn. txn currency (%s); utxo currency (%s)" % (tx_cur, output['currency'])) token_transfer_utxo_output = output elif output['currency'] == ZERO_ADDRESS: eth_transfer_outputs.append(output) elif output['utxotype'] == Transaction.UTXOType.make_order and \ output['tokenprice'] == make_order_utxo_input['tokenprice'] and \ output['newowner'] == make_order_utxo_input['owner'] and \ output['currency'] == make_order_utxo_input['currency']: # Is the remainder make order remainder_make_order_output = output else: raise InvalidUTXOOutput("invalid eth transfer UTXO: %s" % (str(output))) # Verify that the eth payment is in the tx num_tokens_to_purchase = 0 if token_transfer_utxo_output: num_tokens_to_purchase = token_transfer_utxo_output['amount'] min_ether_transfer = Web3.fromWei(num_tokens_to_purchase, 'ether') * make_order_utxo_input['tokenprice'] # Verify that there is at least one eth transfer output utxo to the maker with at least # min_ether_transfer amount payment_utxo_found = False for eth_transfer_output in eth_transfer_outputs: if eth_transfer_output['newowner'] == make_order_utxo_input['owner'] and \ eth_transfer_output['amount'] >= min_ether_transfer: payment_utxo_found = True break if not payment_utxo_found: raise InvalidUTXOOutput("must have a valid eth transfer utxo to maker for token purchase") # Verify that the eth transfer output amounts sum to value less than eth transfer input utxo total_output_eth_amount = sum([e['amount'] for e in eth_transfer_outputs]) if total_output_eth_amount > transfer_eth_utxo_input['amount']: raise InvalidUTXOOutput("output eth amount greater than input eth amount") # Verify that the output make order amount and token tranfer amount is equal to the make order input amount total_token_transfer_amt = num_tokens_to_purchase + (remainder_make_order_output['amount'] if remainder_make_order_output else 0) if total_token_transfer_amt != make_order_utxo_input['amount']: raise InvalidUTXOOutput("token amount output(s) don't equal to input make order amount") def validate_tx(self, tx): inputs = [] # dict with keys of (utxotype, owner, amount, currency, tokenprice, spent, spender, signature) outputs = [] # dict with keys of (utxotype, newowner, amount, tokenprice, currency) for i_blknum, i_txidx, i_oidx, idx in [(tx.blknum1, tx.txindex1, tx.oindex1, 0), (tx.blknum2, tx.txindex2, tx.oindex2, 1)]: if i_blknum != 0: inputs.append(self._get_input_info(i_blknum, i_txidx, i_oidx, tx, idx+1)) for o_utxotype, o_newowner, o_amount, o_tokenprice, o_currency in [(tx.utxotype1, tx.newowner1, tx.amount1, tx.tokenprice1, tx.cur1), (tx.utxotype2, tx.newowner2, tx.amount2, tx.tokenprice2, tx.cur2), (tx.utxotype3, tx.newowner3, tx.amount3, tx.tokenprice3, tx.cur3), (tx.utxotype4, tx.newowner4, tx.amount4, tx.tokenprice4, tx.cur4)]: if o_utxotype != 0: outputs.append({'utxotype': o_utxotype, 'newowner': o_newowner, 'amount': o_amount, 'tokenprice': o_tokenprice, 'currency': o_currency}) if tx.txntype == Transaction.TxnType.transfer: self._validate_transfer_tx(tx, inputs, outputs) elif tx.txntype == Transaction.TxnType.make_order: self._validate_make_order_tx(tx, inputs, outputs) elif tx.txntype == Transaction.TxnType.take_order: self._validate_take_order_tx(tx, inputs, outputs) def mark_utxo_spent(self, blknum, txindex, oindex): if blknum == 0: return if oindex == 0: self.blocks[blknum].transaction_set[txindex].spent1 = True elif oindex == 1: self.blocks[blknum].transaction_set[txindex].spent2 = True elif oindex == 2: self.blocks[blknum].transaction_set[txindex].spent3 = True elif oindex == 3: self.blocks[blknum].transaction_set[txindex].spent3 = True def submit_block(self, block): block = rlp.decode(utils.decode_hex(block), Block) if block.merklize_transaction_set() != self.current_block.merklize_transaction_set(): raise InvalidBlockMerkleException('input block merkle mismatch with the current block') # self.root_chain.transact({'from': self.authority}).submitBlock(block.merkle.root) self.blocks[self.current_block_number] = self.current_block print("Child Chain: Submitted block\n %s" % self.current_block) blkid = self.current_block_number for txid in range(len(block.transaction_set)): tx = block.transaction_set[txid] for utxotype, new_address, oindex in [(tx.utxotype1, tx.newowner1, 0), (tx.utxotype2, tx.newowner2, 1), (tx.utxotype3, tx.newowner3, 2), (tx.utxotype4, tx.newowner4, 3)]: if utxotype == Transaction.UTXOType.make_order: self.open_orders[(blkid, txid, oindex)] = True elif utxotype == Transaction.UTXOType.transfer: self.unspent_utxos[Web3.toChecksumAddress(new_address)][(blkid, txid, oindex)] = True self.current_block_number += self.child_block_interval print("going to set current_block to new block") # WTF!!! Not quite sure why I need to explicitly pass in transaction_set = [] to the Block constructor self.current_block = Block(transaction_set = []) print("new block has %d transactions" % len(self.current_block.transaction_set)) def get_transaction(self, blknum, txindex): return rlp.encode(self.blocks[blknum].transaction_set[txindex]).hex() def get_tx_pos(self, transaction): decoded_tx = rlp.decode(utils.decode_hex(transaction), Transaction) for blknum in self.blocks: block = self.blocks[blknum] for txindex in range(0, len(block.transaction_set)): tx = block.transaction_set[txindex] if (decoded_tx.hash == tx.hash): return blknum, txindex return None, None def get_block(self, blknum): return rlp.encode(self.blocks[blknum]).hex() def get_current_block(self): return rlp.encode(self.current_block).hex() def get_current_block_num(self): return self.current_block_number def get_balances(self, address): eth_balance = 0 pdex_balance = 0 for (blknum, txid, oindex) in self.unspent_utxos.get(address, {}).keys(): tx_info = self._get_input_info(blknum, txid, oindex, None, None) if tx_info['currency'] == ZERO_ADDRESS: eth_balance += tx_info['amount'] else: pdex_balance += tx_info['amount'] return json.dumps([eth_balance, pdex_balance]) def get_utxos(self, address, currency): utxos = [] for (blknum, txid, oindex) in self.unspent_utxos.get(Web3.toChecksumAddress(address), {}).keys(): tx_info = self._get_input_info(blknum, txid, oindex, None, None) if