id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
74956
# -*- coding: utf-8 -*- u''' This script evaluates the performance of the following outlier detection method: - Consensus Regularized Multi-View Outlier Detection (CMOD) - DMOD - HOAD Arguments: -c, --config: JSON file with the information required to insert data -N, --datasetName: name of the imported dataset -D, --dbms: Database management system used to import data (Oracle or MongoDB). -f, --featuresImage: extracted features from image dataset. e.g -f "{'cnn':'AlexNet', 'layer':'Visual'}" -m, --method: coma-separated list with the outlier detection methods to test (either CMOD, DMOD or HOAD) -p, --params: string on JSON format with the method parameters and their values. e.g. -p "{'k':2, 'sigma':.1, 'm':1}" Created on 26/2/2018 @author: <NAME> (<EMAIL>) @Institution: Computer Vision Center - Universitat Autonoma de Barcelona ''' __author__ = '<NAME>' __email__ = '<EMAIL>' import ast import getopt import glob import json import os.path import sys from pprint import pprint from scipy.spatial import distance as dist from sklearn import metrics from OutlierDetector.CMOD import CMOD from OutlierDetector.DMOD import DMOD from OutlierDetector.HOAD import HOAD from processData import config as cfg, mongoConnection as mg, oracleConnection as orcl, noConnection as nc from processData.datasetInfo import datasetInfo as dsi def getConf( confDict ): confString = confDict.split(" ") conf = [] for c in confString: conf.append(tuple([int(x) for x in c.replace("(", "").replace(")", "").split(",")])) return conf def loadData(dbms, nameDataset, params={}): ''' Description: load data from the DBMS given the parameters passed by argument :param dbms: object with the connection to the DB :param nameDataset: :param params: :return: list of rows with the id of the image and the feature vector as numpy array ''' data = dsi(nameDataset) if "classList" in params: data.classList = params["classList"] else: data.classList = [] if "layers" in params: data.layers = params["layers"] else: data.layers = ["Visual"] if "cnn" in params: data.layers = params["cnn"] else: data.layers = "" data.type = dbms.getDatasetType(nameDataset) data.features, data.classIds = dbms.loadData(nameDataset, data) return data if __name__ == '__main__': # read commandline arguments, first fullCmdArguments = sys.argv #classPath = "jars" dir_path = os.path.dirname(os.path.realpath(__file__)) #jarFiles = glob.glob(dir_path + '/' + classPath + '/' + '*.jar') """ Database default parameters """ DBMS = "" methods = ["DMOD", "CMOD", "HOAD"] numViews = 2 params = {} datasetName = "Synthetic Data" params["numSamples"] = 200 isConfigFile = False unixOptions = "hvc:f:N:m:D:p:" gnuOptions = ["help", "verbose", "config_file=", "datasetName", "featuresImage=","method=", "dbms=", "params="] try: arguments, values = getopt.getopt(fullCmdArguments[1:], unixOptions, gnuOptions) except getopt.error as err: # output error, and return with an error code print (str(err)) sys.exit(2) # evaluate given options for currentArgument, currentValue in arguments: if currentArgument in ("-v", "--verbose"): print ("enabling verbose mode") elif currentArgument in ("-h", "--help"): print (__doc__) sys.exit(0) # print ("displaying help") elif currentArgument in ("-c", "--config_file"): configFile = currentValue isConfigFile = True elif currentArgument in ("-D", "--dbms"): DBMS = currentValue elif currentArgument in ("-m", "--method"): method = currentValue elif currentArgument in ("-N", "--datasetName"): datasetName = currentValue.lower() elif currentArgument in ("-p", "--params"): paramsMethod = ast.literal_eval(currentValue) elif currentArgument in ("-f", "--featuresImage"): featuresImage = ast.literal_eval(currentValue) if isConfigFile: with open(configFile) as f: data = json.load(f) if DBMS.lower() == "": db = nc.noConnexion() if DBMS.lower() == "oracle": db = orcl.oracleConnexion(cfg.config(data["dbms"][DBMS.lower()])) if DBMS.lower() == "mongodb": db = mg.mongoConnexion(cfg.config(data["dbms"][DBMS.lower()])) """Iniciem la sessio""" db.startSession() """Carreguem les dades dels datasets guardats a la BD""" dataInfo = loadData(db, datasetName, params) """---""" paramNames = [] if "data" in locals(): if "numIterations" in data: numRepeticions = int(data['numIterations']) else: numRepeticions = 2 if "conf" in data: confList = getConf(data['conf']) else: confList = [(2,0)] else: numRepeticions = 2 confList = [(2,0)] for conf in confList: """Inicialitzem""" if method.upper() == "DMOD": od = DMOD(numViews) if method.upper() == "CMOD": od = CMOD(numViews) if method.upper() == "HOAD": od = HOAD(numViews) for i in range(numRepeticions): """Per a cada repetició hem de generar els outliers del dataset """ print(""" ================================================================== Iniciant repetició {} """.format(i)) newFeatures, y, outliersGTIdx = od.prepareExperimentData(db, conf, datasetName, dataInfo, i, settings={'numViews':numViews}) idExperiment = db.insertExperiment(conf, i, method, paramsMethod) outliersIdx = od.detector(newFeatures, paramsMethod ) """Calculem les mètriques d'avaluació""" # Evaluate Outliers fpr, tpr, thresholds = metrics.roc_curve(y, outliersIdx, pos_label=1) auc = metrics.auc(tpr, fpr) """Inserim els resultats a la BD """ db.insertResults(datasetName, idExperiment, fpr, tpr, auc, dataInfo) """Mostrem els resultats per consola""" valorsStr = "{}: {}".format(dataInfo, method) for key in paramsMethod: valorsStr = valorsStr + ", {}={}".format(key, paramsMethod[key]) valorsStr = valorsStr + ", {}-{} (repeticio {}): %.3f".format(conf[0],conf[1],i) %(auc) print(valorsStr) db.close() print("Experiments fets") sys.exit(0)
StarcoderdataPython
1705065
from unittest import TestCase from regulations.generator.layers import tree_builder from regulations.generator.node_types import REGTEXT import itertools class TreeBuilderTest(TestCase): def build_tree(self): child = { 'text': 'child text', 'children': [], 'label_id': '204-3', 'label': ['204', '3'], 'node_type': REGTEXT } tree = { 'text': 'parent text', 'children': [child], 'label_id': '204', 'label': ['204'], 'node_type': REGTEXT } return tree def test_build_tree_hash(self): tree = self.build_tree() tree['children'][0]['children'] = [{ 'text': 'child child test', 'children': [], 'label_id': '204-3-a', 'label': ['204', '3', 'a'], 'node_type': REGTEXT }] tree_hash = tree_builder.build_tree_hash(tree) self.assertEqual(set(tree_hash.keys()), set(['204-3-a', '204-3', '204'])) def test_parent_in_tree(self): tree = self.build_tree() tree_hash = tree_builder.build_tree_hash(tree) self.assertEqual(tree_hash.keys(), ['204-3', '204']) self.assertTrue(tree_builder.parent_in_tree('204-3', tree_hash)) def test_add_node(self): new_node = { 'text': 'new node text', 'children': [], 'label_id': '204-4', 'label': ['204', '4'], 'node_type': REGTEXT } tree = self.build_tree() tree_hash = tree_builder.build_tree_hash(tree) self.assertEqual(tree_hash.keys(), ['204-3', '204']) self.assertEqual(len(tree_hash['204']['children']), 1) tree_builder.add_node_to_tree(new_node, '204', tree_hash) self.assertEqual(len(tree_hash['204']['children']), 2) child_labels = [c['label_id'] for c in tree_hash['204']['children']] self.assertEqual(child_labels, ['204-3', '204-4']) def test_make_label_sortable_roman(self): label = "iv" sortable = tree_builder.make_label_sortable(label, roman=True) self.assertEquals(sortable, (4,)) def test_make_label_sortable_not_roman(self): label = "iv" sortable = tree_builder.make_label_sortable(label) self.assertEquals(sortable, ('iv',)) def test_parent_label(self): node = {'node_type': 'REGTEXT', 'label': ['204', 'a', '1', 'ii']} parent_label = tree_builder.parent_label(node) self.assertEquals(['204', 'a', '1'], parent_label) node = {'node_type': 'INTERP', 'label': ['204', 'Interp']} parent_label = tree_builder.parent_label(node) self.assertEquals(['204'], parent_label) node = {'node_type': 'INTERP', 'label': ['204', '2', 'Interp']} parent_label = tree_builder.parent_label(node) self.assertEquals(['204', 'Interp'], parent_label) node = {'node_type': 'INTERP', 'label': ['204', '2', 'a', 'Interp']} parent_label = tree_builder.parent_label(node) self.assertEquals(['204', '2', 'Interp'], parent_label) node = {'node_type': 'INTERP', 'label': ['204', '2', 'Interp', '1']} parent_label = tree_builder.parent_label(node) self.assertEquals(['204', '2', 'Interp'], parent_label) node = {'node_type': 'INTERP', 'label': ['204', '2', 'Interp', '1', 'i']} parent_label = tree_builder.parent_label(node) self.assertEquals(['204', '2', 'Interp', '1'], parent_label) def test_roman_nums(self): first_five = list(itertools.islice(tree_builder.roman_nums(), 0, 5)) self.assertEquals(['i', 'ii', 'iii', 'iv', 'v'], first_five) def test_add_child(self): tree = self.build_tree() child = { 'children': [], 'label': ['204', '2'], 'label_id': '204-2', 'node_type': REGTEXT, 'sortable': (2,), 'text': 'child text', } static_child = { 'children': [], 'label': ['204', '3'], 'label_id': '204-3', 'node_type': REGTEXT, 'sortable': (3,), 'text': 'child text', } static_tree = { 'children': [child, static_child], 'text': 'parent text', 'label': ['204'], 'label_id': '204', 'node_type': REGTEXT } tree_builder.add_child(tree, child) self.assertEquals(static_tree, tree) def test_add_child_appendix(self): parent = {'children': [ {'node_type': 'APPENDIX', 'label': ['204', 'A', '1']}, {'node_type': 'APPENDIX', 'label': ['204', 'A', '3']}, ]} child_to_add = {'node_type': 'APPENDIX', 'label': ['204', 'A', '2(a)']} tree_builder.add_child(parent, child_to_add) self.assertEquals( ['204-A-1', '204-A-2(a)', '204-A-3'], ['-'.join(c['label']) for c in parent['children']] ) def test_add_child_interp(self): parent = {'children': [ {'node_type': 'INTERP', 'label': ['204', '4', 'Interp']}, {'node_type': 'INTERP', 'label': ['204', '2', 'Interp']} ], 'label': ['204', 'Interp']} tree_builder.add_child(parent, {'node_type': 'INTERP', 'label': ['204', '3', 'Interp']}) self.assertEqual([(2, 2), (2, 3), (2, 4)], [c['sortable'] for c in parent['children']]) prefix = ['204', '4', 'a', '2'] parent = {'children': [ {'node_type': 'INTERP', 'label': prefix + ['v', 'Interp']}, {'node_type': 'INTERP', 'label': prefix + ['iv', 'Interp']} ], 'label': ['204', '4', 'a', '2', 'Interp']} tree_builder.add_child(parent, {'node_type': 'INTERP', 'label': prefix + ['ix', 'Interp']}) self.assertEqual([(4,), (5,), (9,)], [c['sortable'] for c in parent['children']]) prefix = ['204', '4', 'Interp'] parent = {'children': [ {'node_type': 'INTERP', 'label': prefix + ['1']}, {'node_type': 'INTERP', 'label': prefix + ['3']} ], 'label': ['204', 'Interp']} tree_builder.add_child(parent, {'node_type': 'INTERP', 'label': prefix + ['2']}) self.assertEqual([(2, 1), (2, 2), (2, 3)], [c['sortable'] for c in parent['children']]) prefix = ['204', 'Interp', '2'] parent = {'children': [ {'node_type': 'INTERP', 'label': prefix + ['v']}, {'node_type': 'INTERP', 'label': prefix + ['iv']} ], 'label': prefix} tree_builder.add_child(parent, {'node_type': 'INTERP', 'label': prefix + ['ix']}) self.assertEqual([(4,), (5,), (9,)], [c['sortable'] for c in parent['children']]) def test_add_child_root_interp(self): """ Let's add an introductory paragraph child to a root interpretation node and ensure that the children are sorted correctly. """ parent = {'children': [ {'node_type': 'INTERP', 'label': ['204', '4', 'Interp']}, {'node_type': 'INTERP', 'label': ['204', '2', 'Interp']} ], 'label': ['204', 'Interp']} tree_builder.add_child(parent, {'node_type': 'INTERP', 'label': ['204', 'Interp', 'h1']}) self.assertEqual([(1, 'h', 1), (2, 2), (2, 4)], [c['sortable'] for c in parent['children']]) def test_add_child_odd_sort(self): """Appendices may have some strange orderings. Make sure they keep order.""" parent = {'children': [], 'label': ['204', 'A'], 'node_type': 'appendix', 'child_labels': ['204-A-p1', '204-A-X', '204-A-L', '204-A-h1']} def mknode(label): return {'node_type': 'appendix', 'label': label.split('-')} tree_builder.add_child(parent, mknode('204-A-X')) tree_builder.add_child(parent, mknode('204-A-L')) tree_builder.add_child(parent, mknode('204-A-h1')) tree_builder.add_child(parent, mknode('204-A-p1')) self.assertEqual([['204', 'A', 'p1'], ['204', 'A', 'X'], ['204', 'A', 'L'], ['204', 'A', 'h1']], [c['label'] for c in parent['children']]) def test_all_children_are_roman(self): parent_node = {'children': [ {'label': ['201', '4', 'i']}, {'label': ['201', '4', 'ii']}, {'label': ['201', '4', 'iii']}, {'label': ['201', '4', 'iv']}, {'label': ['201', '4', 'v']}, ]} self.assertTrue(tree_builder.all_children_are_roman(parent_node)) parent_node = {'children': [ {'label': ['201', '4', 'a']}, {'label': ['201', '4', 'i']}, {'label': ['201', '4', 'v']}, ]} self.assertFalse(tree_builder.all_children_are_roman(parent_node)) def test_add_child_root_appendix(self): """ Let's add an introductory paragraph child to a root interpretation node and ensure that the children are sorted correctly. """ parent = {'children': [ {'node_type': 'appendix', 'label': ['204', 'A', '4', 'b', 'i']}, {'node_type': 'appendix', 'label': ['204', 'A', '4', 'b', 'v']} ], 'label': ['204', 'appendix']} tree_builder.add_child(parent, {'node_type': 'appendix', 'label': ['204', 'A', '4', 'b', 'ii']}) self.assertEqual([(1,), (2,), (5,)], [c['sortable'] for c in parent['children']]) parent = {'children': [ {'node_type': 'appendix', 'label': ['204', 'A', '4', 'b']}, {'node_type': 'appendix', 'label': ['204', 'A', '4', 'i']} ], 'label': ['204', 'appendix']} tree_builder.add_child(parent, {'node_type': 'appendix', 'label': ['204', 'A', '4', 'g']}) self.assertEqual([('b',), ('g',), ('i',)], [c['sortable'] for c in parent['children']])
StarcoderdataPython
1680823
<gh_stars>10-100 """An example of solving a reinforcement learning problem by using evolution to tune the weights of a neural network.""" import os import sys import gym from gym import spaces from matplotlib import pyplot as plt import numpy as np from leap_ec import Individual, Representation, test_env_var from leap_ec import probe, ops from leap_ec.algorithm import generational_ea from leap_ec.executable_rep import problems, executable, neural_network from leap_ec.int_rep.ops import individual_mutate_randint from leap_ec.real_rep.initializers import create_real_vector from leap_ec.real_rep.ops import mutate_gaussian ############################## # Function build_probes() ############################## def build_probes(genomes_file): """Set up probes for writings results to file and terminal and displaying live metric plots.""" assert(genomes_file is not None) probes = [] # Print fitness stats to stdout probes.append(probe.FitnessStatsCSVProbe(stream=sys.stdout)) # Save genome of the best individual to a file probes.append(probe.AttributesCSVProbe( stream=genomes_file, best_only =True, do_fitness=True, do_genome=True)) # Open a figure to plot a fitness curve to plt.figure() plt.ylabel("Fitness") plt.xlabel("Generations") plt.title("Best-of-Generation Fitness") probes.append(probe.FitnessPlotProbe( ylim=(0, 1), xlim=(0, 1), modulo=1, ax=plt.gca())) # Open a figure to plot the best-of-gen network graph to plt.figure() probes.append(neural_network.GraphPhenotypeProbe( modulo=1, ax=plt.gca(), weights=True, weight_multiplier=3.0)) return probes ############################## # Entry point ############################## if __name__ == '__main__': # Parameters runs_per_fitness_eval = 5 simulation_steps = 500 pop_size = 5 num_hidden_nodes = 4 mutate_std = 0.05 gui = False # Change to true to watch the cart-pole visualization # When running the test harness, just run for two generations # (we use this to quickly ensure our examples don't get bitrot) if os.environ.get(test_env_var, False) == 'True': generations = 2 else: generations = 1000 # Load the OpenAI Gym simulation environment = gym.make('CartPole-v0') # Representation num_inputs = 4 num_actions = environment.action_space.n # Decode genomes into a feed-forward neural network, # but also wrap an argmax around the networks so their # output is a single integer decoder = executable.WrapperDecoder( wrapped_decoder=neural_network.SimpleNeuralNetworkDecoder( shape=(num_inputs, num_hidden_nodes, num_actions) ), decorator=executable.ArgmaxExecutable) with open('./genomes.csv', 'w') as genomes_file: ea = generational_ea(max_generations=generations, pop_size=pop_size, # Solve a problem that executes agents in the # environment and obtains fitness from it problem=problems.EnvironmentProblem( runs_per_fitness_eval, simulation_steps, environment, 'reward', gui=gui), representation=Representation( initialize=create_real_vector(bounds=([[-1, 1]]*decoder.wrapped_decoder.length)), decoder=decoder), # The operator pipeline. pipeline=[ ops.tournament_selection, ops.clone, mutate_gaussian(std=mutate_std, hard_bounds=(-1, 1), expected_num_mutations=1), ops.evaluate, ops.pool(size=pop_size), *build_probes(genomes_file) # Inserting all the probes at the end ]) list(ea)
StarcoderdataPython
63029
<gh_stars>0 import socket import sys import time import pigpio from threading import Thread import os host = '192.168.1.64' port = 80 red = 27#17#22 green = 17#27 blue = 22#17 BOWL = 'Empty' ROOM = b'Mild' MODE = 'TEMP' DEPTH = b'Empty' p = pigpio.pi() s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) def reset(): rl = p.set_PWM_dutycycle(red, 0) gl = p.set_PWM_dutycycle(green, 0) bl = p.set_PWM_dutycycle(blue, 0) p.stop() def rd(br): rl = p.set_PWM_dutycycle(red, br) def gr(br): gl = p.set_PWM_dutycycle(green, br) def bu(br): bl = p.set_PWM_dutycycle(blue, br) CALI = False try: s.bind((host, port)) except socket.error as msg: print("Failed to bind. Error:", str(msg)) try: port += 1 s.bind((host, port)) except socket.error as msg: print("Failed to bind. Error:", str(msg)) sys.exit() def temp_change(): while MODE == 'TEMP': with os.popen('vcgencmd measure_temp') as measurement: cel = measurement.read().strip() degrees = int(cel[5:len(cel)-4])-15 percent = (degrees/26) if CALI == False: if percent >= 0.9: rd(229) gr(0) bu(5) ROOM = b'Hot' elif percent >= 0.8: rd(231) gr(47) bu(4) ROOM = b'Warm' elif percent >= 0.7: rd(234) gr(98) bu(9) ROOM = b'Moderate' elif percent >= 0.6: rd(236) gr(148) bu(14) ROOM = b'Mild' elif percent >= 0.5: rd(239) gr(198) bu(50) ROOM = b'Cool' elif percent >= 0.4: rd(237) gr(242) bu(100) ROOM = b'Cold' elif percent >= 0.3: rd(229) gr(252) bu(150) ROOM = b'Cold' else: rd(150) gr(150) bu(200) ROOM = b'Cold' print(ROOM) time.sleep(5) print("Host: ", host, " Port: ", port) Thread(target=temp_change).start() s.listen(100) rd(0) gr(0) bu(0) while 1: conn, addr = s.accept() print("Connected with ", addr[0], ":", addr[1]) data = conn.recv(1024) #Connect to the ultrasonic sensor (Bowl sensor) if data == b'I am an ultrasonic sensor': time.sleep(1) #Pause to wait for incoming instruction while 1: #Now listen for data try: #Try and receive an instruction data = conn.recv(1024) except ConnectionResetError: #If no instruction was received break #Ignore operation and carry on as normal if not data: #Again, if no instruction was received break if data == b'I am calibrating': #The bowl is calibrating its depth #Full PURPLE CALI = True gr(0) bu(255) rd(255) print("Calibrating") elif data == b'Fill bowl': #User must then fill the bowl with water #Full YELLOW CALI = True bu(10) rd(255) gr(100) print("Fill bowl") elif data == b'CHECK': #When the client completes a check CALI = False print("Calibration done") break #Nothing to do. We just wait until it connects again. if MODE == 'BOWL': if data == b'Full': #Interactive lightning shows bowl depth on hub #Full GREEN rd(0) bu(0) gr(255) DEPTH = b'Full' elif data == b'Low': #**** #ORANGE rd(255) gr(120) DEPTH = b'Low' elif data == b'Empty': #**** #Full RED rd(255) gr(0) DEPTH = b'Empty' elif data == b'Done': #When the client completes calibration #Full Green rd(0) bu(0) gr(55) break print("Depth ", DEPTH) elif data == b'mode bowl': MODE = 'BOWL' print("Mode changed to bowl") elif data == b'mode temp': MODE = 'TEMP' print("Mode changed to temp") CALI = False Thread(target=temp_change).start() elif data == b'give temp': time.sleep(1) conn.send(b'temp '+ROOM) print(ROOM) elif data == b'give bowl': time.sleep(1) conn.send(b'bowl '+DEPTH) print(DEPTH) elif not data or data == b'close': conn.close() s.close() reset() sys.exit() try: conn.close() s.close() reset() except: pass
StarcoderdataPython
3220834
import os import sys import pygame import pygame_gui # setting path sys.path.append(os.path.join(".")) from pysimgame.utils.gui_utils import UI_TOGGLEBUTTON_TOGGLED, UIToggleButton pygame.init() pygame.display.set_caption("Quick Start") window_surface = pygame.display.set_mode((1400, 1000)) manager = pygame_gui.UIManager( (1400, 1000), theme_path=os.path.join(os.path.dirname(__file__), "theme.json"), ) background = pygame.Surface((1400, 1000)) background.fill(manager.ui_theme.get_colour("dark_bg")) toggle_button = UIToggleButton( pygame.Rect(200, 100, 150, 50), "toggle", manager ) hello_button = pygame_gui.elements.UIButton( relative_rect=pygame.Rect((0, 0), (150, 40)), text="Hello", manager=manager, ) clock = pygame.time.Clock() is_running = True while is_running: time_delta = clock.tick(60) / 1000.0 for event in pygame.event.get(): if event.type == pygame.QUIT: is_running = False if ( event.type == pygame.USEREVENT and event.user_type == pygame_gui.UI_BUTTON_PRESSED and event.ui_element == hello_button ): print("Hello World!") if ( event.type == pygame.USEREVENT and event.ui_element == toggle_button ): print(event) if ( event.type == pygame.USEREVENT and event.user_type == UI_TOGGLEBUTTON_TOGGLED ): print(event) print("Toggled ", event.value) ##if event.type == pygame.USEREVENT: # print(event) manager.process_events(event) manager.update(time_delta) window_surface.blit(background, (0, 0)) manager.draw_ui(window_surface) # print(hello_button.hovered, menu.hovered) # print(hello_button.layer, menu.layer) # print(hello_button.alive(), menu.layer) # pygame.display.update()
StarcoderdataPython
3204287
<reponame>fitoprincipe/gee-composite<filename>geecomposite/widgets/export.py<gh_stars>1-10 from geetools import batch from ipywidgets import * class toAsset(VBox): def __init__(self, **kwargs): super(toAsset, self).__init__(**kwargs) layout = Layout(width='500px') self.bapwidget = kwargs.get('bapwidget') self.root = kwargs.get('root', '') self.scale = Text(description='scale', value='10') self.destination = Select(description='Destination', options=['ImageCollection', 'Folder'], value='ImageCollection', layout=layout) self.folder = Text(description='Path to the ImageCollection', value=self.root, layout=layout, style = {'description_width': 'initial'}) self.nameSub = Text(description='Name of/for the ImageCollection', layout=layout, style = {'description_width': 'initial'}) self.name = Text(description='Name for the Image', layout=layout, style = {'description_width': 'initial'}) self.exportB = Button(description='Export') self.bands = SelectMultiple(description='Bands', layout=layout) self.bands.observe(self.observeBands) self.exportB.on_click(self.export) self.destination.observe(self.observeDestination) self.children = [self.destination, self.folder, self.nameSub, self.name, self.bands, self.exportB] def observeDestination(self, v): if v['name'] == 'value': value = v['new'] self.folder.description = "Path to the {}".format(value) self.nameSub.description = "Name of/for the {}".format(value) def observeBands(self, v): extra = ['col_id', 'date', 'score'] if v['name'] == 'options': bands = list(v['new']) condition = all([b in bands for b in extra]) if not condition: self.bands.options = bands+extra def getAssetPath(self): return "{}/{}".format(self.folder.value, self.nameSub.value) def getAssetId(self): return "{}/{}".format(self.getAssetPath(), self.name.value) def export(self, v=None): bands = self.bands.value composite = self.bapwidget.composite().select(bands) batch.Export.image.toAsset(composite, self.getAssetPath(), self.name.value, self.destination.value, float(self.scale.value), self.bapwidget.site_widget.getRegion())
StarcoderdataPython
3280840
from django.contrib import admin from user.models import User # Register your models here. admin.site.register(User)
StarcoderdataPython
1631937
<filename>files/models.py<gh_stars>1-10 from django.db import models from django.utils import timezone # Create your models here. class Photo(models.Model): """ Photos Table """ client = models.OneToOneField("home.Client", on_delete=models.CASCADE) passport = models.ImageField("Passport Size", blank=True, upload_to="client/%Y/%m/%d/") full = models.ImageField("Full Size", blank=True, upload_to="client/%Y/%m/%d/") others = models.ImageField(upload_to="client/%Y/%m/%d/", blank=True) created = models.DateTimeField(auto_now=True) def __str__(self): return self.client.first_name class ClearanceFile(models.Model): """ Clearance Files Table """ title = models.CharField(max_length=100, unique=True) clearance_no = models.CharField("Clearance Number", max_length=100, unique=True) submission_date = models.DateTimeField(default=timezone.now) clearance_date = models.DateTimeField(default=timezone.now) client_count = models.IntegerField(default=0) description = models.TextField(null=True, blank=True) document = models.FileField(upload_to='clients/%Y/%m/%d/', blank=True) created = models.DateField(default=timezone.now) def __str__(self): return self.title class ClientFile(models.Model): """ Client Files Table """ client = models.ForeignKey("home.Client", on_delete=models.CASCADE) title = models.CharField(max_length=100, unique=True) description = models.TextField(null=True, blank=True) document = models.FileField(upload_to='clients/%Y/%m/%d/', blank=True) created = models.DateField(default=timezone.now) def __str__(self): return self.title
StarcoderdataPython
178695
<filename>run_placesCNN_basic.py # PlacesCNN for scene classification # # by <NAME> # last modified by <NAME>, Dec.27, 2017 with latest pytorch and torchvision (upgrade your torchvision please if there is trn.Resize error) import torch from torch.autograd import Variable as V import torchvision.models as models from torchvision import transforms as trn from torch.nn import functional as F import os from PIL import Image import csv import pandas as pd # th architecture to use arch = 'resnet50' # load the pre-trained weights model_file = '%s_places365.pth.tar' % arch if not os.access(model_file, os.W_OK): weight_url = 'http://places2.csail.mit.edu/models_places365/' + model_file os.system('wget ' + weight_url) model = models.__dict__[arch](num_classes=365) checkpoint = torch.load(model_file, map_location=lambda storage, loc: storage) state_dict = {str.replace(k,'module.',''): v for k,v in checkpoint['state_dict'].items()} model.load_state_dict(state_dict) model.eval() # load the image transformer centre_crop = trn.Compose([ trn.Resize((256,256)), trn.CenterCrop(224), trn.ToTensor(), trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # load the class label file_name = 'categories_places365.txt' if not os.access(file_name, os.W_OK): synset_url = 'https://raw.githubusercontent.com/csailvision/places365/master/categories_places365.txt' os.system('wget ' + synset_url) classes = list() with open(file_name) as class_file: for line in class_file: classes.append(line.strip().split(' ')[0][3:]) classes = tuple(classes) """ Folder structure: content | +-- downloaded_videos | +-- frames | | | +-- folder with frames inside | +-- places365-nb_colab | | | +-- run_placesCNN_basic.py """ frame_folder = os.path.join(os.getcwd(), 'frames') #if only the file is uploaded final_predictions = list() video_df_colnames = pd.concat([pd.Series(['media_id', 'frame_nr']), pd.Series(classes)]) for video_folder in os.listdir('frames'): media_id = video_folder for frame in os.listdir(os.path.join(frame_folder, video_folder)): frame_nr = frame[frame.rfind('_')+1:-4] img_name = os.path.join(frame_folder, video_folder, frame) img = Image.open(img_name) input_img = V(centre_crop(img).unsqueeze(0)) # forward pass logit = model.forward(input_img) h_x = F.softmax(logit, 1).data.squeeze() probs, idx = h_x.sort(0, True) probs_as_list = probs.squeeze().tolist() final_predictions.append([media_id, frame_nr]+probs_as_list) df = pd.DataFrame(final_predictions, columns=video_df_colnames) df.to_csv('scene_prediction_values.csv', index=False)
StarcoderdataPython
42256
<filename>self_finance/front_end/routes/reference.py from flask import render_template from self_finance.front_end import app def _standard_render(): return render_template("reference.html") @app.route('/reference') def reference(): return _standard_render()
StarcoderdataPython
1747017
import sys import pygame from time import sleep from settings import Settings from ship import Ship from bullet import Bullet from alien import Alien from game_stats import GameStats from button import Button from scoreboard import Scoreboard from difficulty import Difficulty class AlienInvasion: '''docstring''' def __init__(self): '''init the game screen''' pygame.init() # 游戏设置 self.settings = Settings() # 屏幕 self.screen = pygame.display.set_mode((self.settings.screen_width, self.settings.screen_height)) self.ship = Ship(self) self.bullets = pygame.sprite.Group() self.aliens = pygame.sprite.Group() # 难度选项按钮 self.difficulty = Difficulty(self) self.gaming = False self._create_fleet() # 标题设置 pygame.display.set_caption("Alien Invasion") self.stats = GameStats(self) self.play_button = Button(self, "Play") self.sb = Scoreboard(self) self.fire_sound = pygame.mixer.Sound("music/Explosion_Cannon_Fire_02.wav") self.ship_hit_sound = pygame.mixer.Sound("music/Explosion_With_Debris_01.wav") self.game_over_sound = pygame.mixer.Sound("music/Gameover.wav") def run_game(self): '''start game''' while True: # 辅助方法, 注意命名以_开头 self._check_events() if self.stats.game_active and self.stats.mode_selection_active: self.ship.update() self._update_bullet() self._update_aliens() self._update_screen() def _check_events(self): # 监视键盘和鼠标事件 for event in pygame.event.get(): if event.type == pygame.QUIT: self._store_highscore() sys.exit() elif event.type == pygame.KEYDOWN: self._check_keydown_events(event) elif event.type == pygame.KEYUP: self._check_keyup_events(event) elif event.type == pygame.MOUSEBUTTONDOWN: mouse_pos = pygame.mouse.get_pos() if not self.stats.game_active: self._check_play_button(mouse_pos) elif not self.stats.mode_selection_active: self._check_mode_button(mouse_pos) def _check_keydown_events(self, event): if event.key == pygame.K_RIGHT: # 向右移动, 增大center_x self.ship.moving_right = True elif event.key == pygame.K_LEFT: # 向左移动, 更新标记 self.ship.moving_left = True elif event.key == pygame.K_q: self._store_highscore() sys.exit() elif event.key == pygame.K_SPACE: self._fire_bullet() elif event.key == pygame.K_p and not self.stats.game_active: self._start_game() self.settings.initialize_dynamic_settings() def _check_keyup_events(self, event): '''响应松开按键''' if event.key == pygame.K_RIGHT: # 松开右键, 取消标记 self.ship.moving_right = False elif event.key == pygame.K_LEFT: self.ship.moving_left = False def _check_play_button(self, mouse_pos): '''在玩家单击play时开始新游戏''' if self.gaming or self.stats.mode_selection_active: return button_clicked = self.play_button.rect.collidepoint(mouse_pos) if button_clicked and not self.stats.game_active: self.stats.game_active = True self.stats.mode_selection_active = False return def _check_mode_button(self, mouse_pos): if self.gaming or not self.stats.game_active: return mode_selected = "" mode_clicked = False for mode, mode_rect in self.difficulty.mode_rects.items(): mode_clicked = mode_rect.collidepoint(mouse_pos) # print(mode, mode_clicked) if mode_clicked and self.stats.game_active and not self.stats.mode_selection_active: mode_selected = mode self.stats.mode_selection_active = True break if self.stats.game_active and self.stats.mode_selection_active: self._start_game() self.settings.initialize_dynamic_settings(mode_selected) self.sb.prep_score() self.sb.prep_level() self.sb.prep_ships() def _start_game(self): self.stats.reset_stats() self.stats.game_active = True self.stats.mode_selection_active = True self.gaming = True self.aliens.empty() self.bullets.empty() self._create_fleet() self.ship.center_ship() pygame.mouse.set_visible(False) def _update_screen(self): # 每一次循环都重新绘制 self.screen.fill(self.settings.bg_color) self.ship.blitme() # 画出子弹图形 for bullet in self.bullets.sprites(): bullet.draw_bullet() self.aliens.draw(self.screen) self.sb.show_score() if not self.stats.game_active and not self.stats.mode_selection_active: self.play_button.draw_button() elif self.stats.game_active and not self.stats.mode_selection_active: self.difficulty.draw_modes() # 让最近绘制的屏幕可见 pygame.display.flip() def _update_bullet(self): self.bullets.update() # 删除子弹 for bullet in self.bullets.copy(): #注意循环一个列表时必须保证其长度不变,所以需要对它的副本进行遍历 if bullet.rect.bottom <= 0: self.bullets.remove(bullet) self._check_bullet_alien_collisions() def _check_bullet_alien_collisions(self): collisions = pygame.sprite.groupcollide(self.bullets, self.aliens, True, True) if collisions: for aliens in collisions.values(): self.stats.score += self.settings.alien_points * len(aliens) self.sb.prep_score() self.sb.check_high_score() if not self.aliens: self.bullets.empty() self._create_fleet() self.settings.increase_speed() self.stats.level += 1 self.sb.prep_level() def _fire_bullet(self): if len(self.bullets) < self.settings.bullets_allowed: new_bullet = Bullet(self) self.bullets.add(new_bullet) self.fire_sound.play(loops=0, maxtime=500) def _create_fleet(self): '''创建外星人群''' alien = Alien(self) alien_width, alien_height = alien.rect.size ship_height = self.ship.rect.height available_space_x = self.settings.screen_width - (2 * alien_width) available_space_y = self.settings.screen_height - \ (3 * alien_width) - ship_height number_rows = available_space_y // (2 * alien_height) number_aliens_x = available_space_x // (2 * alien_width) for row_number in range(number_rows): for alien_number in range(number_aliens_x): self._create_alien(alien_number, row_number) def _create_alien(self, alien_number, row_number): '''创建一个外星人并放在当前行''' alien = Alien(self) alien_width, alien_height = alien.rect.size alien.x = alien_width + 2 * alien_width * alien_number alien.rect.x = alien.x alien.y = alien_height + 2 * alien_height * row_number alien.rect.y = alien.y self.aliens.add(alien) def _check_fleet_edges(self): '''''' for alien in self.aliens.sprites(): if alien.check_edges(): self._change_fleet_direction() break def _change_fleet_direction(self): '''''' for alien in self.aliens.sprites(): alien.rect.y += self.settings.fleet_drop_speed self.settings.fleet_direction *= -1 def _update_aliens(self): '''更新外星人群中所有外星人的位置''' self._check_fleet_edges() self.aliens.update() if pygame.sprite.spritecollideany(self.ship, self.aliens): self._ship_hit() self._check_aliens_bottom() def _ship_hit(self): if self.stats.ships_left > 0: self.stats.ships_left -= 1 self.sb.prep_ships() self.aliens.empty() self.bullets.empty() self._create_fleet() self.ship.center_ship() self.ship_hit_sound.play(loops=0, maxtime=1000) sleep(0.5) else: self.stats.game_active = False self.stats.mode_selection_active = False self.gaming = False self.game_over_sound.play() pygame.mouse.set_visible(True) # print(self.stats.game_active, self.stats.mode_selection_active) def _check_aliens_bottom(self): screen_rect = self.screen.get_rect() for alien in self.aliens.sprites(): if alien.rect.bottom >= screen_rect.bottom: self._ship_hit() break def _store_highscore(self): with open("score.txt", 'w') as f: f.write(str(self.stats.high_score)) if __name__ == '__main__': # 创建游戏实例并运行游戏 ai = AlienInvasion() ai.run_game()
StarcoderdataPython
64837
<gh_stars>1-10 from os import environ from cocotb_usb.host import UsbTest from cocotb_usb.host_valenty import UsbTestValenty TARGET = environ.get('TARGET') def get_harness(dut, **kwargs): ''' Helper function to assign test harness object. Object is chosen using ``TARGET`` environment variable. ''' if TARGET == 'valentyusb': dut_csrs = environ['DUT_CSRS'] # We want a KeyError if this is unset cdc = int(environ['TEST_CDC']) # We want a KeyError if this is unset harness = UsbTestValenty(dut, dut_csrs, cdc, **kwargs) else: # No target matched harness = UsbTest(dut, **kwargs) # base class return harness
StarcoderdataPython
27537
import os import glob import json import unittest import satsearch.config as config from satstac import Item from satsearch.search import SatSearchError, Search class Test(unittest.TestCase): path = os.path.dirname(__file__) results = [] @classmethod def setUpClass(cls): fnames = glob.glob(os.path.join(cls.path, '*-item*.json')) for fname in fnames: with open(fname) as f: cls.results.append(json.load(f)) def get_searches(self): """ Initialize and return search object """ return [Search(datetime=r['properties']['datetime']) for r in self.results] def test_search_init(self): """ Initialize a search object """ search = self.get_searches()[0] dts = [r['properties']['datetime'] for r in self.results] assert(len(search.kwargs) == 1) assert('time' in search.kwargs) for kw in search.kwargs: self.assertTrue(search.kwargs[kw] in dts) def test_search_for_items_by_date(self): """ Search for specific item """ search = self.get_searches()[0] sids = [r['id'] for r in self.results] items = search.items() assert(len(items) == 1) for s in items: self.assertTrue(s.id in sids) def test_empty_search(self): """ Perform search for 0 results """ search = Search(datetime='2001-01-01') self.assertEqual(search.found(), 0) def test_geo_search(self): """ Perform simple query """ with open(os.path.join(self.path, 'aoi1.geojson')) as f: aoi = json.dumps(json.load(f)) search = Search(datetime='2019-07-01', intersects=aoi) assert(search.found() == 13) items = search.items() assert(len(items) == 13) assert(isinstance(items[0], Item)) def test_search_sort(self): """ Perform search with sort """ with open(os.path.join(self.path, 'aoi1.geojson')) as f: aoi = json.dumps(json.load(f)) search = Search.search(datetime='2019-07-01/2019-07-07', intersects=aoi, sort=['<datetime']) items = search.items() assert(len(items) == 27) def test_get_items_by_id(self): """ Get Items by ID """ ids = ['LC81692212019263', 'LC81691102019263'] items = Search.items_by_id(ids, collection='landsat-8-l1') assert(len(items) == 2) def test_get_ids_search(self): """ Get Items by ID through normal search """ ids = ['LC81692212019263', 'LC81691102019263'] search = Search.search(ids=ids, collection='landsat-8-l1') items = search.items() assert(search.found() == 2) assert(len(items) == 2) def test_get_ids_without_collection(self): with self.assertRaises(SatSearchError): search = Search.search(ids=['LC80340332018034LGN00']) items = search.items() def test_query_bad_url(self): with self.assertRaises(SatSearchError): Search.query(url=os.path.join(config.API_URL, 'collections/nosuchcollection')) def test_search_property_operator(self): expected = {'query': {'eo:cloud_cover': {'lte': '10'}, 'collection': {'eq': 'sentinel-2-l1c'}}} instance = Search.search(collection='sentinel-2-l1c', property=['eo:cloud_cover<=10']) actual = instance.kwargs assert actual == expected
StarcoderdataPython
101067
import torch from torch.utils.data import DataLoader, TensorDataset from argparse import Namespace import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np import h5py import json import os def load_data_1scale(hdf5_file, ndata, batch_size, singlescale=True): with h5py.File(hdf5_file, 'r') as f: x_data = f['train'][:ndata] data_tuple = (torch.FloatTensor(x_data), ) if singlescale else ( torch.FloatTensor(x_data), torch.FloatTensor(y_data)) data_loader = DataLoader(TensorDataset(*data_tuple), batch_size=batch_size, shuffle=True, drop_last=True) return data_loader def load_data_2scales(hdf5_file,hdf5_file1, ndata, batch_size, singlescale=False): with h5py.File(hdf5_file, 'r') as f: x2_data = f['train'][:ndata] with h5py.File(hdf5_file1, 'r') as f: x1_data = f['train'][:ndata] data_tuple = (torch.FloatTensor(x_data), ) if singlescale else ( torch.FloatTensor(x2_data), torch.FloatTensor(x1_data)) data_loader = DataLoader(TensorDataset(*data_tuple), batch_size=batch_size, shuffle=True, drop_last=True) print(f'Loaded dataset: {hdf5_file}') return data_loader def load_data_3scales(hdf5_file,hdf5_file1,hdf5_file2, ndata, batch_size, singlescale=False): with h5py.File(hdf5_file, 'r') as f: x3_data = f['train'][:ndata] with h5py.File(hdf5_file1, 'r') as f: x2_data = f['train'][:ndata] with h5py.File(hdf5_file2, 'r') as f: x1_data = f['train'][:ndata] data_tuple = (torch.FloatTensor(x_data), ) if singlescale else ( torch.FloatTensor(x3_data), torch.FloatTensor(x2_data),torch.FloatTensor(x1_data)) data_loader = DataLoader(TensorDataset(*data_tuple), batch_size=batch_size, shuffle=True, drop_last=True) return data_loader
StarcoderdataPython
4833595
from viusitemapparser.sitemap_file import SitemapFile import logging from viusitemapparser.url_functions import check_if_url import requests import os.path def get_file(filename): result_file = SitemapFile(filename) try: # If remote file: use requests if check_if_url(filename): result = requests.get(filename) if 200 >= result.status_code < 300: result_file.set_remote_file_from_requests(result) else: result_file.error_receiving_remote_file(f"Error receiving '{filename}' - status code {result.status_code}") # else local file: read it from filesystem else: if os.path.isfile(filename): with open(filename, 'r') as f: result_file.set_local_file(f.read()) print(f.read()) else: result_file.error_receiving_local_file(f"There is no file '{filename}'") except Exception as e: error_message = f"Unable to receive file: {e}" logging.error(error_message) result_file.error_receiving_file(error_message) return result_file
StarcoderdataPython
3271661
