id
stringlengths
1
265
text
stringlengths
6
5.19M
dataset_id
stringclasses
7 values
21410
from pylab import * import tables def exactSol(X, Y, t): return exp(-2*t)*sin(X)*cos(Y) fh = tables.openFile("s251-dg-diffuse-2d_q_1.h5") q = fh.root.StructGridField nx, ny, nc = q.shape dx = 2*pi/nx Xf = linspace(0, 2*pi-dx, nx) dy = 2*pi/ny Yf = linspace(0, 2*pi-dy, ny) XX, YY = meshgrid(Xf, Yf) Xhr = linspace(0, 2*pi, 101) Yhr = linspace(0, 2*pi, 101) XXhr, YYhr = meshgrid(Xhr, Yhr) fhr = exactSol(XXhr, YYhr, 1.0) figure(1) pcolormesh(Xhr, Yhr, fhr) colorbar() figure(2) pcolormesh(Xf, Yf, q[:,:,0]) colorbar() # compute error fex = exactSol(XX, YY, 1.0) error = abs(fex.transpose()-q[:,:,0]).sum()/(nx*ny); print "%g %g" % (dx, error) def evalSum(coeff, fields): res = 0.0*fields[0] for i in range(len(coeff)): res = res + coeff[i]*fields[i] return res def projectOnFinerGrid_f24(Xc, Yc, q): dx = Xc[1]-Xc[0] dy = Yc[1]-Yc[0] nx = Xc.shape[0] ny = Yc.shape[0] # mesh coordinates Xn = linspace(Xc[0]-0.5*dx, Xc[-1]+0.5*dx, 2*nx+1) # one more Yn = linspace(Yc[0]-0.5*dy, Yc[-1]+0.5*dy, 2*ny+1) # one more XXn, YYn = meshgrid(Xn, Yn) # data qn = zeros((2*Xc.shape[0], 2*Yc.shape[0]), float) v1 = q[:,:,0] v2 = q[:,:,1] v3 = q[:,:,2] v4 = q[:,:,3] vList = [v1,v2,v3,v4] # node 1 c1 = [0.5625,0.1875,0.0625,0.1875] qn[0:2*nx:2, 0:2*ny:2] = evalSum(c1, vList) # node 2 c2 = [0.1875,0.5625,0.1875,0.0625] qn[1:2*nx:2, 0:2*ny:2] = evalSum(c2, vList) # node 3 c3 = [0.1875,0.0625,0.1875,0.5625] qn[0:2*nx:2, 1:2*ny:2] = evalSum(c3, vList) # node 4 c4 = [0.0625,0.1875,0.5625,0.1875] qn[1:2*nx:2, 1:2*ny:2] = evalSum(c4, vList) return XXn, YYn, qn Xc = linspace(0.5*dx, 2*pi-0.5*dx, nx) Yc = linspace(0.5*dy, 2*pi-0.5*dy, ny) Xp, Yp, qp = projectOnFinerGrid_f24(Xc, Yc, q) figure(1) subplot(1,2,1) pcolormesh(Xp, Yp, transpose(qp)) title('RDG t=1') colorbar(shrink=0.5) axis('image') subplot(1,2,2) pcolormesh(Xhr, Yhr, fhr) title('Exact t=1') colorbar(shrink=0.5) axis('image') savefig('s251-exact-cmp.png') show()
StarcoderdataPython
1798253
<reponame>AntoninoScala/air-water-vv<filename>2d/caissonBreakwater/fixed/geometryPlot.py from numpy import * from scipy import * from pylab import * import collections as cll import csv # Put tankVertices and caissonVertices arrays here #tankVertices tv=np.array([[0.0, 0.0], [0.38992935246580784, 0.0], [1.1697880573974235, 0.0], [1.3197880573974234, 0.075], [2.0197880573974234, 0.075], [2.1697880573974233, 0.0], [2.949646762329039, 0.0], [3.7295054672606547, 0.0], [3.7295054672606547, 1.0], [2.949646762329039, 1.0], [0.38992935246580784, 1.0], [0.0, 1.0],], ) nt=len(tv) #caissonVertices cv=np.array( [[ 1.44978806, 0.075 ], [ 1.88978806, 0.075 ], [ 1.88978806, 0.475 ], [ 1.44978806, 0.475 ]], ) nc=len(cv) xt=[] yt=[] xc=[] yc=[] for i in range(nt): xt.append(tv[i][0]) yt.append(tv[i][1]) #xt.append(tv[0][0]) #yt.append(tv[0][1]) for j in range(nc): xc.append(cv[j][0]) yc.append(cv[j][1]) xc.append(cv[0][0]) yc.append(cv[0][1]) # Plot geometry import matplotlib.pyplot as plt plt.plot(xt,yt) plt.plot(xc,yc) plt.xlabel('x [m]') plt.ylabel('y [m]') plt.suptitle('geometry') plt.show() savefig('geometry.png')
StarcoderdataPython
3353433
import tensorflow as tf class Predict(object): def __init__(self, path1, path2): self.graph = tf.Graph() with self.graph.as_default(): self.saver = tf.train.import_meta_graph(path1) self.sess = tf.Session(graph=self.graph) with self.sess.as_default(): with self.graph.as_default(): self.saver.restore(self.sess, path2) def predict1(self, batch): y = self.graph.get_tensor_by_name('Softmax:0') proba = self.graph.get_tensor_by_name('Add_1:0') X = self.graph.get_operation_by_name('X').outputs[0] keep_prob = self.graph.get_operation_by_name('keep_prob').outputs[0] cnn_logits, pre_pro = self.sess.run([proba, y], feed_dict={X: batch, keep_prob: 1.0}) return cnn_logits, pre_pro def predict2(self, batch): # tf.reset_default_graph() y = self.graph.get_tensor_by_name('Softmax:0') proba = self.graph.get_tensor_by_name('add:0') X = self.graph.get_operation_by_name('X').outputs[0] # batch = batch.reshape((batch_size, timesteps, num_input)) rnn_logits, pre_pro = self.sess.run([proba, y], feed_dict={X: batch}) return rnn_logits, pre_pro def predict_models(): class DataSets(object): pass pre_label = DataSets() pre_label.cnn = Predict('/home/asdf/Documents/juyan/paper/salinas/mdcpe_result/newmdcpe/model/cnn/' 'CNN0507.ckpt.meta', '/home/asdf/Documents/juyan/paper/salinas/mdcpe_result/newmdcpe/model/cnn/' 'CNN0507.ckpt') pre_label.rnn = Predict('/home/asdf/Documents/juyan/paper/salinas/mdcpe_result/newmdcpe/model/rnn/' 'RNN0507.ckpt.meta', '/home/asdf/Documents/juyan/paper/salinas/mdcpe_result/newmdcpe/model/rnn/' 'RNN0507.ckpt') return pre_label
StarcoderdataPython
155419
<reponame>Jesse-Redford/SurfaceMetrology import os import cv2 import glob import time import h5py import imageio import numpy as np import pandas as pd from PIL import Image import streamlit as st from src.ISO251782 import iso25178 from sklearn.impute import KNNImputer def external_folder_selector(folder_path): print(folder_path) filenames = glob.glob(folder_path) selected_filename = st.selectbox('Select a folder', filenames) return os.path.join(folder_path, selected_filename) def folder_selector(folder_path='.'): filenames = glob.glob(r'./Datasets/MultiClass/*') selected_filename = st.selectbox('Select a folder', filenames) return os.path.join(folder_path, selected_filename) def file_selector(folder_path='.'): filenames = [os.path.join(path, name) for path, subdirs, files in os.walk(folder_path) for name in files] selected_filename = st.selectbox('Select a file', filenames) return selected_filename def to_dict(tup, di={}): di = dict(tup) return di # %% loader function % https://gist.github.com/g-s-k/ccffb1e84df065a690e554f4b40cfd3a def datx2py(file_name): # unpack an h5 group into a dict def _group2dict(obj): return {k: _decode_h5(v) for k, v in zip(obj.keys(), obj.values())} # unpack a numpy structured array into a dict def _struct2dict(obj): names = obj.dtype.names return [dict(zip(names, _decode_h5(record))) for record in obj] # decode h5py.File object and all of its elements recursively def _decode_h5(obj): # group -> dict if isinstance(obj, h5py.Group): d = _group2dict(obj) if len(obj.attrs): d['attrs'] = _decode_h5(obj.attrs) return d # attributes -> dict elif isinstance(obj, h5py.AttributeManager): return _group2dict(obj) # dataset -> numpy array if not empty elif isinstance(obj, h5py.Dataset): d = {'attrs': _decode_h5(obj.attrs)} try: d['vals'] = obj[()] except (OSError, TypeError): pass return d # numpy array -> unpack if possible elif isinstance(obj, np.ndarray): if np.issubdtype(obj.dtype, np.number) and obj.shape == (1,): return obj[0] elif obj.dtype == 'object': return _decode_h5([_decode_h5(o) for o in obj]) elif np.issubdtype(obj.dtype, np.void): return _decode_h5(_struct2dict(obj)) else: return obj # dimension converter -> dict elif isinstance(obj, np.void): return _decode_h5([_decode_h5(o) for o in obj]) # bytes -> str elif isinstance(obj, bytes): return obj.decode() # collection -> unpack if length is 1 elif isinstance(obj, list) or isinstance(obj, tuple): if len(obj) == 1: return obj[0] else: return obj # other stuff else: return obj # open the file and decode it with h5py.File(file_name, 'r') as f: h5data = _decode_h5(f) zdata = h5data['Data']['Surface'] zdata = list(zdata.values())[0] zvals = zdata['vals'] zvals[zvals == zdata['attrs']['No Data']] = np.nan # get units zunit = zdata['attrs']['Z Converter']['BaseUnit'] # Fill nans use global mean #zvals[np.isnan(zvals)] = np.nanmean(zvals) #return zvals # Fill nans using KNN imputation imputer = KNNImputer(n_neighbors=10,missing_values=np.nan) zzvals = imputer.fit_transform(zvals) return np.ascontiguousarray(zzvals, dtype=np.float64) def app(): st.title('Dataset Compiler') st.write('Created by <NAME>') if st.checkbox('External Folder'): path = st.text_input('Enter Path to Dataset') foldername = external_folder_selector(path) else: foldername = folder_selector() st.write('You selected `%s`' % foldername) filename = file_selector(folder_path=foldername) st.write('You selected `%s`' % filename) if filename: z = None loaded_image = None if filename.endswith('.datx'): z = datx2py(filename) loaded_image = cv2.normalize(z, z, 0, 255, cv2.NORM_MINMAX, cv2.CV_8U) # for displaying on st.image elif filename.lower().endswith('.tiff'): z = np.asarray(imageio.imread(filename)) loaded_image = cv2.normalize(z,z,0,255, cv2.NORM_MINMAX,cv2.CV_8U) # for displaying on st.image elif filename.lower().endswith(('.bmp','.png', '.jpg', '.jpeg')): z = np.asarray(Image.open(filename, mode='r').convert('L')) loaded_image = Image.open(filename, mode='r') else: print('File Type Not Excepted') col1, col2,col3 = st.columns([3,1,3]) with col1: st.write("Source") st.image(loaded_image, caption=f"{filename} {str(z.dtype)} {str(z.shape)}", width=250) with col2: st.write("") with col3: st.write("Converted") if len(z.shape) > 2: # if RGB apply luma transform z = (0.2989 * z[:,:,0] + 0.5870 * z[:,:,1] + 0.114 * z[:,:,2]) loaded_image = cv2.normalize(z, z, 0, 255, cv2.NORM_MINMAX, cv2.CV_8U) st.image(loaded_image, caption= f'Converted data is displayed in 8bit for preview, actual dtype: {str(z.dtype)} {str(z.shape)}', width=250) st.write(z.dtype, z.shape) st.subheader('Select Features To Compute on Dataset') iso = iso25178() selected_parameters = [] for par_type in iso.parameter_types: if st.checkbox(f'{par_type} ({str(len(getattr(iso, par_type)))})'): selected_parameters += getattr(iso, par_type) user_pars = st.multiselect('Selected Parameters', selected_parameters, selected_parameters) # Show options to modify polar plot defaults if any polar plot parameters are selected by user if any(x in iso.polarplot_parameters for x in user_pars): st.write('Set PolarPlot Parameters') c1,c2 = st.columns(2) if st.checkbox('Use Nan Masking for Polar Plot'): iso.pp_mask = True else: iso.pp_mask = False iso.theta_step = st.number_input('Enter rotation increment for Polar Plot (default = 1)',min_value=.1,max_value=1.0,value=1.0) if st.button(f'Compute and Preview The ({str(len(user_pars))}) Selected