id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
98478
<filename>tools/disasm.py<gh_stars>0 import argparse import subprocess import re FLINE_RE = re.compile(r'\s*/\*\w{4}\*/\s*([^;]*;)\s*/\* 0x(\w{16}) \*/\s*') SLINE_RE = re.compile(r'\s*/\* 0x(\w{16}) \*/\s*') FNAME_RE = re.compile(r'\s*Function : ([\w|\(|\)]+)\s*') BRA_RE = re.compile(r'(.*BRA(?:\.U)? )(0x\w+);') def parseCtrl(sline): enc = int(SLINE_RE.match(sline).group(1), 16) stall = (enc >> 41) & 0xf yld = (enc >> 45) & 0x1 wrtdb = (enc >> 46) & 0x7 readb = (enc >> 49) & 0x7 watdb = (enc >> 52) & 0x3f yld_str = 'Y' if yld == 0 else '-' wrtdb_str = '-' if wrtdb == 7 else str(wrtdb) readb_str = '-' if readb == 7 else str(readb) watdb_str = '--' if watdb == 0 else f'{watdb:02d}' return f'{watdb_str}:{readb_str}:{wrtdb_str}:{yld_str}:{stall:x}' def processSassLines(fline, sline, labels): asm = FLINE_RE.match(fline).group(1) # Remove tailing space if asm.endswith(" ;"): asm = asm[:-2] + ";" ctrl = parseCtrl(sline) # BRA target address if BRA_RE.match(asm) != None: target = int(BRA_RE.match(asm).group(2), 16) if target in labels: pass else: labels[target] = len(labels) return (f'{ctrl}', f'{asm}') def extract(file_path, fun): if fun == None: sass_str = subprocess.check_output(["cuobjdump", "-sass", file_path]) else: sass_str = subprocess.check_output(["cuobjdump", "-fun", fun, "-sass", file_path]) sass_lines = sass_str.splitlines() line_idx = 0 while line_idx < len(sass_lines): line = sass_lines[line_idx].decode() # format: # function : <function_name> # .headerflags: ... # /*0000*/ asmstr /*0x...*/ # /*0x...*/ fname_match = FNAME_RE.match(line) # Looking for new function header (function: <name>) while FNAME_RE.match(line) == None: line_idx += 1 if line_idx < len(sass_lines): line = sass_lines[line_idx].decode() else: return fname = FNAME_RE.match(line).group(1) print(f'Function:{fname}') line_idx += 2 # bypass .headerflags line = sass_lines[line_idx].decode() # Remapping address to label labels = {} # address -> label_idx # store sass asm in buffer and them print them (for labels) # (ctrl, asm) asm_buffer = [] while FLINE_RE.match(line) != None: # First line (Offset ASM Encoding) fline = sass_lines[line_idx].decode() line_idx += 1 # Second line (Encoding) sline = sass_lines[line_idx].decode() line_idx += 1 asm_buffer.append(processSassLines(fline, sline, labels)) # peek the next line line = sass_lines[line_idx].decode() # Print sass # label naming convension: LBB#i for idx, (ctrl, asm) in enumerate(asm_buffer): # Print label if this is BRA target offset = idx * 16 if offset in labels: label_name = f'LBB{labels[offset]}' print(f'{label_name}:') print(ctrl, end='\t') # if this is BRA, remap offset to label if BRA_RE.match(asm): target = int(BRA_RE.match(asm).group(2), 16) target_name = f'LBB{labels[target]}' asm = BRA_RE.sub(rf'\1{target_name};', asm) print(asm) print('\n') if __name__ == "__main__": parser = argparse.ArgumentParser(description="nv disasm") parser.add_argument('file_path') parser.add_argument('-fun', required=False, help='Specify names of device functions whose fat binary structures must be dumped.') args = parser.parse_args() extract(args.file_path, args.fun)
StarcoderdataPython
127964
<reponame>krakowiakpawel9/python_kurs<filename>02_struktury_danych/02_tuple.py # -*- coding: utf-8 -*- """ @author: <EMAIL> @site: e-smartdata.org """ empty_tuple = tuple() print(empty_tuple) # %% amazon = ('Amazon', 'USA', 'Technology', 1) google = ('Google', 'USA', 'Technology', 2) # %% name_google = google[0] # %% data = (amazon, google) print(data) # %% a = ('Pawel', 'Krakowiak') print(a) # %% imie = 'Pawel' nazwisko = 'Krakowiak' # %% imie, nazwisko, id_user = ('Pawel', 'Krakowiak', '001') # %% amazon_name, country, sector, rank = amazon # %% stocks = 'Amazon', 'Apple', 'IBM' print(type(stocks)) # %% nested = 'Europa', 'Polska', ('Warszawa', 'Krakow', 'Wroclaw') print(nested) # %% a = 12 b = 14 c = b b = a a = c print(a, b) # %% x, y = 10, 15 x, y = y, x print(x, y)
StarcoderdataPython
3316121
<reponame>cducrest/eth-tester-rpc<filename>tests/integration/web3/threads.py """ A minimal implementation of the various gevent APIs used within this codebase. """ import threading class ThreadWithReturn(threading.Thread): def __init__(self, target=None, args=None, kwargs=None): super().__init__( target=target, args=args or tuple(), kwargs=kwargs or {}, ) self.target = target self.args = args self.kwargs = kwargs def run(self): self._return = self.target(*self.args, **self.kwargs) def get(self, timeout=None): self.join(timeout) try: return self._return except AttributeError: raise RuntimeError("Something went wrong. No `_return` property was set") def spawn(target, *args, thread_class=ThreadWithReturn, **kwargs): thread = thread_class( target=target, args=args, kwargs=kwargs, ) thread.daemon = True thread.start() return thread
StarcoderdataPython
38286
import logging import os from figcli.config.style.color import Color from figcli.io.input import Input from figcli.svcs.config_manager import ConfigManager from figcli.config.aws import * from figcli.config.constants import * log = logging.getLogger(__name__) class AWSConfig: """ Utility methods for interacting with AWSCLI resources, such as the ~/.aws/credentials and ~/.aws/config files """ def __init__(self, color: Color = Color(False)): self.init_files() self.c = color self._config = ConfigManager(AWS_CONFIG_FILE_PATH) self._creds = ConfigManager(AWS_CREDENTIALS_FILE_PATH) @staticmethod def init_files(): os.makedirs(os.path.dirname(AWS_CREDENTIALS_FILE_PATH), exist_ok=True) if not os.path.exists(AWS_CREDENTIALS_FILE_PATH): with open(AWS_CREDENTIALS_FILE_PATH, "w+") as file: file.write("") if not os.path.exists(AWS_CONFIG_FILE_PATH): with open(AWS_CONFIG_FILE_PATH, "w+") as file: file.write("") def _is_temporary_session(self, profile_name: str): if self._creds.has_section(profile_name): return self._creds.has_option(profile_name, AWS_CFG_TOKEN) return False def _backup_section(self, section: str): backup_name, backup_profile = f'{section}-figgy-backup', f'profile {section}-figgy-backup' profile_name = f'profile {section}' if self._creds.has_section(section): for opt in self._creds.options(section): self._creds.set_config(backup_name, opt, self._creds.get_option(section, opt)) if self._config.has_section(profile_name): for opt in self._config.options(profile_name): self._config.set_config(backup_profile, opt, self._config.get_option(profile_name, opt)) def restore(self, profile_name: str) : """ Restore a credentials previously backed up by Figgy """ config_profile = f'profile {profile_name}' backup_name, backup_profile = f'{profile_name}-figgy-backup', f'profile {profile_name}-figgy-backup' creds_restored, config_restored = False, False if self._creds.has_section(backup_name): for opt in self._creds.options(backup_name): self._creds.set_config(profile_name, opt, self._creds.get_option(backup_name, opt)) creds_restored = True if self._config.has_section(backup_profile): for opt in self._config.options(backup_profile): self._config.set_config(config_profile, opt, self._config.get_option(backup_profile, opt)) config_restored = True self._creds.delete(profile_name, AWS_CFG_TOKEN) self._creds.save() self._config.save() if creds_restored and config_restored: print(f"\n{self.c.fg_gr}Restoration successful!{self.c.rs}") else: print(f"\n{self.c.fg_yl}Unable to restore credentials. Profile: " f"{self.c.fg_bl}[{backup_name}]{self.c.rs}{self.c.fg_yl} was not found in either the " f"~/.aws/credentials or ~/.aws/config files.{self.c.rs}") def write_credentials(self, access_key: str, secret_key: str, token: str, region: str, profile_name: str = 'default') -> None: """ Overwrite credentials stored in the [default] profile in both ~/.aws/config and ~/.aws/credentials file with the provided temporary credentials. This method also CREATES these files if they do not already exist. """ if not self._is_temporary_session(profile_name): print(f"\n{self.c.fg_yl}Existing AWS Profile {self.c.fg_bl}[{profile_name}]{self.c.rs}{self.c.fg_yl} " f"was found with long-lived access keys " f"in file: {self.c.fg_bl}~/.aws/credentials{self.c.rs}{self.c.fg_yl}.\n" f"To avoid overwriting these keys, they will be moved under profile: " f"{self.c.rs}{self.c.fg_bl}[{profile_name}-figgy-backup]{self.c.rs}{self.c.fg_yl}.{self.c.rs}\n\n" f"These old keys may be restored with: {self.c.fg_bl}`" f"{CLI_NAME} iam restore`{self.c.rs}.") self._backup_section(profile_name) self._creds.set_config(profile_name, AWS_CFG_ACCESS_KEY_ID, access_key) self._creds.set_config(profile_name, AWS_CFG_SECRET_KEY, secret_key) self._creds.set_config(profile_name, AWS_CFG_TOKEN, token) config_section = f'profile {profile_name}' self._config.set_config(config_section, AWS_CFG_REGION, region) self._config.set_config(config_section, AWS_CFG_OUTPUT, 'json') print(f"\n\n{self.c.fg_gr}Successfully updated: {AWS_CREDENTIALS_FILE_PATH}{self.c.rs}") print(f"{self.c.fg_gr}Successfully updated: {AWS_CONFIG_FILE_PATH}{self.c.rs}")
StarcoderdataPython
3326436
<reponame>mahmoudimus/cosmosquest-ng from glob import glob from os.path import basename from os.path import splitext import setuptools setuptools.setup( name='kosmosquest-ng', version='0.1-beta', url='https://github.com/mahmoudimus/kosmosquest-ng', license='Apache License 2.0', author='mahmoudimus', author_email='mahmoud - @ - linux.com', description='kosmosquest-ng -- an open source implementation of cosmos quest', packages=setuptools.find_packages('.'), package_dir={'': '.'}, py_modules=[splitext(basename(path))[0] for path in glob('./*.py')], include_package_data=True, zip_safe=False, platforms='any', classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache License 2.0', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Software Development :: Libraries :: Python Modules' ] )
StarcoderdataPython
4825149
<filename>solutions/513_find_bottom_left_tree_value.py class Solution: def findBottomLeftValue(self, root: TreeNode) -> int: """BFS. Running time: O(n) where n is the total number of nodes in the tree. """ lvl = [root] while True: nlvl = [] for node in lvl: if node.left: nlvl.append(node.left) if node.right: nlvl.append(node.right) if not nlvl: return lvl[0].val lvl = nlvl
StarcoderdataPython
1706455
from bitrix24_bridge.handlers.base import BaseModelHandler from bitrix24_bridge.models import ProductBX class ProductHandler(BaseModelHandler): model = ProductBX
StarcoderdataPython
1694768
import torch import torch.nn as nn from torch import Tensor as Tensor import torch._C as _C class BoundedTensor(Tensor): @staticmethod # We need to override the __new__ method since Tensor is a C class def __new__(cls, x, ptb, *args, **kwargs): if isinstance(x, Tensor): tensor = super().__new__(cls, [], *args, **kwargs) tensor.data = x.data tensor.requires_grad = x.requires_grad return tensor else: return super().__new__(cls, x, *args, **kwargs) def __init__(self, x, ptb): self.ptb = ptb def __repr__(self): if hasattr(self, 'ptb') and self.ptb is not None: return '<BoundedTensor: {}, {}>'.format(super().__repr__(), self.ptb.__repr__()) else: return '<BoundedTensor: {}, no ptb>'.format(super().__repr__()) def clone(self, *args, **kwargs): tensor = BoundedTensor(super().clone(*args, **kwargs), self.ptb) return tensor def _func(self, func, *args, **kwargs): temp = func(*args, **kwargs) new_obj = BoundedTensor([], self.ptb) new_obj.data = temp.data new_obj.requires_grad = temp.requires_grad return new_obj # Copy to other devices with perturbation def to(self, *args, **kwargs): return self._func(super().to, *args, **kwargs) @classmethod def _convert(cls, ret): if cls is Tensor: return ret if isinstance(ret, Tensor): if True: # The current implementation does not seem to need non-leaf BoundedTensor return ret else: # Enable this branch if non-leaf BoundedTensor should be kept ret = ret.as_subclass(cls) if isinstance(ret, tuple): ret = tuple(cls._convert(r) for r in ret) return ret if torch.__version__ >= '1.7': @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): if kwargs is None: kwargs = {} if not all(issubclass(cls, t) for t in types): return NotImplemented with _C.DisableTorchFunction(): ret = func(*args, **kwargs) return cls._convert(ret) class BoundedParameter(nn.Parameter): def __new__(cls, data, ptb, requires_grad=True): return BoundedTensor._make_subclass(cls, data, requires_grad) def __init__(self, data, ptb, requires_grad=True): self.ptb = ptb self.requires_grad = requires_grad def __deepcopy__(self, memo): if id(self) in memo: return memo[id(self)] else: result = type(self)(self.data.clone(), self.ptb, self.requires_grad) memo[id(self)] = result return result def __repr__(self): return 'BoundedParameter containing:\n{}\n{}'.format( self.data.__repr__(), self.ptb.__repr__()) def __reduce_ex__(self, proto): raise NotImplementedError
StarcoderdataPython
1758448
<gh_stars>0 # !/usr/bin/env python3 # Author: C.K # Email: <EMAIL> # DateTime:2021-09-19 13:32:45 # Description: class Solution: def topKFrequent(self, nums: List[int], k: int) -> List[int]: bucket = [[] for _ in range(len(nums) + 1)] Count = Counter(nums).items() for num, freq in Count: bucket[freq].append(num) flat_list = list(chain(*bucket)) return flat_list[::-1][:k] if __name__ == "__main__": pass
StarcoderdataPython
3393307
from vk_api.execute import VkFunction def test_execute(vk): func_add = VkFunction('return %(x)s + %(y)s;', args=('x', 'y')) func_get = VkFunction( 'return API.users.get(%(values)s)[0]["id"];', args=('values',) ) assert func_add(vk, 2, 6) == 8 assert func_get(vk, {'user_ids': 'durov'}) == 1
StarcoderdataPython
1722429
<reponame>yasiupl/PSI #!/bin/python3 import socket import time import struct TCP_IP = '10.200.200.1' TCP_PORT = 1338 BUFFER_SIZE = 1024 mean = 0 max = 0 min = 100 n = 0 N = 10 print("Measuring TCP roundtrip time to/from {0}".format(str(TCP_IP))) while n < N: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((TCP_IP, TCP_PORT)) start = time.time() s.send(struct.pack('!d', start)) data = s.recv(BUFFER_SIZE) end = time.time() s.close() roundtrip_ms = (end - struct.unpack('!d', data)[0]) * 1000 print("[TCP {0}/{1}] Roundtrip time: {2:.2f}ms".format(n+1, N, roundtrip_ms)) mean += roundtrip_ms/N if roundtrip_ms > max: max = roundtrip_ms if roundtrip_ms < min: min = roundtrip_ms n = n + 1 time.sleep(1) print("Min: {0:.2f}, Mean: {1:.2f}, Max: {2:.2f}".format(min,mean,max))
StarcoderdataPython
1663380
""" Project: RadarBook File: right_circular_cone.py Created by: <NAME> One: 11/24/2018 Created with: PyCharm Copyright (C) 2019 Artech House (<EMAIL>) This file is part of Introduction to Radar Using Python and MATLAB and can not be copied and/or distributed without the express permission of Artech House. """ from numpy import sin, cos, exp, sqrt from scipy.constants import c, pi def radar_cross_section(frequency, cone_half_angle, base_radius, incident_angle): """ Calculate the radar cross section of a right circular cone. :param frequency: The operating frequency (Hz). :param cone_half_angle: The cone half angle (rad). :param base_radius: The base radius (m). :param incident_angle: The incident angle (rad). :return: The radar cross section of a right circular cone (m^2). """ # Wavelength wavelength = c / frequency # Wavenumber k = 2.0 * pi / wavelength # Parameter "n" n = 1.5 + cone_half_angle / pi # Common factor if incident_angle != 0.0: value = (wavelength ** 2 * k * base_radius) / (4.0 * pi ** 2) * (sin(pi / n) / n) ** 2 / sin(incident_angle) # Special case values term1 = 1.0 / (cos(pi / n) - cos(3.0 * pi / n)) term2 = sin(pi / n) * exp(1j * (2.0 * k * base_radius - pi / 4.0)) / \ (n * sqrt(pi * k * base_radius) * (cos(pi / n) - cos(3.0 * pi / (2.0 * n))) ** 2) nose_max = (wavelength ** 2 / pi) * (k * base_radius * sin(pi / n) / n) ** 2 * abs(term1 + term2) ** 2 spec_max = wavelength ** 2 * 8.0 * pi / 9.0 * (base_radius / wavelength) ** 3 / \ (sin(cone_half_angle) ** 2 * cos(cone_half_angle)) base_max = wavelength ** 2 * (k * base_radius) ** 4 / (4.0 * pi) # Calculate the radar cross section if incident_angle < 1e-6: # Nose on, double diffraction on base term1 = 1.0 / (cos(pi / n) - cos(3.0 * pi / n)) term2 = sin(pi / n) * exp(1j * (2.0 * k * base_radius - pi / 4.0)) / \ (n * sqrt(pi * k * base_radius) * (cos(pi/n) - cos(3.0 * pi / (2.0 * n))) ** 2) rcs_vv = (wavelength ** 2 / pi) * (k * base_radius * sin(pi / n) / n) ** 2 * abs(term1 + term2) ** 2 rcs_hh = rcs_vv elif abs(incident_angle - pi) < 1e-6: # Base specular rcs_vv = wavelength ** 2 * (k * base_radius) ** 4 / (4.0 * pi) rcs_hh = rcs_vv elif abs(incident_angle - (0.5 * pi - cone_half_angle)) < 1e-6: # Normal to the generator of the cone rcs_vv = wavelength ** 2 * 8.0 * pi / 9.0 * (base_radius / wavelength) ** 3 / \ (sin(cone_half_angle) ** 2 * cos(cone_half_angle)) rcs_hh = rcs_vv elif 0.0 < incident_angle < cone_half_angle: term1 = exp(1j * (2.0 * k * base_radius * sin(incident_angle) - pi / 4.0)) term2 = 1.0 / (cos(pi / n) - 1.0) - 1.0 / (cos(pi / n) - cos((3.0 * pi - 2.0 * incident_angle) / n)) term3 = 1.0 / (cos(pi / n) - 1.0) + 1.0 / (cos(pi / n) - cos((3.0 * pi - 2.0 * incident_angle) / n)) term4 = exp(-1j*(2.0 * k * base_radius * sin(incident_angle) - pi / 4.0)) term5 = 1.0 / (cos(pi / n) - 1.0) - 1.0 / (cos(pi / n) - cos((3.0 * pi + 2.0 * incident_angle) / n)) term6 = 1.0 / (cos(pi / n) - 1.0) + 1.0 / (cos(pi / n) - cos((3.0 * pi + 2.0 * incident_angle) / n)) rcs_vv = value * abs(term1 * term2 + term4 * term5) ** 2 rcs_hh = value * abs(term1 * term3 + term4 * term6) ** 2 if rcs_vv > nose_max: rcs_vv = nose_max if rcs_hh > nose_max: rcs_hh = nose_max elif cone_half_angle <= incident_angle < 0.5 * pi: term1 = 1.0 / (cos(pi / n) - 1.0) - 1.0 / (cos(pi / n) - cos((3.0 * pi - 2.0 * incident_angle) / n)) term2 = 1.0 / (cos(pi / n) - 1.0) + 1.0 / (cos(pi / n) - cos((3.0 * pi - 2.0 * incident_angle) / n)) rcs_vv = value * term1 ** 2 rcs_hh = value * term2 ** 2 if rcs_vv > 0.8 * spec_max: rcs_vv = spec_max * cos(25 * (incident_angle - (0.5 * pi - cone_half_angle))) if rcs_hh > 0.8 * spec_max: rcs_hh = spec_max * cos(25 * (incident_angle - (0.5 * pi - cone_half_angle))) elif 0.5 * pi <= incident_angle < pi: term1 = exp(1j * (2.0 * k * base_radius * sin(incident_angle) - pi / 4.0)) term2 = 1.0 / (cos(pi / n) - 1.0) - 1.0 / (cos(pi / n) - cos((3.0 * pi - 2.0 * incident_angle) / n)) term3 = 1.0 / (cos(pi / n) - 1.0) + 1.0 / (cos(pi / n) - cos((3.0 * pi - 2.0 * incident_angle) / n)) term4 = exp(-1j * (2.0 * k * base_radius * sin(incident_angle) - pi / 4.0)) term5 = 1.0 / (cos(pi / n) - 1.0) - 1.0 / (cos(pi / n) - cos((2.0 * incident_angle - pi) / n)) term6 = 1.0 / (cos(pi / n) - 1.0) + 1.0 / (cos(pi / n) - cos((2.0 * incident_angle - pi) / n)) rcs_vv = value * abs(term1 * term2 + term4 * term5) ** 2 rcs_hh = value * abs(term1 * term3 + term4 * term6) ** 2 if rcs_vv > base_max: rcs_vv = base_max if rcs_hh > base_max: rcs_hh = base_max return rcs_vv, rcs_hh
StarcoderdataPython
92429
from .xinput import XInputJoystick as Joystick __all__ = ['Joystick']
StarcoderdataPython
120128
import praw # Reddit developer credentials reddit = praw.Reddit(client_id="", client_secret="", username="", password="", user_agent="") # Instagram password and username IGusername = "" IGpassword = ""
StarcoderdataPython
1715389
<filename>FlowNetAPI.py<gh_stars>0 import torch import torch.nn as nn from torch.utils.data import DataLoader from torch.autograd import Variable from tensorboardX import SummaryWriter from matplotlib import pyplot as plt from scipy import misc import argparse, os, sys, subprocess import setproctitle, colorama import numpy as np from tqdm import tqdm from glob import glob from os.path import * import json from bunch import Bunch import source.models, source.losses, source.datasets from utils import flow_utils, tools import utils.frame_utils as frame_utils import torch.utils.data as data from source.datasets import StaticRandomCrop as StaticRandomCrop from source.datasets import StaticCenterCrop as StaticCenterCrop from networks.resample2d_package.modules.resample2d import Resample2d from networks.channelnorm_package.modules.channelnorm import ChannelNorm from networks.submodules import * class FlowNet2API(object): def __init__(self, name_model="FlowNet2"): self.name_model = name_model self.get_config() self.load_model() def flow_estimate(self, img0, img1, save_flow=True, flow_visualize=False, is_cropped =False, inference_batch_size = 1): self.mode = 'flow_estimation' self.args.save_flow = save_flow self.flow_visualize = flow_visualize self.args.inference_batch_size = inference_batch_size self.args.is_cropped = is_cropped data = self.flow_dataloader(img0, img1) self.inference(data, self.model_and_loss, offset=1) def flow_warping(self,img0, img1, flow, is_cropped =False, warping_batch_size = 1): self.mode = 'warping' self.args.inference_batch_size = warping_batch_size self.args.is_cropped = is_cropped data = self.flow_dataloader( img0, img1,flow) self.inference(data, self.warping_model, offset=1) def flow_dataloader(self, img0, img1=0, flow=0): dataset = FlowDataset(self.args, img0, img1,flow, mode=self.mode) inference_dataloader = DataLoader(dataset, batch_size=self.args.inference_batch_size, shuffle=False, **self.gpuargs) return inference_dataloader def inference(self, data_loader, model, offset=0,): model.eval() if self.mode == 'flow_estimation': if (self.args.save_flow): flow_folder = self.args.inference_dir if not os.path.exists(flow_folder): os.makedirs(flow_folder) self.args.inference_n_batches = np.inf if self.args.inference_n_batches < 0 else self.args.inference_n_batches progress = tqdm(data_loader, ncols=100, total=np.minimum(len(data_loader), self.args.inference_n_batches), desc='Inferencing ', leave=True, position=offset) for batch_idx, (data, target) in enumerate(progress): if self.args.cuda: data, target = [d.cuda(async=True) for d in data], [t.cuda(async=True) for t in target] data, target = [Variable(d, volatile=True) for d in data], [Variable(t, volatile=True) for t in target] if self.mode == 'flow_estimation': losses, output = model(data[0], target[0], inference=True) if self.args.save_flow: for i in range(self.args.inference_batch_size): _pflow = output[i].data.cpu().numpy().transpose(1, 2, 0) flow_utils.writeFlow(join(flow_folder, '%06d.flo' % (batch_idx * self.args.inference_batch_size + i)), _pflow) if self.flow_visualize: flowX = _pflow[:, :, 0] plt.imshow(flowX) plt.savefig(fname= join(flow_folder, '%06d_x.png' % (batch_idx * self.args.inference_batch_size + i))) flowY = _pflow[:, :, 1] plt.imshow(flowY) plt.savefig( fname=join(flow_folder, '%06d_y.png' % (batch_idx * self.args.inference_batch_size + i))) elif self.mode == 'warping': warped_data, losses = model(data[0], target[0]) for i in range(self.args.inference_batch_size): warped_data = warped_data[i].data.cpu().numpy().transpose(1, 2, 0) misc.imsave('warped_image' + str(batch_idx) + '.png', warped_data) progress.update(1) progress.close() return def get_config(self): json_file = "config.json" with open(json_file, 'r') as config_file: config_dict = json.load(config_file) # convert the dictionary to a namespace using bunch lib self.args = Bunch(config_dict) self.args.name_model = self.name_model self.args.model = self.name_model.replace('-', '') self.args.resume = os.path.join(self.args.dir_checkpoints,(self.args.name_model + "_checkpoint.pth.tar")) self.args.model_class = tools.module_to_dict(source.models)[self.args.model] self.args.loss_class = tools.module_to_dict(source.losses)[self.args.loss] self.args.cuda = not self.args.no_cuda and torch.cuda.is_available() self.args.inference_dir = os.path.join("{}/inference".format(self.args.save), self.args.name_model) def load_model(self): self.gpuargs = {'num_workers': self.args.number_workers, 'pin_memory': True} if self.args.cuda else {} with tools.TimerBlock("Building {} model".format(self.args.model)) as block: class ModelAndLoss(nn.Module): def __init__(self, args): super(ModelAndLoss, self).__init__() kwargs = tools.kwargs_from_args(args, 'model') self.model = args.model_class(args, **kwargs) kwargs = tools.kwargs_from_args(args, 'loss') self.loss = args.loss_class(args, **kwargs) def forward(self, data, target, inference=False): output = self.model(data) loss_values = self.loss(output, target) if not inference: return loss_values else: return loss_values, output self.model_and_loss = ModelAndLoss(self.args) # block.log('Effective Batch Size: {}'.format(self.args.effective_batch_size)) block.log('Number of parameters: {}'.format( sum([p.data.nelement() if p.requires_grad else 0 for p in self.model_and_loss.parameters()]))) ## # assing to cuda or wrap with dataparallel, model and loss if self.args.cuda and (self.args.number_gpus > 0) and self.args.fp16: block.log('Parallelizing') model_and_loss = nn.parallel.DataParallel(self.model_and_loss, device_ids=list(range(self.args.number_gpus))) block.log('Initializing CUDA') model_and_loss = model_and_loss.cuda().half() torch.cuda.manual_seed(self.args.seed) param_copy = [param.clone().type(torch.cuda.FloatTensor).detach() for param in model_and_loss.parameters()] elif self.args.cuda and self.args.number_gpus > 0: block.log('Initializing CUDA') model_and_loss = self.model_and_loss.cuda() block.log('Parallelizing') model_and_loss = nn.parallel.DataParallel(model_and_loss, device_ids=list(range(self.args.number_gpus))) torch.cuda.manual_seed(self.args.seed) else: block.log('CUDA not being used') torch.manual_seed(self.args.seed) cwd = os.getcwd() print(cwd) # Load weights if needed, otherwise randomly initialize if self.args.resume and os.path.isfile(self.args.resume): block.log("Loading checkpoint '{}'".format(self.args.resume)) checkpoint = torch.load(self.args.resume) # if (not args.inference) and (not args.test): # args.start_epoch = checkpoint['epoch'] # best_err = checkpoint['best_EPE'] model_and_loss.module.model.load_state_dict(checkpoint['state_dict']) block.log("Loaded checkpoint '{}' (at epoch {})".format(self.args.resume, checkpoint['epoch'])) elif self.args.resume: block.log("No checkpoint found at '{}'".format(self.args.resume)) quit() else: block.log("Random initialization") block.log("Initializing save directory: {}".format(self.args.save)) if not os.path.exists(self.args.save): os.makedirs(self.args.save) self.warping_model = FlowWarping() print("Warping Model initialized") class FlowWarping(nn.Module): def __init__(self): super(FlowWarping, self).__init__() self.channelnorm = ChannelNorm() self.resample1 = Resample2d() def forward(self, input, target): img1 = input[:,:,0,:,:] img0 = input[:,:,1,:,:] flow = target frame_size = img0.shape resampled_img1 = self.resample1(img1, flow) diff_img0 = img0 - resampled_img1 norm_diff_img0 = self.channelnorm(diff_img0) / (frame_size[1] * frame_size[2]) return resampled_img1, norm_diff_img0 class FlowDataset(data.Dataset): def __init__(self, args, img0, img1=0, flow=0, mode='flow_estimation'): self.args = args self.is_cropped = self.args.is_cropped self.crop_size = self.args.crop_size self.render_size = self.args.inference_size self.mode = mode self.image_list = [] self.flow_list = [] self.frame_size = img0[0].shape for i in range(len(img0)): if self.mode == 'flow_estimation': self.flow_size = img0[i][:, :, 0:2].shape flow_ = np.zeros(self.flow_size, dtype=float) elif self.mode == 'warping': self.img_size = img0[i].shape img1[i] = np.zeros(self.img_size, dtype=float) flow_ = flow[i] self.image_list += [[img0[i], img1[i]]] self.flow_list += [flow_] self.size = len(self.image_list) if (self.render_size[0] < 0) or (self.render_size[1] < 0) or (self.frame_size[0] % 64) or ( self.frame_size[1] % 64): self.render_size[0] = ((self.frame_size[0]) / 64) * 64 self.render_size[1] = ((self.frame_size[1]) / 64) * 64 args.inference_size = self.render_size assert (len(self.image_list) == len(self.flow_list)) def __getitem__(self, index): index = index % self.size img1 = self.image_list[index][0] img2 = self.image_list[index][1] flow = self.flow_list[index] images = [img1, img2] image_size = img1.shape[:2] if self.is_cropped: cropper = StaticRandomCrop(image_size, self.crop_size) else: cropper = StaticCenterCrop(image_size, self.render_size) images = map(cropper, images) if self.mode == 'flow_estimation': flow = cropper(flow) images = np.array(images).transpose(3, 0, 1, 2) flow = flow.transpose(2, 0, 1) images = torch.from_numpy(images.astype(np.float32)) flow = torch.from_numpy(flow.astype(np.float32)) return [images], [flow] def __len__(self): return self.size
StarcoderdataPython
3233607
"""The driver for the opf kpoint selection. This subroutin requires a POSCAR to be present and a GRIDGEN file to be present. The POSCAR should be in the standard VASP format. The GRIDGEN file should specify the target k-point density. """ import os import numpy as np from opf_python.universal import find_srBs if not os.path.isfile("POSCAR"): print("ERROR: The POSCAR file must be provided.") exit() if not os.path.isfile("GRIDGEN"): print("ERROR: The GRIDGEN file must be provided.") exit() #Find A from the POSCAR with open("POSCAR","r") as f: f.readline() f.readline() for i in range(3): A.append(float(i) for i in f.readline().strip().split()) A = np.transpose(A) #Read the k-point density from file. with open("GRIDGEN","r") as f: target = int(f.readline().strip()) Bs = find_srBs(A,target) #now we want to find the grid vectors grids = [] ns = [] for B in Bs: grids.append(np.transpose(np.linalg.inv(B))) ns.apppend(np.linalg.det(B)/np.linalg.det(A)) #now I want to find the packing fraction and the r_min for each of these grids. from phenum.vector_utils import _minkowski_reduce_basis rmin = [] pack_frac = [] for grid in grids: min_grid = _minkowski_reduce_basis(grid) rm = min(np.linalg.norm(min_grid,axis=0)) pf = 4/3.*np.pi*rm**2/np.dot(min_grid[0],np.cross(min_grid[1],min_grid[2])) rmin.append(rm) pack_frac.append(pf)
StarcoderdataPython
48708
import os, queue from tablet import Tablet f = open(os.path.join(os.path.dirname(__file__), '../input/18/part1.txt'), 'r') def main(): instructionStrings = [] line = f.readline() while line: instructionStrings.append(line.rstrip()) line = f.readline() q0 = queue.Queue() q1 = queue.Queue() t0 = Tablet(instructionStrings, 0, q0, q1) t1 = Tablet(instructionStrings, 1, q1, q0) isDeadlock = False while not isDeadlock: t0.run() t1.run() if t0.isWaiting() and t1.isWaiting(): isDeadlock = True print(t1.getTimesSent()) if __name__ == '__main__': main()
StarcoderdataPython
3373392
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2019-01-24 17:03 from __future__ import unicode_literals import colorfield.fields from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django_countries.fields import filer.fields.image import parler.models class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.FILER_IMAGE_MODEL), ('sites', '0002_alter_domain_unique'), ] operations = [ migrations.CreateModel( name='Accessibility', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('accessKey', models.CharField(blank=True, help_text='Remaps the accesskey that the module is assigned to', max_length=512, null=True)), ('highlightFocus', models.NullBooleanField(help_text='Determines if the module should use more accentuated styling to highlight elements in focus')), ], ), migrations.CreateModel( name='Branding', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(help_text='A Unique identifier for this branding', max_length=255)), ('fontFamily', models.CharField(blank=True, help_text='CSS font-family for the entire module e.g. Arial, sans-serif', max_length=255, null=True)), ('fontSizeTitle', models.CharField(blank=True, help_text='CSS font-size for the main (h2) title e.g. 1.2em', max_length=255, null=True)), ('fontSizeHeaders', models.CharField(blank=True, help_text='CSS font-size for the sub (h3) titles e.g. 1em', max_length=255, null=True)), ('fontSize', models.CharField(blank=True, help_text='CSS font-size throughout the module e.g. 0.8em', max_length=255, null=True)), ('fontColor', colorfield.fields.ColorField(blank=True, help_text='CSS color for all text and icons within the module.', max_length=18, null=True)), ('backgroundColor', colorfield.fields.ColorField(blank=True, help_text='CSS background-color within the module.', max_length=18, null=True)), ('acceptText', colorfield.fields.ColorField(blank=True, help_text="CSS color for text of the module's primary 'accept' buttons", max_length=18, null=True)), ('acceptBackground', colorfield.fields.ColorField(blank=True, help_text="CSS background-color for the module's primary 'accept' buttons", max_length=18, null=True)), ('toggleText', colorfield.fields.ColorField(blank=True, help_text="CSS color for the toggle button's text", max_length=18, null=True)), ('toggleColor', colorfield.fields.ColorField(blank=True, help_text='CSS background-color for the movable part of the toggle slider', max_length=18, null=True)), ('toggleBackground', colorfield.fields.ColorField(blank=True, help_text='CSS background-color for the toggle background.', max_length=18, null=True)), ('alertText', colorfield.fields.ColorField(blank=True, help_text='CSS color within the alert areas', max_length=18, null=True)), ('alertBackground', colorfield.fields.ColorField(blank=True, help_text='CSS background-color to highlight the alert areas', max_length=18, null=True)), ('buttonIconWidth', models.CharField(blank=True, help_text='If buttonIcon exists, the css width', max_length=255, null=True)), ('buttonIconHeight', models.CharField(blank=True, help_text='If buttonIcon exists, the css height', max_length=255, null=True)), ('removeIcon', models.NullBooleanField(help_text="Whether or not to remove the button icon entirely. Please note, if you do this, you will need to present an alternative trigger to run the module's open() function.")), ('removeAbout', models.NullBooleanField(help_text="Whether or not to remove the 'About this tool' link")), ('buttonIcon', filer.fields.image.FilerImageField(blank=True, help_text='Icon in the bottom corner', null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.FILER_IMAGE_MODEL)), ], ), migrations.CreateModel( name='CallbackFunction', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('automated_prefix', models.CharField(blank=True, max_length=512, null=True)), ('function_text', models.TextField(blank=True, help_text='JavaScript function, e.g. "function () {...}" ', null=True)), ], ), migrations.CreateModel( name='Cookie', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=512, unique=True)), ], ), migrations.CreateModel( name='CookieControl', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('apiKey', models.CharField(max_length=255)), ('product', models.CharField(choices=[(b'COMMUNITY', b'COMMUNITY'), (b'PRO', b'PRO'), (b'PRO_MULTISITE', b'PRO_MULTISITE')], max_length=255)), ('position', models.CharField(blank=True, choices=[(b'LEFT', b'LEFT'), (b'RIGHT', b'RIGHT')], max_length=255, null=True)), ('theme', models.CharField(blank=True, choices=[(b'LIGHT', b'LIGHT'), (b'DARK', b'DARK')], max_length=255, null=True)), ('toggleType', models.CharField(blank=True, choices=[(b'slider', b'slider'), (b'checkbox', b'checkbox')], max_length=255, null=True)), ('closeStyle', models.CharField(blank=True, choices=[(b'icon', b'icon'), (b'labelled', b'labelled'), (b'button', b'button')], max_length=255, null=True)), ('consentCookieExpiry', models.PositiveIntegerField(blank=True, default=90, null=True)), ('logConsent', models.NullBooleanField()), ('notifyOnce', models.NullBooleanField()), ('initialState', models.CharField(blank=True, choices=[(b'open', b'open'), (b'closed', b'closed'), (b'notify', b'notify')], max_length=255, null=True)), ('layout', models.CharField(blank=True, choices=[(b'slideout', b'slideout'), (b'popup', b'popup')], max_length=255, null=True)), ('excludedCountries', django_countries.fields.CountryField(blank=True, max_length=746, multiple=True)), ('accessibility', models.ForeignKey(blank=True, help_text='Determines the accessibility helpers available.', null=True, on_delete=django.db.models.deletion.CASCADE, to='django_cookie_control.Accessibility')), ('branding', models.ForeignKey(blank=True, help_text="Set all aspects of the module's styling, and remove any back links to CIVIC.", null=True, on_delete=django.db.models.deletion.SET_NULL, to='django_cookie_control.Branding')), ('necessaryCookies', models.ManyToManyField(blank=True, help_text="List of cookie names necessary for your website's core functionality,", to='django_cookie_control.Cookie')), ('onLoad', models.ForeignKey(blank=True, help_text='Defines a function to be triggered after the module initiates.', null=True, on_delete=django.db.models.deletion.SET_NULL, to='django_cookie_control.CallbackFunction')), ], options={ 'verbose_name': 'Cookie Control', 'verbose_name_plural': 'Cookie Controls', }, ), migrations.CreateModel( name='PurposeObject', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('recommendedState', models.NullBooleanField(help_text='Should category be accepted (opted in)')), ('lawfulBasis', models.CharField(blank=True, choices=[(b'consent', b'Consent'), (b'legitimate interest', b'Legitimate Interest')], help_text='requires explicit user consent', max_length=255, null=True)), ('cookies', models.ManyToManyField(blank=True, to='django_cookie_control.Cookie')), ('onAccept', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='accept_function', to='django_cookie_control.CallbackFunction')), ('onRevoke', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='revoke_function', to='django_cookie_control.CallbackFunction')), ], options={ 'verbose_name': 'Optional Cookie Control', 'verbose_name_plural': 'Optional Cookie Controls', }, bases=(parler.models.TranslatableModelMixin, models.Model), ), migrations.CreateModel( name='PurposeObjectTranslation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('language_code', models.CharField(db_index=True, max_length=15, verbose_name='Language')), ('name', models.CharField(max_length=255, verbose_name='A Unique identifier for the category')), ('label', models.CharField(blank=True, help_text='Descriptive Title', max_length=512, null=True)), ('description', models.TextField(blank=True, help_text='Text introducing the privacy statement', null=True)), ('master', models.ForeignKey(editable=False, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='translations', to='django_cookie_control.PurposeObject')), ], options={ 'managed': True, 'db_table': 'django_cookie_control_purposeobject_translation', 'db_tablespace': '', 'default_permissions': (), 'verbose_name': 'Optional Cookie Control Translation', }, ), migrations.CreateModel( name='Statement', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('url', models.CharField(blank=True, help_text='URL where your terms may be accessed', max_length=512, null=True)), ('updated', models.DateField(blank=True, help_text='Terms updated date', null=True)), ], options={ 'abstract': False, }, bases=(parler.models.TranslatableModelMixin, models.Model), ), migrations.CreateModel( name='StatementTranslation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('language_code', models.CharField(db_index=True, max_length=15, verbose_name='Language')), ('name', models.CharField(max_length=255)), ('description', models.TextField(blank=True, help_text='Text introducing the privacy statement', null=True)), ('master', models.ForeignKey(editable=False, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='translations', to='django_cookie_control.Statement')), ], options={ 'managed': True, 'db_table': 'django_cookie_control_statement_translation', 'db_tablespace': '', 'default_permissions': (), 'verbose_name': 'statement Translation', }, ), migrations.CreateModel( name='TextValue', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ], options={ 'abstract': False, }, bases=(parler.models.TranslatableModelMixin, models.Model), ), migrations.CreateModel( name='TextValueTranslation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('language_code', models.CharField(db_index=True, max_length=15, verbose_name='Language')), ('title', models.TextField(blank=True, null=True)), ('intro', models.TextField(blank=True, null=True)), ('acceptRecommended', models.TextField(blank=True, null=True)), ('necessaryTitle', models.TextField(blank=True, null=True)), ('necessaryDescription', models.TextField(blank=True, null=True)), ('thirdPartyTitle', models.TextField(blank=True, null=True)), ('thirdPartyDescription', models.TextField(blank=True, null=True)), ('on', models.TextField(blank=True, null=True)), ('off', models.TextField(blank=True, null=True)), ('notifyTitle', models.TextField(blank=True, null=True)), ('notifyDescription', models.TextField(blank=True, null=True)), ('accept', models.TextField(blank=True, null=True)), ('settings', models.TextField(blank=True, null=True)), ('closeLabel', models.TextField(blank=True, null=True)), ('accessibilityAlert', models.TextField(blank=True, null=True)), ('master', models.ForeignKey(editable=False, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='translations', to='django_cookie_control.TextValue')), ], options={ 'managed': True, 'db_table': 'django_cookie_control_textvalue_translation', 'db_tablespace': '', 'default_permissions': (), 'verbose_name': 'text value Translation', }, ), migrations.CreateModel( name='ThirdPartyCookie', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=512)), ('optOutLink', models.URLField(help_text='Opt-out Link for third-party cookies')), ], ), migrations.AddField( model_name='purposeobject', name='thirdPartyCookies', field=models.ManyToManyField(blank=True, to='django_cookie_control.ThirdPartyCookie'), ), migrations.AddField( model_name='cookiecontrol', name='optionalCookies', field=models.ManyToManyField(blank=True, help_text='List of Optional Cookie Groups that your website may use.', to='django_cookie_control.PurposeObject'), ), migrations.AddField( model_name='cookiecontrol', name='site', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to='sites.Site'), ), migrations.AddField( model_name='cookiecontrol', name='statement', field=models.ForeignKey(blank=True, help_text='Cookie Control will respect user given consent until either the cookie expires, or there is a change in your privacy statement.', null=True, on_delete=django.db.models.deletion.CASCADE, to='django_cookie_control.Statement'), ), migrations.AddField( model_name='cookiecontrol', name='text', field=models.ForeignKey(blank=True, help_text='Determines the text used by Cookie Control.', null=True, on_delete=django.db.models.deletion.CASCADE, to='django_cookie_control.TextValue'), ), migrations.AlterUniqueTogether( name='textvaluetranslation', unique_together=set([('language_code', 'master')]), ), migrations.AlterUniqueTogether( name='statementtranslation', unique_together=set([('language_code', 'master')]), ), migrations.AlterUniqueTogether( name='purposeobjecttranslation', unique_together=set([('language_code', 'master')]), ), ]
StarcoderdataPython
22780
