id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
3222786
def showBits(n): l=[] for i in range (32): r=n%2 l.append(r) n //=2 l.reverse() return l
StarcoderdataPython
3356913
<reponame>ejuarez007/IncidentesVialesCDMX<filename>Classes.py import pandas as pd from dataclasses import dataclass from decorators import open_close_connection @dataclass class Datos(): path:str def read_data(self,sep=","): data = pd.read_csv(self.path, sep=sep) return data def unique_values(self,data,column): values = data[column].unique() return values def get_values(self, dataframe, column): valid_columns = ['dia_semana', 'mes_cierre', 'delegacion_inicio'] if column in valid_columns: agg_values = dataframe.gropby(column).agg({'folio':'count'}) values = agg_values.to_dict() else: values = [] return @dataclass class ClaseMongo(): JSON:str db_name:str column_name: str @open_close_connection def find(self,conn): response = list(conn.DBMongoTG.collection_prueba[self.db_name][self.column_name].find(self.JSON)) response = pd.DataFrame(response) return response @open_close_connection def insert(self,conn=None): conn.DBMongoTG.collection_prueba.insert(self.JSON) @open_close_connection def update(self,JSET, conn=None): conn.DBMongoTG.collection_prueba.update(self.JSON,{"$set":JSET})
StarcoderdataPython
3348230
<filename>pdf_manager/core/main.py import argparse import sys from typing import List from colorama import init from pdf_manager.budget import create_budget from pdf_manager.concat import concat_pdfs _LS = List[str] __all__ = ['main'] def _parse_args(args: _LS = None) -> argparse.Namespace: """ArgumentParser designed for this application. Args: args (List[str]): list of arguments. Returns: argparse.Namespace: arguments processed. """ if args is None: args = sys.argv[1:] parser = argparse.ArgumentParser('PDF') parser.add_argument('--exclude', type=str, default=None, metavar='pattern', help='regex pattern to exclude documents') subparsers = parser.add_subparsers(title='commands', dest='command') subparsers.required = True # TODO: add help for each argument and each parser budget = subparsers.add_parser('budget') budget.add_argument('--path', type=str, default='./') budget.add_argument('--price', type=float, default=0.03) concat = subparsers.add_parser('concat') concat.add_argument('--output', type=str, default='compact_pdf.pdf') concat.add_argument('--no_open', action='store_false') concat.add_argument('--path', type=str, default='./') opt = parser.parse_args(args) if 'output' in opt: if opt.output.endswith('.pdf') is False: opt.output = opt.output + '.pdf' return opt def main(): """Main function.""" opt = _parse_args() init() if opt.command == 'budget': return create_budget(path=opt.path, price_per_sheet=opt.price, exclude=opt.exclude) elif opt.command == 'concat': return concat_pdfs(path=opt.path, output=opt.output, open_files=opt.no_open, exclude=opt.exclude) else: raise exit('Unknown error') if __name__ == '__main__': main()
StarcoderdataPython
1636037
import unittest from program.hr import ( payroll_system, get_policy, calculate_payroll, DisabilityPolicy, ) from program.employees import employee_database class TestHr(unittest.TestCase): employee_db = employee_database employee_list = employee_db.employees() system = payroll_system def test_get_policy(self): result = [] for e in self.employee_list: result.append(get_policy(e.identification)) self.assertIsNotNone(result) def test_get_policy_with_bad_input(self): with self.assertRaises(ValueError): get_policy(0) def test_calculate_payroll(self): result = calculate_payroll(self.employee_list) self.assertIsNone(result) class TestDisabilityPolicy(unittest.TestCase): def test_DisabilityPolicy_without_base_policy(self): with self.assertRaises(RuntimeError): disability = DisabilityPolicy() disability.track_work(40) employee_db = employee_database employee_list = employee_db.employees() sales_employee = employee_list[2] disability = DisabilityPolicy() sales_employee.apply_payroll_policy(disability) def test_track_work(self): result = self.disability.track_work(40) self.assertIsNone(result) def test_calculate_payroll(self): result = self.disability.calculate_payroll() self.assertEqual(result, 360.0)
StarcoderdataPython
86500
import unittest.mock as mock from urllib.parse import quote as param_encoder from django.urls import reverse from django.core.exceptions import ImproperlyConfigured from rest_framework import status from api.models import PublicDataset, Workspace, Resource from api.tests.base import BaseAPITestCase from api.tests import test_settings class PublicDataListTests(BaseAPITestCase): def setUp(self): self.url = reverse('public-dataset-list') self.establish_clients() self.all_public_datasets = PublicDataset.objects.all() if len(self.all_public_datasets) == 0: raise ImproperlyConfigured('Need at least one active public dataset to' ' run this test properly.' ) self.all_active_datasets = [x for x in self.all_public_datasets if x.active] if len(self.all_active_datasets) == 0: raise ImproperlyConfigured('Need at least one active public dataset to' ' run this test properly.' ) def test_list_requires_auth(self): """ Test that general requests to the endpoint generate 401 """ response = self.regular_client.get(self.url) self.assertTrue((response.status_code == status.HTTP_401_UNAUTHORIZED) | (response.status_code == status.HTTP_403_FORBIDDEN)) response = self.authenticated_regular_client.get(self.url) self.assertTrue((response.status_code == status.HTTP_200_OK)) self.assertTrue(len(response.json()) == len(self.all_active_datasets)) class PublicDataDetailsTests(BaseAPITestCase): ''' Tests focused around the ability to query a specific public dataset. ''' def setUp(self): self.all_public_datasets = PublicDataset.objects.all() if len(self.all_public_datasets) == 0: raise ImproperlyConfigured('Need at least one active public dataset to' ' run this test properly.' ) self.all_active_datasets = [x for x in self.all_public_datasets if x.active] if len(self.all_active_datasets) == 0: raise ImproperlyConfigured('Need at least one active public dataset to' ' run this test properly.' ) # grab the first active dataset to use in the tests below self.test_active_dataset = self.all_active_datasets[0] self.url = reverse('public-dataset-details', kwargs={'dataset_id': self.test_active_dataset.index_name} ) self.establish_clients() def test_requires_auth(self): """ Test that general requests to the endpoint generate 401 """ response = self.regular_client.get(self.url) self.assertTrue((response.status_code == status.HTTP_401_UNAUTHORIZED) | (response.status_code == status.HTTP_403_FORBIDDEN)) response = self.authenticated_regular_client.get(self.url) self.assertTrue((response.status_code == status.HTTP_200_OK)) def test_returns_expected_details(self): response = self.authenticated_regular_client.get(self.url) self.assertTrue((response.status_code == status.HTTP_200_OK)) response_json = response.json() self.assertTrue(response_json['index_name'] == self.test_active_dataset.index_name) print(response_json) def test_inactive_instance_returns_404(self): ''' If the details are requested on an inactive dataset, return a 404 ''' # check that we have an inactive dataset first: dataset_tag = 'public-baz' pd = PublicDataset.objects.get(index_name = dataset_tag) self.assertFalse(pd.active) url = reverse('public-dataset-details', kwargs={'dataset_id': dataset_tag} ) response = self.authenticated_regular_client.get(url) self.assertTrue((response.status_code == status.HTTP_404_NOT_FOUND)) class PublicDataQueryTests(BaseAPITestCase): ''' Tests focused around the ability to query public datasets. ''' def setUp(self): self.all_public_datasets = PublicDataset.objects.all() if len(self.all_public_datasets) == 0: raise ImproperlyConfigured('Need at least one active public dataset to' ' run this test properly.' ) self.all_active_datasets = [x for x in self.all_public_datasets if x.active] if len(self.all_active_datasets) == 0: raise ImproperlyConfigured('Need at least one active public dataset to' ' run this test properly.' ) # grab the first active dataset to use in the tests below self.test_active_dataset = self.all_active_datasets[0] self.url = reverse('public-dataset-query', kwargs={'dataset_id': self.test_active_dataset.index_name} ) self.establish_clients() @mock.patch('api.views.public_dataset.query_dataset') def test_call_format(self, mock_query_dataset): ''' Test that the proper request is made ''' query_str = 'q=*:*&facet.field=foo&facet=on' encoded_str = 'q=%2A%3A%2A&facet.field=foo&facet=on' url = self.url + '?' + query_str mock_response_json = {'a':1, 'b':2} mock_query_dataset.return_value = mock_response_json response = self.authenticated_admin_client.get(url) mock_query_dataset.assert_called_with(self.test_active_dataset.index_name, encoded_str) class PublicDataCreateTests(BaseAPITestCase): ''' Tests focused around the ability to create public datasets. ''' def setUp(self): self.establish_clients() self.all_public_datasets = PublicDataset.objects.all() if len(self.all_public_datasets) == 0: raise ImproperlyConfigured('Need at least one active public dataset to' ' run this test properly.' ) self.all_active_datasets = [x for x in self.all_public_datasets if x.active] if len(self.all_active_datasets) == 0: raise ImproperlyConfigured('Need at least one active public dataset to' ' run this test properly.' ) # grab the first active dataset to use in the tests below self.test_active_dataset = self.all_active_datasets[0] self.url = reverse('public-dataset-create', kwargs={'dataset_id': self.test_active_dataset.index_name} ) def test_requires_auth(self): """ Test that general requests to the endpoint generate 401 """ response = self.regular_client.post(self.url) self.assertTrue((response.status_code == status.HTTP_401_UNAUTHORIZED) | (response.status_code == status.HTTP_403_FORBIDDEN)) @mock.patch('api.views.public_dataset.create_dataset_from_params') def test_error_to_add_resource_reported(self, mock_create_dataset_from_params): ''' If something goes wrong in the api.views.public_dataset.create_dataset_from_params function, we return a 400 and report it. ''' # this is the payload we want passed to the function. # the full request will have this AND the workspace payload = {'samples': [1,2,3]} # mock the failure: mock_create_dataset_from_params.side_effect = Exception('something bad!') response = self.authenticated_regular_client.post( self.url, data=payload, format='json') self.assertTrue(response.status_code == status.HTTP_400_BAD_REQUEST) @mock.patch('api.views.public_dataset.create_dataset_from_params') def test_missing_filter_creates_null_filter(self, mock_create_dataset_from_params): ''' Assume that the request payload was valid so that the api.views.public_dataset.create_dataset_from_params function returns an api.models.Resource instance. Here, test that we add that resource to the workspace and return a 201 ''' payload = {} # this is the new resource that is mock-created new_resource = Resource.objects.create( owner = self.regular_user_1, path = '/some/dummy_path/file.tsv', name = 'foo.tsv' ) mock_create_dataset_from_params.return_value = [new_resource,] # finally, call the endpoint response = self.authenticated_regular_client.post( self.url, data=payload, format='json') self.assertTrue(response.status_code == status.HTTP_201_CREATED) mock_create_dataset_from_params.assert_called_with( self.test_active_dataset.index_name, self.regular_user_1, None, '' ) j = response.json() self.assertTrue(j[0]['name'] == 'foo.tsv') @mock.patch('api.views.public_dataset.create_dataset_from_params') def test_adds_new_resource_to_workspace_case1(self, mock_create_dataset_from_params): ''' Assume that the request payload was valid so that the api.views.public_dataset.create_dataset_from_params function returns a list of api.models.Resource instances. Here, test that we add that resource to the workspace and return a 201. No output name for the dataset is provided ''' # this is the payload we want passed to the function. # the full request will have this AND the workspace payload = {'filters': {'a':1}} # below, we check that the workspace key gets stripped # from the call to the creation method new_resource = Resource.objects.create( owner = self.regular_user_1, path = '/some/dummy_path/file.tsv', name = 'foo.tsv' ) mock_create_dataset_from_params.return_value = [new_resource,] # finally, call the endpoint response = self.authenticated_regular_client.post( self.url, data=payload, format='json') self.assertTrue(response.status_code == status.HTTP_201_CREATED) # below, we check that the workspace key gets stripped # from the call to the creation method mock_create_dataset_from_params.assert_called_with( self.test_active_dataset.index_name, self.regular_user_1, payload['filters'], '' ) j = response.json() # j is a list of resource instances. We expect only one: self.assertTrue(j[0]['name'] == 'foo.tsv') @mock.patch('api.views.public_dataset.create_dataset_from_params') def test_adds_new_resource_to_workspace_case2(self, mock_create_dataset_from_params): ''' Assume that the request payload was valid so that the api.views.public_dataset.create_dataset_from_params function returns a list of api.models.Resource instances. Here, test that we add that resource to the workspace and return a 201. Here, we pass a name for the dataset ''' # this is the payload we want passed to the function. # the full request will have this AND the workspace output_name = 'foo' payload = {'filters': {'a':1}, 'output_name': output_name} # below, we check that the workspace key gets stripped # from the call to the creation method new_resource = Resource.objects.create( owner = self.regular_user_1, path = '/some/dummy_path/file.tsv', name = 'foo.tsv' ) mock_create_dataset_from_params.return_value = [new_resource,] # finally, call the endpoint response = self.authenticated_regular_client.post( self.url, data=payload, format='json') self.assertTrue(response.status_code == status.HTTP_201_CREATED) # below, we check that the workspace key gets stripped # from the call to the creation method mock_create_dataset_from_params.assert_called_with( self.test_active_dataset.index_name, self.regular_user_1, payload['filters'], output_name ) j = response.json() # j is a list of resource instances. We expect only one: self.assertTrue(j[0]['name'] == 'foo.tsv') @mock.patch('api.views.public_dataset.create_dataset_from_params') def test_rejects_malformatted_filter(self, mock_create_dataset_from_params): ''' Test that if a 'filter' key is provided and it is not parsed as a dict, then we reject ''' payload = { 'filters': 'abc' } response = self.authenticated_regular_client.post( self.url, data=payload, format='json') self.assertTrue(response.status_code == status.HTTP_400_BAD_REQUEST)
StarcoderdataPython
33729
import os import subprocess class TestTasks: """ Test that the tasks work with invoke. """ CMD_KWARGS = dict( capture_output=True, encoding="utf-8", shell=True, env=os.environ.copy(), ) def test_unapproved_licenses(self): """ Should emit table of unapproved licenses. """ reply = subprocess.run("poetry run invoke license.unapproved-licenses", **self.CMD_KWARGS) output = reply.stdout # assumes we require pylint and pylint is GPL and that's on our unapproved list assert "pylint" in output assert "GNU General Public License" in output def test_write_table(self): """ Should emit a table of licenses used. """ reply = subprocess.run("poetry run invoke license.write-table --outfile='-'", **self.CMD_KWARGS) output = reply.stdout # assumes we require coverage and at least one package we depend on is Apache licensed assert 'coverage' in output assert 'Apache Software License' in output
StarcoderdataPython
72205
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import plugins.basetypes import plugins.session import plugins.auditlog import os import yaml """ Settings API end point for CLC""" async def process(server: plugins.basetypes.Server, session: plugins.session.SessionObject, indata: dict) -> dict: if session and (session.credentials or server.config.debug.open_server): repo = indata.get("repo", '') assert ".." not in repo, "Invalid path specified" assert "~" not in repo, "Invalid path specified" excludes = indata.get("excludes") bad_words = indata.get("words") excludes_context = indata.get("excludes_context", []) ymlfile = os.path.join(server.config.dirs.scratch, repo, "_clc.yaml") if os.path.exists(ymlfile): yml = yaml.safe_load(open(ymlfile)) if not isinstance(bad_words, dict): return { "okay": False, "message": "Word list must be dictionary, word: context", } if not isinstance(excludes, list): return { "okay": False, "message": "Excludes list must by an array of exclude globs", } if not isinstance(excludes_context, list): return { "okay": False, "message": "Excludes context list must by an array of exclude regexes", } yml["bad_words"] = bad_words yml["excludes"] = excludes yml["excludes_context"] = excludes_context yaml.dump(yml, open(ymlfile, "w")) server.data.projects[repo].mtimes[ymlfile] = os.stat(ymlfile).st_mtime plugins.auditlog.log_entry(session, f"Changed project settings for {repo} ({ymlfile})") return { "okay": True, "message": "Settings saved. Please wait for next scan for it to apply.", } else: return { "okay": False, "message": "No such project", } else: return { "okay": False, "message": "You need to be logged in to access this endpoint", } def register(server: plugins.basetypes.Server): return plugins.basetypes.Endpoint(process)
StarcoderdataPython
3283519
<gh_stars>0 # -*- coding: utf-8 -*- from __future__ import division import os import sys from setuptools import setup DIR = os.path.abspath(os.path.dirname(__file__)) sys.path.append(os.path.join(DIR, "extern", "pybind11")) from pybind11.setup_helpers import ParallelCompile, Pybind11Extension # noqa: E402 del sys.path[-1] # Use the environment variable CMAKE_BUILD_PARALLEL_LEVEL to control parallel builds ParallelCompile("CMAKE_BUILD_PARALLEL_LEVEL").install() cxx_std = int(os.environ.get("CMAKE_CXX_STANDAR", "14")) SRC_FILES = [ "src/module.cpp", "src/register_accumulators.cpp", "src/register_algorithm.cpp", "src/register_axis.cpp", "src/register_histograms.cpp", "src/register_storage.cpp", "src/register_transforms.cpp", ] INCLUDE_DIRS = [ "include", "extern/assert/include", "extern/config/include", "extern/core/include", "extern/histogram/include", "extern/mp11/include", "extern/throw_exception/include", "extern/variant2/include", ] ext_modules = [ Pybind11Extension( "boost_histogram._core", SRC_FILES, include_dirs=INCLUDE_DIRS, cxx_std=cxx_std, extra_compile_args=["/d2FH4-"] if sys.platform.startswith("win32") else [], ) ] extras = { "test": ["pytest", "pytest-benchmark", "typing_extensions", "cloudpickle"], "docs": [ "Sphinx~=3.0", "recommonmark>=0.5.0", "sphinx_book_theme==0.38.0", "nbsphinx", "sphinx_copybutton", ], "examples": ["matplotlib", "xarray", "xhistogram", "netCDF4", "numba", "uproot3"], "dev": ["ipykernel", "typer"], } extras["all"] = sum(extras.values(), []) extras["dev"] += extras["test"] setup(ext_modules=ext_modules, extras_require=extras)
StarcoderdataPython
3236444
<gh_stars>10-100 from pyamf.adapters import register_adapter def when_imported(mod): """ This function is called immediately after mymodule has been imported. It configures PyAMF to encode a list when an instance of mymodule.CustomClass is encountered. """ import pyamf pyamf.add_type(mod.CustomClass, lambda obj: list(obj)) register_adapter('mymodule', when_imported)
StarcoderdataPython
4843020
from django.core.management.base import BaseCommand from django.core.management import call_command from django.core.mail.message import EmailMessage from django.conf import settings from wildlifelicensing.apps.returns.models import Return import datetime from zipfile import ZipFile import os class Command(BaseCommand): help = 'Run the Returns Report' def handle(self, *args, **options): dt = datetime.date(2018,1,1) filename1 = f'returns_report_reg17_{datetime.datetime.now().strftime("%Y%m%d")}.csv' with open(filename1, "w") as f: hdr = 'LODGEMENT_NUMBER|*|LICENCE REFERENCE|*|LODGEMENT_DATE|*|STATUS|*|RETURN_NAME|*|DATE|*|FATE|*|SITE|*|ZONE|*|COUNT|*|DATUM|*|METHOD|*|EASTING|*|MARKING|*|NAME_ID|*|SAMPLES|*|ACCURACY|*|LATITUDE|*|LOCATION|*|NORTHING|*|CERTAINTY|*|LONGITUDE|*|IDENTIFIER|*|COMMON_NAME|*|TRANSMITTER|*|VOUCHER_REF|*|SPECIES_NAME|*|SPECIES_GROUP\n' f.write(hdr) for ret in Return.objects.filter(returntable__name__in=['regulation-17'], lodgement_date__gt=dt): for return_table in ret.returntable_set.all(): for return_row in return_table.returnrow_set.all(): data = "|*|".join(str(val) for val in return_row.data.values()) line = f'{ret.lodgement_number}|*|{ret.licence.reference}|*|{ret.lodgement_date}|*|{ret.status}|*|{return_table.name}|*|{data}\n' #print(ret.lodgement_number, ret.lodgement_date, ret.status, return_table.name, data) f.write(line) filename2 = f'returns_report_reg15_{datetime.datetime.now().strftime("%Y%m%d")}.csv' with open(filename2, "w") as f: hdr = 'LODGEMENT_NUMBER|*|LICENCE REFERENCE|*|LODGEMENT_DATE|*|STATUS|*|RETURN_NAME|*|COMMENTS|*|NUMBER TAKEN|*|CONDITION WHEN CAPTURED|*|DATE COLLECTED/DESTROYED|*|DATE RELEASED|*|LOCATION RELEASED|*|SPECIES|*|LOCATION COLLECTED\n' f.write(hdr) for ret in Return.objects.filter(returntable__name__in=['regulation-15'], lodgement_date__gt=dt): for return_table in ret.returntable_set.all(): for return_row in return_table.returnrow_set.all(): data = "|*|".join(str(val) for val in return_row.data.values()) line = f'{ret.lodgement_number}|*|{ret.licence.reference}|*|{ret.lodgement_date}|*|{ret.status}|*|{return_table.name}|*|{data}\n' #print(ret.lodgement_number, ret.lodgement_date, ret.status, return_table.name, data) f.write(line) filename_zip = f'returns_reports_{datetime.datetime.now().strftime("%Y%m%d")}.zip' with ZipFile(filename_zip, 'w') as zipObj: # Add multiple files to the zip zipObj.write(filename1) zipObj.write(filename2) email = EmailMessage() email.subject = 'Wildlife Licensing Returns Report' email.body = 'Wildlife Licensing Returns Report' email.from_email = settings.EMAIL_FROM email.to = settings.REPORTS_EMAIL if isinstance(settings.REPORTS_EMAIL, list) else [settings.REPORTS_EMAIL] email.attach_file(filename_zip) res = email.send() # cleanup os.remove(filename1) os.remove(filename2) os.remove(filename_zip)
StarcoderdataPython
44485
from flask import url_for from tests.conftest import normalize_spaces def test_set_inbound_sms_sets_a_number_for_service( logged_in_client, mock_add_sms_sender, multiple_available_inbound_numbers, service_one, fake_uuid, mock_no_inbound_number_for_service, mocker ): mocker.patch('app.service_api_client.update_service_with_properties') data = { "inbound_number": "781d9c60-7a7e-46b7-9896-7b045b992fa5", } response = logged_in_client.post( url_for('main.service_set_inbound_number', service_id=service_one['id']), data=data ) assert response.status_code == 302 mock_add_sms_sender.assert_called_once_with( service_one['id'], sms_sender="781d9c60-7a7e-46b7-9896-7b045b992fa5", is_default=True, inbound_number_id="781d9c60-7a7e-46b7-9896-7b045b992fa5" ) def test_set_inbound_sms_when_no_available_inbound_numbers( client_request, service_one, no_available_inbound_numbers, mock_no_inbound_number_for_service, mocker ): page = client_request.get( 'main.service_set_inbound_number', service_id=service_one['id'] ) assert normalize_spaces(page.select_one('main p').text) == "No available inbound numbers" def test_set_inbound_sms_when_service_already_has_sms( client_request, service_one, multiple_available_inbound_numbers, mock_get_inbound_number_for_service, ): page = client_request.get( 'main.service_set_inbound_number', service_id=service_one['id'] ) assert normalize_spaces(page.select_one('main p').text) == "This service already has an inbound number"
StarcoderdataPython
38903
#45-crie um programa que faça o computador jogar jokenpo com voce. print('=====JOKENPO=====') print('') from random import randint from time import sleep itens = ('pedra','papel','tesoura') computador = randint(0, 2) print('''FAÇA SUA ESCOLHA [ 0 ] pedra [ 1 ] papel [ 2 ] tesoura ''') jogador = int(input('Qual a sua jogada ? ')) print('JO') sleep(1) print('KEN') sleep(1) print('PO') sleep(1) print('computador jogou {}.'.format(itens[computador])) print('jogador jogou {}.'.format(itens[jogador])) if computador == 0: #computador jogou pedra if jogador == 0: print('EMPATE') elif jogador == 1: print('JOGADOR VENCE') elif jogador == 2: print('COMPUTADOR VENCE') else: print('jogada invalida') elif computador == 1: #computador jogou papel if jogador == 0: print('COMPUTADOR VENCE') elif jogador == 1: print('EMPATE') elif jogador == 2: print('JOGADOR VENCE') else: print('jogada invalida') elif computador == 2: #computador jogou tesoura if jogador == 0: print('JOGADOR VENCE') elif jogador == 1: print('COMPUTADOR VENCE') elif jogador == 2: print('EMPATE') else: print('jogada invalida') #FIM//A\\
StarcoderdataPython
198984
from validation.types.type_validation import ( ValidationType, ValidationTypeError ) from uontypes.scalars.uon_uint import UonUint class UintTypeValidation(ValidationType): def validate_type(self, input_): if (not isinstance(input_, UonUint)): raise ValidationTypeError("The following input {} type " "does not correspond to " "unsigned int".format(input_)) def __repr__(self): return "UintTypeValidation()" def __str__(self): return "!uint" def to_binary(self): """Binary representation of unsigned integer type validation. b"\x30" corresponds to uint type in UON. Returns: bytes: binary representation of uint type validation """ return b"\x30"
StarcoderdataPython
3288912
# Generated by Django 4.0 on 2022-03-20 13:41 import django.core.validators from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('accounts', '0001_initial'), ] operations = [ migrations.CreateModel( name='Profile', fields=[ ('first_name', models.CharField(max_length=30, validators=[django.core.validators.MinLengthValidator(2)])), ('last_name', models.CharField(max_length=30, validators=[django.core.validators.MinLengthValidator(2)])), ('picture', models.URLField()), ('date_of_birth', models.DateTimeField(blank=True, null=True)), ('email', models.EmailField(blank=True, max_length=254, null=True)), ('gender', models.CharField(blank=True, choices=[('Male', 'Male'), ('Female', 'Female'), ('Do not show', 'Do not show')], default='Do not show', max_length=11, null=True)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, primary_key=True, serialize=False, to='accounts.petstagramuser')), ], ), ]
StarcoderdataPython
126097
<gh_stars>0 # https://zulko.github.io/moviepy/examples/star_worms.html
StarcoderdataPython
1659207
<filename>Main.py import YellScraper scraper = YellScraper.Scraper() scraper.setKeyword('Restaurant') scraper.setLocation('Old+Street%2C+ec1v') scraper.start() print 'Done... Exiting'
StarcoderdataPython
3211518
<gh_stars>1-10 from http.server import BaseHTTPRequestHandler, HTTPServer from json import * port = 8081 class TestServer(BaseHTTPRequestHandler): def _set_headers(self): self.send_response(200) self.send_header('Content-type', 'text/json') self.end_headers() @staticmethod def is_request_valid(data): """ Determines if request data is valid; it needs to have: * either property "command" or property "distance" * only acceptable value if "command" is "stop" * "distance" needs to be array of length 3 containing only ints/floats :param data: request data as dictionary :return: True or False """ if len(data) != 1: return False if 'command' in data and data['command'] == 'stop': return True if 'distance' not in data: return False has_correct_length = len(data['distance']) == 3 has_correct_type = all(isinstance(n, float) or isinstance(n, int) for n in data['distance']) if has_correct_length and has_correct_type: return True return False def do_GET(self): self.send_response(200) self.send_header('Content-type', 'text/html') self.end_headers() self.wfile.write( # return HTML redirect bytes('<strong>Server is running!</strong>', 'utf-8')) def do_POST(self): content_length = int(self.headers['Content-Length']) request = self.rfile.read(content_length) try: json = loads(request.decode()) if self.is_request_valid(json): self.send_response(200) reply = {"success": json} else: self.send_response(400) reply = {"invalid request data": json} except JSONDecodeError as e: self.send_response(400) reply = {"error": str(e)} self._set_headers() self.wfile.write(dumps(reply).encode()) def run(): server_address = ('', port) server = HTTPServer(server_address, TestServer) print(f'Running test server on port {port}...') server.serve_forever() run()
StarcoderdataPython
22116
"""Some debugging functions for working with the Scrapy engine""" # used in global tests code from time import time # noqa: F401 def get_engine_status(engine): """Return a report of the current engine status""" tests = [ "time()-engine.start_time", "engine.has_capacity()", "len(engine.downloader.active)", "engine.scraper.is_idle()", "engine.spider.name", "engine.spider_is_idle(engine.spider)", "engine.slot.closing", "len(engine.slot.inprogress)", "len(engine.slot.scheduler.dqs or [])", "len(engine.slot.scheduler.mqs)", "len(engine.scraper.slot.queue)", "len(engine.scraper.slot.active)", "engine.scraper.slot.active_size", "engine.scraper.slot.itemproc_size", "engine.scraper.slot.needs_backout()", ] checks = [] for test in tests: try: checks += [(test, eval(test))] except Exception as e: checks += [(test, f"{type(e).__name__} (exception)")] return checks def format_engine_status(engine=None): checks = get_engine_status(engine) s = "Execution engine status\n\n" for test, result in checks: s += f"{test:<47} : {result}\n" s += "\n" return s def print_engine_status(engine): print(format_engine_status(engine))
StarcoderdataPython
3225577
# -*- coding: utf-8 -*- """ Survey_traverseAdjustment.py *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = '<NAME>' __date__ = '2019-11-17' __copyright__ = '(C) 2019, <NAME>' from PyQt5.QtCore import QCoreApplication, QVariant from qgis.core import (QgsProcessing, QgsFeatureSink, QgsProcessingException, QgsProcessingAlgorithm, QgsProcessingParameterFeatureSource, QgsProcessingParameterFeatureSink, QgsProcessingParameterString, QgsProcessingParameterPoint, QgsProcessingParameterNumber, QgsProcessingParameterCrs, QgsProcessingParameterFileDestination, QgsFields, QgsField, QgsWkbTypes, QgsFeature, QgsGeometry, QgsPointXY, QgsPoint, QgsApplication ) from numpy import radians, arctan, pi, sin, cos, matrix, sqrt, degrees, array, diag, ones, zeros, floor from numpy.linalg import norm, pinv, inv from lftools.geocapt.imgs import Imgs from lftools.geocapt.topogeo import * import os from qgis.PyQt.QtGui import QIcon class TraverseAdjustment(QgsProcessingAlgorithm): A = 'A' B = 'B' Y = 'Y' Z = 'Z' DIST = 'DIST' ANGS = 'ANGS' DIST_PREC = 'DIST_PREC' PPM = 'PPM' ANGS_PREC = 'ANGS_PREC' CRS = 'CRS' OUTPUT = 'OUTPUT' HTML = 'HTML' rho = 180*3600/pi LOC = QgsApplication.locale()[:2] def translate(self, string): return QCoreApplication.translate('Processing', string) def tr(self, *string): # Traduzir para o portugês: arg[0] - english (translate), arg[1] - português if self.LOC == 'pt': if len(string) == 2: return string[1] else: return self.translate(string[0]) else: return self.translate(string[0]) def createInstance(self): return TraverseAdjustment() def name(self): return 'traverseadjustment' def displayName(self): return self.tr('Traverse adjustment', 'Poligonal enquadrada') def group(self): return self.tr('Survey', 'Agrimensura') def groupId(self): return 'survey' def tags(self): return self.tr('survey,agrimensura,polygonal,adjustment,total,station,angle,least square').split(',') def icon(self): return QIcon(os.path.join(os.path.dirname(os.path.dirname(__file__)), 'images/total_station.png')) txt_en = 'This algorithm performs the traverse adjustments of a framed polygonal by least squares method, where the distances, angles, and directions observations are adjusted simultaneously, providing the most probable values for the given data set. Futhermore, the observations can be rigorously weighted based on their estimated errors and adjusted accordingly.' txt_pt = 'Este algoritmo realiza o ajustamento de poligonal enquadrada pelo método dos mínimos quadrados, onde as observações de distâncias, ângulos e direções são ajustadas simultaneamente, fornecendo os valores mais prováveis para o conjunto de dados. Além disso, as observações podem ser rigorosamente ponderadas considerando os erros estimados e ajustados.' figure = 'images/tutorial/survey_traverse.jpg' def shortHelpString(self): social_BW = Imgs().social_BW nota_en = '''Note: Sample data obtained from class notes of the Geodetic Survey discipline at UFPE. ''' nota_pt = '''Nota: Dados de exemplo obtidos das notas de aula da disciplina de Levantamento Geodésicos na UFPE. ''' footer = '''<div align="center"> <img src="'''+ os.path.join(os.path.dirname(os.path.dirname(__file__)), self.figure) +'''"> </div> <div align="right"> <div>''' + self.tr(nota_en, nota_pt) + ''' ''' +'</a><br><b>'+ self.tr('Author: <NAME>', 'Autor: <NAME>')+'''</b> </p>'''+ social_BW + '''</div> </div>''' return self.tr(self.txt_en, self.txt_pt) + footer def initAlgorithm(self, config=None): # INPUT self.addParameter( QgsProcessingParameterPoint( self.A, self.tr('A: first (E,N) coordinates','A: 1º ponto (E,N)'), defaultValue = QgsPointXY(150000, 250000) ) ) self.addParameter( QgsProcessingParameterPoint( self.B, self.tr('B: second (E,N) coordinates','B: 2º ponto (E,N)'), defaultValue = QgsPointXY(149922.119, 249875.269) ) ) self.addParameter( QgsProcessingParameterPoint( self.Y, self.tr('Y: penultimate (E,N) coordinates', 'Y: penúltimo ponto (E,N)'), defaultValue = QgsPointXY(150347.054, 249727.281) ) ) self.addParameter( QgsProcessingParameterPoint( self.Z, self.tr('Z: final (E,N) coordinates', 'Z: último ponto (E,N)'), defaultValue = QgsPointXY(150350.201, 249622.000) ) ) self.addParameter( QgsProcessingParameterString( self.DIST, self.tr('List of Horizontal Distances (m)', 'Lista de Distâncias Horizontais (m)'), defaultValue = '110.426, 72.375, 186.615, 125.153, 78.235, 130.679, 110.854', multiLine = True ) ) self.addParameter( QgsProcessingParameterString( self.ANGS, self.tr('List of Angles', 'Lista de Ângulos'), defaultValue = '''75°23'34", 202°4'36", 56°51'15", 283°31'32", 242°57'31", 185°5'12", 94°11'35", 266°13'20" ''', multiLine = True ) ) self.addParameter( QgsProcessingParameterNumber( self.DIST_PREC, self.tr('Initial distance precision (mm)', 'Precisão linear inicial (mm)'), type = 1, defaultValue = 3 ) ) self.addParameter( QgsProcessingParameterNumber( self.PPM, self.tr('PPM distance precision', 'Precisão linear em PPM'), type = 1, defaultValue = 3 ) ) self.addParameter( QgsProcessingParameterNumber( self.ANGS_PREC, self.tr('Angular precision (seconds)', 'Precisão angular (em segundos)'), type = 1, defaultValue = 10 ) ) self.addParameter( QgsProcessingParameterCrs( self.CRS, self.tr('CRS','SRC'), 'ProjectCrs')) # OUTPUT self.addParameter( QgsProcessingParameterFeatureSink( self.OUTPUT, self.tr('Adjusted Points', 'Pontos da Poligonal') ) ) self.addParameter( QgsProcessingParameterFileDestination( 'HTML', self.tr('Report of the closed traverse', 'Relatório de ajuste da Poligonal'), self.tr('HTML files (*.html)') ) ) # F(Xo) para distâncias: def F_X_d(self, pnts, B, Y): F_X = [[sqrt((B[0]-pnts[0][0])**2 + (B[1]-pnts[0][1])**2)]] for k in range(len(pnts)-1): x1 = pnts[k][0] y1 = pnts[k][1] x2 = pnts[k+1][0] y2 = pnts[k+1][1] F_X += [[sqrt((x1-x2)**2 + (y1-y2)**2)]] F_X += [[sqrt((Y[0]-pnts[-1][0])**2 + (Y[1]-pnts[-1][1])**2)]] return F_X # F(Xo) para ângulos: def F_X_a(self, pnts, A, B, Y, Z): pnts2 = [B] + pnts + [Y] # leitura do ângulo no sentido horário F_X = [[3600*degrees(DifAz(azimute(QgsPointXY(B[0], B[1]), QgsPointXY(A[0], A[1]))[0], azimute(QgsPointXY(B[0], B[1]),QgsPointXY(pnts[0][0], pnts[0][1]))[0]))]] for k in range(len(pnts2)-2): pnt0 = QgsPointXY(pnts2[k][0], pnts2[k][1]) pnt1 = QgsPointXY(pnts2[k+1][0], pnts2[k+1][1]) pnt2 = QgsPointXY(pnts2[k+2][0], pnts2[k+2][1]) F_X += [[3600*degrees(DifAz(azimute(pnt1,pnt0)[0], azimute(pnt1, pnt2)[0]))]] F_X += [[3600*degrees(DifAz(azimute(QgsPointXY(Y[0], Y[1]), QgsPointXY(pnts2[-2][0], pnts2[-2][1]))[0], azimute(QgsPointXY(Y[0], Y[1]), QgsPointXY(Z[0], Z[1]))[0]))]] return F_X def Jacobiana_d(self, pnts, B, Y, n_d, n_par): Jac = zeros([n_d, n_par]) pnts2 = [B] + pnts + [Y] for k in range(n_d): I = pnts2[k] J = pnts2[k+1] IJ = norm(array(J) - array(I)) linha = [(I[0]-J[0])/IJ, (I[1]-J[1])/IJ, (J[0]-I[0])/IJ, (J[1]-I[1])/IJ] if k == 0: Jac[k, 0:2] = linha[2:] elif k < (n_d-1): Jac[k, (2*k-2):(2*k-2 + 4)] = linha else: Jac[k, (2*k-2):(2*k-2 + 2)] = linha[:2] return list(Jac) def Jacobiana_a(self, pnts, A, B, Y, Z, n_angs, n_par): Jac = zeros([n_angs, n_par]) pnts2 = [A, B] + pnts + [Y, Z] for k in range(n_angs): B = pnts2[k] I = pnts2[k+1] F = pnts2[k+2] IB = norm(array(B) - array(I)) IF = norm(array(F) - array(I)) linha = [(I[1]-B[1])/IB**2, (B[0]-I[0])/IB**2, (B[1]-I[1])/IB**2 - (F[1]-I[1])/IF**2, (I[0]-B[0])/IB**2 - (I[0]-F[0])/IF**2, (F[1]-I[1])/IF**2, (I[0]-F[0])/IF**2] linha = list(self.rho*array(linha)) if n_par > 2: if k == 0: Jac[k, 0:2] = linha[4:] elif k==1: Jac[k, 0:4] = linha[2:] elif k < (n_angs-2): Jac[k, (2*k-4):(2*k-4 + 6)] = linha elif k == n_angs-2: Jac[k, (2*k-4):(2*k-4 + 4)] = linha[:4] else: Jac[k, (2*k-4):(2*k-4 + 2)] = linha[:2] else: if k == 0: Jac[0, 0:2] = linha[4:] elif k == 1: Jac[1, 0:2] = linha[2:4] elif k == 2: Jac[2, 0:2] = linha[:2] return list(Jac) def processAlgorithm(self, parameters, context, feedback): A = self.parameterAsPoint( parameters, self.A, context ) A = [A.x(), A.y()] B = self.parameterAsPoint( parameters, self.B, context ) B = [B.x(), B.y()] Y = self.parameterAsPoint( parameters, self.Y, context ) Y = [Y.x(), Y.y()] Z = self.parameterAsPoint( parameters, self.Z, context ) Z = [Z.x(), Z.y()] d = self.parameterAsString( parameters, self.DIST, context ) d = String2NumberList(d) #feedback.pushInfo('Distances list: ' + str(d)) angs = self.parameterAsString( parameters, self.ANGS, context ) angs = String2StringList(angs) #feedback.pushInfo('Angles list: ' + str(angs)) lista = [] for ang in angs: lista += [3600*float(dms2dd(ang))] angs = lista dist_precision = self.parameterAsDouble( parameters, self.DIST_PREC, context ) dist_precision *= 1e-3 # milimeter to meters ppm = self.parameterAsDouble( parameters, self.PPM, context ) ppm *= 1e-6 # ppm ang_precision = self.parameterAsDouble( parameters, self.ANGS_PREC, context ) CRS = self.parameterAsCrs( parameters, self.CRS, context ) if CRS.isGeographic(): raise QgsProcessingException(self.tr('The output CRS must be Projected!', 'O SRC da camada de saída deve ser Projetado!')) # OUTPUT Fields = QgsFields() Fields.append(QgsField('id', QVariant.Int)) GeomType = QgsWkbTypes.Point (sink, dest_id) = self.parameterAsSink( parameters, self.OUTPUT, context, Fields, GeomType, CRS ) if sink is None: raise QgsProcessingException(self.invalidSinkError(parameters, self.OUTPUT)) html_output = self.parameterAsFileOutput( parameters, self.HTML, context ) # Precisões sd_d = list(dist_precision + array(d)*ppm) sd_a = list(ang_precision*ones(len(angs))) # Observações Lb = matrix(d + angs).reshape([len(d)+len(angs),1]) # Cálculo de aproximações inicias Xo = [] pnts = [] Az0 = azimute(QgsPointXY(B[0], B[1]), QgsPointXY(A[0], A[1]))[0] p0 = B for k in range(len(d)-1): ang = pi/2 - Az0 - radians(angs[k]/3600) # leitura do ângulo no sentido horário x = p0[0] + d[k]*cos(ang) y = p0[1] + d[k]*sin(ang) Xo += [[x], [y]] pnts += [(x, y)] Az0 = -pi/2 - ang p0 = (x, y) pnts_ini = pnts # Cálculo do Erro de Fechamento Linear ang = pi/2 - Az0 - radians(angs[-2]/3600) x = p0[0] + d[-1]*cos(ang) y = p0[1] + d[-1]*sin(ang) Y_ = (x, y) Erro = array(Y_)-array(Y) feedback.pushInfo('Linear closure error: ' + str(round(norm(array(Y_)-array(Y)),4)) + ' m') feedback.pushInfo('E and N errors: ' + str((round(Erro[0],4),round(Erro[1],4))) + ' m') # Cálculo do Erro de Azimute Az0 = azimute(QgsPointXY(B[0], B[1]), QgsPointXY(A[0], A[1]))[0] for k in range(len(angs)): ang = pi/2 - Az0 - radians(angs[k]/3600) # leitura do ângulo no sentido horário Az = pi/2 - ang Az0 = Az -pi if Az<0 or Az>2*pi: if (Az<0): Az=Az+2*pi else: Az=Az-2*pi feedback.pushInfo('Angular closure error: ' + str(round(3600*(degrees(Az - azimute(QgsPointXY(Y[0], Y[1]), QgsPointXY(Z[0], Z[1]))[0])),2)) + ' sec') # Dados para matrix jacobiana n_par = len(pnts)*2 n_d = len(d) n_angs = len(angs) n_obs = n_d + n_angs # Matriz Peso P = matrix(diag(array(sd_d + sd_a)**(-2))) # Cálculo iterativo das Coordenadas (Parâmetros) cont = 0 cont_max = 10 tol = 1e-4 while cont < cont_max: F_Xo = self.F_X_d(pnts, B, Y) + self.F_X_a(pnts, A, B, Y, Z) J = matrix(list(self.Jacobiana_d(pnts, B, Y, n_d, n_par)) + list(self.Jacobiana_a(pnts, A, B, Y, Z, n_angs, n_par))) L = matrix(Lb - F_Xo) delta = pinv(J.T*P*J)*J.T*P*L Xa = array(Xo) + array(delta) cont += 1 #print('Iteração:', cont, '\ncoord:', Xa.T, '\ndelta:', delta.T) feedback.pushInfo('Iteração: ' + str( cont) + '\nCoord: ' + str(Xa.T) + '\nDelta:' + str(delta.T)) if max(abs(delta))[0,0] > tol: Xo = Xa pnts = [] for k in range(int(len(Xo)/2)): pnts += [(float(Xo[2*k][0]), float(Xo[2*k+1][0]))] else: break # Resíduos V = Lb - F_Xo # Sigma posteriori n = len(Lb) # número de observações u = len(Xa) # número de parâmetros sigma2 = V.T*P*V/(n-u) # Observações Ajustadas (La) La = Lb + V # MVC de Xa SigmaXa = sigma2[0,0]*pinv(J.T*P*J) # MVC de La SigmaLa = J*SigmaXa*J.T # MVC de Lb var_priori = 1.0 SigmaLb = var_priori*inv(P) # MVC dos resíduos SigmaV = SigmaLa + SigmaLb feature = QgsFeature() total = 100.0 /len(pnts) if len(pnts) else 0 for current, pnt in enumerate(pnts): geom = QgsGeometry(QgsPoint(float(pnt[0]), float(pnt[1]))) feature.setGeometry(geom) feature.setAttributes([current+1]) sink.addFeature(feature, QgsFeatureSink.FastInsert) if feedback.isCanceled(): break feedback.setProgress(int(current * total)) # Relatório tabela1 = '''<tr style=""> <td style="border: 1pt solid windowtext; padding: 0cm 5.4pt; width: 39.3pt;" valign="top" width="52"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><i>[EST]</i><o:p></o:p></p> </td> <td style="border-style: solid solid solid none; border-color: windowtext windowtext windowtext -moz-use-text-color; border-width: 1pt 1pt 1pt medium; padding: 0cm 5.4pt; width: 46.05pt;" valign="top" width="61"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><i>[E]</i><o:p></o:p></p> </td> <td style="border-style: solid solid solid none; border-color: windowtext windowtext windowtext -moz-use-text-color; border-width: 1pt 1pt 1pt medium; padding: 0cm 5.4pt; width: 46.05pt;" valign="top" width="61"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><span style="font-style: italic;">[N]</span><o:p></o:p></p> </td> </tr> ''' tabela2 = '''<tr style=""> <td style="border: 1pt solid windowtext; padding: 0cm 5.4pt; width: 39.3pt;" valign="top" width="52"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><i>[EST]</i><o:p></o:p></p> </td> <td style="border-style: solid solid solid none; border-color: windowtext windowtext windowtext -moz-use-text-color; border-width: 1pt 1pt 1pt medium; padding: 0cm 5.4pt; width: 46.05pt;" valign="top" width="61"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><i>[E]</i><o:p></o:p></p> </td> <td style="border-style: solid solid solid none; border-color: windowtext windowtext windowtext -moz-use-text-color; border-width: 1pt 1pt 1pt medium; padding: 0cm 5.4pt; width: 46.05pt;" valign="top" width="61"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><span style="font-style: italic;">[N]</span><o:p></o:p></p> </td> <td style="text-align: center;"><i>&nbsp;[S_E]&nbsp;</i></td> <td style="text-align: center;"><i>&nbsp;[S_N]&nbsp;</i></td> </tr> ''' tabela3 = '''<tr style=""> <td style="border-style: none solid solid; border-color: -moz-use-text-color windowtext windowtext; border-width: medium 1pt 1pt; padding: 0cm 5.4pt; width: 84.9pt;" valign="top" width="113"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><span style="" >[obs]<o:p></o:p></span></p> </td> <td style="border-style: none solid solid none; border-color: -moz-use-text-color windowtext windowtext -moz-use-text-color; border-width: medium 1pt 1pt medium; padding: 0cm 5.4pt; width: 84.95pt;" valign="top" width="113"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><span style="" >[r]<o:p></o:p></span></p> </td> <td style="border-style: none solid solid none; border-color: -moz-use-text-color windowtext windowtext -moz-use-text-color; border-width: medium 1pt 1pt medium; padding: 0cm 5.4pt; width: 117.6pt;" valign="top" width="157"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><span style="" >[adj_obs]<o:p></o:p></span></p> </td> <td style="border-style: none solid solid none; border-color: -moz-use-text-color windowtext windowtext -moz-use-text-color; border-width: medium 1pt 1pt medium; padding: 0cm 5.4pt; width: 102.05pt;" valign="top" width="136"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><span style="" >[sd]<o:p></o:p></span></p> </td> </tr> ''' texto = '''<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <meta content="text/html; charset=ISO-8859-1" http-equiv="content-type"> <title>'''+ self.tr('Traverse Adjustment Report', 'Relatório de Ajuste de Poligonal') + '''</title> <link rel = "icon" href = "https://github.com/LEOXINGU/lftools/blob/main/images/lftools.png?raw=true" type = "image/x-icon"> </head> <body style="color: rgb(0, 0, 0); background-color: rgb(255, 255, 204);" alink="#000099" link="#000099" vlink="#990099"> <p class="MsoNormal" style="text-align: center;" align="center"><b><span style="font-size: 12pt; line-height: 107%;">''' + self.tr('TRAVERSE ADJUSTMENT', 'POLIGONAL ENQUADRADA') + '''<o:p></o:p></span></b></p> <p class="MsoNormal" style="text-align: center;" align="center"><span style="font-style: italic;">''' + self.tr('Method of Least Squares', str2HTML('Método dos Mínimos Quadrados')) + '''</span></p> <p class="MsoNormal" style="text-align: center;" align="center"><b><u>''' + self.tr('REPORT', str2HTML('RELATÓRIO')) + '''<o:p></o:p></u></b></p> <div align="center"> <table style="text-align: center; width: 100%;" border="1" cellpadding="0" cellspacing="0"> <tbody> <tr> <td width="50%"><b><span style="" >'''+ self.tr('Initial approximation', str2HTML('Aproximação Incial')) + '''</span></b></td> <td width="50%"><b><span style="" >'''+ self.tr('Adjusted Coordinates', 'Coordenadas Ajustadas') + '''<o:p></o:p></span></b></td> </tr> <tr> <td style="text-align: center;"> <div align="center"> <table class="MsoTableGrid" style="border: medium none ; border-collapse: collapse;" border="1" cellpadding="0" cellspacing="0"> <tbody> <tr style=""> <td style="border: 1pt solid windowtext; padding: 0cm 5.4pt; width: 39.3pt;" valign="top" width="52"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><i>'''+self.tr('Station', str2HTML('Estação')) + '''</i><o:p></o:p></p> </td> <td style="border-style: solid solid solid none; border-color: windowtext windowtext windowtext -moz-use-text-color; border-width: 1pt 1pt 1pt medium; padding: 0cm 5.4pt; width: 46.05pt;" valign="top" width="61"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><span style="font-style: italic;">E</span><o:p></o:p></p> </td> <td style="border-style: solid solid solid none; border-color: windowtext windowtext windowtext -moz-use-text-color; border-width: 1pt 1pt 1pt medium; padding: 0cm 5.4pt; width: 46.05pt;" valign="top" width="61"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><span style="font-style: italic;">N</span><o:p></o:p></p> </td> </tr> [TABLE 1] </tbody> </table> </div> </td> <td style="text-align: center;"> <div align="center"></br> <table class="MsoTableGrid" style="border: medium none ; border-collapse: collapse;" border="1" cellpadding="0" cellspacing="0"> <tbody> <tr style=""> <td style="border: 1pt solid windowtext; padding: 0cm 5.4pt; width: 39.3pt;" valign="top" width="52"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><i>'''+self.tr('Station', str2HTML('Estação')) + '''</i><o:p></o:p></p> </td> <td style="border-style: solid solid solid none; border-color: windowtext windowtext windowtext -moz-use-text-color; border-width: 1pt 1pt 1pt medium; padding: 0cm 5.4pt; width: 46.05pt;" valign="top" width="61"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><span style="font-style: italic;">E</span><o:p></o:p></p> </td> <td style="border-style: solid solid solid none; border-color: windowtext windowtext windowtext -moz-use-text-color; border-width: 1pt 1pt 1pt medium; padding: 0cm 5.4pt; width: 46.05pt;" valign="top" width="61"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><span style="font-style: italic;">N</span><o:p></o:p></p> </td> <td style="text-align: center;">&nbsp; &sigma;<span style="font-style: italic;">E &nbsp;</span></td> <td style="text-align: center;">&nbsp; &sigma;<span style="font-style: italic;">N &nbsp;</span></td> </tr> [TABLE 2] </tbody> </table> <i><span style="" >''' + self.tr('Posteriori variance', str2HTML('Variância a posteriori')) + '''</span></i><span style="" >:&nbsp;</span><span style="" >&nbsp;<span style="color: red;">[sigma2]</span></span> </div> </td> </tr> <tr> <td colspan="2" rowspan="1"><b><span style="" >''' + self.tr('Observations', str2HTML('Observações')) + '''<o:p></o:p></span></b></td> </tr> <tr> <td colspan="2" rowspan="1" style="text-align: center;"> &nbsp; <div align="center"> <table class="MsoTableGrid" style="border: medium none ; width: 389.5pt; border-collapse: collapse;" border="1" cellpadding="0" cellspacing="0" width="519"> <tbody> <tr style=""> <td style="border: 1pt solid windowtext; padding: 0cm 5.4pt; width: 84.9pt;" valign="top" width="113"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><span style="" >''' + self.tr('Observation', str2HTML('Observação')) + '''<o:p></o:p></span></p> </td> <td style="border-style: solid solid solid none; border-color: windowtext windowtext windowtext -moz-use-text-color; border-width: 1pt 1pt 1pt medium; padding: 0cm 5.4pt; width: 84.95pt;" valign="top" width="113"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><span style="" >''' + self.tr('Residual', str2HTML('Resíduo')) + '''<o:p></o:p></span></p> </td> <td style="border-style: solid solid solid none; border-color: windowtext windowtext windowtext -moz-use-text-color; border-width: 1pt 1pt 1pt medium; padding: 0cm 5.4pt; width: 117.6pt;" valign="top" width="157"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><span style="" >''' + self.tr('Adjusted Observation', str2HTML('Observação Ajustada')) + '''<o:p></o:p></span></p> </td> <td style="border-style: solid solid solid none; border-color: windowtext windowtext windowtext -moz-use-text-color; border-width: 1pt 1pt 1pt medium; padding: 0cm 5.4pt; width: 102.05pt;" valign="top" width="136"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: center; line-height: normal;" align="center"><span style="" >''' + self.tr('Standard Deviation', str2HTML('Desvio Padrão')) + '''<o:p></o:p></span></p> </td> </tr> [TABLE 3] </tbody> </table></br> </div> </td> </tr> </tbody> </table> <p class="MsoNormal" style="text-align: left;" align="left"><i><span style="font-size: 10pt; line-height: 100%; color: rgb(127, 127, 127);">''' + self.tr(str2HTML('*The unit of measurement of the adjusted coordinates is the same as the input coordinates.'), str2HTML('*A unidade de medida das coordenadas ajustadas é a mesma da coordenadas de entrada.')) + '''<o:p></o:p></span></i></p> </div> <footer"> <p class="MsoNormal" style="margin-bottom: 0.0001pt; text-align: right;" align="right"><b>''' + self.tr('<NAME>', str2HTML('<NAME>')) + ''' </br>''' + self.tr('Cartographic Engineer', 'Eng. Cart&oacute;grafo') + '''<o:p></o:p></b></p> </br> <div align="right">'''+ Imgs().social_table_color + ''' </div> <o:p></o:p></b></p> </footer> </body> </html> ''' # Aproximação inicial cont = 0 table1 = '' for k, pnt in enumerate(pnts_ini): X = pnt[0] Y = pnt[1] cont += 1 tableRowN = tabela1 itens = { '[EST]' : str(k+1), '[E]': self.tr('{:,.3f}'.format(X), '{:,.3f}'.format(X).replace(',', 'X').replace('.', ',').replace('X', '.')), '[N]': self.tr('{:,.3f}'.format(Y), '{:,.3f}'.format(Y).replace(',', 'X').replace('.', ',').replace('X', '.')), } for item in itens: tableRowN = tableRowN.replace(item, itens[item]) table1 += tableRowN # Ajustamento cont = 0 table2 = '' SD = SigmaXa.diagonal() for k in range(len(pnts_ini)): X = Xa[2*k, 0] Y = Xa[2*k+1, 0] sdx = sqrt(SD[0, 2*k]) sdy = sqrt(SD[0, 2*k+1]) cont += 1 tableRowN = tabela2 itens = { '[EST]' : str(k+1), '[E]': self.tr('{:,.3f}'.format(X), '{:,.3f}'.format(X).replace(',', 'X').replace('.', ',').replace('X', '.')), '[N]': self.tr('{:,.3f}'.format(Y), '{:,.3f}'.format(Y).replace(',', 'X').replace('.', ',').replace('X', '.')), '[S_E]': self.tr('{:,.3f}'.format(sdx), '{:,.3f}'.format(sdx).replace(',', 'X').replace('.', ',').replace('X', '.')), '[S_N]': self.tr('{:,.3f}'.format(sdy), '{:,.3f}'.format(sdy).replace(',', 'X').replace('.', ',').replace('X', '.')), } for item in itens: tableRowN = tableRowN.replace(item, itens[item]) table2 += tableRowN # Observações table3 = '' SD = SigmaLa.diagonal() for k in range(n_d): # Distâncias obs = Lb[k, 0] adj_obs = La[k, 0] sd = sqrt(SD[0, k]) r = V[k, 0] cont += 1 tableRowN = tabela3 itens = { '[obs]' : str(round(obs,3)), '[r]': str(round(r,4)), '[adj_obs]': str(round(adj_obs,3)), '[sd]': str(round(sd,3)) } for item in itens: tableRowN = tableRowN.replace(item, itens[item]) table3 += tableRowN for t in range(k+1, k+1+ n_angs): # Ângulos obs = Lb[t, 0] adj_obs = La[t, 0] sd = sqrt(SD[0, t]) r = V[t, 0] cont += 1 tableRowN = tabela3 itens = { '[obs]' : str2HTML(dd2dms(obs/3600,3)), '[r]': str(round(r,4)) + '"', '[adj_obs]': str2HTML(dd2dms(adj_obs/3600,3)), '[sd]': str(round(sd,3)) + '"' } for item in itens: tableRowN = tableRowN.replace(item, itens[item]) table3 += tableRowN # Documento prinicipal itens = { '[TABLE 1]': table1, '[TABLE 2]': table2, '[TABLE 3]': table3, '[sigma2]': str(round(sigma2[0,0],3)) } for item in itens: texto = texto.replace(item, itens[item]) # Exportar HTML arq = open(html_output, 'w') arq.write(texto) arq.close() feedback.pushInfo(self.tr('Operation completed successfully!', 'Operação finalizada com sucesso!')) feedback.pushInfo(self.tr('<NAME> - Cartographic Engineer', '<NAME> - Eng Cart')) return {self.OUTPUT: dest_id, self.HTML: html_output}
StarcoderdataPython
135821
"""The Media Source implementation for the Jellyfin integration.""" from __future__ import annotations import logging import mimetypes from typing import Any import urllib.parse from jellyfin_apiclient_python.api import jellyfin_url from jellyfin_apiclient_python.client import JellyfinClient from homeassistant.components.media_player.const import ( MEDIA_CLASS_ALBUM, MEDIA_CLASS_ARTIST, MEDIA_CLASS_DIRECTORY, MEDIA_CLASS_TRACK, ) from homeassistant.components.media_player.errors import BrowseError from homeassistant.components.media_source.models import ( BrowseMediaSource, MediaSource, MediaSourceItem, PlayMedia, ) from homeassistant.core import HomeAssistant from .const import ( COLLECTION_TYPE_MUSIC, DATA_CLIENT, DOMAIN, ITEM_KEY_COLLECTION_TYPE, ITEM_KEY_ID, ITEM_KEY_IMAGE_TAGS, ITEM_KEY_INDEX_NUMBER, ITEM_KEY_MEDIA_SOURCES, ITEM_KEY_MEDIA_TYPE, ITEM_KEY_NAME, ITEM_TYPE_ALBUM, ITEM_TYPE_ARTIST, ITEM_TYPE_AUDIO, ITEM_TYPE_LIBRARY, MAX_IMAGE_WIDTH, MAX_STREAMING_BITRATE, MEDIA_SOURCE_KEY_PATH, MEDIA_TYPE_AUDIO, MEDIA_TYPE_NONE, SUPPORTED_COLLECTION_TYPES, ) _LOGGER = logging.getLogger(__name__) async def async_get_media_source(hass: HomeAssistant) -> MediaSource: """Set up Jellyfin media source.""" # Currently only a single Jellyfin server is supported entry = hass.config_entries.async_entries(DOMAIN)[0] data = hass.data[DOMAIN][entry.entry_id] client: JellyfinClient = data[DATA_CLIENT] return JellyfinSource(hass, client) class JellyfinSource(MediaSource): """Represents a Jellyfin server.""" name: str = "Jellyfin" def __init__(self, hass: HomeAssistant, client: JellyfinClient) -> None: """Initialize the Jellyfin media source.""" super().__init__(DOMAIN) self.hass = hass self.client = client self.api = client.jellyfin self.url = jellyfin_url(client, "") async def async_resolve_media(self, item: MediaSourceItem) -> PlayMedia: """Return a streamable URL and associated mime type.""" media_item = await self.hass.async_add_executor_job( self.api.get_item, item.identifier ) stream_url = self._get_stream_url(media_item) mime_type = _media_mime_type(media_item) return PlayMedia(stream_url, mime_type) async def async_browse_media(self, item: MediaSourceItem) -> BrowseMediaSource: """Return a browsable Jellyfin media source.""" if not item.identifier: return await self._build_libraries() media_item = await self.hass.async_add_executor_job( self.api.get_item, item.identifier ) item_type = media_item["Type"] if item_type == ITEM_TYPE_LIBRARY: return await self._build_library(media_item, True) if item_type == ITEM_TYPE_ARTIST: return await self._build_artist(media_item, True) if item_type == ITEM_TYPE_ALBUM: return await self._build_album(media_item, True) raise BrowseError(f"Unsupported item type {item_type}") async def _build_libraries(self) -> BrowseMediaSource: """Return all supported libraries the user has access to as media sources.""" base = BrowseMediaSource( domain=DOMAIN, identifier=None, media_class=MEDIA_CLASS_DIRECTORY, media_content_type=MEDIA_TYPE_NONE, title=self.name, can_play=False, can_expand=True, children_media_class=MEDIA_CLASS_DIRECTORY, ) libraries = await self._get_libraries() base.children = [] for library in libraries: base.children.append(await self._build_library(library, False)) return base async def _get_libraries(self) -> list[dict[str, Any]]: """Return all supported libraries a user has access to.""" response = await self.hass.async_add_executor_job(self.api.get_media_folders) libraries = response["Items"] result = [] for library in libraries: if ITEM_KEY_COLLECTION_TYPE in library: if library[ITEM_KEY_COLLECTION_TYPE] in SUPPORTED_COLLECTION_TYPES: result.append(library) return result async def _build_library( self, library: dict[str, Any], include_children: bool ) -> BrowseMediaSource: """Return a single library as a browsable media source.""" collection_type = library[ITEM_KEY_COLLECTION_TYPE] if collection_type == COLLECTION_TYPE_MUSIC: return await self._build_music_library(library, include_children) raise BrowseError(f"Unsupported collection type {collection_type}") async def _build_music_library( self, library: dict[str, Any], include_children: bool ) -> BrowseMediaSource: """Return a single music library as a browsable media source.""" library_id = library[ITEM_KEY_ID] library_name = library[ITEM_KEY_NAME] result = BrowseMediaSource( domain=DOMAIN, identifier=library_id, media_class=MEDIA_CLASS_DIRECTORY, media_content_type=MEDIA_TYPE_NONE, title=library_name, can_play=False, can_expand=True, ) if include_children: result.children_media_class = MEDIA_CLASS_ARTIST result.children = await self._build_artists(library_id) # type: ignore[assignment] if not result.children: result.children_media_class = MEDIA_CLASS_ALBUM result.children = await self._build_albums(library_id) # type: ignore[assignment] return result async def _build_artists(self, library_id: str) -> list[BrowseMediaSource]: """Return all artists in the music library.""" artists = await self._get_children(library_id, ITEM_TYPE_ARTIST) artists = sorted(artists, key=lambda k: k[ITEM_KEY_NAME]) # type: ignore[no-any-return] return [await self._build_artist(artist, False) for artist in artists] async def _build_artist( self, artist: dict[str, Any], include_children: bool ) -> BrowseMediaSource: """Return a single artist as a browsable media source.""" artist_id = artist[ITEM_KEY_ID] artist_name = artist[ITEM_KEY_NAME] thumbnail_url = self._get_thumbnail_url(artist) result = BrowseMediaSource( domain=DOMAIN, identifier=artist_id, media_class=MEDIA_CLASS_ARTIST, media_content_type=MEDIA_TYPE_NONE, title=artist_name, can_play=False, can_expand=True, thumbnail=thumbnail_url, ) if include_children: result.children_media_class = MEDIA_CLASS_ALBUM result.children = await self._build_albums(artist_id) # type: ignore[assignment] return result async def _build_albums(self, parent_id: str) -> list[BrowseMediaSource]: """Return all albums of a single artist as browsable media sources.""" albums = await self._get_children(parent_id, ITEM_TYPE_ALBUM) albums = sorted(albums, key=lambda k: k[ITEM_KEY_NAME]) # type: ignore[no-any-return] return [await self._build_album(album, False) for album in albums] async def _build_album( self, album: dict[str, Any], include_children: bool ) -> BrowseMediaSource: """Return a single album as a browsable media source.""" album_id = album[ITEM_KEY_ID] album_title = album[ITEM_KEY_NAME] thumbnail_url = self._get_thumbnail_url(album) result = BrowseMediaSource( domain=DOMAIN, identifier=album_id, media_class=MEDIA_CLASS_ALBUM, media_content_type=MEDIA_TYPE_NONE, title=album_title, can_play=False, can_expand=True, thumbnail=thumbnail_url, ) if include_children: result.children_media_class = MEDIA_CLASS_TRACK result.children = await self._build_tracks(album_id) # type: ignore[assignment] return result async def _build_tracks(self, album_id: str) -> list[BrowseMediaSource]: """Return all tracks of a single album as browsable media sources.""" tracks = await self._get_children(album_id, ITEM_TYPE_AUDIO) tracks = sorted( tracks, key=lambda k: ( ITEM_KEY_INDEX_NUMBER not in k, k.get(ITEM_KEY_INDEX_NUMBER, None), ), ) return [self._build_track(track) for track in tracks] def _build_track(self, track: dict[str, Any]) -> BrowseMediaSource: """Return a single track as a browsable media source.""" track_id = track[ITEM_KEY_ID] track_title = track[ITEM_KEY_NAME] mime_type = _media_mime_type(track) thumbnail_url = self._get_thumbnail_url(track) result = BrowseMediaSource( domain=DOMAIN, identifier=track_id, media_class=MEDIA_CLASS_TRACK, media_content_type=mime_type, title=track_title, can_play=True, can_expand=False, thumbnail=thumbnail_url, ) return result async def _get_children( self, parent_id: str, item_type: str ) -> list[dict[str, Any]]: """Return all children for the parent_id whose item type is item_type.""" params = { "Recursive": "true", "ParentId": parent_id, "IncludeItemTypes": item_type, } if item_type == ITEM_TYPE_AUDIO: params["Fields"] = ITEM_KEY_MEDIA_SOURCES result = await self.hass.async_add_executor_job(self.api.user_items, "", params) return result["Items"] # type: ignore[no-any-return] def _get_thumbnail_url(self, media_item: dict[str, Any]) -> str | None: """Return the URL for the primary image of a media item if available.""" image_tags = media_item[ITEM_KEY_IMAGE_TAGS] if "Primary" not in image_tags: return None item_id = media_item[ITEM_KEY_ID] return str(self.api.artwork(item_id, "Primary", MAX_IMAGE_WIDTH)) def _get_stream_url(self, media_item: dict[str, Any]) -> str: """Return the stream URL for a media item.""" media_type = media_item[ITEM_KEY_MEDIA_TYPE] if media_type == MEDIA_TYPE_AUDIO: return self._get_audio_stream_url(media_item) raise BrowseError(f"Unsupported media type {media_type}") def _get_audio_stream_url(self, media_item: dict[str, Any]) -> str: """Return the stream URL for a music media item.""" item_id = media_item[ITEM_KEY_ID] user_id = self.client.config.data["auth.user_id"] device_id = self.client.config.data["app.device_id"] api_key = self.client.config.data["auth.token"] params = urllib.parse.urlencode( { "UserId": user_id, "DeviceId": device_id, "api_key": api_key, "MaxStreamingBitrate": MAX_STREAMING_BITRATE, } ) return f"{self.url}Audio/{item_id}/universal?{params}" def _media_mime_type(media_item: dict[str, Any]) -> str: """Return the mime type of a media item.""" if not media_item[ITEM_KEY_MEDIA_SOURCES]: raise BrowseError("Unable to determine mime type for item without media source") media_source = media_item[ITEM_KEY_MEDIA_SOURCES][0] path = media_source[MEDIA_SOURCE_KEY_PATH] mime_type, _ = mimetypes.guess_type(path) if mime_type is not None: return mime_type raise BrowseError(f"Unable to determine mime type for path {path}")
StarcoderdataPython
182506
<gh_stars>0 import sys import math points = [] with open(sys.argv[1], 'r') as infile: for line in infile: line = line.strip().split(',') points.append(str(line[0]) + "," + str(line[1]) + "," + str(line[2])) with open(sys.argv[2], 'w') as outfile: with open(sys.argv[3], 'w') as edgefile: for ind in range(len(points)): temp = points[ind].strip().split(',') x = temp[0] y = temp[1] z = temp[2] radius = 15 outfile.write("s" + str(ind + 1) + "," + str(x) + "," + str(y) + "," + str(z) + "\n") for index in range(ind + 1, len(points)): tmp = points[index].strip().split(',') distance = math.sqrt(math.pow(int(x) - int(tmp[0]), 2) + math.pow(int(y) - int(tmp[1]), 2) + math.pow(int(z) - int(tmp[2]), 2)) if distance < radius: edgefile.write("s" + str(ind + 1) + "," + "s" + str(index + 1) + "\n")
StarcoderdataPython
3393766
from typing import Dict, List, Tuple import numpy as np import pandas as pd from tqdm import tqdm from data.dataset import train, test, books def baseline_model() -> Tuple[Dict[int, List], Dict[int, List]]: global train, test sol = test.groupby(["user_id"])["book_id"].agg({"unique"}).reset_index() gt = {} for user in tqdm(sol["user_id"].unique()): gt[user] = list(sol[sol["user_id"] == user]["unique"].values[0]) rec_df = pd.DataFrame() rec_df["user_id"] = train["user_id"].unique() popular_rec_model = books.sort_values(by="books_count", ascending=False)[ "book_id" ].values[0:500] # 통계기반 모델 데이터셋 train = pd.merge( train, books[["book_id", "authors", "ratings_count"]], how="left", on="book_id" ) agg = train.groupby(["user_id", "authors"])["authors"].agg({"count"}).reset_index() agg = agg.sort_values(by="count", ascending=False) author_books = ( books[["book_id", "authors", "ratings_count"]] .sort_values(by=["authors", "ratings_count"], ascending=[True, False]) .reset_index(drop=True) ) author_rec_model = agg.merge(author_books, how="left", on=["authors"]) # 내가 읽을 책의 목록 추출 read_list = train.groupby(["user_id"])["book_id"].agg({"unique"}).reset_index() total_rec_list = {} for user in tqdm(rec_df["user_id"].unique()): rec_list = [] author_rec_model_ = author_rec_model[author_rec_model["user_id"] == user][ "book_id" ].values seen = read_list[read_list["user_id"] == user]["unique"].values[0] for rec in author_rec_model_: if rec not in seen: rec_list.append(rec) if len(rec_list) < 200: for i in popular_rec_model[0:200]: if i not in seen: rec_list.append(i) total_rec_list[user] = rec_list[0:200] return total_rec_list, gt
StarcoderdataPython
1705776
<reponame>miladgharibi/PicoSchool<filename>account/views.py from django.contrib import ( auth, messages, ) from django.contrib.auth.decorators import login_required from django.contrib.auth.views import PasswordChangeView from django.shortcuts import ( render, redirect, ) from django.urls import reverse_lazy from account.decorators import is_login from account.models import User @is_login() def login_view(request): if request.method == 'POST': user_input = request.POST['username'] try: username = User.objects.get(national_code=user_input).username except User.DoesNotExist: username = request.POST['username'] password = request.POST['password'] user = auth.authenticate(username=username, password=password) if user is not None: auth.login(request, user) if user.is_manager: return redirect(reverse_lazy('manager:manager_panel')) elif user.is_teacher: return redirect(reverse_lazy('teacher:teacher_panel')) elif user.is_student: return redirect(reverse_lazy('student:student_panel')) elif user.is_parent: return redirect(reverse_lazy('parent:parent_panel')) else: messages.error(request, 'نام کاربری یا گذرواژه وارد شده نادرست است') context = { 'page_title': 'ورود', } return render(request, "account/signin.html", context) class ChangePasswordView(PasswordChangeView): template_name = "manager/persons/change_password.html" success_url = reverse_lazy('account:user_password_done') def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['page_title'] = "تغییر گذرواژه" return context @login_required() def password_change_done(request): return render(request, "manager/persons/change_password_done.html", {"page_title": "گذرواژه با موفقیت تغییر کرد"})
StarcoderdataPython
64414
<filename>learn2learn/_version.py __version__ = '0.0.5.1'
StarcoderdataPython
4822004
from django.conf.urls.defaults import * urlpatterns = patterns('aquaticore.databases.views', (r'^$', 'index'), (r'^(?P<database_id>\d+)/$', 'detail'), )
StarcoderdataPython
118449