tx_info['currency'] == utils.normalize_address(currency): utxos.append([blknum, txid, oindex, tx_info['amount']]) print("get_utxos: returned utxos - %s" % str(utxos)) return rlp.encode(utxos).hex() def get_open_orders(self): open_orders = [] for (blknum, txid, oindex) in self.open_orders.keys(): tx_info = self._get_input_info(blknum, txid, oindex, None, None) utxo_pos = blknum * 1000000000 + txid * 10000 + oindex * 1 open_orders.append([tx_info['amount'], tx_info['tokenprice'], '0x' + tx_info['owner'].hex(), utxo_pos]) open_orders.sort(key = lambda x: (x[1], x[3])) return json.dumps(open_orders) def get_makeorder_txn(self, address, currency, amount, tokenprice): print("called get_makeorder_txn with params [%s, %s, %d, %d]" % (address, currency, amount, tokenprice)) encoded_utxos = self.get_utxos(address, currency) utxos = rlp.decode(utils.decode_hex(encoded_utxos), rlp.sedes.CountableList(rlp.sedes.List([rlp.sedes.big_endian_int, rlp.sedes.big_endian_int, rlp.sedes.big_endian_int, rlp.sedes.big_endian_int]))) tx = None # Find a utxos with enough tokens for utxo in utxos: if utxo[3] >= amount: # generate the transaction object change_amount = utxo[3] - amount if change_amount: tx = Transaction(Transaction.TxnType.make_order, utxo[0], utxo[1], utxo[2], 0, 0, 0, Transaction.UTXOType.make_order, utils.normalize_address(address), amount, tokenprice, utils.normalize_address(currency), Transaction.UTXOType.transfer, utils.normalize_address(address), change_amount, 0, utils.normalize_address(currency), 0, ZERO_ADDRESS, 0, 0, ZERO_ADDRESS, 0, ZERO_ADDRESS, 0, 0, ZERO_ADDRESS) else: tx = Transaction(Transaction.TxnType.make_order, utxo[0], utxo[1], utxo[2], 0, 0, 0, Transaction.UTXOType.make_order, utils.normalize_address(address), amount, tokenprice, utils.normalize_address(currency), 0, ZERO_ADDRESS, 0, 0, ZERO_ADDRESS, 0, ZERO_ADDRESS, 0, 0, ZERO_ADDRESS, 0, ZERO_ADDRESS, 0, 0, ZERO_ADDRESS) break print("created make order tx: %s" % str(tx)) return (tx, tx.readable_str if tx else None) def submit_signed_makeorder_txn(self, address, currency, amount, tokenprice, orig_makeorder_txn_hex, signature): makeorder_txn, makeorder_txn_hex = self.get_makeorder_txn(address, currency, amount, tokenprice) if (makeorder_txn_hex != orig_makeorder_txn_hex): return False else: makeorder_txn.sigtype = Transaction.SigType.txn makeorder_txn.txnsig = utils.decode_hex(utils.remove_0x_head(signature)) self.apply_transaction(rlp.encode(makeorder_txn, Transaction).hex()) return True def get_takeorder_txn(self, address, utxopos, amount): print("called get_takeorder_txn with params [%s, %d, %d]" % (address, utxopos, amount)) encoded_utxos = self.get_utxos(address, ZERO_ADDRESS) blkid = int(utxopos / 1000000000) txid = int((utxopos % 1000000000) / 10000) oindex = utxopos % 10000 tx_info = self._get_input_info(blkid, txid, oindex, None, None) print("make order info: %s" % str(tx_info)) utxos = rlp.decode(utils.decode_hex(encoded_utxos), rlp.sedes.CountableList(rlp.sedes.List([rlp.sedes.big_endian_int, rlp.sedes.big_endian_int, rlp.sedes.big_endian_int, rlp.sedes.big_endian_int]))) tx = None purchase_price = Web3.fromWei(amount, 'ether') * tx_info['tokenprice'] # Find a utxos with enough ether for utxo in utxos: if utxo[3] >= purchase_price: # generate the transaction object ether_change_amount = utxo[3] - purchase_price makeorder_change_amount = tx_info['amount'] - amount if ether_change_amount: ether_change_utxo = [Transaction.UTXOType.transfer, utils.normalize_address(address), int(ether_change_amount), 0, ZERO_ADDRESS] else: ether_change_utxo = [0, ZERO_ADDRESS, 0, 0, ZERO_ADDRESS] if makeorder_change_amount: makeorder_change_utxo = [Transaction.UTXOType.make_order, utils.normalize_address(tx_info['owner']), int(makeorder_change_amount), tx_info['tokenprice'], utils.normalize_address(tx_info['currency'])] else: makeorder_change_utxo = [0, ZERO_ADDRESS, 0, 0, ZERO_ADDRESS] tx = Transaction(Transaction.TxnType.take_order, utxo[0], utxo[1], utxo[2], blkid, txid, oindex, Transaction.UTXOType.transfer, utils.normalize_address(tx_info['owner']), int(purchase_price), 0, ZERO_ADDRESS, # The ether payment to seller Transaction.UTXOType.transfer, utils.normalize_address(address), amount, 0, utils.normalize_address(tx_info['currency']), # The token transfer to buyer *(ether_change_utxo + makeorder_change_utxo)) break return (tx, tx.readable_str if tx else None) def submit_signed_takeorder_txn(self, address, utxopos, amount, orig_takeorder_txn_hex, signature): takeorder_txn, takeorder_txn_hex = self.get_takeorder_txn(address, utxopos, amount) if (takeorder_txn_hex != orig_takeorder_txn_hex): return False else: takeorder_txn.sigtype = Transaction.SigType.txn takeorder_txn.txnsig = utils.decode_hex(utils.remove_0x_head(signature)) self.apply_transaction(rlp.encode(takeorder_txn, Transaction).hex()) return True
StarcoderdataPython
1624940
<reponame>eldorbekpulatov/textractor<filename>app.py # importing required modules import os import random import textract from flask import Flask, request, render_template, redirect, url_for app = Flask(__name__) UPLOAD_FOLDER = 'tmp/' app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER # allow files of a specific type ALLOWED_EXTENSIONS = set([ "csv", "doc", "docx", "eml", "epub", "gif", "htm", "html", "jpeg", "jpg", "json", "log", "mp3", "msg", "odt", "ogg", "pdf", "png", "pptx", "ps", "psv", "rtf", "tff", "tif", "tiff", "tsv", "txt", "wav", "xls", "xlsx"]) # function to check the file extension def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS @app.route('/favicon.ico') def favicon(): return redirect(url_for('static', filename='favicon.ico')) @app.route('/') def index(): return render_template("file_upload_form.html") @app.route('/upload', methods = ['POST', 'GET']) def upload(): if request.method == 'POST': if not request.files.get('files[]', None): return redirect(url_for("index")) else: content = [] files = request.files.getlist('files[]') for file in files: file_id = random.randint(10000, 99999) file_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename) if file and allowed_file(file.filename): file.save(file_path) text = "" try: text = textract.process(file_path).decode("utf-8", "ignore") except Exception as e: text = str(e) content.append({ "id": file_id, "name":file.filename, "type": file.content_type, "text": text }) os.remove(file_path) file_id += 1 return render_template("file_search_form.html", data=content) else: return redirect(url_for("index")) if __name__ == '__main__': app.run(debug=True, use_debugger=True, use_reloader=True)