<reponame>gabrielgomesml/AlgorithmAndDataStructureActivities<gh_stars>0 class GrafoLista: def __init__(self, iteravel, ponderado=False, direcionado=False): self.iteravel = iteravel self.ponderado = ponderado self.direcionado = direcionado self.listaDeAdj = {} self.criarListas(iteravel, ponderado, direcionado) def __str__(self): for x in self.listaDeAdj: print(str(x) + ': ' + str(self.listaDeAdj[x])) def __repr__(self): return 'GrafoLista(' + str(self.iteravel) + ')' def __getItem__(self, index): if not index in self.listaDeAdj: return '[' + str(index) + '] não encontrado.' return self.listaDeAdj[index] def ligados(self, tupla): if type(tupla) is int: return '[' + str(tupla) + '] não encontrado. Formato inválido.' if tupla[0] not in self.listaDeAdj or tupla[1] not in self.listaDeAdj: return '[' + str(tupla) + '] não encontrado. Par não existente nessa tupla.' if not self.ponderado: if tupla[1] in self.listaDeAdj[tupla[0]] or tupla[0] in self.listaDeAdj[tupla[1]]: return True elif self.ponderado: for x in self.listaDeAdj[tupla[0]]: if tupla[1] is x[0]: return True for x in self.listaDeAdj[tupla[1]]: if tupla[0] is x[0]: return True return False def grauDeSaida(self, vertice): if not vertice in self.listaDeAdj: return '[' + str(vertice) + '] não encontrado.' return len(self.listaDeAdj[vertice]) def grauDeEntrada(self, vertice): if not vertice in self.listaDeAdj: return '[' + str(vertice) + '] não encontrado.' aux = 0 if not self.ponderado: for x in self.listaDeAdj: if vertice in self.listaDeAdj[x]: aux += 1 elif self.ponderado: for x in self.listaDeAdj: for y in self.listaDeAdj[x]: if vertice is y[0]: aux += 1 return aux def adjacente(self, vertice): if not vertice in self.listaDeAdj: return '[' + str(vertice) + '] não encontrado.' return self.listaDeAdj[vertice] def maiorAresta(self): if not self.ponderado: return 'Grafo não-ponderado.' maiores = [] aux = 0 for x in self.listaDeAdj: for y in self.listaDeAdj[x]: if y[1] > aux: aux = y[1] for x in self.listaDeAdj: for y in self.listaDeAdj[x]: if y[1] == aux : maiores.append((x, y[0])) return 'Arestas de peso: ' + str(aux) + ' // ' + 'Vértices ligados a ela: ' + str(maiores) def menorAresta(self): if not self.ponderado: return 'Grafo não-ponderado.' menores = [] aux = 100000000000 #RevisarIssoAqui for x in self.listaDeAdj: for y in self.listaDeAdj[x]: if y[1] < aux: aux = y[1] for x in self.listaDeAdj: for y in self.listaDeAdj[x]: if y[1] == aux : menores.append((x, y[0])) return 'Arestas de peso: ' + str(aux) + ' // ' + 'Vértices ligados a ela: ' + str(menores) def adicionaVertice(self, vertice): #if type(tuple) is int: #return '[' + str(tupla) + '] não adicionado. Formato inválido.' #if self.ponderado and len(tupla) != 3: #return '[' + str(tupla) + '] não adicionado. Formato inválido para tuplas ponderadas.' #elif not self.ponderado and len(tupla) != 2: #return '[' + str(tupla) + '] não adicionado. Formato inválido para tuplas não-ponderadas.' #self.criarListas([tupla], self.ponderado, self.direcionado) if type(vertice) != int: return '[' + str(vertice) + '] não adicionado. Formato inválido.' if vertice in self.listaDeAdj: return '[' + str(vertice) + '] já existente.' else: self.listaDeAdj[vertice] = [] def adicionaAresta(self, tupla): if type(tupla) is int: return '[' + str(tupla) + '] não adicionado. Formato inválido.' if self.ponderado and len(tupla) != 3: return '[' + str(tupla) + '] não adicionado. Formato inválido para tuplas ponderadas.' elif not self.ponderado and len(tupla) != 2: return '[' + str(tupla) + '] não adicionado. Formato inválido para tuplas não-ponderadas.' if tupla[0] not in self.listaDeAdj or tupla[1] not in self.listaDeAdj: return '[' + str(tupla) + '] não adicionado. Par não existente nessa tupla.' self.criarListas([tupla], self.ponderado, self.direcionado) if type(self.iteravel[0]) is tuple: self.iteravel += tuple(tupla), elif type(self.iteravel[0]) is list: self.iteravel.append(list(tupla)) print('[' + str(tupla) + '] adicionada.') def removeAresta(self, tupla): if type(tupla) is int: return '[' + str(tupla) + '] não encontrado. Formato inválido.' elif len(tupla) != 2: return '[' + str(tupla) + '] não encontrado. Formato inválido.' if tupla[0] not in self.listaDeAdj or tupla[1] not in self.listaDeAdj: return '[' + str(tupla) + '] não removido. Par não existente nessa tupla.' if not self.direcionado: self.listaDeAdj[tupla[0]].remove(tupla[1]) self.listaDeAdj[tupla[1]].remove(tupla[0]) else: self.listaDeAdj[tupla[0]].remove(tupla[1]) print('[' + str(tupla) + '] removida.') def criarListas(self, iteravel, ponderado, direcionado): if ponderado: for tupla in iteravel: origem, destino, peso = tupla if not origem in self.listaDeAdj: self.listaDeAdj[origem] = [] self.listaDeAdj[origem].append((destino, peso)) if not direcionado: if not destino in self.listaDeAdj: self.listaDeAdj[destino] = [] self.listaDeAdj[destino].append((origem, peso)) else: for tupla in iteravel: origem, destino = tupla if not origem in self.listaDeAdj: self.listaDeAdj[origem] = [] self.listaDeAdj[origem].append(destino) if not direcionado: if not destino in self.listaDeAdj: self.listaDeAdj[destino] = [] self.listaDeAdj[destino].append(origem) def dfs(self, v, antecessores, marcados): marcados[v] = True if self.ponderado: for x in self.adjacente(v): if not marcados[x[0]]: antecessores[x[0]] = v self.dfs(x[0], antecessores, marcados) else: for x in self.adjacente(v): if not marcados[x]: antecessores[x] = v self.dfs(x, antecessores, marcados) def buscaEmProfundidade(self): marcados = {} antecessores = {} for x in self.listaDeAdj: marcados[x] = False antecessores[x] = -1 for v in marcados: if not marcados[v]: self.dfs(v, antecessores, marcados) return antecessores def buscaEmLargura(self): marcados = {} antecessores = {} vertices = [] for x in self.listaDeAdj: marcados[x] = False antecessores[x] = -1 for y in marcados: if not marcados[y]: vertices.append(y) marcados[y] = True while len(vertices) > 0: v = vertices.pop(0) if self.ponderado: for z in self.adjacente(v): if not marcados[z[0]]: marcados[z[0]] = True antecessores[z[0]] = v vertices.append(z[0]) else: for z in self.adjacente(v): if not marcados[z]: marcados[z] = True antecessores[z] = v vertices.append(z) return antecessores def converterListaMatriz(self): return GrafoMatrizes(self.iteravel, self.ponderado, self.direcionado) import numpy as np class GrafoMatrizes: def __init__(self, iteravel, ponderado=False, direcionado=False): self.iteravel = iteravel self.ponderado = ponderado self.direcionado = direcionado self.v = [] for duplas in self.iteravel: if self.ponderado: for vertice in duplas[:len(duplas)-1]: if vertice not in self.v: self.v.append(vertice) else: for vertice in duplas: if vertice not in self.v: self.v.append(vertice) self.matrizesDeAdj = self.criarMatrizes(iteravel, ponderado, direcionado) def index(self, vertice): aux = 0 for n in range(len(self.v)): if self.v[n] != vertice: aux += 1 else: return aux def criarMatrizes(self, iteravel, ponderado, direcionado): tam = len(self.v) corpo = np.zeros((tam,tam), int) if not self.ponderado: if not self.direcionado: for x in iteravel: corpo[self.index(x[0])][self.index(x[1])] = 1 corpo[self.index(x[1])][self.index(x[0])] = 1 else: for x in iteravel: corpo[self.index(x[0])][self.index(x[1])] = 1 else: if not self.direcionado: for x in iteravel: corpo[self.index(x[0])][self.index(x[1])] = x[2] corpo[self.index(x[1])][self.index(x[0])] = x[2] else: for x in iteravel: corpo[self.index(x[0])][self.index(x[1])] = x[2] return corpo def __str__(self): tam = max(self.v) colunas = str([x for x in self.v]) colunas = ' ' + colunas[1:len(colunas)-1].replace(',','') print(colunas) for x in range(len(self.matrizesDeAdj)): print(str(self.v[x]) + ' ' + str(self.matrizesDeAdj[x])) def __repr__(self): return 'GrafoMatrizes(' + str(self.iteravel) + ')' def __getItem__(self, index): arestas = {} if not self.ponderado: for x in range(len(self.matrizesDeAdj)): if index not in arestas and self.matrizesDeAdj[index][x] != 0: arestas[index] = [(index, x)] elif index in arestas and self.matrizesDeAdj[index][x] != 0: arestas[index].append((index, x)) if self.direcionado: if index not in arestas and self.matrizesDeAdj[x][index] != 0: arestas[index] = [(x, index)] elif index in arestas and self.matrizesDeAdj[x][index] != 0: arestas[index].append((x, index)) else: for x in range(len(self.matrizesDeAdj)): if index not in arestas and self.matrizesDeAdj[index][x] != 0: arestas[index] = [(index, x, self.matrizesDeAdj[index][x])] elif index in arestas and self.matrizesDeAdj[index][x] != 0: arestas[index].append((index, x, self.matrizesDeAdj[index][x])) if self.direcionado: if index not in arestas and self.matrizesDeAdj[x][index] != 0: arestas[index] = [(x, index, self.matrizesDeAdj[index][x])] elif index in arestas and self.matrizesDeAdj[x][index] != 0: arestas[index].append((x, index, self.matrizesDeAdj[index][x])) return arestas[index] def grauDeSaida(self, vertice): if vertice not in self.v: return '[' + str(vertice) + '] não encontrado.' aux = 0 for n in range(len(self.v)): if self.matrizesDeAdj[self.index(vertice)][n] != 0: aux += 1 return aux def grauDeEntrada(self, vertice): if not self.direcionado: return self.grauDeSaida(vertice) else: aux = 0 for n in range(len(self.v)): if self.matrizesDeAdj[n][self.index(vertice)] != 0: aux += 1 return aux def ligados(self, tupla): if type(tupla) is int: return '[' + str(tupla) + '] não encontrado. Formato inválido.' elif len(tupla) != 2: return '[' + str(tupla) + '] não encontrado. Formato inválido.' elif tupla[0] not in self.v or tupla[1] not in self.v: return '[' + str(tupla) + '] não encontrado. Par não existente nessa tupla.' if self.matrizesDeAdj[self.index(tupla[0])][self.index(tupla[1])] or self.matrizesDeAdj[self.index(tupla[1])][self.index(tupla[0])] != 0: return True return False def adjacente(self, vertice): if vertice not in self.v: return '[' + str(vertice) + '] não encontrado.' else: lista = [] for x in self.v: if not self.direcionado: if self.matrizesDeAdj[self.index(vertice)][self.index(x)] != 0: lista.append(x) else: if self.matrizesDeAdj[self.index(vertice)][self.index(x)] != 0: lista.append(x) if self.matrizesDeAdj[self.index(x)][self.index(vertice)] != 0 and x not in lista: lista.append(x) return lista def maiorAresta(self): if not self.ponderado: return 'Grafo não-ponderado.' maiores = [] lista = [] for x in self.matrizesDeAdj: maiores.append(max(x)) maior = max(maiores) for n in self.v: for m in self.v: if self.matrizesDeAdj[self.index(n)][self.index(m)] == maior and (m,n) not in lista: lista.append((n, m)) return 'Arestas de peso: ' + str(maior) + ' // ' + 'Vértices ligados a ela: ' + str(lista) def menorAresta(self): if not self.ponderado: return 'Grafo não-ponderado.' pesos = [] lista = [] for x in self.matrizesDeAdj: for y in x: if y != 0: pesos.append(y) menor = min(pesos) for n in self.v: for m in self.v: if self.matrizesDeAdj[self.index(n)][self.index(m)] == menor and (m,n) not in lista: lista.append((n, m)) return 'Arestas de peso: ' + str(menor) + ' // ' + 'Vértices ligados a ela: ' + str(lista) def removeAresta(self, tupla): if type(tupla) is int: return '[' + str(tupla) + '] não encontrado. Formato inválido.' elif len(tupla) != 2: return '[' + str(tupla) + '] não encontrado. Formato inválido.' elif tupla[0] not in self.v or tupla[1] not in self.v: return '[' + str(tupla) + '] não removido. Par não existente nessa tupla.' if not self.direcionado: self.matrizesDeAdj[self.index(tupla[0])][self.index(tupla[1])] = 0 self.matrizesDeAdj[self.index(tupla[1])][self.index(tupla[0])] = 0 else: self.matrizesDeAdj[self.index(tupla[0])][self.index(tupla[1])] = 0 print('[' + str(tupla) + '] removida.') def adicionaAresta(self, tupla): if type(tupla) is int: return '[' + str(tupla) + '] não encontrado. Formato inválido.' elif not self.ponderado and len(tupla) != 2: return '[' + str(tupla) + '] não encontrado. Formato inválido.' elif self.ponderado and len(tupla) != 3: return '[' + str(tupla) + '] não encontrado. Formato inválido.' elif tupla[0] not in self.v or tupla[1] not in self.v: return '[' + str(tupla) + '] não adicionado. Par não existente nessa tupla.' if not self.ponderado: if not self.direcionado: self.matrizesDeAdj[self.index(tupla[0])][self.index(tupla[1])] = 1 self.matrizesDeAdj[self.index(tupla[1])][self.index(tupla[0])] = 1 else: self.matrizesDeAdj[self.index(tupla[0])][self.index(tupla[1])] = 1 self.iteravel else: if not self.direcionado: self.matrizesDeAdj[self.index(tupla[0])][self.index(tupla[1])] = tupla[2] self.matrizesDeAdj[self.index(tupla[1])][self.index(tupla[0])] = tupla[2] else: self.matrizesDeAdj[self.index(tupla[0])][self.index(tupla[1])] = tupla[2] if type(self.iteravel[0]) is tuple: self.iteravel += tuple(tupla), elif type(self.iteravel[0]) is list: self.iteravel.append(list(tupla)) print('[' + str(tupla) + '] adicionada.') def adicionaVertice(self, vertice): if vertice in self.v: return '[' + str(vertice) + '] já existente.' self.v.append(vertice) self.matrizesDeAdj = self.criarMatrizes(self.iteravel, self.ponderado, self.direcionado) print('[' + str(vertice) + '] adicionado.') def dfs(self, vertice, antecessor, marcado): marcado[self.index(vertice)] = True for u in self.adjacente(vertice): if not marcado[self.index(u)]: antecessor[self.index(u)] = vertice self.dfs(u, antecessor, marcado) def buscaEmProfundidade(self): marcado = len(self.v) * [False] antecessor = len(self.v) * [-1] for vertice in self.v: if not marcado[self.index(vertice)]: self.dfs(vertice, antecessor, marcado) for i in range(0, len(self.v)): print(str(i) + ': ' + str(antecessor[i])) def buscaEmLargura(self): marcado = len(self.v) * [False] antecessor = len(self.v) * [-1] vertices = [] for i in self.v: if not marcado[self.index(i)]: vertices.append(i) marcado[self.index(i)] = True while len(vertices) > 0: v = vertices.pop(0) for u in self.adjacente(v): if not marcado[self.index(u)]: marcado[self.index(u)] = True antecessor[self.index(u)] = v vertices.append(u) for i in range(0, len(self.v)): print(str(i) + ': ' + str(antecessor[i])) def converterMatrizLista(self): return GrafoLista(self.iteravel, self.ponderado, self.direcionado)
StarcoderdataPython
26800
'''def operations(a,b,c): if(c=='+'): return a+b elif(c=='-'): return a-b elif(c=='*'): return a*b elif(c=='/'): return a/b elif(c=='%'): return a%b elif(c=='**'): return a**b elif(c=='//'): return a//b else: print("Non specfied soperation") print(operations(10,5,'+')) print(operations(10,5,'-')) print(operations(10,5,'*')) print(operations(10,5,'/')) print(operations(10,5,'%')) print(operations(10,2,'**')) print(operations(10,3,'//')) print(operations((int(input("Enter a "))),int(input("Enter b ")),input("Enter c ")))''' def evaluate(): print(eval(input("Enter an arithmetic expression: "))) evaluate()
StarcoderdataPython
89340
<filename>hello-python/hello-world.py<gh_stars>1-10 #!/usr/bin/python print "Hello, World."
StarcoderdataPython
3395474
from shapely.geometry import Point import geopandas as gpd pnt1 = Point(80.99456, 7.86795) pnt2 = Point(80.97454, 7.872174) points_df = gpd.GeoDataFrame({"geometry": [pnt1, pnt2]}, crs="EPSG:4326") points_df = points_df.to_crs("EPSG:5234") points_df2 = points_df.shift() # We shift the dataframe by 1 to align pnt1 with pnt2 points_df.distance(points_df2)
StarcoderdataPython
3389187
#!/usr/bin/env python import os from app import create_app, freezer from flask.ext.script import Manager from config import basedir from itertools import chain from jinja2 import Template import datetime app = create_app(os.getenv('FLASK_CONFIG') or 'default') manager = Manager(app) @manager.command def build(): app = create_app('production') if(app.config['SHOW_DRAFTS'] | app.debug | app.testing): print('WARNING!! This build will show drafts or is running in debug or testing mode.') freezer.init_app(app) freezer.freeze() buildSitemap() @manager.command def test(): import nose import sys from config import basedir nose.run( argv = [sys.argv[0], os.path.join(basedir, 'tests')] ) def buildSitemap(): template_path = os.path.join(basedir, 'app/templates/sitemap.xml') directory = os.path.join(basedir, 'app/build') endpoints = findHTML(directory) template = '' with open(template_path, 'r') as f: template = Template(f.read()) with open(os.path.join(directory, 'sitemap.xml'), 'w') as f: f.write(template.render(pages = endpoints)) def findHTML(directory): base = os.path.join(basedir, 'app/build') endpoints = [] subdirs = [] contents = os.listdir(directory) for item in contents: path = os.path.join(directory, item) if item.endswith('.html'): url = path.replace(base, 'http://kylerjohnston.com') endpoints.append([url, getLastMod(path)]) if os.path.isdir(path): subdirs.append(path) # Recurse through all subdirectories if len(subdirs) > 0: for subdir in subdirs: ep = findHTML(subdir) for e in ep: endpoints.append(e) return endpoints def getLastMod(f): return datetime.date.fromtimestamp(os.path.getmtime(f)).strftime('%Y-%m-%d') if __name__ == '__main__': manager.run()
StarcoderdataPython
138084
<filename>src/cars/CarHuman.py<gh_stars>1-10 from src.cars.Car import Car class CarHuman(Car): def __init__(self, track): super(CarHuman, self).__init__(track)
StarcoderdataPython
56730
<gh_stars>0 import sys import tensorflow as tf2 DEFAULT_GPU_LIST = [0, 1, 2] SCALE = 2 MEMORY_LENGTH = 1000000 STACK_LENGTH = 4 BATCH_SIZE = 64 LEARNING_RATE = 0.00025 GAMMA = 0.9 EPSILON = 1.0 EPSILON_MIN = 0.01 EPSILON_DECAY = 0.00003 GIVEN_GPU = [eval(sys.argv[1])] if len(sys.argv) > 1 else DEFAULT_GPU_LIST def get_strategy(gpu_visible=None): gpu_total = tf2.config.experimental.list_physical_devices(device_type="GPU") gpu_candidates = [] if gpu_visible is None: gpu_visible = GIVEN_GPU for gpu_id in gpu_visible: if 0 <= gpu_id < len(gpu_total): gpu_candidates.append(gpu_total[gpu_id]) tf2.config.experimental.set_visible_devices(devices=gpu_candidates, device_type="GPU") print("gpu_total :", gpu_total, "| gpu_candidates :", gpu_candidates) strategy = tf2.distribute.OneDeviceStrategy(device="/cpu:0") if len(gpu_candidates) == 1: strategy = tf2.distribute.OneDeviceStrategy(device="/gpu:0") elif len(gpu_candidates) > 1: strategy = tf2.distribute.MirroredStrategy() return strategy
StarcoderdataPython
4454
<reponame>claws/adsb import asyncio import datetime import logging import socket from . import protocol from typing import Tuple from asyncio import AbstractEventLoop logger = logging.getLogger(__name__) class Server(object): def __init__( self, host: str = "localhost", port: int = 30003, backlog=100, loop: AbstractEventLoop = None, ) -> None: self.loop = loop or asyncio.get_event_loop() self.host = host self._requested_port = port self.port = None self.backlog = backlog self.listener = None self.protocols = {} async def start(self) -> None: """ Start the server """ try: self.listener = await self.loop.create_server( lambda: protocol.SBSServerProtocol(self), self.host, self._requested_port, family=socket.AF_INET, backlog=self.backlog, ) # type: asyncio.Server # Fetch actual port in use. This can be different from the # specified port if the port was passed as 0 which means use # an ephemeral port. assert len(self.listener.sockets) == 1 _, self.port = self.listener.sockets[0].getsockname() except asyncio.CancelledError: logger.exception("Connection waiter Future was cancelled") except Exception: logger.exception("An error occurred in start") async def stop(self) -> None: """ Stop the server """ if self.listener: # Avoid iterating over the protocols dict which may change size # while it is being iterating over. peers = list(self.protocols) for peer in peers: prot = self.protocols.get(peer) if prot: prot.close() self.listener.close() def register_protocol( self, peer: Tuple[str, int], prot: "SBSServerProtocol" ) -> None: """ Register a protocol instance with the server. :param peer: Tuple of (host:str, port:int). :param prot: a SBSServerProtocol instance. """ self.protocols[peer] = prot def deregister_protocol(self, peer: Tuple[str, int]) -> None: """ De-register a protocol instance from the server. This peer will no longer receive messages. :param peer: Tuple of (host:str, port:int). """ del self.protocols[peer] def send_message(self, msg: bytes, peer: Tuple[str, int] = None) -> None: """ Send a message. :param msg: A bytes object representing the SBS format message to send to peers. The message is assumed to include the end of message delimiter. :param peer: A specific peer to send the message to. Peer is a Tuple of (host:str, port:int). If not specified then the message is broadcast to all peers. """ if self.protocols: if peer: prot = self.protocols.get(peer) if prot: prot.send_message(msg) else: raise Exception( f"Server can't send msg to non-existant peer: {peer}" ) else: # broadcast message to all peers for peer, prot in self.protocols.items(): prot.send_message(msg) else: raise Exception("Server can't send msg, no peers available")
StarcoderdataPython
3366838
<filename>quad_mesh_to_rgba/coastlines.py import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import cartopy import bokeh.plotting figure = bokeh.plotting.figure(sizing_mode='stretch_both', match_aspect=True) # Struggling to find appropriate extent for cartopy feature # Left, right, bottom, top x0, x1, y0, y1 = (0, 21, 0, 11) extent = x0, x1, y0, y1 def coastlines(figure, scale="110m", extent=None): """Add cartopy coastline to a figure Translates cartopy.feature.COASTLINE object into collection of bokeh lines .. note:: This method assumes the map projection is cartopy.crs.PlateCarreee :param figure: bokeh figure instance :param scale: cartopy coastline scale '110m', '50m' or '10m' :param extent: x_start, x_end, y_start, y_end """ coastline = cartopy.feature.COASTLINE coastline.scale = scale for geometry in coastline.intersecting_geometries(extent): figure.line(*geometry[0].xy, color='black', level='overlay') coastlines(figure, scale="10m", extent=extent) # Custom normalisation norm = mpl.colors.Normalize(vmin=0, vmax=200) # Imshow ni, nj = 10, 10 values = np.arange(ni * nj).reshape(ni, nj) mappable = plt.imshow(values, norm=norm) rgba = mappable.to_rgba(mappable.get_array(), bytes=True).reshape(ni, nj, 4) figure.image_rgba(image=[rgba], x=0, y=0, dh=ni, dw=nj) # Imshow ni, nj = 10, 10 values = np.arange(ni * nj).reshape(ni, nj) values += 100 mappable = plt.imshow(values, norm=norm) rgba = mappable.to_rgba(mappable.get_array(), bytes=True).reshape(ni, nj, 4) figure.image_rgba(image=[rgba], x=nj - 1, y=1, dh=ni, dw=nj) # Set bokeh x/y range extents figure.x_range.start = x0 figure.x_range.end = x1 figure.y_range.start = y0 figure.y_range.end = y1 bokeh.plotting.show(figure)
StarcoderdataPython
124383
#!/usr/bin/env python3 # -*- coding: utf-8 -*- '第 0009 题:一个HTML文件,找出里面的链接。' __author__ = 'Drake-Z' import os, re from html.parser import HTMLParser from html.entities import name2codepoint class MyHTMLParser(HTMLParser): def handle_starttag(self, tag, attrs): if tag == 'a': for (variables, value) in attrs: if variables == 'href': if re.match(r'http(.*?)', value): print(value) if __name__ == '__main__': with open('test.html', encoding='utf-8') as html: parser = MyHTMLParser() parser.feed(html.read())
StarcoderdataPython
39971
<gh_stars>1-10 import os import tensorflow as tf import random import numpy as np import matplotlib.pyplot as plt # uncomment for inline for the notebook: # %matplotlib inline import pickle # enter the directory where the training images are: TRAIN_DIR = 'train/' IMAGE_SIZE = 512 train_image_file_names = [TRAIN_DIR+i for i in os.listdir(TRAIN_DIR)] # to decode a single png img: # graph = tf.Graph() # with graph.as_default(): # file_name = tf.placeholder(dtype=tf.string) # file1 = tf.read_file(file_name) # image = tf.image.decode_png(file1) # with tf.Session(graph=graph) as session: # tf.global_variables_initializer().run() # image_vector = session.run(image, feed_dict={ # file_name: train_image_file_names[1]}) # print(image_vector) # session.close() # method to decode many png images: def decode_image(image_file_names, resize_func=None): images = [] graph = tf.Graph() with graph.as_default(): file_name = tf.placeholder(dtype=tf.string) file1 = tf.read_file(file_name) image = tf.image.decode_png(file1) # , channels=3) <-- use three channels for rgb pictures k = tf.placeholder(tf.int32) tf_rot_img = tf.image.rot90(image, k=k) # im_rot = tf.placeholder(tf.float32, shape=(IMAGE_SIZE, IMAGE_SIZE, 3)) tf_flip_img = tf.image.flip_left_right(tf_rot_img) with tf.Session(graph=graph) as session: tf.global_variables_initializer().run() for i in range(len(image_file_names)): for j in range(4): # rotation at 0, 90, 180, 270 degrees rotated_img = session.run(tf_rot_img, feed_dict={ file_name: image_file_names[i], k: j}) images.append(rotated_img) flipped_img = session.run( tf_flip_img, feed_dict={ file_name: image_file_names[i], k: j}) images.append(flipped_img) if (i+1) % 1000 == 0: print('Images processed: ', i+1) session.close() return images train_images = decode_image(train_image_file_names) print('shape train: ', np.shape(train_images)) # Let's see some of the images # for i in range(10,14): # plt.imshow(train_images[i].reshape([IMAGE_SIZE,IMAGE_SIZE]), cmap=plt.get_cmap('gray')) # plt.show() # for rgb images: # for i in range(10,20): # plt.imshow(train_images[i]) # plt.show() def create_batch(data, label, batch_size): i = 0 while i*batch_size <= len(data): with open(label + '_' + str(i) + '.pickle', 'wb') as handle: content = data[(i * batch_size):((i+1) * batch_size)] pickle.dump(content, handle) print('Saved', label, 'part #' + str(i), 'with', len(content), 'entries.') i += 1 # Create one hot encoding for labels # labels = [[1., 0.] if 'dog' in name else [0., 1.] for name in train_image_file_names] # these are all real images, so let's encode them all with 1's labels = [[1., 0.] for name in train_image_file_names] # TO EXPORT DATA WHEN RUNNING LOCALLY - UNCOMMENT THESE LINES # a batch with 5000 images has a size of around 3.5 GB # create_batch(labels, 'pickled/', np.shape(train_images)[0]) create_batch(train_images, 'pickled/', np.shape(train_images)[0]) print('done creating dataset')
StarcoderdataPython
1786763
# -*- coding: latin-1 -*- # This program is public domain # Author: <NAME> """ Define unit conversion support for NeXus style units. The unit format is somewhat complicated. There are variant spellings and incorrect capitalization to worry about, as well as forms such as "mili*metre" and "1e-7 seconds". This is a minimal implementation. It does not support the complete dimensional analysis provided by the package UDUnits on which NeXus is based, or even all the units used in the NeXus definition files. Unlike other units modules, this module does not carry the units along with the value, but merely provides a conversion function for transforming values. Usage example:: >>> from dataflow.lib import unit >>> u = unit.Converter('mili*metre') # Units stored in mm >>> v = u(3000, 'm') # Convert the value 3000 mm into meters NeXus example:: # Load sample orientation in radians regardless of how it is stored. # 1. Open the path import nxs file = nxs.open(filename) file.openpath('/entry1/sample/sample_orientation') # 2. scan the attributes, retrieving 'units' units = [for attr, value in file.attrs() if attr == 'units'] # 3. set up the converter (assumes that units actually exists) u = unit.Converter(units[0]) # 4. read the data and convert to the correct units v = u(file.read(), 'radians') NeXus example using h5py, and a private version of unit:: import h5py from dataflow.lib import unit file = h5py.File(filename) field = file['/entry1/sample/sample_orientation'] u = unit.Converter(field.attrs.get('units', '')) v = u(field.value, 'radians') Note: minutes are used for angle and seconds are used for time. We cannot determine the correct interpretation without knowing something about the fields themselves. If this becomes an issue, we will need to allow the application to set the dimension for the units rather than getting the dimension from the units as we are currently doing. """ # TODO: Parse the udunits database directly # UDUnits: # https://www.unidata.ucar.edu/software/udunits/udunits-1/udunits.txt from __future__ import division __all__ = ['Converter'] import math # Limited form of units for returning objects of a specific type. # Maybe want to do full units handling with e.g., pyre's # unit class. For now lets keep it simple. Note that def _build_metric_units(unit, abbr): """ Construct standard SI names for the given unit. Builds e.g., s, ns second, nanosecond, nano*second seconds, nanoseconds Includes prefixes for femto through peta. Ack! Allows, e.g., Coulomb and coulomb even though Coulomb is not a unit because some NeXus files store it that way! Returns a dictionary of names and scales. """ prefix = dict(peta=1e15, tera=1e12, giga=1e9, mega=1e6, kilo=1e3, deci=1e-1, centi=1e-2, milli=1e-3, mili=1e-3, micro=1e-6, nano=1e-9, pico=1e-12, femto=1e-15) short_prefix = dict(P=1e15, T=1e12, G=1e9, M=1e6, k=1e3, d=1e-1, c=1e-2, m=1e-3, u=1e-6, n=1e-9, p=1e-12, f=1e-15) short_prefix['μ'] = 1e-6 map = {abbr:1} map.update([(P+abbr, scale) for (P, scale) in short_prefix.items()]) for name in [unit, unit.capitalize()]: map.update({name:1, name+'s':1}) map.update([(P+name, scale) for (P, scale) in prefix.items()]) map.update([(P+'*'+name, scale) for (P, scale) in prefix.items()]) map.update([(P+name+'s', scale) for (P, scale) in prefix.items()]) return map def _build_plural_units(**kw): """ Construct names for the given units. Builds singular and plural form. """ map = {} map.update([(name, scale) for name, scale in kw.items()]) map.update([(name+'s', scale) for name, scale in kw.items()]) return map def _build_all_units(): # Various distance measures distance = _build_metric_units('meter', 'm') distance.update(_build_metric_units('metre', 'm')) distance.update(_build_plural_units(micron=1e-6, Angstrom=1e-10, angstrom=1e-10, )) distance.update({'A': 1e-10, 'Ang' :1e-10, 'Å': 1e-10, 'Ångström': 1e-10}) # Various time measures. # Note: minutes are used for angle rather than time time = _build_metric_units('second', 's') time.update(_build_plural_units(hour=3600, day=24*3600, week=7*24*3600)) time.update({'1e-7 s':1e-7, '1e-7 second':1e-7, '1e-7 seconds':1e-7}) # Various angle measures. # Note: seconds are used for time rather than angle angle = _build_plural_units(degree=1, minute=1/60., arcminute=1/60., arcsecond=1/3600., radian=180/math.pi) angle.update(deg=1, arcmin=1/60., arcsec=1/3600., rad=180/math.pi) frequency = _build_metric_units('hertz', 'Hz') frequency.update(_build_metric_units('Hertz', 'Hz')) frequency.update(_build_plural_units(rpm=1/60.)) # Note: degrees are used for angle # TODO: temperature needs an offset as well as a scale temperature = _build_metric_units('kelvin', 'K') temperature.update(_build_metric_units('Kelvin', 'K')) charge = _build_metric_units('coulomb', 'C') charge.update({'microAmp*hour':0.0036}) sld = {'10^-6 Angstrom^-2': 1e-6, 'Angstrom^-2': 1} Q = {'invAng': 1, 'invAngstroms': 1, '10^-3 Angstrom^-1': 1e-3, 'nm^-1': 10} energy = _build_metric_units('electronvolt', 'eV') power = _build_metric_units('watt', 'W') # APS files may be using 'a.u.' for 'arbitrary units'. Other # facilities are leaving the units blank, using ??? or not even # writing the units attributes. unknown = {None:1, '???':1, '': 1, 'a.u.':1} dims = [unknown, distance, time, angle, frequency, temperature, charge, sld, Q, energy, power] return dims class Converter(object): """ Unit converter for NeXus style units. """ # Define the units, using both American and European spelling. scalemap = None scalebase = 1 dims = _build_all_units() def __init__(self, name): self.base = name for map in self.dims: if name in map: self.scalemap = map self.scalebase = self.scalemap[name] break else: self.scalemap = {'': 1} self.scalebase = 1 #raise ValueError, "Unknown unit %s"%name def scale(self, units=""): if units == "" or self.scalemap is None: return 1 return self.scalebase/self.scalemap[units] def conversion(self, units=""): if units == "" or self.scalemap is None: return 1.0 try: return self.scalebase/self.scalemap[units] except KeyError: raise KeyError("%s not in %s (base = %s)"%(units, " ".join(sorted(self.scalemap.keys())), self.base)) def __call__(self, value, units=""): # Note: calculating value*1.0 rather than simply returning value # would produce an unnecessary copy of the array, which in the # case of the raw counts array would be bad. Sometimes copying # and other times not copying is also bad, but copy on modify # semantics isn't supported. a = self.conversion(units) return value if a == 1.0 else value*a def _check(expect, get): if expect != get: raise ValueError("Expected %s but got %s"%(expect, get)) #print expect, "==", get def test(): _check(2, Converter('mm')(2000, 'm')) # 2000 mm -> 2 m _check(0.003, Converter('microseconds')(3, units='ms')) # 3 us -> 0.003 ms _check(45, Converter('nanokelvin')(45)) # 45 nK -> 45 nK # TODO: more tests _check(0.5, Converter('seconds')(1800, units='hours')) # 1800 -> 0.5 hr _check(2.5, Converter('a.u.')(2.5, units='')) if __name__ == "__main__": test()
StarcoderdataPython
3287665
<gh_stars>0 import logging import sched import sys import winsound import webbrowser from scraper import init_scrapers from termcolor import colored class Engine: def __init__(self, args, config, driver): self.refresh_interval = config.refresh_interval self.max_price = config.max_price self.scheduler = sched.scheduler() self.scrapers = init_scrapers(driver, config.urls) for s in self.scrapers: self.schedule(s) def run(self): self.scheduler.run(blocking=True) def schedule(self, s): if self.scheduler.queue: t = self.scheduler.queue[-1].time + self.refresh_interval self.scheduler.enterabs(t, 1, Engine.tick, (self, s)) else: self.scheduler.enter(self.refresh_interval, 1, Engine.tick, (self, s)) def tick(self, s): result = s.scrape() if result is None: logging.error(f'{s.name}: scrape failed') else: self.process_scrape_result(s, result) return self.schedule(s) def process_scrape_result(self, s, result): currently_in_stock = bool(result) last_price = result.last_price if currently_in_stock: if self.max_price is not None and result.price <= self.max_price: self.in_stock_good_price(s.name, result.price, s.url) else: self.in_stock_bad_price(s.name, result.price) else: self.not_in_stock(s.name) def in_stock_good_price(self, product_name, price, url): for i in range(0,20): print(colored('***********************************************************************************', 'green')) print("\n\n\n", colored(product_name, 'white'), colored('in stock for', 'green'), colored(f'${price}', 'green')) # open the webpage for this item webbrowser.open(f'{url}', new=2) # play the alarm sound until the user ends the program print("Press Ctrl-C to end the program") while True: winsound.PlaySound(".\\resources\\VenatorHangarHit.wav", winsound.SND_FILENAME) winsound.PlaySound(".\\resources\\yes.wav", winsound.SND_FILENAME) def in_stock_bad_price(self, product_name, price): print(colored(product_name, 'white'), colored(f'in stock for bad price: ${price}', 'yellow')) def not_in_stock(self, product_name): print(colored(product_name, 'white'), colored('not in stock', 'red')) def send_alert(self, s, result, reason): logging.info(f'{s.name}: {reason}') self.alerter(subject=result.alert_subject, content=result.alert_content) def hunt(args, config, driver): engine = Engine(args, config, driver) engine.run()
StarcoderdataPython
130900
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import unittest from libcloud.utils.py3 import httplib from libcloud.common.types import InvalidCredsError from libcloud.common.dimensiondata import DimensionDataVIPNode, DimensionDataPool from libcloud.common.dimensiondata import DimensionDataPoolMember from libcloud.loadbalancer.base import LoadBalancer, Member, Algorithm from libcloud.loadbalancer.drivers.dimensiondata \ import DimensionDataLBDriver as DimensionData from libcloud.loadbalancer.types import State from libcloud.test import MockHttp from libcloud.test.file_fixtures import LoadBalancerFileFixtures from libcloud.test.secrets import DIMENSIONDATA_PARAMS class DimensionDataTests(unittest.TestCase): def setUp(self): DimensionData.connectionCls.conn_classes = (None, DimensionDataMockHttp) DimensionDataMockHttp.type = None self.driver = DimensionData(*DIMENSIONDATA_PARAMS) def test_invalid_region(self): try: self.driver = DimensionData(*DIMENSIONDATA_PARAMS, region='blah') except ValueError: pass def test_invalid_creds(self): DimensionDataMockHttp.type = 'UNAUTHORIZED' try: self.driver.list_balancers() self.assertTrue(False) # Above command should have thrown an InvalidCredsException except InvalidCredsError: pass def test_create_balancer(self): self.driver.ex_set_current_network_domain('1234') members = [] members.append(Member( id=None, ip='1.2.3.4', port=80)) balancer = self.driver.create_balancer( name='test', port=80, protocol='http', algorithm=Algorithm.ROUND_ROBIN, members=members) self.assertEqual(balancer.name, 'test') self.assertEqual(balancer.id, '8334f461-0df0-42d5-97eb-f4678eb26bea') self.assertEqual(balancer.ip, '172.16.58.3') self.assertEqual(balancer.port, 80) self.assertEqual(balancer.extra['pool_id'], '9e6b496d-5261-4542-91aa-b50c7f569c54') self.assertEqual(balancer.extra['network_domain_id'], '1234') def test_create_balancer_with_defaults(self): self.driver.ex_set_current_network_domain('1234') balancer = self.driver.create_balancer( name='test', port=None, protocol=None, algorithm=None, members=None) self.assertEqual(balancer.name, 'test') self.assertEqual(balancer.id, '8334f461-0df0-42d5-97eb-f4678eb26bea') self.assertEqual(balancer.ip, '172.16.58.3') self.assertEqual(balancer.port, 80) self.assertEqual(balancer.extra['pool_id'], '9e6b496d-5261-4542-91aa-b50c7f569c54') self.assertEqual(balancer.extra['network_domain_id'], '1234') def test_create_balancer_no_members(self): self.driver.ex_set_current_network_domain('1234') members = None balancer = self.driver.create_balancer( name='test', port=80, protocol='http', algorithm=Algorithm.ROUND_ROBIN, members=members) self.assertEqual(balancer.name, 'test') self.assertEqual(balancer.id, '8334f461-0df0-42d5-97eb-f4678eb26bea') self.assertEqual(balancer.ip, '172.16.58.3') self.assertEqual(balancer.port, 80) self.assertEqual(balancer.extra['pool_id'], '9e6b496d-5261-4542-91aa-b50c7f569c54') self.assertEqual(balancer.extra['network_domain_id'], '1234') def test_create_balancer_empty_members(self): self.driver.ex_set_current_network_domain('1234') members = [] balancer = self.driver.create_balancer( name='test', port=80, protocol='http', algorithm=Algorithm.ROUND_ROBIN, members=members) self.assertEqual(balancer.name, 'test') self.assertEqual(balancer.id, '8334f461-0df0-42d5-97eb-f4678eb26bea') self.assertEqual(balancer.ip, '172.16.58.3') self.assertEqual(balancer.port, 80) self.assertEqual(balancer.extra['pool_id'], '9e6b496d-5261-4542-91aa-b50c7f569c54') self.assertEqual(balancer.extra['network_domain_id'], '1234') def test_list_balancers(self): bal = self.driver.list_balancers() self.assertEqual(bal[0].name, 'myProduction.Virtual.Listener') self.assertEqual(bal[0].id, '6115469d-a8bb-445b-bb23-d23b5283f2b9') self.assertEqual(bal[0].port, '8899') self.assertEqual(bal[0].ip, '172.16.58.3') self.assertEqual(bal[0].state, State.RUNNING) def test_balancer_list_members(self): extra = {'pool_id': '4d360b1f-bc2c-4ab7-9884-1f03ba2768f7', 'network_domain_id': '1234'} balancer = LoadBalancer( id='234', name='test', state=State.RUNNING, ip='1.2.3.4', port=1234, driver=self.driver, extra=extra ) members = self.driver.balancer_list_members(balancer) self.assertEqual(2, len(members)) self.assertEqual(members[0].ip, '10.0.3.13') self.assertEqual(members[0].id, '3dd806a2-c2c8-4c0c-9a4f-5219ea9266c0') self.assertEqual(members[0].port, 9889) def test_balancer_attach_member(self): extra = {'pool_id': '4d360b1f-bc2c-4ab7-9884-1f03ba2768f7', 'network_domain_id': '1234'} balancer = LoadBalancer( id='234', name='test', state=State.RUNNING, ip='1.2.3.4', port=1234, driver=self.driver, extra=extra ) member = Member( id=None, ip='192.168.3.11', port=80, balancer=balancer, extra=None) member = self.driver.balancer_attach_member(balancer, member) self.assertEqual(member.id, '3dd806a2-c2c8-4c0c-9a4f-5219ea9266c0') def test_balancer_detach_member(self): extra = {'pool_id': '4d360b1f-bc2c-4ab7-9884-1f03ba2768f7', 'network_domain_id': '1234'} balancer = LoadBalancer( id='234', name='test', state=State.RUNNING, ip='1.2.3.4', port=1234, driver=self.driver, extra=extra ) member = Member( id='3dd806a2-c2c8-4c0c-9a4f-5219ea9266c0', ip='192.168.3.11', port=80, balancer=balancer, extra=None) result = self.driver.balancer_detach_member(balancer, member) self.assertEqual(result, True) def test_destroy_balancer(self): extra = {'pool_id': '4d360b1f-bc2c-4ab7-9884-1f03ba2768f7', 'network_domain_id': '1234'} balancer = LoadBalancer( id='234', name='test', state=State.RUNNING, ip='1.2.3.4', port=1234, driver=self.driver, extra=extra ) response = self.driver.destroy_balancer(balancer) self.assertEqual(response, True) def test_set_get_network_domain_id(self): self.driver.ex_set_current_network_domain('1234') nwd = self.driver.ex_get_current_network_domain() self.assertEqual(nwd, '1234') def test_ex_create_pool_member(self): pool = DimensionDataPool( id='4d360b1f-bc2c-4ab7-9884-1f03ba2768f7', name='test', description='test', status=State.RUNNING, health_monitor_id=None, load_balance_method=None, service_down_action=None, slow_ramp_time=None ) node = DimensionDataVIPNode( id='2344', name='test', status=State.RUNNING, ip='192.168.3.11' ) member = self.driver.ex_create_pool_member( pool=pool, node=node, port=80 ) self.assertEqual(member.id, '3dd806a2-c2c8-4c0c-9a4f-5219ea9266c0') self.assertEqual(member.name, '10.0.3.13') self.assertEqual(member.ip, '192.168.3.11') def test_ex_create_node(self): node = self.driver.ex_create_node( network_domain_id='12345', name='test', ip='192.168.127.12', ex_description='', connection_limit=25000, connection_rate_limit=2000) self.assertEqual(node.name, 'myProductionNode.1') self.assertEqual(node.id, '9e6b496d-5261-4542-91aa-b50c7f569c54') def test_ex_create_pool(self, ): pool = self.driver.ex_create_pool( network_domain_id='1234', name='test', balancer_method='ROUND_ROBIN', ex_description='test', service_down_action='NONE', slow_ramp_time=30) self.assertEqual(pool.id, '9e6b496d-5261-4542-91aa-b50c7f569c54') self.assertEqual(pool.name, 'test') self.assertEqual(pool.status, State.RUNNING) def test_ex_create_virtual_listener(self): listener = self.driver.ex_create_virtual_listener( network_domain_id='12345', name='test', ex_description='test', port=80, pool=DimensionDataPool( id='1234', name='test', description='test', status=State.RUNNING, health_monitor_id=None, load_balance_method=None, service_down_action=None, slow_ramp_time=None )) self.assertEqual(listener.id, '8334f461-0df0-42d5-97eb-f4678eb26bea') self.assertEqual(listener.name, 'test') def test_ex_create_virtual_listener_unusual_port(self): listener = self.driver.ex_create_virtual_listener( network_domain_id='12345', name='test', ex_description='test', port=8900, pool=DimensionDataPool( id='1234', name='test', description='test', status=State.RUNNING, health_monitor_id=None, load_balance_method=None, service_down_action=None, slow_ramp_time=None )) self.assertEqual(listener.id, '8334f461-0df0-42d5-97eb-f4678eb26bea') self.assertEqual(listener.name, 'test') def test_get_balancer(self): bal = self.driver.get_balancer('6115469d-a8bb-445b-bb23-d23b5283f2b9') self.assertEqual(bal.name, 'myProduction.Virtual.Listener') self.assertEqual(bal.id, '6115469d-a8bb-445b-bb23-d23b5283f2b9') self.assertEqual(bal.port, '8899') self.assertEqual(bal.ip, '172.16.58.3') self.assertEqual(bal.state, State.RUNNING) def test_list_protocols(self): protocols = self.driver.list_protocols() self.assertNotEqual(0, len(protocols)) def test_ex_get_nodes(self): nodes = self.driver.ex_get_nodes() self.assertEqual(2, len(nodes)) self.assertEqual(nodes[0].name, 'ProductionNode.1') self.assertEqual(nodes[0].id, '34de6ed6-46a4-4dae-a753-2f8d3840c6f9') self.assertEqual(nodes[0].ip, '10.10.10.101') def test_ex_get_node(self): node = self.driver.ex_get_node('34de6ed6-46a4-4dae-a753-2f8d3840c6f9') self.assertEqual(node.name, 'ProductionNode.2') self.assertEqual(node.id, '34de6ed6-46a4-4dae-a753-2f8d3840c6f9') self.assertEqual(node.ip, '10.10.10.101') def test_ex_update_node(self): node = self.driver.ex_get_node('34de6ed6-46a4-4dae-a753-2f8d3840c6f9') node.connection_limit = '100' result = self.driver.ex_update_node(node) self.assertEqual(result.connection_limit, '100') def test_ex_destroy_node(self): result = self.driver.ex_destroy_node('34de6ed6-46a4-4dae-a753-2f8d3840c6f9') self.assertTrue(result) def test_ex_set_node_state(self): node = self.driver.ex_get_node('34de6ed6-46a4-4dae-a753-2f8d3840c6f9') result = self.driver.ex_set_node_state(node, False) self.assertEqual(result.connection_limit, '10000') def test_ex_get_pools(self): pools = self.driver.ex_get_pools() self.assertNotEqual(0, len(pools)) self.assertEqual(pools[0].name, 'myDevelopmentPool.1') self.assertEqual(pools[0].id, '4d360b1f-bc2c-4ab7-9884-1f03ba2768f7') def test_ex_get_pool(self): pool = self.driver.ex_get_pool('4d360b1f-bc2c-4ab7-9884-1f03ba2768f7') self.assertEqual(pool.name, 'myDevelopmentPool.1') self.assertEqual(pool.id, '4d360b1f-bc2c-4ab7-9884-1f03ba2768f7') def test_ex_update_pool(self): pool = self.driver.ex_get_pool('4d360b1f-bc2c-4ab7-9884-1f03ba2768f7') pool.slow_ramp_time = '120' result = self.driver.ex_update_pool(pool) self.assertTrue(result) def test_ex_destroy_pool(self): response = self.driver.ex_destroy_pool( pool=DimensionDataPool( id='4d360b1f-bc2c-4ab7-9884-1f03ba2768f7', name='test', description='test', status=State.RUNNING, health_monitor_id=None, load_balance_method=None, service_down_action=None, slow_ramp_time=None)) self.assertTrue(response) def test_get_pool_members(self): members = self.driver.ex_get_pool_members('4d360b1f-bc2c-4ab7-9884-1f03ba2768f7') self.assertEqual(2, len(members)) self.assertEqual(members[0].id, '3dd806a2-c2c8-4c0c-9a4f-5219ea9266c0') self.assertEqual(members[0].name, '10.0.3.13') self.assertEqual(members[0].status, 'NORMAL') self.assertEqual(members[0].ip, '10.0.3.13') self.assertEqual(members[0].port, 9889) self.assertEqual(members[0].node_id, '3c207269-e75e-11e4-811f-005056806999') def test_get_pool_member(self): member = self.driver.ex_get_pool_member('3dd806a2-c2c8-4c0c-9a4f-5219ea9266c0') self.assertEqual(member.id, '3dd806a2-c2c8-4c0c-9a4f-5219ea9266c0') self.assertEqual(member.name, '10.0.3.13') self.assertEqual(member.status, 'NORMAL') self.assertEqual(member.ip, '10.0.3.13') self.assertEqual(member.port, 9889) def test_set_pool_member_state(self): member = self.driver.ex_get_pool_member('3dd806a2-c2c8-4c0c-9a4f-5219ea9266c0') result = self.driver.ex_set_pool_member_state(member, True) self.assertTrue(result) def test_ex_destroy_pool_member(self): response = self.driver.ex_destroy_pool_member( member=DimensionDataPoolMember( id='', name='test', status=State.RUNNING, ip='1.2.3.4', port=80, node_id='3c207269-e75e-11e4-811f-005056806999'), destroy_node=False) self.assertTrue(response) def test_ex_destroy_pool_member_with_node(self): response = self.driver.ex_destroy_pool_member( member=DimensionDataPoolMember( id='', name='test', status=State.RUNNING, ip='1.2.3.4', port=80, node_id='34de6ed6-46a4-4dae-a753-2f8d3840c6f9'), destroy_node=True) self.assertTrue(response) def test_ex_get_default_health_monitors(self): monitors = self.driver.ex_get_default_health_monitors( '4d360b1f-bc2c-4ab7-9884-1f03ba2768f7' ) self.assertEqual(len(monitors), 6) self.assertEqual(monitors[0].id, '01683574-d487-11e4-811f-005056806999') self.assertEqual(monitors[0].name, 'CCDEFAULT.Http') self.assertFalse(monitors[0].node_compatible) self.assertTrue(monitors[0].pool_compatible) def test_ex_get_default_persistence_profiles(self): profiles = self.driver.ex_get_default_persistence_profiles( '4d360b1f-bc2c-4ab7-9884-1f03ba2768f7' ) self.assertEqual(len(profiles), 4) self.assertEqual(profiles[0].id, 'a34ca024-f3db-11e4-b010-005056806999') self.assertEqual(profiles[0].name, 'CCDEFAULT.Cookie') self.assertEqual(profiles[0].fallback_compatible, False) self.assertEqual(len(profiles[0].compatible_listeners), 1) self.assertEqual(profiles[0].compatible_listeners[0].type, 'PERFORMANCE_LAYER_4') def test_ex_get_default_irules(self): irules = self.driver.ex_get_default_irules( '4d360b1f-bc2c-4ab7-9884-1f03ba2768f7' ) self.assertEqual(len(irules), 4) self.assertEqual(irules[0].id, '2b20cb2c-ffdc-11e4-b010-005056806999') self.assertEqual(irules[0].name, 'CCDEFAULT.HttpsRedirect') self.assertEqual(len(irules[0].compatible_listeners), 1) self.assertEqual(irules[0].compatible_listeners[0].type, 'PERFORMANCE_LAYER_4') class DimensionDataMockHttp(MockHttp): fixtures = LoadBalancerFileFixtures('dimensiondata') def _oec_0_9_myaccount_UNAUTHORIZED(self, method, url, body, headers): return (httplib.UNAUTHORIZED, "", {}, httplib.responses[httplib.UNAUTHORIZED]) def _oec_0_9_myaccount(self, method, url, body, headers): body = self.fixtures.load('oec_0_9_myaccount.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _oec_0_9_myaccount_INPROGRESS(self, method, url, body, headers): body = self.fixtures.load('oec_0_9_myaccount.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_virtualListener(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_virtualListener.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_virtualListener_6115469d_a8bb_445b_bb23_d23b5283f2b9(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_virtualListener_6115469d_a8bb_445b_bb23_d23b5283f2b9.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_pool(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_pool.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_pool_4d360b1f_bc2c_4ab7_9884_1f03ba2768f7(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_pool_4d360b1f_bc2c_4ab7_9884_1f03ba2768f7.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_poolMember(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_poolMember.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_poolMember_3dd806a2_c2c8_4c0c_9a4f_5219ea9266c0(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_poolMember_3dd806a2_c2c8_4c0c_9a4f_5219ea9266c0.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_createPool(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_createPool.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_createNode(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_createNode.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_addPoolMember(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_addPoolMember.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_createVirtualListener(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_createVirtualListener.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_removePoolMember(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_removePoolMember.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_deleteVirtualListener(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_deleteVirtualListener.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_deletePool(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_deletePool.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_deleteNode(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_deleteNode.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_node(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_node.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_node_34de6ed6_46a4_4dae_a753_2f8d3840c6f9(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_node_34de6ed6_46a4_4dae_a753_2f8d3840c6f9.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_editNode(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_editNode.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_editPool(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_editPool.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_editPoolMember(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_editPoolMember.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_defaultHealthMonitor(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_defaultHealthMonitor.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_defaultPersistenceProfile(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_defaultPersistenceProfile.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_defaultIrule(self, method, url, body, headers): body = self.fixtures.load( 'caas_2_1_8a8f6abc_2745_4d8a_9cbc_8dabe5a7d0e4_networkDomainVip_defaultIrule.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) if __name__ == '__main__': sys.exit(unittest.main())