<filename>pypospack/task/tasks_lammps/elastic_calculation.py import os from collections import OrderedDict import pypospack.potential as potential from pypospack.task.lammps import LammpsSimulationError, LammpsSimulation class LammpsElasticCalculation(LammpsSimulation): """ Class for LAMMPS elastic calculation This class sets up, runs and processes the relaxation of atomic poistions to find the lowest energy struction in the local basin of attraction. The simulation cell is then deformed and atomic positions relaxed to calculate the energy differences to calculate elements of the elastic tensor This class is based on the LAMMPS script written by <NAME> Args: task_name (str): the name of the task task_directory (str): the directory of the task """ def __init__(self, task_name, task_directory, structure_filename, restart=False, fullauto=False): _task_type = 'lmps_elastic' LammpsSimulation.__init__(self, task_name=task_name, task_directory=task_directory, task_type=_task_type, structure_filename=structure_filename, restart=restart, fullauto=fullauto) self.lammps_results_names = [ 'c11','c12','c13', 'c22','c23','c24','c25','c26', 'c33','c34','c35','c36', 'c44','c45','c46', 'c55','c56', 'c66'] def postprocess(self): LammpsSimulation.postprocess(self) def on_post(self,configuration=None): #self.__get_results_from_lammps_outputfile() self.get_elastic_tensor() LammpsSimulation.on_post(self,configuration=configuration) def on_finished(self,configuration=None): pass def write_potential_file(self): if self.potential is None: return _setfl_dst_filename = None if isinstance(self.potential,potential.EamPotential): _setfl_dst_filename = os.path.join( self.task_directory, "{}.eam.alloy".format("".join(self.potential.symbols))) _str_out = self.potential.lammps_potential_section_to_string( setfl_dst_filename=_setfl_dst_filename) # <-------- FOR STILLINGER WEBER POTENTIALS elif isinstance(self.potential,potential.StillingerWeberPotential): # define the filename --- SiO.parameters, Si.parameters _symbols_str = "".join(self.potential.symbols) _p_fname = "{}.parameters".format(_symbols_str) # set the name of the output file self.potential.lmps_parameter_filename = _p_fname # get the string of potential.mod _str_out = self.potential.lammps_potential_section_to_string() # write out the potential parameter file _str_lmps_params = self.potential.lammps_parameter_file_to_string() _p_fname_dst = os.path.join(self.task_directory,_p_fname) with open(_p_fname_dst,'w') as f: f.write(_str_lmps_params) #default behavior else: _str_out = self.potential.lammps_potential_section_to_string() _str_out += "\n" # coulumbic charge summation if self.potential.is_charge: _str_out += "kspace_style pppm 1.0e-5\n" _str_out += "\n" # neighborlists _str_out += "neighbor 1.0 bin\n" _str_out += "neigh_modify every 1 delay 0 check yes\n" # Setup output _str_out += "\n".join([ "thermo 1", "thermo_style custom step temp pe press pxx pyy pzz pxy pxz pyz lx ly lz vol", "thermo_modify norm no\n"]) _lammps_potentialmod_filename = os.path.join( self.task_directory, self.lammps_potentialmod_filename) with open(_lammps_potentialmod_filename,'w') as f: f.write(_str_out) def write_lammps_input_file(self): """ writes LAMMPS input file This method is modified from the LammpsSimulation template due to the need for the multiple files. Args: filename (str): name of the input file for LAMMPS. Default is 'lammps.in'. Attributes: """ str_out = self.lammps_input_file_to_string() filename = os.path.join(self.task_directory, self.lammps_input_filename) with open(filename,'w') as f: f.write(str_out) str_out = self.lammps_init_mod_to_string() filename = os.path.join(self.task_directory,'init.mod') with open(filename,'w') as f: f.write(str_out) str_out = self.lammps_displace_mod_to_string() filename = os.path.join(self.task_directory,'displace.mod') with open(filename,'w') as f: f.write(str_out) def lammps_input_file_to_string(self): str_out = ( "include init.mod\n" "include potential.mod\n" "# ---- Compute initial state\n" "fix 3 all box/relax aniso 0.0\n" "minimize ${etol} ${ftol} ${maxiter} ${maxeval}\n" "\n" "variable tmp equal pxx\n" "variable pxx0 equal ${tmp}\n" "variable tmp equal pyy\n" "variable pyy0 equal ${tmp}\n" "variable tmp equal pzz\n" "variable pzz0 equal ${tmp}\n" "variable tmp equal pyz\n" "variable pyz0 equal ${tmp}\n" "variable tmp equal pxz\n" "variable pxz0 equal ${tmp}\n" "variable tmp equal pxy\n" "variable pxy0 equal ${tmp}\n" "\n" "variable tmp equal lx\n" "variable lx0 equal ${tmp}\n" "variable tmp equal ly\n" "variable ly0 equal ${tmp}\n" "variable tmp equal lz\n" "variable lz0 equal ${tmp}\n" "\n" " # ---- define the derivatives w.r.t. strain components\n" "variable d1 equal -(v_pxx1-${pxx0})/(v_delta/v_len0)*${cfac}\n" "variable d2 equal -(v_pyy1-${pyy0})/(v_delta/v_len0)*${cfac}\n" "variable d3 equal -(v_pzz1-${pzz0})/(v_delta/v_len0)*${cfac}\n" "variable d4 equal -(v_pyz1-${pyz0})/(v_delta/v_len0)*${cfac}\n" "variable d5 equal -(v_pxz1-${pxz0})/(v_delta/v_len0)*${cfac}\n" "variable d6 equal -(v_pxy1-${pxy0})/(v_delta/v_len0)*${cfac}\n" "\n" "# ---- write restart files\n" "unfix 3\n" "write_restart restart.equil\n" "# ---- uxx Perturbation\n" "variable dir equal 1\n" "include displace.mod\n" "# ---- uyy Perturbation\n" "variable dir equal 2\n" "include displace.mod\n" "# ---- uzz Perturbation\n" "variable dir equal 3\n" "include displace.mod\n" "# ---- uyz Perturbation\n" "variable dir equal 4\n" "include displace.mod\n" "# ---- uxz Perturbation\n" "variable dir equal 5\n" "include displace.mod\n" "# ---- uxy Perturbation\n" "variable dir equal 6\n" "include displace.mod\n" "\n" "# ---- Output final values\n" "variable C11all equal ${C11}\n" "variable C22all equal ${C22}\n" "variable C33all equal ${C33}\n" "variable C12all equal 0.5*(${C12}+${C21})\n" "variable C13all equal 0.5*(${C13}+${C31})\n" "variable C23all equal 0.5*(${C23}+${C32})\n" "variable C44all equal ${C44}\n" "variable C55all equal ${C55}\n" "variable C66all equal ${C66}\n" "variable C14all equal 0.5*(${C14}+${C41})\n" "variable C15all equal 0.5*(${C15}+${C51})\n" "variable C16all equal 0.5*(${C16}+${C61})\n" "variable C24all equal 0.5*(${C24}+${C42})\n" "variable C25all equal 0.5*(${C25}+${C52})\n" "variable C26all equal 0.5*(${C26}+${C62})\n" "variable C34all equal 0.5*(${C34}+${C43})\n" "variable C35all equal 0.5*(${C35}+${C53})\n" "variable C36all equal 0.5*(${C36}+${C63})\n" "variable C45all equal 0.5*(${C45}+${C54})\n" "variable C46all equal 0.5*(${C46}+${C64})\n" "variable C56all equal 0.5*(${C56}+${C65})\n" "\n" "print \"c11 = ${C11all} ${cunits}\"\n" "print \"c22 = ${C22all} ${cunits}\"\n" "print \"c33 = ${C33all} ${cunits}\"\n" "print \"c12 = ${C12all} ${cunits}\"\n" "print \"c13 = ${C13all} ${cunits}\"\n" "print \"c23 = ${C23all} ${cunits}\"\n" "print \"c44 = ${C44all} ${cunits}\"\n" "print \"c55 = ${C55all} ${cunits}\"\n" "print \"c66 = ${C66all} ${cunits}\"\n" "print \"c14 = ${C14all} ${cunits}\"\n" "print \"c15 = ${C15all} ${cunits}\"\n" "print \"c16 = ${C16all} ${cunits}\"\n" "print \"c24 = ${C24all} ${cunits}\"\n" "print \"c25 = ${C25all} ${cunits}\"\n" "print \"c26 = ${C26all} ${cunits}\"\n" "print \"c34 = ${C34all} ${cunits}\"\n" "print \"c35 = ${C35all} ${cunits}\"\n" "print \"c36 = ${C36all} ${cunits}\"\n" "print \"c45 = ${C45all} ${cunits}\"\n" "print \"c46 = ${C46all} ${cunits}\"\n" "print \"c56 = ${C56all} ${cunits}\"\n" "print \"lammps_sim_done\"\n") return str_out def lammps_init_mod_to_string(self): if self.potential.is_charge: _atom_style = 'charge' else: _atom_style = 'atomic' _structure_file = self.lammps_structure_filename str_out = (\ "# ---- init.mod file\n" "variable up equal 1.0e-6\n" "units metal\n" "dimension 3\n" "boundary p p p\n" "atom_style {atom_style}\n" "atom_modify map array\n" "variable cfac equal 1.0e-4\n" "variable cunits string GPa\n" "# ---- define minimization parameters\n" "variable etol equal 0.0\n" "variable ftol equal 1.0e-10\n" "variable maxiter equal 100\n" "variable maxeval equal 1000\n" "variable dmax equal 1.0e-2\n" "# --- read data structure\n" "read_data {structure_file}\n" ).format(\ atom_style=_atom_style, structure_file=_structure_file ) return str_out def lammps_displace_mod_to_string(self): str_out = (\ "# NOTE: This script should not need to be\n" "# modified. See in.elastic for more info.\n" "# Find which reference length to use\n" "\n" "if \"${dir} == 1\" then &\n" " \"variable len0 equal ${lx0}\"\n" "if \"${dir} == 2\" then &\n" " \"variable len0 equal ${ly0}\"\n" "if \"${dir} == 3\" then &\n" " \"variable len0 equal ${lz0}\"\n" "if \"${dir} == 4\" then &\n" " \"variable len0 equal ${lz0}\"\n" "if \"${dir} == 5\" then &\n" " \"variable len0 equal ${lz0}\"\n" "if \"${dir} == 6\" then &\n" " \"variable len0 equal ${ly0}\"\n" "\n" "# Reset box and simulation parameters\n" "\n" "clear\n" "read_restart restart.equil remap\n" "include potential.mod\n" "\n" "# Negative deformation\n" "\n" "variable delta equal -${up}*${len0}\n" "if \"${dir} == 1\" then &\n" " \"change_box all x delta 0 ${delta} remap units box\"\n" "if \"${dir} == 2\" then &\n" " \"change_box all y delta 0 ${delta} remap units box\"\n" "if \"${dir} == 3\" then &\n" " \"change_box all z delta 0 ${delta} remap units box\"\n" "if \"${dir} == 4\" then &\n" " \"change_box all yz delta ${delta} remap units box\"\n" "if \"${dir} == 5\" then &\n" " \"change_box all xz delta ${delta} remap units box\"\n" "if \"${dir} == 6\" then &\n" " \"change_box all xy delta ${delta} remap units box\"\n" "\n" "# Relax atoms positions\n" "\n" "minimize ${etol} ${ftol} ${maxiter} ${maxeval}\n" "\n" "# Obtain new stress tensor\n" "\n" "variable tmp equal pxx\n" "variable pxx1 equal ${tmp}\n" "variable tmp equal pyy\n" "variable pyy1 equal ${tmp}\n" "variable tmp equal pzz\n" "variable pzz1 equal ${tmp}\n" "variable tmp equal pxy\n" "variable pxy1 equal ${tmp}\n" "variable tmp equal pxz\n" "variable pxz1 equal ${tmp}\n" "variable tmp equal pyz\n" "variable pyz1 equal ${tmp}\n" "\n" "# Compute elastic constant from pressure tensor\n" "\n" "variable C1neg equal ${d1}\n" "variable C2neg equal ${d2}\n" "variable C3neg equal ${d3}\n" "variable C4neg equal ${d4}\n" "variable C5neg equal ${d5}\n" "variable C6neg equal ${d6}\n" "\n" "# Reset box and simulation parameters\n" "\n" "clear\n" "read_restart restart.equil remap\n" "include potential.mod\n" "\n" "# Positive deformation\n" "\n" "variable delta equal ${up}*${len0}\n" "if \"${dir} == 1\" then &\n" " \"change_box all x delta 0 ${delta} remap units box\"\n" "if \"${dir} == 2\" then &\n" " \"change_box all y delta 0 ${delta} remap units box\"\n" "if \"${dir} == 3\" then &\n" " \"change_box all z delta 0 ${delta} remap units box\"\n" "if \"${dir} == 4\" then &\n" " \"change_box all yz delta ${delta} remap units box\"\n" "if \"${dir} == 5\" then &\n" " \"change_box all xz delta ${delta} remap units box\"\n" "if \"${dir} == 6\" then &\n" " \"change_box all xy delta ${delta} remap units box\"\n" "\n" "# Relax atoms positions\n" "\n" "minimize ${etol} ${ftol} ${maxiter} ${maxeval}\n" "\n" "# Obtain new stress tensor\n" "\n" "variable tmp equal pe\n" "variable e1 equal ${tmp}\n" "variable tmp equal press\n" "variable p1 equal ${tmp}\n" "variable tmp equal pxx\n" "variable pxx1 equal ${tmp}\n" "variable tmp equal pyy\n" "variable pyy1 equal ${tmp}\n" "variable tmp equal pzz\n" "variable pzz1 equal ${tmp}\n" "variable tmp equal pxy\n" "variable pxy1 equal ${tmp}\n" "variable tmp equal pxz\n" "variable pxz1 equal ${tmp}\n" "variable tmp equal pyz\n" "variable pyz1 equal ${tmp}\n" "\n" "# Compute elastic constant from pressure tensor\n" "\n" "variable C1pos equal ${d1}\n" "variable C2pos equal ${d2}\n" "variable C3pos equal ${d3}\n" "variable C4pos equal ${d4}\n" "variable C5pos equal ${d5}\n" "variable C6pos equal ${d6}\n" "\n" "# Combine positive and negative\n" "\n" "variable C1${dir} equal 0.5*(${C1neg}+${C1pos})\n" "variable C2${dir} equal 0.5*(${C2neg}+${C2pos})\n" "variable C3${dir} equal 0.5*(${C3neg}+${C3pos})\n" "variable C4${dir} equal 0.5*(${C4neg}+${C4pos})\n" "variable C5${dir} equal 0.5*(${C5neg}+${C5pos})\n" "variable C6${dir} equal 0.5*(${C6neg}+${C6pos})\n" "\n" "# Delete dir to make sure it is not reused\n" "\n" "variable dir delete\n") return str_out def get_elastic_tensor(self): filename = os.path.join(self.task_directory,'lammps.out') with open(filename,'r') as f: lines = f.readlines() _lammps_results_names = self.lammps_results_names self.results = OrderedDict() _task_name = self.task_name for i,line in enumerate(lines): for name in _lammps_results_names: if line.startswith('{} = '.format(name)): # get the result name and result value from the file # _rk = key to store result # _rv = value to store _rk = '{}.{}'.format(_task_name,name) _rv = float(line.split('=')[1].split()[0].strip()) self.results[_rk] = _rv elif line.startswith('ERROR'): print('name:{}'.format(name)) print('line:{}'.format(line.strip)) raise NotImplementedError #_all_components_exist = all([n in self.results for n in _lammps_results_names]) #if not _all_components_exist: # for n in _lammps_results_names: # print(n,n in self.results.keys())
StarcoderdataPython
41122
<filename>udp-client.py<gh_stars>0 import socket, traceback host = '255.255.255.255' # Bind to all interfaces port = 2081 print "Creating socker on port: ", port s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) #print "Setting REUSEADDR option" #s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) print "Setting SO_BROADCAST option" s.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) print "Connecting to host: ", host s.connect((host, port)) try: print "Going to send data ..." s.send("I am here") print "... sent" except (KeyboardInterrupt, SystemExit): raise except: traceback.print_exc()
StarcoderdataPython
52765
import pytest import sys sys.path.append(".") sys.path.append("../.") from boxdetect import config from boxdetect import pipelines def test_save_load_config(capsys): cfg = config.PipelinesConfig() cfg.morph_kernels_thickness = 10 cfg.save_yaml('test_cfg.yaml') cfg2 = config.PipelinesConfig('test_cfg.yaml') assert(cfg.__dict__ == cfg2.__dict__) cfg.new_var = 10 cfg.save_yaml('test_cfg.yaml') cfg2.load_yaml('test_cfg.yaml') captured = capsys.readouterr() assert("WARNING" in captured.out) def test_update_num_iterations(): cfg = config.PipelinesConfig() cfg.height_range = (5, 5) cfg.width_range = [(10, 10), (20, 20)] cfg.update_num_iterations() assert(cfg.num_iterations == 2) assert(len(cfg.height_range) == 2) assert(len(cfg.width_range) == 2) def test_autoconfig_simple(): box_sizes = [(42, 44), (41, 47), (41, 44), (41, 44), (125, 54), (92, 103)] file_path = "tests/data/autoconfig_simple/dummy_example.png" cfg = config.PipelinesConfig() cfg.autoconfigure(box_sizes) checkboxes = pipelines.get_checkboxes( file_path, cfg=cfg, px_threshold=0.01, plot=False, verbose=False) assert(len(checkboxes) == 12) cfg = config.PipelinesConfig() cfg.autoconfigure(box_sizes) rects, groups, _, _ = pipelines.get_boxes( file_path, cfg=cfg, plot=False) assert(len(rects) == 23) assert(len(groups) == 14) def test_autoconfig_from_vott_simple(): vott_dir = "tests/data/autoconfig_simple" file_path = "tests/data/autoconfig_simple/dummy_example.png" cfg = config.PipelinesConfig() cfg.autoconfigure_from_vott(vott_dir, class_tags=['box']) checkboxes = pipelines.get_checkboxes( file_path, cfg=cfg, px_threshold=0.01, plot=False, verbose=False) assert(len(checkboxes) == 12) cfg = config.PipelinesConfig() cfg.autoconfigure_from_vott(vott_dir, class_tags=['box']) rects, groups, _, _ = pipelines.get_boxes( file_path, cfg=cfg, plot=False) assert(len(rects) == 23) assert(len(groups) == 14)
StarcoderdataPython
122037
import logging from configparser import ConfigParser from os import path, listdir LOGGER = logging.getLogger('gullveig') def priority_sort_files(k: str): first = 0 second = k if '-' not in k: return first, second parts = k.split('-', 2) # noinspection PyBroadException try: first = int(parts[0]) second = parts[1] except BaseException: pass return first, second class ConfigurationError(RuntimeError): def __init__(self, *args: object) -> None: super().__init__(*args) class Configuration(ConfigParser): def __init__(self, file_path: str, defaults: dict, required: dict = {}) -> None: self.__file_path = path.realpath(file_path) self.__dirname = path.dirname(self.__file_path) self.__defaults = defaults self.__required = required super().__init__() def is_file_path_valid(self): return path.exists(self.__file_path) and path.isfile(self.__file_path) def resolve_config_path(self, to_resolve): if path.isabs(to_resolve): return to_resolve return path.abspath(path.join( self.__dirname, to_resolve )) def initialize(self): files_to_read = [ self.__file_path ] # Scan for additional configuration files to read d_directory = '%s.d/' % self.__file_path if path.isdir(d_directory): d_files = sorted(listdir(d_directory), key=priority_sort_files) for d_file in d_files: if d_file[-5:] != '.conf': continue files_to_read.append(path.join(d_directory, d_file)) LOGGER.debug('Loading configuration files, in order: %s', ', '.join(files_to_read)) self.read(files_to_read, encoding='utf-8') # Load defaults. Slightly different than DEFAULT behavior for section, section_values in self.__defaults.items(): if not self.has_section(section): self[section] = section_values continue for key, value in section_values.items(): if not self.has_option(section, key): self.set(section, key, value) for section, keys in self.__required.items(): if not self.has_section(section): raise ConfigurationError( 'Missing mandatory configuration section %s in file %s' % (section, self.__file_path) ) for key in keys: if not self.has_option(section, key): raise ConfigurationError( 'Missing mandatory configuration key %s in section %s, in file %s' % (key, section, self.__file_path) )
StarcoderdataPython
1611384
#To input username&pass and check if it's correct. Q22 #Made by INS, Using dictionary for faster credential check. d={} while True: x=raw_input("Enter a user name : ") y=raw_input("Enter a password : ") d[x]=y cont=raw_input("Do you want to add more usernames? [y/n] ") if cont=='y': continue else: break #begining login system a=raw_input("Enter username to log in : ") if d.has_key(a)==True: print "User found. Enter password to continue. " b=raw_input("Enter password to log in : ") if d.get(a)==b: print "Welcome back ",a else: print "Wrong password. Aborting program." #Made by <NAME>, using LISTS """ #Remove this quotation marks to use GM's program. u=[] p=[] count=input("Enter number of usernames you want to save : ") for i in range(0, count): username=raw_input("Enter username to save : ") password=raw_input("Enter password to save : ") position_user=len(u)+1 position_pass=len(p)+1 u.append(username) p.append(password) #Search function begins def passcheck(): user_=raw_input("Enter username to log in : ") pass_=raw_input("Ente password to log in : ") if user_ in u: if pass_ in p: if position_user==position_pass: print "Verified user. " else: print "Password doesn't match. " else: print "Username doesn't exist" passcheck()"""
StarcoderdataPython
1737889
import json import logging import pathlib import subprocess import sys from manubot.cite.citekey import ( citekey_to_csl_item, standardize_citekey, is_valid_citekey, ) from manubot.pandoc.util import get_pandoc_info from manubot.util import shlex_join # For manubot cite, infer --format from --output filename extensions extension_to_format = { ".txt": "plain", ".md": "markdown", ".docx": "docx", ".html": "html", ".xml": "jats", } def call_pandoc(metadata, path, format="plain"): """ path is the path to write to. """ _exit_without_pandoc() info = get_pandoc_info() _check_pandoc_version(info, metadata, format) metadata_block = "---\n{yaml}\n...\n".format( yaml=json.dumps(metadata, ensure_ascii=False, indent=2) ) args = [ "pandoc", "--filter", "pandoc-citeproc", "--output", str(path) if path else "-", ] if format == "markdown": args.extend(["--to", "markdown_strict", "--wrap", "none"]) elif format == "jats": args.extend(["--to", "jats", "--standalone"]) elif format == "docx": args.extend(["--to", "docx"]) elif format == "html": args.extend(["--to", "html"]) elif format == "plain": args.extend(["--to", "plain", "--wrap", "none"]) if info["pandoc version"] >= (2,): # Do not use ALL_CAPS for bold & underscores for italics # https://github.com/jgm/pandoc/issues/4834#issuecomment-412972008 filter_path = ( pathlib.Path(__file__) .joinpath("..", "plain-pandoc-filter.lua") .resolve() ) assert filter_path.exists() args.extend(["--lua-filter", str(filter_path)]) logging.info("call_pandoc subprocess args:\n" + shlex_join(args)) process = subprocess.run( args=args, input=metadata_block.encode(), stdout=subprocess.PIPE if path else sys.stdout, stderr=sys.stderr, ) process.check_returncode() def cli_cite(args): """ Main function for the manubot cite command-line interface. Does not allow user to directly specify Pandoc's --to argument, due to inconsistent citaiton rendering by output format. See https://github.com/jgm/pandoc/issues/4834 """ # generate CSL JSON data csl_list = list() for citekey in args.citekeys: try: if not is_valid_citekey(citekey): continue citekey = standardize_citekey(citekey) csl_item = citekey_to_csl_item(citekey, prune=args.prune_csl) csl_list.append(csl_item) except Exception as error: logging.error( f"citekey_to_csl_item for {citekey!r} failed " f"due to a {error.__class__.__name__}:\n{error}" ) logging.info(error, exc_info=True) # output CSL JSON data, if --render is False if not args.render: write_file = ( args.output.open("w", encoding="utf-8") if args.output else sys.stdout ) with write_file: json.dump(csl_list, write_file, ensure_ascii=False, indent=2) write_file.write("\n") return # use Pandoc to render references if not args.format and args.output: vars(args)["format"] = extension_to_format.get(args.output.suffix) if not args.format: vars(args)["format"] = "plain" pandoc_metadata = {"nocite": "@*", "csl": args.csl, "references": csl_list} call_pandoc(metadata=pandoc_metadata, path=args.output, format=args.format) def _exit_without_pandoc(): """ Given info from get_pandoc_info, exit Python if Pandoc is not available. """ info = get_pandoc_info() for command in "pandoc", "pandoc-citeproc": if not info[command]: logging.critical( f'"{command}" not found on system. ' f"Check that Pandoc is installed." ) raise SystemExit(1) def _check_pandoc_version(info, metadata, format): """ Given info from get_pandoc_info, check that Pandoc's version is sufficient to perform the citation rendering command specified by metadata and format. Please add additional minimum version information to this function, as its discovered. """ issues = list() if format == "jats" and info["pandoc version"] < (2,): issues.append("--jats requires pandoc >= v2.0.") # --csl=URL did not work in https://travis-ci.org/greenelab/manubot/builds/417314743#L796, # but exact version where this fails unknown # if metadata.get('csl', '').startswith('http') and pandoc_version < (2,): # issues.append('--csl=URL requires pandoc >= v2.0.') issues = "\n".join(issues) if issues: logging.critical(f"issues with pandoc version detected:\n{issues}")
StarcoderdataPython
1660155
combo_list = [] one_list = [4,5] combo_list.extend(one_list) combo_list #Output """ [4,5] """
StarcoderdataPython
190391
<filename>scripts/strelka-2.9.2.centos6_x86_64/lib/python/makeRunScript.py # # Strelka - Small Variant Caller # Copyright (c) 2009-2018 Illumina, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # """ This provides a function to auto-generate a workflow run script. """ import os, sys from configureUtil import pickleConfigSections def makeRunScript(scriptFile, workflowModulePath, workflowClassName, primaryConfigSection, configSections, pythonBin=None) : """ This function generates the python workflow runscript The auto-generated python script presents the user with options to run and/or continue their workflow, and reads all workflow configuration info from an ini file. scriptFile -- file name of the runscript to create workflowModulePath -- the python module containing the workflow class workflowClassName -- the workflow class name primaryConfigSection -- the section used to create the primary workflow parameter object configSections -- a hash or hashes representing all configuration info @param pythonBin: optionally specify a custom python interpreter for the script she-bang """ assert os.path.isdir(os.path.dirname(scriptFile)) assert os.path.isfile(workflowModulePath) workflowModulePath=os.path.abspath(workflowModulePath) workflowModuleDir=os.path.dirname(workflowModulePath) workflowModuleName=os.path.basename(workflowModulePath) pyExt=".py" if workflowModuleName.endswith(pyExt) : workflowModuleName=workflowModuleName[:-len(pyExt)] # dump inisections to a file pickleConfigFile=scriptFile+".config.pickle" pickleConfigSections(pickleConfigFile,configSections) sfp=open(scriptFile,"w") if pythonBin is None : pythonBin="/usr/bin/env python2" sfp.write(runScript1 % (pythonBin, " ".join(sys.argv),workflowModuleDir,workflowModuleName,workflowClassName)) sfp.write('\n') sfp.write(runScript2) sfp.write('\n') sfp.write(runScript3) sfp.write('\n') sfp.write('main(r"%s","%s",%s)\n' % (pickleConfigFile, primaryConfigSection, workflowClassName)) sfp.write('\n') sfp.close() os.chmod(scriptFile,0755) runScript1="""#!%s # Workflow run script auto-generated by command: '%s' # import os, sys if sys.version_info >= (3,0): import platform raise Exception("Strelka does not currently support python3 (version %%s detected)" %% (platform.python_version())) if sys.version_info < (2,6): import platform raise Exception("Strelka requires python2 version 2.6+ (version %%s detected)" %% (platform.python_version())) scriptDir=os.path.abspath(os.path.dirname(__file__)) sys.path.append(r'%s') from %s import %s """ runScript2=""" def get_run_options(workflowClassName) : from optparse import OptionGroup, SUPPRESS_HELP from configBuildTimeInfo import workflowVersion from configureUtil import EpilogOptionParser from estimateHardware import EstException, getNodeHyperthreadCoreCount, getNodeMemMb sgeDefaultCores=workflowClassName.runModeDefaultCores('sge') epilog=\"\"\"Note this script can be re-run to continue the workflow run in case of interruption. Also note that dryRun option has limited utility when task definition depends on upstream task results -- in this case the dry run will not cover the full 'live' run task set.\"\"\" parser = EpilogOptionParser(description="Version: %s" % (workflowVersion), epilog=epilog, version=workflowVersion) parser.add_option("-m", "--mode", type="string",dest="mode", help="select run mode (local|sge)") parser.add_option("-q", "--queue", type="string",dest="queue", help="specify scheduler queue name") parser.add_option("-j", "--jobs", type="string",dest="jobs", help="number of jobs, must be an integer or 'unlimited' (default: Estimate total cores on this node for local mode, %s for sge mode)" % (sgeDefaultCores)) parser.add_option("-g","--memGb", type="string",dest="memGb", help="gigabytes of memory available to run workflow -- only meaningful in local mode, must be an integer (default: Estimate the total memory for this node for local mode, 'unlimited' for sge mode)") parser.add_option("-d","--dryRun", dest="isDryRun",action="store_true",default=False, help="dryRun workflow code without actually running command-tasks") parser.add_option("--quiet", dest="isQuiet",action="store_true",default=False, help="Don't write any log output to stderr (but still write to workspace/pyflow.data/logs/pyflow_log.txt)") def isLocalSmtp() : import smtplib try : smtplib.SMTP('localhost') except : return False return True isEmail = isLocalSmtp() emailHelp = SUPPRESS_HELP if isEmail : emailHelp="send email notification of job completion status to this address (may be provided multiple times for more than one email address)" parser.add_option("-e","--mailTo", type="string",dest="mailTo",action="append",help=emailHelp) debug_group = OptionGroup(parser,"development debug options") debug_group.add_option("--rescore", dest="isRescore",action="store_true",default=False, help="Reset task list to re-run hypothesis generation and scoring without resetting graph generation.") parser.add_option_group(debug_group) ext_group = OptionGroup(parser,"extended portability options (should not be needed by most users)") ext_group.add_option("--maxTaskRuntime", type="string", metavar="hh:mm:ss", help="Specify scheduler max runtime per task, argument is provided to the 'h_rt' resource limit if using SGE (no default)") parser.add_option_group(ext_group) (options,args) = parser.parse_args() if not isEmail : options.mailTo = None if len(args) : parser.print_help() sys.exit(2) if options.mode is None : parser.print_help() sys.exit(2) elif options.mode not in ["local","sge"] : parser.error("Invalid mode. Available modes are: local, sge") if options.jobs is None : if options.mode == "sge" : options.jobs = sgeDefaultCores else : try : options.jobs = getNodeHyperthreadCoreCount() except EstException: parser.error("Failed to estimate cores on this node. Please provide job count argument (-j).") if options.jobs != "unlimited" : options.jobs=int(options.jobs) if options.jobs <= 0 : parser.error("Jobs must be 'unlimited' or an integer greater than 1") # note that the user sees gigs, but we set megs if options.memGb is None : if options.mode == "sge" : options.memMb = "unlimited" else : try : options.memMb = getNodeMemMb() except EstException: parser.error("Failed to estimate available memory on this node. Please provide available gigabyte argument (-g).") elif options.memGb != "unlimited" : options.memGb=int(options.memGb) if options.memGb <= 0 : parser.error("memGb must be 'unlimited' or an integer greater than 1") options.memMb = 1024*options.memGb else : options.memMb = options.memGb options.schedulerArgList=[] if options.queue is not None : options.schedulerArgList.extend(["-q",options.queue]) if options.maxTaskRuntime is not None : options.schedulerArgList.extend(["-l","h_rt="+options.maxTaskRuntime]) options.resetTasks=[] if options.isRescore : options.resetTasks.append("makeHyGenDir") return options """ runScript3=""" def main(pickleConfigFile, primaryConfigSection, workflowClassName) : from configureUtil import getConfigWithPrimaryOptions runOptions=get_run_options(workflowClassName) flowOptions,configSections=getConfigWithPrimaryOptions(pickleConfigFile,primaryConfigSection) # new logs and marker files to assist automated workflow monitoring: warningpath=os.path.join(flowOptions.runDir,"workflow.warning.log.txt") errorpath=os.path.join(flowOptions.runDir,"workflow.error.log.txt") exitpath=os.path.join(flowOptions.runDir,"workflow.exitcode.txt") # the exit path should only exist once the workflow completes: if os.path.exists(exitpath) : if not os.path.isfile(exitpath) : raise Exception("Unexpected filesystem item: '%s'" % (exitpath)) os.unlink(exitpath) wflow = workflowClassName(flowOptions) retval=1 try: retval=wflow.run(mode=runOptions.mode, nCores=runOptions.jobs, memMb=runOptions.memMb, dataDirRoot=flowOptions.workDir, mailTo=runOptions.mailTo, isContinue="Auto", isForceContinue=True, isDryRun=runOptions.isDryRun, isQuiet=runOptions.isQuiet, schedulerArgList=runOptions.schedulerArgList, resetTasks=runOptions.resetTasks, successMsg=wflow.getSuccessMessage(), retryWindow=0, retryMode='all', warningLogFile=warningpath, errorLogFile=errorpath) finally: exitfp=open(exitpath,"w") exitfp.write("%i\\n" % (retval)) exitfp.close() sys.exit(retval) """
StarcoderdataPython
1752118
<reponame>lorddaedra/django-magiclink<gh_stars>0 from __future__ import annotations from django.urls import path from .views import LoginSentView, LoginVerifyView, LoginView, LogoutView, SignupView app_name = "magiclinks" urlpatterns = [ path('login/', LoginView.as_view(), name='login'), path('login/sent/', LoginSentView.as_view(), name='login_sent'), path('signup/', SignupView.as_view(), name='signup'), path('login/verify/', LoginVerifyView.as_view(), name='login_verify'), path('logout/', LogoutView.as_view(), name='logout'), ]
StarcoderdataPython
3245944
import os from pathlib import Path import pytest from s3fetch import __version__ from s3fetch.command import S3Fetch from s3fetch.exceptions import DirectoryDoesNotExistError, NoObjectsFoundError @pytest.fixture(scope="function") def aws_credentials(): """Mocked AWS Credentials for moto.""" os.environ["AWS_ACCESS_KEY_ID"] = "testing" os.environ["AWS_SECRET_ACCESS_KEY"] = "testing" os.environ["AWS_SECURITY_TOKEN"] = "testing" os.environ["AWS_SESSION_TOKEN"] = "testing" @pytest.fixture def s3fetch(aws_credentials): bucket = "my-test-bucket" prefix = "my/test/objects/" regex = "_mytestobject_" s3_path = f"{bucket}/{prefix}" s3fetch = S3Fetch(s3_uri=s3_path, regex=regex, debug=False) s3fetch._objects = [ "one_mytestobject_one", "two_mytestobject_two", "three_mytestobject_three", "four*mytestobject*four", "five)mytestobject_five", "six!mytestdirectoryobject!six/", ] return s3fetch def test_s3fetch_obj(s3fetch): assert s3fetch._bucket == "my-test-bucket" assert s3fetch._prefix == "my/test/objects/" assert s3fetch._regex == "_mytestobject_" assert s3fetch._objects == [ "one_mytestobject_one", "two_mytestobject_two", "three_mytestobject_three", "four*mytestobject*four", "five)mytestobject_five", "six!mytestdirectoryobject!six/", ] def test_filter_object(s3fetch): expected_objects = [ "one_mytestobject_one", "two_mytestobject_two", "three_mytestobject_three", ] s3fetch._regex = r"^\w+_\w+_\w+$" tmp_list = [] for key in filter(s3fetch._filter_object, expected_objects): tmp_list.append(key) assert tmp_list == expected_objects def test_filter_object_no_regex(s3fetch): expected_objects = [ "one_mytestobject_one", "two_mytestobject_two", "three_mytestobject_three", "four*mytestobject*four", "five)mytestobject_five", "six!mytestdirectoryobject!six/", ] s3fetch._regex = None tmp_list = [] for key in filter(s3fetch._filter_object, (obj for obj in expected_objects)): tmp_list.append(key) assert tmp_list == expected_objects[0:-1] # TODO: Fixup once moto tests are working. # NoObjectsFoundError now raised by_retrieve_list_of_objects # def test_filter_object_no_matching_objects(s3fetch): # s3fetch._regex = r"^sdfasdfasdfsa$" # with pytest.raises(NoObjectsFoundError): # s3fetch._filter_object() # TODO: Fixup once moto tests are working. # NoObjectsFoundError now raised by_retrieve_list_of_objects # def test_filter_object_empty_object_list(s3fetch): # s3fetch._objects = [] # s3fetch._regex = r"^\w+_\w+_\w+$" # with pytest.raises(NoObjectsFoundError): # s3fetch._filter_object() def test_check_for_failed_downloads(s3fetch, capfd): s3fetch._failed_downloads = [ ( "my/test/objects/one_mytestobject_one", "reason", ) ] s3fetch._check_for_failed_downloads() out, _ = capfd.readouterr() assert "objects failed to download" in out s3fetch._debug = True s3fetch._check_for_failed_downloads() out, _ = capfd.readouterr() assert f"my/test/objects/one_mytestobject_one: reason" in out def test_check_for_failed_downloads_no_failures(s3fetch, capfd): s3fetch._failed_downloads = [] s3fetch._check_for_failed_downloads() out, _ = capfd.readouterr() assert "objects failed to download" not in out def test_dry_run_detected(s3fetch, capfd): s3_path = "s3://my-test-bucket/my/test/objects/" S3Fetch(s3_uri=s3_path, dry_run=True, debug=True) out, _ = capfd.readouterr() assert "Operating in dry run mode. Will not download objects." in out def test_determine_download_dir_none_dir_specified(s3fetch, mocker): os_mock = mocker.patch("os.getcwd") expected_directory = Path("/home/test") os_mock.return_value = expected_directory assert s3fetch._determine_download_dir(None) == expected_directory def test_determine_download_dir_dir_specified_and_exists(s3fetch, mocker): is_dir_mock = mocker.patch("pathlib.Path.is_dir") is_dir_mock.return_value = True expected_directory = Path("/home/test/Downloads") assert s3fetch._determine_download_dir("/home/test/Downloads") == expected_directory def test_determine_download_dir_dir_specified_and_raises(s3fetch, mocker): is_dir_mock = mocker.patch("pathlib.Path.is_dir") is_dir_mock.return_value = False expected_directory = "/home/test/Downloads" with pytest.raises(DirectoryDoesNotExistError): s3fetch._determine_download_dir(expected_directory) def test_remove_directories(s3fetch): expected_objects = [ "five)mytestobject_five", "six!mytestdirectoryobject!six/", ] s3fetch._regex = None tmp_list = [] for key in filter(s3fetch._filter_object, (obj for obj in expected_objects)): tmp_list.append(key) assert tmp_list == ["five)mytestobject_five"] def test_parse_and_split_s3_uri_full_path(s3fetch): bucket, prefix = s3fetch._parse_and_split_s3_uri( s3_uri="s3://testbucket/files", delimiter="/" ) assert bucket == "testbucket" assert prefix == "files" bucket, prefix = s3fetch._parse_and_split_s3_uri( s3_uri="s3://testbucket/files/", delimiter="/" ) assert bucket == "testbucket" assert prefix == "files/" def test_parse_and_split_s3_uri_no_prefix(s3fetch): bucket, prefix = s3fetch._parse_and_split_s3_uri( s3_uri="s3://testbucket", delimiter="/" ) assert bucket == "testbucket" assert prefix == "" bucket, prefix = s3fetch._parse_and_split_s3_uri( s3_uri="s3://testbucket/", delimiter="/" ) assert bucket == "testbucket" assert prefix == "" def test_rollup_prefix(s3fetch): # (prefix, object_key, expected directory, expected filename) prefix_and_keys = [ ("", "object1", None, "object1"), ("storage", "storage/object1", "storage", "object1"), ("sto", "storage/object1", "storage", "object1"), ("storage/obj", "storage/object1", None, "object1"), ("test/an", "test/another_folder/console", "another_folder", "console"), ("", "test/another_folder/console", "test/another_folder", "console"), ] for prefix, key, directory, filename in prefix_and_keys: s3fetch._prefix = prefix tmp_directory, tmp_filename = s3fetch._rollup_prefix(key) assert (directory, filename) == (tmp_directory, tmp_filename)
StarcoderdataPython
109377
<filename>evennia/contrib/tutorials/batchprocessor/__init__.py """ Batch processing examples - Griatch 2012 """
StarcoderdataPython
3385438
# # This file is part of PyFOPPL, an implementation of a First Order Probabilistic Programming Language in Python. # # License: MIT (see LICENSE.txt) # # 21. Feb 2018, <NAME> # 20. Mar 2018, <NAME> # from ..fe_clojure import ppl_clojure_forms as clj from ..ppl_ast import * from .ppl_clojure_lexer import ClojureLexer from .ppl_clojure_parser import ClojureParser ####################################################################################################################### class FopplParser(ClojureParser): def visit_loop(self, count, initial_data, function, *args): if not clj.is_integer(count): raise SyntaxError("loop requires an integer value as first argument") count = count.value initial_data = initial_data.visit(self) function = function.visit(self) args = [arg.visit(self) for arg in args] result = initial_data i = 0 while i < count: result = AstCall(function, [AstValue(i), result] + args) i += 1 return result ####################################################################################################################### def parse(source): clj_ast = list(ClojureLexer(source)) ppl_ast = FopplParser().visit(clj_ast) return ppl_ast
StarcoderdataPython
3215420
<gh_stars>10-100 # Copyright (c) 2018 Ansible by Red Hat # All Rights Reserved. class _AwxTaskError(): def build_exception(self, task, message=None): if message is None: message = "Execution error running {}".format(task.log_format) e = Exception(message) e.task = task e.is_awx_task_error = True return e def TaskCancel(self, task, rc): """Canceled flag caused run_pexpect to kill the job run""" message="{} was canceled (rc={})".format(task.log_format, rc) e = self.build_exception(task, message) e.rc = rc e.awx_task_error_type = "TaskCancel" return e def TaskError(self, task, rc): """Userspace error (non-zero exit code) in run_pexpect subprocess""" message = "{} encountered an error (rc={}), please see task stdout for details.".format(task.log_format, rc) e = self.build_exception(task, message) e.rc = rc e.awx_task_error_type = "TaskError" return e AwxTaskError = _AwxTaskError()
StarcoderdataPython
1783397
from oauth2client.client import OAuth2WebServerFlow import httplib2 import json class Oauth2Client(object): """client for interacting with google oauth 2, as google openid connect is supported under oauth2""" def __init__(self, settings, logger, HTTP_PROXY=None): self.logger = logger self.settings = settings self.flow = OAuth2WebServerFlow( client_id=settings["client_id"], client_secret=settings["client_secret"], scope="openid email", redirect_uri=settings["redirect_url"], ) self.auth_url = self.get_auth_url() self.HTTP_PROXY = HTTP_PROXY def get_auth_url(self): return self.flow.step1_get_authorize_url() def get_user_id(self, code): try: if self.HTTP_PROXY: proxy = httplib2.ProxyInfo( proxy_type=httplib2.socks.PROXY_TYPE_HTTP, proxy_host=self.HTTP_PROXY["host"], proxy_port=self.HTTP_PROXY["port"], proxy_rdns=True, ) http = httplib2.Http(proxy_info=proxy) else: http = httplib2.Http() creds = self.flow.step2_exchange(code, http=http) http = creds.authorize(http) r = http.request( "https://www.googleapis.com/plus/v1/people/me/openIdConnect" ) if len(r) > 1: user_profile = json.loads(r[1]) if user_profile.get("email_verified") == "true": return {"email": user_profile["email"]} else: return { "error": ( "Your email is not verified: {}".format( user_profile.get("error", "") ) ) } else: return {"error": "Can't get user's email"} except Exception as e: self.logger.exception("Can't get user info") return {"error": "Can't get your email: {}".format(e)}