StarcoderdataPython
31497
<reponame>storagebot/readthedocs.org import os import shutil import codecs import logging import zipfile from django.template import Template, Context from django.contrib.auth.models import SiteProfileNotAvailable from django.core.exceptions import ObjectDoesNotExist from django.conf import settings from builds import utils as version_utils from core.utils import copy_to_app_servers, copy_file_to_app_servers from doc_builder.base import BaseBuilder, restoring_chdir from projects.utils import run from tastyapi import apiv2 log = logging.getLogger(__name__) class Builder(BaseBuilder): """ Mkdocs builder """ def clean(self): pass def find_conf_file(self, project, version='latest'): if project.conf_py_file: log.debug('Inserting conf.py file path from model') return os.path.join(self.checkout_path(version), self.conf_py_file) files = project.find('mkdocs.yml', version) if not files: files = project.full_find('mkdocs.yml', version) if len(files) == 1: return files[0] elif len(files) > 1: for file in files: if file.find('doc', 70) != -1: return file else: # Having this be translatable causes this odd error: # ProjectImportError(<django.utils.functional.__proxy__ object at 0x1090cded0>,) raise ProjectImportError(u"Conf File Missing. Please make sure you have a mkdocs.yml in your project.") @restoring_chdir def build(self, **kwargs): project = self.version.project os.chdir(project.checkout_path(self.version.slug)) if project.use_virtualenv: build_command = "%s build --theme=readthedocs" % ( project.venv_bin(version=self.version.slug, bin='mkdocs') ) else: build_command = "mkdocs build --theme=readthedocs" build_results = run(build_command, shell=True) return build_results def move(self, **kwargs): project = self.version.project build_path = os.path.join(project.checkout_path(self.version.slug), 'site') if os.path.exists(build_path): #Copy the html files. target = project.rtd_build_path(self.version.slug) if "_" in project.slug: new_slug = project.slug.replace('_', '-') new_target = target.replace(project.slug, new_slug) #Only replace 1, so user_builds doesn't get replaced >:x targets = [target, new_target] else: targets = [target] for target in targets: if getattr(settings, "MULTIPLE_APP_SERVERS", None): log.info("Copying docs to remote server.") copy_to_app_servers(build_path, target) else: if os.path.exists(target): shutil.rmtree(target) log.info("Copying docs on the local filesystem") shutil.copytree(build_path, target) else: log.warning("Not moving docs, because the build dir is unknown.")
StarcoderdataPython
3333066
<reponame>Nv7-GitHub/mold def read(file): with open(file) as f: return f.read()
StarcoderdataPython
67249
# -*- coding: utf-8 -*- # vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright (C) 2014 Yahoo! Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import testtools from constructs import digraph class TestDirectedGraph(testtools.TestCase): def test_not_empty(self): g = digraph.DirectedGraph() g.add_node(1) self.assertFalse(g.empty()) self.assertEqual(1, len(g)) def test_is_empty(self): g = digraph.DirectedGraph() self.assertTrue(g.empty()) def test_nodes_iter(self): g = digraph.DirectedGraph() g.add_node(1) g.add_node(2) self.assertEqual([1, 2], list(g.nodes_iter())) def test_edges_iter(self): g = digraph.DirectedGraph() g.add_node(1) g.add_node(2) g.add_edge(1, 2) g.add_edge(1, 1) self.assertEqual([(1, 2), (1, 1)], list(g.edges_iter())) def test_successors_predecessors(self): g = digraph.DirectedGraph() g.add_node(1) g.add_node(2) g.add_edge(1, 2) self.assertEqual([2], list(g.successors_iter(1))) self.assertEqual([1], list(g.predecessors_iter(2))) self.assertEqual([], list(g.predecessors_iter(1))) self.assertEqual([], list(g.successors_iter(2))) def test_add_bad_edge(self): g = digraph.DirectedGraph() g.add_node(1) self.assertRaises(ValueError, g.add_edge, 1, 2) def test_add_remove_node(self): g = digraph.DirectedGraph() g.add_node(1) g.add_node(2) self.assertEqual(2, len(g)) g.remove_node(1) self.assertEqual(1, len(g)) def test_basic_iter(self): g = digraph.DirectedGraph() g.add_node(1) g.add_node(2) g.add_node(3) self.assertEqual([1, 2, 3], list(g)) def test_freeze(self): g = digraph.DirectedGraph() g.add_node(1) self.assertEqual(1, len(g)) g.freeze() self.assertRaises(RuntimeError, g.remove_node, 1) self.assertEqual(1, len(g)) self.assertRaises(RuntimeError, g.add_node, 2) self.assertRaises(RuntimeError, g.add_edge, 1, 1) def test_freeze_copy(self): g = digraph.DirectedGraph() g.add_node(1) self.assertEqual(1, len(g)) g.freeze() self.assertRaises(RuntimeError, g.remove_node, 1) g2 = g.copy() g2.add_node(2) self.assertEqual(1, len(g)) self.assertEqual(2, len(g2)) g2.add_edge(1, 2) self.assertEqual(1, len(list(g2.edges_iter()))) self.assertEqual(0, len(list(g.edges_iter()))) def test_add_remove_node_edges(self): g = digraph.DirectedGraph() g.add_node(1) g.add_node(2) g.add_edge(1, 2) self.assertEqual([(1, 2)], list(g.edges_iter())) self.assertTrue(g.has_edge(1, 2)) self.assertEqual([1], list(g.predecessors_iter(2))) g.remove_node(1) self.assertEqual([], list(g.edges_iter())) self.assertRaises(ValueError, g.has_edge, 1, 2) self.assertFalse(g.has_node(1)) self.assertEqual([], list(g.predecessors_iter(2)))
StarcoderdataPython
3270475
<reponame>dadito6/juego_memoria<gh_stars>0 import PySimpleGUI as sg from src.GUI import board from src.Controllers import config_theme as theme, Usuario , matriz """ Aqui se trabajara la logica del tablero""" def start(username): window = loop(username) window.close() def loop(username): datos=Usuario.get_datos_usuario(username) level= datos['config']['level'] ocurrencias=datos['config']['coincidences'] a= matriz.rellenar_matriz(level,ocurrencias) window = board.build(a) while True: event, _values = window.read() if event in (sg.WIN_CLOSED,'-CANCEL-', '-EXIT-'): break return window