StarcoderdataPython
3207387
"""Calculate Intersection-Over-Union(IOU) of two bounding boxes.""" import numpy as np def bbox_iou(bbox_a, bbox_b): """Calculate Intersection-Over-Union(IOU) of two bounding boxes. Parameters ---------- bbox_a : numpy.ndarray An ndarray with shape :math:`(N, 4)`. bbox_b : numpy.ndarray An ndarray with shape :math:`(M, 4)`. Returns ------- numpy.ndarray An ndarray with shape :math:`(N, M)` indicates IOU between each pairs of bounding boxes in `bbox_a` and `bbox_b`. """ if bbox_a.shape[1] < 4 or bbox_b.shape[1] < 4: raise IndexError("Bounding boxes axis 1 must have at least length 4") tl = np.maximum(bbox_a[:, None, :2], bbox_b[:, :2]) br = np.minimum(bbox_a[:, None, 2:4], bbox_b[:, 2:4]) area_i = np.prod(br - tl, axis=2) * (tl < br).all(axis=2) area_a = np.prod(bbox_a[:, 2:4] - bbox_a[:, :2], axis=1) area_b = np.prod(bbox_b[:, 2:4] - bbox_b[:, :2], axis=1) return area_i / (area_a[:, None] + area_b - area_i)
StarcoderdataPython
181194
import logging from argparse import ArgumentParser import yaml from src.app import Application class ConfigFromCLI: def __init__(self): self._host = '127.0.0.1' self._port = 8000 self._set_config() def _set_config(self): config = self._get_config_from_file() if config: self._host = config.get('host') self._port = int(config.get('port')) def _get_config_from_file(self): args = self._get_args() if args.config: with open(args.config) as file: return yaml.load(file, Loader=yaml.Loader) @staticmethod def _get_args(): parser = ArgumentParser() parser.add_argument( '-c', '--config', type=str, required=False, help='Sets config file path' ) return parser.parse_args() @property def host(self): return self._host @property def port(self): return self._port logging.basicConfig( level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler('../../src/client/client.log', encoding='utf-8'), logging.StreamHandler() ] ) config = ConfigFromCLI() with Application() as app: app.host, app.port = config.host, config.port app.run()
StarcoderdataPython
3302703
from src.wrapper.sh1106 import Screen from src.modules.clock_module import Module as ClockModule from src.modules.temperature_module import Module as TemperatureModule from PIL import Image, ImageDraw, ImageFont import os font_path = os.path.join('assets', 'Font.ttf') class MenuItem: def __init__(self, title, module): self.title = title self.module = module class Settings: items_on_display = 2 items_margin = 25 class Menu: def __init__(self, display): self.display = display self.font = ImageFont.truetype(font_path, 20) self.current_scroll_index = 0 self.start_image = Image.new('1', (display.width, display.height), "WHITE") self.draw = ImageDraw.Draw(self.start_image) self.module = None self.menu_items = [ MenuItem('Uhrzeit', ClockModule(self.display)), MenuItem('Temp.', TemperatureModule(self.display)) ] self.reload_menu_items() self.draw_menu() def draw_menu(self): for index, item in enumerate(self.shown_menu): self.draw.text((5, Settings.items_margin * index + 5), f"{index + 1} {item.title}", font=self.font, fill=0) def reload_menu_items(self): self.shown_menu = self.menu_items[self.current_scroll_index : (Settings.items_on_display + self.current_scroll_index)] def rerender_display(self): self.reload_menu_items() self.display.clear() self.start_image = Image.new('1', (self.display.width, self.display.height), "WHITE") self.draw = ImageDraw.Draw(self.start_image) self.draw_menu() def menu_up(self, channel): self.current_scroll_index = min(self.current_scroll_index + 1, len(self.menu_items) - 1) self.rerender_display() def menu_down(self, channel): self.current_scroll_index = max(0, self.current_scroll_index - 1) self.rerender_display() def menu_option1(self, channel): self.select(1) def menu_option2(self, channel): self.select(2) def menu_option3(self, channel): if self.module is None: self.select(3) else: self.module = None def select(self, option): try: module_class = self.shown_menu[option - 1].module self.module = module_class except IndexError: print("This option does not exists.") except Exception: pass
StarcoderdataPython
3321834
import sys import importlib import bpy from pathlib import Path # running as a script from terminal: path_script = Path(__file__) # running as a script from within blender: #path_script = Path(bpy.context.space_data.text.filepath) path_repo = path_script.parent.parent sys.path.append(str(path_repo.joinpath('LIB'))) import numpy as np import math import csv from BlenderVisual import blender_element as be from BlenderVisual import blender_composite as bc from BlenderVisual import blender_utility as bu importlib.reload(bc) importlib.reload(be) importlib.reload(bu) ########################## ## WORLD ########################## #render bu.render_config(x=1080, y=720, sample=32, use_gpu = False) world = bu.reset_world() world.color = (1,1,1) sce = bpy.data.scenes[0] sce_sp = bpy.data.scenes[1] ########################## ## Studio ########################## studio = bc.photo_studio(sce) # stage objectSize = np.asarray([4, 4, 4]) fieldCenter = objectSize/2 studio.set_location(fieldCenter) studio.set_subject_size(6) studio.adjust_light('key', rot_x=np.pi/3) studio.adjust_light('fill', rot_x=np.pi/3) studio.adjust_light('rim', rot_x=np.pi/3) studio.set_rotation(0, np.pi/8*7) mat_black = be.createEmissionMaterial('k_emission', [0,0,0,1]) anchor_axis = studio.create_camera_anchor('axis_anchor', [-.9, -.9, -8]) arrow = bc.axis_arrow(sce, .15) arrow.set_anchor(anchor_axis) arrow.reset_location() arrow.set_mat(mat_black) wm_text = 'Cross section' anchor_wm = studio.create_camera_anchor('wm_anchor', [-1.4, .9, -8]) wm = bc.watermark(sce, wm_text, mat_black) wm.set_anchor(anchor_wm) wm.set_scale(.1) ##################### # data ##################### working_dir = str(path_repo) + '/example' from scipy.interpolate import RegularGridInterpolator X,Y,Z = np.mgrid[-2:2:40j, -2:2:40j, -2:2:40j] #surf_eq = X**3 - Y + Z**2 - (X**2+Y**2+Z**2)**2 + 3*(X**2+Y**2+Z**2) - 3 surf_eq = X**4 + Y**4 + Z**4 - ((X**2+Y+Z**3)**2)**1.5 + (X+Y+Z) - 3 x = np.arange(surf_eq.shape[0]) y = np.arange(surf_eq.shape[1]) z = np.arange(surf_eq.shape[2]) fn = RegularGridInterpolator((x,y,z), surf_eq) ##################### # objects ##################### colormap = bu.colormapVIRIDIS #smin = np.percentile(surf_eq.flatten(), 20) #smax = np.percentile(surf_eq.flatten(), 95) smin = -8 smax = 8 #be.create_color_bar(colormap, smin, smax, 5, 'g/L') cbar = bc.colorbar(sce, colormap, smin, smax) cbar.annotate(5, 'g/L', '') cbar.resize_text(1) anchor_cbar = studio.create_camera_anchor('cbar_anchor', [-1.3, -.2, -8]) cbar.set_anchor(anchor_cbar) cbar.set_scale(.15) cbar.set_brightness(4) init_bin = [.2, 0, .2] init_cross = [bu.get_interp_loc_from_slice(b, 40, [0,4]) for b in init_bin] vol = bc.box_slice('vol', sce, objectSize, (1,.3,0,1)) s0 = vol.add_slice('x', 0, init_cross[0]) s1 = vol.add_slice('y', 1, init_cross[1]) s2 = vol.add_slice('z', 2, init_cross[2]) vol.set_divider(init_cross, radius = .02, color = (1,1,1,1)) x_cut = np.interp(init_cross[0], [0,objectSize[0]] , [0, 39]) values_yz = bu.get_interpolation_from_3D(fn, 0, [x_cut,0,0], [x_cut,39,39],[1,100,100]) rgba = be.mapToColor(values_yz, colormap, xmin=smin, xmax= smax, log=False, maptype='RGBA') img = be.createImage('x_img', rgba) vol.update_plane(s0, img, 0, init_cross[0]) z_cut = np.interp(init_cross[2], [0,objectSize[2]] , [0, 39]) values_xy = bu.get_interpolation_from_3D(fn, 2, [0,0,z_cut], [39,39,z_cut],[100,100,1]) rgba = be.mapToColor(values_xy, colormap, xmin=smin, xmax= smax, log=False, maptype='RGBA') img = be.createImage('z_img', rgba) vol.update_plane(s2, img, 2, init_cross[2]) ##################### # slice ##################### def visualSlice(scene): f = scene.frame_current f0 = scene.frame_start f1 = scene.frame_end y_min = 0 y_max = 39 y_slice = np.interp(f, [f0, f1], [y_min, y_max]) values_xz = bu.get_interpolation_from_3D(fn, 1, [0,y_slice,0], [39,y_slice,39],[100,1,100]) values_zx = np.transpose(values_xz) rgba = be.mapToColor(values_zx, colormap, xmin=smin, xmax= smax,log=False, maptype='RGBA') img = be.createImage('y{}'.format(f), rgba) loc = bu.get_interp_loc_from_slice(y_slice, 40, [0,4]) vol.update_plane(s1, img, 1, loc) wm.set_text('y = {:.2f}'.format(y_slice)) ## animation bpy.app.handlers.frame_change_pre.clear() bpy.app.handlers.frame_change_pre.append(visualSlice) sce.frame_start = 1 sce.frame_end = 40 sce.frame_current = sce.frame_start sce.render.image_settings.file_format = 'JPEG' frames = list(range(1,sce.frame_end+1)) #frames = list(range(1, 2)) for frame_nr in frames: sce.frame_set(frame_nr) arrow.reset_location() sce.render.filepath = working_dir+'/scratch/section/' +str(frame_nr) bpy.ops.render.render(write_still=True)
StarcoderdataPython
1777
<reponame>MaxwellDPS/healthchecks import os from django.conf import settings from django.template.loader import render_to_string from django.utils import timezone import json import requests from urllib.parse import quote, urlencode from hc.accounts.models import Profile from hc.lib import emails from hc.lib.string import replace try: import apprise except ImportError: # Enforce settings.APPRISE_ENABLED = False def tmpl(template_name, **ctx): template_path = "integrations/%s" % template_name # \xa0 is non-breaking space. It causes SMS messages to use UCS2 encoding # and cost twice the money. return render_to_string(template_path, ctx).strip().replace("\xa0", " ") class Transport(object): def __init__(self, channel): self.channel = channel def notify(self, check): """ Send notification about current status of the check. This method returns None on success, and error message on error. """ raise NotImplementedError() def is_noop(self, check): """ Return True if transport will ignore check's current status. This method is overridden in Webhook subclass where the user can configure webhook urls for "up" and "down" events, and both are optional. """ return False def checks(self): return self.channel.project.check_set.order_by("created") class Email(Transport): def notify(self, check, bounce_url): if not self.channel.email_verified: return "Email not verified" unsub_link = self.channel.get_unsub_link() headers = { "X-Bounce-Url": bounce_url, "List-Unsubscribe": "<%s>" % unsub_link, "List-Unsubscribe-Post": "List-Unsubscribe=One-Click", } try: # Look up the sorting preference for this email address p = Profile.objects.get(user__email=self.channel.email_value) sort = p.sort except Profile.DoesNotExist: # Default sort order is by check's creation time sort = "created" # list() executes the query, to avoid DB access while # rendering a template ctx = { "check": check, "checks": list(self.checks()), "sort": sort, "now": timezone.now(), "unsub_link": unsub_link, } emails.alert(self.channel.email_value, ctx, headers) def is_noop(self, check): if not self.channel.email_verified: return True if check.status == "down": return not self.channel.email_notify_down else: return not self.channel.email_notify_up class Shell(Transport): def prepare(self, template, check): """ Replace placeholders with actual values. """ ctx = { "$CODE": str(check.code), "$STATUS": check.status, "$NOW": timezone.now().replace(microsecond=0).isoformat(), "$NAME": check.name, "$TAGS": check.tags, } for i, tag in enumerate(check.tags_list()): ctx["$TAG%d" % (i + 1)] = tag return replace(template, ctx) def is_noop(self, check): if check.status == "down" and not self.channel.cmd_down: return True if check.status == "up" and not self.channel.cmd_up: return True return False def notify(self, check): if not settings.SHELL_ENABLED: return "Shell commands are not enabled" if check.status == "up": cmd = self.channel.cmd_up elif check.status == "down": cmd = self.channel.cmd_down cmd = self.prepare(cmd, check) code = os.system(cmd) if code != 0: return "Command returned exit code %d" % code class HttpTransport(Transport): @classmethod def get_error(cls, response): # Override in subclasses: look for a specific error message in the # response and return it. return None @classmethod def _request(cls, method, url, **kwargs): try: options = dict(kwargs) options["timeout"] = 5 if "headers" not in options: options["headers"] = {} if "User-Agent" not in options["headers"]: options["headers"]["User-Agent"] = "healthchecks.io" r = requests.request(method, url, **options) if r.status_code not in (200, 201, 202, 204): m = cls.get_error(r) if m: return f'Received status code {r.status_code} with a message: "{m}"' return f"Received status code {r.status_code}" except requests.exceptions.Timeout: # Well, we tried return "Connection timed out" except requests.exceptions.ConnectionError: return "Connection failed" @classmethod def get(cls, url, **kwargs): # Make 3 attempts-- for x in range(0, 3): error = cls._request("get", url, **kwargs) if error is None: break return error @classmethod def post(cls, url, **kwargs): # Make 3 attempts-- for x in range(0, 3): error = cls._request("post", url, **kwargs) if error is None: break return error @classmethod def put(cls, url, **kwargs): # Make 3 attempts-- for x in range(0, 3): error = cls._request("put", url, **kwargs) if error is None: break return error class Webhook(HttpTransport): def prepare(self, template, check, urlencode=False): """ Replace variables with actual values. """ def safe(s): return quote(s) if urlencode else s ctx = { "$CODE": str(check.code), "$STATUS": check.status, "$NOW": safe(timezone.now().replace(microsecond=0).isoformat()), "$NAME": safe(check.name), "$TAGS": safe(check.tags), } for i, tag in enumerate(check.tags_list()): ctx["$TAG%d" % (i + 1)] = safe(tag) return replace(template, ctx) def is_noop(self, check): if check.status == "down" and not self.channel.url_down: return True if check.status == "up" and not self.channel.url_up: return True return False def notify(self, check): spec = self.channel.webhook_spec(check.status) if not spec["url"]: return "Empty webhook URL" url = self.prepare(spec["url"], check, urlencode=True) headers = {} for key, value in spec["headers"].items(): headers[key] = self.prepare(value, check) body = spec["body"] if body: body = self.prepare(body, check) if spec["method"] == "GET": return self.get(url, headers=headers) elif spec["method"] == "POST": return self.post(url, data=body.encode(), headers=headers) elif spec["method"] == "PUT": return self.put(url, data=body.encode(), headers=headers) class Slack(HttpTransport): def notify(self, check): text = tmpl("slack_message.json", check=check) payload = json.loads(text) return self.post(self.channel.slack_webhook_url, json=payload) class HipChat(HttpTransport): def is_noop(self, check): return True class OpsGenie(HttpTransport): @classmethod def get_error(cls, response): try: return response.json().get("message") except ValueError: pass def notify(self, check): headers = { "Conent-Type": "application/json", "Authorization": "GenieKey %s" % self.channel.opsgenie_key, } payload = {"alias": str(check.code), "source": settings.SITE_NAME} if check.status == "down": payload["tags"] = check.tags_list() payload["message"] = tmpl("opsgenie_message.html", check=check) payload["note"] = tmpl("opsgenie_note.html", check=check) payload["description"] = tmpl("opsgenie_description.html", check=check) url = "https://api.opsgenie.com/v2/alerts" if self.channel.opsgenie_region == "eu": url = "https://api.eu.opsgenie.com/v2/alerts" if check.status == "up": url += "/%s/close?identifierType=alias" % check.code return self.post(url, json=payload, headers=headers) class PagerDuty(HttpTransport): URL = "https://events.pagerduty.com/generic/2010-04-15/create_event.json" def notify(self, check): description = tmpl("pd_description.html", check=check) payload = { "service_key": self.channel.pd_service_key, "incident_key": str(check.code), "event_type": "trigger" if check.status == "down" else "resolve", "description": description, "client": settings.SITE_NAME, "client_url": check.details_url(), } return self.post(self.URL, json=payload) class PagerTree(HttpTransport): def notify(self, check): url = self.channel.value headers = {"Conent-Type": "application/json"} payload = { "incident_key": str(check.code), "event_type": "trigger" if check.status == "down" else "resolve", "title": tmpl("pagertree_title.html", check=check), "description": tmpl("pagertree_description.html", check=check), "client": settings.SITE_NAME, "client_url": settings.SITE_ROOT, "tags": ",".join(check.tags_list()), } return self.post(url, json=payload, headers=headers) class PagerTeam(HttpTransport): def notify(self, check): url = self.channel.value headers = {"Content-Type": "application/json"} payload = { "incident_key": str(check.code), "event_type": "trigger" if check.status == "down" else "resolve", "title": tmpl("pagerteam_title.html", check=check), "description": tmpl("pagerteam_description.html", check=check), "client": settings.SITE_NAME, "client_url": settings.SITE_ROOT, "tags": ",".join(check.tags_list()), } return self.post(url, json=payload, headers=headers) class Pushbullet(HttpTransport): def notify(self, check): text = tmpl("pushbullet_message.html", check=check) url = "https://api.pushbullet.com/v2/pushes" headers = { "Access-Token": self.channel.value, "Conent-Type": "application/json", } payload = {"type": "note", "title": settings.SITE_NAME, "body": text} return self.post(url, json=payload, headers=headers) class Pushover(HttpTransport): URL = "https://api.pushover.net/1/messages.json" def notify(self, check): others = self.checks().filter(status="down").exclude(code=check.code) # list() executes the query, to avoid DB access while # rendering a template ctx = {"check": check, "down_checks": list(others)} text = tmpl("pushover_message.html", **ctx) title = tmpl("pushover_title.html", **ctx) pieces = self.channel.value.split("|") user_key, prio = pieces[0], pieces[1] # The third element, if present, is the priority for "up" events if len(pieces) == 3 and check.status == "up": prio = pieces[2] payload = { "token": settings.PUSHOVER_API_TOKEN, "user": user_key, "message": text, "title": title, "html": 1, "priority": int(prio), } # Emergency notification if prio == "2": payload["retry"] = settings.PUSHOVER_EMERGENCY_RETRY_DELAY payload["expire"] = settings.PUSHOVER_EMERGENCY_EXPIRATION return self.post(self.URL, data=payload) class VictorOps(HttpTransport): def notify(self, check): description = tmpl("victorops_description.html", check=check) mtype = "CRITICAL" if check.status == "down" else "RECOVERY" payload = { "entity_id": str(check.code), "message_type": mtype, "entity_display_name": check.name_then_code(), "state_message": description, "monitoring_tool": settings.SITE_NAME, } return self.post(self.channel.value, json=payload) class Matrix(HttpTransport): def get_url(self): s = quote(self.channel.value) url = settings.MATRIX_HOMESERVER url += "/_matrix/client/r0/rooms/%s/send/m.room.message?" % s url += urlencode({"access_token": settings.MATRIX_ACCESS_TOKEN}) return url def notify(self, check): plain = tmpl("matrix_description.html", check=check) formatted = tmpl("matrix_description_formatted.html", check=check) payload = { "msgtype": "m.text", "body": plain, "format": "org.matrix.custom.html", "formatted_body": formatted, } return self.post(self.get_url(), json=payload) class Discord(HttpTransport): def notify(self, check): text = tmpl("slack_message.json", check=check) payload = json.loads(text) url = self.channel.discord_webhook_url + "/slack" return self.post(url, json=payload) class Telegram(HttpTransport): SM = "https://api.telegram.org/bot%s/sendMessage" % settings.TELEGRAM_TOKEN @classmethod def get_error(cls, response): try: return response.json().get("description") except ValueError: pass @classmethod def send(cls, chat_id, text): # Telegram.send is a separate method because it is also used in # hc.front.views.telegram_bot to send invite links. return cls.post( cls.SM, json={"chat_id": chat_id, "text": text, "parse_mode": "html"} ) def notify(self, check): from hc.api.models import TokenBucket if not TokenBucket.authorize_telegram(self.channel.telegram_id): return "Rate limit exceeded" text = tmpl("telegram_message.html", check=check) return self.send(self.channel.telegram_id, text) class Sms(HttpTransport): URL = "https://api.twilio.com/2010-04-01/Accounts/%s/Messages.json" def is_noop(self, check): return check.status != "down" def notify(self, check): profile = Profile.objects.for_user(self.channel.project.owner) if not profile.authorize_sms(): profile.send_sms_limit_notice("SMS") return "Monthly SMS limit exceeded" url = self.URL % settings.TWILIO_ACCOUNT auth = (settings.TWILIO_ACCOUNT, settings.TWILIO_AUTH) text = tmpl("sms_message.html", check=check, site_name=settings.SITE_NAME) data = { "From": settings.TWILIO_FROM, "To": self.channel.sms_number, "Body": text, } return self.post(url, data=data, auth=auth) class WhatsApp(HttpTransport): URL = "https://api.twilio.com/2010-04-01/Accounts/%s/Messages.json" def is_noop(self, check): if check.status == "down": return not self.channel.whatsapp_notify_down else: return not self.channel.whatsapp_notify_up def notify(self, check): profile = Profile.objects.for_user(self.channel.project.owner) if not profile.authorize_sms(): profile.send_sms_limit_notice("WhatsApp") return "Monthly message limit exceeded" url = self.URL % settings.TWILIO_ACCOUNT auth = (settings.TWILIO_ACCOUNT, settings.TWILIO_AUTH) text = tmpl("whatsapp_message.html", check=check, site_name=settings.SITE_NAME) data = { "From": "whatsapp:%s" % settings.TWILIO_FROM, "To": "whatsapp:%s" % self.channel.sms_number, "Body": text, } return self.post(url, data=data, auth=auth) class Trello(HttpTransport): URL = "https://api.trello.com/1/cards" def is_noop(self, check): return check.status != "down" def notify(self, check): params = { "idList": self.channel.trello_list_id, "name": tmpl("trello_name.html", check=check), "desc": tmpl("trello_desc.html", check=check), "key": settings.TRELLO_APP_KEY, "token": self.channel.trello_token, } return self.post(self.URL, params=params) class Apprise(HttpTransport): def notify(self, check): if not settings.APPRISE_ENABLED: # Not supported and/or enabled return "Apprise is disabled and/or not installed" a = apprise.Apprise() title = tmpl("apprise_title.html", check=check) body = tmpl("apprise_description.html", check=check) a.add(self.channel.value) notify_type = ( apprise.NotifyType.SUCCESS if check.status == "up" else apprise.NotifyType.FAILURE ) return ( "Failed" if not a.notify(body=body, title=title, notify_type=notify_type) else None ) class MsTeams(HttpTransport): def notify(self, check): text = tmpl("msteams_message.json", check=check) payload = json.loads(text) return self.post(self.channel.value, json=payload) class Zulip(HttpTransport): @classmethod def get_error(cls, response): try: return response.json().get("msg") except ValueError: pass def notify(self, check): _, domain = self.channel.zulip_bot_email.split("@") url = "https://%s/api/v1/messages" % domain auth = (self.channel.zulip_bot_email, self.channel.zulip_api_key) data = { "type": self.channel.zulip_type, "to": self.channel.zulip_to, "topic": tmpl("zulip_topic.html", check=check), "content": tmpl("zulip_content.html", check=check), } return self.post(url, data=data, auth=auth)
StarcoderdataPython
4815585
<reponame>justinshenk/simba<filename>simba/data_plot.py import os import pandas as pd import statistics import numpy as np import cv2 from configparser import ConfigParser, MissingSectionHeaderError, NoOptionError, NoSectionError import glob from simba.drop_bp_cords import * def data_plot_config(configini, SelectedBp): config = ConfigParser() configFile = str(configini) config.read(configFile) noAnimals = config.getint('General settings', 'animal_no') projectPath = config.get('General settings', 'project_path') poseConfigSetting = config.get('create ensemble settings', 'pose_estimation_body_parts') frames_dir_out = os.path.join(projectPath, 'frames', 'output', 'live_data_table') bplist = define_bp_drop_down(configini) print(bplist) if not os.path.exists(frames_dir_out): os.makedirs(frames_dir_out) csv_dir_in = os.path.join(projectPath, 'csv', 'features_extracted') vidInfPath = os.path.join(projectPath, 'logs', 'video_info.csv') try: wfileType = config.get('General settings', 'workflow_file_type') except NoOptionError: wfileType = 'csv' vidinfDf = pd.read_csv(vidInfPath) videoCounter = 0 try: multiAnimalIDList = config.get('Multi animal IDs', 'id_list') multiAnimalIDList = multiAnimalIDList.split(",") if multiAnimalIDList[0] != '': multiAnimalStatus = True print('Applying settings for multi-animal tracking...') else: multiAnimalStatus = False multiAnimalIDList = [] for animal in range(noAnimals): multiAnimalIDList.append('Animal_' + str(animal + 1) + '_') print('Applying settings for classical tracking...') except NoSectionError: multiAnimalIDList = [] for animal in range(noAnimals): multiAnimalIDList.append('Animal_' + str(animal + 1) + '_') multiAnimalStatus = False print('Applying settings for classical tracking...') Xcols, Ycols, Pcols = getBpNames(configini) bpDict = create_body_part_dictionary(multiAnimalStatus, multiAnimalIDList, noAnimals, Xcols, Ycols, Pcols, []) ##### FIND RELEVANT COLUMN if poseConfigSetting != 'user_defined': if noAnimals == 1: move1ColName = "Movement_mouse_centroid" if noAnimals == 2: move1ColName = "Movement_mouse_1_centroid" if poseConfigSetting == 'user_defined': if noAnimals == 1: move1ColName = "movement_" + SelectedBp if noAnimals == 2: move1ColName = "movement_" + SelectedBp + '_1' ########### FIND CSV FILES ########### filesFound = glob.glob(csv_dir_in + "/*." + wfileType) print('Generating data plots for ' + str(len(filesFound)) + ' video(s)...') for currentFile in filesFound: frameCounter = 0 list_nose_movement_M1, list_nose_movement_M2 = [], [] loop = 0 CurrentVideoName = os.path.basename(currentFile.replace('.csv', '')) videoSettings = vidinfDf.loc[vidinfDf['Video'] == str(CurrentVideoName)] try: fps = int(videoSettings['fps']) except TypeError: print('Error: make sure all the videos that are going to be analyzed are represented in the project_folder/logs/video_info.csv file') videoCounter += 1 csv_df = pd.read_csv(currentFile) savePath = os.path.join(frames_dir_out, CurrentVideoName) if not os.path.exists(savePath): os.makedirs(savePath) df_lists = [csv_df[i:i + fps] for i in range(0, csv_df.shape[0], fps)] for currentDf in df_lists: try: mmMove_nose_M1 = currentDf[move1ColName].mean() except (KeyError, UnboundLocalError): move1ColName = bplist[0][0] move1ColName = 'Movement_' + str(move1ColName) mmMove_nose_M1 = currentDf[move1ColName].mean() list_nose_movement_M1.append(mmMove_nose_M1) current_velocity_M1_cm_sec = round(mmMove_nose_M1, 2) meanVelocity_M1 = statistics.mean(list_nose_movement_M1) meanVelocity_M1 = round(meanVelocity_M1, 2) total_Movement_M1 = sum(list_nose_movement_M1) total_Movement_M1 = round(total_Movement_M1, 2) if noAnimals == 2: if poseConfigSetting != 'user_defined': mmMove_nose_M2 = currentDf["Movement_mouse_2_centroid"].mean() if poseConfigSetting == 'user_defined': mmMove_nose_M2 = currentDf["movement_" + SelectedBp].mean() list_nose_movement_M2.append(mmMove_nose_M2) current_velocity_M2_cm_sec = round(mmMove_nose_M2, 2) meanVelocity_M2 = statistics.mean(list_nose_movement_M2) meanVelocity_M2 = round(meanVelocity_M2, 2) total_Movement_M2 = sum(list_nose_movement_M2) total_Movement_M2 = round(total_Movement_M2, 2) # save images for index, row in currentDf.iterrows(): img_size = (400, 600, 3) img = np.ones(img_size) * 255 cv2.putText(img, str('Mean velocity animal 1: '), (5, 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (255, 0, 0), 1) cv2.putText(img, str('Total movement animal 1: '), (5, 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (0, 0, 255), 1) cv2.putText(img, str('Current velocity animal 1: '), (5, 60), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (0, 100, 0), 1) cv2.putText(img, str(meanVelocity_M1) + str(' cm/s'), (275, 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (255, 0, 0), 1) cv2.putText(img, str(total_Movement_M1) + str(' cm'), (275, 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (0, 0, 255), 1) cv2.putText(img, str(current_velocity_M1_cm_sec) + str(' cm/s'), (275, 60), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (0, 100, 0), 1) if noAnimals == 2: cv2.putText(img, str('Mean velocity animal 2: '), (5, 80), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (255, 0, 0), 1) cv2.putText(img, str('Total movement animal 2: '), (5, 100), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (0, 0, 255), 1) cv2.putText(img, str('Current velocity animal 2: '), (5, 120), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (0, 100, 0), 1) cv2.putText(img, str(meanVelocity_M2) + str(' cm/s'), (275, 80), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (255, 0, 0), 1) cv2.putText(img, str(total_Movement_M2) + str(' cm'), (275, 100), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (0, 0, 255), 1) cv2.putText(img, str(current_velocity_M2_cm_sec) + str(' cm/s'), (275, 120), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (0, 100, 0), 1) if poseConfigSetting != 'user_defined': centroid_distance_cm = (int(row["Centroid_distance"])) / 10 centroid_distance_cm = round(centroid_distance_cm, 2) nose_2_nose_dist_cm = (int(row["Nose_to_nose_distance"])) / 10 nose_2_nose_dist_cm = round(nose_2_nose_dist_cm, 2) cv2.putText(img, str('Centroid distance: '), (5, 140), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (153, 50, 204), 1) cv2.putText(img, str('Nose to nose distance: '), (5, 160), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (153, 50, 204), 1) cv2.putText(img, str(centroid_distance_cm) + str(' cm'), (275, 140), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (153, 50, 204), 1) cv2.putText(img, str(nose_2_nose_dist_cm) + str(' cm'), (275, 160), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (153, 50, 204), 1) imageSaveName = os.path.join(savePath, str(loop) + '.png') cv2.imwrite(imageSaveName, img) print('Live plot ' + str(loop) + '/' + str(len(csv_df)) + ' for video ' + str(videoCounter) + '/' + str(len(filesFound))) loop += 1 frameCounter += 1 print('Finished generating data plots.')
StarcoderdataPython
3303218
# Pick pivot # Partition in lower and higher part # Recursively sort lower and higher def quicksort(in_list): if len(in_list)<2: return in_list pivot_index = int(len(in_list)/2) #choice of pivot? pivot_val = in_list[pivot_index] # in place? lower_list = [val for i,val in enumerate(in_list) if val<=pivot_val and i!= pivot_index] higher_list = [val for val in in_list if val>pivot_val] return quicksort(lower_list) + [pivot_val] + quicksort(higher_list) import random print(quicksort([random.randint(0,10) for i in range(10)]))
StarcoderdataPython
1716285
<filename>src/genie/libs/parser/iosxe/tests/ShowIpNhrpNhs/cli/equal/golden_output_2_expected.py expected_output = { "Tunnel100": { "nhs_ip": { "172.16.58.3": { "nhs_state": "RE", "nbma_address": "172.16.17.32", "priority": 0, "cluster": 0, } } } }
StarcoderdataPython
196481
<gh_stars>0 import inspect import logging import os import time import traceback from AndroidRunner.Devices import Devices from AndroidRunner.PluginHandler import PluginHandler from AndroidRunner.util import makedirs import paths # noinspection PyUnusedLocal class PluginTests(object): def __init__(self, config): self.logger = logging.getLogger(self.__class__.__name__) self.errors = [] self.config = config adb_path = config.get('adb_path', 'adb') self.devices = Devices(config['devices'], adb_path=adb_path) self.profilers = None self.output_root = paths.OUTPUT_DIR self.result_file = os.path.join(self.output_root, 'Test_results.txt') self.dirs = {} @staticmethod def get_progress_xml_file(): return "Testing, no progress file has been made" def check_profilers(self): self.check_init_profilers() default_profilers = ['android', 'batterystats', 'trepn', 'monsoon'] for profiler in self.profilers: if profiler.name.lower() not in default_profilers: self.check_profiler(profiler.currentProfiler, profiler.name) def check_init_profilers(self): self.profilers = [] for name, params in list(self.config.get('profilers', {}).items()): try: self.profilers.append(PluginHandler(name, params)) except Exception: self.errors.append('Profiler {}: Initializing profiler resulted in the following error:\n{}'. format(name, traceback.format_exc())) def check_profiler(self, profiler, profiler_name): profiler_parent = inspect.getmro(type(profiler))[1] profiler_parent_module = profiler_parent.__module__ profiler_parent_name = profiler_parent.__name__ if '.Profiler' in profiler_parent_module and profiler_parent_name == 'Profiler': self.check_profiler_methods(profiler, profiler_name) else: self.errors.append('Profiler {}: doesn\'t have the \'Profiler\' ' 'as parent class, plugin can\'t be tested'.format(profiler_name)) def check_profiler_methods(self, profiler, profiler_name): device = self.check_profiler_dependencies(profiler, profiler_name) if device is not None: self.set_dirs(device, profiler_name) methods = ['load', 'set_output', 'start_profiling', 'stop_profiling', 'collect_results', 'aggregate_subject', 'unload', 'aggregate_end'] for current_method in methods: self.check_profiler_method(device, profiler, current_method, profiler_name) def set_dirs(self, device, profiler_name): self.dirs['subject'] = os.path.join(self.output_root, 'data', device.name, 'test_dir_1', 'test_dir_2', profiler_name) self.dirs['aggregated'] = os.path.join(paths.OUTPUT_DIR, '{}_aggregated.csv'.format(profiler_name)) self.dirs['data_folder'] = os.path.join(paths.OUTPUT_DIR, 'data') makedirs(self.dirs['subject']) def check_profiler_method(self, device, profiler, current_method, profiler_name): try: if current_method == 'set_output': method_result = getattr(profiler, current_method)(self.dirs['subject']) elif current_method == 'stop_profiling': time.sleep(5) method_result = getattr(profiler, current_method)(device) time.sleep(5) elif current_method == 'aggregate_subject': method_result = getattr(profiler, current_method)() elif current_method == 'aggregate_end': method_result = getattr(profiler, current_method)(self.dirs['data_folder'], self.dirs['aggregated']) else: method_result = getattr(profiler, current_method)(device) if method_result is not None: self.errors.append("Profiler {}: Method {} gives non expected return value.". format(profiler_name, current_method)) except NotImplementedError: self.errors.append('Profiler {}: Method {} not implemented.'.format(profiler_name, current_method)) except Exception: self.errors.append('Profiler {}: Method {} gave the following error: \n{}' .format(profiler_name, current_method, traceback.format_exc())) def check_profiler_dependencies(self, profiler, profiler_name): method = 'dependencies()' try: method_result = profiler.dependencies() self.check_dependencies(method_result, profiler_name) except NotImplementedError: self.errors.append('Profiler {}: Method {} not implemented.'.format(profiler_name, method)) except Exception: self.errors.append('Profiler {}: Method {} gave the following error: \n{}' .format(profiler_name, method, traceback.format_exc())) device = None try: for current_device in self.devices: installed_apps = current_device.is_installed(profiler.dependencies()) not_installed_apps = [name for name, installed in list(installed_apps.items()) if not installed] if len(not_installed_apps) == 0: device = current_device break finally: if device is None: self.errors.append('Profiler {}: plugin not further tested, ' 'no device available that meets the dependencies. ' 'Check devices and dependencies'.format(profiler_name)) def check_dependencies(self, dependencies, profiler_name): if isinstance(dependencies, list): for dependency in dependencies: if isinstance(dependency, str): if len(dependency.split(".")) == 3: continue else: self.errors.append('Profiler {}: dependency \'{}\' has an invalid format' .format(profiler_name, dependency)) else: self.errors.append('Profiler {}: invalid object in dependency list' .format(profiler_name)) else: self.errors.append('Profiler {}: return value of dependencies() not a list object'.format(profiler_name)) def format_errors(self): result_string = '' if len(self.errors) > 0: result_string += '{} Errors found during testing: \n'.format(len(self.errors)) for error in self.errors: result_string += '\n{}'.format(error) else: result_string += "No errors found during testing" return result_string def write_to_file(self, formatted_errors): with open(self.result_file, 'w') as f: f.write(formatted_errors) def start(self): self.check_profilers() formated_errors = self.format_errors() self.write_to_file(formated_errors) print('\n{}'.format(formated_errors)) print('\nTest results saved to file: {}'.format(self.result_file))
StarcoderdataPython
1751411
<reponame>jayvdb/django-compat-patcher from __future__ import absolute_import, print_function, unicode_literals import os, sys, random import pytest import _test_utilities from django_compat_patcher.registry import get_relevant_fixers, get_relevant_fixer_ids, get_fixer_by_id from django_compat_patcher.utilities import get_patcher_setting from django_compat_patcher import patch def test_get_patcher_setting(): with pytest.raises(ValueError): get_patcher_setting("DEBUG") # only DCP settings allowed assert get_patcher_setting("DCP_INCLUDE_FIXER_IDS") == "*" assert get_patcher_setting("DCP_INCLUDE_FIXER_IDS", settings=dict(DCP_INCLUDE_FIXER_IDS=["a"])) == ["a"] # TODO patch django settings to check that they are used IFF no parameter "settings" def test_get_relevant_fixer_ids(): settings = random.choice(({}, None)) fixer_ids = get_relevant_fixer_ids(current_django_version="1.9", settings=settings) assert [expected_fixer_id in fixer_ids for expected_fixer_id in ['fix_deletion_templatetags_future_url', 'fix_deletion_core_handlers_wsgi_WSGIRequest_REQUEST']] assert len(fixer_ids) > 5 fixer_ids = get_relevant_fixer_ids(current_django_version="1.10") assert [expected_fixer_id in fixer_ids for expected_fixer_id in ['fix_deletion_templatetags_future_url', 'fix_deletion_core_handlers_wsgi_WSGIRequest_REQUEST']] assert len(fixer_ids) > 5 fixer_ids = get_relevant_fixer_ids(current_django_version="1.3") assert fixer_ids == ['fix_incoming_django_urls'] # TODO update this test when new fixers arrive, and test inclusion/exclusion filters settings = dict(DCP_INCLUDE_FIXER_IDS=[], DCP_INCLUDE_FIXER_FAMILIES=[], DCP_EXCLUDE_FIXER_IDS=[], DCP_EXCLUDE_FIXER_FAMILIES=[]) fixer_ids = get_relevant_fixer_ids(current_django_version="1.9", settings=settings) assert len(fixer_ids) == 0 settings = dict(DCP_INCLUDE_FIXER_IDS=[], DCP_INCLUDE_FIXER_FAMILIES=["django1.9"], DCP_EXCLUDE_FIXER_IDS=[], DCP_EXCLUDE_FIXER_FAMILIES=[]) fixer_ids = get_relevant_fixer_ids(current_django_version="1.9", settings=settings) assert len(fixer_ids) >= 2 settings = dict(DCP_INCLUDE_FIXER_IDS="*", DCP_INCLUDE_FIXER_FAMILIES=[], DCP_EXCLUDE_FIXER_IDS=[], DCP_EXCLUDE_FIXER_FAMILIES=[]) fixer_ids = get_relevant_fixer_ids(current_django_version="1.9", settings=settings) assert len(fixer_ids) >= 2 settings = dict(DCP_INCLUDE_FIXER_IDS=[], DCP_INCLUDE_FIXER_FAMILIES="*", DCP_EXCLUDE_FIXER_IDS=[], DCP_EXCLUDE_FIXER_FAMILIES=[]) fixer_ids = get_relevant_fixer_ids(current_django_version="1.9", settings=settings) assert len(fixer_ids) >= 2 settings = dict(DCP_INCLUDE_FIXER_IDS=['fix_deletion_templatetags_future_url'], DCP_INCLUDE_FIXER_FAMILIES=["django1.9"], DCP_EXCLUDE_FIXER_IDS=[], DCP_EXCLUDE_FIXER_FAMILIES=["django1.6", "django1.7", "django1.8", "django1.9"]) fixer_ids = get_relevant_fixer_ids(current_django_version="1.9", settings=settings) assert fixer_ids == [] settings = dict(DCP_INCLUDE_FIXER_IDS=['fix_deletion_templatetags_future_url'], DCP_INCLUDE_FIXER_FAMILIES=["django1.9"], DCP_EXCLUDE_FIXER_IDS=['fix_deletion_templatetags_future_url'], DCP_EXCLUDE_FIXER_FAMILIES=[]) fixer_ids = get_relevant_fixer_ids(current_django_version="1.9", settings=settings) assert 'fix_deletion_core_handlers_wsgi_WSGIRequest_REQUEST' in fixer_ids settings = dict(DCP_INCLUDE_FIXER_IDS=[], DCP_INCLUDE_FIXER_FAMILIES=["django1.9"], DCP_EXCLUDE_FIXER_IDS=[], DCP_EXCLUDE_FIXER_FAMILIES="*") fixer_ids = get_relevant_fixer_ids(current_django_version="1.9", settings=settings) assert fixer_ids == [] def test_get_fixer_by_id(): res = get_fixer_by_id("fix_deletion_templatetags_future_ssi") assert isinstance(res, dict) assert res["fixer_id"] == "fix_deletion_templatetags_future_ssi" with pytest.raises(LookupError): get_fixer_by_id("ddssdfsdfsdf") def test_django_patcher(): applied_fixer_ids = patch() assert len(applied_fixer_ids) > 0 # todo strengthen this tets?
