id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
142986
""" ================== Two-class AdaBoost ================== This example fits an AdaBoosted decision stump on a non-linearly separable classification dataset composed of two "Gaussian quantiles" clusters (see :func:`sklearn.datasets.make_gaussian_quantiles`) and plots the decision boundary and decision scores. The distributions of decision scores are shown separately for samples of class A and B. The predicted class label for each sample is determined by the sign of the decision score. Samples with decision scores greater than zero are classified as B, and are otherwise classified as A. The magnitude of a decision score determines the degree of likeness with the predicted class label. Additionally, a new dataset could be constructed containing a desired purity of class B, for example, by only selecting samples with a decision score above some value. """ print(__doc__) # Author: <NAME> <<EMAIL>> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.datasets import make_gaussian_quantiles # Construct dataset X1, y1 = make_gaussian_quantiles( cov=2.0, n_samples=200, n_features=2, n_classes=2, random_state=1 ) X2, y2 = make_gaussian_quantiles( mean=(3, 3), cov=1.5, n_samples=300, n_features=2, n_classes=2, random_state=1 ) X = np.concatenate((X1, X2)) y = np.concatenate((y1, -y2 + 1)) # Create and fit an AdaBoosted decision tree bdt = AdaBoostClassifier( DecisionTreeClassifier(max_depth=1), algorithm="SAMME", n_estimators=200 ) bdt.fit(X, y) plot_colors = "br" plot_step = 0.02 class_names = "AB" plt.figure(figsize=(10, 5)) # Plot the decision boundaries plt.subplot(121) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid( np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step) ) Z = bdt.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis("tight") # Plot the training points for i, n, c in zip(range(2), class_names, plot_colors): idx = np.where(y == i) plt.scatter( X[idx, 0], X[idx, 1], c=c, cmap=plt.cm.Paired, s=20, edgecolor="k", label="Class %s" % n, ) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.legend(loc="upper right") plt.xlabel("x") plt.ylabel("y") plt.title("Decision Boundary") # Plot the two-class decision scores twoclass_output = bdt.decision_function(X) plot_range = (twoclass_output.min(), twoclass_output.max()) plt.subplot(122) for i, n, c in zip(range(2), class_names, plot_colors): plt.hist( twoclass_output[y == i], bins=10, range=plot_range, facecolor=c, label="Class %s" % n, alpha=0.5, edgecolor="k", ) x1, x2, y1, y2 = plt.axis() plt.axis((x1, x2, y1, y2 * 1.2)) plt.legend(loc="upper right") plt.ylabel("Samples") plt.xlabel("Score") plt.title("Decision Scores") plt.tight_layout() plt.subplots_adjust(wspace=0.35) plt.show()
StarcoderdataPython
1667672
<reponame>Gerryflap/master_thesis """ Uses the pairs defined by data/split_generation/pair_generator.py output pairs of images in the following format: ((morph_inputs, comparison_images), (id_1, id_2)) where both morph_inputs and comparison_images are tuples of images of (person_1, person_2). """ import random import os import json import PIL.Image from torchvision.datasets import VisionDataset from data.celeba_cropped import CelebaCropped from shutil import copyfile assert os.path.isdir("data") class CelebaCroppedPairsLookAlike(VisionDataset): cropped_base_folder = "celeba_cropped/img_align/" def __init__(self, split="train", transform=None, target_transform=None, download=False): super().__init__("data", transforms=None, transform=transform, target_transform=target_transform) if not os.path.isdir("data/celeba_cropped/"): # Initialize the dataset if it does not yet exist CelebaCropped(split, transform, target_transform, download) if split not in ["valid", "test"]: raise ValueError("This Dataset can only be used for evaluation (valid or test)!") # Load filenames and splits split_map = { "train": 0, "valid": 1, "test": 2, "all": None, } split = split_map[split] if split == 1: with open("data/celeba_cropped/valid_pairs.json", "r") as f: self.pairs = json.load(f) elif split == 3: with open("data/celeba_cropped/better_pairs_1.json", "r") as f: self.pairs = json.load(f) else: with open("data/celeba_cropped/test_pairs.json", "r") as f: self.pairs = json.load(f) def __getitem__(self, index): pair = self.pairs[index] p_1 = pair[0] p_2 = pair[1] morph_inputs = self.load_image(p_1["morph_in"]), self.load_image(p_2["morph_in"]) comparison_images = self.load_image(p_1["comparison_pic"]), self.load_image(p_2["comparison_pic"]) idents = p_1["ident"], p_2["ident"] return (morph_inputs, comparison_images), idents def load_image(self, name): X = PIL.Image.open(os.path.join(self.root, self.cropped_base_folder, name)) if self.transform is not None: X = self.transform(X) return X def __len__(self): return len(self.pairs) if __name__ == "__main__": ds = CelebaCroppedPairsLookAlike(download=True)
StarcoderdataPython
55166
<filename>dashboard/__init__.py from flask import Flask app = Flask(__name__) app.config['SECRET_KEY'] = 'fac5f35dc32ba113029dad3eb831d7d1' from dashboard import routes
StarcoderdataPython
150404
<filename>data_sets/synthetic_review_prediction/article_0/__init__.py<gh_stars>1-10 from .configure import DATASET_NAME, create_data_set_properties from .generate import run as _run def run(client): print(DATASET_NAME) return _run(client, create_data_set_properties())
StarcoderdataPython
3252816
<filename>client/ui.py # Interface for registration # Written by: <NAME>, <NAME>, <NAME>, and <NAME> # Written for: Instant messenger project # Created on: 4/10/2016 from client import rpc from tkinter import * from tkinter import messagebox from tkinter.ttk import * import queue # Set up a global incoming message queue. message_queue = queue.Queue() """ Handles commands pushed from the server. """ class Handler(rpc.Handler): """ Puts an incoming message into the message queue. """ def receive_message(self, **kwargs): message_queue.put(kwargs) """ The main connection and login window. Window shown before launching the main chat window. Handles connecting to the server, logging in, and registration. """ class LoginWindow: default_address = "0.0.0.0" default_port = 6543 def __init__(self, window): self.window = window self.frame = None self.proxy = None self.username = StringVar() self.password = StringVar() window.protocol("WM_DELETE_WINDOW", self.close) window.resizable(width=FALSE, height=FALSE) window.rowconfigure(0, weight=1) window.columnconfigure(0, weight=1) self.show_connect() """ Shows the server connection form. """ def show_connect(self): if self.frame: self.frame.destroy() self.window.title("Connect to server") self.frame = Frame(self.window) self.frame.grid(sticky=N+S+E+W, padx=10, pady=10) Label(self.frame, text="Connect to a server", style="Title.TLabel").grid(columnspan=2, padx=10, pady=10) Label(self.frame, text="Address").grid(row=1, column=0, sticky=E) self.address_entry = Entry(self.frame) self.address_entry.insert(END, LoginWindow.default_address) self.address_entry.grid(row=1, column=1, padx=10, pady=10) Label(self.frame, text="Port").grid(row=2, column=0, sticky=E) self.port_entry = Entry(self.frame) self.port_entry.insert(END, str(LoginWindow.default_port)) self.port_entry.grid(row=2, column=1, padx=10, pady=10) button_frame = Frame(self.frame) button_frame.grid(row=3, column=0, columnspan=2) Button(button_frame, text="Connect", command=self.on_connect).grid(row=0, column=0, padx=10, pady=10) Button(button_frame, text="Close", command=self.close).grid(row=0, column=1, padx=10, pady=10) # Keyboard navigation. self.address_entry.focus_set() self.address_entry.bind("<Return>", lambda e: self.port_entry.focus_set()) self.port_entry.bind("<Return>", lambda e: self.on_connect()) """ Shows the login form. """ def show_login(self): if self.frame: self.frame.destroy() self.window.title("Login") self.frame = Frame(self.window) self.frame.grid(sticky=N+S+E+W, padx=10, pady=10) Label(self.frame, text="Log in", style="Title.TLabel").grid(columnspan=2, padx=10, pady=10) Label(self.frame, text="Username").grid(row=1, column=0, sticky=E) self.username_entry = Entry(self.frame, textvariable=self.username) self.username_entry.grid(row=1, column=1, padx=10, pady=10) Label(self.frame, text="Password").grid(row=2, column=0, sticky=E) self.password_entry = Entry(self.frame, textvariable=self.password, show="•") self.password_entry.grid(row=2, column=1, padx=10, pady=10) button_frame = Frame(self.frame) button_frame.grid(row=3, column=0, columnspan=2) Button(button_frame, text="Login", command=self.on_login).grid(row=0, column=0, padx=10, pady=10) Button(button_frame, text="Sign Up", command=self.show_register).grid(row=0, column=1, padx=10, pady=10) # Keyboard navigation. self.username_entry.focus_set() self.username_entry.bind("<Return>", lambda e: self.password_entry.focus_set()) self.password_entry.bind("<Return>", lambda e: self.on_login()) """ Shows the registration form. """ def show_register(self): if self.frame: self.frame.destroy() self.window.title("Register") self.frame = Frame(self.window) self.frame.grid(sticky=N+S+E+W, padx=10, pady=10) # Have user create username name = Label(self.frame, text="Username") name.grid(row=0, sticky=E) self.username_entry = Entry(self.frame, textvariable=self.username) self.username_entry.grid(row=0,column=1, padx=10, pady=10) # Have user enter password password = Label(self.frame, text="Password") password.grid(row=1, sticky=E) self.password_entry = Entry(self.frame, textvariable=self.password, show="•") self.password_entry.grid(row=1, column=1, padx=10, pady=10) # Have user retype Password repassword = Label(self.frame, text="Retype password") repassword.grid(row=2, sticky=E) self.repassword_entry = Entry(self.frame, show="•") self.repassword_entry.grid(row=2, column=1, padx=10, pady=10) # Have user enter first name firstname = Label(self.frame, text="First name") firstname.grid(row=3, sticky=E) self.first_name_entry = Entry(self.frame) self.first_name_entry.grid(row=3, column=1, padx=10, pady=10) # Have user enter last name lastname = Label(self.frame, text="Last name") lastname.grid(row=4, sticky=E) self.last_name_entry = Entry(self.frame) self.last_name_entry.grid(row=4, column=1, padx=10, pady=10) # Have user enter email email = Label(self.frame, text="Email address") email.grid(row=5, sticky=E) self.email_entry = Entry(self.frame) self.email_entry.grid(row=5, column=1, padx=10, pady=10) # Have user enter address address = Label(self.frame, text="Street address") address.grid(row=6, sticky=E) self.address_entry = Entry(self.frame) self.address_entry.grid(row=6, column=1, padx=10, pady=10) # Submit register information button that will send information to server button_frame = Frame(self.frame) button_frame.grid(row=7, column=0, columnspan=2) Button(button_frame, text="Sign Up", command=self.on_register).grid(row=0, column=0, padx=10, pady=10) Button(button_frame, text="Cancel", command=self.show_login).grid(row=0, column=1, padx=10, pady=10) def on_connect(self): address = self.address_entry.get() port = int(self.port_entry.get()) try: self.proxy = rpc.connect(address, port, Handler) self.show_login() except Exception as e: messagebox.showerror("", "Could not connect to server.\n\nError: " + str(e)) def on_login(self): username = self.username_entry.get() password = self.password_entry.get() try: token = self.proxy.login(username=username, password=password) # Open the chat window self.frame.destroy() ChatWindow(self.window, self.proxy, token) except rpc.RpcException as e: messagebox.showerror("", "Log in failed.\n\nError: " + str(e)) def on_register(self): if self.repassword_entry.get() != self.password_entry.get(): messagebox.showerror("", "Password must match in both entries") return try: self.proxy.create_user( username = self.username_entry.get(), password = self.password_entry.get(), first_name = self.first_name_entry.get(), last_name = self.last_name_entry.get(), email = self.email_entry.get(), address = self.address_entry.get() ) messagebox.showinfo("", "Account created successfully!") # Go back to login self.show_login() except rpc.RpcException as e: messagebox.showerror("", "Registration failed.\n\nError: " + str(e)) def center(self): self.window.update_idletasks() w = self.window.winfo_screenwidth() h = self.window.winfo_screenheight() size = tuple(int(_) for _ in self.window.geometry().split('+')[0].split('x')) x = w/2 - size[0]/2 y = h/2 - size[1]/2 self.window.geometry("+%d+%d" % (x, y)) def close(self): if self.proxy: self.proxy.close() self.window.destroy() """ Main application window. """ class ChatWindow: def __init__(self, window, proxy, token): self.window = window self.proxy = proxy self.token = token self.dest_username = None self.dest_group = None window.protocol("WM_DELETE_WINDOW", self.close) window.minsize(width=200, height=200) window.geometry("800x600") window.resizable(width=TRUE, height=TRUE) window.title("Instant Messenger") window.rowconfigure(0, weight=1) window.columnconfigure(0, weight=0) window.columnconfigure(1, weight=1) window.columnconfigure(2, weight=0) self.group_frame = Frame(window) self.group_frame.grid(row=0, column=0, sticky=N+S+E+W, padx=10, pady=10) self.message_frame = Frame(window) self.message_frame.grid(row=0, column=1, sticky=N+S+E+W, pady=10) self.friends_frame = Frame(window) self.friends_frame.grid(row=0, column=2, sticky=N+S+E+W, padx=10, pady=10) # Groups frame. Label(self.group_frame, text="Groups").grid(pady=(0,10)) self.group_frame.rowconfigure(1, weight=1) self.group_list = None Button(self.group_frame, text="Add user", command=self.on_add_group_user).grid(row=2) Button(self.group_frame, text="Remove user", command=self.on_remove_group_user).grid(row=3) Button(self.group_frame, text="New group", command=self.on_create_group).grid(row=4) # Friends frame. Label(self.friends_frame, text="Friends").grid(pady=(0,10)) self.friends_frame.rowconfigure(1, weight=1) self.friends_list = None Button(self.friends_frame, text="Add friend", command=self.on_add_friend).grid(row=2) # Set up the chat log frame. self.message_frame.rowconfigure(1, weight=1) self.message_frame.columnconfigure(0, weight=1) self.message_title = Label(self.message_frame) self.message_title.grid(row=0, column=0, columnspan=2, pady=(0,10), sticky=N+S+E+W) self.message_list = Listbox(self.message_frame) self.message_list.grid(row=1, column=0, sticky=N+S+E+W) self.message_scrollbar = Scrollbar(self.message_frame) self.message_scrollbar.grid(row=1, column=1, sticky=N+S+E+W) self.message_scrollbar.config(command=self.message_list.yview) self.message_list.config(yscrollcommand=self.message_scrollbar.set) # Set up the message input. self.chat_entry = Entry(self.message_frame) self.chat_entry.bind("<Return>", self.on_send_message) self.chat_entry.grid(row=2, column=0, columnspan=2, sticky=N+S+E+W, pady=(5, 0), ipady=5) self.chat_entry.focus_set() # Show remote data. self.refresh_groups_list() self.refresh_friends_list() # Schedule the incoming message callback. self.window.after(100, self.check_message_queue) """ Refreshes the list of groups from the server. """ def refresh_groups_list(self): groups = self.proxy.get_groups(token=self.token) if self.group_list: self.group_list.destroy() self.group_list = Frame(self.group_frame) for i, id in enumerate(groups): group = self.proxy.get_group(token=self.token, id=id) label = Button(self.group_list, text=group["name"], command=lambda g=id: self.choose_group(g)) label.grid(row=i, sticky=E+W) self.group_list.grid(row=1, sticky=N+E+W) """ Refreshes the list of friends from the server. """ def refresh_friends_list(self): friends = self.proxy.get_friends(token=self.token) if self.friends_list: self.friends_list.destroy() self.friends_list = Frame(self.friends_frame) for i, username in enumerate(friends): label = Button(self.friends_list, text=username, command=lambda u=username: self.choose_user(u)) label.grid(row=i, sticky=E+W) self.friends_list.grid(row=1, sticky=N+E+W) """ Displays the existing messages for the current room. """ def refresh_message_list(self): # Remove messages already in the pane. self.message_list.delete(0, END) # If we are talking to a user, if self.dest_username: messages = self.proxy.get_messages_with_user(token=self.token, username=self.dest_username) # If we are in a group elif self.dest_group: messages = self.proxy.get_messages_in_group(token=self.token, group=self.dest_group) else: return for message in messages: self.display_message(message) """ Sets the message destination to a user. """ def choose_user(self, username): self.dest_group = None self.dest_username = username self.message_title.config(text="User: " + username) self.refresh_message_list() """ Sets the message destination to a group. """ def choose_group(self, group_id): self.dest_username = None self.dest_group = group_id group = self.proxy.get_group(token=self.token, id=group_id) self.message_title.config(text="Group: " + group["name"]) self.refresh_message_list() """ Displays a message in the chat history. """ def display_message(self, message): self.message_list.insert(END, message["sender"] + ": " + message["text"]) """ Shows a dialog for adding a user to a group. """ def on_add_group_user(self): if self.dest_group: username = PromptWindow.prompt(self.window, "Type in a username") self.proxy.add_group_user(token=self.token, group=self.dest_group, username=username) self.refresh_groups_list() self.choose_group(self.dest_group) """ Shows a dialog for removing a user from a group. """ def on_remove_group_user(self): if self.dest_group: username = PromptWindow.prompt(self.window, "Type in a username") self.proxy.remove_group_user(token=self.token, group=self.dest_group, username=username) self.refresh_groups_list() self.choose_group(self.dest_group) """ Shows a dialog for creating a group. """ def on_create_group(self): group_id = self.proxy.create_group(token=self.token) self.refresh_groups_list() self.choose_group(group_id) """ Shows a dialog for adding a friend. """ def on_add_friend(self): username = PromptWindow.prompt(self.window, "Type in a username") self.proxy.add_friend(token=self.token, username=username) self.refresh_friends_list() """ Handles the event for sending a message. """ def on_send_message(self, event): text = self.chat_entry.get() # Slash commands are evaluated as Python code... if text[0] == "/": exec(text[1:]) # If we are talking to a user, elif self.dest_username: self.proxy.send_message( token=self.token, receiver={ "type": "user", "username": self.dest_username, }, text=text ) # If we are in a group elif self.dest_group: self.proxy.send_message( token=self.token, receiver={ "type": "group", "id": self.dest_group, }, text=text ) # Clear the message entry. self.chat_entry.delete(0, END) """ Callback that runs periodically to display incoming messages in real-time. """ def check_message_queue(self): while True: try: message = message_queue.get(False) self.display_message(message) except queue.Empty: break # Schedule again. self.window.after(100, self.check_message_queue) def close(self): try: self.proxy.logout(token=self.token) self.proxy.close() finally: self.window.destroy() """ Convenience class for creating "prompt" dialog boxes. """ class PromptWindow: def prompt(root, title): window = PromptWindow(root, title) root.wait_window(window.window) return window.result def __init__(self, root, title): self.window = Toplevel(root) self.window.resizable(width=FALSE, height=FALSE) self.window.title(title) self.label = Label(self.window, text=title) self.label.grid(padx=10, pady=10) self.entry = Entry(self.window) self.entry.bind("<Return>", lambda e: self.submit()) self.entry.grid(row=1, padx=10) self.entry.focus_set() self.button = Button(self.window, text="OK", command=self.submit) self.button.grid(row=2, padx=10, pady=10) def submit(self): self.result = self.entry.get() self.window.destroy() def run(): # Set up root window. root = Tk() # Make tkinter less ugly. style = Style() if "vista" in style.theme_names(): style.theme_use("vista") elif "aqua" in style.theme_names(): style.theme_use("aqua") else: style.theme_use("clam") style.configure("Title.TLabel", font=("Helvetica", 16)) # Show window. window = LoginWindow(root) window.center() root.mainloop()
StarcoderdataPython
3349246
from . import db
StarcoderdataPython
1772025
<filename>pyfileconf/plugin/impl.py import pluggy hookimpl = pluggy.HookimplMarker('pyfileconf')
StarcoderdataPython
3305099
# Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np from openvino.tools.mo.ops.argmin import ArgMinOp from openvino.tools.mo.front.extractor import FrontExtractorOp from openvino.tools.mo.front.tf.extractors.utils import tf_dtype_extractor class ArgMinFrontExtractor(FrontExtractorOp): op = 'ArgMin' enabled = True @classmethod def extract(cls, node): attrs = { 'top_k': 1, 'axis': None, 'keepdims': 0, 'remove_values_output': True, 'output_type': tf_dtype_extractor(node.pb.attr['output_type'].type, np.int64) } ArgMinOp.update_node_stat(node, attrs) return cls.enabled
StarcoderdataPython
1774223
<reponame>Luke-Ludwig/DRAGONS<filename>geminidr/gmos/tests/spect/test_determine_distortion.py #!/usr/bin/env python """ Tests related to GMOS Long-slit Spectroscopy Arc primitives. Notes ----- - The `indirect` argument on `@pytest.mark.parametrize` fixture forces the `ad` and `ad_ref` fixtures to be called and the AstroData object returned. """ import numpy as np import os import pytest from matplotlib import colors from matplotlib import pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from scipy import ndimage import astrodata import geminidr from astropy.modeling import models from geminidr.gmos import primitives_gmos_spect from gempy.library import astromodels, transform from gempy.utils import logutils from recipe_system.testing import ref_ad_factory # Test parameters -------------------------------------------------------------- fixed_parameters_for_determine_distortion = { "fwidth": None, "id_only": False, "max_missed": 5, "max_shift": 0.05, "min_snr": 5., "nsum": 10, "spatial_order": 3, "spectral_order": 4, } # Each test input filename contains the original input filename with # "_mosaic" suffix datasets = [ # Process Arcs: GMOS-N --- "N20100115S0346_mosaic.fits", # B600:0.500 EEV # "N20130112S0390_mosaic.fits", # B600:0.500 E2V # "N20170609S0173_mosaic.fits", # B600:0.500 HAM # "N20170403S0452_mosaic.fits", # B600:0.590 HAM Full Frame 1x1 # "N20170415S0255_mosaic.fits", # B600:0.590 HAM Central Spectrum 1x1 # "N20171016S0010_mosaic.fits", # B600:0.500 HAM, ROI="Central Spectrum", bin=1x2 # "N20171016S0127_mosaic.fits", # B600:0.500 HAM, ROI="Full Frame", bin=1x2 # "N20100307S0236_mosaic.fits", # B1200:0.445 EEV # "N20130628S0290_mosaic.fits", # B1200:0.420 E2V # "N20170904S0078_mosaic.fits", # B1200:0.440 HAM # "N20170627S0116_mosaic.fits", # B1200:0.520 HAM # "N20100830S0594_mosaic.fits", # R150:0.500 EEV # "N20100702S0321_mosaic.fits", # R150:0.700 EEV # "N20130606S0291_mosaic.fits", # R150:0.550 E2V # "N20130112S0574_mosaic.fits", # R150:0.700 E2V # "N20130809S0337_mosaic.fits", # R150:0.700 E2V # "N20140408S0218_mosaic.fits", # R150:0.700 E2V # "N20180119S0232_mosaic.fits", # R150:0.520 HAM # "N20180516S0214_mosaic.fits", # R150:0.610 HAM ROI="Central Spectrum", bin=2x2 # "N20171007S0439_mosaic.fits", # R150:0.650 HAM # "N20171007S0441_mosaic.fits", # R150:0.650 HAM # "N20101212S0213_mosaic.fits", # R400:0.550 EEV # "N20100202S0214_mosaic.fits", # R400:0.700 EEV # "N20130106S0194_mosaic.fits", # R400:0.500 E2V # "N20130422S0217_mosaic.fits", # R400:0.700 E2V # "N20170108S0210_mosaic.fits", # R400:0.660 HAM # "N20171113S0135_mosaic.fits", # R400:0.750 HAM # "N20100427S1276_mosaic.fits", # R600:0.675 EEV # "N20180120S0417_mosaic.fits", # R600:0.860 HAM # "N20100212S0143_mosaic.fits", # R831:0.450 EEV # "N20100720S0247_mosaic.fits", # R831:0.850 EEV # "N20130808S0490_mosaic.fits", # R831:0.571 E2V # "N20130830S0291_mosaic.fits", # R831:0.845 E2V # "N20170910S0009_mosaic.fits", # R831:0.653 HAM # "N20170509S0682_mosaic.fits", # R831:0.750 HAM # "N20181114S0512_mosaic.fits", # R831:0.865 HAM # "N20170416S0058_mosaic.fits", # R831:0.865 HAM # "N20170416S0081_mosaic.fits", # R831:0.865 HAM # "N20180120S0315_mosaic.fits", # R831:0.865 HAM # # Process Arcs: GMOS-S --- # # "S20130218S0126_mosaic.fits", # B600:0.500 EEV - todo: won't pass # "S20130111S0278_mosaic.fits", # B600:0.520 EEV # "S20130114S0120_mosaic.fits", # B600:0.500 EEV # "S20130216S0243_mosaic.fits", # B600:0.480 EEV # "S20130608S0182_mosaic.fits", # B600:0.500 EEV # "S20131105S0105_mosaic.fits", # B600:0.500 EEV # "S20140504S0008_mosaic.fits", # B600:0.500 EEV # "S20170103S0152_mosaic.fits", # B600:0.600 HAM # "S20170108S0085_mosaic.fits", # B600:0.500 HAM # "S20130510S0103_mosaic.fits", # B1200:0.450 EEV # "S20130629S0002_mosaic.fits", # B1200:0.525 EEV # "S20131123S0044_mosaic.fits", # B1200:0.595 EEV # "S20170116S0189_mosaic.fits", # B1200:0.440 HAM # "S20170103S0149_mosaic.fits", # B1200:0.440 HAM # "S20170730S0155_mosaic.fits", # B1200:0.440 HAM # "S20171219S0117_mosaic.fits", # B1200:0.440 HAM # "S20170908S0189_mosaic.fits", # B1200:0.550 HAM # "S20131230S0153_mosaic.fits", # R150:0.550 EEV # "S20130801S0140_mosaic.fits", # R150:0.700 EEV # "S20170430S0060_mosaic.fits", # R150:0.717 HAM # # "S20170430S0063_mosaic.fits", # R150:0.727 HAM - todo: won't pass # "S20171102S0051_mosaic.fits", # R150:0.950 HAM # "S20130114S0100_mosaic.fits", # R400:0.620 EEV # "S20130217S0073_mosaic.fits", # R400:0.800 EEV # "S20170108S0046_mosaic.fits", # R400:0.550 HAM # "S20170129S0125_mosaic.fits", # R400:0.685 HAM # "S20170703S0199_mosaic.fits", # R400:0.800 HAM # "S20170718S0420_mosaic.fits", # R400:0.910 HAM # # "S20100306S0460_mosaic.fits", # R600:0.675 EEV - todo: won't pass # # "S20101218S0139_mosaic.fits", # R600:0.675 EEV - todo: won't pass # "S20110306S0294_mosaic.fits", # R600:0.675 EEV # "S20110720S0236_mosaic.fits", # R600:0.675 EEV # "S20101221S0090_mosaic.fits", # R600:0.690 EEV # "S20120322S0122_mosaic.fits", # R600:0.900 EEV # "S20130803S0011_mosaic.fits", # R831:0.576 EEV # "S20130414S0040_mosaic.fits", # R831:0.845 EEV # "S20170214S0059_mosaic.fits", # R831:0.440 HAM # "S20170703S0204_mosaic.fits", # R831:0.600 HAM # "S20171018S0048_mosaic.fits", # R831:0.865 HAM ] # Tests Definitions ------------------------------------------------------------ @pytest.mark.gmosls @pytest.mark.preprocessed_data @pytest.mark.regression @pytest.mark.parametrize("ad", datasets, indirect=True) def test_regression_for_determine_distortion_using_models_coefficients( ad, change_working_dir, ref_ad_factory, request): """ Runs the `determineDistortion` primitive on a preprocessed data and compare its model with the one in the reference file. Parameters ---------- ad : pytest.fixture (AstroData) Fixture that reads the filename and loads as an AstroData object. change_working_dir : pytest.fixture Fixture that changes the working directory (see :mod:`astrodata.testing`). reference_ad : pytest.fixture Fixture that contains a function used to load the reference AstroData object (see :mod:`recipe_system.testing`). request : pytest.fixture PyTest built-in containing command line options. """ with change_working_dir(): logutils.config(file_name='log_model_{:s}.txt'.format(ad.data_label())) p = primitives_gmos_spect.GMOSSpect([ad]) p.viewer = geminidr.dormantViewer(p, None) p.determineDistortion(**fixed_parameters_for_determine_distortion) distortion_determined_ad = p.writeOutputs().pop() ref_ad = ref_ad_factory(distortion_determined_ad.filename) for ext, ext_ref in zip(distortion_determined_ad, ref_ad): c = np.ma.masked_invalid(ext.FITCOORD["coefficients"]) c_ref = np.ma.masked_invalid(ext_ref.FITCOORD["coefficients"]) np.testing.assert_allclose(c, c_ref, atol=2) if request.config.getoption("--do-plots"): do_plots(distortion_determined_ad, ref_ad) @pytest.mark.gmosls @pytest.mark.preprocessed_data @pytest.mark.regression @pytest.mark.parametrize("ad", datasets, indirect=True) def test_regression_for_determine_distortion_using_fitcoord_table( ad, change_working_dir, ref_ad_factory): """ Runs the `determineDistortion` primitive on a preprocessed data and compare its model with the one in the reference file. The distortion model needs to be reconstructed because different coefficients might return same results. Parameters ---------- ad : pytest.fixture (AstroData) Fixture that reads the filename and loads as an AstroData object. change_working_dir : pytest.fixture Fixture that changes the working directory (see :mod:`astrodata.testing`). reference_ad : pytest.fixture Fixture that contains a function used to load the reference AstroData object (see :mod:`recipe_system.testing`). """ with change_working_dir(): logutils.config(file_name='log_fitcoord_{:s}.txt'.format(ad.data_label())) p = primitives_gmos_spect.GMOSSpect([ad]) p.viewer = geminidr.dormantViewer(p, None) p.determineDistortion(**fixed_parameters_for_determine_distortion) distortion_determined_ad = p.writeOutputs().pop() ref_ad = ref_ad_factory(distortion_determined_ad.filename) table = ad[0].FITCOORD model_dict = dict(zip(table['name'], table['coefficients'])) model = astromodels.dict_to_chebyshev(model_dict) ref_table = ref_ad[0].FITCOORD ref_model_dict = dict(zip(ref_table['name'], ref_table['coefficients'])) ref_model = astromodels.dict_to_chebyshev(ref_model_dict) X, Y = np.mgrid[:ad[0].shape[0], :ad[0].shape[1]] np.testing.assert_allclose(model(X, Y), ref_model(X, Y), atol=1) # Local Fixtures and Helper Functions ------------------------------------------ @pytest.fixture(scope='function') def ad(path_to_inputs, request): """ Returns the pre-processed spectrum file. Parameters ---------- path_to_inputs : pytest.fixture Fixture defined in :mod:`astrodata.testing` with the path to the pre-processed input file. request : pytest.fixture PyTest built-in fixture containing information about parent test. Returns ------- AstroData Input spectrum processed up to right before the `distortionDetermine` primitive. """ filename = request.param path = os.path.join(path_to_inputs, filename) if os.path.exists(path): ad = astrodata.open(path) else: raise FileNotFoundError(path) return ad def do_plots(ad, ad_ref): """ Generate diagnostic plots. Parameters ---------- ad : AstroData ad_ref : AstroData """ n_hlines = 25 n_vlines = 25 output_dir = "./plots/geminidr/gmos/test_gmos_spect_ls_distortion_determine" os.makedirs(output_dir, exist_ok=True) name, _ = os.path.splitext(ad.filename) grating = ad.disperser(pretty=True) bin_x = ad.detector_x_bin() bin_y = ad.detector_y_bin() central_wavelength = ad.central_wavelength() * 1e9 # in nanometers # -- Show distortion map --- for ext_num, ext in enumerate(ad): fname, _ = os.path.splitext(os.path.basename(ext.filename)) n_rows, n_cols = ext.shape x = np.linspace(0, n_cols, n_vlines, dtype=int) y = np.linspace(0, n_rows, n_hlines, dtype=int) X, Y = np.meshgrid(x, y) model = rebuild_distortion_model(ext) U = X - model(X, Y) V = np.zeros_like(U) fig, ax = plt.subplots( num="Distortion Map {:s} #{:d}".format(fname, ext_num)) vmin = U.min() if U.min() < 0 else -0.1 * U.ptp() vmax = U.max() if U.max() > 0 else +0.1 * U.ptp() vcen = 0 Q = ax.quiver( X, Y, U, V, U, cmap="coolwarm", norm=colors.DivergingNorm(vcenter=vcen, vmin=vmin, vmax=vmax)) ax.set_xlabel("X [px]") ax.set_ylabel("Y [px]") ax.set_title( "Distortion Map\n{:s} #{:d}- Bin {:d}x{:d}".format( fname, ext_num, bin_x, bin_y)) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) cbar = fig.colorbar(Q, extend="max", cax=cax, orientation="vertical") cbar.set_label("Distortion [px]") fig.tight_layout() fig_name = os.path.join( output_dir, "{:s}_{:d}_{:s}_{:.0f}_distMap.png".format( fname, ext_num, grating, central_wavelength)) fig.savefig(fig_name) del fig, ax # -- Show distortion model difference --- for num, (ext, ext_ref) in enumerate(zip(ad, ad_ref)): name, _ = os.path.splitext(ext.filename) shape = ext.shape data = generate_fake_data(shape, ext.dispersion_axis() - 1) model_out = remap_distortion_model( rebuild_distortion_model(ext), ext.dispersion_axis() - 1) model_ref = remap_distortion_model( rebuild_distortion_model(ext_ref), ext_ref.dispersion_axis() - 1) transform_out = transform.Transform(model_out) transform_ref = transform.Transform(model_ref) data_out = transform_out.apply(data, output_shape=ext.shape) data_ref = transform_ref.apply(data, output_shape=ext.shape) data_out = np.ma.masked_invalid(data_out) data_ref = np.ma.masked_invalid(data_ref) fig, ax = plt.subplots( dpi=150, num="Distortion Comparison: {:s} #{:d}".format(name, num)) im = ax.imshow(data_ref - data_out) ax.set_xlabel("X [px]") ax.set_ylabel("Y [px]") ax.set_title( "Difference between output and reference: \n {:s} #{:d} ".format( name, num)) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) cbar = fig.colorbar(im, extend="max", cax=cax, orientation="vertical") cbar.set_label("Distortion [px]") fig_name = os.path.join( output_dir, "{:s}_{:d}_{:s}_{:.0f}_distDiff.png".format( name, num, grating, central_wavelength)) fig.savefig(fig_name) def generate_fake_data(shape, dispersion_axis, n_lines=100): """ Helper function that generates fake arc data. Parameters ---------- shape : tuple of ints Shape of the output data with (nrows, ncols) dispersion_axis : {0, 1} Dispersion axis along rows (0) or along columns (1) n_lines : int Number of random lines to be added (default: 100) Returns ------- :class:`~astropy.modeling.models.Model` 2D Model that can be applied to an array. """ np.random.seed(0) nrows, ncols = shape data = np.zeros((nrows, ncols)) line_positions = np.random.random_integers(0, ncols, size=n_lines) line_intensities = 100 * np.random.random_sample(n_lines) if dispersion_axis == 0: data[:, line_positions] = line_intensities data = ndimage.gaussian_filter(data, [5, 1]) else: data[line_positions, :] = line_intensities data = ndimage.gaussian_filter(data, [1, 5]) data = data + (np.random.random_sample(data.shape) - 0.5) * 10 return data def rebuild_distortion_model(ext): """ Helper function to recover the distortion model from the coefficients stored in the `ext.FITCOORD` attribute. Parameters ---------- ext : astrodata extension Input astrodata extension which contains a `.FITCOORD` with the coefficients that can be used to reconstruct the distortion model. Returns ------- :class:`~astropy.modeling.models.Model` Model that receives 2D data and return a 1D array. """ model = astromodels.dict_to_chebyshev( dict(zip(ext.FITCOORD["name"], ext.FITCOORD["coefficients"])) ) return model def remap_distortion_model(model, dispersion_axis): """ Remaps the distortion model so it can return a 2D array. Parameters ---------- model : :class:`~astropy.modeling.models.Model` A model that receives 2D data and returns 1D data. dispersion_axis : {0 or 1} Define distortion model along the rows (0) or along the columns (1). Returns ------- :class:`~astropy.modeling.models.Model` A model that receives and returns 2D data. See also -------- - https://docs.astropy.org/en/stable/modeling/compound-models.html#advanced-mappings """ m = models.Identity(2) if dispersion_axis == 0: m.inverse = models.Mapping((0, 1, 1)) | (model & models.Identity(1)) else: m.inverse = models.Mapping((0, 0, 1)) | (models.Identity(1) & model) return m # -- Recipe to create pre-processed data --------------------------------------- def create_inputs_recipe(): """ Creates input data for tests using pre-processed standard star and its calibration files. The raw files will be downloaded and saved inside the path stored in the `$DRAGONS_TEST/raw_inputs` directory. Processed files will be stored inside a new folder called "dragons_test_inputs". The sub-directory structure should reflect the one returned by the `path_to_inputs` fixture. """ import os from astrodata.testing import download_from_archive from geminidr.gmos.tests.spect import CREATED_INPUTS_PATH_FOR_TESTS module_name, _ = os.path.splitext(os.path.basename(__file__)) path = os.path.join(CREATED_INPUTS_PATH_FOR_TESTS, module_name) os.makedirs(path, exist_ok=True) os.chdir(path) os.makedirs("inputs/", exist_ok=True) print('Current working directory:\n {:s}'.format(os.getcwd())) for filename in datasets: print('Downloading files...') basename = filename.split("_")[0] + ".fits" sci_path = download_from_archive(basename) sci_ad = astrodata.open(sci_path) data_label = sci_ad.data_label() print('Reducing pre-processed data:') logutils.config(file_name='log_{}.txt'.format(data_label)) p = primitives_gmos_spect.GMOSSpect([sci_ad]) p.prepare() p.addDQ(static_bpm=None) p.addVAR(read_noise=True) p.overscanCorrect() p.ADUToElectrons() p.addVAR(poisson_noise=True) p.mosaicDetectors() p.makeIRAFCompatible() os.chdir("inputs/") processed_ad = p.writeOutputs().pop() os.chdir("..") print("Wrote pre-processed file to:\n" " {:s}".format(processed_ad.filename)) if __name__ == '__main__': import sys if "--create-inputs" in sys.argv[1:]: create_inputs_recipe() else: pytest.main()
StarcoderdataPython
149676