StarcoderdataPython
3254378
<filename>src/background.py # Copyright (C) 2022 viraelin # License: MIT from PyQt6.QtCore import * from PyQt6.QtWidgets import * from PyQt6.QtGui import * class Background(QGraphicsRectItem): def __init__(self) -> None: super().__init__() self.setZValue(-1000) size = 800000 size_half = size / 2 rect = QRectF(-size_half, -size_half, size, size) self.setRect(rect) xp1 = QPoint(-size, 0) xp2 = QPoint(size, 0) self._line_x = QLine(xp1, xp2) yp1 = QPoint(0, -size) yp2 = QPoint(0, size) self._line_y = QLine(yp1, yp2) self._axis_color = QColor("#111111") self._pen = QPen() self._pen.setColor(self._axis_color) self._pen.setWidth(4) self._pen.setCosmetic(True) self._pen.setStyle(Qt.PenStyle.SolidLine) self._pen.setCapStyle(Qt.PenCapStyle.SquareCap) self._pen.setJoinStyle(Qt.PenJoinStyle.MiterJoin) self._background_color = QColor("#222222") self._brush = QBrush() self._brush.setColor(self._background_color) self._brush.setStyle(Qt.BrushStyle.SolidPattern) def paint(self, painter: QPainter, option: QStyleOptionGraphicsItem, widget: QWidget) -> None: painter.setPen(self._pen) painter.setBrush(self._brush) painter.drawRect(self.rect()) painter.drawLine(self._line_x) painter.drawLine(self._line_y)
StarcoderdataPython
39363
<reponame>csb6/libtcod-ada<filename>third_party/libtcod/.ci/conan_build.py<gh_stars>100-1000 #!/usr/bin/env python3 """Build script for conan-package-tools: https://github.com/conan-io/conan-package-tools """ import os import subprocess from cpt.packager import ConanMultiPackager try: version = subprocess.check_output( ["git", "describe", "--abbrev=0"], universal_newlines=True ) except subprocess.CalledProcessError: version = "0.0" if __name__ == "__main__": if "CI" in os.environ: os.environ["CONAN_SYSREQUIRES_MODE"] = "enabled" # Fix GitHub Actions version tag. if os.environ.get("GITHUB_REF", "").startswith("refs/tags/"): version = os.environ["GITHUB_REF"].replace("refs/tags/", "") builder = ConanMultiPackager( username="hexdecimal", channel="conan", upload="https://api.bintray.com/conan/hexdecimal/conan", upload_only_when_tag=True, reference="libtcod/" + version, remotes=[ "https://conan.bintray.com", "https://api.bintray.com/conan/bincrafters/public-conan", ], cppstds=["14"], visual_runtimes=["MD", "MDd"], # test_folder="tests/", build_policy="missing", upload_dependencies="all", ) builder.add_common_builds(pure_c=False) builder.run()
StarcoderdataPython
152534
import frappe from erpnext.compliance.utils import get_default_license from frappe.modules.utils import sync_customizations def execute(): sync_customizations("bloomstack_core") compliance_info = frappe.get_all('Compliance Info', fields=['name']) if not compliance_info: return sales_orders = frappe.get_all("Sales Order",fields=["customer", "name"]) sales_invoices = frappe.get_all("Sales Invoice",fields=["customer", "name"]) delivery_notes = frappe.get_all("Sales Invoice",fields=["customer", "name"]) quotations = frappe.get_all("Quotation",fields=["party_name", "name", "quotation_to"]) supplier_quotations = frappe.get_all("Supplier Quotation",fields=["supplier", "name"]) purchase_orders = frappe.get_all("Purchase Order",fields=["supplier", "name"]) purchase_invoices = frappe.get_all("Purchase Invoice",fields=["supplier", "name"]) purchase_receipts = frappe.get_all("Purchase Receipt",fields=["supplier", "name"]) for doc in sales_orders: license = get_default_license("Customer", doc.customer) if not license: continue frappe.db.set_value("Sales Order", doc.name, "license", license) for doc in sales_invoices: license = get_default_license("Customer", doc.customer) if not license: continue frappe.db.set_value("Sales Invoice", doc.name, "license", license) for doc in delivery_notes: license = get_default_license("Customer", doc.customer) if not license: continue frappe.db.set_value("Delivery Note", doc.name, "license", license) for doc in quotations: if doc.quotation_to == "Customer": license = get_default_license("Customer", doc.party_name) if not license: continue frappe.db.set_value("Quotation", doc.name, "license", license) for doc in supplier_quotations: license = get_default_license("Supplier", doc.supplier) if not license: continue frappe.db.set_value("Supplier Quotation", doc.name, "license", license) for doc in purchase_orders: license = get_default_license("Supplier", doc.supplier) if not license: continue frappe.db.set_value("Purchase Order", doc.name, "license", license) for doc in purchase_invoices: license = get_default_license("Supplier", doc.supplier) if not license: continue frappe.db.set_value("Purchase Invoice", doc.name, "license", license) for doc in purchase_receipts: license = get_default_license("Supplier", doc.supplier) if not license: continue frappe.db.set_value("Purchase Receipt", doc.name, "license", license)
StarcoderdataPython
50658
<reponame>rwst/wikidata-molbio import pronto, six, csv, os, json, argparse, sys, datetime """ Uses eyeballed A004.txt. Cleans and moves all items chunkwise (CHUNKSIZE). """ CHUNKSIZE = 10 # Initiate the parser parser = argparse.ArgumentParser() # Read arguments from the command line args = parser.parse_args() # Check for --version or -V script = os.path.basename(sys.argv[0])[:-3] done = set() with open('A004.txt', 'r') as af: curr_chunk = 0 d0 = [] wd0 = [] d1 = [] for line in af.readlines(): d = line.rstrip().split('|') d0.append(d[0]) wd0.append('wd:' + d[0]) d1.append(d[1]) curr_chunk = curr_chunk + 1 if curr_chunk < CHUNKSIZE: continue query = """ SELECT ?it ?prop ?val (LANG(?val) AS ?lang) WHERE {{ VALUES ?it {{ {} }} ?it ?prop ?val. }} """.format(' '.join(wd0)) f = open('{}.rq'.format(script), 'w') f.write(query) f.close() print('performing query...', file=sys.stderr) ret = os.popen('wd sparql {}.rq >{}.json'.format(script, script)) if ret.close() is not None: raise file = open('{}.json'.format(script)) s = file.read() jol = json.loads(s) items = {} for d in jol: it = d.get('it') p = d.get('prop') v = d.get('val') l = d.get('lang') i = items.get(it) if i is None: items[it] = [(p,v,l)] else: i.append((p,v,l)) jj = '' for it in