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals import json import os import random import time import uuid import pyrax from pyrax.autoscale import AutoScaleClient from pyrax.autoscale import AutoScalePolicy from pyrax.autoscale import AutoScaleWebhook from pyrax.autoscale import ScalingGroup from pyrax.autoscale import ScalingGroupManager from pyrax.client import BaseClient from pyrax.clouddatabases import CloudDatabaseClient from pyrax.clouddatabases import CloudDatabaseDatabaseManager from pyrax.clouddatabases import CloudDatabaseInstance from pyrax.clouddatabases import CloudDatabaseManager from pyrax.clouddatabases import CloudDatabaseUser from pyrax.clouddatabases import CloudDatabaseUserManager from pyrax.clouddatabases import CloudDatabaseVolume from pyrax.cloudblockstorage import CloudBlockStorageClient from pyrax.cloudblockstorage import CloudBlockStorageManager from pyrax.cloudblockstorage import CloudBlockStorageSnapshot from pyrax.cloudblockstorage import CloudBlockStorageSnapshotManager from pyrax.cloudblockstorage import CloudBlockStorageVolume from pyrax.cloudloadbalancers import CloudLoadBalancer from pyrax.cloudloadbalancers import CloudLoadBalancerManager from pyrax.cloudloadbalancers import CloudLoadBalancerClient from pyrax.cloudloadbalancers import Node from pyrax.cloudloadbalancers import VirtualIP from pyrax.clouddns import CloudDNSClient from pyrax.clouddns import CloudDNSDomain from pyrax.clouddns import CloudDNSManager from pyrax.clouddns import CloudDNSRecord from pyrax.clouddns import CloudDNSPTRRecord from pyrax.cloudnetworks import CloudNetwork from pyrax.cloudnetworks import CloudNetworkClient from pyrax.cloudmonitoring import CloudMonitorClient from pyrax.cloudmonitoring import CloudMonitorEntity from pyrax.cloudmonitoring import CloudMonitorCheck from pyrax.cloudmonitoring import CloudMonitorNotification from pyrax.image import Image from pyrax.image import ImageClient from pyrax.image import ImageManager from pyrax.image import ImageMemberManager from pyrax.image import ImageTagManager from pyrax.object_storage import BulkDeleter from pyrax.object_storage import Container from pyrax.object_storage import ContainerManager from pyrax.object_storage import FolderUploader from pyrax.object_storage import StorageClient from pyrax.object_storage import StorageObject from pyrax.object_storage import StorageObjectManager from pyrax.queueing import Queue from pyrax.queueing import QueueClaim from pyrax.queueing import QueueMessage from pyrax.queueing import QueueClient from pyrax.queueing import QueueManager import pyrax.exceptions as exc from pyrax.base_identity import BaseIdentity from pyrax.base_identity import Endpoint from pyrax.base_identity import Service from pyrax.identity.rax_identity import RaxIdentity from pyrax.identity.keystone_identity import KeystoneIdentity import pyrax.utils as utils example_uri = "http://example.com" class FakeResponse(object): headers = {} body = "" status_code = 200 reason = "Oops" content = "Oops" @property def status(self): # TEMPORARY - until the cf_wrapper code is removed. return self.status_code @status.setter def status(self, val): # TEMPORARY - until the cf_wrapper code is removed. self.status_code = val def getheaders(self): return self.headers def read(self): return "Line1\nLine2" def get(self, arg): return self.headers.get(arg) def json(self): return self.content class FakeIterator(utils.ResultsIterator): def _init_methods(self): pass class FakeClient(object): user_agent = "Fake" USER_AGENT = "Fake" def __init__(self, *args, **kwargs): self.identity = FakeIdentity() class FakeStorageClient(StorageClient): def __init__(self, identity=None, *args, **kwargs): if identity is None: identity = FakeIdentity() super(FakeStorageClient, self).__init__(identity, *args, **kwargs) def create(self, name): return FakeContainer(self._manager, {"name": name}) class FakeContainerManager(ContainerManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeStorageClient() super(FakeContainerManager, self).__init__(api, *args, **kwargs) class FakeContainer(Container): def __init__(self, *args, **kwargs): super(FakeContainer, self).__init__(*args, **kwargs) self.object_manager = FakeStorageObjectManager(self.manager.api, uri_base=self.name) self.object_manager._container = self class FakeStorageObjectManager(StorageObjectManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeStorageClient() if "uri_base" not in kwargs: kwargs["uri_base"] = utils.random_ascii() super(FakeStorageObjectManager, self).__init__(api, *args, **kwargs) class FakeStorageObject(StorageObject): def __init__(self, manager, name=None, total_bytes=None, content_type=None, last_modified=None, etag=None, attdict=None): """ The object can either be initialized with individual params, or by passing the dict that is returned by swiftclient. """ self.manager = manager self.name = name self.bytes = total_bytes or 0 self.content_type = content_type self.last_modified = last_modified self.hash = etag if attdict: self._read_attdict(attdict) fake_attdict = {"name": "fake", "content-length": 42, "content-type": "text/html", "etag": "ABC", "last-modified": "Tue, 01 Jan 2013 01:02:03 GMT", } class FakeServer(object): id = utils.random_unicode() class FakeService(object): user_agent = "FakeService" USER_AGENT = "FakeService" def __init__(self, *args, **kwargs): self.client = FakeClient() self.Node = FakeNode self.VirtualIP = FakeVirtualIP self.loadbalancers = FakeLoadBalancer() self.id = utils.random_unicode() def authenticate(self): pass def get_protocols(self): return ["HTTP"] def get_algorithms(self): return ["RANDOM"] def get_usage(self): pass class FakeCSClient(FakeService): def __init__(self, *args, **kwargs): ident = FakeIdentity() super(FakeCSClient, self).__init__(ident, *args, **kwargs) def dummy(self): pass self.servers = FakeService() utils.add_method(self.servers, dummy, "list") self.images = FakeService() utils.add_method(self.images, dummy, "list") self.flavors = FakeService() utils.add_method(self.flavors, dummy, "list") class FakeFolderUploader(FolderUploader): def __init__(self, *args, **kwargs): super(FakeFolderUploader, self).__init__(*args, **kwargs) # Useful for when we mock out the run() method. self.actual_run = self.run self.run = self.fake_run def fake_run(self): pass class FakeBulkDeleter(BulkDeleter): def __init__(self, *args, **kwargs): super(FakeBulkDeleter, self).__init__(*args, **kwargs) # Useful for when we mock out the run() method. self.actual_run = self.run self.run = self.fake_run def fake_run(self): time.sleep(0.0001) self.results = {} self.completed = True class FakeManager(object): def __init__(self, *args, **kwargs): super(FakeManager, self).__init__(*args, **kwargs) self.api = FakeClient() def list(self): pass def get(self, item): pass def delete(self, item): pass def create(self, *args, **kwargs): pass def find(self, *args, **kwargs): pass def action(self, item, action_type, body={}): pass class FakeException(BaseException): pass class FakeKeyring(object): password_set = False def get_password(self, *args, **kwargs): return "FAKE_TOKEN|FAKE_URL" def set_password(self, *args, **kwargs): self.password_set = True class FakeEntity(object): def __init__(self, *args, **kwargs): self.id = utils.random_unicode() def get(self, *args, **kwargs): pass def list(self, *args, **kwargs): pass class FakeDatabaseUser(CloudDatabaseUser): pass class FakeDatabaseVolume(CloudDatabaseVolume): def __init__(self, instance, *args, **kwargs): self.instance = instance self.size = 1 self.used = 0.2 class FakeDatabaseInstance(CloudDatabaseInstance): def __init__(self, *args, **kwargs): self.id = utils.random_unicode() self.manager = FakeDatabaseManager() self.manager.api = FakeDatabaseClient() self._database_manager = CloudDatabaseDatabaseManager( FakeDatabaseClient()) self._user_manager = CloudDatabaseUserManager(FakeDatabaseClient()) self.volume = FakeDatabaseVolume(self) class FakeDatabaseManager(CloudDatabaseManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeDatabaseClient() super(FakeDatabaseManager, self).__init__(api, *args, **kwargs) self.uri_base = "instances" class FakeDatabaseClient(CloudDatabaseClient): def __init__(self, *args, **kwargs): self._manager = FakeDatabaseManager(self) self._flavor_manager = FakeManager() ident = FakeIdentity() super(FakeDatabaseClient, self).__init__(ident, "fakeuser", "fakepassword", *args, **kwargs) class FakeNovaVolumeClient(BaseClient): def __init__(self, *args, **kwargs): pass class FakeBlockStorageManager(CloudBlockStorageManager): def __init__(self, api=None, *args, **kwargs): ident = FakeIdentity() if api is None: api = FakeBlockStorageClient(ident) super(FakeBlockStorageManager, self).__init__(api, *args, **kwargs) class FakeBlockStorageVolume(CloudBlockStorageVolume): def __init__(self, *args, **kwargs): volname = utils.random_unicode(8) self.id = utils.random_unicode() self.manager = FakeBlockStorageManager() self._nova_volumes = FakeNovaVolumeClient() class FakeBlockStorageSnapshot(CloudBlockStorageSnapshot): def __init__(self, *args, **kwargs): self.id = utils.random_unicode() self.manager = FakeManager() self.status = "available" class FakeBlockStorageClient(CloudBlockStorageClient): def __init__(self, *args, **kwargs): self._types_manager = FakeManager() self._snapshot_manager = FakeManager() ident = FakeIdentity() super(FakeBlockStorageClient, self).__init__(ident, "fakeuser", "fakepassword", *args, **kwargs) class FakeSnapshotManager(CloudBlockStorageSnapshotManager): def __init__(self, api=None, *args, **kwargs): ident = FakeIdentity() if api is None: api = FakeBlockStorageClient(ident) super(FakeSnapshotManager, self).__init__(api, *args, **kwargs) class FakeLoadBalancerClient(CloudLoadBalancerClient): def __init__(self, *args, **kwargs): ident = FakeIdentity() super(FakeLoadBalancerClient, self).__init__(ident, "fakeuser", "fakepassword", *args, **kwargs) class FakeLoadBalancerManager(CloudLoadBalancerManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeLoadBalancerClient() super(FakeLoadBalancerManager, self).__init__(api, *args, **kwargs) class FakeLoadBalancer(CloudLoadBalancer): def __init__(self, name=None, info=None, *args, **kwargs): name = name or utils.random_ascii() info = info or {"fake": "fake"} super(FakeLoadBalancer, self).__init__(name, info, *args, **kwargs) self.id = utils.random_ascii() self.port = random.randint(1, 256) self.manager = FakeLoadBalancerManager() class FakeNode(Node): def __init__(self, address=None, port=None, condition=None, weight=None, status=None, parent=None, type=None, id=None): if address is None: address = "0.0.0.0" if port is None: port = 80 if id is None: id = utils.random_unicode() super(FakeNode, self).__init__(address=address, port=port, condition=condition, weight=weight, status=status, parent=parent, type=type, id=id) class FakeVirtualIP(VirtualIP): pass class FakeStatusChanger(object): check_count = 0 id = utils.random_unicode() @property def status(self): if self.check_count < 2: self.check_count += 1 return "changing" return "ready" class FakeDNSClient(CloudDNSClient): def __init__(self, *args, **kwargs): ident = FakeIdentity() super(FakeDNSClient, self).__init__(ident, "fakeuser", "fakepassword", *args, **kwargs) class FakeDNSManager(CloudDNSManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeDNSClient() super(FakeDNSManager, self).__init__(api, *args, **kwargs) self.resource_class = FakeDNSDomain self.response_key = "domain" self.plural_response_key = "domains" self.uri_base = "domains" class FakeDNSDomain(CloudDNSDomain): def __init__(self, *args, **kwargs): self.id = utils.random_ascii() self.name = utils.random_unicode() self.manager = FakeDNSManager() class FakeDNSRecord(CloudDNSRecord): def __init__(self, mgr, info, *args, **kwargs): super(FakeDNSRecord, self).__init__(mgr, info, *args, **kwargs) class FakeDNSPTRRecord(CloudDNSPTRRecord): pass class FakeDNSDevice(FakeLoadBalancer): def __init__(self, *args, **kwargs): self.id = utils.random_unicode() class FakeCloudNetworkClient(CloudNetworkClient): def __init__(self, *args, **kwargs): ident = FakeIdentity() super(FakeCloudNetworkClient, self).__init__(ident, "fakeuser", "fakepassword", *args, **kwargs) class FakeCloudNetwork(CloudNetwork): def __init__(self, *args, **kwargs): info = kwargs.pop("info", {"fake": "fake"}) label = kwargs.pop("label", kwargs.pop("name", utils.random_unicode())) info["label"] = label super(FakeCloudNetwork, self).__init__(manager=None, info=info, *args, **kwargs) self.id = uuid.uuid4().hex class FakeAutoScaleClient(AutoScaleClient): def __init__(self, *args, **kwargs): ident = FakeIdentity() self._manager = FakeManager() super(FakeAutoScaleClient, self).__init__(ident, *args, **kwargs) class FakeAutoScalePolicy(AutoScalePolicy): def __init__(self, *args, **kwargs): super(FakeAutoScalePolicy, self).__init__(*args, **kwargs) self.id = utils.random_ascii() class FakeAutoScaleWebhook(AutoScaleWebhook): def __init__(self, *args, **kwargs): super(FakeAutoScaleWebhook, self).__init__(*args, **kwargs) self.id = utils.random_ascii() class FakeScalingGroupManager(ScalingGroupManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeAutoScaleClient() super(FakeScalingGroupManager, self).__init__(api, *args, **kwargs) self.id = utils.random_ascii() class FakeScalingGroup(ScalingGroup): def __init__(self, name=None, info=None, *args, **kwargs): name = name or utils.random_ascii() info = info or {"fake": "fake", "scalingPolicies": []} self.groupConfiguration = {} super(FakeScalingGroup, self).__init__(name, info, *args, **kwargs) self.id = utils.random_ascii() self.name = name self.manager = FakeScalingGroupManager() class FakeCloudMonitorClient(CloudMonitorClient): def __init__(self, *args, **kwargs): ident = FakeIdentity() super(FakeCloudMonitorClient, self).__init__(ident, "fakeuser", "fakepassword", *args, **kwargs) class FakeCloudMonitorEntity(CloudMonitorEntity): def __init__(self, *args, **kwargs): info = kwargs.pop("info", {"fake": "fake"}) info["id"] = utils.random_ascii() super(FakeCloudMonitorEntity, self).__init__(FakeManager(), info=info, *args, **kwargs) self.manager.api = FakeCloudMonitorClient() class FakeCloudMonitorCheck(CloudMonitorCheck): def __init__(self, *args, **kwargs): info = kwargs.pop("info", {"fake": "fake"}) entity = kwargs.pop("entity", None) info["id"] = utils.random_ascii() super(FakeCloudMonitorCheck, self).__init__(FakeManager(), info, *args, **kwargs) self.set_entity(entity) self.id = uuid.uuid4() class FakeCloudMonitorNotification(CloudMonitorNotification): def __init__(self, *args, **kwargs): info = kwargs.pop("info", {"fake": "fake"}) super(FakeCloudMonitorNotification, self).__init__(manager=None, info=info, *args, **kwargs) self.id = uuid.uuid4() class FakeQueue(Queue): def __init__(self, *args, **kwargs): info = kwargs.pop("info", {"fake": "fake"}) info["name"] = utils.random_unicode() mgr = kwargs.pop("manager", FakeQueueManager()) super(FakeQueue, self).__init__(manager=mgr, info=info, *args, **kwargs) class FakeQueueClaim(QueueClaim): def __init__(self, *args, **kwargs): info = kwargs.pop("info", {"fake": "fake"}) info["name"] = utils.random_unicode() mgr = kwargs.pop("manager", FakeQueueManager()) super(FakeQueueClaim, self).__init__(manager=mgr, info=info, *args, **kwargs) class FakeQueueClient(QueueClient): def __init__(self, *args, **kwargs): ident = FakeIdentity() super(FakeQueueClient, self).__init__(ident, "fakeuser", "<PASSWORD>password", *args, **kwargs) class FakeQueueManager(QueueManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeQueueClient() super(FakeQueueManager, self).__init__(api, *args, **kwargs) self.id = utils.random_ascii() class FakeImage(Image): def __init__(self, *args, **kwargs): info = kwargs.pop("info", {"fake": "fake"}) info["name"] = utils.random_unicode() info["id"] = utils.random_unicode() mgr = kwargs.pop("manager", FakeImageManager()) kwargs["member_manager_class"] = FakeImageMemberManager kwargs["tag_manager_class"] = FakeImageTagManager super(FakeImage, self).__init__(mgr, info, *args, **kwargs) class FakeImageClient(ImageClient): def __init__(self, identity=None, *args, **kwargs): if identity is None: identity = FakeIdentity() super(FakeImageClient, self).__init__(identity, "fakeuser", "fakepassword", *args, **kwargs) class FakeImageMemberManager(ImageMemberManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeImageClient() super(FakeImageMemberManager, self).__init__(api, *args, **kwargs) self.id = utils.random_ascii() class FakeImageTagManager(ImageTagManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeImageClient() super(FakeImageTagManager, self).__init__(api, *args, **kwargs) self.id = utils.random_ascii() class FakeImageManager(ImageManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeImageClient() super(FakeImageManager, self).__init__(api, *args, **kwargs) self.plural_response_key = "images" self.resource_class = FakeImage self.id = utils.random_ascii() class FakeIdentityService(Service): def __init__(self, identity=None, *args, **kwargs): self.identity = identity or FakeIdentity() self.name = "fake" self.prefix = "" self.service_type = "fake" self.clients = {} self.endpoints = utils.DotDict() class FakeEndpoint(Endpoint): def __init__(self, ep_dict=None, service=None, region=None, identity=None): if ep_dict is None: ep_dict = {} if identity is None: identity = FakeIdentity() if service is None: service = FakeIdentityService(identity) if region is None: region = "fake_region" super(FakeEndpoint, self).__init__(ep_dict, service, region, identity) class FakeRaxIdentity(RaxIdentity): pass class FakeIdentity(BaseIdentity): """Class that returns canned authentication responses.""" def __init__(self, *args, **kwargs): super(FakeIdentity, self).__init__(*args, **kwargs) self._good_username = "fakeuser" self._good_password = "<PASSWORD>" self._default_region = random.choice(("DFW", "ORD")) self.services = {"fake": FakeIdentityService(self)} def authenticate(self, connect=False): if ((self.username == self._good_username) and (self.password == self._good_password)): self._parse_response(self.fake_response()) self.authenticated = True else: self.authenticated = False raise exc.AuthenticationFailed("No match for '%s'/'%s' " "username/password" % (self.username, self.password)) def auth_with_token(self, token, tenant_id=None, tenant_name=None): self.token = token self.tenant_id = tenant_id self.tenant_name = tenant_name self.authenticated = True def get_token(self, force=False): return self.token def fake_response(self): return fake_identity_response fake_config_file = """[settings] identity_type = rackspace keyring_username = region = FAKE custom_user_agent = FAKE http_debug = """ # This will handle both singular and plural responses. fake_identity_user_response = { "users": [{"name": "fake", "id": "fake"}, {"name": "faker", "id": "faker"}], "user": {"name": "fake", "id": "fake"}, "roles": [{u'description': 'User Admin Role.', 'id': '3', 'name': 'identity:user-admin'}], } fake_identity_tenant_response = {"name": "fake", "id": "fake", "description": "fake", "enabled": True} fake_identity_tenants_response = { "tenants": [ {"name": "fake", "id": "fake", "description": "fake", "enabled": True}, {"name": "faker", "id": "faker", "description": "faker", "enabled": True}, ]} fake_identity_tokens_response = {"access": {'metadata': {u'is_admin': 0, 'roles': [u'asdfgh', 'sdfghj', 'dfghjk']}, 'serviceCatalog': [{u'endpoints': [ {u'adminURL': 'http://10.0.0.0:8774/v2/qweqweqwe', 'id': 'dddddddddd', 'publicURL': 'http://10.0.0.0:8774/v2/qweqweqwe', 'internalURL': 'http://10.0.0.0:8774/v2/qweqweqwe', 'region': 'some_region'}], 'endpoints_links': [], 'name': 'nova', 'type': 'compute'}, {u'endpoints': [{u'adminURL': 'http://10.0.0.0:35357/v2.0', 'id': 'qweqweqwe', 'internalURL': 'http://10.0.0.0:5000/v2.0', 'publicURL': 'http://10.0.0.0:5000/v2.0', 'region': 'some_region'}], 'endpoints_links': [], 'name': 'keystone', 'type': 'identity'}], 'token': {u'expires': '1999-05-04T16:45:05Z', 'id': 'qweqweqwe', 'tenant': {u'description': 'admin Tenant', 'enabled': True, 'id': 'qweqweqwe', 'name': 'admin'}}, 'user': {u'id': 'qweqweqwe', 'name': 'admin', 'roles': [{u'id': 'qweqweqwe', 'name': 'admin'}, {u'id': 'qweqweqwe', 'name': 'KeystoneAdmin'}, {u'id': 'qweqweqwe', 'name': 'KeystoneServiceAdmin'}], 'roles_links': [], 'username': 'admin'}}} fake_identity_endpoints_response = {"access": { "endpoints": ["fake", "faker", "fakest"]}} fake_identity_response = {u'access': {u'serviceCatalog': [ {u'endpoints': [{u'publicURL': 'https://ord.loadbalancers.api.rackspacecloud.com/v1.0/000000', 'region': 'ORD', 'tenantId': '000000'}, {u'publicURL': 'https://dfw.loadbalancers.api.rackspacecloud.com/v1.0/000000', 'region': 'DFW', 'tenantId': '000000'}, {u'publicURL': 'https://syd.loadbalancers.api.rackspacecloud.com/v1.0/000000', 'region': 'SYD', 'tenantId': '000000'}], 'name': 'cloudLoadBalancers', 'type': 'rax:load-balancer'}, {u'endpoints': [{u'internalURL': 'https://snet-aa.fake1.clouddrive.com/v1/MossoCloudFS_abc', 'publicURL': 'https://aa.fake1.clouddrive.com/v1/MossoCloudFS_abc', 'region': 'FAKE', 'tenantId': 'MossoCloudFS_abc'}, {u'internalURL': 'https://snet-aa.dfw1.clouddrive.com/v1/MossoCloudFS_abc', 'publicURL': 'https://aa.dfw1.clouddrive.com/v1/MossoCloudFS_abc', 'region': 'DFW', 'tenantId': 'MossoCloudFS_abc'}, {u'internalURL': 'https://snet-aa.ord1.clouddrive.com/v1/MossoCloudFS_abc', 'publicURL': 'https://aa.ord1.clouddrive.com/v1/MossoCloudFS_abc', 'region': 'ORD', 'tenantId': 'MossoCloudFS_abc'}, {u'internalURL': 'https://snet-aa.syd1.clouddrive.com/v1/MossoCloudFS_abc', 'publicURL': 'https://aa.ord1.clouddrive.com/v1/MossoCloudFS_abc', 'region': 'SYD', 'tenantId': 'MossoCloudFS_abc'}], 'name': 'cloudFiles', 'type': 'object-store'}, {u'endpoints': [{u'publicURL': 'https://dfw.servers.api.rackspacecloud.com/v2/000000', 'region': 'DFW', 'tenantId': '000000', 'versionId': '2', 'versionInfo': 'https://dfw.servers.api.rackspacecloud.com/v2', 'versionList': 'https://dfw.servers.api.rackspacecloud.com/'}, {u'publicURL': 'https://ord.servers.api.rackspacecloud.com/v2/000000', 'region': 'ORD', 'tenantId': '000000', 'versionId': '2', 'versionInfo': 'https://ord.servers.api.rackspacecloud.com/v2', 'versionList': 'https://ord.servers.api.rackspacecloud.com/'}, {u'publicURL': 'https://syd.servers.api.rackspacecloud.com/v2/000000', 'region': 'SYD', 'tenantId': '000000', 'versionId': '2', 'versionInfo': 'https://syd.servers.api.rackspacecloud.com/v2', 'versionList': 'https://syd.servers.api.rackspacecloud.com/'}], 'name': 'cloudServersOpenStack', 'type': 'compute'}, {u'endpoints': [{u'publicURL': 'https://dns.api.rackspacecloud.com/v1.0/000000', 'tenantId': '000000'}], 'name': 'cloudDNS', 'type': 'rax:dns'}, {u'endpoints': [{u'publicURL': 'https://dfw.databases.api.rackspacecloud.com/v1.0/000000', 'region': 'DFW', 'tenantId': '000000'}, {u'publicURL': 'https://syd.databases.api.rackspacecloud.com/v1.0/000000', 'region': 'SYD', 'tenantId': '000000'}, {u'publicURL': 'https://ord.databases.api.rackspacecloud.com/v1.0/000000', 'region': 'ORD', 'tenantId': '000000'}], 'name': 'cloudDatabases', 'type': 'rax:database'}, {u'endpoints': [{u'publicURL': 'https://servers.api.rackspacecloud.com/v1.0/000000', 'tenantId': '000000', 'versionId': '1.0', 'versionInfo': 'https://servers.api.rackspacecloud.com/v1.0', 'versionList': 'https://servers.api.rackspacecloud.com/'}], 'name': 'cloudServers', 'type': 'compute'}, {u'endpoints': [{u'publicURL': 'https://cdn1.clouddrive.com/v1/MossoCloudFS_abc', 'region': 'DFW', 'tenantId': 'MossoCloudFS_abc'}, {u'publicURL': 'https://cdn1.clouddrive.com/v1/MossoCloudFS_abc', 'region': 'FAKE', 'tenantId': 'MossoCloudFS_abc'}, {u'publicURL': 'https://cdn1.clouddrive.com/v1/MossoCloudFS_abc', 'region': 'SYD', 'tenantId': 'MossoCloudFS_abc'}, {u'publicURL': 'https://cdn2.clouddrive.com/v1/MossoCloudFS_abc', 'region': 'ORD', 'tenantId': 'MossoCloudFS_abc'}], 'name': 'cloudFilesCDN', 'type': 'rax:object-cdn'}, {u'endpoints': [{u'publicURL': 'https://monitoring.api.rackspacecloud.com/v1.0/000000', 'tenantId': '000000'}], 'name': 'cloudMonitoring', 'type': 'rax:monitor'}], u'token': {u'expires': '2222-02-22T22:22:22.000-02:00', 'id': 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx', 'tenant': {u'id': '000000', 'name': '000000'}}, u'user': {u'id': '123456', 'name': 'fakeuser', 'RAX-AUTH:defaultRegion': 'DFW', 'roles': [{u'description': 'User Admin Role.', 'id': '3', 'name': 'identity:user-admin'}], }}} class FakeIdentityResponse(FakeResponse): status_code = 200 response_type = "auth" responses = {"auth": fake_identity_response, "users": fake_identity_user_response, "tenant": fake_identity_tenant_response, "tenants": fake_identity_tenants_response, "tokens": fake_identity_tokens_response, "endpoints": fake_identity_endpoints_response, } @property def content(self): return self.responses.get(self.response_type) def json(self): return self.content def read(self): return json.dumps(self.content)
StarcoderdataPython
3358133
<filename>twitch_irc.py from twisted.internet import protocol, reactor from collections import defaultdict import bot import time import logging import logging.config logging.config.fileConfig('logging.conf') class BotFactory(protocol.ClientFactory): protocol = bot.TwitchBot tags = defaultdict(dict) activity = dict() wait_time = 1 def clientConnectionLost(self, connector, reason): logging.error("Lost connection, reconnecting") self.protocol = reload(bot).TwitchBot connector.connect() def clientConnectionFailed(self, connector, reason): msg = "Could not connect, retrying in {}s" logging.warning(msg.format(self.wait_time)) time.sleep(self.wait_time) self.wait_time = min(512, self.wait_time * 2) connector.connect() if __name__ == "__main__": reactor.connectTCP('irc.twitch.tv', 6667, BotFactory()) reactor.run()
StarcoderdataPython
4829220
<filename>simprod-scripts/resources/scripts/nwandkowsky/detector_baseline/detector.py #!/bin/sh /cvmfs/icecube.opensciencegrid.org/py2-v2/icetray-start #METAPROJECT: /data/user/nwandkowsky/tarballs/simulation.V05-01-02/build/simulation.V05-01-02 # import required icecube-related stuff from icecube import icetray, dataclasses, dataio, simclasses from icecube.icetray import I3Units from I3Tray import I3Tray # command line options required to configure the simulation from optparse import OptionParser from os.path import expandvars #./mcpe_nugen.py -s 2 -r 1 -g /cvmfs/icecube.opensciencegrid.org/data/GCD/GeoCalibDetectorStatus_IC86_Merged.i3.gz --domos 5 --domeff 0.99 --holeice flasher_p1=0.3_p2=0.0 -i /data/ana/Cscd/StartingEvents/NuGen_new/NuE/medium_energy/photon_spice3_2/1/photon_00000001.i3.zst -o nue_me_mcpe.i3.bz2 -b /data/ana/Cscd/StartingEvents/CORSIKA_bg/12531/photon_spice3_2/1/photon_00000001.i3.zst usage = "usage: %prog [options] " #outputfile" parser = OptionParser(usage) parser.add_option("-g", "--gcd",default="/home/nwandkowsky/workspace/data/GCD/GeoCalibDetectorStatus_IC86.55697_V2.i3", dest="GCDFILE", help="Read geometry from GCDFILE (.i3{.gz} format)") parser.add_option("-i", "--input", action="store", type="string", default="", dest="INPUT", help="Input file to process") parser.add_option("-o", "--output", action="store", type="string", default="", dest="OUTPUT", help="Output i3 file") parser.add_option("-s", "--seed",type="int",default=12345, dest="SEED", help="Initial seed for the random number generator") parser.add_option("-r", "--runnumber", type="int", default=1, dest="RUNNUMBER", help="The run number for this simulation") parser.add_option("--holeice",default="as_50", dest="HOLEICE", help="Holeice file") parser.add_option("--domos", type="float", default=1., dest="DOMOS", help="dom oversizing parameter") parser.add_option("--domeff", type="float", default=1., dest="DOMEFF", help="dom efficiency parameter") parser.add_option("-b", "--bgfile", action="store", type="string", default="", dest="BGFILE", help="Output i3 file") # parse cmd line args, bail out if anything is not understood (options,args) = parser.parse_args() GCD = options.GCDFILE infile = options.INPUT outfile = options.OUTPUT print("Command line options parsed...") holeiceparameterization=expandvars("$I3_SRC/ice-models/resources/models/holeice_msu/"+options.HOLEICE) import os, sys tray = I3Tray() tray.AddModule("I3Reader", "reader", filenamelist=[GCD, infile] ) # import phys_services which includes rng from icecube import phys_services # set up a random number generator randomService = phys_services.I3SPRNGRandomService( seed = options.SEED, nstreams = 100000000, streamnum = options.RUNNUMBER) tray.context['I3RandomService'] = randomService prandomService = phys_services.I3SPRNGRandomService( seed = options.SEED, nstreams = 200000000, streamnum = options.RUNNUMBER+100000000) tray.Add('Delete',Keys=["I3MCTree","MMCTrackList"]) from icecube.simprod.segments.PropagateMuons import PropagateMuons tray.AddSegment(PropagateMuons,"PropagateMuons", RandomService=prandomService) def RemoveInvisible(frame): return len(frame["PhotonSeriesMap"])>0; tray.Add(RemoveInvisible)(("Streams",[icetray.I3Frame.DAQ])); from icecube import polyplopia tray.AddService("CoincidentI3ReaderServiceFactory","BackgroundService")(("FileName",options.BGFILE)); tray.AddModule("PoissonPEMerger")( ("BaseIsBackground",False), ("CoincidentEventService","BackgroundService"), ("MCTreeName","I3MCTree_preMuonProp"), ("RandomService","I3RandomService"), ("PhotonsToMerge","PhotonSeriesMap"), ("MMCTrackName","MMCTrackList") ); tray.AddModule("I3GeometryDecomposer", "decomposeGeometry") from icecube import clsim tray.AddSegment(clsim.I3CLSimMakeHitsFromPhotons,"makePhotons", PhotonSeriesName="PhotonSeriesMap", MCPESeriesName="I3MCPESeriesMap", RandomService='I3RandomService', DOMOversizeFactor=options.DOMOS, UnshadowedFraction=(1.17), HoleIceParameterization=holeiceparameterization ) # Delete all MCPEs we're not operating on def empty_mcpe(frame): entries = 0 for k in frame.keys(): if isinstance(frame[k], simclasses.I3MCPESeriesMap): entries = entries + len(frame[k]) return entries>0 tray.AddModule(empty_mcpe, Streams=[icetray.I3Frame.DAQ]) map_in = 'I3MCPESeriesMap' map_out = 'I3MCPESeriesMap_'+str(options.DOMEFF) domeff = float(options.DOMEFF)/1.17 print map_in, map_out, domeff # Downsampling from input pe series (map_in with highest dom eff = 1.17) to desired output pe series (map_out) tray.AddModule("I3DownsampleMCPE", InputName=map_in, OutputName=map_out, SampleFrac = domeff, RandomService = 'I3RandomService') from icecube.simprod import segments tray.AddSegment(segments.DetectorSim, "DetectorSim", RandomService = 'I3RandomService', RunID = options.RUNNUMBER, GCDFile = GCD, KeepMCHits = False, KeepPropagatedMCTree = True, KeepMCPulses = False, SkipNoiseGenerator = False, LowMem = True, InputPESeriesMapName = map_out ) # acquire some more MC truth information def GetNeutrino(frame): def sanitize(particle): if particle is None: return dataclasses.I3Particle() else: return particle mcTree = frame["I3MCTree"] primary = None neutrino = None for p in mcTree: if mcTree.depth(p) != 0: continue if p.is_neutrino: if neutrino is None or p.energy > neutrino.energy: neutrino = p if primary is None or p.energy > primary.energy: primary = p del frame["MCPrimary"] frame["MCPrimary"] = sanitize(primary) tray.AddModule(GetNeutrino, "GetNeutrino", Streams=[icetray.I3Frame.DAQ]) def GetMCTrack(frame): # Get the track from an MCTree. If there is no track, get the hadronic cascade. mcTree = frame["I3MCTree"] trackParticle = None cascadeParticle = None numCascades = 0 neutrino = None for p in mcTree: depth = mcTree.depth(p) if depth == 0: # if not p.is_neutrino: # raise RuntimeError("primary particle is not a neutrino!") if neutrino is None or p.energy > neutrino.energy: neutrino = p if depth != 1: continue # depth==0 is the root (assume it is the primary neutrino) if p.type in [dataclasses.I3Particle.ParticleType.MuPlus, dataclasses.I3Particle.ParticleType.MuMinus, dataclasses.I3Particle.ParticleType.TauPlus, dataclasses.I3Particle.ParticleType.TauMinus]: # if trackParticle is not None: # raise RuntimeError("got multiple leptons from a single neutrino.") trackParticle = p else: if cascadeParticle is None or p.energy > cascadeParticle.energy: cascadeParticle = p numCascades += 1 theTrack = None if trackParticle is not None: theTrack = trackParticle else: if numCascades == 0: theTrack = None if numCascades == 1: theTrack = cascadeParticle if neutrino is None: raise RuntimeError("Internal error. Cascades found, but no neutrino in MCTree.") theTrack = neutrino if theTrack is None: raise RuntimeError("no MC track could be found in MCTree") # shift the vertex to the point of closest approach to the origin (0,0,0) a = - (theTrack.pos.x*theTrack.dir.x + theTrack.pos.y*theTrack.dir.y + theTrack.pos.z*theTrack.dir.z) newPos = dataclasses.I3Position(theTrack.pos.x + theTrack.dir.x * a, theTrack.pos.y + theTrack.dir.y * a, theTrack.pos.z + theTrack.dir.z * a) newTime = theTrack.time + a/dataclasses.I3Constants.c # generate a "reconstructed" particle from the MCTrack outputTrack = dataclasses.I3Particle() outputTrack.shape = dataclasses.I3Particle.ParticleShape.InfiniteTrack outputTrack.pos = newPos outputTrack.dir = theTrack.dir outputTrack.time = newTime outputTrack.fit_status = dataclasses.I3Particle.FitStatus.OK outputTrack.location_type = dataclasses.I3Particle.LocationType.InIce frame["MCTrack"] = outputTrack tray.AddModule(GetMCTrack, "GetMCTrack", Streams=[icetray.I3Frame.DAQ]) #tray.AddModule('Dump', "dumpy") tray.Add('Delete',Keys=[map_out,'I3MCPESeriesMap','I3MCPulseSeriesMapPrimaryIDMap','IceTopRawData','PhotonSeriesMap']) tray.AddModule('I3Writer', 'writer', Streams=[icetray.I3Frame.Stream('S'), icetray.I3Frame.TrayInfo, icetray.I3Frame.DAQ, icetray.I3Frame.Physics], filename=outfile) # final clean-up and execution tray.AddModule('TrashCan', 'YesWeCan') print("Executing...") tray.Execute() print("Finish!") tray.Finish() del tray
StarcoderdataPython
3279587
params = { 'type': 'MBPO', 'universe': 'gym', 'domain': 'HalfCheetah', 'task': 'v2', 'log_dir': '~/ray_mbpo/', 'exp_name': 'defaults', 'kwargs': { 'epoch_length': 1000, 'train_every_n_steps': 1, 'n_train_repeat': 40, 'eval_render_mode': None, 'eval_n_episodes': 1, 'eval_deterministic': True, 'discount': 0.99, 'tau': 5e-3, 'reward_scale': 1.0, 'model_train_freq': 250, 'model_retain_epochs': 1, 'rollout_batch_size': 100e3, 'deterministic': False, 'num_networks': 7, 'num_elites': 5, 'real_ratio': 0.05, 'target_entropy': -3, 'max_model_t': None, 'rollout_schedule': [20, 150, 1, 1], } }
StarcoderdataPython
1640098
import os from os import path as p from datetime import date as d # module vars _basedir = p.dirname(__file__) _user = os.environ.get('USER', os.environ.get('USERNAME')) # configurable vars __APP_NAME__ = 'Proposer' __YOUR_NAME__ = '<NAME>' __YOUR_COMPANY__ = 'Nerevu Development' __YOUR_POSITION__ = 'Managing Director' __YOUR_EMAIL__ = '<EMAIL>' __YOUR_SKYPE__ = _user __YOUR_PHONE__ = ['+255 789 477 319', '+254 703 576 035'] __YOUR_WEBSITE__ = 'http://nerevu.com' # calculated vars app = __APP_NAME__.lower() year = d.today().strftime("%Y") date = d.today().strftime("%B %d, %Y") site_keys = ( 'author', 'author_company', 'author_position', 'author_email', 'author_skype', 'author_phone', 'author_url', 'year', 'date') site_values = ( __YOUR_NAME__, __YOUR_COMPANY__, __YOUR_POSITION__, __YOUR_EMAIL__, __YOUR_SKYPE__, __YOUR_PHONE__, __YOUR_WEBSITE__, year, date) # configuration class Config(object): SITE = dict(zip(site_keys, site_values)) DEBUG = False TESTING = False HOST = '127.0.0.1' EXPORT_DIR = p.join(_basedir, 'exports') INFO_PATH = p.join(_basedir, 'info.yml') STYLE = 'development' TYPE = 'html' TABLE = '<table class="table table-striped">' BOOTSTRAP_USE_MINIFIED = False BOOTSTRAP_USE_CDN = False BOOTSTRAP_FONTAWESOME = False BOOTSTRAP_HTML5_SHIM = False class Production(Config): HOST = '0.0.0.0' BOOTSTRAP_USE_MINIFIED = True BOOTSTRAP_USE_CDN = True BOOTSTRAP_FONTAWESOME = True class Development(Config): DEBUG = True class Test(Config): TESTING = True
StarcoderdataPython
4839038
<gh_stars>0 #!/usr/bin/env python3 import cloudgenix import argparse from cloudgenix import jd, jd_detailed import cloudgenix_settings import sys import logging import os import datetime # Global Vars TIME_BETWEEN_API_UPDATES = 60 # seconds REFRESH_LOGIN_TOKEN_INTERVAL = 7 # hours SDK_VERSION = cloudgenix.version SCRIPT_NAME = 'CloudGenix: Example script: SNMP' SCRIPT_VERSION = "v1" # Set NON-SYSLOG logging to use function name logger = logging.getLogger(__name__) #################################################################### # Read cloudgenix_settings file for auth token or username/password #################################################################### sys.path.append(os.getcwd()) try: from cloudgenix_settings import CLOUDGENIX_AUTH_TOKEN except ImportError: # Get AUTH_TOKEN/X_AUTH_TOKEN from env variable, if it exists. X_AUTH_TOKEN takes priority. if "X_AUTH_TOKEN" in os.environ: CLOUDGENIX_AUTH_TOKEN = os.environ.get('X_AUTH_TOKEN') elif "AUTH_TOKEN" in os.environ: CLOUDGENIX_AUTH_TOKEN = os.environ.get('AUTH_TOKEN') else: # not set CLOUDGENIX_AUTH_TOKEN = None try: from cloudgenix_settings import CLOUDGENIX_USER, CLOUDGENIX_PASSWORD except ImportError: # will get caught below CLOUDGENIX_USER = None CLOUDGENIX_PASSWORD = None def addSNMP(cgx, data): elem_resp = cgx.get.elements() elem_list = elem_resp.cgx_content.get('items', None) if not elem_resp.cgx_status or not elem_list: logger.info("ERROR: unable to get elements for account '{0}'.".format(cgx_session.tenant_name)) return False for element in elem_list: elem_id = element['id'] name = element['name'] sid = element['site_id'] model_name = element['model_name'] if name == None: name = "Unamed device" if not sid is None: snmp_resp = cgx.get.snmpagents(site_id=sid,element_id=elem_id) snmp_resp = snmp_resp.cgx_content.get('items', None) if snmp_resp: print("Please delete SNMP Agent on element: " + name + " before trying to add or modify settings") else: resp = cgx.post.snmpagents(site_id=sid, element_id=elem_id, data=data) if not resp: print("Error creating SNMP Agent on " + name) else: print("Created SNMP Agent on " + name) return True, "200" def getSNMP(cgx): elem_resp = cgx.get.elements() elem_list = elem_resp.cgx_content.get('items', None) if not elem_resp.cgx_status or not elem_list: logger.info("ERROR: unable to get elements for account '{0}'.".format(cgx_session.tenant_name)) return False for element in elem_list: elem_id = element['id'] name = element['name'] sid = element['site_id'] model_name = element['model_name'] if name == None: name = "Unamed device" if not sid is None: snmp_resp = cgx.get.snmpagents(site_id=sid,element_id=elem_id) snmp_resp = snmp_resp.cgx_content.get('items', None) if snmp_resp: print("ION Name: " + name) print(snmp_resp) return True, "200" def deleteSNMP(cgx, description): elem_resp = cgx.get.elements() elem_list = elem_resp.cgx_content.get('items', None) if not elem_resp.cgx_status or not elem_list: logger.info("ERROR: unable to get elements for account '{0}'.".format(cgx_session.tenant_name)) return False for element in elem_list: elem_id = element['id'] name = element['name'] sid = element['site_id'] model_name = element['model_name'] if name == None: name = "Unamed device" if not sid is None: snmp_resp = cgx.get.snmpagents(site_id=sid,element_id=elem_id) snmp_resp = snmp_resp.cgx_content.get('items', None) if snmp_resp: for snmp in snmp_resp: snmp_id = snmp['id'] snmp_description = snmp['description'] if snmp_description == description: resp = cgx.delete.snmpagents(site_id=sid, element_id=elem_id, snmpagent_id=snmp_id) if not resp: print("Error deleting SNMP Agent on " + name) else: print("Deleted SNMP Agent with description: " + description + " on " + name ) return True, "200" def deleteSNMPall(cgx): elem_resp = cgx.get.elements() elem_list = elem_resp.cgx_content.get('items', None) if not elem_resp.cgx_status or not elem_list: logger.info("ERROR: unable to get elements for account '{0}'.".format(cgx_session.tenant_name)) return False for element in elem_list: elem_id = element['id'] name = element['name'] sid = element['site_id'] model_name = element['model_name'] if name == None: name = "Unamed device" if not sid is None: snmp_resp = cgx.get.snmpagents(site_id=sid,element_id=elem_id) snmp_resp = snmp_resp.cgx_content.get('items', None) if snmp_resp: for snmp in snmp_resp: snmp_id = snmp['id'] resp = cgx.delete.snmpagents(site_id=sid, element_id=elem_id, snmpagent_id=snmp_id) if not resp: print("Error deleting SNMP Agent on " + name) else: print("Deleted SNMP Agent on " + name) return True, "200" def go(): ############################################################################ # Begin Script, parse arguments. ############################################################################ # Parse arguments parser = argparse.ArgumentParser(description="{0}.".format(SCRIPT_NAME)) # Allow Controller modification and debug level sets. controller_group = parser.add_argument_group('API', 'These options change how this program connects to the API.') controller_group.add_argument("--controller", "-C", help="Controller URI, ex. " "Alpha: https://api-alpha.elcapitan.cloudgenix.com" "C-Prod: https://api.elcapitan.cloudgenix.com", default=None) controller_group.add_argument("--insecure", "-I", help="Disable SSL certificate and hostname verification", dest='verify', action='store_false', default=True) login_group = parser.add_argument_group('Login', 'These options allow skipping of interactive login') login_group.add_argument("--email", "-E", help="Use this email as User Name instead of prompting", default=None) login_group.add_argument("--pass", <PASSWORD>", help="Use this Password instead of prompting", default=None) debug_group = parser.add_argument_group('Debug', 'These options enable debugging output') debug_group.add_argument("--debug", "-D", help="Verbose Debug info, levels 0-2", type=int, default=0) # Allow Controller modification and debug level sets. config_group = parser.add_argument_group('Config', 'These options change how the configuration is generated.') config_group.add_argument("--destroy", help="DESTROY SNMP agent that matches the description", default=False, action="store_true") config_group.add_argument("--destroyall", help="DESTROY all SNMP agents", default=False, action="store_true") config_group.add_argument("--get", help="Get SNMP agents", default=False, action="store_true") args = vars(parser.parse_args()) destroy = args['destroy'] destroyall = args['destroyall'] get = args['get'] ############################################################################ # Instantiate API ############################################################################ cgx_session = cloudgenix.API(controller=args["controller"], ssl_verify=args["verify"]) # set debug cgx_session.set_debug(args["debug"]) ## # ########################################################################## # Draw Interactive login banner, run interactive login including args above. ############################################################################ print("{0} v{1} ({2})\n".format(SCRIPT_NAME, SCRIPT_VERSION, cgx_session.controller)) # login logic. Use cmdline if set, use AUTH_TOKEN next, finally user/pass from config file, then prompt. # figure out user if args["email"]: user_email = args["email"] elif CLOUDGENIX_USER: user_email = CLOUDGENIX_USER else: user_email = None # figure out password if args["pass"]: user_password = args["pass"] elif CLOUDGENIX_PASSWORD: user_password = <PASSWORD> else: user_password = <PASSWORD> # check for token if CLOUDGENIX_AUTH_TOKEN and not args["email"] and not args["pass"]: cgx_session.interactive.use_token(CLOUDGENIX_AUTH_TOKEN) if cgx_session.tenant_id is None: print("AUTH_TOKEN login failure, please check token.") sys.exit() else: while cgx_session.tenant_id is None: cgx_session.interactive.login(user_email, user_password) # clear after one failed login, force relogin. if not cgx_session.tenant_id: user_email = None user_password = None ############################################################################ # End Login handling, begin script.. ############################################################################ # get time now. curtime_str = datetime.datetime.utcnow().strftime('%Y-%m-%d-%H-%M-%S') # create file-system friendly tenant str. tenant_str = "".join(x for x in cgx_session.tenant_name if x.isalnum()).lower() cgx = cgx_session data = {"description":"Example","tags":None,"v2_config":{"community":"test","enabled":"true"},"v3_config":None} #data = {"description":description,"tags":None,"v2_config":None,"v3_config":{"enabled":true,"users_access":[{"user_name":"Example-SNMP","engine_id":None,"security_level":"auth","auth_type":"md5","auth_phrase":None,"enc_type":"aes","enc_phrase":None}]} if destroy == True: deleteSNMP(cgx, data["description"]) elif destroyall == True: deleteSNMPall(cgx) elif get == True: getSNMP(cgx) else: addSNMP(cgx, data) # end of script, run logout to clear session. cgx_session.get.logout() if __name__ == "__main__": go()
StarcoderdataPython
25160
<filename>mmdet/models/utils/__init__.py from .conv_ws import conv_ws_2d, ConvWS2d from .conv_module import build_conv_layer, ConvModule from .norm import build_norm_layer from .scale import Scale from .weight_init import ( xavier_init, normal_init, uniform_init, kaiming_init, bias_init_with_prob, ) __all__ = [ "conv_ws_2d", "ConvWS2d", "build_conv_layer", "ConvModule", "build_norm_layer", "xavier_init", "normal_init", "uniform_init", "kaiming_init", "bias_init_with_prob", "Scale", ]
StarcoderdataPython
12493
# # # Copyright 2009 HPGL Team # # This file is part of HPGL (High Perfomance Geostatistics Library). # # HPGL is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2 of the License. # # HPGL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along with HPGL. If not, see http://www.gnu.org/licenses/. # from geo import * from sys import * import os import time if not os.path.exists("results/"): os.mkdir("results/") if not os.path.exists("results/medium/"): os.mkdir("results/medium/") #grid = SugarboxGrid(166, 141, 225) #prop = load_cont_property("test_data/BIG_HARD_DATA.INC", -99) grid = SugarboxGrid(166, 141, 20) prop = load_cont_property("test_data/BIG_SOFT_DATA_CON_160_141_20.INC",-99) sgs_params = { "prop": prop, "grid": grid, "seed": 3439275, "kriging_type": "sk", "radiuses": (20, 20, 20), "max_neighbours": 12, "covariance_type": covariance.exponential, "ranges": (10, 10, 10), "sill": 0.4 } for x in xrange(1): time1 = time.time() psgs_result = sgs_simulation(workers_count = x+2, use_new_psgs = True, **sgs_params) time2 = time.time() print "Workers: %s" % (x+2) print "Time: %s" % (time2 - time1) write_property(psgs_result, "results/medium/PSGS_workers_1.inc", "PSIS_MEDIUM_workers_1", -99)
StarcoderdataPython