StarcoderdataPython
3218153
<reponame>ZwCreatePhoton/htmlmth import htmlmth.mods.http from . import TransformFunction, http_payload_to_tfarg_function def _generate_encode_chunked_equisize(*args, **kwargs): chunksize = kwargs.get("chunksize", 256) assert(chunksize > 0) return TransformFunction("", "chunked encoding (equisize)", http_payload_to_tfarg_function(lambda x: htmlmth.mods.http.encode_chunked_equisize(x, chunksize=chunksize)) ) encode_chunked_equisize = _generate_encode_chunked_equisize() encode_chunked_equisize.parameterize = _generate_encode_chunked_equisize def _generate_encode_chunked_equisize_leadingzeros(*args, **kwargs): chunksize = kwargs.get("chunksize", 256) leadingzeros = kwargs.get("leadingzeros", 10) assert(chunksize > 0) assert(leadingzeros > 1) return TransformFunction("", "chunked encoding (equisize, chunk sizes with leading zeros)", http_payload_to_tfarg_function(lambda x: htmlmth.mods.http.encode_chunked_equisize(x, chunksize=chunksize, leadingzeros=leadingzeros)) ) encode_chunked_equisize_leadingzeros = _generate_encode_chunked_equisize_leadingzeros() encode_chunked_equisize_leadingzeros.parameterize = _generate_encode_chunked_equisize_leadingzeros def _generate_encode_chunked_varysize(*args, **kwargs): min_chunksize = kwargs.get("min_chunksize", 128) max_chunksize = kwargs.get("max_chunksize", 256) assert(min_chunksize > 0) assert(max_chunksize > 0) assert(min_chunksize < max_chunksize) return TransformFunction("", "chunked encoding (various sizes)", http_payload_to_tfarg_function(lambda x: htmlmth.mods.http.encode_chunked_varysize(x, min_chunksize=min_chunksize, max_chunksize=max_chunksize)) ) encode_chunked_varysize = _generate_encode_chunked_varysize() encode_chunked_varysize.parameterize = _generate_encode_chunked_varysize def _generate_encode_chunked_equisize_leadingzeros(*args, **kwargs): min_chunksize = kwargs.get("min_chunksize", 128) max_chunksize = kwargs.get("max_chunksize", 256) leadingzeros = kwargs.get("leadingzeros", 10) assert (min_chunksize > 0) assert (max_chunksize > 0) assert (min_chunksize < max_chunksize) assert(leadingzeros > 1) return TransformFunction("", "chunked encoding (various sizes, chunk sizes with leading zeros)", http_payload_to_tfarg_function( lambda x: htmlmth.mods.http.encode_chunked_varysize(x, min_chunksize=min_chunksize, max_chunksize=max_chunksize, leadingzeros=leadingzeros)) ) encode_chunked_varysize_leadingzeros = _generate_encode_chunked_equisize_leadingzeros() encode_chunked_varysize_leadingzeros.parameterize = _generate_encode_chunked_equisize_leadingzeros
StarcoderdataPython
77953
<reponame>Furzoom/learnpython<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- # type(a) == type(b) - whether value of type(a) is equivalent to value of type(b) # type(a) is type(b) - whether type(a) and type(b) have same type
StarcoderdataPython
3252066
<reponame>nexus-lab/relf-server #!/usr/bin/env python """Benchmark tests for the Cloud Bigtable data store.""" from grr.lib import flags from grr.server import data_store_test from grr.server.data_stores import cloud_bigtable_data_store_test from grr.test_lib import test_lib class CloudBigtableDataStoreBenchmarks( cloud_bigtable_data_store_test.CloudBigTableDataStoreMixin, data_store_test.DataStoreBenchmarks): """Performance test cloud bigtable.""" def main(argv): del argv # Unused. test_lib.main() if __name__ == "__main__": flags.StartMain(main)
StarcoderdataPython
3272253
<filename>Netflix/em.py """Mixture model for matrix completion""" from typing import Tuple import numpy as np from scipy.special import logsumexp from common import GaussianMixture def log_gaussian(x: np.ndarray, mean: np.ndarray, var: float) -> float: """Computes the log probablity of vector x under a normal distribution Args: x: (d, ) array holding the vector's coordinates mean: (d, ) mean of the gaussian var: variance of the gaussian Returns: float: the log probability """ d = len(x) log_prob = -d / 2.0 * np.log(2 * np.pi * var) log_prob -= 0.5 * ((x - mean) ** 2).sum() / var return log_prob def estep(X: np.ndarray, mixture: GaussianMixture) -> Tuple[np.ndarray, float]: """E-step: Softly assigns each datapoint to a gaussian component Args: X: (n, d) array holding the data, with incomplete entries (set to 0) mixture: the current gaussian mixture Returns: np.ndarray: (n, K) array holding the soft counts for all components for all examples float: log-likelihood of the assignment """ n, _ = X.shape K, _ = mixture.mu.shape post = np.zeros((n, K)) ll = 0 for i in range(n): mask = (X[i, :] != 0) for j in range(K): log_likelihood = log_gaussian(X[i, mask], mixture.mu[j, mask], mixture.var[j]) post[i, j] = np.log(mixture.p[j] + 1e-16) + log_likelihood total = logsumexp(post[i, :]) post[i, :] = post[i, :] - total ll += total return np.exp(post), ll def mstep(X: np.ndarray, post: np.ndarray, mixture: GaussianMixture, min_variance: float = .25) -> GaussianMixture: """M-step: Updates the gaussian mixture by maximizing the log-likelihood of the weighted dataset Args: X: (n, d) array holding the data, with incomplete entries (set to 0) post: (n, K) array holding the soft counts for all components for all examples mixture: the current gaussian mixture min_variance: the minimum variance for each gaussian Returns: GaussianMixture: the new gaussian mixture """ n, d = X.shape _, K = post.shape n_hat = post.sum(axis=0) p = n_hat / n mu = mixture.mu.copy() var = np.zeros(K) for j in range(K): sse, weight = 0, 0 for l in range(d): mask = (X[:, l] != 0) n_sum = post[mask, j].sum() if (n_sum >= 1): # Updating mean mu[j, l] = (X[mask, l] @ post[mask, j]) / n_sum # Computing variance sse += ((mu[j, l] - X[mask, l]) ** 2) @ post[mask, j] weight += n_sum var[j] = sse / weight if var[j] < min_variance: var[j] = min_variance return GaussianMixture(mu, var, p) def run(X: np.ndarray, mixture: GaussianMixture, post: np.ndarray) -> Tuple[GaussianMixture, np.ndarray, float]: """Runs the mixture model Args: X: (n, d) array holding the data post: (n, K) array holding the soft counts for all components for all examples Returns: GaussianMixture: the new gaussian mixture np.ndarray: (n, K) array holding the soft counts for all components for all examples float: log-likelihood of the current assignment """ prev_ll = None ll = None while (prev_ll is None or ll - prev_ll > 1e-6 * np.abs(ll)): prev_ll = ll post, ll = estep(X, mixture) mixture = mstep(X, post, mixture) return mixture, post, ll def fill_matrix(X: np.ndarray, mixture: GaussianMixture) -> np.ndarray: """Fills an incomplete matrix according to a mixture model Args: X: (n, d) array of incomplete data (incomplete entries =0) mixture: a mixture of gaussians Returns np.ndarray: a (n, d) array with completed data """ n, d = X.shape X_pred = X.copy() K, _ = mixture.mu.shape for i in range(n): mask = X[i, :] != 0 mask0 = X[i, :] == 0 post = np.zeros(K) for j in range(K): log_likelihood = log_gaussian(X[i, mask], mixture.mu[j, mask], mixture.var[j]) post[j] = np.log(mixture.p[j]) + log_likelihood post = np.exp(post - logsumexp(post)) X_pred[i, mask0] = np.dot(post, mixture.mu[:, mask0]) return X_pred
StarcoderdataPython
8185
<gh_stars>0 def calc_fitness(pop): from to_decimal import to_decimal from math import sin, sqrt for index, elem in enumerate(pop): # só atribui a fitness a cromossomos que ainda não possuem fitness # print(elem[0], elem[1]) x = to_decimal(elem[0]) y = to_decimal(elem[1]) # x = elem[0] # y = elem[1] f6 = 0.5 - ((sin(sqrt(x**2 + y**2)))**2 - 0.5) / (1 + 0.001 * (x**2 + y**2))**2 pop[index] = [f6, elem] return 0 # populacao = [[0,0],[-3,1]] # calc_fitness(pop=populacao) # print(populacao)
StarcoderdataPython
3271634
<reponame>WillemRvX/ethelease #!/usr/bin/env python import os from time import sleep from ethelease.commons.utils import ENV, LOGGER from ethelease.cronos.utils import eval_cron from ethelease.k8s.ops import pod_launch_n_mgmt, K8sPodConf from ethelease.workflow.commons.utils import Valuables, scheds, scheduler FAMILY = os.environ.get('_FAMILY_') def sleeper() -> dict: groups, _index = list(zip(*[iter(range(1, 101))]*10)), dict() for j, group in enumerate(groups): for x in group: _index[x] = j return _index def workflow(pipeline_name: str, vals: Valuables) -> None: kind, sched = vals.kind, vals.schedule mssg, devil = f'`{pipeline_name}` launching in `{ENV}`!', {'develop', 'fix'} conf_body = ( K8sPodConf() .env(ENV) .family_name(vals.name) .container_registry(vals.registry_location) .metadata(name=pipeline_name, proj_or_acct_id= vals.proj_or_acct_id, namespace='default') .which_nodepoolorgroup(name=vals.node_poolorgroup, cloud=vals.which_cloud) .pipeline_or_runner_script(vals.script) .script_args(vals.args) .pick_secret(name=vals.which_secret) .cpu_usage( req=vals.req_cpu, lim=vals.lim_cpu ) .mem_usage( req=vals.req_mem, lim=vals.lim_mem ) .restart_policy(vals.restart_policy) .assemble() ) if ENV == 'pr' and sched != 'immediately_once': while True: if eval_cron(pipeline_name=pipeline_name, expr=sched): LOGGER.info(mssg) pod_launch_n_mgmt(conf_body) if ENV == 'pr' and sched == 'immediately_once': LOGGER.info(mssg) pod_launch_n_mgmt(conf_body) while True: sleep(60) if ENV == 'dv' and sched in devil: LOGGER.info(mssg) pod_launch_n_mgmt(conf_body) while True: sleep(60) if ENV == 'dv' and sched != devil: while True: LOGGER.info('Nothing here...') sleep(300) if __name__ == '__main__': scheduler( scheds( '.', family=os.environ.get('_FAMILY_') ), workflow=workflow, is_local=False )
StarcoderdataPython
1705281
<gh_stars>1-10 import unittest import os import sys lib_path = os.path.abspath('../') sys.path.append(lib_path) try: from Comodo.TV import * # @UnusedWildImport except ImportError, erro: from trunk.Comodo.TV import * # @UnusedWildImport class TesteTV(unittest.TestCase): def setUp(self): self.tv1 = TV() def tearDown(self): self.tv1 = None def testPower(self): self.assertFalse(self.tv1.getState(), "O estado deve ser False") self.tv1.turnOn() self.assertTrue(self.tv1.getState(), "O estado deve ser True") self.tv1.turnOff() self.assertFalse(self.tv1.getState(), "O estado deve ser False") def testVolume(self): self.assertEqual(self.tv1.getVolume(), 0, "O volume deve iniciar em 0") self.tv1.upVolume() self.assertEqual(self.tv1.getVolume(), 1, "O volume deve ser 1") for _ in range(10): self.tv1.upVolume() self.assertEqual(self.tv1.getVolume(), 11, "O volume deve ser 11") # down volume self.tv1.downVolume() self.assertEqual(self.tv1.getVolume(), 10, "O volume deve ser 10") for _ in range(5): self.tv1.downVolume() self.assertEqual(self.tv1.getVolume(), 5, "O volume deve ser 5") def testCanal(self): self.assertEqual(1, self.tv1.getChannel(), "O canal inicial deve ser 1") self.tv1.upChannel() self.assertEqual(2, self.tv1.getChannel(), "O canal deve ser 2") for _ in range(3): self.tv1.upChannel() self.assertEqual(2, self.tv1.getChannel(), "O canal deve ser 2") # down canal self.tv1.downChannel() self.assertEqual(1, self.tv1.getChannel(), "O canal deve ser 1") for _ in range(3): self.tv1.downChannel() self.assertEqual(1, self.tv1.getChannel(), "O canal deve ser 1")
StarcoderdataPython
1684744
# SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD # SPDX-License-Identifier: CC0-1.0 import pytest from pytest_embedded import Dut def deepsleep_test(dut: Dut, case_name: str) -> None: dut.expect_exact('Press ENTER to see the list of tests') dut.write(case_name) reset_reason = 'DEEPSLEEP_RESET' if dut.target == 'esp32' else 'DSLEEP' if dut.target == 'esp32c3': # Known issue: IDF-5003 dut.expect(r'rst:.*\(%s\)' % reset_reason, timeout=40) else: dut.expect(r'rst:.*\(%s\)' % reset_reason, timeout=10) @pytest.mark.supported_targets @pytest.mark.generic def test_rtc_8md256_deepsleep(dut: Dut) -> None: deepsleep_test(dut, '"Can use 8MD256 as RTC clock source in deepsleep"') # Only targets with SOC_PM_SUPPORT_RTC_PERIPH_PD defined @pytest.mark.esp32 @pytest.mark.esp32s2 @pytest.mark.esp32s3 @pytest.mark.generic def test_rtc_8md256_deepsleep_force_rtcperiph(dut: Dut) -> None: deepsleep_test(dut, '"Can use 8MD256 as RTC clock source in deepsleep (force rtc_periph)"') def lightsleep_test(dut: Dut, case_name: str) -> None: dut.expect_exact('Press ENTER to see the list of tests') dut.write(case_name) if dut.target == 'esp32c3': # Known issue: IDF-5003 dut.expect(r'Returned from light sleep, reason: timer', timeout=40) else: dut.expect(r'Returned from light sleep, reason: timer', timeout=10) @pytest.mark.supported_targets @pytest.mark.generic def test_rtc_8md256_lightsleep(dut: Dut) -> None: lightsleep_test(dut, '"Can use 8MD256 as RTC clock source in lightsleep"') @pytest.mark.esp32 @pytest.mark.esp32s2 @pytest.mark.esp32s3 @pytest.mark.generic def test_rtc_8md256_lightsleep_force_rtcperiph(dut: Dut) -> None: lightsleep_test(dut, '"Can use 8MD256 as RTC clock source in lightsleep (force rtc_periph)"')
StarcoderdataPython
3375359
<gh_stars>0 import logging import numpy as np from demotivational_policy_descent.agents.agent_interface import AgentInterface class Dummy(AgentInterface): def __init__(self, env, player_id=1): super().__init__(env=env, player_id=player_id) self.reset() # Call reset here to avoid code duplication! def reset(self): logging.debug("Resetting parameters...") self.test_attribute = 5 logging.debug("Reset!") def get_action(self, frame: np.array=None) -> int: logging.debug("Returning a random action sampled from the frame..") return np.random.choice([0, 1, 2]) if __name__ == "__main__": logger = logging.getLogger() logger.setLevel(logging.DEBUG) dummy = Dummy(env=None, player_id=1) dummy.test_attribute = 100 name = "dummy_test_model" rename = dummy.save_model(name) print("Renamed:", rename) dummy.test_attribute = 200 dummy.load_model(name) assert dummy.test_attribute == 100 dummy.reset() assert dummy.test_attribute == 5 print("Dummy action", dummy.get_action(np.zeros(1)))
StarcoderdataPython
1739302
import io from twisted.internet import reactor from ygo.card import Card from ygo.duel_reader import DuelReader from ygo.parsers.duel_parser import DuelParser from ygo.utils import process_duel def msg_select_option(self, data): data = io.BytesIO(data[1:]) player = self.read_u8(data) size = self.read_u8(data) options = [] for i in range(size): options.append(self.read_u32(data)) self.cm.call_callbacks("select_option", player, options) return data.read() def select_option(self, player, options): pl = self.players[player] def r(caller): idx = int(caller.text) opt = options[idx] for p in self.players + self.watchers: if opt > 10000: string = card.get_strings(p)[opt & 0xF] else: string = p._("Unknown option %d" % opt) string = p.strings["system"].get(opt, string) if p is pl: p.notify(p._("You selected option {0}: {1}").format(idx + 1, string)) else: p.notify( p._("{0} selected option {1}: {2}").format( pl.nickname, idx + 1, string ) ) self.set_responsei(idx) reactor.callLater(0, process_duel, self) card = None opts = [] for opt in options: if opt > 10000: code = opt >> 4 card = Card(code) string = card.get_strings(pl)[opt & 0xF] else: string = pl._("Unknown option %d" % opt) string = pl.strings["system"].get(opt, string) opts.append(string) pl.notify( pl._("Select option:"), no_abort=pl._("Invalid option."), prompt=pl._("Select option:"), persistent=True, restore_parser=DuelParser, ) for idx, opt in enumerate(opts): pl.notify(str(idx) + ": " + str(opt)) pl.notify(DuelReader, r, no_abort=pl._("Invalid command"), restore_parser=DuelParser) MESSAGES = {14: msg_select_option} CALLBACKS = {"select_option": select_option}
StarcoderdataPython
127692
from core.himesis import Himesis, HimesisPreConditionPatternLHS import uuid class HUnitR04c_CompleteLHS(HimesisPreConditionPatternLHS): def __init__(self): """ Creates the himesis graph representing the AToM3 model HUnitR04c_CompleteLHS """ # Flag this instance as compiled now self.is_compiled = True super(HUnitR04c_CompleteLHS, self).__init__(name='HUnitR04c_CompleteLHS', num_nodes=0, edges=[]) # Add the edges self.add_edges([]) # Set the graph attributes self["mm__"] = ['MT_pre__FamiliesToPersonsMM', 'MoTifRule'] self["MT_constraint__"] = """return True""" self["name"] = """""" self["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'HUnitR04c_CompleteLHS') self["equations"] = [] # Set the node attributes # match class State(State) node self.add_node() self.vs[0]["MT_pre__attr1"] = """return True""" self.vs[0]["MT_label__"] = """1""" self.vs[0]["mm__"] = """MT_pre__State""" self.vs[0]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'State') # apply class ProcDef(4.2.a.0ProcDef) node self.add_node() self.vs[1]["MT_pre__attr1"] = """return True""" self.vs[1]["MT_label__"] = """2""" self.vs[1]["mm__"] = """MT_pre__ProcDef""" self.vs[1]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.0ProcDef') # apply class LocalDef(4.2.a.1LocalDef) node self.add_node() self.vs[2]["MT_pre__attr1"] = """return True""" self.vs[2]["MT_label__"] = """3""" self.vs[2]["mm__"] = """MT_pre__LocalDef""" self.vs[2]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.1LocalDef') # apply class Name(4.2.a.2Name) node self.add_node() self.vs[3]["MT_pre__attr1"] = """return True""" self.vs[3]["MT_label__"] = """4""" self.vs[3]["mm__"] = """MT_pre__Name""" self.vs[3]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.2Name') # apply class New(4.2.a.3New) node self.add_node() self.vs[4]["MT_pre__attr1"] = """return True""" self.vs[4]["MT_label__"] = """5""" self.vs[4]["mm__"] = """MT_pre__New""" self.vs[4]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.3New') # apply class Name(4.2.a.4Name) node self.add_node() self.vs[5]["MT_pre__attr1"] = """return True""" self.vs[5]["MT_label__"] = """6""" self.vs[5]["mm__"] = """MT_pre__Name""" self.vs[5]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.4Name') # apply class Name(4.2.a.5Name) node self.add_node() self.vs[6]["MT_pre__attr1"] = """return True""" self.vs[6]["MT_label__"] = """7""" self.vs[6]["mm__"] = """MT_pre__Name""" self.vs[6]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.5Name') # apply class Name(4.2.a.6Name) node self.add_node() self.vs[7]["MT_pre__attr1"] = """return True""" self.vs[7]["MT_label__"] = """8""" self.vs[7]["mm__"] = """MT_pre__Name""" self.vs[7]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.6Name') # apply class Par(4.2.a.7Par) node self.add_node() self.vs[8]["MT_pre__attr1"] = """return True""" self.vs[8]["MT_label__"] = """9""" self.vs[8]["mm__"] = """MT_pre__Par""" self.vs[8]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.7Par') # apply class Inst(4.2.a.8Inst) node self.add_node() self.vs[9]["MT_pre__attr1"] = """return True""" self.vs[9]["MT_label__"] = """10""" self.vs[9]["mm__"] = """MT_pre__Inst""" self.vs[9]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.8Inst') # apply class Inst(4.2.a.9Inst) node self.add_node() self.vs[10]["MT_pre__attr1"] = """return True""" self.vs[10]["MT_label__"] = """11""" self.vs[10]["mm__"] = """MT_pre__Inst""" self.vs[10]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.9Inst') # apply class Name(4.2.a.10Name) node self.add_node() self.vs[11]["MT_pre__attr1"] = """return True""" self.vs[11]["MT_label__"] = """12""" self.vs[11]["mm__"] = """MT_pre__Name""" self.vs[11]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.10Name') # apply class Name(4.2.a.11Name) node self.add_node() self.vs[12]["MT_pre__attr1"] = """return True""" self.vs[12]["MT_label__"] = """13""" self.vs[12]["mm__"] = """MT_pre__Name""" self.vs[12]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.11Name') # apply class Name(4.2.a.12Name) node self.add_node() self.vs[13]["MT_pre__attr1"] = """return True""" self.vs[13]["MT_label__"] = """14""" self.vs[13]["mm__"] = """MT_pre__Name""" self.vs[13]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.12Name') # apply class Name(4.2.a.13Name) node self.add_node() self.vs[14]["MT_pre__attr1"] = """return True""" self.vs[14]["MT_label__"] = """15""" self.vs[14]["mm__"] = """MT_pre__Name""" self.vs[14]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.13Name') # apply class Name(4.2.a.14Name) node self.add_node() self.vs[15]["MT_pre__attr1"] = """return True""" self.vs[15]["MT_label__"] = """16""" self.vs[15]["mm__"] = """MT_pre__Name""" self.vs[15]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.14Name') # apply class Name(4.2.a.15Name) node self.add_node() self.vs[16]["MT_pre__attr1"] = """return True""" self.vs[16]["MT_label__"] = """17""" self.vs[16]["mm__"] = """MT_pre__Name""" self.vs[16]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.15Name') # apply class Name(4.2.a.16Name) node self.add_node() self.vs[17]["MT_pre__attr1"] = """return True""" self.vs[17]["MT_label__"] = """18""" self.vs[17]["mm__"] = """MT_pre__Name""" self.vs[17]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.16Name') # apply association ProcDef--p-->LocalDefnode self.add_node() self.vs[18]["MT_pre__attr1"] = """return attr_value == "p" """ self.vs[18]["MT_label__"] = """19""" self.vs[18]["mm__"] = """MT_pre__directLink_T""" self.vs[18]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.0ProcDefassoc184.2.a.1LocalDef') # apply association ProcDef--channelNames-->Namenode self.add_node() self.vs[19]["MT_pre__attr1"] = """return attr_value == "channelNames" """ self.vs[19]["MT_label__"] = """20""" self.vs[19]["mm__"] = """MT_pre__directLink_T""" self.vs[19]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.0ProcDefassoc194.2.a.2Name') # apply association LocalDef--p-->Newnode self.add_node() self.vs[20]["MT_pre__attr1"] = """return attr_value == "p" """ self.vs[20]["MT_label__"] = """21""" self.vs[20]["mm__"] = """MT_pre__directLink_T""" self.vs[20]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.1LocalDefassoc204.2.a.3New') # apply association New--channelNames-->Namenode self.add_node() self.vs[21]["MT_pre__attr1"] = """return attr_value == "channelNames" """ self.vs[21]["MT_label__"] = """22""" self.vs[21]["mm__"] = """MT_pre__directLink_T""" self.vs[21]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.3Newassoc214.2.a.4Name') # apply association New--channelNames-->Namenode self.add_node() self.vs[22]["MT_pre__attr1"] = """return attr_value == "channelNames" """ self.vs[22]["MT_label__"] = """23""" self.vs[22]["mm__"] = """MT_pre__directLink_T""" self.vs[22]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.3Newassoc224.2.a.5Name') # apply association New--channelNames-->Namenode self.add_node() self.vs[23]["MT_pre__attr1"] = """return attr_value == "channelNames" """ self.vs[23]["MT_label__"] = """24""" self.vs[23]["mm__"] = """MT_pre__directLink_T""" self.vs[23]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.3Newassoc234.2.a.6Name') # apply association New--p-->Parnode self.add_node() self.vs[24]["MT_pre__attr1"] = """return attr_value == "p" """ self.vs[24]["MT_label__"] = """25""" self.vs[24]["mm__"] = """MT_pre__directLink_T""" self.vs[24]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.3Newassoc244.2.a.7Par') # apply association Par--p-->Instnode self.add_node() self.vs[25]["MT_pre__attr1"] = """return attr_value == "p" """ self.vs[25]["MT_label__"] = """26""" self.vs[25]["mm__"] = """MT_pre__directLink_T""" self.vs[25]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.7Parassoc254.2.a.9Inst') # apply association Par--p-->Instnode self.add_node() self.vs[26]["MT_pre__attr1"] = """return attr_value == "p" """ self.vs[26]["MT_label__"] = """27""" self.vs[26]["mm__"] = """MT_pre__directLink_T""" self.vs[26]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.7Parassoc264.2.a.8Inst') # apply association Inst--channelNames-->Namenode self.add_node() self.vs[27]["MT_pre__attr1"] = """return attr_value == "channelNames" """ self.vs[27]["MT_label__"] = """28""" self.vs[27]["mm__"] = """MT_pre__directLink_T""" self.vs[27]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.8Instassoc274.2.a.10Name') # apply association Inst--channelNames-->Namenode self.add_node() self.vs[28]["MT_pre__attr1"] = """return attr_value == "channelNames" """ self.vs[28]["MT_label__"] = """29""" self.vs[28]["mm__"] = """MT_pre__directLink_T""" self.vs[28]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.8Instassoc284.2.a.11Name') # apply association Inst--channelNames-->Namenode self.add_node() self.vs[29]["MT_pre__attr1"] = """return attr_value == "channelNames" """ self.vs[29]["MT_label__"] = """30""" self.vs[29]["mm__"] = """MT_pre__directLink_T""" self.vs[29]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.8Instassoc294.2.a.12Name') # apply association Inst--channelNames-->Namenode self.add_node() self.vs[30]["MT_pre__attr1"] = """return attr_value == "channelNames" """ self.vs[30]["MT_label__"] = """31""" self.vs[30]["mm__"] = """MT_pre__directLink_T""" self.vs[30]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.8Instassoc304.2.a.13Name') # apply association Inst--channelNames-->Namenode self.add_node() self.vs[31]["MT_pre__attr1"] = """return attr_value == "channelNames" """ self.vs[31]["MT_label__"] = """32""" self.vs[31]["mm__"] = """MT_pre__directLink_T""" self.vs[31]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.9Instassoc314.2.a.14Name') # apply association Inst--channelNames-->Namenode self.add_node() self.vs[32]["MT_pre__attr1"] = """return attr_value == "channelNames" """ self.vs[32]["MT_label__"] = """33""" self.vs[32]["mm__"] = """MT_pre__directLink_T""" self.vs[32]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.9Instassoc324.2.a.15Name') # apply association Inst--channelNames-->Namenode self.add_node() self.vs[33]["MT_pre__attr1"] = """return attr_value == "channelNames" """ self.vs[33]["MT_label__"] = """34""" self.vs[33]["mm__"] = """MT_pre__directLink_T""" self.vs[33]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.9Instassoc334.2.a.16Name') # trace association ProcDef--trace-->nullnode self.add_node() self.vs[34]["MT_label__"] = """35""" self.vs[34]["mm__"] = """MT_pre__trace_link""" self.vs[34]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'4.2.a.0ProcDefassoc34State') self['equations'].append(((3,'literal'),('constant','sh'))) self['equations'].append(((5,'literal'),('constant','exit_in'))) self['equations'].append(((6,'literal'),('constant','exack_in'))) self['equations'].append(((7,'literal'),('constant','sh_in'))) self['equations'].append(((9,'name'),('constant','C'))) self['equations'].append(((10,'name'),('constant','H'))) self['equations'].append(((11,'literal'),('constant','enp'))) self['equations'].append(((12,'literal'),('constant','exit_in'))) self['equations'].append(((13,'literal'),('constant','exack_in'))) self['equations'].append(((14,'literal'),('constant','sh_in'))) self['equations'].append(((15,'literal'),('constant','exit_in'))) self['equations'].append(((16,'literal'),('constant','exack_in'))) self['equations'].append(((17,'literal'),('constant','sh_in'))) # Add the edges self.add_edges([ (1,18), # apply class ProcDef(4.2.a.0ProcDef) -> association p (18,2), # association LocalDef -> apply class LocalDef(4.2.a.1LocalDef) (1,19), # apply class ProcDef(4.2.a.0ProcDef) -> association channelNames (19,3), # association Name -> apply class Name(4.2.a.2Name) (2,20), # apply class LocalDef(4.2.a.1LocalDef) -> association p (20,4), # association New -> apply class New(4.2.a.3New) (4,21), # apply class New(4.2.a.3New) -> association channelNames (21,5), # association Name -> apply class Name(4.2.a.4Name) (4,22), # apply class New(4.2.a.3New) -> association channelNames (22,6), # association Name -> apply class Name(4.2.a.5Name) (4,23), # apply class New(4.2.a.3New) -> association channelNames (23,7), # association Name -> apply class Name(4.2.a.6Name) (4,24), # apply class New(4.2.a.3New) -> association p (24,8), # association Par -> apply class Par(4.2.a.7Par) (8,25), # apply class Par(4.2.a.7Par) -> association p (25,10), # association Inst -> apply class Inst(4.2.a.9Inst) (8,26), # apply class Par(4.2.a.7Par) -> association p (26,9), # association Inst -> apply class Inst(4.2.a.8Inst) (9,27), # apply class Inst(4.2.a.8Inst) -> association channelNames (27,11), # association Name -> apply class Name(4.2.a.10Name) (9,28), # apply class Inst(4.2.a.8Inst) -> association channelNames (28,12), # association Name -> apply class Name(4.2.a.11Name) (9,29), # apply class Inst(4.2.a.8Inst) -> association channelNames (29,13), # association Name -> apply class Name(4.2.a.12Name) (9,30), # apply class Inst(4.2.a.8Inst) -> association channelNames (30,14), # association Name -> apply class Name(4.2.a.13Name) (10,31), # apply class Inst(4.2.a.9Inst) -> association channelNames (31,15), # association Name -> apply class Name(4.2.a.14Name) (10,32), # apply class Inst(4.2.a.9Inst) -> association channelNames (32,16), # association Name -> apply class Name(4.2.a.15Name) (10,33), # apply class Inst(4.2.a.9Inst) -> association channelNames (33,17), # association Name -> apply class Name(4.2.a.16Name) (1,34), # apply class ProcDef(State) -> backward_association (34,0), # backward_associationnull -> match_class null(State) ]) # define evaluation methods for each match class. def eval_attr11(self, attr_value, this): return True # define evaluation methods for each apply class. def eval_attr12(self, attr_value, this): return True def eval_attr13(self, attr_value, this): return True def eval_attr14(self, attr_value, this): return True def eval_attr15(self, attr_value, this): return True def eval_attr16(self, attr_value, this): return True def eval_attr17(self, attr_value, this): return True def eval_attr18(self, attr_value, this): return True def eval_attr19(self, attr_value, this): return True def eval_attr110(self, attr_value, this): return True def eval_attr111(self, attr_value, this): return True def eval_attr112(self, attr_value, this): return True def eval_attr113(self, attr_value, this): return True def eval_attr114(self, attr_value, this): return True def eval_attr115(self, attr_value, this): return True def eval_attr116(self, attr_value, this): return True def eval_attr117(self, attr_value, this): return True def eval_attr118(self, attr_value, this): return True # define evaluation methods for each match association. # define evaluation methods for each apply association. def eval_attr119(self, attr_value, this): return attr_value == "p" def eval_attr120(self, attr_value, this): return attr_value == "channelNames" def eval_attr121(self, attr_value, this): return attr_value == "p" def eval_attr122(self, attr_value, this): return attr_value == "channelNames" def eval_attr123(self, attr_value, this): return attr_value == "channelNames" def eval_attr124(self, attr_value, this): return attr_value == "channelNames" def eval_attr125(self, attr_value, this): return attr_value == "p" def eval_attr126(self, attr_value, this): return attr_value == "p" def eval_attr127(self, attr_value, this): return attr_value == "p" def eval_attr128(self, attr_value, this): return attr_value == "channelNames" def eval_attr129(self, attr_value, this): return attr_value == "channelNames" def eval_attr130(self, attr_value, this): return attr_value == "channelNames" def eval_attr131(self, attr_value, this): return attr_value == "channelNames" def eval_attr132(self, attr_value, this): return attr_value == "channelNames" def eval_attr133(self, attr_value, this): return attr_value == "channelNames" def eval_attr134(self, attr_value, this): return attr_value == "channelNames" def constraint(self, PreNode, graph): return True
StarcoderdataPython
3257317
""" Decorators to extend workflow functions """ from functools import wraps from .util import find_on_path from .provenance import BINARY_PROVENANCE as bin_provenance_registry class requires(object): """Convenience wrapper for tracking binaries used to perform tasks """ def __init__(self, binaries=list(), version_methods=list()): self.required_binaries = binaries self.version_methods = version_methods if len(binaries) == len(version_methods): self._update_binary_provenance() def _update_binary_provenance(self): """Add to the BINARY_PROVENANCE set the list of required binaries and version commands in the form of (binary, command) tuples """ map( bin_provenance_registry.add, zip(self.required_binaries, self.version_methods) ) def _maybe_halt(self): missing = list() for binary in self.required_binaries: candidate = find_on_path(binary) if not candidate: missing.append(binary) else: yield candidate if missing: raise ValueError("Unable to continue, please install the " "following binaries: %s" %(str(missing))) def __call__(self, fn): @wraps(fn) def wrapper(*args, **kwargs): binaries_with_paths = list(self._maybe_halt()) ret = fn(*args, **kwargs) if ret: if type(ret) is dict: ret = [ret] for t in ret: deps = t.get('file_dep', []) t['file_dep'] = list(set(list(deps)+binaries_with_paths)) yield t wrapper.required_binaries = self.required_binaries wrapper.version_methods = self.version_methods return wrapper
StarcoderdataPython
1602866
# # Copyright (c) 2020, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import cudf from cudf._lib.nvtx import annotate from .minmax import MinMax from .moments import Moments from .operator import CONT from .transform_operator import DFOperator class Normalize(DFOperator): """ Standardizing the features around 0 with a standard deviation of 1 is a common technique to compare measurements that have different units. This operation can be added to the workflow to standardize the features. It performs Normalization using the mean std method. Example usage:: # Initialize the workflow proc = nvt.Workflow( cat_names=CATEGORICAL_COLUMNS, cont_names=CONTINUOUS_COLUMNS, label_name=LABEL_COLUMNS ) # Add Normalize to the workflow for continuous columns proc.add_cont_feature(nvt.ops.Normalize()) Parameters ---------- columns : list of str, default None Continous columns to target for this op. If None, the operation will target all known continous columns. replace : bool, default False Whether to replace existing columns or create new ones. """ default_in = CONT default_out = CONT @property def req_stats(self): return [Moments(columns=self.columns)] @annotate("Normalize_op", color="darkgreen", domain="nvt_python") def op_logic(self, gdf: cudf.DataFrame, target_columns: list, stats_context=None): cont_names = target_columns if not cont_names or not stats_context["stds"]: return gdf = self.apply_mean_std(gdf, stats_context, cont_names) return gdf def apply_mean_std(self, gdf, stats_context, cont_names): new_gdf = cudf.DataFrame() for name in cont_names: if stats_context["stds"][name] > 0: new_col = f"{name}_{self._id}" new_gdf[new_col] = (gdf[name] - stats_context["means"][name]) / ( stats_context["stds"][name] ) new_gdf[new_col] = new_gdf[new_col].astype("float32") return new_gdf class NormalizeMinMax(DFOperator): """ Standardizing the features around 0 with a standard deviation of 1 is a common technique to compare measurements that have different units. This operation can be added to the workflow to standardize the features. It performs Normalization using the min max method. Example usage:: # Initialize the workflow proc = nvt.Workflow( cat_names=CATEGORICAL_COLUMNS, cont_names=CONTINUOUS_COLUMNS, label_name=LABEL_COLUMNS ) # Add NormalizeMinMax to the workflow for continuous columns proc.add_cont_feature(nvt.ops.NormalizeMinMax()) Parameters ---------- columns : list of str, default None Continous columns to target for this op. If None, the operation will target all known continous columns. replace : bool, default False Whether to replace existing columns or create new ones. """ default_in = CONT default_out = CONT @property def req_stats(self): return [MinMax(columns=self.columns)] @annotate("NormalizeMinMax_op", color="darkgreen", domain="nvt_python") def op_logic(self, gdf: cudf.DataFrame, target_columns: list, stats_context=None): cont_names = target_columns if not cont_names or not stats_context["mins"]: return gdf = self.apply_min_max(gdf, stats_context, cont_names) return gdf def apply_min_max(self, gdf, stats_context, cont_names): new_gdf = cudf.DataFrame() for name in cont_names: dif = stats_context["maxs"][name] - stats_context["mins"][name] new_col = f"{name}_{self._id}" if dif > 0: new_gdf[new_col] = (gdf[name] - stats_context["mins"][name]) / dif elif dif == 0: new_gdf[new_col] = gdf[name] / (2 * gdf[name]) new_gdf[new_col] = new_gdf[new_col].astype("float32") return new_gdf
StarcoderdataPython
1707795