items.keys(): alangs = set() dlangs = set() llangs = set() stmts = {} for p,v,l in items.get(it): if p[:29] == 'http://www.wikidata.org/prop/': s = stmts.get(p[29:]) if s is None: stmts[p[29:]] = [v] else: s.append(v) if p == 'http://www.w3.org/2004/02/skos/core#altLabel': alangs.add(l) if p == 'http://schema.org/description': dlangs.add(l) if p == 'http://www.w3.org/2000/01/rdf-schema#label': llangs.add(l) j = { 'id': it } if len(alangs) > 0: al = {} for alang in alangs: al[alang] = [] j['aliases'] = al if len(dlangs) > 0: dl = {} for dlang in dlangs: dl[dlang] = None j['descriptions'] = dl if len(llangs) > 0: ll = {} for llang in llangs: ll[llang] = None j['labels'] = ll claims = {} for p in stmts.keys(): c = [] for stmt in stmts.get(p): c.append({ 'id': stmt, 'remove': True }) claims[p] = c if len(claims) > 0: j['claims'] = claims jj = jj + json.dumps(j) + '\n' f = open('{}.json1'.format(script), 'w') f.write(jj) f.close() ret = os.popen('wd ee -bv -s del-manually-selected-obsolete-go-entities --no-exit-on-error <{}.json1'.format(script)) print(ret.read()) if ret.close() is not None: print('ERROR') f = open('{}.mtxt'.format(script), 'w') for (fr,to) in zip(d0, d1): f.write('{} {}\n'.format(fr, to)) f.close() ret = os.popen('wd me -bv -s del-manually-selected-obsolete-go-entities --no-exit-on-error <{}.mtxt'.format(script)) print(ret.read()) if ret.close() is not None: print('ERROR') curr_chunk = 0 d0 = [] wd0 = [] d1 = []
StarcoderdataPython
11734
import re import time from lemoncheesecake.events import TestSessionSetupEndEvent, TestSessionTeardownEndEvent, \ TestEndEvent, SuiteSetupEndEvent, SuiteTeardownEndEvent, SuiteEndEvent, SteppedEvent from lemoncheesecake.reporting.report import ReportLocation DEFAULT_REPORT_SAVING_STRATEGY = "at_each_failed_test" def _is_end_of_result_event(event): if isinstance(event, TestEndEvent): return ReportLocation.in_test(event.test) if isinstance(event, SuiteSetupEndEvent): return ReportLocation.in_suite_setup(event.suite) if isinstance(event, SuiteTeardownEndEvent): return ReportLocation.in_suite_teardown(event.suite) if isinstance(event, TestSessionSetupEndEvent): return ReportLocation.in_test_session_setup() if isinstance(event, TestSessionTeardownEndEvent): return ReportLocation.in_test_session_teardown() return None def save_at_each_suite_strategy(event, _): return isinstance(event, SuiteEndEvent) def save_at_each_test_strategy(event, _): return _is_end_of_result_event(event) is not None def save_at_each_failed_test_strategy(event, report): location = _is_end_of_result_event(event) if location: result = report.get(location) return result and result.status == "failed" else: return False def save_at_each_log_strategy(event, _): return isinstance(event, SteppedEvent) class SaveAtInterval(object): def __init__(self, interval): self.interval = interval self.last_saving = None def __call__(self, event, report): now = time.time() if self.last_saving: must_be_saved = now > self.last_saving + self.interval if must_be_saved: self.last_saving = now return must_be_saved else: self.last_saving = now # not a saving but an initialization return False def make_report_saving_strategy(expression): # first, try with a static expression static_expressions = { "at_end_of_tests": None, # no need to an intermediate report saving in this case "at_each_suite": save_at_each_suite_strategy, "at_each_test": save_at_each_test_strategy, "at_each_failed_test": save_at_each_failed_test_strategy, "at_each_log": save_at_each_log_strategy, "at_each_event": save_at_each_log_strategy # deprecated since 1.4.5, "at_each_log" must be used instead } try: return static_expressions[expression] except KeyError: pass # second, try with "every_Ns" m = re.compile(r"^every[_ ](\d+)s$").match(expression) if m: return SaveAtInterval(int(m.group(1))) # ok... nothing we know about raise ValueError("Invalid expression '%s' for report saving strategy" % expression)
StarcoderdataPython
3288871
import csv with open('data/lean1.csv', 'rb') as csv_file: reader = csv.reader(csv_file) for row in reader: genre_count[row[0]][row[1]] += 1
StarcoderdataPython
1604677
from __future__ import annotations from typing import Any import enum class EnumMeta(enum.EnumMeta): def __repr__(cls) -> str: return f"{cls.__name__}[{', '.join([f'{member.name}={repr(member.value)}' for member in cls])}]" def __str__(cls) -> str: return cls.__name__ def __call__(cls, *args: Any, **kwargs: Any): try: return super().__call__(*args, **kwargs) except ValueError as ex: msg, = ex.args raise ValueError(f"{msg}, must be one of: {', '.join([repr(member.value) for member in cls])}.") @property def names(cls) -> list[str]: """A list of the names in this Enum.""" return [member.name for member in cls] @property def values(cls) -> list[Any]: """A list of the values in this Enum.""" return [member.value for member in cls] def is_enum(cls, candidate: Any) -> bool: """Returns True if the candidate is a subclass of Enum, otherwise returns False.""" try: return issubclass(candidate, enum.Enum) except TypeError: return False class ValueEnumMeta(EnumMeta): def __getattribute__(cls, name: str) -> Any: value = super().__getattribute__(name) if isinstance(value, cls): value = value.value return value class BaseEnum(enum.Enum): def __repr__(self) -> str: return f"{type(self).__name__}(name={self.name}, value={repr(self.value)})" def __hash__(self) -> int: return id(self) def __eq__(self, other: Any) -> bool: return other is self or other == self.value def __ne__(self, other: Any) -> bool: return other is not self and other != self.value def __str__(self) -> str: return str(self.value) def map_to(self, mapping: dict, else_: Any = None, raise_for_failure: bool = True) -> Any: if (ret := mapping.get(self, else_)) is None and raise_for_failure: raise ValueError(f"No mapping for '{self}' found in {mapping}.") return ret class Enum(BaseEnum, enum.Enum, metaclass=EnumMeta): """A subclass of aenum.Enum with additional methods.""" class ValueEnum(BaseEnum, metaclass=ValueEnumMeta): """A subclass of subtypes.Enum. Attribute access on descendants of this class returns the value corresponding to that name, rather than returning the member."""