StarcoderdataPython
1706427
<gh_stars>0 # python list generator print '************** Generator Test Programs **************' l = [x * x for x in range(10)] print l g = (x * x for x in range(10)) print g for x in g: print x def fib(max): n, a, b = 0, 0, 1 while n < max: yield b a, b = b, a + b n = n + 1 for x in fib(10): print x raw_input()
StarcoderdataPython
1793104
from .supertype import supertype
StarcoderdataPython
151115
# This program has been developed by students from the bachelor Computer Science at Utrecht University within the # Software and Game project course # ©Copyright Utrecht University Department of Information and Computing Sciences. """Contains test data.""" test_get_assignments_data = \ { "courses": [ { "assignments": [ { "cmid": 6, "name": "Learning basic loops", "duedate": 1573776060, }, { "cmid": 9, "name": "Learning booleans", "duedate": 1573776060, }, ] } ], "warnings": [] } test_get_assignments_check = \ [ { "cmid": 6, "name": "Learning basic loops", "duedate": 1573776060, }, { "cmid": 9, "name": "Learning booleans", "duedate": 1573776060, }, ] test_assignment_completion_check = \ { "statuses": [ { "cmid": 6, "state": 1 }, { "cmid": 9, "state": 0 } ], "warnings": [] } test_get_enrolled_users = \ [ { "id": 4, "username": "WS", "firstname": "Will", "lastname": "Smith", "fullname": "<NAME>", } ] test_inactivity_get_enrolled_users = \ [ { "id": 2 }, { "id": 3 }, { "id": 4 }, { "id": 5 } ] test_get_courses_by_id = \ { 'courses': [ { 'id': 2, 'fullname': 'BeginningCourse' } ] } test_get_courses_by_id_ended = \ { 'courses': [ { 'id': 2, 'fullname': '<NAME>', 'displayname': 'No view course', 'shortname': 'nvc', 'categoryid': 1, 'categoryname': 'Miscellaneous', 'sortorder': 10001, 'summary': '', 'summaryformat': 1, 'summaryfiles': [], 'overviewfiles': [], 'contacts': [ {'id': 4, 'fullname': '<NAME>'}], 'enrollmentmethods': ['manual'], 'idnumber': '', 'format': 'topics', 'showgrades': 1, 'newsitems': 5, 'startdate': 1605740400, 'enddate': 1637276800, 'maxbytes': 0, 'showreports': 0, 'visible': 1, 'groupmode': 0, 'groupmodeforce': 0, 'defaultgroupingid': 0, 'enablecompletion': 1, 'completionnotify': 0, 'lang': '', 'theme': '', 'marker': 0, 'legacyfiles': 0, 'calendartype': '', 'timecreated': 1605708824, 'timemodified': 1605708824, 'requested': 0, 'cacherev': 1605801045, 'filters': [{'filter': 'displayh5p', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'activitynames', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'mathjaxloader', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'emoticon', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'urltolink', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'mediaplugin', 'localstate': 0, 'inheritedstate': 1}], 'courseformatoptions': [{'name': 'hiddensections', 'value': 0}, {'name': 'coursedisplay', 'value': 0}]}] } test_get_courses_by_id_live = \ { 'courses': [ { 'id': 2, 'fullname': 'No view course', 'displayname': 'No view course', 'shortname': 'nvc', 'categoryid': 1, 'categoryname': 'Miscellaneous', 'sortorder': 10001, 'summary': '', 'summaryformat': 1, 'summaryfiles': [], 'overviewfiles': [], 'contacts': [ {'id': 4, 'fullname': '<NAME>'}], 'enrollmentmethods': ['manual'], 'idnumber': '', 'format': 'topics', 'showgrades': 1, 'newsitems': 5, 'startdate': 1605740400, 'enddate': 1637276400, 'maxbytes': 0, 'showreports': 0, 'visible': 1, 'groupmode': 0, 'groupmodeforce': 0, 'defaultgroupingid': 0, 'enablecompletion': 1, 'completionnotify': 0, 'lang': '', 'theme': '', 'marker': 0, 'legacyfiles': 0, 'calendartype': '', 'timecreated': 1605708824, 'timemodified': 1605708824, 'requested': 0, 'cacherev': 1605801045, 'filters': [{'filter': 'displayh5p', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'activitynames', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'mathjaxloader', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'emoticon', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'urltolink', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'mediaplugin', 'localstate': 0, 'inheritedstate': 1}], 'courseformatoptions': [{'name': 'hiddensections', 'value': 0}, {'name': 'coursedisplay', 'value': 0}]}] } test_get_courses_by_id_young = \ { 'courses': [ { 'id': 2, 'fullname': 'No view course', 'displayname': 'No view course', 'shortname': 'nvc', 'categoryid': 1, 'categoryname': 'Miscellaneous', 'sortorder': 10001, 'summary': '', 'summaryformat': 1, 'summaryfiles': [], 'overviewfiles': [], 'contacts': [ {'id': 4, 'fullname': '<NAME>'}], 'enrollmentmethods': ['manual'], 'idnumber': '', 'format': 'topics', 'showgrades': 1, 'newsitems': 5, 'startdate': 1605740400, 'enddate': 1606487200, 'maxbytes': 0, 'showreports': 0, 'visible': 1, 'groupmode': 0, 'groupmodeforce': 0, 'defaultgroupingid': 0, 'enablecompletion': 1, 'completionnotify': 0, 'lang': '', 'theme': '', 'marker': 0, 'legacyfiles': 0, 'calendartype': '', 'timecreated': 1606400370, 'timemodified': 1605708824, 'requested': 0, 'cacherev': 1605801045, 'filters': [{'filter': 'displayh5p', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'activitynames', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'mathjaxloader', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'emoticon', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'urltolink', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'mediaplugin', 'localstate': 0, 'inheritedstate': 1}], 'courseformatoptions': [{'name': 'hiddensections', 'value': 0}, {'name': 'coursedisplay', 'value': 0}]}] } test_get_courses_by_id_old = \ { 'courses': [ { 'id': 2, 'fullname': 'No view course', 'displayname': 'No view course', 'shortname': 'nvc', 'categoryid': 1, 'categoryname': 'Miscellaneous', 'sortorder': 10001, 'summary': '', 'summaryformat': 1, 'summaryfiles': [], 'overviewfiles': [], 'contacts': [ {'id': 4, 'fullname': '<NAME>'}], 'enrollmentmethods': ['manual'], 'idnumber': '', 'format': 'topics', 'showgrades': 1, 'newsitems': 5, 'startdate': 1605740400, 'enddate': 1637276400, 'maxbytes': 0, 'showreports': 0, 'visible': 1, 'groupmode': 0, 'groupmodeforce': 0, 'defaultgroupingid': 0, 'enablecompletion': 1, 'completionnotify': 0, 'lang': '', 'theme': '', 'marker': 0, 'legacyfiles': 0, 'calendartype': '', 'timecreated': 1605708824, 'timemodified': 1605708824, 'requested': 0, 'cacherev': 1605801045, 'filters': [{'filter': 'displayh5p', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'activitynames', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'mathjaxloader', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'emoticon', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'urltolink', 'localstate': 0, 'inheritedstate': 1}, {'filter': 'mediaplugin', 'localstate': 0, 'inheritedstate': 1}], 'courseformatoptions': [{'name': 'hiddensections', 'value': 0}, {'name': 'coursedisplay', 'value': 0}]}] } test_learning_locker_viewed_course = \ { "more": "", "statements": [ { "actor": { "name": "Admin User", "account": { "homePage": "http://127.0.0.1:80", "name": "2" }, "objectType": "Assistant" }, "verb": { "id": "http://id.tincanapi.com/verb/viewed", "display": { "en": "viewed" } }, "object": { "id": "http://127.0.0.1:80/course/view.php?id=2", "definition": { "type": "http://id.tincanapi.com/activitytype/lms/course", "name": { "en": "BeginningCourse" }, "extensions": { "https://w3id.org/learning-analytics/learning-management-system/short-id": "BC", "https://w3id.org/learning-analytics/learning-management-system/external-id": "7" } }, "objectType": "Activity" }, "timestamp": "2019-10-16T11:26:19+01:00", "context": { "platform": "Moodle", "language": "en", "extensions": { "http://lrs.learninglocker.net/define/extensions/info": { "http://moodle.org": "3.7.2 (Build: 20190909)", "https://github.com/xAPI-vle/moodle-logstore_xapi": "v4.4.0", "event_name": "\\core\\event\\course_viewed", "event_function": "\\src\\transformer\\events\\core\\course_viewed" } }, "contextActivities": { "grouping": [ { "id": "http://127.0.0.1:80", "definition": { "type": "http://id.tincanapi.com/activitytype/lms", "name": { "en": "\"New Site\"" } }, "objectType": "Activity" } ], "category": [ { "id": "http://moodle.org", "definition": { "type": "http://id.tincanapi.com/activitytype/source", "name": { "en": "Moodle" } }, "objectType": "Activity" } ] } }, "id": "c98c8522-3d43-4098-9b5d-812392458328", "stored": "2019-10-16T10:27:02.866Z", "authority": { "objectType": "Assistant", "name": "<NAME>", "mbox": "mailto:<EMAIL>" }, "version": "1.0.0" } ] }
StarcoderdataPython
198577
#! usr/bin/env python # coding:utf-8 #===================================================== # Copyright (C) 2020 * Ltd. All rights reserved. # # Author : Chen_Sheng19 # Editor : VIM # Create time : 2020-06-09 # File name : # Description : product TFRecord data from image file # #===================================================== import tensorflow as tf import numpy as np from tqdm import tqdm import os from sklearn.utils import shuffle from PIL import Image def load_smaple(sample_dir,shuffle_flag = True): print("loading dataset...") lfilenames = [] labelnames = [] for dirpath,dirnames,filenames in os.walk(sample_dir): for filename in filenames: filepath = os.sep.join([dirpath,filename]) lfilenames.append(filepath) labelname = dirpath.split("\\")[-1] labelnames.append(labelname) lab = list(sorted(set(labelnames))) labdict = dict(zip(lab,list(range(len(lab))))) labels = [labdict[i] for i in labelnames] if shuffle_flag: return shuffle(np.asarray(lfilenames),np.asarray(labels)),np.asarray(lab) else: return (np.asarray(lfilenames),np.asarray(labels)),np.asarray(lab) dir_path = "man_woman" (filenames,labels),_ = load_smaple(dir_path,False) def make_TFRec(filenames,labels): #1.创建writer writer = tf.python_io.TFRecordWriter("mydata.tfrecords") for i in tqdm(range(len(labels))): image = Image.open(filenames[i]) img = image.resize((256,256)) img_raw = img.tobytes() #2.读取到的内容转化为tfrecords格式 example = tf.train.Example( #example features = tf.train.Features(#features feature = {"label": tf.train.Feature(int64_list = tf.train.Int64List(value = [labels[i]])), "img_raw": tf.train.Feature(bytes_list = tf.train.BytesList(value = [img_raw]))}))#feature字典 writer.write(example.SerializeToString())#序列化压缩 writer.close() make_TFRec(filenames,labels) def read_and_decode(filenames,flag="train",batch_size=3): #1.读取文件生成队列 if flag == "train": filename_queue = tf.train.string_input_producer(filenames) else: filename_queue = tf.train.string_input_producer(filenames,num_epochs=1,shuffle=False) #2.从队列读取example reader = tf.TFRecordReader() _,serialized_example = reader.read(filename_queue) #3.将example解析为features features = tf.parse_single_example(serialized_example, features = {"label":tf.FixedLenFeature([],tf.int64), "img_raw":tf.FixedLenFeature([],tf.string)}) #4.将features解析为图片数据 image = tf.decode_raw(features['img_raw'],tf.uint8) image = tf.reshape(image,[256,256,3]) label = tf.cast(features['label'],tf.int32) if flag == "train": image = tf.cast(image,tf.float32) * (1./255) - 0.5 img_batch,label_batch = tf.train.batch([image,label],batch_size=batch_size,capacity=20) return img_batch,label_batch return image,label TFRecordfilnames = ["mydata.tfrecords"] image,label = read_and_decode(TFRecordfilnames,flag='test') save_image_path = "show\\" if tf.gfile.Exists(save_image_path): tf.gfile.DeleteRecursively(save_image_path) tf.gfile.MakeDirs(save_image_path) with tf.Session() as sess: sess.run(tf.local_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) myset = set([]) try: i = 0 while True: example,example_label = sess.run([image,label]) example_label = str(example_label) if example_label not in myset: myset.add(example_label) tf.gfile.MakeDirs(save_image_path+example_label) img = Image.fromarray(example,'RGB') img.save(save_image_path+example_label+"\\"+str(i)+'_Label_'+'.jpg') print(i) i += 1 except tf.errors.OutOfRangeError: print('Done Test -- epoch limit reached') finally: coord.request_stop() coord.join(threads) print("stop()")
StarcoderdataPython
3251633
<filename>check_data_quality/cc/checkrn.py #!/usr/bin/env python # -*- coding:utf-8 -*- import sys import os import codecs # gbk gb18030 def checkFile(filePath, readCode='utf_8_sig'): dir_name = os.path.dirname(filePath) new_file_name = os.path.splitext(os.path.basename(filePath))[0] \ + '_error.csv' new_file_path = dir_name + os.sep + new_file_name print(new_file_path) with codecs.open(filePath, 'rb', readCode) as fr, \ codecs.open(new_file_path, 'w', readCode) as fw: fw.write("start check " + filePath) i = 0 error_line = 0 while True: # 读取一行 line = fr.readline() # 如果文件内容结束 if not line: break # 去除前后空格和行尾换行符 line = line.strip() if line[-1:] != '"': # if not line: # 如果是空行,或者当前行最后一个字符不是双引号 error_line = error_line + 1 print(filePath + " line: " + str(i)) fw.write(filePath + ' line:' + str(i) + '\n') print(line) fw.write(line + '\n') i = i + 1 fw.write('Total error line: ' + str(error_line)) def read_dir(dirPath, ext, readCode): for (root, dirs, files) in os.walk(dirPath): print(dirs) for filename in files: if filename[-len(ext):] == ext: checkFile(os.path.join(root, filename), readCode) for dirname in dirs: read_dir(os.path.join(root, dirname), ext, readCode) if __name__ == "__main__": if len(sys.argv) != 4: print("usage: checkrn.py dirpath ext readcode") exit(1) read_dir(sys.argv[1], sys.argv[2], sys.argv[3]) print("done")
StarcoderdataPython
35489
import mock import pytest from prf.tests.prf_testcase import PrfTestCase from pyramid.exceptions import ConfigurationExecutionError from prf.resource import Resource, get_view_class, get_parent_elements from prf.view import BaseView class TestResource(PrfTestCase): def test_init_(self): res = Resource(self.conf) assert res.member_name == '' assert res.collection_name == '' assert res.parent == None assert res.uid == '' with pytest.raises(ValueError): #member name cant be empty res.add('', view=BaseView) def test_repr_(self): res = Resource(self.conf, 'member', 'collection', uid='uid') assert 'uid' in res.__repr__() def test_get_ancestors(self): root = Resource(self.conf) one = root.add('one', view=BaseView) assert one.get_ancestors() == [] two = one.add('two', view=BaseView) anc = two.get_ancestors() assert anc[0] == one def test_add(self): root = Resource(self.conf) two = root.add('two', view=BaseView, id_name='two') assert two.parent == root assert two.member_name == 'two' assert two.collection_name == 'twos' assert two.uid == 'twos' assert two.is_singular is False three = two.add('tree', 'trix', view=BaseView, id_name='three') assert three.parent == two assert three.member_name == 'tree' assert three.collection_name == 'trix' assert three.uid == 'twos:trix' assert three.is_singular is False assert three in two.children four = three.add('four', view=BaseView) sing = two.add('sing', collection_name=None, view=BaseView) assert sing.is_singular is True pref = root.add('five', prefix='pref', view=BaseView) assert pref.uid == 'pref:fives' def test_add_id_name(self): root = Resource(self.conf) two = root.add('two', view=BaseView, id_name='username') assert two.id_name == 'username' three = two.add('tree', view=BaseView, id_name='username') assert three.path == 'twos/{two_username}/trees' @mock.patch('prf.resource.maybe_dotted') def test_get_view_class(self, fake_maybe_dotted): root = Resource(self.conf) fake_maybe_dotted.return_value = BaseView assert get_view_class(BaseView, root) == BaseView assert get_view_class('prf.view.BaseView', root) == BaseView fake_maybe_dotted.reset_mock() def test_get_parent_elements(self): root = Resource(self.conf) ppref, npref = get_parent_elements( root.add('one', view=BaseView).add('two', view=BaseView).add('three', view=BaseView)) assert ppref == 'ones/{one_id}/twos/{two_id}' assert npref == 'ones:twos:' @pytest.mark.skip('route_prefix is broken') def test_get_parent_elements_w_route_prefix(self): self.conf.route_prefix = 'route_prefix' root = Resource(self.conf) ppref, npref = get_parent_elements( root.add('one', view=BaseView).add('two', view=BaseView).add('three', view=BaseView)) assert ppref == 'route_prefix/ones/{one_id}/twos/{two_id}' assert npref == 'route_prefix:ones:'
StarcoderdataPython
3211871
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Apr 30 02:03:04 2019 @author: linyizi """ class LDA_original: @staticmethod def _convergence_(new, old, epsilon = 1.0e-3): ''' Check convergence. ''' delta = abs(new - old) return np.all(delta) < epsilon @staticmethod def _normalization_col(x): ''' Normalize a matrix. Each element is divided by the corresponding column sum. ''' return x/np.sum(x,0) @staticmethod def _accumulate_Phi(beta, Phi, doc): ''' This function accumulates the effect of Phi_new from all documents after e step. beta is V*k matrix. Phi is N_d * k matrix. Return updated beta. ''' row_index = list(doc.keys()) word_count = list(doc.values()) for i in range(len(row_index)): beta[row_index[i],:] = word_count[i] * Phi[i,:] return beta def __init__(self, k, max_em_iter=50, max_alpha_iter=50, max_Estep_iter=50): self._k = k self._max_em_iter = max_em_iter self._max_alpha_iter = max_alpha_iter self._max_Estep_iter = max_Estep_iter def initializaiton(self, V): ''' Initialize alpha and beta. alpha is a k-dim vector. beta is V*k matrix. ''' k = self._k alpha = np.random.uniform(size = k) alpha_new = alpha/np.sum(alpha) beta = np.random.dirichlet(alpha_new, V) return alpha_new, beta def Estep(self, doc, alpha, beta, N_d): ''' E step for a document, which calculate the posterior parameters. beta_old and alpha-old is coming from previous iteration. Return Phi and gamma of a document. ''' k = self._k max_iter = self._max_Estep_iter gamma_old = [alpha[i] + N_d/k for i in range(k)] row_index = list(doc.keys()) word_count = np.array(list(doc.values())) for i in range(max_iter): # Update Phi Phi = np.zeros((N_d, k)) for i in range(N_d): for j in range(k): Phi[i,j] = beta[row_index[i],j] * np.exp(digamma(gamma_old[j])) Phi[i,:] = Phi[i,:]/np.sum(Phi[i,:]) #Update gamma Phi_sum = np.zeros(k) for j in range(k): z = 0 for i in range(N_d): z += Phi[i,j] * word_count[i] Phi_sum[j] = z gamma_new = alpha + Phi_sum # Converge or not if (i>0) & self._convergence_(gamma_new, gamma_old): break else: gamma_old = gamma_new.copy() return gamma_new, Phi def newton_raphson(self, alpha_old, gamma_matrix): ''' This function uses New Raphson method to update alpha in the M step. alpha_old is a k-dim vector. gamma_matrix is a M * k matrix which stores all gamma from M documents. Return updated alpha. ''' k = self._k max_iter = self._max_alpha_iter M = gamma_matrix.shape[0] pg = np.sum(digamma(gamma_matrix), 0) - np.sum(digamma(np.sum(gamma_matrix, 1))) alpha_new = alpha_old.copy() for t in range(max_iter): alpha_sum = np.sum(alpha_old) g = M * (digamma(alpha_sum) - digamma(alpha_old)) + pg h = -M * polygamma(1, alpha_old) z = M * polygamma(1, alpha_sum) c = np.sum(g/h)/(z**(-1.0) + np.sum(h**(-1.0))) delta = (g-c)/h alpha_new -= delta if np.any(alpha_new) < 0: alpha_new = self.newton_raphson(alpha_old/10, gamma_matrix) return alpha_new if (t > 1) & self._convergence_(delta, np.zeros((1,k))): break else: alpha_old = alpha_new.copy() return alpha_new def fit(self, doc, vocabulary): ''' Latent Dirichlet Allocation Model. doc is a set of documents, each document is a dictionary. vocabulary contains the words in all documents. Return updated alpha and beta. ''' k = self._k max_iter = self._max_em_iter N_d = [len(d) for d in doc] # Get the length of each document. V = len(vocabulary) # Get the length of vocabulary M = len(doc) # Get the document number. # Initialize alpha, beta and the statistics od gamma alpha_new, beta_new = self.initializaiton(V) gamma_matrix = np.zeros((M, k)) for iter in range(max_iter): beta_old = beta_new.copy() alpha_old = alpha_new.copy() # E step for i in range(M): gamma, Phi = self.Estep(doc[i], alpha_old, beta_old, N_d[i]) beta_new = self._accumulate_Phi(beta_new, Phi, doc[i]) gamma_matrix[i,:] = gamma # M step alpha_new = self.newton_raphson(alpha_old, gamma_matrix) beta_new = self._normalization_col(beta_new) # check convergence if self._convergence_(alpha_new, alpha_old) & self._convergence_(np.sum(beta_new,0), np.sum(beta_old,0)): break return alpha_new, beta_new
StarcoderdataPython
1684175
<reponame>PhilippMatthes/carnivora<filename>carnivora/instabot/driver.py import datetime import threading import os from traceback import format_exc from selenium import webdriver # For webpage crawling from time import sleep import platform from selenium.common.exceptions import TimeoutException, NoSuchElementException from selenium.webdriver import ActionChains from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys # For input processing from random import randint import pickle # For data management from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as ec from carnivora.instabot.config import Config from carnivora.instabot.dispatcher import Dispatcher from carnivora.instabot.log import Log from tf_open_nsfw.classify_nsfw import classify_nsfw class Driver(threading.Thread): def __init__( self, username, password, screenshot_path, window_width=1920, window_height=1080, ): self.username = username self.password = password log_path = Config.bot_path + "log/" + username if not os.path.exists(log_path): os.makedirs(log_path) self.interacting_users_path = log_path + "/interacting_users.pickle" self.hashtags_path = log_path + "/hashtags.pickle" self.action_list_path = log_path + "/action_list.pickle" self.followed_users_all_time_path = log_path + "/followed_users_all_time.pickle" self.accounts_to_unfollow_path = log_path + "/accounts_to_unfollow.pickle" self.log_path = log_path + "/log.pickle" self.running_path = log_path + "/running.pickle" try: with open(self.interacting_users_path, "rb") as f: self.interacting_users = pickle.load(f) except (FileNotFoundError, EOFError): with open(self.interacting_users_path, "wb") as f: self.interacting_users = [] pickle.dump([], f) try: with open(self.hashtags_path, "rb") as f: self.hashtags = pickle.load(f) except (FileNotFoundError, EOFError): with open(self.hashtags_path, "wb") as f: self.hashtags = {} for h in Config.topics: self.hashtags[h] = 2 pickle.dump(self.hashtags, f) try: with open(self.action_list_path, "rb") as f: self.action_list = pickle.load(f) except (FileNotFoundError, EOFError): with open(self.action_list_path, "wb") as f: self.action_list = {} pickle.dump({}, f) try: with open(self.followed_users_all_time_path, "rb") as f: self.followed_accounts = pickle.load(f) except (FileNotFoundError, EOFError): with open(self.followed_users_all_time_path, "wb") as f: self.followed_accounts = {} pickle.dump({}, f) try: with open(self.accounts_to_unfollow_path, "rb") as f: self.accounts_to_unfollow = pickle.load(f) except (FileNotFoundError, EOFError): with open(self.accounts_to_unfollow_path, "wb") as f: self.accounts_to_unfollow = [] pickle.dump([], f) try: from xvfbwrapper import Xvfb try: self.vdisplay = Xvfb() self.vdisplay.start() except EnvironmentError: print("Selenium Webdriver will run without Xvfb. There was an error starting Xvfb.") except ImportError: print("Selenium Webdriver will run without Xvfb. Install Xvfb to run Selenium Webdriver inside Xvfb.") path = os.path.dirname(os.path.realpath(__file__)) phantom_js_path = path + "/phantomjs" self.browser = webdriver.PhantomJS(phantom_js_path) self.browser.set_window_size(window_width, window_height) self.screenshot_path = screenshot_path self.dispatcher = Dispatcher(log_path=log_path) super(Driver, self).__init__() def start(self): super(Driver, self).start() def running(self): try: with open(self.running_path, "rb") as f: return bool(pickle.load(f)) except (FileNotFoundError, EOFError): return False @staticmethod def now(): return datetime.datetime.now() def focus(self, element, browser): if self.running(): browser.execute_script("arguments[0].focus();", element) def user_followed_already(self, user): if self.running(): return user in self.followed_accounts def login(self, username, password, browser, log_path, timeout=5): if self.running(): Log.update(self.screenshot_path, self.browser, log_path, "Logging in") browser.get(Config.start_url) try: username_field = WebDriverWait(browser, timeout).until( ec.presence_of_element_located((By.NAME, "username")) ) pass_field = WebDriverWait(browser, timeout).until( ec.presence_of_element_located((By.NAME, "password")) ) except TimeoutException: Log.update(self.screenshot_path, self.browser, log_path, 'Timeout in login') return username_field.send_keys(username) pass_field.send_keys(password) pass_field.send_keys(Keys.RETURN) Log.update(self.screenshot_path, self.browser, log_path, "Logged in") def update_action_list(self, author, action_type, topic): if author not in self.action_list.keys(): value = {"type": action_type, "time": Driver.now(), "topic": topic} self.action_list[author] = [value] else: value = {"type": action_type, "time": Driver.now(), "topic": topic} author_actions = self.action_list[author] author_actions.append(value) self.action_list[author] = author_actions with open(self.action_list_path, "wb") as f: pickle.dump(self.action_list, f) def on_dialog_page(self, browser, log_path, check_timeout=5): if self.running(): return True #try: # WebDriverWait(browser, check_timeout).until( # ec.presence_of_element_located((By.XPATH, Config.dialog_xpath)) # ) #except (TimeoutException, NoSuchElementException): # Log.update(self.screenshot_path, self.browser, log_path, 'No longer on dialog page.') # return False #else: # return True def comment(self, topic, browser, log_path, timeout=5): if self.running(): author = self.author(browser=browser, log_path=log_path) query = Config.comments[randint(0, len(Config.comments) - 1)] say = query.format(author, Config.smileys[randint(0, len(Config.smileys) - 1)]) try: WebDriverWait(browser, timeout).until( ec.presence_of_element_located((By.XPATH, Config.comment_xpath)) ) WebDriverWait(browser, timeout).until( ec.element_to_be_clickable((By.XPATH, Config.comment_xpath)) ) comment_button = WebDriverWait(browser, timeout).until( ec.element_to_be_clickable((By.XPATH, Config.comment_submit_xpath)) ) except TimeoutException: Log.update(self.screenshot_path, self.browser, log_path, 'Timeout in comment') return comment_button.click() comment_field = browser.find_element_by_xpath(Config.comment_xpath) comment_field.send_keys(say) comment_field.send_keys(Keys.RETURN) Log.update(self.screenshot_path, self.browser, log_path, "Commented on " + str(author) + "s picture with: " + say) self.update_action_list(author=author, action_type="comment", topic=topic) def search(self, browser, log_path, query): if self.running(): browser.get("https://www.instagram.com/explore/tags/" + query + "/") Log.update(self.screenshot_path, self.browser, log_path, "Searching for " + query + ".") # Selects the first picture in a loaded topic screen def select_first(self, browser, log_path, timeout=5): if self.running(): try: WebDriverWait(browser, timeout).until( ec.presence_of_element_located((By.XPATH, Config.first_ele_xpath)) ) pictures = browser.find_elements_by_xpath(Config.first_ele_xpath) except NoSuchElementException: Log.update(self.screenshot_path, self.browser, log_path, 'NoSuchElementException in select_first: ' + str(format_exc())) return except TimeoutException: Log.update(self.screenshot_path, self.browser, log_path, 'Timeout in select_first') return if len(pictures) > 9: first_picture = pictures[9] else: first_picture = pictures[len(pictures) - 1] self.focus(first_picture, browser=browser) first_picture.click() def next_picture(self, browser): if self.running(): actions = ActionChains(browser) actions.send_keys(Keys.ARROW_RIGHT) actions.perform() def author(self, browser, log_path, timeout=5): if self.running(): try: author_element = WebDriverWait(browser, timeout).until( ec.presence_of_element_located((By.XPATH, Config.author_xpath)) ) except TimeoutException: Log.update(self.screenshot_path, self.browser, log_path, 'Timeout in author') return return str(author_element.get_attribute("title")) def already_liked(self, browser, log_path, error_timeout=5): if self.running(): try: WebDriverWait(browser, error_timeout).until( ec.presence_of_element_located((By.XPATH, Config.like_button_full_xpath)) ) except TimeoutException: return False Log.update(self.screenshot_path, self.browser, log_path, 'Post was already liked.') return True # Likes a picture def like(self, browser, log_path, topic, timeout=5): if self.running(): author = self.author(browser=browser, log_path=log_path) try: WebDriverWait(browser, timeout).until( ec.presence_of_element_located((By.XPATH, Config.like_button_xpath)) ) like_button = WebDriverWait(browser, timeout).until( ec.element_to_be_clickable((By.XPATH, Config.like_button_xpath)) ) except TimeoutException: Log.update(self.screenshot_path, self.browser, log_path, 'Timeout in like') return like_button.click() src = self.extract_picture_source(browser=browser, log_path=log_path) Log.update(self.screenshot_path, self.browser, log_path, "Liked picture/video by: " + author, image=src) self.update_action_list(author=author, action_type="like", topic=topic) # Unfollows a user def unfollow(self, browser, log_path, name, timeout=5): if self.running(): browser.get("https://www.instagram.com/" + name + "/") try: WebDriverWait(browser, timeout).until( ec.presence_of_element_located((By.XPATH, Config.unfollow_xpath)) ) unfollow_button = WebDriverWait(browser, timeout).until( ec.element_to_be_clickable((By.XPATH, Config.unfollow_xpath)) ) except TimeoutException: Log.update(self.screenshot_path, self.browser, log_path, 'Timeout in unfollow') return unfollow_button.click() Log.update(self.screenshot_path, self.browser, log_path, "Unfollowed: " + name) def update_accounts_to_unfollow(self, author): self.accounts_to_unfollow.append(author) with open(self.accounts_to_unfollow_path, "wb") as f: pickle.dump(self.accounts_to_unfollow, f) def update_followed_accounts(self, author): self.followed_accounts.update({author: Driver.now()}) with open(self.followed_users_all_time_path, "wb") as userfile: pickle.dump(self.followed_accounts, userfile) # Follows a user def follow(self, browser, log_path, topic, timeout=15): if self.running(): author = self.author(browser=browser, log_path=log_path) try: WebDriverWait(browser, timeout).until( ec.presence_of_element_located((By.XPATH, Config.follow_xpath)) ) follow_button = WebDriverWait(browser, timeout).until( ec.element_to_be_clickable((By.XPATH, Config.follow_xpath)) ) except TimeoutException: Log.update(self.screenshot_path, self.browser, log_path, 'Timeout in follow') return follow_button.click() Log.update(self.screenshot_path, browser=self.browser, log_path=self.log_path, text="Followed: " + author) self.update_action_list(author=author, action_type="follow", topic=topic) self.update_accounts_to_unfollow(author=author) self.update_followed_accounts(author=author) def open_unfollow_screen(self, browser, log_path, timeout=15): if self.running(): try: WebDriverWait(browser, timeout).until( ec.presence_of_element_located((By.XPATH, Config.following_xpath)) ) heart = WebDriverWait(browser, timeout).until( ec.element_to_be_clickable((By.XPATH, Config.following_xpath)) ) except TimeoutException: Log.update(self.screenshot_path, self.browser, log_path, 'Timeout in open_unfollow_screen') return heart.click() def update_interacting_users(self, user): self.interacting_users.append(user) with open(self.interacting_users_path, "wb") as f: pickle.dump(self.interacting_users, f) def check_follows(self, browser, log_path, timeout=15): if self.running(): try: WebDriverWait(browser, timeout).until( ec.presence_of_element_located((By.XPATH, Config.sections_xpath)) ) sections = browser.find_elements_by_xpath(Config.sections_xpath) except NoSuchElementException: Log.update(self.screenshot_path, self.browser, log_path, 'NoSuchElementException in check_follows: ' + str(format_exc())) return except TimeoutException: Log.update(self.screenshot_path, self.browser, log_path, 'Timeout in check_follows') return users = [] for element in sections: try: profile = element.find_element_by_xpath(Config.local_name_xpath) except NoSuchElementException: Log.update(self.screenshot_path, self.browser, log_path, 'NoSuchElementException in check_follows: ' + str(format_exc())) return name = profile.get_attribute("title") users.append(name) for user in users: if user not in self.interacting_users: if user in self.action_list.keys(): actions = self.action_list[user] for action in actions: self.hashtags[action["topic"]] += 1 self.update_interacting_users(user=user) def update_hashtags(self, hashtag, boost=0.1): if hashtag in self.hashtags: self.hashtags[hashtag] += boost else: self.hashtags[hashtag] = boost with open(self.hashtags_path, "wb") as f: pickle.dump(self.hashtags, f) def store_hashtags(self, browser, log_path, timeout=5): if self.running(): all_hashtags = self.extract_hash_tags(browser=browser, log_path=log_path, timeout=timeout) for hashtag in all_hashtags: self.update_hashtags(hashtag=hashtag) def extract_hash_tags(self, browser, log_path, timeout=5): if self.running(): try: WebDriverWait(browser, timeout).until( ec.presence_of_element_located((By.XPATH, Config.hashtags_xpath)) ) sections = browser.find_elements_by_xpath(Config.hashtags_xpath) except NoSuchElementException: Log.update(self.screenshot_path, self.browser, log_path, 'Exception in extract_hash_tags: ' + str(format_exc())) return [] except TimeoutException: Log.update(self.screenshot_path, self.browser, log_path, 'Timeout in extract_hash_tags') return [] all_hashtags = [] for section in sections: all_hashtags.extend(set(part[1:] for part in section.text.split() if part.startswith('#'))) return all_hashtags def extract_picture_source(self, browser, log_path, timeout=5): if self.running(): try: WebDriverWait(browser, timeout).until( ec.presence_of_element_located((By.XPATH, Config.image_div_container_xpath)) ) sections = browser.find_elements_by_xpath(Config.image_div_container_xpath) except NoSuchElementException: Log.update(self.screenshot_path, self.browser, log_path, 'Exception in extract_picture_source: ' + str(format_exc())) return except TimeoutException: Log.update(self.screenshot_path, self.browser, log_path, 'Timeout in extract_picture_source') return for section in sections: try: image = section.find_element_by_tag_name("img") except NoSuchElementException: Log.update(self.screenshot_path, self.browser, log_path, 'Exception in extract_picture_source: ' + str(format_exc())) return return image.get_attribute("src") def post_hashtags_are_sfw(self, browser, log_path, timeout=5): if self.running(): all_hashtags = ["#"+x for x in self.extract_hash_tags(browser=browser, log_path=log_path, timeout=timeout)] for hashtag in all_hashtags: if hashtag in Config.nsfw_hashtags: Log.update( screenshot_path=self.screenshot_path, browser=self.browser, log_path=self.log_path, text="This post contains the blacklisted hashtag {}.".format(hashtag), ) return False Log.update( screenshot_path=self.screenshot_path, browser=self.browser, log_path=self.log_path, text="This post contains none of the blacklisted hashtags. (Hashtags: {})".format(", ".join(all_hashtags)), ) return True def post_is_sfw(self, browser, log_path, limit=0.1): if self.running(): if not self.post_hashtags_are_sfw(browser=browser, log_path=log_path): return False image_url = self.extract_picture_source(browser=browser, log_path=log_path) if not image_url: Log.update( screenshot_path=self.screenshot_path, browser=self.browser, log_path=self.log_path, text="Picture source could not be extracted." ) return True sfw, nsfw = classify_nsfw(image_url) Log.update( screenshot_path=self.screenshot_path, browser=self.browser, log_path=self.log_path, text="Analysis of this post yielded it to be {}% SFW.".format(int(100 * sfw)), image=image_url ) return nsfw < limit def run(self): self.login(browser=self.browser, log_path=self.log_path, password=<PASSWORD>, username=self.username) while self.running(): try: self.open_unfollow_screen(browser=self.browser, log_path=self.log_path) self.check_follows(browser=self.browser, log_path=self.log_path) top_hashtags = sorted(self.hashtags.keys(), key=lambda k: self.hashtags[k], reverse=True)[:20] for i, topic in enumerate(top_hashtags): self.search(query=topic, browser=self.browser, log_path=self.log_path) self.select_first(browser=self.browser, log_path=self.log_path) delay, action = self.dispatcher.next_action() Log.update(self.screenshot_path, self.browser, self.log_path, "Dispatcher selected action: {} (Sleeping {}s)".format(action, delay)) sleep(delay) if action == "comment": if self.post_is_sfw(browser=self.browser, log_path=self.log_path): self.comment( topic=topic, browser=self.browser, log_path=self.log_path ) self.dispatcher.log_action("comment") self.store_hashtags(browser=self.browser, log_path=self.log_path) elif action == "like": count = 0 while self.already_liked(browser=self.browser, log_path=self.log_path): if not self.on_dialog_page(self.browser, self.log_path): break if count > 10: break self.next_picture(browser=self.browser) count += 1 if self.on_dialog_page(self.browser, self.log_path): if self.post_is_sfw(browser=self.browser, log_path=self.log_path): self.like(topic=topic, browser=self.browser, log_path=self.log_path) self.dispatcher.log_action("like") self.store_hashtags(browser=self.browser, log_path=self.log_path) elif action == "follow": count = 0 while self.user_followed_already(self.author(browser=self.browser, log_path=self.log_path)): if not self.on_dialog_page(self.browser, self.log_path): break if count > 10: break self.next_picture(browser=self.browser) count += 1 if self.on_dialog_page(self.browser, self.log_path): if self.post_is_sfw(browser=self.browser, log_path=self.log_path): self.follow( topic=topic, browser=self.browser, log_path=self.log_path ) self.dispatcher.log_action("follow") self.store_hashtags(browser=self.browser, log_path=self.log_path) elif action == "unfollow": if len(self.accounts_to_unfollow) > 50: this_guy = self.accounts_to_unfollow[0] self.unfollow(name=this_guy, browser=self.browser, log_path=self.log_path) del self.accounts_to_unfollow[0] self.dispatcher.log_action("unfollow") except Exception: Log.update(self.screenshot_path, self.browser, self.log_path, text='General Exception: ' + str(format_exc())) Log.update(self.screenshot_path, self.browser, self.log_path, text='Stopped bot') if self.vdisplay: self.vdisplay.stop() super(Driver, self).join()
StarcoderdataPython
3384895
import torch import torch.nn as nn import numpy as np __all__ = ['Pruner'] class Pruner: def __init__(self, net, rank_type='l2_weight', num_class=1000, \ safeguard=0, random=False, device='cuda', resource='FLOPs'): self.net = net self.rank_type = rank_type self.chains = {} # chainning conv (use activation index 2 present a conv) self.y = None self.safeguard = safeguard self.random = random self.device = device self.resoure_type = resource self.reset() def forward(self, x): raise NotImplementedError def get_valid_filters(self): raise NotImplementedError def get_valid_flops(self): raise NotImplementedError def count_params(self): '''Count a number of network's trainable parameters''' params_conv, params_all = 0, 0 for module in self.net.modules(): if isinstance(module, nn.Conv2d): params_all += np.prod(module.weight.size()) params_conv += np.prod(module.weight.size()) if isinstance(module, nn.Linear): params_all += np.prod(module.weight.size()) return params_all, params_conv def reset(self): self.cur_flops = 0 self.base_flops = 0 self.cur_size, conv_size = self.count_params() self.base_size = self.cur_size - conv_size self.quota = None self.filter_ranks = {} self.rates = {} self.cost_map = {} self.in_params = {} self.omap_size = {} self.conv_in_channels = {} self.conv_out_channels = {} def flop_regularize(self, l): for key in self.filter_ranks: self.filter_ranks[key] -= l * self.rates[key] def compute_rank(self, grad): activation_idx = len(self.activations) - self.grad_idx - 1 activation = self.activations[activation_idx] if self.rank_type == 'analysis': if activation_idx not in self.filter_ranks: self.filter_ranks[activation_idx] = activation * grad else: self.filter_ranks[activation_idx] = torch.cat((self.filter_ranks[activation_idx], activation*grad), 0) else: if self.rank_type == 'meanAbsMeanImpact': values = torch.abs((grad * activation).sum((2, 3)) / np.prod(activation.shape[2:])) # NxC to C values = values.sum(0) / activation.size(0) if activation_idx not in self.filter_ranks: self.filter_ranks[activation_idx] = torch.zeros(activation.size(1), device=self.device) self.filter_ranks[activation_idx] += values self.grad_idx += 1 def calculate_cost(self, encoding): pass def get_unit_flops_for_layer(self, layer_id): pass def get_unit_filters_for_layer(self, layer_id): pass def one_shot_lowest_ranking_filters(self, target): # Consolidation of chained channels # Use the maximum rank among the chained channels for the criteria for those channels # Greedily pick from the lowest rank. # # This return list of [layers act_index, filter_index, rank] data = [] chained = [] # keys of filter_ranks are activation index checked = [] org_filter_size = {} new_filter_size = {} for i in sorted(self.filter_ranks.keys()): org_filter_size[i] = self.filter_ranks[i].size(0) if i in checked: continue current_chain = [] k = i while k in self.chains: current_chain.append(k) k = self.chains[k] current_chain.append(k) checked.append(k) sizes = np.array([self.filter_ranks[x].size(0) for x in current_chain]) max_size = np.max(sizes) for k in current_chain: new_filter_size[k] = max_size ranks = [self.filter_ranks[x].to(self.device) for x in current_chain] cnt = torch.zeros(int(max_size), device=self.device) for idx in range(len(ranks)): pass def one_shot_lowest_ranking_filters_multi_targets(self, targets): pass def pruning_with_transformations(self, original_dist, \ perturbation, target, masking=False): pass def pruning_with_transformations_multi_target(self, original_dist,\ perturbation, target, masking=False): pass def normalize_ranks_per_layer(self): pass def get_pruning_plan_from_layer_budget(self, layer_budget): pass def sort_weights(self): pass def get_pruning_plan_from_importance(self, target, importance): pass def pack_pruning_target(self, filters_to_prune_per_layer, get_segment=True,\ progressive=True): pass def get_pruning_plan(self, num_filters_to_prune, progressive=True,\ get_segment=False): pass def get_uniform_ratio(self, target): pass def uniform_grow(self, growth_rate): pass def get_pruning_plan_multi_target(self, targets): pass
StarcoderdataPython
148757
# 创建了新的tags标签文件后必须重启服务器 from django import template from ..models import Ouser from comment.models import CommentUser register = template.Library() @register.simple_tag() def get_user_data(uid): """返回用户的信息""" user = Ouser.objects.filter(id=uid) if user: return user[0] else: return '' @register.simple_tag() def get_tourist_data(uid): """返回评论者的信息""" user = CommentUser.objects.filter(id=uid) if user: return user[0] else: return ''
StarcoderdataPython
190136
<reponame>teslafields/code-challenges<filename>longest_palindromic.py class Solution: def longestPalindrome(self, s): slen = len(s) longest = '' longest_len = 0 for i in range(1, slen-1): loops+=1 l, r = i-1, i+1 subs = s[i] while l >= 0 and r < slen: if s[l] != s[r]: if s[r] == s[i]: l+=1 subs = '' else: break subs = s[l] + subs + s[r] l -= 1 r += 1 loops+=1 subs_len = i - l if subs_len > 1: if subs_len > longest_len: longest_len = subs_len longest = subs return longest # Test program s = "tracecars" print(str(Solution().longestPalindrome(s))) # racecar
StarcoderdataPython
103211