import pathlib from collections import namedtuple from PIL import Image import warnings Image.MAX_IMAGE_PIXELS = 100000000000 class Slide: ''' A slide object ''' def __init__(self, path, img_requirements=None, stain_type='Unknown'): ''' Creates a slide object with all possible data of the slide extracted :param path: :param img_requirements: dictionary of required svs configurations ''' self.path = path self.name = pathlib.Path(path).stem self.image_type = pathlib.Path(path).suffix self.stain_type = stain_type i = Image.open(path) self.width, self.height = i.width, i.height self.image = i Coordinate = namedtuple('Coordinate', 'x y') self.start_coordinate = Coordinate(0, 0) # get svs data if its an svs path curr_slide_data = self._extract_data(path) self.date_scanned = curr_slide_data['date_scanned'] self.time_scanned = curr_slide_data['time_scanned'] self.compression = curr_slide_data['compression'] self.mpp = curr_slide_data['mpp'] self.apparent_magnification = curr_slide_data['apparent_magnification'] # only here while in process of removal def crop(self, coordinates): ''' Updates internal slide properties so that we will only use a section of the slide :param coordinates: use only a section of the slide (top_left_x, top_left_y, bot_right_x, bot_right_y) :return: ''' Coordinate = namedtuple('Coordinate', 'x y') self.start_coordinate = Coordinate(coordinates[0], coordinates[1]) self.width = coordinates[2] - coordinates[0] self.height = coordinates[3] - coordinates[1] def get_thumbnail(self, wh_dims): ''' :param dims: dimensions of returned thumbnail (width, height) :return: ''' warnings.warn('Please use thumbnail generated from heatmap for faster results') return Image.open(self.path).resize(wh_dims) def is_valid_img_file(self, img_requirements): ''' Returns true if the slide is a svs that satisfies the image requirements. Image requirements can specify None if a specific property is unrestricted If image is a jpg, trivially returns true :param img_requirements: dictionary of required svs configurations :return: boolean ''' return True def _extract_data(self, slide_path): ''' Extracts useful metadata from the svs :param slide_path: :return: ''' return { 'date_scanned': None, 'time_scanned': None, 'compression': None, 'mpp': None, 'apparent_magnification': None }
StarcoderdataPython
1660783
from flask_wtf import FlaskForm from flask_wtf.file import FileField, FileAllowed from wtforms.ext.sqlalchemy.fields import QuerySelectField from wtforms.fields.simple import TextAreaField from wtforms.validators import DataRequired, Email, ValidationError, Length, EqualTo from wtforms import StringField, PasswordField, SubmitField from app.models import Category, User def enabled_categories(): return Category.query.all() class SignupForm(FlaskForm): email = StringField( render_kw={'placeholder': 'Email'}, validators=[DataRequired(), Email(check_deliverability=True)] ) username = StringField( render_kw={'placeholder': 'username'}, validators=[DataRequired()] ) password = PasswordField( render_kw={'placeholder': 'password'}, validators=[DataRequired(), Length(min=6,message='password is too short!'), EqualTo('confirm_password', message='Passwords must match')] ) confirm_password = PasswordField( render_kw={'placeholder': 'repeat password'}, validators=[DataRequired()] ) def validate_email(self, email): user = User.query.filter_by(email=email.data).first() if user is not None: raise ValidationError('the email is taken!') def validate_username(self, username): user = User.query.filter_by(username=username.data).first() if user is not None: raise ValidationError('the username is taken!') class AddPostForm(FlaskForm): featuring_image = FileField( render_kw={'accept': 'image/*'}, validators=[DataRequired(), FileAllowed(['jpg', 'png', 'jpeg'])] ) title = StringField( render_kw={'placeholder': 'Example(How to create a flask app!)'}, validators=[DataRequired()] ) category = QuerySelectField( query_factory=enabled_categories, allow_blank=False, validators=[DataRequired()] ) tags = StringField( render_kw={'placeholder': 'flask,python,blog'}, validators=[DataRequired()] ) class ProfileForm(FlaskForm): avatar = FileField( render_kw={'accept': 'image/*'}, validators=[FileAllowed(['jpg', 'png', 'jpeg'])] ) fname = StringField( render_kw={'placeholder': 'name'}, validators=[DataRequired()] ) lname = StringField( render_kw={'placeholder': 'lastname'}, validators=[DataRequired()] ) about = TextAreaField( render_kw={ 'placeholder': 'Tell somthig about yourself...', 'cols':'30', 'rows':'5' }, validators=[DataRequired()] ) class CommentForm(FlaskForm): username = StringField( render_kw={'placeholder': 'username'}, validators=[DataRequired()] ) comment = TextAreaField( render_kw={'placeholder': 'write comment','cols':'30', 'rows':'5'}, validators=[DataRequired()] ) class EmptyForm(FlaskForm): submit = SubmitField('Submit',render_kw={'class': 'btn btn-primary'} ) class ResetPasswordRequestForm(FlaskForm): email = StringField('Email', validators=[DataRequired(), Email()]) class ResetPasswordForm(FlaskForm): password = PasswordField('Password', validators=[DataRequired()]) password2 = PasswordField( 'Repeat Password', validators=[DataRequired(), EqualTo('password')])
StarcoderdataPython
1750050
import os import time import subprocess import signal from .Testcase import Testcase def execute(case: Testcase, judge_conf: dict,str_cmd:str) -> (int, str): # (elapsed, kses) tmp_path = judge_conf["tmp_path"] if not os.path.exists(tmp_path): os.system(f"mkdir {tmp_path}") try: in_path = judge_conf["in_path"] out_path = judge_conf["out_path"] err_path = judge_conf["err_path"] mem_limit_kb = case.memory_limit * 1024 except: return 0, "JUDGEER" with open("Meow","w") as F: F.write(str_cmd) run_command = f"ulimit -v {mem_limit_kb}; {str_cmd} 0<{in_path} 1>{out_path} 2>{err_path}; exit;" start_time = time.time() proc = subprocess.Popen([run_command], shell=True, preexec_fn=os.setsid) try: proc.communicate(timeout=case.time_limit / 1000) t = proc.returncode except subprocess.TimeoutExpired: t = 124 # TLE elapsed = time.time() - start_time if os.path.exists("/proc/" + str(proc.pid)): os.killpg(os.getpgid(proc.pid), signal.SIGTERM) ts = [0, 124, 134, 136, 139] KSES = ["OK", "TIMELXC", "ABORT", "FPEXCPT", "SEGMFLT"] try: kses = KSES[ts.index(t)] except ValueError: kses = "UNSPECI" return int(elapsed * 1000), kses
StarcoderdataPython
90296
<reponame>anglebinbin/Barista-tool ''' Created on 08.11.2016 @author: k.hartz ''' import os import time import sys # Logfile to pass through stdout logFile = "test/logfiles/test_log_1.log" # delay per line in sec, 1=1sec delayPerLine = 0.01 # Seperator to seperate the logfile output from print seperator = "------------------" # directory where this file is contained dir_path = os.path.dirname(os.path.realpath(__file__)) # working directory cwd = os.getcwd() print("Start Output:\n\n") print("working directory:", cwd) print("directory where this file is contained:", dir_path) print(seperator) f = open(logFile) for line in f: sys.stdout.write(line) sys.stdout.flush() time.sleep(delayPerLine) print(seperator) print("Finished log")
StarcoderdataPython
1616733
<filename>samples/python/houghcircles.py #!/usr/bin/python ''' This example illustrates how to use cv.HoughCircles() function. Usage: houghcircles.py [<image_name>] image argument defaults to board.jpg ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 as cv import sys def main(): try: fn = sys.argv[1] except IndexError: fn = 'board.jpg' src = cv.imread(cv.samples.findFile(fn)) img = cv.cvtColor(src, cv.COLOR_BGR2GRAY) img = cv.medianBlur(img, 5) cimg = src.copy() # numpy function circles = cv.HoughCircles(img, cv.HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30) if circles is not None: # Check if circles have been found and only then iterate over these and add them to the image circles = np.uint16(np.around(circles)) _a, b, _c = circles.shape for i in range(b): cv.circle(cimg, (circles[0][i][0], circles[0][i][1]), circles[0][i][2], (0, 0, 255), 3, cv.LINE_AA) cv.circle(cimg, (circles[0][i][0], circles[0][i][1]), 2, (0, 255, 0), 3, cv.LINE_AA) # draw center of circle cv.imshow("detected circles", cimg) cv.imshow("source", src) cv.waitKey(0) print('Done') if __name__ == '__main__': print(__doc__) main() cv.destroyAllWindows()
StarcoderdataPython
57203
<gh_stars>0 class Edge: def __init__(self, start, end): self.start = start self.end = end def __str__(self): return "<" + str(self.start) + " " + str(self.end) + ">"
StarcoderdataPython
128338
<gh_stars>1-10 """ ``permute`` provides permutation tests and confidence intervals for a variety of nonparametric testing and estimation problems, for a variety of randomization designs. * Stratified and unstratified tests * Test statistics in each stratum * Methods of combining tests across strata * Nonparametric combinations of tests Problems/Methods: ----------------- 1. The 2-sample problem 2. The *n*-sample problem 3. Tests for the slope in linear regression 4. Tests for quantiles 5. Tests of independence and association: runs tests, permutation association 6. Tests of exchangeability 7. Tests of symmetry: reflection, spherical 8. Permutation ANOVA 9. Goodness of fit tests Confidence sets --------------- 1. Constant shifts 2. Proportional shifts 3. Monotone shifts Links ----- UC Berkeley's Statistics 240: Nonparametric and Robust Methods. * `2015 course website <http://www.stat.berkeley.edu/~johann/240spring15/index.html>`_ * `<NAME>'s lecture notes <http://www.stat.berkeley.edu/~stark/Teach/S240/Notes/index.htm>`_ "Permutation Tests for Complex Data: Theory, Applications and Software" by <NAME>, <NAME> * `Publisher's website <http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470516410.html>`_ * `Supplementary Material (i.e., code and data) <http://www.wiley.com/legacy/wileychi/pesarin/material.html>`_ * `NPC test code <http://static.gest.unipd.it/~salmaso/NPC_TEST.htm>`_ "Stochastic Ordering and ANOVA: Theory and Applications with R" by <NAME>., <NAME>., <NAME>., <NAME>. * `R code <http://static.gest.unipd.it/~salmaso/web/springerbook.htm>`_ """ import os.path as _osp import importlib as _imp import functools as _functools import warnings as _warnings pkg_dir = _osp.abspath(_osp.dirname(__file__)) data_dir = _osp.join(pkg_dir, 'data') try: from .version import version as __version__ except ImportError: __version__ = "unbuilt-dev" else: del version try: _imp.import_module('nose') except ImportError: def _test(verbose=False): """This would run all unit tests, but nose couldn't be imported so the test suite can not run. """ raise ImportError("Could not load nose. Unit tests not available.") def _doctest(verbose=False): """This would run all doc tests, but nose couldn't be imported so the test suite can not run. """ raise ImportError("Could not load nose. Doctests not available.") else: def _test(doctest=False, verbose=False, dry_run=False, run_all=True): """Run all unit tests.""" import nose args = ['', pkg_dir, '--exe', '--ignore-files=^_test'] if verbose: args.extend(['-v', '-s']) if dry_run: args.extend(['--collect-only']) if not run_all: args.extend(['-A', 'not slow']) if doctest: args.extend(['--with-doctest', '--ignore-files=^\.', '--ignore-files=^setup\.py$$', '--ignore-files=test']) # Make sure warnings do not break the doc tests with _warnings.catch_warnings(): _warnings.simplefilter("ignore") success = nose.run('permute', argv=args) else: success = nose.run('permute', argv=args) # Return sys.exit code if success: return 0 else: return 1 # do not use `test` as function name as this leads to a recursion problem with # the nose test suite test = _test test_verbose = _functools.partial(test, verbose=True) test_verbose.__doc__ = test.__doc__ doctest = _functools.partial(test, doctest=True) doctest.__doc__ = doctest.__doc__ doctest_verbose = _functools.partial(test, doctest=True, verbose=True) doctest_verbose.__doc__ = doctest.__doc__
StarcoderdataPython
44029
import ipaddress from collections import defaultdict from autonetkit.design.utils import filters from autonetkit.design.utils.general import group_by from autonetkit.network_model.types import LAYER3_DEVICES def assign_loopbacks(topology): """ @param topology: """ layer3_nodes = [n for n in topology.nodes() if n.type in LAYER3_DEVICES] loopback_block = ipaddress.IPv4Network("172.16.0.0/16") loopback_subnets = loopback_block.subnets(new_prefix=24) grouped_l3 = group_by(layer3_nodes, "asn") allocated_loopbacks = defaultdict(list) for asn, nodes in grouped_l3.items(): # can repeat the loopbacks in each asn subnet = next(loopback_subnets) allocated_loopbacks[asn].append(subnet) host_ips = subnet.hosts() for node in nodes: host_ip = next(host_ips) lo0 = node.loopback_zero() lo0.set("ip", host_ip) # also map onto node for debugging/vis topology.set("loopbacks_by_asn", allocated_loopbacks) def assign_bc_subnets(topology): """ @param topology: """ # the network to use to address end hosts and for inter-domain connections allocated_blocks = defaultdict(list) global_advertise_network = ipaddress.IPv4Network("10.0.0.0/8") global_subnets = global_advertise_network.subnets(new_prefix=16) bc_nodes = filters.broadcast_domains(topology) grouped_bc = group_by(bc_nodes, "asn") for asn, nodes in grouped_bc.items(): asn_block = next(global_subnets) allocated_blocks[asn].append(asn_block) # quick method: allocate a /24 to each broadcast domain # Note: this could be significantly optimised in the future # Note: could allocate different block to internal infrastructure too external_blocks = asn_block.subnets(new_prefix=24) for bc in nodes: bc_block = next(external_blocks) bc.set("network", bc_block) topology.set("infrastructure_by_asn", allocated_blocks)
StarcoderdataPython
1603702
import os from flask import redirect, url_for, render_template, request, jsonify, abort from .Room import Room from .Permissions import Permissions from .Task import Task from .Token import Token from .Layout import Layout from . import main from .forms import LoginForm, TokenGenerationForm from .User import User from flask_login import login_required, current_user, logout_user from .. import config @main.route('/token', methods=['GET', 'POST']) def token(): source = request.args.get("source", None) if request.method == 'GET' else None room = request.args.get("room", None) if request.method == 'GET' else None if room: room = int(room) task = request.args.get("task", None) if request.method == 'GET' else None if task: task = int(task) count = request.args.get("count", None) if request.method == 'GET' else None if count: count = int(count) key = request.args.get("key", None) if request.method == 'GET' else None form = TokenGenerationForm(task=task or 0, count=count or 1, source=source or "", key=key or "", room=room or 1) if form.is_submitted(): source = form.source.data or "" room = form.room.data task = form.task.data count = form.count.data key = form.key.data elif not (room and task and key): form.room.choices = [(room.id(), room.name()) for room in Room.list()] form.task.choices = [(task.id(), task.name()) for task in Task.list()] return render_template('token.html', form=form, title=config['templates']['token-title'], ) if key != config["server"]["secret-key"]: return "Invalid password" output = "" for i in range(0, count or 1): output += Token.create(source or "", Room.from_id(room), Task.from_id(task)).uuid() output += "<br />" return output @main.route('/', methods=['GET', 'POST']) def index(): login_token = request.args.get( "token", None) if request.method == 'GET' else None name = request.args.get("name", None) if request.method == 'GET' else None token_invalid = False if name and login_token: login = User.login(name, Token.from_uuid(login_token)) if login: return redirect(url_for('.chat')) token_invalid = True form = LoginForm() if form.validate_on_submit(): name = form.name.data login_token = form.token.data user = User.login(form.name.data, Token.from_uuid(form.token.data)) if user: return redirect(url_for('.chat')) else: form.token.errors.append( "The token is either expired, was already used or isn't correct at all.") if name: form.name.data = name return render_template('index.html', form=form, token=login_token, token_invalid=token_invalid, title=config['templates']['login-title']) @main.route('/chat') @login_required def chat(): room = current_user.latest_room() token = current_user.token() if not room: room = token.room() name = current_user.name() permissions = Permissions(token, room) print(permissions) if name == '' or room == '': return redirect(url_for('.index')) return render_template('chat.html', name=name, room=room.label(), title=config['templates']['chat-title'], heading=config['templates']['chat-header'], refresh_threshold=config['client']['refresh-threshold'], refresh_start=config['client']['refresh-start'], refresh_max=config['client']['refresh-max'], ping_pong_latency_checks=config['client']['ping-pong-latency-checks'], ) @main.route('/test', methods=['GET', 'POST']) def test(): name = request.args.get( "layout", None) if request.method == 'GET' else None layout = Layout.from_json_file(name) if not name: return "" return render_template('layout.html', title=name, html=layout.html(indent=8), css=layout.css(indent=12), script=layout.script(), ) # @login_required @main.route('/logout', methods=['GET', 'POST']) def logout(): logout_user() message = request.form.get('message', None) if message: return message else: return "Logout successful"
StarcoderdataPython
152214
<filename>core/iam_utils.py import boto3 import json import random def generate_policy_prefix(user_group_name): '''policy prefix for user group''' # add rangom tag to avoid attempting to overwrite a previously created and deleted policy and silently failing. random_tag = str(int(random.random() * 10000)) tibanna_policy_prefix = 'tibanna_' + user_group_name + '_' + random_tag return tibanna_policy_prefix def generate_policy_list_instanceprofiles(): policy_list_instanceprofiles = { "Version": "2012-10-17", "Statement": [ { "Sid": "Stmt1478801433000", "Effect": "Allow", "Action": [ "iam:ListInstanceProfiles" ], "Resource": [ "*" ] } ] } return policy_list_instanceprofiles def generate_policy_cloudwatchlogs(): policy_cloudwatchlogs = { "Version": "2012-10-17", "Statement": [ { "Action": [ "logs:CreateLogGroup", "logs:CreateLogStream", "logs:PutLogEvents" ], "Resource": "arn:aws:logs:*:*:*", "Effect": "Allow" } ] } return policy_cloudwatchlogs def generate_policy_bucket_access(bucket_names): resource_list_buckets = ["arn:aws:s3:::" + bn for bn in bucket_names] resource_list_objects = ["arn:aws:s3:::" + bn + "/*" for bn in bucket_names] policy_bucket_access = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:ListBucket" ], "Resource": resource_list_buckets }, { "Effect": "Allow", "Action": [ "s3:PutObject", "s3:GetObject", "s3:DeleteObject" ], "Resource": resource_list_objects } ] } return policy_bucket_access def generate_policy_iam_passrole_s3(account_id, tibanna_policy_prefix): role_resource = ['arn:aws:iam::' + account_id + ':role/' + tibanna_policy_prefix + '_s3'] policy_iam_passrole_s3 = { "Version": "2012-10-17", "Statement": [ { "Sid": "Stmt1478801396000", "Effect": "Allow", "Action": [ "iam:PassRole" ], "Resource": role_resource } ] } return policy_iam_passrole_s3 def generate_lambdainvoke_policy(account_id, region, tibanna_policy_prefix): function_arn_prefix = 'arn:aws:lambda:' + region + ':' + account_id + ':function/' resource = [function_arn_prefix + 'run_task_awsem' + '_' + tibanna_policy_prefix, function_arn_prefix + 'check_task_awsem' + '_' + tibanna_policy_prefix] policy = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "lambda:InvokeFunction" ], "Resource": resource } ] } return policy def generate_desc_stepfunction_policy(account_id, region, tibanna_policy_prefix): execution_arn_prefix = 'arn:aws:states:' + region + ':' + account_id + ':execution:' usergroup = tibanna_policy_prefix.replace('tibanna_', '') resource = execution_arn_prefix + '*' + usergroup + ':*' policy = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "states:DescribeExecution" ], "Resource": resource } ] } return policy def generate_assume_role_policy_document(service): '''service: 'ec2', 'lambda' or 'states' ''' AssumeRolePolicyDocument = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "Service": service + ".amazonaws.com" }, "Action": "sts:AssumeRole" } ] } return AssumeRolePolicyDocument def get_bucket_role_name(tibanna_policy_prefix): return tibanna_policy_prefix + '_s3' def get_lambda_role_name(tibanna_policy_prefix, lambda_name): return tibanna_policy_prefix + '_' + lambda_name def get_stepfunction_role_name(tibanna_policy_prefix): return tibanna_policy_prefix + '_states' def create_empty_role_for_lambda(iam, verbose=False): client = iam.meta.client role_policy_doc_lambda = generate_assume_role_policy_document('lambda') empty_role_name = 'tibanna_lambda_init_role' try: client.get_role(RoleName=empty_role_name) except Exception: print("creating %s", empty_role_name) response = client.create_role( RoleName=empty_role_name, AssumeRolePolicyDocument=json.dumps(role_policy_doc_lambda) ) if verbose: print(response) def create_role_for_bucket(iam, tibanna_policy_prefix, account_id, bucket_policy_name, verbose=False): client = iam.meta.client bucket_role_name = get_bucket_role_name(tibanna_policy_prefix) role_policy_doc_ec2 = generate_assume_role_policy_document('ec2') response = client.create_role( RoleName=bucket_role_name, AssumeRolePolicyDocument=json.dumps(role_policy_doc_ec2) ) if verbose: print(response) role_bucket = iam.Role(bucket_role_name) response = role_bucket.attach_policy( PolicyArn='arn:aws:iam::' + account_id + ':policy/' + bucket_policy_name ) if verbose: print(response) def create_role_for_run_task_awsem(iam, tibanna_policy_prefix, account_id, cloudwatch_policy_name, bucket_policy_name, list_policy_name, passrole_policy_name, desc_stepfunction_policy_name, verbose=False): client = iam.meta.client lambda_run_role_name = get_lambda_role_name(tibanna_policy_prefix, 'run_task_awsem') role_policy_doc_lambda = generate_assume_role_policy_document('lambda') response = client.create_role( RoleName=lambda_run_role_name, AssumeRolePolicyDocument=json.dumps(role_policy_doc_lambda) ) role_lambda_run = iam.Role(lambda_run_role_name) response = role_lambda_run.attach_policy( PolicyArn='arn:aws:iam::' + account_id + ':policy/' + list_policy_name ) if verbose: print(response) response = role_lambda_run.attach_policy( PolicyArn='arn:aws:iam::' + account_id + ':policy/' + cloudwatch_policy_name ) if verbose: print(response) response = role_lambda_run.attach_policy( PolicyArn='arn:aws:iam::' + account_id + ':policy/' + passrole_policy_name ) if verbose: print(response) response = role_lambda_run.attach_policy( PolicyArn='arn:aws:iam::' + account_id + ':policy/' + bucket_policy_name ) if verbose: print(response) response = role_lambda_run.attach_policy( PolicyArn='arn:aws:iam::aws:policy/AmazonEC2FullAccess' ) if verbose: print(response) response = role_lambda_run.attach_policy( PolicyArn='arn:aws:iam::' + account_id + ':policy/' + desc_stepfunction_policy_name ) if verbose: print(response) def create_role_for_check_task_awsem(iam, tibanna_policy_prefix, account_id, cloudwatch_policy_name, bucket_policy_name, verbose=False): client = iam.meta.client lambda_check_role_name = get_lambda_role_name(tibanna_policy_prefix, 'check_task_awsem') role_policy_doc_lambda = generate_assume_role_policy_document('lambda') response = client.create_role( RoleName=lambda_check_role_name, AssumeRolePolicyDocument=json.dumps(role_policy_doc_lambda) ) if verbose: print(response) role_lambda_run = iam.Role(lambda_check_role_name) response = role_lambda_run.attach_policy( PolicyArn='arn:aws:iam::' + account_id + ':policy/' + cloudwatch_policy_name ) if verbose: print(response) response = role_lambda_run.attach_policy( PolicyArn='arn:aws:iam::' + account_id + ':policy/' + bucket_policy_name ) if verbose: print(response) def create_role_for_stepfunction(iam, tibanna_policy_prefix, account_id, lambdainvoke_policy_name, verbose=False): client = iam.meta.client stepfunction_role_name = get_stepfunction_role_name(tibanna_policy_prefix) role_policy_doc = generate_assume_role_policy_document('states') response = client.create_role( RoleName=stepfunction_role_name, AssumeRolePolicyDocument=json.dumps(role_policy_doc) ) if verbose: print(response) role_stepfunction = iam.Role(stepfunction_role_name) response = role_stepfunction.attach_policy( PolicyArn='arn:aws:iam::aws:policy/service-role/AWSLambdaRole' # PolicyArn='arn:aws:iam::' + account_id + ':policy/' + lambdainvoke_policy_name ) if verbose: print(response) def create_user_group(iam, group_name, bucket_policy_name, account_id, verbose=False): client = iam.meta.client response = client.create_group( GroupName=group_name ) if verbose: print(response) group = iam.Group(group_name) response = group.attach_policy( PolicyArn='arn:aws:iam::' + account_id + ':policy/' + bucket_policy_name ) if verbose: print(response) response = group.attach_policy( PolicyArn='arn:aws:iam::aws:policy/AWSStepFunctionsFullAccess' ) if verbose: print(response) response = group.attach_policy( PolicyArn='arn:aws:iam::aws:policy/AWSStepFunctionsConsoleFullAccess' ) if verbose: print(response) response = group.attach_policy( PolicyArn='arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole' ) if verbose: print(response) def create_tibanna_iam(account_id, bucket_names, user_group_name, region, verbose=False): """creates IAM policies and roles and a user group for tibanna returns prefix of all IAM policies, roles and group. Total 4 policies, 3 roles and 1 group is generated that is associated with a single user group A user group shares permission for buckets, tibanna execution and logs """ # create prefix that represent a single user group tibanna_policy_prefix = generate_policy_prefix(user_group_name) iam = boto3.resource('iam') client = iam.meta.client # bucket policy bucket_policy_name = tibanna_policy_prefix + '_bucket_access' policy_ba = generate_policy_bucket_access(bucket_names) response = client.create_policy( PolicyName=bucket_policy_name, PolicyDocument=json.dumps(policy_ba), ) # lambda policies # list_instanceprofiles : by default not user-dependent, # but create per user group to allow future modification per user-group list_policy_name = tibanna_policy_prefix + '_list_instanceprofiles' response = client.create_policy( PolicyName=list_policy_name, PolicyDocument=json.dumps(generate_policy_list_instanceprofiles()), ) if verbose: print(response) # cloudwatchlogs: by default not user-dependent, # but create per user group to allow future modification per user-group cloudwatch_policy_name = tibanna_policy_prefix + '_cloudwatchlogs' response = client.create_policy( PolicyName=cloudwatch_policy_name, PolicyDocument=json.dumps(generate_policy_cloudwatchlogs()), ) if verbose: print(response) # iam_passrole_s3: passrole policy per user group passrole_policy_name = tibanna_policy_prefix + '_iam_passrole_s3' policy_iam_ps3 = generate_policy_iam_passrole_s3(account_id, tibanna_policy_prefix) response = client.create_policy( PolicyName=passrole_policy_name, PolicyDocument=json.dumps(policy_iam_ps3), ) if verbose: print(response) # lambdainvoke policy for step function lambdainvoke_policy_name = tibanna_policy_prefix + '_lambdainvoke' policy_lambdainvoke = generate_lambdainvoke_policy(account_id, region, tibanna_policy_prefix) response = client.create_policy( PolicyName=lambdainvoke_policy_name, PolicyDocument=json.dumps(policy_lambdainvoke), ) if verbose: print(response) desc_stepfunction_policy_name = tibanna_policy_prefix + '_desc_sts' policy_desc_stepfunction = generate_desc_stepfunction_policy(account_id, region, tibanna_policy_prefix) response = client.create_policy( PolicyName=desc_stepfunction_policy_name, PolicyDocument=json.dumps(policy_desc_stepfunction), ) if verbose: print(response) # roles # role for bucket create_role_for_bucket(iam, tibanna_policy_prefix, account_id, bucket_policy_name) # role for lambda create_role_for_run_task_awsem(iam, tibanna_policy_prefix, account_id, cloudwatch_policy_name, bucket_policy_name, list_policy_name, passrole_policy_name, desc_stepfunction_policy_name) create_role_for_check_task_awsem(iam, tibanna_policy_prefix, account_id, cloudwatch_policy_name, bucket_policy_name) create_empty_role_for_lambda(iam) # role for step function create_role_for_stepfunction(iam, tibanna_policy_prefix, account_id, lambdainvoke_policy_name) # instance profile instance_profile_name = get_bucket_role_name(tibanna_policy_prefix) client.create_instance_profile( InstanceProfileName=instance_profile_name ) ip = iam.InstanceProfile(instance_profile_name) ip.add_role( RoleName=instance_profile_name ) # create IAM group for users who share permission create_user_group(iam, tibanna_policy_prefix, bucket_policy_name, account_id) return tibanna_policy_prefix
StarcoderdataPython
1771750
<reponame>javierlorenzod/HigherHRNet-Human-Pose-Estimation from torch.utils.data import Dataset, DataLoader import torch from PIL import Image import glob import os.path as osp import os import random """ Posibles mejoras: - Comprobar image format es válido --> buscar en internet - Comprobar parámetros de entrada - get_image_name_wo_ext podría convertirse en una lambda - Comprobar que hay imágenes en la carpeta xD """ class BaseDataset(Dataset): def __init__(self, input_img_dir: str, output_json_dir: str, img_format: str = "png", create_output_dir: bool = True, transform = None) -> None: if not osp.isdir(input_img_dir): raise NotADirectoryError(f"{input_img_dir} is not a valid input image directory") self.input_img_dir = input_img_dir if not osp.isdir(output_json_dir) and not create_output_dir: raise NotADirectoryError(f"{output_json_dir} directory does not exist") elif not osp.isdir(output_json_dir) and create_output_dir: os.makedirs(output_json_dir) self.output_json_dir = output_json_dir self.img_format = img_format self.input_img_list = [] self.output_json_files_list = [] self.transform = transform @staticmethod def get_image_name_without_extension(img_filename): """ Extracts image name without extension from file name :param img_filename: :return: """ return osp.basename(img_filename).split('.')[0] @staticmethod def get_json_filename_for_image(image_name): return image_name + '.json' def generate_io_samples_pairs(self): self.input_img_list = glob.glob(osp.join(self.input_img_dir, "*." + self.img_format)) for image_file in self.input_img_list: image_name = self.get_image_name_without_extension(image_file) self.output_json_files_list.append(osp.join(self.output_json_dir, self.get_json_filename_for_image(image_name))) def __len__(self): return len(self.input_img_list) def show_image_and_corresponding_json(self, idx): print(f"Image file: {self.input_img_list[idx]}") print(f"JSON file: {self.output_json_files_list[idx]}") def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() img_filename = self.input_img_list[idx] img = Image.open(img_filename) if self.transform: img = self.transform(img) return img, idx if __name__ == "__main__": dataset = BaseDataset("/media/jld/DATOS_JLD/datasets/cityscapes/train/", "/media/jld/DATOS_JLD/gitrepos/paper-keypoints/train/") dataset.generate_io_samples_pairs() for _ in range(100): idx = random.randint(0, len(dataset)) print(f"Showing id {idx}") dataset.show_image_and_corresponding_json(idx)
StarcoderdataPython
3242123
<gh_stars>0 import sys import pandas as pd if __name__ == "__main__": path = sys.argv[1] ser = pd.read_csv(path, header=None).squeeze() ser = ser.rolling(3).sum() print((ser > ser.shift(1)).sum())
StarcoderdataPython
1644909
"""Internal representation of network name""" from typing import List, Union import binascii import json import os from typing import List, Union class Name(object): """ Internal representation of network name """ def __init__(self, name: Union[str, List[bytes]] = None, suite='ndn2013'): self.suite = suite self.digest = None if name: if isinstance(name, str): self.from_string(name) else: self._components = name else: self._components = [] def from_string(self, name: str): """Set the name from a string, components separated by /""" # FIXME: handle '/' as part of a component, UTF etc comps = name.split("/")[1:] self._components = [c.encode('ascii') for c in comps] def components_to_string(self) -> str: # FIXME: handle '/' as part of a component, and binary components if len(self._components) == 0: return '/' if type(self._components[0]) is str: s = '/' + '/'.join([c for c in self._components]) return s s = '/' + '/'.join([c.decode('ascii', 'replace') for c in self._components]) return s def to_string(self) -> str: """Transform name to string, components separated by /""" s = self.components_to_string() if self.digest: s += "[hashId=%s]" % binascii.hexlify(self.digest).decode('ascii', 'replace') return s def to_json(self) -> str: """encoded name as JSON""" n = {} n['suite'] = self.suite n['comps'] = [binascii.hexlify(c).decode('ascii', 'replace') for c in self._components] if self.digest: n['dgest'] = binascii.hexlify(self.digest).decode('ascii', 'replace') return json.dumps(n) def from_json(self, s: str) -> str: n = json.loads(s) self.suite = n['suite'] self._components = [binascii.dehexlify(c) for c in n['comps']] self.digest = binascii.dehexlify(n['dgest']) if 'dgest' in n else None return self def setDigest(self, digest: str = None): self.digest = digest return self def __str__(self) -> str: return self.to_string() def __repr__(self) -> str: return f'<PiCN.Packets.Name.Name {str(self)} at {hex(id(self))}>' def __eq__(self, other) -> bool: if type(other) is not Name: return False if self.suite != other.suite: return False return self.to_string() == other.to_string() def __add__(self, other) -> 'Name': components: List[bytes] = [] for c in self._components: components.append(c) if type(other) is list: for comp in other: if type(comp) is str: components.append(comp.encode('ascii')) elif type(comp) is bytes: components.append(comp) else: raise TypeError('Not a Name, str, List[str] or List[bytes]') elif type(other) is str: components.append(other.encode('ascii')) elif isinstance(other, Name): for comp in other._components: components.append(comp) else: raise TypeError('Not a Name, str, List[str] or List[bytes]') return Name(components) def __hash__(self) -> int: return self._components.__str__().__hash__() def __len__(self): return len(self._components) def is_prefix_of(self, name): """ Checks if self is prefix of a given name :param name: name :return: true if self is prefix of given name, false otherwise """ pfx = os.path.commonprefix([self._components, name._components]) return len(pfx) == len(self._components) def has_prefix(self, name): """ Checks if self has a certain prefix :param name: prefix :return: true if self has given prefix, false otherwise """ return name.is_prefix_of(self) @property def components(self): """Name components""" return self._components @components.setter def components(self, components): self._components = components @property def string_components(self): """Name components""" return [c.decode('ascii', 'replace') for c in self._components] @string_components.setter def string_components(self, string_components): self._components = [c.encode('ascii') for c in string_components]
StarcoderdataPython
1762325
<reponame>hikaru-sysu/taichi<gh_stars>0 from taichi.lang.simt import warp __all__ = ['warp']
StarcoderdataPython
3261587
<gh_stars>0 import torch import torch.nn as nn import torch.nn.functional as F from models.image_classification.abstract import ImageClassifier from models.nn_utils import conv_layer, fc_layer class ResBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1): super(ResBlock, self).__init__() self.layer1 = conv_layer( in_channels, out_channels, kernel_size, stride, padding, use_batchnorm=True ) self.layer2 = conv_layer( out_channels, out_channels, kernel_size, 1, padding, use_batchnorm=True, activation="none", ) self.downsample = conv_layer( in_channels, out_channels, kernel_size, 2, use_batchnorm=True, auto_pad=True ) self.relu = nn.ReLU(inplace=True) self.stride = stride def forward(self, x): residual = self.downsample(x) if self.stride != 1 else x out = self.layer1(x) out = self.layer2(out) out += residual return self.relu(out) class ResNet(ImageClassifier): def __init__(self, data_handler): self.loss_function = F.cross_entropy self.optimizer = torch.optim.Adam ImageClassifier.__init__(self, data_handler, self.loss_function, self.optimizer) self.create_conv_layers() self.model = nn.Sequential( self.conv1, nn.MaxPool2d(kernel_size=3, stride=2, padding=1), self.conv2, self.conv3, self.conv4, self.conv5, ) self.head = nn.Sequential( nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(), fc_layer(512, self.num_classes), nn.Softmax(), ) def forward(self, x): out = self.model(x) return self.head(out) def create_conv_layers(self): self.conv1 = conv_layer(3, 64, 7, 2, use_batchnorm=True) self.conv2 = nn.Sequential( nn.MaxPool2d(kernel_size=3, stride=2), ResBlock(64, 64, 3), ResBlock(64, 64, 3), ) self.conv3 = nn.Sequential(ResBlock(64, 128, 3, 2), ResBlock(128, 128, 3)) self.conv4 = nn.Sequential(ResBlock(128, 256, 3, 2), ResBlock(256, 256, 3)) self.conv5 = nn.Sequential(ResBlock(256, 512, 3, 2), ResBlock(512, 512, 3))
StarcoderdataPython
3351975
<reponame>uri-yanover/sharik from setuptools import setup, find_packages setup( name="sharik", version="0.4.1", packages=find_packages(), description='A shar(1)-like utility with a programmatic fine-tuned API', author='<NAME>', author_email='<EMAIL>', url='https://github.com/uri-yanover/sharik', entry_points={ 'console_scripts': [ 'sharik = sharik.cli:cli_main' ] }, install_requires=['click', "dataclasses ; python_version<='3.6'", 'pydantic'] )
StarcoderdataPython
73081
# -*- coding: utf-8 -*- # Generated by Django 1.9.13 on 2020-11-10 08:06 from __future__ import unicode_literals from django.conf import settings from django.db import migrations import django.db.models.deletion import sentry.db.models.fields.foreignkey class Migration(migrations.Migration): dependencies = [ ('clims', '0020_transition'), ] operations = [ migrations.AlterField( model_name='transition', name='user', field=sentry.db.models.fields.foreignkey.FlexibleForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='transitions', to=settings.AUTH_USER_MODEL), ), ]
StarcoderdataPython
96999
<reponame>cclauss/CommunityCellularManager<filename>smspdu/smspdu/__main__.py #!/usr/bin/env python3 """ Copyright (c) 2016-present, Facebook, Inc. All rights reserved. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. An additional grant of patent rights can be found in the PATENTS file in the same directory. """ from .pdu import dump if __name__ == '__main__': import sys dump(sys.argv[1]) # Copyright (c) 2011 eKit.com Inc (http://www.ekit.com/) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE.