""" SGA.html ======== Code to generate HTML output for the various stages of the SGA analysis. """ import os import numpy as np def get_layer(onegal): if onegal['DR'] == 'dr6': layer = 'mzls+bass-dr6' elif onegal['DR'] == 'dr7': layer = 'decals-dr5' else: print('Unrecognized data release {}!'.format(onegal['DR'])) raise ValueError return layer def _get_cutouts_one(args): """Wrapper function for the multiprocessing.""" return get_cutouts_one(*args) def get_cutouts_one(group, clobber=False): """Get viewer cutouts for a single galaxy.""" layer = get_layer(group) groupname = get_groupname(group) diam = group_diameter(group) # [arcmin] size = np.ceil(diam * 60 / PIXSCALE).astype('int') # [pixels] imageurl = '{}/?ra={:.8f}&dec={:.8f}&pixscale={:.3f}&size={:g}&layer={}'.format( cutouturl, group['ra'], group['dec'], PIXSCALE, size, layer) jpgfile = os.path.join(jpgdir, '{}.jpg'.format(groupname)) cmd = 'wget --continue -O {:s} "{:s}"' .format(jpgfile, imageurl) if os.path.isfile(jpgfile) and not clobber: print('File {} exists...skipping.'.format(jpgfile)) else: if os.path.isfile(jpgfile): os.remove(jpgfile) print(cmd) os.system(cmd) def get_cutouts(groupsample, use_nproc=nproc, clobber=False): """Get viewer cutouts of the whole sample.""" cutoutargs = list() for gg in groupsample: cutoutargs.append( (gg, clobber) ) if use_nproc > 1: p = multiprocessing.Pool(nproc) p.map(_get_cutouts_one, cutoutargs) p.close() else: for args in cutoutargs: _get_cutouts_one(args) return def _add_labels_one(args): """Wrapper function for the multiprocessing.""" return add_labels_one(*args) def add_labels_one(group, sample, clobber=False, nothumb=False): jpgdir = os.path.join(SGAdir, 'cutouts', 'jpg') pngdir = os.path.join(SGAdir, 'cutouts', 'png') if not os.path.isdir(pngdir): os.mkdir(pngdir) groupname = get_groupname(group) galaxy = get_galaxy(group, sample, html=True) jpgfile = os.path.join(jpgdir, '{}.jpg'.format(groupname)) pngfile = os.path.join(pngdir, '{}.png'.format(groupname)) thumbfile = os.path.join(pngdir, 'thumb-{}.png'.format(groupname)) if os.path.isfile(jpgfile): if os.path.isfile(pngfile) and not clobber: print('File {} exists...skipping.'.format(pngfile)) else: im = Image.open(jpgfile) sz = im.size fntsize = np.round(sz[0]/28).astype('int') width = np.round(sz[0]/175).astype('int') font = ImageFont.truetype(fonttype, size=fntsize) draw = ImageDraw.Draw(im) # Label the group-- draw.text((0+fntsize*2, 0+fntsize*2), galaxy, font=font) # Add a scale bar-- x0, x1, yy = sz[1]-fntsize*2-barlen, sz[1]-fntsize*2, sz[0]-fntsize*2 draw.line((x0, yy, x1, yy), fill='white', width=width) im.save(pngfile) # Generate a thumbnail if not nothumb: cmd = 'convert -thumbnail 300x300 {} {}'.format(pngfile, thumbfile) os.system(cmd) def add_labels(groupsample, sample, clobber=False): labelargs = list() for group in groupsample: labelargs.append((group, sample, clobber)) if nproc > 1: p = multiprocessing.Pool(nproc) res = p.map(_add_labels_one, labelargs) p.close() else: for args in labelargs: res = _add_labels_one(args) def html_rows(_groupkeep, sample, nperrow=4): # Not all objects may have been analyzed. these = [os.path.isfile(os.path.join(SGAdir, 'cutouts', 'png', '{}.png'.format( get_groupname(gg)))) for gg in _groupkeep] groupkeep = _groupkeep[these] nrow = np.ceil(len(groupkeep) / nperrow).astype('int') groupsplit = list() for ii in range(nrow): i1 = nperrow*ii i2 = nperrow*(ii+1) if i2 > len(groupkeep): i2 = len(groupkeep) groupsplit.append(groupkeep[i1:i2]) print('Splitting the sample into {} rows with {} mosaics per row.'.format(nrow, nperrow)) html.write('<table class="ls-gallery">\n') html.write('<tbody>\n') for grouprow in groupsplit: html.write('<tr>\n') for group in grouprow: groupname = get_groupname(group) galaxy = get_galaxy(group, sample, html=True) pngfile = os.path.join('cutouts', 'png', '{}.png'.format(groupname)) thumbfile = os.path.join('cutouts', 'png', 'thumb-{}.png'.format(groupname)) img = 'src="{}" alt="{}"'.format(thumbfile, galaxy) #img = 'class="ls-gallery" src="{}" alt="{}"'.format(thumbfile, nicename) html.write('<td><a href="{}"><img {}></a></td>\n'.format(pngfile, img)) html.write('</tr>\n') html.write('<tr>\n') for group in grouprow: groupname = get_groupname(group) galaxy = '{}: {}'.format(groupname.upper(), get_galaxy(group, sample, html=True)) layer = get_layer(group) href = '{}/?layer={}&ra={:.8f}&dec={:.8f}&zoom=12'.format(viewerurl, layer, group['ra'], group['dec']) html.write('<td><a href="{}" target="_blank">{}</a></td>\n'.format(href, galaxy)) html.write('</tr>\n') html.write('</tbody>\n') html.write('</table>\n') def make_plots(sample, analysisdir=None, htmldir='.', refband='r', band=('g', 'r', 'z'), clobber=False, verbose=True): """Make QA plots. """ sample_trends(sample, htmldir, analysisdir=analysisdir, verbose=verbose) for gal in sample: objid, objdir = get_objid(gal, analysisdir=analysisdir) htmlobjdir = os.path.join(htmldir, '{}'.format(objid)) if not os.path.isdir(htmlobjdir): os.makedirs(htmlobjdir, exist_ok=True) # Build the ellipse plots. qa_ellipse_results(objid, objdir, htmlobjdir, band=band, clobber=clobber, verbose=verbose) qa_sersic_results(objid, objdir, htmlobjdir, band=band, clobber=clobber, verbose=verbose) # Build the montage coadds. qa_montage_coadds(objid, objdir, htmlobjdir, clobber=clobber, verbose=verbose) # Build the MGE plots. #qa_mge_results(objid, objdir, htmlobjdir, refband='r', band=band, # clobber=clobber, verbose=verbose) def _javastring(): """Return a string that embeds a date in a webpage.""" import textwrap js = textwrap.dedent(""" <SCRIPT LANGUAGE="JavaScript"> var months = new Array(13); months[1] = "January"; months[2] = "February"; months[3] = "March"; months[4] = "April"; months[5] = "May"; months[6] = "June"; months[7] = "July"; months[8] = "August"; months[9] = "September"; months[10] = "October"; months[11] = "November"; months[12] = "December"; var dateObj = new Date(document.lastModified) var lmonth = months[dateObj.getMonth() + 1] var date = dateObj.getDate() var fyear = dateObj.getYear() if (fyear < 2000) fyear = fyear + 1900 document.write(" " + fyear + " " + lmonth + " " + date) </SCRIPT> """) return js def make_html(sample=None, htmldir=None, dr='dr6-dr7', makeplots=True, clobber=False, verbose=True): """Make the HTML pages. """ import SGA.io if htmldir is None: htmldir = SGA.io.html_dir() sample = SGA.io.read_parent(dr=dr) objid, objdir = legacyhalos.io.get_objid(sample) reject = [] toss = np.zeros(len(groupsample), dtype=bool) for ii, gg in enumerate(groupsample['groupid']): for rej in np.atleast_1d(reject): toss[ii] = rej in gg.lower() if toss[ii]: break print('Rejecting {} groups.'.format(np.sum(toss))) groupkeep = groupsample[~toss] if np.sum(toss) > 0: grouprej = groupsample[toss] else: grouprej = [] # Write the last-updated date to a webpage. js = _javastring() # Get the viewer link def _viewer_link(gal, dr): baseurl = 'http://legacysurvey.org/viewer/' width = 2 * cutout_radius_150kpc(redshift=gal['z'], pixscale=0.262) # [pixels] if width > 400: zoom = 14 else: zoom = 15 viewer = '{}?ra={:.6f}&dec={:.6f}&zoom={:g}&layer=decals-{}'.format( baseurl, gal['ra'], gal['dec'], zoom, dr) return viewer homehtml = 'index.html' # Build the home (index.html) page-- if not os.path.exists(htmldir): os.makedirs(htmldir) htmlfile = os.path.join(htmldir, homehtml) with open(htmlfile, 'w') as html: html.write('<html><head>\n') html.write('<style type="text/css">\n') html.write('table.ls-gallery {width: 90%;}\n') html.write('p.ls-gallery {width: 80%;}\n') html.write('</style>\n') html.write('</head><body>\n') html.write('<h1>Siena Galaxy Atlas 2020 (SGA-2020)</h1>\n') html.write("""<p class="ls-gallery">Each thumbnail links to a larger image while the galaxy name below each thumbnail links to the <a href="http://legacysurvey.org/viewer">Sky Viewer</a>. For reference, the horizontal white bar in the lower-right corner of each image represents one arcminute.</p>\n""") html_rows(groupkeep, sample) html.write('<br /><br />\n') html.write('<b><i>Last updated {}</b></i>\n'.format(js)) html.write('</body></html>\n') if makeplots: make_plots(sample, analysisdir=analysisdir, htmldir=htmldir, refband=refband, band=band, clobber=clobber, verbose=verbose)
StarcoderdataPython
4823099
<reponame>BattleCisco/AAshe import traceback import aiohttp import sqlite3 import asyncio regions = [ "BR1", "EUN1", "EUW1", "JP1", "KR", "LA1", "LA2", "NA1", "OC1", "TR1", "RU", "PBE1"] class Config: api_key = None calls = 0 sql_cache = True conn = None def __init__(self): pass @classmethod def get_api_key(cls): return cls.api_key # Why this? # One unified place to have the request method and rate limit, in case its found in local db @classmethod def initiate(cls, api_key, conn: sqlite3.Connection=None): cls.__API_KEY__ = api_key if conn: cls.__sql_cache__ = True cls.__conn__ = conn cls.__c__ = conn.cursor() def run_async(func: asyncio.coroutine, **kwargs)->object: """Allows testing within the docstrings""" loop = asyncio.get_event_loop() aiosession = aiohttp.ClientSession(loop=loop) try: kwargs["aiosession"] = aiosession m = loop.run_until_complete(func(**kwargs)) # loop.run_forever() except: traceback.print_exc() m = None aiosession.close() return m
StarcoderdataPython
1750889
<gh_stars>10-100 #!/usr/bin/env python """ Unit tests for M2Crypto.BN. Copyright (c) 2005 Open Source Applications Foundation. All rights reserved. """ import re import warnings from M2Crypto import BN, Rand from tests import unittest loops = 16 class BNTestCase(unittest.TestCase): def test_rand(self): # defaults for _ in range(loops): r8 = BN.rand(8) # top for _ in range(loops): r8 = BN.rand(8, top=0) assert r8 & 128 for _ in range(loops): r8 = BN.rand(8, top=1) assert r8 & 192 # bottom for _ in range(loops): r8 = BN.rand(8, bottom=1) assert r8 % 2 == 1 # make sure we can get big numbers and work with them for _ in range(loops): r8 = BN.rand(8, top=0) r16 = BN.rand(16, top=0) r32 = BN.rand(32, top=0) r64 = BN.rand(64, top=0) r128 = BN.rand(128, top=0) r256 = BN.rand(256, top=0) r512 = BN.rand(512, top=0) assert r8 < r16 < r32 < r64 < r128 < r256 < r512 < (r512 + 1) def test_rand_range(self): # small range for _ in range(loops): r = BN.rand_range(1) self.assertEqual(r, 0) for _ in range(loops): r = BN.rand_range(4) assert 0 <= r < 4 # large range r512 = BN.rand(512, top=0) for _ in range(loops): r = BN.rand_range(r512) assert 0 <= r < r512 def test_randfname(self): m = re.compile('^[a-zA-Z0-9]{8}$') for _ in range(loops): with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) r = BN.randfname(8) assert m.match(r) def suite(): return unittest.TestLoader().loadTestsFromTestCase(BNTestCase) if __name__ == '__main__': Rand.load_file('randpool.dat', -1) unittest.TextTestRunner().run(suite()) Rand.save_file('randpool.dat')
StarcoderdataPython
3267748
<filename>model/models/feat.py import torch import torch.nn as nn import numpy as np import torch.nn.functional as F from model.models import FewShotModel def conv3x3(in_channels, out_channels, stride=1): return nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) class ChannelAttention(nn.Module): def __init__(self, in_planes, rotio=3): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.max_pool = nn.AdaptiveMaxPool1d(1) self.sharedMLP = nn.Sequential( nn.Conv1d(in_planes, in_planes // rotio, 1, bias=False), nn.ReLU(), nn.Conv1d(in_planes // rotio, in_planes, 1, bias=False)) self.sigmoid = nn.Sigmoid() def forward(self, x): avgout = self.sharedMLP(self.avg_pool(x)) maxout = self.sharedMLP(self.max_pool(x)) return self.sigmoid(avgout + maxout) class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), "kernel size must be 3 or 7" padding = 3 if kernel_size == 7 else 1 self.conv = nn.Conv1d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avgout = torch.mean(x, dim=1, keepdim=True) maxout, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avgout, maxout], dim=1) x = self.conv(x) return self.sigmoid(x) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm1d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm1d(planes) self.ca = ChannelAttention(planes) self.sa = SpatialAttention() self.downsample = downsample self.stride = stride def forward(self, x, y=0, z=0): x = x residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.ca(out) * out # 广播机制 out = self.sa(out) * out # 广播机制 if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ScaledDotProductAttention(nn.Module): ''' Scaled Dot-Product Attention ''' def __init__(self, temperature, attn_dropout=0.1): super().__init__() self.temperature = temperature self.dropout = nn.Dropout(attn_dropout) self.softmax = nn.Softmax(dim=2) def forward(self, q, k, v): attn = torch.bmm(q, k.transpose(1, 2)) attn = attn / self.temperature log_attn = F.log_softmax(attn, 2) attn = self.softmax(attn) attn = self.dropout(attn) output = torch.bmm(attn, v) return output, attn, log_attn class MultiHeadAttention(nn.Module): ''' Multi-Head Attention module ''' def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False) self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False) self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False) nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v))) self.attention = ScaledDotProductAttention( temperature=np.power(d_k, 0.5)) self.slf_attn = BasicBlock(3, 3) self.layer_norm = nn.LayerNorm(d_model) self.fc = nn.Linear(n_head * d_v, d_model) nn.init.xavier_normal_(self.fc.weight) self.dropout = nn.Dropout(dropout) def forward(self, q, k, v): d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, _ = q.size() sz_b, len_k, _ = k.size() sz_b, len_v, _ = v.size() residual = q q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k) # (n*b) x lq x dk k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k) # (n*b) x lk x dk v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v) # (n*b) x lv x dv q, k, v = self.slf_attn(torch.cat([ q.view(*(-1,)+(1, d_k)), k.view(*(-1,)+(1, d_k)), v.view(*(-1,)+(1, d_k))], dim=1)).chunk(3, dim=1) q = q.contiguous().view(-1, len_q, d_k) # (n*b) x lq x dk k = k.contiguous().view(-1, len_k, d_k) # (n*b) x lk x dk v = v.contiguous().view(-1, len_v, d_v) # (n*b) x lv x dv output, attn, log_attn = self.attention(q, k, v) output = output.view(n_head, sz_b, len_q, d_v) output = output.permute(1, 2, 0, 3).contiguous().view( sz_b, len_q, -1) # b x lq x (n*dv) output = self.dropout(self.fc(output)) output = self.layer_norm(output + residual) return output class FEAT(FewShotModel): def __init__(self, args): super().__init__(args) if args.backbone_class == 'ConvNet': hdim = 64 elif args.backbone_class == 'Res12': hdim = 640 elif args.backbone_class == 'Res18': hdim = 512 elif args.backbone_class == 'WRN': hdim = 640 else: raise ValueError('') self.slf_attn = MultiHeadAttention(1, hdim, hdim, hdim, dropout=0.5) # self.slf_attn = BasicBlock(hdim, hdim) # self.slf_attn2 = BasicBlock(20, 20) def _forward(self, instance_embs, support_idx, query_idx): emb_dim = instance_embs.size(-1) # print("{}\n{}\n{}\n".format(instance_embs.shape, # support_idx.shape, query_idx.shape)) # organize support/query data support = instance_embs[support_idx.contiguous( ).view(-1)].contiguous().view(*(support_idx.shape + (-1,))) query = instance_embs[query_idx.contiguous( ).view(-1)].contiguous().view(*(query_idx.shape + (-1,))) # print("support:{} query:{}".format(support.shape, query.shape)) # get mean of the support proto = support.mean(dim=1) # Ntask x NK x d num_batch = proto.shape[0] num_proto = proto.shape[1] num_query = np.prod(query_idx.shape[-2:]) # print("proto:") # print(proto.shape) # query: (num_batch, num_query, num_proto, num_emb) # proto: (num_batch, num_proto, num_emb) proto = self.slf_attn(proto, proto, proto) if self.args.use_euclidean: # (Nbatch*Nq*Nw, 1, d) query = query.view(-1, emb_dim).unsqueeze(1) proto = proto.unsqueeze(1).expand( num_batch, num_query, num_proto, emb_dim).contiguous() proto = proto.view(num_batch*num_query, num_proto, emb_dim) # (Nbatch x Nq, Nk, d) logits = - torch.sum((proto - query) ** 2, 2) / \ self.args.temperature else: proto = F.normalize(proto, dim=-1) # normalize for cosine distance query = query.view(num_batch, -1, emb_dim) # (Nbatch, Nq*Nw, d) logits = torch.bmm(query, proto.permute( [0, 2, 1])) / self.args.temperature logits = logits.view(-1, num_proto) # for regularization if self.training: aux_task = torch.cat([support.view(1, self.args.shot, self.args.way, emb_dim), query.view(1, self.args.query, self.args.way, emb_dim)], 1) # T x (K+Kq) x N x d num_query = np.prod(aux_task.shape[1: 3]) aux_task = aux_task.permute([0, 2, 1, 3]) aux_task = aux_task.contiguous().view(-1, self.args.shot + self.args.query, emb_dim) # apply the transformation over the Aug Task # print("{} {}".format(self.args.shot, self.args.query)) # print("aux_task") # print(aux_task.shape) aux_emb = self.slf_attn( aux_task, aux_task, aux_task) # T x N x (K+Kq) x d # compute class mean aux_emb = aux_emb.view( num_batch, self.args.way, self.args.shot + self.args.query, emb_dim) aux_center = torch.mean(aux_emb, 2) # T x N x d if self.args.use_euclidean: aux_task = aux_task.permute([1, 0, 2]).contiguous( ).view(-1, emb_dim).unsqueeze(1) # (Nbatch*Nq*Nw, 1, d) aux_center = aux_center.unsqueeze(1).expand( num_batch, num_query, num_proto, emb_dim).contiguous() aux_center = aux_center.view( num_batch*num_query, num_proto, emb_dim) # (Nbatch x Nq, Nk, d) logits_reg = - \ torch.sum((aux_center - aux_task) ** 2, 2) / \ self.args.temperature2 else: # normalize for cosine distance aux_center = F.normalize(aux_center, dim=-1) aux_task = aux_task.permute([1, 0, 2]).contiguous().view( num_batch, -1, emb_dim) # (Nbatch, Nq*Nw, d) logits_reg = torch.bmm(aux_task, aux_center.permute( [0, 2, 1])) / self.args.temperature2 logits_reg = logits_reg.view(-1, num_proto) return logits, logits_reg else: return logits
StarcoderdataPython
3321366
# -*- coding: utf-8 -*- # Copyright (c) 2016 - 2018 Ericsson AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from calvin.requests.calvinresponse import RESPONSE_CODES, CalvinResponse pytestmark = pytest.mark.unittest def test_boolean_value(): success_list = range(200, 207) for code in RESPONSE_CODES: response = CalvinResponse(code) if code in success_list: assert response else: assert not response def test_comparisons(): first = CalvinResponse(100) second = CalvinResponse(200) third = CalvinResponse(200) assert first < second assert second > first assert second == third assert first != second assert second <= third assert third <= second def test_set_status(): response = CalvinResponse(100) assert response.status == 100 response.set_status(400) assert response.status == 400 response.set_status(True) assert response.status == 200 response.set_status(False) assert response.status == 500
StarcoderdataPython
189081
from test.unit.extraction.gaussian_parser_test import * from test.unit.extraction.extraction_test import * from test.unit.glassware_test import * from test.unit.datawork_test import * from test.unit.writer_test import * from test.unit.tesliper_test import * if __name__ == '__main__': unittest.main()
StarcoderdataPython
184026
<gh_stars>0 import numpy as np import pandas as pd def extract_table(input_file, cancer_type): Cancer_type = cancer_type data = pd.read_csv(input_file) columns = data.columns selected_col = ['Mutation type', 'Trinucleotide'] for c in columns: if Cancer_type in c: selected_col.append(c) sub_data = data[selected_col] sub_data['mean'] = sub_data.mean(axis=1) sub_data['percentile'] = np.percentile(sub_data, 20, axis=1) sub_data['cutoff'] = sub_data[["mean", "percentile"]].max(axis=1) selected_col = selected_col[2:] for c in selected_col: #sub_data[c] = sub_data[c] >= sub_data['mean'] sub_data[c] = sub_data[c] >= sub_data['cutoff'] sub_data = sub_data.drop('mean', 1) sub_data = sub_data.drop('percentile', 1) sub_data = sub_data.drop('cutoff', 1) sub_data[list(sub_data.columns)[2:]] = sub_data[list(sub_data.columns)[2:]].astype(int) sub_data.to_csv('../data/' + Cancer_type + '_0_1_percentile.csv', index=False) selected_col = ['Mutation type', 'Trinucleotide'] for c in columns: if Cancer_type in c: selected_col.append(c) sub_data = data[selected_col] sub_data = sub_data.replace(0,np.NaN) sub_data['mean'] = sub_data.mean(axis=1) selected_col = selected_col[2:] for c in selected_col: sub_data[c] = sub_data[c] >= sub_data['mean'] sub_data = sub_data.drop('mean', 1) sub_data[list(sub_data.columns)[2:]] = sub_data[list(sub_data.columns)[2:]].astype(int) sub_data.to_csv('../data/' + Cancer_type + '_ignore_0.csv', index=False) if __name__ == "__main__": cancer_type = 'Skin-Melanoma' input = '../data/WES_TCGA.96.csv' extract_table(input, cancer_type)
StarcoderdataPython
168255
<gh_stars>1-10 class Player(object): INIT_STATE = 0x00 ENTERED_STATE = 0x01 READY_STATE = 0x02 def __init__(self): #0 1 logined 2 entered self.state = self.INIT_STATE #hex self.peerid = -1 self.character = None self.qobject = None self.active = False self.aoilist = [] self.sendmsgs = []
StarcoderdataPython
1686373
# coding=utf-8 # Module magneto_bold_16 # generated from Magneto 11.25pt name = "<NAME>" start_char = '!' end_char = chr(127) char_height = 16 space_width = 8 gap_width = 2 bitmaps = ( # @0 '!' (6 pixels wide) 0x00, # 0x1C, # OOO 0x38, # OOO 0x38, # OOO 0x30, # OO 0x70, # OOO 0x60, # OO 0x00, # 0xE0, # OOO 0xE0, # OOO 0xE0, # OOO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @16 '"' (6 pixels wide) 0x00, # 0x6C, # OO OO 0xD8, # OO OO 0xD8, # OO OO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @32 '#' (11 pixels wide) 0x00, 0x00, # 0x0C, 0xC0, # OO OO 0x1D, 0xC0, # OOO OOO 0x19, 0x80, # OO OO 0x7F, 0xE0, # OOOOOOOOOO 0x19, 0x80, # OO OO 0x33, 0x00, # OO OO 0xFF, 0xC0, # OOOOOOOOOO 0x33, 0x00, # OO OO 0x66, 0x00, # OO OO 0x66, 0x00, # OO OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @64 '$' (12 pixels wide) 0x01, 0x40, # O O 0x0F, 0xE0, # OOOOOOO 0x18, 0xF0, # OO OOOO 0x18, 0xE0, # OO OOO 0x1D, 0x00, # OOO O 0x0F, 0x00, # OOOO 0x0F, 0x80, # OOOOO 0x0B, 0x80, # O OOO 0x79, 0x80, # OOOO OO 0xF1, 0x80, # OOOO OO 0x7F, 0x00, # OOOOOOO 0x24, 0x00, # O O 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @96 '%' (9 pixels wide) 0x00, 0x00, # 0x71, 0x80, # OOO OO 0x73, 0x00, # OOO OO 0x76, 0x00, # OOO OO 0x06, 0x00, # OO 0x0C, 0x00, # OO 0x18, 0x00, # OO 0x10, 0x00, # O 0x37, 0x00, # OO OOO 0x67, 0x00, # OO OOO 0xC7, 0x00, # OO OOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @128 '&' (11 pixels wide) 0x00, 0x00, # 0x0F, 0x80, # OOOOO 0x18, 0xC0, # OO OO 0x19, 0xC0, # OO OOO 0x1F, 0x80, # OOOOOO 0x1C, 0x00, # OOO 0x7C, 0x00, # OOOOO 0xEC, 0x00, # OOO OO 0xCE, 0x00, # OO OOO 0xC6, 0x00, # OO OO 0x7F, 0xE0, # OOOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @160 ''' (3 pixels wide) 0x00, # 0x60, # OO 0xC0, # OO 0xC0, # OO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @176 '(' (6 pixels wide) 0x0C, # OO 0x18, # OO 0x30, # OO 0x60, # OO 0x60, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0x40, # O 0x60, # OO 0x00, # 0x00, # 0x00, # 0x00, # # @192 ')' (6 pixels wide) 0x18, # OO 0x08, # O 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x18, # OO 0x18, # OO 0x30, # OO 0x60, # OO 0xC0, # OO 0x00, # 0x00, # 0x00, # 0x00, # # @208 '*' (5 pixels wide) 0xA8, # O O O 0x70, # OOO 0xF8, # OOOOO 0x70, # OOO 0xA8, # O O O 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @224 '+' (9 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x06, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0xFF, 0x80, # OOOOOOOOO 0xFF, 0x00, # OOOOOOOO 0x18, 0x00, # OO 0x18, 0x00, # OO 0x30, 0x00, # OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @256 ',' (3 pixels wide) 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x60, # OO 0x40, # O 0x80, # O 0x00, # 0x00, # 0x00, # 0x00, # # @272 '-' (6 pixels wide) 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x7C, # OOOOO 0xF8, # OOOOO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @288 '.' (3 pixels wide) 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0xE0, # OOO 0xE0, # OOO 0xE0, # OOO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @304 '/' (7 pixels wide) 0x00, # 0x02, # O 0x04, # O 0x08, # O 0x08, # O 0x10, # O 0x10, # O 0x20, # O 0x40, # O 0x40, # O 0x80, # O 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @320 '0' (10 pixels wide) 0x00, 0x00, # 0x1F, 0x00, # OOOOO 0x3F, 0x80, # OOOOOOO 0x70, 0xC0, # OOO OO 0xE0, 0xC0, # OOO OO 0xC0, 0xC0, # OO OO 0xC0, 0xC0, # OO OO 0xC1, 0xC0, # OO OOO 0xC3, 0x80, # OO OOO 0x7F, 0x00, # OOOOOOO 0x3E, 0x00, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @352 '1' (5 pixels wide) 0x00, # 0x70, # OOO 0x78, # OOOO 0x30, # OO 0x30, # OO 0x30, # OO 0x60, # OO 0x60, # OO 0x60, # OO 0xE0, # OOO 0xC0, # OO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @368 '2' (10 pixels wide) 0x00, 0x00, # 0x3F, 0x80, # OOOOOOO 0x7F, 0xC0, # OOOOOOOOO 0x71, 0xC0, # OOO OOO 0x00, 0xC0, # OO 0x01, 0x80, # OO 0x03, 0x80, # OOO 0x06, 0x00, # OO 0x3C, 0x00, # OOOO 0x7F, 0xC0, # OOOOOOOOO 0xFF, 0x80, # OOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @400 '3' (9 pixels wide) 0x00, 0x00, # 0x3F, 0x80, # OOOOOOO 0x7F, 0x00, # OOOOOOO 0x06, 0x00, # OO 0x0E, 0x00, # OOO 0x1F, 0x00, # OOOOO 0x03, 0x80, # OOO 0x01, 0x80, # OO 0xE1, 0x80, # OOO OO 0xE7, 0x00, # OOO OOO 0x7C, 0x00, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @432 '4' (10 pixels wide) 0x00, 0x00, # 0x38, 0xC0, # OOO OO 0x39, 0x80, # OOO OO 0x39, 0x80, # OOO OO 0x11, 0x80, # O OO 0x63, 0x00, # OO OO 0xFF, 0xC0, # OOOOOOOOOO 0xFF, 0x80, # OOOOOOOOO 0x06, 0x00, # OO 0x06, 0x00, # OO 0x0C, 0x00, # OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @464 '5' (9 pixels wide) 0x00, 0x00, # 0x1F, 0x80, # OOOOOO 0x3F, 0x00, # OOOOOO 0x30, 0x00, # OO 0x30, 0x00, # OO 0x7F, 0x00, # OOOOOOO 0x03, 0x80, # OOO 0x01, 0x80, # OO 0xF1, 0x80, # OOOO OO 0xF3, 0x00, # OOOO OO 0x7C, 0x00, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @496 '6' (9 pixels wide) 0x00, 0x00, # 0x0C, 0x00, # OO 0x18, 0x00, # OO 0x30, 0x00, # OO 0x60, 0x00, # OO 0xC7, 0x00, # OO OOO 0xC7, 0x80, # OO OOOO 0xC3, 0x80, # OO OOO 0xE1, 0x80, # OOO OO 0x7F, 0x00, # OOOOOOO 0x3E, 0x00, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @528 '7' (8 pixels wide) 0x00, # 0x7F, # OOOOOOO 0xFE, # OOOOOOO 0x86, # O OO 0x0C, # OO 0x0C, # OO 0x7E, # OOOOOO 0x18, # OO 0x30, # OO 0x30, # OO 0x60, # OO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @544 '8' (9 pixels wide) 0x00, 0x00, # 0x0F, 0x00, # OOOO 0x3F, 0x80, # OOOOOOO 0x31, 0x80, # OO OO 0x31, 0x80, # OO OO 0x7E, 0x00, # OOOOOO 0xE3, 0x00, # OOO OO 0xC3, 0x00, # OO OO 0xC7, 0x00, # OO OOO 0xC6, 0x00, # OO OO 0x3C, 0x00, # OOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @576 '9' (8 pixels wide) 0x00, # 0x3C, # OOOO 0x62, # OO O 0xC3, # OO OO 0xC3, # OO OO 0xC3, # OO OO 0x67, # OO OOO 0x3E, # OOOOO 0x0C, # OO 0x18, # OO 0x30, # OO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @592 ':' (4 pixels wide) 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x70, # OOO 0x70, # OOO 0x00, # 0xE0, # OOO 0xE0, # OOO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @608 ';' (4 pixels wide) 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x70, # OOO 0x70, # OOO 0x00, # 0x60, # OO 0x40, # O 0x80, # O 0x00, # 0x00, # 0x00, # 0x00, # # @624 '<' (8 pixels wide) 0x00, # 0x00, # 0x03, # OO 0x0E, # OOO 0x3C, # OOOO 0xF0, # OOOO 0xC0, # OO 0xF0, # OOOO 0x38, # OOO 0x1C, # OOO 0x04, # O 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @640 '=' (7 pixels wide) 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0xFE, # OOOOOOO 0xFC, # OOOOOO 0x00, # 0xFC, # OOOOOO 0xFC, # OOOOOO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @656 '>' (8 pixels wide) 0x00, # 0x00, # 0x20, # O 0x38, # OOO 0x1C, # OOO 0x0F, # OOOO 0x03, # OO 0x0F, # OOOO 0x3C, # OOOO 0x70, # OOO 0xC0, # OO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @672 '?' (8 pixels wide) 0x00, # 0xFE, # OOOOOOO 0xE3, # OOO OO 0xE3, # OOO OO 0x07, # OOO 0x3C, # OOOO 0x70, # OOO 0x00, # 0x70, # OOO 0x70, # OOO 0x70, # OOO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @688 '@' (11 pixels wide) 0x00, 0x00, # 0x0F, 0x80, # OOOOO 0x30, 0xC0, # OO OO 0x40, 0x20, # O O 0x5F, 0xA0, # O OOOOOO O 0xB9, 0xA0, # O OOO OO O 0xB3, 0x20, # O OO OO O 0xBF, 0xC0, # O OOOOOOOO 0xC0, 0x00, # OO 0x61, 0x80, # OO OO 0x1E, 0x00, # OOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @720 'A' (21 pixels wide) 0x00, 0x00, 0x00, # 0x00, 0x03, 0x80, # OOO 0x00, 0x07, 0x00, # OOO 0x00, 0x0B, 0x00, # O OO 0x00, 0x17, 0x00, # O OOO 0x00, 0x26, 0x00, # O OO 0x0F, 0xFF, 0xF8, # OOOOOOOOOOOOOOOOO 0x30, 0x8C, 0x00, # OO O OO 0x41, 0x8C, 0x00, # O OO OO 0xC7, 0x1C, 0x00, # OO OOO OOO 0xFC, 0x18, 0x00, # OOOOOO OO 0x78, 0x00, 0x00, # OOOO 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # # @768 'B' (13 pixels wide) 0x00, 0x00, # 0x7F, 0xF0, # OOOOOOOOOOO 0xFF, 0xF8, # OOOOOOOOOOOOO 0x00, 0x18, # OO 0x0C, 0x10, # OO O 0x1C, 0x20, # OOO O 0x19, 0xC0, # OO OOO 0x38, 0xC0, # OOO OO 0x30, 0xC0, # OO OO 0x31, 0x80, # OO OO 0x7F, 0x00, # OOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @800 'C' (10 pixels wide) 0x00, 0x00, # 0x0F, 0xC0, # OOOOOO 0x19, 0xC0, # OO OOO 0x31, 0xC0, # OO OOO 0x60, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0x60, 0x00, # OO 0x3F, 0xC0, # OOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @832 'D' (13 pixels wide) 0x00, 0x00, # 0x7F, 0xE0, # OOOOOOOOOO 0xFF, 0xF0, # OOOOOOOOOOOO 0x00, 0x38, # OOO 0x18, 0x18, # OO OO 0x18, 0x18, # OO OO 0x38, 0x10, # OOO O 0x30, 0x30, # OO OO 0x30, 0x60, # OO OO 0x73, 0x80, # OOO OOO 0x7E, 0x00, # OOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @864 'E' (11 pixels wide) 0x00, 0x00, # 0x07, 0xE0, # OOOOOO 0x18, 0xE0, # OO OOO 0x18, 0xE0, # OO OOO 0x1C, 0x00, # OOO 0x1C, 0x00, # OOO 0x70, 0x00, # OOO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0x7F, 0xE0, # OOOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @896 'F' (14 pixels wide) 0x00, 0x00, # 0x3F, 0xFC, # OOOOOOOOOOOO 0x7F, 0xF8, # OOOOOOOOOOOO 0xC0, 0xC0, # OO OO 0x9C, 0xC0, # O OOO OO 0xFC, 0xC0, # OOOOOO OO 0x79, 0xF0, # OOOO OOOOO 0x01, 0x80, # OO 0x01, 0x80, # OO 0x7B, 0x00, # OOOO OO 0xFE, 0x00, # OOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @928 'G' (11 pixels wide) 0x00, 0x00, # 0x07, 0xE0, # OOOOOO 0x18, 0xE0, # OO OOO 0x30, 0xE0, # OO OOO 0x60, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0xC0, # OO OO 0xC0, 0xC0, # OO OO 0xE1, 0xC0, # OOO OOO 0x71, 0x80, # OOO OO 0x1F, 0x80, # OOOOOO 0x01, 0x80, # OO 0x01, 0x00, # O 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @960 'H' (21 pixels wide) 0x00, 0x60, 0x00, # OO 0x00, 0x61, 0x80, # OO OO 0x00, 0xE3, 0x00, # OOO OO 0x00, 0xC3, 0x00, # OO OO 0x00, 0xC7, 0x00, # OO OOO 0x00, 0xC6, 0x00, # OO OO 0x1F, 0xFF, 0xF8, # OOOOOOOOOOOOOOOOOO 0x71, 0x8C, 0x00, # OOO OO OO 0xE3, 0x8C, 0x00, # OOO OOO OO 0xC3, 0x1C, 0x00, # OO OO OOO 0xC6, 0x18, 0x00, # OO OO OO 0x78, 0x00, 0x00, # OOOO 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # # @1008 'I' (11 pixels wide) 0x00, 0x00, # 0x3F, 0xE0, # OOOOOOOOO 0x7F, 0xE0, # OOOOOOOOOO 0xC0, 0xC0, # OO OO 0x9C, 0xC0, # O OOO OO 0xFC, 0xC0, # OOOOOO OO 0x79, 0x80, # OOOO OO 0x01, 0x80, # OO 0x01, 0x80, # OO 0x73, 0x00, # OOO OO 0xFE, 0x00, # OOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1040 'J' (12 pixels wide) 0x00, 0x00, # 0x3F, 0xF0, # OOOOOOOOOO 0x7F, 0xE0, # OOOOOOOOOO 0xC0, 0x60, # OO OO 0x9C, 0xC0, # O OOO OO 0xFC, 0xC0, # OOOOOO OO 0x79, 0x80, # OOOO OO 0x01, 0x80, # OO 0x03, 0x80, # OOO 0x03, 0x00, # OO 0xE6, 0x00, # OOO OO 0xFC, 0x00, # OOOOOO 0x78, 0x00, # OOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1072 'K' (13 pixels wide) 0x00, 0x00, # 0x7C, 0x18, # OOOOO OO 0xFC, 0x30, # OOOOOO OO 0x0C, 0x60, # OO OO 0x1C, 0xC0, # OOO OO 0x19, 0x80, # OO OO 0x1B, 0xC0, # OO OOOO 0x36, 0xC0, # OO OO OO 0x3D, 0xC0, # OOOO OOO 0x39, 0x80, # OOO OO 0x71, 0xF0, # OOO OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1104 'L' (16 pixels wide) 0x00, 0x00, # 0x00, 0x1E, # OOOO 0x00, 0x7F, # OOOOOOO 0x00, 0xE7, # OOO OOO 0x00, 0xC0, # OO 0x00, 0xC0, # OO 0x00, 0xC0, # OO 0x00, 0xC0, # OO 0x01, 0x80, # OO 0x63, 0x00, # OO OO 0xFF, 0xFE, # OOOOOOOOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1136 'M' (17 pixels wide) 0x00, 0x00, 0x00, # 0x7C, 0x00, 0x00, # OOOOO 0xFC, 0x60, 0x00, # OOOOOO OO 0x18, 0xE0, 0x00, # OO OOO 0x19, 0xCE, 0x00, # OO OOO OOO 0x1B, 0xDC, 0x00, # OO OOOO OOO 0x37, 0xBC, 0x00, # OO OOOO OOOO 0x3D, 0xEC, 0x00, # OOOO OOOO OO 0x39, 0xCC, 0x00, # OOO OOO OO 0x63, 0x98, 0x00, # OO OOO OO 0x63, 0x1F, 0x80, # OO OO OOOOOO 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # # @1184 'N' (16 pixels wide) 0x00, 0x00, # 0x03, 0x87, # OOO OOO 0x03, 0x8F, # OOO OOOO 0x03, 0xCF, # OOOO OOOO 0x06, 0xCC, # OO OO OO 0x06, 0xD8, # OO OO OO 0x06, 0xF8, # OO OOOOO 0x0C, 0x78, # OO OOOO 0x0C, 0x70, # OO OOO 0x7C, 0x30, # OOOOO OO 0xF8, 0x30, # OOOOO OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1216 'O' (13 pixels wide) 0x00, 0x00, # 0x7F, 0xE0, # OOOOOOOOOO 0xFF, 0xF0, # OOOOOOOOOOOO 0x00, 0x38, # OOO 0x1C, 0x18, # OOO OO 0x38, 0x18, # OOO OO 0x30, 0x18, # OO OO 0x30, 0x30, # OO OO 0x30, 0x60, # OO OO 0x18, 0xC0, # OO OO 0x0F, 0x80, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1248 'P' (12 pixels wide) 0x00, 0x00, # 0x7F, 0xE0, # OOOOOOOOOO 0xFF, 0xF0, # OOOOOOOOOOOO 0x00, 0x30, # OO 0x18, 0x30, # OO OO 0x18, 0xE0, # OO OOO 0x37, 0xC0, # OO OOOOO 0x3F, 0x00, # OOOOOO 0x30, 0x00, # OO 0x70, 0x00, # OOO 0x60, 0x00, # OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1280 'Q' (12 pixels wide) 0x00, 0x00, # 0x0F, 0xC0, # OOOOOO 0x1F, 0xE0, # OOOOOOOO 0x30, 0x70, # OO OOO 0x3C, 0x30, # OOOO OO 0x3C, 0x30, # OOOO OO 0x1C, 0x30, # OOO OO 0x00, 0x60, # OO 0x00, 0xC0, # OO 0x61, 0x00, # OO O 0xFF, 0xF0, # OOOOOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1312 'R' (13 pixels wide) 0x00, 0x00, # 0x7F, 0xF0, # OOOOOOOOOOO 0xFF, 0xF8, # OOOOOOOOOOOOO 0x00, 0x18, # OO 0x0C, 0x18, # OO OO 0x0C, 0x30, # OO OO 0x1C, 0xE0, # OOO OOO 0x1B, 0x80, # OO OOO 0x19, 0x80, # OO OO 0x38, 0xC0, # OOO OO 0x30, 0xF8, # OO OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1344 'S' (15 pixels wide) 0x00, 0x00, # 0x00, 0x3E, # OOOOO 0x00, 0x6E, # OO OOO 0x00, 0x6E, # OO OOO 0x00, 0x60, # OO 0x00, 0x70, # OOO 0x7E, 0x30, # OOOOOO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0x60, 0x60, # OO OO 0x3F, 0x80, # OOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1376 'T' (15 pixels wide) 0x00, 0x00, # 0x3F, 0xFE, # OOOOOOOOOOOOO 0x7F, 0xFC, # OOOOOOOOOOOOO 0xC0, 0x60, # OO OO 0x9C, 0xE0, # O OOO OOO 0xFC, 0xC0, # OOOOOO OO 0x78, 0xC0, # OOOO OO 0x01, 0xC0, # OOO 0x01, 0x80, # OO 0x71, 0x80, # OOO OO 0xFF, 0x00, # OOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1408 'U' (12 pixels wide) 0x00, 0x00, # 0x7C, 0x60, # OOOOO OO 0xFC, 0xF0, # OOOOOO OOOO 0x18, 0x70, # OO OOO 0x18, 0x30, # OO OO 0x18, 0x60, # OO OO 0x30, 0x60, # OO OO 0x30, 0xC0, # OO OO 0x31, 0xC0, # OO OOO 0x3F, 0x80, # OOOOOOO 0x1F, 0x00, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1440 'V' (13 pixels wide) 0x00, 0x00, # 0x7C, 0x38, # OOOOO OOO 0xFC, 0x38, # OOOOOO OOO 0x0C, 0x38, # OO OOO 0x1C, 0x30, # OOO OO 0x1C, 0x60, # OOO OO 0x18, 0xC0, # OO OO 0x19, 0x80, # OO OO 0x1B, 0x00, # OO OO 0x1E, 0x00, # OOOO 0x1C, 0x00, # OOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1472 'W' (17 pixels wide) 0x00, 0x00, 0x00, # 0x7C, 0x61, 0x80, # OOOOO OO OO 0xFC, 0xE3, 0x00, # OOOOOO OOO OO 0x0C, 0xE7, 0x00, # OO OOO OOO 0x0D, 0xE6, 0x00, # OO OOOO OO 0x0D, 0xEC, 0x00, # OO OOOO OO 0x0F, 0x6C, 0x00, # OOOO OO OO 0x1A, 0x78, 0x00, # OO O OOOO 0x1E, 0x70, 0x00, # OOOO OOO 0x1C, 0x70, 0x00, # OOO OOO 0x1C, 0x60, 0x00, # OOO OO 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # # @1520 'X' (14 pixels wide) 0x00, 0x00, # 0x3E, 0x1C, # OOOOO OOO 0x7F, 0x3C, # OOOOOOO OOOO 0x03, 0x7C, # OO OOOOO 0x03, 0xC0, # OOOO 0x03, 0x80, # OOO 0x03, 0x80, # OOO 0x07, 0x80, # OOOO 0xFD, 0x80, # OOOOOO OO 0xF1, 0x80, # OOOO OO 0xE0, 0xF8, # OOO OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1552 'Y' (14 pixels wide) 0x00, 0x00, # 0xFF, 0x0C, # OOOOOOOO OO 0xE3, 0x1C, # OOO OO OOO 0xE6, 0x38, # OOO OO OOO 0x06, 0x78, # OO OOOO 0x06, 0xF8, # OO OOOOO 0x0F, 0xB0, # OOOOO OO 0x0F, 0x30, # OOOO OO 0x00, 0x30, # OO 0x00, 0x60, # OO 0x1F, 0xE0, # OOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1584 'Z' (15 pixels wide) 0x00, 0x00, # 0x0F, 0xF0, # OOOOOOOO 0x1F, 0xF0, # OOOOOOOOO 0x01, 0xC0, # OOO 0x0E, 0x00, # OOO 0x03, 0x00, # OO 0x0F, 0xFE, # OOOOOOOOOOO 0x39, 0x80, # OOO OO 0x71, 0x80, # OOO OO 0xE3, 0x00, # OOO OO 0xC3, 0x00, # OO OO 0xCE, 0x00, # OO OOO 0x78, 0x00, # OOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1616 '[' (7 pixels wide) 0x0E, # OOO 0x18, # OO 0x18, # OO 0x30, # OO 0x30, # OO 0x30, # OO 0x60, # OO 0x60, # OO 0x60, # OO 0xE0, # OOO 0xC0, # OO 