Parameters'): iso.parameters = user_pars start = time.time() features = iso.compute_features(z) end = time.time() col1, col2 = st.columns([3, 3]) col1.image(loaded_image, width=250) col1.write(f'Processing Time: {round(end-start,3)} seconds') col2.dataframe(pd.DataFrame(features),height=250) dataset_name = st.text_input('Input the name of the dataset here:') if st.button('Generate Dataset'): iso.parameters = user_pars #iso_pars rootdir = foldername folder = [] filename = [] for file in os.listdir(rootdir): folder_path = os.path.join(rootdir, file) if os.path.isdir(folder_path): folder_name = os.path.basename(folder_path) for img_file in sorted(os.listdir(folder_path)): folder.append(folder_name) filename.append(folder_name + '/' + img_file) df_reff = pd.DataFrame({'label': folder, 'image': filename}) df = pd.DataFrame(columns=iso.parameters) progress_bar = st.progress(0) for i, image in enumerate(df_reff.image): progress_bar.progress(i / len(df_reff.image)) # open the image according to file type filename = foldername + '/' + image if filename.endswith('.datx'): z = datx2py(filename) elif filename.lower().endswith(('.tiff', '.tif')): z = np.asarray(imageio.imread(filename)) if len(z.shape) > 2: # if RGB apply luma transform z = (0.2989 * z[:, :, 0] + 0.5870 * z[:, :, 1] + 0.114 * z[:, :, 2]) elif filename.lower().endswith(('.bmp', '.png', '.jpg', '.jpeg')): z = np.asarray(Image.open(filename, mode='r').convert('L')) else: print('File Type Not Excepted') # compute selected features on data and add new values to dataframe features = to_dict(iso.compute_features(z)) df = df.append(features, ignore_index=True) df = df_reff.join(df) # save data as pickle file and display on console df.to_pickle(os.path.join(os.getcwd()+'\Datasets\Tabular', dataset_name + ".pkl")) st.subheader(dataset_name + ".pkl") st.dataframe(df)
StarcoderdataPython
1783252
<reponame>didiqu/IS_simulator """This file contain all functions about log configuration """ from colorama import Fore, Style from .logic_actions_utils import execute_command, upload_file, change_fileorfolder_user_owner, restart_service def rsyslog_client(instance, arg, verbose=True): """ Configure rsyslog client to send log to log server on the remote instance """ facility = 1 execute_command(instance, {"command":["sed", "-i", "/imklog/s/^/#/", "/etc/rsyslog.conf"], "expected_exit_code":"0"}, verbose=False) for log in arg["log_files"]: file_conf = open("simulation/workstations/"+instance.name+"/"+log+".conf", "w", encoding="utf-8") if log == "authentication": file_conf.write("auth,authpriv.* @"+arg["ip_log_server"]+":5001\n") if log == "mail": file_conf.write("mail.* @"+arg["ip_log_server"]+":5001\n") if log == "apache2": file_conf.write("module(load=\"imfile\" PollingInterval=\"10\") \n") file_conf.write("input(type=\"imfile\" File=\"/var/log/apache2/access.log\" Tag=\"http_access\" Severity=\"info\" Facility=\"local"+str(facility)+"\") \n") file_conf.write("input(type=\"imfile\" File=\"/var/log/apache2/error.log\" Tag=\"http_error\" Severity=\"error\" Facility=\"local"+str(facility)+"\") \n") file_conf.write("local"+str(facility)+".* @"+arg["ip_log_server"]+":5001 \n") if log == "iptables": file_conf.write("module(load=\"imfile\" PollingInterval=\"10\") \n") file_conf.write("input(type=\"imfile\" File=\"/var/log/ulog/syslogemu.log\" Tag=\"iptables\" Severity=\"info\" Facility=\"local"+str(facility)+"\") \n") file_conf.write("local"+str(facility)+".* @"+arg["ip_log_server"]+":5001 \n") if log == "squid": file_conf.write("module(load=\"imfile\" PollingInterval=\"10\") \n") file_conf.write("input(type=\"imfile\" File=\"/var/log/squid/access.log\" Tag=\"http_access\" Severity=\"info\" Facility=\"local"+str(facility)+"\") \n") file_conf.write("input(type=\"imfile\" File=\"/var/log/squid/cache.log\" Tag=\"http_cache\" Severity=\"info\" Facility=\"local"+str(facility)+"\") \n") file_conf.write("local"+str(facility)+".* @"+arg["ip_log_server"]+":5001 \n") if log == "snort": file_conf.write("module(load=\"imfile\" PollingInterval=\"10\") \n") file_conf.write("input(type=\"imfile\" File=\"/var/log/snort/alert\" Tag=\"snort\" Severity=\"alert\" Facility=\"local"+str(facility)+"\") \n") file_conf.write("local"+str(facility)+".* @"+arg["ip_log_server"]+":5001 \n") if log == "suricata": file_conf.write("module(load=\"imfile\" PollingInterval=\"10\") \n") file_conf.write("input(type=\"imfile\" File=\"/var/log/suricata/fast.log\" Tag=\"suricata\" Severity=\"alert\" Facility=\"local"+str(facility)+"\") \n") file_conf.write("local"+str(facility)+".* @"+arg["ip_log_server"]+":5001 \n") if log == "ldap": file_conf.write("module(load=\"imfile\" PollingInterval=\"10\") \n") file_conf.write("input(type=\"imfile\" File=\"/var/log/slapd.log\" Tag=\"slapd\" Severity=\"info\" Facility=\"local"+str(facility)+"\") \n") file_conf.write("local"+str(facility)+".* @"+arg["ip_log_server"]+":5001 \n") if log == "samba": file_conf.write("module(load=\"imfile\" PollingInterval=\"10\") \n") file_conf.write("input(type=\"imfile\" File=\"/var/log/samba/samba.log\" Tag=\"samba\" Severity=\"info\" Facility=\"local"+str(facility)+"\") \n") file_conf.write("local"+str(facility)+".* @"+arg["ip_log_server"]+":5001 \n") if log == "motion": file_conf.write("module(load=\"imfile\" PollingInterval=\"10\") \n") file_conf.write("input(type=\"imfile\" File=\"/var/log/motion/motion.log\" Tag=\"motion\" Severity=\"info\" Facility=\"local"+str(facility)+"\") \n") file_conf.write("local"+str(facility)+".* @"+arg["ip_log_server"]+":5001 \n") file_conf.close() if upload_file(instance, {"instance_path":"/etc/rsyslog.d/"+log+".conf", "host_manager_path":"simulation/workstations/"+instance.name+"/"+log+".conf"}, verbose=False) == 1: return 1 if change_fileorfolder_user_owner(instance, {"new_owner":"syslog", "file_path":"/etc/rsyslog.d/"+log+".conf"}, verbose=False) == 1: return 1 if restart_service(instance, {"service":"rsyslog"}, verbose=False) == 1: return 1 if verbose: print(Fore.GREEN+" Install and configure rsyslog client successfully!"+Style.RESET_ALL) return 0
StarcoderdataPython
1602232
<reponame>Sim7b/jellyfin_ha<filename>__init__.py """The jellyfin component.""" import logging import time import re import traceback import collections.abc from typing import Mapping, MutableMapping, Optional, Sequence, Iterable, List, Tuple import voluptuous as vol from homeassistant.exceptions import ConfigEntryNotReady from jellyfin_apiclient_python import JellyfinClient from jellyfin_apiclient_python.connection_manager import CONNECTION_STATE from homeassistant.core import HomeAssistant from homeassistant.config_entries import ConfigEntry from homeassistant.const import ( # pylint: disable=import-error ATTR_ENTITY_ID, CONF_URL, CONF_USERNAME, CONF_PASSWORD, CONF_VERIFY_SSL, CONF_CLIENT_ID, EVENT_HOMEASSISTANT_STOP, ) import homeassistant.helpers.config_validation as cv # pylint: disable=import-error from homeassistant.helpers.dispatcher import ( # pylint: disable=import-error async_dispatcher_send, ) from .const import ( DOMAIN, SIGNAL_STATE_UPDATED, SERVICE_SCAN, STATE_OFF, STATE_IDLE, STATE_PAUSED, STATE_PLAYING, ) from .device import JellyfinDevice _LOGGER = logging.getLogger(__name__) PLATFORMS = ["sensor", "media_player"] UPDATE_UNLISTENER = None USER_APP_NAME = "Home Assistant" CLIENT_VERSION = "1.0" PATH_REGEX = re.compile("^(https?://)?([^/:]+)(:[0-9]+)?(/.*)?$") SCAN_SERVICE_SCHEMA = vol.Schema( { vol.Required(ATTR_ENTITY_ID): cv.entity_id, } ) def autolog(message): "Automatically log the current function details." import inspect # Get the previous frame in the stack, otherwise it would # be this function!!! func = inspect.currentframe().f_back.f_code # Dump the message + the name of this function to the log. _LOGGER.debug("%s: %s in %s:%i" % ( message, func.co_name, func.co_filename, func.co_firstlineno )) async def async_setup(hass: HomeAssistant, config: dict): if DOMAIN not in hass.data: hass.data[DOMAIN] = {} return True async def async_setup_entry(hass: HomeAssistant, config_entry: ConfigEntry): global UPDATE_UNLISTENER if UPDATE_UNLISTENER: UPDATE_UNLISTENER() if not config_entry.unique_id: hass.config_entries.async_update_entry( config_entry, unique_id=config_entry.title ) config = {} for key, value in config_entry.data.items(): config[key] = value for key, value in config_entry.options.items(): config[key] = value if config_entry.options: hass.config_entries.async_update_entry(config_entry, data=config, options={}) UPDATE_UNLISTENER = config_entry.add_update_listener(_update_listener) hass.data[DOMAIN][config.get(CONF_URL)] = {} _jelly = JellyfinClientManager(hass, config) try: await _jelly.connect() hass.data[DOMAIN][config.get(CONF_URL)]["manager"] = _jelly except: _LOGGER.error("Cannot connect to Jellyfin server.") raise async def service_trigger_scan(service): entity_id = service.data.get(ATTR_ENTITY_ID) for sensor in hass.data[DOMAIN][config.get(CONF_URL)]["sensor"]["entities"]: if sensor.entity_id == entity_id: await sensor.async_trigger_scan() hass.services.async_register( DOMAIN, SERVICE_SCAN, service_trigger_scan, schema=SCAN_SERVICE_SCHEMA, ) for component in PLATFORMS: hass.data[DOMAIN][config.get(CONF_URL)][component] = {} hass.async_create_task( hass.config_entries.async_forward_entry_setup(config_entry, component) ) async_dispatcher_send(hass, SIGNAL_STATE_UPDATED) async def stop_jellyfin(event): """Stop Jellyfin connection.""" await _jelly.stop() hass.bus.async_listen_once(EVENT_HOMEASSISTANT_STOP, stop_jellyfin) await _jelly.start() return True async def _update_listener(hass, config_entry): """Update listener.""" await hass.config_entries.async_reload(config_entry.entry_id) class JellyfinClientManager(object): def __init__(self, hass: HomeAssistant, config_entry): self.hass = hass self.callback = lambda client, event_name, data: None self.jf_client: JellyfinClient = None self.is_stopping = True self._event_loop = hass.loop self.host = config_entry[CONF_URL] self._info = None self.config_entry = config_entry self.server_url = "" self._sessions = None self._devices: Mapping[str, JellyfinDevice] = {} # Callbacks self._new_devices_callbacks = [] self._stale_devices_callbacks = [] self._update_callbacks = [] @staticmethod def expo(max_value = None): n = 0 while True: a = 2 ** n if max_value is None or a < max_value: yield a n += 1 else: yield max_value @staticmethod def clean_none_dict_values(obj): """ Recursively remove keys with a value of None """ if not isinstance(obj, collections.abc.Iterable) or isinstance(obj, str): return obj queue = [obj] while queue: item = queue.pop() if isinstance(item, collections.abc.Mapping): mutable = isinstance(item, collections.abc.MutableMapping) remove = [] for key, value in item.items(): if value is None and mutable: remove.append(key) elif isinstance(value, str): continue elif isinstance(value, collections.abc.Iterable): queue.append(value) if mutable: # Remove keys with None value for key in remove: item.pop(key) elif isinstance(item, collections.abc.Iterable): for value in item: if value is None or isinstance(value, str): continue elif isinstance(value, collections.abc.Iterable): queue.append(value) return obj async def connect(self): autolog(">>>") is_logged_in = await self.hass.async_add_executor_job(self.login) if is_logged_in: _LOGGER.info("Successfully added server.") else: raise ConfigEntryNotReady @staticmethod def client_factory(config_entry): client = JellyfinClient(allow_multiple_clients=True) client.config.data["app.default"] = True client.config.app( USER_APP_NAME, CLIENT_VERSION, USER_APP_NAME, config_entry[CONF_CLIENT_ID] ) client.config.data["auth.ssl"] = config_entry[CONF_VERIFY_SSL] return client def login(self): autolog(">>>") self.server_url = self.config_entry[CONF_URL] if self.server_url.endswith("/"): self.server_url = self.server_url[:-1] protocol, host, port, path = PATH_REGEX.match(self.server_url).groups() if not protocol: _LOGGER.warning("Adding http:// because it was not provided.") protocol = "http://" if protocol == "http://" and not port: _LOGGER.warning("Adding port 8096 for insecure local http connection.") _LOGGER.warning( "If you want to connect to standard http port 80, use :80 in the url." ) port = ":8096" if protocol == "https://" and not port: port = ":443" self.server_url = "".join(filter(bool, (protocol, host, port, path))) self.jf_client = self.client_factory(self.config_entry) self.jf_client.auth.connect_to_address(self.server_url) result = self.jf_client.auth.login(self.server_url, self.config_entry[CONF_USERNAME], self.config_entry[CONF_PASSWORD]) if "AccessToken" not in result: return False credentials = self.jf_client.auth.credentials.get_credentials() self.jf_client.authenticate(credentials) return True async def start(self): autolog(">>>") def event(event_name, data): _LOGGER.debug("Event: %s", event_name) if event_name == "WebSocketConnect": self.jf_client.wsc.send("SessionsStart", "0,1500") elif event_name == "WebSocketDisconnect": timeout_gen = self.expo(100) while not self.is_stopping: timeout = next(timeout_gen) _LOGGER.warning( "No connection to server. Next try in {0} second(s)".format( timeout ) ) self.jf_client.stop() time.sleep(timeout) if self.login(): break elif event_name == "Sessions": self._sessions = self.clean_none_dict_values(data)["value"] self.update_device_list() else: self.callback(self.jf_client, event_name, data) self.jf_client.callback = event self.jf_client.callback_ws = event await self.hass.async_add_executor_job(self.jf_client.start, True) self.is_stopping = False self._info = await self.hass.async_add_executor_job(self.jf_client.jellyfin._get, "System/Info") self._sessions = self.clean_none_dict_values(await self.hass.async_add_executor_job(self.jf_client.jellyfin.get_sessions)) async def stop(self): autolog(">>>") await self.hass.async_add_executor_job(self.jf_client.stop) self.is_stopping = True def update_device_list(self): """ Update device list. """ autolog(">>>") # _LOGGER.debug("sessions: %s", str(sessions)) if self._sessions is None: _LOGGER.error('Error updating Jellyfin devices.') return try: new_devices = [] active_devices = [] dev_update = False for device in self._sessions: # _LOGGER.debug("device: %s", str(device)) dev_name = '{}.{}'.format(device['DeviceId'], device['Client']) try: _LOGGER.debug('Session msg on %s of type: %s, themeflag: %s', dev_name, device['NowPlayingItem']['Type'], device['NowPlayingItem']['IsThemeMedia']) except KeyError: pass active_devices.append(dev_name) if dev_name not in self._devices and \ device['DeviceId'] != self.config_entry[CONF_CLIENT_ID]: _LOGGER.debug('New Jellyfin DeviceID: %s. Adding to device list.', dev_name) new = JellyfinDevice(device, self) self._devices[dev_name] = new new_devices.append(new) elif device['DeviceId'] != self.config_entry[CONF_CLIENT_ID]: # Before we send in new data check for changes to state # to decide if we need to fire the update callback if not self._devices[dev_name].is_active: # Device wasn't active on the last update # We need to fire a device callback to let subs now dev_update = True do_update = self.update_check( self._devices[dev_name], device) self._devices[dev_name].update_data(device) self._devices[dev_name].set_active(True) if dev_update: self._do_new_devices_callback(0) dev_update = False if do_update: self._do_update_callback(dev_name) # Need to check for new inactive devices and flag for dev_id in self._devices: if dev_id not in active_devices: # Device no longer active if self._devices[dev_id].is_active: self._devices[dev_id].set_active(False) self._do_update_callback(dev_id) self._do_stale_devices_callback(dev_id) # Call device callback if new devices were found. if new_devices: self._do_new_devices_callback(0) except Exception as e: _LOGGER.critical(traceback.format_exc()) raise def update_check(self, existing: JellyfinDevice, new: JellyfinDevice): """ Check device state to see if we need to fire the callback. True if either state is 'Playing' False if both states are: 'Paused', 'Idle', or 'Off' True on any state transition. """ autolog(">>>") old_state = existing.state if 'NowPlayingItem' in existing.session_raw: try: old_theme = existing.session_raw['NowPlayingItem']['IsThemeMedia'] except KeyError: old_theme = False else: old_theme = False if 'NowPlayingItem' in new: if new['PlayState']['IsPaused']: new_state = STATE_PAUSED else: new_state = STATE_PLAYING try: new_theme = new['NowPlayingItem']['IsThemeMedia'] except KeyError: new_theme = False else: new_state = STATE_IDLE new_theme = False if old_theme or new_theme: return False elif old_state == STATE_PLAYING or new_state == STATE_PLAYING: return True elif old_state != new_state: return True else: return False @property def info(self): if self.is_stopping: return None return self._info async def trigger_scan(self): await self.hass.async_add_executor_job(self.jf_client.jellyfin._post, "Library/Refresh") async def get_item(self, id): return await self.hass.async_add_executor_job(self.jf_client.jellyfin.get_item, id) async def get_items(self, query=None): response = await self.hass.async_add_executor_job(self.jf_client.jellyfin.users, "/Items", "GET", query) #_LOGGER.debug("get_items: %s | %s", str(query), str(response)) return response["Items"] async def set_playstate(self, session_id, state, params): await self.hass.async_add_executor_job(self.jf_client.jellyfin.post_session, session_id, "Playing/%s" % state, params) async def play_media(self, session_id, media_id): params = { "playCommand": "PlayNow", "itemIds": media_id } await self.hass.async_add_executor_job(self.jf_client.jellyfin.post_session, session_id, "Playing", params) async def get_artwork(self, media_id) -> Tuple[Optional[str], Optional[str]]: query = { "format": "PNG", "maxWidth": 500, "maxHeight": 500 } image = await self.hass.async_add_executor_job(self.jf_client.jellyfin.items, "GET", "%s/Images/Primary" % media_id, query) if image is not None: return (image, "image/png") return (None, None) async def get_artwork_url(self, media_id) -> str: return await self.hass.async_add_executor_job(self.jf_client.jellyfin.artwork, media_id, "Primary", 500) @property def api(self): """ Return the api. """ return self.jf_client.jellyfin @property def devices(self) -> Mapping[str, JellyfinDevice]: """ Return devices dictionary. """ return self._devices @property def is_available(self): return not self.is_stopping # Callbacks def add_new_devices_callback(self, callback): """Register as callback for when new devices are added. """ self._new_devices_callbacks.append(callback) _LOGGER.debug('Added new devices callback to %s', callback) def _do_new_devices_callback(self, msg): """Call registered callback functions.""" for callback in self._new_devices_callbacks: _LOGGER.debug('Devices callback %s', callback) self._event_loop.call_soon(callback, msg) def add_stale_devices_callback(self, callback): """Register as callback for when stale devices exist. """ self._stale_devices_callbacks.append(callback) _LOGGER.debug('Added stale devices callback to %s', callback) def _do_stale_devices_callback(self, msg): """Call registered callback functions.""" for callback in self._stale_devices_callbacks: _LOGGER.debug('Stale Devices callback %s', callback) self._event_loop.call_soon(callback, msg) def add_update_callback(self, callback, device): """Register as callback for when a matching device changes.""" self._update_callbacks.append([callback, device]) _LOGGER.debug('Added update callback to %s on %s', callback, device) def remove_update_callback(self, callback, device): """ Remove a registered update callback. """ if [callback, device] in self._update_callbacks: self._update_callbacks.remove([callback, device]) _LOGGER.debug('Removed update callback %s for %s', callback, device) def _do_update_callback(self, msg): """Call registered callback functions.""" for callback, device in self._update_callbacks: if device == msg: _LOGGER.debug('Update callback %s for device %s by %s', callback, device, msg) self._event_loop.call_soon(callback, msg)
StarcoderdataPython
1672534