StarcoderdataPython
1782244
"""Test that various serving options work""" import json import subprocess import time import pytest from tornado import httpclient from .conftest import CI, DARWIN, LINUX, PYPY if CI and DARWIN: # pragma: no cover pytest.skip("skipping flaky MacOS tests", allow_module_level=True) if CI and LINUX and PYPY: # pragma: no cover pytest.skip("skipping flaky Linux/PyPy tests", allow_module_level=True) @pytest.mark.parametrize("base_url", [None, "/@foo/"]) def test_serve( an_empty_lite_dir, script_runner, base_url, an_unused_port ): # pragma: no cover """verify that serving kinda works""" args = ["jupyter", "lite", "serve", "--port", f"{an_unused_port}"] http_headers = {"x-foo": "bar"} extra_http_headers = {"x-baz": "boo"} all_headers = {**http_headers, **extra_http_headers} config = { "LiteBuildConfig": { "http_headers": http_headers, "extra_http_headers": extra_http_headers, } } config_path = an_empty_lite_dir / "jupyter_lite_config.json" config_path.write_text(json.dumps(config), encoding="utf-8") if base_url: args += ["--base-url", base_url] else: base_url = "/" url = f"http://127.0.0.1:{an_unused_port}{base_url}" server = subprocess.Popen(args, cwd=str(an_empty_lite_dir)) time.sleep(2) app_urls = [""] for app in ["lab", "retro", "repl"]: app_urls += [ f"{app}/", f"{app}/index.html", ] if app == "retro": app_urls += [f"{app}/tree/", f"{app}/tree/index.html"] maybe_errors = [ _fetch_without_errors(f"{url}{frag}", expect_headers=all_headers) for frag in app_urls ] errors = [e for e in maybe_errors if e] try: assert not errors finally: _fetch_without_errors(f"{url}shutdown") server.wait(timeout=10) def _fetch_without_errors(url, retries=10, expect_headers=None): # pragma: no cover retries = 10 errors = [] while retries: retries -= 1 response = None try: client = httpclient.HTTPClient() response = client.fetch(url) assert b"jupyter-config-data" in response.body # it worked, eventually: clear errors errors = [] break except Exception as err: # pragma: no cover print(f"{err}: {retries} retries left...") time.sleep(0.5) errors = [err] if response and expect_headers: errors = [] for header, value in expect_headers.items(): try: assert response.headers[header] == value except Exception as err: # pragma: no cover errors += [err] return errors
StarcoderdataPython
3348287
#!/usr/bin/env python # coding: utf-8 # In[ ]: import enum from pyuvm import * import random @enum.unique class Ops(enum.IntEnum): """Legal ops for the TinyALU""" ADD = 1 AND = 2 XOR = 3 MUL = 4 class PythonProxy(uvm_component): @staticmethod def alu_op(A, B, op): result = None # Make the linter happy assert op in list(Ops), "The tinyalu op must be of type ops" if op == Ops.ADD: result = A + B elif op == Ops.AND: result = A & B elif op == Ops.XOR: result = A ^ B elif op == Ops.MUL: result = A * B time.sleep(0.1) # Takes time as a simulation would. return result def build_phase(self): # The FIFOs self.stim_f = uvm_tlm_fifo("stim_f", self) self.cmd_f = uvm_tlm_analysis_fifo("cmd_f", self) self.result_f = uvm_tlm_analysis_fifo("result_f", self) ConfigDB().set(None, "*", "PROXY", self) # The Stimulus Ports (for send_op()) self.stim_put = uvm_put_port("stim_put", self) self.stim_get = uvm_get_port("stim_get", self) # The Command Ports (for get_cmd()) self.cmd_put = uvm_put_port("cmd_put", self) self.cmd_get = uvm_get_port("cmd_get", self) # The Result Ports (for get_result()) self.result_put = uvm_put_port("result_put",self) self.result_get = uvm_get_port("result_get", self) def connect_phase(self): self.stim_put.connect(self.stim_f.put_export) self.stim_get.connect(self.stim_f.get_export) self.cmd_put.connect(self.cmd_f.put_export) self.cmd_get.connect(self.cmd_f.get_export) self.result_put.connect(self.result_f.put_export) self.result_get.connect(self.result_f.get_export) def send_op(self, A, B, op): self.stim_put.put((A, B, op)) def get_cmd(self): cmd = self.cmd_get.get() return cmd def get_result(self): result = self.result_get.get() return result def run_phase(self): while not ObjectionHandler().run_phase_complete(): (A, B, op) = self.stim_get.get() result = self.alu_op(A, B, op) self.cmd_put.put((A, B, op)) self.result_put.put(result)
StarcoderdataPython
3358035
import logging import os import time from flask import Flask, request, jsonify import sentry_sdk from sentry_sdk.integrations.flask import FlaskIntegration from deeppavlov import build_model logging.basicConfig(format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=logging.INFO) logger = logging.getLogger(__name__) sentry_sdk.init(dsn=os.getenv("SENTRY_DSN"), integrations=[FlaskIntegration()]) try: kgdg = build_model("kg_dial_generator.json", download=True) test_res = kgdg(["What is the capital of Russia?"], [["Q159"]]) logger.info("model loaded, test query processed") except Exception as e: sentry_sdk.capture_exception(e) logger.exception(e) raise e app = Flask(__name__) @app.route("/model", methods=["POST"]) def respond(): tm_st = time.time() sentences = request.json["sentences"] entities = request.json["entities"] if sentences: out_uttr = ["" for _ in sentences] out_conf = [0.0 for _ in sentences] else: out_uttr = [""] out_conf = [0.0] f_sentences = [] f_entities = [] nf_numbers = [] for n, (sentence, entities_list) in enumerate(zip(sentences, entities)): if len(sentence.split()) == 1 and not entities_list: nf_numbers.append(n) else: f_sentences.append(sentence) f_entities.append(entities_list) try: generated_utterances, confidences = kgdg(f_sentences, f_entities) out_uttr = [] out_conf = [] cnt_fnd = 0 for i in range(len(sentences)): if i in nf_numbers: out_uttr.append("") out_conf.append(0.0) else: out_uttr.append(generated_utterances[cnt_fnd]) out_conf.append(confidences[cnt_fnd]) cnt_fnd += 1 except Exception as e: sentry_sdk.capture_exception(e) logger.exception(e) logger.info(f"wikidata_dial_service exec time: {time.time() - tm_st}") return jsonify([out_uttr, out_conf]) if __name__ == "__main__": app.run(debug=False, host="0.0.0.0", port=3000)
StarcoderdataPython
3366507
<reponame>jwestraadt/GrainSizeTools # ============================================================================ # # # # This is part of the "GrainSizeTools Script" # # A Python script for characterizing grain size from thin sections # # # # Copyright (c) 2014-present <NAME> # # # # Licensed under the Apache License, Version 2.0 (the "License"); # # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. # # # # Version 3.0.2 # # For details see: http://marcoalopez.github.io/GrainSizeTools/ # # download at https://github.com/marcoalopez/GrainSizeTools/releases # # # # ============================================================================ # # ============================================================================ # # Functions to generate the plots using the Python matplotlib library. # # It uses hex color codes to set colors. # # Save this file in the same directory as GrainSizeTools # # ============================================================================ # # import Python scientific modules import matplotlib.pyplot as plt import numpy as np from scipy.stats import norm, gaussian_kde, shapiro, iqr # plotting funtions def distribution(data, plot=('hist', 'kde'), avg=('amean', 'gmean', 'median', 'mode'), binsize='auto', bandwidth='silverman', **fig_kw): """ Return a plot with the ditribution of (apparent or actual) grain sizes in a dataset. Parameters ---------- data : array_like the size of the grains plot : string, tuple or list; optional the type of plot, either histogram ('hist'), kernel density estimate ('kde') or both ('hist', 'kde'). Default is both. avg : string, tuple or list; optional the central tendency measures o show, either the arithmetic ('amean') or geometric ('gmean') means, the median ('median'), and/or the KDE-based mode ('mode'). Default all averages. binsize : string or positive scalar; optional If 'auto', it defines the plug-in method to calculate the bin size. When integer or float, it directly specifies the bin size. Default: the 'auto' method. | Available plug-in methods: | 'auto' (fd if sample_size > 1000 or Sturges otherwise) | 'doane' (Doane's rule) | 'fd' (Freedman-Diaconis rule) | 'rice' (Rice's rule) | 'scott' (Scott rule) | 'sqrt' (square-root rule) | 'sturges' (Sturge's rule) bandwidth : string {'silverman' or 'scott'} or positive scalar; optional the method to estimate the bandwidth or a scalar directly defining the bandwidth. It uses the Silverman plug-in method by default. **fig_kw : additional keyword arguments to control the size (figsize) and resolution (dpi) of the plot. Default figsize is (6.4, 4.8). Default resolution is 100 dpi. Call functions -------------- - gaussian_kde (from Scipy stats) Examples -------- >>> distribution(data['diameters']) >>> distribution(data['diameters'], figsize=(6.4, 4.8)) Returns ------- A plot showing the distribution of (apparent) grain sizes and the location of the averages defined. """ fig, ax = plt.subplots(**fig_kw) if 'hist' in plot: if isinstance(binsize, (int, float)): binsize = int(np.ceil((data.max() - data.min()) / binsize)) y_values, bins, __ = ax.hist(data, bins=binsize, range=(data.min(), data.max()), density=True, color='#80419d', edgecolor='#C59fd7', alpha=0.7) print('=======================================') print('Number of classes = ', len(bins) - 1) print('binsize = ', round(bins[1] - bins[0], 2)) print('=======================================') if 'kde' in plot: # estimate kde first if isinstance(bandwidth, (int, float)): fixed_bw = bandwidth / np.std(data, ddof=1) kde = gaussian_kde(data, bw_method=fixed_bw) elif isinstance(bandwidth, str): kde = gaussian_kde(data, bw_method=bandwidth) bandwidth = round(kde.covariance_factor() * data.std(ddof=1), 2) else: raise ValueError("bandwidth must be integer, float, or plug-in methods 'silverman' or 'scott'") x_values = np.linspace(data.min(), data.max(), num=1000) y_values = kde(x_values) print('=======================================') print('KDE bandwidth = ', round(bandwidth, 2)) print('=======================================') if 'hist' in plot: ax.plot(x_values, y_values, color='#2F4858') else: ax.plot(x_values, y_values, color='#2F4858') ax.fill_between(x_values, y_values, color='#80419d', alpha=0.65) # plot the location of the averages if 'amean' in avg: amean = np.mean(data) ax.vlines(amean, 0, np.max(y_values), linestyle='solid', color='#2F4858', label='arith. mean', linewidth=2.5) if 'gmean' in avg: gmean = np.exp(np.mean(np.log(data))) ax.vlines(gmean, 0, np.max(y_values), linestyle='solid', color='#fec44f', label='geo. mean') if 'median' in avg: median = np.median(data) ax.vlines(median, 0, np.max(y_values), linestyle='dashed', color='#2F4858', label='median', linewidth=2.5) if 'mode' in avg and 'kde' in plot: mode = x_values[np.argmax(y_values)] ax.vlines(mode, 0, np.max(y_values), linestyle='dotted', color='#2F4858', label='mode', linewidth=2.5) ax.set_ylabel('density', color='#252525') ax.set_xlabel(r'apparent diameter ($\mu m$)', color='#252525') ax.legend(loc='best', fontsize=16) # ax.set_ylim(bottom=-0.001) fig.tight_layout() return fig, ax def area_weighted(diameters, areas, binsize='auto', **fig_kw): """ Generate an area-weighted histogram and returns different area-weighted statistics. Parameters ---------- diameters : array_like the size of the grains areas : array_like the sectional areas of the grains binsize : string or positive scalar, optional If 'auto', it defines the plug-in method to calculate the bin size. When integer or float, it directly specifies the bin size. Default: the 'auto' method. | Available plug-in methods: | 'auto' (fd if sample_size > 1000 or Sturges otherwise) | 'doane' (Doane's rule) | 'fd' (Freedman-Diaconis rule) | 'rice' (Rice's rule) | 'scott' (Scott rule) | 'sqrt' (square-root rule) | 'sturges' (Sturge's rule) **fig_kw : additional keyword arguments to control the size (figsize) and resolution (dpi) of the plot. Default figsize is (6.4, 4.8). Default resolution is 100 dpi. Examples -------- >>> area_weighted(data['diameters'], data['Areas']) >>> area_weighted(data['diameters'], data['Areas'], binsize='doane', dpi=300) """ # estimate weighted mean area_total = np.sum(areas) weighted_areas = areas / area_total weighted_mean = np.sum(diameters * weighted_areas) # estimate mode interval if type(binsize) is str: histogram, bin_edges = np.histogram(diameters, bins=binsize, range=(0.0, diameters.max())) h = bin_edges[1] else: bin_edges = np.arange(0.0, diameters.max() + binsize, binsize) h = binsize # estimate the cumulative areas of each grain size interval cumulativeAreas = np.zeros(len(bin_edges)) for index, values in enumerate(bin_edges): mask = np.logical_and(diameters >= values, diameters < (values + h)) area_sum = np.sum(areas[mask]) cumulativeAreas[index] = round(area_sum, 1) # get the index of the modal interval getIndex = np.argmax(cumulativeAreas) print('=======================================') print('DESCRIPTIVE STATISTICS') print(f'Area-weighted mean grain size = {weighted_mean:0.2f} microns') print('=======================================') print('HISTOGRAM FEATURES') print(f'The modal interval is {bin_edges[getIndex]:0.2f} - {bin_edges[getIndex] + h:0.2f} microns') if type(binsize) is str: print(f'The number of classes are {len(histogram)}') print(f'The bin size is {h:0.2f} according to the {binsize} rule') print('=======================================') # normalize the y-axis values to percentage of the total area totalArea = sum(cumulativeAreas) cumulativeAreasNorm = [(x / float(totalArea)) * 100 for x in cumulativeAreas] maxValue = max(cumulativeAreasNorm) #make plot fig, ax = plt.subplots(**fig_kw) # figure aesthetics ax.bar(bin_edges, cumulativeAreasNorm, width=h, color='#55A868', edgecolor='#FEFFFF', align='edge', alpha=1) ax.vlines(weighted_mean, ymin=0, ymax=maxValue, linestyle='--', color='#1F1F1F', label='area weighted mean', linewidth=2) ax.set_ylabel('normalized area fraction (%)', color='#252525') ax.set_xlabel(r'apparent diameter ($\mu m$)', color='#252525') ax.legend(loc='best', fontsize=15) fig.tight_layout() return fig, ax def normalized(data, avg='amean', bandwidth='silverman', **fig_kw): """Return a log-transformed normalized ditribution of the grain population. This is useful to compare grain size distributions beween samples with different average values. Parameters ---------- data : array-like the dataset avg : str, optional the normalization factor, either 'amean' or 'median'. Default: 'amean' bandwidth : str or scalar, optional the bandwidth of the KDE, by default 'silverman' **fig_kw : additional keyword arguments to control the size (figsize) and resolution (dpi) of the plot. Default figsize is (6.4, 4.8). Default resolution is 100 dpi. """ data = np.log(data) amean = np.mean(data) median = np.median(data) # normalize the data if avg == 'amean': norm_factor = amean norm_data = data / norm_factor elif avg == 'median': norm_factor = median norm_data = data / median else: raise ValueError("Normalization factor has to be defined as 'amean' or 'median'") # estimate KDE if isinstance(bandwidth, (int, float)): fixed_bw = bandwidth / np.std(norm_data, ddof=1) kde = gaussian_kde(norm_data, bw_method=fixed_bw) elif isinstance(bandwidth, str): kde = gaussian_kde(norm_data, bw_method=bandwidth) bandwidth = round(kde.covariance_factor() * norm_data.std(ddof=1), 2) else: raise ValueError("bandwidth must be integer, float, or plug-in methods 'silverman' or 'scott'") x_values = np.linspace(norm_data.min(), norm_data.max(), num=1000) y_values = kde(x_values) # Provide details print('=======================================') if avg == 'amean': print(f'Normalized SD = {np.std(norm_data):0.3f}') if avg == 'median': print(f'Normalized IQR = {iqr(norm_data):0.3f}') print('KDE bandwidth = ', round(bandwidth, 2)) print('=======================================') #make plot fig, ax = plt.subplots(**fig_kw) ax.plot(x_values, y_values, color='#2F4858') ax.fill_between(x_values, y_values, color='#d1346b', alpha=0.5) ax.vlines(amean / norm_factor, 0, np.max(y_values), linestyle='solid', color='#2F4858', label='arith. mean', linewidth=2.5) ax.vlines(median / norm_factor, 0, np.max(y_values), linestyle='dashed', color='#2F4858', label='median', linewidth=2.5) ax.set_ylabel('density', color='#252525') if avg == 'amean': ax.set_xlabel(r'normalized log grain size ($y / \bar{y}$)', color='#252525') else: ax.set_xlabel(r'normalized log grain size ($y / med_{y}$)', color='#252525') ax.legend(loc='best', fontsize=15) fig.tight_layout() return fig, ax def qq_plot(data, percent=2, **fig_kw): """ Test whether the underlying distribution follows a lognormal distribution using a quantile–quantile (q-q) plot and a Shapiro- Wilk test. Parameters ---------- data : array-like the apparent diameters or any other type of data percent : scalar between 0 and 100 the percentil interval to estimate, default is 2 % Call functions -------------- shapiro from scipy's stats """ data = np.sort(np.log(data)) # estimate percentiles in the actual data percentil = np.arange(1, 100, percent) actual_data = np.percentile(data, percentil) # estimate percentiles for theoretical data mean, std = np.mean(data), np.std(data) theoretical_data = norm.ppf(percentil / 100, loc=mean, scale=std) min_val, max_val = theoretical_data.min(), theoretical_data.max() # make the plot fig, ax = plt.subplots(**fig_kw) ax.plot([min_val, max_val], [min_val, max_val], '-', color='#2F4858', label='perfect lognormal') ax.plot(theoretical_data, actual_data, 'o', color='C0', alpha=0.5) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_xlabel('theoretical', color='#252525') ax.set_ylabel('observed', color='#252525') ax.legend(loc='best', fontsize=18) # ax.set_aspect('equal') fig.tight_layout() # Shapiro-Wilk test if len(data) > 250: W, p_value = shapiro(np.random.choice(data, size=250)) else: W, p_value = shapiro(data) print('=======================================') print('Shapiro-Wilk test (lognormal):') print(f'{W:0.2f}, {p_value:0.2f} (test statistic, p-value)') if p_value >= 0.05: print('It looks like a lognormal distribution') print('(⌐■_■)') else: print('It doesnt look like a lognormal distribution (p-value < 0.05)') print('(╯°□°)╯︵ ┻━┻') print('=======================================') return fig, ax if __name__ == '__main__': pass else: print('module plot imported')
StarcoderdataPython
1785702
<gh_stars>0 # -*- coding: utf-8 -*- # Generated by Django 1.9.1 on 2016-07-01 02:55 from __future__ import unicode_literals from decimal import Decimal import django.core.validators from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('bruv', '0004_auto_20160518_1404'), ] operations = [ migrations.AlterField( model_name='set', name='depth', field=models.DecimalField(decimal_places=2, help_text='m', max_digits=12, null=True, validators=[django.core.validators.MinValueValidator(Decimal('0.01'))]), ), ]
StarcoderdataPython
1670868
<filename>src/githyperlink/cli.py import sys import subprocess from click import command, argument from .main import get_hyperlink @command() @argument("path", required=False) def get_and_print_hyperlink(path=None): if path is None: path = "." try: url = get_hyperlink(path) except subprocess.CalledProcessError: # `git` error is already printed to stderr. (Most likely error: not a git repo). sys.exit(1) # So, just quit. else: print(url)
StarcoderdataPython
67345
<filename>test_crf_layer.py # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # Use CRF as a neural network layer built by GLuon to conduct training and prediction tests. # @author:kenjewu # @date:2018/10/05 import time import numpy as np import mxnet as mx from mxnet import nd, gluon, autograd from crf import CRF ctx = mx.gpu() START_TAG = "<bos>" STOP_TAG = "<eos>" # generate pseudo data tag2idx = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4} x = nd.random.normal(shape=(10, 5), ctx=ctx) y = nd.array([[0, 1, 0, 2, 1, 0, 1], [0, 2, 0, 0, 2, 0, 1], [1, 1, 1, 0, 1, 0, 2], [0, 0, 2, 2, 0, 1, 0], [1, 1, 1, 1, 2, 2, 1], [0, 1, 2, 2, 0, 0, 1], [2, 2, 0, 2, 0, 1, 1], [1, 1, 2, 0, 1, 0, 0], [0, 2, 1, 2, 1, 2, 0], [0, 1, 2, 0, 1, 1, 2]], ctx=ctx) dataset_train = gluon.data.ArrayDataset(x, y) iter_train = gluon.data.DataLoader(dataset_train, batch_size=5, shuffle=True) class CRF_MODEL(gluon.nn.Block): '''Here we construct a neural network. Although there is only one CRF layer in the model, we can test whether CRF can be reused as a custom layer. Args: gluon ([type]): [description] Returns: [type]: [description] ''' def __init__(self, tag2idx, ctx=mx.gpu(), ** kwargs): super(CRF_MODEL, self).__init__(** kwargs) with self.name_scope(): self.crf = CRF(tag2idx, ctx=ctx) def forward(self, x): return self.crf(x) # build a model model = CRF_MODEL(tag2idx, ctx=ctx) model.initialize(ctx=ctx) # print params of the model print(model.collect_params()) print(model.collect_params()['crf_model0_crf0_transitions'].data()) optimizer = gluon.Trainer(model.collect_params(), 'sgd', {'learning_rate': 0.01, 'wd': 1e-4}) # train start_time = time.time() for epoch in range(100): for batch_x, batch_y in iter_train: batch_x = nd.broadcast_axis(nd.expand_dims(batch_x, axis=0), axis=0, size=7) with autograd.record(): # loss neg_log_likelihood = model.crf.neg_log_likelihood(batch_x, batch_y) # backward and update params neg_log_likelihood.backward() optimizer.step(5) print(model.collect_params()['crf_model0_crf0_transitions'].data()) # predict print(model(nd.broadcast_axis(nd.expand_dims(x, axis=0), axis=0, size=7))) print('use {0} secs!'.format(time.time()-start_time))
StarcoderdataPython
120642
"""Support for showing the time in a different time zone.""" from __future__ import annotations from datetime import tzinfo import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA, SensorEntity from homeassistant.const import CONF_NAME, CONF_TIME_ZONE from homeassistant.core import HomeAssistant import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType import homeassistant.util.dt as dt_util CONF_TIME_FORMAT = "time_format" DEFAULT_NAME = "Worldclock Sensor" DEFAULT_TIME_STR_FORMAT = "%H:%M" PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_TIME_ZONE): cv.time_zone, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_TIME_FORMAT, default=DEFAULT_TIME_STR_FORMAT): cv.string, } ) async def async_setup_platform( hass: HomeAssistant, config: ConfigType, async_add_entities: AddEntitiesCallback, discovery_info: DiscoveryInfoType | None = None, ) -> None: """Set up the World clock sensor.""" time_zone = dt_util.get_time_zone(config[CONF_TIME_ZONE]) async_add_entities( [ WorldClockSensor( time_zone, config[CONF_NAME], config[CONF_TIME_FORMAT], ) ], True, ) class WorldClockSensor(SensorEntity): """Representation of a World clock sensor.""" _attr_icon = "mdi:clock" def __init__(self, time_zone: tzinfo | None, name: str, time_format: str) -> None: """Initialize the sensor.""" self._attr_name = name self._time_zone = time_zone self._time_format = time_format async def async_update(self) -> None: """Get the time and updates the states.""" self._attr_native_value = dt_util.now(time_zone=self._time_zone).strftime( self._time_format )
StarcoderdataPython
71872
# coding=utf-8 from .abstract import ContactActionAbstract from .contants import * from .create import ContactCreateAction from .delete import ContactDeleteAction from .read import ContactReadAction from .update import ContactUpdateAction from .write import ContactWriteAction
StarcoderdataPython
1630990
<reponame>thejohnfreeman/picard """Picard combines the idea of Ansible with the execution of Make.""" # I'm only slightly worried about the rebindings of ``file`` and ``rule``... from picard.api import make, sync from picard.context import Context from picard.file import ( FileRecipePostConditionError, FileTarget, file, file_target ) from picard.pattern import pattern from picard.rule import rule from picard.shell import sh from picard.typing import Target
StarcoderdataPython
3398110
import argparse import os import os.path as osp from shutil import copyfile import mmcv from tqdm import tqdm def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--annotation_path", default="/data/coco_train.json") parser.add_argument("--image_root", default="/data/train") parser.add_argument("--output_root", default="/data/sources") return parser.parse_args() def main(): args = parse_args() annotations = mmcv.load(args.annotation_path) for sample in tqdm(annotations["images"]): source_root = osp.join(args.output_root, sample["source"]) os.makedirs(source_root, exist_ok=True) copyfile(osp.join(args.image_root, sample["file_name"]), osp.join(source_root, sample["file_name"])) if __name__ == "__main__": main()
StarcoderdataPython
173984
from django.db import models # Create your models here. class Stocks(models.Model): ticker = models.CharField(max_length=5, default='STOCK',) date = models.DateField() open = models.IntegerField() high = models.IntegerField() low = models.IntegerField() close = models.IntegerField() volume = models.IntegerField() after1 = models.IntegerField() after5 = models.IntegerField() after20 = models.IntegerField() plain1 = models.IntegerField() plain5 = models.IntegerField() plain20 = models.IntegerField() grouped1 = models.IntegerField() grouped5 = models.IntegerField() grouped20 = models.IntegerField() onehot1 = models.IntegerField() onehot5 = models.IntegerField() onehot20 = models.IntegerField() class PlainStocks(models.Model): ticker = models.CharField(max_length=5, default='STOCK',) date = models.DateField() open = models.IntegerField() high = models.IntegerField() low = models.IntegerField() close = models.IntegerField() volume = models.IntegerField() obv = models.FloatField() co = models.FloatField() macd = models.FloatField() signal = models.FloatField() histogram = models.FloatField() bollinger_high = models.FloatField() bollinger_low = models.FloatField() class GroupedStocks(models.Model): ticker = models.CharField(max_length=5, default='STOCK',) date = models.DateField() obv_comparison = models.IntegerField() obv_position = models.IntegerField() co_comparison = models.IntegerField() co_position = models.IntegerField() macd_comparison = models.IntegerField() macd_position = models.IntegerField() signal_comparison = models.IntegerField() signal_position = models.IntegerField() histogram_comparison = models.IntegerField() histogram_position = models.IntegerField() bb_condition = models.IntegerField() class OneHotStocks(models.Model): ticker = models.CharField(max_length=5, default='STOCK',) date = models.DateField() obv_comparison_naik = models.IntegerField() obv_comparison_tetap = models.IntegerField() obv_comparison_turun = models.IntegerField() obv_position_positif = models.IntegerField() obv_position_negatif = models.IntegerField() obv_position_nol = models.IntegerField() co_position_positif = models.IntegerField() co_position_negatif = models.IntegerField() co_position_nol = models.IntegerField() co_comparison_naik = models.IntegerField() co_comparison_turun = models.IntegerField() co_comparison_tetap = models.IntegerField() macd_position_positif = models.IntegerField() macd_position_negatif = models.IntegerField() macd_position_nol = models.IntegerField() macd_comparison_naik = models.IntegerField() macd_comparison_turun = models.IntegerField() macd_comparison_tetap = models.IntegerField() signal_position_positif = models.IntegerField() signal_position_negatif = models.IntegerField() signal_position_nol = models.IntegerField() signal_comparison_naik = models.IntegerField() signal_comparison_turun = models.IntegerField() signal_comparison_tetap = models.IntegerField() histogram_position_positif = models.IntegerField() histogram_position_negatif = models.IntegerField() histogram_position_nol = models.IntegerField() histogram_comparison_naik = models.IntegerField() histogram_comparison_turun = models.IntegerField() histogram_comparison_tetap = models.IntegerField() bb_condition_overbought = models.IntegerField() bb_condition_oversold = models.IntegerField() bb_condition_normal = models.IntegerField()
StarcoderdataPython
4814575
<reponame>slp-ntua/slp-labs<filename>lab2/dnn/torch_dataset.py import os import kaldi_io import numpy as np from torch.utils.data import Dataset class TorchSpeechDataset(Dataset): def __init__(self, recipe_dir, ali_dir, dset, feature_context=2): self.recipe_dir = recipe_dir self.ali_dir = ali_dir self.feature_context = feature_context self.dset = dset self.feats, self.labels = self.read_data() self.feats, self.labels, self.uttids, self.end_indices = self.unify_data(self.feats, self.labels) def read_data(self): feat_path = os.path.join(self.recipe_dir, 'data', self.dset, 'feats.scp') label_path = os.path.join(self.recipe_dir, self.ali_dir) feat_opts = "apply-cmvn --utt2spk=ark:{0} ark:{1} ark:- ark:- |". \ format( os.path.join(self.recipe_dir, 'data', self.dset, 'utt2spk'), os.path.join(self.recipe_dir, 'data', self.dset, self.dset + '_cmvn_speaker.ark') ) feat_opts += " add-deltas --delta-order=2 ark:- ark:- |" if self.feature_context: feat_opts += " splice-feats --left-context={0} --right-context={0} ark:- ark:- |". \ format(str(self.feature_context)) label_opts = 'ali-to-pdf' feats = {k: m for k, m in kaldi_io.read_mat_ark( 'ark:copy-feats scp:{} ark:- | {}'.format(feat_path, feat_opts))} lab = {k: v for k, v in kaldi_io.read_vec_int_ark( 'gunzip -c {0}/ali*.gz | {1} {0}/final.mdl ark:- ark:-|'.format(label_path, label_opts)) if k in feats} feats = {k: v for k, v in feats.items() if k in lab} return feats, lab def unify_data(self, feats, lab, optional_array=None): fea_conc = np.concatenate([v for k, v in sorted(feats.items())]) lab_conc = np.concatenate([v for k, v in sorted(lab.items())]) if optional_array: opt_conc = np.concatenate([v for k, v in sorted(optional_array.items())]) names = [k for k, v in sorted(lab.items())] end_snt = 0 end_indices = [] for k, v in sorted(lab.items()): end_snt += v.shape[0] end_indices.append(end_snt) lab = lab_conc.astype('int64') if optional_array: opt = opt_conc.astype('int64') return fea_conc, lab, opt, names, end_indices return fea_conc, lab, names, end_indices def __getitem__(self, idx): return self.feats[idx], self.labels[idx] def __len__(self): return len(self.labels) if __name__ == "__main__": data = TorchSpeechDataset("./", "./exp_tri1_ali_train", "train") import ipdb; ipdb.set_trace()
StarcoderdataPython
142321
<filename>recipes/xkbcommon/all/conanfile.py<gh_stars>0 from conans import ConanFile, Meson, tools from conans.errors import ConanInvalidConfiguration import os class XkbcommonConan(ConanFile): name = "xkbcommon" description = "keymap handling library for toolkits and window systems" topics = ("conan", "xkbcommon", "keyboard") url = "https://github.com/conan-io/conan-center-index" homepage = "https://github.com/xkbcommon/libxkbcommon" license = "MIT" settings = "os", "arch", "compiler", "build_type" options = { "shared": [True, False], "fPIC": [True, False], "with_x11": [True, False], "with_wayland": [True, False], "xkbregistry": [True, False], "docs": [True, False] } default_options = { "shared": False, "fPIC": True, "with_x11": True, "with_wayland": False, "xkbregistry": True, "docs": False } generators = "pkg_config" _meson = None @property def _source_subfolder(self): return "source_subfolder" @property def _build_subfolder(self): return "build_subfolder" @property def _has_xkbregistry_option(self): return tools.Version(self.version) >= "1.0.0" def config_options(self): if not self._has_xkbregistry_option: del self.options.xkbregistry def configure(self): if self.settings.os != "Linux": raise ConanInvalidConfiguration("This library is only compatible with Linux") del self.settings.compiler.libcxx del self.settings.compiler.cppstd def requirements(self): self.requires("xorg/system") if self.options.get_safe("xkbregistry"): self.requires("libxml2/2.9.10") def build_requirements(self): self.build_requires("meson/0.56.0") self.build_requires("bison/3.7.1") def source(self): tools.get(**self.conan_data["sources"][self.version]) extracted_dir = "libxkbcommon-" + self.name + "-" + self.version os.rename(extracted_dir, self._source_subfolder) def _configure_meson(self): if self._meson: return self._meson defs={ "enable-wayland": self.options.with_wayland, "enable-docs": self.options.docs, "enable-x11": self.options.with_x11, "libdir": os.path.join(self.package_folder, "lib"), "default_library": ("shared" if self.options.shared else "static")} if self._has_xkbregistry_option: defs["enable-xkbregistry"] = self.options.xkbregistry # workaround for https://github.com/conan-io/conan-center-index/issues/3377 # FIXME: do not remove this pkg-config file once xorg recipe fixed xeyboard_config_pkgfile = os.path.join(self.build_folder, "xkeyboard-config.pc") if os.path.isfile(xeyboard_config_pkgfile): os.remove(xeyboard_config_pkgfile) self._meson = Meson(self) self._meson.configure( defs=defs, source_folder=self._source_subfolder, build_folder=self._build_subfolder, pkg_config_paths=self.build_folder) return self._meson def build(self): with tools.run_environment(self): meson = self._configure_meson() meson.build() def package(self): self.copy(pattern="LICENSE", dst="licenses", src=self._source_subfolder) meson = self._configure_meson() meson.install() tools.rmdir(os.path.join(self.package_folder, "lib", "pkgconfig")) tools.rmdir(os.path.join(self.package_folder, "share")) def package_info(self): self.cpp_info.components["libxkbcommon"].libs = ["xkbcommon"] self.cpp_info.components["libxkbcommon"].name = "xkbcommon" self.cpp_info.components["libxkbcommon"].requires = ["xorg::xkeyboard-config"] if self.options.with_x11: self.cpp_info.components["libxkbcommon-x11"].libs = ["xkbcommon-x11"] self.cpp_info.components["libxkbcommon-x11"].name = "xkbcommon-x11" self.cpp_info.components["libxkbcommon-x11"].requires = ["libxkbcommon", "xorg::xcb", "xorg::xcb-xkb"] if self.options.get_safe("xkbregistry"): self.cpp_info.components["libxkbregistry"].libs = ["xkbregistry"] self.cpp_info.components["libxkbregistry"].name = "xkbregistry" self.cpp_info.components["libxkbregistry"].requires = ["libxml2::libxml2"] if tools.Version(self.version) >= "1.0.0": bin_path = os.path.join(self.package_folder, "bin") self.output.info("Appending PATH environment variable: {}".format(bin_path)) self.env_info.PATH.append(bin_path)