<reponame>sroet/openpathsampling-cli from paths_cli.compiling.core import InstanceCompilerPlugin from paths_cli.plugin_management import OPSPlugin class CategoryPlugin(OPSPlugin): """ Category plugins only need to be made for top-level """ def __init__(self, plugin_class, aliases=None, requires_ops=(1, 0), requires_cli=(0, 3)): super().__init__(requires_ops, requires_cli) self.plugin_class = plugin_class if aliases is None: aliases = [] self.aliases = aliases @property def name(self): return self.plugin_class.category def __repr__(self): return (f"CompilerPlugin({self.plugin_class.__name__}, " f"{self.aliases})") class EngineCompilerPlugin(InstanceCompilerPlugin): category = 'engine' class CVCompilerPlugin(InstanceCompilerPlugin): category = 'cv' class VolumeCompilerPlugin(InstanceCompilerPlugin): category = 'volume' class NetworkCompilerPlugin(InstanceCompilerPlugin): category = 'network' class SchemeCompilerPlugin(InstanceCompilerPlugin): category = 'scheme' class StrategyCompilerPlugin(InstanceCompilerPlugin): category = 'strategy' class ShootingPointSelectorPlugin(InstanceCompilerPlugin): category = 'shooting-point-selector' class InterfaceSetPlugin(InstanceCompilerPlugin): category = 'interface-set'
StarcoderdataPython
1667458
# Generated by Django 3.1.2 on 2020-12-25 21:44 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('mvp', '0010_brandcollector'), ] operations = [ migrations.AddField( model_name='brandcollector', name='message', field=models.TextField(default='hello admin!', max_length=500, verbose_name='Feedback Message'), ), ]
StarcoderdataPython
1645865
<gh_stars>0 import abc import os import time import typing import requests from flask import current_app from urllib.parse import urlencode from src.models.bright import HealthCheck, HealthCheckStatus __all__ = ("BrightAPI",) class BrightBase(abc.ABC): """Base class for Bright API.""" default_headers = {"Content-Type": "application/json", "Accept": "application/json"} def __init__( self, url=None, session=None, basic_auth=(), cert_auth=(), verify=True, timeout=5, ): """ :param session: an already existing session session. :param basic_auth: a tuple of username and password to use when establishing a session via HTTP BASIC authentication. :param cert_auth: a tuple of cert and key to use when establishing a session. The pair is used for both authentication and encryption. :param verify: check whether verify SSL connection :param timeout: how much time until connection is dropped, in seconds. """ self.url = url if session is None: self._session = requests.Session() else: self._session = session if basic_auth: self._create_basic_session(basic_auth) elif cert_auth is not None: self._create_cert_session(cert_auth) self._session.headers.update(self.default_headers) self.verify = verify self.timeout = timeout def _create_basic_session(self, basic_auth): self._session.auth = basic_auth def _create_cert_session(self, cert_auth): self._session.cert = cert_auth @property def version(self): base = f"{self.url}/json" params = { "service": "cmmain", "call": "getVersion", } response = self._session.post( url=base, json=params, verify=self.verify, timeout=self.timeout ).json() return response.get("cmVersion") @abc.abstractmethod def measurable(self, name): pass @staticmethod @abc.abstractmethod def measurable_mapper(raw): pass class Bright(BrightBase): """Generic Bright implementation.""" def measurable(self, name): raise NotImplementedError("use a specific Bright version") @staticmethod def measurable_mapper(raw): raise NotImplementedError("use a specific Bright version") class Bright7(BrightBase): def __init__(self, **kwargs): super().__init__(**kwargs) self.base = f"{self.url}/json" def entity(self, name): params = {"service": "cmdevice", "call": "getDevice", "arg": name} return self._session.post( url=self.base, json=params, verify=self.verify, timeout=self.timeout ).json() def measurable(self, name): params = {"service": "cmmon", "call": "getHealthcheck", "arg": name} return self._session.post( url=self.base, json=params, verify=self.verify, timeout=self.timeout ).json() def latest_measurable_data(self, measurable, entity) -> dict: measurable_id = self.measurable(measurable).get("uniqueKey") entity_id = self.entity(entity).get("uniqueKey") if not entity_id or not measurable_id: return {} params = { "service": "cmmon", "call": "getLatestPickedRates", "args": [[entity_id], [{"metricId": measurable_id}]], } return [ dict(**data, measurable=measurable, entity=entity) for data in self._session.post( self.url, json=params, verify=self.verify ).json() ] @staticmethod def measurable_mapper(raw) -> HealthCheck: return ( HealthCheck( name=raw["measurable"], status=HealthCheckStatus(round(float(raw["rate"]))), node=raw["entity"], timestamp=raw["timeStamp"], seconds_ago=int(time.time() - raw["timeStamp"]), raw=raw, ) if raw else None ) class Bright8(BrightBase): def __init__(self, **kwargs): super().__init__(**kwargs) self.base = f"{self.url}/rest/v1" def measurable(self, name): base = f"{self.url}/json" params = {"service": "cmmon", "call": "getMonitoringMeasurable", "arg": name} return self._session.post( url=base, json=params, verify=self.verify, timeout=self.timeout ).json() def latest_measurable_data(self, measurable, entity=None) -> dict: params = { "measurable": measurable, **({"entity": entity} if entity is not None else {}), } url = f"{self.base}/monitoring/latest?{urlencode(params)}" return ( self._session.get(url=url, verify=self.verify, timeout=self.timeout) .json() .get("data", []) ) @staticmethod def measurable_mapper(raw) -> HealthCheck: return ( HealthCheck( name=raw["measurable"], status=HealthCheckStatus(raw["value"]), node=raw["entity"], timestamp=raw["time"], seconds_ago=int(raw["age"]), raw=raw, ) if raw else None ) class BrightAPI: def __init__( self, host=None, port=443, protocol="https", basic_auth=(), cert_auth=(), version=None, **kwargs, ): host = host or current_app.config["BRIGHT_COMPUTING_HOST"] port = port or current_app.config["BRIGHT_COMPUTING_PORT"] url = f"{protocol}://{host}:{port}" if not basic_auth and not cert_auth: cert = current_app.config["BRIGHT_COMPUTING_CERT_PATH"] key = current_app.config["BRIGHT_COMPUTING_KEY_PATH"] # handle relative paths if not os.path.isabs(cert) and not os.path.isabs(key): instance_path = os.path.dirname(current_app.instance_path) cert = os.path.join(instance_path, cert) key = os.path.join(instance_path, key) cert_auth = (cert, key) self.version = version or Bright(url=url, **kwargs).version self.instance = self.factory(self.version)( url=url, basic_auth=basic_auth, cert_auth=cert_auth, **kwargs ) @staticmethod def factory(version): major_version = int(float(version)) if major_version not in (7, 8): raise ValueError("Unsupported version") elif major_version == 7: return Bright7 elif major_version == 8: return Bright8 @staticmethod def supported_measurables(): return current_app.config["SUPPORTED_MEASURABLES"] def health_checks(self, node=None) -> typing.List[HealthCheck]: checks = ( self.health_check(key=measurable, node=node) for measurable in self.supported_measurables() ) return list(filter(lambda x: x is not None, checks)) def health_check(self, key, node=None) -> typing.Optional[HealthCheck]: """Get translated measurable to a health check.""" if key not in self.supported_measurables(): return None return self.measurable_mapper( raw=next( iter(self.latest_measurable_data(measurable=key, entity=node)), None ) ) def __getattr__(self, name): return self.instance.__getattribute__(name)
StarcoderdataPython
21212
import unittest import os import json import pandas as pd import numpy as np class TestingExercise2_07(unittest.TestCase): def setUp(self) -> None: ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) with open(os.path.join(ROOT_DIR, '..', 'dtypes.json'), 'r') as jsonfile: self.dtyp = json.load(jsonfile) self.data = pd.read_csv(os.path.join(ROOT_DIR, '..', 'Datasets', 'earthquake_data.csv'), dtype = self.dtyp) def test_object_vars(self): self.object_variables = self.data.select_dtypes(include = [np.object]).nunique().sort_values() self.assertEqual(max(self.object_variables), (3821)) if __name__ == '__main__': unittest.main()
StarcoderdataPython
1799776
import sys import os import tempfile import unittest import sd3.cfa.graph import sd3.cfa.shortestpath class TestGraph(unittest.TestCase): def test_edge(self): node_src_id = 1 node_dest_id = 2 node_src = sd3.cfa.graph.Node(node_src_id) node_dest = sd3.cfa.graph.Node(node_dest_id) # Test creation edge = sd3.cfa.graph.Edge(node_src, node_dest) self.assertIs(edge.get_src(), node_src) self.assertIs(edge.get_dest(), node_dest) # Test attributes first_attr = "a" second_attr = "b" self.assertFalse(edge.has_attr(first_attr)) self.assertFalse(edge.has_attr(second_attr)) edge.add_attr(first_attr) self.assertTrue(edge.has_attr(first_attr)) self.assertFalse(edge.has_attr(second_attr)) edge.add_attr(second_attr) self.assertTrue(edge.has_attr(first_attr)) self.assertTrue(edge.has_attr(second_attr)) def test_node(self): node_src_id = 1 node_dest_id = 2 node_data = "Fake data" node_src = sd3.cfa.graph.Node(node_src_id) # Test initial state self.assertEqual(node_src.get_id(), node_src_id) self.assertIsNone(node_src.get_data()) self.assertListEqual(node_src.get_successors(), []) self.assertListEqual(node_src.get_predecessors(), []) # Test data node_src.set_data(node_data) self.assertEqual(node_src.get_data(), node_data) # Test successor add node_dest = sd3.cfa.graph.Node(node_dest_id) self.assertFalse(node_src.has_successor(node_dest)) node_src.add_successor(node_dest) self.assertTrue(node_src.has_successor(node_dest)) self.assertFalse(node_dest.has_successor(node_src)) successors = node_src.get_successors() self.assertEqual(len(successors), 1) self.assertIs(successors[0].get_src(), node_src) self.assertIs(successors[0].get_dest(), node_dest) predecessors = node_dest.get_predecessors() self.assertEqual(len(predecessors), 1) self.assertIs(predecessors[0].get_src(), node_src) self.assertIs(predecessors[0].get_dest(), node_dest) def test_node_loop(self): node = sd3.cfa.graph.Node(1) node.add_successor(node) successors = node.get_successors() predecessors = node.get_predecessors() self.assertEqual(len(successors), 1) self.assertEqual(len(predecessors), 1) self.assertIs(successors[0].get_src(), node) self.assertIs(successors[0].get_dest(), node) self.assertIs(predecessors[0].get_src(), node) self.assertIs(predecessors[0].get_dest(), node) def test_graph(self): node_id = 1 second_node_id = 2 third_node_id = 2 # New graph is empty graph = sd3.cfa.graph.Graph() self.assertIsNone(graph.get_entry()) self.assertEqual(len(graph.get_node_list()), 0) # Forbid entry set on an unknown node node = sd3.cfa.graph.Node(node_id) self.assertRaises(KeyError, graph.set_entry, node) self.assertRaises(KeyError, graph.set_exit, node) # Test node add (node, is_new) = graph.add_node(node_id) self.assertEqual(node.get_id(), node_id) self.assertTrue(is_new) self.assertTrue(graph.has_node(node_id)) # Test node add with the same id (existing_node, is_new) = graph.add_node(node_id) self.assertEqual(existing_node.get_id(), node_id) self.assertFalse(is_new) # Test that node can be fetched self.assertIs(graph.get_node(node_id), node) # Test set entry with an invalid node fake_node = sd3.cfa.graph.Node(node_id) self.assertRaises(KeyError, graph.set_entry, fake_node) self.assertRaises(KeyError, graph.set_exit, fake_node) # Test valid entry set graph.set_entry(node) self.assertIs(graph.get_entry(), node) # Test valid exit set graph.set_exit(node) self.assertIs(graph.get_exit(), node) # Test node list (second_node, _) = graph.add_node(second_node_id) self.assertListEqual(graph.get_node_list(), [node, second_node]) # Test node iterator nodes_id = set() nodes_it = set() for it_node_id, it_node in graph.get_node_it(): nodes_id.add(it_node_id) nodes_it.add(it_node) self.assertSetEqual(nodes_id, {node_id, second_node_id}) self.assertSetEqual(nodes_it, {node, second_node}) # Test edges (third_node, _) = graph.add_node(third_node_id) node.add_successor(second_node) second_node.add_successor(third_node) edge_set = set() for edge in list(graph.get_edges_it()): edge_set.add((edge.get_src(), edge.get_dest())) expected_edge_set = set() expected_edge_set.add((node, second_node)) expected_edge_set.add((second_node, third_node)) self.assertSetEqual(edge_set, expected_edge_set) # Run draw to test that the function doesn't crash node_id_str = lambda n: "%s" % n.get_id() (fd, path) = tempfile.mkstemp(suffix=".png") graph.draw(path, node_id_str=node_id_str) os.close(fd) os.remove(path) def test_shortest_path(self): graph = sd3.cfa.graph.Graph() # Create nodes (node1, _) = graph.add_node(1) (node2, _) = graph.add_node(2) (node3, _) = graph.add_node(3) (node4, _) = graph.add_node(4) (node5, _) = graph.add_node(5) (node6, _) = graph.add_node(6) (node7, _) = graph.add_node(7) # Create edges node1.add_successor(node2) node1.add_successor(node5) node1.add_successor(node7) node2.add_successor(node3) node2.add_successor(node4) node3.add_successor(node4) node3.add_successor(node7) node5.add_successor(node3) node5.add_successor(node5) node5.add_successor(node6) node7.add_successor(node6) # Check some paths self.assertEqual(sd3.cfa.shortestpath.get(graph, node1, node3), 2) self.assertEqual(sd3.cfa.shortestpath.get(graph, node1, node4), 2) self.assertEqual(sd3.cfa.shortestpath.get(graph, node1, node6), 2) self.assertEqual(sd3.cfa.shortestpath.get(graph, node1, node7), 1) self.assertEqual(sd3.cfa.shortestpath.get(graph, node2, node4), 1) self.assertEqual( sd3.cfa.shortestpath.get(graph, node2, node1), sd3.cfa.shortestpath.INFINITE) self.assertEqual(sd3.cfa.shortestpath.get(graph, node5, node6), 1)
StarcoderdataPython
3327075
""" This module contains functions related to orbit calculations """ # Standard library imports from typing import Any,Dict,List,Tuple,Sequence #https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html # Third party imports import pandas as pd import numpy as np from numpy import rad2deg, deg2rad from numpy.linalg import norm import toolz as tz # Using Newton-Ramson method from scipy.integrate import solve_ivp from myastro import util as ut from myastro import data_catalog as dc from myastro import timeutil as tc from myastro import coord as co from myastro import orbit as ob from myastro.orbit import EphemrisInput from myastro.timeutil import PI_HALF, PI, TWOPI from myastro.keplerian import KeplerianOrbit from myastro.lagrange_coeff import rv_from_r0v0 from myastro.timeutil import epochformat2jd, jd2mjd, T, mjd2jd, jd2str_date, MDJ_J2000, JD_J2000 from myastro.planets import g_xyz_equat_sun_j2000, g_rlb_eclip_sun_eqxdate from myastro.util import mu_by_name, mu_Sun from myastro.orbit import calc_perturbed_accelaration from myastro.log import get_logger logger = get_logger(__file__.split('/')[-1]) def f1(vector): # Utility function return vector/pow(norm(vector),3) def calc_F(a, b ,c): # Function to compute the difference between nearly equal numbers # Appendix F of Orbital Mechanics q = a * (2*b-a)/pow(b,2) return (pow(q,2)- 3*q +3 / (1+pow(1-q,1.5)))*q def my_dfdt(t, y, r0, v0, t0): """ Computes the time derivative of the unknown function. Integrating this function, we obtain the unknown function. We know the velocity and acceleration that is basically what this function returns so integrating we obtain the position and velocity. Args: t : point in time (normally used in modified julian days) at which we want to calculate the derivative y : The vector with the variables to solve the differential equation system [0..3] delta_r [3..6] delta_v (not used in this case) r0 : Radio Vector of the object w.r.t. the Sun (AUs) at time t0 v0 : Velocity vector Elapsed time (AUs/days) at time t0 t0 : Initial point timme Returns : A vector vector of 6 positions with delta_v and delta_acc () """ delta_r = y[0:3] # The two-bodys orbit is calculated starting at r0,v0 and t-t0 as elapsed time r_osc, _ = rv_from_r0v0(mu_Sun, r0, v0, t-t0) # The radio vector perturbed is the two-bodys plus the delta_r r_pert = r_osc + delta_r F = 1 - pow(norm(r_osc)/norm(r_pert),3) #TODO Check if this works, to avoid compute the difference between nearly equal numbers #F = calc_F(norm(delta_r), norm(r_pert), norm(r_osc)) # The increment of accelration is calculated including the normal perturbed acceleartion delta_acc = (-mu_Sun/pow(norm(r_osc),3))*(delta_r- F*r_pert)+calc_perturbed_accelaration(t, r_pert) return np.concatenate((y[3:6],delta_acc)) def apply_enckes(eph, t_range, r0, v0): """ This is a utility function needed because the integration needs to be done in two intervals so this function is called for each of these intervals. It applies the enckles's approach, i.e. calcualate the dr and dv to modified the two bodys (osculating orbit) Args: eph : Ephemeris data (EphemrisInput) t_range : A numpy vector with the time samples where each time sample defines a time interval. The enckles method is applied in each one of this interval. The time samples are modified julian days. r0 : A numpy vector that indicates the initial radio vector (AUs) v0 : A numpy vector that indicates the initial velocity vector (AUs/days) r0 : Radio Vector of the object w.r.t. the Sun (AUs) at time t0 Returns : A dictionary where the key is a time reference in days (modified julian days) and the the value is the a tuple with two vectors, the radio vector r and the velocity vector at the time reference """ steps = np.diff(t_range) result = dict() clock_mjd = t_range[0] for idx, step in enumerate(steps) : #if (idx % 50) == 0 : # print (f"Iteration: {idx}, Date : {jd2str_date(tc.mjd2jd(clock_mjd))}") sol = solve_ivp(my_dfdt, (clock_mjd, clock_mjd+step), np.zeros(6), args=(r0, v0, clock_mjd) , rtol = 1e-12) assert sol.success, "Integration was not OK!" r_osc, v_osc = rv_from_r0v0 (mu_Sun, r0, v0, step) # The last integration value is taken r0 = r_osc + sol.y[:,-1][:3] v0 = v_osc + sol.y[:,-1][3:6] # If the clock is in the middle of the ephemeris time, it is inserted in the solution if eph.from_mjd <= clock_mjd+step <= eph.to_mjd : result[clock_mjd+step] = (r0, v0) clock_mjd += step return result def calc_eph_by_enckes (body, eph, type='body'): """ Computes the ephemeris for a minor body using the Enckes method. This has more precission that the Cowells but it takes more time to be calculated. Args: body : The orbital elements of the body, it can be an body or a comet eph : Ephemeris data (EphemrisInput) type : Indicates if the body is a asteroid ('body') or a comet ('comet') Returns : A dataframe with the result """ # This matrix just depends on the desired equinox to calculate the obliquity # to pass from ecliptic coordinate system to equatorial MTX_equatFeclip = co.mtx_equatFeclip(eph.T_eqx) T_J2000 = 0.0 # This is to precess from J2000 to ephemeris equinox (normally this matrix will be identity matrix) MTX_J2000_Teqx = co.mtx_eclip_prec(T_J2000,eph.T_eqx) # The PQR mtx (from orbital plane to eclipt) is preccesed from equinox of body object to the desired equinox MTX_J2000_PQR = co.mtx_eclip_prec(body.T_eqx0, T_J2000).dot(body.mtx_PQR) # The initial conditions for doing the integration is calculated, i.e., # the r,v of the body at its epoch (in the example of Ceres, the epoch of # book that epoch is 1983/09/23.00) # The integration is done in the ecliptic plane and precessed in to J2000 # so the solution will be also ecliptic and precessed. initial_mjd = body.epoch_mjd if type == 'body' : k_orbit = KeplerianOrbit.for_body(body) else : k_orbit = KeplerianOrbit.for_comet(body) r0, v0 = k_orbit.calc_rv(initial_mjd) # In the ecliptic. r0 = MTX_J2000_PQR.dot(r0) v0 = MTX_J2000_PQR.dot(v0) if eph.from_mjd < initial_mjd < eph.to_mjd : # If the epoch is in the middle, we need to integrate forward and backwards #t_range = list(ut.frange(initial_mjd, eph.to_mjd, eph.step)) t_range = ut.my_range(initial_mjd, eph.to_mjd, eph.step) result_1 = apply_enckes(eph, t_range, r0, v0) # and backwards #t_range = list(ut.frange(eph.from_mjd, initial_mjd, eph.step)) #if t_range[-1] != initial_mjd : # t_range.append(initial_mjd) t_range = list(reversed(ut.my_range(eph.from_mjd, initial_mjd, eph.step))) result_2 = apply_enckes(eph, t_range, r0, v0) solution = tz.merge([result_1,result_2]) elif initial_mjd < eph.from_mjd : """ # If the epoch is in the past, we need to integrate forward t_range_1 = list(ut.frange(initial_mjd, eph.from_mjd, eph.step)) # The previous ensure that initial_mjd is included but the eph.from may be not included # so we test the final value to know if we need to include manually if t_range_1[-1] != eph.from_mjd : t_range_1.append(eph.from_mjd) """ # [initial, from] t_range_1 = ut.my_range(initial_mjd, eph.from_mjd, eph.step) # [from+step, to] t_range_2 = ut.my_range(eph.from_mjd+eph.step, eph.to_mjd, eph.step) """ t_range_2 = list(ut.frange(eph.from_mjd+eph.step, eph.to_mjd, eph.step)) if len(t_range_2) == 0 : t_range_2.append(eph.to_mjd) if t_range_2[-1] != eph.to_mjd : t_range_2.append(eph.to_mjd) """ solution = apply_enckes(eph, t_range_1 + t_range_2, r0, v0) else : # If the epoch is in the future, we need to integrate backwards # goes from the epoch backward toward the end value from # the ephemeris and inital value of the ephemeris #[initial_mjd ---> backwards to --> eph.to.mjd] t_range_1 = ut.my_range(eph.to_mjd, initial_mjd, eph.step) """ t_range_1 = list(ut.frange(eph.to_mjd, initial_mjd, eph.step)) # The previous ensure that eph.to is included but the initial may be not included # so we test the final value to know if we need to include manually if t_range_1[-1] != initial_mjd : t_range_1.append(initial_mjd) """ """ t_range_2 = list(ut.frange(eph.from_mjd, eph.to_mjd, eph.step)) # the previous ensure that eph.from is included but the to_mjd may be included # but we include in the previous so we need to remove it . We test the last element to check # if we need to remove it if t_range_2[-1] == eph.to_mjd : t_range_2 = t_range_2[0:-1] t_range = list(reversed(t_range_1)) + list(reversed(t_range_2)) """ t_range_2 = ut.my_range(eph.from_mjd, eph.to_mjd-eph.step, eph.step) t_range = list(reversed(t_range_2+t_range_1)) solution = apply_enckes(eph, t_range, r0, v0) solution = {t:solution[t] for t in sorted(solution.keys())} return ob.process_solution(solution, MTX_J2000_Teqx, MTX_equatFeclip) def test_all(): eph = EphemrisInput(from_date="2020.05.25.0", to_date = "2020.06.15.0", step_dd_hh_hhh = "02 00.0", equinox_name = "J2000") for name in dc.DF_BODYS['Name']: body = dc.read_body_elms_for(name,dc.DF_BODYS) print ("Calculating for ",name) print (calc_eph_by_enckes(body, eph)) def test_body(): eph = EphemrisInput(from_date="2020.05.15.0", to_date = "2020.06.15.0", step_dd_hh_hhh = "02 00.0", equinox_name = "J2000") CERES = dc.read_body_elms_for("Ceres",dc.DF_BODYS) df = calc_eph_by_enckes(CERES, eph) print (df[df.columns[0:8]]) def test_comet(): eph = EphemrisInput(from_date="1985.11.15.0", to_date = "1986.04.05.0", step_dd_hh_hhh = "10 00.0", equinox_name = "J2000") HALLEY_J2000 = dc.read_comet_elms_for("1P/Halley", dc.DF_COMETS) df = calc_eph_by_enckes(HALLEY_J2000, eph, 'comet') print (df[df.columns[0:8]]) def test_all_comets(): """ eph = EphemrisInput(from_date="2020.05.25.0", to_date = "2020.06.15.0", step_dd_hh_hhh = "02 00.0", equinox_name = "J2000") """ df_ = dc.DF_COMETS df_ = df_.query("0.999 < e < 1.001") for idx, name in enumerate(df_['Name']): logger.warning(f"{idx+1} Calculating for {name} ") body = dc.read_comet_elms_for(name,dc.DF_COMETS) eph = EphemrisInput.from_mjds( body.epoch_mjd-25, body.epoch_mjd+25, "02 00.0", "J2000" ) print (f"{idx+1} Calculating for {name} ") print (calc_eph_by_enckes(body, eph, 'comet')) def test_several_comets(): names = [#"C/1988 L1 (Shoemaker-Holt-Rodriquez)", # Parabolic "C/-146 P1"] #"C/1848 P1 (Petersen)"] for name in names : body = dc.read_comet_elms_for(name,dc.DF_COMETS) eph = EphemrisInput.from_mjds( body.epoch_mjd-50, body.epoch_mjd+50, "02 00.0", "J2000" ) print (f"Calculating for {name} ") df = calc_eph_by_enckes(body, eph, 'comet') print (df[df.columns[0:8]]) #print (calc_eph_by_enke(body, eph, 'comet')) @ut.measure def test_speed(): t = 49400.0 y = np.array([0., 0., 0., 0., 0., 0.]) r0 = np.array([-13.94097381, 11.4769406 , -5.72123976]) v0 = np.array([-0.00211453, 0.0030026 , -0.00107914]) t0 = 49400.0 my_dfdt(t, y, r0, v0, t0) if __name__ == "__main__" : #test_all() #test_2() #test_all_comets() #test_comet() #test_several_comets() #test_body() test_comet() #test_speed()
StarcoderdataPython
3201119
<reponame>kushbanga/phylib # -*- coding: utf-8 -*- from __future__ import print_function """Simple event system.""" #------------------------------------------------------------------------------ # Imports #------------------------------------------------------------------------------ from contextlib import contextmanager import logging import string import re from functools import partial logger = logging.getLogger(__name__) #------------------------------------------------------------------------------ # Event system #------------------------------------------------------------------------------ class EventEmitter(object): """Singleton class that emits events and accepts registered callbacks. Example ------- ```python class MyClass(EventEmitter): def f(self): self.emit('my_event', 1, key=2) o = MyClass() # The following function will be called when `o.f()` is called. @o.connect def on_my_event(arg, key=None): print(arg, key) ``` """ def __init__(self): self.reset() self.is_silent = False def set_silent(self, silent): """Set whether to silence the events.""" self.is_silent = silent def reset(self): """Remove all registered callbacks.""" self._callbacks = [] def _get_on_name(self, func): """Return `eventname` when the function name is `on_<eventname>()`.""" r = re.match("^on_(.+)$", func.__name__) if r: event = r.group(1) else: raise ValueError("The function name should be " "`on_<eventname>`().") return event @contextmanager def silent(self): """Prevent all callbacks to be called if events are raised in the context manager. """ self.is_silent = not(self.is_silent) yield self.is_silent = not(self.is_silent) def connect(self, func=None, event=None, sender=None, **kwargs): """Register a callback function to a given event. To register a callback function to the `spam` event, where `obj` is an instance of a class deriving from `EventEmitter`: ```python @obj.connect(sender=sender) def on_spam(sender, arg1, arg2): pass ``` This is called when `obj.emit('spam', sender, arg1, arg2)` is called. Several callback functions can be registered for a given event. The registration order is conserved and may matter in applications. """ if func is None: return partial(self.connect, event=event, sender=sender, **kwargs) # Get the event name from the function. if event is None: event = self._get_on_name(func) # We register the callback function. self._callbacks.append((event, sender, func, kwargs)) return func def unconnect(self, *items): """Unconnect specified callback functions or senders.""" self._callbacks = [ (event, sender, f, kwargs) for (event, sender, f, kwargs) in self._callbacks if f not in items and sender not in items and getattr(f, '__self__', None) not in items] def emit(self, event, sender, *args, **kwargs): """Call all callback functions registered with an event. Any positional and keyword arguments can be passed here, and they will be forwarded to the callback functions. Return the list of callback return results. """ if self.is_silent: return sender_name = sender.__class__.__name__ logger.log( 5, "Emit %s.%s(%s, %s)", sender_name, event, ', '.join(map(str, args)), ', '.join('%s=%s' % (k, v) for k, v in kwargs.items())) # Call the last callback if this is a single event. single = kwargs.pop('single', None) res = [] # Put `last=True` callbacks at the end. callbacks = [c for c in self._callbacks if not c[-1].get('last', None)] callbacks += [c for c in self._callbacks if c[-1].get('last', None)] for e, s, f, k in callbacks: if e == event and (s is None or s == sender): f_name = getattr(f, '__qualname__', getattr(f, '__name__', str(f))) s_name = s.__class__.__name__ logger.log(5, "Callback %s (%s).", f_name, s_name) res.append(f(sender, *args, **kwargs)) if single: return res[-1] return res #------------------------------------------------------------------------------ # Progress reporter #------------------------------------------------------------------------------ class PartialFormatter(string.Formatter): """Prevent KeyError when a format parameter is absent.""" def get_field(self, field_name, args, kwargs): try: return super(PartialFormatter, self).get_field(field_name, args, kwargs) except (KeyError, AttributeError): return None, field_name def format_field(self, value, spec): """Format a field.""" if value is None: return '?' try: return super(PartialFormatter, self).format_field(value, spec) except ValueError: return '?' def _default_on_progress(sender, message, value, value_max, end='\r', **kwargs): if value_max == 0: # pragma: no cover return if value <= value_max: progress = 100 * value / float(value_max) fmt = PartialFormatter() kwargs['value'] = value kwargs['value_max'] = value_max print(fmt.format(message, progress=progress, **kwargs), end=end) def _default_on_complete(message, end='\n', **kwargs): # Override the initializing message and clear the terminal # line. fmt = PartialFormatter() print(fmt.format(message + '\033[K', **kwargs), end=end) class ProgressReporter(object): """A class that reports progress done. Example ------- ```python pr = ProgressReporter() pr.set_progress_message("Progress: {progress}%...") pr.set_complete_message("Completed!") pr.value_max = 10 for i in range(10): pr.value += 1 # or pr.increment() ``` You can also add custom keyword arguments in `pr.increment()`: these will be replaced in the message string. Emits ----- * `progress(value, value_max)` * `complete()` """ def __init__(self): super(ProgressReporter, self).__init__() self._value = 0 self._value_max = 0 self._has_completed = False def set_progress_message(self, message, line_break=False): """Set a progress message. The string needs to contain `{progress}`. """ end = '\r' if not line_break else None @connect(sender=self) def on_progress(sender, value, value_max, **kwargs): kwargs['end'] = None if value == value_max else end _default_on_progress(sender, message, value, value_max, **kwargs) def set_complete_message(self, message): """Set a complete message.""" @connect(sender=self) def on_complete(sender, **kwargs): _default_on_complete(message, **kwargs) def _set_value(self, value, **kwargs): if value < self._value_max: self._has_completed = False self._value = value emit('progress', self, self._value, self._value_max, **kwargs) if not self._has_completed and self._value >= self._value_max: emit('complete', self, **kwargs) self._has_completed = True def increment(self, **kwargs): """Equivalent to `self.value += 1`. Custom keywoard arguments can also be passed to be processed in the progress message format string. """ self._set_value(self._value + 1, **kwargs) def reset(self, value_max=None): """Reset the value to 0 and the value max to a given value.""" self._value = 0 if value_max is not None: self._value_max = value_max @property def value(self): """Current value (integer).""" return self._value @value.setter def value(self, value): self._set_value(value) @property def value_max(self): """Maximum value (integer).""" return self._value_max @value_max.setter def value_max(self, value_max): if value_max > self._value_max: self._has_completed = False self._value_max = value_max def is_complete(self): """Return whether the task has completed.""" return self._value >= self._value_max def set_complete(self, **kwargs): """Set the task as complete.""" self._set_value(self.value_max, **kwargs) @property def progress(self): """Return the current progress as a float value in `[0, 1]`.""" return self._value / float(self._value_max) #------------------------------------------------------------------------------ # Global event system #------------------------------------------------------------------------------ _EVENT = EventEmitter() emit = _EVENT.emit connect = _EVENT.connect unconnect = _EVENT.unconnect silent = _EVENT.silent set_silent = _EVENT.set_silent reset = _EVENT.reset
StarcoderdataPython
1793854
<filename>LevelSpectroscopy/main.py execfile('interall.py') execfile('../util.py/energy.py') import numpy as np L = 8 Delta = 0.5 deltas = np.linspace(0.0, 1.0, 21) common_params = { 'model' : 'Spin', 'lattice' : 'chain lattice', 'method' : 'Lanczos', 'L' : L, '2S' : 2, '2Sz' : 0} with open('res.dat', 'w') as output: for delta in deltas: generate_defs(common_params) interall(L, delta, Delta, False) subprocess.call(['../HPhi.sh', '-e', 'namelist.def']) enes = energies() ge = enes[0] interall(L, delta, Delta, True) subprocess.call(['../HPhi.sh', '-e', 'namelist.def']) enes = energies() output.write('{} {} {} {}\n'.format(delta, ge, enes[0], enes[1]))
StarcoderdataPython
3370383
if __name__ == '__main__': w = input() # Setting all flags to False. p = False; q = False; r = False; s = False; t = False; # Looping through all the characters from the given input. for i in w: if not(p) and i.isalnum(): # Checking if character alpha numeric or not. p = True; if not(q) and i.isalpha(): # checking if character is alphabet or not q = True; if not(r) and i.isdigit(): # checking if character is number or not r = True; if not(s) and i.islower(): s = True; if not(t) and i.isupper(): t = True; # Printing the changed flags. print(p) print(q) print(r) print(s) print(t)
StarcoderdataPython
3242735
test = { 'name': 'Problem 6', 'points': 2, 'suites': [ { 'cases': [ { 'answer': 'Grouping the restaurants into k clusters by location.', 'choices': [ 'Grouping the restaurants into k clusters by location.', 'Finding the mean rating of restaurants for k categories.', 'Predicting the ratings for k restaurants.' ], 'hidden': False, 'locked': False, 'question': 'What are we using the k-means algorithm to achieve?' }, { 'answer': 'Randomly initialize k centroids.', 'choices': [ 'Randomly initialize k centroids.', r""" Create a cluster for each centroid consisting of all elements closest to that centroid. """, 'Find the centroid (average position) of each cluster.' ], 'hidden': False, 'locked': False, 'question': 'What is the first step of the k-means algorithm?' }, { 'answer': 'Create a cluster for each centroid consisting of all elements closest to that centroid.', 'choices': [ 'Randomly reassign centroids.', 'Group restaurants by latitude.', r""" Create a cluster for each centroid consisting of all elements closest to that centroid. """, 'Find the centroid (average position) of each cluster.' ], 'hidden': False, 'locked': False, 'question': r""" After we randomly initialize k centroids, what is the first step of the iterative portion of the k-means algorithm? """ }, { 'answer': 'Find the centroid (average position) of each cluster.', 'choices': [ 'Randomly reassign centroids.', 'Group restaurants by latitude.', r""" Create a cluster for each centroid consisting of all elements closest to that centroid. """, 'Find the centroid (average position) of each cluster.' ], 'hidden': False, 'locked': False, 'question': r""" What is the second step of the iterative portion of the k-means algorithm? """ } ], 'scored': False, 'type': 'concept' }, { 'cases': [ { 'code': r""" >>> restaurants1 = [ ... make_restaurant('A', [-3, -4], [], 3, [make_review('A', 2)]), ... make_restaurant('B', [1, -1], [], 1, [make_review('B', 1)]), ... make_restaurant('C', [2, -4], [], 1, [make_review('C', 5)]), ... ] >>> centroids = k_means(restaurants1, 1) >>> centroids # should be 2-element lists of decimals [[0.0, -3.0]] """, 'hidden': False, 'locked': False }, { 'code': r""" >>> restaurants2 = [ ... make_restaurant('D', [2, 3], [], 2, [make_review('D', 2)]), ... make_restaurant('E', [0, 3], [], 3, [make_review('E', 1)]), ... ] >>> centroids = k_means(restaurants2, 1) >>> centroids # should be 2-element lists of decimals [[1.0, 3.0]] """, 'hidden': False, 'locked': False }, { 'code': r""" >>> restaurants1 = [ ... make_restaurant('A', [-3, -4], [], 3, [make_review('A', 2)]), ... make_restaurant('B', [1, -1], [], 1, [make_review('B', 1)]), ... make_restaurant('C', [2, -4], [], 1, [make_review('C', 5)]), ... ] >>> centroids = k_means(restaurants1, 2) >>> centroids # should be 2-element lists of decimals [[-3.0, -4.0], [1.5, -2.5]] """, 'hidden': False, 'locked': False }, { 'code': r""" >>> cluster1 = [ ... make_restaurant('A', [-3, -4], [], 3, [make_review('A', 2)]), ... ] >>> cluster2 = [ ... make_restaurant('B', [1, -1], [], 1, [make_review('B', 1)]), ... make_restaurant('C', [2, -4], [], 1, [make_review('C', 5)]), ... make_restaurant('D', [2, 3], [], 2, [make_review('D', 2)]), ... make_restaurant('E', [0, 3], [], 3, [make_review('E', 1)]), ... make_restaurant('F', [-1, 0], [], 3, [make_review('F', 1)]), ... make_restaurant('G', [4, 2], [], 3, [make_review('E', 1)]), ... ] >>> restaurants = cluster1 + cluster2 >>> centroids = k_means(restaurants, 2) >>> [[round(x, 5), round(y, 5)] for x, y in centroids] [[-3.0, -4.0], [1.33333, 0.5]] """, 'hidden': False, 'locked': False } ], 'scored': True, 'setup': r""" >>> import tests.test_functions as test >>> import recommend >>> old_sample = recommend.sample >>> test.swap_implementations(recommend) >>> recommend.sample = test.sample # deterministic sampling >>> make_review, make_restaurant = recommend.make_review, recommend.make_restaurant >>> k_means = recommend.k_means """, 'teardown': r""" >>> recommend.sample = old_sample >>> test.restore_implementations(recommend) """, 'type': 'doctest' } ] }
StarcoderdataPython
1725835
""" Tests for the utilities module. """ from __future__ import (absolute_import, division, print_function) import numpy as np from gridded.pyugrid import util class DummyArrayLike(object): """ Class that will look like an array to this function, even though it won't work! Just for tests. All it does is add a few expected attributes This will need to be updated when the function is changed. """ must_have = ['dtype', 'shape', 'ndim', '__len__', '__getitem__', '__getattribute__'] # pretty kludgy way to do this.. def __new__(cls): obj = object.__new__(cls) for attr in cls.must_have: setattr(obj, attr, None) return obj def test_dummy_array_like(): dum = DummyArrayLike() print(dum) print(dum.dtype) for attr in DummyArrayLike.must_have: assert hasattr(dum, attr) def test_asarraylike_list(): """ Passing in a list should return a np.ndarray. """ lst = [1, 2, 3, 4] result = util.asarraylike(lst) assert isinstance(result, np.ndarray) assert np.array_equal(result, lst) def test_asarraylike_array(): """ Passing in a list should return a np.ndarray. """ arr = np.array([1, 2, 3, 4]) result = util.asarraylike(arr) assert result is arr def test_as_test_asarraylike_dummy(): dum = DummyArrayLike() result = util.asarraylike(dum) assert result is dum
StarcoderdataPython
3341653