#------------------------------------------------------- # Annexe 2 : commander une LED à partir d'une page web #------------------------------------------------------- """ AuteurDate : Rôle : - Connexion à une borne Wifi (partage de connexion sur téléphone) - Afficher dans la console les paramètres réseau : adresse IP de la carte - Serveur web : afficher une page sur le client (téléphone ou tablette) - Commander une LED à l'aide de la page web - Afficher l'état de la LED dans la page web. Version 1 : """ try: import usocket as socket except: import socket from machine import Pin import network import esp esp.osdebug(None) import gc gc.collect() """ ssid = 'REPLACE_WITH_YOUR_SSID' password = '<PASSWORD>' """ ssid = 'à_modifier' password = '<PASSWORD>' station = network.WLAN(network.STA_IF) station.active(True) station.connect(ssid, password) while station.isconnected() == False: pass print('Connection successful') print(station.ifconfig()) led_in = Pin(2, Pin.OUT) led_ext = Pin(26, Pin.OUT) def web_page(): if led_in.value() == 1: gpio_state="ON" else: gpio_state="OFF" html = """<html><head> <title>ESP Web Server</title> <meta name="viewport" content="width=device-width, initial-scale=1"> <link rel="icon" href="data:,"> <style>html{font-family: Helvetica; display:inline-block; margin: 0px auto; text-align: center;} h1{color: #0F3376; padding: 2vh;}p{font-size: 1.5rem;}.button{display: inline-block; background-color: #e7bd3b; border: none; border-radius: 4px; color: white; padding: 16px 40px; text-decoration: none; font-size: 30px; margin: 2px; cursor: pointer;} .button2{background-color: #4286f4;}</style></head><body> <h1>ESP Web Server</h1> <p>GPIO state: <strong>""" + gpio_state + """</strong></p><p><a href="/?led=on"><button class="button">ON</button></a></p> <p><a href="/?led=off"><button class="button button2">OFF</button></a></p></body></html>""" return html s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(('', 80)) s.listen(5) while True: print("\n---- Lire la requête et envoyer la page ----") conn, addr = s.accept() print('Got a connection from %s' % str(addr)) request = conn.recv(1024) request = str(request) print('Content = %s' % request) led_on = request.find('/?led=on') led_off = request.find('/?led=off') if led_on == 6: print('LED ON') led_in.value(1) led_ext.value(1) if led_off == 6: print('LED OFF') led_in.value(0) led_ext.value(0) response = web_page() conn.send('HTTP/1.1 200 OK\n') conn.send('Content-Type: text/html\n') conn.send('Connection: close\n\n') conn.sendall(response) conn.close()
StarcoderdataPython
4822031
<reponame>LoicBoileau/Projet-S4---Robot-Delta """ /* * This file is part of PySide: Python for Qt * * Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies). * * Contact: PySide team <<EMAIL>> * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * version 2.1 as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * */ """ from PySide.QtCore import * from PySide.QtGui import * from utils import * class PixmapWidgetPrivate(object): def __init__(self, pixmap=None): self.topBorder = 0 self.leftBorder = 0 self.rightBorder = 0 self.bottomBorder = 0 self.pixmap = pixmap class PixmapWidget(QGraphicsWidget): def __init__(self, pixmap, parent = None): QGraphicsWidget.__init__(self, parent) self._d = PixmapWidgetPrivate() self.setPixmap(pixmap) self.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed); def pixmap(self): return self._d.pixmap def setPixmap(self, pixmap): self._d.pixmap = pixmap if pixmap.isNull(): self.setPreferredSize(QSizeF()) else: self.setPreferredSize(QSizeF(pixmap.size())) self.update() self.updateGeometry() def getBorders(self): return (self._d.leftBorder, self._d.topBorder, self._d.topBorder, self._d.rightBorder, self._d.bottomBorder) def setBorders(self, left, top, right, bottom): self._d.leftBorder = left self._d.topBorder = top self._d.rightBorder = right self._d.bottomBorder = bottom seld.update() def paint(self, painter, option, widget): bDrawPixmap(painter, self._d.pixmap, self.boundingRect(), self._d.leftBorder, self._d.topBorder, self._d.rightBorder, self._d.bottomBorder)
StarcoderdataPython
95195
import tornado.web from settings import site_settings apps = [ # (r'/prefix', 'app_name') # appA # __init__.py # urls.py (r"/api", "api"), ] urls = [ # (r'relative_url', 'RequestHandler') (r"/static", tornado.web.StaticFileHandler, dict(path=site_settings['static_path'])), ]
StarcoderdataPython
1612028
# Generated by Django 2.0.8 on 2019-03-19 16:14 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('caseFiles', '0006_casefile_file_pdf'), ] operations = [ migrations.RemoveField( model_name='casefile', name='file_page1', ), migrations.RemoveField( model_name='casefile', name='file_page2', ), migrations.RemoveField( model_name='casefile', name='file_page3', ), migrations.RemoveField( model_name='casefile', name='file_page4', ), migrations.RemoveField( model_name='casefile', name='file_page5', ), ]
StarcoderdataPython
145443
<gh_stars>1-10 from random import choice def main(): amount_students = 1000 amount_wishes = 100 print(amount_students) for student_number in range(1, amount_students + 1): wishes = [] for _ in range(amount_wishes): while str(wish := choice(range(1, amount_students + 1))) in wishes: pass wishes.append(str(wish)) print(" ".join(wishes)) if __name__ == "__main__": main()
StarcoderdataPython
1681655
<gh_stars>1-10 """ Loader module is the interface into the datagen data generation utility. This class handles loading, parsing and delegating the handling of various data types. """ import json from typing import Union, Dict from . import suppliers from . import utils from .exceptions import SpecException from .model import DataSpec from .schemas import validate_schema_for_spec from .types import lookup_type, lookup_schema, registry class Refs: """ Holder object for references """ def __init__(self, refspec): if refspec: self.refspec = refspec else: self.refspec = {} def get(self, key): """ get the ref for the key """ return self.refspec.get(key) class Loader: """ Parent object for loading value suppliers from specs """ RESERVED = ['type', 'data', 'ref', 'refs', 'config'] def __init__(self, data_spec, data_dir='./data', enforce_schema=False): raw_spec = utils.get_raw_spec(data_spec) self.specs = preprocess_spec(raw_spec) self.datadir = data_dir self.enforce_schema = enforce_schema self.cache = {} self.refs = Refs(self.specs.get('refs')) def get(self, key): """ Retrieve the value supplier for the given field or ref key :param key: key to for field or ref name """ if key in self.cache: return self.cache[key] data_spec = self.specs.get(key) if data_spec is None: data_spec = self.refs.get(key) if data_spec is None: raise SpecException("No key " + key + " found in specs") supplier = self.get_from_spec(data_spec) self.cache[key] = supplier return supplier def get_from_spec(self, field_spec): """ Retrieve the value supplier for the given field spec """ if isinstance(field_spec, list): spec_type = None elif isinstance(field_spec, dict): spec_type = field_spec.get('type') else: # assume it is data, so values? spec_type = 'values' if spec_type == 'configref': raise SpecException(f'Cannot use configref as source of data: {json.dumps(field_spec)}') if spec_type is None or spec_type == 'values': if self.enforce_schema: _validate_schema_for_spec(spec_type, field_spec) supplier = suppliers.values(field_spec, self) else: handler = lookup_type(spec_type) if handler is None: raise SpecException('Unable to load handler for: ' + json.dumps(field_spec)) if self.enforce_schema: _validate_schema_for_spec(spec_type, field_spec) supplier = handler(field_spec, self) if suppliers.is_cast(field_spec): supplier = suppliers.cast_supplier(supplier, field_spec) if suppliers.is_decorated(field_spec): supplier = suppliers.decorated(field_spec, supplier) if suppliers.is_buffered(field_spec): supplier = suppliers.buffered(supplier, field_spec) return supplier def get_ref_spec(self, key): """ returns the spec for the ref with the provided key """ return self.refs.get(key) def _validate_schema_for_spec(spec_type, field_spec): type_schema = lookup_schema(spec_type) if type_schema is None: return validate_schema_for_spec(spec_type, field_spec, type_schema) def preprocess_spec(data_spec: Union[Dict[str, Dict], DataSpec]): """ Uses the registered preprocessors to cumulatively update the spec :param data_spec: to preprocess :return: updated version of the spec after all preprocessors have run on it """ raw_spec = utils.get_raw_spec(data_spec) updated = dict(raw_spec) preprocessors = registry.preprocessors.get_all() for name in preprocessors: preprocessor = registry.preprocessors.get(name) updated = preprocessor(updated) return updated
StarcoderdataPython
175806
from brownie import ( accounts, ERC20KP3ROracle, UniswapV2Oracle, ProxyOracle, CoreOracle, CurveOracle, WERC20, UbeswapV1Oracle, HomoraBank, UniswapV2SpellV1, SafeBox, SimpleOracle, WStakingRewards ) from brownie import interface from .utils import * import json def main(): deployer = accounts.load('admin') alice = accounts.load('alice') f = open('scripts/dahlia_addresses.json') addr = json.load(f)['mainnet'] celo = interface.IERC20Ex(addr['celo']) ube = interface.IERC20Ex(addr['ube']) dahlia_bank = HomoraBank.at(addr['dahlia_bank']) uniswap_spell = UniswapV2SpellV1.at(addr['uniswap_spell']) core_oracle = CoreOracle.at(addr['core_oracle']) wstaking = WStakingRewards.at(addr['ube_celo_w_staking']) celo.approve(dahlia_bank, 2**256-1, {'from': alice}) ube.approve(dahlia_bank, 2**256-1, {'from': alice}) # # open a position # dahlia_bank.execute( # 0, # uniswap_spell, # uniswap_spell.addLiquidityWERC20.encode_input( # celo, # ube, # [10**10, # collateral amount celo # 0, # collateral amount ube # 0, # 10**10, # borrow amount celo # 0, # borrow amount ube # 0, # 0, # 0], # ), # { # 'from': alice, # } # ) # # open a position # dahlia_bank.execute( # 0, # uniswap_spell, # uniswap_spell.addLiquidityWStakingRewards.encode_input( # celo, # ube, # [10**10, # collateral amount celo # 0, # collateral amount ube # 0, # 10**10, # borrow amount celo # 0, # borrow amount ube # 0, # 0, # 0], # wstaking # ), # { # 'from': alice, # } # ) # market fluctuations ubepx = core_oracle.getCELOPx(ube) simple_oracle = SimpleOracle.deploy({'from': deployer}) simple_oracle.setCELOPx([ube], [int(ubepx/10)]) core_oracle.setRoute([ ube, ], [ simple_oracle, ], {'from': deployer}) print('Done!')