0xE0, # OOO 0x00, # 0x00, # 0x00, # 0x00, # # @1632 '\' (6 pixels wide) 0xC0, # OO 0x60, # OO 0x60, # OO 0x60, # OO 0x30, # OO 0x30, # OO 0x30, # OO 0x18, # OO 0x18, # OO 0x18, # OO 0x0C, # OO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @1648 ']' (7 pixels wide) 0x0E, # OOO 0x06, # OO 0x06, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x18, # OO 0x18, # OO 0x18, # OO 0x38, # OOO 0x30, # OO 0xF0, # OOOO 0x00, # 0x00, # 0x00, # 0x00, # # @1664 '^' (6 pixels wide) 0x00, # 0x00, # 0x00, # 0x00, # 0x18, # OO 0x38, # OOO 0x68, # OO O 0xCC, # OO OO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @1680 '_' (17 pixels wide) 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x7F, 0xFF, 0x80, # OOOOOOOOOOOOOOOO 0xFF, 0xFF, 0x00, # OOOOOOOOOOOOOOOO # @1728 '`' (3 pixels wide) 0x00, # 0x00, # 0x00, # 0xC0, # OO 0x60, # OO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @1744 'a' (9 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x7C, 0x00, # OOOOO 0xEC, 0x00, # OOO OO 0xCC, 0x00, # OO OO 0xDC, 0x00, # OO OOO 0x7F, 0x80, # OOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1776 'b' (13 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x18, 0x00, # OO 0x30, 0x00, # OO 0x30, 0x00, # OO 0x30, 0x00, # OO 0x67, 0xF8, # OO OOOOOOOO 0x66, 0x00, # OO OO 0x66, 0x00, # OO OO 0xEC, 0x00, # OOO OO 0xF8, 0x00, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1808 'c' (9 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x7E, 0x00, # OOOOOO 0xE6, 0x00, # OOO OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0x7F, 0x80, # OOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1840 'd' (10 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x03, 0x00, # OO 0x06, 0x00, # OO 0x06, 0x00, # OO 0x06, 0x00, # OO 0x3C, 0x00, # OOOO 0xEC, 0x00, # OOO OO 0xCC, 0x00, # OO OO 0xCC, 0x00, # OO OO 0xFF, 0xC0, # OOOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1872 'e' (9 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x7C, 0x00, # OOOOO 0xE6, 0x00, # OOO OO 0xC6, 0x00, # OO OO 0xC0, 0x00, # OO 0x7F, 0x80, # OOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1904 'f' (12 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x0C, 0x00, # OO 0x18, 0x00, # OO 0x18, 0x00, # OO 0x18, 0x00, # OO 0x7F, 0xF0, # OOOOOOOOOOO 0x3C, 0x00, # OOOO 0x6C, 0x00, # OO OO 0x6C, 0x00, # OO OO 0x6C, 0x00, # OO OO 0xD8, 0x00, # OO OO 0xD0, 0x00, # OO O 0xE0, 0x00, # OOO 0x00, 0x00, # 0x00, 0x00, # # @1936 'g' (9 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x3E, 0x00, # OOOOO 0xE6, 0x00, # OOO OO 0xC6, 0x00, # OO OO 0xCC, 0x00, # OO OO 0x7F, 0x80, # OOOOOOOO 0x6C, 0x00, # OO OO 0x6C, 0x00, # OO OO 0x78, 0x00, # OOOO 0x70, 0x00, # OOO 0x00, 0x00, # # @1968 'h' (10 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x18, 0x00, # OO 0x30, 0x00, # OO 0x30, 0x00, # OO 0x30, 0x00, # OO 0x66, 0x00, # OO OO 0x6E, 0x00, # OO OOO 0x76, 0x00, # OOO OO 0xEE, 0x00, # OOO OOO 0xCF, 0xC0, # OO OOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2000 'i' (6 pixels wide) 0x00, # 0x00, # 0x38, # OOO 0x38, # OOO 0x38, # OOO 0x00, # 0x60, # OO 0x60, # OO 0x60, # OO 0xE0, # OOO 0xFC, # OOOOOO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @2016 'j' (8 pixels wide) 0x00, # 0x00, # 0x07, # OOO 0x07, # OOO 0x07, # OOO 0x00, # 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x1C, # OOO 0x7F, # OOOOOOO 0xD8, # OO OO 0xD8, # OO OO 0xF0, # OOOO 0x00, # 0x00, # # @2032 'k' (10 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x18, 0x00, # OO 0x30, 0x00, # OO 0x30, 0x00, # OO 0x34, 0x00, # OO O 0x6E, 0x00, # OO OOO 0x6E, 0x00, # OO OOO 0x76, 0x00, # OOO OO 0xEE, 0x00, # OOO OOO 0xCF, 0xC0, # OO OOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2064 'l' (6 pixels wide) 0x00, # 0x00, # 0x18, # OO 0x30, # OO 0x30, # OO 0x30, # OO 0x60, # OO 0x60, # OO 0x60, # OO 0xE0, # OOO 0xFC, # OOOOOO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @2080 'm' (14 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x67, 0x40, # OO OOO O 0x6E, 0xC0, # OO OOO OO 0x77, 0xC0, # OOO OOOOO 0xEE, 0xC0, # OOO OOO OO 0xCC, 0xFC, # OO OO OOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2112 'n' (10 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x66, 0x00, # OO OO 0x6E, 0x00, # OO OOO 0x76, 0x00, # OOO OO 0xEE, 0x00, # OOO OOO 0xCF, 0xC0, # OO OOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2144 'o' (13 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x7F, 0xF8, # OOOOOOOOOOOO 0xE6, 0x00, # OOO OO 0xCE, 0x00, # OO OOO 0xCE, 0x00, # OO OOO 0x7C, 0x00, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2176 'p' (11 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x18, 0x00, # OO 0x18, 0x00, # OO 0x3F, 0x00, # OOOOOO 0x33, 0x80, # OO OOO 0x31, 0x80, # OO OO 0x73, 0x00, # OOO OO 0x67, 0xE0, # OO OOOOOO 0x60, 0x00, # OO 0x60, 0x00, # OO 0xC0, 0x00, # OO 0x00, 0x00, # 0x00, 0x00, # # @2208 'q' (9 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x7C, 0x00, # OOOOO 0xEC, 0x00, # OOO OO 0xCC, 0x00, # OO OO 0xDC, 0x00, # OO OOO 0xFF, 0x80, # OOOOOOOOO 0x18, 0x00, # OO 0x18, 0x00, # OO 0x10, 0x00, # O 0x00, 0x00, # 0x00, 0x00, # # @2240 'r' (9 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x60, 0x00, # OO 0xC0, 0x00, # OO 0xF8, 0x00, # OOOOO 0x58, 0x00, # O OO 0x98, 0x00, # O OO 0xB8, 0x00, # O OOO 0x3F, 0x80, # OOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2272 's' (9 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x08, 0x00, # O 0x18, 0x00, # OO 0x18, 0x00, # OO 0x1C, 0x00, # OOO 0x2C, 0x00, # O OO 0xEC, 0x00, # OOO OO 0xFF, 0x80, # OOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2304 't' (7 pixels wide) 0x00, # 0x00, # 0x00, # 0x10, # O 0x30, # OO 0x70, # OOO 0xF8, # OOOOO 0x60, # OO 0x60, # OO 0xE0, # OOO 0xFE, # OOOOOOO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @2320 'u' (10 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x66, 0x00, # OO OO 0x66, 0x00, # OO OO 0x66, 0x00, # OO OO 0xCC, 0x00, # OO OO 0xFF, 0xC0, # OOOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2352 'v' (11 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0xC7, 0xE0, # OO OOOOOO 0xC8, 0x00, # OO O 0xD0, 0x00, # OO O 0xE0, 0x00, # OOO 0xC0, 0x00, # OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2384 'w' (11 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x66, 0x60, # OO OO OO 0x66, 0x60, # OO OO OO 0x66, 0x60, # OO OO OO 0xCC, 0xC0, # OO OO OO 0xFF, 0xC0, # OOOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2416 'x' (7 pixels wide) 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x76, # OOO OO 0x3C, # OOOO 0x18, # OO 0x6C, # OO OO 0xCE, # OO OOO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @2432 'y' (10 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x66, 0x00, # OO OO 0x66, 0x00, # OO OO 0x66, 0x00, # OO OO 0xCC, 0x00, # OO OO 0xFF, 0xC0, # OOOOOOOOOO 0x6C, 0x00, # OO OO 0x6C, 0x00, # OO OO 0x78, 0x00, # OOOO 0x70, 0x00, # OOO 0x00, 0x00, # # @2464 'z' (8 pixels wide) 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0xFC, # OOOOOO 0x18, # OO 0x30, # OO 0xE0, # OOO 0xFF, # OOOOOOOO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @2480 '{' (7 pixels wide) 0x0E, # OOO 0x18, # OO 0x18, # OO 0x30, # OO 0x30, # OO 0x40, # O 0x60, # OO 0x60, # OO 0x60, # OO 0xC0, # OO 0xC0, # OO 0xE0, # OOO 0x00, # 0x00, # 0x00, # 0x00, # # @2496 '|' (1 pixels wide) 0x80, # O 0x80, # O 0x80, # O 0x80, # O 0x80, # O 0x80, # O 0x80, # O 0x80, # O 0x80, # O 0x80, # O 0x80, # O 0x80, # O 0x00, # 0x00, # 0x00, # 0x00, # # @2512 '}' (7 pixels wide) 0x0E, # OOO 0x06, # OO 0x06, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x18, # OO 0x18, # OO 0x38, # OOO 0x30, # OO 0xE0, # OOO 0x00, # 0x00, # 0x00, # 0x00, # # @2528 '~' (9 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x38, 0x80, # OOO O 0x7F, 0x00, # OOOOOOO 0x8E, 0x00, # O OOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2560 '°' (4 pixels wide) 0x60, # OO 0x90, # O O 0x90, # O O 0x60, # OO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # ) descriptors = ( (6,0),# ! (6,16),# " (11,32),# # (12,64),# $ (9,96),# % (11,128),# & (3,160),# ' (6,176),# ( (6,192),# ) (5,208),# * (9,224),# + (3,256),# , (6,272),# - (3,288),# . (7,304),# / (10,320),# 0 (5,352),# 1 (10,368),# 2 (9,400),# 3 (10,432),# 4 (9,464),# 5 (9,496),# 6 (8,528),# 7 (9,544),# 8 (8,576),# 9 (4,592),# : (4,608),# ; (8,624),# < (7,640),# = (8,656),# > (8,672),# ? (11,688),# @ (21,720),# A (13,768),# B (10,800),# C (13,832),# D (11,864),# E (14,896),# F (11,928),# G (21,960),# H (11,1008),# I (12,1040),# J (13,1072),# K (16,1104),# L (17,1136),# M (16,1184),# N (13,1216),# O (12,1248),# P (12,1280),# Q (13,1312),# R (15,1344),# S (15,1376),# T (12,1408),# U (13,1440),# V (17,1472),# W (14,1520),# X (14,1552),# Y (15,1584),# Z (7,1616),# [ (6,1632),# \ (7,1648),# ] (6,1664),# ^ (17,1680),# _ (3,1728),# ` (9,1744),# a (13,1776),# b (9,1808),# c (10,1840),# d (9,1872),# e (12,1904),# f (9,1936),# g (10,1968),# h (6,2000),# i (8,2016),# j (10,2032),# k (6,2064),# l (14,2080),# m (10,2112),# n (13,2144),# o (11,2176),# p (9,2208),# q (9,2240),# r (9,2272),# s (7,2304),# t (10,2320),# u (11,2352),# v (11,2384),# w (7,2416),# x (10,2432),# y (8,2464),# z (7,2480),# { (1,2496),# | (7,2512),# } (9,2528),# ~ (4,2560),# ° ) kerning = ( (3,5,3,3,5,3,5,4,2,5,4,3,3,3,3,4,5,4,4,4,3,4,5,3,5,3,2,4,4,3,6,4,3,5,4,5,3,5,4,3,5,5,5,3,5,3,5,5,3,5,3,5,5,5,5,4,6,3,3,5,1,2,0,5,3,3,3,3,3,2,3,3,3,2,3,3,3,3,3,2,3,4,3,3,3,3,3,3,3,3,3,6,1,3,6,), (3,5,2,2,5,2,5,4,2,5,1,3,0,3,1,4,5,4,4,4,3,3,5,3,5,2,2,1,0,3,6,4,0,5,3,5,2,5,3,0,5,5,5,0,5,0,5,5,3,5,0,5,5,5,5,4,6,2,3,5,1,0,0,5,0,3,0,0,0,2,0,3,3,0,3,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,3,6,1,0,6,), (9,10,10,8,9,10,10,10,7,11,9,8,9,8,8,11,9,9,9,10,9,10,10,10,11,9,9,10,9,8,10,10,8,10,10,10,10,11,10,9,11,11,10,7,10,7,10,10,9,10,10,11,10,10,10,9,10,8,9,9,7,10,0,10,10,9,10,10,10,8,10,9,9,6,9,9,9,9,10,8,10,10,7,9,9,10,9,8,9,8,9,11,7,9,10,), (10,12,9,9,11,9,12,10,8,12,9,9,9,9,8,10,11,11,11,10,10,9,12,10,11,9,8,9,9,10,12,10,9,12,9,12,9,11,9,9,11,11,12,8,12,8,12,12,9,12,9,11,12,12,12,11,12,9,9,11,7,9,0,11,9,9,9,9,9,8,9,9,10,7,9,9,9,9,9,8,9,9,9,9,9,9,9,8,9,9,9,12,7,9,12,), (8,8,7,8,8,8,8,8,7,8,6,7,8,8,8,8,8,8,8,7,8,8,8,8,7,8,7,6,8,8,9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,8,8,8,6,4,0,7,8,8,8,8,8,7,8,8,8,7,8,8,8,8,8,7,8,8,8,8,8,8,8,8,8,8,8,9,6,8,9,), (11,10,10,10,11,10,10,10,10,10,6,10,7,11,11,9,11,11,10,8,10,9,10,9,10,11,10,7,7,11,10,9,11,10,9,10,10,11,8,11,11,11,10,11,10,11,10,10,11,10,9,11,10,10,10,11,10,11,11,9,9,6,0,10,10,11,10,11,10,10,10,11,11,10,11,11,11,11,10,10,11,9,11,11,11,11,11,11,11,11,11,11,9,7,10,), (0,2,0,0,2,0,2,1,0,2,0,0,0,0,0,1,2,1,1,1,0,0,2,0,2,0,0,0,0,0,3,1,0,2,0,2,0,2,0,0,2,2,2,0,2,0,2,2,0,2,0,2,2,2,2,1,3,0,0,2,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,3,), (2,4,2,2,4,2,4,2,3,6,2,3,2,3,2,3,4,3,3,3,2,2,4,2,3,2,3,2,2,2,5,2,2,4,2,4,2,3,2,2,3,3,4,2,4,2,4,4,2,4,2,3,4,4,4,3,5,3,3,6,3,2,0,3,2,2,2,2,2,3,2,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,6,3,2,5,), (5,6,5,4,5,5,6,6,2,6,6,3,5,5,4,6,5,5,5,6,5,6,6,6,6,5,5,6,6,4,6,6,4,6,6,6,5,6,6,5,6,6,6,3,6,3,6,6,4,6,5,6,6,6,6,5,6,4,5,5,3,5,0,6,5,5,5,5,5,5,5,5,5,2,5,5,5,5,5,4,5,6,4,6,5,6,5,5,5,6,5,6,2,5,6,), (3,5,4,2,4,2,5,4,2,5,1,2,0,2,1,5,4,4,4,3,3,4,5,3,5,1,1,3,0,3,5,4,0,5,4,5,2,5,4,0,5,5,5,0,5,0,5,5,3,5,0,5,5,5,5,4,5,2,3,5,1,2,0,4,0,3,0,0,0,2,0,3,3,0,3,3,0,0,0,2,0,4,1,3,0,0,0,0,0,0,3,5,1,0,5,), (8,7,6,5,6,7,7,9,5,7,9,6,5,6,6,9,7,6,6,8,8,9,7,8,9,7,7,9,9,5,7,9,4,7,9,7,7,9,9,5,9,9,7,3,7,4,7,7,7,7,7,9,7,7,7,6,7,4,7,7,5,7,0,6,7,7,7,6,7,7,6,7,7,4,7,7,7,7,7,6,7,9,6,8,7,8,7,7,7,8,8,9,5,6,7,), (3,0,2,3,2,3,0,3,1,0,1,2,0,3,2,2,3,2,3,0,3,2,1,3,0,3,2,0,3,2,2,2,3,1,2,2,3,2,2,3,2,2,1,2,2,2,0,2,2,1,2,2,1,0,0,3,0,3,3,0,1,0,0,0,3,3,3,3,3,2,3,3,3,1,3,3,3,3,3,2,3,3,3,3,3,3,3,2,3,3,3,3,1,0,0,), (5,0,6,4,3,6,3,6,3,1,3,3,5,5,4,6,5,3,5,6,5,6,3,6,4,5,5,6,5,3,4,6,4,4,6,4,6,0,6,5,0,0,4,0,4,2,4,4,0,3,6,0,4,3,3,5,2,4,5,3,3,6,0,3,6,5,6,6,6,4,6,5,5,2,5,5,5,5,6,4,6,5,3,5,5,6,5,4,5,3,5,6,3,5,2,), (3,0,2,3,3,3,0,3,2,0,1,2,3,3,3,3,3,3,3,0,3,3,2,3,1,3,2,1,3,3,2,3,3,2,3,2,3,3,3,3,3,3,2,3,2,3,1,2,3,1,3,3,1,0,0,3,0,3,3,0,1,0,0,0,3,3,3,3,3,2,3,3,3,2,3,3,3,3,3,2,3,3,3,3,3,3,3,3,3,3,3,3,1,3,0,), (4,6,4,3,6,3,6,4,3,6,4,4,2,4,1,5,6,5,5,5,4,4,6,4,5,3,3,4,4,4,7,4,2,6,4,6,3,5,4,2,5,5,6,1,6,1,6,6,3,6,3,5,6,6,6,5,7,3,4,6,2,3,0,5,3,3,3,3,3,3,3,3,4,1,3,3,3,3,3,2,3,4,2,4,3,4,3,3,3,4,4,7,2,2,7,), (9,10,10,8,9,10,10,10,7,10,10,7,9,9,8,10,9,9,9,10,9,10,10,10,10,9,9,10,10,8,10,10,8,9,10,9,10,10,10,9,10,10,9,7,9,7,9,9,8,9,10,10,9,9,9,9,10,8,9,9,7,10,0,10,10,9,10,10,10,9,10,9,9,6,9,9,9,9,10,8,10,10,8,10,9,10,9,9,9,10,9,10,7,9,9,), (3,5,3,3,4,3,5,4,1,5,4,2,3,3,2,4,4,4,4,3,3,4,5,3,4,3,2,4,4,3,5,4,3,5,4,5,3,4,4,3,4,4,5,2,5,2,5,5,2,5,3,4,5,5,5,4,5,3,3,4,1,3,0,4,3,3,3,3,3,2,3,3,3,1,3,3,3,3,3,2,3,4,3,3,3,3,3,2,3,3,3,5,1,3,5,), (10,10,9,10,9,10,10,10,8,10,9,9,6,10,9,10,10,9,10,9,10,9,10,10,10,10,9,9,10,9,10,9,10,10,9,10,10,10,9,10,10,10,10,9,10,9,10,10,9,10,9,10,10,10,10,10,10,10,10,9,8,8,0,10,10,10,10,10,10,9,10,10,10,8,10,10,10,10,10,9,10,10,10,10,10,10,10,9,10,10,10,10,8,7,10,), (9,8,9,8,8,9,8,9,6,8,9,7,9,9,8,9,8,7,9,9,9,9,8,9,8,8,8,9,9,7,9,9,8,8,9,8,9,8,9,9,8,8,8,7,8,7,8,8,7,8,9,8,8,8,8,9,9,8,8,8,6,9,0,7,9,8,9,9,9,8,9,8,8,5,8,8,8,8,9,7,9,9,8,9,8,9,8,8,8,9,8,9,6,9,9,), (9,9,9,7,9,9,9,10,6,9,10,7,8,7,7,10,9,8,8,10,7,10,9,10,9,9,9,10,10,7,10,10,7,9,10,9,9,9,10,8,9,9,9,6,9,6,9,9,7,9,9,9,9,9,9,8,10,7,9,9,7,9,0,9,9,9,9,9,9,9,9,9,9,6,9,9,9,9,9,8,9,10,7,10,9,10,9,9,9,10,9,10,6,8,10,), (9,8,9,8,8,9,8,9,6,8,9,7,9,9,8,9,8,7,9,9,9,9,8,9,8,8,8,9,9,7,9,9,8,8,9,8,9,8,9,9,8,8,8,7,8,7,8,8,7,8,9,8,8,8,8,9,9,8,8,8,6,9,0,6,9,8,9,9,9,8,9,8,8,5,8,8,8,8,9,7,9,9,8,9,8,9,8,8,8,9,8,9,6,9,9,), (9,5,9,8,7,9,6,9,6,5,9,7,9,9,8,9,8,7,9,9,9,9,8,9,8,8,8,9,9,7,8,9,8,7,9,7,9,8,9,9,8,8,7,7,7,7,7,7,7,6,9,8,7,6,6,9,6,8,8,7,6,9,0,6,9,8,9,9,9,8,9,8,8,6,8,8,8,8,9,7,9,9,8,9,8,9,8,8,8,9,8,9,6,9,6,), (6,7,5,4,7,6,7,7,4,7,7,5,4,5,4,7,7,6,6,7,5,7,7,7,7,6,6,7,7,5,8,7,4,7,7,7,6,7,7,4,7,7,7,3,7,3,7,7,5,7,6,7,7,7,7,6,8,4,6,7,4,6,0,7,6,6,6,5,6,6,5,6,6,3,6,6,6,6,6,5,6,7,4,7,6,7,6,6,6,7,6,8,3,5,8,), (8,9,8,7,8,8,9,8,5,9,8,6,8,8,7,9,8,8,8,8,8,8,9,8,9,7,7,8,8,7,9,8,7,9,8,9,8,9,8,8,9,9,9,6,9,6,9,9,7,9,8,9,9,9,9,8,9,7,7,8,5,8,0,9,8,7,8,8,8,7,8,7,7,5,7,7,7,7,8,6,8,8,7,8,7,8,7,7,7,8,7,9,5,8,9,), (7,8,7,5,7,7,8,8,4,8,8,5,6,6,5,8,7,7,6,8,7,8,8,8,8,7,7,8,8,6,8,8,5,7,8,7,7,8,8,6,8,8,7,4,7,4,7,7,6,7,7,8,7,7,7,6,8,5,7,7,5,7,0,8,7,7,7,7,7,7,7,7,7,4,7,7,7,7,7,6,7,8,5,8,7,8,7,7,7,8,7,8,4,6,7,), (3,0,4,3,3,4,1,4,2,0,4,2,3,3,3,4,3,3,3,4,3,4,3,4,3,3,3,4,4,3,3,4,3,2,4,2,4,3,4,3,3,3,2,3,2,3,2,2,3,1,4,3,2,1,1,3,0,3,3,2,1,4,0,1,4,3,4,4,4,3,4,3,3,2,3,3,3,3,4,2,4,4,3,4,3,4,3,3,3,4,3,4,1,3,0,), (3,0,4,3,2,4,1,4,1,0,4,2,3,3,2,4,3,2,3,4,3,4,3,4,3,3,3,4,4,2,3,4,3,2,4,2,4,3,4,3,3,3,2,2,2,2,2,2,2,1,4,3,2,1,1,3,0,3,3,2,1,4,0,1,4,3,4,4,4,3,4,3,3,1,3,3,3,3,4,2,4,4,3,4,3,4,3,3,3,4,3,4,1,3,0,), (6,8,5,6,7,6,8,6,5,8,4,5,5,6,6,6,7,7,7,6,6,5,8,6,7,6,5,4,6,6,8,6,6,8,5,8,6,7,5,6,7,7,8,6,8,6,8,8,6,8,5,7,8,8,8,7,8,6,6,7,4,4,0,7,6,6,6,6,6,5,6,6,6,5,6,6,6,6,6,5,6,6,6,6,6,6,6,6,6,6,6,8,4,5,8,), (6,1,5,6,5,6,4,7,4,2,7,5,6,6,5,7,6,5,6,6,6,7,5,6,7,6,5,7,7,5,5,7,6,4,7,5,6,7,7,6,7,7,4,5,5,5,5,5,5,4,6,7,4,4,3,6,2,6,6,5,4,5,0,4,6,6,6,6,6,5,6,6,6,3,6,6,6,6,6,5,6,7,6,6,6,6,6,5,6,6,6,7,4,6,3,), (7,5,8,5,5,8,5,8,5,6,8,5,7,6,6,8,7,4,6,8,7,8,7,8,8,7,7,8,8,4,7,8,6,6,8,6,8,8,8,7,8,8,6,3,6,4,6,6,6,5,8,8,6,5,5,6,5,6,7,6,5,8,0,5,8,7,8,8,8,7,8,7,7,4,7,7,7,7,8,6,8,8,5,8,7,8,7,7,7,8,7,8,5,7,4,), (6,8,7,5,7,5,8,7,4,8,6,5,4,5,4,8,7,7,7,6,6,7,8,6,8,4,4,6,6,6,8,7,4,8,7,8,5,8,7,4,8,8,8,4,8,4,8,8,6,8,4,8,8,8,8,7,8,5,6,7,4,5,0,8,4,6,4,4,4,5,4,6,6,3,6,6,4,4,4,5,4,7,4,6,4,4,4,4,4,4,6,8,4,4,8,), (10,11,10,9,10,10,11,11,7,11,11,8,9,9,8,11,10,10,9,11,10,11,11,11,11,10,10,11,11,9,11,11,9,10,11,10,10,11,11,9,11,11,10,8,10,8,10,10,9,10,10,11,10,10,10,9,11,9,10,10,8,10,0,11,10,10,10,10,10,10,10,10,10,7,10,10,10,10,10,9,10,11,9,11,10,11,10,10,10,11,10,11,7,9,10,), (20,16,19,17,18,20,18,21,17,16,21,18,15,18,18,21,20,15,15,21,15,21,20,21,20,20,20,21,21,15,20,21,17,18,21,19,20,20,21,18,20,20,18,13,19,16,19,19,18,18,20,20,19,18,17,15,17,17,20,19,18,20,4,18,20,20,20,19,20,20,19,20,20,17,20,20,20,20,20,19,20,21,18,21,20,21,20,20,20,21,20,21,17,19,17,), (11,13,11,10,12,10,13,12,9,13,11,10,10,10,9,12,12,12,12,11,11,11,13,11,13,9,9,11,11,11,13,12,9,13,11,13,10,13,11,10,13,13,13,8,13,8,13,13,11,13,10,13,13,13,13,12,13,10,11,12,9,10,0,13,10,11,10,10,10,10,10,11,11,8,11,11,9,9,10,9,10,11,9,10,9,10,9,9,9,10,11,13,9,10,13,), (10,10,9,9,10,9,10,9,9,10,6,9,4,10,10,9,10,10,9,8,9,8,10,8,10,10,9,6,3,10,10,9,10,10,8,10,9,10,8,10,10,10,10,10,10,10,10,10,10,10,8,10,10,10,10,10,10,10,10,9,8,4,0,10,9,10,9,10,9,9,9,10,10,9,10,10,10,10,9,9,10,8,10,10,10,10,10,10,10,10,10,10,8,2,10,), (12,13,12,10,12,12,13,13,9,13,13,10,11,11,10,13,11,12,11,12,12,13,13,12,13,11,11,13,13,11,13,13,10,12,13,12,12,13,13,11,13,13,12,8,12,8,12,12,11,12,12,13,12,12,12,11,13,10,11,12,9,12,0,13,12,11,12,12,12,11,12,11,11,8,11,11,11,11,12,10,12,13,10,12,11,12,11,11,11,12,12,13,9,11,12,), (11,11,10,10,11,10,11,10,10,11,7,10,5,11,11,10,11,11,10,9,10,9,11,9,11,11,10,7,6,11,11,10,11,11,9,11,10,11,9,11,11,11,11,11,11,11,11,11,11,11,9,11,11,11,11,11,11,11,11,10,9,5,0,11,10,11,10,11,10,10,10,11,11,10,11,11,11,11,10,10,11,9,11,11,11,11,11,11,11,11,11,11,9,2,11,), (11,13,10,10,13,11,13,12,10,13,12,11,9,11,9,12,13,12,12,12,11,12,13,12,12,11,11,12,12,11,14,12,8,13,12,13,11,12,12,9,12,12,13,7,13,8,13,13,10,13,11,12,13,13,13,12,14,10,11,13,9,11,0,11,11,11,11,10,11,11,10,11,11,8,11,11,11,11,11,10,11,12,9,12,11,12,11,11,11,12,11,14,9,10,14,), (10,11,10,9,10,10,11,10,9,11,10,9,10,10,9,10,10,10,10,10,10,10,11,10,11,9,9,10,10,9,11,10,9,11,10,11,10,11,10,10,11,11,11,9,11,9,11,11,9,11,10,11,11,11,11,10,11,9,9,10,9,10,0,11,10,9,10,10,10,9,10,9,9,9,9,9,9,9,10,8,10,10,9,10,9,10,9,9,9,10,9,11,9,10,11,), (20,16,19,17,18,20,18,21,17,16,21,18,15,18,18,21,20,15,15,21,15,21,20,21,20,20,20,21,21,15,20,21,17,18,21,19,20,20,21,18,20,20,18,13,19,16,19,19,18,18,20,20,19,18,17,15,17,17,20,19,18,20,4,18,20,20,20,19,20,20,19,20,20,17,20,20,20,20,20,19,20,21,18,21,20,21,20,20,20,21,20,21,17,19,17,), (9,11,9,8,10,9,11,10,7,11,10,8,9,9,8,10,10,10,10,9,9,10,11,9,10,8,8,10,10,9,11,10,8,11,10,11,9,10,10,9,10,10,11,7,11,7,11,11,8,11,9,10,11,11,11,10,11,8,8,10,6,9,0,10,9,8,9,9,9,8,9,8,9,6,8,8,8,8,9,7,9,10,8,9,8,9,8,8,8,9,9,11,6,9,11,), (9,11,9,8,11,9,11,10,8,11,10,9,9,9,8,10,11,10,10,10,9,10,11,9,11,8,8,10,10,9,12,10,8,11,10,11,9,11,10,9,11,11,11,7,11,7,11,11,9,11,9,11,11,11,11,10,12,8,9,11,7,9,0,11,9,9,9,9,9,8,9,9,9,6,9,9,8,8,9,7,9,10,8,9,8,9,8,8,8,9,9,12,7,9,12,), (12,12,11,11,12,11,12,11,11,12,10,11,10,12,12,10,12,12,11,11,11,10,12,10,11,12,11,10,10,12,13,10,12,12,10,12,11,12,10,12,12,12,12,12,12,12,12,12,12,12,10,12,12,12,12,12,13,12,12,12,10,10,0,11,11,12,11,12,11,11,11,12,12,11,12,12,12,12,11,11,12,10,12,12,12,12,12,12,12,12,12,13,10,10,13,), (15,16,14,14,15,14,16,15,14,16,12,14,10,15,15,15,15,15,15,14,14,14,16,14,16,15,14,12,10,15,16,15,15,16,14,16,14,16,14,15,16,16,16,15,16,15,16,16,15,16,13,16,16,16,16,15,16,15,15,15,13,10,0,16,14,15,14,15,14,14,14,15,15,14,15,15,15,15,14,14,15,13,15,15,15,15,15,15,15,15,15,16,13,9,16,), (17,11,16,16,17,16,14,16,16,15,14,16,14,17,17,15,17,17,16,14,16,15,16,15,15,17,16,14,14,17,16,14,17,16,15,16,16,17,14,17,17,17,16,17,16,17,13,16,17,15,15,17,14,14,14,17,14,17,17,13,15,14,0,14,16,17,16,17,16,16,16,17,17,16,17,17,17,17,16,16,17,15,17,17,17,17,17,17,17,17,17,17,15,14,13,), (14,16,13,13,15,13,16,15,12,16,13,13,12,13,12,15,15,15,15,14,14,14,16,14,16,12,12,13,13,14,16,15,12,16,14,16,13,16,14,12,16,16,16,12,16,12,16,16,14,16,13,16,16,16,16,15,16,13,14,15,12,13,0,16,13,14,13,13,13,13,13,14,14,11,14,14,12,12,13,11,13,13,12,13,12,13,12,12,12,13,14,16,12,12,16,), (12,13,12,10,12,12,13,13,9,13,13,10,11,11,10,13,12,12,11,13,12,13,13,13,13,12,12,13,13,11,13,13,10,12,13,12,12,13,13,11,13,13,12,9,12,9,12,12,11,12,12,13,12,12,12,11,13,10,12,12,10,12,0,13,12,12,12,12,12,12,12,12,12,9,12,12,12,12,12,11,12,13,10,13,12,13,12,12,12,13,12,13,9,11,12,), (10,12,11,9,11,9,12,11,8,12,11,9,7,9,8,12,11,11,11,10,10,11,12,10,12,9,9,11,11,10,12,11,6,12,11,12,9,12,11,7,12,12,12,4,12,7,12,12,10,12,9,12,12,12,12,11,12,9,10,11,8,9,0,12,9,10,9,8,9,9,8,10,10,7,10,10,9,9,9,9,9,11,8,10,9,10,9,9,9,10,10,12,8,8,12,), (12,12,11,11,12,11,12,12,11,12,12,11,10,12,12,12,12,12,11,12,11,12,12,12,12,12,11,12,12,12,12,12,12,11,12,11,11,12,12,12,12,12,11,12,11,12,11,11,12,11,11,12,11,11,11,12,12,12,12,11,10,11,0,12,11,12,11,12,11,11,11,12,12,11,12,12,12,12,11,11,12,12,12,12,12,12,12,12,12,12,12,12,10,10,11,), (13,13,12,12,13,12,13,12,12,13,12,12,9,13,13,13,13,13,12,11,12,12,13,11,13,13,12,12,12,13,13,12,13,13,12,13,12,13,12,13,13,13,13,13,13,13,13,13,13,13,11,13,13,13,13,13,13,13,13,12,11,10,0,13,12,13,12,13,12,12,12,13,13,12,13,13,13,13,12,12,13,12,13,13,13,13,13,13,13,13,13,13,11,9,13,), (13,15,12,12,14,12,15,14,11,15,12,12,12,12,11,14,14,14,14,13,13,13,15,13,15,11,11,12,12,13,15,14,11,15,13,15,12,15,13,12,15,15,15,10,15,10,15,15,13,15,12,15,15,15,15,14,15,12,13,14,11,12,0,15,12,13,12,12,12,12,12,13,13,10,13,13,11,11,12,10,12,12,11,12,11,12,11,11,11,12,13,15,11,12,15,), (12,14,11,11,14,11,14,12,11,14,10,12,9,12,9,12,14,13,13,13,12,11,14,12,13,11,11,10,10,12,15,12,9,14,11,14,11,13,11,9,13,13,14,8,14,9,14,14,11,14,10,13,14,14,14,13,15,11,12,14,10,10,0,12,10,11,10,10,10,10,10,11,12,9,11,11,9,9,10,8,10,10,9,10,9,10,9,9,9,10,12,15,10,9,15,), (10,12,11,9,11,10,12,11,8,12,11,9,10,10,9,12,11,11,11,11,10,11,12,11,12,10,10,11,11,10,12,11,9,12,11,12,10,12,11,10,12,12,12,8,12,8,12,12,10,12,10,12,12,12,12,11,12,9,10,11,8,10,0,12,10,10,10,10,10,10,10,10,10,7,10,10,10,10,10,9,10,11,9,11,10,11,10,10,10,11,10,12,8,10,12,), (11,13,11,10,12,10,13,12,9,13,11,10,8,10,9,12,12,12,12,11,11,11,13,11,13,9,9,11,11,11,13,12,7,13,11,13,10,13,11,8,13,13,13,6,13,7,13,13,11,13,9,13,13,13,13,12,13,10,11,12,9,9,0,13,9,11,9,9,9,10,9,11,11,8,11,11,9,9,9,9,9,11,8,10,9,10,9,9,9,10,11,13,9,8,13,), (14,16,14,13,16,13,16,15,13,16,14,14,12,14,12,15,16,15,15,15,14,14,16,14,16,13,13,14,14,14,17,15,12,16,14,16,13,16,14,12,16,16,16,11,16,11,16,16,14,16,13,16,16,16,16,15,17,13,14,16,12,13,0,16,13,14,13,13,13,13,13,14,14,11,14,14,13,13,13,12,13,14,12,14,13,14,13,13,13,14,14,17,12,12,17,), (13,14,12,12,13,12,14,13,12,14,10,12,9,13,13,13,13,13,13,12,12,12,14,12,14,13,12,10,9,13,14,13,13,14,12,14,12,14,12,13,14,14,14,13,14,13,14,14,13,14,11,14,14,14,14,13,14,13,13,13,11,9,0,14,12,13,12,13,12,12,12,13,13,12,13,13,13,13,12,12,13,11,13,13,13,13,13,13,13,13,13,14,11,9,14,), (12,14,12,11,13,12,14,13,10,14,13,11,12,12,11,13,13,13,13,12,12,13,14,12,13,11,11,13,13,12,14,13,11,14,13,14,12,13,13,12,13,13,14,11,14,11,14,14,11,14,12,13,14,14,14,13,14,11,11,13,9,12,0,13,12,11,12,12,12,11,12,11,12,10,11,11,11,11,12,10,12,13,11,12,11,12,11,11,11,12,12,14,9,12,14,), (14,12,13,11,12,14,12,15,11,12,15,12,9,12,12,15,14,11,11,15,10,15,14,15,14,14,14,15,15,10,14,15,11,12,15,13,14,14,15,12,14,14,12,8,13,10,13,13,12,12,14,14,13,12,12,11,12,11,14,13,12,14,0,12,14,14,14,13,14,14,13,14,14,11,14,14,14,14,14,13,14,15,12,15,14,15,14,14,14,15,14,15,11,13,12,), (3,5,3,3,4,3,5,4,4,7,4,4,3,4,2,4,4,4,4,3,3,4,5,3,4,3,3,4,4,3,5,4,3,5,4,5,3,4,4,3,4,4,5,2,5,2,5,5,2,5,3,4,5,5,5,4,5,3,3,7,3,3,0,4,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,4,3,3,3,3,3,2,3,3,3,7,3,3,6,), (6,3,5,5,6,5,3,5,5,4,4,5,5,6,6,5,6,6,5,5,5,5,5,5,4,6,5,5,5,6,5,5,6,5,5,5,5,6,5,6,6,6,5,6,5,6,3,5,6,4,5,6,3,3,3,6,3,6,6,2,4,5,0,3,5,6,5,6,5,5,5,6,6,5,6,6,6,6,5,5,6,5,6,6,6,6,6,6,6,6,6,6,4,5,3,), (5,7,5,5,6,5,7,6,4,7,6,4,5,5,4,6,6,6,6,5,5,6,7,5,6,5,4,6,6,5,7,6,5,7,6,7,5,6,6,5,6,6,7,4,7,4,7,7,4,7,5,6,7,7,7,6,7,5,5,7,4,5,0,6,5,5,5,5,5,4,5,5,5,4,5,5,5,5,5,4,5,6,5,5,5,5,5,4,5,5,5,7,4,5,7,), (4,0,6,2,3,6,3,6,3,5,5,3,5,3,4,6,5,1,2,6,4,6,4,6,5,5,5,6,5,2,4,6,4,4,6,4,6,5,6,5,5,5,4,0,4,2,4,4,3,3,6,5,4,3,3,1,2,4,5,3,3,6,0,4,6,5,6,6,6,4,6,5,5,2,5,5,5,5,6,4,6,5,3,5,5,6,5,4,5,5,5,6,3,5,2,), (11,11,6,5,8,6,14,11,11,12,8,14,11,14,10,7,12,7,8,7,8,8,9,8,9,13,13,9,10,9,9,6,0,4,7,4,6,3,6,0,6,5,4,1,0,1,4,5,5,4,2,2,5,4,0,3,3,2,10,11,10,11,16,14,8,4,8,7,8,5,16,7,11,9,7,11,3,7,4,6,8,8,8,10,7,6,6,10,16,9,10,16,10,8,13,), (1,2,2,0,1,0,2,2,0,3,0,0,0,0,0,3,1,1,0,0,1,2,2,1,3,0,0,1,0,0,2,2,0,0,2,0,0,3,2,0,3,3,0,0,0,0,0,0,1,0,0,3,0,0,0,0,2,0,1,1,0,0,0,2,0,1,0,0,0,0,0,1,1,0,1,1,0,0,0,0,0,2,0,1,0,0,0,0,0,0,1,3,0,0,1,), (9,3,8,8,9,8,6,8,8,4,6,8,6,9,9,7,9,9,8,6,8,7,8,7,7,9,8,6,6,9,8,6,9,8,7,8,8,9,6,9,9,9,8,9,8,9,5,8,9,7,7,9,6,6,6,9,6,9,9,5,7,6,0,6,8,9,8,9,8,8,8,9,9,8,9,9,9,9,8,8,9,7,9,9,9,9,9,9,9,9,9,9,7,6,5,), (12,7,11,9,10,12,10,13,9,8,13,10,7,10,10,13,12,7,7,13,7,13,12,13,12,12,12,13,13,7,12,13,9,10,13,11,12,12,13,10,12,12,10,5,11,8,11,11,10,10,12,12,11,10,9,7,9,9,12,11,10,12,0,10,12,12,12,11,12,12,11,12,12,9,12,12,12,12,12,11,12,13,10,13,12,13,12,12,12,13,12,13,9,11,9,), (9,3,8,8,9,8,6,8,8,4,7,8,6,9,9,7,9,9,8,7,8,7,8,7,7,9,8,7,7,9,8,7,9,8,7,8,8,9,7,9,9,9,8,9,8,9,5,8,9,7,7,9,6,6,6,9,6,9,9,5,7,7,0,6,8,9,8,9,8,8,8,9,9,8,9,9,9,9,8,8,9,7,9,9,9,9,9,9,9,9,9,9,7,6,5,), (10,8,9,9,10,9,8,9,9,8,7,9,6,10,10,8,10,10,9,6,9,8,9,8,8,10,9,7,7,10,9,7,10,9,8,9,9,10,7,10,10,10,9,10,9,10,8,9,10,8,8,10,8,8,8,10,8,10,10,7,8,6,0,7,9,10,9,10,9,9,9,10,10,9,10,10,10,10,9,9,10,8,10,10,10,10,10,10,10,10,10,10,8,6,8,), (9,3,8,8,9,8,6,8,8,4,6,8,7,9,9,7,9,9,8,7,8,7,8,7,7,9,8,7,7,9,8,7,9,8,7,8,8,9,7,9,9,9,8,9,8,9,5,8,9,7,7,9,6,6,6,9,6,9,9,5,7,7,0,6,8,9,8,9,8,8,8,9,9,8,9,9,9,9,8,8,9,7,9,9,9,9,9,9,9,9,9,9,7,7,5,), (11,6,10,8,9,11,9,12,8,7,12,9,6,9,9,12,11,6,6,12,6,12,11,12,11,11,11,12,12,6,11,12,8,9,12,10,11,11,12,9,11,11,9,6,10,7,10,10,9,9,11,11,10,9,8,6,8,8,11,10,9,11,0,9,11,11,11,10,11,11,10,11,11,8,11,11,11,11,11,10,11,12,9,12,11,12,11,11,11,12,11,12,8,10,8,), (9,3,8,8,9,8,6,8,8,4,7,8,7,9,9,7,9,9,8,7,8,7,8,7,7,9,8,7,7,9,8,7,9,8,7,8,8,9,7,9,9,9,8,9,8,9,5,8,9,7,7,9,6,6,6,9,6,9,9,5,7,7,3,6,8,9,8,9,8,8,8,9,9,8,9,9,9,9,8,8,9,7,9,9,9,9,9,9,9,9,9,9,7,7,5,), (10,5,9,9,10,9,7,9,9,5,7,9,7,10,10,8,10,10,9,7,9,8,9,8,8,10,9,7,7,10,9,7,10,9,8,9,9,10,7,10,10,10,9,10,9,10,6,9,10,8,8,10,7,7,7,10,7,10,10,6,8,7,0,7,9,10,9,10,9,9,9,10,10,9,10,10,10,10,9,9,10,8,10,10,10,10,10,10,10,10,10,10,8,7,6,), (6,5,5,5,6,5,5,5,5,5,3,5,3,6,6,5,6,6,5,3,5,4,5,4,5,6,5,3,3,6,5,4,6,5,4,5,5,6,4,6,6,6,5,6,5,6,5,5,6,5,4,6,5,5,5,6,5,6,6,4,4,3,0,5,5,6,5,6,5,5,5,6,6,5,6,6,6,6,5,5,6,4,6,6,6,6,6,6,6,6,6,6,4,3,5,), (8,8,7,7,8,7,8,7,7,8,6,7,6,8,8,8,8,8,7,6,7,7,8,6,8,8,7,6,6,8,8,7,8,8,7,8,7,8,7,8,8,8,8,8,8,8,8,8,8,8,6,8,8,8,8,8,8,8,8,7,6,6,0,8,7,8,7,8,7,7,7,8,8,7,8,8,8,8,7,7,8,7,8,8,8,8,8,8,8,8,8,8,6,6,8,), (10,5,9,9,10,9,7,9,9,5,7,9,7,10,10,8,10,10,9,7,9,8,9,8,8,10,9,7,7,10,9,7,10,9,8,9,9,10,7,10,10,10,9,10,9,10,6,9,10,8,8,10,7,7,7,10,7,10,10,6,8,7,0,7,9,10,9,10,9,9,9,10,10,9,10,10,10,10,9,9,10,8,10,10,10,10,10,10,10,10,10,10,8,7,6,), (6,5,5,5,6,5,5,5,5,5,4,5,3,6,6,4,6,6,5,3,5,4,5,4,4,6,5,4,4,6,5,4,6,5,4,5,5,6,4,6,6,6,5,6,5,6,5,5,6,5,4,6,5,5,5,6,5,6,6,4,4,3,0,4,5,6,5,6,5,5,5,6,6,5,6,6,6,6,5,5,6,4,6,6,6,6,6,6,6,6,6,6,4,3,5,), (14,8,13,13,14,13,11,13,13,9,10,13,10,14,14,12,14,14,13,10,13,12,13,12,12,14,13,10,10,14,13,11,14,13,12,13,13,14,11,14,14,14,13,14,13,14,10,13,14,12,12,14,11,11,11,14,11,14,14,10,12,10,0,11,13,14,13,14,13,13,13,14,14,13,14,14,14,14,13,13,14,12,14,14,14,14,14,14,14,14,14,14,12,10,10,), (10,4,9,9,10,9,7,9,9,5,7,9,7,10,10,8,10,10,9,7,9,8,9,8,8,10,9,7,7,10,9,7,10,9,8,9,9,10,7,10,10,10,9,10,9,10,6,9,10,8,8,10,7,7,7,10,7,10,10,6,8,7,0,7,9,10,9,10,9,9,9,10,10,9,10,10,10,10,9,9,10,8,10,10,10,10,10,10,10,10,10,10,8,7,6,), (12,7,11,9,10,12,10,13,9,8,13,10,7,10,10,13,12,7,7,13,7,13,12,13,12,12,12,13,13,7,12,13,9,10,13,11,12,12,13,10,12,12,10,6,11,8,11,11,10,10,12,12,11,10,9,7,9,9,12,11,10,12,0,10,12,12,12,11,12,12,11,12,12,9,12,12,12,12,12,11,12,13,10,13,12,13,12,12,12,13,12,13,9,11,9,), (11,5,10,10,11,10,8,10,10,6,8,10,9,11,11,9,11,11,10,9,10,9,10,9,9,11,10,9,9,11,10,9,11,10,9,10,10,11,9,11,11,11,10,11,10,11,7,10,11,9,9,11,8,8,8,11,8,11,11,7,9,9,0,8,10,11,10,11,10,10,10,11,11,10,11,11,11,11,10,10,11,9,11,11,11,11,11,11,11,11,11,11,9,9,7,), (9,3,8,8,9,8,6,8,8,4,6,8,6,9,9,7,9,9,8,6,8,7,8,7,7,9,8,6,6,9,8,6,9,8,7,8,8,9,6,9,9,9,8,9,8,9,5,8,9,7,7,9,6,6,6,9,6,9,9,5,7,6,0,6,8,9,8,9,8,8,8,9,9,8,9,9,9,9,8,8,9,7,9,9,9,9,9,9,9,9,9,9,7,6,5,), (9,3,8,8,9,8,6,8,8,4,5,8,5,9,9,7,9,9,8,5,8,7,8,7,7,9,8,5,5,9,8,6,9,8,7,8,8,9,6,9,9,9,8,9,8,9,5,8,9,7,7,9,6,6,6,9,6,9,9,5,7,5,0,6,8,9,8,9,8,8,8,9,9,8,9,9,9,9,8,8,9,7,9,9,9,9,9,9,9,9,9,9,7,5,5,), (9,3,8,8,9,8,6,8,8,5,5,8,6,9,9,7,9,9,8,6,8,7,8,7,7,9,8,6,6,9,8,6,9,8,7,8,8,9,6,9,9,9,8,9,8,9,5,8,9,7,7,9,6,6,6,9,6,9,9,5,7,6,0,6,8,9,8,9,8,8,8,9,9,8,9,9,9,9,8,8,9,7,9,9,9,9,9,9,9,9,9,9,7,6,5,), (7,4,6,6,7,6,4,6,6,4,5,6,3,7,7,5,7,7,6,5,6,5,6,5,5,7,6,5,5,7,6,5,7,6,5,6,6,7,5,7,7,7,6,7,6,7,3,6,7,5,5,7,4,4,4,7,4,7,7,3,5,4,0,4,6,7,6,7,6,6,6,7,7,6,7,7,7,7,6,6,7,5,7,7,7,7,7,7,7,7,7,7,5,3,3,), (10,4,9,9,10,9,7,9,9,5,7,9,7,10,10,8,10,10,9,7,9,8,9,8,8,10,9,7,7,10,9,7,10,9,8,9,9,10,7,10,10,10,9,10,9,10,6,9,10,8,8,10,7,7,7,10,7,10,10,6,8,7,0,7,9,10,9,10,9,9,9,10,10,9,10,10,10,10,9,9,10,8,10,10,10,10,10,10,10,10,10,10,8,7,6,), (10,5,9,7,8,10,8,11,7,6,11,8,5,8,8,11,10,5,5,11,5,11,10,11,10,10,10,11,11,5,10,11,7,8,11,9,10,10,11,8,10,10,8,3,9,6,9,9,8,8,10,10,9,8,7,5,7,7,10,9,8,10,0,8,10,10,10,9,10,10,9,10,10,7,10,10,10,10,10,9,10,11,8,11,10,11,10,10,10,11,10,11,7,9,7,), (11,5,11,10,10,11,8,11,9,6,11,9,11,11,10,11,10,10,11,11,11,11,10,11,10,10,10,11,11,10,10,11,10,9,11,9,11,10,11,11,10,10,9,10,9,10,9,9,10,8,11,10,9,8,8,11,7,10,10,9,8,11,0,8,11,10,11,11,11,10,11,10,10,9,10,10,10,10,11,9,11,11,10,11,10,11,10,10,10,11,10,11,8,11,7,), (7,1,6,6,7,6,4,7,6,2,7,6,5,7,7,7,7,7,6,7,6,7,6,7,6,7,6,7,7,7,6,7,7,6,7,6,6,7,7,7,7,7,6,7,6,7,5,6,7,5,6,7,5,4,4,7,4,7,7,5,5,6,0,4,6,7,6,7,6,6,6,7,7,6,7,7,7,7,6,6,7,7,7,7,7,7,7,7,7,7,7,7,5,5,3,), (10,4,9,9,10,9,7,9,9,5,7,9,7,10,10,8,10,10,9,7,9,8,9,8,8,10,9,7,7,10,9,7,10,9,8,9,9,10,7,10,10,10,9,10,9,10,6,9,10,8,8,10,7,7,7,10,7,10,10,6,8,7,3,7,9,10,9,10,9,9,9,10,10,9,10,10,10,10,9,9,10,8,10,10,10,10,10,10,10,10,10,10,8,7,6,), (8,2,7,7,8,7,5,7,7,3,6,7,4,8,8,6,8,8,7,6,7,6,7,6,6,8,7,6,6,8,7,6,8,7,6,7,7,8,6,8,8,8,7,8,7,8,4,7,8,6,6,8,5,5,5,8,5,8,8,4,6,5,0,5,7,8,7,8,7,7,7,8,8,7,8,8,8,8,7,7,8,6,8,8,8,8,8,8,8,8,8,8,6,4,4,), (3,5,3,2,4,3,5,3,4,7,3,4,3,4,2,4,4,4,4,3,3,3,5,3,4,3,3,3,3,3,5,3,2,5,3,5,3,4,3,3,4,4,5,2,5,2,5,5,2,5,3,4,5,5,5,4,5,3,3,7,3,3,0,4,3,2,3,3,3,3,3,2,3,3,2,2,2,2,3,2,3,3,2,3,2,3,2,2,2,3,3,7,3,3,6,), (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,), (5,7,5,5,6,5,7,6,4,7,6,4,5,5,4,6,6,6,6,6,5,6,7,6,6,5,5,6,6,5,7,6,5,7,6,7,5,6,6,5,6,6,7,4,7,4,7,7,4,7,5,6,7,7,7,6,7,5,5,7,3,5,0,6,5,5,5,5,5,5,5,5,5,3,5,5,5,5,5,4,5,6,5,6,5,6,5,5,5,6,5,7,3,5,7,), (8,3,8,6,6,8,6,9,5,4,9,6,7,7,6,9,8,5,7,9,7,9,8,9,8,8,8,9,9,5,8,9,6,6,9,7,8,8,9,7,8,8,6,1,7,4,7,7,6,6,8,8,7,6,5,7,5,6,8,7,6,8,0,6,8,8,8,8,8,8,8,8,8,5,8,8,8,8,8,7,8,9,6,9,8,9,8,8,8,9,8,9,5,7,5,), (2,4,1,1,3,1,4,2,0,4,0,1,0,1,0,2,3,3,3,2,2,1,4,2,3,0,0,0,0,2,4,2,0,4,1,4,1,3,1,0,3,3,4,0,4,0,4,4,1,4,0,3,4,4,4,3,4,1,1,3,0,0,0,3,0,1,0,0,0,0,0,1,2,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,4,), ) # End of font
StarcoderdataPython
1757564
<filename>amfeti/preconditioners/k_preconditioners.py<gh_stars>10-100 # # Copyright (c) 2020 TECHNICAL UNIVERSITY OF MUNICH, DEPARTMENT OF MECHANICAL ENGINEERING, CHAIR OF APPLIED MECHANICS, # BOLTZMANNSTRASSE 15, 85748 GARCHING/MUNICH, GERMANY, <EMAIL>. # # Distributed under 3-Clause BSD license. See LICENSE file for more information. # """ Preconditioning module for AMfeti and linearized systems, that have a K-matrix-like structure similar to the linear static local problem. """ from scipy.sparse import csr_matrix from amfeti.linalg import cal_schur_complement from .preconditioner_base import PreconditionerBase import numpy as np all = ['LumpedPreconditioner', 'SuperLumpedPreconditioner', 'DirichletPreconditioner', 'LumpedDirichletPreconditioner'] class LumpedPreconditioner(PreconditionerBase): """ Lumped preconditioner, that uses the stiffnesses on the boundary only """ def __init__(self): super().__init__() @property def K_bb(self): """ Part of the operator matrix on the interface """ if self.interior_dofs is None: self.interior_dofs = self._identify_interior_dofs(self.interface_dofs) return self.K.matrix[np.ix_(self.interface_dofs, self.interface_dofs)] def _set_Q(self): self.Q = csr_matrix(np.zeros(self.K.shape)) self.Q[np.ix_(self.interface_dofs, self.interface_dofs)] = self.K_bb class SuperLumpedPreconditioner(LumpedPreconditioner): """ Similar preconditioner as the lumped preconditioner, but it utilizes the diagonal entries of the lumped preconditioner only. """ def __init__(self): super().__init__() def _set_Q(self): self.Q = csr_matrix(np.zeros(self.K.shape)) self.Q[np.ix_(self.interface_dofs, self.interface_dofs)] = np.diag(self.K_bb) class DirichletPreconditioner(LumpedPreconditioner): """ Dirichlet preconditioner, that uses a Schur-complement to estimate interface forces. Hence the most accurate, but expensive preconditioner """ def __init__(self): super().__init__() @property def K_ii(self): """ Interior part of the operator matrix, which is not related to any boundary-dof """ if self.interior_dofs is None: self.interior_dofs = self._identify_interior_dofs(self.interface_dofs) return self.K.matrix[np.ix_(self.interior_dofs, self.interior_dofs)] @property def K_ib(self): """ Connecting part of the operator matrix between interior and interface-dofs """ if self.interior_dofs is None: self.interior_dofs = self._identify_interior_dofs(self.interface_dofs) return self.K.matrix[np.ix_(self.interior_dofs, self.interface_dofs)] @property def K_bi(self): """ Connecting part of the operator matrix between interface and interior-dofs """ if self.interior_dofs is None: self.interior_dofs = self._identify_interior_dofs(self.interface_dofs) return self.K.matrix[np.ix_(self.interface_dofs, self.interior_dofs)] def schur_complement(self): """ Caller for a Schur-complement calculation """ return cal_schur_complement(self.K_bi, self.K_ii, self.K_ib, self.K_bb) def _set_Q(self): self.Q = csr_matrix(np.zeros(self.K.shape)) S = self.schur_complement() self.Q[np.ix_(self.interface_dofs, self.interface_dofs)] = S class LumpedDirichletPreconditioner(DirichletPreconditioner): """ Lumped Dirichlet preconditioner, that uses a Schur-complement, but with die diagonal entries of the interior stiffnesses. """ def __init__(self): super().__init__() def schur_complement(self): """ Caller for a Schur-complement calculation with an extraction of the lumped interior operator matrix """ K_ii_diag = np.diag(self.K_ii.matrix) return cal_schur_complement(self.K_ib.T, K_ii_diag, self.K_ib, self.K_bb)
StarcoderdataPython
134397
<filename>scihub2pdf/libgen.py from __future__ import unicode_literals, print_function, absolute_import import logging import requests from lxml import html from lxml.etree import ParserError from tool import norm_url, download_pdf logger = logging.getLogger("scihub") class LibGen(object): def __init__(self, headers={}, libgen_url="http://libgen.io/scimag/ads.php", xpath_pdf_url="/html/body/table/tr/td[3]/a"): self.libgen_url = libgen_url self.xpath_pdf_url = xpath_pdf_url self.headers = headers self.s = None self.doi = None self.pdf_file = None self.pdf_url = None self.page_url = None self.html_tree = None self.html_content = None def start(self): self.s = requests.Session() def exit(self): if self.s is not None: self.s.close() def download(self): found, r = download_pdf( self.s, self.pdf_file, self.pdf_url, self.headers, filetype="application/octet-stream") return found, r def navigate_to(self, doi, pdf_file): params = {"doi": doi, "downloadname": ""} r = self.s.get( self.libgen_url, params=params, headers=self.headers ) self.page_url = r.url self.pdf_file = pdf_file logger.info("DOI: %s, LibGen Link: %s", doi, self.page_url) found = r.status_code == 200 if not found: logger.error("Maybe libgen is down. Try to use sci-hub instead.") return found, r self.html_content = r.content return found, r def generate_tree(self): try: self.html_tree = html.fromstring(self.html_content) success = True except ParserError: logger.error("The LibGen page has a strange behaviour. Please try open in browser to check: %s", self.page_url) success = False return success, self.html_tree def get_pdf_url(self): html_a = self.html_tree.xpath(self.xpath_pdf_url) if len(html_a) == 0: logger.error("PDF link for not found: %s", self.page_url) found = False self.pdf_url = None else: self.pdf_url = norm_url(html_a[0].attrib["href"]) found = True return found, self.pdf_url
StarcoderdataPython
1760217