""" The MIT License (MIT) Copyright (c) 2014 <NAME> <<EMAIL>> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from itertools import chain import hashlib import pysam import pyfaidx import random import sys from .constants import ENDCHAR, GAPCHAR, DELCHAR from .constants import BAM_CMATCH, BAM_CINS, BAM_CDEL, BAM_CREF_SKIP,\ BAM_CSOFT_CLIP, BAM_CHARD_CLIP, BAM_CPAD, BAM_CEQUAL, BAM_CDIFF def CheckBam(bamfile): try: br = pysam.Samfile(bamfile, "rb") return True except: return False def GetSamplesFromBamFiles(bamfiles): """ Return dictionary of sample -> list of bam files """ samplesToBam = {} for bam in bamfiles: try: br = pysam.Samfile(bam, "rb") except: sys.stderr.write("ERROR: Could not open %s. Is this a valid bam file?\n"%bam) continue for r in br.header.get("RG", []): ident = r["ID"] sample = r.get("SM", ident) if bam not in samplesToBam.get(sample, []): samplesToBam[sample] = samplesToBam.get(sample, []) + [bam] return samplesToBam def GetDefaultLocation(bamfiles): """ Return default location to jump to if no location given. Look at the first read we see and go there. If no reads aligned, return 'error' Args: bamfiles (list): A list with paths to bamfiles Returns: position (string): A string with chromosome and position """ default_chrom = None default_pos = None aligned = False position = 'error' for bam in bamfiles: try: br = pysam.Samfile(bam, "rb") except: sys.stderr.write("ERROR: Could not open %s. Is this a valid bam file?\n"%bam) continue # Peak at the first hundred reads read_count = 0 while not (aligned or read_count > 100): try: aligned_read = br.next() except StopIteration: continue if not aligned_read.is_unmapped: default_chrom = br.getrname(aligned_read.tid) default_pos = str(aligned_read.pos) aligned = True position = ':'.join([default_chrom, default_pos]) break else: read_count += 1 return position def HashSample(sample): """ Return sample hash """ return hashlib.sha256(sample.encode()).hexdigest() def ParseCigar(cigar, nucs): """ Return list of strings, each item corresponding to a single reference position """ rep = [] currentpos = 0 wasinsert = False for c in cigar: if c[0] in [BAM_CMATCH, BAM_CEQUAL, BAM_CDIFF]: # match (M, X, =) for i in range(c[1]): if wasinsert: rep[-1] = rep[-1] + nucs[currentpos] else: rep.append(nucs[currentpos]) wasinsert = False currentpos += 1 elif c[0] == BAM_CINS: # put insertion in next base position (I) if wasinsert: rep[-1] = rep[-1] + nucs[currentpos:currentpos+c[1]] else: rep.append(nucs[currentpos:currentpos+c[1]]) currentpos = currentpos+c[1] wasinsert = True elif c[0] in [BAM_CDEL, BAM_CREF_SKIP]: # deletion (D) or skipped region from the reference (N) for i in range(c[1]): if wasinsert: rep[-1] = rep[-1] + DELCHAR else: rep.append(DELCHAR) wasinsert = False elif c[0] in [BAM_CSOFT_CLIP, BAM_CHARD_CLIP]: # hard clipping or soft clipping pass # do nothing elif c[0] == 6: # padding (silent deletion from padded reference) (P) if wasinsert: rep[-1] = rep[-1] + DELCHAR*c[1] else: rep.append(DELCHAR*c[1]) wasinsert = True else: sys.stderr.write("ERROR: Invalid CIGAR operation (%s) in read %s \n"%(c[0], read.qname)) return rep def AddInsertionLocations(all_locs, new_locs): for item in new_locs: pos = item[0] size = item[1] all_locs[pos] = max(all_locs.get(pos, 0), size) return all_locs class AlignmentGrid(object): """ Class for storing a grid of alignments """ def __init__(self, _bamreaders, _read_groups, _ref, _chrom, _pos, _samples=[], _settings={}): self.bamreaders = _bamreaders self.read_groups = _read_groups self.ref = _ref # Keep track of shortened chromosome names fasta entry has longer chrom string # e.g. "1 dna:chromosome" -> "1" if self.ref: self.refkeys = dict([(key.split()[0], key) for key in self.ref.keys()]) else: self.refkeys = {} self.chrom = _chrom self.startpos = _pos self.settings = _settings self.pos = self.startpos-int(self.settings["LOADCHAR"]*0.5) if self.pos < 0: self.pos = 0 self.usesamples = _samples self.samples = list(set( chain.from_iterable(rg.itervalues() for rg in _read_groups))) for item in _samples: if item not in self.samples: sys.stderr.write("WARNING: %s not in BAM\n"%item) if len(_samples) > 0: self.samples = [item for item in _samples if item in self.samples] self.grid_by_sample = dict([(sample, {}) for sample in self.samples]) self.alnkeys_by_sample = dict([(sample, []) for sample in self.samples]) self.LoadGrid() def GetSamples(self): """ Return list of samples """ return self.samples def GetSampleHashes(self): """ Return list of sample hashes """ return map(HashSample, self.samples) def LoadGrid(self): """ Load grid of alignments with buffer around start pos """ # Get reference if self.ref is None or self.refkeys.get(self.chrom,"") not in self.ref.keys(): reference = ["N"]*self.settings["LOADCHAR"] else: refchrom = self.refkeys[self.chrom] chromlen = len(self.ref[refchrom]) if chromlen <= self.pos: return elif chromlen <= self.pos+self.settings["LOADCHAR"]: reference = self.ref[refchrom][self.pos:] else: reference = self.ref[refchrom][self.pos:self.pos+self.settings["LOADCHAR"]] reference = [reference[i] for i in range(len(reference))] griddict = {"position": range(self.pos, self.pos+len(reference)), "reference": reference} # Get reads region=str("%s:%s-%s"%(self.chrom, max(1, int(self.pos)), int(self.pos+self.settings["LOADCHAR"]))) aligned_reads = [] for bi, br in enumerate(self.bamreaders): try: reads = list(br.fetch(region=region)) pileup = br.pileup(region=region) maxcov = 0 for pcol in br.pileup(region=region): if pcol.n > maxcov: maxcov = pcol.n if maxcov > self.settings["DOWNSAMPLE"]: reads = [item for item in reads if random.random() < self.settings["DOWNSAMPLE"]/float(maxcov)] aligned_reads.extend((bi, read) for read in reads) except: pass readindex = 0 read_properties = [] insertion_locations = {} maxreadlength = 0 for bamindex, read in aligned_reads: # get reference position position = read.pos # get nucleotides nucs = read.query # get CIGAR cigar = read.cigar # get strand strand = not read.is_reverse if not strand: nucs = nucs.lower() # get sample rg = self.read_groups[bamindex].get( dict(read.tags).get("RG",""),"") if rg not in self.usesamples: continue # get representation if cigar is None: sys.stderr.write("WARNING: read %s has no CIGAR string. It will not be displayed.\n"%read.qname) continue read_properties.append({"pos": position,"sample":rg}) rep = ParseCigar(cigar, nucs) readlen = len(rep) if readlen > maxreadlength: maxreadlength = readlen # Fix boundaries ins_locs = [(i, len(rep[i])) for i in range(len(rep)) if len(rep[i])>1] if position < self.pos: rep = rep[self.pos-position:] ins_locs = [(item[0] - (self.pos-position), item[1]) for item in ins_locs] else: rep = [ENDCHAR]*(position-self.pos)+rep ins_locs = [(item[0]+(position-self.pos), item[1]) for item in ins_locs] if len(rep) > len(reference): rep = rep[0:len(reference)] ins_locs = set([item for item in ins_locs if item[0] >= 0 and item[0] < len(reference)]) insertion_locations = AddInsertionLocations(insertion_locations, ins_locs) rep = rep + [ENDCHAR]*(len(reference)-len(rep)) griddict["aln%s"%readindex] = rep readindex += 1 # Fix insertions alnkeys = [item for item in griddict.keys() if item != "position"] for i in insertion_locations: maxchars = insertion_locations[i] for ak in alnkeys: if i != 0: prev = griddict[ak][i-1] else: prev = ENDCHAR val = griddict[ak][i] if len(val) < maxchars: if ENDCHAR in val or prev[-1] == ENDCHAR: c = ENDCHAR else: c = GAPCHAR griddict[ak][i] = c*(maxchars-len(val))+val # Split by sample for sample in self.samples: # if self.settings.get("SORT","bypos") == "bypos": # plan on adding other sort methods later # Get keys in sorted order alnkeys = [(read_properties[i]["pos"], "aln%s"%i) for i in range(readindex) if read_properties[i]["sample"] == sample] alnkeys.sort() alnkeys = [item[1] for item in alnkeys] # Get columns we need for the grid sample_dict = dict([(x, griddict[x]) for x in alnkeys+["position","reference"]]) # Read stacking sample_dict_collapsed = self.CollapseGridByPosition(sample_dict, alnkeys, maxreadlength=maxreadlength) self.alnkeys_by_sample[sample] = [item for item in alnkeys if item in sample_dict_collapsed.keys()] self.grid_by_sample[sample] = sample_dict_collapsed def MergeRows(self, row1, row2, start, end): """ merge row2 into row1. row2 spans start-end """ return row1[0:start] + row2[start:] def CollapseGridByPosition(self, griddict, alncols, maxreadlength=10000): """ If more than one read can fit on the same line, put it there """ cols_to_delete = set() col_to_ends = {"dummy":float("inf")} minend = col_to_ends["dummy"] prevstart = 0 for col in alncols: track = griddict[col] start = prevstart while start<len(track) and (track[start][0] == ENDCHAR or track[start][0] == GAPCHAR): start = start + 1 if start >= len(track): start = 0 end = 0 else: x = [i for i in range(start, min(start+maxreadlength, len(track))) if track[i][0] != ENDCHAR and track[i][0] != GAPCHAR] end = x[-1] if start > minend: # Find the first column we can add it to for c in alncols: if col_to_ends.get(c, float("inf")) < start: mincol = c break # Reset that column with merged alignments griddict[mincol] = self.MergeRows(griddict[mincol], griddict[col], start, end) # Set that column for deletion and clear it in case we use it later griddict[col][start:end+1] = [ENDCHAR*len(griddict[col][i]) for i in range(start, end+1)] cols_to_delete.add(col) # Reset end t = griddict[mincol] col_to_ends[mincol] = end minend = min(col_to_ends.values()) col_to_ends[col] = 0 # Make sure we're not deleting mincol cols_to_delete.discard(mincol) else: col_to_ends[col] = end if end < minend: minend = end prevstart = start for col in cols_to_delete: del griddict[col] return griddict def GetReferenceTrack(self, _pos): """ Return string for the reference track """ if len(self.grid_by_sample.keys()) == 0: return "N"*self.settings["LOADCHAR"] refseries = self.grid_by_sample.values()[0]["reference"] reference = "" for i in range(len(refseries)): reference = reference + refseries[i] return reference.upper() def GetPositions(self, _pos): positions = [] if len(self.grid_by_sample.keys()) == 0: return range(self.pos, self.pos+self.settings["LOADCHAR"]) refseries = self.grid_by_sample.values()[0]["reference"] for i in range(len(refseries)): positions.extend([self.pos+i]*len(refseries[i])) return positions def GetAlignmentTrack(self, _pos): """ Return list of strings for the alignment track """ alignments_by_sample = {} for sample in self.grid_by_sample: grid = self.grid_by_sample[sample] alignments = [] for col in self.alnkeys_by_sample[sample]: alignments.append("".join(grid[col])) alignments_by_sample[HashSample(sample)] = alignments return alignments_by_sample def __str__(self): return "[AlignmentGrid: %s:%s]"%(self.chrom, self.pos) class BamView(object): """ Class for storing view of Bam Alignments """ def __init__(self, _bamfiles, _reffile): self.bamfiles = _bamfiles self.bamreaders = [] for bam in self.bamfiles: try: br = pysam.Samfile(bam, "rb") self.bamreaders.append(br) except: sys.stderr.write("ERROR: could not open %s. Is this a valid bam file?\n"%bam) if _reffile != "": try: self.reference = pyfaidx.Fasta(_reffile, as_raw=True) except: self.reference = None else: self.reference = None self.alignment_grid = None self.read_groups = self.LoadRGDictionary() def GetSamples(self): """ Get list of samples """ return self.alignment_grid.GetSamples() def GetSampleHashes(self): """ Get list of sample hashes """ return self.alignment_grid.GetSampleHashes() def LoadRGDictionary(self): return [ dict([(r["ID"], r.get("SM", r["ID"])) for r in br.header.get("RG", [])]) for br in self.bamreaders] def GetPositions(self, start_pos): """ Get vector of positions for columns """ return self.alignment_grid.GetPositions(start_pos) def GetIndex(self, coord): """ Get index into positions vector for a given coordinate Return -1 if coord not in range """ positions = self.GetPositions(0) if coord < positions[0] or coord > positions[-1]: return -1 return positions.index(coord) def LoadAlignmentGrid(self, _chrom, _pos, _samples=[], _settings={}): """ Load an alignment grid for a view at a specific chr:pos """ self.alignment_grid = AlignmentGrid(self.bamreaders, self.read_groups, self.reference, \ _chrom, _pos, _samples=_samples, _settings=_settings) def GetReferenceTrack(self, start_pos): """ Return string for the reference track """ return self.alignment_grid.GetReferenceTrack(start_pos) def GetAlignmentTrack(self, start_pos): """ Return list of strings for the alignment tracks """ return self.alignment_grid.GetAlignmentTrack(start_pos) def __str__(self): return "[BamView: %s]"%self.bamfile
StarcoderdataPython
1618871
<filename>NOL_model/diff_renderer.py import tensorflow as tf import dirt import dirt.matrices as matrices import dirt.lighting as lighting import sys,os import numpy as np from tensorflow.keras.layers import Layer def build_projection(cam, w=640, h=480, x0=0, y0=0, nc=0.1, fc=10.0): q = -(fc + nc) / float(fc - nc) qn = -2 * (fc * nc) / float(fc - nc) proj = np.array([ [2 * cam[0, 0] / w, -2 * cam[0, 1] / w, (-2 * cam[0, 2] + w + 2 * x0) / w, 0], [0, -2 * cam[1, 1] / h, (-2 * cam[1, 2] + h + 2 * y0) / h, 0], [0, 0, q, qn], # This row is standard glPerspective and sets near and far planes [0, 0, -1, 0] ]) proj[1, :] *= -1.0 return proj.T class neural_rendering_crop_resize(Layer): def __init__(self,img_h,img_w,cam_K,target_h=-1,target_w=-1,near=0.1,far=10.0,ch_dim=3,**kwargs): self.img_h=img_h self.img_w=img_w if(target_h==-1): self.target_h=img_h self.target_w=img_w else: self.target_h=target_h self.target_w=target_w self.cam_K = cam_K self.near = near self.far = far #self.right = ((self.img_w-1.)/2.)*near/self.focal self.projection_matrix = tf.constant(build_projection(cam_K,w=self.img_w,h=self.img_h),tf.float32) self.ch_dim=ch_dim super(neural_rendering_crop_resize,self).__init__(**kwargs) def build(self,input_shape): super(neural_rendering_crop_resize,self).build(input_shape) def call(self,x): #N: num. of vertices, F: num of faces vertices = x[0] #(batchxNx3) #same for each batch uv_map = x[1] #(batchxNx2) #different for each batch faces = tf.cast(x[2],tf.int32) #batchxFx3, same for each batch texture = x[3] #batchxWxHxCH different for each batch poses=x[4] #batch x n_target_poses x 4x4, same for each batch bboxes=x[5] #batch x n_target_poses x 4 -> should be normalized by the full res #ignore batch dimension of poses vertices_mult = tf.tile(vertices,[tf.shape(poses)[1],1,1]) vert_uvs_mult = tf.tile(uv_map,[tf.shape(poses)[1],1,1]) faces_multi = tf.tile(faces,[tf.shape(poses)[1],1,1]) texture_multi = tf.tile(texture,[tf.shape(poses)[1],1,1,1]) poses_t=tf.transpose(poses,[1,0,2,3]) #posexbatchx4x4 poses_t=tf.reshape(poses_t,[-1,4,4]) bboxes_t = tf.transpose(bboxes,[1,0,2]) bboxes_t=tf.reshape(bboxes_t,[-1,4]) #(posexbatch)x4 # Transform vertices from camera to clip space vertices_objects, vertices_cameras,vertices_clips,vertices_normals,view_matrices=\ tf.map_fn(self.transform_vertices,(vertices_mult,poses_t,faces_multi),dtype=(tf.float32,tf.float32,tf.float32,tf.float32,tf.float32)) gbuffer_temp = dirt.rasterise_batch( background=tf.zeros([tf.shape(vertices_mult)[0],self.img_h, self.img_w, 3]), vertices=vertices_clips, vertex_colors=tf.concat([ tf.ones_like(vertices_objects[:,:, :1]), #1 mask vert_uvs_mult ], axis=2), faces=faces_multi, height=self.img_h, width=self.img_w, channels=3 ) rendered_feature_raw = tf.map_fn(self.sample_texture,(texture_multi, gbuffer_temp[:,:,:,1:3] ),dtype=tf.float32) #if both uv value is zero -> uv_projection = gbuffer_temp[:,:,:,1:3] mask_old = gbuffer_temp[:,:,:,:1] #regardless of the facts that each pixel was seen by the input images if not(self.target_h==self.img_h and self.target_h==self.img_h): #for the same pose -> same crop and resize area mask_old = tf.image.crop_and_resize(mask_old,bboxes_t, crop_size=(self.target_h,self.target_w), box_indices=tf.range(0,tf.shape(rendered_feature_raw)[0])) mask_old = tf.cast(tf.greater(mask_old,0.5),tf.float32) mask_rend = tf.cast(tf.greater(tf.reduce_sum(gbuffer_temp[:,:,:,1:3],axis=3,keepdims=True),0),tf.float32) mask_crop = tf.image.crop_and_resize(mask_rend,bboxes_t, crop_size=(self.target_h,self.target_w), box_indices=tf.range(0,tf.shape(rendered_feature_raw)[0])) mask_new = tf.cast(tf.greater(mask_crop,0.5),tf.float32) rendered_feature = tf.image.crop_and_resize(rendered_feature_raw ,bboxes_t, crop_size=(self.target_h,self.target_w), box_indices=tf.range(0,tf.shape(rendered_feature_raw)[0])) uv_projection = tf.image.crop_and_resize(uv_projection ,bboxes_t, crop_size=(self.target_h,self.target_w), box_indices=tf.range(0,tf.shape(rendered_feature_raw)[0])) else: mask_new = tf.cast(tf.greater(tf.reduce_sum(gbuffer_temp[:,:,:,1:3],axis=3,keepdims=True),0),tf.float32) rendered_feature = mask_new*rendered_feature_raw #remove backgrounds concated_out = tf.concat([mask_new,rendered_feature,mask_old,uv_projection],axis=3) # P X B x H x W x CH final_out = tf.reshape(concated_out, [tf.shape(poses)[1],-1,self.target_h,self.target_w,self.ch_dim+4]) #(batch*n_poses) x H x W x (ch+1) -> (n_poses x batch x H x W x (ch+1)) #pack each image in a pose return final_out def transform_vertices(self,inputs): vertices = inputs[0] pose = inputs[1] faces= inputs[2] cube_vertices_object = tf.concat([ vertices, tf.ones_like(vertices[:, -1:]) ], axis=1) cube_normals_world = lighting.vertex_normals_pre_split(cube_vertices_object, faces) transform_gl = tf.constant([[1,0,0],[0,-1,0],[0,0,-1]],tf.float32) tensor_rot = tf.matmul(transform_gl,pose[:3,:3]) rot_list = tf.unstack(tf.reshape(tensor_rot,[-1])) pose_list = tf.unstack(tf.reshape(pose,[-1])) pose_list[0:3]=rot_list[0:3] pose_list[4:7]=rot_list[3:6] pose_list[8:11]=rot_list[6:9] pose_list[7]=-pose_list[7] pose_list[11]=-pose_list[11] cam_pose = tf.stack(pose_list) cam_pose = tf.reshape(cam_pose,(4,4)) view_matrix = tf.transpose(cam_pose) cube_vertices_camera = tf.matmul(cube_vertices_object, view_matrix) cube_vertices_clip = tf.matmul(cube_vertices_camera, self.projection_matrix) return cube_vertices_object,cube_vertices_camera,cube_vertices_clip,cube_normals_world,view_matrix def uvs_to_pixel_indices(self,uvs, texture_shape): # Note that this assumes u = 0, v = 0 is at the top-left of the image -- different to OpenGL! uvs = uvs[..., ::-1] # change x, y coordinates to y, x indices #batchxhxwx2 vs [2] texture_shape = tf.cast(texture_shape, tf.float32) #[h,w] return tf.clip_by_value(uvs, 0., 1.) * texture_shape def sample_texture(self,inputs): texture=inputs[0] uv_val_ori=inputs[1] #wxhx2 indices = self.uvs_to_pixel_indices(uv_val_ori, tf.shape(texture)[:2]) floor_indices = tf.floor(indices) frac_indices = indices - floor_indices floor_indices = tf.cast(floor_indices, tf.int32) neighbours = tf.gather_nd( texture, tf.stack([ floor_indices, floor_indices + [0, 1], floor_indices + [1, 0], floor_indices + [1, 1] ]), ) top_left, top_right, bottom_left, bottom_right = tf.unstack(neighbours) return \ top_left * (1. - frac_indices[..., 1:]) * (1. - frac_indices[..., :1]) + \ top_right * frac_indices[..., 1:] * (1. - frac_indices[..., :1]) + \ bottom_left * (1. - frac_indices[..., 1:]) * frac_indices[..., :1] + \ bottom_right * frac_indices[..., 1:] * frac_indices[..., :1] def compute_output_shape(self,input_shape): return (tuple([input_shape[4][1],input_shape[0][0],self.target_h,self.target_w,self.ch_dim+4])) class neural_rendering_gbuffer(Layer): def __init__(self,img_h,img_w,cam_K,near=0.1,far=10.0,ch_dim=3,**kwargs): self.img_h=img_h self.img_w=img_w self.cam_K = cam_K self.near = near self.far = far #self.right = ((self.img_w-1.)/2.)*near/self.focal self.projection_matrix = tf.constant(build_projection(cam_K,w=self.img_w,h=self.img_h),tf.float32) super(neural_rendering_gbuffer,self).__init__(**kwargs) def build(self,input_shape): super(neural_rendering_gbuffer,self).build(input_shape) def call(self,x): #N: num. of vertices, F: num of faces vertices = x[0] #(1xNx3) #same for each batch faces = tf.cast(x[1],tf.int32) #1xFx3, same for each batch poses=x[2] #1 x 4x4, same for each batch # Transform vertices from camera to clip space vert_obj,vert_3d,vert_clip,normals= self.transform_vertices(vertices[0],poses[0],faces[0]) gbuffer_temp = dirt.rasterise( background=tf.zeros([self.img_h, self.img_w, 11]), vertices=vert_clip, vertex_colors=tf.concat([ tf.ones_like(vert_obj[:, :1]), #1 mask vert_3d, normals, vert_obj ], axis=1), faces=faces[0], height=self.img_h, width=self.img_w, channels=11 ) return tf.expand_dims(gbuffer_temp,axis=0) def transform_vertices(self,vertices,pose,faces): #vertices = inputs[0] #pose = inputs[1] #faces= inputs[2] cube_vertices_object = tf.concat([ vertices, tf.ones_like(vertices[:, -1:]) ], axis=1) cube_normals_world = lighting.vertex_normals_pre_split(cube_vertices_object, faces) transform_gl = tf.constant([[1,0,0],[0,-1,0],[0,0,-1]],tf.float32) tensor_rot = tf.matmul(transform_gl,pose[:3,:3]) rot_list = tf.unstack(tf.reshape(tensor_rot,[-1])) pose_list = tf.unstack(tf.reshape(pose,[-1])) pose_list[0:3]=rot_list[0:3] pose_list[4:7]=rot_list[3:6] pose_list[8:11]=rot_list[6:9] pose_list[7]=-pose_list[7] pose_list[11]=-pose_list[11] cam_pose = tf.stack(pose_list) cam_pose = tf.reshape(cam_pose,(4,4)) view_matrix = tf.transpose(cam_pose) cube_vertices_camera = tf.matmul(cube_vertices_object, view_matrix) cube_vertices_3d = tf.transpose(tf.matmul(pose[:3,:3], tf.transpose(cube_vertices_object[:,:3])))+tf.transpose(pose[:3,3:4]) #3xN cube_vertices_clip = tf.matmul(cube_vertices_camera, self.projection_matrix) return cube_vertices_object,cube_vertices_3d,cube_vertices_clip,cube_normals_world def compute_output_shape(self,input_shape): return (tuple([input_shape[0][0],self.img_h,self.img_w,7]))
StarcoderdataPython
1645908
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ To prompt if login requires """ from PyInquirer import prompt def login(crawler): answer = prompt([ { 'type': 'confirm', 'name': 'login', 'message': 'Do you want to log in?', 'default': False }, ]) if answer['login']: answer = prompt([ { 'type': 'input', 'name': 'email', 'message': 'Email:', 'validate': lambda val: True if len(val) else 'Email address should be not be empty' }, { 'type': 'password', 'name': 'password', 'message': 'Password:', 'validate': lambda val: True if len(val) else 'Password should be not be empty' }, ]) crawler.login(answer['email'], answer['password']) # end if # end def
StarcoderdataPython
135631
from collections import defaultdict class Graph: def __init__(self, vertices): self.V = vertices self.graph = [] def addEdge(self, u, v, w): self.graph.append([u, v, w]) def find(self, parent, i): if parent[i] == i: return i return self.find(parent, parent[i]) def union(self, parent, rank, x, y): xroot = self.find(parent, x) yroot = self.find(parent, y) if rank[xroot] < rank[yroot]: parent[xroot] = yroot elif rank[xroot] > rank[yroot]: parent[yroot] = xroot else: parent[yroot] = xroot rank[xroot] += 1 def KruskalMST(self): result = [] i = 0 e = 0 self.graph = sorted(self.graph, key=lambda item: item[2]) parent = [] rank = [] for node in range(self.V): parent.append(node) rank.append(0) while e < self.V - 1: u, v, w = self.graph[i] i = i + 1 x = self.find(parent, u) y = self.find(parent, v) if x != y: e = e + 1 result.append([u, v, w]) self.union(parent, rank, x, y) minimumCost = 0 print ("Edges in the constructed MST") for u, v, weight in result: minimumCost += weight print("%d -- %d == %d" % (u, v, weight)) print("Minimum Spanning Tree" , minimumCost) g = Graph(4) g.addEdge(0, 1, 10) g.addEdge(0, 2, 6) g.addEdge(0, 3, 5) g.addEdge(1, 3, 15) g.addEdge(2, 3, 4) # Function call g.KruskalMST()
StarcoderdataPython
1754839
from __future__ import with_statement from difflib import SequenceMatcher import os from unittest import TestCase import sys import django from django import template from django.conf import settings from django.template.loader import render_to_string from django.template.engine import Engine import pep8 from sekizai import context_processors from sekizai.context import SekizaiContext from sekizai.helpers import get_namespaces from sekizai.helpers import get_varname from sekizai.helpers import validate_template from sekizai.helpers import Watcher from sekizai.templatetags.sekizai_tags import import_processor from sekizai.templatetags.sekizai_tags import validate_context try: unicode_compat = unicode except NameError: unicode_compat = str try: from io import StringIO except ImportError: from StringIO import StringIO def null_processor(context, data, namespace): return '' def namespace_processor(context, data, namespace): return namespace class SettingsOverride(object): """ Overrides Django settings within a context and resets them to their initial values on exit. Example: with SettingsOverride(DEBUG=True): # do something """ class NULL: pass def __init__(self, **overrides): self.overrides = overrides def __enter__(self): self.old = {} for key, value in self.overrides.items(): self.old[key] = getattr(settings, key, self.NULL) setattr(settings, key, value) def __exit__(self, type, value, traceback): for key, value in self.old.items(): if value is self.NULL: delattr(settings, key) else: setattr(settings, key, value) class CaptureStdout(object): """ Overrides sys.stdout with a StringIO stream. """ def __init__(self): self.old = None def __enter__(self): self.old = sys.stdout new = sys.stdout = StringIO() return new def __exit__(self, exc_type, exc_val, exc_tb): sys.stdout = self.old class Match(tuple): # pragma: no cover @property def a(self): return self[0] @property def b(self): return self[1] @property def size(self): return self[2] def _backwards_compat_match(thing): # pragma: no cover if isinstance(thing, tuple): return Match(thing) return thing class BitDiffResult(object): def __init__(self, status, message): self.status = status self.message = message class BitDiff(object): """ Visual aid for failing tests """ def __init__(self, expected): self.expected = [repr(unicode_compat(bit)) for bit in expected] def test(self, result): result = [repr(unicode_compat(bit)) for bit in result] if self.expected == result: return BitDiffResult(True, "success") else: # pragma: no cover longest = max( [len(x) for x in self.expected] + [len(x) for x in result] + [len('Expected')] ) sm = SequenceMatcher() sm.set_seqs(self.expected, result) matches = sm.get_matching_blocks() lasta = 0 lastb = 0 data = [] for match in [_backwards_compat_match(match) for match in matches]: unmatcheda = self.expected[lasta:match.a] unmatchedb = result[lastb:match.b] unmatchedlen = max([len(unmatcheda), len(unmatchedb)]) unmatcheda += ['' for x in range(unmatchedlen)] unmatchedb += ['' for x in range(unmatchedlen)] for i in range(unmatchedlen): data.append((False, unmatcheda[i], unmatchedb[i])) for i in range(match.size): data.append(( True, self.expected[match.a + i], result[match.b + i] )) lasta = match.a + match.size lastb = match.b + match.size padlen = (longest - len('Expected')) padding = ' ' * padlen line1 = '-' * padlen line2 = '-' * (longest - len('Result')) msg = '\nExpected%s | | Result' % padding msg += '\n--------%s-|---|-------%s' % (line1, line2) for success, a, b in data: pad = ' ' * (longest - len(a)) if success: msg += '\n%s%s | | %s' % (a, pad, b) else: msg += '\n%s%s | ! | %s' % (a, pad, b) return BitDiffResult(False, msg) def update_template_debug(debug=True): """ Helper method for updating the template debug option based on the django version. Use the results of this function as the context. :return: SettingsOverride object """ # Create our overridden template settings with debug turned off. templates_override = settings.TEMPLATES templates_override[0]['OPTIONS'].update({'debug': debug}) # Engine gets created based on template settings initial value so # changing the settings after the fact won't update, so do it # manually. Necessary when testing validate_context # with render method and want debug off. Engine.get_default().debug = debug return SettingsOverride(TEMPLATES=templates_override) class SekizaiTestCase(TestCase): def _render(self, tpl, ctx=None, sekizai_context=True): ctx = dict(ctx) if ctx else {} if sekizai_context: ctx.update(context_processors.sekizai()) return render_to_string(tpl, ctx) def _get_bits(self, tpl, ctx=None, sekizai_context=True): ctx = ctx or {} rendered = self._render(tpl, ctx, sekizai_context) bits = [ bit for bit in [bit.strip('\n') for bit in rendered.split('\n')] if bit ] return bits, rendered def _test(self, tpl, res, ctx=None, sekizai_context=True): """ Helper method to render template and compare it's bits """ ctx = ctx or {} bits, rendered = self._get_bits(tpl, ctx, sekizai_context) differ = BitDiff(res) result = differ.test(bits) self.assertTrue(result.status, result.message) return rendered def test_pep8(self): sekizai_dir = os.path.dirname(os.path.abspath(__file__)) pep8style = pep8.StyleGuide() with CaptureStdout() as stdout: result = pep8style.check_files([sekizai_dir]) errors = stdout.getvalue() self.assertEqual( result.total_errors, 0, "Code not PEP8 compliant:\n{0}".format(errors) ) def test_basic_dual_block(self): """ Basic dual block testing """ bits = [ 'my css file', 'some content', 'more content', 'final content', 'my js file' ] self._test('basic.html', bits) def test_named_endaddtoblock(self): """ Testing with named endaddblock """ bits = ["mycontent"] self._test('named_end.html', bits) def test_eat_content_before_render_block(self): """ Testing that content gets eaten if no render_blocks is available """ bits = ["mycontent"] self._test("eat.html", bits) def test_sekizai_context_required(self): """ Test that the template tags properly fail if not used with either SekizaiContext or the context processor. """ with self.assertRaises(template.TemplateSyntaxError): self._render('basic.html', {}, sekizai_context=False) def test_complex_template_inheritance(self): """ Test that (complex) template inheritances work properly """ bits = [ "head start", "some css file", "head end", "include start", "inc add js", "include end", "block main start", "extinc", "block main end", "body pre-end", "inc js file", "body end" ] self._test("inherit/extend.html", bits) """ Test that blocks (and block.super) work properly with sekizai """ bits = [ "head start", "visible css file", "some css file", "head end", "include start", "inc add js", "include end", "block main start", "block main base contents", "more contents", "block main end", "body pre-end", "inc js file", "body end" ] self._test("inherit/super_blocks.html", bits) def test_namespace_isolation(self): """ Tests that namespace isolation works """ bits = ["the same file", "the same file"] self._test('namespaces.html', bits) def test_variable_namespaces(self): """ Tests variables and filtered variables as block names. """ bits = ["file one", "file two"] self._test('variables.html', bits, {'blockname': 'one'}) def test_invalid_addtoblock(self): """ Tests that template syntax errors are raised properly in templates rendered by sekizai tags """ self.assertRaises( template.TemplateSyntaxError, self._render, 'errors/failadd.html' ) def test_invalid_renderblock(self): self.assertRaises( template.TemplateSyntaxError, self._render, 'errors/failrender.html' ) def test_invalid_include(self): self.assertRaises( template.TemplateSyntaxError, self._render, 'errors/failinc.html' ) def test_invalid_basetemplate(self): self.assertRaises( template.TemplateSyntaxError, self._render, 'errors/failbase.html' ) def test_invalid_basetemplate_two(self): self.assertRaises( template.TemplateSyntaxError, self._render, 'errors/failbase2.html' ) def test_with_data(self): """ Tests the with_data/add_data tags. """ bits = ["1", "2"] self._test('with_data.html', bits) def test_easy_inheritance(self): self.assertEqual('content', self._render("easy_inherit.html").strip()) def test_validate_context(self): sekizai_ctx = SekizaiContext() django_ctx = template.Context() self.assertRaises( template.TemplateSyntaxError, validate_context, django_ctx ) self.assertEqual(validate_context(sekizai_ctx), True) with update_template_debug(debug=False): self.assertEqual(validate_context(django_ctx), False) self.assertEqual(validate_context(sekizai_ctx), True) bits = ['some content', 'more content', 'final content'] self._test('basic.html', bits, sekizai_context=False) def test_post_processor_null(self): bits = ['header', 'footer'] self._test('processors/null.html', bits) def test_post_processor_namespace(self): bits = ['header', 'footer', 'js'] self._test('processors/namespace.html', bits) def test_import_processor_failfast(self): self.assertRaises(TypeError, import_processor, 'invalidpath') def test_unique(self): bits = ['unique data'] self._test('unique.html', bits) def test_strip(self): tpl = template.Template(""" {% load sekizai_tags %} {% addtoblock 'a' strip %} test{% endaddtoblock %} {% addtoblock 'a' strip %}test {% endaddtoblock %} {% render_block 'a' %}""") context = SekizaiContext() output = tpl.render(context) self.assertEqual(output.count('test'), 1, output) def test_addtoblock_processor_null(self): bits = ['header', 'footer'] self._test('processors/addtoblock_null.html', bits) def test_addtoblock_processor_namespace(self): bits = ['header', 'footer', 'js'] self._test('processors/addtoblock_namespace.html', bits) class HelperTests(TestCase): def test_validate_template_js_css(self): self.assertTrue(validate_template('basic.html', ['js', 'css'])) def test_validate_template_js(self): self.assertTrue(validate_template('basic.html', ['js'])) def test_validate_template_css(self): self.assertTrue(validate_template('basic.html', ['css'])) def test_validate_template_empty(self): self.assertTrue(validate_template('basic.html', [])) def test_validate_template_notfound(self): self.assertFalse(validate_template('basic.html', ['notfound'])) def test_get_namespaces_easy_inherit(self): self.assertEqual(get_namespaces('easy_inherit.html'), ['css']) def test_get_namespaces_chain_inherit(self): self.assertEqual(get_namespaces('inherit/chain.html'), ['css', 'js']) def test_get_namespaces_space_chain_inherit(self): self.assertEqual( get_namespaces('inherit/spacechain.html'), ['css', 'js'] ) def test_get_namespaces_var_inherit(self): self.assertEqual(get_namespaces('inherit/varchain.html'), []) def test_get_namespaces_sub_var_inherit(self): self.assertEqual(get_namespaces('inherit/subvarchain.html'), []) def test_get_namespaces_null_ext(self): self.assertEqual(get_namespaces('inherit/nullext.html'), []) def test_deactivate_validate_template(self): with SettingsOverride(SEKIZAI_IGNORE_VALIDATION=True): self.assertTrue(validate_template('basic.html', ['js', 'css'])) self.assertTrue(validate_template('basic.html', ['js'])) self.assertTrue(validate_template('basic.html', ['css'])) self.assertTrue(validate_template('basic.html', [])) self.assertTrue(validate_template('basic.html', ['notfound'])) def test_watcher_add_namespace(self): context = SekizaiContext() watcher = Watcher(context) varname = get_varname() context[varname]['key'].append('value') changes = watcher.get_changes() self.assertEqual(changes, {'key': ['value']}) def test_watcher_add_data(self): context = SekizaiContext() varname = get_varname() context[varname]['key'].append('value') watcher = Watcher(context) context[varname]['key'].append('value2') changes = watcher.get_changes() self.assertEqual(changes, {'key': ['value2']})
StarcoderdataPython
173965
<gh_stars>0 import os import sys import time import uuid from datetime import datetime from numpy import mean from numpy.core import long from ios_device.servers.DTXSever import InstrumentRPCParseError from ios_device.servers.Instrument import InstrumentServer from ios_device.util.utils import kperf_data sys.path.append(os.getcwd()) NANO_SECOND = 1e9 # ns MOVIE_FRAME_COST = 1 / 24 def graphics_display(rpc): def dropped_message(res): print("[DROP]", res.parsed, res.raw.channel_code) last_frame = None last_1_frame_cost, last_2_frame_cost, last_3_frame_cost = 0, 0, 0 jank_count = 0 big_jank_count = 0 jank_time_count = 0 mach_time_factor = 125 / 3 frame_count = 0 time_count = 0 last_time = datetime.now().timestamp() count_time = datetime.now().timestamp() _list = [] def on_graphics_message(res): nonlocal frame_count, last_frame, last_1_frame_cost, last_2_frame_cost, last_3_frame_cost, time_count, mach_time_factor, last_time, \ jank_count, big_jank_count, jank_time_count, _list, count_time if type(res.plist) is InstrumentRPCParseError: for args in kperf_data(res.raw.get_selector()): _time, code = args[0], args[7] if code == 830472984: if not last_frame: last_frame = long(_time) else: this_frame_cost = (long(_time) - last_frame) * mach_time_factor if all([last_3_frame_cost != 0, last_2_frame_cost != 0, last_1_frame_cost != 0]): if this_frame_cost > mean([last_3_frame_cost, last_2_frame_cost, last_1_frame_cost]) * 2 \ and this_frame_cost > MOVIE_FRAME_COST * NANO_SECOND * 2: jank_count += 1 jank_time_count += this_frame_cost if this_frame_cost > mean( [last_3_frame_cost, last_2_frame_cost, last_1_frame_cost]) * 3 \ and this_frame_cost > MOVIE_FRAME_COST * NANO_SECOND * 3: big_jank_count += 1 last_3_frame_cost, last_2_frame_cost, last_1_frame_cost = last_2_frame_cost, last_1_frame_cost, this_frame_cost time_count += this_frame_cost last_frame = long(_time) frame_count += 1 else: time_count = (datetime.now().timestamp() - count_time) * NANO_SECOND if time_count > NANO_SECOND: print( f"{datetime.now().timestamp() - last_time} FPS: {frame_count / time_count * NANO_SECOND} jank: {jank_count} big_jank: {big_jank_count} stutter: {jank_time_count / time_count}") jank_count = 0 big_jank_count = 0 jank_time_count = 0 frame_count = 0 time_count = 0 count_time = datetime.now().timestamp() # else: # last_time = datetime.now().timestamp() rpc.register_unhandled_callback(dropped_message) rpc.register_channel_callback("com.apple.instruments.server.services.coreprofilesessiontap", on_graphics_message) # 获取mach time比例 machTimeInfo = rpc.call("com.apple.instruments.server.services.deviceinfo", "machTimeInfo").parsed mach_time_factor = machTimeInfo[1] / machTimeInfo[2] print("set", rpc.call("com.apple.instruments.server.services.coreprofilesessiontap", "setConfig:", {'rp': 10, 'tc': [{'kdf2': {630784000, 833617920, 830472456}, 'tk': 3, 'uuid': str(uuid.uuid4()).upper()}], 'ur': 500}).parsed) print("start", rpc.call("com.apple.instruments.server.services.coreprofilesessiontap", "start").parsed) try: while 1: time.sleep(10) except: pass print("stop", rpc.call("com.apple.instruments.server.services.coreprofilesessiontap", "stop").parsed) rpc.stop() if __name__ == '__main__': rpc = InstrumentServer().init() graphics_display(rpc) rpc.stop()
StarcoderdataPython
3261864
<gh_stars>1-10 import numpy as np COLORS = np.array([[1, 0, 1], [0, 0, 1], [0, 1, 1], [0, 1, 0], [1, 1, 0], [1, 0, 0]]) IMG_EXTENSIONS = (".jpg", ".png")
StarcoderdataPython
1769218
#!/usr/bin/env python3 import argparse import json import uuid import requests import sys from string import Formatter from errors import UserError, RequestError from request_utils import Requests from environment_utils import Environments class Cli(object): def __init__( self, requests_filename='requests.json', environments_filename='envs.json', print_all_responses=False ): self.requests = Requests(filename=requests_filename) self.environments = Environments(filename=environments_filename) self.print_all_responses = print_all_responses def make_call(self, request_name, env_name): request = self.requests.find(request_name) environment = self.environments.find(env_name) parsed_req = self._parse_request(request, env_name) url = f"{environment['base_url']}{parsed_req['endpoint']}" headers = {'content-type': 'application/json'} if 'headers' in environment: headers = {**headers, **environment['headers']} if parsed_req['type'] == 'POST': response = requests.post(url, data=json.dumps(parsed_req['body']), headers=headers) elif parsed_req['type'] == 'PUT': response = requests.put(url, data=json.dumps(parsed_req['body']), headers=headers) elif parsed_req['type'] == 'GET': response = requests.get(url, params=parsed_req['body'], headers=headers) else: raise UserError(f'Unknown HTTP method {parsed_req["type"]}') response_json = response.json() if response.status_code != 200: raise RequestError( f'{response.status_code} returned when calling {request_name} with response ' f'{response_json}. Expected status code 200.' ) if self.print_all_responses: print(f'Response for call to {request_name}:') print(response_json) return response_json def _parse_request(self, request, base_url): if isinstance(request, str): parameters = [ parameter for _, parameter, _, _ in Formatter().parse(request) if parameter ] values = {} for parameter in parameters: new_request = parameter.split('[')[0] values[new_request] = self._populate_parameter(new_request, base_url) return request.format(**values) if isinstance(request, list): parsed = [] for value in request: parsed.append(self._parse_request(value, base_url)) return parsed parsed = {} for attribute, value in request.items(): parsed[attribute] = self._parse_request(value, base_url) return parsed def _populate_parameter(self, parameter_name, base_url): if parameter_name == 'uuid': return str(uuid.uuid4()) else: return self.make_call(parameter_name, base_url) def setup_argparse(): parser = argparse.ArgumentParser(description='Create and retrieve objects in a rest API.') parser.add_argument( 'request', metavar='request_name', help='the name of a request to make', nargs='?' ) parser.add_argument( '-l', '--list', help='list all objects and exit', action='store_true' ) parser.add_argument( '-rf', '--requests_file', help='the requests file location', ) parser.add_argument( '-ef', '--environments_file', help='the environments file location', ) parser.add_argument( '-o', '--output_all_requests', help='prints all the requests being made', action='store_true' ) parser.add_argument( '-e', '--env', '--environment', metavar='env_name', help='the name of environment to use', ) return parser if __name__ == '__main__': parser = setup_argparse() args = parser.parse_args() cli = None try: cli = Cli( requests_filename=args.requests_file or 'requests.json', environments_filename=args.environments_file or 'envs.json', print_all_responses=args.output_all_requests ) except UserError as e: print(str(e)) sys.exit(1) if args.list: cli.requests.print_request_list() elif args.request: try: print(cli.make_call(args.request, args.env or 'default')) except (UserError, RequestError) as e: print(str(e)) sys.exit(1) else: print('Type -h for help')
StarcoderdataPython
3263452
import sys n = int(input()) for i in range(n): x = int(input()) #if x / 4 gives rest 0, then the polygon is beautiful if (x%4 == 0): print('YES') else: print('NO')
StarcoderdataPython
24834
<reponame>zacespinosa/homicidal_chauffeur import random as random import numpy as np from dynamics import Simulator, Pursuer, Evader def test_evader(): num_d_states = 25 num_phi_states = 20 num_phi_d_states = 20 num_actions = 10 num_states = num_d_states*num_phi_states*num_phi_d_states num_epochs = 1000 p = Pursuer() e = Evader(num_d_states, num_phi_states, num_phi_d_states, num_actions, np.array([10,10]), learning='Q-learning', load_q=True) s = Simulator(p, e, num_d_states, num_phi_states, num_phi_d_states, num_actions, verbose=True) while s.restarts < 1: # execute optimal pursuer strategy while training evader a_p = p.optimal_strategy(e.pos, p.pos) # a_e = e.optimal_strategy(e.pos, p.pos, p.R_p) # execute Q Learning policy for evader state = e.s a_e = e.qLearningPolicy(state) p_info, e_info = s.simulate(a_p, a_e, discrete_p_action=False, discrete_e_action=True) if s.end_game: s.restart_game() new_state = e_info[0] r_e = e_info[1] print("Evader captured: ", s.num_captures, "/", s.restarts, " times.") test_evader()
StarcoderdataPython
3250331
<filename>Demo/Code/main.py # -*- coding: UTF-8 -*- import sys from PyQt5 import QtWidgets, QtCore, QtGui from PyQt5.QtGui import * from PyQt5.QtWidgets import * from PyQt5.QtCore import * from PyQt5.QtWidgets import (QWidget, QPushButton, QApplication) import math from run import deep_rnn_annotate # coordinates of the selected object record = [0, 0, 0, 0] # selected mode select = '' # instance number cur_ins_id = 0 # screen shot class WScreenShot(QWidget): win = '' # 自定义图片保存路径 save_path = "../images/save.jpg" @classmethod def run(cls, x, y): # screenshot cls.win = cls(x, y) cls.win.show() def __init__(self, x, y, parent=None): super(WScreenShot, self).__init__(parent) self.bias = QPoint(x, y) self.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint) self.setStyleSheet('''background-color:black; ''') self.setWindowOpacity(0.6) desktopRect = QDesktopWidget().screenGeometry() self.setGeometry(x, y, 1024, 512) self.setCursor(Qt.CrossCursor) self.blackMask = QBitmap(desktopRect.size()) self.blackMask.fill(Qt.black) self.mask = self.blackMask.copy() self.isDrawing = False self.startPoint = QPoint() self.endPoint = QPoint() # 自定义绘画事件 def paintEvent(self, event): if self.isDrawing: self.mask = self.blackMask.copy() pp = QPainter(self.mask) pen = QPen() pen.setStyle(Qt.NoPen) pp.setPen(pen) brush = QBrush(Qt.white) pp.setBrush(brush) pp.drawRect(QRect(self.startPoint, self.endPoint)) self.setMask(QBitmap(self.mask)) def mousePressEvent(self, event): if event.button() == Qt.LeftButton: self.startPoint = event.pos() self.endPoint = self.startPoint self.isDrawing = True def mouseMoveEvent(self, event): if self.isDrawing: self.endPoint = event.pos() self.update() def mouseReleaseEvent(self, event): if event.button() == Qt.LeftButton: self.endPoint = event.pos() # record the coordinates of the selected object record[0] = (self.startPoint.x()) record[1] = (self.startPoint.y()) record[2] = (self.endPoint.x()) record[3] = (self.endPoint.y()) screenshot = QApplication.primaryScreen().grabWindow(QApplication.desktop().winId()) rect = QRect(self.startPoint + self.bias, self.endPoint + self.bias) outputRegion = screenshot.copy(rect) # save the selected object outputRegion.save(self.save_path, format='JPG', quality=100) self.close() class MyLabel(QLabel): def __init__(self, parent=None): QLabel.__init__(self, parent) self.points_list = [] self.threshold = 5 self.flag = False self.choose_index = -1 self.choose_polygon = -1 def addPolygon(self, points): self.points_list.append(points) def mousePressEvent(self, event): x = event.x() y = event.y() min_distance = 100000000 min_poly = -1 min_index = -1 for i in range(len(self.points_list)): for j in range(len(self.points_list[i])): distance = math.sqrt((x - self.points_list[i][j].x()) ** 2 + (y - self.points_list[i][j].y()) ** 2) if distance < min_distance: min_distance = distance min_poly = i min_index = j if event.buttons() == Qt.LeftButton: if min_poly != -1 and min_index != -1 and min_distance < self.threshold: self.flag = True self.choose_polygon = min_poly self.choose_index = min_index elif event.buttons() == Qt.RightButton: print("....") if min_index != -1 and min_distance < self.threshold: del self.points_list[min_poly][min_index] self.update() def mouseReleaseEvent(self, event): self.flag = False self.choose_polygon = -1 self.choose_index = -1 def mouseMoveEvent(self, event): if self.flag: x = event.x() y = event.y() self.points_list[self.choose_polygon][self.choose_index].setX(x) self.points_list[self.choose_polygon][self.choose_index].setY(y) self.update() def paintEvent(self, event): super().paintEvent(event) painter = QPainter(self) for i in range(len(self.points_list)): painter.setPen(QPen(Qt.red, 3, Qt.SolidLine)) painter.drawPolygon(QPolygon(self.points_list[i])) painter.setPen(QPen(Qt.black, 8, Qt.SolidLine)) painter.drawPoints(QPolygon(self.points_list[i])) class MyWindow(QMainWindow): def __init__(self): super(MyWindow, self).__init__() self.resize(1250, 600) menubar = self.menuBar() menubar.addMenu('&Menu') menubar.addMenu('&Mode') menubar.addMenu('&Instruction') self.setWindowTitle("Deep RNN Annotator") self.setWindowIcon(QIcon('icon.png')) self.setFixedSize(self.width(), self.height()) self.label = MyLabel(self) self.label.setText(" Waiting to load image...") self.label.setFixedSize(1024, 512) self.label.move(10, 50) self.label.setStyleSheet("QLabel{background:white;}" "QLabel{color:rgb(0,0,0);font-size:40px;font-weight:bold;font-family:宋体;}" ) font = QtGui.QFont() font.setFamily('微软雅黑') font.setBold(True) font.setPointSize(12) font.setWeight(60) self.combo = QComboBox(self) self.combo.addItem('Local Mode') self.combo.addItem('Server Mode') self.combo.setFont(font) self.combo.setGeometry(QtCore.QRect(1060, 60, 150, 40)) btn = QPushButton(self) btn.setText("Select Image") # btn.move(1060, 140) btn.clicked.connect(self.openimage) btn.setFont(font) btn.setGeometry(QtCore.QRect(1060, 140, 150, 40)) btn2 = QPushButton(self) btn2.setText("Choose Object") # btn2.move(1060, 380) btn2.clicked.connect(self.screenshot) btn2.setFont(font) btn2.setGeometry(QtCore.QRect(1060, 220, 150, 40)) btn3 = QPushButton(self) btn3.setText("Annotate") # btn3.move(1060, 460) btn3.clicked.connect(self.labelling) btn3.setFont(font) btn3.setGeometry(QtCore.QRect(1060, 300, 150, 40)) self.pic_x = 0 self.pic_y = 0 def openimage(self): imgName, imgType = QFileDialog.getOpenFileName(self, "Open Image", "", "*.jpg;;*.png;;All Files(*)") jpg = QtGui.QPixmap(imgName).scaled(self.label.width(), self.label.height()) self.label.points_list = [] self.label.setPixmap(jpg) def screenshot(self): self.x = self.label.x() + self.geometry().x() self.y = self.label.y() + self.geometry().y() a = WScreenShot(self.x, self.y) a.run(self.x, self.y) def getPoints(self, lt): points = [] temp = 0 print(len(lt)) for i in range(len(lt)): if i % 2: points.append(QPoint(temp, lt[i])) else: temp = lt[i] return points def labelling(self): global cur_ins_id global record global select cur_ins_id += 1 select = self.combo.currentText() ret = deep_rnn_annotate() for i in range(0, len(ret), 2): ret[i] = ret[i] + record[0] ret[i+1] = ret[i+1] + record[1] points = self.getPoints(ret) self.label.addPolygon(points) self.repaint() if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) my = MyWindow() my.show() sys.exit(app.exec_())