StarcoderdataPython
3993
"""Hyper-distributions.""" from libqif.core.secrets import Secrets from libqif.core.channel import Channel from numpy import array, arange, zeros from numpy import delete as npdelete class Hyper: def __init__(self, channel): """Hyper-distribution. To create an instance of this class it is class it is necessary to have an instance of :py:class:`.Channel` class. Once created an instance of :py:class:`.Hyper`, the constructor generates the joint, outer and inner distributions. Attributes ---------- channel : core.Channel Channel object. joint : numpy.ndarray Matrix of joint distribution. outer : numpy.ndarray Outer distribution. inners : numpy.ndarray Matrix of inner distributions. num_posteriors : int Number of posterior distributions resulted by reducing the hyper-distribution, i.e., remove columns that contains only zeros and merge columns which one of them a linear combination of the other. Parameters ---------- channel : core.Channel Channel object. """ self._check_types(channel) self.channel = channel self.joint = self._generate_joint_distribution() self.outer, self.inners = self._generate_posteriors() self._reduce_hyper() self.num_posteriors = len(self.outer) def update_prior(self, prior): """Update the prior distribution on set of secrets. The number of secrets must match the current number of rows of the channel. Parameters ---------- prior : list, numpy.ndarray Prior distribution on the set of secrets. prior[i] is the probability of secret named labels[i] beeing the real secret. """ self.channel.update_prior(prior) self.joint = self._generate_joint_distribution() self.outer, self.inners = self._generate_posteriors() self._reduce_hyper() self.num_posteriors = len(self.outer) def _check_types(self, channel): if type(channel) != type(Channel(Secrets(['x1','x2'], [1,0]), ['y1'], array([[1],[1]]))): raise TypeError('The parameter \'channel\' must be a core.channel.Channel object') def _generate_joint_distribution(self): joint = [] channel_t = self.channel.matrix.T for i in arange(self.channel.num_outputs): joint.append(self.channel.secrets.prior * channel_t[i]) return array(joint).T def _generate_posteriors(self): joint_t = self.joint.T.copy() outer = [] for i in arange(self.channel.num_outputs): outer.append(joint_t[i].sum()) if outer[i] > 0: joint_t[i] = joint_t[i]/outer[i] return array(outer), joint_t.T def _reduce_hyper(self): """Given the hyper-distribution generated by _generate_posteriors remove columns with zeros and merge columns that are a linear combination of others. Thus algorithm has time complexity of O(n*m^2) where n is the number of secrets and m is the number of outputs in the. """ epsilon = 10**(-6) # Delete inners that have 0 probability of occuring zero_prob = self.outer < epsilon self.outer = npdelete(self.outer, zero_prob, 0) self.inners = npdelete(self.inners, zero_prob, 1) delete_inner = [False] * len(self.outer) for i in arange(self.inners.shape[1]): for j in arange(i+1, self.inners.shape[1]): # Check if inner i is equal to inner j if (abs(self.inners[:,i] - self.inners[:,j]) < epsilon).sum() == self.channel.secrets.num_secrets: delete_inner[j] = True # Delete inner j self.outer[i] += self.outer[j] # Merge inner j into inner i self.outer = npdelete(self.outer, delete_inner, 0) self.inners = npdelete(self.inners, delete_inner, 1)
StarcoderdataPython
1638719
import sys from ephyviewer.myqt import QT_MODE if QT_MODE == 'PyQt5': from . import icons_PyQt5 as icons elif QT_MODE == 'PySide2': from . import icons_PySide2 as icons elif QT_MODE == 'PyQt4': from . import icons_PyQt4 as icons else: raise ValueError('Could not load icons for unrecognized QT_MODE: ' + QT_MODE)
StarcoderdataPython
114966
import torch from .EMA import EMA class PhysicsGuide: def __init__(self, hand_model, object_model, penetration_model, fc_loss_model, args): self.epsilon = 1e-4 self.hand_model = hand_model self.object_model = object_model self.penetration_model = penetration_model self.fc_loss_model = fc_loss_model self.args = args self.grad_ema = EMA(0.98) self.ones = torch.ones([self.args.batch_size, self.hand_model.num_points], device='cuda') # B x V self.arange = torch.arange(self.args.batch_size).cuda() self.rejection_count = torch.zeros([self.args.batch_size, 1], device='cuda', dtype=torch.long) def initialize(self, object_code, z, contact_point_indices): linear_independence, force_closure, surface_distance, penetration, z_norm, normal_alignment = self.compute_energy(object_code, z, contact_point_indices, verbose=True) energy = linear_independence + force_closure + surface_distance + penetration + z_norm + normal_alignment grad = torch.autograd.grad(energy.sum(), z)[0] self.grad_ema.apply(grad) return energy, grad, [linear_independence, force_closure, surface_distance, penetration, z_norm, normal_alignment] def compute_energy(self, object_code, z, contact_point_indices, verbose=False): hand_verts = self.hand_model.get_vertices(z) contact_point = torch.gather(hand_verts, 1, torch.tile(contact_point_indices.unsqueeze(-1), [1,1,3])) contact_distance = self.object_model.distance(object_code, contact_point) contact_normal = self.object_model.gradient(contact_point, contact_distance, create_graph=True, retain_graph=True) contact_normal += torch.normal(0, self.epsilon, contact_normal.shape, device=contact_normal.device, dtype=contact_normal.dtype) contact_normal = contact_normal / torch.norm(contact_normal, dim=-1, keepdim=True) hand_normal = self.hand_model.get_surface_normals(verts=hand_verts) hand_normal = torch.gather(hand_normal, 1, torch.tile(contact_point_indices.unsqueeze(-1), [1,1,3])) hand_normal += torch.normal(0, self.epsilon, hand_normal.shape, device=hand_normal.device, dtype=hand_normal.dtype) hand_normal = hand_normal / torch.norm(hand_normal, dim=-1, keepdim=True) normal_alignment = 1 - ((hand_normal * contact_normal).sum(-1) + 1).sum(-1) / self.args.n_contact linear_independence, force_closure = self.fc_loss_model.fc_loss(contact_point, contact_normal, object_code) surface_distance = self.fc_loss_model.dist_loss(object_code, contact_point) penetration = self.penetration_model.get_penetration(object_code, z) * 10 # B x V hand_prior = self.hand_model.prior(z) * self.args.hprior_weight if verbose: return linear_independence, force_closure, surface_distance.sum(1), penetration.sum(1), hand_prior, normal_alignment else: return linear_independence + force_closure + surface_distance.sum(1) + penetration.sum(1) + hand_prior + normal_alignment def get_stepsize(self, energy): return 0.02600707 + energy.unsqueeze(1) * 0.03950357 * 1e-3 def get_temperature(self, energy): return 0.02600707 + energy * 0.03950357 def optimize(self, energy, grad, object_code, z, contact_point_indices, verbose_energy): linear_independence, force_closure, surface_distance, penetration, z_norm, normal_alignment = verbose_energy batch_size = len(energy) step_size = self.get_stepsize(energy) temperature = self.get_temperature(energy) switch = torch.rand([batch_size, 1], device='cuda') # update z by langevin noise = torch.normal(mean=0, std=self.args.noise_size, size=z.shape, device='cuda', dtype=torch.float) * step_size new_z = z - 0.5 * grad / self.grad_ema.average.unsqueeze(0) * step_size * step_size + noise # linear_independence, force_closure, surface_distance, penetration, hand_prior, normal_alignment = self.compute_energy(object_code, new_z, contact_point_indices, verbose=True) # print('linear_independence', linear_independence.mean().detach().cpu().numpy()) # print('force_closure', force_closure.mean().detach().cpu().numpy()) # print('surface_distance', surface_distance.mean().detach().cpu().numpy()) # print('penetration', penetration.mean().detach().cpu().numpy()) # print('hand_prior', hand_prior.mean().detach().cpu().numpy()) # print('normal_alignment', normal_alignment.mean().detach().cpu().numpy()) # exit() # update contact point by random sampling new_contact_point_indices = contact_point_indices.clone() update_indices = torch.randint(0, self.args.n_contact, size=[self.args.batch_size], device='cuda') prob = self.ones.clone() prob[torch.unsqueeze(self.arange, 1), contact_point_indices] = 0 # sample update_to indices if self.args.hand_model == 'mano_fingertip': update_to = torch.randint(0, self.hand_model.num_fingertips, size=[self.args.batch_size], device='cuda') update_to = self.hand_model.fingertip_indices[update_to] else: update_to = torch.randint(0, self.hand_model.num_points, size=[self.args.batch_size], device='cuda') new_contact_point_indices[self.arange, update_indices] = update_to # merge by switch update_H = ((switch < self.args.langevin_probability) * (self.rejection_count < 2)) new_z = new_z * update_H + z * ~update_H new_contact_point_indices = new_contact_point_indices * (~update_H) + contact_point_indices * update_H # compute new energy new_linear_independence, new_force_closure, new_surface_distance, new_penetration, new_z_norm, new_normal_alignment = self.compute_energy(object_code, new_z, new_contact_point_indices, verbose=True) new_energy = new_linear_independence + new_force_closure + new_surface_distance + new_penetration + new_z_norm + new_normal_alignment new_grad = torch.autograd.grad(new_energy.sum(), new_z)[0] # accept by Metropolis-Hasting algorithm with torch.no_grad(): # metropolis-hasting alpha = torch.rand(self.args.batch_size, device='cuda', dtype=torch.float) accept = alpha < torch.exp((energy - new_energy) / temperature) z[accept] = new_z[accept] contact_point_indices[accept] = new_contact_point_indices[accept] energy[accept] = new_energy[accept] grad[accept] = new_grad[accept] linear_independence[accept] = new_linear_independence[accept] force_closure[accept] = new_force_closure[accept] surface_distance[accept] = new_surface_distance[accept] penetration[accept] = new_penetration[accept] z_norm[accept] = new_z_norm[accept] normal_alignment[accept] = new_normal_alignment[accept] self.rejection_count[accept] = 0 self.rejection_count[~accept] += 1 self.grad_ema.apply(grad) # print('delta-z: %f delta-i: %f accept: %f'%(torch.norm(z - old_z), torch.norm(contact_point_indices.float() - old_ind.float()), accept.sum())) return energy, grad, z, contact_point_indices, [linear_independence, force_closure, surface_distance, penetration, z_norm, normal_alignment] def refine(self, energy, grad, object_code, z, contact_point_indices, verbose_energy): linear_independence, force_closure, surface_distance, penetration, z_norm, normal_alignment = verbose_energy step_size = 0.1 temperature = 1e-3 # update z by langevin noise = torch.normal(mean=0, std=self.args.noise_size, size=z.shape, device='cuda', dtype=torch.float) * step_size new_z = z - 0.5 * grad / self.grad_ema.average.unsqueeze(0) * step_size * step_size + noise new_linear_independence, new_force_closure, new_surface_distance, new_penetration, new_z_norm, new_normal_alignment = self.compute_energy(object_code, new_z, contact_point_indices, verbose=True) new_energy = new_linear_independence + new_force_closure + new_surface_distance + new_penetration + new_z_norm + new_normal_alignment new_grad = torch.autograd.grad(new_energy.sum(), new_z)[0] self.grad_ema.apply(grad) with torch.no_grad(): # metropolis-hasting alpha = torch.rand(self.args.batch_size, device='cuda', dtype=torch.float) accept = alpha < torch.exp((energy - new_energy) / temperature) z[accept] = new_z[accept] energy[accept] = new_energy[accept] grad[accept] = new_grad[accept] linear_independence[accept] = new_linear_independence[accept] force_closure[accept] = new_force_closure[accept] surface_distance[accept] = new_surface_distance[accept] penetration[accept] = new_penetration[accept] z_norm[accept] = new_z_norm[accept] normal_alignment[accept] = new_normal_alignment[accept] self.grad_ema.apply(grad) return energy, grad, z, contact_point_indices, [linear_independence, force_closure, surface_distance, penetration, z_norm, normal_alignment]
StarcoderdataPython
1608395
import numpy as np from utils.rbo import rbo as rbo_utils from itertools import combinations def proportion_common_words(topics, topk=10): """ compute proportion of unique words Parameters ---------- topics: a list of lists of words topk: top k words on which the topic diversity will be computed Returns ------- pcw : proportion of common words """ if topk > len(topics[0]): raise Exception('Words in topics are less than '+str(topk)) else: unique_words = set() for topic in topics: unique_words = unique_words.union(set(topic[:topk])) puw = 1 - (len(unique_words) / (topk * len(topics))) return puw def rbo(topics, weight=0.9, topk=10): """ compute rank-biased overlap Parameters ---------- topics: a list of lists of words topk: top k words on which the topic diversity will be computed weight: p (float), default 1.0: Weight of each agreement at depth d:p**(d-1). When set to 1.0, there is no weight, the rbo returns to average overlap. Returns ------- rbo : score of the rank biased overlap over the topics """ if topk > len(topics[0]): raise Exception('Words in topics are less than topk') else: collect = [] for list1, list2 in combinations(topics, 2): word2index = get_word2index(list1, list2) indexed_list1 = [word2index[word] for word in list1] indexed_list2 = [word2index[word] for word in list2] rbo_val = rbo_utils(indexed_list1[:topk], indexed_list2[:topk], p=weight)[2] collect.append(rbo_val) return np.mean(collect) def pairwise_jaccard_similarity(topics, topk=10): sim = 0 count = 0 for list1, list2 in combinations(topics, 2): intersection = len(list(set(list1[:topk]).intersection(list2[:topk]))) union = (len(list1[:topk]) + len(list2[:topk])) - intersection count = count + 1 sim = sim + (float(intersection) / union) return sim/count def get_word2index(list1, list2): words = set(list1) words = words.union(set(list2)) word2index = {w: i for i, w in enumerate(words)} return word2index