StarcoderdataPython
115166
"""PreProcess Data Process data for training. .. helpdoc:: This widget pre-processes data so that it can be more efficiently used in prediction. This involves removing predictors with near zero variance (using nearZeroVar()), predictors with high correlation (using findCorrelation()), and reducing predictors in design matrices. """ """<widgetXML> <name>PreProcess Data</name> <icon>default.png</icon> <tags> <tag priority='47'>Caret</tag> </tags> <summary>Find internal correlations within data and provide an index of items to remove that will resolve these correlations.</summary> <author> <authorname>Red-R Core Team</authorname> <authorcontact>http://www.red-r.org/contact</authorcontact> </author> </widgetXML> """ from OWRpy import * import redRGUI, signals import libraries.RedRCaret.signalClasses as caret class RedRfindCorrelation(OWRpy): settingsList = [] def __init__(self, **kwargs): OWRpy.__init__(self, **kwargs) self.require_librarys(["caret"]) """ ..rrvarnames::""" self.setRvariableNames(["findCorrelation", "nearZero", "findCorrelationOutput", "preProcess"]) self.data = {} self.RFunctionParam_x = '' self.RFunctionParam_data = '' #self.inputs.addInput("x", "Correlation Matrix", signals.base.RMatrix, self.processx) """.. rrsignals:: :description: `A Caret data signal or data container` """ self.inputs.addInput("data", "Data Table / Sample List", caret.CaretData.CaretData , self.processdata) """.. rrsignals:: :description: `A processed Caret data signal` """ self.outputs.addOutput("findCorrelation Output","Reduced Data Table", caret.CaretData.CaretData) """.. rrsignals:: :description: `A special Caret model for use in applying preprocessing to other data sets. This is a consequence of Caret's configuration and, confusing as it is, one can use Predict to apply these predictions to a new data container.` """ self.outputs.addOutput("preprocess model", "PreProcess Model (To Calibrate Test Data)", caret.CaretModelFit.CaretModelFit) grid = redRGUI.base.gridBox(self.controlArea) """.. rrgui::""" self.nearZero = redRGUI.base.radioButtons(grid.cell(0,0), label = 'Remove Near Zero Variance Predictors?', buttons = ['Yes', 'No'], setChecked = 'Yes', callback = self.nzvShowHide) self.nzvBox = redRGUI.base.widgetBox(grid.cell(0,0)) """.. rrgui::""" self.freqCut = redRGUI.base.lineEdit(self.nzvBox, label = 'Frequency Cut:', text = '95/5') """.. rrgui::""" self.uniqueCut = redRGUI.base.lineEdit(self.nzvBox, label = 'Unique Cut:', text = '10') """.. rrgui::""" self.preProcess = redRGUI.base.radioButtons(grid.cell(0,1), label = 'Perform Pre Processing?', buttons = ['Yes', 'No'], setChecked = 'Yes', callback = self.nzvShowHide) """.. rrgui::""" self.preprocessMethodsCombo = redRGUI.base.listBox(grid.cell(0,1), label = 'Pre Process Methods', items = [("BoxCox", "BoxCox"), ("center", "Center"), ("scale", "Scale"), ("range", "Range"), ("knnImpute", "KNN Impute"), ("bagImpute", "Bag Impute"), ("pca", "Principal Components"), ("ica", "Independent Components"), ("spatialSign", "Spatial Sign")]) """.. rrgui::""" self.preprocessMethodsCombo.setSelectionMode(QAbstractItemView.ExtendedSelection) """.. rrgui::""" self.preprocessMethodsCombo.setSelectedIds(["center", "scale"]) """.. rrgui::""" self.preprocessTresh = redRGUI.base.spinBox(grid.cell(0,2), label = 'Pre Process Threshold:', min = 0, value = 0.95, decimals = 3) """.. rrgui::""" self.preProcessNARM = redRGUI.base.radioButtons(grid.cell(0,2), label = 'Remove NA?', buttons = [('TRUE', 'Yes'), ('FALSE', 'No')], setChecked = 'TRUE', callback = self.nzvShowHide) """.. rrgui::""" self.preProcessKNN = redRGUI.base.spinBox(grid.cell(0,2), label = 'Pre Process Threshold:', min = 0, value = 5, decimals = 0) """.. rrgui::""" self.preProcessKNNSUM = redRGUI.base.comboBox(grid.cell(0,2), label = 'KNN Summary', items = [('mean', 'Mean'), ('median', 'Median'), ('min', 'Minimum'), ('max', 'Maximum')]) """.. rrgui::""" self.preProcessFUDGE = redRGUI.base.spinBox(grid.cell(0,2), label = 'Fudge Value:', min = 0, value = 0.2, decimals = 3) """.. rrgui::""" self.preProcessNUMUNI = redRGUI.base.spinBox(grid.cell(0,2), label = 'Box-Cot Unique Values', min = 2, value = 3, decimals = 0) """.. rrgui::""" self.RFunctionParamcutoff_spinBox = redRGUI.base.spinBox(grid.cell(0,2), label = "Max Correlation Coef (/100):", min = 1, max = 99, value = 90) """.. rrgui::""" redRGUI.base.commitButton(self.bottomAreaRight, "Commit", callback = self.commitFunction) """.. rrgui::""" self.RoutputWindow = redRGUI.base.textEdit(self.controlArea, label = "R Output Window") def nzvShowHide(self): if unicode(self.nearZero.getChecked()) == 'Yes': self.nzvBox.show() else: self.nzvBox.hide() def processdata(self, data): if data: self.RFunctionParam_data=data.getData() self.RFunctionParam_classes = data.getClasses() else: self.RFunctionParam_data='' self.RFunctionParam_classes = '' def commitFunction(self): if unicode(self.RFunctionParam_data) == '': self.status.setText('No Data To Work On') return ## findCorrelation params injection = [] string = ',cutoff='+unicode(float(self.RFunctionParamcutoff_spinBox.value())/100)+'' injection.append(string) inj = ''.join(injection) ## nzv parame nzvInjection = [] nzvInjection.append(',freqCut = '+unicode(self.freqCut.text())) nzvInjection.append(',uniqueCut = '+unicode(self.uniqueCut.text())) nzvInj = ''.join(nzvInjection) ## if nzv checked if unicode(self.nearZero.getChecked()) == 'Yes': self.R('%s<-nearZeroVar(%s, %s)' % (unicode(self.Rvariables['nearZero']), unicode(self.RFunctionParam_data), unicode(nzvInj))) cor = 'cor(%s)' % unicode(self.RFunctionParam_data) self.R(self.Rvariables['findCorrelation']+'<-findCorrelation(x=%s %s)' % (cor, inj)) remove = 'c(%s, %s)' % (self.Rvariables['findCorrelation'], self.Rvariables['nearZero']) ## else