StarcoderdataPython
3286827
<gh_stars>0 from credstuffer.proxy.grabber import ProxyGrabber from credstuffer.proxy.provider import ProxyProvider
StarcoderdataPython
23872
#!/usr/bin/env python import random import argparse def generate_passwords(password_file_path): password_file = open(password_file_path, 'w') chars = 'abcdefghijklmnopqrstuvxyz01234567890_-!*' secret_key = ''.join(random.SystemRandom().choice(chars) for _ in range(50)) password_file.write("SECRET_KEY = '%s'\n" % secret_key) password_file.close() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('password_file_path', help='Where password file will be placed') args = parser.parse_args() generate_passwords(args.password_file_path)
StarcoderdataPython
1642064
from .revenues import Revenues import pandas as pd class ForwardPlanning: def __init__(self, worksite): """Gestion prévisionnelle ( à la fin de la synthèse chantier ).""" self.worksite = worksite for name in worksite.category_names: if name != "PRODUITS" and name != "DIVERS": if worksite.category_names.index(name) == 0: self.forward_planning = pd.DataFrame( columns=worksite.categories[name].columns.copy() ) line = worksite.categories[name].iloc[-1] # ligne du total line.name = name self.forward_planning = self.forward_planning.append( line, ignore_index=False ) self.add_total() self.format_forward_planning() def calculate_margins( self, month, year, with_year=True, with_cumul=False, with_month=False ): # Calcule et crée le tableau de marge à l'avancement revenues = Revenues(self.worksite.expenses.data) year_revenues = revenues.calculate_year_revenues(year) anterior_revenues = revenues.calculate_cumulative_with_year_limit( year - 1 ) cumulative_revenues = year_revenues + anterior_revenues month_revenues = revenues.calculate_month_revenues(month, year) year_expenses = self.worksite.calculate_year_expenses(month, year) cumulative_expenses = self.worksite.calculate_cumul_expenses( month, year ) anterior_expenses = cumulative_expenses - year_expenses month_expenses = self.worksite.calculate_month_expenses(month, year) margin_year = year_revenues - year_expenses margin_anterior = anterior_revenues - anterior_expenses margin_total = cumulative_revenues - cumulative_expenses margin_month = month_revenues - month_expenses percent_margin_year = ( (margin_year / year_revenues) * 100 if year_revenues != 0 else 0 ) percent_margin_anterior = ( (margin_anterior / anterior_revenues) * 100 if anterior_revenues != 0 else 0 ) percent_margin_total = ( (margin_total / cumulative_revenues) * 100 if cumulative_revenues != 0 else 0 ) percent_margin_month = ( (margin_month / month_revenues) * 100 if month_revenues != 0 else 0 ) row_indexes = [] data = [] column_indexes = ["CA", "Dépenses", "Marge brute", "Marge brute %"] if with_year: for i in ["Année courante", "Années antérieures"]: row_indexes.append(i) for i in [ [ year_revenues, year_expenses, margin_year, percent_margin_year, ], [ anterior_revenues, anterior_expenses, margin_anterior, percent_margin_anterior, ], ]: data.append(i) if with_cumul: for i in ["Cumulé"]: row_indexes.append(i) for i in [ [ cumulative_revenues, cumulative_expenses, margin_total, percent_margin_total, ] ]: data.append(i) if with_month: for i in ["Mois"]: row_indexes.append(i) for i in [ [ month_revenues, month_expenses, margin_month, percent_margin_month, ] ]: data.append(i) out = pd.DataFrame( # Création du tableau data=data, index=row_indexes, columns=column_indexes ) out["CA"] = out["CA"].apply("{:0,.2f}€".format) out["Dépenses"] = out["Dépenses"].apply("{:0,.2f}€".format) out["Marge brute"] = out["Marge brute"].apply("{:0,.2f}€".format) out["Marge brute %"] = out["Marge brute %"].apply("{:0,.2f}%".format) return out def calculate_pfdc_tab(self, budget): # Calcule et crée le tableau Marge à fin de chantier column_indexes = ["PFDC"] row_indexes = ["CA Chantier", "Marge brute", "Marge brute %"] try: sell_price = ( budget.loc[ budget["POSTE"] == "PRIX DE VENTE", self.worksite.worksite_name, ].sum() if budget is not None else 0 ) except Exception: sell_price = 0 total_sell = sell_price - self.worksite.get_pfdc_total() percent = total_sell / (sell_price) if (sell_price) != 0 else 0 data = [sell_price, total_sell, percent * 100] out = pd.DataFrame( # Création du tableau data=data, index=row_indexes, columns=column_indexes ) out.loc["CA Chantier"] = out.loc["CA Chantier"].apply( "{:0,.2f}€".format ) out.loc["Marge brute"] = out.loc["Marge brute"].apply( "{:0,.2f}€".format ) out.loc["Marge brute %"] = out.loc["Marge brute %"].apply( "{:0,.2f}%".format ) return out def add_total(self): columns = ["Dépenses du mois","Dépenses cumulées",\ "Budget","RAD","PFDC","Ecart PFDC/Budget"] data = [ self.forward_planning["Dépenses du mois"].sum(), self.forward_planning["Dépenses cumulées"].sum(), self.forward_planning["Budget"].sum(), self.forward_planning["RAD"].sum(), self.forward_planning["PFDC"].sum(), self.forward_planning["Ecart PFDC/Budget"].sum() ] line = pd.Series(data=data,index=columns) line.name = "TOTAL" self.forward_planning = self.forward_planning.append( line, ignore_index=False ) def format_forward_planning(self): self.forward_planning = self.forward_planning.drop('Marché',errors='ignore',axis=1) self.forward_planning = self.forward_planning.drop('Avenants',errors='ignore',axis=1) self.forward_planning["Budget"] = self.forward_planning["Budget"].apply("{:0,.2f}€".format) self.forward_planning["Dépenses du mois"] = self.forward_planning["Dépenses du mois"].apply("{:0,.2f}€".format) self.forward_planning["Dépenses cumulées"] = self.forward_planning["Dépenses cumulées"].apply("{:0,.2f}€".format) self.forward_planning["RAD"] = self.forward_planning["RAD"].apply("{:0,.2f}€".format) self.forward_planning["PFDC"] = self.forward_planning["PFDC"].apply("{:0,.2f}€".format) self.forward_planning["Ecart PFDC/Budget"] = self.forward_planning["Ecart PFDC/Budget"].apply("{:0,.2f}€".format)
StarcoderdataPython
1680200
<filename>setup.py from distutils.core import setup setup( name='wallet-utils', version='0.0.0', packages=['wallet_utils'], url='', license='MIT', author='<NAME>', author_email='<EMAIL>', description='Utilities for dealing with crypto wallets (support for HD wallets). Makes use of the excellent ' 'bip32utils library, which does the EC crypto key derivation heavy lifting.', requires=['bip32utils', 'pysha3'] )
StarcoderdataPython
3233294
<reponame>sandeep-krishna/100DaysOfCode ''' Life the universe and Everything Your program is to use the brute-force approach in order to find the Answer to Life, the Universe, and Everything. More precisely... rewrite small numbers from input to output. Stop processing input after reading in the number 42. All numbers at input are integers of one or two digits. SAMPLE INPUT 1 2 88 42 99 SAMPLE OUTPUT 1 2 88 ''' num = int(input()) while num != 42: print(num) num = int(input())
StarcoderdataPython
1649651
# This scrip starts the salt-master service and the salt-minion service # For each device it starts a salt-proxy daemon import os import yaml print ('starting salt master') os.system('docker exec -it salt service salt-master restart') print ('starting salt minion') os.system('docker exec -it salt service salt-minion restart') f=open('pillar/top.sls', 'r') vars = yaml.load(f.read()) for item in vars['base']: if item != '*': print ('starting salt proxy for device ' + item) shell_cmd = 'docker exec -it salt salt-proxy -d --proxyid=' + item os.system(shell_cmd)
StarcoderdataPython
1648031
# Copyright (c) 2019 <NAME> import numpy as np from PokerRL.cfr._CFRBase import CFRBase as _CFRBase class CFRPlus(_CFRBase): def __init__(self, name, chief_handle, game_cls, agent_bet_set, other_agent_bet_set=None, starting_stack_sizes=None, delay=0, ): """ delay (int): Linear Averaging delay of CFR+ (only applicable if ""cfr_plus"" is True) """ super().__init__(name=name, chief_handle=chief_handle, game_cls=game_cls, starting_stack_sizes=starting_stack_sizes, agent_bet_set=agent_bet_set, other_agent_bet_set=other_agent_bet_set, algo_name="CFRp_delay" + str(delay) ) self.delay = delay self.reset() def _evaluate_avg_strats(self): if self._iter_counter > self.delay: return super()._evaluate_avg_strats() def _regret_formula_after_first_it(self, ev_all_actions, strat_ev, last_regrets): return np.maximum(ev_all_actions - strat_ev + last_regrets, 0) def _regret_formula_first_it(self, ev_all_actions, strat_ev): return np.maximum(ev_all_actions - strat_ev, 0) # not max of axis; this is like relu def _compute_new_strategy(self, p_id): for t_idx in range(len(self._trees)): def _fill(_node): if _node.p_id_acting_next == p_id: N = len(_node.children) _reg = _node.data["regret"] _reg_sum = np.expand_dims(np.sum(_reg, axis=1), axis=1).repeat(N, axis=1) with np.errstate(divide='ignore', invalid='ignore'): _node.strategy = np.where( _reg_sum > 0.0, _reg / _reg_sum, np.full(shape=(self._env_bldrs[t_idx].rules.RANGE_SIZE, N,), fill_value=1.0 / N, dtype=np.float32) ) for c in _node.children: _fill(c) _fill(self._trees[t_idx].root) def _add_strategy_to_average(self, p_id): def _fill(_node): if _node.p_id_acting_next == p_id: # if self._iter_counter > self.delay: # current_weight = np.sum(np.arange(self.delay + 1, self._iter_counter + 1)) # new_weight = self._iter_counter - self.delay + 1 # m_old = current_weight / (current_weight + new_weight) # m_new = new_weight / (current_weight + new_weight) # _node.data["avg_strat"] = m_old * _node.data["avg_strat"] + m_new * _node.strategy # assert np.allclose(np.sum(_node.data["avg_strat"], axis=1), 1, atol=0.0001) # elif self._iter_counter == self.delay: # _node.data["avg_strat"] = np.copy(_node.strategy) # assert np.allclose(np.sum(_node.data["avg_strat"], axis=1), 1, atol=0.0001) contrib = _node.strategy * np.expand_dims(_node.reach_probs[p_id], axis=1) * (self._iter_counter + 1) if self._iter_counter > 0: _node.data["avg_strat_sum"] += contrib else: _node.data["avg_strat_sum"] = contrib _s = np.expand_dims(np.sum(_node.data["avg_strat_sum"], axis=1), axis=1) with np.errstate(divide='ignore', invalid='ignore'): _node.data["avg_strat"] = np.where(_s == 0, np.full(shape=len(_node.allowed_actions), fill_value=1.0 / len(_node.allowed_actions)), _node.data["avg_strat_sum"] / _s ) assert np.allclose(np.sum(_node.data["avg_strat"], axis=1), 1, atol=0.0001) for c in _node.children: _fill(c) for t_idx in range(len(self._trees)): _fill(self._trees[t_idx].root)
StarcoderdataPython
3266211
<filename>tests/test_bump_create_commit_message.py<gh_stars>10-100 import sys from pathlib import Path from textwrap import dedent import pytest from packaging.version import Version from commitizen import bump, cli, cmd, exceptions conversion = [ ( ("1.2.3", "1.3.0", "bump: $current_version -> $new_version [skip ci]"), "bump: 1.2.3 -> 1.3.0 [skip ci]", ), (("1.2.3", "1.3.0", None), "bump: version 1.2.3 → 1.3.0"), (("1.2.3", "1.3.0", "release $new_version"), "release 1.3.0"), ] @pytest.mark.parametrize("test_input,expected", conversion) def test_create_tag(test_input, expected): current_version, new_version, message_template = test_input new_tag = bump.create_commit_message( Version(current_version), Version(new_version), message_template ) assert new_tag == expected @pytest.mark.parametrize("retry", (True, False)) def test_bump_pre_commit_changelog(tmp_commitizen_project, mocker, freezer, retry): freezer.move_to("2022-04-01") testargs = ["cz", "bump", "--changelog", "--yes"] if retry: testargs.append("--retry") else: pytest.xfail("it will fail because pre-commit will reformat CHANGELOG.md") mocker.patch.object(sys, "argv", testargs) with tmp_commitizen_project.as_cwd(): # Configure prettier as a pre-commit hook Path(".pre-commit-config.yaml").write_text( """ repos: - repo: https://github.com/pre-commit/mirrors-prettier rev: v2.6.2 hooks: - id: prettier stages: [commit] """ ) # Prettier inherits editorconfig Path(".editorconfig").write_text( """ [*] indent_size = 4 """ ) cmd.run("git add -A") cmd.run("git commit -m 'fix: _test'") cmd.run("pre-commit install") cli.main() # Pre-commit fixed last line adding extra indent and "\" char assert Path("CHANGELOG.md").read_text() == dedent( """\ ## 0.1.1 (2022-04-01) ### Fix - \\_test """ ) @pytest.mark.parametrize("retry", (True, False)) def test_bump_pre_commit_changelog_fails_always( tmp_commitizen_project, mocker, freezer, retry ): freezer.move_to("2022-04-01") testargs = ["cz", "bump", "--changelog", "--yes"] if retry: testargs.append("--retry") mocker.patch.object(sys, "argv", testargs) with tmp_commitizen_project.as_cwd(): Path(".pre-commit-config.yaml").write_text( """ repos: - repo: local hooks: - id: forbid-changelog name: changelogs are forbidden entry: changelogs are forbidden language: fail files: CHANGELOG.md """ ) cmd.run("git add -A") cmd.run("git commit -m 'feat: forbid changelogs'") cmd.run("pre-commit install") with pytest.raises(exceptions.BumpCommitFailedError): cli.main()
StarcoderdataPython
1671516
#!/usr/bin/env python # -*- coding: utf-8 -*- """ More or less a python port of Stewart method from R SpatialPositon package (https://github.com/Groupe-ElementR/SpatialPosition/). @author: mthh """ import numpy as np from matplotlib.pyplot import contourf from shapely import speedups from shapely.ops import unary_union, transform from shapely.geometry import Polygon, MultiPolygon from geopandas import GeoDataFrame try: from jenkspy import jenks_breaks except: jenks_breaks = None from .helpers_classif import get_opt_nb_class, maximal_breaks, head_tail_breaks if speedups.available and not speedups.enabled: speedups.enable() def quick_idw(input_geojson_points, variable_name, power, nb_class, nb_pts=10000, resolution=None, disc_func=None, mask=None, user_defined_breaks=None, variable_name2=None, output='GeoJSON', **kwargs): """ Function acting as a one-shot wrapper around SmoothIdw object. Read a file of point values and optionnaly a mask file, return the smoothed representation as GeoJSON or GeoDataFrame. Parameters ---------- input_geojson_points : str Path to file to use as input (Points/Polygons) or GeoDataFrame object, must contains a relevant numerical field. variable_name : str The name of the variable to use (numerical field only). power : int or float The power of the function. nb_class : int, optionnal The number of class, if unset will most likely be 8. (default: None) nb_pts: int, optionnal The number of points to use for the underlying grid. (default: 10000) resolution : int, optionnal The resolution to use (in meters), if not set a default resolution will be used in order to make a grid containing around 10000 pts (default: None). disc_func: str, optionnal The name of the classification function to be used to decide on which break values to use to create the contour layer. (default: None) mask : str, optionnal Path to the file (Polygons only) to use as clipping mask, can also be a GeoDataFrame (default: None). user_defined_breaks : list or tuple, optionnal A list of ordered break to use to construct the contours (overrides `nb_class` and `disc_func` values if any, default: None). variable_name2 : str, optionnal The name of the 2nd variable to use (numerical field only); values computed from this variable will be will be used as to divide values computed from the first variable (default: None) output : string, optionnal The type of output expected (not case-sensitive) in {"GeoJSON", "GeoDataFrame"} (default: "GeoJSON"). Returns ------- smoothed_result : bytes or GeoDataFrame, The result, dumped as GeoJSON (utf-8 encoded) or as a GeoDataFrame. Examples -------- Basic usage, output to raw geojson (bytes): >>> result = quick_idw("some_file.geojson", "some_variable", power=2) More options, returning a GeoDataFrame: >>> smooth_gdf = quick_stewart("some_file.geojson", "some_variable", nb_class=8, disc_func="percentiles", output="GeoDataFrame") """ return SmoothIdw(input_geojson_points, variable_name, power, nb_pts, resolution, variable_name2, mask, **kwargs ).render(nb_class=nb_class, disc_func=disc_func, user_defined_breaks=user_defined_breaks, output=output) def quick_stewart(input_geojson_points, variable_name, span, beta=2, typefct='exponential',nb_class=None, nb_pts=10000, resolution=None, mask=None, user_defined_breaks=None, variable_name2=None, output="GeoJSON", **kwargs): """ Function acting as a one-shot wrapper around SmoothStewart object. Read a file of point values and optionnaly a mask file, return the smoothed representation as GeoJSON or GeoDataFrame. Parameters ---------- input_geojson_points : str Path to file to use as input (Points/Polygons) or GeoDataFrame object, must contains a relevant numerical field. variable_name : str The name of the variable to use (numerical field only). span : int The span (meters). beta : float The beta! typefct : str, optionnal The type of function in {"exponential", "pareto"} (default: "exponential"). nb_class : int, optionnal The number of class, if unset will most likely be 8 (default: None) nb_pts: int, optionnal The number of points to use for the underlying grid. (default: 10000) resolution : int, optionnal The resolution to use (in meters), if not set a default resolution will be used in order to make a grid containing around 10000 pts (default: None). mask : str, optionnal Path to the file (Polygons only) to use as clipping mask, can also be a GeoDataFrame (default: None). user_defined_breaks : list or tuple, optionnal A list of ordered break to use to construct the contours (override `nb_class` value if any, default: None). variable_name2 : str, optionnal The name of the 2nd variable to use (numerical field only); values computed from this variable will be will be used as to divide values computed from the first variable (default: None) output : string, optionnal The type of output expected (not case-sensitive) in {"GeoJSON", "GeoDataFrame"} (default: "GeoJSON"). Returns ------- smoothed_result : bytes or GeoDataFrame, The result, dumped as GeoJSON (utf-8 encoded) or as a GeoDataFrame. Examples -------- Basic usage, output to raw geojson (bytes): >>> result = quick_stewart("some_file.geojson", "some_variable", span=12500, beta=3, typefct="exponential") More options, returning a GeoDataFrame: >>> smooth_gdf = quick_stewart("some_file.geojson", "some_variable", span=12500, beta=3, typefct="pareto", output="GeoDataFrame") """ return SmoothStewart( input_geojson_points, variable_name, span, beta, typefct, nb_pts, resolution, variable_name2, mask, **kwargs ).render( nb_class=nb_class, user_defined_breaks=user_defined_breaks, output=output) def make_regular_points_with_no_res(bounds, nb_points=10000): """ Return a regular grid of points within `bounds` with the specified number of points (or a close approximate value). Parameters ---------- bounds : 4-floats tuple The bbox of the grid, as xmin, ymin, xmax, ymax. nb_points : int, optionnal The desired number of points (default: 10000) Returns ------- points : numpy.array An array of coordinates shape : 2-floats tuple The number of points on each dimension (width, height) """ minlon, minlat, maxlon, maxlat = bounds minlon, minlat, maxlon, maxlat = bounds offset_lon = (maxlon - minlon) / 8 offset_lat = (maxlat - minlat) / 8 minlon -= offset_lon maxlon += offset_lon minlat -= offset_lat maxlat += offset_lat nb_x = int(nb_points**0.5) nb_y = int(nb_points**0.5) return ( np.linspace(minlon, maxlon, nb_x), np.linspace(minlat, maxlat, nb_y), (nb_y, nb_x) ) def make_regular_points(bounds, resolution, longlat=True): """ Return a regular grid of points within `bounds` with the specified resolution. Parameters ---------- bounds : 4-floats tuple The bbox of the grid, as xmin, ymin, xmax, ymax. resolution : int The resolution to use, in the same unit as `bounds` Returns ------- points : numpy.array An array of coordinates shape : 2-floats tuple The number of points on each dimension (width, height) """ # xmin, ymin, xmax, ymax = bounds minlon, minlat, maxlon, maxlat = bounds offset_lon = (maxlon - minlon) / 8 offset_lat = (maxlat - minlat) / 8 minlon -= offset_lon maxlon += offset_lon minlat -= offset_lat maxlat += offset_lat if longlat: height = hav_dist( np.array([(maxlon + minlon) / 2, minlat]), np.array([(maxlon + minlon) / 2, maxlat]) ) width = hav_dist( np.array([minlon, (maxlat + minlat) / 2]), np.array([maxlon, (maxlat + minlat) / 2]) ) else: height = np.linalg.norm( np.array([(maxlon + minlon) / 2, minlat]) - np.array([(maxlon + minlon) / 2, maxlat])) width = np.linalg.norm( np.array([minlon, (maxlat + minlat) / 2]) - np.array([maxlon, (maxlat + minlat) / 2])) nb_x = int(round(width / resolution)) nb_y = int(round(height / resolution)) if nb_y * 0.6 > nb_x: nb_x = int(nb_x + nb_x / 3) elif nb_x * 0.6 > nb_y: nb_y = int(nb_y + nb_y / 3) return ( np.linspace(minlon, maxlon, nb_x), np.linspace(minlat, maxlat, nb_y), (nb_y, nb_x) ) def _compute_centroids(geometries): res = [] for geom in geometries: if hasattr(geom, '__len__'): ix_biggest = np.argmax([g.area for g in geom]) res.append(geom[ix_biggest].centroid) else: res.append(geom.centroid) return res def make_dist_mat(xy1, xy2, longlat=True): """ Return a distance matrix between two set of coordinates. Use geometric distance (default) or haversine distance (if longlat=True). Parameters ---------- xy1 : numpy.array The first set of coordinates as [(x, y), (x, y), (x, y)]. xy2 : numpy.array The second set of coordinates as [(x, y), (x, y), (x, y)]. longlat : boolean, optionnal Whether the coordinates are in geographic (longitude/latitude) format or not (default: False) Returns ------- mat_dist : numpy.array The distance matrix between xy1 and xy2 """ if longlat: return hav_dist(xy1[:, None], xy2) else: d0 = np.subtract.outer(xy1[:, 0], xy2[:, 0]) d1 = np.subtract.outer(xy1[:, 1], xy2[:, 1]) return np.hypot(d0, d1) def hav_dist(locs1, locs2): """ Return a distance matrix between two set of coordinates. Use geometric distance (default) or haversine distance (if longlat=True). Parameters ---------- locs1 : numpy.array The first set of coordinates as [(long, lat), (long, lat)]. locs2 : numpy.array The second set of coordinates as [(long, lat), (long, lat)]. Returns ------- mat_dist : numpy.array The distance matrix between locs1 and locs2 """ # locs1 = np.radians(locs1) # locs2 = np.radians(locs2) cos_lat1 = np.cos(locs1[..., 0]) cos_lat2 = np.cos(locs2[..., 0]) cos_lat_d = np.cos(locs1[..., 0] - locs2[..., 0]) cos_lon_d = np.cos(locs1[..., 1] - locs2[..., 1]) return 6367000 * np.arccos( cos_lat_d - cos_lat1 * cos_lat2 * (1 - cos_lon_d)) def isopoly_to_gdf(collec_poly, levels, field_name="levels"): """ Convert a collection of matplotlib.contour.QuadContourSet to a GeoDataFrame Set an attribute `field_name` on each feature, according to `levels` values (`levels` must have the same number of features as the collection of contours) Parameters ---------- collection_polygons : matplotlib.contour.QuadContourSet The result of a grid interpolation from matplotlib. levels : array-like The value to use as attributes for the constructed GeoDataFrame. field_name : str The name of the field to be fill by values contained in `levels` variable (default: "levels"). Returns ------- gdf_contours : GeoDataFrame The result as a GeoDataFrame. """ polygons, data = [], [] for i, polygon in enumerate(collec_poly.collections): mpoly = [] for path in polygon.get_paths(): path.should_simplify = False poly = path.to_polygons() exterior, holes = [], [] if len(poly) > 0 and len(poly[0]) > 3: exterior = poly[0] if len(poly) > 1: holes = [h for h in poly[1:] if len(h) > 3] mpoly.append(Polygon(exterior, holes)) if len(mpoly) > 1: mpoly = MultiPolygon(mpoly) polygons.append(mpoly) data.append(levels[i]) elif len(mpoly) == 1: polygons.append(mpoly[0]) data.append(levels[i]) return GeoDataFrame(geometry=polygons, data=data, columns=[field_name]) class BaseSmooth: def __repr__(self): return "\n".join([self.info, self.info2, self.info3]) def __str__(self): return "\n".join([self.info, self.info2, self.info3]) @property def properties(self): print("\n".join([self.info, self.info2, self.info3])) def open_mask(self, mask, input_layer): # Read the mask according to its format: if isinstance(mask, GeoDataFrame): self.mask = mask elif isinstance(mask, str) and isinstance(input_layer, str) \ and mask == input_layer: self.mask = self.gdf.copy() else: self.mask = GeoDataFrame.from_file(mask) self.check_mask() def check_mask(self): # Ensure the mask is made of Polygon/MultiPolygon: if len(set(self.mask.type) .intersection({"Polygon", "MultiPolygon"})) > 0: # Use the same projection for the mask as for the input layer: if self.mask.crs and self.mask.crs is not self.proj_to_use: self.use_mask = True self.mask.to_crs(self.proj_to_use, inplace=True) else: self.use_mask = True self.mask.crs = self.proj_to_use else: self.mask = None self.use_mask = False def filter_missing_values(self, variable_name, variable_name2): # Convert the first value field to a numeric field if not already, # and dont take into account features with no value / NaN value if not self.gdf[variable_name].dtype in (float, int): self.gdf.loc[:, variable_name] = \ self.gdf[variable_name].replace('', np.NaN) self.gdf.loc[:, variable_name] = self.gdf[variable_name].astype(float) self.gdf = self.gdf[self.gdf[variable_name].notnull()] # Convert the second value field to a numeric field if not already, # and dont take into account features with no value / NaN value if variable_name2: if not self.gdf[variable_name2].dtype in (float, int): self.gdf.loc[:, variable_name2] = \ self.gdf[variable_name2].replace('', np.NaN) self.gdf.loc[:, variable_name2] = \ self.gdf[variable_name2].astype(float) self.gdf = self.gdf[self.gdf[variable_name2].notnull()] # Provide a new index if entries have been removed : self.gdf.index = range(len(self.gdf)) def define_levels(self, nb_class, disc_func): zi = self.zi _min = np.nanmin(zi) if not nb_class: # nb_class = int(get_opt_nb_class(len(zi)) - 2) nb_class = 8 if not disc_func or "prog_geom" in disc_func: levels = [_min] + [ np.nanmax(zi) / i for i in range(1, nb_class + 1)][::-1] elif "equal_interval" in disc_func: _bin = np.nanmax(zi) / nb_class levels = [_min] + [_bin * i for i in range(1, nb_class+1)] elif "percentiles" in disc_func: levels = np.percentile( np.concatenate((zi[zi.nonzero()], np.array([_min]))), np.linspace(0.0, 100.0, nb_class+1)) elif "jenks" in disc_func: levels = list(jenks_breaks(np.concatenate( ([_min], zi[zi.nonzero()])), nb_class)) levels[0] = levels[0] - _min * 0.01 elif "head_tail" in disc_func: levels = head_tail_breaks(np.concatenate( ([_min], zi[zi.nonzero()]))) elif "maximal_breaks" in disc_func: levels = maximal_breaks(np.concatenate( ([_min], zi[zi.nonzero()])), nb_class) else: raise ValueError return levels def render(self, nb_class=8, disc_func=None, user_defined_breaks=None, output="GeoJSON", new_mask=False): """ Parameters ---------- nb_class : int, optionnal The number of class (default: 8). disc_func : str, optionnal The kind of data classification to be used (to be choosed in "equal_interval", "jenks", "percentiles, "head_tail_breaks" and "prog_geom"), default: None. user_defined_breaks : list or tuple, optionnal A list of ordered break to use to construct the contours (override `nb_class` and `disc_func` values if any) (default: None). output : string, optionnal The type of output expected (not case-sensitive) in {"GeoJSON", "GeoDataFrame"} (default: "GeoJSON"). new_mask : str, optionnal Use a new mask by giving the path to the file (Polygons only) to use as clipping mask, can also be directly a GeoDataFrame (default: False). Returns ------- smoothed_result : bytes or GeoDataFrame The result, dumped as GeoJSON (utf-8 encoded) or as a GeoDataFrame. """ if disc_func and 'jenks' in disc_func and not jenks_breaks: raise ValueError( "Missing jenkspy package - could not use jenks breaks") zi = self.zi if isinstance(new_mask, (type(False), type(None))): if not self.use_mask: self.use_mask = False self.mask = None else: self.open_mask(new_mask, None) # We want levels with the first break value as the minimum of the # interpolated values and the last break value as the maximum of theses # values: if user_defined_breaks: levels = user_defined_breaks if levels[len(levels) - 1] < np.nanmax(zi): levels = levels + [np.nanmax(zi)] if levels[0] > np.nanmin(zi): levels = [np.nanmin(zi)] + levels else: levels = self.define_levels(nb_class, disc_func) # Ensure that the levels are unique/increasing # to avoid error from `contourf` : s_levels = set(levels) if len(s_levels) != len(levels): levels = list(s_levels) levels.sort() try: collec_poly = contourf( self.XI, self.YI, zi.reshape(tuple(reversed(self.shape))).T, levels, vmax=abs(np.nanmax(zi)), vmin=-abs(np.nanmin(zi))) # Retry without setting the levels : except ValueError: collec_poly = contourf( self.XI, self.YI, zi.reshape(tuple(reversed(self.shape))).T, vmax=abs(np.nanmax(zi)), vmin=-abs(np.nanmin(zi))) # Fetch the levels returned by contourf: levels = collec_poly.levels # Set the maximum value at the maximum value of the interpolated values: levels[-1] = np.nanmax(zi) # Transform contourf contours into a GeoDataFrame of (Multi)Polygons: res = isopoly_to_gdf(collec_poly, levels=levels[1:], field_name="max") if self.longlat: def f(x, y, z=None): return (x / 0.017453292519943295, y / 0.017453292519943295) res.geometry = [transform(f, g) for g in res.geometry] res.crs = self.proj_to_use # Set the min/max/center values of each class as properties # if this contour layer: res["min"] = [np.nanmin(zi)] + res["max"][0:len(res)-1].tolist() res["center"] = (res["min"] + res["max"]) / 2 # Compute the intersection between the contour layer and the mask layer: ix_max_ft = len(res) - 1 if self.use_mask: res.loc[0:ix_max_ft, "geometry"] = res.geometry.buffer( 0).intersection(unary_union(self.mask.geometry.buffer(0))) # res.loc[0:ix_max_ft, "geometry"] = res.geometry.buffer( # 0).intersection(self.poly_max_extend.buffer(-0.1)) # Repair geometries if necessary : if not all(t in ("MultiPolygon", "Polygon") for t in res.geom_type): res.loc[0:ix_max_ft, "geometry"] = \ [geom if geom.type in ("Polygon", "MultiPolygon") else MultiPolygon( [j for j in geom if j.type in ('Polygon', 'MultiPolygon')] ) for geom in res.geometry] if "geojson" in output.lower(): return res.to_crs({"init": "epsg:4326"}).to_json().encode() else: return res class SmoothStewart(BaseSmooth): """ Main object, allowing to create an instance with some required parameters (span, beta, etc.) then render the contour polygons according to various parameters (data classification, number of bins, output format, etc.) Parameters ---------- input_layer : str Path to file to use as input (Points/Polygons) or GeoDataFrame object, must contains a relevant numerical field. variable_name : str The name of the variable to use (numerical field only). span : int The span! beta : float The beta! typefct : str, optionnal The type of function in {"exponential", "pareto"} (default: "exponential"). resolution_pts: int, optionnal The resolution to use (in number of points). Can be overrided by the 'resolution' parameter if set. resolution : int, optionnal The resolution to use (in unit of the input file). mask : str, optionnal Path to the file (Polygons only) to use as clipping mask (default: None). variable_name2 : str, optionnal The name of the 2nd variable to use (numerical field only); values computed from this variable will be will be used as to divide values computed from the first variable (default: None) Attributes ---------- zi : numpy.ndarray The computed potential values for each `unknownpts`. Methods ------- render(nb_class=8, disc_func=None, user_defined_breaks=None, output="GeoJSON", new_mask=False) Render the contour polygon according to the choosen number of class and the choosen classification method (or according to `user_defined_breaks` which will overwrite these parameters) """ def __init__(self, input_layer, variable_name, span, beta, typefct='exponential', nb_pts=10000, resolution=None, variable_name2=None, mask=None, **kwargs): self.sizelimit = kwargs.get('sizelimit', float('infinity')) self.longlat = kwargs.get("distGeo", kwargs.get("longlat", True)) self.proj_to_use = {'init': 'epsg:4326'} if self.longlat \ else kwargs.get("projDistance", None) \ or ("""+proj=robin +lon_0=0 +x_0=0 +y_0=0 """ """+ellps=WGS84 +datum=WGS84 +units=m +no_defs""") self.gdf = input_layer.copy() if isinstance(input_layer, GeoDataFrame) \ else GeoDataFrame.from_file(input_layer) if