34464
#!/usr/bin/env python3 # coding=utf-8 import os as os import sys as sys import io as io import traceback as trb import argparse as argp import gzip as gz import operator as op import functools as fnt def parse_command_line(): """ :return: """ parser = argp.ArgumentParser() parser.add_argument('--target', '-t', type=str, dest='target') parser.add_argument('--query', '-q', type=str, dest='query') parser.add_argument('--output', '-o', type=str, dest='output') parser.add_argument('--switch', '-s', action='store_true', default=False, dest='switch', help='Switch target and query in the output') parser.add_argument('--filter', '-f', type=int, dest='filter', default=0, help='Skip blocks smaller than this size. Default: 0') args = parser.parse_args() return args def join_parts(switch, *args): """ :param switch: :param args: tc, ts, te, tstr, bc, qc, qs, qe, qstr :return: """ # had an annoying bug here - passed "(switch,)" instead of "switch" # which always evaluated to True; but did not affect the one file # where I used switch, so maybe introduced the error later...? # anyway, just to be sure here, some manual type checking... assert isinstance(switch, bool), 'Received wrong type for switch: {}'.format(switch) if switch: items = op.itemgetter(*(5, 6, 7, 3, # the new target / original query region 4, # block ID 0, 1, 2, 8)) # the new query / original target region else: items = op.itemgetter(*(0, 1, 2, 3, # the target region 4, # block ID 5, 6, 7, 8)) # the query region joined = '\t'.join(items(args)) return joined def main(): """ :return: """ args = parse_command_line() outbuffer = io.StringIO() bufsize = 0 block_count = 0 block_ids = set() build_block = fnt.partial(join_parts, *(args.switch, )) with open(args.target, 'r') as trgfile: with open(args.query, 'r') as qryfile: while 1: tb = trgfile.readline().strip() qb = qryfile.readline().strip() try: tc, ts, te, tid = tb.split() qc, qs, qe, qid = qb.split() assert tid == qid,\ 'Block mismatch for files {} and {}\nLines {} and {}'.format(os.path.basename(args.target), os.path.basename(args.query), tb, qb) assert tid not in block_ids,\ 'Block ID duplicate in files {} and {}\nLines {} and {}'.format(os.path.basename(args.target), os.path.basename(args.query), tb, qb) tl = int(te) - int(ts) ql = int(qe) - int(qs) assert tl == ql,\ 'Coverage mismatch for files {} and {}\nLines {} and {}'.format(os.path.basename(args.target), os.path.basename(args.query), tb, qb) if tl < args.filter: continue block_count += 1 qstrand = qid.split('_')[-1] #blockline = '\t'.join([tc, ts, te, '+', str(block_count), # qc, qs, qe, qstrand]) blockline = build_block(tc, ts, te, '+', str(block_count), qc, qs, qe, qstrand) bufsize += len(blockline) outbuffer.write(blockline + '\n') if bufsize > 100000: with gz.open(args.output, 'at') as outfile: _ = outfile.write(outbuffer.getvalue()) outfile.flush() outbuffer = io.StringIO() bufsize = 0 except ValueError: break with gz.open(args.output, 'at') as outfile: _ = outfile.write(outbuffer.getvalue()) # head a corrupted gzip once - not sure about the cause... I/O interrupted??? outfile.flush() return if __name__ == '__main__': try: main() except Exception as err: trb.print_exc(file=sys.stderr) sys.stderr.write('\nError: {}\n'.format(str(err))) sys.exit(1) else: sys.exit(0)
StarcoderdataPython
17750
<reponame>omBratteng/mottak import pytest from app.domain.models.Metadatafil import Metadatafil, MetadataType from app.exceptions import InvalidContentType from app.routers.mappers.metadafil import _get_file_content, metadatafil_mapper, _content_type2metadata_type def test__content_type2metadata_type__success(): """ GIVEN the string 'text/xml' as content_type WHEN calling the method _content_type2metadata_type THEN check that return value is MetadataType.XML_METS """ expected = MetadataType.XML_METS actual = _content_type2metadata_type('text/xml') assert actual == expected def test__content_type2metadata_type__failure(): """ GIVEN the string 'text' as content_type WHEN calling the method _content_type2metadata_type THEN check that a InvalidContentType Exception has been raised """ with pytest.raises(InvalidContentType): _content_type2metadata_type('text') def test__get_file_content(testfile, testfile_content): """ GIVEN a file with testdata where the content is an METS/XML file WHEN calling the method _get_file_content THEN check that the returned string is correct """ expected = testfile_content actual = _get_file_content(testfile) assert actual == expected def test_metadatafil_mapper(testfile, testfile_content): """ GIVEN a file with testdata where the content is an METS/XML file WHEN calling the method metadatafil_mapper THEN check that the returned Metadatafil object is correct """ expected = Metadatafil( filnavn="df53d1d8-39bf-4fea-a741-58d472664ce2.xml", type_=MetadataType.XML_METS, innhold=testfile_content) actual = metadatafil_mapper(testfile) assert vars(actual) == vars(expected)
StarcoderdataPython
3254726
#!/usr/bin/python3 # -*- coding: utf-8 -*- import requests import sqlite3 import time import random import sqlite3 sqlite3.connect('weather.db') #ID OW_TEMP OW_HUMIDITY OW_PRESSURE OW_COVER def CREAT_TABLE(): conn = sqlite3.connect('weather.db') print ("Opened database successfully") conn.execute('''CREATE TABLE OPEN_WEATHER (ID INT PRIMARY KEY NOT NULL, TIMESTAMP INT NOT NULL, TEMPERATURE INT NOT NULL, HUMIDITY INT NOT NULL, ATMOSPHERIC INT NOT NULL, CLOUD_COVER TEXT);''') print ("Table created successfully") conn.close() try: CREAT_TABLE() except: pass print("5") Print('4')
StarcoderdataPython
1626400
import requests, json import pandas as pd from dataiku.connector import Connector import importio_utils class ImportIOConnector(Connector): def __init__(self, config): """Make the only API call, which downloads the data""" Connector.__init__(self, config) if self.config['api_url'].startswith('https://api.import.io/'): self.api_version = 'api' elif self.config['api_url'].startswith('https://extraction.import.io/'): self.api_version = 'extraction' else: raise Exception( 'It looks like this URL is not an API URL. URLs to call the API (and get a json response) start with "https://api.import.io" .') print '[import.io connector] calling API...' response = requests.get(self.config['api_url']) print '[import.io connector] got response' try: self.json = response.json() except Exception as e: print e print 'response was:\n', response.text raise def get_read_schema(self): if self.api_version == 'api': columns = importio_utils.convert_schema(self.json['outputProperties']) return {"columns":columns} else: return None def generate_rows(self, dataset_schema=None, dataset_partitioning=None, partition_id=None, records_limit = -1): if self.api_version == 'api': for row in self.json['results']: yield row else: df = pd.DataFrame(self.json['extractorData']['data'][0]['group']) for col in df.columns: lengths = df[col].apply(lambda x: len(x) if type(x) == list else 0) if lengths.max() == 1: df[col] = df[col].apply(lambda x: x[0] if type(x) == list else {}) keys = df[col].apply(lambda x: x.keys()) for key in set([key for line in keys for key in line]): # drop duplicates df[col + '_' + key] = df[col].apply(lambda x: x.get(key,'')) del df[col] else: df[col] = df[col].apply(json.dumps) for row in df.to_dict(orient='records'): yield row
StarcoderdataPython
1607389
<filename>map.py class Map: width = 0 height = 0 max_lvl = 0 detail = None def __init__(self): self.width = 16 self.height = 12 self.max_lvl = 3 self.detail = [[[0 for col in range(self.width)]for row in range(self.height)] for x in range(self.max_lvl)] self.detail[0] = [[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1], [1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1], [1,3,0,0,1,1,1,1,1,1,1,1,1,1,1,1], [1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1], [1,2,0,0,1,1,1,1,1,1,1,1,1,1,1,1], [1,0,4,0,0,1,1,1,1,1,1,1,1,1,1,1], [1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]] self.detail[1] = [[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1], [1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1], [1,1,1,1,1,0,0,0,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,2,3,1,1,0,0,0,0,0,1], [1,1,1,1,1,0,0,1,1,1,0,2,0,1,1,1], [1,1,1,1,1,2,0,0,4,0,0,0,0,1,1,1], [1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1], [1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1], [1,1,1,1,1,1,3,0,1,1,1,1,0,1,1,1], [1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]] self.detail[2] = [[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,3,0,0,0,1,0,1,1,1], [1,1,1,0,0,0,0,0,1,0,0,1,0,1,1,1], [1,1,1,0,1,0,1,0,0,0,1,0,0,1,1,1], [1,1,1,0,3,0,0,1,0,0,1,0,0,1,1,1], [1,1,1,0,1,0,0,1,2,1,1,2,0,1,1,1], [1,1,1,0,0,0,1,0,0,0,0,0,0,1,1,1], [1,1,1,1,0,0,1,0,4,0,0,0,1,1,1,1], [1,1,1,0,0,1,1,0,0,0,1,1,1,1,1,1], [1,1,1,0,0,0,2,0,0,0,0,3,0,1,1,1], [1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]] def get_lvl(self, x): return self.detial[x] def get_max_lvl(self): return self.max_lvl
StarcoderdataPython
1691511
class Config: DEBUG = True
StarcoderdataPython
1711337
""" Test wrapper on FMCalcs with friendlier data structures and illustrative reinsurance functaionality. """ import argparse import itertools import json import os import shutil import subprocess from collections import namedtuple from tabulate import tabulate import pandas as pd DEDUCTIBLE_AND_LIMIT_CALCRULE_ID = 1 FRANCHISE_DEDUCTIBLE_AND_LIMIT_CALCRULE_ID = 3 DEDUCTIBLE_ONLY_CALCRULE_ID = 12 DEDUCTIBLE_AS_A_CAP_ON_THE_RETENTION_OF_INPUT_LOSSES_CALCRULE_ID = 10 DEDUCTIBLE_AS_A_FLOOR_ON_THE_RETENTION_OF_INPUT_LOSSES_CALCRULE_ID = 11 DEDUCTIBLE_LIMIT_AND_SHARE_CALCRULE_ID = 2 DEDUCTIBLE_AND_LIMIT_AS_A_PROPORTION_OF_LOSS_CALCRUKE_ID = 5 DEDUCTIBLE_WITH_LIMIT_AS_A_PROPORTION_OF_LOSS_CALCRUKE_ID = 9 LIMIT_ONLY_CALCRULE_ID = 14 LIMIT_AS_A_PROPORTION_OF_LOSS_CALCRULE_ID = 15 DEDUCTIBLE_AS_A_PROPORTION_OF_LOSS_CALCRULE_ID = 16 NO_ALLOCATION_ALLOC_ID = 0 ALLOCATE_TO_ITEMS_BY_GUL_ALLOC_ID = 1 ALLOCATE_TO_ITEMS_BY_PREVIOUS_LEVEL_ALLOC_ID = 2 BUILDINGS_COVERAGE_TYPE_ID = 1 CONTENTS_COVERAGE_TYPE_ID = 2 TIME_COVERAGE_TYPE_ID = 3 PERIL_WIND = 1 GUL_INPUTS_FILES = [ 'coverages', 'gulsummaryxref', 'items'] IL_INPUTS_FILES = [ 'fm_policytc', 'fm_profile', 'fm_programme', 'fm_xref', 'fmsummaryxref'] OPTIONAL_INPUTS_FILES = [ 'events'] CONVERSION_TOOLS = { 'coverages': 'coveragetobin', 'events': 'evetobin', 'fm_policytc': 'fmpolicytctobin', 'fm_profile': 'fmprofiletobin', 'fm_programme': 'fmprogrammetobin', 'fm_xref': 'fmxreftobin', 'fmsummaryxref': 'fmsummaryxreftobin', 'gulsummaryxref': 'gulsummaryxreftobin', 'items': "itemtobin"} COVERAGE_TYPES = [ BUILDINGS_COVERAGE_TYPE_ID, CONTENTS_COVERAGE_TYPE_ID, TIME_COVERAGE_TYPE_ID] PERILS = [PERIL_WIND] """ Ktools FM File Structure --------------------------------------------------------------------------------------------------- items item_id int Identifier of the exposure item coverage_id int Identifier of the coverage areaperil_id int Identifier of the locator and peril vulnerability_id int Identifier of the vulnerability distribution group_id int Identifier of the correlaton group --------------------------------------------------------------------------------------------------- coverages coverage_id int Identifier of the coveragegenerate tiv float The total insured value of the coverage --------------------------------------------------------------------------------------------------- gulsummaryxref coverage_id int Identifier of the coverage summary_id int Identifier of the summary level grouping summaryset_id int Identifier of the summary set --------------------------------------------------------------------------------------------------- fm_programme from_agg_id int Oasis Financial Module from_agg_id level_id int Oasis Financial Module level_id to_agg_id int Oasis Financial Module to_agg_id --------------------------------------------------------------------------------------------------- fm_profile policytc_id int Oasis Financial Module policytc_id calcrule_id int Oasis Financial Module calcrule_id allocrule_id int Oasis Financial Module allocrule_id ccy_id int Oasis Financial Module ccy_id deductible float Deductible limit float Limit share_prop_of_lim float Share/participation as a proportion of limit deductible_prop_of_loss float Deductible as a proportion of loss limit_prop_of_loss float Limit as a proportion of loss deductible_prop_of_tiv float Deductible as a proportion of TIV limit_prop_of_tiv float Limit as a proportion of TIV deductible_prop_of_limit float Deductible as a proportion of limit --------------------------------------------------------------------------------------------------- fm_policytc layer_id int Oasis Financial Module layer_id level_id int Oasis Financial Module level_id agg_id int Oasis Financial Module agg_id policytc_id int Oasis Financial Module policytc_id --------------------------------------------------------------------------------------------------- fmsummaryxref output_id int Identifier of the coverage summary_id int Identifier of the summary level group for one or more output losses summaryset_id int Identifier of the summary set (0 to 9 inclusive) --------------------------------------------------------------------------------------------------- fm_xref output_id int Identifier of the output group of losses agg_id int Identifier of the agg_id to output layer_id int Identifier of the layer_id to output --------------------------------------------------------------------------------------------------- """ Item = namedtuple( "Item", "item_id coverage_id areaperil_id vulnerability_id group_id") Coverage = namedtuple( "Coverage", "coverage_id tiv") FmProgramme = namedtuple( "FmProgramme", "from_agg_id level_id to_agg_id") FmProfile = namedtuple( "FmProfile", "policytc_id calcrule_id allocrule_id ccy_id deductible limit " + "share_prop_of_lim deductible_prop_of_loss limit_prop_of_loss deductible_prop_of_tiv " + "limit_prop_of_tiv deductible_prop_of_limit") FmPolicyTc = namedtuple( "FmPolicyTc", "layer_id level_id agg_id policytc_id") GulSummaryXref = namedtuple( "GulSummaryXref", "coverage_id summary_id summaryset_id") FmSummaryXref = namedtuple( "FmSummaryXref", "output_id summary_id summaryset_id") FmXref = namedtuple( "FmXref", "output_id agg_id layer_id") XrefDescription = namedtuple( "Description", ("xref_id policy_id location_id coverage_type_id peril_id tiv")) GulRecord = namedtuple( "GulRecord", "event_id item_id sidx loss") class Location(object): def __init__( self, location_id, area_peril_id, vulnerability_id, buildings_value, contents_value, time_value): self.location_id = location_id self.area_peril_id = area_peril_id self.vulnerability_id = vulnerability_id self.buildings_value = buildings_value self.contents_value = contents_value self.time_value = time_value def get_tiv(self, coverage_type_id): switcher = { BUILDINGS_COVERAGE_TYPE_ID: self.buildings_value, CONTENTS_COVERAGE_TYPE_ID: self.contents_value, TIME_COVERAGE_TYPE_ID: self.time_value } return switcher.get(coverage_type_id, 0) class Policy(object): def __init__( self, policy_id, site_limit, blanket_deductible, blanket_limit, locations): self.policy_id = policy_id self.site_limit = site_limit self.blanket_deductible = blanket_deductible self.blanket_limit = blanket_limit self.locations = locations class Treaty(object): def __init__( self): pass class CatXlTreaty(Treaty): """ Layer that applies to entire portfolio. """ def __init__( self, treaty_id, attachment, occurrence_limit, share): self.treaty_id = treaty_id self.attachment = attachment self.occurrence_limit = occurrence_limit self.share = share class LocationFacTreaty(Treaty): """ Layer that applies to a specific location. """ def __init__( self, treaty_id, location_id, attachment, limit, share): self.treaty_id = treaty_id self.location_id = location_id self.attachment = attachment self.limit = limit self.share = share class DirectLayer(object): """ Set of direct policiies. """ def __init__(self, policies): self.policies = policies self.item_ids = list() self.item_tivs = list() self.coverages = pd.DataFrame() self.items = pd.DataFrame() self.fmprogrammes = pd.DataFrame() self.fmprofiles = pd.DataFrame() self.fm_policytcs = pd.DataFrame() self.fm_xrefs = pd.DataFrame() self.xref_descriptions = pd.DataFrame() def generate_oasis_structures(self): coverage_id = 0 item_id = 0 group_id = 0 policy_agg_id = 0 policytc_id = 0 coverages_list = list() items_list = list() fmprogrammes_list = list() fmprofiles_list = list() fm_policytcs_list = list() fm_xrefs_list = list() xref_descriptions_list = list() site_agg_id = 0 for policy in self.policies: policy_agg_id = policy_agg_id + 1 policytc_id = policytc_id + 1 fmprofiles_list.append(FmProfile( policytc_id=policytc_id, calcrule_id=DEDUCTIBLE_AND_LIMIT_CALCRULE_ID, ccy_id=-1, allocrule_id=ALLOCATE_TO_ITEMS_BY_GUL_ALLOC_ID, deductible=policy.blanket_deductible, limit=policy.blanket_limit, share_prop_of_lim=0.0, # Not used deductible_prop_of_loss=0.0, # Not used limit_prop_of_loss=0.0, # Not used deductible_prop_of_tiv=0.0, # Not used limit_prop_of_tiv=0.0, # Not used deductible_prop_of_limit=0.0 # Not used )) fm_policytcs_list.append(FmPolicyTc( layer_id=1, level_id=2, agg_id=policy_agg_id, policytc_id=policytc_id )) for location in policy.locations: group_id = group_id + 1 site_agg_id = site_agg_id + 1 policytc_id = policytc_id + 1 fmprofiles_list.append(FmProfile( policytc_id=policytc_id, calcrule_id=DEDUCTIBLE_AND_LIMIT_CALCRULE_ID, ccy_id=-1, allocrule_id=ALLOCATE_TO_ITEMS_BY_GUL_ALLOC_ID, deductible=0, limit=policy.site_limit, share_prop_of_lim=0.0, # Not used deductible_prop_of_loss=0.0, # Not used limit_prop_of_loss=0.0, # Not used deductible_prop_of_tiv=0.0, # Not used limit_prop_of_tiv=0.0, # Not used deductible_prop_of_limit=0.0 # Not used )) fm_policytcs_list.append(FmPolicyTc( layer_id=1, level_id=1, agg_id=site_agg_id, policytc_id=policytc_id )) fmprogrammes_list.append( FmProgramme( from_agg_id=site_agg_id, level_id=2, to_agg_id=policy_agg_id ) ) for coverage_type_id in COVERAGE_TYPES: tiv = location.get_tiv(coverage_type_id) if tiv > 0: coverage_id = coverage_id + 1 coverages_list.append( Coverage( coverage_id=coverage_id, tiv=tiv )) for peril in PERILS: item_id = item_id + 1 self.item_ids.append(item_id) self.item_tivs.append(tiv) items_list.append( Item( item_id=item_id, coverage_id=coverage_id, areaperil_id=location.area_peril_id, vulnerability_id=location.vulnerability_id, group_id=group_id )) fmprogrammes_list.append( FmProgramme( from_agg_id=item_id, level_id=1, to_agg_id=site_agg_id ) ) fm_xrefs_list.append( FmXref( output_id=item_id, agg_id=item_id, layer_id=1 )) xref_descriptions_list.append(XrefDescription( xref_id=item_id, location_id=location.location_id, coverage_type_id=coverage_type_id, peril_id=peril, policy_id=policy.policy_id, tiv=tiv ) ) self.coverages = pd.DataFrame(coverages_list) self.items = pd.DataFrame(items_list) self.fmprogrammes = pd.DataFrame(fmprogrammes_list) self.fmprofiles = pd.DataFrame(fmprofiles_list) self.fm_policytcs = pd.DataFrame(fm_policytcs_list) self.fm_xrefs = pd.DataFrame(fm_xrefs_list) self.xref_descriptions = pd.DataFrame(xref_descriptions_list) def write_oasis_files(self): self.coverages.to_csv("coverages.csv", index=False) self.items.to_csv("items.csv", index=False) self.fmprogrammes.to_csv("fm_programme.csv", index=False) self.fmprofiles.to_csv("fm_profile.csv", index=False) self.fm_policytcs.to_csv("fm_policytc.csv", index=False) self.fm_xrefs.to_csv("fm_xref.csv", index=False) directory = "direct" if os.path.exists(directory): shutil.rmtree(directory) os.mkdir(directory) input_files = GUL_INPUTS_FILES + IL_INPUTS_FILES for input_file in input_files: conversion_tool = CONVERSION_TOOLS[input_file] input_file_path = input_file + ".csv" if not os.path.exists(input_file_path): continue output_file_path = os.path.join(directory, input_file + ".bin") command = "{} < {} > {}".format( conversion_tool, input_file_path, output_file_path) proc = subprocess.Popen(command, shell=True) proc.wait() if proc.returncode != 0: raise Exception( "Failed to convert {}: {}".format(input_file_path, command)) def apply_fm(self, loss_percentage_of_tiv=1.0, net=False): guls_list = list() for item_id, tiv in itertools.izip(self.item_ids, self.item_tivs): event_loss = loss_percentage_of_tiv * tiv guls_list.append( GulRecord(event_id=1, item_id=item_id, sidx=-1, loss=event_loss)) guls_list.append( GulRecord(event_id=1, item_id=item_id, sidx=1, loss=event_loss)) guls_df = pd.DataFrame(guls_list) guls_df.to_csv("guls.csv", index=False) net_flag = "" if net: net_flag = "-n" command = "gultobin -S 1 < guls.csv | fmcalc -p direct {} | tee ils.bin | fmtocsv > ils.csv".format( net_flag) proc = subprocess.Popen(command, shell=True) proc.wait() if proc.returncode != 0: raise Exception("Failed to run fm") losses_df = pd.read_csv("ils.csv") losses_df.drop(losses_df[losses_df.sidx != 1].index, inplace=True) del losses_df['sidx'] guls_df.drop(guls_df[guls_df.sidx != 1].index, inplace=True) del guls_df['event_id'] del guls_df['sidx'] guls_df = pd.merge( self.xref_descriptions, guls_df, left_on=['xref_id'], right_on=['item_id']) losses_df = pd.merge( guls_df, losses_df, left_on='xref_id', right_on='output_id', suffixes=["_gul", "_il"]) del losses_df['event_id'] del losses_df['output_id'] del losses_df['xref_id'] del losses_df['item_id'] return losses_df class ReinsuranceLayer(object): def __init__(self, name, treaties, items, coverages, xref_descriptions): self.name = name self.treaties = treaties self.coverages = items self.items = coverages self.xref_descriptions = xref_descriptions self.item_ids = list() self.item_tivs = list() self.fmprogrammes = pd.DataFrame() self.fmprofiles = pd.DataFrame() self.fm_policytcs = pd.DataFrame() self.fm_xrefs = pd.DataFrame() def generate_oasis_structures(self): level_1_agg_id = 0 level_2_agg_id = 0 level_3_agg_id = 0 treatytc_id = 0 treaty_layer_id = 0 fmprogrammes_list = list() fmprofiles_list = list() fm_policytcs_list = list() fm_xrefs_list = list() # treatytc_id = treatytc_id + 1 # passthroughtc_id = treatytc_id # fmprofiles_list.append(FmProfile( # policytc_id=passthroughtc_id, # calcrule_id=DEDUCTIBLE_ONLY_CALCRULE_ID, # ccy_id=-1, # allocrule_id=ALLOCATE_TO_ITEMS_BY_PREVIOUS_LEVEL_ALLOC_ID, # deductible=0.0, # limit=0.0, # Not used # share_prop_of_lim=0.0, # Not used # deductible_prop_of_loss=0.0, # Not used # limit_prop_of_loss=0.0, # Not used # deductible_prop_of_tiv=0.0, # Not used # limit_prop_of_tiv=0.0, # Not used # deductible_prop_of_limit=0.0 # Not used # )) treatytc_id = treatytc_id + 1 nolosstc_id = treatytc_id fmprofiles_list.append(FmProfile( policytc_id=nolosstc_id, calcrule_id=LIMIT_ONLY_CALCRULE_ID, ccy_id=-1, allocrule_id=ALLOCATE_TO_ITEMS_BY_PREVIOUS_LEVEL_ALLOC_ID, deductible=0.0, # Not used limit=0.0, share_prop_of_lim=0.0, # Not used deductible_prop_of_loss=0.0, # Not used limit_prop_of_loss=0.0, # Not used deductible_prop_of_tiv=0.0, # Not used limit_prop_of_tiv=0.0, # Not used deductible_prop_of_limit=0.0 # Not used )) level_1_agg_id = level_1_agg_id + 1 noloss_level_1_agg_id = level_1_agg_id fm_policytcs_list.append(FmPolicyTc( layer_id=1, level_id=1, agg_id=noloss_level_1_agg_id, policytc_id=nolosstc_id )) for treaty in self.treaties: level_1_agg_id = level_1_agg_id + 1 treatytc_id = treatytc_id + 1 treaty_layer_id = treaty_layer_id + 1 if type(treaty) == CatXlTreaty: fmprofiles_list.append(FmProfile( policytc_id=treatytc_id, calcrule_id=DEDUCTIBLE_LIMIT_AND_SHARE_CALCRULE_ID, ccy_id=-1, allocrule_id=ALLOCATE_TO_ITEMS_BY_PREVIOUS_LEVEL_ALLOC_ID, deductible=treaty.attachment, limit=treaty.occurrence_limit, share_prop_of_lim=treaty.share, deductible_prop_of_loss=0.0, # Not used limit_prop_of_loss=0.0, # Not used deductible_prop_of_tiv=0.0, # Not used limit_prop_of_tiv=0.0, # Not used deductible_prop_of_limit=0.0 # Not used )) elif type(treaty) == LocationFacTreaty: fmprofiles_list.append(FmProfile( policytc_id=treatytc_id, calcrule_id=DEDUCTIBLE_LIMIT_AND_SHARE_CALCRULE_ID, ccy_id=-1, allocrule_id=ALLOCATE_TO_ITEMS_BY_PREVIOUS_LEVEL_ALLOC_ID, deductible=treaty.attachment, limit=treaty.limit, share_prop_of_lim=treaty.share, deductible_prop_of_loss=0.0, # Not used limit_prop_of_loss=0.0, # Not used deductible_prop_of_tiv=0.0, # Not used limit_prop_of_tiv=0.0, # Not used deductible_prop_of_limit=0.0 # Not used )) fm_policytcs_list.append(FmPolicyTc( layer_id=treaty_layer_id, level_id=1, agg_id=level_1_agg_id, policytc_id=treatytc_id )) if type(treaty) == CatXlTreaty: for __, xref_description in self.xref_descriptions.iterrows(): fmprogrammes_list.append( FmProgramme( from_agg_id=xref_description.xref_id, level_id=1, to_agg_id=level_1_agg_id ) ) elif type(treaty) == LocationFacTreaty: for __, xref_description in self.xref_descriptions.iterrows(): if xref_description.location_id == treaty.location_id: fmprogrammes_list.append( FmProgramme( from_agg_id=xref_description.xref_id, level_id=1, to_agg_id=level_1_agg_id ) ) else: fmprogrammes_list.append( FmProgramme( from_agg_id=xref_description.xref_id, level_id=1, to_agg_id=noloss_level_1_agg_id ) ) print treaty_layer_id for __, xref_description in self.xref_descriptions.iterrows(): for layer_id in range(1, treaty_layer_id + 1): fm_xrefs_list.append( FmXref( output_id=xref_description.xref_id, agg_id=xref_description.xref_id, layer_id=layer_id )) self.fmprogrammes = pd.DataFrame(fmprogrammes_list) self.fmprofiles = pd.DataFrame(fmprofiles_list) self.fm_policytcs = pd.DataFrame(fm_policytcs_list) self.fm_xrefs = pd.DataFrame(fm_xrefs_list) def write_oasis_files(self): self.fmprogrammes.to_csv("fm_programme.csv", index=False) self.fmprofiles.to_csv("fm_profile.csv", index=False) self.fm_policytcs.to_csv("fm_policytc.csv", index=False) self.fm_xrefs.to_csv("fm_xref.csv", index=False) directory = self.name if os.path.exists(directory): shutil.rmtree(directory) os.mkdir(directory) input_files = GUL_INPUTS_FILES + IL_INPUTS_FILES for input_file in input_files: conversion_tool = CONVERSION_TOOLS[input_file] input_file_path = input_file + ".csv" if not os.path.exists(input_file_path): continue output_file_path = os.path.join(directory, input_file + ".bin") command = "{} < {} > {}".format( conversion_tool, input_file_path, output_file_path) proc = subprocess.Popen(command, shell=True) proc.wait() if proc.returncode != 0: raise Exception( "Failed to convert {}: {}".format(input_file_path, command)) def apply_fm(self, input): command = \ "fmcalc -p {0} -n < {1}.bin | tee {0}.bin | fmtocsv > {0}.csv".format( self.name, input) print command proc = subprocess.Popen(command, shell=True) proc.wait() if proc.returncode != 0: raise Exception("Failed to run fm") losses_df = pd.read_csv("{}.csv".format(self.name)) inputs_df = pd.read_csv("{}.csv".format(input)) losses_df.drop(losses_df[losses_df.sidx != 1].index, inplace=True) inputs_df.drop(inputs_df[inputs_df.sidx != 1].index, inplace=True) losses_df = pd.merge( inputs_df, losses_df, left_on='output_id', right_on='output_id', suffixes=('_pre', '_net')) losses_df = pd.merge( self.xref_descriptions, losses_df, left_on='xref_id', right_on='output_id') del losses_df['event_id_pre'] del losses_df['sidx_pre'] del losses_df['event_id_net'] del losses_df['sidx_net'] del losses_df['output_id'] del losses_df['xref_id'] return losses_df class CustomJsonEncoder(json.JSONEncoder): def default(self, o): # Here you can serialize your object depending of its type # or you can define a method in your class which serializes the object if isinstance(o, ( Policy, Location, )): return o.__dict__ # Or another method to serialize it else: return json.JSONEncoder.encode(self, o) mapping = { frozenset(( 'policy_id', 'site_limit', 'blanket_deductible', 'blanket_limit', 'locations')): Policy, frozenset(( 'location_id', 'area_peril_id', 'vulnerability_id', 'buildings_value', 'contents_value', 'time_value')): Location, frozenset(( 'treaty_id', 'location_id', 'attachment', 'limit', 'share')): LocationFacTreaty, frozenset(( 'treaty_id', 'attachment', 'occurrence_limit', 'share')): CatXlTreaty } def class_mapper(d): return mapping[frozenset(d.keys())](**d) parser = argparse.ArgumentParser( description='Run Oasis FM examples with reinsurance.') parser.add_argument( '-n', '--name', metavar='N', type=str, required=True, help='The analysis name. All intermediate files will be "+ \ "saved in a labelled directory.') parser.add_argument( '-p', '--policy_json', metavar='N', type=str, required=True, help='The JSON file containing the direct policies.') parser.add_argument( '-r1', '--ri_1_json', metavar='N', type=str, required=False, help='The JSON file containing the first reinsurance inuring layer.') parser.add_argument( '-r2', '--ri_2_json', metavar='N', type=str, required=False, help='The JSON file containing the second reinsurance inuring layer.') args = parser.parse_args() run_name = args.name policy_json_file = args.policy_json ri_1_json_file = args.ri_1_json ri_2_json_file = args.ri_2_json for filepath in [policy_json_file, ri_1_json_file, ri_2_json_file]: if filepath is None: continue if not os.path.exists(policy_json_file): print "Path does not exist: {}".format(policy_json_file) exit(1) if os.path.exists(run_name): shutil.rmtree(run_name) os.mkdir(run_name) do_ri_1 = ri_1_json_file is not None do_ri_2 = ri_2_json_file is not None with open(policy_json_file) as json_data: policies = json.load(json_data, object_hook=class_mapper) if do_ri_1: with open(ri_1_json_file) as json_data: treaties1 = json.load(json_data, object_hook=class_mapper) if do_ri_2: with open(ri_2_json_file) as json_data: treaties2 = json.load(json_data, object_hook=class_mapper) cwd = os.getcwd() try: os.chdir(run_name) direct_layer = DirectLayer(policies=policies) direct_layer.generate_oasis_structures() direct_layer.write_oasis_files() losses_df = direct_layer.apply_fm(loss_percentage_of_tiv=0.1, net=False) print "Direct layer loss" print tabulate(losses_df, headers='keys', tablefmt='psql', floatfmt=".2f") print "" print "" if do_ri_1: reinsurance_layer = ReinsuranceLayer( name="ri1", treaties=treaties1, items=direct_layer.items, coverages=direct_layer.coverages, xref_descriptions=direct_layer.xref_descriptions ) reinsurance_layer.generate_oasis_structures() reinsurance_layer.write_oasis_files() treaty_losses_df = reinsurance_layer.apply_fm("ils") print "Reinsurance - first inuring layer" print tabulate(treaty_losses_df, headers='keys', tablefmt='psql', floatfmt=".2f") print "" print "" if do_ri_2: reinsurance_layer = ReinsuranceLayer( name="ri2", treaties=treaties2, items=direct_layer.items, coverages=direct_layer.coverages, xref_descriptions=direct_layer.xref_descriptions ) reinsurance_layer.generate_oasis_structures() reinsurance_layer.write_oasis_files() treaty_losses_df = reinsurance_layer.apply_fm("ri1") print "Reinsurance - second inuring layer" print tabulate(treaty_losses_df, headers='keys', tablefmt='psql', floatfmt=".2f") print "" print "" finally: os.chdir(cwd)
StarcoderdataPython
1716510
from django.apps import AppConfig class MetricsCollectorConfig(AppConfig): name = 'metrics_collector'
StarcoderdataPython
1648664
# Copyright 2020, <NAME>, mailto:<EMAIL> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from random import choice, randint from string import ascii_letters def random_str(min_len, max_len, avoid=None, spaces=False): """ Generate a random string of the specified length. Args: min_len: Minimum length of string max_len: Maximum length of string avoid : Optional list of strings to avoid spaces : Whether to include spaces Returns: Random ASCII string """ def rand_ascii(min_len, max_len): return "".join([ choice(ascii_letters) for _x in range(randint(min_len, max_len)) ]) while True: r_str = "" if spaces: while len(r_str) < min_len: r_str += rand_ascii(1, min(6, max_len - len(r_str))) if len(r_str) < (min_len - 1): r_str += " " else: r_str = rand_ascii(min_len, max_len) if not isinstance(avoid, list) or r_str not in avoid: return r_str
StarcoderdataPython
3399889
# Copyright (c) Alibaba Inc. All rights reserved. import cv2 import numpy as np import os from scipy.spatial.distance import cdist import torch class Tracker(object): """ Track the sparse keypoints via their descriptors. """ def __init__(self, max_length, matching_method = 'nearest', cross_check = True, dist_thresh = 0.8, dim_descriptor = 128): self.max_length = max_length self.matching_method = matching_method self.cross_check = cross_check self.dim_descriptor = dim_descriptor self.dist_thresh = dist_thresh self.all_points = [] self.tracks_forward = [] self.tracks_backward = [] for n in range(self.max_length): self.all_points.append(np.zeros([3, 0])) self.tracks_forward.append(np.zeros([2,0], dtype=np.int)) self.tracks_backward.append(np.zeros([2,0], dtype=np.int)) self.prev_desc = np.zeros([dim_descriptor, 0]) self.prev_desc_index = np.zeros([2,0], dtype=np.int) def track(self, points, desc): """ Update all_points, tracks, descriptors using the newly results. points - 3xN array of 2D point observations. desc - dimxN array of dim dimensional descriptors. """ # Remove oldest points and descriptors. self.all_points.pop(0) self.tracks_forward.pop(0) self.tracks_backward.pop(0) reserve_desc_id = (self.prev_desc_index[0, :] != 0) self.prev_desc = self.prev_desc[:, reserve_desc_id] self.prev_desc_index = self.prev_desc_index[:, reserve_desc_id] self.prev_desc_index[0, :] -= 1 # Update the tracks. if points is None or desc is None: # No matching points, update tracks. self.all_points.append(np.zeros((3, 0))) self.tracks_forward.append(np.zeros([2,0], dtype=np.int)) self.tracks_backward.append(np.zeros([2,0], dtype=np.int)) else: correspondence_vector = self.find_correspondence(desc, self.prev_desc) self.all_points.append(points) self.tracks_forward.append(np.zeros([2,points.shape[1]], dtype=np.int) - 1) self.tracks_backward.append(np.zeros([2,points.shape[1]], dtype=np.int) - 1) reserve_desc_id = np.ones(self.prev_desc.shape[1], dtype=np.bool) for i in range(correspondence_vector.shape[0]): if correspondence_vector[i] > -1: reserve_desc_id[correspondence_vector[i]] = False i_frame_prev = self.prev_desc_index[0, correspondence_vector[i]] i_point_prev = self.prev_desc_index[1, correspondence_vector[i]] self.tracks_backward[-1][0, i] = ( i_frame_prev - len(self.all_points) + 1) self.tracks_backward[-1][1, i] = i_point_prev self.tracks_forward[i_frame_prev][0,i_point_prev] = ( len(self.all_points) - i_frame_prev - 1) self.tracks_forward[i_frame_prev][1,i_point_prev] = i self.prev_desc = self.prev_desc[:, reserve_desc_id] self.prev_desc_index = self.prev_desc_index[:, reserve_desc_id] self.prev_desc = np.concatenate((self.prev_desc, desc), axis=1) for i in range(points.shape[1]): self.prev_desc_index = np.concatenate( (self.prev_desc_index, np.array( [[len(self.all_points)-1], [i]], dtype=np.int)), axis=1) return def find_correspondence(self, desc_a, desc_b): correspondence_vector = np.zeros(desc_a.shape[1], dtype=np.int) - 1 if desc_a.shape[1] == 0 or desc_b.shape[1] == 0: return correspondence_vector #distance_matrix = cdist(desc_a.T, desc_b.T) distance_matrix = torch.cdist( torch.tensor(desc_a.astype(np.float32).T).unsqueeze(0).cuda(), torch.tensor(desc_b.astype(np.float32).T).unsqueeze(0).cuda() ).squeeze(0).cpu().numpy() if self.matching_method == 'nearest': min_index_a2b = np.argmin(distance_matrix, axis=1) correspondence_vector[:] = min_index_a2b[:] if self.cross_check: min_index_b2a = np.argmin(distance_matrix, axis=0) all_index_a = np.array([i for i in range(desc_a.shape[1])]) cross_check = (min_index_b2a[min_index_a2b[all_index_a]] == all_index_a) correspondence_vector[:] = -1 correspondence_vector[cross_check] = min_index_a2b[cross_check] if self.dist_thresh > 0: min_distance_a2b = np.min(distance_matrix, axis=1) min_distance_discard = (min_distance_a2b > self.dist_thresh) correspondence_vector[min_distance_discard] = -1 else: print("[Error] now only support nearest matching.") return correspondence_vector def draw_tracks(self, img_rgb): assert(len(img_rgb.shape) == 3) assert(img_rgb.shape[2] == 3) for i_track in range(self.tracks_backward[-1].shape[1]): if self.tracks_backward[-1][1, i_track] > -1: point = (self.all_points[-1][0, i_track], self.all_points[-1][1, i_track]) cv2.circle(img_rgb, point, 1, [0., 0., 255.], -1, lineType=16) i_frame = len(self.all_points) - 1 i_point = i_track track_length = 1 while self.tracks_backward[i_frame][1, i_point] > -1: track_length += 1 i_frame_prev = i_frame + self.tracks_backward[i_frame][0, i_point] i_point_prev = self.tracks_backward[i_frame][1, i_point] if i_frame_prev < 0: break point_prev = (self.all_points[i_frame_prev][0, i_point_prev], self.all_points[i_frame_prev][1, i_point_prev]) cv2.line(img_rgb, point, point_prev, [0., 64., 255.], thickness=1, lineType=16) point = point_prev i_frame = i_frame_prev i_point = i_point_prev return img_rgb
StarcoderdataPython
4836708
"""Developed by: <NAME> 2017 This Module contains the database class that handles all of the data gathering and cleaning. It also contains functions that help us work with our data. """ import os import pandas as pd import numpy as np import sklearn from sklearn import preprocessing, model_selection # from sklearn.model_selection import cross_validate import random import csv import sys def apply_RFECV_mask(mask, *args): """Applies a binary mask to a dataframe to remove columns. Binary mask is created from recursive feature elimination and cross validation and optimizes the generalization of the model Args: :param mask (string): text file containing the binary mask :param *args (pandas dataframe): Dataframes containing columns to mask Returns: :new dataframes (pandas df): new dataframes with columns removed """ assert os.path.isfile(mask), "please pass a string specifying mask location" dir_path = os.path.dirname(os.path.realpath(__file__)) mask = os.path.join(dir_path, mask) # get mask data updated_args = [] with open(mask, 'r') as f: reader = csv.reader(f) column_mask = list(reader)[0] # apply mask to columns column_indexes = [] for dataframe in args: assert len(column_mask) == len(list(dataframe)), 'mask length {} does not match dataframe length {}'.format(len(column_mask), len(list(dataframe))) for i, col in enumerate(column_mask): if col.strip() == 'False': column_indexes.append(i) updated_args.append(dataframe.drop(dataframe.columns[column_indexes], axis=1)) return updated_args class data_base(object): """Handles all data fetching and preparation. Attributes can be assigned to csv files with the assignment operator. Typical use case is to set raw_data to a csv file matching the format found in Input files and then calling clean_raw_data(). This sets the clean_X_data, y_enrichment and target values. From this point you can split the data to train/test the model using our data. To predict your own data, make sure your excel sheet matches the format in <Input_Files/database.csv>. Then you can call db.predict = <your_csv_path>. The X_test and Y_test data will now be your data. Just remove the stratified_data_split from the pipeline because you will now not need to split any data. Args: None Attributes: :self._raw_data (Pandas Dataframe): Holds raw data in the same form as excel file. initialized after fetch_raw_data() is called :self._clean_X_data (Pandas Dataframe): Holds cleaned and prepared X data. :self._Y_enrichment (numpy array): Holds continous Y values :self._X_train (Pandas Dataframe): Holds the X training data :self._X_test (Pandas Dataframe): Holds the X test data :self._Y_train (Pandas Dataframe): Holds the Y training data :self._Y_test (Pandas Dataframe): Holds the T testing data :self._test_accesion_numbers (list): holds the accesion_numbers in the test set """ _ENRICHMENT_SPLIT_VALUE = 1 # enrichment threshold to classify as bound or unbound categorical_data = ['Enzyme Commission Number', 'Particle Size', 'Particle Charge', 'Solvent Cysteine Concentration', 'Solvent NaCl Concentration'] columns_to_drop = ['Protein Length', 'Sequence', 'Enrichment', 'Accesion Number'] def __init__(self): self._raw_data = None self._clean_X_data = None self._Y_enrichment = None self._target = None self._X_train = None self._Y_train = None self._X_test = None self._Y_test = None self._test_accesion_numbers = None # If you want to use our model set this to your csv file using the assignment operator self._predict = None def clean_raw_data(self): """ Cleans the raw data, drops useless columns, one hot encodes, and extracts class information Args, Returns: None """ self.clean_X_data = self.raw_data # Categorize Interprot identifiers n hot encoding self.clean_X_data = multi_label_encode(self.clean_X_data, 'Interprot') # one hot encode categorical data for category in self.categorical_data: self.clean_X_data = one_hot_encode(self.clean_X_data, category) # Grab some useful data before dropping from independent variables self.Y_enrichment = self.clean_X_data['Enrichment'] accesion_numbers = self.clean_X_data['Accesion Number'] # drop useless columns for column in self.columns_to_drop: self.clean_X_data = self.clean_X_data.drop(column, 1) self.clean_X_data = fill_nan(self.clean_X_data, 'Protein Abundance') self.clean_X_data = normalize_and_reshape(self.clean_X_data, accesion_numbers) self._target = classify(self.Y_enrichment, self._ENRICHMENT_SPLIT_VALUE) #enrichment or nsaf self.X_train = self.clean_X_data self.Y_train = self.target def clean_user_test_data(self, user_data): """This method makes it easy for other people to make predictions on their data. called by assignment operator when users set db.predict = <path_to_csv> Args: :param user_data: users data they wish to predict Returns: None """ # Categorize Interprot identifiers n hot encoding user_data = multi_label_encode(user_data, 'Interprot') # one hot encode categorical data for category in self.categorical_data: user_data = one_hot_encode(user_data, category) # Grab some useful data before dropping from independant variables self.Y_test = user_data['Enrichment'] accesion_numbers = user_data['Accesion Number'] for column in self.columns_to_drop: user_data = user_data.drop(column, 1) user_data = fill_nan(user_data, 'Protein Abundance') self.X_test = normalize_and_reshape(user_data, accesion_numbers) self.Y_test = classify(self.Y_test, self._ENRICHMENT_SPLIT_VALUE) # enrichment or nsaf # Get accession number self.test_accesion_numbers = self.X_test['Accesion Number'] self.X_train = self.X_train.drop('Accesion Number', 1) self.X_test = self.X_test.drop('Accesion Number', 1) def stratified_data_split(self, test_size=0.0): """Randomized stratified shuffle split that sets training and testing data Args: :param test_size (float): The percentage of data to use for testing Returns: None """ assert 1.0 >= test_size >= 0.0, "test_size must be between 0 and 1" assert self.predict is None, "Remove stratified_data_split() if using your own data" self.X_train, self.X_test, self.Y_train, self.Y_test = model_selection.train_test_split(self.clean_X_data, self.target, test_size = test_size, stratify=self.target, random_state=int((random.random()*100))) self.test_accesion_numbers = self.X_test['Accesion Number'] self.X_train = self.X_train.drop('Accesion Number', 1) self.X_test = self.X_test.drop('Accesion Number', 1) @staticmethod def fetch_raw_data(enm_database): """Fetches enm-protein data from a csv file called by assignment operator for db.raw_data Args: :param enm_database (str): path to csv database Returns: None """ assert os.path.isfile(enm_database), "please pass a string specifying database location" dir_path = os.path.dirname(os.path.realpath(__file__)) enm_database = os.path.join(dir_path, enm_database) try: raw_data = pd.read_csv(enm_database) except ValueError: raise ValueError("File is not a valid csv") return raw_data @property def X_train(self): if self._X_train is None: raise ValueError("Initialize X_train by calling stratified_data_split()") else: return self._X_train @property def X_test(self): if self._X_test is None: raise ValueError("Initialize X_test by calling stratified_data_split()") else: return self._X_test @property def Y_train(self): if self._Y_train is None: raise ValueError("Initialize Y_train by calling stratified_data_split()") else: return self._Y_train @property def Y_test(self): return self._Y_test @property def raw_data(self): if self._raw_data is None: raise ValueError("Initialize raw data by setting raw_data=<path.csv>") return self._raw_data @property def clean_X_data(self): if self._clean_X_data is None: raise ValueError("Initialize clean_X_data by calling clean_data()") else: return self._clean_X_data @property def Y_enrichment(self): if self._Y_enrichment is None: raise ValueError("Initialize