StarcoderdataPython
3307260
import json import os import unittest from mock import Mock from testfixtures import compare, Replacer from deployfish.terraform import Terraform YAML = { 'statefile': 's3://foobar/baz', 'lookups': { 'lookup1': 'proxy-{environment}-cluster-name', 'lookup2': 'proxy-{environment}-elb-id', 'lookup3': 'proxy-{environment}-autoscalinggroup-name', 'lookup4': 'security-group-list' } } class TestTerraform_load_yaml(unittest.TestCase): def setUp(self): with Replacer() as r: r.replace('deployfish.terraform.Terraform.get_terraform_state', Mock()) self.terraform = Terraform(YAML) def test_lookups(self): compare(self.terraform.lookups, { 'lookup1': 'proxy-{environment}-cluster-name', 'lookup2': 'proxy-{environment}-elb-id', 'lookup3': 'proxy-{environment}-autoscalinggroup-name', 'lookup4': 'security-group-list', }) class TestTerraform_get_terraform_state(unittest.TestCase): def setUp(self): with Replacer() as r: current_dir = os.path.dirname(os.path.abspath(__file__)) fname = os.path.join(current_dir, 'terraform.tfstate') with open(fname) as f: tfstate = json.loads(f.read()) get_mock = r('deployfish.terraform.Terraform._get_state_file_from_s3', Mock()) get_mock.return_value = tfstate self.terraform = Terraform(YAML) def test_lookup(self): self.assertTrue('proxy-qa-cluster-name' in self.terraform) class TestTerraform_lookup(unittest.TestCase): def setUp(self): with Replacer() as r: current_dir = os.path.dirname(os.path.abspath(__file__)) fname = os.path.join(current_dir, 'terraform.tfstate') with open(fname) as f: tfstate = json.loads(f.read()) get_mock = r('deployfish.terraform.Terraform._get_state_file_from_s3', Mock()) get_mock.return_value = tfstate self.terraform = Terraform(YAML) def test_lookup(self): self.assertEqual(self.terraform.lookup('lookup1', {'environment': 'qa'}), 'foobar-proxy-qa') self.assertEqual(self.terraform.lookup('lookup1', {'environment': 'prod'}), 'foobar-proxy-prod') self.assertListEqual(self.terraform.lookup('lookup4', {}), ['sg-1234567', 'sg-2345678', 'sg-3456789'])
StarcoderdataPython
4832251
<filename>ee/clickhouse/queries/column_optimizer.py from typing import List, Set, Tuple, Union, cast from ee.clickhouse.materialized_columns.columns import ColumnName, get_materialized_columns from ee.clickhouse.models.action import get_action_tables_and_properties, uses_elements_chain from ee.clickhouse.models.property import extract_tables_and_properties from posthog.constants import TREND_FILTER_TYPE_ACTIONS from posthog.models.entity import Entity from posthog.models.filters import Filter from posthog.models.filters.mixins.utils import cached_property from posthog.models.filters.path_filter import PathFilter from posthog.models.filters.retention_filter import RetentionFilter from posthog.models.property import Property, PropertyName, PropertyType from posthog.models.team import Team class ColumnOptimizer: """ This class is responsible for figuring out what columns can and should be materialized based on the query filter. This speeds up queries since clickhouse ends up selecting less data. """ def __init__(self, filter: Union[Filter, PathFilter, RetentionFilter], team_id: int): self.filter = filter self.team_id = team_id @cached_property def materialized_event_columns_to_query(self) -> List[ColumnName]: "Returns a list of event table columns containing materialized properties that this query needs" materialized_columns = get_materialized_columns("events") return [ materialized_columns[property_name] for property_name, type in self._used_properties_with_type("event") if property_name in materialized_columns ] @cached_property def materialized_person_columns_to_query(self) -> List[ColumnName]: "Returns a list of person table columns containing materialized properties that this query needs" materialized_columns = get_materialized_columns("person") return [ materialized_columns[property_name] for property_name, type in self._used_properties_with_type("person") if property_name in materialized_columns ] @cached_property def should_query_event_properties_column(self) -> bool: return len(self.materialized_event_columns_to_query) != len(self._used_properties_with_type("event")) @cached_property def should_query_person_properties_column(self) -> bool: return len(self.materialized_person_columns_to_query) != len(self._used_properties_with_type("person")) @cached_property def is_using_person_properties(self) -> bool: return len(self._used_properties_with_type("person")) > 0 @cached_property def should_query_elements_chain_column(self) -> bool: "Returns whether this query uses elements_chain" has_element_type_property = lambda properties: any(prop.type == "element" for prop in properties) if has_element_type_property(self.filter.properties): return True if self.filter.filter_test_accounts: test_account_filters = Team.objects.only("test_account_filters").get(id=self.team_id).test_account_filters properties = [Property(**prop) for prop in test_account_filters] if has_element_type_property(properties): return True # Both entities and funnel exclusions can contain nested elements_chain inclusions for entity in self.filter.entities + cast(List[Entity], self.filter.exclusions): if has_element_type_property(entity.properties): return True # :TRICKY: Action definition may contain elements_chain usage # # See ee/clickhouse/models/action.py#format_action_filter for an example if entity.type == TREND_FILTER_TYPE_ACTIONS: if uses_elements_chain(entity.get_action()): return True return False @cached_property def properties_used_in_filter(self) -> Set[Tuple[PropertyName, PropertyType]]: "Returns list of properties + types that this query would use" result: Set[Tuple[PropertyName, PropertyType]] = set() result |= extract_tables_and_properties(self.filter.properties) if self.filter.filter_test_accounts: test_account_filters = Team.objects.only("test_account_filters").get(id=self.team_id).test_account_filters result |= extract_tables_and_properties([Property(**prop) for prop in test_account_filters]) # Some breakdown types read properties # # See ee/clickhouse/queries/trends/breakdown.py#get_query or # ee/clickhouse/queries/breakdown_props.py#get_breakdown_prop_values if self.filter.breakdown_type in ["event", "person"]: # :TRICKY: We only support string breakdown for event/person properties assert isinstance(self.filter.breakdown, str) result.add((self.filter.breakdown, self.filter.breakdown_type)) # Both entities and funnel exclusions can contain nested property filters for entity in self.filter.entities + cast(List[Entity], self.filter.exclusions): result |= extract_tables_and_properties(entity.properties) # Math properties are also implicitly used. # # See ee/clickhouse/queries/trends/util.py#process_math if entity.math_property: result.add((entity.math_property, "event")) # :TRICKY: If action contains property filters, these need to be included # # See ee/clickhouse/models/action.py#format_action_filter for an example if entity.type == TREND_FILTER_TYPE_ACTIONS: result |= get_action_tables_and_properties(entity.get_action()) return result def _used_properties_with_type(self, property_type: PropertyType) -> Set[Tuple[PropertyName, PropertyType]]: return set((name, type) for name, type in self.properties_used_in_filter if type == property_type)
StarcoderdataPython
3272008
<reponame>acidicMercury8/xray-1.0 import exporters from Exporter import Exporter from declarations import * from enumerate import enumerate from settings import * from CodeUnit import CodeUnit from EnumExporter import EnumExporter #============================================================================== # ClassExporter #============================================================================== class ClassExporter(Exporter): 'Generates boost.python code to export a class declaration' def __init__(self, info, parser_tail=None): Exporter.__init__(self, info, parser_tail) # sections of code self.sections = {} # template: each item in the list is an item into the class_<...> # section. self.sections['template'] = [] # constructor: each item in the list is a parameter to the class_ # constructor, like class_<C>(...) self.sections['constructor'] = [] # inside: everything within the class_<> statement self.sections['inside'] = [] # scope: items outside the class statement but within its scope. # scope* s = new scope(class<>()); # ... # delete s; self.sections['scope'] = [] # declarations: outside the BOOST_PYTHON_MODULE macro self.sections['declaration'] = [] self.sections['include'] = [] # a list of Constructor instances self.constructors = [] self.wrapper_generator = None # a list of code units, generated by nested declarations self.nested_codeunits = [] def ScopeName(self): return _ID(self.class_.FullName()) + '_scope' def Name(self): return self.class_.FullName() def SetDeclarations(self, declarations): Exporter.SetDeclarations(self, declarations) decl = self.GetDeclaration(self.info.name) if isinstance(decl, Typedef): self.class_ = self.GetDeclaration(decl.type.name) if not self.info.rename: self.info.rename = decl.name else: self.class_ = decl self.public_members = \ [x for x in self.class_.members if x.visibility == Scope.public] def Order(self): '''Return the TOTAL number of bases that this class has, including the bases' bases. Do this because base classes must be instantialized before the derived classes in the module definition. ''' def BasesCount(classname): decl = self.GetDeclaration(classname) bases = [x.name for x in decl.bases] total = 0 for base in bases: total += BasesCount(base) return len(bases) + total return BasesCount(self.class_.FullName()) def Export(self, codeunit, exported_names): self.ExportBasics() self.ExportBases(exported_names) self.ExportConstructors() self.ExportVariables() self.ExportMethods() self.ExportVirtualMethods() self.ExportOperators() self.ExportNestedClasses(exported_names) self.ExportNestedEnums() self.Write(codeunit) def Write(self, codeunit): indent = self.INDENT boost_ns = namespaces.python pyste_ns = namespaces.pyste code = '' # begin a scope for this class if needed nested_codeunits = self.nested_codeunits needs_scope = self.sections['scope'] or nested_codeunits if needs_scope: scope_name = self.ScopeName() code += indent + boost_ns + 'scope* %s = new %sscope(\n' %\ (scope_name, boost_ns) # export the template section template_params = ', '.join(self.sections['template']) code += indent + boost_ns + 'class_< %s >' % template_params # export the constructor section constructor_params = ', '.join(self.sections['constructor']) code += '(%s)\n' % constructor_params # export the inside section in_indent = indent*2 for line in self.sections['inside']: code += in_indent + line + '\n' # write the scope section and end it if not needs_scope: code += indent + ';\n' else: code += indent + ');\n' for line in self.sections['scope']: code += indent + line + '\n' # write the contents of the nested classes for nested_unit in nested_codeunits: code += '\n' + nested_unit.Section('module') # close the scope code += indent + 'delete %s;\n' % scope_name # write the code to the module section in the codeunit codeunit.Write('module', code + '\n') # write the declarations to the codeunit declarations = '\n'.join(self.sections['declaration']) for nested_unit in nested_codeunits: declarations += nested_unit.Section('declaration') if declarations: codeunit.Write('declaration', declarations + '\n') # write the includes to the codeunit includes = '\n'.join(self.sections['include']) for nested_unit in nested_codeunits: includes += nested_unit.Section('include') if includes: codeunit.Write('include', includes) def Add(self, section, item): 'Add the item into the corresponding section' self.sections[section].append(item) def ExportBasics(self): 'Export the name of the class and its class_ statement' self.Add('template', self.class_.FullName()) name = self.info.rename or self.class_.name self.Add('constructor', '"%s"' % name) def ExportBases(self, exported_names): 'Expose the bases of the class into the template