self.gdf.crs and self.gdf.crs is not self.proj_to_use: self.gdf.to_crs(self.proj_to_use, inplace=True) else: self.gdf.crs = self.proj_to_use self.info = ( 'SmoothStewart - variable : {}{} ({} features)\n' 'beta : {} - span : {} - function : {}' ).format(variable_name, " / {}".format(variable_name2) if variable_name2 else "", len(self.gdf), beta, span, typefct) if mask is not None: self.open_mask(mask, input_layer) else: self.use_mask = False self.info2 = "" self.info3 = "Clipping mask: {}".format(self.use_mask) # Don't use features with missing values: self.filter_missing_values(variable_name, variable_name2) # Calculate the value for each unknown points of the grid: self.compute_zi(variable_name, span, beta, variable_name2=variable_name2, nb_pts=nb_pts, resolution=resolution, typefct=typefct) @staticmethod def _compute_interact_density(matdist, typefun, beta, span): if 'pareto' in typefun: alpha = (2.0 ** (1.0 / beta) - 1.0) / span return (1 + alpha * matdist) ** (-beta) elif 'exponential' in typefun: alpha = np.log(2) / span ** beta return np.exp(- alpha * matdist ** beta) else: raise ValueError('Bad interaction function argument: {}' .format(typefun)) def compute_zi(self, variable_name, span, beta, nb_pts, resolution=None, typefct="exponential", variable_name2=None): knownpts = self.gdf if self.use_mask: bounds = self.mask.total_bounds else: bounds = knownpts.total_bounds if self.longlat: bounds = list(map(lambda x : x * np.pi / 180, bounds)) # Get the x and y axis of the grid: self.XI, self.YI, self.shape = make_regular_points(bounds, resolution) \ if resolution else make_regular_points_with_no_res(bounds, nb_pts) # Verify that the size of the matrix doesn't exceed the sizelimit value if any: if len(knownpts) * self.shape[0] * self.shape[1] > self.sizelimit: raise ValueError('Too high resolution or to many input points') # Compute the coordinates of each point of the grid : unknownpts = np.array([(x, y) for x in self.XI for y in self.YI]) # Use the centroid if the feature is a Polygon # or use the centroid of the largest Polygon for a MultiPolygon: if all(i in ("Polygon", "Point") for i in knownpts.geom_type.values): centroids = knownpts.geometry.centroid else: centroids = _compute_centroids(knownpts.geometry) # Coordinates of every known point: knwpts_coords = np.array([ (g.coords.xy[0][0], g.coords.xy[1][0]) for g in centroids]) if self.longlat: knwpts_coords *= np.pi / 180 # Compute the interaction matrix: mat_dens = self._compute_interact_density( make_dist_mat(knwpts_coords, unknownpts, longlat=self.longlat), typefct, beta, span) if not variable_name2: self.zi = ( knownpts[variable_name].values[:, np.newaxis] * mat_dens ).sum(axis=0).round(8) else: self.zi1 = ( knownpts[variable_name].values[:, np.newaxis] * mat_dens ).sum(axis=0) self.zi2 = ( knownpts[variable_name2].values[:, np.newaxis] * mat_dens ).sum(axis=0) self.zi = (np.true_divide(self.zi1, self.zi2)).round(8) # Replace NaN values by -1.0 : self.zi[np.argwhere(np.isnan(self.zi)).reshape(-1)] = -1.0 # Replace inf values by -1.0 : self.zi[np.argwhere(np.isinf(self.zi)).reshape(-1)] = -1.0 self.info2 = ("unknown points : {} - interpolation grid shape : {}" ).format(len(unknownpts), self.shape) class SmoothIdw(BaseSmooth): """ Main object, allowing to create an instance with the appropriate power parameter then render the contour polygons according to various parameters (data classification, number of bins, output format, etc.) Parameters ---------- input_layer : str Path to file to use as input (Points/Polygons) or GeoDataFrame object, must contains a relevant numerical field. variable_name : str The name of the variable to use (numerical field only). power : float The power parameter of the IDW weighting function, as defined by Shepard. resolution_pts: int, optionnal The resolution to use (in number of points). Can be overrided by the 'resolution' parameter if set. resolution : int, optionnal The resolution to use (in unit of the input file). mask : str, optionnal Path to the file (Polygons only) to use as clipping mask (default: None). variable_name2 : str, optionnal The name of the 2nd variable to use (numerical field only); values computed from this variable will be will be used as to divide values computed from the first variable (default: None) Attributes ---------- zi : numpy.ndarray The interpolated values (for each `unknownpts`). Methods ------- render(nb_class=8, disc_func=None, user_defined_breaks=None, output="GeoJSON", new_mask=False) Render the contour polygon according to the choosen number of class and the choosen classification method (or according to `user_defined_breaks` which will overwrite these parameters) """ def __init__(self, input_layer, variable_name, power, nb_pts=10000, resolution=None, variable_name2=None, mask=None, **kwargs): self.sizelimit = kwargs.get('sizelimit', float('infinity')) self.longlat = kwargs.get("distGeo", kwargs.get("longlat", True)) self.proj_to_use = {'init': 'epsg:4326'} if self.longlat \ else kwargs.get("projDistance", None) \ or ("""+proj=robin +lon_0=0 +x_0=0 +y_0=0 """ """+ellps=WGS84 +datum=WGS84 +units=m +no_defs""") self.gdf = input_layer.copy() if isinstance(input_layer, GeoDataFrame) \ else GeoDataFrame.from_file(input_layer) if self.gdf.crs and self.gdf.crs is not self.proj_to_use: self.gdf.to_crs(self.proj_to_use, inplace=True) else: self.gdf.crs = self.proj_to_use self.info = ( 'SmoothIdw - variable : {}{} ({} features)\n' ).format(variable_name, " / {}".format(variable_name2) if variable_name2 else "", len(self.gdf)) if mask is not None: self.open_mask(mask, input_layer) else: self.use_mask = False self.info2 = "" self.info3 = "Clipping mask: {}".format(self.use_mask) # Don't use features with missing values: self.filter_missing_values(variable_name, variable_name2) # Calculate the value for each unknown points of the grid: self.compute_zi(variable_name, power, nb_pts=nb_pts, resolution=resolution, variable_name2=variable_name2) def compute_zi(self, variable_name, power, nb_pts, resolution=None, variable_name2=None): knownpts = self.gdf if self.use_mask: bounds = self.mask.total_bounds else: bounds = knownpts.total_bounds if self.longlat: bounds = list(map(lambda x : x * np.pi / 180, bounds)) # Get the x and y axis of the grid: self.XI, self.YI, self.shape = make_regular_points(bounds, resolution) \ if resolution else make_regular_points_with_no_res(bounds, nb_pts) # Verify that the size of the matrix doesn't exceed the sizelimit value if any: if len(knownpts) * self.shape[0] * self.shape[1] > self.sizelimit: raise ValueError('Too high resolution or to many input points') # Compute the coordinates of each point of the grid : unknownpts = np.array([(x, y) for x in self.XI for y in self.YI]) # Use the centroid if the feature is a Polygon # or use the centroid of the largest Polygon for a MultiPolygon: if all(i in ("Polygon", "Point") for i in knownpts.geom_type.values): centroids = knownpts.geometry.centroid else: centroids = _compute_centroids(knownpts.geometry) # Coordinates of every known point: knwpts_coords = np.array([ (g.coords.xy[0][0], g.coords.xy[1][0]) for g in centroids]) if self.longlat: knwpts_coords *= np.pi / 180 mat_weights = 1 / np.power( make_dist_mat(knwpts_coords, unknownpts, longlat=self.longlat), power) # Make weights sum to one mat_weights /= mat_weights.sum(axis=0) # Multiply the weights for each interpolated point by all observed Z-values self.zi = np.dot(mat_weights.T, knownpts[variable_name].values[:, np.newaxis]) # Replace NaN values by -1.0 : self.zi[np.argwhere(np.isnan(self.zi)).reshape(-1)] = -1.0 # Replace inf values by -1.0 : self.zi[np.argwhere(np.isinf(self.zi)).reshape(-1)] = -1.0 self.info2 = ("unknown points : {} - interpolation grid shape : {}" ).format(len(unknownpts), self.shape)
StarcoderdataPython
7770
<reponame>mederrata/probability # Copyright 2021 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """The MaskedIndependent distribution class.""" import tensorflow.compat.v2 as tf from tensorflow_probability.python.bijectors import bijector as bijector_lib from tensorflow_probability.python.distributions import batch_broadcast from tensorflow_probability.python.distributions import distribution as distribution_lib from tensorflow_probability.python.distributions import kullback_leibler from tensorflow_probability.python.distributions import log_prob_ratio from tensorflow_probability.python.internal import assert_util from tensorflow_probability.python.internal import parameter_properties from tensorflow_probability.python.internal import prefer_static as ps from tensorflow_probability.python.internal import samplers from tensorflow_probability.python.internal import tensor_util def _add_event_dims_to_mask(validity_mask, *, dist=None, event_ndims=None): validity_mask = tf.convert_to_tensor(validity_mask) if event_ndims is None: event_ndims = ps.rank_from_shape(dist.event_shape_tensor()) return tf.reshape( validity_mask, ps.concat([ ps.shape(validity_mask), ps.ones(event_ndims, dtype=tf.int32) ], axis=0)) def _make_masked_fn(fn_name, n_event_shapes, safe_value, make_arg0_safe=False): """Implements functions like mean, variance, etc. Args: fn_name: Name of the method called on the underlying distribution. n_event_shapes: Number of event shape repeats in the shape of the underlying function's output. safe_value: The value to be placed in invalid locations. May be `'safe_sample'` to specify we should use the "safe sample" value. make_arg0_safe: If `True`, we will apply `self.safe_sample_fn` to ensure the argument passed into the underlying routine is a "safe" sample. Returns: fn: Callable implementing the given function. """ def fn(self, *args, **kwargs): if safe_value == 'safe_sample' or make_arg0_safe: # Only if needed. safe_val = tf.stop_gradient(self.safe_sample_fn(self.distribution)) validity_mask = tf.convert_to_tensor(self.validity_mask) if make_arg0_safe: x = args[0] safe_x = tf.where( _add_event_dims_to_mask(validity_mask, dist=self), x, safe_val) args = (safe_x,) + args[1:] val = getattr(self.distribution, fn_name)(*args, **kwargs) if n_event_shapes: validity_mask = tf.reshape( validity_mask, ps.concat( [ps.shape(validity_mask)] + [ps.ones_like(self.event_shape_tensor())] * n_event_shapes, axis=0)) if safe_value == 'safe_sample': sentinel = tf.cast(safe_val, val.dtype) else: sentinel = tf.cast(safe_value, val.dtype) return tf.where(validity_mask, val, sentinel) fn.__name__ = f'_{fn_name}' return fn def _fixed_sample(d): return d.sample(seed=samplers.zeros_seed()) class _Masked(distribution_lib.Distribution): """A distribution that masks invalid underlying distributions. Sometimes we may want a way of masking out a subset of distributions. Perhaps we have labels for only a subset of batch members and want to evaluate a log_prob. Or we may want to encode a sparse random variable as a dense random variable with a mask applied. In single-program/multiple-data regimes, it can be necessary to pad Distributions and the samples thereof to a given size in order to achieve the "single-program" desideratum. When computing a probability density in this regime, we would like to mask out the contributions of invalid batch members. We may also want to ensure that the values being sampled are valid parameters for descendant distributions in a hierarchical model, even if they are ultimately masked out. This distribution answers those requirements. Specifically, for invalid batch elements: - `log_prob(x) == 0.` for all `x`, with no gradients back to `x`, nor any gradients to the parameters of `distribution`. - `sample() == tf.stop_gradient(safe_value_fn(distribution))`, with no gradients back to the parameters of `distribution`. The distribution accepts a mask specified by `validity_mask`, a boolean tensor broadcastable with the underlying distribution's batch shape which specifies for each batch element whether or not it is valid. Entries in `validity_mask` which are `False` denote missing distributions, which means that the corresponding entries in the measures (e.g. `prob`) and statistics (e.g. `mean`) must not be treated as coming from some real distribution. Whenever doing a reduction across those quantites, make sure to either mask out the invalid entries or make sure the returned value corresponds to the identity element of the reduction. For a couple examples: - OK: `reduce_sum(masked_dist.log_prob(x))` - OK: `tfd.Independent(masked_dist, ...)` - Not OK: `reduce_var(masked_dist.mean())` will underestimate the variance because it uses too large an `N`. - Not OK: `tf.linalg.cholesky(masked_dist.covariance())` will fail for invalid batch elements. The default `safe_value_fn` is to draw a fixed-seeded sample from the underlying `distribution`. Since this may be expensive, it is suggested to specify a computationally cheaper method. Some options might include: - `tfd.Distribution.mode` - `tfd.Distribution.mean` - `lambda d: d.quantile(.5)` (median) - `lambda _: 0.` (if zero is always in the support of d) - `lambda d: d.experimental_default_event_space_bijector()(0.)` Besides the output of `sample`, results from `safe_value_fn` may also appear in (invalid batch members of) `masked.default_event_space_bijector().forward`. #### Examples ``` # Use tf.sequence_mask for `range(n) < num_valid`. num_valid = 3 num_entries = 4 d = tfd.Masked( tfd.MultivariateNormalDiag(tf.zeros([2, num_entries, 5]), tf.ones([5])), tf.sequence_mask(num_valid, num_entries)) d.batch_shape # [2, 4] d.event_shape # [5] d.log_prob(tf.zeros([5])) # shape [2, 4] # => [[nonzero, nonzero, nonzero, 0.], # [nonzero, nonzero, nonzero, 0.]] # Explicitly denote which elements are valid, adding a new batch dim of 2. d = tfd.Masked(tfd.MultivariateNormalDiag(tf.zeros([4, 5]), tf.ones([5])), [[False], [True]]) d.batch_shape # [2, 4] d.event_shape # [5] d.log_prob(tf.zeros([5])) # shape [2, 4] # => [[0., 0., 0., 0.], # [nonzero, nonzero, nonzero, nonzero]] # Use `BatchBroadcast` and `Independent` to achieve the equivalent of adding # positional mask functionality to `tfd.Sample`. # Suppose we wanted to achieve this: # `tfd.Sample(tfd.Normal(tf.zeros(2), 1), [3, 4], validity_mask=mask)` # We can write: d = tfd.Independent( tfd.Masked(tfd.BatchBroadcast(tfd.Normal(0, 1), [2, 3, 4]), mask), reinterpreted_batch_ndims=2) d.batch_shape # [2] d.event_shape # [3, 4] d.log_prob(tf.ones([3, 4])) # shape [2] ``` """ def __init__(self, distribution, validity_mask, safe_sample_fn=_fixed_sample, validate_args=False, allow_nan_stats=True, name=None): """Constructs a Masked distribution. Args: distribution: The underlying distribution, which will be masked. validity_mask: Boolean mask where `True` indicates an element is valid. `validity_mask` must broadcast with the batch shape of the underlying distribution. Invalid batch elements are masked so that sampling returns `safe_sample_fn(dist)` in invalid positions and `log_prob(x)` returns `0.` for invalid positions. safe_sample_fn: A callable which takes a distribution (namely, the `distribution` argument) and returns a determinstic, safe sample value. This helps to avoid `nan` gradients and allows downstream usage of samples from a `Masked` distribution to assume a "safe" even if invalid value. (Be careful to ensure that such downstream usages are themselves masked!) Note that the result of this function will be wrapped in a `tf.stop_gradient` call. validate_args: Boolean indicating whether argument assertions should be run. May impose performance penalties. allow_nan_stats: Boolean indicating whether statistical functions may return `nan`, or should instead use asserts where possible. name: Optional name for operation scoping. """ parameters = dict(locals()) with tf.name_scope(name or f'Masked{distribution.name}') as name: self._distribution = distribution self._validity_mask = tensor_util.convert_nonref_to_tensor( validity_mask, dtype_hint=tf.bool) self._safe_sample_fn = safe_sample_fn super(_Masked, self).__init__( dtype=distribution.dtype, reparameterization_type=distribution.reparameterization_type, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, name=name) @classmethod def _parameter_properties(cls, dtype, num_classes=None): return dict( distribution=parameter_properties.BatchedComponentProperties(), validity_mask=parameter_properties.ParameterProperties( shape_fn=parameter_properties.SHAPE_FN_NOT_IMPLEMENTED)) @property def distribution(self): return self._distribution @property def validity_mask(self): return self._validity_mask @property def safe_sample_fn(self): return self._safe_sample_fn @property def experimental_is_sharded(self): return self.distribution.experimental_is_sharded def _event_shape(self): return self.distribution.event_shape def _event_shape_tensor(self): return self.distribution.event_shape_tensor() def _sample_n(self, n, seed=None, **kwargs): validity_mask = tf.convert_to_tensor(self.validity_mask) # To avoid the shape gymnastics of drawing extra samples, we delegate # sampling to the BatchBroadcast distribution. bb = batch_broadcast.BatchBroadcast(self.distribution, ps.shape(validity_mask)) samples = bb.sample(n, seed=seed, **kwargs) safe_val = tf.stop_gradient(self.safe_sample_fn(self.distribution)) return tf.where(_add_event_dims_to_mask(validity_mask, dist=self), samples, safe_val) _log_prob = _make_masked_fn( 'log_prob', n_event_shapes=0, safe_value=0., make_arg0_safe=True) _prob = _make_masked_fn( 'prob', n_event_shapes=0, safe_value=1., make_arg0_safe=True) _log_cdf = _make_masked_fn( 'log_cdf', n_event_shapes=0, safe_value=0., make_arg0_safe=True) _cdf = _make_masked_fn( 'cdf', n_event_shapes=0, safe_value=1., make_arg0_safe=True) _log_survival_function = _make_masked_fn( 'log_survival_function', n_event_shapes=0, safe_value=-float('inf'), make_arg0_safe=True) _survival_function = _make_masked_fn( 'survival_function', n_event_shapes=0, safe_value=0., make_arg0_safe=True) _entropy = _make_masked_fn( 'entropy', n_event_shapes=0, safe_value=0.) _mode = _make_masked_fn( 'mode', n_event_shapes=1, safe_value='safe_sample') _mean = _make_masked_fn( 'mean', n_event_shapes=1, safe_value='safe_sample') _variance = _make_masked_fn( 'variance', n_event_shapes=1, safe_value=0.) _stddev = _make_masked_fn( 'stddev', n_event_shapes=1, safe_value=0.) _covariance = _make_masked_fn( 'covariance', n_event_shapes=2, safe_value=0.) _quantile = _make_masked_fn( 'quantile', n_event_shapes=1, safe_value='safe_sample') def _default_event_space_bijector(self, *args, **kwargs): underlying_bijector = ( self.distribution.experimental_default_event_space_bijector()) if underlying_bijector is None: return None return _MaskedBijector(self, underlying_bijector) class Masked(_Masked, distribution_lib.AutoCompositeTensorDistribution): def __new__(cls, *args, **kwargs): """Maybe return a non-`CompositeTensor` `_Masked`.""" if cls is Masked: if args: distribution = args[0] else: distribution = kwargs.get('distribution') if not isinstance(distribution, tf.__internal__.CompositeTensor): return _Masked(*args, **kwargs) return super(Masked, cls).__new__(cls) Masked.__doc__ = _Masked.__doc__ + '\n' + ( 'If `distribution` is a `CompositeTensor`, then the resulting `Masked` ' 'instance is a `CompositeTensor` as well. Otherwise, a ' 'non-`CompositeTensor` `_Masked` instance is created instead. Distribution ' 'subclasses that inherit from `Masked` will also inherit from ' '`CompositeTensor`.') @kullback_leibler.RegisterKL(_Masked, _Masked) def _kl_masked_masked(a, b, name=None): """KL divergence between Masked distributions.""" with tf.name_scope(name or 'kl_masked_masked'): a_valid = tf.convert_to_tensor(a.validity_mask) b_valid = tf.convert_to_tensor(b.validity_mask) underlying_kl = kullback_leibler.kl_divergence( a.distribution, b.distribution) # The treatment for KL is as follows: # When both random variables are valid, the underlying KL applies. # When neither random variable is valid, the KL is 0., i.e. # `a log a - a log b = 0` because log a and log b are everywhere 0. # When exactly one is valid, we (a) raise an assertion error, if either # distribution's allow_nan_stats is set to False, or (b) return nan in # such positions. asserts = [] if not (a.allow_nan_stats and b.allow_nan_stats): asserts.append(assert_util.assert_equal( a_valid, b_valid, message='KL is only valid for matching mask values')) with tf.control_dependencies(asserts): both_valid = (a_valid & b_valid) neither_valid = (~a_valid) & (~b_valid) dtype = underlying_kl.dtype return tf.where(both_valid, underlying_kl, tf.where(neither_valid, tf.zeros([], dtype), float('nan'))) @log_prob_ratio.RegisterLogProbRatio(_Masked) def _masked_log_prob_ratio(p, x, q, y, name=None): """Computes log p(x) - log q(y) for Masked p, q.""" with tf.name_scope(name or 'masked_log_prob_ratio'): p_valid = tf.convert_to_tensor(p.validity_mask) safe_x = tf.where(_add_event_dims_to_mask(p_valid, dist=p), x, tf.stop_gradient(p.safe_sample_fn(p.distribution))) q_valid = tf.convert_to_tensor(q.validity_mask) safe_y = tf.where(_add_event_dims_to_mask(q_valid, dist=q), y, tf.stop_gradient(q.safe_sample_fn(q.distribution))) underlying = log_prob_ratio.log_prob_ratio( p.distribution, safe_x, q.distribution, safe_y) asserts = [] # As with KL, we return the underlying log_prob_ratio where both are valid, # `0.` where neither is valid, and `nan` otherwise (or an assertion if # either distribution does not `allow_nan_stats`). if not (p.allow_nan_stats and p.allow_nan_stats): asserts.append(assert_util.assert_equal( p_valid, q_valid, message='Masked log_prob_ratio only valid for matching mask values')) with tf.control_dependencies(asserts): both_valid = (p_valid & q_valid) neither_valid = (~p_valid) & (~q_valid) return tf.where(both_valid, underlying, tf.where(neither_valid, tf.zeros([], dtype=underlying.dtype), float('nan'))) class _NonCompositeTensorMaskedBijector(bijector_lib.Bijector): """Event space bijector for Masked distributions.""" def __init__(self, masked, underlying_bijector): self._masked = masked self._bijector = underlying_bijector super(_NonCompositeTensorMaskedBijector, self).__init__( validate_args=underlying_bijector.validate_args, dtype=underlying_bijector.dtype, forward_min_event_ndims=underlying_bijector.forward_min_event_ndims, inverse_min_event_ndims=underlying_bijector.inverse_min_event_ndims) def _forward_event_shape(self, x): return self._bijector.forward_event_shape(x) def _forward_event_shape_tensor(self, x): return self._bijector.forward_event_shape_tensor(x) def _inverse_event_shape(self, y): return self._bijector.inverse_event_shape(y) def _inverse_event_shape_tensor(self, y): return self._bijector.inverse_event_shape_tensor(y) def _make_safe_x(self, x, validity_mask): bij = self._bijector masked = self._masked pullback_event_ndims = ps.rank_from_shape( lambda: bij.inverse_event_shape_tensor(masked.event_shape_tensor()), self._bijector.inverse_event_shape(masked.event_shape)) pullback_event_mask = _add_event_dims_to_mask( validity_mask, event_ndims=pullback_event_ndims) # We presume that 0 in unconstrained space is safe. return tf.where(pullback_event_mask, x, 0.) def _forward(self, x): mask = self._masked.validity_mask safe_x = self._make_safe_x(x, mask) return self._make_safe_y(self._bijector.forward(safe_x), mask) def _forward_log_det_jacobian(self, x): validity_mask = tf.convert_to_tensor(self._masked.validity_mask) safe_x = self._make_safe_x(x, validity_mask) return tf.where(validity_mask, self._bijector.forward_log_det_jacobian(safe_x), 0.) def _make_safe_y(self, y, validity_mask): safe_val = tf.stop_gradient( self._masked.safe_sample_fn(self._masked.distribution)) event_mask = _add_event_dims_to_mask(validity_mask, dist=self._masked) return tf.where(event_mask, y, safe_val) def _inverse(self, y): safe_y = self._make_safe_y(y, self._masked.validity_mask) return self._bijector.inverse(safe_y) def _inverse_log_det_jacobian(self, y): validity_mask = tf.convert_to_tensor(self._masked.validity_mask) safe_y = self._make_safe_y(y, validity_mask) return tf.where(validity_mask, self._bijector.inverse_log_det_jacobian(safe_y), 0.) class _MaskedBijector(_NonCompositeTensorMaskedBijector, bijector_lib.AutoCompositeTensorBijector): """Event space bijector for Masked distributions.""" def __new__(cls, *args, **kwargs): """Maybe return a `_NonCompositeTensorMaskedBijector`.""" if cls is _MaskedBijector: if args: masked = args[0] else: masked = kwargs.get('masked') if len(args) > 1: bijector = args[1] else: bijector = kwargs.get('underlying_bijector') if not (isinstance(masked, tf.__internal__.CompositeTensor) and isinstance(bijector, tf.__internal__.CompositeTensor)): return _NonCompositeTensorMaskedBijector(*args, **kwargs) return super(_MaskedBijector, cls).__new__(cls)
StarcoderdataPython
130125
#!/usr/bin/env python3 from collections import OrderedDict import re import sys try: filename = sys.argv[1] if '.' not in sys.argv[2]: raise ValueError except: print('Usage: python3 {} filename (entity_id [attribute...])...'.format(sys.argv[0])) sys.exit(1) attrs = {} entity_id = None for arg in sys.argv[2:]: if '.' in arg: if entity_id is not None: attrs[entity_id] = entity_attrs entity_id = arg entity_attrs = [] else: entity_attrs.append(arg) attrs[entity_id] = entity_attrs haevent = re.compile( r'([0-9-]+ [0-9:]+).*homeassistant_(start|started|stop|final_write|close)\[.*' ) new_state_none = re.compile(r'([0-9-]+ [0-9:]+)(.*)new_state=None(.*)') ent_id = re.compile(r'.*entity_id=([^,>]+).*') new_state = re.compile( r'([0-9-]+ [0-9:]+).*new_state=<state ([^=]+)=([^;]*); (.*) @ ([0-9+-:.T]+)>.*') new_state2 = re.compile( r'([0-9-]+ [0-9:]+).*new_state=<state ([^=]+)=([^@]*) @ ([0-9+-:.T]+)>.*') ent_hdr = 'entity_id' max_ent = len(ent_hdr) ts_hdr = 'log time' max_ts = len(ts_hdr) lc_hdr = 'last_changed' max_lc = len(lc_hdr) state_hdr = 'state' max_state = len(state_hdr) if len(attrs) == 1: max_attr = {} for attr in entity_attrs: max_attr[attr] = len(attr) else: attr_hdr = 'attributes' HAEVENT = 'Home Assistant' HAFMT = ' {} {{}} '.format(HAEVENT) states = [] with open(filename) as f: for line in f: m = haevent.match(line) if m: ts = m.group(1) max_ts = max(max_ts, len(ts)) last_changed = HAFMT.format(m.group(2).replace('_', ' ').title()) max_lc = max(max_lc, len(last_changed)) states.append((None, ts, last_changed, None, None)) continue m = new_state_none.match(line) if m: n = ent_id.match(m.group(2)) or ent_id.match(m.group(3)) entity_id = n.group(1) if entity_id in attrs: max_ent = max(max_ent, len(entity_id)) ts = m.group(1) max_ts = max(max_ts, len(ts)) state = '=== None ===' max_state = max(max_state, len(state)) states.append((entity_id, ts, '', state, {})) continue m = new_state.match(line) if m: s = m.group(4) last_changed = m.group(5) else: m = new_state2.match(line) s = '' last_changed = m.group(4) if m else '' if m and m.group(2) in attrs: entity_id = m.group(2) max_ent = max(max_ent, len(entity_id)) ts = m.group(1) max_ts = max(max_ts, len(ts)) max_lc = max(max_lc, len(last_changed)) state = m.group(3) max_state = max(max_state, len(state)) _attrs = OrderedDict() for attr in attrs[entity_id]: try: start = s.index(attr+'=')+len(attr)+1 _attr = s[start:s.rfind(', ', start, s.find('=', start))] except: _attr = '???' _attrs[attr] = _attr if len(attrs) == 1: for attr in entity_attrs: max_attr[attr] = max(max_attr[attr], len(_attrs[attr])) states.append((entity_id, ts, last_changed, state, _attrs)) if len(attrs) > 1: print('{:{}} | '.format(ent_hdr, max_ent), end='') print('{:{}} | {:{}} | {:{}}'.format(ts_hdr, max_ts, lc_hdr, max_lc, state_hdr, max_state), end='') if len(attrs) == 1: for attr in entity_attrs: print(' | {:{}}'.format(attr, max_attr[attr]), end='') else: print(' | {}'.format(attr_hdr), end='') print('') if len(attrs) > 1: print('-'*max_ent, end='-|-') print('-'*max_ts, '-'*max_lc, '-'*max_state, sep='-|-', end='') if len(attrs) == 1: for attr in entity_attrs: print('', '-'*max_attr[attr], sep='-|-', end='') else: print('-|-', end='') print('-'*len(attr_hdr), end='') print('') prev_entity_id = None for entity_id, ts, last_changed, state, _attrs in states: if HAEVENT in last_changed: entity_id = '='*max_ent last_changed = '{:=^{}}'.format(last_changed, max_lc) state = '='*max_state if len(attrs) == 1: _attrs = OrderedDict() for attr in entity_attrs: _attrs[attr] = '='*max_attr[attr] else: _attrs = {'=': '='*(len(attr_hdr)-2)} if len(attrs) > 1: print('{:{}} | '.format('' if entity_id == prev_entity_id and HAEVENT not in last_changed else entity_id, max_ent), end='') prev_entity_id = entity_id print('{:{}} | {:{}} | {:{}}'.format(ts, max_ts, last_changed , max_lc, state , max_state), end='') if len(attrs) == 1: for k,v in _attrs.items(): print(' | {:{}}'.format(v if HAEVENT not in last_changed else '='*max_attr[k], max_attr[k]), end='') else: print(' |', end='') for k,v in _attrs.items(): print(' {}={}'.format(k, v), end='') print('')
StarcoderdataPython
1739474
<reponame>black-shadows/LeetCode-Solutions<filename>Python/convex-polygon.py # Time: O(n) # Space: O(1) class Solution(object): def isConvex(self, points): """ :type points: List[List[int]] :rtype: bool """ def det(A): return A[0][0]*A[1][1] - A[0][1]*A[1][0] n, prev, curr = len(points), 0, None for i in xrange(len(points)): A = [[points[(i+j) % n][0] - points[i][0], points[(i+j) % n][1] - points[i][1]] for j in (1, 2)] curr = det(A) if curr: if curr * prev < 0: return False prev = curr return True
StarcoderdataPython
1720290
<reponame>saxobroko/node-launcher from unittest.mock import MagicMock from tempfile import NamedTemporaryFile import pytest from node_launcher.gui.menu.nodes_manage.manage_dialogs.configuration import ConfigurationDialog from node_launcher.node_set.lib.configuration import Configuration from node_launcher.node_set.lib.configuration_property import ConfigurationProperty @pytest.fixture def configuration_dialog() -> ConfigurationDialog: with NamedTemporaryFile(suffix='node.conf', delete=False) as f: path = f.name configuration = Configuration(name='node', path=path) configuration.load() node = MagicMock() node.configuration = configuration dialog = ConfigurationDialog(node) return dialog class TestConfigurationDialog(object): def test_init(self, configuration_dialog: ConfigurationDialog): assert configuration_dialog def test_append_key_value( self, configuration_dialog: ConfigurationDialog): configuration_dialog.add_row( 'test_key', 'test_new_value', '1' ) assert configuration_dialog.table.rowCount() == 1 assert configuration_dialog.table.item(0, 0).text() == '1' assert configuration_dialog.table.item(0, 1).text() == 'test_key' assert configuration_dialog.table.item(0, 2).text() == 'test_new_value' def test_update_key(self, configuration_dialog: ConfigurationDialog): configuration_dialog.node.configuration.configuration_changed.emit( None, ConfigurationProperty('1', 'key', 'value') ) configuration_dialog.node.configuration.configuration_changed.emit( None, ConfigurationProperty('2', 'key2', 'value2') ) assert configuration_dialog.table.rowCount() == 2 assert configuration_dialog.table.item(0, 0).text() == '1' assert configuration_dialog.table.item(0, 1).text() == 'key' assert configuration_dialog.table.item(0, 2).text() == 'value' assert configuration_dialog.table.item(1, 0).text() == '2' assert configuration_dialog.table.item(1, 1).text() == 'key2' assert configuration_dialog.table.item(1, 2).text() == 'value2' def test_handle_cell_change(self, configuration_dialog: ConfigurationDialog): configuration_dialog.add_row( 'test_key', 'test_new_value', '' ) configuration_dialog.table.item(0, 2).setText('test_edit_value') assert configuration_dialog.node.configuration['test_key'] == 'test_edit_value' configuration_dialog.add_row( 'test_key', 'test_new_value2', '' ) configuration_dialog.table.item(1, 2).setText('test_edit_multi_value') all_config_values = [cp.value for cp in configuration_dialog.node.configuration.get_all_configurations()] assert sorted(all_config_values) == sorted([ 'test_edit_value', 'test_edit_multi_value' ])
StarcoderdataPython
62961
from twisted.internet import defer import config import log from color import colorize from err import * class Scanner(object): def __init__(self, target, checks, title=None, verbose=False, runningResults=False): self.target = target self.checks = checks self.title = title self.scans = [] self.verbose = verbose self.runningResults = runningResults def __repr__(self): return "<Scanner({0.target}, {0.title}, v={0.verbose})>".format(self) def checkFinished(self, check): if self.runningResults: self.showResult(check.result) def showResult(self, result): # TODO: RESULT_SUB master results should be shown with warningsOnly on! output = self.formatResult(result) if output: print(output) for subresult in result.check.subresults: output = self.formatResult(subresult, sub=True) if output: print(output) def showResults(self): if not self.runningResults: if config.warningsOnly: hasWarning = False for scan in self.scans: if not scan.result.status: hasWarning = True for subresult in scan.subresults: if not subresult.status: hasWarning = True if not hasWarning: return print("") print(colorize("@W{0}@x".format(self.title))) print(config.bar) for scan in self.scans: self.showResult(scan.result) print("") def formatResult(self, result, sub=False): if result.extra: extra = colorize('@B--@x ') + result.extra else: extra = '' if not result.status: last = colorize('@B[@R!!!@B]@x') elif config.warningsOnly: return elif result.status == CHECK_NOT_APPLICABLE: last = '@B[@D - @B]@x' elif result.status == CHECK_RESULT_HIDDEN: last = '' elif result.status == CHECK_RESULT_SUB: last = colorize('@B[---]@x') elif result.status == CHECK_RESULT_UNCERTAIN: last = colorize('@B[@Y ? @B]@x') else: last = colorize('@B[ @G- @B]@x') if sub: output = colorize(" @y-@x {0:49} {1}{2}".format(result.text, last, extra)) else: output = colorize(" @Y*@x {0:51} {1}{2}".format(result.text, last, extra)) return output def run(self): if self.runningResults: print("") print(colorize("@W{0}@x".format(self.title))) print(config.bar) for check in self.checks: c = check(self.target) # "lambda x: c, x" takes the (same) c in scope each loop; we have to do # manual assignment to get the current c. def checkFinishedTrigger(value, c=c): self.checkFinished(c) d = (c.run() .addBoth(checkFinishedTrigger)) c.deferred = d self.scans.append(c) dl = (defer.DeferredList([c.deferred for c in self.scans]) .addCallback(lambda x: self.showResults()) .addErrback(log.err)) # Uncaught error return dl class DomainScanner(Scanner): pass class HostScanner(Scanner): pass class LocalScanner(Scanner): pass