Y_enrichment by calling clean_data()") else: return self._Y_enrichment @property def target(self): if self._target is None: raise ValueError("Initialize target by calling clean_data()") else: return self._target @property def test_accesion_numbers(self): if self._test_accesion_numbers is None: raise ValueError("Initialize test_accesion_numbers by calling stratified_data_split()") else: return self._test_accesion_numbers @property def predict(self): return self._predict @X_train.setter def X_train(self, path): if isinstance(path, str) and os.path.isfile(path): # If trying to set to value from excel self._X_train = fetch_raw_data(path) else: # If trying to set to already imported array self._X_train = path @X_test.setter def X_test(self, path): if isinstance(path, str) and os.path.isfile(path): # If trying to set to value from excel self._X_test = fetch_raw_data(path) else: # If trying to set to already imported array self._X_test = path @Y_train.setter def Y_train(self, path): if isinstance(path, str) and os.path.isfile(path): # If trying to set to value from excel self._Y_train = fetch_raw_data(path) else: # If trying to set to already imported array self._Y_train = path @Y_test.setter def Y_test(self, path): if isinstance(path, str) and os.path.isfile(path): # If trying to set to value from excel self._Y_test = fetch_raw_data(path) else: # If trying to set to already imported array self._Y_test = path @raw_data.setter def raw_data(self, enm_database): if isinstance(enm_database, str) and os.path.isfile(enm_database): self._raw_data = self.fetch_raw_data(enm_database) else: self._raw_data = enm_database @clean_X_data.setter def clean_X_data(self, path): if isinstance(path, str) and os.path.isfile(path): # If trying to set to value from excel self.clean_X_data = fetch_raw_data(path) else: # If trying to set to already imported array self._clean_X_data = path @Y_enrichment.setter def Y_enrichment(self, path): if isinstance(path, str) and os.path.isfile(path): # If trying to set to value from excel self._Y_enrichment = fetch_raw_data(path) else: # If trying to set to already imported array self._Y_enrichment = path @test_accesion_numbers.setter def test_accesion_numbers(self, path): if isinstance(path, str) and os.path.isfile(path): # If trying to set to value from excel self._Y_enrichment = fetch_raw_data(path) else: # If trying to set to already imported array self._test_accesion_numbers = path @predict.setter def predict(self, path): if os.path.isfile(path): self._predict = self.fetch_raw_data(path) self._predict = self.clean_user_test_data(self._predict) else: self._predict = path def normalize_and_reshape(data, labels): """Normalize and reshape the data by columns while preserving labels information Args: :param data (pandas df): The data to normalize :param labels (pandas series): The column labels Returns: :param data (pandas df): normalized dataframe with preserved column labels """ norm_df = preprocessing.MinMaxScaler().fit_transform(data) data = pd.DataFrame(norm_df,columns=list(data)) data = pd.concat([labels, data], axis=1) data.reset_index(drop=True, inplace=True) return data def classify(data, cutoff): """ This function classifies continous data. In our case we classify particles as bound or unbound Args: :param data (array): array of continous data :param cutoff (float): cutoff value for classification Returns: :classified_data(np.array): classified data """ if not isinstance(data, np.ndarray): try: data = np.array(data) except TypeError: print("data could not be converted to type: numpy array") classified_data = np.empty((len(data))) for i, val in enumerate(data): if float(val) >= float(cutoff): classified_data[i] = 1 else: classified_data[i] = 0 return classified_data def fill_nan(data, column): """ Fills nan values with mean in specified column. Args: :param data (pandas Dataframe): Dataframe containing column with nan values :param column (String): specifying column to fill_nans Returns: :data (pandas Dataframe): Containing the column with filled nan values """ assert isinstance(data, pd.DataFrame), 'data argument needs to be pandas dataframe' assert isinstance(column, str), 'Column must be a string' count = 0 total = 0 for val in data[column]: if not np.isnan(val): count += 1 total += val data[column] = data[column].fillna(total/count) return data def one_hot_encode(dataframe, category): """This function converts categorical variables into one hot vectors Args: :param dataframe (pandas Dataframe): Dataframe containing column to be encoded :param category (String): specifying the column to encode Returns: :dataframe (Pandas Dataframe): With the specified column now encoded into a one hot representation """ assert isinstance(dataframe, pd.DataFrame), 'data argument needs to be pandas dataframe' dummy = pd.get_dummies(dataframe[category], prefix=category) dataframe = pd.concat([dataframe, dummy], axis=1) dataframe.drop(category, axis=1, inplace=True) return dataframe def multi_label_encode(dataframe, column): """This function is used as a multilabel encoder for the Interprot numbers in the database. The interprot numbers are seperated by a semi-colon. We use a multi label encoder because a protein can have several function domains. This injects a multi-hot style encoding into the database Args: :param dataframe (Pandas Dataframe): Dataframe containing protein data :param column: (String): Name of column to be multi-label-encoded Returns: :new_dataframe (Pandas Dataframe): With new multi label columns """ dataframe.reset_index(drop=True, inplace=True) interprot_identifiers = [] protein_ips = {} for row, iprot in enumerate(dataframe[column].values): ip_list = [i for i in iprot.split(';') if i != ''] protein_ips[row] = [] for ip in ip_list: interprot_identifiers.append(ip) protein_ips[row].append(ip) categorical_df = pd.DataFrame(index=np.arange(dataframe.shape[0]), columns=set(interprot_identifiers)) categorical_df = categorical_df.fillna(0) for key, val in protein_ips.items(): for v in val: if v != 0: # categorical_df.set_value(key, v, 1) categorical_df.at[key, v] = 1 dataframe = dataframe.drop(column, 1) new_dataframe = pd.concat([dataframe, categorical_df], axis=1) return new_dataframe def clean_print(obj): """ Prints the JSON in a clean format for all my Biochemistry friends Args: :param obj (object): Any object you wish to print in readable format Returns: None """ if isinstance(obj, dict): for key, val in obj.items(): if hasattr(val, '__iter__'): print("\n" + key) clean_print(val) else: print('%s : %s' % (key, val)) elif isinstance(obj, list): for val in obj: if hasattr(val, '__iter__'): clean_print(val) else: print(val) else: if isinstance(obj, pd.DataFrame): clean_print(obj.to_dict(orient='records')) else: print(str(obj) + "\n") def to_excel(classification_information): """ Prints model output to an excel file Args: :classification_information (numpy array): Information about results >classification_information = { 'all_predict_proba' : np.empty([TOTAL_TESTED_PROTEINS], dtype=float), 'all_true_results' : np.empty([TOTAL_TESTED_PROTEINS], dtype=int), 'all_accesion_numbers' : np.empty([TOTAL_TESTED_PROTEINS], dtype=str), 'all_particle_information' : np.empty([2, TOTAL_TESTED_PROTEINS], dtype=int), 'all_solvent_information' : np.empty([3, TOTAL_TESTED_PROTEINS], dtype=int) } Returns: None """ with open('prediction_probability.csv', 'w') as file: file.write('Protein Accesion Number, Particle Type, Solvent Conditions, True Bound Value, Predicted Bound Value, Predicted Probability of Being Bound, Properly Classified\n') for pred, true_val, protein, particle_s, particle_c, cys, salt8, salt3, in zip(classification_information['all_predict_proba'], classification_information['all_true_results'], classification_information['all_accesion_numbers'], classification_information['all_particle_information'][0], classification_information['all_particle_information'][1], classification_information['all_solvent_information'][0], classification_information['all_solvent_information'][1], classification_information['all_solvent_information'][2] ): bound = 'no' predicted_bound = 'no' properly_classified = 'no' particle_charge = 'negative' particle_size = '10nm' solvent = '10 mM NaPi pH 7.4' if int(round(pred)) == true_val: properly_classified = 'yes' if true_val == 1: bound = 'yes' if int(round(pred)) == 1: predicted_bound = 'yes' if particle_s == 0: particle_size = '100nm' if particle_c == 1: particle_charge = 'positive' if particle_size == '10nm' and particle_charge == 'positive': particle = '(+) 10 nm AgNP' if particle_size == '10nm' and particle_charge == 'negative': particle = '(-) 10 nm AgNP' if particle_size == '100nm' and particle_charge == 'negative': particle = '(-) 100 nm AgNP' if cys == 1: solvent = '10 mM NaPi pH 7.4 + 0.1 mM cys' if salt8 == 1: solvent = '10 mM NaPi pH 7.4 + 0.8 mM NaCl' if salt3 == 1: solvent = '10 mM NaPi pH 7.4 + 3.0 mM NaCl' file.write('{}, {}, {}, {}, {}, {}, {}\n'.format(protein, particle, solvent, bound, predicted_bound,round(pred, 2), properly_classified)) def hold_in_memory(classification_information, metrics, iterations, test_size): """Holds classification data in memory to be exported to excel Args: :classification_information (dict): container for all the classification_information from all the runs :metrics (tuple): information from the current test set to add to classification_information :iterations (int): The current test iterations :test_size (int): The amount of values in the current test set Returns: None """ i = iterations TEST_SIZE = test_size # 10% of training data is used for testing ceil(10% of 3012)=302 PARTICLE_SIZE = 0 PARTICLE_CHARGE = 1 SOLVENT_CYS = 0 SOLVENT_SALT_08 = 1 SOLVENT_SALT_3 = 2 # Information is placed into numpy arrays as blocks classification_information['all_predict_proba'][i*TEST_SIZE:(i*TEST_SIZE)+TEST_SIZE] = metrics[0] classification_information['all_true_results'][i*TEST_SIZE:(i*TEST_SIZE)+TEST_SIZE] = metrics[1] classification_information['all_accesion_numbers'][i*TEST_SIZE:(i*TEST_SIZE)+TEST_SIZE] = metrics[2] classification_information['all_particle_information'][PARTICLE_CHARGE][i*TEST_SIZE:(i*TEST_SIZE)+TEST_SIZE] = metrics[3]['Particle Charge_1'] classification_information['all_particle_information'][PARTICLE_SIZE][i*TEST_SIZE:(i*TEST_SIZE)+TEST_SIZE] = metrics[3]['Particle Size_10'] classification_information['all_solvent_information'][SOLVENT_CYS][i*TEST_SIZE:(i*TEST_SIZE)+TEST_SIZE] = metrics[3]['Solvent Cysteine Concentration_0.1'] classification_information['all_solvent_information'][SOLVENT_SALT_08][i*TEST_SIZE:(i*TEST_SIZE)+TEST_SIZE] = metrics[3]['Solvent NaCl Concentration_0.8'] classification_information['all_solvent_information'][SOLVENT_SALT_3][i*TEST_SIZE:(i*TEST_SIZE)+TEST_SIZE] = metrics[3]['Solvent NaCl Concentration_3.0'] if __name__ == "__main__": db = data_base() db.clean_data()
StarcoderdataPython
1742546
<filename>tools/reindex/reindex.py import argparse import time import reindex_helpers from config import Config from elasticsearch import Elasticsearch from elasticsearch_dsl import Search #load the args & config parser = argparse.ArgumentParser("Run the reindex script") parser.add_argument("--sourceindex", "-s", required=True, help="Source index to copy data from.") parser.add_argument("--configfile", "-c", default="config.json", required=False, help="Path to the config file to use.") parser.add_argument("--reqpersec", "-r", type=int, default=-1, required=False, help="Num requests per second to throttle the reindex task.") parser.add_argument("--slices", default="auto", required=False, help="Num of parallel slices to split the reindex task into. 'auto' lets Elasticsearch choose.") parser.add_argument("--verify", "-v", action="store_true", required=False, help="Verify the diff between source and target indices instead of running the reindex") args = parser.parse_args() print() print("Running with arguments:") print(args) print() config = Config.load(args.configfile) print("Using '{0}' as source index and '{1}' as target index.".format(args.sourceindex, config.elasticsearch_index_name)) print() es = Elasticsearch(hosts=[config.elasticsearch_host], verify_certs=config.elasticsearch_verify_certs, timeout=config.elasticsearch_timeout_secs) if args.verify: #verifying the data print ("Verifying data...") print() source_search = Search(using=es, index=args.sourceindex) source_search_query = { "match_all": {}} if config.elasticsearch_query is None else config.elasticsearch_query source_search = source_search.update_from_dict({ "_source": False, "query" : source_search_query }) scan_size = 10000 source_search = source_search.params(size=scan_size) source_total = 0 target_total = 0 source_ids = [] for hit in source_search.scan(): source_total += 1 source_ids.append(hit.meta["id"]) if source_total % scan_size == 0: target_total += reindex_helpers.verify_target_docs(es, config, source_ids, scan_size) source_ids.clear() print("Verified {0} source documents and {1} target documents...".format(source_total, target_total)) time.sleep(0.01) if len(source_ids) > 0: target_total += reindex_helpers.verify_target_docs(es, config, source_ids, scan_size) print() print("Verify complete. Source total: {0}. Target total: {1}. (should be equal after successful reindex)" .format(source_total, target_total)) else: #reindexing the data print("Reindexing data...") print() reindex_body = { "source": { "index": args.sourceindex }, "dest": { "index": config.elasticsearch_index_name } } if config.elasticsearch_query is not None: reindex_body["source"]["query"] = config.elasticsearch_query res = es.reindex(reindex_body, wait_for_completion=False, refresh=True, requests_per_second=args.reqpersec, slices=args.slices) task_id = res["task"] while True: task = es.tasks.get(task_id) status = task["task"]["status"] total = status["total"] created = status["created"] updated = status["updated"] deleted = status["deleted"] processed = created + updated + deleted batches = status["batches"] print("{0} batches complete - processed {1}/{2} documents.".format(batches, processed, total)) if task["completed"] == True: failures = task["response"]["failures"] print() print("Reindexing complete with {0} failure(s).".format(len(failures))) print("Created: {0}; Updated: {1}; Deleted: {2}; Total: {3}".format(created, updated, deleted, processed)) if (len(failures) > 0): print() print("The following failures occurred:") print() for fail in failures: print(fail) break time.sleep(5)
StarcoderdataPython
1733279
<gh_stars>0 def process_media_attribute(attribute, resp, val): if val: if val.startswith('jr://'): pass elif val.startswith('/file/'): val = 'jr:/' + val elif val.startswith('file/'): val = 'jr://' + val elif val.startswith('/'): val = 'jr://file' + val else: val = 'jr://file/' + val resp['corrections'][attribute] = val else: val = None return val def handle_media_edits(request, item, should_edit, resp, lang): if 'corrections' not in resp: resp['corrections'] = {} for attribute in ('media_image', 'media_audio'): if should_edit(attribute): media_path = process_media_attribute(attribute, resp, request.POST.get(attribute)) item._set_media(attribute, lang, media_path)
StarcoderdataPython
68426
import pytest from reversion.models import Version from reversion.revisions import create_revision from djmoney.money import Money from .testapp.models import RevisionedModel @pytest.mark.django_db def test_that_can_safely_restore_deleted_object(): amount = Money(100, "GHS") with create_revision(): instance = RevisionedModel.objects.create(amount=amount) instance.delete() version = Version.objects.get_deleted(RevisionedModel)[0] version.revision.revert() instance = RevisionedModel.objects.get(pk=1) assert instance.amount == amount
StarcoderdataPython
3293062
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'variables': { 'chromium_code': 1, }, 'targets': [ { # GN version: //ui/base:unittests 'target_name': 'ui_base_unittests', 'type': '<(gtest_target_type)', 'dependencies': [ '../../base/base.gyp:base', '../../base/base.gyp:test_support_base', '../../net/net.gyp:net', '../../skia/skia.gyp:skia', '../../testing/gmock.gyp:gmock', '../../testing/gtest.gyp:gtest', '../../third_party/icu/icu.gyp:icui18n', '../../third_party/icu/icu.gyp:icuuc', '../../url/url.gyp:url_lib', '../events/events.gyp:events_base', '../gfx/gfx.gyp:gfx_test_support', '../resources/ui_resources.gyp:ui_resources', '../resources/ui_resources.gyp:ui_test_pak', '../strings/ui_strings.gyp:ui_strings', 'ime/ui_base_ime.gyp:ui_base_ime', 'ui_base.gyp:ui_base', 'ui_base.gyp:ui_base_test_support', ], # iOS uses a small subset of ui. common_sources are the only files that # are built on iOS. 'common_sources' : [ # Note: file list duplicated in GN build. 'ios/cru_context_menu_controller_unittest.mm', 'l10n/l10n_util_mac_unittest.mm', 'l10n/l10n_util_unittest.cc', 'l10n/l10n_util_win_unittest.cc', 'l10n/time_format_unittest.cc', 'layout_unittest.cc', 'models/tree_node_iterator_unittest.cc', 'resource/data_pack_literal.cc', 'resource/data_pack_unittest.cc', 'resource/resource_bundle_unittest.cc', 'resource/resource_bundle_mac_unittest.mm', 'template_expressions_unittest.cc', 'test/run_all_unittests.cc', ], 'all_sources': [ # Note: file list duplicated in GN build. '<@(_common_sources)', 'accelerators/accelerator_manager_unittest.cc', 'accelerators/menu_label_accelerator_util_linux_unittest.cc', 'clipboard/custom_data_helper_unittest.cc', 'cocoa/base_view_unittest.mm', 'cocoa/cocoa_base_utils_unittest.mm', 'cocoa/constrained_window/constrained_window_animation_unittest.mm', 'cocoa/controls/blue_label_button_unittest.mm', 'cocoa/controls/hover_image_menu_button_unittest.mm', 'cocoa/controls/hyperlink_button_cell_unittest.mm', 'cocoa/controls/hyperlink_text_view_unittest.mm', 'cocoa/focus_tracker_unittest.mm', 'cocoa/fullscreen_window_manager_unittest.mm', 'cocoa/hover_image_button_unittest.mm', 'cocoa/menu_controller_unittest.mm', 'cocoa/nscolor_additions_unittest.mm', 'cocoa/nsgraphics_context_additions_unittest.mm', 'cocoa/nsview_additions_unittest.mm', 'cocoa/three_part_image_unittest.mm', 'cocoa/tracking_area_unittest.mm', 'dragdrop/os_exchange_data_provider_aurax11_unittest.cc', 'ime/candidate_window_unittest.cc', 'ime/composition_text_unittest.cc', 'ime/chromeos/character_composer_unittest.cc', 'ime/composition_text_util_pango_unittest.cc', 'ime/input_method_base_unittest.cc', 'ime/input_method_chromeos_unittest.cc', 'ime/remote_input_method_win_unittest.cc', 'ime/win/imm32_manager_unittest.cc', 'ime/win/tsf_input_scope_unittest.cc', 'models/list_model_unittest.cc', 'models/list_selection_model_unittest.cc', 'models/tree_node_model_unittest.cc', 'resource/material_design/material_design_controller_unittest.cc', 'test/data/resource.h', 'test/test_clipboard_unittest.cc', 'test/scoped_fake_nswindow_fullscreen_unittest.mm', 'text/bytes_formatting_unittest.cc', 'touch/selection_bound_unittest.cc', 'user_activity/user_activity_detector_unittest.cc', 'view_prop_unittest.cc', 'webui/web_ui_util_unittest.cc', 'x/selection_requestor_unittest.cc', ], 'include_dirs': [ '../..', ], 'conditions': [ ['OS!="ios"', { 'sources' : [ '<@(_all_sources)' ], }, { # OS=="ios" 'sources' : [ '<@(_common_sources)' ], # The ResourceBundle unittest expects a locale.pak file to exist in # the bundle for English-US. Copy it in from where it was generated # by ui_resources.gyp:ui_test_pak. 'mac_bundle_resources': [ '<(PRODUCT_DIR)/ui/en.lproj/locale.pak', ], 'actions': [ { 'action_name': 'copy_test_data', 'variables': { 'test_data_files': [ 'test/data', ], 'test_data_prefix' : 'ui/base', }, 'includes': [ '../../build/copy_test_data_ios.gypi' ], }, ], }], ['OS == "linux" and use_aura==1 and chromeos==0', { 'sources': [ 'ime/input_method_auralinux_unittest.cc', ] }], ['OS == "win"', { 'sources': [ 'dragdrop/os_exchange_data_win_unittest.cc', 'win/hwnd_subclass_unittest.cc', 'win/open_file_name_win_unittest.cc', ], 'msvs_settings': { 'VCLinkerTool': { 'DelayLoadDLLs': [ 'd2d1.dll', 'd3d10_1.dll', ], 'AdditionalDependencies': [ 'd2d1.lib', 'd3d10_1.lib', ], }, }, 'link_settings': { 'libraries': [ '-limm32.lib', '-loleacc.lib', ], }, # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [ 4267, ], }], ['OS == "android"', { 'dependencies': [ '../../testing/android/native_test.gyp:native_test_native_code', ], 'sources!': [ 'touch/selection_bound_unittest.cc', 'user_activity/user_activity_detector_unittest.cc', ], }], ['use_pango == 1', { 'dependencies': [ '../../build/linux/system.gyp:pangocairo', ], 'conditions': [ ['use_allocator!="none"', { 'dependencies': [ '../../base/allocator/allocator.gyp:allocator', ], }], ], }], ['use_x11==1', { 'dependencies': [ '../../build/linux/system.gyp:x11', '../../tools/xdisplaycheck/xdisplaycheck.gyp:xdisplaycheck', '../events/platform/x11/x11_events_platform.gyp:x11_events_platform', '../gfx/x/gfx_x11.gyp:gfx_x11', ], }], ['OS!="win" or use_aura==0', { 'sources!': [ 'view_prop_unittest.cc', ], }], ['use_x11==1 and use_aura==1', { 'sources': [ 'cursor/cursor_loader_x11_unittest.cc', ], }], ['OS=="mac"', { 'dependencies': [ '../../third_party/mozilla/mozilla.gyp:mozilla', '../events/events.gyp:events_test_support', 'ui_base_tests_bundle', ], 'conditions': [ ['component=="static_library"', { # Needed for mozilla.gyp. 'xcode_settings': {'OTHER_LDFLAGS': ['-Wl,-ObjC']}, }], ], }], ['use_aura==1 or toolkit_views==1', { 'sources': [ 'dragdrop/os_exchange_data_unittest.cc', ], 'dependencies': [ '../events/events.gyp:events', '../events/events.gyp:events_base', '../events/events.gyp:events_test_support', '../events/platform/events_platform.gyp:events_platform', ], }], ['chromeos==1', { 'dependencies': [ '../../chromeos/chromeos.gyp:chromeos', ], 'sources!': [ 'dragdrop/os_exchange_data_provider_aurax11_unittest.cc', 'x/selection_requestor_unittest.cc', ], }], ['use_x11==0', { 'sources!': [ 'ime/composition_text_util_pango_unittest.cc', 'ime/input_method_chromeos_unittest.cc', ], }], ], 'target_conditions': [ ['OS == "ios"', { 'sources/': [ # Pull in specific Mac files for iOS (which have been filtered out # by file name rules). ['include', '^l10n/l10n_util_mac_unittest\\.mm$'], ], }], ], }, ], 'conditions': [ # Mac target to build a test Framework bundle to mock out resource loading. ['OS == "mac"', { 'targets': [ { 'target_name': 'ui_base_tests_bundle', 'type': 'shared_library', 'dependencies': [ '../resources/ui_resources.gyp:ui_test_pak', ], 'includes': [ 'ui_base_tests_bundle.gypi' ], # ui_base_tests_bundle doesn't actually contain a shared library and # therefore should not depend on sanitizer_options or any other # libraries. Adding such a dependency will result in creating a # broken shared library within the bundle. 'conditions': [ ['use_sanitizer_options==1', { 'dependencies!': [ '../../build/sanitizers/sanitizers.gyp:sanitizer_options', ], }], ], }, ], }], ['OS == "android"', { 'targets': [ { 'target_name': 'ui_base_unittests_apk', 'type': 'none', 'dependencies': [ # TODO(tfarina): This is a layer violation and should be removed. # crbug.com/176960 # For now this is here as a temporary band-aid to fix the clobber # issue we are seeing when running this target on Android. # crbug.com/374490 '../../chrome/chrome_resources.gyp:packed_resources', 'ui_base_unittests', ], 'variables': { 'test_suite_name': 'ui_base_unittests', 'isolate_file': 'ui_base_tests.isolate', }, 'includes': [ '../../build/apk_test.gypi' ], }, ], 'conditions': [ ['test_isolation_mode != "noop"', { 'targets': [ { 'target_name': 'ui_base_unittests_apk_run', 'type': 'none', 'dependencies': [ 'ui_base_unittests_apk', ], 'includes': [ '../../build/isolate.gypi', ], 'sources': [ 'ui_base_unittests_apk.isolate', ], }, ], }, ], ], }], ['test_isolation_mode != "noop" and OS != "android"', { 'targets': [ { 'target_name': 'ui_base_unittests_run', 'type': 'none', 'dependencies': [ 'ui_base_unittests', ], 'includes': [ '../../build/isolate.gypi', ], 'sources': [ 'ui_base_unittests.isolate', ], 'conditions': [ ['use_x11 == 1', { 'dependencies': [ '../../tools/xdisplaycheck/xdisplaycheck.gyp:xdisplaycheck', ], }], ], }, ], }], ], }
StarcoderdataPython
3278680
<filename>tests/test_validation.py<gh_stars>0 def test_get_recommendation(client, auth): auth.login() registration = {"username": "Niklas35", "password": "<PASSWORD>", "email": "<EMAIL>"} rv1 = client.post('/register', json=registration) assert rv1.data == b'"Successfully registered and logged in."\n' def test_validation_recommendation_empty(client, auth): auth.login() payload = {} rv = client.post('/recommendation', json=payload) assert rv.status_code == 401 def test_validation_recommendation_first_name(client, auth): auth.register() payload = { "first_name": "Niklas", "address": "Musterweg 21", "occupation": "Employed", "email_address": "<EMAIL>", "children": False } rv = client.post('/recommendation', json=payload) assert rv.status_code == 200 payload = { "first_name": 1, "address": "Musterweg 21", "occupation": "Employed", "email_address": "<EMAIL>", "children": False } rv = client.post('/recommendation', json=payload) assert rv.status_code == 422 assert rv.data == b'{"error":"Expected a str for \'first_name\'."}\n' payload = { "address": "Musterweg 21", "occupation": "Employed", "email_address": "<EMAIL>", "children": False } rv = client.post('/recommendation', json=payload) assert rv.status_code == 422 assert rv.data == b'{"error":"Field \'first_name\' is missing."}\n' def test_validation_recommendation_address(client, auth): auth.register() payload = { "first_name": "Niklas", "address": 1, "occupation": "Employed", "email_address": "<EMAIL>", "children": False } rv = client.post('/recommendation', json=payload) assert rv.status_code == 422 assert rv.data == b'{"error":"Expected a str for \'address\'."}\n' payload = { "first_name": "Niklas", "occupation": "Employed", "email_address": "<EMAIL>", "children": False } rv = client.post('/recommendation', json=payload) assert rv.status_code == 422 assert rv.data == b'{"error":"Field \'address\' is missing."}\n' def test_validation_recommendation_occupation(client, auth): auth.register() payload = { "first_name": "Niklas", "address": "Some street", "occupation": "Wall Street Banker", "email_address": "<EMAIL>", "children": False } rv = client.post('/recommendation', json=payload) assert rv.status_code == 422 def test_validation_recommendation_email(client, auth): auth.register() payload = { "first_name": "Niklas", "address": "Some street", "occupation": "Wall Street Banker", "email_address": "yolo", "children": False } rv = client.post('/recommendation', json=payload) assert rv.status_code == 422 def test_validation_recommendation_children(client, auth): auth.register() payload = { "first_name": "Niklas", "address": "Some street", "occupation": "Student", "email_address": "<EMAIL>", "children": True } rv = client.post('/recommendation', json=payload) assert rv.status_code == 422 def test_validation_recommendation_children2(client, auth): auth.register() payload = { "first_name": "Niklas", "address": "Some street", "occupation": "Student", "email_address": "<EMAIL>", "children": True, "children": 0 } rv = client.post('/recommendation', json=payload) assert rv.status_code == 422 def test_validation_recommendation_children3(client, auth): auth.register() payload = { "first_name": "Niklas", "address": "Some street", "occupation": "Student", "email_address": "<EMAIL>", "children": False, "children": 5 } rv = client.post('/recommendation', json=payload) assert rv.status_code == 422
StarcoderdataPython
3322637
# coding: utf-8 # In[29]: get_ipython().magic('matplotlib inline') # In[30]: import os home_folder = os.path.expanduser("~") print(home_folder) # In[31]: # Change this to the location of your dataset #data_folder = os.path.join(home_folder, "Data", "Ionosphere") #data_filename = os.path.join(data_folder, "ionosphere.data") data_filename = 'data\ionosphere.data' print(data_filename) # In[32]: import csv import numpy as np # Size taken from the dataset and is known X = np.zeros((351, 34), dtype='float') y = np.zeros((351,), dtype='bool') with open(data_filename, 'r') as input_file: reader = csv.reader(input_file) for i, row in enumerate(reader): # Get the data, converting each item to a float data = [float(datum) for datum in row[:-1]] # Set the appropriate row in our dataset X[i] = data # 1 if the class is 'g', 0 otherwise y[i] = row[-1] == 'g' # In[33]: from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=14) print("There are {} samples in the training dataset".format(X_train.shape[0])) print("There are {} samples in the testing dataset".format(X_test.shape[0])) print("Each sample has {} features".format(X_train.shape[1])) # In[34]: from sklearn.neighbors import KNeighborsClassifier estimator = KNeighborsClassifier() # In[35]: estimator.fit(X_train, y_train) # In[38]: y_predicted = estimator.predict(X_test) accuracy = np.mean(y_test == y_predicted) * 100 print("The accuracy is {0:.1f}%".format(accuracy)) # In[18]: from sklearn.cross_validation import cross_val_score # In[39]: ''' Use cross validation: get one final score i) cross_val_score ii) np.mean(cv_score) ''' scores = cross_val_score(estimator, X, y, scoring='accuracy') #default cv=3 print(scores.shape) average_accuracy = np.mean(scores) * 100 print("The average accuracy is {0:.1f}%".format(average_accuracy)) # In[44]: avg_scores = [] all_scores = [] parameter_values = list(range(1, 21)) # Including 20 for n_neighbors in parameter_values: estimator = KNeighborsClassifier(n_neighbors=n_neighbors) scores = cross_val_score(estimator, X, y, scoring='accuracy') avg_scores.append(np.mean(scores)) all_scores.append(scores) print((avg_scores)) print((all_scores)) # In[21]: get_ipython().magic('pinfo plt.plot') # In[22]: from matplotlib import pyplot as plt plt.figure(figsize=(32,20)) plt.plot(parameter_values, avg_scores, '-o', linewidth=5, markersize=24) #plt.axis([0, max(parameter_values), 0, 1.0]) # In[23]: # loop two lists simultaneously for parameter, scores in zip(parameter_values, all_scores): n_scores = len(scores) plt.plot([parameter] * n_scores, scores, '-o') # In[24]: plt.plot(parameter_values, all_scores, 'bx') # In[25]: from collections import defaultdict all_scores = defaultdict(list) #an list of list, holding 10 cv scores for each i in n_neighbors parameter_values = list(range(1, 21)) # Including 20 for n_neighbors in parameter_values: for i in range(100): estimator = KNeighborsClassifier(n_neighbors=n_neighbors) scores = cross_val_score(estimator, X, y, scoring='accuracy', cv=10) #return a list of scores all_scores[n_neighbors].append(scores) for parameter in parameter_values: scores = all_scores[parameter] n_scores = len(scores) plt.plot([parameter] * n_scores, scores, '-o') # In[26]: plt.plot(parameter_values, avg_scores, '-o') # In[27]: from sklearn.preprocessing import MinMaxScaler # In[ ]:
StarcoderdataPython
4825863
<gh_stars>0 # encoding: utf-8 import mimetypes import re from django.core.urlresolvers import reverse def order_name(name): """order_name -- Limit a text to 20 chars length, if necessary strips the middle of the text and substitute it for an ellipsis. name -- text to be limited. """ name = re.sub(r'^.*/', '', name) if len(name) <= 37: return name return name[:37] + "..." + name[-7:] def serialize(instance, file_attr='file'): """serialize -- Serialize a File instance into a dict. instance -- File instance file_attr -- attribute name that contains the FileField or ImageField """ obj = getattr(instance, file_attr) return { 'url': obj.url, 'name': order_name(obj.name), #'type': mimetypes.guess_type(obj.path)[0] or 'image/png', 'type': mimetypes.guess_type(obj.path)[0], 'thumbnailUrl': obj.url, 'size': obj.size, 'deleteUrl': reverse('upload-delete', args=[instance.pk]), 'deleteType': 'DELETE', }
StarcoderdataPython
1681444
import matplotlib.pyplot as plt import numpy as np import pandas as pd from epimargin.estimators import analytical_MPVS from epimargin.etl.commons import download_data from epimargin.etl.covid19india import data_path, get_time_series, load_all_data from epimargin.model import Model, ModelUnit from epimargin.plots import PlotDevice, plot_RR_est, plot_T_anomalies from epimargin.smoothing import convolution from epimargin.utils import cwd # model details CI = 0.99 smoothing = 10 if __name__ == "__main__": root = cwd() data = root/"data" output = root/"output" if not data.exists(): data.mkdir() if not output.exists(): output.mkdir() # define data versions for api files paths = { "v3": [data_path(i) for i in (1, 2)], "v4": [data_path(i) for i in (3, 4, 5, 6, 7, 8)] } # download data from india covid 19 api for target in paths['v3'] + paths['v4']: download_data(data, target) df = load_all_data( v3_paths = [data/filepath for filepath in paths['v3']], v4_paths = [data/filepath for filepath in paths['v4']] ) data_recency = str(df["date_announced"].max()).split()[0] run_date = str(pd.Timestamp.now()).split()[0] ts = get_time_series(df[df.detected_state == "Delhi"]) ( dates, RR_pred, RR_CI_upper, RR_CI_lower, T_pred, T_CI_upper, T_CI_lower, total_cases, new_cases_ts, anomalies, anomaly_dates ) = analytical_MPVS(ts.delta[ts.delta > 0], CI = CI, smoothing = convolution(window = smoothing)) #= analytical_MPVS(ts.Hospitalized[ts.Hospitalized > 0], CI = CI, smoothing = lambda ts: box_filter(ts, smoothing, 10)) np.random.seed(33) delhi = Model([ModelUnit("Delhi", 18_000_000, I0 = T_pred[-1], RR0 = RR_pred[-1], mobility = 0)]) delhi.run(14, np.zeros((1,1))) t_pred = [dates[-1] + pd.Timedelta(days = i) for i in range(len(delhi[0].delta_T))] plot_RR_est(dates, RR_pred, RR_CI_upper, RR_CI_lower, CI) PlotDevice().title("Delhi: Reproductive Number Estimate").xlabel("Date").ylabel("Rt", rotation=0, labelpad=20) plt.show() delhi[0].lower_CI[0] = T_CI_lower[-1] delhi[0].upper_CI[0] = T_CI_upper[-1] print(delhi[0].delta_T) print(delhi[0].lower_CI) print(delhi[0].upper_CI) plot_T_anomalies(dates, T_pred, T_CI_upper, T_CI_lower, new_cases_ts, anomaly_dates, anomalies, CI) plt.scatter(t_pred, delhi[0].delta_T, color = "tomato", s = 4, label = "Predicted Net Cases") plt.fill_between(t_pred, delhi[0].lower_CI, delhi[0].upper_CI, color = "tomato", alpha = 0.3, label="99% CI (forecast)") plt.legend() PlotDevice().title("Delhi: Net Daily Cases").xlabel("Date").ylabel("Cases") plt.show() pd.DataFrame(data={ "date" : dates, "Rt" : RR_pred, "Rt_CI_upper": RR_CI_upper, "Rt_CI_lower": RR_CI_lower }).set_index("date").to_csv(output/"Rt.csv") pd.DataFrame(data={ "date" : list(dates) + t_pred[1:], "net_daily_cases" : T_pred + delhi[0].delta_T[1:], "net_daily_cases_CI_upper": T_CI_upper + delhi[0].upper_CI[1:], "net_daily_cases_CI_lower": T_CI_lower + delhi[0].lower_CI[1:] }).set_index("date").to_csv(output/"dT.csv")
StarcoderdataPython
3321096
import math import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageFilter from skimage import io, measure from scipy.cluster.vq import kmeans # can identify up to 255 objects def mark_objects(image: Image.Image): new_image = image.copy() current = 0 free_labels = [] pixels = new_image.load() for x in range(0, new_image.size[0]): for y in range(0, new_image.size[1]): kn = y - 1 if kn <= 0: B = 0 else: B = pixels[x, kn] km = x - 1 if km <= 0: C = 0 else: C = pixels[km, y] A = pixels[x, y] if A != 0: if B == 0 and C == 0: if len(free_labels) > 0: label = free_labels.pop() else: current = current + 1 label = current pixels[x, y] = label elif B != 0 and C == 0: pixels[x, y] = B elif B == 0 and C != 0: pixels[x, y] = C elif B != 0 and C != 0: pixels[x, y] = B if B != C: change_label(new_image, C, B) free_labels.append(C) return new_image def change_label(image, old_label: int, new_label: int): pixels = image.load() for x in range(image.size[0]): for y in range(image.size[1]): if pixels[x, y] == old_label: pixels[x, y] = new_label return def binarization(image, threshold): pixels = image.load() for i in range(image.size[0]): for j in range(image.size[1]): pixels[i, j] = 0 if pixels[i, j] <= threshold else 255 return def generate_unique_values(image, transform_colors=False): matrix = np.array(image.getdata()).reshape(image.size) # list of all the unique labels, associated with different objects # i.e. their colors in grayscale image unique_labels = np.unique(matrix) # remove zero, because it is a background unique_labels = np.delete(unique_labels, 0) if len(unique_labels) < 25 and transform_colors: for i in range(0, len(unique_labels)): change_label(image, int(unique_labels[i]), int(unique_labels[i] * 10)) unique_labels[i] *= 10 return unique_labels def plot_results(vectors, centroids, amount_of_clusters): ox = [vector[0] for vector in vectors] oy = [vector[1] for vector in vectors] fig = plt.figure() ax = fig.subplots() ax.scatter(ox, oy, c='r', marker='x') for i in range(0, len(ox)): ax.annotate( 'Object {}'.format(i + 1), xy=(ox[i], oy[i]), xytext=(ox[i] + 0.05 * i, oy[i] + 0.05 * i), arrowprops=dict( arrowstyle="->", connectionstyle='angle3', ), ) for i in range(amount_of_clusters): ax.scatter( centroids[i][0], centroids[i][1], c='g', marker='o' ) ax.set_xlabel('Area') ax.set_ylabel('Eccentricity') plt.show() def get_region_vectors_skimage(image_name): sk_image = io.imread(image_name) label_image = measure.label(sk_image) regions = measure.regionprops( label_image ) fig, ax = plt.subplots() ax.imshow(sk_image) j = 0 for props in regions: j += 1 y0, x0 = props.centroid orientation = props.orientation x1 = x0 + math.cos(orientation) * 0.5 * props.major_axis_length y1 = y0 - math.sin(orientation) * 0.5 * props.major_axis_length x2 = x0 - math.sin(orientation) * 0.5 * props.minor_axis_length y2 = y0 - math.cos(orientation) * 0.5 * props.minor_axis_length ax.plot((x0, x1), (y0, y1), '-r', linewidth=2.5) ax.plot((x0, x2), (y0, y2), '-r', linewidth=2.5) ax.plot(x0, y0, '.g', markersize=15) ax.annotate( 'Object {}'.format(j), xy=(x0, y0), arrowprops=dict(facecolor='black', shrink=0.05), ) minr, minc, maxr, maxc = props.bbox bx = (minc, maxc, maxc, minc, minc) by = (minr, minr, maxr, maxr, minr) ax.plot(bx, by, '-b', linewidth=2.5) regions_vectors = [] for i in range(0, len(regions)): regions_vectors.append([regions[i].area, regions[i].eccentricity]) print(regions[i].label) return regions_vectors def main(): initial_image_name = 'images/P0001465.jpg' final_image_name = 'images/final.pgm' # open image initial_image = Image.open(initial_image_name) image = initial_image.copy().convert("L") plt.imshow(image) plt.show() binarization_threshold = 200 # initial binarization binarization(image, binarization_threshold) plt.imshow(image) plt.show() # filtering for noise reduction new_image = image.filter(ImageFilter.MedianFilter(size=5)) # one more binarization to nullify median filtering "averaging" effect on borders binarization(new_image, binarization_threshold) plt.imshow(new_image) plt.show() # reset 255 to 1 in order to make unique labels sequence consistent and # all its members have minimal values change_label(new_image, 255, 1) # mark objects marked_image = mark_objects(new_image) unique_labels = generate_unique_values(marked_image, transform_colors=True) print('Unique labels:', unique_labels) # save marked result marked_image.save(final_image_name) plt.imshow(marked_image) plt.show() # solution with skimage instead of manual computing regions_vectors = get_region_vectors_skimage(final_image_name) centroids, _ = kmeans(np.array(regions_vectors), 2) plot_results(regions_vectors, centroids, 2) plt.show() if __name__ == '__main__': main()
StarcoderdataPython
4815186
import numpy as np import tensorflow as tf import pandas as pd import seaborn as sns import matplotlib.pyplot as plt num_puntos = 2000 conjunto_puntos = [] for i in range(num_puntos): if np.random.random() > 0.5: x, y = np.random.normal(0.0, 0.9), np.random.normal(0.0, 0.9) conjunto_puntos.append([x, y]) else: x, y = np.random.normal(3.0, 0.5), np.random.normal(1.0, 0.5) conjunto_puntos.append([x, y]) # df = pd.DataFrame({'x': [v[0] for v in conjunto_puntos], 'y': # [v[1] for v in conjunto_puntos]}) # sns.lmplot('x', 'y', data=df, fit_reg=False, size=6) # plt.show() import time N=2000 K=4 MAX_ITERS = 100 start = time.time() # srcdata =tf.random_uniform([N,2]) # points = tf.Variable() points =tf.Variable(conjunto_puntos) cluster_assignments = tf.Variable(tf.zeros([N], dtype=tf.int64)) # Silly initialization: Use the first K points as the starting # centroids. In the real world, do this better. centroids = tf.Variable(tf.slice(points.initialized_value(), [0,0], [K,2])) sess = tf.Session() sess.run(tf.global_variables_initializer()) # Replicate to N copies of each centroid and K copies of each # point, then subtract and compute the sum of squared distances. rep_centroids = tf.reshape(tf.tile(centroids, [N, 1]), [N, K, 2]) rep_points = tf.reshape(tf.tile(points, [1, K]), [N, K, 2]) sum_squares = tf.reduce_sum(tf.square(rep_points - rep_centroids), reduction_indices=2) # Use argmin to select the lowest-distance point best_centroids = tf.argmin(sum_squares, 1) did_assignments_change = tf.reduce_any(tf.not_equal(best_centroids, cluster_assignments)) def bucket_mean(data, bucket_ids, num_buckets): total = tf.unsorted_segment_sum(data, bucket_ids, num_buckets) count = tf.unsorted_segment_sum(tf.ones_like(data), bucket_ids, num_buckets) return total / count means = bucket_mean(points, best_centroids, K) # Do not write to the assigned clusters variable until after # computing whether the assignments have changed - hence with_dependencies with tf.control_dependencies([did_assignments_change]): do_updates = tf.group( centroids.assign(means), cluster_assignments.assign(best_centroids)) changed = True iters = 0 while changed and iters < MAX_ITERS: iters += 1 [changed, _] = sess.run([did_assignments_change, do_updates]) [centers, assignments] = sess.run([centroids, cluster_assignments]) end = time.time() print ("Found in %.2f seconds" % (end-start)), iters, "iterations" print "Centroids:" print centers print "Cluster assignments:", assignments res={"x":[],"y":[],"kmeans_res":[]} for i in xrange(len(assignments)): res["x"].append(conjunto_puntos[i][0]) res["y"].append(conjunto_puntos[i][1]) res["kmeans_res"].append(assignments[i]) pd_res=pd.DataFrame(res) sns.lmplot("x","y",data=pd_res,fit_reg=False,size=5,hue="kmeans_res") plt.show()
StarcoderdataPython
1792556
#!/usr/bin/env python3 from elm327 import ELM327, PROTOCOLS from optparse import OptionParser class OptParser( OptionParser ): def format_epilog( self, formatter ): return '\n{}\n'.format( '\n'.join( [formatter._format_text( x ) for x in self.epilog.split( '\n' )] ) ) # define your own ignore message byteranges in here #SUBSETS = { # 0x20f: (0, 7), # 0x211: (0, 7), #} if __name__ == '__main__': usage = 'Usage: %prog [options]' parser = OptParser( epilog='Protocols supported by the ELM327:\n{}'.format( PROTOCOLS ) ) parser.add_option( '-d', '--device', dest='device', help='Path to ELM327 serial device' ) parser.add_option( '-b', '--baudrate', dest='baud_rate', help='Baud rate' ) parser.add_option( '-p', '--protocol', dest='protocol', help='ELM327 message protocol to use' ) parser.add_option( '-f', '--full', action='store_true', default=False, dest='full', help='Show all incoming CAN messages, instead of just changes to messages' ) parser.add_option( '-i', '--ignore', dest='ignore', help='Comma seperated list of message IDs to ignore' ) parser.add_option( '-c', '--can-filter', dest='can_filter', help='Set message ID filter' ) parser.add_option( '-m', '--can-mask', dest='can_mask', help='Set message ID mask' ) (options, argv) = parser.parse_args() args = {} if options.device: args['device'] = options.device elif len( argv ) >= 1: args['device'] = argv[0] if options.baud_rate: args['baud_rate'] = options.baud_rate elif len( argv ) >= 2: args['baud_rate'] = argv[1] if options.protocol: args['protocol'] = options.protocol elif len( argv ) >= 3: args['protocol'] = argv[2] elm = ELM327( **args ) elm.reset() if options.can_filter: elm.set_can_filter( int( options.can_filter, 0 ) ) if options.can_mask: elm.set_can_mask( int( options.can_mask, 0 ) ) IGNORE = [] if options.ignore: IGNORE = [int( x.strip(), 0 ) for x in options.ignore.split(',')] elm.start_can() firehose = options.full last_msg = {} try: while True: msg_id, msg_b = elm.recv_can() if msg_b: #if msg_id in SUBSETS: # msg_b = msg_b[SUBSETS[msg_id][0]:SUBSETS[msg_id][1]] if msg_id in IGNORE: pass if msg_id not in last_msg: last_msg[msg_id] = msg_b elif firehose or (last_msg[msg_id] != msg_b): print( '{0:03x}: {1} -> {2}'.format( msg_id, last_msg[msg_id].hex(), msg_b.hex() ) ) last_msg[msg_id] = msg_b except EOFError: print( '-- Hit the end' ) except KeyboardInterrupt: pass elm.get_prompt()
StarcoderdataPython
1682385