section' bases = self.class_.bases bases_list = [] for base in bases: if base.visibility == Scope.public and base.name in exported_names: bases_list.append(base.name) if bases_list: code = namespaces.python + 'bases< %s > ' % \ (', '.join(bases_list)) self.Add('template', code) def ExportConstructors(self): '''Exports all the public contructors of the class, plus indicates if the class is noncopyable. ''' py_ns = namespaces.python indent = self.INDENT def init_code(cons): 'return the init<>() code for the given contructor' param_list = [p.FullName() for p in cons.parameters] min_params_list = param_list[:cons.minArgs] max_params_list = param_list[cons.minArgs:] min_params = ', '.join(min_params_list) max_params = ', '.join(max_params_list) init = py_ns + 'init< ' init += min_params if max_params: if min_params: init += ', ' init += py_ns + ('optional< %s >' % max_params) init += ' >()' return init constructors = [x for x in self.public_members if isinstance(x, Constructor)] self.constructors = constructors[:] # don't export the copy constructor if the class is abstract if self.class_.abstract: for cons in constructors: if cons.IsCopy(): constructors.remove(cons) break if not constructors: # declare no_init self.Add('constructor', py_ns + 'no_init') else: # write the constructor with less parameters to the constructor section smaller = None for cons in constructors: if smaller is None or len(cons.parameters) < len(smaller.parameters): smaller = cons assert smaller is not None self.Add('constructor', init_code(smaller)) constructors.remove(smaller) # write the rest to the inside section, using def() for cons in constructors: code = '.def(%s)' % init_code(cons) self.Add('inside', code) # check if the class is copyable if not self.class_.HasCopyConstructor() or self.class_.abstract: self.Add('template', namespaces.boost + 'noncopyable') def ExportVariables(self): 'Export the variables of the class, both static and simple variables' vars = [x for x in self.public_members if isinstance(x, Variable)] for var in vars: if self.info[var.name].exclude: continue name = self.info[var.name].rename or var.name fullname = var.FullName() if var.static: code = '%s->attr("%s") = %s;' % (self.ScopeName(), name, fullname) self.Add('scope', code) else: if var.type.const: def_ = '.def_readonly' else: def_ = '.def_readwrite' code = '%s("%s", &%s)' % (def_, name, fullname) self.Add('inside', code) printed_policy_warnings = {} def CheckPolicy(self, m): 'Warns the user if this method needs a policy' def IsString(type): return type.const and type.name == 'char' and isinstance(type, PointerType) needs_policy = isinstance(m.result, (ReferenceType, PointerType)) if IsString(m.result): needs_policy = False has_policy = self.info[m.name].policy is not None if needs_policy and not has_policy: warning = '---> Error: Method "%s" needs a policy.' % m.FullName() if warning not in self.printed_policy_warnings: print warning print self.printed_policy_warnings[warning] = 1 def ExportMethods(self): 'Export all the non-virtual methods of this class' def OverloadName(m): 'Returns the name of the overloads struct for the given method' return _ID(m.FullName()) + ('_overloads_%i_%i' % (m.minArgs, m.maxArgs)) declared = {} def DeclareOverloads(m): 'Declares the macro for the generation of the overloads' if not m.virtual: func = m.name code = 'BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(%s, %s, %i, %i)\n' code = code % (OverloadName(m), func, m.minArgs, m.maxArgs) if code not in declared: declared[code] = True self.Add('declaration', code) def Pointer(m): 'returns the correct pointer declaration for the method m' # check if this method has a wrapper set for him wrapper = self.info[method.name].wrapper if wrapper: return '&' + wrapper.FullName() # return normal pointers to the methods of the class is_unique = self.class_.IsUnique(m.name) if is_unique: return '&' + method.FullName() else: return method.PointerDeclaration() def IsExportable(m): 'Returns true if the given method is exportable by this routine' ignore = (Constructor, ClassOperator, Destructor) return isinstance(m, Method) and not isinstance(m, ignore) and not m.virtual methods = [x for x in self.public_members if IsExportable(x)] for method in methods: if self.info[method.name].exclude: continue # skip this method name = self.info[method.name].rename or method.name # warn the user if this method needs a policy and doesn't have one self.CheckPolicy(method) # check for policies policy = self.info[method.name].policy or '' if policy: policy = ', %s%s()' % (namespaces.python, policy.Code()) # check for overloads overload = '' if method.minArgs != method.maxArgs: # add the overloads for this method overload_name = OverloadName(method) DeclareOverloads(method) overload = ', %s%s()' % (namespaces.pyste, overload_name) # build the .def string to export the method pointer = Pointer(method) code = '.def("%s", %s' % (name, pointer) code += policy code += overload code += ')' self.Add('inside', code) # static method if method.static: code = '.staticmethod("%s")' % name self.Add('inside', code) # add wrapper code if this method has one wrapper = self.info[method.name].wrapper if wrapper and wrapper.code: self.Add('declaration', wrapper.code) def ExportVirtualMethods(self): # check if this class has any virtual methods has_virtual_methods = False for member in self.class_.members: if type(member) == Method and member.virtual: has_virtual_methods = True break if has_virtual_methods: generator = _VirtualWrapperGenerator(self.class_, self.info) self.Add('template', generator.FullName()) for definition in generator.GenerateDefinitions(): self.Add('inside', definition) self.Add('declaration', generator.GenerateVirtualWrapper(self.INDENT)) # operators natively supported by boost BOOST_SUPPORTED_OPERATORS = '+ - * / % ^ & ! ~ | < > == != <= >= << >> && || += -='\ '*= /= %= ^= &= |= <<= >>='.split() # create a map for faster lookup BOOST_SUPPORTED_OPERATORS = dict(zip(BOOST_SUPPORTED_OPERATORS, range(len(BOOST_SUPPORTED_OPERATORS)))) # a dict of operators that are not directly supported by boost, but can be exposed # simply as a function with a special signature BOOST_RENAME_OPERATORS = { '()' : '__call__', } # converters which has a special name in python SPECIAL_CONVERTERS = { 'double' : '__float__', 'float' : '__float__', 'int' : '__int__', 'long' : '__long__', } def ExportOperators(self): 'Export all member operators and free operators related to this class' def GetFreeOperators(): 'Get all the free (global) operators related to this class' operators = [] for decl in self.declarations: if isinstance(decl, Operator): # check if one of the params is this class for param in decl.parameters: if param.name == self.class_.FullName(): operators.append(decl) break return operators def GetOperand(param): 'Returns the operand of this parameter (either "self", or "other<type>")' if param.name == self.class_.FullName(): return namespaces.python + 'self' else: return namespaces.python + ('other< %s >()' % param.name) def HandleSpecialOperator(operator): # gatter information about the operator and its parameters result_name = operator.result.name param1_name = '' if operator.parameters: param1_name = operator.parameters[0].name # check for str ostream = 'basic_ostream' is_str = result_name.find(ostream) != -1 and param1_name.find(ostream) != -1 if is_str: namespace = namespaces.python + 'self_ns::' self_ = namespaces.python + 'self' return '.def(%sstr(%s))' % (namespace, self_) # is not a special operator return None frees = GetFreeOperators() members = [x for x in self.public_members if type(x) == ClassOperator] all_operators = frees + members operators = [x for x in all_operators if not self.info['operator'][x.name].exclude] for operator in operators: # gatter information about the operator, for use later wrapper = self.info['operator'][operator.name].wrapper if wrapper: pointer = '&' + wrapper.FullName() if wrapper.code: self.Add('declaration', wrapper.code) elif isinstance(operator, ClassOperator) and self.class_.IsUnique(operator.name): pointer = '&' + operator.FullName() else: pointer = operator.PointerDeclaration() rename = self.info['operator'][operator.name].rename # check if this operator will be exported as a method export_as_method = wrapper or rename or operator.name in self.BOOST_RENAME_OPERATORS # check if this operator has a special representation in boost special_code = HandleSpecialOperator(operator) has_special_representation = special_code is not None if export_as_method: # export this operator as a normal method, renaming or using the given wrapper if not rename: if wrapper: rename = wrapper.name else: rename = self.BOOST_RENAME_OPERATORS[operator.name] policy = '' policy_obj = self.info['operator'][operator.name].policy if policy_obj: policy = ', %s()' % policy_obj.Code() self.Add('inside', '.def("%s", %s%s)' % (rename, pointer, policy)) elif has_special_representation: self.Add('inside', special_code) elif operator.name in self.BOOST_SUPPORTED_OPERATORS: # export this operator using boost's facilities op = operator is_unary = isinstance(op, Operator) and len(op.parameters) == 1 or\ isinstance(op, ClassOperator) and len(op.parameters) == 0 if is_unary: self.Add('inside', '.def( %s%sself )' % \ (operator.name, namespaces.python)) else: # binary operator if len(operator.parameters) == 2: left_operand = GetOperand(operator.parameters[0]) right_operand = GetOperand(operator.parameters[1]) else: left_operand = namespaces.python + 'self' right_operand = GetOperand(operator.parameters[0]) self.Add('inside', '.def( %s %s %s )' % \ (left_operand, operator.name, right_operand)) # export the converters. # export them as simple functions with a pre-determined name converters = [x for x in self.public_members if type(x) == ConverterOperator] def ConverterMethodName(converter): result_fullname = converter.result.name if result_fullname in self.SPECIAL_CONVERTERS: return self.SPECIAL_CONVERTERS[result_fullname] else: # extract the last name from the full name result_name = _ID(result_fullname.split('::')[-1]) return 'to_' + result_name for converter in converters: info = self.info['operator'][converter.result.name] # check if this operator should be excluded if info.exclude: continue special_code = HandleSpecialOperator(converter) if info.rename or not special_code: # export as method name = info.rename or ConverterMethodName(converter) if self.class_.IsUnique(converter.name): pointer = '&' + converter.FullName() else: pointer = converter.PointerDeclaration() policy_code = '' if info.policy: policy_code = ', %s()' % info.policy.Code() self.Add('inside', '.def("%s", %s%s)' % (name, pointer, policy_code)) elif special_code: self.Add('inside', special_code) def ExportNestedClasses(self, exported_names): nested_classes = [x for x in self.public_members if isinstance(x, NestedClass)] for nested_class in nested_classes: nested_info = self.info[nested_class.name] nested_info.include = self.info.include nested_info.name = nested_class.FullName() exporter = ClassExporter(nested_info) exporter.SetDeclarations(self.declarations + [nested_class]) codeunit = CodeUnit(None) exporter.Export(codeunit, exported_names) self.nested_codeunits.append(codeunit) def ExportNestedEnums(self): nested_enums = [x for x in self.public_members if isinstance(x, ClassEnumeration)] for enum in nested_enums: enum_info = self.info[enum.name] enum_info.include = self.info.include enum_info.name = enum.FullName() exporter = EnumExporter(enum_info) exporter.SetDeclarations(self.declarations + [enum]) codeunit = CodeUnit(None) exporter.Export(codeunit, None) self.nested_codeunits.append(codeunit) def _ID(name): 'Returns the name as a valid identifier' for invalidchar in ('::', '<', '>', ' ', ','): name = name.replace(invalidchar, '_') # avoid duplications of '_' chars names = [x for x in name.split('_') if x] return '_'.join(names) #============================================================================== # Virtual Wrapper utils #============================================================================== def _ParamsInfo(m, count=None): if count is None: count = len(m.parameters) param_names = ['p%i' % i for i in range(count)] param_types = [x.FullName() for x in m.parameters[:count]] params = ['%s %s' % (t, n) for t, n in zip(param_types, param_names)] #for i, p in enumerate(m.parameters[:count]): # if p.default is not None: # #params[i] += '=%s' % p.default # params[i] += '=%s' % (p.name + '()') params = ', '.join(params) return params, param_names, param_types class _VirtualWrapperGenerator(object): 'Generates code to export the virtual methods of the given class' def __init__(self, class_, info): self.class_ = class_ self.info = info self.wrapper_name = _ID(class_.FullName()) + '_Wrapper' def DefaultImplementationNames(self, method): '''Returns a list of default implementations for this method, one for each number of default