StarcoderdataPython
29248
import rv.api class Command(object): args = () processed = False def __init__(self, *args, **kw): self._apply_args(*args, **kw) def __repr__(self): attrs = ' '.join( '{}={!r}'.format( arg, getattr(self, arg), ) for arg in self.args if hasattr(self, arg) ) return '<{}{}>'.format( self.__class__.__name__, ' ' + attrs if attrs else '', ) def _apply_args(self, *args, **kw): for key, value in zip(self.args, args): setattr(self, key, value) for key, value in kw.items(): if key in self.args: setattr(self, key, value) def copy(self, *args, **kw): c2 = self.__class__() for key in self.args: try: value = getattr(self, key) except AttributeError: pass else: setattr(c2, key, value) c2._apply_args(*args, **kw) return c2 class ConnectModules(Command): args = 'engine', 'src', 'dest' class Engine(Command): class Track(object): def __init__(self, engine, index): self.engine = engine self.index = index def __repr__(self): return '<Track {}>'.format(self.index) def __ror__(self, other): if isinstance(other, NoteOn): note = other.copy(engine=self.engine, track=self) return note def off(self): return NoteOff(self.engine, self) class Output(object): index = 0 def __init__(self, engine): self.engine = engine def __repr__(self): return '<Output>' def __lshift__(self, other): return ConnectModules(self.engine, other.module, self) def __rshift__(self, other): return ConnectModules(self.engine, self, other.module) def __init__(self, *args, **kw): super(Engine, self).__init__(*args, **kw) self.output = self.Output(self) def new_module(self, obj, *args, **kw): if isinstance(obj, type) and issubclass(obj, rv.m.Module): obj = obj(*args, **kw) if isinstance(obj, rv.m.Module): return Module(self, obj) else: raise ValueError() def track(self, index): return self.Track(self, index) class Generator(Command): args = 'fn', 'fn_args', 'fn_kw' generator = None def advance(self, cursor): if self.generator is not None: try: self.generator.send(cursor) except StopIteration: self.stop() | cursor @property def started(self): return self.generator is not None def start(self): if not self.started: self.generator = self.fn(*self.fn_args, **self.fn_kw) self.generator.send(None) def stop(self): return GeneratorStop(self) @classmethod def factory(cls, fn): def factory_fn(*args, **kw): return cls(fn, args, kw) return factory_fn class GeneratorStop(Command): args = 'parent', class Module(Command): args = 'engine', 'module' def __lshift__(self, other): return ConnectModules(self, other.module, self.module) def __rshift__(self, other): return ConnectModules(self, self.module, other.module) def on(self, note, vel=None): return NoteOn(note, vel, self.engine, self.module) class NoteOff(Command): args = 'engine', 'track' class NoteOn(Command): args = 'note', 'vel', 'engine', 'module', 'track' def off(self): return NoteOff(self.engine, self.track)
StarcoderdataPython
4803319
from __future__ import absolute_import from version_information.version import version as __version__ from version_information.version_information import *
StarcoderdataPython
3321969
# -*- coding: UTF-8 -*- # from os import environ DEBUG = True YDB_ENDPOINT = environ.get("YDB_ENDPOINT") YDB_DATABASE = environ.get("YDB_DATABASE", "") YDB_PATH = environ.get("YDB_PATH", "") YDB_TOKEN = environ.get("YDB_TOKEN")
StarcoderdataPython
4817660
from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import pandas as pd import numpy as np #import matplotlib.pyplot as plt #from pylab import rcParams #import matplotlib from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler train = pd.read_csv('train.csv') print('Shape of the train data with all features:', train.shape) train = train.select_dtypes(exclude=['object']) print("") print('Shape of the train data with numerical features:', train.shape) train.drop('Id',axis = 1, inplace = True) train.fillna(0,inplace=True) test = pd.read_csv('test.csv') test = test.select_dtypes(exclude=['object']) ID = test.Id test.fillna(0,inplace=True) test.drop('Id',axis = 1, inplace = True) print("") print("List of features contained our dataset:",list(train.columns))
StarcoderdataPython
4824472
import gym import numpy as np from gym.envs import register from joblib import Parallel, delayed import pickle import matplotlib.pyplot as plt from q_learning import Qlearning from tile_coding_action_value_function import TileCodingActionValueFunction from true_online_sarsa_lambda import TrueOnlineSarsaLambda register( id='MountainCar-v3', entry_point='gym.envs.classic_control:MountainCarEnv', max_episode_steps=10000, reward_threshold=-110.0, ) MAX_EPISODES = 500 NUM_RUNS = 100 TEST_ENV = 'CartPole-v0' NUM_TILINGS = 16 NUM_PARLL_JOBS = 4 WINDOW_SIZE = 50 # ALPHAS = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] ALPHAS = [0.5, 0.6, 0.7] # ALPHAS = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] # ALPHAS = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8] # ALPHAS = [0.5] EPSILONS = [1.0] EPSILONS_DECAY = [0.5, 0.8, 0.9] def tau_to_lambda(tau): return 1.0 - (1.0/tau) # LAMBDA_PARAMS = tau_to_lambda(np.asarray([1, 2, 4, 8, 16, 32])) # LAMBDA_PARAMS = tau_to_lambda(np.asarray([2, 4, 8])) LAMBDA_PARAMS = [0.0] # LAMBDA_PARAMS = [0, 0.5, 0.75, 0.8, 0.9, 0.95, 0.99, 0.999] # LAMBDA_PARAMS = [0.4, 0.5, 0.6] def make_q_learner(env, alpha, epsilon, gamma, action_value_function, epsilon_decay_factor, lambda_param=None): return Qlearning(env, alpha / NUM_TILINGS, epsilon, gamma, action_value_function, epsilon_decay_factor) def make_sarsa_learner(env, alpha, epsilon, gamma, action_value_function, epsilon_decay_factor, lambda_param): return TrueOnlineSarsaLambda(env, alpha / NUM_TILINGS, epsilon, gamma, action_value_function, epsilon_decay_factor, lambda_param) class RewardsInfo: def __init__(self, algorithm_name, alpha, epsilon, lambda_param, mean_return, episodes_window, total_episodes, total_time_steps, epsilon_decay): self.algorithm_name = algorithm_name self.alpha = alpha self.epsilon = epsilon self.lambda_param = lambda_param self.epsilon_decay = epsilon_decay self.episodes_window = episodes_window self.total_episodes = total_episodes self.total_time_steps = total_time_steps self.mean_return = mean_return def do_experiment(parameters): alpha, epsilon, lambda_param, epsilon_decay = parameters env = gym.make(TEST_ENV) dim_ranges = [env.observation_space.high[i] - env.observation_space.low[i] for i in range(0, env.observation_space.high.size)] episodes_completed = [] episode_returns = [] episodes_windows = [] total_time_steps_list = [] print("Running alpha: ", alpha, ", epsilon: ", epsilon, ", lambda: ", lambda_param, ", eps_decay: ", epsilon_decay) for i in range(NUM_RUNS): env.reset() action_value_function = TileCodingActionValueFunction(env.observation_space.shape[0], dim_ranges, env.action_space.n, num_tiles=2**11, num_tilings=NUM_TILINGS, scale_inputs=False) # algorithm = TrueOnlineSarsaLambda(env, # alpha / NUM_TILINGS, # epsilon, # 1.0, # action_value_function, # epsilon_decay_factor=epsilon_decay, # lambda_param=lambda_param) algorithm = Qlearning(env, alpha / NUM_TILINGS, epsilon, 1, action_value_function, epsilon_decay_factor=epsilon_decay) algorithm.do_learning(MAX_EPISODES, show_env=False) episodes_completed.append(np.size(algorithm.episode_return)) episode_returns.append(np.mean(algorithm.episode_return)) episodes_windows.append( algorithm.episode_return[np.size(algorithm.episode_return) - WINDOW_SIZE:np.size(algorithm.episode_return)]) total_time_steps_list.append(np.abs(np.sum(algorithm.episode_return))) return RewardsInfo(algorithm_name="Q Learning", alpha=alpha, epsilon=epsilon, lambda_param=lambda_param, mean_return=episode_returns, episodes_window=episodes_windows, total_episodes=episodes_completed, total_time_steps=total_time_steps_list, epsilon_decay=epsilon_decay) def run_experiment(): rewards_list = [] parameters_list = [(alpha, epsilon, lambda_param, epsilon_decay) for alpha in ALPHAS for epsilon in EPSILONS for lambda_param in LAMBDA_PARAMS for epsilon_decay in EPSILONS_DECAY] for reward_info in Parallel(n_jobs=NUM_PARLL_JOBS)( delayed(do_experiment)(parameters) for parameters in parameters_list): rewards_list.append(reward_info) pickle.dump(rewards_list, open("cart_pole_qlearn_rewards_list_100_runs_rerun.p", "wb")) return rewards_list def print_best_results(rewards_list): best_reward = None for reward_obj in rewards_list: # if best_reward is None or np.mean(reward_obj.episodes_window) > np.mean(best_reward.episodes_window): # best_reward = reward_obj if best_reward is None or np.mean(reward_obj.total_time_steps) < np.mean(best_reward.total_time_steps) and np.mean(reward_obj.episodes_window) > -110.0: best_reward = reward_obj print("Best algorithm: alpha: ", best_reward.alpha, ", epsilon: ", best_reward.epsilon, ", lambda: ", best_reward.lambda_param, ", eps_decay: ", best_reward.epsilon_decay) # print("Best algorithm: alpha: ", best_reward.alpha, ", epsilon: ", best_reward.epsilon, ", lambda: ", # best_reward.lambda_param) print("Mean return: ", np.mean(best_reward.mean_return)) print("Last 50 Episodes window: ", np.mean(best_reward.episodes_window)) print("Total episodes before solve: ", np.mean(best_reward.total_episodes), "+-", np.std(best_reward.total_episodes) / np.sqrt(len(best_reward.total_episodes))) print("Max episodes before solve: ", np.max(best_reward.total_episodes)) print("Total time steps: ", np.mean(best_reward.total_time_steps), "+-", np.std(best_reward.total_time_steps) / np.sqrt(len(best_reward.total_time_steps))) def print_all_results(reward_file): rewards_list = pickle.load(open(reward_file, "rb")) for reward in rewards_list: # if reward.lambda_param == 0.875: print("Algorithm: alpha: ", reward.alpha, ", epsilon: ", reward.epsilon, ", lambda: ", reward.lambda_param, ", eps_decay: ", reward.epsilon_decay) print("Mean return: ", np.mean(reward.mean_return)) print("Last 10 Episodes window: ", np.mean(reward.episodes_window)) print("Total episodes before solve: ", np.mean(reward.total_episodes), "+-", np.std(reward.total_episodes) / np.sqrt(len(reward.total_episodes))) print("Max episodes before solve: ", np.max(reward.total_episodes)) print("Total time steps: ", np.mean(reward.total_time_steps), "+-", np.std(reward.total_time_steps) / np.sqrt(len(reward.total_time_steps))) if __name__ == "__main__": # rewards_list = run_experiment() # print_best_results(rewards_list) # print_all_results("/home/zach/PycharmProjects/CMPUT690Project/mc_rewards_list_100_runs.p") print_best_results(rewards_list=pickle.load(open("/Users/zach/PycharmProjects/CMPUT690Project/cart_pole_sarsa_rewards_list_100_runs_rerun.p", "rb")))
StarcoderdataPython
43131
import json from service.tests.functional import MonitoringTestCase class TestAlarm(MonitoringTestCase): ENDPOINT = '/nbi/monitoring/api/alarms/' def test_get_alarms(self): """ Test that validates getting all alarms It asserts the response code 200, the default alarm limit 5 and the fields in an alarm: metrics state alarm_definition updated_timestamp created_timestamp state_updated_timestamp id :return: """ result = self.app.get(TestAlarm.ENDPOINT, headers={'X-Auth-Token': self.cloud_admin}) self.assertEqual(result.status, 200) data = json.loads(result.body.decode('utf-8')) self.assertTrue('alarms' in data) for alarm in data.get('alarms'): for field in ['metrics', 'state', 'alarm_definition', 'updated_timestamp', 'created_timestamp', 'state_updated_timestamp', 'id']: self.assertTrue(field in alarm) self.assertTrue(len(data.get('alarms')) <= 5) def test_get_alarms_filter(self): """ Test that validates getting an alarm using a filter It asserts the response code 200, the filtered information and the limit :return: """ result = self.app.get(TestAlarm.ENDPOINT, headers={'X-Auth-Token': self.cloud_admin}, params={'limit': 2, 'state': 'OK'}) self.assertTrue(result.status, 200) data = json.loads(result.body.decode('utf-8')) self.assertTrue('alarms' in data) for alarm in data.get('alarms'): self.assertTrue(alarm.get('state'), 'OK') self.assertTrue(len(data.get('alarms')) <= 2) def test_get_alarms_unauth(self): """ Test that validates an unauthenticated user can't access the alarms It asserts the response code 401 :return: """ result = self.app.get(TestAlarm.ENDPOINT, params={'limit': 2, 'state': 'OK'}, status=401) self.assertTrue(result.status, 401) def test_specific_alarm(self): """ Test that validates getting a specific alarm It asserts the response code 200 and the fields in the alarm: metrics state alarm_definition updated_timestamp created_timestamp state_updated_timestamp id :return: """ result = self.app.get(TestAlarm.ENDPOINT + '000072da-53f7-434e-8d89-77c4b77f1636', headers={'X-Auth-Token': self.cloud_admin}) self.assertTrue(result.status, 200) data = json.loads(result.body.decode('utf-8')) for field in ['metrics', 'state', 'alarm_definition', 'updated_timestamp', 'created_timestamp', 'state_updated_timestamp', 'id']: self.assertTrue(field in data) def test_get_invalid_alarm(self): """ Test that validates a user can't collect an invalid alarm id It asserts the response code 404 :return: """ result = self.app.get(TestAlarm.ENDPOINT + '000210ee', status=404, headers={'X-Auth-Token': self.cloud_admin}) self.assertEqual(result.status, 404)
StarcoderdataPython
1678274
<filename>src/pymor/operators/interfaces.py # -*- coding: utf-8 -*- # This file is part of the pyMOR project (http://www.pymor.org). # Copyright Holders: <NAME>, <NAME>, <NAME> # License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) from __future__ import absolute_import, division, print_function from pymor.core.interfaces import ImmutableInterface, abstractmethod, abstractstaticmethod from pymor.parameters.base import Parametric class OperatorInterface(ImmutableInterface, Parametric): """Interface for |Parameter| dependent discrete operators. Every operator is viewed as a map :: A(μ): R^s -> R^r Note that there is no special distinction between functionals and operators in pyMOR. A functional is simply an operator with range dimension 1 and |NumpyVectorArray| as `range.type`. Attributes ---------- invert_options |OrderedDict| of possible options for :meth:`~OperatorInterface.apply_inverse`. Each key is a type of inversion algorithm which can be used to invert the operator. `invert_options[k]` is a dict containing all options along with their default values which can be set for algorithm `k`. We always have `invert_options[k]['type'] == k` such that `invert_options[k]` can be passed directly to :meth:`~OperatorInterface.apply_inverse()`. linear `True` if the operator is linear. source The source |VectorSpace|. range The range |VectorSpace|. """ @abstractmethod def apply(self, U, ind=None, mu=None): """Apply the operator. Parameters ---------- U |VectorArray| of vectors to which the operator is applied. ind The indices of the vectors in `U` to which the operator shall be applied. (See the |VectorArray| documentation for further details.) mu The |Parameter| for which to evaluate the operator. Returns ------- |VectorArray| of the operator evaluations. """ pass @abstractmethod def apply2(self, V, U, pairwise, U_ind=None, V_ind=None, mu=None, product=None): """Treat the operator as a 2-form by calculating (V, A(U)). In particular, if ( , ) is the Euclidean product and A is a linear operator given by multiplication with a matrix M, then :: A.apply2(V, U) = V^T*M*U Parameters ---------- V |VectorArray| of the left arguments V. U |VectorArray| of the right right arguments U. pairwise If `False`, the 2-form is applied to all combinations of vectors in `V` and `U`, i.e. :: L.apply2(V, U).shape = (len(V_ind), len(U_ind)). If `True`, the vectors in `V` and `U` are applied in pairs, i.e. `V` and `U` must be of the same length and we have :: L.apply2(V, U).shape = (len(V_ind),) = (len(U_ind),). V_ind The indices of the vectors in `V` to which the operator shall be applied. (See the |VectorArray| documentation for further details.) U_ind The indices of the vectors in `U` to which the operator shall be applied. (See the |VectorArray| documentation for further details.) mu The |Parameter| for which to evaluate the operator. product The scalar product used in the expression `(V, A(U))` given as an |Operator|. If `None`, the euclidean product is chosen. Returns ------- A |NumPy array| of all 2-form evaluations. """ pass @abstractmethod def apply_adjoint(self, U, ind=None, mu=None, source_product=None, range_product=None): """Apply the adjoint operator. For a linear operator A the adjoint A^* of A is given by :: (A^*v, u)_s = (v, Au)_r where ( , )_s and ( , )_r denote the scalar products on the source and range space of A. If A and the two products are given by the matrices M, P_s and P_r, then:: A^*v = P_s^(-1) * M^T * P_r * v with M^T denoting the transposed of M. Thus, if ( , )_s and ( , )_r are the euclidean products, A^*v is simply given by multiplication of the matrix of A with v from the left. Parameters ---------- U |VectorArray| of vectors to which the adjoint operator is applied. ind The indices of the vectors in `U` to which the operator shall be applied. (See the |VectorArray| documentation for further details.) mu The |Parameter| for which to apply the adjoint operator. source_product The scalar product on the source space given as an |Operator|. If `None`, the euclidean product is chosen. range_product The scalar product on the range space given as an |Operator|. If `None`, the euclidean product is chosen. Returns ------- |VectorArray| of the adjoint operator evaluations. """ pass @abstractmethod def apply_inverse(self, U, ind=None, mu=None, options=None): """Apply the inverse operator. Parameters ---------- U |VectorArray| of vectors to which the inverse operator is applied. ind The indices of the vectors in `U` to which the operator shall be applied. (See the |VectorArray| documentation for further details.) mu The |Parameter| for which to evaluate the inverse operator. options Dictionary of options for the inversion algorithm. The dictionary has to contain the key `'type'` whose value determines which inversion algorithm is to be used. All other items represent options specific to this algorithm. `options` can also be given as a string, which is then interpreted as the type of inversion algorithm. If `options` is `None`, a default algorithm with default options is chosen. Available algorithms and their default options are provided by :attr:`~OperatorInterface.invert_options`. Returns ------- |VectorArray| of the inverse operator evaluations. Raises ------ InversionError The operator could not be inverted. """ pass @abstractmethod def jacobian(self, U, mu=None): """Return the operator's Jacobian. Parameters ---------- U Length 1 |VectorArray| containing the vector for which to compute the jacobian. mu The |Parameter| for which to compute the Jacobian. Returns ------- |Operator| representing the Jacobian. """ pass @abstractmethod def as_vector(self, mu=None): """Return vector representation of linear functional or vector operator. This method may only be called on linear functionals, i.e. linear operators with `range.dim == 1` and |NumpyVectorArray| as :attr:`~OperatorInterface.range.type`, or on operators describing vectors, i.e. linear operators with `source.dim == 1` |NumpyVectorArray| as :attr:`~OperatorInterface.source.type`. In the case of a functional, the identity :: self.as_vector(mu).dot(U) == operator.apply(U, mu) holds, whereas in the case of a vector like operator we have :: operator.as_vector(mu) == operator.apply(NumpyVectorArray(1), mu). Parameters ---------- mu The |Parameter| for which to return a vector representation. Returns ------- V |VectorArray| of length 1 containing the vector representation. We have `V.dim == self.source.dim`, `type(V) == self.source.type` for functionals and `V.dim = self.range.dim`, `type(V) == self.range.type` for vector-like operators. """ pass @abstractmethod def assemble(self, mu=None): """Assemble the operator for a given parameter. What the result of the assembly is strongly depends on the given operator. For instance, a matrix-based operator will assemble its matrix, a |LincombOperator| will try to form the linear combination of its operators, whereas an arbitrary operator might simply return a :class:`~pymor.operators.constructions.FixedParameterOperator`. The only assured property of the assembled operator is that it is no longer parametric. Parameters ---------- mu The |Parameter| for which to assemble the operator. Returns ------- Parameter-independent, assembled |Operator|. """ pass @abstractstaticmethod def lincomb(operators, coefficients=None, num_coefficients=None, coefficients_name=None, name=None): """DEPRECATED! Use :func:`pymor.operators.constructions.LincombOperator` instead. """ pass def assemble_lincomb(self, operators, coefficients, name=None): """Try to assemble a linear combination of the given operators. This method is called in the `assemble` method of |LincombOperator|. If an assembly of the given linear combination is possible, e.g. the linear combination of the system matrices of the operators can be formed, then the assembled operator is returned. Otherwise, the method returns `None` to indicate that assembly is not possible. Parameters ---------- operators List of |Operators| whose linear combination is formed. coefficients List of the corresponding linear coefficients. (In contrast to :meth:`~pymor.operators.constructions.lincomb`, these coefficients are always numbers, not |ParameterFunctionals|.) name Name of the assembled operator. Returns ------- The assembled |Operator| if assembly is possible, otherwise `None`. """ return None @abstractmethod def projected(self, source_basis, range_basis, product=None, name=None): """Project operator to subspaces of the source and range space. Denote `self` by A. Given a scalar product ( ⋅, ⋅), and vectors b_1, ..., b_N, c_1, ..., c_M, the projected operator A_P is defined by :: [ A_P(e_j) ]_i = ( c_i, A(b_j) ) for all i,j, where e_j denotes the j-th canonical basis vector of R^N. In particular, if the c_i are orthonormal w.r.t. the given product, then A_P is the coordinate representation w.r.t. the b_i/c_i bases of the restriction of A to span(b_i) concatenated with the orthogonal projection onto span(c_i). From another point of view, if A is viewed as a bilinear form (see :meth:`~OperatorInterface.apply2`) and ( ⋅, ⋅ ) is the Euclidean product, then A_P represents the matrix of the bilinear form restricted span(b_i) / spanc(c_i) (w.r.t. the b_i/c_i bases). How the projected operator is realized will depend on the implementation of the operator to project. While a projected |NumpyMatrixOperator| will again be a |NumpyMatrixOperator|, only a :class:`pymor.operators.basic.ProjectedOperator` will be returned in general. (Note that the latter will not be suitable to obtain an efficient offline/online-decomposition for reduced basis schemes.) A default implementation is provided in |OperatorBase|. .. warning:: No check is performed whether the b_i and c_j are orthonormal or linear independent. Parameters ---------- source_basis The b_1, ..., b_N as a |VectorArray| or `None`. If `None`, no restriction of the source space is performed. range_basis The c_1, ..., c_M as a |VectorArray|. If `None`, no projection in the range space is performed. product An |Operator| representing the scalar product. If `None`, the Euclidean product is chosen. name Name of the projected operator. Returns ------- The projected |Operator|. """ pass @abstractmethod def __add__(self, other): """Sum of two operators""" pass @abstractmethod def __radd__(self, other): """Sum of two operators""" pass @abstractmethod def __mul__(self, other): """Product of operator by a scalar""" pass
StarcoderdataPython
1634399
from rest_framework_simplejwt.serializers import TokenObtainPairSerializer class WxUserTokenObtainPairSerializer(TokenObtainPairSerializer): @classmethod def get_token(cls, user): token = super().get_token(user) token['openid'] = user.openid token['unionid'] = user.unionid return token
StarcoderdataPython
165659
# -*- coding: utf-8 -*- ### # © 2018 The Board of Trustees of the Leland Stanford Junior University # <NAME> # <EMAIL> ### """ The official Python client for Pulsar LIMS. Required Environment Variables: 1) PULSAR_API_URL 2) PULSAR_TOKEN """ import logging import os import sys from urllib.parse import urlparse ##################### ### MAIL SETTINGS ### ##################### MAIL_DOMAIN = os.environ.get("MAILGUN_DOMAIN","") # We don't want utils.send_mail trying to send mail when there isn't a domain specified. # I tried this, and we strangly get a 200 back, so this could cause issues. The fix is to # have MAIL_SERVER_URL empty in that case. MAIL_SERVER_URL = "" if MAIL_DOMAIN: MAIL_SERVER_URL = os.path.join("https://api.mailgun.net/v3/{}/messages".format(MAIL_DOMAIN)) MAIL_AUTH = ("api", os.environ.get("MAILGUN_API_KEY","")) DEFAULT_TO = [os.environ.get("SUPPORT_EMAIL_ADDR", "")] #: The directory that contains the log files created by the `Model` class. LOG_DIR = "Pulsarpy_Logs" URL = os.environ.get("PULSAR_API_URL", "") HOST = "" if URL: HOST = urlparse(URL).hostname API_TOKEN = os.environ.get("PULSAR_TOKEN", "") #: The name of the debug ``logging`` instance. DEBUG_LOGGER_NAME = "ppy_debug" #: The name of the error ``logging`` instance created in the ``pulsarpy.models.Model`` class. #: and referenced elsewhere. ERROR_LOGGER_NAME = "ppy_error" #: The name of the POST ``logging`` instance created in the ``pulsarpy.models.Model`` claass. #: and referenced elsewhere. POST_LOGGER_NAME = "ppy_post" #: A ``logging`` instance that logs all messages sent to it to STDOUT. debug_logger = logging.getLogger(DEBUG_LOGGER_NAME) level = logging.DEBUG debug_logger.setLevel(level) f_formatter = logging.Formatter('%(asctime)s:%(name)s:\t%(message)s') ch = logging.StreamHandler(stream=sys.stdout) ch.setLevel(level) ch.setFormatter(f_formatter) debug_logger.addHandler(ch)
StarcoderdataPython
4828435
"""Build extension to generate immutable JavaScript protocol buffers. Usage: immutable_js_proto_library: generates a immutable JavaScript implementation for an existing proto_library. Example usage: proto_library( name = "foo", srcs = ["foo.proto"], ) immutable_js_proto_library( name = "foo_immutable_js_proto", deps = [":foo"], ) """ load("@bazel_skylib//lib:dicts.bzl", "dicts") load(":immutable_js_common.bzl", "create_js_lib_struct", "create_js_provider", "js_attrs") ImmutableJspbInfo = provider( "Provider for the immutable_js_proto compilation.\n" + "NOTE: Data under '_private_' is considered private internal data so do not use.\n" + "This provider is exported for only particular use cases and you should talk to us" + "to verify your use case.", fields = ["js", "_private_"], ) def _immutable_js_proto_library_aspect_impl(target, ctx): srcs = target[ProtoInfo].direct_sources transitive_srcs = target[ProtoInfo].transitive_sources out_srcs = [] if srcs: output = ctx.actions.declare_directory(ctx.label.name + "-improto") out_srcs = [output] command = """ set -e -o pipefail rm -rf {output} mkdir -p {output} mkdir -p {genfiles} {protoc} --plugin=protoc-gen-immutable_js_protobuf={protoc_plugin} \ --proto_path=. \ --proto_path={genfiles} \ --immutable_js_protobuf_out={output} \ {proto_sources} js_files=$(find {output} -name '*.js') chmod -R 664 $js_files {clang_format} -style=Google -i $js_files """.format( clang_format = ctx.executable._clang_format.path, output = output.path, protoc = ctx.executable._protocol_compiler.path, protoc_plugin = ctx.executable._protoc_gen_immutable_js.path, genfiles = ctx.configuration.genfiles_dir.path, proto_sources = " ".join([s.path for s in srcs]), ) (resolved_inputs, resolved_command, input_manifest) = ctx.resolve_command(command = command) ctx.actions.run_shell( command = resolved_command, inputs = depset(resolved_inputs, transitive = [transitive_srcs]), outputs = [output], tools = [ ctx.executable._protocol_compiler, ctx.executable._protoc_gen_immutable_js, ctx.executable._clang_format, ], input_manifests = input_manifest, progress_message = "Generating immutable jspb files", ) transitive_runfiles = [dep[ImmutableJspbInfo]._private_.runfiles for dep in ctx.rule.attr.deps] deps = [dep[ImmutableJspbInfo].js for dep in ctx.rule.attr.deps] exports = [dep[ImmutableJspbInfo].js for dep in ctx.rule.attr.exports] js_provider = create_js_provider( ctx, srcs = out_srcs, deps = deps, runtime_deps = ctx.attr._runtime_deps, exports = (deps if not srcs else []) + exports, # Use unique artifact suffix to avoid conflicts with other aspects on the same target. artifact_suffix = "_immutable_js_proto_library_aspect", ) return [ImmutableJspbInfo( js = js_provider, _private_ = struct(runfiles = depset(out_srcs, transitive = transitive_runfiles)), )] immutable_js_proto_library_aspect = aspect( implementation = _immutable_js_proto_library_aspect_impl, attr_aspects = ["deps", "exports"], attrs = dicts.add(js_attrs(), { "_protocol_compiler": attr.label( executable = True, cfg = "host", default = Label("//third_party:protocol_compiler"), ), "_protoc_gen_immutable_js": attr.label( executable = True, cfg = "host", default = Label( "//java/com/google/protobuf/contrib/immutablejs/internal_do_not_use:ImmutableJspbCompiler", ), ), "_clang_format": attr.label( executable = True, allow_files = True, cfg = "host", default = Label("//third_party:clang-format"), ), "_runtime_deps": attr.label_list( default = [ Label("//java/com/google/protobuf/contrib/immutablejs/internal_do_not_use:runtime"), ], ), "_jar": attr.label( cfg = "host", executable = True, default = Label("@bazel_tools//tools/jdk:jar"), ), }), fragments = ["js"], provides = [ImmutableJspbInfo], ) def _immutable_js_proto_library_rule_impl(ctx): if len(ctx.attr.deps) != 1: fail("Only one deps entry allowed") dep = ctx.attr.deps[0] # Create a new js provider to create a blaze level ExtraAction, so # that this rule gets indexed by Cymbals table. js_provider = create_js_provider( ctx, exports = [dep[ImmutableJspbInfo].js], ) runfiles = dep[ImmutableJspbInfo]._private_.runfiles return create_js_lib_struct( js_provider = js_provider, extra_providers = [ DefaultInfo(runfiles = ctx.runfiles(transitive_files = runfiles)), ], ) immutable_js_proto_library = rule( implementation = _immutable_js_proto_library_rule_impl, attrs = dicts.add(js_attrs(), { "deps": attr.label_list( providers = [ProtoInfo], aspects = [immutable_js_proto_library_aspect], ), }), fragments = ["js"], )
StarcoderdataPython
3261491
from nose.tools import assert_equal from pyecharts.charts import Line def test_chart_append_color(): x_data = ["周一", "周二", "周三", "周四", "周五", "周六", "周日"] y_data1 = [140, 232, 101, 264, 90, 340, 250] y_data2 = [120, 282, 111, 234, 220, 340, 310] c = ( Line() .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="品类 1", y_axis=y_data1, color='#80FFA5') .add_yaxis( series_name="品类 2", y_axis=y_data2, color='#00DDFF') ) c.render() default_colors = ( "#c23531 #2f4554 #61a0a8 #d48265 #749f83 #ca8622 #bda29a #6e7074 " "#546570 #c4ccd3 #f05b72 #ef5b9c #f47920 #905a3d #fab27b #2a5caa " "#444693 #726930 #b2d235 #6d8346 #ac6767 #1d953f #6950a1 #918597" ).split() expected_result = ['#80FFA5', '#00DDFF', *default_colors] assert_equal(c.colors, expected_result)
StarcoderdataPython
1789456