<filename>nrgpy/nsd_functions.py<gh_stars>10-100 from datetime import date from nrgpy.utilities import check_platform import traceback if check_platform() == 'win32': try: import pyodbc except: print("pyodbc required for nrg functions") import pandas as pd class nsd(object): """class for handling NSD files from Symphonie Logger Data. Parameters ---------- nsd_file : str path to nsd file to open for reading and writing Returns ------- obj Example ------- >>> from nrgpy.nsd_functions import nsd >>> db = nsd(nsd_file="C:/NRG/SiteFiles/0322.nsd") >>> db.read_channel_settings(channel=1) >>> db.channel_settings TimeStamp Channel SensorType SensorDesc SerialNumber Height ScaleFactor Offset PrintPrecision Units SensorDetail SensorNotes 0 1899-12-30 1 1 NRG #40 Anem. m/s SN002618 50 m 0.766 0.332 1 m/s >>> db.write_channel_settings(channel=1, description="50m CLASS 1 m/s", scale_factor=1, offset=1) >>> db.read_channel_settings(channel=1) >>> db.channel_settings TimeStamp Channel SensorType SensorDesc SerialNumber Height ScaleFactor Offset PrintPrecision Units SensorDetail SensorNotes 0 1899-12-30 1 1 50m CLASS 1 m/s SN002618 50 m 1.0 1.0 """ from nrgpy.utilities import check_platform def __init__(self, nsd_file=''): if check_platform() != 'win32': print("nsd functions only compatible with Windows") # return # 0 self.nsd_file = nsd_file self.driver_check = self.check_for_jet_drivers() if self.driver_check == True: try: self.conn_str = r'DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};'+r'DBQ='+self.nsd_file+';' self.conn = pyodbc.connect(self.conn_str) except Exception as e: print(traceback.format_exc()) self.e = e print("whomp, whomp.") else: print("Microsoft Access drivers required for these functions.") print("Download drivers from:") print("https://www.microsoft.com/en-US/download/details.aspx?id=13255\n\n") print("Note: Python architecture must match any installed Microsoft Office") print("architecture (32-bit or 64-bit)") print("If your MS Office is installed in C:\Program Files (x86), you'll need") print("the 32-bit version of Python 3+ to use these functions\n\n") def read_sensor_history(self): """read SensorHistory table into dataframe Returns ------- obj sensor_history : pandas dataframe """ sql = "SELECT * FROM SensorHistory" try: self.sensor_history = pd.read_sql(sql, self.conn) except Exception as e_sh: self.sensor_history_e = e_sh def read_channel_settings(self, channel=0, dash=False): """read individual channel settings from sensor history table Parameters ---------- channel : int 1 through 15 (12 if Sym Classic nsd file) Returns ------- obj pandas dataframe of channel details """ sql = "SELECT * FROM SensorHistory WHERE Channel = {0}".format(channel) try: if dash == True: self._channel_settings = pd.read_sql(sql, self.conn) else: self.channel_settings = pd.read_sql(sql, self.conn) except Exception as rcs_e: self.channel_settings = False self.rcs_e = rcs_e def write_channel_settings(self, channel=0, entry=1, sensor_desc='', print_precision=-9999, units='', serial_number='', height='', sensor_detail='', sensor_notes='', scale_factor=-9999, offset=-9999): """write new sensor history to site file Parameters ---------- channel : int required; 1 through 15 (or 1 through 12 for Sym Classic) entry : int default is 1 for channel baseline values, 2, 3, etc. for newer entries sensor_desc : string print_precision : int 1, 2, 3, or 4 or 0 for off units : string serial_number : string height : string sensor_detail : string sensor_notes : string scale_factor : float offset : float """ if channel > 0: self.read_channel_settings(channel=channel, dash=True) entry_index = list(range(1,len(self._channel_settings)+1)) self._channel_settings.insert(loc=0, column='entry',value=entry_index) entry_timestamp = pd.Timestamp(self._channel_settings[self._channel_settings.entry==entry].TimeStamp.item()).to_pydatetime() channel = " WHERE Channel = {} AND TimeStamp = ?".format(str(channel)) if sensor_desc != '': sensor_desc = " SensorDesc = '{}',".format(sensor_desc) if print_precision != -9999: print_precision = " PrintPrecision = {},".format(str(print_precision)) else: print_precision = "" if units != '': units = " Units = '{}',".format(units) if serial_number != '': serial_number = " SerialNumber = '{}'," if height != '': height = " Height = '{}',".format(height) if scale_factor != -9999: scale_factor = " ScaleFactor = {},".format(str(scale_factor)) else: scale_factor = "" if offset != -9999: offset = " Offset = {},".format(str(offset)) else: offset = "" if sensor_detail != "": sensor_detail = " SensorDetail = '{}',".format(sensor_detail) if sensor_notes != "": sensor_notes = " SensorNotes = '{}',".format(sensor_notes) sql = "UPDATE SensorHistory SET{0}{1}{2}{3}{4}{5}{6}{7}{8}".format( sensor_desc, print_precision, units, serial_number, height, str(scale_factor), str(offset), sensor_detail, sensor_notes)[:-1] self.sql = sql + str(channel) # ''.join([char for char in sql+str(channel)]) self.conn.execute(self.sql, entry_timestamp) self.conn.commit() else: print('specify channel for write "eg: write_channel_settings(channel=10 .. )"') def add_channel_history(self, timestamp='', channel=0, sensor_type='1', sensor_desc='', print_precision=4, units='', serial_number='', height='', sensor_detail='', sensor_notes='', scale_factor=-9999, offset=-9999): """use for adding new sensor history registries Parameters ---------- timestamp : string "YYYY-MM-DD HH:MM:SS" channel : int or string, channel number sensor_type : int or string, number: 1 : anemometer 2 : totalizer (rain gauge) 3 : vane 4 : analog (temp, bp, rh, etc.) sensor_desc : string description print_precision : int 1 through 4, number of decimals units : string serial_number : string height : float sensor_detail : note sensor_notes : note scale_factor : float offset : float """ try: sql = """ INSERT INTO SensorHistory ([TimeStamp], Channel, SensorType, SensorDesc, SerialNumber, Height, ScaleFactor, Offset, PrintPrecision, Units, SensorDetail, SensorNotes) VALUES ('{0}', '{1}', '{2}', '{3}','{4}','{5}', '{6}','{7}','{8}','{9}','{10}','{11}');""".format( timestamp, channel, sensor_type, sensor_desc, serial_number, height, scale_factor, offset, print_precision, units, sensor_detail, sensor_notes ) self.conn.execute(sql) self.conn.commit() except Exception as e: print("[ERROR] Unable to add sensor history value") print(e) def close(self): """close connection to database""" self.conn.close() def check_for_jet_drivers(self): """check for jet database drivers Returns ------- bool True if drivers present, otherwise False """ self.drivers = [x for x in pyodbc.drivers()] if "Microsoft Access Driver (*.mdb, *.accdb)" in self.drivers: return True return False
StarcoderdataPython
132318
<reponame>hsiang-ever/django_blog from urllib.request import urlopen, Request import json def getPostList(): # url = 'http://0.0.0.0:5000/posts/' url = 'https://shorten-url-1491815099304.appspot.com/posts/' headers = {'Content-Type': 'application/json'} req = Request(url=url, headers=headers) res = urlopen(req) posts = json.loads(res.read())['posts'] return posts # return res.read() def getPostDetail(pk): # url = 'http://0.0.0.0:5000/posts/{}/'.format(pk) url = 'https://shorten-url-1491815099304.appspot.com/posts/{}/'.format(pk) headers = {'Content-Type': 'application/json'} req = Request(url=url, headers=headers) res = urlopen(req) post = json.loads(res.read())['post'] return post def postPostDetail(data): # url = 'http://0.0.0.0:5000/posts/' url = 'https://shorten-url-1491815099304.appspot.com/posts/' headers = {'Content-Type': 'application/json'} req = Request(url=url, headers=headers, data=data) res = urlopen(req) post = json.loads(res.read())['post'] return post def putPostDetail(pk, data): # url = 'http://0.0.0.0:5000/posts/{}/'.format(pk) url = 'https://shorten-url-1491815099304.appspot.com/posts/{}/'.format(pk) headers = {'Content-Type': 'application/json'} req = Request(url=url, headers=headers, data=data) req.get_method = lambda:'PUT' res = urlopen(req) post = json.loads(res.read())['post'] return post def deletePostDetail(pk): # url = 'http://0.0.0.0:5000/posts/{}/'.format(pk) url = 'https://shorten-url-1491815099304.appspot.com/posts/{}/'.format(pk) headers = {'Content-Type': 'application/json'} req = Request(url=url, headers=headers) req.get_method = lambda:'DELETE' res = urlopen(req) # post = json.loads(res.read())['post'] # return post
StarcoderdataPython
3394107
<reponame>Mephisto405/WCMC-Public<gh_stars>10-100 import os import sys import time import argparse import matplotlib.pyplot as plt from collections import OrderedDict import torch import numpy as np import torch.nn as nn from torch.utils.data import DataLoader import train_kpcn import train_sbmc import train_lbmc from support.utils import crop_like from support.img_utils import WriteImg from support.datasets import FullImageDataset from support.networks import PathNet, weights_init from support.metrics import RelMSE, RelL1, SSIM, MSE, L1, _tonemap def tonemap(c, ref=None, kInvGamma=1.0/2.2): # c: (W, H, C=3) if ref is None: ref = c luminance = 0.2126 * ref[:,:,0] + 0.7152 * ref[:,:,1] + 0.0722 * ref[:,:,2] col = np.copy(c) col[:,:,0] /= (1 + luminance / 1.5) col[:,:,1] /= (1 + luminance / 1.5) col[:,:,2] /= (1 + luminance / 1.5) col = np.clip(col, 0, None) return np.clip(col ** kInvGamma, 0.0, 1.0) def load_input(filename, spp, args): if 'KPCN' in args.model_name: dataset = FullImageDataset(filename, spp, 'kpcn', args.use_g_buf, args.use_sbmc_buf, args.use_llpm_buf, args.pnet_out_size[0]) elif 'BMC' in args.model_name: dataset = FullImageDataset(filename, spp, 'sbmc', args.use_g_buf, args.use_sbmc_buf, args.use_llpm_buf, 0) return dataset def inference(interface, dataloader, spp, args): interface.to_eval_mode() H, W = dataloader.dataset.h, dataloader.dataset.w PATCH_SIZE = dataloader.dataset.PATCH_SIZE out_rad = torch.zeros((3, H, W)).cuda() out_path = None with torch.no_grad(): for batch, i_start, j_start, i_end, j_end, i, j in dataloader: for k in batch: if not batch[k].__class__ == torch.Tensor: continue batch[k] = batch[k].cuda(args.device_id) start = time.time() out, p_buffers = interface.validate_batch(batch) pad_h = PATCH_SIZE - out.shape[2] pad_w = PATCH_SIZE - out.shape[3] if pad_h != 0 and pad_w != 0: out = nn.functional.pad(out, (pad_w//2, pad_w-pad_w//2, pad_h//2, pad_h-pad_h//2), 'replicate') # order matters if args.use_llpm_buf and (out_path is None): if type(p_buffers) == dict: out_path = {} for key in p_buffers: b, s, c, h, w = p_buffers[key].shape out_path[key] = torch.zeros((s, c, H, W)).cuda() elif type(p_buffers) == torch.Tensor: b, s, c, h, w = p_buffers.shape out_path = torch.zeros((s, c, H, W)).cuda() else: assert False, 'P buffer type not defined.' for b in range(out.shape[0]): out_rad[:,i_start[b]:i_end[b],j_start[b]:j_end[b]] = out[b,:,i_start[b]-i[b]:i_end[b]-i[b],j_start[b]-j[b]:j_end[b]-j[b]] if args.use_llpm_buf: if type(p_buffers) == dict: for key in p_buffers: out_path[key][:,:,i_start[b]:i_end[b],j_start[b]:j_end[b]] = p_buffers[key][b,:,:,i_start[b]-i[b]:i_end[b]-i[b],j_start[b]-j[b]:j_end[b]-j[b]] elif type(p_buffers) == torch.Tensor: out_path[:,:,i_start[b]:i_end[b],j_start[b]:j_end[b]] = p_buffers[b,:,:,i_start[b]-i[b]:i_end[b]-i[b],j_start[b]-j[b]:j_end[b]-j[b]] out_rad = out_rad.detach().cpu().numpy().transpose([1, 2, 0]) if args.use_llpm_buf: if type(out_path) == dict: for key in out_path: out_path[key] = out_path[key].detach().cpu().numpy().transpose([2, 3, 0, 1]) elif type(out_path) == torch.Tensor: out_path = out_path.detach().cpu().numpy().transpose([2, 3, 0, 1]) return out_rad, out_path def denoise(args, input_dir, output_dir="../test_suite_2", scenes=None, spps=[8], save_figures=False, rhf=False, quantize=False): assert os.path.isdir(input_dir), input_dir assert 'KPCN' in args.model_name or 'BMC' in args.model_name, args.model_name if scenes is None: scenes = [] for fn in os.listdir(input_dir.replace(os.sep + 'input', os.sep + 'gt')): if fn.endswith(".npy"): scenes.append(fn) num_metrics = 5 * 4 # (RelL2, RelL1, DSSIM, L1, MSE) * (linear, tmap w/o gamma, tmap gamma=2.2, tmap gamma=adaptive) results = [[0 for i in range(len(scenes))] for j in range(num_metrics * len(spps))] results_input = [[0 for i in range(len(scenes))] for j in range(num_metrics * len(spps))] if args.model_name.endswith('.pth'): p_model = os.path.join(args.save, args.model_name) else: p_model = os.path.join(args.save, args.model_name + '.pth') ck = torch.load(p_model) print(scenes) for scene in scenes: if not scene.endswith(".npy"): scene = scene + '.npy' filename = os.path.join(input_dir, scene).replace(os.sep + 'input', os.sep + 'gt') if not os.path.isfile(filename): raise FileNotFoundError(filename) for i, scene in enumerate(scenes): if scene.endswith(".npy"): scene = scene[:-4] print("Scene file: ", scene) os.makedirs(os.path.join(output_dir, scene), exist_ok=True) for j, spp in enumerate(spps): print("Samples per pixel:", spp) """ Denoising """ # Dateload filename = os.path.join(input_dir, scene + ".npy") dataset = load_input(filename, spp, args) MSPP = 32# if args.pnet_out_size[0] < 12 else 8 if spp <= MSPP: dataloader = DataLoader( dataset, batch_size=8, num_workers=1 ) elif spp <= 64: dataloader = DataLoader( dataset, batch_size=4, num_workers=1 ) else: raise RuntimeError("Try higher spp after investigating your RAM and \ GRAM capacity.") if i == 0 and j == 0: datasets = {'train': dataset} # dirty code for now if 'SBMC' in args.model_name: interfaces, _ = train_sbmc.init_model(datasets, args) elif 'LBMC' in args.model_name: interfaces, _ = train_lbmc.init_model(datasets, args) elif 'KPCN' in args.model_name: interfaces, _ = train_kpcn.init_model(datasets, args) ''' if tensorrt: engines, contexts = export_and_load_onnx_model(interfaces[0], p_model, dataloader) return ''' out_rad, out_path = inference(interfaces[0], dataloader, spp, args) """ Post processing """ tgt = dataset.full_tgt ipt = dataset.full_ipt if out_path is not None: if rhf: print('Saving P-buffer as numpy file for RHF-like visualization...') if 'BMC' in args.model_name: print('Shape: ', out_path.shape) np.save(os.path.join(output_dir, 'p_buffer_%s_%s.npy'%(scene, args.model_name)), out_path) elif 'KPCN' in args.model_name: print('Shape: ', out_path['diffuse'].shape) np.save(os.path.join(output_dir, 'p_buffer_%s_%s.npy'%(scene, args.model_name)), out_path['diffuse']) print('Saved.') return if type(out_path) == dict: for key in out_path: out_path[key] = np.clip(np.mean(out_path[key], 2), 0.0, 1.0) assert len(out_path[key].shape) == 3, out_path[key].shape if out_path[key].shape[2] >= 3: out_path[key] = out_path[key][...,:3] else: tmp = np.mean(out_path[key], 2, keepdims=True) out_path[key] = np.concatenate((tmp,) * 3, axis=2) assert out_path[key].shape[2] == 3, out_path[key].shape elif type(out_path) == torch.Tensor: out_path = np.clip(np.mean(out_path, 2), 0.0, 1.0) assert len(out_path.shape) == 3, out_path.shape if out_path.shape[2] >= 3: out_path = out_path[...,:3] else: tmp = np.mean(out_path, 2, keepdims=True) out_path = np.concatenate((tmp,) * 3, axis=2) assert out_path.shape[2] == 3, out_path.shape # Crop valid_size = 72 crop = (128 - valid_size) // 2 out_rad = out_rad[crop:-crop, crop:-crop, ...] if out_path is not None: if type(out_path) == dict: for key in out_path: out_path[key] = out_path[key][crop:-crop, crop:-crop, ...] elif type(out_path) == torch.Tensor: out_path = out_path[crop:-crop, crop:-crop, ...] tgt = tgt[crop:-crop, crop:-crop, ...] ipt = ipt[crop:-crop, crop:-crop, ...] # Process the background and emittors which do not require to be denoised has_hit = dataset.has_hit[crop:-crop, crop:-crop, ...] out_rad = np.where(has_hit == 0, ipt, out_rad) """ Statistics """ err = RelMSE(out_rad, tgt, reduce=False) err = err.reshape(out_rad.shape[0], out_rad.shape[1], 3) # (RelL2, RelL1, DSSIM, L1, MSE) * (linear, tmap w/o gamma, tmap gamma=2.2, tmap gamma=adaptive) def linear(x): return x def tonemap28(x): return tonemap(x, kInvGamma = 1/2.8) metrics = [RelMSE, RelL1, SSIM, L1, MSE] tmaps = [linear, _tonemap, tonemap, tonemap28] print(RelMSE(tonemap(out_rad), tonemap(tgt))) print(RelMSE(tonemap(ipt), tonemap(tgt))) for t, tmap in enumerate(tmaps): for k, metric in enumerate(metrics): results[(len(metrics) * t + k) * len(spps) + j][i] = metric(tmap(out_rad), tmap(tgt)) results_input[(len(metrics) * t + k) * len(spps) + j][i] = metric(tmap(ipt), tmap(tgt)) """ Save """ if save_figures: t_tgt = tmaps[-1](tgt) t_ipt = tmaps[-1](ipt) t_out = tmaps[-1](out_rad) t_err = np.mean(np.clip(err**0.45, 0.0, 1.0), 2) plt.imsave(os.path.join(output_dir, scene, 'target.png'), t_tgt) #WriteImg(os.path.join(output_dir, scene, 'target.pfm'), tgt) # HDR image plt.imsave(os.path.join(output_dir, scene, 'input_{}.png'.format(spp)), t_ipt) #WriteImg(os.path.join(output_dir, scene, 'input_{}.pfm'.format(spp)), ipt) plt.imsave(os.path.join(output_dir, scene, 'output_{}_{}.png'.format(spp, args.model_name)), t_out) #WriteImg(os.path.join(output_dir, scene, 'output_{}_{}.pfm'.format(spp, args.model_name)), out_rad) plt.imsave(os.path.join(output_dir, scene, 'errmap_rmse_{}_{}.png'.format(spp, args.model_name)), t_err, cmap=plt.get_cmap('magma')) #WriteImg(os.path.join(output_dir, scene, 'errmap_{}_{}.pfm'.format(spp, args.model_name)), err.mean(2)) np.savetxt(os.path.join(output_dir, 'results_{}_{}.csv'.format(args.model_name, spps[-1])), results, delimiter=',') np.savetxt(os.path.join(output_dir, 'results_input_%d.csv'%(spps[-1])), results_input, delimiter=',') if __name__ == "__main__": class Args(): # just for compatibility with argparse-related functions save = '/root/LPM/weights/' model_name = 'SBMC_v2.0' single_gpu = True use_g_buf, use_sbmc_buf, use_llpm_buf = True, True, True lr_pnet = [1e-4] lr_ckpt = True pnet_out_size = [3] w_manif = [0.1] manif_learn = False manif_loss = 'FMSE' train_branches = False disentangle = 'm11r11' kpcn_ref = False start_epoch = 0 single_gpu = True device_id = 0 lr_dncnn = 1e-4 visual = False start_epoch = 10 best_err = 1e4 kpcn_ref = False kpcn_pre = False not_save = False args = Args() input_dir = '/mnt/ssd2/iycho/KPCN/test2/input/' scenes = ['bathroom_v3', 'bathroom-3_v2', 'car', 'car_v2', 'car_v3', 'chair-room', 'chair-room_v2', 'hookah_v3', 'kitchen-2', 'kitchen-2_v2', 'library-office', 'sitting-room-2'] spps = [8] """ Test cases # LBMC print('LBMC_Path_P3') args.model_name = 'LBMC_Path_P3' args.pnet_out_size = [3] args.disentangle = 'm11r11' args.use_g_buf, args.use_sbmc_buf, args.use_llpm_buf, args.manif_learn = True, False, True, False denoise(args, input_dir, spps=[2,4,8,16,32,64], scenes=scenes, save_figures=True) print('LBMC_Manifold_P6') args.model_name = 'LBMC_Manifold_P6' args.pnet_out_size = [6] args.disentangle = 'm11r11' args.use_g_buf, args.use_sbmc_buf, args.use_llpm_buf, args.manif_learn = True, False, True, True denoise(args, input_dir, spps=[2,4,8,16,32,64], scenes=scenes, save_figures=True) print('LBMC_vanilla') args.model_name = 'LBMC_vanilla' args.pnet_out_size = [0] args.disentangle = 'm11r11' args.use_g_buf, args.use_sbmc_buf, args.use_llpm_buf, args.manif_learn = True, False, False, False denoise(args, input_dir, spps=[2,4,8,16,32,64], scenes=scenes, save_figures=True) # KPCN print('KPCN_vanilla') args.model_name = 'KPCN_vanilla' args.pnet_out_size = [0] args.use_llpm_buf, args.manif_learn = False, False denoise(args, input_dir, spps=spps, scenes=scenes, save_figures=True) print('KPCN_path') args.model_name = 'KPCN_path' args.pnet_out_size = [3] args.disentangle = 'm11r11' args.use_llpm_buf, args.manif_learn = True, False denoise(args, input_dir, spps=spps, scenes=scenes, rhf=True) # SBMC print('SBMC_vanilla') args.model_name = 'SBMC_vanilla' args.pnet_out_size = [0] args.disentangle = 'm11r11' args.use_sbmc_buf, args.use_llpm_buf, args.manif_learn = True, False, False denoise(args, input_dir, spps=spps, scenes=scenes, save_figures=True) print('SBMC_path') args.model_name = 'SBMC_path' args.pnet_out_size = [3] args.use_sbmc_buf, args.use_llpm_buf, args.manif_learn = False, True, False denoise(args, input_dir, spps=spps, scenes=scenes, rhf=True) print('SBMC_Manifold_Naive') args.model_name = 'SBMC_Manifold_Naive' args.pnet_out_size = [3] args.use_sbmc_buf, args.use_llpm_buf, args.manif_learn = False, True, False denoise(args, input_dir, spps=spps, scenes=scenes) """
StarcoderdataPython
3384192
from game.environment import GameEnvironment from game.handlers import Handlers from game.handlers.network import NetworkHandler from game.handlers.serialize import SerializeHandler class LeaderBoardHandler(Handlers): def __init__(self): Handlers().__init__() self.__game_env = GameEnvironment() self.__serialize_handler = SerializeHandler(self.__game_env.static.leaders_file) def load(self): leaders = [] try: deserialized_object = self.__serialize_handler.deserialize() if deserialized_object: leaders = dict(deserialized_object) except Exception: self.log('Failed to read leaders from file {}'.format(self.__game_env.static.leaders_file)) finally: return leaders def save(self, leaders): try: if leaders is None: return self.__serialize_handler.serialize(leaders) except Exception: self.log('Failed to save leaders to file {}'.format(self.__game_env.static.leaders_file)) async def update(self, api_key): network_handler = NetworkHandler(api_key) self.save(await network_handler.get_leaders())
StarcoderdataPython
3323943
<filename>utils/disambiguate.py import asyncio import functools import random import re import weakref from itertools import starmap import discord from discord.ext import commands from .examples import get_example from .colors import random_color _ID_REGEX = re.compile(r'([0-9]{15,21})$') async def disambiguate(ctx, matches, transform=str, *, tries=3): """Prompts the user to choose from a list of matches.""" if not matches: raise commands.BadArgument('No results found.') num_matches = len(matches) if num_matches == 1: return matches[0] entries = '\n'.join(starmap('{0}: {1}'.format, enumerate(map(transform, matches), 1))) permissions = ctx.channel.permissions_for(ctx.me) if permissions.embed_links: # Build the embed as we go. And make it nice and pretty. embed = discord.Embed(color=random_color(), description=entries) embed.set_author(name=f"There were {num_matches} matches found. Which one did you mean?") index = random.randrange(len(matches)) instructions = f'Just type the number.\nFor example, typing `{index + 1}` will return {matches[index]}' embed.add_field(name='Instructions:', value=instructions) message = await ctx.send(embed=embed) else: await ctx.send('There are too many matches. Which one did you mean? **Only say the number**.') message = await ctx.send(entries) def check(m): return (m.author.id == ctx.author.id and m.channel.id == ctx.channel.id and m.content.isdigit()) await ctx.release() try: for i in range(tries): try: msg = await ctx.bot.wait_for('message', check=check, timeout=30.0) except asyncio.TimeoutError: raise commands.BadArgument('Took too long. Goodbye.') index = int(msg.content) try: return matches[index - 1] except IndexError: await ctx.send(f'Please give me a valid number. {tries - i - 1} tries remaining...') raise commands.BadArgument('Too many tries. Goodbye.') finally: await message.delete() await ctx.acquire() class _DisambiguateExampleGenerator: def __get__(self, obj, cls): cls_name = cls.__name__.replace('Disambiguate', '') return functools.partial(get_example, getattr(discord, cls_name)) class Converter(commands.Converter): """This is the base class for all disambiguating converters. By default, if there is more than one thing with a given name, the ext converters will only pick the first results. These allow you to pick from multiple results. Especially important when the args become case-insensitive. """ _transform = str __converters__ = weakref.WeakValueDictionary() random_example = _DisambiguateExampleGenerator() def __init__(self, *, ignore_case=True): self.ignore_case = ignore_case def __init_subclass__(cls, **kwargs): super().__init_subclass__(**kwargs) Converter.__converters__[cls.__name__] = cls def _get_possible_entries(self, ctx): """Returns an iterable of possible entries to find matches with. Subclasses must provide this to allow disambiguating. """ raise NotImplementedError def _exact_match(self, ctx, argument): """Returns an "exact" match given an argument. If this returns anything but None, that result will be returned without going through disambiguating. Subclasses may override this method to provide an "exact" functionality. """ return None # The following predicates can be overridden if necessary def _predicate(self, obj, argument): """Standard predicate for filtering.""" return obj.name == argument def _predicate_ignore_case(self, obj, argument): """Same thing like `predicate` but with case-insensitive filtering.""" return obj.name.lower() == argument def _get_possible_results(self, ctx, argument): entries = self._get_possible_entries(ctx) if self.ignore_case: lowered = argument.lower() predicate = self._predicate_ignore_case else: lowered = argument predicate = self._predicate return [obj for obj in entries if predicate(obj, lowered)] async def convert(self, ctx, argument): exact_match = self._exact_match(ctx, argument) if exact_match: return exact_match matches = self._get_possible_results(ctx, argument) return await disambiguate(ctx, matches, transform=self._transform) class IDConverter(Converter): MENTION_REGEX = None def _get_from_id(self, ctx, id): """Returns an object via a given ID.""" raise NotImplementedError def __get_id_from_mention(self, argument): return re.match(self.MENTION_REGEX, argument) if self.MENTION_REGEX else None def _exact_match(self, ctx, argument): match = _ID_REGEX.match(argument) or self.__get_id_from_mention(argument) if not match: return None return self._get_from_id(ctx, int(match[1])) class UserConverterMixin: MENTION_REGEX = r'<@!?([0-9]+)>$' def _exact_match(self, ctx, argument): result = super()._exact_match(ctx, argument) if result is not None: return result if not (len(argument) > 5 and argument[-5] == '#'): # No discriminator provided which makes an exact match impossible return None name, _, discriminator = argument.rpartition('#') return discord.utils.find( lambda u: u.name == name and u.discriminator == discriminator, self._get_possible_entries(ctx) ) class User(UserConverterMixin, IDConverter): def _get_from_id(self, ctx, id): return ctx.bot.get_user(id) def _get_possible_entries(self, ctx): return ctx._state._users.values() class Member(UserConverterMixin, IDConverter): def _get_from_id(self, ctx, id): return ctx.guild.get_member(id) def _get_possible_entries(self, ctx): return ctx.guild._members.values() # Overriding these is necessary due to members having nicknames def _predicate(self, obj, argument): return super()._predicate(obj, argument) or (obj.nick and obj.nick == argument) def _predicate_ignore_case(self, obj, argument): return ( super()._predicate_ignore_case(obj, argument) or (obj.nick and obj.nick.lower() == argument) ) class Role(IDConverter): MENTION_REGEX = r'<@&([0-9]+)>$' def _get_from_id(self, ctx, id): return discord.utils.get(self._get_possible_entries(ctx), id=id) def _get_possible_entries(self, ctx): return ctx.guild.roles class TextChannel(IDConverter): MENTION_REGEX = r'<#([0-9]+)>$' def _get_from_id(self, ctx, id): return ctx.guild.get_channel(id) def _get_possible_entries(self, ctx): return ctx.guild.text_channels class Guild(IDConverter): def _get_from_id(self, ctx, id): return ctx.bot.get_guild(id) def _get_possible_entries(self, ctx): return ctx._state._guilds.values() def _is_discord_py_type(cls): module = getattr(cls, '__module__', '') return module.startswith('discord.') and not module.endswith('converter') def _disambiguated(type_): """Return the corresponding disambiguating converter if one exists for that type. If no such converter exists, it returns the type. """ if not _is_discord_py_type(type_): return type_ return Converter.__converters__.get(type_.__name__, type_) def _get_current_parameter(ctx): parameters = list(ctx.command.params.values()) # Need to account for varargs and consume-rest kwarg only index = min(len(ctx.args) + len(ctx.kwargs), len(parameters) - 1) return parameters[index] class Union(commands.Converter): _transform = '{0} ({0.__class__.__name__})'.format def __init__(self, *types, ignore_case=True): self.types = [ type_(ignore_case=ignore_case) if isinstance(type_, type) and issubclass(type_, Converter) else type_ for type_ in map(_disambiguated, types) ] async def convert(self, ctx, argument): param = _get_current_parameter(ctx) results = [] for converter in self.types: if isinstance(converter, Converter): exact = converter._exact_match(ctx, argument) if exact is not None: return exact results.extend(converter._get_possible_results(ctx, argument)) else: # Standard type, so standard conversion try: result = await ctx.command.do_conversion(ctx, converter, argument, param) except commands.BadArgument: continue else: results.append(result) return await disambiguate(ctx, results, transform=self._transform) def random_example(self, ctx): return get_example(random.choice(self.types), ctx)
StarcoderdataPython
30659
<reponame>davidfotsa/Numerical_Methods_With_Python # -*- coding: utf-8 -*- def a(i,x,X,Y): rep=1 for j in range(min(len(X),len(Y))): if (i!=j): rep*=(x-X[j])/(X[i]-X[j]) return (rep) def P(x,X,Y): rep=0 for i in range(min(len(X),len(Y))): rep+=a(i,x,X,Y)*Y[i] return (rep) X=[-2,0,1,2] Y=[49,5,7,49] #x=float(input(" Vous voulez estimer f(x) pour x= ")) #print(P(x,X,Y)) from numpy.polynomial import Polynomial as poly x=poly([0,1]) # Polynôme p(x)=0+x p=P(x,X,Y) print(p) x=poly1d([1,0]) # Polynôme p(x)=0+x p=P(x,X,Y) print(p) print(p.order) print(p.coeffs) print(p.roots) print(roots(p)) print(p(0)) print(polyval(p,0)) print("%f"%(p.coef[0],),end=" ") if (len(p)>1): if (p.coef[1]>0): print("+%f*x" %(p.coef[1],),end=" ") elif (p.coef[1]<0): print("%f*x" %(p.coef[1],),end=" ") i=2 while (i<len(p)-1): if (p.coef[i]>0): print("+%f*x^%d" %(p.coef[i],i,),end=" ") elif (p.coef[i]<0): print("%f*x^%d" %(p.coef[i],i,),end=" ") i=i+1 if (len(p)>1): if (p.coef[len(p)-1]>0): print("+%f*x^%d" %(p.coef[len(p)-1],len(p)-1,),end=" ") elif (p.coef[len(p)-1]<0): print("%f*x^%d" %(p.coef[len(p)-1],len(p)-1,),end=" ")
StarcoderdataPython
3379016
import dicom from numpy import * import SimpleITK as sitk import os def read_ct_scan(path, verbose=False): # type: (object) -> object # Read the slices from the dicom file slices = [] if os.path.isfile(path): try: return sitk.ReadImage(path) except: if verbose: print('Neither a DICOM nor a MHD file: %s' % os.path.basename(path)) if os.path.isdir(path): files = os.listdir(path) for filename in files: try: slices.append(dicom.read_file(os.path.join(path, filename))) except dicom.filereader.InvalidDicomError: if verbose: print('Neither a DICOM nor a MHD file: %s' % filename) slices.sort(key=lambda x: int(x.InstanceNumber)) try: slice_thickness = abs(slices[0].ImagePositionPatient[2] - slices[1].ImagePositionPatient[2]) except AttributeError: slice_thickness = abs(slices[0].SliceLocation - slices[1].SliceLocation) for s in slices: s.SliceThickness = slice_thickness return slices def extract_array(ct_scan): heights = asarray([int(ct_slice.SliceLocation)for ct_slice in ct_scan]) ct_scan = stack([ct_slice.pixel_array for ct_slice in ct_scan]) ct_scan[ct_scan == ct_scan.min()] = 0 return ct_scan, heights def get_pixels_hu(slices): try: image = stack([s.pixel_array for s in slices]) except AttributeError: return sitk.GetArrayFromImage(slices) # Convert to int16 (from sometimes int16), # should be possible as values should always be low enough (<32k) image = image.astype(int16) # Set outside-of-scan pixels to 0 # The intercept is usually -1024, so air is approximately 0 image[image == image.min()] = 0 # Convert to Hounsfield units (HU) for slice_number in range(len(slices)): intercept = slices[slice_number].RescaleIntercept slope = slices[slice_number].RescaleSlope if slope != 1: image[slice_number] = slope * image[slice_number].astype(float64) image[slice_number] = image[slice_number].astype(int16) image[slice_number] += int16(intercept) return array(image, dtype=int16)
StarcoderdataPython
1607274
<reponame>nanjekyejoannah/pypy def test_process_prompt(): from pyrepl.reader import Reader r = Reader(None) assert r.process_prompt("hi!") == ("hi!", 3) assert r.process_prompt("h\x01i\x02!") == ("hi!", 2) assert r.process_prompt("hi\033[11m!") == ("hi\033[11m!", 3) assert r.process_prompt("h\x01i\033[11m!\x02") == ("hi\033[11m!", 1) assert r.process_prompt("h\033[11m\x01i\x02!") == ("h\033[11mi!", 2)
StarcoderdataPython
3398006
<gh_stars>1-10 import tensorflow as tf import numpy as np #import re import os model_dir = './product-recognition/inception' image = './product-recognition/pic/靴子/238320.png' #将类别ID转换为人类易读的标签 class NodeLookup(object): def __init__(self, label_lookup_path=None, uid_lookup_path=None): if not label_lookup_path: # 加载“label_lookup_path”文件 # 此文件将数据集中所含类别(1-1000)与一个叫做target_class_string的地址对应起来 # 其地址编码为“n********”星号代表数字 label_lookup_path = os.path.join( model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt') if not uid_lookup_path: # 加载“uid_lookup_path”文件 # 此文件将数据集中所含类别具体名称与编码方式为“n********”的地址/UID一一对应起来 uid_lookup_path = os.path.join( model_dir, 'imagenet_synset_to_human_label_map.txt') self.node_lookup = self.load(label_lookup_path, uid_lookup_path) def load(self, label_lookup_path, uid_lookup_path): if not tf.gfile.Exists(uid_lookup_path): # 预先检测地址是否存在 tf.logging.fatal('File does not exist %s', uid_lookup_path) if not tf.gfile.Exists(label_lookup_path): # 预先检测地址是否存在 tf.logging.fatal('File does not exist %s', label_lookup_path) # Loads mapping from string UID to human-readable string # 加载编号字符串n********,即UID与分类名称之间的映射关系(字典):uid_to_human # 读取uid_lookup_path中所有的lines # readlines(): Returns all lines from the file in a list. # Leaves the '\n' at the end. proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines() # 创建空字典uid_to_human用以存储映射关系 uid_to_human = {} # ============================================================================= # # 使用正则化方法处理文件: # p = re.compile(r'[n\d]*[ \S,]*') # for line in proto_as_ascii_lines: # = p.findall(line) # uid = parsed_items[0] # human_string = parsed_items[2] # uid_to_human[uid] = human_string # ============================================================================= # 使用简单方法处理文件: # 一行行读取数据 for line in proto_as_ascii_lines: # 去掉换行符 line = line.strip('\n') # 按照‘\t’分割,即tab,将line分为两个部分 parse_items = line.split('\t') # 获取分类编码,即UID uid = parse_items[0] # 获取分类名称 human_string = parse_items[1] # 新建编号字符串n********,即UID与分类名称之间的映射关系(字典):uid_to_human uid_to_human[uid] = human_string # Loads mapping from string UID to integer node ID. # 加载编号字符串n********,即UID与分类代号,即node ID之间的映射关系(字典) # 加载分类字符串n********,即UID对应分类编号1-1000的文件 proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines() # 创建空字典node_id_to_uid用以存储分类代码node ID与UID之间的关系 node_id_to_uid = {} for line in proto_as_ascii: # 注意空格 if line.startswith(' target_class:'): # 获取分类编号 target_class = int(line.split(': ')[1]) if line.startswith(' target_class_string:'): # 获取UID(带双引号,eg:"n01484850") target_class_string = line.split(': ')[1] # 去掉前后的双引号,构建映射关系 node_id_to_uid[target_class] = target_class_string[1:-2] # Loads the final mapping of integer node ID to human-readable string # 加载node ID与分类名称之间的映射关系 node_id_to_name = {} for key, val in node_id_to_uid.items(): # 假如uid不存在于uid_to_human中,则报错 if val not in uid_to_human: tf.logging.fatal('Failed to locate: %s', val) # 获取分类名称 name = uid_to_human[val] # 构建分类编号1-1000对应分类名称的映射关系:key为node_id;val为name node_id_to_name[key] = name return node_id_to_name # 传入分类编号1-1000,返回分类具体名称 def id_to_string(self, node_id): # 若不存在,则返回空字符串 if node_id not in self.node_lookup: return '' return self.node_lookup[node_id] # 读取并创建一个图graph来存放Google训练好的Inception_v3模型(函数) def create_graph(): with tf.gfile.FastGFile(os.path.join( model_dir, 'classify_image_graph_def.pb'), 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) tf.import_graph_def(graph_def, name='') #读取图片 image_data = tf.gfile.FastGFile(image, 'rb').read() #创建graph create_graph() # 创建会话,因为是从已有的Inception_v3模型中恢复,所以无需初始化 with tf.Session() as sess: # Inception_v3模型的最后一层softmax的输出 # 形如'conv1'是节点名称,而'conv1:0'是张量名称,表示节点的第一个输出张量 softmax_tensor = sess.graph.get_tensor_by_name('softmax:0') # 输入图像(jpg格式)数据,得到softmax概率值(一个shape=(1,1008)的向量) predictions = sess.run(softmax_tensor,{'DecodeJpeg/contents:0': image_data}) # 将结果转为1维数据 predictions = np.squeeze(predictions) # 新建类:ID --> English string label. node_lookup = NodeLookup() # 排序,取出前5个概率最大的值(top-5) # argsort()返回的是数组值从小到大排列所对应的索引值 top_5 = predictions.argsort()[-5:][::-1] for node_id in top_5: # 获取分类名称 human_string = node_lookup.id_to_string(node_id) # 获取该分类的置信度 score = predictions[node_id] print('%s (score = %.5f)' % (human_string, score))
StarcoderdataPython
128882
<reponame>DouglasUrner/markdown-pp # Copyright 2015 <NAME> # Licensed under the MIT license from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals import re from os import path from MarkdownPP.Module import Module from MarkdownPP.Transform import Transform class Include(Module): """ Module for recursively including the contents of other files into the current document using a command like `!INCLUDE "path/to/filename"`. Target paths can be absolute or relative to the file containing the command """ # matches !INCLUDE directives in .mdpp files includere = re.compile(r"^!INCLUDE\s+(?:\"([^\"]+)\"|'([^']+)')" "\s*(?:,\s*(\d+))?\s*$") # matches title lines in Markdown files titlere = re.compile(r"^(:?#+.*|={3,}|-{3,})$") # includes should happen before anything else priority = 0 def transform(self, data): transforms = [] linenum = 0 for line in data: match = self.includere.search(line) if match: includedata = self.include(match) transform = Transform(linenum=linenum, oper="swap", data=includedata) transforms.append(transform) linenum += 1 return transforms def include(self, match, pwd=""): # file name is caught in group 1 if it's written with double quotes, # or group 2 if written with single quotes filename = match.group(1) or match.group(2) shift = int(match.group(3) or 0) if not path.isabs(filename): filename = path.join(pwd, filename) try: f = open(filename, "r") data = f.readlines() f.close() # line by line, apply shift and recursively include file data linenum = 0 for line in data: match = self.includere.search(line) if match: dirname = path.dirname(filename) data[linenum:linenum+1] = self.include(match, dirname) if shift: titlematch = self.titlere.search(line) if titlematch: to_del = [] for _ in range(shift): if data[linenum][0] == '#': data[linenum] = "#" + data[linenum] elif data[linenum][0] == '=': data[linenum] = data[linenum].replace("=", '-') elif data[linenum][0] == '-': data[linenum] = '### ' + data[linenum - 1] to_del.append(linenum - 1) for l in to_del: del data[l] linenum += 1 return data except (IOError, OSError) as exc: print(exc) return []
StarcoderdataPython
1796351
<filename>laetoli/ontologies.py # Laetoli Areas Vocabulary laetoli = 'Laetoli' kakesio = 'Kakesio' esere = 'Esere' LAETOLI_AREAS = ( (laetoli, 'Laetoli'), (kakesio, 'Kakesio'), (esere, 'Esere-Noiti'), ) # Laetoli Stratographic Units ngaloba = 'Ngaloba Beds' qngaloba = '?Ngaloba Beds' olpiro = 'Olpiro Beds' naibadad = 'Naibadad Beds' olgol = 'Olgol Lavas' ndolanya = 'Ndolanya Beds' upper_ndolanya = 'Upper Ndolanya Beds' lower_ndolayna = 'Lower Ndolanya Beds' laetolil = 'Laetolil Beds' upper_laetolil = 'Upper Laetolil Beds' lower_laetolil = 'Lower Laetolil Beds' LAETOLI_UNITS = ( (ngaloba, 'Ngaloba Beds'), (qngaloba, '?Ngaloba Beds'), (olpiro,'Olpiro Beds'), (naibadad, 'Naibadad Beds'), (olgol, 'Olgol Lavas'), (ndolanya, 'Ndolanya Beds'), (upper_ndolanya, 'Upper Ndolanya Beds'), (lower_ndolayna, 'Lower Ndolanya Beds'), (laetolil, 'Laetolil Beds'), (upper_laetolil, 'Upper Laetolil Beds'), (lower_laetolil, 'Lower Laetolil Beds'), ) LIFE_STAGE_CHOICES = ( ('infant', 'infant'), ('juvenile', 'juvenile') ) SIZE_CLASS_CHOICES = ( ('indeterminate', 'indeterminate'), ('1', '1'), ('2', '2'), ('3', '3'), ('4', '4'), ('5', '5') )
StarcoderdataPython
27084
<gh_stars>0 # Get instance import instaloader import json L = instaloader.Instaloader(max_connection_attempts=0) # Login or load session username = '' password = '' L.login(username, password) # (login) # Obtain profile metadata instagram_target = '' profile = instaloader.Profile.from_username(L.context, instagram_target) following_list = [] count=1 for followee in profile.get_followees(): username = followee.username following_list.append(username) print(str(count) + ". " + username) count = count + 1 following_list_json = json.dumps(following_list) open("list_following_" + instagram_target +".json","w").write(following_list_json) print("selesai") print("cek file json di file : list_following_" + instagram_target +".json")
StarcoderdataPython
35409
from .nodes import Host, HostSchema, Session, SessionSchema, Project, SSHKey
StarcoderdataPython
4829034
<filename>backend/project-director/authentication/settings.py<gh_stars>0 TOKEN_LENGTH = 10 REFRESH_TOKEN = '<PASSWORD>' ACCESS_TOKEN = 'access-token'
StarcoderdataPython
27611
<gh_stars>1-10 import os import socket from typing import Any, Dict, Optional import hummingbot.connector.derivative.binance_perpetual.constants as CONSTANTS from hummingbot.client.config.config_var import ConfigVar from hummingbot.client.config.config_methods import using_exchange from hummingbot.core.utils.tracking_nonce import get_tracking_nonce from hummingbot.core.web_assistant.auth import AuthBase from hummingbot.core.web_assistant.connections.data_types import RESTMethod, RESTRequest from hummingbot.core.web_assistant.rest_pre_processors import RESTPreProcessorBase from hummingbot.core.web_assistant.web_assistants_factory import WebAssistantsFactory CENTRALIZED = True EXAMPLE_PAIR = "BTC-USDT" DEFAULT_FEES = [0.02, 0.04] BROKER_ID = "x-3QreWesy" class BinancePerpetualRESTPreProcessor(RESTPreProcessorBase): async def pre_process(self, request: RESTRequest) -> RESTRequest: if request.headers is None: request.headers = {} request.headers["Content-Type"] = ( "application/json" if request.method == RESTMethod.POST else "application/x-www-form-urlencoded" ) return request def get_client_order_id(order_side: str, trading_pair: object): nonce = get_tracking_nonce() symbols: str = trading_pair.split("-") base: str = symbols[0].upper() quote: str = symbols[1].upper() base_str = f"{base[0]}{base[-1]}" quote_str = f"{quote[0]}{quote[-1]}" client_instance_id = hex(abs(hash(f"{socket.gethostname()}{os.getpid()}")))[2:6] return f"{BROKER_ID}-{order_side.upper()[0]}{base_str}{quote_str}{client_instance_id}{nonce}" def rest_url(path_url: str, domain: str = "binance_perpetual", api_version: str = CONSTANTS.API_VERSION): base_url = CONSTANTS.PERPETUAL_BASE_URL if domain == "binance_perpetual" else CONSTANTS.TESTNET_BASE_URL return base_url + api_version + path_url def wss_url(endpoint: str, domain: str = "binance_perpetual"): base_ws_url = CONSTANTS.PERPETUAL_WS_URL if domain == "binance_perpetual" else CONSTANTS.TESTNET_WS_URL return base_ws_url + endpoint def build_api_factory(auth: Optional[AuthBase] = None) -> WebAssistantsFactory: api_factory = WebAssistantsFactory(auth=auth, rest_pre_processors=[BinancePerpetualRESTPreProcessor()]) return api_factory def is_exchange_information_valid(exchange_info: Dict[str, Any]) -> bool: """ Verifies if a trading pair is enabled to operate with based on its exchange information :param exchange_info: the exchange information for a trading pair :return: True if the trading pair is enabled, False otherwise """ return exchange_info.get("status", None) == "TRADING" KEYS = { "binance_perpetual_api_key": ConfigVar( key="binance_perpetual_api_key", prompt="Enter your Binance Perpetual API key >>> ", required_if=using_exchange("binance_perpetual"), is_secure=True, is_connect_key=True, ), "binance_perpetual_api_secret": ConfigVar( key="binance_perpetual_api_secret", prompt="Enter your Binance Perpetual API secret >>> ", required_if=using_exchange("binance_perpetual"), is_secure=True, is_connect_key=True, ), } OTHER_DOMAINS = ["binance_perpetual_testnet"] OTHER_DOMAINS_PARAMETER = {"binance_perpetual_testnet": "binance_perpetual_testnet"} OTHER_DOMAINS_EXAMPLE_PAIR = {"binance_perpetual_testnet": "BTC-USDT"} OTHER_DOMAINS_DEFAULT_FEES = {"binance_perpetual_testnet": [0.02, 0.04]} OTHER_DOMAINS_KEYS = { "binance_perpetual_testnet": { # add keys for testnet "binance_perpetual_testnet_api_key": ConfigVar( key="binance_perpetual_testnet_api_key", prompt="Enter your Binance Perpetual testnet API key >>> ", required_if=using_exchange("binance_perpetual_testnet"), is_secure=True, is_connect_key=True, ), "binance_perpetual_testnet_api_secret": ConfigVar( key="binance_perpetual_testnet_api_secret", prompt="Enter your Binance Perpetual testnet API secret >>> ", required_if=using_exchange("binance_perpetual_testnet"), is_secure=True, is_connect_key=True, ), } }