## Generate the dataset, save the data and a plot of it as well import numpy as np import skfuzzy as fuzz import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from skfuzzy import control as ctrl import scipy.io # Set for reproducibility np.random.seed(seed=123) loc_risk = ctrl.Antecedent(np.arange(0, 11, 1), 'loc_risk') maintenance = ctrl.Antecedent(np.arange(0, 11, 1), 'maintenance') downtime = ctrl.Consequent(np.arange(0, 101, 1), 'downtime') # Membership functions with parameters pre-specified. # Data would be generated from this fuzzy system # MCMC would be used later to identify whether the parameters of the fuzzy system can be recovered from the data. loc_risk['low'] = fuzz.trimf(loc_risk.universe, [0, 0, 5]) loc_risk['medium'] = fuzz.trimf(loc_risk.universe, [0, 5, 10]) loc_risk['high'] = fuzz.trimf(loc_risk.universe, [5, 10, 10]) maintenance['poor'] = fuzz.trimf(maintenance.universe, [0, 0, 5]) maintenance['average'] = fuzz.trimf(maintenance.universe, [0, 5, 10]) maintenance['good'] = fuzz.trimf(maintenance.universe, [5, 10, 10]) downtime['low'] = fuzz.trimf(downtime.universe, [0, 0, 50]) downtime['medium'] = fuzz.trimf(downtime.universe, [0, 50, 100]) downtime['high'] = fuzz.trimf(downtime.universe, [50, 100, 100]) # Rule objects connect one or more antecedent membership functions with # one or more consequent membership functions, using 'or' or 'and' to combine the antecedents. rule1 = ctrl.Rule(loc_risk['high'] | maintenance['poor'], downtime['high']) rule2 = ctrl.Rule(maintenance['average'] | loc_risk['medium'], downtime['medium']) rule3 = ctrl.Rule(maintenance['good'] & loc_risk['low'], downtime['low']) outputs=[[],[],[]] loc_inp=np.random.random(500) maint_inp=np.random.random(500) for x,y in zip(loc_inp,maint_inp): tipping_ctrl = ctrl.ControlSystem([rule1, rule2, rule3]) tipping = ctrl.ControlSystemSimulation(tipping_ctrl) tipping.input['loc_risk'] = 10.0*x tipping.input['maintenance'] = 10.0*y tipping.compute() outputs[0].append(x) outputs[1].append(y) outputs[2].append(tipping.output['downtime']) ## Plot the outputs on a graph for visualization fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.view_init(elev=27, azim=139) ax.plot_trisurf(outputs[0],outputs[1],outputs[2], cmap=cm.jet, linewidth=0.2) ax.set_xlabel('Location risk') ax.set_ylabel('Maintenance') ax.set_zlabel('System downtime') plt.savefig('data_plot.png') ## Save the data scipy.io.savemat('data_gen.mat',{'outputs': outputs})
StarcoderdataPython
188802
<filename>pdf_merge.py # pdf_merging.py import os from PyPDF2 import PdfFileReader, PdfFileWriter def merge_pdfs(dir_path, output): pdf_writer = PdfFileWriter() paths = os.listdir(dir_path) #print("Looking in",paths,"for PDFs") #checks if existing merged.pdf exists, if so deletes it if os.path.isfile(dir_path+output): os.remove(dir_path+output) print('Deleted a previous',output) for i in paths: if i.endswith('.pdf'): pdf_reader = PdfFileReader(dir_path+i) for page in range(pdf_reader.getNumPages()): # Add each page to the writer object pdf_writer.addPage(pdf_reader.getPage(page)) # Write out the merged PDF with open(output, 'wb') as out: pdf_writer.write(out) print("Merged PDFs into",output) if __name__ == '__main__': merge_pdfs(dir_path='pdfs/', output='pdfs/merged.pdf')
StarcoderdataPython
1609530
<reponame>angelaaaateng/awesome-panel """This module implements the Page Model""" import param # from awesome_panel.application.models.author import Author from package.awesome_panel.application.models.author import Author from package.awesome_panel.utils import OrderByNameMixin class Page(OrderByNameMixin, param.Parameterized): """This Page Model contains the - page component (For example a PageComponent) - meta parameters like author and description""" author = param.ClassSelector(class_=Author, allow_None=True) description = param.String() tags = param.List() source_code_url = param.String() thumbnail_png_url = param.String() component = param.Parameter() show_loading_page = param.Boolean(default=False) restrict_max_width = param.Boolean(default=True) url = param.String() def __hash__( self, ): return hash(self.name)
StarcoderdataPython
3396585
<reponame>ChuanleiGuo/AlgorithmsPlayground class Solution(object): def topKFrequent(self, nums, k): """ :type nums: List[int] :type k: int :rtype: List[int] """ buckets = [[] for _ in range(len(nums) + 1)] frequency_dict = {} for num in nums: frequency_dict[num] = frequency_dict.get(num, 0) + 1 for key in frequency_dict.keys(): frequency = frequency_dict[key] buckets[frequency].append(key) res = [] pos = len(buckets) - 1 while len(res) < k and pos >= 0: if len(buckets[pos]) > 0: res += buckets[pos] pos -= 1 return res
StarcoderdataPython
27900
#!/usr/bin/python3 import numpy as np def meeting_planes(a1, b1, c1, a2, b2, c2, a3, b3, c3): return [] def main(): a1=1 b1=4 c1=5 a2=3 b2=2 c2=1 a3=2 b3=4 c3=1 x, y, z = meeting_planes(a1, b1, c1, a2, b2, c2, a3, b3, c3) print(f"Planes meet at x={x}, y={y} and z={z}") if __name__ == "__main__": main()
StarcoderdataPython
4807481
<gh_stars>0 import os import os.path import subprocess import yaml from crontab import CronTab import wakeup.config as config import wakeup.util as util from wakeup.schedule import Schedule, parse_schedule from wakeup.constants import CONFIG_FILE_NAME, ALARM_SCRIPT_NAME def schedule(args): alarm_schedule = parse_schedule(" ".join([args.time, args.days_of_week])) _add_cron_job(alarm_schedule) def _add_cron_job(schedule: Schedule): cron = CronTab(user=True) command = _create_cron_command() job = cron.new(command=command) _set_job_time(job, schedule) cron.write() def _create_cron_command(): pipenv_bin = _find_pipenv_bin() # On Linux, pynput uses the X window system to interact with the keyboard. # Therefore, the DISPLAY variable must be set, which is not the case when # this script is run as a cron job. command = f"(cd '{os.getcwd()}' && env DISPLAY=':0' {pipenv_bin} run python {ALARM_SCRIPT_NAME})" return command def _find_pipenv_bin(): which_result = subprocess.run( ["which", "pipenv"], capture_output=True, encoding="utf-8" ) return which_result.stdout.strip() def _set_job_time(job, schedule: Schedule): job.hour.on(schedule.hours) job.minutes.on(schedule.minutes) job.dow.on(*schedule.days_of_week) def status(args): cron = CronTab(user=True) job_descriptions = [] for job in cron.find_command(ALARM_SCRIPT_NAME): desc = f"\t* {job.hours}:{job.minutes} on {job.dow}" job_descriptions.append(desc) if job_descriptions: first_line = "The following alarms are scheduled:" job_lines = "\n".join(job_descriptions) msg = "\n".join([first_line, job_lines]) else: msg = "No alarms scheduled." print(msg) def clear(args): cron = CronTab(user=True) num_jobs = cron.remove_all(command=ALARM_SCRIPT_NAME) cron.write() print(f"Cleared {num_jobs} scheduled alarms.") def init(args): skeleton_config = { config.CONSUMER_KEY: "<not set>", config.CONSUMER_SECRET: "<not set>", config.ACCESS_TOKEN_KEY: "<not set>", config.ACCESS_TOKEN_SECRET: "<not set>", } config.load_defaults(skeleton_config) user_home = util.get_user_home() config_path = os.path.join(user_home, CONFIG_FILE_NAME) with open(config_path, "w") as config_file: yaml.dump(skeleton_config, config_file) msg = f"""\ Created a config file at {config_path}. You still need to set all the Twitter API keys.""" print(msg)
StarcoderdataPython
3380810
#!/usr/bin/env python3 try: from pip.req import parse_requirements # pip 9.x except ImportError: from pip._internal.req import parse_requirements # pip 10.x from setuptools import find_packages, setup from app.util import autoversioning version = autoversioning.get_version() # bdist_pex runs in a temp dir, therefore requirements.txt must be added to data_files. requirements = [str(r.req) for r in parse_requirements('requirements.txt', session=False)] name = 'clusterrunner' setup( name=name, version=version, description="ClusterRunner makes it easy to execute test suites across your " "infrastructure in the fastest and most efficient way possible.", maintainer="Box", maintainer_email="<EMAIL>", url="https://github.com/box/ClusterRunner", license="ASL 2.0", python_requires='>=3.4', packages=find_packages(exclude=('test', 'test.*')), # Data files are packaged into the wheel using the following defines. data_files=[ ('', ['requirements.txt']), ('conf', ['conf/default_clusterrunner.conf']), ], install_requires=requirements, entry_points={ 'console_scripts': ['{} = app.__main__:main'.format(name)], }, )
StarcoderdataPython
1675893
from django.shortcuts import render from rest_framework import viewsets, filters import django_filters from . import models from . import serializers class TeamViewSet(viewsets.ModelViewSet): queryset = models.Team.objects.all() serializer_class = serializers.TeamSerializer filter_backends = (filters.DjangoFilterBackend,) filter_fields = ('name',) class ServiceProviderViewSet(viewsets.ModelViewSet): queryset = models.ServiceProvider.objects.all() serializer_class = serializers.ServiceProviderSerializer filter_backends = (filters.DjangoFilterBackend,) filter_fields = ('name',) class ContactTypeViewSet(viewsets.ModelViewSet): queryset = models.ContactType.objects.all() serializer_class = serializers.ContactTypeSerializer filter_backends = (filters.DjangoFilterBackend,) filter_fields = ('name',) class PointOfContactViewSet(viewsets.ModelViewSet): queryset = models.PointOfContact.objects.all() serializer_class = serializers.PointOfContactSerializer filter_backends = (filters.DjangoFilterBackend,) filter_fields = ( 'team', 'team__name', 'contact_type', 'contact_type__name', 'service_provider', 'service_provider__name' )
StarcoderdataPython
9355
<filename>code/send.py import sys import time from datetime import datetime from bot import FbMessengerBot if __name__ == "__main__": if len(sys.argv) < 3: print("No email or password provided") else: bot = FbMessengerBot(sys.argv[1], sys.argv[2]) with open("users.txt", "r") as file: users = dict.fromkeys(file.read().split("\n")) for user in users: users[user] = bot.uid(user) with open("message.txt", "r") as file: message = file.read() time_now = datetime.now() send_time = datetime(time_now.year + 1, 1, 1) wait_time = (send_time - time_now).total_seconds() print("Waiting...") time.sleep(wait_time) for uid in users.values(): bot.send_message(message, uid) bot.logout()
StarcoderdataPython
133882
# coding: utf-8 """Test the /files/ handler.""" import io import os from unicodedata import normalize pjoin = os.path.join import requests import json from nbformat import write from nbformat.v4 import (new_notebook, new_markdown_cell, new_code_cell, new_output) from notebook.utils import url_path_join from .launchnotebook import NotebookTestBase from ipython_genutils import py3compat class FilesTest(NotebookTestBase): def test_hidden_files(self): not_hidden = [ u'å b', u'å b/ç. d', ] hidden = [ u'.å b', u'å b/.ç d', ] dirs = not_hidden + hidden nbdir = self.notebook_dir.name for d in dirs: path = pjoin(nbdir, d.replace('/', os.sep)) if not os.path.exists(path): os.mkdir(path) with open(pjoin(path, 'foo'), 'w') as f: f.write('foo') with open(pjoin(path, '.foo'), 'w') as f: f.write('.foo') url = self.base_url() for d in not_hidden: path = pjoin(nbdir, d.replace('/', os.sep)) r = requests.get(url_path_join(url, 'files', d, 'foo')) r.raise_for_status() self.assertEqual(r.text, 'foo') r = requests.get(url_path_join(url, 'files', d, '.foo')) self.assertEqual(r.status_code, 404) for d in hidden: path = pjoin(nbdir, d.replace('/', os.sep)) for foo in ('foo', '.foo'): r = requests.get(url_path_join(url, 'files', d, foo)) self.assertEqual(r.status_code, 404) def test_contents_manager(self): "make sure ContentsManager returns right files (ipynb, bin, txt)." nbdir = self.notebook_dir.name base = self.base_url() nb = new_notebook( cells=[ new_markdown_cell(u'Created by test ³'), new_code_cell("print(2*6)", outputs=[ new_output("stream", text="12"), ]) ] ) with io.open(pjoin(nbdir, 'testnb.ipynb'), 'w', encoding='utf-8') as f: write(nb, f, version=4) with io.open(pjoin(nbdir, 'test.bin'), 'wb') as f: f.write(b'\xff' + os.urandom(5)) f.close() with io.open(pjoin(nbdir, 'test.txt'), 'w') as f: f.write(u'foobar') f.close() r = requests.get(url_path_join(base, 'files', 'testnb.ipynb')) self.assertEqual(r.status_code, 200) self.assertIn('print(2*6)', r.text) json.loads(r.text) r = requests.get(url_path_join(base, 'files', 'test.bin')) self.assertEqual(r.status_code, 200) self.assertEqual(r.headers['content-type'], 'application/octet-stream') self.assertEqual(r.content[:1], b'\xff') self.assertEqual(len(r.content), 6) r = requests.get(url_path_join(base, 'files', 'test.txt')) self.assertEqual(r.status_code, 200) self.assertEqual(r.headers['content-type'], 'text/plain') self.assertEqual(r.text, 'foobar') def test_download(self): nbdir = self.notebook_dir.name base = self.base_url() text = 'hello' with open(pjoin(nbdir, 'test.txt'), 'w') as f: f.write(text) r = requests.get(url_path_join(base, 'files', 'test.txt')) disposition = r.headers.get('Content-Disposition', '') self.assertNotIn('attachment', disposition) r = requests.get(url_path_join(base, 'files', 'test.txt') + '?download=1') disposition = r.headers.get('Content-Disposition', '') self.assertIn('attachment', disposition) self.assertIn('filename="test.txt"', disposition) def test_old_files_redirect(self): """pre-2.0 'files/' prefixed links are properly redirected""" nbdir = self.notebook_dir.name base = self.base_url() os.mkdir(pjoin(nbdir, 'files')) os.makedirs(pjoin(nbdir, 'sub', 'files')) for prefix in ('', 'sub'): with open(pjoin(nbdir, prefix, 'files', 'f1.txt'), 'w') as f: f.write(prefix + '/files/f1') with open(pjoin(nbdir, prefix, 'files', 'f2.txt'), 'w') as f: f.write(prefix + '/files/f2') with open(pjoin(nbdir, prefix, 'f2.txt'), 'w') as f: f.write(prefix + '/f2') with open(pjoin(nbdir, prefix, 'f3.txt'), 'w') as f: f.write(prefix + '/f3') url = url_path_join(base, 'notebooks', prefix, 'files', 'f1.txt') r = requests.get(url) self.assertEqual(r.status_code, 200) self.assertEqual(r.text, prefix + '/files/f1') url = url_path_join(base, 'notebooks', prefix, 'files', 'f2.txt') r = requests.get(url) self.assertEqual(r.status_code, 200) self.assertEqual(r.text, prefix + '/files/f2') url = url_path_join(base, 'notebooks', prefix, 'files', 'f3.txt') r = requests.get(url) self.assertEqual(r.status_code, 200) self.assertEqual(r.text, prefix + '/f3')
StarcoderdataPython
3278997
<gh_stars>0 #!\usr\bin\python """ File: unstable_ODE.py Copyright (c) 2016 <NAME> License: MIT Excercise C.4: Implements the derivative of an unstable function u_k to test how well the Euler method approximates it given different initial conditions for alpha, and delta t """ import numpy as np import sympy as sp import matplotlib.pyplot as plt from Euler import Euler def u_prime(x, u, a = -1): """ For backwards compatibility, the input variable x is included, but it does not contribute to the derivative """ return a * u def plot_Euler_approx(dfdx, y_a, delta_x, a, b): """ Plots the Euler approximation of y(x) given function dfdx and the initial point y_a from a to b with stepsize delta_x """ xList = np.arange(a, b, delta_x) yList = Euler(dfdx, y_a, delta_x, a, b) plt.plot(xList, yList) plt.show() def plot_approx_and_exact(exact, resolution, dfdx, y_a, delta_x, a, b): """ Plots the Euler approximation y(x) in red alongside its given exact value in green from a to b """ xList_a = np.arange(a, b, delta_x) yList_a = Euler(dfdx, y_a, delta_x, a, b) xList_e = np.linspace(a, b, resolution) yList_e = np.vectorize(exact)(xList_e) plt.plot(xList_a, yList_a, 'r') plt.plot(xList_e, yList_e, 'g') plt.show()
StarcoderdataPython
3375445
import torch.nn.functional as F import torch.nn as nn import torch """ 这个是把PICK对应论文中的GraphModel中的Graph Learning的代码, 看起来忒费劲,我就笨方法,一行行肢解后,打印出来看、理解: 我理解就是 - 降维 - 做softmax算每个节点和彼此之间的关系权重 - 然后计算loss: ''' \mathcal{L}_{GL}=\frac{1}{N}\sum_{i,j=1}^N exp(A_{ij}+\eta \Vert v_i - v_j \Vert^2_2) + \gamma \Vert A \Vert_F^2 ''' """ N = 8 # 有多少个bbox,一张图里 in_dim = 10 # 10:每个bbox的隐层表达的维度 learning_dim = 5 # 应该是降维后的维度 eta = 1 gamma = 1 box_num = torch.tensor([1,8]) x = torch.randn(1, N, in_dim) print("我是bbox的feature: x = ", x.shape) learn_w = nn.Parameter(torch.empty(learning_dim)) projection = nn.Linear(in_dim, learning_dim, bias=False) adj = torch.ones((1, N, N)) print("我是整个图的邻接矩阵:A = ", adj) print("我是整个图的邻接矩阵:A.shape ", adj.shape) B, N, D = x.shape # todo 难道是N,T,D? # (B, N, D) x_hat = projection(x) # todo 这个是做了一个降维么?3维度=>1维,还是最后1维降维了? print("我被线性变换了一下: x -> hat_x %r=>%r" % (x.shape, x_hat.shape)) _, _, learning_dim = x_hat.shape # 紧接着看这个,应该是最后一维降维了 : self.projection = nn.Linear(in_dim, learning_dim, bias=False) # (B, N, N, learning_dim) x_i = x_hat.unsqueeze(2).expand(B, N, N, learning_dim)# todo <--- ??? x_j = x_hat.unsqueeze(1).expand(B, N, N, learning_dim) print("骚操作之后的x_i:", x_i.shape) print("骚操作之后的x_j:", x_j.shape) distance = torch.abs(x_i - x_j) # <--- 感觉是两两做差 print("| x_i - x_j |: ", distance.shape) distance = torch.einsum('bijd, d->bij', distance, learn_w) # todo <--- ??? print("| x_i - x_j | 啥爱因斯坦sum后 : ", distance.shape) out = F.leaky_relu(distance) print(" Relu(| x_i - x_j |) : ", distance.shape) # for numerical stability, due to softmax operation mable produce large value max_out_v, _ = out.max(dim=-1, keepdim=True) # todo <--- ??? print(" Max(Relu(| x_i - x_j |)) : ", max_out_v.shape) out = out - max_out_v soft_adj = torch.exp(out) print(" Exp(Max(Relu(| x_i - x_j |))) : soft邻接矩阵 ", soft_adj.shape) soft_adj = adj * soft_adj # <-- ??? 为何要用新的邻接矩阵,和就的邻接矩阵相乘 print("两个邻接矩阵相乘:adj * soft_adj:adj.shape=%r, soft_adj.shape=%r" % (adj.shape, soft_adj.shape)) sum_out = soft_adj.sum(dim=-1, keepdim=True) soft_adj = soft_adj / sum_out + 1e-10 print("终于算出了新的邻接矩阵了:") print(soft_adj) print("新的邻接矩阵的shape:", soft_adj.shape) print("=======================================================") print("开始计算loss了!") B, N, D = x_hat.shape x_i = x_hat.unsqueeze(2).expand(B, N, N, D) x_j = x_hat.unsqueeze(1).expand(B, N, N, D) box_num_div = 1 / torch.pow(box_num.float(), 2) # (B, N, N) dist_loss = adj + eta * torch.norm(x_i - x_j, dim=3) # remove square operation duo to it can cause nan loss. dist_loss = torch.exp(dist_loss) # (B,) dist_loss = torch.sum(dist_loss, dim=(1, 2)) * box_num_div.squeeze(-1) # (B,) f_norm = torch.norm(adj, dim=(1, 2)) # remove square operation duo to it can cause nan loss. gl_loss = dist_loss + gamma * f_norm print("loss结果为:", gl_loss)
StarcoderdataPython
42621
<filename>main.py import wikipedia import webbrowser def getPage(): # 1 means number of random articles random_article = wikipedia.random(1) # print to the user the choice of random article print("The random generated wikipedia article is " + random_article) # User input to view the page or not choice = input("Continue Loading more info about " + random_article + " (y/n/q) ") if(choice == 'y' or choice == 'Y'): # Prints the summary of the random picked article print("") print("##############################") print(wikipedia.summary(random_article, 10, 0 , auto_suggest=True, redirect=True)) # user choice to open in webbrowser web_browser = input("Do you want to open this in your web browser? (y/n) ") if (web_browser == 'y' or web_browser == 'Y'): wiki_load = wikipedia.page(random_article) webbrowser.open(wiki_load.url) elif (web_browser == 'n' or web_browser == 'N'): print("") print("##############################") getPage() elif(choice == 'n' or choice == 'N'): getPage() else: exit(0) getPage()
StarcoderdataPython
3289035
<reponame>Ida-Ida/hecktor-2020 import torch from torch import nn from torch.nn import functional as F class BasicConv3d(nn.Module): def __init__(self, in_channels, out_channels, **kwargs): super(BasicConv3d, self).__init__() self.conv = nn.Conv3d(in_channels, out_channels, bias=False, **kwargs) self.norm = nn.InstanceNorm3d(out_channels, affine=True) def forward(self, x): x = self.conv(x) x = self.norm(x) x = F.relu(x, inplace=True) return x class FastSmoothSENorm(nn.Module): class SEWeights(nn.Module): def __init__(self, in_channels, reduction=2): super().__init__() self.conv1 = nn.Conv3d(in_channels, in_channels // reduction, kernel_size=1, stride=1, padding=0, bias=True) self.conv2 = nn.Conv3d(in_channels // reduction, in_channels, kernel_size=1, stride=1, padding=0, bias=True) def forward(self, x): b, c, d, h, w = x.size() out = torch.mean(x.view(b, c, -1), dim=-1).view(b, c, 1, 1, 1) # output_shape: in_channels x (1, 1, 1) out = F.relu(self.conv1(out)) out = self.conv2(out) return out def __init__(self, in_channels, reduction=2): super(FastSmoothSENorm, self).__init__() self.norm = nn.InstanceNorm3d(in_channels, affine=False) self.gamma = self.SEWeights(in_channels, reduction) self.beta = self.SEWeights(in_channels, reduction) def forward(self, x): gamma = torch.sigmoid(self.gamma(x)) beta = torch.tanh(self.beta(x)) x = self.norm(x) return gamma * x + beta class FastSmoothSeNormConv3d(nn.Module): def __init__(self, in_channels, out_channels, reduction=2, **kwargs): super(FastSmoothSeNormConv3d, self).__init__() self.conv = nn.Conv3d(in_channels, out_channels, bias=True, **kwargs) self.norm = FastSmoothSENorm(out_channels, reduction) def forward(self, x): x = self.conv(x) x = F.relu(x, inplace=True) x = self.norm(x) return x class RESseNormConv3d(nn.Module): def __init__(self, in_channels, out_channels, reduction=2, **kwargs): super().__init__() self.conv1 = FastSmoothSeNormConv3d(in_channels, out_channels, reduction, **kwargs) if in_channels != out_channels: self.res_conv = FastSmoothSeNormConv3d(in_channels, out_channels, reduction, kernel_size=1, stride=1, padding=0) else: self.res_conv = None def forward(self, x): residual = self.res_conv(x) if self.res_conv else x x = self.conv1(x) x += residual return x class UpConv(nn.Module): def __init__(self, in_channels, out_channels, reduction=2, scale=2): super().__init__() self.scale = scale self.conv = FastSmoothSeNormConv3d(in_channels, out_channels, reduction, kernel_size=1, stride=1, padding=0) def forward(self, x): x = self.conv(x) x = F.interpolate(x, scale_factor=self.scale, mode='trilinear', align_corners=False) return x
StarcoderdataPython
1679652
''' Created on Dec, 2016 @author: hugo ''' from __future__ import absolute_import import os import re from random import shuffle import numpy as np from collections import Counter, defaultdict from ..preprocessing.preprocessing import build_vocab, generate_bow, count_words from ..utils.io_utils import dump_json class CorpusIterReuters(object): def __init__(self, path_list, train_docs, with_docname=False): self.path_list = path_list self.train_docs = train_docs self.with_docname = with_docname def __iter__(self): shuffle(self.path_list) count = 0 for path in self.path_list: with open(path, 'r') as f: texts = re.split('\n\s*\n', f.read())[:-1] for block in texts: tmp = block.split('\n') did = tmp[0].split(' ')[-1] if not did in self.train_docs: continue words = (' '.join(tmp[2:])).split() count += 1 if self.with_docname: yield [words, [did]] else: yield words print count def load_data(path_list, test_split, seed=666): '''Loads the Reuters RCV1-v2 newswire dataset. @Params path_list : a list of file paths test_split : fraction of the dataset to be used as test data. seed : random seed for sample shuffling. ''' # count the number of times a word appears in a doc corpus = {} for path in path_list: with open(path, 'r') as f: texts = re.split('\n\s*\n', f.read())[:-1] for block in texts: tmp = block.split('\n') did = tmp[0].split(' ')[-1] count = Counter((' '.join(tmp[2:])).split()) corpus[did] = dict(count) # doc-word frequency corpus = corpus.items() np.random.seed(seed) np.random.shuffle(corpus) n_docs = len(corpus) train_data = dict(corpus[:-int(n_docs * test_split)]) test_data = dict(corpus[-int(n_docs * test_split):]) return train_data, test_data def construct_corpus(doc_word_freq, word_freq, training_phase, vocab_dict=None, threshold=5, topn=None): if not (training_phase or isinstance(vocab_dict, dict)): raise ValueError('vocab_dict must be provided if training_phase is set False') if training_phase: vocab_dict = build_vocab(word_freq, threshold=threshold, topn=topn) docs = generate_bow(doc_word_freq, vocab_dict) new_word_freq = dict([(vocab_dict[word], freq) for word, freq in word_freq.iteritems() if word in vocab_dict]) return docs, vocab_dict, new_word_freq def construct_train_test_corpus(path_list, test_split, output, threshold=10, topn=20000): train_data, test_data = load_data(path_list, test_split) train_word_freq = count_words(train_data.values()) train_docs, vocab_dict, train_word_freq = construct_corpus(train_data, train_word_freq, True, threshold=threshold, topn=topn) train_corpus = {'docs': train_docs, 'vocab': vocab_dict, 'word_freq': train_word_freq} dump_json(train_corpus, os.path.join(output, 'train.corpus')) print 'Generated training corpus' test_word_freq = count_words(test_data.values()) test_docs, _, _ = construct_corpus(test_data, test_word_freq, False, vocab_dict=vocab_dict) test_corpus = {'docs': test_docs, 'vocab': vocab_dict} dump_json(test_corpus, os.path.join(output, 'test.corpus')) print 'Generated test corpus' def extract_labels(docs, path, output): # it will be fast if docs is a dict instead of a list doc_labels = defaultdict(set) with open(path, 'r') as f: for line in f: label, did, _ = line.strip('\n').split() if did in docs: doc_labels[did].add(label) doc_labels = dict([(x, list(y)) for x, y in doc_labels.iteritems()]) dump_json(doc_labels, output) return doc_labels
StarcoderdataPython
3281630
from game import i2c import gevent from gevent.wsgi import WSGIServer from threading import Thread from game.game import Game go = Game("piet","pol","normal","subtile") gameRunning = False import webBack import MySQLdb import time def startServer(): server = WSGIServer(("", 5000), webBack.app) server.serve_forever() def whiletrue(): while(True): try: i2c.setinputs() #print(i2c.sensor1) #print(i2c.readSensor(1)) time.sleep(0.25) except: print("ERROR READING") time.sleep(0.25) if __name__ == "__main__": print("start Game") go = Game("jan","jaap","normal","subtile") #go.startGame() print("game running") db = MySQLdb.connect("localhost","root","root","MindGame" ) dbc = db.cursor() sql = "DELETE FROM Game;" print(sql) dbc.execute(sql) db.commit() print("start server") thread = Thread(target = startServer, args = ()) thread.start() whiletruethread = Thread(target = whiletrue, args = ()) whiletruethread.start() print("server running")
StarcoderdataPython
3377083
from django.urls import path from . import views urlpatterns = [ path('signup/', views.signup), path('check_duplication/', views.check_duplication), path('delete/', views.delete), ]
StarcoderdataPython
1723408
#!/usr/bin/env python3 #-m pip3 install pypdf2 import os from PyPDF2 import PdfFileWriter, PdfFileReader import argparse def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--in', type=str, nargs='+', dest='pdfs_to_merge', required=True, help='List of pdf fragments to merge') parser.add_argument('--out', type=str, dest='output_name', required=True, help='Output pdf name') return parser.parse_args() def merge_pdfs(pdfs_to_merge, output_name): print('FROM:', pdfs_to_merge) print('TO :', output_name) output = PdfFileWriter() inputs = [] total_pages = 0 for input_pdf_path in pdfs_to_merge: input_file = open(input_pdf_path, "rb") input_pdf = PdfFileReader(input_file) print('Reading', input_pdf_path, 'with', input_pdf.numPages, 'pages...') for i in range(0, input_pdf.numPages): output.addPage(input_pdf.getPage(i)) total_pages += 1 inputs.append(input_file) with open(output_name, "wb") as outputStream: output.write(outputStream) for input_file in inputs: input_file.close() print('Merge completed:', output_name, 'with', total_pages, 'pages.') def main(): args = parse_args() merge_pdfs(args.pdfs_to_merge, args.output_name) if __name__ == '__main__': main()
StarcoderdataPython
3203785
<gh_stars>0 ## @defgroup Methods-Weights-Correlations-Propulsion Propulsion # Contains some methods for calculating different propulsion system weights # @ingroup Methods-Weights-Correlations from .air_cooled_motor import air_cooled_motor from .engine_jet import engine_jet from .engine_piston import engine_piston from .hts_motor import hts_motor from .integrated_propulsion import integrated_propulsion from .integrated_propulsion_general_aviation import integrated_propulsion_general_aviation from .nasa_motor import nasa_motor
StarcoderdataPython
1648333
<filename>Python/ILoveYou.py # Language: Python # Level: 8kyu # Name of Problem: I love you, a little , a lot, passionately ... not at all # Instructions: Who remembers back to their time in the schoolyard, when girls would take a flower and tear its petals, saying each of the following phrases each time a petal was torn: # I love you, a little, a lot, passionately, madly, not at all # Your goal in this kata is to determine which phrase the girls would say for a flower of a given number of petals, where nb_petals > 0. # Solution: # subtract one from array b/c it is 0 based; girl starts counting at 1 but array starts at 0 def how_much_i_love_you(petals): return ['I love you', 'a little', 'a lot', 'passionately', 'madly', 'not at all'][petals % 6 - 1] # Sample Tests Passed: # def testing(actual, expected): # Test.assert_equals(actual, expected) # Test.describe("decode") # Test.it("Basic tests") # testing(how_much_i_love_you(7),"I love you") # testing(how_much_i_love_you(3),"a lot") # testing(how_much_i_love_you(6),"not at all")
StarcoderdataPython
3387983
import math def funcion_factorial(n: int ): """El factorial de un numero. Parameters ---------- n : int Numero entero `n`. Returns ------- int Retorna el factorial del numero `n` """ facto= 1 for i in range(1,n+1): facto = facto * i return facto
StarcoderdataPython
3358510
<filename>reader.py<gh_stars>0 #Based on script by <NAME> @alexram1313 #https://github.com/alexram1313/text-to-speech-sample import simpleaudio as sa import re import _thread import time from pydub import AudioSegment from pydub.playback import play class TextToSpeech: CHUNK = 1024 #apparently you can both indicate type (see type hints) and instantiate a variable in the def statement #here we point to the txt file that breaks words in to phonemes # l = the phoneme strings dict # _load_words is the method that parses the CMU dictionary def __init__(self, CMUdict:str = 'CMUdict.txt'): self._l = {} self._load_words(CMUdict) def _load_words(self, CMUdict:str): with open(CMUdict, 'r') as file: print("opened CMU dict!") for line in file: #ignore comments in txt file if not line.startswith(';;;'): #key is the word, val is the string of phonemes, 1st arg = delimiter, 2nd is how many times to split max key, val = line.split(' ',2) #use regex to parse the phonemes in val self._l[key] = re.findall(r"[A-Z]+",val) def get_pronunciation(self, str_input): phoneme_list = [] #the following parses the user input (typed words to be spoken) #\w is any alphanumeric character. see https://docs.python.org/3/howto/regex.html for word in re.findall(r"[\w']+",str_input.upper()): if word in self._l: phoneme_list += self._l[word] print(phoneme_list) return phoneme_list #plays wav files using anythingbut pyaudio def make_audio(self, phoneme_list): full_audio = AudioSegment.empty() for phoneme in phoneme_list: segment = AudioSegment.from_wav("sounds/"+phoneme+".wav") full_audio += segment return full_audio def export_audio(text, audio): full_audio.export("mashup.mp3", format="mp3") if __name__ == '__main__': tts = TextToSpeech() while True: user_input = input('Enter a word or phrase: ') phoneme_list = tts.get_pronunciation(user_input) if len(phoneme_list) > 0: audio = tts.make_audio(phoneme_list) #audio.export("<FILE PATH HERE FOR EXPORT".wav", format ="wav") play(audio) else: print("I couldn't pronounce \"" + user_input + "\"")
StarcoderdataPython
105432
"""This module implements uploading videos on YouTube via Selenium using metadata JSON file to extract its title, description etc.""" from typing import DefaultDict, Optional from selenium_firefox.firefox import Firefox, By, Keys from collections import defaultdict import json import time from youtube_uploader_selenium import const from pathlib import Path import logging import random logging.basicConfig() def load_metadata(metadata_json_path: Optional[str] = None) -> DefaultDict[str, str]: if metadata_json_path is None: return defaultdict(str) with open(metadata_json_path) as metadata_json_file: return defaultdict(str, json.load(metadata_json_file)) class YouTubeUploader: """A class for uploading videos on YouTube via Selenium using metadata JSON file to extract its title, description etc""" def __init__(self, video_path: str, metadata: dict, browser: Firefox) -> None: self.video_path = video_path self.metadata_dict = metadata self.browser = browser self.logger = logging.getLogger(__name__) self.logger.setLevel(logging.DEBUG) self._validate_inputs() def _validate_inputs(self): if not self.metadata_dict[const.VIDEO_TITLE]: self.logger.warning("The video title was not found in a metadata file") self.metadata_dict[const.VIDEO_TITLE] = Path(self.video_path).stem self.logger.warning("The video title was set to {}".format(Path(self.video_path).stem)) if not self.metadata_dict[const.VIDEO_DESCRIPTION]: self.logger.warning("The video description was not found in a metadata file") def upload(self, use_monetization=True): try: self._login() return self._upload(use_monetization) except Exception as e: print(e) self._quit() raise def _wait(self): time.sleep(const.USER_WAITING_TIME + random.uniform(0, 2)) def _short_wait(self): time.sleep(random.uniform(0, 1)) def _login(self): self.browser.get(const.YOUTUBE_URL) self._wait() if self.browser.has_cookies_for_current_website(): self.browser.load_cookies() self._wait() self.browser.refresh() else: self.logger.info('Please sign in and then press enter') input() self.browser.get(const.YOUTUBE_URL) self._wait() self.browser.save_cookies() def _upload(self, use_monetization: bool) -> (bool, Optional[str]): self._go_to_upload() self._send_video() self._wait() self._set_title() self._set_description() self._set_kids_section() self._set_tags() self._click_next() # Monetization if use_monetization: self._set_monetization_on() self._click_next() self._set_monetization_suitability() self._click_next() self._click_next() else: self._click_next() try: self._set_video_public() except Exception: # Deals with copyright 'checks' self._click_next() self._set_video_public() video_id = self._get_video_id() self._wait_while_upload() done_button = self.browser.find(By.ID, const.DONE_BUTTON) # Catch such error as # "File is a duplicate of a video you have already uploaded" if done_button.get_attribute('aria-disabled') == 'true': error_message = self.browser.find(By.XPATH, const.ERROR_CONTAINER).text self.logger.error(error_message) return False, None done_button.click() self._wait() # Monetization if use_monetization: self._publish_anyway() self.logger.debug("Published the video with video_id = {}".format(video_id)) self._wait() self.browser.get(const.YOUTUBE_URL) self._quit() return True, video_id def _go_to_upload(self): self.browser.get(const.YOUTUBE_URL) self._wait() self.browser.get(const.YOUTUBE_UPLOAD_URL) self._wait() def _send_video(self): absolute_video_path = str(Path.cwd() / self.video_path) self.browser.find(By.XPATH, const.INPUT_FILE_VIDEO).send_keys(absolute_video_path) self.logger.debug('Attached video {}'.format(self.video_path)) def _set_title(self): title_field = self.browser.find(By.ID, const.TEXTBOX, timeout=10) title_field.click() self._short_wait() title_field.clear() self._short_wait() title_field.send_keys(Keys.COMMAND + 'a') self._short_wait() title_field.send_keys(self.metadata_dict[const.VIDEO_TITLE]) self.logger.debug('The video title was set to \"{}\"'.format(self.metadata_dict[const.VIDEO_TITLE])) self._wait() def _set_description(self): video_description = self.metadata_dict[const.VIDEO_DESCRIPTION] if video_description: description_container = self.browser.find(By.XPATH, const.DESCRIPTION_CONTAINER) description_field = self.browser.find(By.ID, const.TEXTBOX, element=description_container) description_field.click() self._wait() description_field.clear() self._wait() description_field.send_keys(self.metadata_dict[const.VIDEO_DESCRIPTION].replace('\\n', u'\ue007')) self.logger.debug( 'The video description was set to \"{}\"'.format(self.metadata_dict[const.VIDEO_DESCRIPTION])) def _set_kids_section(self): kids_section = self.browser.find(By.NAME, const.NOT_MADE_FOR_KIDS_LABEL) self.browser.find(By.ID, const.RADIO_LABEL, kids_section).click() self.logger.debug('Selected \"{}\"'.format(const.NOT_MADE_FOR_KIDS_LABEL)) def _set_tags(self): more_options = self.browser.find(By.CLASS_NAME, const.ADVANCED_BUTTON) more_options.click() self._wait() self._wait() tags_container = self.browser.find(By.ID, const.TAGS_CONTAINER) tags_container.click() tags_input = tags_container.find_element(By.ID, const.TEXT_INPUT) tags_input.click() self._wait() tags_input.send_keys(self.metadata_dict[const.VIDEO_TAGS]) self._wait() def _set_monetization_on(self): monetization_bar = self.browser.find(By.ID, const.MONETIZATION_LABEL) monetization_bar.click() self._wait() on_label = self.browser.find(By.ID, const.MONETIZATION_ON_LABEL) on_label.click() self._wait() done_button = self.browser.find(By.ID, const.MONETIZATION_DONE) done_button.click() self._wait() self.logger.debug( 'The video monetization was set to on') def _set_monetization_suitability(self): button = self.browser.find(By.CLASS_NAME, const.MONETIZATION_SUITABILITY_LABEL) button.click() self._wait() self.logger.debug( 'The video monetization was set to none of the above') def _publish_anyway(self): button = self.browser.find(By.ID, const.PUBLISH_ANYWAY_LABEL) button.click() self._wait() self.logger.debug( 'The video published publicly') def _click_next(self): self.browser.find(By.ID, const.NEXT_BUTTON).click() self.logger.debug('Clicked {}'.format(const.NEXT_BUTTON)) self._wait() def _set_video_public(self): public_main_button = self.browser.find(By.NAME, const.PUBLIC_BUTTON) self.browser.find(By.ID, const.RADIO_LABEL, public_main_button).click() self._wait() self.logger.debug('Made the video {}'.format(const.PUBLIC_BUTTON)) def _wait_while_upload(self): status_container = self.browser.find(By.XPATH, const.STATUS_CONTAINER) while True: in_process = status_container.text.find(const.UPLOADED) != -1 if in_process: self._wait() else: break def _get_video_id(self) -> Optional[str]: video_id = None try: video_url_container = self.browser.find(By.XPATH, const.VIDEO_URL_CONTAINER) video_url_element = self.browser.find(By.XPATH, const.VIDEO_URL_ELEMENT, element=video_url_container) video_id = video_url_element.get_attribute(const.HREF).split('/')[-1] except: self.logger.warning(const.VIDEO_NOT_FOUND_ERROR) pass return video_id def _quit(self): self.browser.driver.quit()