from typing import Any, List import networkx as nx from interface import Interface, implements from .builders.graph_builders import GraphBuilderInterface, TextGCNGraphBuilder from .model.document import Document from .model.graph_matrix import GraphMatrix from .nlp.pieplines import ProcessingPipeline, ProcessingPipelineInterface from .nlp.processors import Lemmatizer from .presenters.graph_presenter import GraphPresenter from .readers.reading_controller import ReadingController class GBTRInterface(Interface): """Main module.""" def get_graph( self, source: Any ) -> List[GraphMatrix]: """Transform given documents corpus to graph representation. Parameters ---------- source: any Data source in one of supported types. Currently supported types: - list of dictionaries {"text" : str, "label" : str}. Returns ------- List[GraphMatrix] List of prepared graphs. If method implements whole corpus representation as one graph then one element list is returned. """ class GBTR(implements(GBTRInterface)): def __init__( self, reading_controller: ReadingController, nlp_pipeline: ProcessingPipelineInterface, graph_builder: GraphBuilderInterface ): self._data: List[Document] = None self._reading_controller = reading_controller self._graph_builder = graph_builder def get_graph( self, source: Any ) -> List[GraphMatrix]: self._data = self._reading_controller.read_data(source) # TODO # consider parallel processing for document in self._data: document.text = self.nlp_pipeline.process(document.text) return self._graph_builder.get_graph(self._data) class TextGCN: """Implementation of graph representation for TextGCN.""" def __call__( self, source: Any ) -> nx.Graph: """Returns TextGCN based grapg representation for given corpus. Parameters ---------- source: any Data source in one of supported types. Currently supported types: - list of dictionaries {"text" : str, "label" : str}. Returns ------- nx.Graph Graph representation as Networkx Graph object. """ gbtr = GBTR( reading_controller=ReadingController(), nlp_pipeline=ProcessingPipeline([ # TODO Lemmatizer() ]), graph_builder=TextGCNGraphBuilder() ) graph_matrix = gbtr.get_graph(source)[0] graph_presenter = GraphPresenter() return graph_presenter.to_nx(graph_matrix)
StarcoderdataPython
3256796
''' altimu10v5: Main module Copyright 2017, <NAME> Licensed under MIT. ''' from .lsm6ds33 import LSM6DS33 from .lis3mdl import LIS3MDL from .lps25h import LPS25H class IMU(object): """ Set up and control Pololu's AltIMU-10v5. """ def __init__(self): super(IMU, self).__init__() self.lsm6ds33 = LSM6DS33() self.gyroAccelEnabled = False self.lis3mdl = LIS3MDL() self.barometerEnabled = False self.lps25h = LPS25H() self.magnetometerEnabled = False def __del__(self): del(self.lsm6ds33) del(self.lis3mdl) del(self.lps25h) def enable(self, gyroAccel=True, barometer=True, magnetometer=True): """ Enable the given devices. """ if gyroAccel: self.lsm6ds33.enable() self.gyroAccelEnabled = True if barometer: self.lps25h.enable() self.barometerEnabled = True if magnetometer: self.lis3mdl.enable() self.magnetometerEnabled = True def get_complementary_angles(self, delta_t=0.05): """ Calculate combined angles of accelerometer and gyroscope using a complementary filter. """ if not self.gyroAccelEnabled: raise(Exception('Gyroscope and accelerometer are not enabled!')) self.complementary_angles = [0, 0] complementary_filter_constant = 0.98 accel_angles = self.lsm6ds33.get_accelerometer_angles() gyro_angular_velocity = self.lsm6ds33.get_gyro_angular_velocity() self.complementary_angles[0] = complementary_filter_constant \ * (self.complementary_angles[0] + (gyro_angular_velocity[0] * delta_t)) \ + (1 - complementary_filter_constant) \ * accel_angles[0] self.complementary_angles[1] = complementary_filter_constant \ * (self.complementary_angles[1] + (gyro_angular_velocity[1] * delta_t)) \ + (1 - complementary_filter_constant) \ * accel_angles[1] return self.complementary_angles
StarcoderdataPython
50761
<reponame>DCCouncil/dc-law-tools<filename>build_xml/insert_tables.py """ The Lexis parser does not parse tables, so this script inserts manually-created html tables defined in tables.xml. tables.xml *must be* updated when a new version of the code comes out. """ import os.path import lxml.etree as etree, re DIR = os.path.abspath(os.path.dirname(__file__)) src_file = DIR + '/../working_files/dccode-t1-ch15.xml' tables_path = DIR + '/tables.xml' dst_file = DIR + '/../working_files/dccode-tables.xml' num_re = re.compile('<num>(?P<num>.+?)</num>') table_re = re.compile(r'@@TABLE@@') pict_re = re.compile(r'@@PICT@@') def insert_tables(): with open(src_file) as f: xml = f.read() # etree.parse(f).getroot() with open(tables_path) as f: Tables = etree.parse(f).getroot() sections = xml.split('<section>\n') print('inserting tables...') out = [] for section in sections: try: num = num_re.search(section).group(1) except: import ipdb ipdb.set_trace() section_tables = Tables.find('section[@id="{}"]'.format(num)) if section_tables is not None: tables = section_tables.getchildren() i = 0 def replacement(match): nonlocal i if i >=len(tables): import ipdb ipdb.set_trace() table = tables[i] if table.getchildren(): out = etree.tostring(table, pretty_print=True, encoding='utf-8').decode('utf-8') else: out = '' table.set('inserted', 'true') i = i + 1 return out section = table_re.sub(replacement, section) elif '@@TABLE@@' in section: print('missing tables for section', num) # special case: picture converted to table if num == '16-916.01': table = Tables.find('section[@id="16-916.01"]/table'.format(num)) table.set('inserted', 'true') table_str = etree.tostring(table, pretty_print=True, encoding='utf-8').decode('utf-8') section = section.replace('@@PICT@@', table_str, 1) # delete 11 subsequent @@PICT@@ section = section.replace('<text>@@PICT@@</text>', '', 11) if '@@PICT@@' in section: i = 0 def replacement(match): nonlocal i i += 1 return '<img src="./{}-{}.jpeg" />'.format(num, i) section = pict_re.sub(replacement, section) out.append(section) if Tables.xpath('section/table[not(@inserted)]'): import ipdb ipdb.set_trace() raise Exception('some tables not inserted') out = '<section>\n'.join(out).encode('utf-8') dom = etree.fromstring(out) # remove any empty text elements emptyTextNodes = dom.xpath('//text[not(text() or *)]') for node in emptyTextNodes: node.getparent().remove(node) with open(dst_file, 'wb') as f: f.write(etree.tostring(dom, pretty_print=True, encoding="utf-8")) if __name__ == '__main__': insert_tables()
StarcoderdataPython
1617858
<filename>examples/diff_gpmp2_nonholonomic_example.py #!/usr/bin/env python import os, sys sys.path.insert(0, "..") import matplotlib.pyplot as plt import numpy as np import pprint import time import torch from diff_gpmp2.env.env_2d import Env2D from diff_gpmp2.robot_models import PointRobotXYH from diff_gpmp2.gpmp2.diff_gpmp2_planner import DiffGPMP2Planner from diff_gpmp2.utils.helpers import rgb2gray, load_params from diff_gpmp2.utils.sdf_utils import sdf_2d from diff_gpmp2.utils.planner_utils import straight_line_traj from datasets import PlanningDataset use_cuda = False np.set_printoptions(threshold=np.nan, linewidth=np.inf) pp = pprint.PrettyPrinter() torch.set_default_tensor_type(torch.DoubleTensor) use_cuda = torch.cuda.is_available() if use_cuda else False device = torch.device('cuda') if use_cuda else torch.device('cpu') env_file = os.path.abspath("../diff_gpmp2/env/simple_2d/4.png") plan_param_file = os.path.abspath('gpmp2_xyh_params.yaml') robot_param_file = os.path.abspath('robot_2d.yaml') env_param_file = os.path.abspath('env_2d_params.yaml') np.random.seed(0) torch.manual_seed(0) #Load parameters env_data, planner_params, gp_params, obs_params, optim_params, robot_data = load_params(plan_param_file, robot_param_file, env_param_file, device) env_params = {'x_lims': env_data['x_lims'], 'y_lims': env_data['y_lims']} env_image = plt.imread(env_file) if len(env_image.shape) > 2: env_image = rgb2gray(env_image) cell_size = (env_params['x_lims'][1] - env_params['x_lims'][0])/env_image.shape[0] env_sdf = sdf_2d(env_image, res = cell_size) #2D Point robot model robot = PointRobotXYH(robot_data['sphere_radius'][0], use_cuda=use_cuda) start_conf = torch.tensor([[env_params['x_lims'][0]+1., env_params['y_lims'][0]+ 1., 0.0]], device=device) start_vel = torch.tensor([[0., 0., 0.]], device=device) goal_conf = torch.tensor([[env_params['x_lims'][1]-1., env_params['y_lims'][1]-1., np.pi/2.0]], device=device)#[17, 14]) goal_vel = torch.tensor([[0., 0., 0.]], device=device) start = torch.cat((start_conf, start_vel), dim=1) goal = torch.cat((goal_conf, goal_vel), dim=1) th_init = straight_line_traj(start_conf, goal_conf, planner_params['total_time_sec'], planner_params['total_time_step'], planner_params['dof'], device) th_init.requires_grad_(True) im = torch.tensor(env_image, device=device) sdf = torch.tensor(env_sdf, device=device) planner = DiffGPMP2Planner(gp_params, obs_params, planner_params, optim_params, env_params, robot, use_cuda=use_cuda) start_t = time.time() print th_init th_final, _, err_init, err_final, err_per_iter, err_ext_per_iter, k, time_taken = planner.forward(th_init.unsqueeze(0), start.unsqueeze(0), goal.unsqueeze(0), im.unsqueeze(0).unsqueeze(0), sdf.unsqueeze(0).unsqueeze(0)) print th_final pp.pprint('Initial cost = %f'%(err_init[0])) pp.pprint('Final cost = %f'%(err_final[0])) pp.pprint('Iterations taken = %d'%(k[0])) pp.pprint('Time taken = %f (seconds)'%(time_taken[0])) path_init = [] path_final = [] th_init_np = th_init.cpu().detach().numpy() th_final_np = th_final[0].cpu().detach().numpy() for i in range(planner_params['total_time_step']+1): path_init.append(th_init_np[i, 0:planner_params['dof']]) path_final.append(th_final_np[i, 0:planner_params['dof']]) #Plot the final results env = Env2D(env_params) env.initialize_from_file(env_file) env.initialize_plot(start_conf.cpu().numpy()[0], goal_conf.cpu().numpy()[0]) env.plot_edge(path_init, color='red') env.plot_edge(path_final) env.plot_signed_distance_transform() fig=plt.figure() plt.plot(err_per_iter[0]) plt.show()
StarcoderdataPython
3255757
<reponame>kchida/aptly """ Testing DB operations """ from .cleanup import * from .recover import *
StarcoderdataPython
3389876
<filename>prolink/api/urls.py from django.conf.urls import url from rest_framework import routers from prolink.api import views router = routers.DefaultRouter() urlpatterns = [ url(r'drawer/self/', views.DrawerTransactionsViewSet.as_view(), name='drawer-self'), url(r'drawer/view-user/', views.UserDrawerViewset.as_view(), name='drawer-view'), url(r'drawer/all-open/', views.AllOpenDrawersViewset.as_view(), name='drawers-open'), url(r'drawer/transaction/', views.DrawerTransactionViewset.as_view(), name='transaction'), ]
StarcoderdataPython
17658
""" The key is to use a set to remember if we seen the node or not. Next, think about how we are going to *remove* the duplicate node? The answer is to simply link the previous node to the next node. So we need to keep a pointer `prev` on the previous node as we iterate the linked list. So, the solution. Create a set `seen`. #[1] Point pointer `prev` on the first node. `cuur` on the second. Now we iterate trough the linked list. * For every node, we add its value to `seen`. Move `prev` and `curr` forward. #[2] * If we seen the node, we *remove* the `curr` node. Then move the curr forward. #[3] Return the `head` """ class Solution(object): def deleteDuplicates(self, head): if head is None or head.next is None: return head prev = head curr = head.next seen = set() #[1] seen.add(prev.val) while curr: if curr.val not in seen: #[2] seen.add(curr.val) curr = curr.next prev = prev.next else: #[3] prev.next = curr.next #remove curr = curr.next return head
StarcoderdataPython
1729704
<gh_stars>0 # Auto generated by generator.py. Delete this line if you make modification. from scrapy.spiders import Rule from scrapy.linkextractors import LinkExtractor XPATH = { 'name' : "//form[@id='aspnetForm']/div[@id='lg-wrapper']/div[@class='lg-info-prd-details']/h1", 'price' : "//div[@class='lg-box-price-buy']/div[@class='lg-clb-left-buy']/div[@class='lg-price-new']/span", 'category' : "//div[@id='lg-wrapper']/ul[@class='lg-menu-dh']/li/a", 'description' : "//div[@class='tab-content']/div[@id='tab1']/div[@class='lg-text-parameters-top']/p", 'images' : "//ul[@class='lg-thumb-zoom-prd']/li/a/img/@data-src", 'canonical' : "//link[@rel='canonical']/@href", 'base_url' : "", 'brand' : "" } name = 'logicbuy.vn' allowed_domains = ['logicbuy.vn'] start_urls = ['http://logicbuy.vn'] tracking_url = '' sitemap_urls = [''] sitemap_rules = [('', 'parse_item')] sitemap_follow = [] rules = [ Rule(LinkExtractor(allow=['-\d+\.html']), 'parse_item'), Rule(LinkExtractor(allow=['[a-zA-Z-0-9]+\w\.html'], deny=['Filter=','price=']), 'parse'), #Rule(LinkExtractor(), 'parse_item_and_links'), ]
StarcoderdataPython
4843054
import os import json from django.http import HttpResponse from django.template import RequestContext from django.shortcuts import render from logtailer.models import LogsClipboard, LogFile from django.utils.translation import ugettext as _ from django.views.decorators.csrf import csrf_exempt from django.contrib.admin.views.decorators import staff_member_required @staff_member_required def read_logs(request): context = {} return render(request, 'logtailer/log_reader.html', context, RequestContext(request, {}),) def get_history(f, lines=0): buffer_size = 1024 f.seek(0, os.SEEK_END) bytes = f.tell() size = lines block = -1 data = [] while size > 0 and bytes > 0: if bytes - buffer_size > 0: # Seek back one whole buffer_size f.seek(f.tell()+block*buffer_size, 0) # read buffer data.append(f.read(buffer_size)) else: # file too small, start from beginning f.seek(0, 0) # only read what was not read data.append(f.read(bytes)) lines_found = data[-1].count('\n') size -= lines_found bytes += block*buffer_size block -= 1 return ''.join(data).splitlines(True)[-lines:] @staff_member_required def get_log_lines(request, file_id): history = int(request.GET.get('history', 0)) try: file_record = LogFile.objects.get(id=file_id) except LogFile.DoesNotExist: return HttpResponse(json.dumps([_('error_logfile_notexist')]), content_type='text/html') content = [] file = open(file_record.path, 'r') if history > 0: content = get_history(file, history) content = [line.replace('\n','<br/>') for line in content] else: last_position = request.session.get('file_position_%s' % file_id) file.seek(0, os.SEEK_END) if last_position and last_position <= file.tell(): file.seek(last_position) for line in file: content.append('%s' % line.replace('\n','<br/>')) request.session['file_position_%s' % file_id] = file.tell() file.close() return HttpResponse(json.dumps(content), content_type='application/json') @staff_member_required def save_to_clipoard(request): LogsClipboard(name=request.POST['name'], notes=request.POST['notes'], logs=request.POST['logs'], log_file=LogFile.objects.get(id=int(request.POST['file']))).save() return HttpResponse(_('loglines_saved'), content_type='text/html')
StarcoderdataPython
59038
<gh_stars>0 """ Use zip to transpose data from a 4-by-3 matrix to a 3-by-4 matrix. There's actually a cool trick for this! Feel free to look at the solutions if you can't figure it out. """ data = ((0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11)) # 0 1 2 # 3 4 5 # 6 7 8 # 9 10 11 # # Transpose : [data]^T # # 0 3 6 9 # 1 4 7 10 # 2 5 8 11 data_transpose = tuple(zip(*data)) print(data) print(data_transpose)
StarcoderdataPython
3344677
<gh_stars>1-10 """ Analysis functions """ # Copyright (c) <NAME> # Distributed under the terms of the MIT License # author: <NAME> import numpy as np from scipy import integrate from scipy.constants import codata kb = codata.value('Boltzmann constant') ev = codata.value('electron volt') ev = -ev class OneDimensionalChargeDensity: """ The :py:class:`polypy.analysis.OneDimensionalChargeDensity` class converts one dimensional number densitie into the charge density, electric field and electrostatic potential. Args: histogram_positions (:py:attr:`array_like`): Histogram locations. atom_densities (:py:attr:`list`): List of histograms. atom_charges (:py:attr:`list`): List of atom charges. histogram_volume (:py:attr:`float`): Volume of the histograms. timesteps (:py:attr:`float`): Simulation timestep. """ def __init__(self, histogram_positions, atom_densities, atom_charges, histogram_volume, timesteps): self.histogram_positions = histogram_positions self.atom_densities = atom_densities self.atom_charges = atom_charges self.histogram_volume = histogram_volume self.timesteps = timesteps self.scale = 14.3997584 def calculate_charge_density(self): r""" Calculates the charge density in one dimension. Returns: charge_density (:py:attr:`array_like`): Charge density. """ number_density = np.column_stack((self.atom_densities)) charges = np.asarray(self.atom_charges) charge_density = np.sum(np.multiply(number_density, charges), axis=1) / self.histogram_volume return self.histogram_positions, charge_density/self.timesteps def calculate_electric_field(self): r""" Calculates the electric field. Returns: e_field (:py:attr:`array_like`): Electric field. """ rho = self.calculate_charge_density()[1] e_field = self.scale * integrate.cumtrapz(rho, self.histogram_positions, initial=0) e_field = e_field - np.mean(e_field) return self.histogram_positions, e_field def calculate_electrostatic_potential(self): r""" Calculates the electrostatic potential. Returns: potential (:py:attr:`array_like`): Electrostatic potential. """ rho = self.calculate_charge_density()[1] e_field = self.scale * integrate.cumtrapz(rho, self.histogram_positions, initial=0) e_field = e_field - np.mean(e_field) potential = -integrate.cumtrapz(e_field, self.histogram_positions, initial=0) potential = potential / self.timesteps return self.histogram_positions, potential def system_volume(data): """ Calculate the volume at each timestep and return a volume as function of time. Args: data (:py:class:`polypy.read.Trajectory`): polypy Trajectory object. Returns: volume (:py:attr:`array_like`): Volume as a function of timestep. step (:py:attr:`array_like`): Timestep. """ volume = [] step = [] for i in range(data.timesteps): volume.append((np.dot(data.lv[i][0,:] , np.cross(data.lv[i][1,:], data.lv[i][2,:] )))) step.append(i) return volume, step def conductivity(charge_carriers, volume, diff, temperature, hr): """ Calculate the ionic conductivity. Args: charge_carriers (:py:attr:`float`): Number of charge carriers. volume (:py:attr:`float`): Average cell volume. diff (:py:attr:`float`): Diffusion coefficient. temperature (:py:attr:`float`): Temperature. hr (:py:attr:`float`): Haven ratio. Returns: conductivity (:py:attr:`float`): Ionic conductivity. """ volume = volume * (10 ** -24) diff = diff * (10 ** -8) conc = charge_carriers / volume EV = ev ** 2 constants = kb * temperature conductivity = ((diff * conc) * EV) / constants return conductivity * hr def two_dimensional_charge_density(atoms_coords, atom_charges, bin_volume, timesteps): """ Calculates the charge density in two dimensions. Args: atoms_coords (:py:attr:`list`): List of atomic coordinates atom_charges (:py:attr:`list`): List of atomic charges bin_volume (:py:attr:`float`): Volume of histograms Returns: charge_density (:py:attr:`array_like`): Charge density. """ number_density = np.dstack((atoms_coords)) charges = np.asarray(atom_charges) charge_density = np.sum(np.multiply(number_density, charges), axis=2) / bin_volume return (charge_density / timesteps)
StarcoderdataPython
3230886
"""This problem was asked by Google. Given an undirected graph represented as an adjacency matrix and an integer k, write a function to determine whether each vertex in the graph can be colored such that no two adjacent vertices share the same color using at most k colors"""
StarcoderdataPython
4805962
import threading import socket from zeroconf import ServiceBrowser, ServiceStateChange, Zeroconf from cac.client.scenes.select_server.list_box import ListBox, ListBoxItem from cac.client.engine.game_object import GameObject from cac.client.engine.events import EventPropagation from cac.client.engine.curses_colour import get_colour_pair from cac.client.engine.curses_text import render_text, \ TextAlignment, VerticalTextAlignment class Server(): def __init__(self, name="", zeroconf_server_name="", address="", port=1337): self.address = address self.name = name self.zeroconf_server_name = zeroconf_server_name self.port = port class SelectAutoDiscoveryServer(GameObject): def __init__(self): super().__init__() # server auto discovery self._discovered_servers = [] self._discovered_servers_lock = threading.Lock() self._zeroconf = None self._browser = None # discovered server selection self._server_list_box = ListBox() self._server_list_box_visible = False def get_child_objects(self): if self._server_list_box_visible: return [self._server_list_box] else: return [] def process_event(self, event): return EventPropagation.propagate_forward(self._server_list_box) def update(self, delta_time): # update the listbox contents with self._discovered_servers_lock: # items self._server_list_box.items = [ ListBoxItem(srv.name, [f"{srv.address}:{srv.port}"], srv) for srv in self._discovered_servers ] # only make the listbox visible, # if there is actually something to show... self._server_list_box_visible = len(self._discovered_servers) > 0 # reposition the list box w, h = self.size self._server_list_box.position = 0, 0 self._server_list_box.size = w, h def render(self, win): w, h = self.size win.erase() colour = get_colour_pair(0, 0, 0, 1, 1, 1) win.bkgd(colour) if not self._server_list_box_visible: render_text( win, "Searching for servers...", 0, 0, w, h, alignment=TextAlignment.CENTER, valignment=VerticalTextAlignment.CENTER, text_format=colour, ) def start_discovery(self): self._zeroconf = Zeroconf() self._browser = ServiceBrowser( self._zeroconf, "_cac._tcp.local.", handlers=[self.on_service_state_change] ) def stop_discovery(self): self.zeroconf.close() def on_service_state_change(self, zeroconf, service_type, name, state_change): with self._discovered_servers_lock: # remove it self._discovered_servers = [ server for server in self._discovered_servers if server.zeroconf_server_name != name ] # add service if state_change is ServiceStateChange.Added: info = zeroconf.get_service_info(service_type, name) if info: addr = socket.inet_ntoa(info.address) port = info.port zc_name = name name = "Unnamed Server" if info.properties and b"name" in info.properties: name = info.properties[b"name"].decode("utf-8") self._discovered_servers.append( Server(name, zc_name, addr, port))
StarcoderdataPython
1701092
<gh_stars>10-100 from typing import Optional from mypy.nodes import Node from mypy.types import Instance from mypy.types import Type as MypyType from mypy.types import TypeType def get_definition(typ: MypyType, arg: str) -> Optional[Node]: """Gets definition of a type from SymbolTableNode.""" if isinstance(typ, Instance): # TODO: support Union types return _get_defition_instance(typ, arg) elif isinstance(typ, TypeType): return _get_defition_type(typ, arg) return None def _get_defition_instance(typ: Instance, arg: str) -> Optional[Node]: sym = typ.type.get(arg) return sym.node if sym is not None else None def _get_defition_type(typ: TypeType, arg: str) -> Optional[Node]: if not isinstance(typ.item, Instance): return None # it can be type var or union or etc sym = typ.item.type.get(arg) # TODO: support Union types return sym.node if sym is not None else None
StarcoderdataPython
3380299
<gh_stars>0 from sanic import Sanic, Blueprint from sanic.response import text, json app = Sanic() passing_bp = Blueprint('passing_blueprint') failing_bp = Blueprint('failing_blueprint', url_prefix='/api/failing') @passing_bp.get("/api/passing") async def get_data(request): return json({ "hello": "world", "I am working if": "you see me", "from": "the passing blueprint" }) @passing_bp.post("/api/passing") async def post_data(request): return text("POST [PASSING] - {}\n\n{}".format( request.headers, request.body )) @failing_bp.get("/") async def get_data(request): return json({ "hello": "world", "I am working if": "you see me", "from": "the failing blueprint" }) """ This is the part that is failing """ @failing_bp.post("/") async def post_data(request): return text("POST [FAILING] - {}\n\n{}".format( request.headers, request.body )) if __name__ == "__main__": app.blueprint(passing_bp) app.blueprint(failing_bp) app.run(debug=True, host="0.0.0.0", port=8000)
StarcoderdataPython
3225672
#!/usr/bin/env python from my_data import Data def main(): # Looks and feels like normal python objects objectList = [Data(1), Data(2), Data(3)] # Print them out for dataObject in objectList: print(dataObject) # Show the Mutability objectList[1].set_value(1234) print(objectList[1]) # all native objects will be deallocated on close if __name__ == "__main__": main()
StarcoderdataPython
643
from PhysicsTools.Heppy.analyzers.core.Analyzer import Analyzer from PhysicsTools.Heppy.analyzers.core.AutoHandle import AutoHandle from PhysicsTools.Heppy.physicsobjects.Tau import Tau from PhysicsTools.HeppyCore.utils.deltar import deltaR, matchObjectCollection3 import PhysicsTools.HeppyCore.framework.config as cfg class TauAnalyzer( Analyzer ): def __init__(self, cfg_ana, cfg_comp, looperName ): super(TauAnalyzer,self).__init__(cfg_ana,cfg_comp,looperName) #---------------------------------------- # DECLARATION OF HANDLES OF LEPTONS STUFF #---------------------------------------- def declareHandles(self): super(TauAnalyzer, self).declareHandles() self.handles['taus'] = AutoHandle( ('slimmedTaus',''),'std::vector<pat::Tau>') def beginLoop(self, setup): super(TauAnalyzer,self).beginLoop(setup) self.counters.addCounter('events') count = self.counters.counter('events') count.register('all events') count.register('has >=1 tau at preselection') count.register('has >=1 selected taus') count.register('has >=1 other taus') #------------------ # MAKE LEPTON LISTS #------------------ def makeTaus(self, event): event.inclusiveTaus = [] event.selectedTaus = [] event.otherTaus = [] #get all alltaus = map( Tau, self.handles['taus'].product() ) #make inclusive taus for tau in alltaus: tau.associatedVertex = event.goodVertices[0] if len(event.goodVertices)>0 else event.vertices[0] tau.lepVeto = False tau.idDecayMode = tau.tauID("decayModeFinding") tau.idDecayModeNewDMs = tau.tauID("decayModeFindingNewDMs") if hasattr(self.cfg_ana, 'inclusive_decayModeID') and self.cfg_ana.inclusive_decayModeID and not tau.tauID(self.cfg_ana.inclusive_decayModeID): continue tau.inclusive_lepVeto = False if self.cfg_ana.inclusive_vetoLeptons: for lep in event.selectedLeptons: if deltaR(lep.eta(), lep.phi(), tau.eta(), tau.phi()) < self.cfg_ana.inclusive_leptonVetoDR: tau.inclusive_lepVeto = True if tau.inclusive_lepVeto: continue if self.cfg_ana.inclusive_vetoLeptonsPOG: if not tau.tauID(self.cfg_ana.inclusive_tauAntiMuonID): tau.inclusive_lepVeto = True if not tau.tauID(self.cfg_ana.inclusive_tauAntiElectronID): tau.inclusive_lepVeto = True if tau.inclusive_lepVeto: continue if tau.pt() < self.cfg_ana.inclusive_ptMin: continue if abs(tau.eta()) > self.cfg_ana.inclusive_etaMax: continue if abs(tau.dxy()) > self.cfg_ana.inclusive_dxyMax or abs(tau.dz()) > self.cfg_ana.inclusive_dzMax: continue def id3(tau,X): """Create an integer equal to 1-2-3 for (loose,medium,tight)""" return tau.tauID(X%"Loose") + tau.tauID(X%"Medium") + tau.tauID(X%"Tight") def id5(tau,X): """Create an integer equal to 1-2-3-4-5 for (very loose, loose, medium, tight, very tight)""" return id3(tau, X) + tau.tauID(X%"VLoose") + tau.tauID(X%"VTight") def id6(tau,X): """Create an integer equal to 1-2-3-4-5-6 for (very loose, loose, medium, tight, very tight, very very tight)""" return id5(tau, X) + tau.tauID(X%"VVTight") tau.idMVA = id6(tau, "by%sIsolationMVArun2v1DBoldDMwLT") tau.idMVANewDM = id6(tau, "by%sIsolationMVArun2v1DBnewDMwLT") tau.idCI3hit = id3(tau, "by%sCombinedIsolationDeltaBetaCorr3Hits") tau.idAntiMu = tau.tauID("againstMuonLoose3") + tau.tauID("againstMuonTight3") tau.idAntiE = id5(tau, "againstElectron%sMVA6") #print "Tau pt %5.1f: idMVA2 %d, idCI3hit %d, %s, %s" % (tau.pt(), tau.idMVA2, tau.idCI3hit, tau.tauID(self.cfg_ana.tauID), tau.tauID(self.cfg_ana.tauLooseID)) if tau.tauID(self.cfg_ana.inclusive_tauID): event.inclusiveTaus.append(tau) for tau in event.inclusiveTaus: tau.loose_lepVeto = False if self.cfg_ana.loose_vetoLeptons: for lep in event.selectedLeptons: if deltaR(lep.eta(), lep.phi(), tau.eta(), tau.phi()) < self.cfg_ana.loose_leptonVetoDR: tau.loose_lepVeto = True if self.cfg_ana.loose_vetoLeptonsPOG: if not tau.tauID(self.cfg_ana.loose_tauAntiMuonID): tau.loose_lepVeto = True if not tau.tauID(self.cfg_ana.loose_tauAntiElectronID): tau.loose_lepVeto = True if tau.tauID(self.cfg_ana.loose_decayModeID) and \ tau.pt() > self.cfg_ana.loose_ptMin and abs(tau.eta()) < self.cfg_ana.loose_etaMax and \ abs(tau.dxy()) < self.cfg_ana.loose_dxyMax and abs(tau.dz()) < self.cfg_ana.loose_dzMax and \ tau.tauID(self.cfg_ana.loose_tauID) and not tau.loose_lepVeto: event.selectedTaus.append(tau) else: event.otherTaus.append(tau) event.inclusiveTaus.sort(key = lambda l : l.pt(), reverse = True) event.selectedTaus.sort(key = lambda l : l.pt(), reverse = True) event.otherTaus.sort(key = lambda l : l.pt(), reverse = True) self.counters.counter('events').inc('all events') if len(event.inclusiveTaus): self.counters.counter('events').inc('has >=1 tau at preselection') if len(event.selectedTaus): self.counters.counter('events').inc('has >=1 selected taus') if len(event.otherTaus): self.counters.counter('events').inc('has >=1 other taus') def matchTaus(self, event): match = matchObjectCollection3(event.inclusiveTaus, event.gentaus, deltaRMax = 0.5) for lep in event.inclusiveTaus: gen = match[lep] lep.mcMatchId = 1 if gen else 0 lep.genp = gen def process(self, event): self.readCollections( event.input ) self.makeTaus(event) if not self.cfg_comp.isMC: return True if hasattr(event, 'gentaus'): self.matchTaus(event) return True # Find the definitions of the tau ID strings here: # http://cmslxr.fnal.gov/lxr/source/PhysicsTools/PatAlgos/python/producersLayer1/tauProducer_cfi.py setattr(TauAnalyzer,"defaultConfig",cfg.Analyzer( class_object = TauAnalyzer, # inclusive very loose hadronic tau selection inclusive_ptMin = 18, inclusive_etaMax = 9999, inclusive_dxyMax = 1000., inclusive_dzMax = 0.4, inclusive_vetoLeptons = False, inclusive_leptonVetoDR = 0.4, inclusive_decayModeID = "decayModeFindingNewDMs", # ignored if not set or "" inclusive_tauID = "decayModeFindingNewDMs", inclusive_vetoLeptonsPOG = False, # If True, the following two IDs are required inclusive_tauAntiMuonID = "", inclusive_tauAntiElectronID = "", # loose hadronic tau selection loose_ptMin = 18, loose_etaMax = 9999, loose_dxyMax = 1000., loose_dzMax = 0.2, loose_vetoLeptons = True, loose_leptonVetoDR = 0.4, loose_decayModeID = "decayModeFindingNewDMs", # ignored if not set or "" loose_tauID = "byLooseCombinedIsolationDeltaBetaCorr3Hits", loose_vetoLeptonsPOG = False, # If True, the following two IDs are required loose_tauAntiMuonID = "againstMuonLoose3", loose_tauAntiElectronID = "againstElectronLooseMVA5" ) )
StarcoderdataPython
3242923
from flask import render_template class Emails(object): message_cls = None def __init__(self, config, message_cls, celery): if message_cls: self.message_cls = message_cls if not self.message_cls: try: from flask_emails import Message self.message_cls = Message except ImportError: pass if not self.message_cls: def send(*args, **kwargs): raise RuntimeError('No flask_emails, and message_cls is not configured') self.send = send elif celery: def send(*args, **kwargs): return self._send(*args, **kwargs) self.send_task = celery.task(send) def send_delay(name, to, context, locale=None): return self.send_task.delay(name, to, context, locale) self.send = send_delay else: self.send = self._send self.dkim_key = config.get('DKIM_KEY') if not self.dkim_key and config.get('DKIM_KEY_PATH'): self.dkim_key = open(config['DKIM_KEY_PATH']).read() self.dkim_domain = config.get('DKIM_DOMAIN') self.dkim_selector = config.get('DKIM_SELECTOR') def create(self, name, context, locale): subject_template = 'userflow/emails/{}_subject.txt'.format(name) html_template = 'userflow/emails/{}.html'.format(name) subject = render_template(subject_template, **context) html = render_template(html_template, **context) message = self.message_cls(subject=subject, html=html) if self.dkim_key: message.dkim(key=self.dkim_key, domain=self.dkim_domain, selector=self.dkim_selector) return message def _send(self, name, to, context, locale=None): message = self.create(name, context, locale) message.send(to=to)
StarcoderdataPython
1741758
#!/usr/bin/env python import os import errno from rest_framework_ccbv.config import VERSION, REST_FRAMEWORK_VERSIONS from rest_framework_ccbv.inspector import drfklasses from rest_framework_ccbv.renderers import (DetailPageRenderer, IndexPageRenderer, LandPageRenderer, ErrorPageRenderer, SitemapRenderer) def mkdir_p(path): try: os.makedirs(path) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise def main(out_folder='public'): klasses = sorted(drfklasses.values(), key=lambda x: (x.__module__, x.__name__)) for klass in drfklasses.values(): renderer = DetailPageRenderer(klasses, klass.__name__, klass.__module__) mkdir_p(os.path.join(out_folder, VERSION, klass.__module__)) renderer.render(filename=os.path.join(out_folder, VERSION, klass.__module__, klass.__name__ + '.html')) renderer = IndexPageRenderer(klasses) renderer.render(os.path.join(out_folder, VERSION, 'index.html')) if VERSION == REST_FRAMEWORK_VERSIONS[-1]: renderer = LandPageRenderer(klasses) renderer.render(os.path.join(out_folder, 'index.html')) renderer = ErrorPageRenderer(klasses) renderer.render(os.path.join(out_folder, 'error.html')) renderer = SitemapRenderer(klasses) renderer.render(os.path.join(out_folder, 'sitemap.xml')) if __name__ == '__main__': main()
StarcoderdataPython
1686835