StarcoderdataPython
4839502
<gh_stars>0 #Reduce deixou de ser uma função integrada entao temos que chamar importando functools #recebe 2 parametros, Função e iteravel #So utilize reduce se for necessariamente precisa dela. Seria melhor utilizar um loop FOR #Para entender o reduce: #imagine uma coleção de dados: # Dados = a1,a2,a3,a4,a5...an #e voce tem uma função que recebe dois parametros: #def function (x,y): # return x*y #A função reduce funciona da seguinte forma #PASSO 1 -> res1= f(a1,a2) #aplica a função nos 2 primeiros elementos e guarda o resultado #PASSO 2 -> res2= f(res1,a3) #aplica a função com o resultado anterior e o prox elemento #PASSO 3 -> res3= f(res2,a4) #ele ira fazer o resultado do passo anterior com o elemento do proximo passo #PASSO N -> resM= f(resn,an) #Outra representação seria: #funcao(funcao(funcao(funcao(funcao(a1,a2),a3),a4),a5),a6) from functools import reduce dados=[2,4,3,8,5,4,7,9,6,1] #usando REDUCE aux = lambda x,y: x*y prod=reduce(aux,dados) print(prod) #Usando for prod1=1 for n in dados: prod1=prod1*n print(prod1)
StarcoderdataPython
21282
<filename>tests/test_engine.py import re import pytest from hiku import query as q from hiku.graph import Graph, Node, Field, Link, Option, Root from hiku.types import Record, Sequence, Integer, Optional, TypeRef from hiku.utils import listify from hiku.engine import Engine, pass_context, Context from hiku.builder import build, Q from hiku.executors.sync import SyncExecutor from .base import check_result, ANY, Mock @listify def id_field(fields, ids): for i in ids: yield [i for _ in fields] OPTION_BEHAVIOUR = [ (Option('op', None), {'op': 1812}, {'op': 1812}), (Option('op', None, default=None), {}, {'op': None}), (Option('op', None, default=None), {'op': 2340}, {'op': 2340}), (Option('op', None, default=3914), {}, {'op': 3914}), (Option('op', None, default=4254), {'op': None}, {'op': None}), (Option('op', None, default=1527), {'op': 8361}, {'op': 8361}), ] def execute(graph, query_, ctx=None): engine = Engine(SyncExecutor()) return engine.execute(graph, query_, ctx=ctx) def test_root_fields(): f1 = Mock(return_value=['boiardo']) f2 = Mock(return_value=['isolde']) graph = Graph([ Root([ Field('a', None, f1), Field('b', None, f2), ]), ]) result = execute(graph, build([Q.a, Q.b])) check_result(result, {'a': 'boiardo', 'b': 'isolde'}) f1.assert_called_once_with([q.Field('a')]) f2.assert_called_once_with([q.Field('b')]) def test_node_fields(): f1 = Mock(return_value=[1]) f2 = Mock(return_value=[['harkis']]) f3 = Mock(return_value=[['slits']]) graph = Graph([ Node('a', [ Field('b', None, f2), Field('c', None, f3), ]), Root([ Link('d', Sequence[TypeRef['a']], f1, requires=None), ]), ]) result = execute(graph, build([Q.d[Q.b, Q.c]])) check_result(result, {'d': [{'b': 'harkis', 'c': 'slits'}]}) f1.assert_called_once_with() f2.assert_called_once_with([q.Field('b')], [1]) f3.assert_called_once_with([q.Field('c')], [1]) def test_node_complex_fields(): f1 = Mock(return_value=[1]) f2 = Mock(return_value=[[{'f': 'marshes'}]]) f3 = Mock(return_value=[[{'g': 'colline'}]]) f4 = Mock(return_value=[[[{'h': 'magi'}]]]) graph = Graph([ Node('a', [ Field('b', Optional[Record[{'f': Integer}]], f2), Field('c', Record[{'g': Integer}], f3), Field('d', Sequence[Record[{'h': Integer}]], f4), ]), Root([ Link('e', Sequence[TypeRef['a']], f1, requires=None), ]), ]) check_result( execute(graph, build([Q.e[Q.b[Q.f], Q.c[Q.g], Q.d[Q.h]]])), {'e': [{'b': {'f': 'marshes'}, 'c': {'g': 'colline'}, 'd': [{'h': 'magi'}]}]}, ) f1.assert_called_once_with() f2.assert_called_once_with( [q.Link('b', q.Node([q.Field('f')]))], [1], ) f3.assert_called_once_with( [q.Link('c', q.Node([q.Field('g')]))], [1], ) f4.assert_called_once_with( [q.Link('d', q.Node([q.Field('h')]))], [1], ) def test_links(): fb = Mock(return_value=[1]) fc = Mock(return_value=[2]) fi = Mock(return_value=[3]) fd = Mock(return_value=[['boners']]) fe = Mock(return_value=[['julio']]) graph = Graph([ Node('a', [ Field('d', None, fd), Field('e', None, fe), ]), Root([ Field('i', None, fi), Link('b', Sequence[TypeRef['a']], fb, requires=None), Link('c', Sequence[TypeRef['a']], fc, requires='i'), ]), ]) result = execute(graph, build([Q.b[Q.d], Q.c[Q.e]])) check_result(result, {'b': [{'d': 'boners'}], 'c': [{'e': 'julio'}]}) fi.assert_called_once_with([q.Field('i')]) fb.assert_called_once_with() fc.assert_called_once_with(3) fd.assert_called_once_with([q.Field('d')], [1]) fe.assert_called_once_with([q.Field('e')], [2]) @pytest.mark.parametrize('option, args, result', OPTION_BEHAVIOUR) def test_field_option_valid(option, args, result): f = Mock(return_value=['baking']) graph = Graph([ Root([ Field('auslese', None, f, options=[option]), ]), ]) check_result(execute(graph, build([Q.auslese(**args)])), {'auslese': 'baking'}) f.assert_called_once_with([q.Field('auslese', options=result)]) def test_field_option_unknown(): test_field_option_valid( Option('inked', None), {'inked': 2340, 'unknown': 8775}, {'inked': 2340} ) def test_field_option_missing(): graph = Graph([ Root([ Field('poofy', None, Mock(), options=[Option('mohism', None)]), ]), ]) with pytest.raises(TypeError) as err: execute(graph, build([Q.poofy])) err.match(r'^Required option "mohism" for Field\(\'poofy\', ' r'(.*) was not provided$') @pytest.mark.parametrize('option, args, result', OPTION_BEHAVIOUR) def test_link_option_valid(option, args, result): f1 = Mock(return_value=[1]) f2 = Mock(return_value=[['aunder']]) graph = Graph([ Node('a', [ Field('c', None, f2), ]), Root([ Link('b', Sequence[TypeRef['a']], f1, requires=None, options=[option]), ]), ]) check_result(execute(graph, build([Q.b(**args)[Q.c]])), {'b': [{'c': 'aunder'}]}) f1.assert_called_once_with(result) f2.assert_called_once_with([q.Field('c')], [1]) def test_link_option_unknown(): test_link_option_valid( Option('oleic', None), {'oleic': 2340, 'unknown': 8775}, {'oleic': 2340} ) def test_link_option_missing(): graph = Graph([ Node('slices', [ Field('papeete', None, Mock()), ]), Root([ Link('eclairs', Sequence[TypeRef['slices']], Mock(), requires=None, options=[Option('nocks', None)]), ]), ]) with pytest.raises(TypeError) as err: execute(graph, build([Q.eclairs[Q.papeete]])) err.match(r'^Required option "nocks" for Link\(\'eclairs\', ' r'(.*) was not provided$') def test_pass_context_field(): f = pass_context(Mock(return_value=['boiardo'])) graph = Graph([ Root([ Field('a', None, f), ]), ]) check_result(execute(graph, build([Q.a]), {'vetch': 'shadier'}), {'a': 'boiardo'}) f.assert_called_once_with(ANY, [q.Field('a')]) ctx = f.call_args[0][0] assert isinstance(ctx, Context) assert ctx['vetch'] == 'shadier' with pytest.raises(KeyError) as err: _ = ctx['invalid'] # noqa err.match('is not specified in the query context') def test_pass_context_link(): f1 = pass_context(Mock(return_value=[1])) f2 = Mock(return_value=[['boners']]) graph = Graph([ Node('a', [ Field('b', None, f2), ]), Root([ Link('c', Sequence[TypeRef['a']], f1, requires=None), ]), ]) result = execute(graph, build([Q.c[Q.b]]), {'fibs': 'dossil'}) check_result(result, {'c': [{'b': 'boners'}]}) f1.assert_called_once_with(ANY) f2.assert_called_once_with([q.Field('b')], [1]) ctx = f1.call_args[0][0] assert isinstance(ctx, Context) assert ctx['fibs'] == 'dossil' with pytest.raises(KeyError) as err: _ = ctx['invalid'] # noqa err.match('is not specified in the query context') def test_node_link_without_requirements(): f1 = Mock(return_value=[1]) f2 = Mock(return_value=[2]) f3 = Mock(return_value=[['arnhild']]) graph = Graph([ Node('a', [ Field('c', None, f3), ]), Node('b', [ Link('d', Sequence[TypeRef['a']], f2, requires=None), ]), Root([ Link('e', Sequence[TypeRef['b']], f1, requires=None), ]), ]) result = execute(graph, build([Q.e[Q.d[Q.c]]])) check_result(result, {'e': [{'d': [{'c': 'arnhild'}]}]}) f1.assert_called_once_with() f2.assert_called_once_with() f3.assert_called_once_with([q.Field('c')], [2]) @pytest.mark.parametrize('value', [1, [], [1, 2]]) def test_root_field_func_result_validation(value): with pytest.raises(TypeError) as err: execute( Graph([ Root([ Field('a', None, Mock(return_value=value)), ]), ]), build([Q.a]), ) err.match(re.escape( "Can't store field values, node: '__root__', fields: ['a'], " "expected: list (len: 1), returned: {value!r}" .format(value=value) )) @pytest.mark.parametrize('value', [1, [], [1, 2], [[], []], [[1], []], [[], [2]]]) def test_node_field_func_result_validation(value): with pytest.raises(TypeError) as err: execute( Graph([ Node('a', [ Field('b', None, Mock(return_value=value)), ]), Root([ Link('c', Sequence[TypeRef['a']], Mock(return_value=[1, 2]), requires=None), ]), ]), build([Q.c[Q.b]]), ) err.match(re.escape( "Can't store field values, node: 'a', fields: ['b'], " "expected: list (len: 2) of lists (len: 1), returned: {value!r}" .format(value=value) )) def test_root_link_many_func_result_validation(): with pytest.raises(TypeError) as err: execute( Graph([ Node('a', [ Field('b', None, Mock(return_value=[[3], [4]])), ]), Root([ Link('c', Sequence[TypeRef['a']], Mock(return_value=123), requires=None), ]), ]), build([Q.c[Q.b]]), ) err.match(re.escape( "Can't store link values, node: '__root__', link: 'c', " "expected: list, returned: 123" )) @pytest.mark.parametrize('value', [1, [], [1, 2, 3]]) def test_node_link_one_func_result_validation(value): with pytest.raises(TypeError) as err: execute( Graph([ Node('a', [ Field('b', None, Mock(return_value=[[1], [2]])) ]), Node('c', [ Field('d', None, Mock(return_value=[[3], [4]])), Link('e', TypeRef['a'], Mock(return_value=value), requires='d'), ]), Root([ Link('f', Sequence[TypeRef['c']], Mock(return_value=[1, 2]), requires=None), ]), ]), build([Q.f[Q.e[Q.b]]]), ) err.match(re.escape( "Can't store link values, node: 'c', link: 'e', expected: " "list (len: 2), returned: {!r}".format(value) )) @pytest.mark.parametrize('value', [1, [], [1, []], [[], 2], [[], [], []]]) def test_node_link_many_func_result_validation(value): with pytest.raises(TypeError) as err: execute( Graph([ Node('a', [ Field('b', None, Mock(return_value=[[1], [2]])) ]), Node('c', [ Field('d', None, Mock(return_value=[[3], [4]])), Link('e', Sequence[TypeRef['a']], Mock(return_value=value), requires='d'), ]), Root([ Link('f', Sequence[TypeRef['c']], Mock(return_value=[1, 2]), requires=None), ]), ]), build([Q.f[Q.e[Q.b]]]), ) err.match(re.escape( "Can't store link values, node: 'c', link: 'e', expected: " "list (len: 2) of lists, returned: {!r}".format(value) )) def test_root_field_alias(): data = {'a': 42} def root_fields(fields): return [data[f.name] for f in fields] graph = Graph([ Root([ Field('a', None, root_fields), ]), ]) result = execute(graph, q.Node([ q.Field('a', alias='a1'), q.Field('a', alias='a2'), ])) check_result(result, {'a1': 42, 'a2': 42}) def test_node_field_alias(): data = {'x1': {'a': 42}} @listify def x_fields(fields, ids): for i in ids: yield [data[i][f.name] for f in fields] graph = Graph([ Node('X', [ Field('a', None, x_fields), ]), Root([ Link('x', TypeRef['X'], lambda: 'x1', requires=None), ]), ]) result = execute(graph, q.Node([ q.Link('x', q.Node([ q.Field('a', alias='a1'), q.Field('a', alias='a2'), ])), ])) check_result(result, {'x': {'a1': 42, 'a2': 42}}) def test_root_link_alias(): data = { 'xN': {'a': 1, 'b': 2}, } @listify def x_fields(fields, ids): for i in ids: yield [data[i][f.name] for f in fields] graph = Graph([ Node('X', [ Field('a', None, x_fields), Field('b', None, x_fields), ]), Root([ Link('x', TypeRef['X'], lambda: 'xN', requires=None), ]), ]) result = execute(graph, q.Node([ q.Link('x', q.Node([q.Field('a')]), alias='x1'), q.Link('x', q.Node([q.Field('b')]), alias='x2'), ])) check_result(result, { 'x1': {'a': 1}, 'x2': {'b': 2}, }) def test_node_link_alias(): data = { 'yN': {'a': 1, 'b': 2}, } x2y = {'xN': 'yN'} @listify def y_fields(fields, ids): for i in ids: yield [data[i][f.name] for f in fields] graph = Graph([ Node('Y', [ Field('a', None, y_fields), Field('b', None, y_fields), ]), Node('X', [ Field('id', None, id_field), Link('y', TypeRef['Y'], lambda ids: [x2y[i] for i in ids], requires='id'), ]), Root([ Link('x', TypeRef['X'], lambda: 'xN', requires=None), ]), ]) result = execute(graph, q.Node([ q.Link('x', q.Node([ q.Link('y', q.Node([q.Field('a')]), alias='y1'), q.Link('y', q.Node([q.Field('b')]), alias='y2'), ])), ])) check_result(result, { 'x': { 'y1': {'a': 1}, 'y2': {'b': 2}, } }) def test_conflicting_fields(): x_data = {'xN': {'a': 42}} @listify def x_fields(fields, ids): for i in ids: yield ['{}-{}'.format(x_data[i][f.name], f.options['k']) for f in fields] graph = Graph([ Node('X', [ Field('a', None, x_fields, options=[Option('k', Integer)]), ]), Root([ Link('x1', TypeRef['X'], lambda: 'xN', requires=None), Link('x2', TypeRef['X'], lambda: 'xN', requires=None), ]), ]) result = execute(graph, q.Node([ q.Link('x1', q.Node([q.Field('a', options={'k': 1})])), q.Link('x2', q.Node([q.Field('a', options={'k': 2})])), ])) check_result(result, { 'x1': {'a': '42-1'}, 'x2': {'a': '42-2'}, }) def test_conflicting_links(): data = { 'yA': {'a': 1, 'b': 2}, 'yB': {'a': 3, 'b': 4}, 'yC': {'a': 5, 'b': 6}, } x2y = {'xN': ['yA', 'yB', 'yC']} @listify def y_fields(fields, ids): for i in ids: yield [data[i][f.name] for f in fields] @listify def x_to_y_link(ids, options): for i in ids: yield [y for y in x2y[i] if y not in options['exclude']] graph = Graph([ Node('Y', [ Field('a', None, y_fields), Field('b', None, y_fields), ]), Node('X', [ Field('id', None, id_field), Link('y', Sequence[TypeRef['Y']], x_to_y_link, requires='id', options=[Option('exclude', None)]), ]), Root([ Link('x1', TypeRef['X'], lambda: 'xN', requires=None), Link('x2', TypeRef['X'], lambda: 'xN', requires=None), ]), ]) result = execute(graph, q.Node([ q.Link('x1', q.Node([ q.Link('y', q.Node([q.Field('a')]), options={'exclude': ['yA']}), ])), q.Link('x2', q.Node([ q.Link('y', q.Node([q.Field('b')]), options={'exclude': ['yC']}), ])), ])) check_result(result, { 'x1': {'y': [{'a': 3}, {'a': 5}]}, 'x2': {'y': [{'b': 2}, {'b': 4}]}, }) def test_process_ordered_node(): ordering = [] def f1(fields): names = tuple(f.name for f in fields) ordering.append(names) return names def f2(fields): return f1(fields) def f3(): ordering.append('x1') return 'x1' @listify def f4(fields, ids): for i in ids: yield ['{}-e'.format(i) for _ in fields] graph = Graph([ Node('X', [ Field('e', None, f4), ]), Root([ Field('a', None, f1), Field('b', None, f1), Field('c', None, f2), Field('d', None, f2), Link('x', TypeRef['X'], f3, requires=None), ]), ]) query = q.Node([ q.Field('d'), q.Field('b'), q.Field('a'), q.Link('x', q.Node([ q.Field('e'), ])), q.Field('c'), ], ordered=True) engine = Engine(SyncExecutor()) result = engine.execute(graph, query) check_result(result, { 'a': 'a', 'b': 'b', 'c': 'c', 'd': 'd', 'x': { 'e': 'x1-e', }, }) assert ordering == [('d',), ('b', 'a'), 'x1', ('c',)]
StarcoderdataPython
3307166
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # pylint: disable=line-too-long from azure.cli.core.commands import CliCommandType from ._client_factory import (cf_maintenance_configurations, cf_maintenance_updates, cf_configuration_assignments, cf_apply_updates) def load_command_table(self, _): maintenance_configurations_mgmt_util = CliCommandType( operations_tmpl='azext_maintenance.vendored_sdks.operations.maintenance_configurations_operations#MaintenanceConfigurationsOperations.{}', client_factory=cf_maintenance_configurations ) maintenance_updates_mgmt_util = CliCommandType( operations_tmpl='azext_maintenance.vendored_sdks.operations.updates_operations#UpdatesOperations.{}', client_factory=cf_maintenance_updates ) configuration_assignments_mgmt_util = CliCommandType( operations_tmpl='azext_maintenance.vendored_sdks.operations.configuration_assignments_operations#ConfigurationAssignmentsOperations.{}', client_factory=cf_configuration_assignments ) apply_updates_mgmt_util = CliCommandType( operations_tmpl='azext_maintenance.vendored_sdks.operations.apply_updates_operations#ApplyUpdatesOperations.{}', client_factory=cf_apply_updates ) with self.command_group('maintenance configuration', maintenance_configurations_mgmt_util, client_factory=cf_maintenance_configurations) as g: g.custom_command('create', 'cli_configuration_create') g.command('delete', 'delete') g.custom_command('update', 'cli_configuration_create') g.show_command('show', 'get') g.command('list', 'list') with self.command_group('maintenance update', maintenance_updates_mgmt_util, client_factory=cf_maintenance_updates) as g: g.custom_command('list', 'cli_update_list') with self.command_group('maintenance assignment', configuration_assignments_mgmt_util, client_factory=cf_configuration_assignments) as g: g.custom_command('create', 'cli_assignment_create') g.custom_command('delete', 'cli_assignment_delete') g.custom_command('list', 'cli_assignment_list') with self.command_group('maintenance applyupdate', apply_updates_mgmt_util, client_factory=cf_apply_updates) as g: g.custom_command('create', 'cli_applyupdate_create') g.custom_command('get', 'cli_applyupdate_get', deprecate_info=g.deprecate(redirect='maintenance applyupdate show')) g.custom_command('show', 'cli_applyupdate_get')
StarcoderdataPython
174505
# BLOGSTER by <NAME> # a.k.a. "The Black Unicorn" a.k.a. "<NAME>". # Licensed under the MIT license. import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'blogster.settings') application = get_wsgi_application()
StarcoderdataPython
3278646
<gh_stars>1-10 import requests from pprint import pprint import json # input your information user = {'userid': '', 'password': ''} r = requests.post("http://127.0.0.1:8000/post/get_tasks", params=user) # POST user data print(json.dumps(r.json(), ensure_ascii=False))
StarcoderdataPython
3325382
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import random sys.path.append('.') from twisted.internet import reactor from . import driver from . import multiplexer from . import record_layer from . import updater from . import conf EVENT_LOOP_FREQUENCY_S = 0.01 AUTOUPDATE_DELAY = 5 class Server(object): factory = None def __init__(self, format_name): self.multiplexer_outgoing_ = multiplexer.BufferOutgoing() self.multiplexer_incoming_ = multiplexer.BufferIncoming() self.multiplexer_incoming_.addCallback(self.process_cell) self.factory_instances = {} if self.check_for_update(): self.do_update() self.set_driver(format_name) self.reload_ = False def set_driver(self, format_name): self.format_name_ = format_name self.driver_ = driver.ServerDriver("server") self.driver_.set_multiplexer_incoming(self.multiplexer_incoming_) self.driver_.set_multiplexer_outgoing(self.multiplexer_outgoing_) self.driver_.setFormat(self.format_name_) def execute(self, reactor): if not self.driver_.isRunning(): if self.reload_: self.set_driver(self.format_name_) self.reload_ = False self.driver_.execute(reactor) reactor.callLater(EVENT_LOOP_FREQUENCY_S, self.execute, reactor) def process_cell(self, cell_obj): cell_type = cell_obj.get_cell_type() stream_id = cell_obj.get_stream_id() if cell_type == record_layer.END_OF_STREAM: self.factory_instances[stream_id].connectionLost() del self.factory_instances[stream_id] elif cell_type == record_layer.NORMAL: if not self.factory_instances.get(stream_id): stream = multiplexer.MarionetteStream( self.multiplexer_incoming_, self.multiplexer_outgoing_, stream_id) self.factory_instances[stream_id] = self.factory() self.factory_instances[stream_id].connectionMade(stream) payload = cell_obj.get_payload() if payload: self.factory_instances[stream_id].dataReceived(payload) # call this function if you want reload formats from disk # at the next possible time def reload_driver(self): self.reload_ = True def check_for_update(self): # uncomment the following line to check for updates every N seconds # instead of just on startup # reactor.callLater(N, self.check_for_update, reactor) if conf.get("general.autoupdate"): self.do_update(self.reload_driver) def do_update(self, callback): # could be replaced with code that updates from a different # source (e.g., local computations) update_server = conf.get("general.update_server") updater = updater.FormatUpdater(update_server, use_marionette=False, callback=callback) return updater.do_update()
StarcoderdataPython
133031
<filename>penin/core/mdns/__init__.py """Support for discovering local devices and services.""" from netdisco.discovery import NetworkDiscovery def discover_devices(): """Discover local devices and services.""" data = {} netdis = NetworkDiscovery() netdis.scan() for device_type in netdis.discover(): data[device_type] = netdis.get_info(device_type) return data netdis.stop()
StarcoderdataPython
3340147
'''import pygame pygame.init() pygame.mixer.music.load('musica.mp3') pygame.mixer.music.play() pygame.event.wait()''' from pygame import mixer mixer.init() mixer.music.load('musica.mp3') mixer.music.play() import time time.sleep(360)
StarcoderdataPython
3368079
<gh_stars>0 import os from joblib import Parallel, delayed from os.path import join from pathlib import Path import random import shutil import scraper import remove_applause import re import subprocess import num2words import pydub from pydub import AudioSegment from tqdm import tqdm import logging logger = logging.getLogger() logging.basicConfig(level="INFO", format="%(levelname)s: %(filename)s: %(message)s") random.seed(42) AUDIO_EXTENSION = 'mp3' os.chdir(os.path.dirname(__file__)) corpus_path = '../data/TedSrt' txt_norm = 'tedsrt-norm.txt' txt_vocab = 'tedsrt-vocab.txt' processed_data_path = join(corpus_path, 'processed_data') # store all data in this folder before splitting txt_norm_path = join(corpus_path, txt_norm) txt_vocab_path = join(corpus_path, txt_vocab) src_path = 'data/' # raw data source ratio=[.6, .2, .2] # train test split # filter audio and srt duration_diff = 7 # seconds repeated_occurrence = 50 def clean_text(text): ''' Text processing to clean text before saving as label to lowercase, convert years to words, convert digits to words, remove symbols ''' text = text.lower().strip('\n') text = re.sub(r'[^\w\s]', ' ', text) text = ' '.join([num2words.num2words(i, to='year') if (i.isdigit() & (len(i) == 4)) else i for i in text.split()]) # year to words text = ' '.join([num2words.num2words(i) if i.isdigit() else i for i in text.split()]) # num to words text = re.sub(' +', ' ', text) # remove redundant spaces text = text.replace('-', ' ') return text def normalize_text(text): ''' Text processing to normalize text for language model training should transform word numeral to numeric, normalize date formats, lemmatization; most not implemented currently ''' text = text.lower().strip('\n') text = re.sub(r'[^\w\s]', ' ', text) text = re.sub(' +', ' ', text) # remove redundant spaces text = text.replace('-', ' ') return text def to_ms(string): ''' Convert string '00:00:00,000' to milliseconds to be used for audio slicing ''' string = string.replace(',','') hour, minute, second = string.split(':') second = int(second) second += int(hour) * 3600 * 1000 second += int(minute) * 60 * 1000 second = second return second def txt_to_trans(txt_file, file_name): ''' Convert txt file to transcript format ready to be read into Dataset lines formatted as 'filename-idx text_label' return lines and time_slices ''' file = open(txt_file, 'r') lines = file.readlines() file.close() transcript = [] # label for audio txt_src = [] # label for language model time_slices = [] for i in range(len(lines)): idx = re.search('^[\d]+$', lines[i].strip('\ufeff')) if idx: idx = idx[0] time_frame = re.findall('[0-9]{2}:[0-9]{2}:[0-9]{2},[0-9]{3}', lines[i+1]) if time_frame: start, end = to_ms(time_frame[0]), to_ms(time_frame[1]) time_slices.append((idx, (start, end))) audio_label = lines[i+2] audio_label = clean_text(audio_label) new_line = f"{file_name}-{idx} {audio_label}" transcript.append(new_line) lm_label = normalize_text(audio_label) txt_src.append(lm_label) return transcript, time_slices, txt_src def save_txt(txt, output_path): ''' Save transcript to output_path ''' if not os.path.exists(os.path.dirname(output_path)): os.makedirs(os.path.dirname(output_path)) with open(output_path, 'a+') as f: for line in txt: f.write(f"{line}\n") f.close() def check_ms_accuracy(time_slices): ''' Check whether srt is accurate, remove those not accurate to milliseconds, check repeated occurrence of 820 ''' for time_slice in time_slices: occurrence_820 = sum(1 for elem in time_slices if elem[1][0] % 1000 == 820) if occurrence_820 > repeated_occurrence: return occurrence_820 return 0 def check_intro_timing(audio_duration, audio_srt_duration): ''' Check whether srt matches audio, remove those without taking water drop intro into account ''' duration_diff = audio_duration - audio_srt_duration if duration_diff > duration_diff: return duration_diff return 0 def build_dataset(src_path=src_path, sample=100): ''' Build dataset from raw data scraper/data/ split audio into slices convert srt to trans.txt ready for training ''' # logger.disabled = True shutil.rmtree(corpus_path, ignore_errors=True) folders = os.listdir(src_path)[:100] for idx, curr_folder in enumerate(tqdm(folders, desc="Building dataset from scraped data")): # logging.info('\n') file_name = str(idx) #save the transcript as num, can be changed to folder name output_path = join(processed_data_path, file_name) txt_output_path = join(output_path, file_name + '.trans.txt') # logging.info(f"{idx}. Creating transcript for {curr_folder}...") try: txt_path = list(Path(join(src_path, curr_folder)).rglob('*.txt'))[0] audio_path = list(Path(join(src_path, curr_folder)).rglob('*.' + AUDIO_EXTENSION))[0] except: tqdm.write(f'Data not complete {idx} {curr_folder}') continue transcript, time_slices, txt_src = txt_to_trans(txt_path, file_name) # logging.info(f"{idx}. Slicing audio for {curr_folder}...") audio_file = AudioSegment.from_file(audio_path, AUDIO_EXTENSION) # check timing accuracy by milliseconds ms_not_accurate = check_ms_accuracy(time_slices) if ms_not_accurate: # logging.warning(f"{idx}. Srt not accurate with {ms_not_accurate} 820s. Deleting entry {curr_folder}") shutil.rmtree(output_path, ignore_errors=True) continue # check timing of audio intro audio_duration = audio_file.duration_seconds audio_srt_duration = time_slices[-1][-1][-1] / 1000 intro_not_matched = check_intro_timing(audio_duration, audio_srt_duration) if intro_not_matched: # logging.warning(f"{idx}. Srt not matching with time slices. Deleting entry {curr_folder}") shutil.rmtree(output_path, ignore_errors=True) continue # writing output save_txt(transcript, txt_output_path) save_txt(txt_src, txt_norm_path) for idx, time_slice in time_slices: audio_slice = audio_file[time_slice[0]:time_slice[1]] audio_output_path = join(output_path, f"{file_name}-{idx}.{AUDIO_EXTENSION}") audio_slice.export(audio_output_path, format=AUDIO_EXTENSION) tqdm.write(f'Successfully created {idx} {curr_folder}') # print(f'Successfully created {idx} {curr_folder}') def move_folders(folders, source, destination): ''' Move a list of folders from source to destination ''' logger.info(f'{destination.split("/")[-1]}: {folders}') for folder in folders: shutil.move(join(source, folder), join(destination, folder)) def split_dataset(ratio=[.6, .2, .2]): ''' Split dataset to train dev test according to ratio ''' folders = os.listdir(processed_data_path) folders.sort() random.shuffle(folders) split_1 = int(ratio[0] * len(folders)) split_2 = int((ratio[0] + ratio[1]) * len(folders)) move_folders(folders[:split_1], processed_data_path, join(corpus_path, 'train')) move_folders(folders[split_1:split_2], processed_data_path, join(corpus_path, 'dev')) move_folders(folders[split_2:], processed_data_path, join(corpus_path, 'test')) shutil.rmtree(processed_data_path, ignore_errors=True) def main(): print('Scraping data...') scraper.main(number_of_talks=500, starting_video_id=2000) # 1000-1500 print('\nStart preprocessing...') build_dataset(src_path, sample=100) split_dataset(ratio=ratio) print("\nRemoving laughter and applause audio files...") remove_applause.main(corpus_path) if __name__ == "__main__": main()
StarcoderdataPython
1746480
<reponame>prdonahue/overholt # -*- coding: utf-8 -*- """ overholt.api.users ~~~~~~~~~~~~~~~~~~ User endpoints """ from flask import Blueprint from flask_login import current_user from ..services import users from . import route bp = Blueprint('users', __name__, url_prefix='/users') @route(bp, '/') def whoami(): """Returns the user instance of the currently authenticated user.""" return current_user._get_current_object() @route(bp, '/<user_id>') def show(user_id): """Returns a user instance.""" return users.get_or_404(user_id)
StarcoderdataPython
190855
# -*- coding: utf-8 -*- from setuptools import setup, find_packages with open('README.rst') as f: readme = f.read() with open('LICENSE') as f: license = f.read() setup( name='bifs', version='0.2.0', description='Implementation of Bayesian Imaging in Fourier Space (BIFS)', long_description=readme, author='<NAME>, <NAME>, <NAME>', author_email='<EMAIL>,<EMAIL>', url='https://github.com/bifs', license=license, packages=['bifs'], install_requires=['imageio', 'jsonpickle', 'matplotlib', 'nibabel', 'numpy', 'PyQt5', 'scipy'] )
StarcoderdataPython
3349334
<gh_stars>0 """ TMVA reader runs with additional information """ from __future__ import division, print_function, absolute_import import sys import array import pandas from root_numpy.tmva import evaluate_reader from . import tmva import six from six.moves import cPickle as pickle __author__ = '<NAME>' def tmva_process(info, data): """ Create TMVA classification factory, train, test and evaluate all methods :param rep.estimators.tmva._AdditionalInformationPredict info: additional information :param pandas.DataFrame data: test data """ import ROOT reader = ROOT.TMVA.Reader() for feature in data.columns: reader.AddVariable(feature, array.array('f', [0.])) model_type, sigmoid_function = info.model_type reader.BookMVA(info.method_name, info.xml_file) signal_efficiency = None if model_type == 'classification' and sigmoid_function is not None and 'sig_eff' in sigmoid_function: signal_efficiency = float(sigmoid_function.strip().split('=')[1]) assert 0.0 <= signal_efficiency <= 1., 'signal efficiency must be in [0, 1], not {}'.format( signal_efficiency) if signal_efficiency is not None: predictions = evaluate_reader(reader, info.method_name, data, aux=signal_efficiency) else: predictions = evaluate_reader(reader, info.method_name, data) return predictions def main(): # Python 2 dumps in text mode. Python 3 in binary. if six.PY2: stdin = sys.stdin else: stdin = sys.stdin.buffer # Reading the configuration from stdin info = pickle.load(stdin) data = pickle.load(stdin) assert isinstance(info, tmva._AdditionalInformationPredict) assert isinstance(data, pandas.DataFrame) predictions = tmva_process(info, data) with open(info.result_filename, 'wb') as predictions_file: pickle.dump(predictions, predictions_file)
StarcoderdataPython
69871
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from math import ceil from typing import Optional, Tuple, Type, cast from ax.core.parameter import ChoiceParameter, ParameterType, RangeParameter from ax.core.search_space import SearchSpace from ax.modelbridge.generation_strategy import GenerationStep, GenerationStrategy from ax.modelbridge.registry import Cont_X_trans, Models, Y_trans from ax.modelbridge.transforms.base import Transform from ax.modelbridge.transforms.winsorize import Winsorize from ax.utils.common.logger import get_logger logger: logging.Logger = get_logger(__name__) def _make_sobol_step( num_arms: int = -1, min_arms_observed: Optional[int] = None, enforce_num_arms: bool = True, recommended_max_parallelism: Optional[int] = None, seed: Optional[int] = None, ) -> GenerationStep: """Shortcut for creating a Sobol generation step.""" return GenerationStep( model=Models.SOBOL, num_arms=num_arms, # NOTE: ceil(-1 / 2) = 0, so this is safe to do when num arms is -1. min_arms_observed=min_arms_observed or ceil(num_arms / 2), enforce_num_arms=enforce_num_arms, recommended_max_parallelism=recommended_max_parallelism, model_kwargs={"deduplicate": True, "seed": seed}, ) def _make_botorch_step( num_arms: int = -1, min_arms_observed: Optional[int] = None, enforce_num_arms: bool = True, recommended_max_parallelism: Optional[int] = None, winsorize: bool = False, winsorization_limits: Optional[Tuple[Optional[float], Optional[float]]] = None, ) -> GenerationStep: """Shortcut for creating a BayesOpt generation step.""" if (winsorize and winsorization_limits is None) or ( winsorization_limits is not None and not winsorize ): raise ValueError( # pragma: no cover "To apply winsorization, specify `winsorize=True` and provide the " "winsorization limits." ) model_kwargs = None if winsorize: assert winsorization_limits is not None model_kwargs = { "transforms": [cast(Type[Transform], Winsorize)] + Cont_X_trans + Y_trans, "transform_configs": { "Winsorize": { "winsorization_lower": winsorization_limits[0], "winsorization_upper": winsorization_limits[1], } }, } return GenerationStep( model=Models.GPEI, num_arms=num_arms, # NOTE: ceil(-1 / 2) = 0, so this is safe to do when num arms is -1. min_arms_observed=min_arms_observed or ceil(num_arms / 2), enforce_num_arms=enforce_num_arms, recommended_max_parallelism=recommended_max_parallelism, model_kwargs=model_kwargs, ) def _should_use_gp(search_space: SearchSpace, num_trials: Optional[int] = None) -> bool: """We should use only Sobol and not GPEI if: 1. there are less continuous parameters in the search space than the sum of options for the choice parameters, 2. the number of total iterations in the optimization is known in advance and there are less distinct points in the search space than the known intended number of total iterations. """ num_continuous_parameters, num_discrete_choices, num_possible_points = 0, 0, 1 all_range_parameters_are_int = True for parameter in search_space.parameters.values(): if isinstance(parameter, ChoiceParameter): num_discrete_choices += len(parameter.values) num_possible_points *= len(parameter.values) if isinstance(parameter, RangeParameter): num_continuous_parameters += 1 if parameter.parameter_type != ParameterType.INT: all_range_parameters_are_int = False else: num_possible_points *= int(parameter.upper - parameter.lower) if ( # If number of trials is known and it enough to try all possible points, num_trials is not None # we should use Sobol and not BO. and all_range_parameters_are_int and num_possible_points <= num_trials ): return False return num_continuous_parameters >= num_discrete_choices def choose_generation_strategy( search_space: SearchSpace, arms_per_trial: int = 1, enforce_sequential_optimization: bool = True, random_seed: Optional[int] = None, winsorize_botorch_model: bool = False, winsorization_limits: Optional[Tuple[Optional[float], Optional[float]]] = None, no_bayesian_optimization: bool = False, num_trials: Optional[int] = None, ) -> GenerationStrategy: """Select an appropriate generation strategy based on the properties of the search space. Args: search_space: SearchSpace, based on the properties of which to select the generation strategy. arms_per_trial: If a trial is batched, how many arms will be in each batch. Defaults to 1, which corresponds to a regular, non-batched, `Trial`. enforce_sequential_optimization: Whether to enforce that the generation strategy needs to be updated with `min_arms_observed` observations for a given generation step before proceeding to the next one. random_seed: Fixed random seed for the Sobol generator. winsorize_botorch_model: Whether to apply the winsorization transform prior to applying other transforms for fitting the BoTorch model. winsorization_limits: Bounds for winsorization, if winsorizing, expressed as percentile. Usually only the upper winsorization trim is used when minimizing, and only the lower when maximizing. no_bayesian_optimization: If True, Bayesian optimization generation strategy will not be suggested and quasi-random strategy will be used. num_trials: Total number of trials in the optimization, if known in advance. """ # If there are more discrete choices than continuous parameters, Sobol # will do better than GP+EI. if not no_bayesian_optimization and _should_use_gp( search_space=search_space, num_trials=num_trials ): # Ensure that number of arms per model is divisible by batch size. sobol_arms = max(5, len(search_space.parameters)) if arms_per_trial != 1: # pragma: no cover # If using batches, ensure that initialization sample is divisible by # the batch size. sobol_arms = ceil(sobol_arms / arms_per_trial) * arms_per_trial gs = GenerationStrategy( steps=[ _make_sobol_step( num_arms=sobol_arms, enforce_num_arms=enforce_sequential_optimization, seed=random_seed, ), _make_botorch_step( recommended_max_parallelism=3, winsorize=winsorize_botorch_model, winsorization_limits=winsorization_limits, ), ] ) logger.info( f"Using Bayesian Optimization generation strategy: {gs}. Iterations " f"after {sobol_arms} will take longer to generate due to model-fitting." ) return gs logger.info(f"Using Sobol generation strategy.") return GenerationStrategy(steps=[_make_sobol_step(seed=random_seed)])
StarcoderdataPython
96402