nzv not checked else: cor = 'cor(%s)' % unicode(self.RFunctionParam_data) self.R(self.Rvariables['findCorrelation']+'<-findCorrelation(x=%s %s)' % (cor, inj)) remove = self.Rvariables['findCorrelation'] ## at this point we should remove those columns that do not supply any data or that are correlated. self.R(self.Rvariables['findCorrelationOutput']+'<-'+self.RFunctionParam_data+'[, -'+remove+']', wantType = 'NoConversion') ## preprocess fits a model that must then be used as a predictor for each set of data. In this case there is a predition function that should be run, in other cases the prediction function should be run on other attached data sources. if self.preProcess.getChecked() == 'Yes': self.R('%(OUTPUT)s<-preProcess(%(DATA)s, method = %(METHOD)s, threshold = %(THRESH)s, na.remove = %(NARM)s, k = %(KNN)s, knnSummary = %(KNNSUM)s, outcome = %(OUTCOME)s, fudge = %(FUDGE)s, numUnique = %(NUMUNI)s)' % { 'OUTPUT':self.Rvariables['preProcess'] ,'DATA':'%s' % self.Rvariables['findCorrelationOutput'] ,'METHOD':'c(%s)' % (','.join(['"%s"' % i for i in self.preprocessMethodsCombo.selectedIds()])) ,'THRESH':str(self.preprocessTresh.value()) ,'NARM':self.preProcessNARM.getCheckedId() ,'KNN':str(self.preProcessKNN.value()) ,'KNNSUM':self.preProcessKNNSUM.currentId() ,'OUTCOME':'%s' % self.RFunctionParam_classes ,'FUDGE':str(self.preProcessFUDGE.value()) ,'NUMUNI':str(self.preProcessNUMUNI.value()) } , wantType = 'NoConversion') self.R('%(OUTPUT)s<-predict(%(PREPRO)s, %(OUTPUT)s)' % { 'OUTPUT':self.Rvariables['findCorrelationOutput'], 'PREPRO':self.Rvariables['preProcess'] }, wantType = 'NoConversion') newData = caret.CaretData.CaretData(self, data = self.Rvariables['findCorrelationOutput'], classes = self.RFunctionParam_classes, parent = self.Rvariables['findCorrelationOutput']) self.rSend("findCorrelation Output", newData) newDataPreprocess = caret.CaretModelFit.CaretModelFit(self, data = self.Rvariables['preProcess']) self.rSend("preprocess model", newDataPreprocess) self.RoutputWindow.clear() self.RoutputWindow.insertPlainText('Removed %s samples from the data.' % self.R('length('+self.Rvariables['findCorrelation']+')'))
StarcoderdataPython
1764795
from pyexpat import features from darts.models.forecasting.gradient_boosted_model import LightGBMModel import wandb from darts.models import TCNModel import pandas as pd from darts.metrics import mape, mae from darts import TimeSeries from darts.dataprocessing.transformers import Scaler from copy import deepcopy import numpy as np import logging import click from functools import partial from aeml.models.utils import split_data, choose_index from aeml.causalimpact.utils import get_timestep_tuples, get_causalimpact_splits import pickle from aeml.causalimpact.utils import _select_unrelated_x from aeml.models.gbdt.gbmquantile import LightGBMQuantileRegressor from aeml.models.gbdt.run import run_model from aeml.models.gbdt.settings import * from darts.dataprocessing.transformers import Scaler from darts import TimeSeries import pandas as pd from copy import deepcopy import time log = logging.getLogger(__name__) MEAS_COLUMNS = ["TI-19", "TI-3", "FI-19", "FI-11", "TI-1213", "TI-35", "delta_t"] to_exclude = { 0: ["TI-19"], 1: ["FI-19"], 2: ["TI-3"], 3: ["FI-11"], 4: ["FI-11"], 5: ["TI-1213", "TI-19"], 6: [], } TARGETS_clean = ["2-Amino-2-methylpropanol C4H11NO", "Piperazine C4H10N2"] sweep_config = { "metric": {"goal": "minimize", "name": "mae_valid"}, "method": "bayes", "parameters": { "lags": {"min": 1, "max": 200, "distribution": "int_uniform"}, "feature_lag": {"max": -1, "min": -200}, "n_estimators": {"min": 50, "max": 1000}, "bagging_freq": {"min": 0, "max": 10, "distribution": "int_uniform"}, "bagging_fraction": {"min": 0.001, "max": 1.0}, "num_leaves": {"min": 1, "max": 200, "distribution": "int_uniform"}, "extra_trees": {"values": [True, False]}, "max_depth": {"values": [-1, 10, 20, 40, 80, 160, 320]}, }, } sweep_id = wandb.sweep(sweep_config, project="aeml") def get_data(x, y, target, targets_clean): targets = targets_clean[target] train, valid, test, ts, ts1 = split_data(x, y, targets, 0.5) return (train, valid, test) def load_data(datafile="../../../paper/20210624_df_cleaned.pkl"): df = pd.read_pickle(datafile) Y = TimeSeries.from_dataframe(df, value_cols=TARGETS_clean).astype(np.float32) X = TimeSeries.from_dataframe(df, value_cols=MEAS_COLUMNS).astype(np.float32) transformer = Scaler() X = transformer.fit_transform(X) y_transformer = Scaler() Y = y_transformer.fit_transform(Y) return X, Y, transformer, y_transformer def select_columns(day): feat_to_exclude = to_exclude[day] feats = [f for f in MEAS_COLUMNS if f not in feat_to_exclude] return feats with open("step_times.pkl", "rb") as handle: times = pickle.load(handle) DF = pd.read_pickle("20210508_df_for_causalimpact.pkl") def inner_train_test(x, y, day, target): run = wandb.init() features = select_columns(day) y = y[TARGETS_clean[target]] x = x[features] x_trains = [] y_trains = [] before, during, after, way_after = get_causalimpact_splits(x, y, day, times, DF) # if len(before[0]) > len(way_after[0]): x_trains.append(before[0]) y_trains.append(before[1]) # else: x_trains.append(way_after[0]) y_trains.append(way_after[1]) xscaler = Scaler(name="x-scaler") yscaler = Scaler(name="y-scaler") longer = np.argmax([len(x_trains[0]), len(x_trains[1])]) shorter = np.argmin([len(x_trains[0]), len(x_trains[1])]) print(len(x_trains[0]), len(x_trains[1])) x_trains[longer] = xscaler.fit_transform(x_trains[longer]) y_trains[longer] = yscaler.fit_transform(y_trains[longer]) x_trains[shorter] = xscaler.transform(x_trains[shorter]) y_trains[shorter] = yscaler.transform(y_trains[shorter]) steps =len(during[0]) if steps > len(x_trains[shorter]): ts = choose_index(x, 0.3) x_before, x_after = x_trains[longer].split_before(ts) y_before, y_after = y_trains[longer].split_before(ts) y_trains[shorter] = y_before y_trains[longer] = y_after x_trains[shorter] = x_before x_trains[longer] = x_after print(steps, len(x_trains[shorter])) train = (x_trains[longer], y_trains[longer]) valid = (x_trains[shorter], y_trains[shorter]) log.info("initialize model") model = LightGBMModel( lags=run.config.lags, lags_past_covariates=[ run.config.feature_lag, ] * len(features), n_estimators=run.config.n_estimators, bagging_freq=run.config.bagging_freq, bagging_fraction=run.config.bagging_fraction, num_leaves=run.config.num_leaves, extra_trees=run.config.extra_trees, max_depth=run.config.max_depth, output_chunk_length=steps, objective="quantile", alpha=0.5, ) log.info("fit") model.fit(series=train[1], past_covariates=train[0], verbose=False) log.info("historical forecast train set") backtest_train = model.historical_forecasts( train[1], past_covariates=train[0], start=0.3, forecast_horizon=steps, stride=1, retrain=False, verbose=False, ) log.info("historical forecast valid") backtest_valid = model.historical_forecasts( valid[1], past_covariates=valid[0], start=0.5, forecast_horizon=steps, stride=1, retrain=False, verbose=False, ) log.info("getting scores") # mape_valid = mape(valid[1][TARGETS_clean[0]], backtest_valid["0"]) # mape_train = mape(train[1][TARGETS_clean[0]], backtest_train["0"]) mae_valid = mae(valid[1][TARGETS_clean[target]], backtest_valid["0"]) mae_train = mae(train[1][TARGETS_clean[target]], backtest_train["0"]) # wandb.log({"mape_valid": mape_valid}) # wandb.log({"mape_train": mape_train}) log.info(f"MAE valid {mae_valid}") wandb.log({"mae_valid": mae_valid}) wandb.log({"mae_train": mae_train}) @click.command() @click.argument("day", type=click.INT, default=1) @click.argument("target", type=click.INT, default=0) def train_test(day, target): print("get data") x, y, _, _ = load_data("20210508_df_for_causalimpact.pkl") optimizer_func = partial(inner_train_test, day=day, x=x, y=y, target=target) wandb.agent(sweep_id, function=optimizer_func, project="aeml") if __name__ == "__main__": train_test()
StarcoderdataPython
3218328
# Source Server Stats # File: sourcestats/util/__init__.py # Desc: general utilities from hashlib import sha1 import requests from flask import jsonify, abort SOURCE_APPS = None def get_source_apps(): global SOURCE_APPS if SOURCE_APPS is None: response = requests.get('http://api.steampowered.com/ISteamApps/GetAppList/v2').json() SOURCE_APPS = { app['appid']: app['name'] for app in response['applist']['apps'] } return SOURCE_APPS def hash_address(address): host, port = address hasher = sha1() hasher.update(host) hasher.update(str(port)) return hasher.hexdigest() def api_abort(status_code, message): response = jsonify(error=message, status=status_code) response.status_code = status_code abort(response)
StarcoderdataPython
1635722
# python3 compatibity while retaining checking # for both str and unicode in python2 try: string_types = (str, unicode) except NameError: string_types = (str,) def is_string_type(val): return isinstance(val, string_types) try: # python3 from functools import reduce except NameError: pass reduce = reduce try: import urllib.request as urllib2 import http.client as httplib from urllib.parse import urlparse, urljoin, parse_qsl, parse_qs from urllib.request import urlopen from _thread import allocate_lock unichr = chr except ImportError: # Python 2 import httplib import urllib2 from urlparse import urlparse, urljoin, parse_qs, parse_qsl from urllib import urlopen from thread import allocate_lock unichr = unichr
StarcoderdataPython
1761244
<gh_stars>0 from setuptools import setup setup( name='ppmp', version='1.0.1', description='Prediction of Perturbations of Modular Protein structures by triplet analysis', author='<NAME>', author_email='<EMAIL>', packages=['ppmp'], install_requires=['matplotlib', 'numpy', 'pandas', 'seaborn', 'scipy', 'tqdm', 'biopython', 'statsmodels'], )
StarcoderdataPython
4834571
<filename>tests/test_fms_api_match_details_parser.py import json from datetime import datetime import unittest2 from google.appengine.ext import ndb from google.appengine.ext import testbed from datafeeds.parsers.fms_api.fms_api_match_parser import FMSAPIMatchDetailsParser class TestFMSAPIEventListParser(unittest2.TestCase): def setUp(self): self.testbed = testbed.Testbed() self.testbed.activate() self.testbed.init_datastore_v3_stub() self.testbed.init_memcache_stub() ndb.get_context().clear_cache() # Prevent data from leaking between tests def tearDown(self): self.testbed.deactivate() def test_parse_no_matches(self): with open('test_data/fms_api/2016_no_score_breakdown.json', 'r') as f: matches = FMSAPIMatchDetailsParser(2016, 'nyny').parse(json.loads(f.read())) self.assertTrue(isinstance(matches, dict)) self.assertEqual(len(matches), 0) def test_parse_qual(self): with open('test_data/fms_api/2016_nyny_qual_breakdown.json', 'r') as f: matches = FMSAPIMatchDetailsParser(2016, 'nyny').parse(json.loads(f.read())) self.assertTrue(isinstance(matches, dict)) self.assertEqual(len(matches), 88) def test_parse_playoff(self): with open('test_data/fms_api/2016_nyny_playoff_breakdown.json', 'r') as f: matches = FMSAPIMatchDetailsParser(2016, 'nyny').parse(json.loads(f.read())) self.assertTrue(isinstance(matches, dict)) self.assertEqual(len(matches), 15) def test_parse_playoff_with_octofinals(self): with open('test_data/fms_api/2016_micmp_staging_playoff_breakdown.json', 'r') as f: matches = FMSAPIMatchDetailsParser(2016, 'micmp').parse(json.loads(f.read())) self.assertTrue(isinstance(matches, dict)) self.assertEquals(len(matches), 36)
StarcoderdataPython