############################################################################### # prop_mod.py ############################################################################### # # Calculate mod without numpy issue # ############################################################################### import numpy as np from tqdm import * def mod(dividends, divisor): """ return dividends (array) mod divisor (double) """ output = np.zeros(len(dividends)) for i in tqdm(range(len(dividends))): output[i] = dividends[i] done=False while (not done): if output[i] >= divisor: output[i] -= divisor elif output[i] < 0.: output[i] += divisor else: done=True return output
StarcoderdataPython
3259967
<gh_stars>10-100 from distutils.core import setup setup(name='external_library', packages=['external_library'])
StarcoderdataPython
3208933
from pulumi import export import pulumi_keycloak as keycloak realm = keycloak.Realm("new-python-realm", realm="my-example-python-realm" ) export("realm_id", realm.id)
StarcoderdataPython
3365660
from django.conf.urls import patterns, url urlpatterns = patterns('portfolio', url(r'^$', 'views.home', name="home"), url(r'^(?P<id>\d+)-(?P<slug>[-\w]+)$', 'views.project', name="project"), )
StarcoderdataPython
57599
<filename>src/manual_solve.py #!/usr/bin/python # Student Information # Student Name: <NAME> # Student ID: 17232977 # Git: https://github.com/manmayajob/ARC import os, sys import json import numpy as np import re import matplotlib.pyplot as plt ### YOUR CODE HERE: write at least three functions which solve ### specific tasks by transforming the input x and returning the ### result. Name them according to the task ID as in the three ### examples below. Delete the three examples. The tasks you choose ### must be in the data/training directory, not data/evaluation. def solve_6150a2bd(inputs): ''' In this function, numpy package to reverse the order of elements in an array, the elements are reordered but the shape is preserved. Parameters: c = ARC test list Returns: tst_rslt = returns a numpy ndarray, size of which depends on the task ''' input_array = np.array(inputs) tst_rslt = np.flip(input_array) return tst_rslt def solve_ce22a75a(inputs): ''' In this function I return a numpy array by replacing all zeros around a pattern with the corresponding pattern value. ''' tst_rslt = np.array(inputs) res = np.where(tst_rslt > 0) try: for i in list(zip(res[0], res[1])): for x in range(-1, 2): for y in range(-1, 2): if (x != 0 or y != 0): tst_rslt[i[0] - x][i[1] - y] = 1 tst_rslt[i[0]][i[1]] = 1 except IndexError: # catch the error pass #we are passing the if any point is at the corner return tst_rslt def solve_1cf80156(inputs): ''' In this function I return an numpy array by slicing the min and max value of rows and columns for the given input. ''' input_array = np.array(inputs) result = np.where(input_array > 0) column_minium = min(result[1]) column_maximum = max(result[1]) row_minimum = min(result[0]) row_maximum = max(result[0]) tst_rslt = [] for i in range(row_minimum,row_maximum + 1): for j in range(column_minium,column_maximum + 1): tst_rslt.append(input_array[i][j]) tst_rslt = np.reshape(tst_rslt,(row_maximum-row_minimum + 1,column_maximum-column_minium + 1)) return tst_rslt def main(): # Find all the functions defined in this file whose names are # like solve_abcd1234(), and run them. # regex to match solve_* functions and extract task IDs p = r"solve_([a-f0-9]{8})" tasks_solvers = [] # globals() gives a dict containing all global names (variables # and functions), as name: value pairs. for name in globals(): m = re.match(p, name) if m: # if the name fits the pattern eg solve_abcd1234 ID = m.group(1) # just the task ID solve_fn = globals()[name] # the fn itself tasks_solvers.append((ID, solve_fn)) for ID, solve_fn in tasks_solvers: # for each task, read the data and call test() directory = os.path.join("..", "data", "training") json_filename = os.path.join(directory, ID + ".json") data = read_ARC_JSON(json_filename) test(ID, solve_fn, data) def read_ARC_JSON(filepath): """Given a filepath, read in the ARC task data which is in JSON format. Extract the train/test input/output pairs of grids. Convert each grid to np.array and return train_input, train_output, test_input, test_output.""" # Open the JSON file and load it data = json.load(open(filepath)) # Extract the train/test input/output grids. Each grid will be a # list of lists of ints. We convert to Numpy. train_input = [np.array(data['train'][i]['input']) for i in range(len(data['train']))] train_output = [np.array(data['train'][i]['output']) for i in range(len(data['train']))] test_input = [np.array(data['test'][i]['input']) for i in range(len(data['test']))] test_output = [np.array(data['test'][i]['output']) for i in range(len(data['test']))] return (train_input, train_output, test_input, test_output) def test(taskID, solve, data): """Given a task ID, call the given solve() function on every example in the task data.""" print(taskID) train_input, train_output, test_input, test_output = data print("Training grids") for x, y in zip(train_input, train_output): yhat = solve(x) show_result(x, y, yhat) print("Test grids") for x, y in zip(test_input, test_output): yhat = solve(x) show_result(x, y, yhat) plt_list = train_input + test_input visualization_func(plt_list,taskID) # added to show the grid visualisation of the results def show_result(x, y, yhat): print("Input") print(x) print("Correct output") print(y) print("Our output") print(yhat) print("Correct?") if y.shape != yhat.shape: print(f"False. Incorrect shape: {y.shape} v {yhat.shape}") else: print(np.all(y == yhat)) def visualization_func(input,titlename): ''' plotting grids and emulating testing interface. Parameters: input = A list of test input and computed output. ''' for i in range(len(input)): plt.matshow(input[i]) plt.title(titlename) plt.show() if __name__ == "__main__": main()
StarcoderdataPython
3300089
#!/usr/bin/python """ This program to take the month-wise backup from PostgreSQL and store it to IBM COS. """ __author__ = "<NAME>" __copyright__ = "(c) Copyright IBM 2020" __credits__ = ["BAT DMS IBM Team"] __email__ = "<EMAIL>" __status__ = "Production" # Import the required libraries # Import the sys library to parse the arguments import sys # Import the parsing library import configparser # Import the logging library import logging import logging.config # Import pandas for parquet conversion import pandas as pd # Initialising the configparser object to parse the properties file CONFIG = configparser.ConfigParser() # Import COS library import ibm_boto3 from ibm_botocore.client import Config, ClientError # Import Postgresql library import psycopg2 # Set the logging criteria for the generated logs LOGFILENAME = '/root/postgresql-backup-to-ibmcos/logs/cos_setup.log' logging.config.fileConfig(fname='/root/postgresql-backup-ibmcos/conf/log_config.conf', defaults={'logfilename': LOGFILENAME}, disable_existing_loggers=False) # Get the logger specified in the file logger = logging.getLogger(__name__) # Specify the months along with the end date MONTHDAYS = {'jan': '31', 'feb': '28', 'mar': '31', 'apr': '30', 'may': '31', 'jun': '30', 'jul': '31', 'aug': '31', 'sep': '30', 'oct': '31', 'nov': '30', 'dec': '31'} # Specify the month as number MONTHNUMBER = {'jan': '01', 'feb': '02', 'mar': '03', 'apr': '04', 'may': '05', 'jun': '06', 'jul': '07', 'aug': '08', 'sep': '09', 'oct': '10', 'nov': '11', 'dec': '12'} def set_env(p_app_config_file): """ :param p_app_config_file: :return p_user, p_passwd, p_host, p_port, p_db, p_table, cos_endpoint, cos_api_key_id, cos_auth_endpoint, cos_resource_crn, bucket_name, path, month, year: """ p_user = None p_passwd = None p_host = None p_port = None p_db = None p_table = None cos_endpoint = None cos_api_key_id = None cos_auth_endpoint = None cos_resource_crn = None bucket_name = None path = None month = None year = None try: # Reading configuration parameters from .ini file. CONFIG.read(p_app_config_file) # PostgreSQL Username p_user = CONFIG['ApplicationParams']['p_user'] # PostgreSQL Password p_passwd = CONFIG['ApplicationParams']['p_passwd'] # PostgreSQL Hostname p_host = CONFIG['ApplicationParams']['p_host'] # PostgreSQL Port Number p_port = CONFIG['ApplicationParams']['p_port'] # PostgreSQL Database Name p_db = CONFIG['ApplicationParams']['p_db'] # PostgreSQL Table Name p_table = CONFIG['ApplicationParams']['p_table'] # IBM Cloud Object Storage (COS) endpoint cos_endpoint = CONFIG['ApplicationParams']['cos_endpoint'] # IBM COS api key id cos_api_key_id = CONFIG['ApplicationParams']['cos_api_key_id'] # IBM COS authentication endpoint cos_auth_endpoint = CONFIG['ApplicationParams']['cos_auth_endpoint'] # IBM COS resource crn cos_resource_crn = CONFIG['ApplicationParams']['cos_resource_crn'] # IBM COS bucket name bucket_name = CONFIG['ApplicationParams']['bucket_name'] """ Path of the server directory for transforming dataframes into Parquet format """ path = CONFIG['ApplicationParams']['path'] # Month for which the backup needs to be taken month = CONFIG['ApplicationParams']['month'] # Year for which the backup needs to be taken year = CONFIG['ApplicationParams']['year'] except Exception as e: raise Exception('Exception encountered in set_env() while ' 'setting up application configuration parameters.') return \ p_user, p_passwd, p_host, p_port, p_db, p_table, cos_endpoint,\ cos_api_key_id, cos_auth_endpoint, cos_resource_crn, bucket_name,\ path, month, year def extract_command_params(arguments): """ Passing arguments from command line. """ # There should be only one argument if len(arguments) != 2: raise Exception('Illegal number of arguments. ' 'Usage: python3 cos_setup.py parameter.ini') app_config_file = arguments[1] return app_config_file def create_connection( p_user, p_passwd, p_host, p_port, p_db, cos_api_key_id, cos_resource_crn, cos_auth_endpoint, cos_endpoint): global db_connection, cur, cos, cos_cli """ Function to create connections to PostgreSQL and IBM COS. :param p_user: :param p_passwd: :param p_host: :param p_port: :param p_db: :param cos_api_key_id: :param cos_resource_crn: :param cos_auth_endpoint: :param cos_endpoint: """ # Create connection to PostgreSQL db_connection = psycopg2.connect(user=p_user, password=<PASSWORD>, host=p_host, port=p_port, database=p_db) cur = db_connection.cursor() # Create resource cos = ibm_boto3.resource("s3", ibm_api_key_id=cos_api_key_id, ibm_service_instance_id=cos_resource_crn, ibm_auth_endpoint=cos_auth_endpoint, config=Config(signature_version="oauth"), endpoint_url=cos_endpoint ) # Create client cos_cli = ibm_boto3.client("s3", ibm_api_key_id=cos_api_key_id, ibm_service_instance_id=cos_resource_crn, ibm_auth_endpoint=cos_auth_endpoint, config=Config(signature_version="oauth"), endpoint_url=cos_endpoint ) def postgresql_process(p_table, event_date, filename): """ Function to copy the data into CSV files. :param p_user: :param p_passwd: :param p_host: :param p_port: :param p_db: :param p_table: """ logging.info("PostgreSQL start :") try: logging.info("=====Starting PostgreSQL Operation=====") # Open a file into write mode f_data_store = open(filename, "w") # SQL to copy the data from database to csv file copy_sql = "COPY (select * from " + p_table + " where event_date='" \ + event_date + "') TO STDOUT WITH CSV DELIMITER ',' HEADER" print("Database connection successful") cur.copy_expert(sql=copy_sql, file=f_data_store) # Closing the file f_data_store.close() logging.info("=====Ending PostgreSQL Operation=====") except Exception as e: logging.error('Exception message in main thread::::') logging.error(e) raise Exception('Exception message in main thread::::', e) def cos_insertion(bucket_name, filename, path, year, month): """ Function to transform CSV into Parquet and call upload_large_file function to upload data to IBM COS in parallel. :param bucket_name: :param filename: :param path: :param year: :param month: """ try: logging.info("=====Starting uploading file=====") # Create a dataframe holding a data df = pd.read_csv(filename, dtype='unicode') # Cast the datatype of specific column df['service_id'] = df['service_id'].astype(str) # Create a parquet file parquet_filename = filename[0:-4] + '.parquet' parquet_path = path + '/' + parquet_filename # Store the parquet file df.to_parquet(parquet_filename) month_parquet_filename = year + '/' + month + '/' + parquet_filename # Call the function to upload this parquet to IBM COS upload_large_file( cos_cli, bucket_name, month_parquet_filename, parquet_path) logging.info("=====File is uploaded=====") except Exception as e: logging.error('Exception message in main thread::::') logging.error(e) raise Exception('Exception message in main thread::::', e) def upload_large_file(cos_cli, bucket_name, item_name, file_path): """ Function to upload data to IBM COS buckets in parallel. :param cos_cli: :param bucket_name: :param item_name: :param file_path: """ print("Starting large file upload for {0} to bucket: {1}".format( item_name, bucket_name)) # set the chunk size to 5 MB part_size = 1024 * 1024 * 5 # set threadhold to 5 MB file_threshold = 1024 * 1024 * 5 # set the transfer threshold and chunk size in config settings transfer_config = ibm_boto3.s3.transfer.TransferConfig( multipart_threshold=file_threshold, multipart_chunksize=part_size ) # create transfer manager transfer_mgr = ibm_boto3.s3.transfer.TransferManager( cos_cli, config=transfer_config) try: # initiate file upload future = transfer_mgr.upload(file_path, bucket_name, item_name) # wait for upload to complete future.result() print("Large file upload complete!") except Exception as e: print("Unable to complete large file upload: {0}".format(e)) finally: transfer_mgr.shutdown() def process_data( p_user, p_passwd, p_host, p_port, p_db, p_table, cos_endpoint, cos_api_key_id, cos_auth_endpoint, cos_resource_crn, bucket_name, path, month, year): """ Function to take the backup of all dates for a month. :param p_user: :param p_passwd: :param p_host: :param p_port: :param p_db: :param p_table: :param cos_endpoint: :param cos_api_key_id: :param cos_auth_endpoint: :param cos_resource_crn: :param bucket_name: :param path: :param month: :param year: :return: """ try: logging.info("=====Starting Process=====") # Fetching month number from dictionary month_number = MONTHNUMBER[month] # Fetching days in a particular month from dictionary days = MONTHDAYS[month] if month_number == '02': # Handling leap year month if int(year) % 4 == 0 and int(year) % 100 != 0 \ or int(year) % 400 == 0: days = '29' # Calling create connection function for PostgreSQL and IBM COS create_connection( p_user, p_passwd, p_host, p_port, p_db, cos_api_key_id, cos_resource_crn, cos_auth_endpoint, cos_endpoint) for i in range(1, int(days) + 1): if len(str(i)) == 1: date = '0' + str(i) else: date = str(i) # Creating a date format event_date = year + '-' + month_number + '-' + date filename = event_date + '.csv' print(filename) # Calling the function to fetch the data postgresql_process(p_table, event_date, filename) """ Calling the function to transform the data into Parquet and store it into IBM COS """ cos_insertion(bucket_name, filename, path, year, month) logging.info("=====Finishing Process=====") # Closing PostgreSQL database connection cur.close() except Exception as e: logging.error('Exception message in main thread::::') logging.error(e) raise Exception('Exception message in main thread::::', e) def main(): """ Usage: python3 cos_setup.py parameter.ini :return: """ try: logging.info("==== Processing Started ====") # Extract command line parameters p_app_config_file = extract_command_params(sys.argv) # Set environment p_user, p_passwd, p_host, p_port, p_db, p_table, cos_endpoint, \ cos_api_key_id, cos_auth_endpoint, cos_resource_crn, bucket_name,\ path, month, year = set_env(p_app_config_file) # Process Data logging.info(cos_endpoint) logging.info(cos_api_key_id) logging.info(cos_auth_endpoint) logging.info(cos_resource_crn) process_data( p_user, p_passwd, p_host, p_port, p_db, p_table, cos_endpoint, cos_api_key_id, cos_auth_endpoint, cos_resource_crn, bucket_name, path, month, year) logging.info("==== Processing Ended ====") except Exception as e: logging.error('Exception message in main thread::::') logging.error(e) raise Exception('Exception message in main thread::::', e) if __name__ == '__main__': main() logging.shutdown()
StarcoderdataPython
3293514
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from unittest import mock from keystoneauth1 import adapter from openstack.common import tag from openstack import exceptions from openstack import resource from openstack.tests.unit import base from openstack.tests.unit.test_resource import FakeResponse class TestTagMixin(base.TestCase): def setUp(self): super(TestTagMixin, self).setUp() self.service_name = "service" self.base_path = "base_path" class Test(resource.Resource, tag.TagMixin): service = self.service_name base_path = self.base_path resources_key = 'resources' allow_create = True allow_fetch = True allow_head = True allow_commit = True allow_delete = True allow_list = True self.test_class = Test self.request = mock.Mock(spec=resource._Request) self.request.url = "uri" self.request.body = "body" self.request.headers = "headers" self.response = FakeResponse({}) self.sot = Test.new(id="id", tags=[]) self.sot._prepare_request = mock.Mock(return_value=self.request) self.sot._translate_response = mock.Mock() self.session = mock.Mock(spec=adapter.Adapter) self.session.get = mock.Mock(return_value=self.response) self.session.put = mock.Mock(return_value=self.response) self.session.delete = mock.Mock(return_value=self.response) def test_tags_attribute(self): res = self.sot self.assertTrue(hasattr(res, 'tags')) self.assertIsInstance(res.tags, list) def test_fetch_tags(self): res = self.sot sess = self.session mock_response = mock.Mock() mock_response.status_code = 200 mock_response.links = {} mock_response.json.return_value = {'tags': ['blue1', 'green1']} sess.get.side_effect = [mock_response] result = res.fetch_tags(sess) # Check tags attribute is updated self.assertEqual(['blue1', 'green1'], res.tags) # Check the passed resource is returned self.assertEqual(res, result) url = self.base_path + '/' + res.id + '/tags' sess.get.assert_called_once_with(url) def test_set_tags(self): res = self.sot sess = self.session # Set some initial value to check rewrite res.tags.extend(['blue_old', 'green_old']) result = res.set_tags(sess, ['blue', 'green']) # Check tags attribute is updated self.assertEqual(['blue', 'green'], res.tags) # Check the passed resource is returned self.assertEqual(res, result) url = self.base_path + '/' + res.id + '/tags' sess.put.assert_called_once_with( url, json={'tags': ['blue', 'green']} ) def test_remove_all_tags(self): res = self.sot sess = self.session # Set some initial value to check removal res.tags.extend(['blue_old', 'green_old']) result = res.remove_all_tags(sess) # Check tags attribute is updated self.assertEqual([], res.tags) # Check the passed resource is returned self.assertEqual(res, result) url = self.base_path + '/' + res.id + '/tags' sess.delete.assert_called_once_with(url) def test_remove_single_tag(self): res = self.sot sess = self.session res.tags.extend(['blue', 'dummy']) result = res.remove_tag(sess, 'dummy') # Check tags attribute is updated self.assertEqual(['blue'], res.tags) # Check the passed resource is returned self.assertEqual(res, result) url = self.base_path + '/' + res.id + '/tags/dummy' sess.delete.assert_called_once_with(url) def test_check_tag_exists(self): res = self.sot sess = self.session sess.get.side_effect = [FakeResponse(None, 202)] result = res.check_tag(sess, 'blue') # Check tags attribute is updated self.assertEqual([], res.tags) # Check the passed resource is returned self.assertEqual(res, result) url = self.base_path + '/' + res.id + '/tags/blue' sess.get.assert_called_once_with(url) def test_check_tag_not_exists(self): res = self.sot sess = self.session mock_response = mock.Mock() mock_response.status_code = 404 mock_response.links = {} mock_response.content = None sess.get.side_effect = [mock_response] # ensure we get 404 self.assertRaises( exceptions.NotFoundException, res.check_tag, sess, 'dummy', ) def test_add_tag(self): res = self.sot sess = self.session # Set some initial value to check add res.tags.extend(['blue', 'green']) result = res.add_tag(sess, 'lila') # Check tags attribute is updated self.assertEqual(['blue', 'green', 'lila'], res.tags) # Check the passed resource is returned self.assertEqual(res, result) url = self.base_path + '/' + res.id + '/tags/lila' sess.put.assert_called_once_with(url) def test_tagged_resource_always_created_with_empty_tag_list(self): res = self.sot self.assertIsNotNone(res.tags) self.assertEqual(res.tags, list())
StarcoderdataPython
1771652
<reponame>wu-uw/OpenCompetition<filename>src/tabular/feature_engineering/feature_generator/symbolic_learning.py # encoding:utf-8 import pandas as pd from gplearn.genetic import SymbolicTransformer from sklearn.model_selection import train_test_split class GPConfig: def __init__(self, feature_cols, target_col, generation=1000, population_size=5000, hall_of_fame=100, n_components=10, parsimony_coefficient=0.0005, max_samples=0.9): self.generation = generation self.population_size = population_size self.hall_of_fame = hall_of_fame self.n_components = n_components self.parsimony_coefficient = parsimony_coefficient self.max_samples = max_samples self.function_set = ['add', 'sub', 'mul', 'div', 'log', 'sqrt', 'abs', 'neg', 'max', 'min'] self.feature_cols = feature_cols self.target_col = target_col def get_feature_symbolic_learning(df, gp_config): """ Parameters ---------- df: pd.DataFrame,the input dataFrame. gp_config: GPConfig object, the config object of gplearn.SymbolicTransformer. Returns ------- df_t: pd.DataFrame, df with the features of SymbolicTransformer trans. The new features named like 'symbolic_component_{0 to n}'(n is the n_components) """ gp = SymbolicTransformer(generations=gp_config.generation, population_size=gp_config.population_size, hall_of_fame=gp_config.hall_of_fame, n_components=gp_config.n_components, function_set=gp_config.function_set, parsimony_coefficient=gp_config.parsimony_coefficient, max_samples=gp_config.max_samples, verbose=1, random_state=0, n_jobs=3) X = df[gp_config.feature_cols] y = df[gp_config.target_col] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=True) gp.fit(X_train, y_train) names = ["symbolic_component_" + str(i) for i in range(gp_config.n_components)] res = pd.DataFrame(gp.transform(X),columns=names) df_t = pd.concat([df,res],axis=1) return df_t
StarcoderdataPython
3310261
<gh_stars>1-10 """ LeetCode Problem: 1239. Maximum Length of a Concatenated String with Unique Characters Link: https://leetcode.com/problems/maximum-length-of-a-concatenated-string-with-unique-characters/ Language: Python Written by: <NAME> """ class Solution: def maxLength(self, arr: List[str]) -> int: def isUnique(string): if len(string) == len(set(string)): return True else: return False def helper(arr, comb, start): if isUnique(comb): self.ans = max(self.ans, len(comb)) else: # has duplicates return for i in range(start, len(arr)): helper(arr, comb + arr[i], i + 1) self.ans = 0 helper(arr, '', 0) return self.ans
StarcoderdataPython
1723624
<gh_stars>1-10 #!/usr/bin/env python3 actions = { "delete-alarms", "describe-alarm-history", "describe-alarms", "describe-alarms-for-metric", "disable-alarm-actions", "enable-alarm-actions", "get-metric-statistics", "list-metrics", "put-metric-alarm", "put-metric-data", "set-alarm-state" }
StarcoderdataPython
183590
<filename>src/api/models/article/author.py from ..base import BaseModel from ..href import HrefModel class AuthorModel(BaseModel): def init(self): self.add_property('name') self.add_model_property('link', HrefModel)
StarcoderdataPython
182104
<filename>alexber/utils/deploys.py """ This module is usable in your deployment script. See also `fabs` module. See here https://medium.com/analytics-vidhya/my-ymlparsers-module-88221edf16a6 for documentation. This module depends on some 3-rd party dependencies, in order to use it, you should have installed first. To do it run `python3 -m pip install alex-ber-utils[yml]`. """ from collections import OrderedDict from pathlib import Path from collections import deque try: import alexber.utils.ymlparsers as ymlparsers except ImportError: pass from .init_app_conf import merge_list_value_in_dicts, conf from .parsers import is_empty, parse_sys_args def split_path(filename, split_dirname): """ Split filename in 2 part parts by split_dirname. first_part will ends with split_dirname. second_part will start immediately after split_dirname. if split_dirname is not in filename or split_dirname is None, the behaviour is undefined. if split_dirname exists twice in the path, the last one will be used for splitting. :param filename: path to filename, can be relative or absolute. :param split_dirname: directory name in filename that will be used to split the path :return: (first_part, second_part) - such that first_part+second_part is absolute path. """ if split_dirname is None: raise FileNotFoundError("can't split on None") parts = Path(filename).parts split_dirname = str(split_dirname) if split_dirname not in parts: raise FileNotFoundError(f"{split_dirname} is not found in {filename}") length = len(parts) use = False second_parts = deque(maxlen=length) first_parts = deque(maxlen=length) for part in reversed(parts): if part == split_dirname: use = True if use: first_parts.appendleft(part) else: second_parts.appendleft(part) return Path(*first_parts), Path(*second_parts) def add_to_zip_copy_function(split_dirname=None, zf=None): """ Factory method that returns closure that can be used as copy_function param in shutil.copytree() :param split_dirname: path from this directory and below will be used in archive. :param zf: zipfile.ZipFile :return: """ def add_to_zip_file(src,dst): """ Closure that can be used as copy_function param in shutil.copytree() shutil.copytree() is used to add from src to archive with entries evaluted according to split_dirname. :param src: soource file to use in entry in archive :param dst: ignored, see split_dirname in enclused function :return: """ _, last_parts = split_path(src, split_dirname) dest_path = Path(split_dirname) / last_parts zf.write(str(src), str(dest_path)) return add_to_zip_file def load_config(argumentParser=None, args=None): """ Simplified method for parsing yml configuration file with optionally overrided profiles only. See alexber.utils.init_app_conf.parse_config() for another variant. :param argumentParser with instruction how to interpret args. If None, the default one will be instantiated. :param args: if not None will be used instead of sys.argv :return: """ if ymlparsers.HiYaPyCo.jinja2ctx is None: raise ValueError("ymlparsers.HiYaPyCo.jinja2ctx can't be None") params, sys_d = parse_sys_args(argumentParser, args) config_file = params.config_file full_path = Path(config_file).resolve() # relative to cwd with ymlparsers.DisableVarSubst(): default_d = ymlparsers.load([str(full_path)]) profiles = merge_list_value_in_dicts(sys_d, default_d, conf.GENERAL_KEY, conf.PROFILES_KEY) b = is_empty(profiles) if not b: # merge to default_d general_d = default_d.setdefault(conf.GENERAL_KEY, OrderedDict()) general_d[conf.PROFILES_KEY] = profiles return full_path, default_d
StarcoderdataPython
1679324
# -*- coding: utf-8 -*- """ Created on Thu Jul 05 13:47:52 2018 @author: a002028 """ import pandas as pd class AttributeDict(dict): """Base class for attribute dictionaries.""" def __init__(self): """Initialize.""" super().__init__() def _add_arrays_to_entries(self, **entries): """Add arrays as attributes to self.""" for key, array in entries.items(): # TODO Check if array is needed if only one value setattr(self, key, array) def add_entries(self, **entries): """Turn elements in arrays into attributes with a corresponding official field name.""" for key, array in entries.items(): setattr(self, key, key) setattr(self, key.lower(), key) if isinstance(array, pd.core.series.Series): array = array.values for value in array: if not pd.isnull(value): setattr(self, value, key) setattr(self, value.lower(), key) def add_entries_from_keylist(self, data, from_combo_keys=None, from_synonyms=None, to_key=''): """Create mapping attributes for ShipMapping(). Args: data (dict): from_combo_keys (list): list of keys from_synonyms (list): list of keys to_key (str): """ from_combo_keys = from_combo_keys or [] from_synonyms = from_synonyms or [] for i, value in enumerate(data[to_key]): setattr(self, value, value) if any(from_combo_keys): setattr(self, ''.join([data[key][i].zfill(2) for key in from_combo_keys]), value) if any(from_synonyms): for key in from_synonyms: setattr(self, data[key][i], value) setattr(self, data[key][i].upper(), value) def keys(self): """Return list of keys from self attributes.""" return list(self.__dict__.keys()) def get(self, key): """Get attribute from self using key.""" try: return getattr(self, key) except AttributeError: try: return getattr(self, key.lower()) except Exception: if '[' in key: try: key = key.split('[')[0].strip() return getattr(self, key.lower()) except Exception: # print('No mapping found for key: ' + key) return key else: # print('No mapping found for key: ' + key) return key def get_list(self, key_list): """Get list of values from self attributes based on key_list.""" return [self.get(key) for key in key_list] def get_mapping_dict(self, key_list): """Get dictionary from self attributes based on key_list.""" return dict([(key, self.get(key)) for key in key_list]) def __getitem__(self, key): """Get item from self. If not key exists return None""" return getattr(self, key) class ParameterMapping(AttributeDict): """Load file to map data fields and parameters to a standard setting format.""" def __init__(self): """Initialize.""" super().__init__() def map_parameter_list(self, para_list, ext_list=False): """Return mapped parameter list. Args: para_list (list): list of parameters ext_list (bool): False or True, NotImplemented """ return self.get_list(para_list) def get_parameter_mapping(self, para_list, ext_list=False): """Get a dictionary with mapped parameters from the given para_list.""" return self.get_mapping_dict(para_list) class ShipMapping(AttributeDict): """Load file to map 2sign-cntry and 2sign-shipc to 4sign-shipc (ICES / SMHI).""" def __init__(self): """Initialize.""" super().__init__() def map_cntry_and_shipc(self, cntry=None, shipc=None): """Get SHIP code (according to standard of ICES).""" return self.get(cntry + shipc) def map_shipc(self, cntry_shipc): """Map SHIP code (according to standard of ICES).""" return self.get(cntry_shipc)
StarcoderdataPython
3208804
from imagedt.decorator import time_cost import cv2 as cv def brg2rgb(image): (r, g, b) = cv.split(image) return cv.merge([b, g, r]) def orb_detect(image_source, image_aim): orb = cv.ORB_create() kp1, des1 = orb.detectAndCompute(image_source, None) kp2, des2 = orb.detectAndCompute(image_aim, None) bf = cv.BFMatcher(cv.NORM_HAMMING, crossCheck=True) matches = bf.match(des1, des2) matches = sorted(matches, key=lambda x: x.distance) image_result = cv.drawMatches(image_source, kp1, image_aim, kp2, matches[:100], None) return brg2rgb(image_result) @time_cost def sift_detect(image_1, image_2, detector='surf'): if detector.startswith('si'): print("sift detector....") surf = cv.xfeatures2d.SURF_create() else: print("surf detector.......") surf = cv.xfeatures2d.SURF_create() kp1, des1 = surf.detectAndCompute(image_1, None) kp2, des2 = surf.detectAndCompute(image_2, None) bf = cv.BFMatcher() matches = bf.knnMatch(des1, des2, k=2) good = [[m] for m, n in matches if m.distance < 0.5 * n.distance] image_3 = cv.drawMatchesKnn(image_1, kp1, image_2, kp2, good, None, flags=2) return image_3 # return brg2rgb(image_3) if __name__ == '__main__': image_a = cv.imread("image/source_image.jpg") image_b = cv.imread("image/aim_image2.jpg") image = sift_detect(image_a, image_b) image = cv.resize(image, (1280, 720), interpolation=cv.INTER_CUBIC) cv.imshow("result", image) cv.waitKey(0) cv.destroyAllWindows() # plt.imshow(image) # plt.show()
StarcoderdataPython
1666593
<reponame>lucasw/imgui_ros # Copyright 2018 <NAME> import launch import launch_ros.actions import os import yaml from ament_index_python.packages import get_package_share_directory def generate_launch_description(): # image_manip_dir = get_package_share_directory('image_manip') # print('image_manip dir ' + image_manip_dir) launches = [] node_name = 'imgui_ros' params = dict( name = 'imgui_ros demo', width = 1000, height = 800, ) node = launch_ros.actions.Node( package='imgui_ros', node_executable='imgui_ros_node', output='screen', node_name=node_name, # arguments=[image_manip_dir + "/data/mosaic.jpg"]) # arguments=['__params:=' + param_file], parameters=[params], remappings=[]) launches.append(node) node = launch_ros.actions.Node( package='imgui_ros', node_executable='graph.py', output='screen') launches.append(node) if False: node = launch.actions.IncludeLaunchDescription( launch.launch_description_sources.PythonLaunchDescriptionSource( get_package_share_directory('imgui_ros') + '/launch/shaders_launch.py')) launches.append(node) node = launch_ros.actions.Node( package='imgui_ros', node_executable='pub_shape.py', output='screen', ) launches.append(node) node = launch_ros.actions.Node( package='imgui_ros', node_executable='cameras.py', output='screen', ) launches.append(node) return launch.LaunchDescription(launches)
StarcoderdataPython