StarcoderdataPython
1650466
<reponame>Khan/pyobjc-framework-Cocoa from MyBaseGradientView import * class MyBezierGradientView (MyBaseGradientView): def init(self): self = super(MyBaseGradientView, self).init() if self is None: return None self.myOffsetPt = NSMakePoint(0.0, 0.0) return self def drawRect_(self, rect): self.resetGradient() bezierPath = NSBezierPath.alloc().init() bezierPath.appendBezierPathWithOvalInRect_(rect) if self.myIsRadial: self.myGradient.drawInBezierPath_relativeCenterPosition_(bezierPath, self.myOffsetPt) else: self.myGradient.drawInBezierPath_angle_(bezierPath, self.myAngle)
StarcoderdataPython
1653340
#!/usr/bin/env python3 import sys sys.exit("[ - ] Sedang perbaikan, mohon tunggu update")
StarcoderdataPython
4836389
<reponame>warsaw/pkg-gunicorn # -*- coding: utf-8 - # # This file is part of gunicorn released under the MIT license. # See the NOTICE for more information. import t import functools import os import sys from gunicorn import config from gunicorn.app.base import Application from gunicorn.workers.sync import SyncWorker dirname = os.path.dirname(__file__) def cfg_file(): return os.path.join(dirname, "config", "test_cfg.py") def paster_ini(): return os.path.join(dirname, "..", "examples", "frameworks", "pylonstest", "nose.ini") class AltArgs(object): def __init__(self, args=None): self.args = args or [] self.orig = sys.argv def __enter__(self): sys.argv = self.args def __exit__(self, exc_type, exc_inst, traceback): sys.argv = self.orig class NoConfigApp(Application): def __init__(self): super(NoConfigApp, self).__init__("no_usage", prog="gunicorn_test") def init(self, parser, opts, args): pass def load(self): pass def test_defaults(): c = config.Config() for s in config.KNOWN_SETTINGS: t.eq(c.settings[s.name].validator(s.default), c.settings[s.name].get()) def test_property_access(): c = config.Config() for s in config.KNOWN_SETTINGS: getattr(c, s.name) # Class was loaded t.eq(c.worker_class, SyncWorker) # Workers defaults to 1 t.eq(c.workers, 1) c.set("workers", 3) t.eq(c.workers, 3) # Address is parsed t.eq(c.address, [("127.0.0.1", 8000)]) # User and group defaults t.eq(os.geteuid(), c.uid) t.eq(os.getegid(), c.gid) # Proc name t.eq("gunicorn", c.proc_name) # Not a config property t.raises(AttributeError, getattr, c, "foo") # Force to be not an error class Baz(object): def get(self): return 3.14 c.settings["foo"] = Baz() t.eq(c.foo, 3.14) # Attempt to set a cfg not via c.set t.raises(AttributeError, setattr, c, "proc_name", "baz") # No setting for name t.raises(AttributeError, c.set, "baz", "bar") def test_bool_validation(): c = config.Config() t.eq(c.preload_app, False) c.set("preload_app", True) t.eq(c.preload_app, True) c.set("preload_app", "true") t.eq(c.preload_app, True) c.set("preload_app", "false") t.eq(c.preload_app, False) t.raises(ValueError, c.set, "preload_app", "zilch") t.raises(TypeError, c.set, "preload_app", 4) def test_pos_int_validation(): c = config.Config() t.eq(c.workers, 1) c.set("workers", 4) t.eq(c.workers, 4) c.set("workers", "5") t.eq(c.workers, 5) c.set("workers", "0xFF") t.eq(c.workers, 255) c.set("workers", True) t.eq(c.workers, 1) # Yes. That's right... t.raises(ValueError, c.set, "workers", -21) t.raises(TypeError, c.set, "workers", c) def test_str_validation(): c = config.Config() t.eq(c.proc_name, "gunicorn") c.set("proc_name", " foo ") t.eq(c.proc_name, "foo") t.raises(TypeError, c.set, "proc_name", 2) def test_str_to_list_validation(): c = config.Config() t.eq(c.forwarded_allow_ips, ["127.0.0.1"]) c.set("forwarded_allow_ips", "127.0.0.1,192.168.0.1") t.eq(c.forwarded_allow_ips, ["127.0.0.1", "192.168.0.1"]) c.set("forwarded_allow_ips", "") t.eq(c.forwarded_allow_ips, []) c.set("forwarded_allow_ips", None) t.eq(c.forwarded_allow_ips, []) t.raises(TypeError, c.set, "forwarded_allow_ips", 1) def test_callable_validation(): c = config.Config() def func(a, b): pass c.set("pre_fork", func) t.eq(c.pre_fork, func) t.raises(TypeError, c.set, "pre_fork", 1) t.raises(TypeError, c.set, "pre_fork", lambda x: True) def test_callable_validation_for_string(): from os.path import isdir as testfunc t.eq( config.validate_callable(-1)("os.path.isdir"), testfunc ) # invalid values tests t.raises( TypeError, config.validate_callable(-1), "" ) t.raises( TypeError, config.validate_callable(-1), "os.path.not_found_func" ) t.raises( TypeError, config.validate_callable(-1), "notfoundmodule.func" ) def test_cmd_line(): with AltArgs(["prog_name", "-b", "blargh"]): app = NoConfigApp() t.eq(app.cfg.bind, ["blargh"]) with AltArgs(["prog_name", "-w", "3"]): app = NoConfigApp() t.eq(app.cfg.workers, 3) with AltArgs(["prog_name", "--preload"]): app = NoConfigApp() t.eq(app.cfg.preload_app, True) def test_app_config(): with AltArgs(): app = NoConfigApp() for s in config.KNOWN_SETTINGS: t.eq(app.cfg.settings[s.name].validator(s.default), app.cfg.settings[s.name].get()) def test_load_config(): with AltArgs(["prog_name", "-c", cfg_file()]): app = NoConfigApp() t.eq(app.cfg.bind, ["unix:/tmp/bar/baz"]) t.eq(app.cfg.workers, 3) t.eq(app.cfg.proc_name, "fooey") def test_cli_overrides_config(): with AltArgs(["prog_name", "-c", cfg_file(), "-b", "blarney"]): app = NoConfigApp() t.eq(app.cfg.bind, ["blarney"]) t.eq(app.cfg.proc_name, "fooey") def test_default_config_file(): default_config = os.path.join(os.path.abspath(os.getcwd()), 'gunicorn.conf.py') with open(default_config, 'w+') as default: default.write("bind='0.0.0.0:9090'") t.eq(config.get_default_config_file(), default_config) with AltArgs(["prog_name"]): app = NoConfigApp() t.eq(app.cfg.bind, ["0.0.0.0:9090"]) os.unlink(default_config) def test_post_request(): c = config.Config() def post_request_4(worker, req, environ, resp): return 4 def post_request_3(worker, req, environ): return 3 def post_request_2(worker, req): return 2 c.set("post_request", post_request_4) t.eq(4, c.post_request(1, 2, 3, 4)) c.set("post_request", post_request_3) t.eq(3, c.post_request(1, 2, 3, 4)) c.set("post_request", post_request_2) t.eq(2, c.post_request(1, 2, 3, 4)) def test_nworkers_changed(): c = config.Config() def nworkers_changed_3(server, new_value, old_value): return 3 c.set("nworkers_changed", nworkers_changed_3) t.eq(3, c.nworkers_changed(1, 2, 3))
StarcoderdataPython
1657316
import collections import io import json import logging import string import sys from lxml import etree logger = logging.getLogger("righter") class StateController: def __init__(self): self.writing = {} self.change = {} self.inside_writing = False self.inside_change = False self.writing_failed = False def _is_change_valid(self, change): if not change.get('symbol'): return False if change['symbol'] in ('SP', 'C', 'NSW'): required_keys = {'symbol', 'selection', 'start'} if required_keys - set(change.keys()): return False return True def start_writing(self, writing_id, level): self.writing_failed = False self.writing = { "id": writing_id, "level": level, "text": "", "changes": [], } self.inside_writing = True def set_nationality(self, nationality): self.writing['nationality'] = nationality def set_topic(self, topic): self.writing['topic'] = topic def set_grade(self, grade): self.writing["grade"] = grade def end_writing(self): self.inside_writing = False def start_change(self): self.inside_change = True self.change = { "start": self.offset } def end_change(self): self.inside_change = False self.update_text(self.change.get("selection")) # ignore changes without symbols (they are impossible to analyse # anyway) if self._is_change_valid(self.change): self.writing["changes"].append(self.change) def set_selection(self, selection): if selection: self.change["selection"] = selection def set_symbol(self, symbol): if symbol == 'NSW': symbol = 'SP' self.change["symbol"] = symbol def set_correct(self, correct): if correct: self.change["correct"] = correct @property def offset(self): return len(self.writing["text"]) def _needs_space(self, a, b): if not a or not b: return False if any(map(a.endswith, string.punctuation)) and not any(map(b.startswith, string.whitespace)): return True elif not any(map(a.endswith, string.whitespace)): return not any(map(b.startswith, string.whitespace + string.punctuation)) return False def update_text(self, text): if text: if self._needs_space(self.writing["text"], text): separator = ' ' else: separator = '' self.writing["text"] += separator + text def _parse_text(controller, blob): """Parses blob, extracted from text CDATA using XML Parser.""" stream = io.BytesIO(blob.encode('utf8')) for event, element in etree.iterparse(stream, events=('start', 'end')): if element.tag == 'text' and event == 'start': controller.update_text(element.text) elif element.tag == 'change': if event == 'start': controller.start_change() else: controller.end_change() controller.update_text(element.tail) elif element.tag == 'selection' and event == 'end': controller.set_selection(element.text) elif element.tag == 'symbol' and event == 'end': controller.set_symbol(element.text) elif element.tag == 'correct' and event == 'end': controller.set_correct(element.text) elif element.tag == 'br' and event == 'end': if element.tail: controller.update_text('\n{}'.format(element.tail)) else: controller.update_text('\n') elif not controller.inside_change and event == 'end': controller.update_text(element.tail) def parse(xml_file): """Given a xml file-like object, returns a list of dicts with two keys: - text: original student writing - changes: list of dicts with the fields: - symbol: error type, according to the list x>>y - change from x to y AG - agreement AR - article CO - combine sentences C - capitalization D - delete EX - expression of idiom HL - highlight I(x) - insert x MW - missing word NS - new sentence NSW - no such word PH - phraseology PL - plural PO - possessive PR - preposition PS - part of speech PU - punctuation SI - singular SP - spelling VT - verb tense WC - word choice WO - word order - selection: excerpt of the original text - start: indice where the word is in the text (in unicode characters) - correct: if this field exists it is the teacher suggested correction """ controller = StateController() for event, element in etree.iterparse(xml_file, events=('start', 'end')): if element.tag == 'writing': if event == 'start': controller.start_writing(element.get('id'), element.get('level')) else: controller.end_writing() if not controller.writing_failed: yield controller.writing # keep etree from keeping the entire tree in memory element.clear() elif element.tag == 'learner' and event == 'end': if element.get('nationality'): controller.set_nationality(element.get('nationality')) elif element.tag == 'topic' and event == 'end': if element.get('id'): controller.set_topic(element.get('id')) elif element.tag == 'grade' and event == 'end': if element.text: try: controller.set_grade(int(element.text)) except ValueError: pass elif element.tag == 'text' and event == 'end': try: _parse_text(controller, '<text>{}</text>'.format(element.text)) except etree.XMLSyntaxError: logger.warn("Text for writing <%s> is invalid XML", controller.writing.get('id')) controller.writing_failed = True
StarcoderdataPython
3230285
# -*- coding: utf-8 -*- """ Created on Wed Mar 16 02:05:23 2022 @author: Sagi """ ''' Sample choice node text: ;-BLOCK------------------------------------------------------------------------- *f20 # Label gosub *regard_update !sd if %sceneskip==1 && %1020==1 skip 4 gosub *s20 mov %1020,1 skip 9 `You have already viewed this scene. `Would you like to skip? br selgosub `1. Skip`, *skip20, `2. Don't skip`, *s20 skip 3 *skip20 return ;gosub *s20 select `1. There's only a few minutes until homeroom. I have to head there right away.`, *f21, `2. || I'm curious, so I'll go take a look.`, *f22 ''' import re from Graph import * class TextNode(): def __init__(self, label=None, text=None, children=None): if label is not None: self.label = label else: self.label = None if text is not None: self.text = text else: self.text = "" if children is not None: self.children = children else: self.children = [] def get_text(self): if self.text: return self.text else: return None def get_label(self): if self.label: return self.label else: return None def add_text(self, text): self.text += text def change_label(self, label): self.label = label def add_children(self, children): self.children += children class ChoiceNode(TextNode): def add_choices(self, choices): self.choices = choices def get_choices(self): if self.choices: return self.choices else: return None class TsukihimeNode(TextNode): def get_labels(self, string): return re.findall("\*.*(?=,)|\*.*(?=\s)|\*.*", string) def parse_text(self): if self.text is None: print("No text to parse") return -1 line_ctr = 0 lines = self.text.splitlines() no_lines = len(lines) while (line_ctr < no_lines): if lines[line_ctr].find("select") != -1: children = [] while (line_ctr < no_lines and re.search("`[0-9].*`", lines[line_ctr])): children += self.get_labels(lines[line_ctr]) line_ctr += 1 self.add_children(children) elif lines[line_ctr].find("goto") != -1: self.add_children(self.get_labels(lines[line_ctr])) line_ctr += 1 class NscriptParser(Graph): # method to parse the script def parse(self): nscript = open("./nsdec/NSDEC/result.txt", encoding="cp932") line = nscript.readline() header = open("./parsed_texts/header.txt", "w", encoding="cp932") remaining = open("./parsed_texts/remaining.txt", "w", encoding="cp932") choices = open("./parsed_texts/choices.txt", "w", encoding="cp932") choice_nodes = [] nodes = [] nodes_present = False while (line and line.strip() != "*start"): header.writelines(line) line = nscript.readline() while (line and line.strip() != "; $Id: 4.txt 1282 2006-08-04 18:12:29Z chendo $"): if re.match("\*f.*", line): nodes_present = True choice_nodes.append(TsukihimeNode(text="")) if nodes_present: choice_nodes[-1].add_text(line) if re.match("^\*f", line): choice_nodes[-1].change_label(line.strip()) choices.writelines(line) line = nscript.readline() while (line): if re.match("^\*", line): nodes.append(TextNode(line)) remaining.writelines(line) line = nscript.readline() nscript.close() header.close() remaining.close() choices.close() choice_nodes = list(filter(lambda x: x.get_label() is not None, choice_nodes)) for node in choice_nodes: node.parse_text() for node in choice_nodes: self.graph.add_node(node.label) for child in node.children: if child not in self.graph: self.graph.add_node(child) self.graph.add_edge(node.label, child) return choice_nodes if __name__ == "__main__": parser = NscriptParser() choice_nodes = parser.parse() leveled_tree = parser.get_leveled_tree() output = parser.output_tree_sideways() with open("ouput.txt", "w") as outfile: outfile.write(output) #parser.plot() #parser.plot_pretty()
StarcoderdataPython
3305538
import unittest from more_itertools import ( one, ) from azul import ( config, ) from azul.es import ( ESClientFactory, ) from azul.indexer import ( BundleFQID, ) from azul.indexer.document import ( AggregateCoordinates, CataloguedEntityReference, ContributionCoordinates, ) from azul.logging import ( configure_test_logging, ) from indexer.test_hca_indexer import ( IndexerTestCase, ) # noinspection PyPep8Naming def setUpModule(): configure_test_logging() class TestDataExtractorTestCase(IndexerTestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.es_client = ESClientFactory.get() def setUp(self) -> None: super().setUp() self.index_service.create_indices(self.catalog) def tearDown(self) -> None: self.index_service.delete_indices(self.catalog) super().tearDown() def test_hca_extraction(self): bundle_fqids = [ BundleFQID('17a3d288-01a0-464a-9599-7375fda3353d', '2018-03-28T151023.074974Z'), BundleFQID('2a87dc5c-0c3c-4d91-a348-5d784ab48b92', '2018-03-29T104041.822717Z'), BundleFQID('4afbb0ea-81ad-49dc-9b12-9f77f4f50be8', '2018-03-29T090403.442059Z'), BundleFQID('aaa96233-bf27-44c7-82df-b4dc15ad4d9d', '2018-11-04T113344.698028Z'), BundleFQID('b0850e79-5544-49fe-b54d-e29b9fc3f61f', '2018-03-29T090340.934358Z'), BundleFQID('c94a43f9-257f-4cd0-b2fe-eaf6d5d37d18', '2018-03-29T090343.782253Z') ] for bundle_fqid in bundle_fqids: self._index_canned_bundle(bundle_fqid) for aggregate in True, False: with self.subTest(aggregate=aggregate): def index_name(entity_type): return config.es_index_name(catalog=self.catalog, entity_type=entity_type, aggregate=aggregate) total_projects = self.es_client.count(index=index_name('projects'), doc_type='doc') # Three unique projects, six project contributions self.assertEqual(3 if aggregate else 6, total_projects["count"]) total_files = self.es_client.count(index=index_name('files'), doc_type='doc') self.assertEqual(776, total_files["count"]) total_samples = self.es_client.count(index=index_name('samples'), doc_type='doc') self.assertEqual(129, total_samples["count"]) # When two processes point at a file (this is the case for most files in production) # there was a bug where the files index contains duplicate dictionaries for the file. # def test_no_duplicate_files_in_specimen(self): bundle_fqid = BundleFQID('8543d32f-4c01-48d5-a79f-1c5439659da3', '2018-03-29T143828.884167Z') self._index_canned_bundle(bundle_fqid) for aggregate in True, False: with self.subTest(aggregate=aggregate): entity = CataloguedEntityReference(catalog=self.catalog, entity_type='samples', entity_id='b3623b88-c369-46c9-a2e9-a16042d2c589') if aggregate: coordinates = AggregateCoordinates(entity=entity) else: coordinates = ContributionCoordinates(entity=entity, bundle=bundle_fqid, deleted=False) result = self.es_client.get(index=coordinates.index_name, doc_type=coordinates.type, id=coordinates.document_id) files = result['_source']['contents']['files'] num_files = 2 # fastqs if aggregate: self.assertEqual(num_files, one(files)['count']) else: file_ids = [f['uuid'] for f in files] self.assertEqual(num_files, len(file_ids)) self.assertEqual(num_files, len(set(file_ids))) if __name__ == "__main__": unittest.main()
StarcoderdataPython
4825826
from flask_login import current_user, login_user, logout_user, login_required from flask import render_template, redirect, url_for, flash, g, json from app.models import Inventory, Event, User, Description from app.forms import LoginForm from app.auth import login_check from app import app, login, db from json2html import * """ Grabs username of the user logged in """ @app.before_request def before_request(): g.user = current_user """ Login """ @app.route('/login', methods=['GET', 'POST']) def login(): if current_user.is_authenticated: return redirect(url_for('index')) form = LoginForm() if form.validate_on_submit(): username, password = form.username.data, form.password.data access = login_check(username, password) if access is None: flash('Invalid username or password') return redirect(url_for('login')) user = User.query.filter_by(username=access).first() print("1. User is authenticated:", user.is_authenticated) print("Current user:", current_user) if user is None: print("No user found") return redirect(url_for('login')) login_user(user, remember=form.remember_me.data) print("2. User is authenticated:", user.is_authenticated) print("Current user:", current_user) return redirect(url_for('index')) return render_template('login.html', form=form) """ logout. Cant get to this page unless logged in """ @app.route('/logout') @login_required def logout(): logout_user() return redirect(url_for('index')) """ landing page - all detectors """ @app.route('/') @app.route('/index') @login_required def index(): detectors = Inventory.query.order_by(Inventory.detectorid).all() events = [] for detector in detectors: if detector.isactive: event = Event.query.filter_by(detectorid=detector.detectorid).order_by(Event.eventid.desc()).first() events.append(event) return render_template("index.html", detectors=detectors, events=events) """ compact mode view """ @app.route('/view/compact') @login_required def compact(): detectors = Inventory.query.order_by(Inventory.detectorid).all() events = [] for detector in detectors: if detector.isactive: event = Event.query.filter_by(detectorid=detector.detectorid).order_by(Event.eventid.desc()).first() events.append(event) return render_template("compact.html", detectors=detectors, events=events) """ when clicking detector """ @app.route('/description/<int:id>') @login_required def description(id): detector = Inventory.query.filter_by(detectorid=id).first() if detector.isactive: event = Event.query.filter_by(detectorid=detector.detectorid).order_by(Event.eventid.desc()).first() if event is not None: description = Description.query.filter_by(eventid=event.eventid).order_by(Description.eventid.desc()).first() if description.contenttype == "json": info = description.descriptiondetails info = json2html.convert(json=info, table_attributes="id=\"info-table\" class=\"sortable rgb\"") else: info = description.descriptiondetails return render_template("description.html", detector=detector, event=event, description=description, info=info) """ When clicking history """ @app.route('/history/<int:id>') @login_required def history(id): detector = Inventory.query.filter_by(detectorid=id).first() if detector.isactive: event = Event.query.filter_by(detectorid=detector.detectorid).order_by(Event.eventid.desc()) return render_template("history.html", detector=detector, event=event) """ When clicking area """ @app.route('/<area>') @login_required def filter_area(area): area = area detectors = Inventory.query.filter_by(area=area).all() events = [] for detector in detectors: if detector.isactive: event = Event.query.filter_by(detectorid=detector.detectorid).order_by(Event.eventid.desc()).first() events.append(event) return render_template("index.html", detectors=detectors, events=events)
StarcoderdataPython
3266472
<reponame>rkwojdan/flair35 from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import shutil from flair.data import Dictionary from flair.trainers.language_model_trainer import TextCorpus def test_train_resume_language_model_training(resources_path, results_base_path, tasks_base_path): dictionary = Dictionary.load(u'chars') corpus = TextCorpus((resources_path / u'corpora/lorem_ipsum'), dictionary, forward=True, character_level=True) assert (corpus.test is not None) assert (corpus.train is not None) assert (corpus.valid is not None) assert (len(corpus.train) == 2) def test_generate_text_with_small_temperatures(): from flair.embeddings import FlairEmbeddings language_model = FlairEmbeddings(u'news-forward-fast').lm (text, likelihood) = language_model.generate_text( temperature=0.01, number_of_characters=100) assert (text is not None) assert (len(text) >= 100)
StarcoderdataPython
1707600
from django.conf.urls import url from django.urls import include from rest_framework_extensions.routers import ( ExtendedDefaultRouter as DefaultRouter ) from .views import AuthorViewSet router = DefaultRouter() authors_router = router.register( r'authors', AuthorViewSet, 'authors' ) urlpatterns = [ url(r'', include(router.urls)) ]
StarcoderdataPython
1720412
<reponame>thecodeboy/tink # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tink.tools.testing.python.testing_server.""" import os import signal import subprocess import time from typing import Text from absl import logging from absl.testing import absltest import grpc import portpicker from tink import aead from proto.testing import testing_api_pb2 from proto.testing import testing_api_pb2_grpc def _server_path() -> Text: dir_path = os.path.dirname(os.path.abspath(__file__)) return os.path.join(dir_path, 'testing_server') class TestingServerTest(absltest.TestCase): _server = None _channel = None _keyset_stub = None _aead_stub = None @classmethod def setUpClass(cls): super().setUpClass() port = portpicker.pick_unused_port() cls._server = subprocess.Popen([ _server_path(), '-port', '%d' % port, ], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) logging.info('Server started on port %d with pid: %d.', port, cls._server.pid) cls._channel = grpc.secure_channel('[::]:%d' % port, grpc.local_channel_credentials()) grpc.channel_ready_future(cls._channel).result() cls._keyset_stub = testing_api_pb2_grpc.KeysetStub(cls._channel) cls._aead_stub = testing_api_pb2_grpc.AeadStub(cls._channel) @classmethod def tearDownClass(cls): cls._channel.close() logging.info('Stopping server...') cls._server.send_signal(signal.SIGINT) time.sleep(2) if cls._server.poll() is None: cls._server.kill() super().tearDownClass() def test_generate_encrypt_decrypt(self): t = time.time() template = aead.aead_key_templates.AES128_GCM.SerializeToString() gen_request = testing_api_pb2.GenerateKeysetRequest(template=template) gen_response = self._keyset_stub.Generate(gen_request) self.assertEmpty(gen_response.err) keyset = gen_response.keyset plaintext = b'The quick brown fox jumps over the lazy dog' associated_data = b'associated_data' enc_request = testing_api_pb2.AeadEncryptRequest( keyset=keyset, plaintext=plaintext, associated_data=associated_data) enc_response = self._aead_stub.Encrypt(enc_request) self.assertEmpty(enc_response.err) ciphertext = enc_response.ciphertext dec_request = testing_api_pb2.AeadDecryptRequest( keyset=keyset, ciphertext=ciphertext, associated_data=associated_data) dec_response = self._aead_stub.Decrypt(dec_request) self.assertEmpty(dec_response.err) self.assertEqual(dec_response.plaintext, plaintext) logging.info('Testing took %s s', time.time() - t) def test_generate_decrypt_fail(self): template = aead.aead_key_templates.AES128_GCM.SerializeToString() gen_request = testing_api_pb2.GenerateKeysetRequest(template=template) gen_response = self._keyset_stub.Generate(gen_request) self.assertEmpty(gen_response.err) keyset = gen_response.keyset ciphertext = b'some invalid ciphertext' associated_data = b'associated_data' dec_request = testing_api_pb2.AeadDecryptRequest( keyset=keyset, ciphertext=ciphertext, associated_data=associated_data) dec_response = self._aead_stub.Decrypt(dec_request) logging.info('Error in response: %s', dec_response.err) self.assertNotEmpty(dec_response.err) self.assertEmpty(dec_response.plaintext) if __name__ == '__main__': absltest.main()
StarcoderdataPython
195961
<gh_stars>1-10 #!/usr/bin/env python # ===--- generate_harness.py ----------------------------------------------===// # # This source file is part of the Swift.org open source project # # Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors # Licensed under Apache License v2.0 with Runtime Library Exception # # See http://swift.org/LICENSE.txt for license information # See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors # # ===----------------------------------------------------------------------===// # Generate CMakeLists.txt and utils/main.swift from templates. import jinja2 import os import glob import re script_dir = os.path.dirname(os.path.realpath(__file__)) perf_dir = os.path.realpath(os.path.join(script_dir, '../..')) single_source_dir = os.path.join(perf_dir, 'single-source') multi_source_dir = os.path.join(perf_dir, 'multi-source') template_map = { 'CMakeLists.txt_template': os.path.join(perf_dir, 'CMakeLists.txt'), 'main.swift_template': os.path.join(perf_dir, 'utils/main.swift') } ignored_run_funcs = ["Ackermann", "Fibonacci"] template_loader = jinja2.FileSystemLoader(searchpath="/") template_env = jinja2.Environment(loader=template_loader, trim_blocks=True, lstrip_blocks=True) if __name__ == '__main__': # CMakeList single-source tests = [os.path.basename(x).split('.')[0] for x in glob.glob(os.path.join(single_source_dir, '*.swift'))] # CMakeList multi-source class multi_source_bench(object): def __init__(self, path): self.name = os.path.basename(path) self.files = [x for x in os.listdir(path) if x.endswith('.swift')] if os.path.isdir(multi_source_dir): multisource_benches = [ multi_source_bench(os.path.join(multi_source_dir, x)) for x in os.listdir(multi_source_dir) if os.path.isdir(os.path.join(multi_source_dir, x)) ] else: multisource_benches = [] # main.swift imports imports = sorted(tests + [msb.name for msb in multisource_benches]) # main.swift run functions def get_run_funcs(filepath): content = open(filepath).read() matches = re.findall(r'func run_(.*?)\(', content) return filter(lambda x: x not in ignored_run_funcs, matches) def find_run_funcs(dirs): ret_run_funcs = [] for d in dirs: for root, _, files in os.walk(d): for name in filter(lambda x: x.endswith('.swift'), files): run_funcs = get_run_funcs(os.path.join(root, name)) ret_run_funcs.extend(run_funcs) return ret_run_funcs run_funcs = sorted( [(x, x) for x in find_run_funcs([single_source_dir, multi_source_dir])], key=lambda x: x[0] ) # Replace originals with files generated from templates for template_file in template_map: template_path = os.path.join(script_dir, template_file) template = template_env.get_template(template_path) print template_map[template_file] open(template_map[template_file], 'w').write( template.render(tests=tests, multisource_benches=multisource_benches, imports=imports, run_funcs=run_funcs) )
StarcoderdataPython
3230531
# coding=utf-8 import flask from flask import request,jsonify import werkzeug import os import tensorflow as tf import getConfig import numpy as np import pickle import requests import json from PIL import Image gConfig = {} gConfig = getConfig.get_config(config_file='config.ini') app = flask.Flask("imgClassifierWeb") def CNN_predict(): global secure_filename file = gConfig['dataset_path'] + "batches.meta" patch_bin_file = open(file, 'rb') label_names_dict = pickle.load(patch_bin_file)["label_names"] img = Image.open(os.path.join(app.root_path, secure_filename)) img = img.convert("RGB") r, g, b = img.split() r_arr = np.array(r) g_arr = np.array(g) b_arr = np.array(b) img = np.concatenate((r_arr, g_arr, b_arr)) image = img.reshape([1, 32, 32, 3])/255 payload = json.dumps({"instances":image.tolist()}) predicted_class=requests.post('http://localhost:9000/v1/models/ImageClassifier:predict',data=payload) predicted_class=np.array(json.loads(predicted_class.text)["predictions"]) prediction=tf.math.argmax(predicted_class[0]).numpy() print(prediction) return flask.render_template(template_name_or_list="prediction_result.html",predicted_class=label_names_dict[prediction]) app.add_url_rule(rule="/predict/", endpoint="predict", view_func=CNN_predict) @app.route('/api', methods=['POST']) def predict_api(): file = gConfig['dataset_path'] + "batches.meta" patch_bin_file = open(file, 'rb') label_names_dict = pickle.load(patch_bin_file)["label_names"] img = Image.open( request.form['path']) img = img.convert("RGB") r, g, b = img.split() r_arr = np.array(r) g_arr = np.array(g) b_arr = np.array(b) img = np.concatenate((r_arr, g_arr, b_arr)) image = img.reshape([1, 32, 32, 3]) / 255 payload = json.dumps({"instances": image.tolist()}) predicted_class = requests.post('http://localhost:9000/v1/models/ImageClassifi:predict', data=payload) predicted_class = np.array(json.loads(predicted_class.text)["predictions"]) prediction = tf.math.argmax(predicted_class[0]).numpy() print(prediction) return jsonify({'result':label_names_dict[prediction]}) def upload_image(): global secure_filename if flask.request.method == "POST": # 设置request的模式为POST img_file = flask.request.files["image_file"] # 获取需要分类的图片 secure_filename = werkzeug.secure_filename(img_file.filename) # 生成一个没有乱码的文件名 img_path = os.path.join(app.root_path, "predict_img/"+secure_filename) # 获取图片的保存路径 img_file.save(img_path) # 将图片保存在应用的根目录下 print("图片上传成功.") """ """ return flask.redirect(flask.url_for(endpoint="predict")) return "图片上传失败" """ """ app.add_url_rule(rule="/upload/", endpoint="upload", view_func=upload_image, methods=["POST"]) def predirect_upload(): return flask.render_template(template_name_or_list="upload_image.html") """ """ app.add_url_rule(rule="/", endpoint="homepage", view_func=predirect_upload) if __name__ == "__main__": app.run(host="0.0.0.0", port=8008, debug=False)
StarcoderdataPython
3286639
<reponame>whitfin/spack<filename>var/spack/repos/builtin/packages/r-rsamtools/package.py # Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RRsamtools(RPackage): """This package provides an interface to the 'samtools', 'bcftools', and 'tabix' utilities (see 'LICENCE') for manipulating SAM (Sequence Alignment / Map), FASTA, binary variant call (BCF) and compressed indexed tab-delimited (tabix) files.""" homepage = "https://bioconductor.org/packages/Rsamtools/" git = "https://git.bioconductor.org/packages/Rsamtools.git" version('1.32.2', commit='<PASSWORD>') version('1.28.0', commit='<PASSWORD>') depends_on('r-genomeinfodb', type=('build', 'run')) depends_on('[email protected]:', when='@1.32.2', type=('build', 'run')) depends_on('r-genomicranges', type=('build', 'run')) depends_on('[email protected]:', when='@1.32.2', type=('build', 'run')) depends_on('r-biostrings', type=('build', 'run')) depends_on('[email protected]:', when='@1.32.2', type=('build', 'run')) depends_on('r-biocgenerics', type=('build', 'run')) depends_on('[email protected]:', when='@1.32.2', type=('build', 'run')) depends_on('r-s4vectors', type=('build', 'run')) depends_on('[email protected]:', when='@1.32.2', type=('build', 'run')) depends_on('r-iranges', type=('build', 'run')) depends_on('[email protected]:', when='@1.32.2', type=('build', 'run')) depends_on('r-xvector', type=('build', 'run')) depends_on('[email protected]:', when='@1.32.2', type=('build', 'run')) depends_on('r-zlibbioc', type=('build', 'run')) depends_on('r-bitops', type=('build', 'run')) depends_on('r-biocparallel', type=('build', 'run')) depends_on('[email protected]:3.4.9', when='@1.28.0', type=('build', 'run')) depends_on('[email protected]:3.5.9', when='@1.32.2', type=('build', 'run'))
StarcoderdataPython
3290628
#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> # Simulation class for threading Kernel objects # # macrospin Python package # Authors: <NAME> # Copyright: 2014-2015 Cornell University # #>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> import numpy as np from threading import Thread class Simulation(object): """ Simulation object coordinates the Thread that runs the kernel """ FAILED, STOPPED, QUEUED, RUNNING = 0, 1, 2, 3 def __init__(self, kernel): self.kernel = kernel self.status = Simulation.QUEUED self.thread = None def run(self, time, timeout=None, thread_timeout=1e5): """ Runs the simulation for a given simulation time in seconds """ if self.status == Simulation.RUNNING: raise Exception("Simulation is already running") elif self.status == Simulation.FAILED: raise Exception("Can not run a simulation that has failed") self.status = Simulation.RUNNING self.thread = Thread(target=self.kernel, kwargs={ 'time': time, 'timeout': timeout}) self.thread.start() def isRunning(self): """ Returns True if an existing Thread is running """ if self.thread is None: return False else: return self.thread.isAlive() def wait(self, thread_timeout): self.thread.join(thread_timeout) self.status = Simulation.STOPPED def stop(self): """ Stops the simulation even if running """ self.kernel.stop() def resume(self, time, thread_timeout=1e5): """ Resumes the simulation from the last moment orientation """ self.run(time, None, thread_timeout) def stabilize(self, timeout=1e-4, thread_timeout=1e5): """ Runs the simulation until the moment is stable or the timeout is reached in simulation time """ self.run(None, timeout, thread_timeout) class FieldSweep(object): def __init__(self, kernel, fields): self.kernel = kernel self.fields = fields @staticmethod def loop(kernel, direction='x', start_field=-1e3, end_field=1e3, points=1e3, reverse=True): """ Returns a FieldSweep object with fields that go from the start_field to the end_field along a specific direction, with the default option to also include the reverse """ H = np.linspace(start_field, end_field, num=points, dtype=np.float32) coordinates = {'x': 0, 'y': 1, 'z': 2} if direction not in coordinates: raise ValueError("Field sweep direction must be either x, y, or z") if reverse: fields = np.zeros((2*points, 3), dtype=np.float32) fields[:points,coordinates[direction]] = H fields[points:,coordinates[direction]] = H[::-1] # Reversed view else: fields = np.zeros((points, 3), dtype=np.float32) fields[:,coordinates[direction]] = H return FieldSweep(kernel, fields) def run(self, steps=1000): """ Runs through each field and stabilizes the moment, returning the fields, stabilization time, and moment orientation """ size = self.fields.shape[0] times = np.zeros((size, 1), dtype=np.float32) moments = np.zeros((size, 3), dtype=np.float32) self.kernel.reset() for i, field in enumerate(self.fields): ti = self.kernel.t_sec self.kernel.hext = self.kernel.raw_parameters.normalize_field(field) print self.kernel.hext, steps self.kernel.relax(steps) print "t:", ti, self.kernel.t_sec times[i] = self.kernel.t_sec - ti moments[i] = self.kernel.m return self.fields, times, moments
StarcoderdataPython
3256177
<reponame>mmwest55/FinalProjectCS499 # <NAME> # 11/1/2020 # User Management System # import additional files from login import Login from customer import Customer import pandas as pd # import databases, and database connections import sqlite3 conn = sqlite3.connect("user_management.db") cursor = conn.cursor() # Welcome screen def welcome(): """ Welcome screen for program """ print("========================================================") print('======================== Wecome ========================') print("========================================================") print('================= User Management System ===============') print("========================================================\n") # Login function def start(): """Start function designed to implement the login screen.""" # Function to initiate login operations log_req = input("Login to your account (Y/N) ") if log_req.lower() == 'y': # This ensures that if the user types # upper or lower case, it is detected log_proc = Login() if log_proc.user_find(): print('\nWelcome to the System\n') else: print('Please contact your administrator to setup your account') else: print ('Goodbye') # Menu to be seen after proper login def menu(): """Menu to make selection""" print("========================================================") print('======================== Menu ==========================') print("========================================================\n") print('1. New customer: ') print('2. Existing customer: ') print('3. Exit\n') customer_proc = Customer() user_input = input('Please make your selection using a numerical value: ') user_input = int(user_input) # Checking to see what user input is, and make send to correct method. if user_input == 1: customer_proc.new_customer() elif user_input == 2: customer_proc.existing_customer() elif user_input == 3: return else: print('Invalid choice, please select the number corresponding to the selection:') menu() menu() # Exit message def exit_program(): """ Thank you message to exit program """ print('===============================================') print("Thank you for using the User Management System!") print('===============================================') return # Initialize main program def program(): """Program basic flow.""" welcome() start() menu() exit_program() # initial load of customers to database customers = [(101, '<NAME>', '<EMAIL>', '1234 Yorktown Ave. New York, 10001', 'Vivint'), (102, '<NAME>', '<EMAIL>', '1254 Something Ave. New York, 10001', 'Google'), (103, '<NAME>', '<EMAIL>', '12554 York Ave. New York, 10001', 'Yahoo'), (104, '<NAME>', '<EMAIL>', '1232 Penn Ave. New York, 10001', 'Apple'), (105, '<NAME>', '<EMAIL>', '15553 Penn Ave. New York, 10001', 'Apple')] # Start Program program()
StarcoderdataPython
62729
<gh_stars>0 """ Complete game implementations/engines. """
StarcoderdataPython
3279403
<filename>similar_said/get_word_similar_said.py #!/usr/bin/env python # -*- coding: UTF-8 -*- '''================================================= @IDE :PyCharm @Author :LuckyHuibo @Date :2019/8/28 13:15 @Desc : 1、利用word2vec(模型是预训练好的)跟广度优先搜索算法获取跟“说”有关的词,保存到../data/words.txt 2、加载数据进行查看 ==================================================''' from gensim.models import Word2Vec from collections import defaultdict from config.file_path import said_path import os def get_related_words(initial_words, model): """ @initial_words @model """ unseen = initial_words seen = defaultdict(int) max_size = 500 while unseen and len(seen) < max_size: if len(seen) % 50 == 0: print('seen length : {}'.format(len(seen))) node = unseen.pop(0) new_expanding = [w for w, s in model.most_similar(node, topn=20)] unseen += new_expanding seen[node] += 1 return seen def get_words_said(model_path): model = Word2Vec.load(model_path) related_words = get_related_words(['说', '表示', '认为'], model) related_words = sorted(related_words.items(), key=lambda x: x[1], reverse=True) print(related_words) said = [i[0] for i in related_words if i[1] >= 1] return said def save_said(wv_model_path, save_path): said = get_words_said(wv_model_path) string = '|'.join(said) try: with open(save_path, 'w', encoding='utf-8') as f: f.write(string) return True except: return False def load_said(filename): if os.path.exists(filename): with open(filename, 'r', encoding='utf-8') as f: string = f.readlines() string = string[0].split('|') return string txt_path = os.path.join(said_path, "similar_said.txt") txt_said = load_said(txt_path) if __name__ == '__main__': wv_model_path = "../data/zhwiki_news.word2vec" result = save_said(wv_model_path=wv_model_path, save_path="similar_said.txt") if result: string = load_said("../data/words.txt") print(string) model = Word2Vec.load(wv_model_path) said = model['说'] print(said)
StarcoderdataPython
3234103
<filename>tests/optimizers/test_local_best.py #!/usr/bin/env python # -*- coding: utf-8 -*- # Import modules import pytest import numpy as np # Import from pyswarms from pyswarms.single import LocalBestPSO from pyswarms.utils.functions.single_obj import sphere from .abc_test_optimizer import ABCTestOptimizer class TestLocalBestOptimizer(ABCTestOptimizer): @pytest.fixture def optimizer(self): return LocalBestPSO @pytest.fixture def optimizer_history(self, options): opt = LocalBestPSO(10, 2, options) opt.optimize(sphere, 1000) return opt @pytest.fixture def optimizer_reset(self, options): opt = LocalBestPSO(10, 2, options) opt.optimize(sphere, 10) opt.reset() return opt def test_local_correct_pos(self, options): """ Test to check local optimiser returns the correct position corresponding to the best cost """ opt = LocalBestPSO(n_particles=10, dimensions=2, options=options) cost, pos = opt.optimize(sphere, iters=5) # find best pos from history min_cost_idx = np.argmin(opt.cost_history) min_pos_idx = np.argmin(sphere(opt.pos_history[min_cost_idx])) assert np.array_equal(opt.pos_history[min_cost_idx][min_pos_idx], pos)
StarcoderdataPython
50558
<reponame>bdastur/notes<filename>aws/scripts/sqstest.py #!/usr/bin/env python # -*- coding: utf-8 -*- import os import unittest import boto3 import botocore class SQS(unittest.TestCase): def setUp(self): env = os.environ.get('PROFILE_NAME', 'default') if env == "default": print "Using Default profile" else: print "Using %s profile" % env try: session = boto3.Session(profile_name=env, region_name="us-east-1") except botocore.exceptions.ProfileNotFound: print "Profile %s not found!" % env self.sqsclient = None return self.sqsclient = session.client('sqs') self.queue_name = "brd-queue" def test_create_standard_queue(self): print "basic" attributes = { 'DelaySeconds': '5', 'MaximumMessageSize': '1024', 'MessageRetentionPeriod': '60' } # Create a standard queue. response = self.sqsclient.create_queue( QueueName=self.queue_name, Attributes=attributes ) print "response: ", response # Get Queue URL. response = self.sqsclient.get_queue_url( QueueName=self.queue_name ) print "response: ", response['QueueUrl'] queue_url = response['QueueUrl'] # Delete queue. response = self.sqsclient.delete_queue( QueueUrl=queue_url ) def test_send_message(self): # Create a standard queue. queue_name = "brd-testqueue-1" response = self.sqsclient.create_queue( QueueName=queue_name ) print "Response: ", response queue_url = response['QueueUrl'] # Send message. response = self.sqsclient.send_message( QueueUrl=queue_url, MessageBody='This is a test message', DelaySeconds=1 ) print "response for send msg: ", response
StarcoderdataPython
3331435
<filename>django/gunicorn.conf.py """gunicorn WSGI server configuration.""" from multiprocessing import cpu_count from os import environ def max_workers(): return (2 * cpu_count()) + 1 bind = "0.0.0.0:" + environ.get("PORT", "8000") max_requests = 1000 max_requests_jitter = 30 worker_class = "gevent" workers = max_workers() forwarded_allow_ips = "*" loglevel = "info" pythonpath = "/env/lib/python3.6/site-packages" timeout = 120 # This could maybe be 30s like the nginx-level conf, but would that break the RQ queue?