StarcoderdataPython
1662258
# V0 # V1 # https://blog.csdn.net/fuxuemingzhu/article/details/82820204 # IDEA : GREEDY class MyCalendarTwo(object): def __init__(self): # every booked interval self.booked = list() # every overlap interval self.overlaped = list() def book(self, start, end): """ :type start: int :type end: int :rtype: bool """ for os, oe in self.overlaped: if max(os, start) < min(oe, end): return False for bs, be in self.booked: ss = max(bs, start) ee = min(be, end) if ss < ee: self.overlaped.append((ss, ee)) self.booked.append((start, end)) return True # Your MyCalendarTwo object will be instantiated and called as such: # obj = MyCalendarTwo() # param_1 = obj.book(start,end) # V2 # Time: O(n^2) # Space: O(n) class MyCalendarTwo(object): def __init__(self): self.__overlaps = [] self.__calendar = [] def book(self, start, end): """ :type start: int :type end: int :rtype: bool """ for i, j in self.__overlaps: if start < j and end > i: return False for i, j in self.__calendar: if start < j and end > i: self.__overlaps.append((max(start, i), min(end, j))) self.__calendar.append((start, end)) return True
StarcoderdataPython
126991
from __future__ import annotations from dataclasses import dataclass from typing import Sequence, Tuple, Optional, List, Dict, Any, Iterable import logging from pathlib import Path import os from concurrent.futures import ThreadPoolExecutor from requests import HTTPError from catpy.applications import CatmaidClientApplication from catpy.applications.morphology import lol_to_df import pandas as pd import numpy as np from .bbox import Bbox from .utils import CoordZYX logger = logging.getLogger(__name__) DEFAULT_WORKERS = 10 def treenode_table(response): edit_time_dtype = None df = lol_to_df( response, [ "treenode_id", "parent_id", "x", "y", "z", "confidence", "radius", "skeleton_id", "edit_time", "user_id", ], [ np.uint64, pd.UInt64Dtype(), np.float64, np.float64, np.float64, np.int8, np.float64, np.uint64, edit_time_dtype, np.uint64, ], ) # df.index = df.treenode_id return df def connector_node_table(response): edit_time_dtype = None df = lol_to_df( response, ["connector_id", "x", "y", "z", "confidence", "edit_time", "user_id"], [ np.uint64, np.float64, np.float64, np.float64, np.int8, edit_time_dtype, np.uint64, ], ) return df def merge_node_tables(dfs: Sequence[pd.DataFrame], drop_subset=None): merged = pd.concat(dfs, ignore_index=True) deduped = merged.drop_duplicates(subset=drop_subset) return deduped def merge_treenode_tables(dfs: Sequence[pd.DataFrame]): df = merge_node_tables(dfs, ["treenode_id", "skeleton_id"]) # if len(df.treenode_id) == len(np.unique(df.treenode_id)): # df.index = df.treenode_id # else: # raise ValueError("Resulting treenode table does not have unique rows") return df def merge_connector_tables(dfs: Sequence[pd.DataFrame]): return merge_node_tables(dfs, ["connector_id"]) @dataclass class ConnectorPartner: link_id: int partner_id: int confidence: int skeleton_id: int relation_id: int relation_name: str @dataclass class ConnectorDetail: # 'connector_id': detail[0], # 'x': detail[1], # 'y': detail[2], # 'z': detail[3], # 'confidence': detail[4], # 'partners': [p for p in detail[5]] connector_id: int location: CoordZYX confidence: int partners: List[ConnectorPartner] @classmethod def from_response(cls, response): return cls( response["connector_id"], CoordZYX(response["z"], response["y"], response["x"]), response["confidence"], [ConnectorPartner(**p) for p in response["partners"]], ) @staticmethod def to_connector_partners_df(details: Iterable[ConnectorDetail]): dims = ["x", "y", "z"] conn_ids = [] locs = [] partners_dfs = [] for det in details: conn_ids.append(det.connector_id) locs.append([det.location[d] for d in dims]) partners_dfs.append(det.to_partners_df()) connectors = pd.DataFrame( np.array(conn_ids, dtype=np.uint64), columns=["connector_id"] ) connectors[dims] = pd.DataFrame(np.array(locs), columns=dims) first, *others = partners_dfs partners = first.append(list(others)) return connectors, partners def to_partners_df(self): headers = ("skeleton_id", "treenode_id", "connector_id", "is_presynaptic") is_presyn = [] ids = [] for p in self.partners: is_presyn.append(p.relation_name.startswith("pre")) ids.append([p.skeleton_id, p.partner_id, self.connector_id]) df = pd.DataFrame(np.array(ids, dtype=np.uint64), columns=headers[:-1]) df[headers[-1]] = np.array(is_presyn, bool) return df class Catmaid(CatmaidClientApplication): def nodes_in_bbox( self, bbox: Bbox, treenodes=True, connectors=True, splits: Sequence[int] = (2, 2, 2), ) -> Tuple[Optional[pd.DataFrame], Optional[pd.DataFrame]]: logger.debug("Getting nodes in bbox %s", bbox) data = bbox.to_catmaid() try: response = self.post((self.project_id, "/node/list"), data) except HTTPError as e: if e.errno == 504: logger.warning("Server timeout; splitting Bbox") response = {3: True} else: raise e if not response[3]: tn_df = treenode_table(response[0]) if treenodes else None conn_df = connector_node_table(response[1]) if connectors else None logger.debug("Got %s treenodes, %s connectors", len(tn_df), len(conn_df)) return tn_df, conn_df # node limit reached logger.info("Splitting bbox into %s", splits) tn_dfs = [] conn_dfs: List[pd.DataFrame] = [] for sub_bb in bbox.split(*splits): tn_df, conn_df = self.nodes_in_bbox(sub_bb, treenodes, connectors, splits) if treenodes and tn_df is not None: tn_dfs.append(tn_df) if connectors and conn_df is not None: conn_dfs.append(conn_df) return ( merge_treenode_tables(tn_dfs) if treenodes else None, merge_connector_tables(conn_dfs) if connectors else None, ) def connector_detail(self, conn_id: int): return ConnectorDetail.from_response( self.get(f"{self.project_id}/connectors/{conn_id}") ) def connector_detail_many(self, conn_ids, threads=DEFAULT_WORKERS): yield from batch( self.connector_detail, [to_args_kwargs(c) for c in conn_ids], threads ) ArgsKwargs = Tuple[Sequence, Dict[str, Any]] def to_args_kwargs(*args, **kwargs): return args, kwargs def batch(fn, args_kwargs: Iterable[ArgsKwargs], workers=DEFAULT_WORKERS): with ThreadPoolExecutor(workers) as exe: futs = [exe.submit(fn, *args, **kwargs) for args, kwargs in args_kwargs] for f in futs: yield f.result() def get_creds() -> Path: try: return Path(os.environ["CATMAID_CREDENTIALS"]) except KeyError: raise RuntimeError( "Use CATMAID_CREDENTIALS env var to give location of catmaid credentials file" ) def get_catmaid() -> Catmaid: return Catmaid.from_json(get_creds())
StarcoderdataPython
167107
""" Author: michealowen Last edited: 2019.11.1,Friday LASSO回归算法,使用波士顿房价数据集 在损失函数中加入L1正则项,后验概率的符合拉普拉斯分布 """ #encoding=UTF-8 import numpy as np import pandas as pd from sklearn import datasets from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split class ridgeRegression: ''' LASSO回归模型类 ''' def __init__(self,X,x_test,Y,y_test,k=1.0): ''' Params: X:样本,shape=(m,n) Y:为标注,shape=(1,m) x_test:测试集的数据 y_test:测试集的标签 k:正则项系数 ''' self.X=X self.Y=Y n = self.X.shape[1] self.w = np.array([0 for i in range(n+1)],dtype='float64') self.x_test = x_test self.y_test = y_test self.k=k def preProcess(self,x): ''' 加上x0=1,并对样本进行归一化 ''' x = np.c_[x,np.array([1 for i in range(x.shape[0])])] for i in range(x.shape[1]-1): x[:,i] = (x[:,i] - np.mean(x[:,i]))/np.std(x[:,i]) return x def fit(self,method='GBD',alpha=None,iterNums=None,batchSize=None): ''' 使用传入的method参数,选择适当的拟合方法 GBD:梯度下降,SGD:随机梯度下降,SBGD:小批量梯度下降,MT:矩阵法求解 ''' self.X = self.preProcess(self.X) #预处理数据 if method == 'BGD': self.BGD(alpha,iterNums) elif method == 'SGD': self.SGD(alpha) elif method == 'SBGD': self.SBGD(alpha) return None def MT(self): """ 基于矩阵求解的方法 """ self.w = np.dot(np.linalg.pinv(np.dot(self.X.T,self.X)+self.k*np.eye(len(self.w))),np.dot(self.X.T,self.Y.T)) m,n = self.X.shape #m为样本数,n为维度 J = 1/m * np.dot( (np.dot(self.X,self.w.T) - self.Y),(np.dot(self.X,self.w.T) - self.Y).T) #MSE print(J) return None def BGD(self,alpha,iterNums): ''' 使用所有样本进行梯度下降 ''' if alpha == None: print('缺少参数:迭代步长') if iterNums == None: print('缺少参数:迭代次数') m,n = self.X.shape #m为样本数,n为维度 i = 0 MinCost = float("inf") while i<iterNums: J = 1/m * (np.dot( (np.dot(self.X,self.w.T) - self.Y),(np.dot(self.X,self.w.T) - self.Y).T)+self.k*np.sum(np.abs(self.w))) if J < MinCost: MinCost = J print(J," ",i) self.w -= 2/m * alpha * ((np.dot(self.X.T ,(np.dot( self.X ,self.w.T) - self.Y.T ))).T+self.k*np.array([1 for i in range(len(self.w))])) i += 1 else: break return None def SGD(self,alpha): ''' 随机梯度下降 ''' if alpha == None: print('缺少参数:迭代步长') m,n = self.X.shape #m为样本数,n为维度 i = 0 MinCost = float("inf") while True: partIndex = np.random.randint(len(self.X)) X_part = self.X[partIndex] Y_part = self.Y[partIndex] J = 1/m * (np.dot( (np.dot(X_part,self.w) - Y_part),(np.dot(X_part,self.w) - Y_part).T)+self.k*np.sum(np.abs(self.w))) if abs(J - MinCost) < 0.0001: break else: print("J:",J," ",i) self.w -= 2/m * alpha * ((np.dot(X_part.T ,(np.dot( X_part ,self.w.T) - Y_part.T ))).T+self.k*np.array([1 for i in range(len(self.w))])) i = i+1 MinCost = J return None def SBGD(self,alpha): ''' 小批量梯度下降 ''' if alpha == None: print('缺少参数:迭代步长') m,n = self.X.shape #m为样本数,n为维度 i = 0 MinCost = float("inf") while True: partIndex = np.random.choice(range(m),int(m/10)) X_part = self.X[partIndex] Y_part = self.Y[partIndex] J = 1/m * (np.dot( (np.dot(X_part,self.w) - Y_part),(np.dot(X_part,self.w) - Y_part).T)+self.k*np.sum(np.abs(self.w))) if abs(J - MinCost) < 0.0001: break else: print("J:",J," ",i) self.w -= 2/m * alpha * ((np.dot(X_part.T ,(np.dot( X_part ,self.w.T) - Y_part.T ))).T +self.k*np.array([1 for i in range(len(self.w))])) i = i+1 MinCost = J return None def predict(self,data): ''' 预测输入数据对应的输出 ''' data = self.preProcess(data) y = np.dot(data,self.w) print(y) return None def evaluate(self): ''' 通过测试集评估模型的好坏,计算RSS(sum of squares for errors) ''' print('评估') print(np.sum(np.square((np.dot(self.preProcess(self.x_test),self.w.T)-y_test)))) return None if __name__ == '__main__': boston = load_boston() #print(type(boston)) x_train,x_test,y_train,y_test= train_test_split(boston.data,boston.target,test_size=0.1,random_state=0) model = ridgeRegression(x_train,x_test,y_train,y_test,k=1.0) model.fit('SGD',alpha=0.1,iterNums=10000) #model.fit('MT',alpha=0.1,iterNums=10000) model.evaluate()
StarcoderdataPython
1681828
<reponame>kozhevnikov-peter/curve-dao-contracts import brownie WEEK = 86400 * 7 YEAR = 365 * 86400 ZERO_ADDRESS = "0x0000000000000000000000000000000000000000" def test_burn(accounts, token): balance = token.balanceOf(accounts[0]) initial_supply = token.totalSupply() token.burn(31337, {'from': accounts[0]}) assert token.balanceOf(accounts[0]) == balance - 31337 assert token.totalSupply() == initial_supply - 31337 def test_burn_not_admin(accounts, token): initial_supply = token.totalSupply() token.transfer(accounts[1], 1000000, {'from': accounts[0]}) token.burn(31337, {'from': accounts[1]}) assert token.balanceOf(accounts[1]) == 1000000 - 31337 assert token.totalSupply() == initial_supply - 31337 def test_burn_all(accounts, token): initial_supply = token.totalSupply() token.burn(initial_supply, {'from': accounts[0]}) assert token.balanceOf(accounts[0]) == 0 assert token.totalSupply() == 0 def test_overburn(accounts, token): initial_supply = token.totalSupply() with brownie.reverts("Integer underflow"): token.burn(initial_supply + 1, {'from': accounts[0]})
StarcoderdataPython
1716067
<gh_stars>1-10 #! python3 """ Generate JSON configuration files for the Tethys simulation code. This script generates experimental settings with a constant p and m, as well as a fixed number of iterations. Other parameters, such as the generation method of the list (more precisely the lists' length), the initial orientation of the edges in the graph, and the choice of the starting and ending edges, are also fixed and can be customized. The values for epsilon are given as a list (see other comments in the code) and the values for n are derived from these. """ import json import math import copy import argparse m = 2**10 p = 512 iterations = 6000000 # the different values for epsilon epsilons = [-0.35, - 0.3, - 0.25, - 0.2, - 0.15, - 0.1, - 0.05, 0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5] # values of n computed from the above list and parameters n_values = [math.ceil(m * p / (2 + e)) for e in epsilons] print("Values for epsilon:") print(epsilons) print("Values for n:") print(n_values) base_params_dict = dict() base_params_dict["m"] = m base_params_dict["bucket_capacity"] = p base_params_dict["list_max_len"] = p base_params_dict["generation_method"] = "WorstCaseGeneration" base_params_dict["edge_orientation"] = "RandomOrientation" base_params_dict["location_generation"] = "HalfRandom" base_dict = dict() base_dict["exp_params"] = base_params_dict base_dict["iterations"] = iterations data = list() for n in n_values: exp_dict = copy.deepcopy(base_dict) exp_dict["exp_params"]["n"] = n data.append(exp_dict) parser = argparse.ArgumentParser( description='Maxflow configuration generator (variable epsilon)') parser.add_argument('filename', metavar='path', help='Path of the output JSON file') args = parser.parse_args() with open(args.filename, 'w', encoding='utf-8') as f: json.dump(data, f, ensure_ascii=False, indent=4)
StarcoderdataPython
155605
<reponame>Vinson-sheep/DRL-Algorithms-with-Pytorch-for-Beginners-<filename>Char10 TD3/TD3.py import os import numpy as np import copy import gym import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from tensorboardX import SummaryWriter from buffer import ReplayBuffer ''' Twin Delayed Deep Deterministic Policy Gradients (TD3) Original paper: Implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3) https://arxiv.org/abs/1802.09477 ''' device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # parameters env_name = "Pendulum-v1" tau = 0.01 epsilon = 0.8 epsilon_decay = 0.9999 actor_lr = 3e-4 critic_lr = 3e-4 discount = 0.99 buffer_size = 10000 batch_size = 512 policy_freq = 2 policy_noise = 0.2 noise_clip = 0.5 max_episode = 40000 max_step_size = 500 seed = 1 render = True load = False env = gym.make(env_name) def envAction(action): low = env.action_space.low high = env.action_space.high action = low + (action + 1.0) * 0.5 * (high - low) action = np.clip(action, low, high) return action # Set seeds env.seed(seed) torch.manual_seed(seed) np.random.seed(seed) state_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] class Actor(nn.Module): def __init__(self, state_dim, action_dim, init_w=3e-3): super(Actor, self).__init__() self.l1 = nn.Linear(state_dim, 256) self.l2 = nn.Linear(256, 256) self.l3 = nn.Linear(256, action_dim) self.l3.weight.data.uniform_(-init_w, init_w) self.l3.bias.data.uniform_(-init_w, init_w) def forward(self, state): a = F.relu(self.l1(state)) a = F.relu(self.l2(a)) a = F.tanh(self.l3(a)) return a class Critic(nn.Module): def __init__(self, state_dim, action_dim, init_w=3e-3): super(Critic, self).__init__() # Q1 architecture self.l1 = nn.Linear(state_dim + action_dim, 256) self.l2 = nn.Linear(256, 256) self.l3 = nn.Linear(256, 1) self.l3.weight.data.uniform_(-init_w, init_w) self.l3.bias.data.uniform_(-init_w, init_w) # Q2 architecture self.l4 = nn.Linear(state_dim + action_dim, 256) self.l5 = nn.Linear(256, 256) self.l6 = nn.Linear(256, 1) self.l6.weight.data.uniform_(-init_w, init_w) self.l6.bias.data.uniform_(-init_w, init_w) def forward(self, state, action): sa = torch.cat((state, action), 1) q1 = F.relu(self.l1(sa)) q1 = F.relu(self.l2(q1)) q1 = self.l3(q1) q2 = F.relu(self.l4(sa)) q2 = F.relu(self.l5(q2)) q2 = self.l6(q2) return q1, q2 def Q1(self, state, action): sa = torch.cat((state, action), 1) q1 = F.relu(self.l1(sa)) q1 = F.relu(self.l2(q1)) q1 = self.l3(q1) return q1 class TD3: def __init__(self): super(TD3, self).__init__() self.actor = Actor(state_dim, action_dim).to(device) self.actor_target = copy.deepcopy(self.actor) self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=actor_lr) self.critic = Critic(state_dim, action_dim).to(device) self.critic_target = copy.deepcopy(self.critic) self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=critic_lr) self.buffer = ReplayBuffer(buffer_size, batch_size) self.num_training = 1 self.writer = SummaryWriter('./log') os.makedirs('./model/', exist_ok=True) def act(self, state): state = torch.FloatTensor(state.reshape(1, -1)).to(device) return self.actor(state).cpu().data.numpy().flatten() def put(self, *transition): state, action, reward, next_state, done = transition state = torch.FloatTensor(state).to(device).unsqueeze(0) action = torch.FloatTensor(action).to(device).unsqueeze(0) Q = self.critic.Q1(state, action).detach() self.buffer.add(transition) return Q.cpu().item() def update(self): if not self.buffer.sample_available(): return state, action, reward, next_state, done = self.buffer.sample() # state = (state - self.buffer.state_mean())/(self.buffer.state_std() + 1e-7) # next_state = (next_state - self.buffer.state_mean())/(self.buffer.state_std() + 1e-6) # reward = reward / (self.buffer.reward_std() + 1e-6) state = torch.tensor(state, dtype=torch.float).to(device) action = torch.tensor(action, dtype=torch.float).to(device) reward = torch.tensor(reward, dtype=torch.float).view(batch_size, -1).to(device) next_state = torch.tensor(next_state, dtype=torch.float).to(device) done = torch.tensor(done, dtype=torch.float).to(device).view(batch_size, -1).to(device) with torch.no_grad(): # Select action according to policy and add clipped noise noise = ( torch.randn_like(action) * policy_noise ).clamp(-noise_clip, noise_clip) next_action = ( self.actor_target(next_state) + noise ).clamp(-1, 1) # Compute the target Q value target_Q1, target_Q2 = self.critic_target(next_state, next_action) target_Q = torch.min(target_Q1, target_Q2) target_Q = reward + (1 - done) * discount * target_Q # Get current Q estimates current_Q1, current_Q2 = self.critic(state, action) # Compute critic loss critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q) self.writer.add_scalar('Loss/critic_loss', critic_loss, global_step=self.num_training) # Optimize the critic self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() # Delayed policy updates if self.num_training % policy_freq == 0: # Compute actor losse actor_loss = -self.critic.Q1(state, self.actor(state)).mean() self.writer.add_scalar('Loss/actor_loss', actor_loss, global_step=self.num_training) # Optimize the actor self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # Update the frozen target models for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()): target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data) for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()): target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data) self.num_training += 1 def save(self): torch.save(self.actor.state_dict(), './model/actor.pth') torch.save(self.critic.state_dict(), './model/critic.pth') print("====================================") print("Model has been saved...") print("====================================") def load(self): torch.load(self.actor.state_dict(), './model/actor.pth') torch.load(self.critic.state_dict(), './model/critic.pth') print("====================================") print("Model has been loaded...") print("====================================") if __name__ == '__main__': agent = TD3() state = env.reset() if load: agent.load() if render: env.render() print("====================================") print("Collection Experience...") print("====================================") total_step = 0 for episode in range(max_episode): total_reward = 0 state = env.reset() for step in range(max_step_size): total_step += 1 action = agent.act(state) if epsilon > np.random.random(): action = (action + np.random.normal(0, 0.2, size=action_dim)).clip(-1, 1) next_state, reward, done, _ = env.step(envAction(action)) # reward trick of BipedalWalker-v3 # if reward == -100: # reward = -1 if render: env.render() agent.put(state, action, reward, next_state, done) agent.update() total_reward += reward state = next_state epsilon = max(epsilon_decay*epsilon, 0.10) agent.writer.add_scalar('Other/epsilon', epsilon, global_step=total_step) if done: break if episode % 10 == 0: agent.save() agent.writer.add_scalar('Other/total_reward', total_reward, global_step=episode)
StarcoderdataPython
4813534
<reponame>yehuohan/ln-ss<filename>test/fourier-FT-test.py #!/usr/bin/env python3 import sys,os sys.path.append(os.getcwd() + '/../') import lnss.fourier as fourier import numpy as np import scipy as sp import sympy as sy from sympy import Piecewise, integrate, fourier_series, symbols, DiracDelta from sympy import Sum, exp, cos, sin, pi, I, Abs, oo from sympy.plotting import plot from sympy.abc import t, w, W, n, k import matplotlib as mpl import matplotlib.pyplot as plt mpl.rcParams['font.family'] = 'Consolas' mpl.rcParams['font.size'] = 11 def on_key(event:mpl.backend_bases.KeyEvent): if event.key == 'escape': plt.close() #%% FT # 三角波函数,三角波宽T=2,高度=1 T = 2 f = Piecewise((0, (t < -T/2) | (t > T/2)), (t/(T/2)+1, t < 0), (1-t/(T/2), t >= 0)) fw = fourier.ft(f) # fw = sy.fourier_transform(f, t, w) # sympy用的另一个ft形式,e的指数多了2pi print('fw : ', [Abs(fw.subs(w, j).evalf()) for j in range(5)]) fig = plt.figure('Fourier transform') fig.canvas.mpl_connect('key_press_event', on_key) ax = fig.add_subplot(1, 2, 1) fx_range = np.linspace(-T, T, 100) ax.plot(fx_range, [f.subs(t, j) for j in fx_range]) ax = fig.add_subplot(1, 2, 2) fw_range = np.linspace(-T*8, T*8, 100) ax.plot(fw_range, [Abs(fw.subs(w, j).evalf()) for j in fw_range]) ax.set_xlabel(r'$|F(\omega)|-\omega$') plt.show() sys.exit()
StarcoderdataPython
3337566
from urllib import parse from ..utils.collections import flatten from ..exceptions import RouteNotFoundException, MethodNotAllowedException class Router: http_methods = ["GET", "HEAD", "POST", "PUT", "PATCH", "DELETE", "OPTIONS"] def __init__(self, *routes, module_location=None): self.routes = flatten(routes) def find(self, path, request_method, subdomain=None): from .HTTPRoute import HTTPRoute for route in self.routes: if route.match(path, request_method, subdomain=subdomain): return route # we did not find a route matching the given path and method. # we will try to find a route matching other methods other_methods = [ method for method in self.http_methods if method != request_method ] matched_methods = [] for other_method in other_methods: for route in self.routes: if route.match(path, other_method, subdomain=subdomain): matched_methods.append(other_method) break # we really did not find a route if not matched_methods: return None # if alternative methods have been found, check if current request method is OPTIONS # to build a proper reponse else build a method not allowed response if request_method == "OPTIONS": def preflight_response(app): return ( app.make("response") .with_headers({"Allow": ", ".join(matched_methods)}) .status(204) ) preflight_route = HTTPRoute(path, request_method=["options"]) preflight_route.get_response = preflight_response return preflight_route else: raise MethodNotAllowedException(matched_methods, request_method) def matches(self, path): for route in self.routes: if route.matches(path): return route def find_by_name(self, name): for route in self.routes: if route.match_name(name): return route def route(self, name: str, parameters: dict = {}, query_params: dict = {}) -> str: """Return URL string from given route name and parameters.""" route = self.find_by_name(name) if route: return route.to_url(parameters, query_params) raise RouteNotFoundException(f"Could not find route with the name '{name}'") def set_controller_locations(self, location): self.controller_locations = location return self def add(self, *routes): self.routes.append(*routes) self.routes = flatten(self.routes) def set(self, *routes): self.routes = [] self.routes.append(*routes) self.routes = flatten(self.routes) @classmethod def compile_to_url(cls, uncompiled_route, params={}, query_params={}): """Compile the route url into a usable url: converts /url/@id into /url/1. Used for redirection Arguments: route {string} -- An uncompiled route like (/dashboard/@user:string/@id:int) Keyword Arguments: params {dict} -- Dictionary of parameters to pass to the route (default: {{}}) query_params {dict} -- Dictionary of query parameters to pass to the route (default: {{}}) Returns: string -- Returns a compiled string (/dashboard/joseph/1) """ if "http" in uncompiled_route: return uncompiled_route # Split the url into a list split_url = uncompiled_route.split("/") # Start beginning of the new compiled url compiled_url = "/" # Iterate over the list for url in split_url: if url: # if the url contains a parameter variable like @id:int if "@" in url: url = url.replace("@", "").split(":")[0] if isinstance(params, dict): compiled_url += str(params[url]) + "/" elif isinstance(params, list): compiled_url += str(params.pop(0)) + "/" elif "?" in url: url = url.replace("?", "").split(":")[0] if isinstance(params, dict): compiled_url += str(params.get(url, "/")) + "/" elif isinstance(params, list): compiled_url += str(params.pop(0)) + "/" else: compiled_url += url + "/" compiled_url = compiled_url.replace("//", "") # The loop isn't perfect and may have an unwanted trailing slash if compiled_url.endswith("/") and not uncompiled_route.endswith("/"): compiled_url = compiled_url[:-1] # The loop isn't perfect and may have 2 slashes next to eachother if "//" in compiled_url: compiled_url = compiled_url.replace("//", "/") # Add eventual query parameters if query_params: compiled_url += "?" + parse.urlencode(query_params) return compiled_url
StarcoderdataPython
3271028
<gh_stars>0 """ 给出二叉 搜索 树的根节点, 该树的节点值各不相同, 请你将其转换为累加树(Greater Sum Tree) 使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。 提醒一下,二叉搜索树满足下列约束条件: 节点的左子树仅包含键 小于 节点键的节点。 节点的右子树仅包含键 大于 节点键的节点。 左右子树也必须是二叉搜索树。 """ class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right from typing import Optional class Solution: """ 反向中序遍历, 右中左 """ def convertBST(self, root: Optional[TreeNode]) -> Optional[TreeNode]: res = 0 def dfs(root: TreeNode): if root: nonlocal res # 闭包嵌套函数要用nonlocal, global没用 dfs(root.right) res += root.val root.val = res dfs(root.left) dfs(root) return root
StarcoderdataPython
3212107
<filename>Db_connection.py import sqlite3 from datetime import datetime as datetime #this file contains methods for inserting sensor data into an sqlite database, import this to another file to use the functions. #running this file wil create the database and table for storing the sensordata conn=sqlite3.connect('sensordata') c = conn.cursor() table_create_string = """CREATE TABLE IF NOT EXISTS sensorreadings( id integer PRIMARY KEY, temperature NUMERIC, humidity NUMERIC, pressure NUMERIC, datetime datetime );""" #tables_insert_string = """INSERT INTO sensorreadings(temperature, humidity, pressure)VALUES(1,1,1)""" try: c.execute(table_create_string) except sqlite3.Error as e: print(e) # try: # c.execute(tables_insert_string) # except sqlite3.IntegrityError as e: # print(e) # conn.commit() def create_connection(): try: conn=sqlite3.connect('sensordata') except sqlite3.Error as e: print(e) #c = conn.cursor() return conn def insert_dbvalues(connection,temperature,humidity,pressure): # tables_insert_string = """INSERT INTO sensorreadings(temperature, humidity, pressure, datetime)VALUES({},{},{},{});""".format(temperature,humidity,pressure,datetime.now()) datetime1 = datetime.now() data_tuple = (temperature, humidity, pressure) tables_insert_string = """INSERT INTO sensorreadings(temperature, humidity, pressure)VALUES(?,?,?)""" #print(tables_insert_string) c = connection.cursor() try: c.execute(tables_insert_string, data_tuple) except sqlite3.IntegrityError as e: print(e) connection.commit() c.close() # insert_dbvalues(create_connection(),1,2,3) # try: # c.execute("INSERT INTO {tn} ({cn1}, {cn2}, {cn3}) VALUES (123456, 123456, 123456)".\ # format(tn=table_name, cn1=temperature_column, cn2=humidity_column, cn3=pressure_column)) # except sqlite3.IntegrityError: # print('ERROR: integerityError') conn.close()
StarcoderdataPython
3286980
<reponame>RideGreg/LeetCode # Time: O(n) # Space: O(h) # 951 # For a binary tree T, we define a flip operation as follows: choose any node, swap the left and right child subtrees. # # A binary tree X is flip equivalent to a binary tree Y iff we can make X equal to Y after some number of flip operations. # # Write a function that determines whether two binary trees are flip equivalent. # The trees are given by root nodes root1 and root2. # Definition for a binary tree node. class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None import collections # bfs solution class Solution(object): def flipEquiv(self, root1, root2): """ :type root1: TreeNode :type root2: TreeNode :rtype: bool """ dq1, dq2 = collections.deque([root1]), collections.deque([root2]) while dq1 and dq2: node1, node2 = dq1.pop(), dq2.pop() if not node1 and not node2: continue if not node1 or not node2 or node1.val != node2.val: return False if (not node1.left and not node2.right) or \ (node1.left and node2.right and node1.left.val == node2.right.val): dq1.extend([node1.right, node1.left]) else: dq1.extend([node1.left, node1.right]) dq2.extend([node2.left, node2.right]) return not dq1 and not dq2 # Time: O(n) # Space: O(h) # iterative dfs solution class Solution2(object): def flipEquiv(self, root1, root2): """ :type root1: TreeNode :type root2: TreeNode :rtype: bool """ stk1, stk2 = [root1], [root2] while stk1 and stk2: node1, node2 = stk1.pop(), stk2.pop() if not node1 and not node2: continue if not node1 or not node2 or node1.val != node2.val: return False if (not node1.left and not node2.right) or \ (node1.left and node2.right and node1.left.val == node2.right.val): stk1.extend([node1.right, node1.left]) else: stk1.extend([node1.left, node1.right]) stk2.extend([node2.left, node2.right]) return not stk1 and not stk2 # Time: O(n) # Space: O(h) # recursive dfs solution class Solution3(object): def flipEquiv(self, root1, root2): """ :type root1: TreeNode :type root2: TreeNode :rtype: bool """ if not root1 and not root2: return True if not root1 or not root2 or root1.val != root2.val: return False return (self.flipEquiv(root1.left, root2.left) and self.flipEquiv(root1.right, root2.right) or self.flipEquiv(root1.left, root2.right) and self.flipEquiv(root1.right, root2.left))
StarcoderdataPython
1668802
<reponame>xram64/AdventOfCode2021<filename>day03/day03.py<gh_stars>1-10 ## Advent of Code 2021: Day 3 ## https://adventofcode.com/2021/day/3 ## <NAME> | github.com/xram64 ## Answers: [Part 1]: 3633500, [Part 2]: 4550283 import sys # Return most commonly-found bit, breaking ties in favor of '1' def get_most_common_bit(numbers, pos): frequency_of = [0, 0] # frequencies for each bit [<0's>, <1's>] for num in numbers: if num[pos] == 0: frequency_of[0] += 1 elif num[pos] == 1: frequency_of[1] += 1 most_common_bit = 0 if (frequency_of[0] > frequency_of[1]) else 1 return most_common_bit # Return least commonly-found bit, breaking ties in favor of '0' def get_least_common_bit(numbers, pos): return (get_most_common_bit(numbers, pos) ^ 1) if __name__ == '__main__': with open('day03_input.txt', 'r') as f: def parse(line): return [int(bit) for bit in list(line) if (bit != '\n')] diag_numbers = list( map(parse, f.readlines()) ) diag_numbers_len = len(diag_numbers[0]) ############## ### Part 1 ### most_common_bits = '' for pos in range(diag_numbers_len): most_common_bits += str( get_most_common_bit(diag_numbers, pos) ) # Epsilon rate: Most common bits from input ε = int(most_common_bits, 2) # Gamma rate: Least common bits from input γ = ε ^ int('1'*diag_numbers_len, 2) # invert bits in ε print(f"[Part 1] Epsilon rate: ε = {ε}. Gamma rate: γ = {γ}. Power consumption: {ε*γ}.") ############## ### Part 2 ### oxy_rating_filtered_nums = diag_numbers co2_rating_filtered_nums = diag_numbers ## Oxygen generator rating for pos in range(diag_numbers_len): # Find most common bit (MCB) and filter numbers not matching bit criteria mcb = get_most_common_bit(oxy_rating_filtered_nums, pos) oxy_rating_filtered_nums = list( filter(lambda num: num[pos] == mcb, oxy_rating_filtered_nums) ) if len(oxy_rating_filtered_nums) == 1: # Convert final element matching bit criteria to a decimal integer oxy_rating = int(''.join( [str(n) for n in oxy_rating_filtered_nums[0]] ), 2) break elif len(oxy_rating_filtered_nums) <= 0: print('Error: Oxygen rating list empty.') sys.exit() else: print('Error: Multiple numbers found matching bit criteria for oxygen rating.') sys.exit() ## CO2 scrubber rating for pos in range(diag_numbers_len): # Find least common bit (LCB) and filter numbers not matching bit criteria lcb = get_least_common_bit(co2_rating_filtered_nums, pos) co2_rating_filtered_nums = list( filter(lambda num: num[pos] == lcb, co2_rating_filtered_nums) ) if len(co2_rating_filtered_nums) == 1: # Convert final element matching bit criteria to a decimal integer co2_rating = int(''.join( [str(n) for n in co2_rating_filtered_nums[0]] ), 2) break elif len(co2_rating_filtered_nums) <= 0: print('Error: CO2 rating list empty.') sys.exit() else: print('Error: Multiple numbers found matching bit criteria for CO2 rating.') sys.exit() print(f"[Part 2] Oxygen generator rating: {oxy_rating}. CO2 scrubber rating: {co2_rating}. Life support rating: {oxy_rating*co2_rating}.")
StarcoderdataPython
4825723
#!/usr/bin/python3 # -*- coding: utf-8 -*- import sys import os from lxml import html from lxml import etree from lxml.html.clean import Cleaner def usage(): str = """ Usage: Importe les fichiers depuis une archive IMS de Moodle de Lille3... Nettoie le HTML en enlevant les attributs de style Réécrit les liens en utilisant un préfixe __BASE__ et sort le contenu uniquement de l'élément body. fromIMS zipin directory_out """ print (str) exit(1) def myRewriteLink(link): return link.replace("https://ged.univ-lille3.fr/nuxeo/site/dav/EspacePublicWWW/","__BASE__/") def convert(filein, fileout): tree = html.fromstring(filein) cleaner(tree) body = tree.find('body') body.rewrite_links(myRewriteLink) f = open(fileout,"wb") f.write(html.tostring(body)) f.close() if len(sys.argv) != 3: usage() dirin = sys.argv[1] dirout= sys.argv[2] cleaner = Cleaner(style=True) import zipfile with zipfile.ZipFile(dirin,'r') as myzip: for orig in myzip.namelist(): print(orig) dest = os.path.join(dirout,orig) if orig.endswith('/'): os.makedirs(dest,exist_ok=True) elif orig.endswith(".html"): f = myzip.read(orig) convert(f,dest) else : myzip.extract(orig,dirout)
StarcoderdataPython
3269749
<filename>example8_dict.py # -*- coding: utf-8 -*- # An empty dict a = {} # Result: None print a.get("abc") # Add a value to the dict a["abc"] = 5 # Result: 5 print a.get("abc") # Add another value a[16] = "A text" # Result: A text print a.get(16) # The whole dict {16: 'A text', 'abc': 5} print a # You can add content when creating the dict b = {"ccc": "f", 16: 165} # You can put dicts in a list a_list = [a, b] # Result: [{16: 'En text', 'abc': 5}, {16: 165, 'ccc': 'f'}] print a_list
StarcoderdataPython