# Sprite classes for platform game import pygame import random from settings import * vec = pygame.math.Vector2 class Spritesheet1: # Utility class for loading and parsing spritesheets def __init__(self, filename): self.spritesheet1 = pygame.image.load(filename).convert() def get_image(self, x, y, width, height): # Grab an image out of a spritesheet image = pygame.Surface((width, height)) image.blit(self.spritesheet1, (0, 0), (x, y, width, height)) # We divide width and height by 2 cuz the spritesheet is too big for us image = pygame.transform.scale(image, (width // 2, height // 2)) return image def Get_image_res(image, resize_ratio): width, height = image.get_size() image = pygame.transform.scale(image, (width // resize_ratio, height // resize_ratio)) return image class Button(pygame.sprite.Sprite): def __init__(self, game, x, y): self.groups = game.menu pygame.sprite.Sprite.__init__(self, self.groups) self.game = game self.image = self.game.spritesheet1.get_image(0, 96, 380, 94) self.image.set_colorkey(BLACK) self.rect = self.image.get_rect() self.rect.center = (x, y) self.game.screen.blit(self.image, self.rect) def draw_txt(self, text, size, color): font = pygame.font.Font('fonts/AmaticSC-Bold.ttf', size) text_surface = font.render(text, True, color) text_rect = text_surface.get_rect() text_rect.center = self.rect.center self.game.screen.blit(text_surface, text_rect) def update(self): pygame.transform.scale(self.image, (380 * 2, 94 * 2)) class Player(pygame.sprite.Sprite): def __init__(self, game): self._layer = PLAYER_LAYER self.groups = game.all_sprites pygame.sprite.Sprite.__init__(self, self.groups) self.game = game # Move properties self.walking = False self.jumping = False # Pow properties self.has_bubble = False self.has_jetpack = False self.has_wings = False # Jet properties self.acceleration = False self.still = False self.losing_wings = False # Anmation properties self.current_frame = 0 self.last_update = 0 self.load_images() self.image = self.standing_frames[1] self.rect = self.image.get_rect() self.rect.center = (40, HEIGHT - 100) self.pos = vec(40, HEIGHT - 100) self.vel = vec(0, 0) self.acc = vec(0, 0) self.friction = PLAYER_FRICTION def load_images(self): # Standing frames for 2 cases:default and invincible self.standing_frames = (self.game.spritesheet1.get_image(614, 1063, 120, 191), self.game.spritesheet1.get_image(690, 406, 120, 201)) self.standing_frames_inv = (Get_image_res(pygame.image.load('graphics/bunny1_inv_stand.png'), 2), Get_image_res(pygame.image.load('graphics/bunny1_inv_ready.png'), 2)) # Clearing the black square around the frames for frame in self.standing_frames: frame.set_colorkey(BLACK) for frame in self.standing_frames_inv: pygame.transform.scale(frame, (211 // 2, 215 // 2)) # Walking frames for 2 cases self.walking_frames_R = (self.game.spritesheet1.get_image(678, 860, 120, 201), self.game.spritesheet1.get_image(692, 1458, 120, 207)) self.walking_frames_inv_R = (Get_image_res(pygame.image.load('graphics/bunny1_inv_walk1.png'), 2), Get_image_res(pygame.image.load('graphics/bunny1_inv_walk2.png'), 2)) self.walking_frames_L = [] self.walking_frames_inv_L = [] # Applying the L frames in both cases for frame in self.walking_frames_R: frame.set_colorkey(BLACK) # 1 - horisontal , 2 - vertical self.walking_frames_L.append(pygame.transform.flip(frame, True, False)) for frame in self.walking_frames_inv_R: pygame.transform.scale(frame, (211 // 2, 215 // 2)) # 1 - horisontal , 2 - vertical self.walking_frames_inv_L.append(pygame.transform.flip(frame, True, False)) # Player/jetpack images self.jet_start_frames = (Get_image_res(pygame.image.load('graphics/player_jet_start1.png'), 2), Get_image_res(pygame.image.load('graphics/player_jet_start2.png'), 2)) for image in self.jet_start_frames: image.set_colorkey(BLACK) self.jet_go_frames = (Get_image_res(pygame.image.load('graphics/player_jet1.png'), 2), Get_image_res(pygame.image.load('graphics/player_jet2.png'), 2)) for image in self.jet_go_frames: image.set_colorkey(BLACK) # Player with wings images self.has_wings_frames = (Get_image_res(pygame.image.load('graphics/player_fly1.png'), 2), Get_image_res(pygame.image.load('graphics/player_fly2.png'), 2), Get_image_res(pygame.image.load('graphics/player_fly3.png'), 2), Get_image_res(pygame.image.load('graphics/player_fly4.png'), 2), Get_image_res(pygame.image.load('graphics/player_fly5.png'), 2)) # Jump frames self.jumping_frame = self.game.spritesheet1.get_image(382, 763, 150, 181) self.jumping_frame.set_colorkey(BLACK) self.jumping_frame_inv = Get_image_res(pygame.image.load('graphics/bunny1_inv_jump.png'), 2) def jump(self): # Jump only if standing on a platform and without a pow self.rect.x += 2 hits = pygame.sprite.spritecollide(self, self.game.platforms, False) self.rect.x -= 2 if hits and not self.jumping and not self.has_jetpack and not self.has_wings and not self.has_bubble: self.jumping = True self.vel.y = -PLAYER_JUMP_V self.game.jump_sound.play() def jump_cut(self): # The code that cuts the jump if self.jumping and not self.has_jetpack and not self.has_wings and not self.has_bubble: if self.vel.y < -10: self.vel.y = -10 def update(self): self.animation() # Applying gravity if self.has_bubble or self.has_jetpack or self.has_wings: self.acc = vec(0, 0) else: self.acc = vec(0, PLAYER_GRAV) # Applying movement keys = pygame.key.get_pressed() # With wings if self.has_wings: if keys[pygame.K_a]: self.acc.x = -PLAYER_FLY_ACC if keys[pygame.K_d]: self.acc.x = PLAYER_FLY_ACC # Without wings else: if keys[pygame.K_a]: self.acc.x = -PLAYER_ACC if keys[pygame.K_d]: self.acc.x = PLAYER_ACC # Apply friction self.acc.x += self.vel.x * self.friction # Equations of motion self.vel += self.acc if abs(self.vel.x) < 0.5: # If the vel < 0.5 we stop self.vel.x = 0 self.pos += self.vel + 0.5 * self.acc # Wrap around the sides of the screen if self.pos.x > WIDTH + self.rect.width / 2: self.pos.x = 0 - self.rect.width / 2 if self.pos.x < 0 - self.rect.width / 2: self.pos.x = WIDTH + self.rect.width / 2 # If player has wings we move him down the screen if self.has_wings: self.pos.y += 3 if self.pos.y >= SCR_CHANGE_H_FLY + 10: self.pos.y = SCR_CHANGE_H_FLY + 10 # If player is about to lose wings we move him up the screen so he does not fall immediately after wing loss if self.losing_wings: self.pos.y -= 4 if self.pos.y <= SCR_CHANGE_H: self.pos.y = SCR_CHANGE_H self.rect.midbottom = self.pos def animation(self): time_passed = pygame.time.get_ticks() # We define when the player is considered to be moving if self.vel.x != 0: self.walking = True else: self.walking = False # Show walking animation if self.walking and not self.has_jetpack and not self.has_wings: if time_passed - self.last_update > 140: self.last_update = time_passed if self.has_bubble: self.current_frame = (self.current_frame + 1) % len(self.walking_frames_inv_L) else: self.current_frame = (self.current_frame + 1) % len(self.walking_frames_L) rect_bottom = self.rect.bottom if self.vel.x > 0: if self.has_bubble: self.image = self.walking_frames_inv_R[self.current_frame] else: self.image = self.walking_frames_R[self.current_frame] else: if self.has_bubble: self.image = self.walking_frames_inv_L[self.current_frame] else: self.image = self.walking_frames_L[self.current_frame] self.rect = self.image.get_rect() self.rect.bottom = rect_bottom # Show jumping animation if self.jumping and not self.walking and not self.has_jetpack and not self.has_wings: rect_bottom = self.rect.bottom if self.has_bubble: self.image = self.jumping_frame_inv else: self.image = self.jumping_frame self.rect = self.image.get_rect() self.rect.bottom = rect_bottom # Show standing animation if not self.jumping and not self.walking and not self.has_jetpack and not self.has_wings: if time_passed - self.last_update > 350: self.last_update = time_passed if self.has_bubble: self.current_frame = (self.current_frame + 1) % len(self.standing_frames_inv) else: self.current_frame = (self.current_frame + 1) % len(self.standing_frames) rect_bottom = self.rect.bottom if self.has_bubble: self.image = self.standing_frames_inv[self.current_frame] else: self.image = self.standing_frames[self.current_frame] self.rect = self.image.get_rect() self.rect.bottom = rect_bottom # Show jetpack animation if self.has_jetpack and not self.has_wings: if time_passed - self.last_update > 50: self.last_update = time_passed if self.acceleration: self.current_frame = (self.current_frame + 1) % len(self.jet_start_frames) self.image = self.jet_start_frames[self.current_frame] if self.still: self.current_frame = (self.current_frame + 1) % len(self.jet_go_frames) self.image = self.jet_go_frames[self.current_frame] # Show wing animation if self.has_wings: if time_passed - self.last_update > 90: self.last_update = time_passed self.current_frame = (self.current_frame + 1) % len(self.has_wings_frames) rect_center = self.rect.centerx self.image = self.has_wings_frames[self.current_frame] self.rect = self.image.get_rect() self.rect.centerx = rect_center self.mask = pygame.mask.from_surface(self.image) class Platform(pygame.sprite.Sprite): def __init__(self, game, x, y): self._layer = PLATFORM_LAYER self.groups = game.all_sprites, game.platforms pygame.sprite.Sprite.__init__(self, self.groups) self.game = game self.type = None # Move properties self.on_move = False self.on_move_x = False self.on_move_y = False # Mob properties self.has_spikey = False self.has_cloud = False self.has_pow = False self.has_coin = False self.has_wingman = False self.has_mob = False # Respawn property self.respawn = False # Plat speed properties self.vel_x = 1 self.vel_y = 1 self.count_vel_y = 0 if self.has_spikey or self.has_cloud or self.has_wingman: self.has_mob = True # Applying the chances of spawning a moving plat if random.randrange(100) < MOVING_PLAT_SPAWN_RATIO and self.game.score > 200: self.on_move = True # Defining the move type if self.on_move: if random.randrange(100) < 90: self.on_move_x = True else: self.on_move_y = True # Platform images snowy_images = (self.game.spritesheet1.get_image(0, 768, 380, 94), self.game.spritesheet1.get_image(213, 1764, 201, 100)) icy_images = (Get_image_res(pygame.image.load('graphics/ice_plat_l.png'), 2), Get_image_res(pygame.image.load('graphics/ice_plat_s.png'), 2)) normal_images = (self.game.spritesheet1.get_image(0, 288, 380, 94), self.game.spritesheet1.get_image(213, 1662, 201, 100)) stone_images = (self.game.spritesheet1.get_image(0, 96, 380, 94), self.game.spritesheet1.get_image(382, 408, 200, 100)) wood_images = (self.game.spritesheet1.get_image(0, 960, 380, 94), self.game.spritesheet1.get_image(218, 1558, 200, 100)) pink_images = (self.game.spritesheet1.get_image(0, 576, 380, 94), self.game.spritesheet1.get_image(218, 1456, 201, 100)) sand_images = (self.game.spritesheet1.get_image(0, 672, 380, 94), self.game.spritesheet1.get_image(208, 1879, 201, 100)) # Platform choices if PLAT_STONE_START > self.game.score >= PLAT_NM_START: if random.randrange(100) < 90: self.type = 'normal' else: self.type = 'sand' # self.type = choice(['wooden', 'snowy']) if PLAT_PINK_START > self.game.score >= PLAT_STONE_START: if random.randrange(100) < 90: self.type = 'stone' else: self.type = 'sand' # self.type = choice(['stone', 'snowy']) if PLAT_SNOW_START > self.game.score >= PLAT_PINK_START: if random.randrange(100) < 90: self.type = 'pink' else: self.type = 'icy' # self.type = choice(['pink', 'snowy']) if self.game.score >= PLAT_SNOW_START: self.type = random.choice(['icy', 'snowy']) # Platform images attachment if self.type == 'normal': self.image = random.choice(normal_images) elif self.type == 'wooden': self.image = random.choice(wood_images) elif self.type == 'sand': self.image = random.choice(sand_images) elif self.type == 'stone': self.image = random.choice(stone_images) elif self.type == 'pink': self.image = random.choice(pink_images) elif self.type == 'snowy': self.image = random.choice(snowy_images) elif self.type == 'icy': self.image = random.choice(icy_images) self.image.set_colorkey(BLACK) self.rect = self.image.get_rect() self.rect.x = x self.rect.y = y # Applying the sprites spawning on platform if wing pow is not initiated if not self.game.player.has_wings: if random.randrange(100) < POW_SPAWN_RATIO and not game.player.has_bubble and not game.player.has_jetpack \ and len(self.game.powerups) == 0 and self.game.score != 0 and not self.on_move_y: Powerup(self.game, self) self.has_pow = True if random.randrange(100) < COIN_SPAWN_RATIO: Coin(self.game, self) self.has_coin = True # There shouldn't be 2 much mobs if len(self.game.mobs) < 3: if random.randrange(100) < SPIKEY_SPAWN_RATIO and self.image == normal_images[0] and not self.on_move \ and not self.has_mob and PLAT_SNOW_START > self.game.score > SPIKEY_SPAWN_SCORE: Spikey(self.game, self) self.has_spikey = True self.has_mob = True if random.randrange(100) < CLOUD_SPAWN_RATIO and not self.on_move and not self.has_mob and \ self.game.score > PLAT_STONE_START: Cloud(self.game, self) self.has_cloud = True self.has_mob = True if random.randrange(100) < WM_SPAWN_RATIO and (self.image == pink_images[0] or self.image == snowy_images[0]) and not self.on_move \ and not self.has_mob and self.game.score > PLAT_PINK_START: Wingman(self.game, self) self.has_wingman = True self.has_mob = True def update(self, *args): # Moving left/right if self.on_move_x: self.rect.x += self.vel_x if self.rect.right > WIDTH - 15: self.vel_x = -1 if self.rect.left < 15: self.vel_x = 1 # Moving up/down if self.on_move_y: self.rect.y += self.vel_y self.count_vel_y += self.vel_y if self.count_vel_y > 130: self.vel_y = -1 if self.count_vel_y < 0: self.vel_y = 1 class Powerup(pygame.sprite.Sprite): def __init__(self, game, plat): self._layer = POW_LAYER self.groups = game.all_sprites, game.powerups pygame.sprite.Sprite.__init__(self, self.groups) self.game = game self.plat = plat # We define the type as boost and then we change it if needed self.type = 'boost' self.spawn_score = 0 self.spawn_ratio = random.randrange(100) if 20 < self.spawn_ratio < 50: self.type = 'bubble' elif 7 < self.spawn_ratio < 20: self.type = 'wings' elif 0 < self.spawn_ratio < 7: self.type = 'jetpack' if self.type == 'boost': self.image = self.game.spritesheet1.get_image(820, 1805, 71, 70) elif self.type == 'bubble': self.image = self.game.spritesheet1.get_image(826, 134, 71, 70) elif self.type == 'jetpack': self.image = self.game.spritesheet1.get_image(852, 1089, 65, 77) elif self.type == 'wings': self.image = self.game.spritesheet1.get_image(826, 1292, 71, 70) self.image.set_colorkey(BLACK) self.rect = self.image.get_rect() # Position of the pow self.rect.centerx = self.plat.rect.centerx self.rect.bottom = self.plat.rect.top - 2 # Jumping var self.jumpCount = 1.2 def update(self): self.rect.centerx = self.plat.rect.centerx # Jetpack does not jump if self.type != 'jetpack': # Checking if the powerup is out of the screen or on it if self.rect.y >= 0: if self.jumpCount >= -2: self.jumpCount -= 0.1 self.rect.y -= (self.jumpCount * abs(self.jumpCount)) * 0.5 else: self.jumpCount = 1.2 self.rect.bottom = self.plat.rect.top - 2 # Else if the powerup is above the screen we change the signs else: if self.jumpCount >= 2: self.jumpCount -= 0.1 self.rect.y -= (self.jumpCount * abs(self.jumpCount)) * 0.5 else: self.jumpCount = 1.2 self.rect.bottom = self.plat.rect.top - 2 # Jetpack always is still else: self.rect.bottom = self.plat.rect.top # Killing the sprite if not self.game.platforms.has(self.plat): self.kill() self.plat.has_pow = False class Coin(pygame.sprite.Sprite): def __init__(self, game, plat): self._layer = POW_LAYER self.groups = game.all_sprites, game.coins pygame.sprite.Sprite.__init__(self, self.groups) self.game = game self.plat = plat # Animation properties self.last_update = 0 self.current_frame = 0 self.load_images() self.image = self.gold_images[0] self.rect = self.image.get_rect() # Position self.rect.centerx = self.plat.rect.centerx self.rect.bottom = self.plat.rect.top - 5 # Images depending on the score if PLAT_STONE_START > self.game.score >= 0: self.type = 'bronze' elif PLAT_PINK_START > self.game.score > PLAT_STONE_START: self.type = 'silver' else: self.type = 'gold' def load_images(self): self.gold_images = (self.game.spritesheet1.get_image(698, 1931, 84, 84), self.game.spritesheet1.get_image(829, 0, 66, 84), self.game.spritesheet1.get_image(897, 1574, 50, 84), self.game.spritesheet1.get_image(645, 651, 15, 84), pygame.transform.flip(self.game.spritesheet1.get_image(897, 1574, 50, 84), True, False), pygame.transform.flip(self.game.spritesheet1.get_image(829, 0, 66, 84), True, False)) for image in self.gold_images: image.set_colorkey(BLACK) self.silver_images = (self.game.spritesheet1.get_image(584, 406, 84, 84), self.game.spritesheet1.get_image(852, 1003, 66, 84), self.game.spritesheet1.get_image(899, 1219, 50, 84), self.game.spritesheet1.get_image(662, 651, 14, 84), pygame.transform.flip(self.game.spritesheet1.get_image(899, 1219, 50, 84), True, False), pygame.transform.flip(self.game.spritesheet1.get_image(852, 1003, 66, 84), True, False)) for image in self.silver_images: image.set_colorkey(BLACK) self.bronze_images = (self.game.spritesheet1.get_image(707, 296, 84, 84), self.game.spritesheet1.get_image(826, 206, 66, 84), self.game.spritesheet1.get_image(899, 116, 50, 84), self.game.spritesheet1.get_image(670, 406, 14, 84), pygame.transform.flip(self.game.spritesheet1.get_image(899, 116, 50, 84), True, False), pygame.transform.flip(self.game.spritesheet1.get_image(826, 206, 66, 84), True, False)) for image in self.bronze_images: image.set_colorkey(BLACK) def update(self): time_passed = pygame.time.get_ticks() self.rect.centerx = self.plat.rect.centerx self.rect.bottom = self.plat.rect.top - 5 if time_passed - self.last_update > 100: self.last_update = time_passed self.current_frame = (self.current_frame + 1) % len(self.gold_images) if self.type == 'bronze': self.image = self.bronze_images[self.current_frame] elif self.type == 'silver': self.image = self.silver_images[self.current_frame] else: self.image = self.gold_images[self.current_frame] self.rect = self.image.get_rect() self.rect.centerx = self.plat.rect.centerx self.rect.bottom = self.plat.rect.top - 5 # We kill the sprite when the plat is killed if not self.game.platforms.has(self.plat): self.kill() self.plat.has_coin = False class Flyman(pygame.sprite.Sprite): def __init__(self, game): self._layer = MOB_LAYER self.groups = game.all_sprites, game.mobs pygame.sprite.Sprite.__init__(self, self.groups) self.game = game # Images and animation self.image_up = self.game.spritesheet1.get_image(566, 510, 122, 139) self.image_up.set_colorkey(BLACK) self.image_down = self.game.spritesheet1.get_image(568, 1534, 122, 135) self.image_down.set_colorkey(BLACK) self.image = self.image_up self.rect = self.image.get_rect() # Position self.rect.centerx = random.choice([-100, WIDTH + 100]) self.rect.y = HEIGHT / 3 # Move properties self.velx = random.randrange(1, 4) self.vely = 0 self.dy = 0.5 def update(self): # We apply movement self.rect.x += self.velx self.vely += self.dy self.rect.y += self.vely # We apply up and down movement if self.vely > 3 or self.vely < -3: self.dy *= -1 rect_center = self.rect.center # We apply animation if self.dy < 0: self.image = self.image_up else: self.image = self.image_down self.rect = self.image.get_rect() self.mask = pygame.mask.from_surface(self.image) self.rect.center = rect_center # The sprite moves left and right until it is off HEIGHT if self.rect.left > WIDTH + 100 or self.rect.right < -100: self.velx *= -1 # Killing the sprite if self.rect.centery > HEIGHT + 100: self.game.has_flyman = False self.kill() class CloudBG(pygame.sprite.Sprite): def __init__(self, game): self._layer = CLOUD_LAYER self.groups = game.all_sprites, game.clouds pygame.sprite.Sprite.__init__(self, self.groups) self.game = game self.image = random.choice(self.game.cloud_images) self.image.set_colorkey(BLACK) self.rect = self.image.get_rect() scale = random.randrange(50, 100) / 100 self.image = pygame.transform.scale(self.image, (int(self.rect.width * scale), int(self.rect.height * scale))) self.rect.x = random.randrange(WIDTH - self.rect.width) self.rect.y = random.randrange(-500, -50) def update(self): if self.rect.top > HEIGHT * 2: self.kill() class Spikey(pygame.sprite.Sprite): def __init__(self, game, plat): self._layer = MOB_LAYER self.groups = game.all_sprites, game.mobs pygame.sprite.Sprite.__init__(self, self.groups) self.game = game self.plat = plat self.load_images() self.current_frame = 0 self.last_update = 0 self.image = self.images_R[0] self.rect = self.image.get_rect() self.rect.centerx = self.plat.rect.centerx self.rect.bottom = self.plat.rect.top - 1 self.acc_x = SPIKEY_ACC self.facing_left = False self.facing_right = True def load_images(self): self.images_R = (self.game.spritesheet1.get_image(704, 1256, 120, 159), self.game.spritesheet1.get_image(812, 296, 90, 155)) for image in self.images_R: image.set_colorkey(BLACK) self.images_L = (pygame.transform.flip(self.game.spritesheet1.get_image(704, 1256, 120, 159), True, False), pygame.transform.flip(self.game.spritesheet1.get_image(812, 296, 90, 155), True, False)) for image in self.images_L: image.set_colorkey(BLACK) def update(self): self.animation() if self.game.platforms.has(self.plat): self.rect.bottom = self.plat.rect.top - 1 # Applying constant movement if self.facing_left or self.facing_right: self.rect.x += self.acc_x # Moving from right to left if self.rect.right > self.plat.rect.right: self.facing_right = False self.facing_left = True self.acc_x = -SPIKEY_ACC # Moving from left to right if self.rect.left < self.plat.rect.left: self.facing_right = True self.facing_left = False self.acc_x = SPIKEY_ACC # Killing the sprite when it disappears off the screen if self.rect.top > HEIGHT: self.kill() self.plat.has_spikey = False self.plat.has_mob = False def animation(self): time_passed = pygame.time.get_ticks() if time_passed - self.last_update > SPIKEY_FRAME_TIME: self.last_update = time_passed self.current_frame = (self.current_frame + 1) % len(self.images_R) rect_bottom = self.rect.bottom centerx = self.rect.centerx if self.facing_right: self.image = self.images_R[self.current_frame] self.rect.x += self.acc_x if self.facing_left: self.image = self.images_L[self.current_frame] self.rect.x += self.acc_x self.rect = self.image.get_rect() self.rect.centerx = centerx self.rect.bottom = rect_bottom class Cloud(pygame.sprite.Sprite): def __init__(self, game, plat): self._layer = 4 self.groups = game.all_sprites, game.passive_mobs pygame.sprite.Sprite.__init__(self, self.groups) self.game = game self.plat = plat # Defining the images self.images = (self.game.spritesheet1.get_image(0, 1152, 260, 134), Get_image_res(pygame.image.load('graphics/Cloud1.png'), 2), Get_image_res(pygame.image.load('graphics/Cloud2.png'), 2), Get_image_res(pygame.image.load('graphics/Cloud3.png'), 2), Get_image_res(pygame.image.load('graphics/Cloud4.png'), 2)) self.image = self.images[0] self.rect = self.image.get_rect() self.rect.centerx = self.plat.rect.centerx self.rect.bottom = self.plat.rect.top - 60 self.last_update = 0 self.last_struck = False self.current_frame = 0 # The first image is from the spritesheet so we set the colorkey to black if self.image == self.images[0]: self.image.set_colorkey(BLACK) def update(self, *args): self.rect.centerx = self.plat.rect.centerx if self.game.platforms.has(self.plat): self.rect.bottom = self.plat.rect.top - 60 # Setting the animation time_passed = pygame.time.get_ticks() if time_passed - self.last_update > 500: self.last_update = time_passed self.current_frame = (self.current_frame + 1) % len(self.images) self.image = self.images[self.current_frame] # Spawning the lightining at the peak image if self.image == self.images[4] and len(self.game.lightinings) < 4: self.game.lightining_sound.play() Lightining(self.game, self) # Killing the sprite when it dissapears off the screen if self.rect.top > HEIGHT: self.kill() self.plat.has_cloud = False self.plat.has_mob = False # Spawns ony with a cloud class Lightining(pygame.sprite.Sprite): def __init__(self, game, cloud): self._layer = MOB_LAYER self.groups = game.all_sprites, game.mobs, game.lightinings pygame.sprite.Sprite.__init__(self, self.groups) self.game = game self.cloud = cloud self.image = self.game.spritesheet1.get_image(895, 453, 55, 114) # Rare gold lightining if random.randrange(100.0) < 1.5: self.image = self.game.spritesheet1.get_image(897, 0, 55, 114) self.image.set_colorkey(BLACK) self.rect = self.image.get_rect() self.rect.top = self.cloud.rect.bottom - 2 self.rect.centerx = self.cloud.rect.centerx - 5 def update(self, *args): # Kill if the peak image is gone if self.cloud.image != self.cloud.images[4] or self.rect.top > HEIGHT: self.kill() class Wingman(pygame.sprite.Sprite): def __init__(self, game, plat): self._layer = MOB_LAYER self.groups = game.all_sprites, game.flying_mobs pygame.sprite.Sprite.__init__(self, self.groups) self.game = game self.plat = plat self.images = (self.game.spritesheet1.get_image(382, 635, 174, 126), self.game.spritesheet1.get_image(0, 1879, 206, 107), self.game.spritesheet1.get_image(0, 1559, 216, 101), self.game.spritesheet1.get_image(0, 1456, 216, 101), self.game.spritesheet1.get_image(382, 510, 182, 123), self.game.spritesheet1.get_image(0, 1456, 216, 101), self.game.spritesheet1.get_image(0, 1559, 216, 101), self.game.spritesheet1.get_image(0, 1879, 206, 107)) for image in self.images: image.set_colorkey(BLACK) self.image = self.images[0] self.rect = self.image.get_rect() self.rect.centerx = self.plat.rect.centerx self.rect.centery = self.plat.rect.centery # Move properties self.acc_y = WM_ACC_UP self.vel_y = 0 self.current_frame = 0 self.last_update = 0 self.facing_up = True self.facing_down = False def update(self, *args): self.animation() self.rect.centerx = self.plat.rect.centerx # We apply constant movement if self.facing_up or self.facing_down: self.rect.top += self.acc_y self.acc_y += self.vel_y # We apply the borders and change the animation properties # Going up if self.rect.y > self.plat.rect.y + 80: self.acc_y = WM_ACC_UP self.vel_y = 0 self.facing_up = True self.facing_down = False self.current_frame = 0 # We slow down the falling sprite to make it look more natural if self.plat.rect.y + 80 > self.rect.y > self.plat.rect.y + 40 and self.facing_down: self.vel_y = -WM_VEL # We fall and we speed up as we do it if self.rect.y < self.plat.rect.y - 120: self.acc_y = WM_ACC_DOWN self.vel_y = WM_VEL if self.acc_y >= 4: self.acc_y = 4 self.facing_down = True self.facing_up = False # Killing the sprite when it is out of the screen if not self.game.platforms.has(self.plat): if self.rect.y > HEIGHT: self.kill() self.plat.has_wingman = False self.plat.has_mob = False def animation(self): # Animation up and down time_passed = pygame.time.get_ticks() if self.facing_up: if time_passed - self.last_update > WM_FRAME_TIME: self.last_update = time_passed self.current_frame = (self.current_frame + 1) % len(self.images) centery = self.rect.centery self.image = self.images[self.current_frame] self.rect = self.image.get_rect() self.rect.centery = centery else: self.image = pygame.transform.flip(self.images[4], False, True) class Sun(pygame.sprite.Sprite): def __init__(self, game): self._layer = MOB_LAYER self.groups = game.all_sprites, game.flying_mobs pygame.sprite.Sprite.__init__(self, self.groups) self.game = game # Applying sun types according to the score self.type = 'sun' if 1500 > self.game.score > SUN_SPAWN_SCORE: self.type = 'moon' if self.type == 'sun': self.images = (self.game.spritesheet1.get_image(534, 913, 142, 148), self.game.spritesheet1.get_image(421, 1390, 148, 142)) elif self.type == 'moon': self.images = (self.game.spritesheet1.get_image(534, 763, 142, 148), self.game.spritesheet1.get_image(464, 1122, 148, 141)) for image in self.images: image.set_colorkey(BLACK) self.image = self.images[0] self.rect = self.image.get_rect() # Applying y and x pos if self.game.player.has_wings: self.rect.centerx = random.randrange(70, WIDTH - 70) else: self.rect.centerx = random.choice([-100, WIDTH + 100]) self.rect.y = random.choice([-100, -75]) # The vel is so that when everything gets moved to the bottom our sun moves slower to make the game challenging # The vel isn't found anywhere in the class.It is in the game in flying mobs self.vel_y = -PLAYER_JUMP_V // 3.5 self.vel_x = SUN_VEL self.current_frame = 0 self.last_update = 0 def update(self, *args): # Apply animation self.animation() if self.game.player.has_wings: self.vel_y = 0 else: # Apply constant movement self.rect.x += self.vel_x # Changing the direction if self.rect.right > WIDTH - 5: self.vel_x = -SUN_VEL if self.rect.left < 5: self.vel_x = SUN_VEL # Killing the sprite if it is off the screen if self.rect.y > HEIGHT: self.kill() self.game.has_sun = False def animation(self): time_passed = pygame.time.get_ticks() if time_passed - self.last_update > SUN_FRAME_CHANGE: self.last_update = time_passed self.current_frame = (self.current_frame + 1) % len(self.images) self.image = self.images[self.current_frame]
StarcoderdataPython
119910
import os from pprint import pprint from typing import List, Tuple from logger import log_settings from local_db import LocalDb, local_db_name from dir_tree import CreateTree app_log = log_settings() local_path = "k:\\data\\paper_dtdt\\some_other\\" class ParseFiles: def __init__(self, tb_item): self._root = local_path self._name = tb_item.name self._surname = tb_item.surname self._files: str = "" def __repr__(self): return "ParseFiles_" + self.name + "_" + self.surname @property def name(self): return self._name.lower() @property def surname(self): return self._surname.lower() @property def root(self): return self._root @root.setter def root(self, value): self._root = value @property def full_path(self): return os.path.join(self.root, self._files) def walk_files(self): for self.root, dirs, file_list in os.walk(local_path): for files in file_list: yield files @property def get_title(self): return self._files.split(".mp4")[0].lower() def find_equals(self): app_log.info(f"parsing for {repr(self)}") for self._files in self.walk_files(): if self.name in self.get_title and self.surname in self.get_title: yield self._files, self.full_path if __name__ == "__main__": app_log.info("Main app starts.") datab = LocalDb(db_name=local_db_name) datab.open_session() inst = CreateTree() for table_item in datab.select_all: for movie in ParseFiles(tb_item=table_item).find_equals(): inst.main(tb_item=table_item, filename=movie[0], path_from=movie[1]) inst.copy_pool() inst.remove_set() datab.close_session() datab.close_engine() app_log.info("Main app ends.")
StarcoderdataPython
4834155
# Generated by Django 2.2.3 on 2019-07-15 17:54 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('movieapi', '0002_auto_20190715_1735'), ] operations = [ migrations.AddField( model_name='movie', name='director', field=models.CharField(default='', max_length=50), ), migrations.AddField( model_name='movie', name='writer', field=models.CharField(default='', max_length=50), ), ]
StarcoderdataPython
50031
from hivemind import app from flask import flash, redirect, render_template, request, url_for from mcipc.query import Client as QClient @app.route('/', methods=['GET', 'POST']) def index(): if request.method == 'GET': with QClient("diseased.horse", 25565) as q: stats = q.full_stats return render_template( "index.html", status="Unknown", online_players=stats["num_players"], total_players=stats["max_players"], motd=status["hostname"], players=["OO"], ) else: return str(request.form)
StarcoderdataPython
1798441
<gh_stars>0 from django.shortcuts import render from InputOutputFiles import Speech_to_Text as listen from InputOutputFiles import Text_to_Speech as speak import base def index(request): return render(request, 'search/search.html', {'query':"", 'output':""}) def listenSearchQuery(request): speak.say("Speak your query") query = listen.listenInput() output = base.getAPIOutput(query, "Search") speak.say(output) if output == "Project doesnt exist": to_do = 0 in_progress = 0 done = 0 else: to_do = base.getToDoIssueNum() in_progress = base.getInProgressIssueNum() done = base.getDoneIssueNum() return render(request, 'search/search.html', {'query' : query, 'output':output, 'to_do':to_do, 'in_progress':in_progress, 'done':done})
StarcoderdataPython
115756
<reponame>jovanbrakus/cherrypy-example __author__ = '<NAME> <<EMAIL>>' __contact__ = '<EMAIL>' __date__ = '31 May 2012'
StarcoderdataPython
1758562
<filename>convert_scores_to_average.py<gh_stars>1-10 import glob import sys import os pattern = sys.argv[1] def file_to_scores(f): new_f = open(f,'r') s = '' for i in new_f.readlines(): s = s + i j = s.split('\n') rouge_1_f = float(j[2].split(':')[1].split()[0]) * 100 rouge_2_f = float(j[7].split(':')[1].split()[0]) * 100 rouge_l_f = float(j[12].split(':')[1].split()[0]) * 100 return rouge_1_f, rouge_2_f, rouge_l_f rouge_1 = 0 rouge_2 = 0 rouge_l = 0 k = len(glob.glob(pattern + '*')) for i in glob.glob(pattern + '*'): rouge_path = os.path.join(glob.glob(os.path.join(i,'decode_val_*'))[0], 'ROUGE_results.txt') r1, r2, rl = file_to_scores(rouge_path) rouge_1 += r1 rouge_2 += r2 rouge_l += rl rouge_1 = rouge_1/k rouge_2 = rouge_2/k rouge_l = rouge_l/k with open(pattern, 'w') as f: f.write("%s\t%f\t%f\t%f"%(pattern,rouge_1,rouge_2,rouge_l)) print("%s\t%f\t%f\t%f"%(pattern,rouge_1,rouge_2,rouge_l))
StarcoderdataPython
39293
#Title: Notification Processor #Tags:plyer,python #Can process notification of your choice #plyer:built in module help you to find more information from plyer import notification def notifyme(title, message): notification.notify( title=title, message=message, app_icon='Write your icon address here', timeout=5 ) notifyme("Title of notification box", "Message in notification")
StarcoderdataPython
4817067
<filename>HackerRank/Beautiful_Triplets.py ```py def beautifulTriplets(d, arr): c = 0 for i in arr: if i + d in arr and i + d*2 in arr: c += 1 return c if __name__ == '__main__': first_multiple_input = input().rstrip().split() n, d = int(first_multiple_input[0]), int(first_multiple_input[1]) arr = list(map(int, input().rstrip().split())) print(beautifulTriplets(d, arr)) ```
StarcoderdataPython
3393422
import os os.environ['AIRFLOW__CORE__UNIT_TEST_MODE'] = 'True'
StarcoderdataPython
1708926
import sys import os from datetime import datetime, timedelta import numpy as np import xarray as xr path = str(sys.argv[1]) name = str(sys.argv[2]) level = str(sys.argv[3]) member = int(sys.argv[4]) path_wrfref = os.getenv("PATH_WRFREF") f = xr.open_dataset(path).squeeze() initialization = datetime.strptime(f.initialization, "%Y-%m-%d %H:%M:%S") forecast_hour = int(f.forecast_hour) valid = initialization + timedelta(hours=forecast_hour) domain = int(f.domain) ref = xr.open_dataset("{}/wrfoutREFd0{}".format(path_wrfref, domain)).squeeze() if level == "Surface": sel = {"member": member} else: sel = {"member": member, "pressure": int(level)} # Extract the forecast field from the dataset, convert to *DOUBLE* floating point # precision (float64) as required by MET, and round to avoid adding random noise. try: fcst_field = np.asarray(f[name].sel(sel), dtype=float).round(5) met_data = np.flip(fcst_field, axis=0).copy() except KeyError as err: sys.stderr.write("{}: KeyError: {}".format(sys.argv[0], err)) sys.exit(1) # ===== # Create attributes dictionary as specified in MET user's guide under Python embedding # ===== try: xlat = ref.variables['XLAT'].data except KeyError: sys.stderr.write("{}: KeyError: {}".format(sys.argv[0], varkey)) sys.exit(1) try: xlong = ref.variables['XLONG'].data except KeyError: sys.stderr.write("{}: KeyError: {}".format(sys.argv[0], varkey)) sys.exit(1) grid_attrs = { 'type': 'Lambert Conformal', 'hemisphere': 'N', 'name': 'TTU WRF', 'lat_pin': float(xlat[0, 0]), 'lon_pin': float(xlong[0, 0]), 'x_pin': 0.0, 'y_pin': 0.0, 'r_km': 6371.2, 'scale_lat_1': float(ref.attrs['TRUELAT1']), 'scale_lat_2': float(ref.attrs['TRUELAT2']), 'lon_orient': float(ref.attrs['STAND_LON']), 'd_km': float(ref.attrs['DX']) / 1000., 'nx': int(ref.attrs['WEST-EAST_GRID_DIMENSION']), 'ny': int(ref.attrs['SOUTH-NORTH_GRID_DIMENSION']), } attrs = { 'valid': valid.strftime("%Y%m%d_%H"), 'init': initialization.strftime("%Y%m%d_%H"), 'lead': str(forecast_hour), 'accum': '0', 'name': name, 'long_name': name, 'level': level, 'units': str(f[name].units), 'grid': grid_attrs, }
StarcoderdataPython
4836961
<reponame>bkenan/rl_offline<gh_stars>1-10 from abc import abstractmethod from typing import Optional, Sequence, Tuple import numpy as np import torch from ...gpu import Device from ...preprocessing import ActionScaler, RewardScaler, Scaler from ...torch_utility import ( eval_api, get_state_dict, map_location, set_state_dict, to_cpu, to_cuda, torch_api, ) from ..base import DynamicsImplBase class TorchImplBase(DynamicsImplBase): _observation_shape: Sequence[int] _action_size: int _scaler: Optional[Scaler] _action_scaler: Optional[ActionScaler] _reward_scaler: Optional[RewardScaler] _device: str def __init__( self, observation_shape: Sequence[int], action_size: int, scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], reward_scaler: Optional[RewardScaler], ): self._observation_shape = observation_shape self._action_size = action_size self._scaler = scaler self._action_scaler = action_scaler self._reward_scaler = reward_scaler self._device = "cpu:0" @eval_api @torch_api(scaler_targets=["x"], action_scaler_targets=["action"]) def predict( self, x: torch.Tensor, action: torch.Tensor, indices: torch.Tensor, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: with torch.no_grad(): observation, reward, variance = self._predict(x, action, indices) if self._scaler: observation = self._scaler.reverse_transform(observation) if self._reward_scaler: reward = self._reward_scaler.reverse_transform(reward) observation = observation.cpu().detach().numpy() reward = reward.cpu().detach().numpy() variance = variance.cpu().detach().numpy() return observation, reward, variance @abstractmethod def _predict( self, x: torch.Tensor, action: torch.Tensor, indices: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: pass def to_gpu(self, device: Device = Device()) -> None: self._device = f"cuda:{device.get_id()}" to_cuda(self, self._device) def to_cpu(self) -> None: self._device = "cpu:0" to_cpu(self) def save_model(self, fname: str) -> None: torch.save(get_state_dict(self), fname) def load_model(self, fname: str) -> None: chkpt = torch.load(fname, map_location=map_location(self._device)) set_state_dict(self, chkpt) @property def observation_shape(self) -> Sequence[int]: return self._observation_shape @property def action_size(self) -> int: return self._action_size @property def device(self) -> str: return self._device @property def scaler(self) -> Optional[Scaler]: return self._scaler @property def action_scaler(self) -> Optional[ActionScaler]: return self._action_scaler @property def reward_scaler(self) -> Optional[RewardScaler]: return self._reward_scaler
StarcoderdataPython
3285603
from __future__ import unicode_literals, division, absolute_import from builtins import * # pylint: disable=unused-import, redefined-builtin import collections import logging import os import sys import tempfile from flexget import plugin from flexget.event import event log = logging.getLogger('subtitles') try: from subliminal.extensions import provider_manager PROVIDERS = provider_manager.names() except ImportError: PROVIDERS = [ 'opensubtitles', 'thesubdb', 'podnapisi', 'addic7ed', 'tvsubtitles' ] AUTHENTICATION_SCHEMA = dict((provider, {'type': 'object'}) for provider in PROVIDERS) class PluginSubliminal(object): """ Search and download subtitles using Subliminal by <NAME> (https://pypi.python.org/pypi/subliminal). Example (complete task):: subs: find: path: - d:\media\incoming regexp: '.*\.(avi|mkv|mp4)$' recursive: yes accept_all: yes subliminal: languages: - ita alternatives: - eng exact_match: no providers: addic7ed, opensubtitles single: no directory: /disk/subtitles hearing_impaired: yes authentication: addic7ed: username: myuser passsword: <PASSWORD> """ schema = { 'type': 'object', 'properties': { 'languages': {'type': 'array', 'items': {'type': 'string'}, 'minItems': 1}, 'alternatives': {'type': 'array', 'items': {'type': 'string'}}, 'exact_match': {'type': 'boolean', 'default': True}, 'providers': {'type': 'array', 'items': {'type': 'string', 'enum': PROVIDERS}}, 'single': {'type': 'boolean', 'default': True}, 'directory': {'type:': 'string'}, 'hearing_impaired': {'type': 'boolean', 'default': False}, 'authentication': {'type': 'object', 'properties': AUTHENTICATION_SCHEMA}, }, 'required': ['languages'], 'additionalProperties': False } def on_task_start(self, task, config): if list(sys.version_info) < [2, 7]: raise plugin.DependencyError('subliminal', 'Python 2.7', 'Subliminal plugin requires python 2.7.') try: import babelfish except ImportError as e: log.debug('Error importing Babelfish: %s', e) raise plugin.DependencyError('subliminal', 'babelfish', 'Babelfish module required. ImportError: %s' % e) try: import subliminal except ImportError as e: log.debug('Error importing Subliminal: %s', e) raise plugin.DependencyError('subliminal', 'subliminal', 'Subliminal module required. ImportError: %s' % e) def on_task_output(self, task, config): """ Configuration:: subliminal: languages: List of languages (as IETF codes) in order of preference. At least one is required. alternatives: List of second-choice languages; subs will be downloaded but entries rejected. exact_match: Use file hash only to search for subs, otherwise Subliminal will try to guess by filename. providers: List of providers from where to download subtitles. single: Download subtitles in single mode (no language code added to subtitle filename). directory: Path to directory where to save the subtitles, default is next to the video. hearing_impaired: Prefer subtitles for the hearing impaired when available authentication: > Dictionary of configuration options for different providers. Keys correspond to provider names, and values are dictionaries, usually specifying `username` and `password`. """ if not task.accepted: log.debug('nothing accepted, aborting') return from babelfish import Language from dogpile.cache.exception import RegionAlreadyConfigured import subliminal from subliminal.cli import MutexLock from subliminal.score import episode_scores, movie_scores try: subliminal.region.configure('dogpile.cache.dbm', arguments={ 'filename': os.path.join(tempfile.gettempdir(), 'cachefile.dbm'), 'lock_factory': MutexLock, }) except RegionAlreadyConfigured: pass # Let subliminal be more verbose if our logger is set to DEBUG if log.isEnabledFor(logging.DEBUG): logging.getLogger("subliminal").setLevel(logging.INFO) else: logging.getLogger("subliminal").setLevel(logging.CRITICAL) logging.getLogger("dogpile").setLevel(logging.CRITICAL) logging.getLogger("enzyme").setLevel(logging.WARNING) try: languages = set([Language.fromietf(s) for s in config.get('languages', [])]) alternative_languages = set([Language.fromietf(s) for s in config.get('alternatives', [])]) except ValueError as e: raise plugin.PluginError(e) # keep all downloaded subtitles and save to disk when done (no need to write every time) downloaded_subtitles = collections.defaultdict(list) providers_list = config.get('providers', None) provider_configs = config.get('authentication', None) # test if only one language was provided, if so we will download in single mode # (aka no language code added to subtitle filename) # unless we are forced not to by configuration # if we pass 'yes' for single in configuration but choose more than one language # we ignore the configuration and add the language code to the # potentially downloaded files single_mode = config.get('single', '') and len(languages | alternative_languages) <= 1 hearing_impaired = config.get('hearing_impaired', False) with subliminal.core.ProviderPool(providers=providers_list, provider_configs=provider_configs) as provider_pool: for entry in task.accepted: if 'location' not in entry: log.warning('Cannot act on entries that do not represent a local file.') continue if not os.path.exists(entry['location']): entry.fail('file not found: %s' % entry['location']) continue if '$RECYCLE.BIN' in entry['location']: # ignore deleted files in Windows shares continue try: entry_languages = set(entry.get('subtitle_languages', [])) or languages video = subliminal.scan_video(entry['location']) # use metadata refiner to get mkv metadata refiner = ('metadata',) subliminal.core.refine(video, episode_refiners=refiner, movie_refiners=refiner) existing_subtitles = set(subliminal.core.search_external_subtitles(entry['location']).values()) video.subtitle_languages |= existing_subtitles if isinstance(video, subliminal.Episode): title = video.series hash_scores = episode_scores['hash'] else: title = video.title hash_scores = movie_scores['hash'] log.info('Name computed for %s was %s', entry['location'], title) msc = hash_scores if config['exact_match'] else 0 if entry_languages.issubset(video.subtitle_languages) or (single_mode and video.subtitle_languages): log.debug('All preferred languages already exist for "%s"', entry['title']) entry['subtitles_missing'] = set() continue # subs for preferred lang(s) already exists else: # Gather the subtitles for the alternative languages too, to avoid needing to search the sites # again. They'll just be ignored if the main languages are found. all_subtitles = provider_pool.list_subtitles(video, entry_languages | alternative_languages) subtitles = provider_pool.download_best_subtitles(all_subtitles, video, entry_languages, min_score=msc, hearing_impaired=hearing_impaired) if subtitles: downloaded_subtitles[video].extend(subtitles) log.info('Subtitles found for %s', entry['location']) else: # only try to download for alternatives that aren't alread downloaded subtitles = provider_pool.download_best_subtitles(all_subtitles, video, alternative_languages, min_score=msc, hearing_impaired=hearing_impaired) if subtitles: downloaded_subtitles[video].extend(subtitles) entry.fail('subtitles found for a second-choice language.') else: entry.fail('cannot find any subtitles for now.') downloaded_languages = set([Language.fromietf(str(l.language)) for l in subtitles]) if entry_languages: entry['subtitles_missing'] = entry_languages - downloaded_languages if len(entry['subtitles_missing']) > 0: entry.fail('Subtitles for all primary languages not found') except ValueError as e: log.error('subliminal error: %s', e) entry.fail() if downloaded_subtitles: if task.options.test: log.verbose('Test mode. Found subtitles:') # save subtitles to disk for video, subtitle in downloaded_subtitles.items(): if subtitle: _directory = config.get('directory') if _directory: _directory = os.path.expanduser(_directory) if task.options.test: log.verbose(' FOUND LANGUAGES %s for %s', [str(l.language) for l in subtitle], video.name) continue subliminal.save_subtitles(video, subtitle, single=single_mode, directory=_directory) @event('plugin.register') def register_plugin(): plugin.register(PluginSubliminal, 'subliminal', api_ver=2)
StarcoderdataPython
4835389
<reponame>RusticiSoftware/SCORMCloud_GoogAppEngApp<filename>cron/autoexpire.py #!/usr/bin/env python # encoding: utf-8 """ reminders.py Copyright (c) 2010 <NAME>. All rights reserved. """ import cgi import os import datetime from datetime import timedelta from google.appengine.dist import use_library use_library('django', '1.1') from models import * from modelutils import * from assignutils import * from viewutils import * if GetEnableAutoExpire(): # application setup - add new pages here... logging.getLogger().setLevel(logging.DEBUG) logging.info("Kicking off the scheduled Auto-Expire process.") assignments = GetExpirableAssignments() if assignments is not None: totaldeactivated = 0 for assignment in assignments: assignment.active = False; #setting the autoexpire to False to make the future GetAssignments calls faster assignment.autoexpire = False; assignment.put() totaldeactivated = totaldeactivated + 1 logging.info(str(totaldeactivated) + " assignments were deactivated automatically at expiration.") logging.info("Ending the scheduled Auto-Expire process.")
StarcoderdataPython
4808085
from django.http import Http404 from django.shortcuts import render, get_object_or_404, redirect from .models import Product from .forms import ProductForm, RawProductForm def product_create_view(request): form = ProductForm(request.POST or None) if form.is_valid(): form.save() form = ProductForm() context = { 'form': form } return render(request, 'products/product_create.html', context) def product_update_view(request, my_id): obj = get_object_or_404(Product, id=my_id) form = ProductForm(request.POST or None, instance=obj) if form.is_valid(): form.save() context = { 'form': form } return render(request, 'products/product_create.html', context) def product_delete_view(request, my_id): obj = get_object_or_404(Product, id=my_id) if request.method == 'POST': obj.delete() return redirect('../../') context = { 'object' : obj } return render(request, 'products/product_delete.html', context) def dynamic_product_detail_view(request, my_id): try: obj = Product.objects.get(id=my_id) except Product.DoesNotExist: raise Http404 context = { 'object' : obj } return render(request, 'products/product_detail.html', context) def product_list_view(request): qs = Product.objects.all() context = { 'object_list' : qs } return render(request, 'products/product_list.html', context)
StarcoderdataPython