StarcoderdataPython
3392325
<filename>pyclient/pydeephaven/proto/table_pb2_grpc.py # Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc from pydeephaven.proto import table_pb2 as deephaven_dot_proto_dot_table__pb2 from pydeephaven.proto import ticket_pb2 as deephaven_dot_proto_dot_ticket__pb2 class TableServiceStub(object): """Missing associated documentation comment in .proto file.""" def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetExportedTableCreationResponse = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/GetExportedTableCreationResponse', request_serializer=deephaven_dot_proto_dot_ticket__pb2.Ticket.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.FetchTable = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/FetchTable', request_serializer=deephaven_dot_proto_dot_table__pb2.FetchTableRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.FetchPandasTable = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/FetchPandasTable', request_serializer=deephaven_dot_proto_dot_table__pb2.FetchPandasTableRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.FetchTableMap = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/FetchTableMap', request_serializer=deephaven_dot_proto_dot_table__pb2.FetchTableMapRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.FetchTableMapResponse.FromString, ) self.EmptyTable = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/EmptyTable', request_serializer=deephaven_dot_proto_dot_table__pb2.EmptyTableRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.TimeTable = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/TimeTable', request_serializer=deephaven_dot_proto_dot_table__pb2.TimeTableRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.DropColumns = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/DropColumns', request_serializer=deephaven_dot_proto_dot_table__pb2.DropColumnsRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.Update = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/Update', request_serializer=deephaven_dot_proto_dot_table__pb2.SelectOrUpdateRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.LazyUpdate = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/LazyUpdate', request_serializer=deephaven_dot_proto_dot_table__pb2.SelectOrUpdateRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.View = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/View', request_serializer=deephaven_dot_proto_dot_table__pb2.SelectOrUpdateRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.UpdateView = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/UpdateView', request_serializer=deephaven_dot_proto_dot_table__pb2.SelectOrUpdateRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.Select = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/Select', request_serializer=deephaven_dot_proto_dot_table__pb2.SelectOrUpdateRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.SelectDistinct = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/SelectDistinct', request_serializer=deephaven_dot_proto_dot_table__pb2.SelectDistinctRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.Filter = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/Filter', request_serializer=deephaven_dot_proto_dot_table__pb2.FilterTableRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.UnstructuredFilter = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/UnstructuredFilter', request_serializer=deephaven_dot_proto_dot_table__pb2.UnstructuredFilterTableRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.Sort = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/Sort', request_serializer=deephaven_dot_proto_dot_table__pb2.SortTableRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.Head = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/Head', request_serializer=deephaven_dot_proto_dot_table__pb2.HeadOrTailRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.Tail = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/Tail', request_serializer=deephaven_dot_proto_dot_table__pb2.HeadOrTailRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.HeadBy = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/HeadBy', request_serializer=deephaven_dot_proto_dot_table__pb2.HeadOrTailByRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.TailBy = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/TailBy', request_serializer=deephaven_dot_proto_dot_table__pb2.HeadOrTailByRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.Ungroup = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/Ungroup', request_serializer=deephaven_dot_proto_dot_table__pb2.UngroupRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.MergeTables = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/MergeTables', request_serializer=deephaven_dot_proto_dot_table__pb2.MergeTablesRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.CrossJoinTables = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/CrossJoinTables', request_serializer=deephaven_dot_proto_dot_table__pb2.CrossJoinTablesRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.NaturalJoinTables = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/NaturalJoinTables', request_serializer=deephaven_dot_proto_dot_table__pb2.NaturalJoinTablesRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.ExactJoinTables = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/ExactJoinTables', request_serializer=deephaven_dot_proto_dot_table__pb2.ExactJoinTablesRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.LeftJoinTables = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/LeftJoinTables', request_serializer=deephaven_dot_proto_dot_table__pb2.LeftJoinTablesRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.AsOfJoinTables = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/AsOfJoinTables', request_serializer=deephaven_dot_proto_dot_table__pb2.AsOfJoinTablesRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.ComboAggregate = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/ComboAggregate', request_serializer=deephaven_dot_proto_dot_table__pb2.ComboAggregateRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.Snapshot = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/Snapshot', request_serializer=deephaven_dot_proto_dot_table__pb2.SnapshotTableRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.Flatten = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/Flatten', request_serializer=deephaven_dot_proto_dot_table__pb2.FlattenRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.RunChartDownsample = channel.unary_unary( '/io.deephaven.proto.backplane.grpc.TableService/RunChartDownsample', request_serializer=deephaven_dot_proto_dot_table__pb2.RunChartDownsampleRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.Batch = channel.unary_stream( '/io.deephaven.proto.backplane.grpc.TableService/Batch', request_serializer=deephaven_dot_proto_dot_table__pb2.BatchTableRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, ) self.ExportedTableUpdates = channel.unary_stream( '/io.deephaven.proto.backplane.grpc.TableService/ExportedTableUpdates', request_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableUpdatesRequest.SerializeToString, response_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableUpdateMessage.FromString, ) class TableServiceServicer(object): """Missing associated documentation comment in .proto file.""" def GetExportedTableCreationResponse(self, request, context): """ Request an ETCR for this ticket. Ticket must reference a Table. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def FetchTable(self, request, context): """ Fetches a Table from an existing source ticket and exports it to the local session result ticket. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def FetchPandasTable(self, request, context): """ Fetches a pandas table from an existing source ticket and exports it to the local session result ticket. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def FetchTableMap(self, request, context): """ Fetches a TableMap from an existing source ticket and exports it to the local session result ticket. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def EmptyTable(self, request, context): """ Create an empty table with the given column names and types. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def TimeTable(self, request, context): """ Create a time table with the given start time and period. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def DropColumns(self, request, context): """ Drop columns from the parent table. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Update(self, request, context): """ Add columns to the given table using the given column specifications and the update table operation. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def LazyUpdate(self, request, context): """ Add columns to the given table using the given column specifications and the lazyUpdate table operation. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def View(self, request, context): """ Add columns to the given table using the given column specifications and the view table operation. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UpdateView(self, request, context): """ Add columns to the given table using the given column specifications and the updateView table operation. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Select(self, request, context): """ Select the given columns from the given table. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SelectDistinct(self, request, context): """ Returns a new table definition with the unique tuples of the specified columns """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Filter(self, request, context): """ Filter parent table with structured filters. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UnstructuredFilter(self, request, context): """ Filter parent table with unstructured filters. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Sort(self, request, context): """ Sort parent table via the provide sort descriptors. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Head(self, request, context): """ Extract rows from the head of the parent table. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Tail(self, request, context): """ Extract rows from the tail of the parent table. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def HeadBy(self, request, context): """ Run the headBy table operation for the given group by columns on the given table. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def TailBy(self, request, context): """ Run the tailBy operation for the given group by columns on the given table. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Ungroup(self, request, context): """ Ungroup the given columns (all columns will be ungrouped if columnsToUngroup is empty or unspecified). """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def MergeTables(self, request, context): """ Create a merged table from the given input tables. If a key column is provided (not null), a sorted merged will be performed using that column. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def CrossJoinTables(self, request, context): """ Returns the result of a cross join operation. Also known as the cartesian product. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def NaturalJoinTables(self, request, context): """ Returns the result of a natural join operation. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ExactJoinTables(self, request, context): """ Returns the result of an exact join operation. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def LeftJoinTables(self, request, context): """ Returns the result of a left join operation. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def AsOfJoinTables(self, request, context): """ Returns the result of an as of join operation. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ComboAggregate(self, request, context): """ Returns the result of an aggregate table operation. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Snapshot(self, request, context): """ Snapshot rightId, triggered by leftId, and export the resulting new Table. The left table's change events cause a new snapshot to be taken. The result table includes a "snapshot key" which is a subset (possibly all) of the left table's columns. The remaining columns in the result table come from right table, the table being snapshotted. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Flatten(self, request, context): """ Returns a new table with a flattened index. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def RunChartDownsample(self, request, context): """* Downsamples a table assume its contents will be rendered in a run chart, with each subsequent row holding a later X value (i.e., sorted on that column). Multiple Y columns can be specified, as can a range of values for the X column to support zooming in. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Batch(self, request, context): """ Batch a series of requests and send them all at once. This enables the user to create intermediate tables without requiring them to be exported and managed by the client. The server will automatically release any tables when they are no longer depended upon. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ExportedTableUpdates(self, request, context): """ Establish a stream of table updates for cheap notifications of table size updates. New streams will flush updates for all existing table exports. An export id of zero will be sent to indicate all exports have sent their refresh update. Table updates may be intermingled with initial refresh updates after their initial update had been sent. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_TableServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetExportedTableCreationResponse': grpc.unary_unary_rpc_method_handler( servicer.GetExportedTableCreationResponse, request_deserializer=deephaven_dot_proto_dot_ticket__pb2.Ticket.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'FetchTable': grpc.unary_unary_rpc_method_handler( servicer.FetchTable, request_deserializer=deephaven_dot_proto_dot_table__pb2.FetchTableRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'FetchPandasTable': grpc.unary_unary_rpc_method_handler( servicer.FetchPandasTable, request_deserializer=deephaven_dot_proto_dot_table__pb2.FetchPandasTableRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'FetchTableMap': grpc.unary_unary_rpc_method_handler( servicer.FetchTableMap, request_deserializer=deephaven_dot_proto_dot_table__pb2.FetchTableMapRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.FetchTableMapResponse.SerializeToString, ), 'EmptyTable': grpc.unary_unary_rpc_method_handler( servicer.EmptyTable, request_deserializer=deephaven_dot_proto_dot_table__pb2.EmptyTableRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'TimeTable': grpc.unary_unary_rpc_method_handler( servicer.TimeTable, request_deserializer=deephaven_dot_proto_dot_table__pb2.TimeTableRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'DropColumns': grpc.unary_unary_rpc_method_handler( servicer.DropColumns, request_deserializer=deephaven_dot_proto_dot_table__pb2.DropColumnsRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'Update': grpc.unary_unary_rpc_method_handler( servicer.Update, request_deserializer=deephaven_dot_proto_dot_table__pb2.SelectOrUpdateRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'LazyUpdate': grpc.unary_unary_rpc_method_handler( servicer.LazyUpdate, request_deserializer=deephaven_dot_proto_dot_table__pb2.SelectOrUpdateRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'View': grpc.unary_unary_rpc_method_handler( servicer.View, request_deserializer=deephaven_dot_proto_dot_table__pb2.SelectOrUpdateRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'UpdateView': grpc.unary_unary_rpc_method_handler( servicer.UpdateView, request_deserializer=deephaven_dot_proto_dot_table__pb2.SelectOrUpdateRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'Select': grpc.unary_unary_rpc_method_handler( servicer.Select, request_deserializer=deephaven_dot_proto_dot_table__pb2.SelectOrUpdateRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'SelectDistinct': grpc.unary_unary_rpc_method_handler( servicer.SelectDistinct, request_deserializer=deephaven_dot_proto_dot_table__pb2.SelectDistinctRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'Filter': grpc.unary_unary_rpc_method_handler( servicer.Filter, request_deserializer=deephaven_dot_proto_dot_table__pb2.FilterTableRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'UnstructuredFilter': grpc.unary_unary_rpc_method_handler( servicer.UnstructuredFilter, request_deserializer=deephaven_dot_proto_dot_table__pb2.UnstructuredFilterTableRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'Sort': grpc.unary_unary_rpc_method_handler( servicer.Sort, request_deserializer=deephaven_dot_proto_dot_table__pb2.SortTableRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'Head': grpc.unary_unary_rpc_method_handler( servicer.Head, request_deserializer=deephaven_dot_proto_dot_table__pb2.HeadOrTailRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'Tail': grpc.unary_unary_rpc_method_handler( servicer.Tail, request_deserializer=deephaven_dot_proto_dot_table__pb2.HeadOrTailRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'HeadBy': grpc.unary_unary_rpc_method_handler( servicer.HeadBy, request_deserializer=deephaven_dot_proto_dot_table__pb2.HeadOrTailByRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'TailBy': grpc.unary_unary_rpc_method_handler( servicer.TailBy, request_deserializer=deephaven_dot_proto_dot_table__pb2.HeadOrTailByRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'Ungroup': grpc.unary_unary_rpc_method_handler( servicer.Ungroup, request_deserializer=deephaven_dot_proto_dot_table__pb2.UngroupRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'MergeTables': grpc.unary_unary_rpc_method_handler( servicer.MergeTables, request_deserializer=deephaven_dot_proto_dot_table__pb2.MergeTablesRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'CrossJoinTables': grpc.unary_unary_rpc_method_handler( servicer.CrossJoinTables, request_deserializer=deephaven_dot_proto_dot_table__pb2.CrossJoinTablesRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'NaturalJoinTables': grpc.unary_unary_rpc_method_handler( servicer.NaturalJoinTables, request_deserializer=deephaven_dot_proto_dot_table__pb2.NaturalJoinTablesRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'ExactJoinTables': grpc.unary_unary_rpc_method_handler( servicer.ExactJoinTables, request_deserializer=deephaven_dot_proto_dot_table__pb2.ExactJoinTablesRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'LeftJoinTables': grpc.unary_unary_rpc_method_handler( servicer.LeftJoinTables, request_deserializer=deephaven_dot_proto_dot_table__pb2.LeftJoinTablesRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'AsOfJoinTables': grpc.unary_unary_rpc_method_handler( servicer.AsOfJoinTables, request_deserializer=deephaven_dot_proto_dot_table__pb2.AsOfJoinTablesRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'ComboAggregate': grpc.unary_unary_rpc_method_handler( servicer.ComboAggregate, request_deserializer=deephaven_dot_proto_dot_table__pb2.ComboAggregateRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'Snapshot': grpc.unary_unary_rpc_method_handler( servicer.Snapshot, request_deserializer=deephaven_dot_proto_dot_table__pb2.SnapshotTableRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'Flatten': grpc.unary_unary_rpc_method_handler( servicer.Flatten, request_deserializer=deephaven_dot_proto_dot_table__pb2.FlattenRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'RunChartDownsample': grpc.unary_unary_rpc_method_handler( servicer.RunChartDownsample, request_deserializer=deephaven_dot_proto_dot_table__pb2.RunChartDownsampleRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'Batch': grpc.unary_stream_rpc_method_handler( servicer.Batch, request_deserializer=deephaven_dot_proto_dot_table__pb2.BatchTableRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.SerializeToString, ), 'ExportedTableUpdates': grpc.unary_stream_rpc_method_handler( servicer.ExportedTableUpdates, request_deserializer=deephaven_dot_proto_dot_table__pb2.ExportedTableUpdatesRequest.FromString, response_serializer=deephaven_dot_proto_dot_table__pb2.ExportedTableUpdateMessage.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'io.deephaven.proto.backplane.grpc.TableService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class TableService(object): """Missing associated documentation comment in .proto file.""" @staticmethod def GetExportedTableCreationResponse(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/GetExportedTableCreationResponse', deephaven_dot_proto_dot_ticket__pb2.Ticket.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def FetchTable(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/FetchTable', deephaven_dot_proto_dot_table__pb2.FetchTableRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def FetchPandasTable(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/FetchPandasTable', deephaven_dot_proto_dot_table__pb2.FetchPandasTableRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def FetchTableMap(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/FetchTableMap', deephaven_dot_proto_dot_table__pb2.FetchTableMapRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.FetchTableMapResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def EmptyTable(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/EmptyTable', deephaven_dot_proto_dot_table__pb2.EmptyTableRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def TimeTable(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/TimeTable', deephaven_dot_proto_dot_table__pb2.TimeTableRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def DropColumns(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/DropColumns', deephaven_dot_proto_dot_table__pb2.DropColumnsRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Update(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/Update', deephaven_dot_proto_dot_table__pb2.SelectOrUpdateRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def LazyUpdate(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/LazyUpdate', deephaven_dot_proto_dot_table__pb2.SelectOrUpdateRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def View(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/View', deephaven_dot_proto_dot_table__pb2.SelectOrUpdateRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def UpdateView(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/UpdateView', deephaven_dot_proto_dot_table__pb2.SelectOrUpdateRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Select(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/Select', deephaven_dot_proto_dot_table__pb2.SelectOrUpdateRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def SelectDistinct(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/SelectDistinct', deephaven_dot_proto_dot_table__pb2.SelectDistinctRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Filter(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/Filter', deephaven_dot_proto_dot_table__pb2.FilterTableRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def UnstructuredFilter(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/UnstructuredFilter', deephaven_dot_proto_dot_table__pb2.UnstructuredFilterTableRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Sort(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/Sort', deephaven_dot_proto_dot_table__pb2.SortTableRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Head(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/Head', deephaven_dot_proto_dot_table__pb2.HeadOrTailRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Tail(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/Tail', deephaven_dot_proto_dot_table__pb2.HeadOrTailRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def HeadBy(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/HeadBy', deephaven_dot_proto_dot_table__pb2.HeadOrTailByRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def TailBy(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/TailBy', deephaven_dot_proto_dot_table__pb2.HeadOrTailByRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Ungroup(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/Ungroup', deephaven_dot_proto_dot_table__pb2.UngroupRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def MergeTables(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/MergeTables', deephaven_dot_proto_dot_table__pb2.MergeTablesRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def CrossJoinTables(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/CrossJoinTables', deephaven_dot_proto_dot_table__pb2.CrossJoinTablesRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def NaturalJoinTables(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/NaturalJoinTables', deephaven_dot_proto_dot_table__pb2.NaturalJoinTablesRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def ExactJoinTables(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/ExactJoinTables', deephaven_dot_proto_dot_table__pb2.ExactJoinTablesRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def LeftJoinTables(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/LeftJoinTables', deephaven_dot_proto_dot_table__pb2.LeftJoinTablesRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def AsOfJoinTables(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/AsOfJoinTables', deephaven_dot_proto_dot_table__pb2.AsOfJoinTablesRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def ComboAggregate(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/ComboAggregate', deephaven_dot_proto_dot_table__pb2.ComboAggregateRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Snapshot(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/Snapshot', deephaven_dot_proto_dot_table__pb2.SnapshotTableRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Flatten(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/Flatten', deephaven_dot_proto_dot_table__pb2.FlattenRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def RunChartDownsample(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/io.deephaven.proto.backplane.grpc.TableService/RunChartDownsample', deephaven_dot_proto_dot_table__pb2.RunChartDownsampleRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Batch(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_stream(request, target, '/io.deephaven.proto.backplane.grpc.TableService/Batch', deephaven_dot_proto_dot_table__pb2.BatchTableRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableCreationResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def ExportedTableUpdates(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_stream(request, target, '/io.deephaven.proto.backplane.grpc.TableService/ExportedTableUpdates', deephaven_dot_proto_dot_table__pb2.ExportedTableUpdatesRequest.SerializeToString, deephaven_dot_proto_dot_table__pb2.ExportedTableUpdateMessage.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
StarcoderdataPython
60071
<reponame>marvinthepa/vcs_query<gh_stars>0 #!/usr/bin/env python # -*- coding: utf8 -*- # TODO # documentation # http://www.ietf.org/rfc/rfc2426.txt import vobject, sys, os, re from getopt import gnu_getopt try: import cPickle as pickle except: import pickle import logging vobject_logger = logging.getLogger("vobject.base") logger = logging.getLogger(__name__) import locale language, output_encoding = locale.getdefaultlocale() def main(argv): """ usage: $0 [<options>] [<substr>] only those lines that contain <substr> will be displayed options: -d --vcard-dir= specify directory with vcards -s --starting-matches display lines which start with <substr> first """ vcard_dir = None starting_matches = False opts, args = gnu_getopt(argv, "d:s", ["vcard-dir=","starting-matches"]) for opt, val in opts: if opt == "-d" or opt == "--vcard-dir": vcard_dir = val if opt == "-s" or opt == "--starting-matches": starting_matches = True if vcard_dir is None: sys.exit("please specify a directory with vcards") if not os.path.isdir(vcard_dir): sys.exit("please specify a directory with vcards") pattern = None if len(args) > 0: pattern = args[0].strip().lower() #re.compile(args[0].strip(), re.I) print "vcs_query.py, see http://github.com/marvinthepa/vcs_query" cache = VcardCache(vcard_dir) entries = cache.get_entries() entries.sort(key=str) if starting_matches and pattern: sortfunc = get_sortfunc(pattern) entries.sort(cmp=sortfunc, key=str) for vcard in entries: if len(vcard.mail) > 0: repr = str(vcard) if not pattern or pattern in repr.lower(): #.search(repr): print repr def get_sortfunc(pattern): def sortfunc(a,b): if a.lower().startswith(pattern): if b.lower().startswith(pattern): return 0 else: return -1 else: if b.lower().startswith(pattern): return 1 else: return 0 return sortfunc class VcardCache(object): def __init__(self, vcard_dir): self.cache_dir = os.path.expanduser("~/.cache/") self.pickle_path = os.path.join(self.cache_dir, "vcard_query") self.vcard_dir = vcard_dir self.last_vcard_dir_timestamp, self.vcard_files = self._load() self._update() self._serialize() def _load(self): if os.path.isfile(self.pickle_path): with open(self.pickle_path, "r") as f: return pickle.load(f) else: return 0, {} def _update(self): if get_timestamp(self.vcard_dir) > self.last_vcard_dir_timestamp: paths = os.listdir(self.vcard_dir) paths = [ os.path.join(self.vcard_dir, p) for p in paths ] paths = [ p for p in paths if os.path.isfile(p) ] for key in self.vcard_files.keys(): if key not in paths: del self.vcard_files[key] for path in paths: if not self.vcard_files.has_key(path) or self.vcard_files[path].needs_update(): self.vcard_files[path] = VcardFile(path) self.vcards = [] for vcard_file in self.vcard_files.values(): self.vcards.extend(vcard_file.vcards) def _serialize(self): try: if not os.path.isdir(self.cache_dir): os.mkdir(self.cache_dir) with open(self.pickle_path, "w") as f: pickle.dump((self.last_vcard_dir_timestamp, self.vcard_files), f) except IOError: print "cannot write to cache file " + cache def get_entries(self): return self.vcards class Vcard(object): def __init__(self, component): self.name = "" self.mail = "" if component.contents.has_key("fn"): self.name = component.fn.value if component.contents.has_key("email"): self.mail = component.email.value self.description = "" # TODO? def __str__(self): return self.mail.encode(output_encoding) +\ "\t" + self.name.encode(output_encoding)\ + "\t" + self.description class VcardFile(object): def __init__(self, path): self.path = path self.timestamp = get_timestamp(path) self._read_components(path) def _read_components(self, path): vobject_logger.setLevel(logging.FATAL) with open(path) as f: components = vobject.readComponents(f, ignoreUnreadable=True) self.vcards = [] for component in components: if component.name.lower() == u'vcard': self.vcards.append( Vcard(component) ) # hack to parse full emails for contained vcards: elif component.contents.has_key("vcard"): self.vcards.append( Vcard(component.vcard) ) else: logger.warning("no vcard in component: " + component.name.encode(output_encoding) + "from file " + path ) vobject_logger.setLevel(logging.ERROR) def needs_update(self): return get_timestamp(self.path) > self.timestamp def __str__(self): result = "\n".join(self.vcards) def get_timestamp(path): return os.stat(path).st_mtime if __name__ == "__main__": main(sys.argv[1:])
StarcoderdataPython
1671571
#! /usr/bin/env python3 # Example wiring (LT-8900 on board to Raspberry Pi): # # LT-8900 # _--------------------------------------------------------_ # | VCC | RST | MISO | MOSI | SCK | CS | GND | # |-------+-------+----- -+-------+-------+-------+--------| # | 3.3v | Reset | SPI | SPI | SPI | SPI | Ground | # | | | | | Clock | CE0 | | # -___+___|___+___|___+___|___+___|___+___|___+___|___+____- # | | | | | | | # | | | | | | | # | | | | | | | # _---+-------+-------+-------+-------+-------+-------+----_ # | 3.3v | GPIO5 | MISO | MOSI | SCLK | CE0 | 0v | # |-------+-------+-------+-------+-------+-------+--------| # | P1-17 | P1-18 | P1-21 | P1-19 | P1-23 | P1-24 | P1-25 | # -________________________________________________________- # Raspberry Pi import spidev import time import threading import collections class dummy_context_mgr(): def __enter__(self): return None def __exit__(self, exc_type, exc_value, traceback): return False class Radio: _default_register_values = { 'format_config': { 'crc_enabled': 1, 'scramble_enabled': 0, 'packet_length_encoded': 1, 'auto_term_tx': 1, 'auto_ack': 1, 'pkt_fifo_polarity': 0, 'crc_initial_data': 0 }, 'radio_state': {'tx_enabled': 0, 'rx_enabled': 0, 'channel': 76}, 'undocumented_power': {'value': 0x6c90}, 'power': { 'current': 8, 'reserved_1': 1, 'gain': 0 }, 'rssi_power': {'mode': 0}, 'crystal': {'trim_adjust': 0}, 'packet_config': { 'preamble_len': 2, 'syncword_len': 1, 'trailer_len': 0, 'packet_type': 0, 'fec_type': 0, 'br_clock_sel': 0 }, 'chip_power': { 'power_down': 0, 'sleep_mode': 0, 'br_clock_on_sleep': 0, 'rexmit_times': 10, 'miso_tri_opt': 0, 'scramble_value': 0 }, 'thresholds': { 'fifo_empty_threshold': 8, 'fifo_full_threshold': 16, 'syncword_error_bits': 2 }, 'scan_rssi': {'channel': 63, 'ack_time': 176}, 'gain_block': {'enabled': 1}, 'vco_calibrate': {'enabled': 0}, 'scan_rssi_state': {'enabled': 0, 'channel_offset': 0, 'wait_time': 15} } _register_map = [ {'name': "Unknown"}, # 0 {'name': "Unknown"}, # 1 {'name': "Unknown"}, # 2 { # 3 'name': 'phase_lock', 'reserved_1': [13, 15], 'rf_synth_lock': [12, 12], 'reserved_2': [0, 11] }, {'name': "Unknown"}, # 4 {'name': "Unknown"}, # 5 { # 6 'name': "raw_rssi", 'raw_rssi': [10, 15], 'reserved_1': [0, 9] }, { # 7 'name': "radio_state", 'reserved_1': [9, 15], 'tx_enabled': [8, 8], 'rx_enabled': [7, 7], 'channel': [0, 6] }, { # 8 'name': "undocumented_power", 'value': [0, 15] }, { # 9 'name': "power", 'current': [12, 15], 'reserved_1': [11, 11], 'gain': [7, 10], 'reserved_2': [0, 6] }, { # 10 'name': "gain_block", 'reserved_1': [1, 15], 'enabled': [0, 0] }, { # 11 'name': "rssi_power", 'reserved_1': [9, 15], 'mode': [8, 8], 'reserved_2': [0, 7] }, {'name': "Unknown"}, # 12 {'name': "Unknown"}, # 13 {'name': "Unknown"}, # 14 {'name': "Unknown"}, # 15 {'name': "Unknown"}, # 16 {'name': "Unknown"}, # 17 {'name': "Unknown"}, # 18 {'name': "Unknown"}, # 19 {'name': "Unknown"}, # 20 {'name': "Unknown"}, # 21 {'name': "Unknown"}, # 22 { # 23 'name': "vco_calibrate", 'reserved_1': [3, 15], 'enabled': [2, 2], 'reserved_2': [0, 1] }, {'name': "Unknown"}, # 24 {'name': "Unknown"}, # 25 {'name': "Unknown"}, # 26 { # 27 'name': "crystal", 'reserved_1': [6, 15], 'trim_adjust': [0, 5] }, {'name': "Unknown"}, # 28 { # 29 'name': "minor_version", 'reserved_1': [8, 15], 'rf': [4, 7], 'reserved_2': [3, 3], 'digital': [0, 2] }, { # 30 'name': "manufacture_1", 'manuf_code_low': [0, 15] }, { # 31 'name': "manufacture_2", 'rf_code': [12, 15], 'manuf_code_high': [0, 11] }, { # 32 'name': "packet_config", 'preamble_len': [13, 15], 'syncword_len': [11, 12], 'trailer_len': [8, 10], 'packet_type': [6, 7], 'fec_type': [4, 5], 'br_clock_sel': [1, 3], 'reserved_1': [0, 0] }, { # 33 'name': "vco_pa_delays", 'vco_on_delay': [8, 15], 'pa_off_delay': [6, 7], 'pa_tx_delay': [0, 5] }, { # 34 'name': "tx_packet_delays", 'packet_control_direct': [15, 15], 'tx_cw_delay': [8, 14], 'reserved_1': [6, 7], 'tx_sw_on_delay': [0, 5] }, { # 35 'name': "chip_power", 'power_down': [15, 15], 'sleep_mode': [14, 14], 'reserved_1': [13, 13], 'br_clock_on_sleep': [12, 12], 'rexmit_times': [8, 11], 'miso_tri_opt': [7, 7], 'scramble_value': [0, 6] }, { # 36 'name': "syncword_0", 'value': [0, 15] }, { # 37 'name': "syncword_1", 'value': [0, 15] }, { # 38 'name': "syncword_2", 'value': [0, 15] }, { # 39 'name': "syncword_3", 'value': [0, 15] }, { # 40 'name': "thresholds", 'fifo_empty_threshold': [11, 15], 'fifo_full_threshold': [6, 10], 'syncword_error_bits': [0, 5] }, { # 41 'name': "format_config", 'crc_enabled': [15, 15], 'scramble_enabled': [14, 14], 'packet_length_encoded': [13, 13], 'auto_term_tx': [12, 12], 'auto_ack': [11, 11], 'pkt_fifo_polarity': [10, 10], 'reserved_1': [8, 9], 'crc_initial_data': [0, 7] }, { # 42 'name': "scan_rssi", 'channel': [10, 15], 'reserved_1': [8, 9], 'ack_time': [0, 7] }, { # 43 'name': "scan_rssi_state", 'enabled': [15, 15], 'channel_offset': [8, 14], 'wait_time': [0, 7] }, {'name': "Unknown"}, # 44 {'name': "Unknown"}, # 45 {'name': "Unknown"}, # 46 {'name': "Unknown"}, # 47 { # 48 'name': "status", 'crc_error': [15, 15], 'fec_error': [14, 14], 'framer_status': [8, 13], 'syncword_rx': [7, 7], 'packet_flag': [6, 6], 'fifo_flag': [5, 5], 'reserved_1': [0, 4] }, {'name': "Unknown"}, # 49 { # 50 'name': "fifo", 'value': [0, 15] }, {'name': "Unknown"}, # 51 { # 52 'name': "fifo_state", 'clear_write': [15, 15], 'reserved_1': [14, 14], 'write_ptr': [8, 13], 'clear_read': [7, 7], 'reserved_2': [6, 6], 'read_ptr': [0, 5] } ] def __init__(self, spi_bus, spi_dev, config = None): spi = spidev.SpiDev() spi.open(spi_bus, spi_dev) self._spi = spi self._dequeue_thread = None self._last_syncword = None self._software_tx_queue = {} self._software_tx_queue_next_time = {} self.configure(config, update = False) if len(self._register_map) != 53: raise ValueError('Inconsistent register map!') return None def __del__(self): self._debug('Deleting object') self._config['use_software_tx_queue'] = False self._spi.close() def _debug(self, message): if 'debug_log_command' in self._config: self._config['debug_log_command'](message) return None def _info(self, message): log_command = None if 'info_log_command' in self._config: log_command = self._config['info_log_command'] elif 'debug_log_command' in self._config: log_command = self._config['debug_log_command'] if log_command is None: return None log_command(message) return None def _error(self, message): log_command = None if 'error_log_command' in self._config: log_command = self._config['error_log_command'] elif 'info_log_command' in self._config: log_command = self._config['info_log_command'] elif 'debug_log_command' in self._config: log_command = self._config['debug_log_command'] if log_command is None: return None log_command(message) return None def _get_mutex(self, real_mutex = True): if not real_mutex: return dummy_context_mgr() mutex = self._config.get('mutex', dummy_context_mgr()) return mutex def _reset_device(self): self._info("Resetting radio {}".format(__name__)) reset_command = self._config.get('reset_command', None) if reset_command is None: return None reset_command() return None def _should_use_queue(self): if 'use_software_tx_queue' in self._config: return self._config['use_software_tx_queue'] return False def _register_name(self, reg_number): return self._register_map[reg_number]['name'] def _register_number(self, reg_string): reg_string_orig = reg_string if isinstance(reg_string, int): return reg_string if reg_string.isnumeric(): return int(reg_string) for reg_number, reg_info in enumerate(self._register_map): if reg_info['name'] == reg_string: return reg_number raise NameError("Invalid register value {}".format(reg_string_orig)) def _check_radio(self): value1 = self.get_register(0); value2 = self.get_register(1); if value1 == 0x6fe0 and value2 == 0x5681: return True self._debug(f'Expected 0x6fe0, 0x5681 and got 0x{value1:04x}, 0x{value2:04x}') return False def _get_default_register_value(self, register): return self._default_register_values.get(register, {}) def _set_default_register_values(self): self._last_format_config = {} for register_name, register_value in self._default_register_values.items(): if register_name == 'format_config': self._apply_packet_format_config({}) continue self.put_register_bits(register_name, register_value) return True def _put_register_high_low(self, reg, high, low, delay = None): if delay is None: delay = 10 reg = self._register_number(reg) result = self._spi.xfer([reg, high, low], self._spi.max_speed_hz, delay) if reg & 0x80 == 0x80: self._debug(" regRead[%02X] = %s" % ((reg & 0x7f), result)) else: self._debug("regWrite[%02X:0x%02X%02X] = %s" % (reg, high, low, result)) return result def put_register(self, reg, value, delay = None): high = (value >> 8) & 0xff low = value & 0xff return self._put_register_high_low(reg, high, low, delay = delay) def put_register_bits(self, reg, bits_dict, delay = None): # Convert register to an integer reg = self._register_number(reg) # Lookup register in the register map register_info = self._register_map[reg] # Create a dictionary to hold the parsed results value = 0 for key in bits_dict: if key == "name": continue bit_range = register_info[key] mask = ((1 << (bit_range[1] - bit_range[0] + 1)) - 1) << bit_range[0] key_value = (bits_dict[key] << bit_range[0]) & mask value = value | key_value result = self.put_register(reg, value, delay = delay) return result def get_register(self, reg): # Convert register to an integer reg = self._register_number(reg) # Reading of a register is indicated by setting high bit read_reg = reg | 0b10000000 # Put the request with space for the reply value = self._put_register_high_low(read_reg, 0, 0) # The reply is stored in the lower two bytes result = value[1] << 8 | value[2] # Return result return result def get_register_bits(self, reg, value = None): # Convert register to an integer reg = self._register_number(reg) # Get the register's value (unless one was supplied) if value is None: value = self.get_register(reg) # Lookup register in the register map register_info = self._register_map[reg] # Create a dictionary to hold the parsed results result = {'name': register_info['name']} for key in register_info: if key == "name": continue bit_range = register_info[key] mask = ((1 << (bit_range[1] - bit_range[0] + 1)) - 1) << bit_range[0] key_value = (value & mask) >> bit_range[0] result[key] = key_value # Return the filled in structure return result def configure(self, config, update = True): if config is None: config = {} if update: self._config.update(config) else: self._config = config with self._get_mutex(): self._spi.max_speed_hz = self._config.get('frequency', 4000000) self._spi.bits_per_word = self._config.get('bits_per_word', 8) self._spi.cshigh = self._config.get('csigh', False) self._spi.no_cs = self._config.get('no_cs', False) self._spi.lsbfirst = self._config.get('lsbfirst', False) self._spi.threewire = self._config.get('threewire', False) self._spi.mode = self._config.get('mode', 1) # If using a queue, start a thread to run the queue if self._should_use_queue(): if self._dequeue_thread is None: self._dequeue_thread = threading.Thread(target = self._run_queue, daemon = True) self._software_tx_queue_mutex = threading.Lock() self._dequeue_thread.start() else: if self._dequeue_thread is not None: self._debug("Joining existing thread to wait for termination") self._dequeue_thread.join() self._dequeue_thread = None self._software_tx_queue_mutex = None return None def initialize(self): self._reset_device() self._set_default_register_values() if not self._check_radio(): return False return True def _reinitialize(self): self.initialize() self.set_syncword(self._last_syncword, submit_queue = None, force = True) self._apply_packet_format_config(self._last_format_config) def set_channel(self, channel): state = self.get_register_bits('radio_state') state['channel'] = channel self.put_register_bits('radio_state', state, delay = 130) return state def set_syncword(self, syncword, force = False, submit_queue = '__DEFAULT__'): # If queuing is being used, just store this message if submit_queue is not None and self._should_use_queue(): self._enqueue(submit_queue, syncword, None, None, post_delay = 0) return None # Do not set the syncword again if it's not needed if not force: if self._last_syncword is not None: if syncword == self._last_syncword: return None self._last_syncword = syncword packet_config = self.get_register_bits('packet_config') packet_config['syncword_len'] = len(syncword) - 1 self.put_register_bits('packet_config', packet_config) if len(syncword) == 1: self.put_register("syncword_0", syncword[0]) elif len(syncword) == 2: self.put_register("syncword_0", syncword[1]) self.put_register("syncword_3", syncword[0]) elif len(syncword) == 3: self.put_register("syncword_0", syncword[2]) self.put_register("syncword_2", syncword[1]) self.put_register("syncword_3", syncword[0]) elif len(syncword) == 4: self.put_register("syncword_0", syncword[3]) self.put_register("syncword_1", syncword[2]) self.put_register("syncword_2", syncword[1]) self.put_register("syncword_3", syncword[0]) elif len(syncword) > 4: raise ValueError("SyncWord length must be less than 5") return None def fill_fifo(self, message, include_length = True, lock = True): new_message = [self._register_number('fifo')] if include_length: new_message = new_message + [len(message)] new_message = new_message + message log_message = new_message.copy() delay = 10 * len(message) # Transfer the message with self._get_mutex(lock): result = self._spi.xfer(new_message, self._spi.max_speed_hz, delay) self._debug("Writing: {} = {}".format(log_message, result)) need_reset = False for check_result in result: if check_result != 1: need_reset = True if need_reset: self._error("While transmitting we got an error, reinitializing everything") self._reinitialize() return new_message def transmit(self, message, channel = None, lock = True, post_delay = 0, syncword = None, submit_queue = '__DEFAULT__', format_config = None): # If we are using a radio transmit queue, just queue this message # (unless we are called from the dequeue procedure) if submit_queue is not None and self._should_use_queue(): if syncword is None: syncword = self._last_syncword self._enqueue(submit_queue, syncword, message, channel, post_delay = post_delay, format_config = format_config) return True sent_packet = True with self._get_mutex(lock): # Set the syncword if syncword is not None: self.set_syncword(syncword, submit_queue = None) # Apply any format changes radio_format_config = self._apply_packet_format_config(format_config) self._debug("Radio format_config = {}".format(radio_format_config)) # Determine if the length should be included if radio_format_config['packet_length_encoded'] == 1: include_length = True else: include_length = False if radio_format_config['auto_term_tx'] == 1: manual_terminate = False else: manual_terminate = True if channel is None: state = self.get_register_bits('radio_state') channel = state['channel'] # Initialize the transmitter self.put_register_bits('radio_state', { 'tx_enabled': 0, 'rx_enabled': 0, 'channel': 0 }) self.put_register_bits('fifo_state', { 'clear_read': 1, 'clear_write': 1 }) # Format message to send to fifo self.fill_fifo(message, include_length = include_length, lock = False) # Tell the radio to transmit the FIFO buffer to the specified channel self.put_register_bits('radio_state', { 'tx_enabled': 1, 'rx_enabled': 0, 'channel': channel }, delay = 1000) while not manual_terminate: radio_status = self.get_register_bits('status') self._debug("radio_status={}".format(radio_status)) if radio_status['packet_flag'] == 1: break if radio_status['framer_status'] == 0: sent_packet = False break time.sleep(0.001) # Stop transmitting, if needed if manual_terminate: self.put_register_bits('radio_state', { 'tx_enabled': 0, 'rx_enabled': 0, 'channel': channel }) if post_delay != 0: time.sleep(post_delay) return sent_packet def multi_transmit(self, message, channels, retries = 3, delay = 0.1, syncword = None, submit_queue = '__DEFAULT__', format_config = None): if len(channels) == 0 or retries == 0: self._error("Asked to send the message {} a total of zero times ({} channels, {} retries)".format(message, channels, retries)) # Wait at-least 650 microseconds between frames min_delay = 650.0 / 1000000.0 post_delay = min_delay final_delay = delay for channel_idx in range(len(channels)): if channel_idx == (len(channels) - 1): retries -= 1 channel = channels[channel_idx] for i in range(retries): if not self.transmit(message, channel, post_delay = post_delay, syncword = syncword, submit_queue = submit_queue, format_config = format_config): return False if not self.transmit(message, channel, post_delay = final_delay, syncword = syncword, submit_queue = submit_queue, format_config = format_config): return False return True def _enqueue(self, submit_queue, syncword, message, channel, post_delay = 0, format_config = None): if not self._should_use_queue(): raise ValueError('internal error: _enqueue called with queueing disabled') with self._software_tx_queue_mutex: if submit_queue not in self._software_tx_queue: self._software_tx_queue[submit_queue] = collections.deque([]) self._software_tx_queue[submit_queue].append({ 'syncword': syncword, 'message': message, 'channel': channel, 'post_delay': post_delay, 'format_config': format_config }) return None def _run_queue(self): self._debug("Started run_queue process") sleep_time = 0 while True: if sleep_time != 0: self._debug("Sleeping for {} seconds".format(sleep_time)) time.sleep(sleep_time) with self._software_tx_queue_mutex: for queue in self._software_tx_queue: if len(self._software_tx_queue[queue]) != 0: self._debug("Running the queue named {}: {} items left".format(queue, len(self._software_tx_queue[queue]))) try: [processed_items, remaining_items] = self._run_queue_once() except Exception as error_info: self._error("Failed to run queue: {}".format(error_info.args)) processed_items = 0 remaining_items = 0 self._debug("Completed running the queue, did {} items and {} items left (continue queue = {})".format(processed_items, remaining_items, self._should_use_queue())) if remaining_items == 0: # If the queue is empty and we are no longer queuing # events, exit this function (which should be joined) if not self._should_use_queue(): self._debug("Request to stop run_queue process, exiting") return None # If there are no events, wait a bit # longer before trying again sleep_time = 0.5 continue if processed_items == 0: # If we processed no items, but there are items left to # process, back off slightly if sleep_time == 0: sleep_time = 0.001 else: sleep_time = min(0.5, sleep_time * 2) continue # If there are more events to process, try again sleep_time = 0 return None def _run_queue_once(self): to_transmit = [] remaining_items = 0 now = time.time() with self._software_tx_queue_mutex: for submit_queue in self._software_tx_queue: # Determine if we should run this queue yet if submit_queue not in self._software_tx_queue_next_time: self._software_tx_queue_next_time[submit_queue] = now queue_next_time = self._software_tx_queue_next_time[submit_queue] if now < queue_next_time: remaining_items += len(self._software_tx_queue[submit_queue]) continue # Record how many items to pop off this queue pop_items = 0 for item in self._software_tx_queue[submit_queue]: pop_items += 1 # If the last item we're about to transmit requires a delay, make # a note of it in the queue time and don't pull anything else # from this queue item['submit_queue'] = submit_queue if item['post_delay'] != 0: break # Pop off the items to transmit in this run into a list if pop_items != 0: self._debug("Found {} items to transmit in the {} queue".format(pop_items, submit_queue)) while pop_items != 0: to_transmit.append(self._software_tx_queue[submit_queue].popleft()) pop_items -= 1 remaining_items += len(self._software_tx_queue[submit_queue]) to_transmit_ordered = {} default_syncword = None for item in to_transmit: syncword = item['syncword'] channel = item['channel'] format_config = item['format_config'] message = item['message'] if syncword is not None: default_syncword = syncword else: syncword = default_syncword item['syncword'] = syncword if message is None or channel is None: continue key = str([syncword, channel]) if key not in to_transmit_ordered: to_transmit_ordered[key] = [] to_transmit_ordered[key].append(item) self._debug("Getting ready to transmit {} items".format(len(to_transmit))) with self._get_mutex(): for (key, items) in to_transmit_ordered.items(): for item in items: self._debug("Transmitting item {}".format(item)) syncword = item['syncword'] channel = item['channel'] format_config = item['format_config'] message = item['message'] self.transmit(message, channel, lock = False, submit_queue = None, syncword = syncword, post_delay = 0, format_config = format_config) self._software_tx_queue_next_time[item['submit_queue']] = time.time() + item['post_delay'] return [len(to_transmit), remaining_items] def start_listening(self, channel): # Initialize the receiver self.stop_listening() # Go into listening mode self.put_register_bits('radio_state', { 'tx_enabled': 0, 'rx_enabled': 1, 'channel': channel }) return True def stop_listening(self): # Initialize the receiver self.put_register_bits('radio_state', { 'tx_enabled': 0, 'rx_enabled': 0, 'channel': 0 }) self.put_register_bits('fifo_state', { 'clear_read': 1, 'clear_write': 1 }) return True def _apply_packet_format_config(self, format_config): # Apply radio format configuration difference from baseline radio_format_config = self._get_default_register_value('format_config').copy() # If a configuration was supplied, update what we want to apply if format_config is not None: radio_format_config.update(format_config) if radio_format_config == self._last_format_config: return radio_format_config self._last_format_config = radio_format_config self.put_register_bits('format_config', radio_format_config, delay = 5000) new_config = self.get_register_bits('format_config') self._info("Updated format_config to be {}".format(new_config)) return radio_format_config def receive(self, channel = None, wait = False, length = None, format_config = None, wait_time = 0.1): # If a length is supplied, assume that the packet is not length encoded # but allow the user to override that by supplying a format config if length is not None: if format_config is None: format_config = {} if 'packet_length_encoded' not in format_config: format_config = format_config.copy() format_config['packet_length_encoded'] = 0 with self._get_mutex(): # Apply the current configuration, if it is already applied # this will be a no-op self._apply_packet_format_config(format_config) if wait: if channel is None: state = self.get_register_bits('radio_state') channel = state['channel'] self.start_listening(channel) message = [] crc_error_count = 0 while True: radio_status = self.get_register_bits('status') self._debug("radio_status={}".format(radio_status)) if radio_status['crc_error'] == 1: crc_error_count += 1 if crc_error_count > 30: self._reinitialize() self.start_listening(channel) continue crc_error_count = 0 if radio_status['packet_flag'] == 0: if wait: time.sleep(wait_time) continue else: self._unlock_radio() return None # Data is available, read it from the FIFO register # The first result will include the length fifo_data = self.get_register('fifo') if length is not None: message_length = length message += [fifo_data >> 8] message_length -= 1 else: message_length = fifo_data >> 8 if message_length == 0: self.start_listening(channel) continue # Keep track of the total message length to truncate it final_message_length = message_length message += [fifo_data & 0xff] message_length -= 1 # Read subsequent bytes from the FIFO register until # there are no more bytes to read while message_length > 0: fifo_data = self.get_register('fifo') message += [fifo_data >> 8, fifo_data & 0xff] message_length -= 2 # Truncate the message to its final size, since we have # to read in 16-bit words, we may have an extra byte message = message[0:final_message_length] break return message
StarcoderdataPython
1787156
<reponame>odeumgg/warhound class OneIndexedList(list): """ This class exists to hold data which is one-indexed. It pads the zero index with None, and will behave incorrectly if this pad is ever removed. Suggested use is append-only. When iterating over this list, the first item will be discarded by the iterator. Consequently, if you want to enumerate with index, you should do: enumerate(one_indexed_list, start=1) """ def __init__(self): super(OneIndexedList, self).append(None) def __len__(self): return super(OneIndexedList, self).__len__() - 1 def __getitem__(self, key): if key == 0: raise IndexError('IndexError: list index out of range') return super(OneIndexedList, self).__getitem__(key) def __iter__(self): return iter(self[1:]) def __repr__(self): return repr(self[1:]) def mk_oil(): return OneIndexedList()
StarcoderdataPython
180297
<filename>Chapter05/code/chapter5_05/contacts_view.py import tkinter as tk from contact import Contact class ContactList(tk.Frame): def __init__(self, master, **kwargs): super().__init__(master) self.lb = tk.Listbox(self, **kwargs) scroll = tk.Scrollbar(self, command=self.lb.yview) self.lb.config(yscrollcommand=scroll.set) scroll.pack(side=tk.RIGHT, fill=tk.Y) self.lb.pack(side=tk.LEFT, fill=tk.BOTH, expand=1) def insert(self, contact, index=tk.END): text = "{}, {}".format(contact.last_name, contact.first_name) self.lb.insert(index, text) def delete(self, index): self.lb.delete(index, index) def update(self, contact, index): self.delete(index) self.insert(contact, index) def bind_doble_click(self, callback): handler = lambda _: callback(self.lb.curselection()[0]) self.lb.bind("<Double-Button-1>", handler) class ContactForm(tk.LabelFrame): fields = ("<NAME>", "<NAME>", "Email", "Phone") def __init__(self, master, **kwargs): super().__init__(master, text="Contact", padx=10, pady=10, **kwargs) self.frame = tk.Frame(self) self.entries = list(map(self.create_field, enumerate(self.fields))) self.frame.pack() def create_field(self, field): position, text = field label = tk.Label(self.frame, text=text) entry = tk.Entry(self.frame, width=25) label.grid(row=position, column=0, pady=5) entry.grid(row=position, column=1, pady=5) return entry def load_details(self, contact): values = (contact.last_name, contact.first_name, contact.email, contact.phone) for entry, value in zip(self.entries, values): entry.delete(0, tk.END) entry.insert(0, value) def get_details(self): values = [e.get() for e in self.entries] try: return Contact(*values) except ValueError as e: mb.showerror("Validation error", str(e), parent=self) def clear(self): for entry in self.entries: entry.delete(0, tk.END) class NewContact(tk.Toplevel): def __init__(self, parent): super().__init__(parent) self.contact = None self.form = ContactForm(self) self.btn_add = tk.Button(self, text="Confirm", command=self.confirm) self.form.pack(padx=10, pady=10) self.btn_add.pack(pady=10) def confirm(self): self.contact = self.form.get_details() if self.contact: self.destroy() def show(self): self.grab_set() self.wait_window() return self.contact class UpdateContactForm(ContactForm): def __init__(self, master, **kwargs): super().__init__(master, **kwargs) self.btn_save = tk.Button(self, text="Save") self.btn_delete = tk.Button(self, text="Delete") self.btn_save.pack(side=tk.RIGHT, ipadx=5, padx=5, pady=5) self.btn_delete.pack(side=tk.RIGHT, ipadx=5, padx=5, pady=5) def bind_save(self, callback): self.btn_save.config(command=callback) def bind_delete(self, callback): self.btn_delete.config(command=callback) class ContactsView(tk.Tk): def __init__(self): super().__init__() self.title("SQLite Contacts list") self.list = ContactList(self, height=15) self.form = UpdateContactForm(self) self.btn_new = tk.Button(self, text="Add new contact") self.list.pack(side=tk.LEFT, padx=10, pady=10) self.form.pack(padx=10, pady=10) self.btn_new.pack(side=tk.BOTTOM, pady=5) def set_ctrl(self, ctrl): self.btn_new.config(command=ctrl.create_contact) self.list.bind_doble_click(ctrl.select_contact) self.form.bind_save(ctrl.update_contact) self.form.bind_delete(ctrl.delete_contact) def add_contact(self, contact): self.list.insert(contact) def update_contact(self, contact, index): self.list.update(contact, index) def remove_contact(self, index): self.form.clear() self.list.delete(index) def get_details(self): return self.form.get_details() def load_details(self, contact): self.form.load_details(contact)
StarcoderdataPython
17051
<filename>async-functions.py<gh_stars>0 ''' <NAME> Credit to Sentdex (https://pythonprogramming.net/) ''' import asyncio async def find_divisibles(inrange, div_by): # Define division function with async functionality print("finding nums in range {} divisible by {}".format(inrange, div_by)) located = [] for i in range(inrange): if i % div_by == 0: located.append(i) if i % 50000 == 0: await asyncio.sleep(0.00001) print("Done w/ nums in range {} divisible by {}".format(inrange, div_by)) return located async def main(): # Example functions to run concurrently divs1 = loop.create_task(find_divisibles(508000, 34113)) divs2 = loop.create_task(find_divisibles(10052, 3210)) divs3 = loop.create_task(find_divisibles(500, 3)) # Activate async operation await asyncio.wait([divs1, divs2, divs3]) return divs1, divs2, divs3 if __name__ == '__main__': try: loop = asyncio.get_event_loop() loop.set_debug(1) d1, d2, d3 = loop.run_until_complete(main()) print(d1.result()) except Exception as e: pass finally: loop.close()
StarcoderdataPython
17047
<reponame>mrocklin/pygdf<gh_stars>1-10 from setuptools import setup import versioneer packages = ['pygdf', 'pygdf.tests', ] install_requires = [ 'numba', ] setup(name='pygdf', description="GPU Dataframe", version=versioneer.get_version(), classifiers=[ # "Development Status :: 4 - Beta", "Intended Audience :: Developers", # "Operating System :: OS Independent", "Programming Language :: Python", # "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.5", ], # Include the separately-compiled shared library author="<NAME>, Inc.", packages=packages, package_data={ 'pygdf.tests': ['data/*.pickle'], }, install_requires=install_requires, license="BSD", cmdclass=versioneer.get_cmdclass(), )
StarcoderdataPython
1706393
# Copyright 2016 A10 Networks # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from a10_neutron_lbaas.tests.unit.v2 import fake_objs from a10_neutron_lbaas.tests.unit.v2 import test_base import a10_neutron_lbaas.a10_exceptions as a10_ex class TestPools(test_base.HandlerTestBase): def test_sanity(self): pass def test_create(self): methods = { 'ROUND_ROBIN': self.a.last_client.slb.service_group.ROUND_ROBIN, 'LEAST_CONNECTIONS': self.a.last_client.slb.service_group.LEAST_CONNECTION, 'SOURCE_IP': self.a.last_client.slb.service_group.WEIGHTED_LEAST_CONNECTION, } protocols = { 'TCP': self.a.last_client.slb.service_group.TCP, 'UDP': self.a.last_client.slb.service_group.UDP, } persistences = [None, 'SOURCE_IP', 'HTTP_COOKIE', 'APP_COOKIE'] listeners = [False, True] for p in protocols.keys(): for m in methods.keys(): for pers in persistences: for listener in listeners: self.a.reset_mocks() saw_exception = False pool = fake_objs.FakePool(p, m, pers, listener) try: self.a.pool.create(None, pool) except a10_ex.UnsupportedFeature as e: if pers == 'APP_COOKIE': saw_exception = True else: raise e self.print_mocks() # (self.a.last_client.slb.service_group.create. # assert_called_with( # pool.id, # axapi_args={"service_group": {}}, # lb_method=methods(m), # protocol=protocols(p))) if not saw_exception: n = str(self.a.last_client.mock_calls).index( 'slb.service_group.create') self.assertTrue(n >= 0) if pers == 'SOURCE_IP': (self.a.last_client.slb.template. src_ip_persistence.create. assert_called_with(pool.id)) elif pers == 'HTTP_COOKIE': (self.a.last_client.slb.template. cookie_persistence.create. assert_called_with(pool.id)) elif pers == 'APP_COOKIE': (self.a.last_client.slb.template. cookie_persistence.create. assert_called_with(pool.id)) def test_create_with_template(self): template = { "service-group": { "template-server": "sg1", "template-port": "sg1", "template-policy": "sg1" } } exp_template = { "template-server": "sg1", "template-port": "sg1", "template-policy": "sg1" } for k, v in self.a.config.get_devices().items(): v['templates'] = template pers1 = None pool = fake_objs.FakePool('TCP', 'ROUND_ROBIN', pers1, True) self.a.pool.create(None, pool) self.a.last_client.slb.service_group.create.assert_called_with( pool.id, axapi_args={"service_group": {}}, lb_method=mock.ANY, config_defaults=mock.ANY, protocol=mock.ANY, service_group_templates=exp_template) def test_update(self): pers1 = None pers2 = None old_pool = fake_objs.FakePool('TCP', 'LEAST_CONNECTIONS', pers1, True) pool = fake_objs.FakePool('TCP', 'ROUND_ROBIN', pers2, True) self.a.pool.update(None, pool, old_pool) self.print_mocks() self.a.last_client.slb.service_group.update.assert_called_with( pool.id, axapi_args={"service_group": {}}, lb_method=mock.ANY, config_defaults=mock.ANY, protocol=mock.ANY, service_group_templates=None) def test_update_with_template(self): template = { "service-group": { "template-server": "sg1", "template-port": "sg1", "template-policy": "sg1" } } exp_template = { "template-server": "sg1", "template-port": "sg1", "template-policy": "sg1" } for k, v in self.a.config.get_devices().items(): v['templates'] = template pers1 = None pers2 = None old_pool = fake_objs.FakePool('TCP', 'LEAST_CONNECTIONS', pers1, True) pool = fake_objs.FakePool('TCP', 'ROUND_ROBIN', pers2, True) self.a.pool.update(None, pool, old_pool) self.a.last_client.slb.service_group.update.assert_called_with( pool.id, axapi_args={"service_group": {}}, lb_method=mock.ANY, config_defaults=mock.ANY, protocol=mock.ANY, service_group_templates=exp_template) def test_delete(self): members = [[], [fake_objs.FakeMember()]] hms = [None, fake_objs.FakeHM('PING')] persistences = [None, 'SOURCE_IP', 'HTTP_COOKIE'] listeners = [False, True] for m in members: for hm in hms: for pers in persistences: for lst in listeners: self.a.reset_mocks() pool = fake_objs.FakePool('TCP', 'ROUND_ROBIN', pers, lst, members=m, hm=hm) self.a.pool.neutron.member_count.return_value = 1 self.a.pool.delete(None, pool) self.print_mocks() (self.a.last_client.slb.service_group.delete. assert_called_with(pool.id)) if pers == 'SOURCE_IP': (self.a.last_client.slb.template. src_ip_persistence.delete. assert_called_with(pool.id)) elif pers == 'HTTP_COOKIE': (self.a.last_client.slb.template. cookie_persistence.delete. assert_called_with(pool.id)) def _test_stats(self): pool = fake_objs.FakePool('TCP', 'ROUND_ROBIN', None, False) actual = self.a.pool.stats(None, pool) return pool, actual def test_stats_calls_service_group_stats(self): pool, actual = self._test_stats() (self.a.last_client.slb.service_group.stats. assert_called_with(pool.id)) def test_stats_returns_stats(self): pool, actual = self._test_stats() self.assertIn("stats", actual) def test_stats_returns_members(self): pool, actual = self._test_stats() self.assertIn("members", actual) def _test_create_expressions(self, os_name, pattern, expressions=None): self.a.config.get_service_group_expressions = self._get_expressions_mock expressions = expressions or self.a.config.get_service_group_expressions() expected = expressions.get(pattern, {}).get("json", None) or "" p = 'TCP' m = fake_objs.FakePool(p, 'ROUND_ROBIN', None) m.name = os_name handler = self.a.pool handler.create(None, m) s = str(self.a.last_client.mock_calls) self.assertIn("service_group.create", s) self.assertIn(str(expected), s) def test_create_expressions_none(self): self._test_create_expressions("mypool", None, {}) def test_create_expressions_match_beginning(self): self._test_create_expressions("securepool", self.EXPR_BEGIN) def test_create_expressions_match_end(self): self._test_create_expressions("poolweb", self.EXPR_END) def test_create_expressions_match_charclass(self): self._test_create_expressions("poolwwpool", self.EXPR_CLASS) def test_create_expressions_nomatch(self): self.a.config.get_service_group_expressions = self._get_expressions_mock expressions = self.a.config.get_service_group_expressions() expected = expressions["beginning"] p = 'TCP' m = fake_objs.FakePool(p, 'ROUND_ROBIN', None) m.name = "thepool" handler = self.a.pool handler.create(None, m) s = str(self.a.last_client.mock_calls) self.assertIn("service_group.create", s) self.assertNotIn(str(expected), s) def test_create_empty_name_noexception(self): self.a.config.get_service_group_expressions = self._get_expressions_mock expressions = self.a.config.get_service_group_expressions() expected = expressions["beginning"] p = 'TCP' m = fake_objs.FakePool(p, 'ROUND_ROBIN', None) m.name = None handler = self.a.pool handler.create(None, m) s = str(self.a.last_client.mock_calls) self.assertIn("service_group.create", s) self.assertNotIn(str(expected), s)
StarcoderdataPython
1658099
import pytest from django.utils import timezone from expenses.models import Expenses from factories.house import HouseFactory from house.models import House, Country, City AMOUNT = '100' DATE = timezone.now() CATEGORY = 'Clothing' HOUSE_NAME = "House 1" HOUSE_NAME_1 = "House one" HOUSE_NAME_2 = "House two" HOUSE_PUBLIC = True COUNTRY = "Colorado" CITY = "South Park" HOUSE_PARENT_PROFESSION_1 = "Teacher" HOUSE_PARENT_PROFESSION_2 = "Student" HOUSE_INCOME = 10_000 HOUSE_CHILDREN = 1 @pytest.fixture def generate_country(): return Country.create_country(name=COUNTRY) @pytest.fixture def generate_city(generate_country): return City.create_city(name=CITY, country=generate_country) @pytest.fixture def generate_house(generate_country, generate_city): house = House.create_house( # house_id=HOUSE_ID, name=HOUSE_NAME, public=HOUSE_PUBLIC, country=generate_country, city=generate_city, parent_profession_1=HOUSE_PARENT_PROFESSION_1, parent_profession_2=HOUSE_PARENT_PROFESSION_2, income=HOUSE_INCOME, children=HOUSE_CHILDREN, ) return house @pytest.fixture def generate_expense(generate_house): return Expenses.create_expense( house_name=generate_house, amount=AMOUNT, date=DATE, category=CATEGORY ) @pytest.mark.django_db() class TestExpensesModel: def test_new_expense(self, generate_expense): assert generate_expense.amount == AMOUNT assert generate_expense.date == DATE assert generate_expense.category == CATEGORY def test_save_expense(self, generate_expense): generate_expense.save() assert generate_expense in Expenses.objects.all() def test_delete_expense(self, generate_expense): generate_expense.save() generate_expense.house_name.delete() assert generate_expense not in Expenses.objects.all() def _helper_create_houses(): house_1 = HouseFactory(name=HOUSE_NAME_1) house_2 = HouseFactory(name=HOUSE_NAME_2) Expenses(house_name=house_1, amount=100, date=DATE, category=Expenses.Category.FOOD).save() Expenses(house_name=house_1, amount=200, date=DATE, category=Expenses.Category.FOOD).save() Expenses(house_name=house_2, amount=300, date=DATE, category=Expenses.Category.FOOD).save() Expenses(house_name=house_2, amount=300, date=DATE, category=Expenses.Category.KIDS).save() Expenses(house_name=house_2, amount=400, date=DATE, category=Expenses.Category.KIDS).save() @pytest.mark.django_db() class TestExpensesFunctions: def test_average_expenses_of_houses_by_categories(self): _helper_create_houses() houses = House.objects.all() avg_expenses_by_categories = Expenses.average_expenses_of_houses_by_categories(houses=houses) assert avg_expenses_by_categories[0]['average'] == 200 assert avg_expenses_by_categories[1]['average'] == 350
StarcoderdataPython
3296650
<reponame>CLARIN-PL/personalized-nlp<filename>personalized_nlp/datasets/emotions/emotions.py from typing import List import pandas as pd import os from personalized_nlp.settings import STORAGE_DIR from personalized_nlp.utils.data_splitting import split_texts from personalized_nlp.datasets.datamodule_base import BaseDataModule class EmotionsDataModule(BaseDataModule): def __init__( self, language: str = 'english', split_sizes: List[float] = [0.55, 0.15, 0.15, 0.15], normalize=False, **kwargs, ): super().__init__(**kwargs) self.data_dir = STORAGE_DIR / 'emotions_data' self.split_sizes = split_sizes self.language = language self.annotation_column = ['OCZEKIWANIE', 'POBUDZENIE EMOCJONALNE', 'RADOŚĆ', 'SMUTEK', 'STRACH', 'WSTRĘT', 'ZASKOCZENIE', 'ZAUFANIE', 'ZNAK EMOCJI', 'ZŁOŚĆ'] self.text_column = 'text' if self.language != 'polish': self.text_column = f'text_{self.language}' self.word_stats_annotation_column = 'POBUDZENIE EMOCJONALNE' self.embeddings_path = STORAGE_DIR / \ f'emotions_data/embeddings/text_id_to_emb_{self.embeddings_type}_{language}.p' self.train_split_names = ['present', 'past'] self.val_split_names = ['future1'] self.test_split_names = ['future2'] self.normalize = normalize os.makedirs(self.data_dir / 'embeddings', exist_ok=True) @property def class_dims(self): return [5] * 8 + [7, 5] @property def texts_clean(self): return self.data[self.text_column].to_list() def prepare_data(self) -> None: self.data = pd.read_csv( self.data_dir / 'texts' /'cawi2_texts_multilang.csv') self.data.loc[:, 'text'] = self.data.loc[:, 'text_' + self.language] self.annotations = pd.read_csv( self.data_dir / 'texts' / 'cawi2_annotations.csv').dropna() self.annotators = pd.read_csv( self.data_dir / 'texts' / 'cawi2_annotators.csv') if self.normalize: self.normalize_labels() self._assign_splits() personal_df = self.annotations_with_data.loc[self.annotations_with_data.split == 'past'] self.compute_annotator_biases(personal_df) def normalize_labels(self): annotation_column = self.annotation_column df = self.annotations mins = df.loc[:, annotation_column].values.min(axis=0) df.loc[:, annotation_column] = (df.loc[:, annotation_column] - mins) maxes = df.loc[:, annotation_column].values.max(axis=0) df.loc[:, annotation_column] = df.loc[:, annotation_column] / maxes def _assign_splits(self): self.data = split_texts(self.data, self.split_sizes)
StarcoderdataPython
3357939
import os import logging import ferris log = logging.getLogger(__name__) _log = logging.getLogger() _log.addHandler(logging.StreamHandler()) _log.setLevel(logging.DEBUG) class Client(ferris.Client): async def on_ready(self): log.info("Starting test.") g = await self.create_guild(name='test') g = await self.fetch_guild(g.id) log.info(repr(g)) await g.edit(name='test_edit') log.info("Create and Fetch and edit guild works.") c = await g.create_channel(name='test') c = await self.fetch_channel(c.id) log.info(repr(c)) await c.edit(name='test_edit') m = await c.send("Test.") log.info(repr(m)) await m.edit(content='test_edit') log.info("Create, Fetch, Edit channel, send, edit message works.") u = await self.fetch_user(self.user.id) log.info(repr(u)) log.info("Fetch user works.") i = await g.create_invite() log.info(repr(i)) log.info("Create invite works.") await m.delete() await c.delete() await g.delete() log.info("Delete message, channel, guild works.") log.info("Test done, all passed") await self.close() client = Client() client.run(token=os.getenv('TOKEN'))
StarcoderdataPython
3234445
from django.db import models from django.urls import reverse from django.contrib.auth.models import User import uuid class TeachingMethod(models.Model): id = models.UUIDField( primary_key=True, default=uuid.uuid4, help_text='Уникальное ID для данного метода' ) title = models.CharField( max_length=1000, help_text='Название педагогического приёма', verbose_name='Заголовок' ) author = models.ForeignKey(User, on_delete=models.CASCADE) description = models.TextField( help_text='Описание педагогического приёма', verbose_name='Описание' ) lesson_part = models.ForeignKey( 'LessonPart', on_delete=models.SET_NULL, null=True, verbose_name='Фрагмент урока' ) def __str__(self): return self.title def get_preview(self): len_preview = 200 if len(self.description) > len_preview: preview_string = self.description[:len_preview] + '...' else: preview_string = self.description return preview_string def get_reading_time(self): return len(self.description.replace(' ', '')) // 120 def get_absolute_url(self): return reverse('method_detail', args=[str(self.id)]) class Meta: verbose_name = 'Метод обучения' verbose_name_plural = 'Методы обучения' class LessonPart(models.Model): name = models.CharField( max_length=1000, help_text='Название раздела' ) description = models.TextField( help_text='Описание раздела' ) url = models.CharField( max_length=500, help_text='Ссылка на раздел' ) def __str__(self): return self.name def get_absolute_url(self): return reverse('method_list', args=[str(self.url)]) class Meta: verbose_name = 'Фрагмент урока' verbose_name_plural = 'Фрагменты урока'
StarcoderdataPython
1756966
"""Training routines for LSTM model.""" import os from collections import OrderedDict import numpy as np from tqdm import tqdm import torch from torch.autograd import Variable import torch.optim as optim import torch.multiprocessing as mp from torch.nn.utils import clip_grad_norm import utils, criterion class Trainer(): """Trainer object for training, validation and testing the model.""" def __init__(self, model, criterion, opt, optim_state): """Setup optim_state, optimizer and logger.""" self.model = model self.criterion = criterion self.optim_state = optim_state self.opt = opt # Only set weight decay to weights params_dict = dict(self.model.named_parameters()) params = [] for key, value in params_dict.items(): if 'weight' in key and ('fc' in key or 'out' in key or 'attention' in key): params += [{'params': value, 'weight_decay': opt.weightDecay}] else: params += [{'params': value, 'weight_decay': 0.0}] # Set optimizer if opt.optimizer == 'SGD': self.optimizer = optim.SGD(params, lr=opt.LR, momentum=opt.momentum) elif opt.optimizer == 'Adam': self.optimizer = optim.Adam(params, lr=opt.LR, betas=(0.9, 0.999), eps=1e-8) else: raise NotImplementedError # Set new optim_state if retrain, restore if exist if self.optim_state is None: self.optim_state = {'state_dict': self.model.state_dict(), 'optimizer': self.optimizer.state_dict(), 'epoch': -1, 'initial_lr': self.opt.LR} log_option = 'w+' else: self.model.load_state_dict(self.optim_state['state_dict']) self.optimizer.load_state_dict(self.optim_state['optimizer']) log_option = 'a+' self.optimizer.param_groups[0]['initial_lr'] = \ self.optim_state['initial_lr'] # Laerning rate scheduler if opt.LRDecay == 'anneal': self.scheduler = optim.lr_scheduler.ExponentialLR( self.optimizer, gamma=opt.LRDParam, last_epoch=self.optim_state['epoch']) elif opt.LRDecay == 'stepwise': self.scheduler = optim.lr_scheduler.StepLR( self.optimizer, step_size=3, gamma=opt.LRDParam, last_epoch=self.optim_state['epoch']) elif opt.LRDecay == 'newbob': self.scheduler = optim.lr_scheduler.ReduceLROnPlateau( self.optimizer, factor=opt.LRDParam, patience=1) else: assert opt.LRDecay == 'none' self.logger = \ {'train': open(os.path.join(opt.resume, 'train.log'), log_option), 'val': open(os.path.join(opt.resume, 'val.log'), log_option), 'test': open(os.path.join(opt.resume, 'test.log'), log_option)} def xent_onebest(self, output, indices, reference): """Compute confidence score binary cross entropy.""" assert len(indices) == len(reference), "inconsistent one-best sequence." loss, count = 0, 0 pred_onebest, ref_onebest = [], [] if indices: # Extract scores on one-best and apply sigmoid prediction = [output[i] for i in indices] for pred, ref in zip(prediction, reference): if ref is not None: count += 1 pred_onebest.append(pred) ref_onebest.append(ref) one_best_pred = Variable(torch.Tensor(pred_onebest)) one_best_ref = Variable(torch.Tensor(ref_onebest)) loss_fn = criterion.create_criterion() loss = loss_fn(one_best_pred, one_best_ref).data[0] return loss, count, pred_onebest, ref_onebest def xent(self, output, ignore, reference): """Compute confidence score binary cross entropy.""" loss, count = 0, 0 all_pred, all_ref = [], [] for i, (pred, ref) in enumerate(zip(output, reference)): if i not in ignore: count += 1 all_pred.append(pred) all_ref.append(float(ref)) all_pred_t = Variable(torch.Tensor(all_pred)) all_ref_t = Variable(torch.Tensor(all_ref)) loss_fn = criterion.create_criterion() loss = loss_fn(all_pred_t, all_ref_t).data[0] return loss, count, all_pred, all_ref @staticmethod def mean(value, count): """Deal with zero count.""" if count == 0: assert value == 0 return 0 else: return value / count @staticmethod def moving_average(avg, total_count, val, count): """Compute the weighted average""" all_val = avg * total_count + val all_counts = total_count + count return Trainer.mean(all_val, all_counts) def forward_one_lattice(self, lattice, target, index, results, update): """Forward through one single lattice on CPU.""" if lattice.edge_num == 0 or not target.ref: results[index] = [(0, 0), (0, 0), ([], [])] else: if update: self.optimizer.zero_grad() lattice.edges = Variable(torch.from_numpy(lattice.edges).float()) target_t = Variable( torch.from_numpy(target.target).float().view(-1, 1)) output = self.model.forward(lattice) target_length = target_t.size(0) # Error signals on all arcs but filter out arcs need to be ignored target_back = [] output_back = [] count = 0 for i in range(target_length): if i not in lattice.ignore: count += 1 target_back.append(target_t[i]) output_back.append(output[i]) target_back = torch.cat(target_back).view(-1, 1) output_back = torch.cat(output_back).view(-1, 1) loss = self.criterion(output_back, target_back) / count # Error signals on one-best path assert len(target.indices) == len(target.ref), \ "inconsistent one-best sequence" target_back_onebest = [] output_back_onebest = [] count_onebest = 0 pred_onebest, ref_onebest = [], [] if target.indices: for j in target.indices: count_onebest += 1 target_back_onebest.append(target_t[j]) output_back_onebest.append(output[j]) pred_onebest.append(output[j].data[0]) ref_onebest.append(target.target[j]) target_back_onebest = torch.cat(target_back_onebest).view(-1, 1) output_back_onebest = torch.cat(output_back_onebest).view(-1, 1) loss_onebest = self.criterion( output_back_onebest, target_back_onebest) / count_onebest # update the network as a combination of losses if update: total_loss = loss_onebest if self.opt.onebest else loss total_loss.backward() clip_grad_norm(self.model.parameters(), self.opt.clip) self.optimizer.step() if self.opt.onebest: all_loss, all_count, all_pred, all_ref = self.xent_onebest( output.data.view(-1), target.indices, target.ref) assert all_count == count_onebest, \ "inconsistent count on onebest" else: all_loss, all_count, all_pred, all_ref = self.xent( output.data.view(-1), lattice.ignore, target.target) results[index] = [(loss.data[0]*count, count), (loss_onebest.data[0]*count_onebest, count_onebest), (all_pred, all_ref)] def train(self, train_loader, epoch, val_loss): """Training mode.""" if self.opt.LRDecay in ['anneal', 'stepwise']: self.scheduler.step() elif self.opt.LRDecay == 'newbob': self.scheduler.step(val_loss) self.model.train() avg_loss, total_count = 0, 0 avg_loss_onebest, total_count_onebest = 0, 0 wrapper = tqdm(train_loader, dynamic_ncols=True) # Looping through batches for lattices, targets in wrapper: assert len(lattices) == len(targets), \ "Data and targets with different lengths." batch_loss, batch_count = 0, 0 batch_loss_onebest, batch_count_onebest = 0, 0 # CPU Hogwild training # Each process is one training sample in a mini-batch processes = [] manager = mp.Manager() results = manager.list([None] * len(lattices)) # Fork processes for j, (lattice, target) in enumerate(zip(lattices, targets)): fork = mp.Process(target=self.forward_one_lattice, args=(lattice, target, j, results, True)) fork.start() processes.append(fork) # Wait until all processes are finished for fork in processes: fork.join() # Colelct loss stats for result in results: batch_loss += result[0][0] batch_count += result[0][1] batch_loss_onebest += result[1][0] batch_count_onebest += result[1][1] # Compute average losses and increment counters avg_loss = Trainer.moving_average( avg_loss, total_count, batch_loss, batch_count) avg_loss_onebest = Trainer.moving_average( avg_loss_onebest, total_count_onebest, batch_loss_onebest, batch_count_onebest) total_count += batch_count total_count_onebest += batch_count_onebest learning_rate = self.optimizer.param_groups[0]['lr'] # Set tqdm display elements wrapper.set_description("".ljust(7) + 'Train') postfix = OrderedDict() postfix['allarc'] = '%.4f' %Trainer.mean(batch_loss, batch_count) postfix['allarcAvg'] = '%.4f' %avg_loss postfix['onebest'] = '%.4f' %Trainer.mean( batch_loss_onebest, batch_count_onebest) postfix['onebestAvg'] = '%.4f' %avg_loss_onebest postfix['lr'] = '%.5f' %learning_rate wrapper.set_postfix(ordered_dict=postfix) self.optim_state['epoch'] = epoch - 1 self.logger['train'].write('%d %f %f\n' %(epoch, avg_loss, avg_loss_onebest)) print("".ljust(7) + "Training loss".ljust(16) + utils.color_msg('%.4f' %(avg_loss_onebest if self.opt.onebest \ else avg_loss))) return avg_loss_onebest if self.opt.onebest else avg_loss def val(self, val_loader, epoch): """Validation mode.""" self.model.eval() avg_loss, total_count = 0, 0 avg_loss_onebest, total_count_onebest = 0, 0 wrapper = tqdm(val_loader, dynamic_ncols=True) # Looping though batches for lattices, targets in wrapper: assert len(lattices) == len(targets), \ "Data and targets with different lengths." batch_loss, batch_count = 0, 0 batch_loss_onebest, batch_count_onebest = 0, 0 processes = [] manager = mp.Manager() results = manager.list([None] * len(lattices)) # Fork processes for j, (lattice, target) in enumerate(zip(lattices, targets)): fork = mp.Process(target=self.forward_one_lattice, args=(lattice, target, j, results, False)) fork.start() processes.append(fork) # Wait until all processes are finished for fork in processes: fork.join() # Colelct loss stats for result in results: batch_loss += result[0][0] batch_count += result[0][1] batch_loss_onebest += result[1][0] batch_count_onebest += result[1][1] # Compute average losses and increment counters avg_loss = Trainer.moving_average( avg_loss, total_count, batch_loss, batch_count) avg_loss_onebest = Trainer.moving_average( avg_loss_onebest, total_count_onebest, batch_loss_onebest, batch_count_onebest) total_count += batch_count total_count_onebest += batch_count_onebest wrapper.set_description("".ljust(7) + 'val'.ljust(5)) postfix = OrderedDict() postfix['allarc'] = '%.4f' %Trainer.mean(batch_loss, batch_count) postfix['allarcAvg'] = '%.4f' %avg_loss postfix['onebest'] = '%.4f' %Trainer.mean( batch_loss_onebest, batch_count_onebest) postfix['onebestAvg'] = '%.4f' %avg_loss_onebest wrapper.set_postfix(ordered_dict=postfix) self.logger['val'].write('%d %f %f\n' %(epoch, avg_loss, avg_loss_onebest)) print("".ljust(7) + "Validation loss".ljust(16) + utils.color_msg('%.4f' %(avg_loss_onebest if self.opt.onebest \ else avg_loss))) return avg_loss_onebest if self.opt.onebest else avg_loss def test(self, val_loader, epoch): """Testing mode.""" self.model.eval() # import pdb; pdb.set_trace() prediction = [] reference = [] posteriors = [] avg_loss, total_count = 0, 0 avg_loss_onebest, total_count_onebest = 0, 0 wrapper = tqdm(val_loader, dynamic_ncols=True) for lattices, targets in wrapper: assert len(lattices) == len(targets), \ "Data and targets with different lengths." batch_loss, batch_count = 0, 0 batch_loss_onebest, batch_count_onebest = 0, 0 processes = [] manager = mp.Manager() results = manager.list([None] * len(lattices)) # Fork processes for j, (lattice, target) in enumerate(zip(lattices, targets)): fork = mp.Process(target=self.forward_one_lattice, args=(lattice, target, j, results, False)) fork.start() processes.append(fork) # Wait until all processes are finished for fork in processes: fork.join() # Colelct loss stats for result in results: batch_loss += result[0][0] batch_count += result[0][1] batch_loss_onebest += result[1][0] batch_count_onebest += result[1][1] prediction += result[2][0] reference += result[2][1] # Compute average losses and increment counters avg_loss = Trainer.moving_average( avg_loss, total_count, batch_loss, batch_count) avg_loss_onebest = Trainer.moving_average( avg_loss_onebest, total_count_onebest, batch_loss_onebest, batch_count_onebest) total_count += batch_count total_count_onebest += batch_count_onebest wrapper.set_description("".ljust(7) + 'Test epoch %i' %epoch) postfix = OrderedDict() postfix['allarc'] = '%.4f' %Trainer.mean(batch_loss, batch_count) postfix['allarcAvg'] = '%.4f' %avg_loss postfix['onebest'] = '%.4f' %Trainer.mean( batch_loss_onebest, batch_count_onebest) postfix['onebestAvg'] = '%.4f' %avg_loss_onebest wrapper.set_postfix(ordered_dict=postfix) for lattice, target in zip(lattices, targets): for i, edge_data in enumerate(lattice.edges): if self.opt.onebest: if i in target.indices: posteriors.append(edge_data[-1]) else: if i not in lattice.ignore: posteriors.append(edge_data[-1]) assert len(posteriors) == len(prediction), "wrong lengths" self.logger['test'].write('%f %f\n' %(avg_loss, avg_loss_onebest)) print("".ljust(7) + "Test loss".ljust(16) + utils.color_msg('%.4f' %(avg_loss_onebest if self.opt.onebest \ else avg_loss))) prediction = np.array(prediction) reference = np.array(reference) posteriors = np.array(posteriors) if self.opt.onebest: return avg_loss_onebest, prediction, reference, posteriors else: return avg_loss, prediction, reference, posteriors def create_trainer(model, criterion, opt, optim_state): """New Trainer object.""" trainer = Trainer(model, criterion, opt, optim_state) return trainer
StarcoderdataPython
1675166
<filename>python/openassetio/hostAPI/terminology.py<gh_stars>10-100 # # Copyright 2013-2021 The Foundry Visionmongers Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ @namespace openassetio.hostAPI.terminology This module provides utilities for a @ref host that simplify the integration of a @ref manager "manager's" custom terminology into its user-facing components. """ from .._core.audit import auditApiCall ## @namespace openassetio.hostAPI.terminology # # The terminology mapping mechanism allows Managers to customize # terminology used within the host application. # The Mapper class allows for more efficient access to term # mapping during a Host session, and for the host to provide # additional terminology keys. # ## @name Terminology dict keys ## @{ kTerm_Asset = 'asset' kTerm_Assets = 'assets' kTerm_Manager = 'manager' kTerm_Publish = 'publish' kTerm_Publishing = 'publishing' kTerm_Published = 'published' kTerm_Shot = 'shot' kTerm_Shots = 'shots' ## @} ## Default terminology for the API. # Hosts may choose to add additional terminology keys when # constructing a Mapper, but there is no expectation that # any given manager would customize keys other than the # defaultTerminology. defaultTerminology = { kTerm_Asset: 'Asset', kTerm_Assets: 'Assets', kTerm_Manager: 'Asset Manager', kTerm_Publish: 'Publish', kTerm_Publishing: 'Publishing', kTerm_Published: 'Published', kTerm_Shot: 'Shot', kTerm_Shots: 'Shots', } class Mapper: """ The Mapper class provides string substitution methods and lookups to determine the correct terminology for the supplied @ref manager. """ def __init__(self, manager, terminology=defaultTerminology): """ Constructs a new Mapper using terminology overrides defined by the supplied Manager. The manager is queried during construction and it's results cached for the lifetime of the Mapper. @param manager Manager, A Manager instance, whose terminology should be applied by the mapper. @param terminology A dict of terms that will be substituted by this instance. If left unspecified, the default API terminology will be used. Hosts may take a copy of this dictionary and append to it before passing to the Mapper to allow managers to customize additional host-specific terms. There is no expectation that a manager would handle new terms without specific knowledge in advance. """ # As we take a copy, the default of the shared # dict isn't dangerous. # pylint: disable=dangerous-default-value self.__terminology = dict(terminology) self.__updateTerminology(manager) @auditApiCall("Terminology") def replaceTerms(self, sourceStr): """ Substitutes any valid terminology tokens in the input string with those appropriate to the current Manager. These tokens are as per python format convention, using the constants defined in @ref openassetio.hostAPI.terminology under kTerm_*. For example: @li "{publish} to {manager}..." @warning Escaping brace literals with `{{` is not currently supported. @param sourceStr a string to substitute. @return str The input string with all applicable terms substituted, any remaining braces ({}) will be removed. """ try: # Make sure we dont abort if there is an unknown string sourceStr = sourceStr.format(**self.__terminology) except KeyError: pass return sourceStr.replace("{", "").replace("}", "") @auditApiCall("Terminology") def term(self, key, default=''): """ Returns the term corresponding to the supplied key, @ref openassetio.hostAPI.terminology under kTerm_* @return str or the supplied default if the key is unknown. """ return self.__terminology.get(key, default) def __updateTerminology(self, manager): # Get any custom strings from the manager that we should use in the UI, # this is to allow a consistent terminology across implementations of a # specific asset management system. manager.updateTerminology(self.__terminology) self.__terminology[kTerm_Manager] = manager.displayName()
StarcoderdataPython
1763426
# 2020.07.06 # Problem Statement: # https://leetcode.com/problems/add-two-numbers/ # Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def addTwoNumbers(self, l1: ListNode, l2: ListNode) -> ListNode: # declare the head node head = ListNode() # declare a changing node, function as a 'pointer' ptr = head # initialize carrier = 0 add_one = False # iterate until both lists are gone through while l1 is not None or l2 is not None: # check if already gone through if l1 is None: add_1 = 0 else: add_1 = l1.val l1 = l1.next # move to the next if l2 is None: add_2 = 0 else: add_2 = l2.val l2 = l2.next # move to the next if not add_one: if add_1 + add_2 >= 10: ptr.val = add_1 + add_2 - 10 add_one = True else: ptr.val = add_1 + add_2 add_one = False else: if add_1 + add_2 + 1 >= 10: ptr.val = add_1 + add_2 + 1 - 10 add_one = True else: ptr.val = add_1 + add_2 + 1 add_one = False # if still have numbers not gone through if (l1 is not None) or (l2 is not None): ptr.next = ListNode() ptr = ptr.next # have gone through both lists elif add_one: ptr.next = ListNode(val = 1, next = None) return head
StarcoderdataPython
1611742
<reponame>MrBurtyyy/yoti-python-sdk from yoti_python_sdk.sandbox.attribute import SandboxAttribute from yoti_python_sdk import config import base64 class YotiTokenResponse(object): def __init__(self, token): self.__token = token @property def token(self): """ The token to be used by the Client :return: the token """ return self.__token class YotiTokenRequest(object): def __init__(self, remember_me_id=None, sandbox_attributes=None): if remember_me_id is None: remember_me_id = "" if sandbox_attributes is None: sandbox_attributes = [] self.remember_me_id = remember_me_id self.sandbox_attributes = sandbox_attributes def __dict__(self): return { "remember_me_id": self.remember_me_id, "profile_attributes": self.sandbox_attributes, } @staticmethod def builder(): """ Creates an instance of the yoti token request builder :return: instance of YotiTokenRequestBuilder """ return YotiTokenRequestBuilder() class YotiTokenRequestBuilder(object): def __init__(self): self.remember_me_id = None self.attributes = [] def with_remember_me_id(self, remember_me_id): """ Sets the remember me id on the builder :param remember_me_id: the remember me id :return: the updated builder """ self.remember_me_id = remember_me_id return self def with_attribute(self, sandbox_attribute): """ Appends a SandboxAttribute to the list of attributes on the builder :param SandboxAttribute sandbox_attribute: :return: the updated builder """ self.attributes.append(sandbox_attribute) return self def with_given_names(self, value, anchors=None): """ Creates and appends a SandboxAttribute for given names :param str value: the value :param list[SandboxAnchor] anchors: optional list of anchors :return: """ attribute = self.__create_attribute( config.ATTRIBUTE_GIVEN_NAMES, value, anchors ) return self.with_attribute(attribute) def with_family_name(self, value, anchors=None): """ Creates and appends a SandboxAttribute for family name :param str value: the value :param list[SandboxAnchor] anchors: optional list of anchors :return: """ attribute = self.__create_attribute( config.ATTRIBUTE_FAMILY_NAME, value, anchors ) return self.with_attribute(attribute) def with_full_name(self, value, anchors=None): """ Creates and appends a SandboxAttribute for full name :param str value: the value :param list[SandboxAnchor] anchors: optional list of anchors :return: """ attribute = self.__create_attribute(config.ATTRIBUTE_FULL_NAME, value, anchors) return self.with_attribute(attribute) def with_date_of_birth(self, value, anchors=None): """ Creates and appends a SandboxAttribute for date of birth :param str value: the value :param list[SandboxAnchor] anchors: optional list of anchors :return: """ attribute = self.__create_attribute( config.ATTRIBUTE_DATE_OF_BIRTH, value, anchors ) return self.with_attribute(attribute) def with_age_verification(self, age_verification): """ Creates and appends a SandboxAttribute with a given age verification :param SandboxAgeVerification age_verification: the age verification :return: """ return self.with_attribute(age_verification.to_attribute()) def with_gender(self, value, anchors=None): """ Creates and appends a SandboxAttribute for gender :param str value: the value :param list[SandboxAnchor] anchors: optional list of anchors :return: """ attribute = self.__create_attribute(config.ATTRIBUTE_GENDER, value, anchors) return self.with_attribute(attribute) def with_phone_number(self, value, anchors=None): """ Creates and appends a SandboxAttribute for phone number :param str value: the value :param list[SandboxAnchor] anchors: optional list of anchors :return: """ attribute = self.__create_attribute( config.ATTRIBUTE_PHONE_NUMBER, value, anchors ) return self.with_attribute(attribute) def with_nationality(self, value, anchors=None): """ Creates and appends a SandboxAttribute for nationality :param str value: the value :param list[SandboxAnchor] anchors: optional list of anchors :return: """ attribute = self.__create_attribute( config.ATTRIBUTE_NATIONALITY, value, anchors ) return self.with_attribute(attribute) def with_postal_address(self, value, anchors=None): """ Creates and appends a SandboxAttribute for postal address :param str value: the value :param list[SandboxAnchor] anchors: optional list of anchors :return: """ attribute = self.__create_attribute( config.ATTRIBUTE_POSTAL_ADDRESS, value, anchors ) return self.with_attribute(attribute) def with_structured_postal_address(self, value, anchors=None): """ Creates and appends a SandboxAttribute for structured postal address :param str value: the value :param list[SandboxAnchor] anchors: optional list of anchors :return: """ attribute = self.__create_attribute( config.ATTRIBUTE_STRUCTURED_POSTAL_ADDRESS, value, anchors ) return self.with_attribute(attribute) def with_selfie(self, value, anchors=None): """ Creates and appends a SandboxAttribute for a selfie :param str value: the value :param list[SandboxAnchor] anchors: optional list of anchors :return: """ base64_selfie = base64.b64encode(value).decode("utf-8") return self.with_base64_selfie(base64_selfie, anchors) def with_base64_selfie(self, value, anchors=None): """ Creates and appends a SandboxAttribute for given names :param str value: base64 encoded value :param list[SandboxAnchor] anchors: optional list of anchors :return: """ attribute = self.__create_attribute(config.ATTRIBUTE_SELFIE, value, anchors) return self.with_attribute(attribute) def with_email_address(self, value, anchors=None): """ Creates and appends a SandboxAttribute for email address :param str value: the value :param list[SandboxAnchor] anchors: optional list of anchors :return: """ attribute = self.__create_attribute( config.ATTRIBUTE_EMAIL_ADDRESS, value, anchors ) return self.with_attribute(attribute) def with_document_details(self, value, anchors=None): """ Creates and appends a SandboxAttribute for document details :param str value: the value :param list[SandboxAnchor] anchors: optional list of anchors :return: """ attribute = self.__create_attribute( config.ATTRIBUTE_DOCUMENT_DETAILS, value, anchors ) return self.with_attribute(attribute) def build(self): """ Creates an instance of YotiTokenRequest using the supplied values :return: instance of YotiTokenRequest """ return YotiTokenRequest(self.remember_me_id, self.attributes) @staticmethod def __create_attribute(name, value, anchors=None): return SandboxAttribute(name, value, anchors)
StarcoderdataPython
3218682
import argparse import glob import multiprocessing import re from functools import partial from pathlib import Path import librosa import numpy from become_yukarin import SuperResolution from become_yukarin.config.sr_config import create_from_json as create_config from become_yukarin.dataset.dataset import AcousticFeatureProcess from become_yukarin.dataset.dataset import WaveFileLoadProcess parser = argparse.ArgumentParser() parser.add_argument('model_names', nargs='+') parser.add_argument('-md', '--model_directory', type=Path, default=Path('/mnt/dwango/hiroshiba/become-yukarin/')) parser.add_argument('-iwd', '--input_wave_directory', type=Path, default=Path('/mnt/dwango/hiroshiba/become-yukarin/dataset/yukari-wave/yukari-news/')) parser.add_argument('-it', '--iteration', type=int) parser.add_argument('-g', '--gpu', type=int) args = parser.parse_args() model_directory = args.model_directory # type: Path input_wave_directory = args.input_wave_directory # type: Path it = args.iteration gpu = args.gpu paths_test = list(Path('./test_data_sr/').glob('*.wav')) def extract_number(f): s = re.findall("\d+", str(f)) return int(s[-1]) if s else -1 def process(p: Path, super_resolution: SuperResolution): param = config.dataset.param wave_process = WaveFileLoadProcess( sample_rate=param.voice_param.sample_rate, top_db=None, ) acoustic_feature_process = AcousticFeatureProcess( frame_period=param.acoustic_feature_param.frame_period, order=param.acoustic_feature_param.order, alpha=param.acoustic_feature_param.alpha, f0_estimating_method=param.acoustic_feature_param.f0_estimating_method, ) try: if p.suffix in ['.npy', '.npz']: p = glob.glob(str(input_wave_directory / p.stem) + '.*')[0] p = Path(p) input = acoustic_feature_process(wave_process(str(p))) wave = super_resolution(input.spectrogram, acoustic_feature=input, sampling_rate=param.voice_param.sample_rate) librosa.output.write_wav(str(output / p.stem) + '.wav', wave.wave, wave.sampling_rate, norm=True) except: import traceback print('error!', str(p)) traceback.format_exc() for model_name in args.model_names: base_model = model_directory / model_name config = create_config(base_model / 'config.json') #input_paths = list(sorted([Path(p) for p in glob.glob(str(config.dataset.input_glob))])) #numpy.random.RandomState(config.dataset.seed).shuffle(input_paths) #path_train = input_paths[0] #path_test = input_paths[-1] if it is not None: model_path = base_model / 'predictor_{}.npz'.format(it) else: model_paths = base_model.glob('predictor_*.npz') model_path = list(sorted(model_paths, key=extract_number))[-1] print(model_path) super_resolution = SuperResolution(config, model_path, gpu=gpu) output = Path('./output').absolute() / base_model.name output.mkdir(exist_ok=True) #paths = [path_train, path_test] + paths_test paths = paths_test process_partial = partial(process, super_resolution=super_resolution) if gpu is None: pool = multiprocessing.Pool() pool.map(process_partial, paths) else: list(map(process_partial, paths))
StarcoderdataPython