arguments. Always returns at least one name, and return from the one with most arguments to the one with the least. ''' base_name = 'default_' + method.name minArgs = method.minArgs maxArgs = method.maxArgs if minArgs == maxArgs: return [base_name] else: return [base_name + ('_%i' % i) for i in range(minArgs, maxArgs+1)] def Declaration(self, method, indent): '''Returns a string with the declarations of the virtual wrapper and its default implementations. This string must be put inside the Wrapper body. ''' pyste = namespaces.pyste python = namespaces.python rename = self.info[method.name].rename or method.name result = method.result.FullName() return_str = 'return ' if result == 'void': return_str = '' params, param_names, param_types = _ParamsInfo(method) constantness = '' if method.const: constantness = ' const' # call_method callback decl = indent + '%s %s(%s)%s {\n' % (result, method.name, params, constantness) param_names_str = ', '.join(param_names) if param_names_str: param_names_str = ', ' + param_names_str decl += indent*2 + '%s%scall_method< %s >(self, "%s"%s);\n' %\ (return_str, python, result, rename, param_names_str) decl += indent + '}\n' # default implementations (with overloading) # only for classes that are not abstract, and public methods if not method.abstract and method.visibility == Scope.public: minArgs = method.minArgs maxArgs = method.maxArgs impl_names = self.DefaultImplementationNames(method) for impl_name, argNum in zip(impl_names, range(minArgs, maxArgs+1)): params, param_names, param_types = _ParamsInfo(method, argNum) decl += '\n' decl += indent + '%s %s(%s)%s {\n' % (result, impl_name, params, constantness) decl += indent*2 + '%s%s::%s(%s);\n' % \ (return_str, self.class_.FullName(), method.name, ', '.join(param_names)) decl += indent + '}\n' return decl def MethodDefinition(self, method): '''Returns a list of lines, which should be put inside the class_ statement to export this method.''' # dont define abstract methods pyste = namespaces.pyste rename = self.info[method.name].rename or method.name default_names = self.DefaultImplementationNames(method) class_name = self.class_.FullName() wrapper_name = pyste + self.wrapper_name result = method.result.FullName() is_method_unique = self.class_.IsUnique(method.name) constantness = '' if method.const: constantness = ' const' # create a list of default-impl pointers minArgs = method.minArgs maxArgs = method.maxArgs if is_method_unique: default_pointers = ['&%s::%s' % (wrapper_name, x) for x in default_names] else: default_pointers = [] for impl_name, argNum in zip(default_names, range(minArgs, maxArgs+1)): param_list = [x.FullName() for x in method.parameters[:argNum]] params = ', '.join(param_list) signature = '%s (%s::*)(%s)%s' % (result, wrapper_name, params, constantness) default_pointer = '(%s)%s::%s' % (signature, wrapper_name, impl_name) default_pointers.append(default_pointer) # get the pointer of the method if is_method_unique: pointer = '&' + method.FullName() else: pointer = method.PointerDeclaration() # generate the defs definitions = [] # basic def definitions.append('.def("%s", %s, %s)' % (rename, pointer, default_pointers[-1])) for default_pointer in default_pointers[:-1]: definitions.append('.def("%s", %s)' % (rename, default_pointer)) return definitions def FullName(self): return namespaces.pyste + self.wrapper_name def VirtualMethods(self): def IsVirtual(m): return type(m) == Method and m.virtual return [m for m in self.class_.members if IsVirtual(m)] def Constructors(self): def IsValid(m): return isinstance(m, Constructor) and m.visibility == Scope.public return [m for m in self.class_.members if IsValid(m)] def GenerateDefinitions(self): defs = [] for method in self.VirtualMethods(): exclude = self.info[method.name].exclude # generate definitions only for public methods and non-abstract methods if method.visibility == Scope.public and not method.abstract and not exclude: defs.extend(self.MethodDefinition(method)) return defs def GenerateVirtualWrapper(self, indent): 'Return the wrapper for this class' # generate the class code class_name = self.class_.FullName() code = 'struct %s: %s\n' % (self.wrapper_name, class_name) code += '{\n' # generate constructors (with the overloads for each one) for cons in self.Constructors(): # only public constructors minArgs = cons.minArgs maxArgs = cons.maxArgs # from the min number of arguments to the max number, generate # all version of the given constructor cons_code = '' for argNum in range(minArgs, maxArgs+1): params, param_names, param_types = _ParamsInfo(cons, argNum) if params: params = ', ' + params cons_code += indent + '%s(PyObject* self_%s):\n' % \ (self.wrapper_name, params) cons_code += indent*2 + '%s(%s), self(self_) {}\n\n' % \ (class_name, ', '.join(param_names)) code += cons_code # generate the body body = [] for method in self.VirtualMethods(): if not self.info[method.name].exclude: body.append(self.Declaration(method, indent)) body = '\n'.join(body) code += body + '\n' # add the self member code += indent + 'PyObject* self;\n' code += '};\n' return code
StarcoderdataPython
3382439
<reponame>farzamfan/NLP-Pipeline<filename>nlpipe/Clients/client.py import logging import os import argparse import sys from nlpipe.Clients.HTTPClient import HTTPClient def get_client(server_name, token=None): """ Returns a client (for now only HTTP client) :param server_name: address of the server (URL) :param token: authentication token :return: initialized HTTP client """ if server_name.startswith("http:") or server_name.startswith("https:"): # if the server is remote logging.getLogger('requests').setLevel(logging.WARNING) # logging if not token: token = os.environ.get('NLPIPE_TOKEN', None) # authentication token logging.debug("Connecting to REST server at {server_name} using token={}".format(bool(token), **locals())) return HTTPClient(server_name, token=token) if __name__ == '__main__': # if run as a module parser = argparse.ArgumentParser() parser.add_argument("server", help="Server hostname or directory location") parser.add_argument("tool", help="Tool name") # NLP processing tool parser.add_argument("--verbose", "-v", help="Verbose (debug) output", action="store_true", default=False) parser.add_argument("--token", "-t", help="Provide auth token" "(default reads ./.nlpipe_token or NLPIPE_TOKEN") action_parser = parser.add_subparsers(dest='action', title='Actions') # parser for actions action_parser.required = True actions = {name: action_parser.add_parser(name) # add possible actions for name in ('doc_status', 'result', 'check', 'process', 'process_inline', 'bulk_status', 'bulk_result', 'store_result', 'store_error')} for action in 'doc_status', 'result', 'store_result', 'store_error': actions[action].add_argument('doc_id', help="Document ID") for action in 'bulk_status', 'bulk_result': actions[action].add_argument('ids', nargs="+", help="Document IDs") for action in 'result', 'process_inline', 'bulk_result': actions[action].add_argument("--return_format", help="Optional output format to retrieve") # return format for action in 'process', 'process_inline': actions[action].add_argument('doc', help="Document to process (use - to read from stdin") actions[action].add_argument('doc_id', nargs="?", help="Optional explicit document ID") for action in ('store_result', 'store_error'): actions[action].add_argument('result', help="Document to store (use - to read from stdin") args = vars(parser.parse_args()) # turn to dict so we can pop and pass the rest as kargs logging.basicConfig(level=logging.DEBUG if args.pop('verbose', False) else logging.INFO, format='[%(asctime)s %(name)-12s %(levelname)-5s] %(message)s') client = get_client(args.pop('server'), token=args.pop('token', None)) # add HTTP client for doc_arg in ('doc', 'result'): if args.get(doc_arg) == '-': args[doc_arg] = sys.stdin.read() action = args.pop('action') # requested action args = {k: v for (k, v) in args.items() if v} result = getattr(client, action)(**args) # run the action via the HTTP client if action == "get_task": # in case a task is given doc_id, doc = result if doc_id is not None: print(doc_id, file=sys.stderr) print(doc) elif action in ("store_result", "store_error"): pass else: if result is not None: print(result)
StarcoderdataPython
1667214
<reponame>muctadir/labeling-machine<filename>webapp/migrations/versions/f2321be6f3e5_description_for_each_label.py """description for each label Revision ID: f<PASSWORD> Revises: <PASSWORD> Create Date: 2022-02-17 19:17:09.417982 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'f<PASSWORD>' down_revision = '<PASSWORD>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table("Label") as batch_op: batch_op.add_column(sa.Column('label_description', sa.Text(), nullable=True)) batch_op.drop_column('remark') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table("Label") as batch_op: batch_op.add_column(sa.Column('remark', sa.TEXT(), nullable=True)) batch_op.drop_column('label_description') # ### end Alembic commands ###
StarcoderdataPython
115457
""" Quandl Model """ __docformat__ = "numpy" import logging import pandas as pd import quandl from gamestonk_terminal import config_terminal as cfg from gamestonk_terminal.decorators import log_start_end logger = logging.getLogger(__name__) @log_start_end(log=logger) def get_short_interest(ticker: str, nyse: bool) -> pd.DataFrame: """Plots the short interest of a stock. This corresponds to the number of shares that have been sold short but have not yet been covered or closed out. Either NASDAQ or NYSE [Source: Quandl] Parameters ---------- ticker : str ticker to get short interest from nyse : bool data from NYSE if true, otherwise NASDAQ Returns ---------- pd.DataFrame short interest volume data """ quandl.ApiConfig.api_key = cfg.API_KEY_QUANDL if nyse: return quandl.get(f"FINRA/FNYX_{ticker}") return quandl.get(f"FINRA/FNSQ_{ticker}")
StarcoderdataPython
3294115
<reponame>RJT1990/mantra<filename>mantraml/ui/core/models.py import boto3 from collections import Counter import datetime import os import shutil import yaml from django.db import models from .consts import MANTRA_DEVELOPMENT_TAG_NAME from .mantra import Mantra from .forms import StartInstanceForm, StopInstanceForm, TerminateInstanceForm class Cloud: @classmethod def change_instance_state(cls, ec2_resource, POST): """ This method changes the state of an instance based on the request of an instance form view. Parameters ------------ ec2_resource - boto3.resource('ec2') instance The EC2 connection POST - request.POST object Containing the form information """ if 'stop_instance_id' in POST.dict(): posted_form = StopInstanceForm(POST) if posted_form.is_valid(): instance_id = posted_form.cleaned_data['stop_instance_id'] ec2_resource.instances.filter(InstanceIds=[instance_id]).stop() elif 'start_instance_id' in POST.dict(): posted_form = StartInstanceForm(POST) if posted_form.is_valid(): instance_id = posted_form.cleaned_data['start_instance_id'] ec2_resource.instances.filter(InstanceIds=[instance_id]).start() else: posted_form = TerminateInstanceForm(POST) if posted_form.is_valid(): instance_id = posted_form.cleaned_data['terminate_instance_id'] ec2_resource.instances.filter(InstanceIds=[instance_id]).terminate() @classmethod def get_instance_metadata(cls, instances, no_dev=False): """ This method obtains instance metadata from a list of instances Parameters ------------ instances - ec2.instances.filter object EC2 instance filter no_dev - bool If True, excludes development instances. Returns ------------ list of dicts - list of instance metadata """ instance_data = [] for instance in instances: instance_dict = {} if instance.tags: instance_dict['name'] = instance.tags[0]['Value'] else: instance_dict['name'] = '' instance_dict['type'] = instance.instance_type instance_dict['id'] = instance.id instance_dict['tags'] = [] instance_dict['state'] = instance.state['Name'] instance_dict['launch_time'] = instance.launch_time if no_dev: if instance_dict['name'] != MANTRA_DEVELOPMENT_TAG_NAME: instance_data.append(instance_dict) else: if instance_dict['name'] == MANTRA_DEVELOPMENT_TAG_NAME: instance_dict['tags'] += ['development'] instance_data.append(instance_dict) return instance_data class Trial: column_names = ['start_timestamp', 'folder_name', 'trial_hash', 'trial_group_hash', 'model_name', 'model_hash', 'data_name', 'data_hash', 'task_name', 'task_hash'] @classmethod def get_trial_contents(cls, settings): """ This method opens the TRIALS metadata file in the .mantra folder and obtains each row of trial metadata Parameters ------------ settings - django.settings file Containing information like the MANTRA_PROJECT_ROOT constant Returns ------------ list - list of trials each being a list of metadata (str format) """ trial_information = open("%s/.mantra/TRIALS" % settings.MANTRA_PROJECT_ROOT, 'r').read() return [line.split(" ") for line in trial_information.split("\n") if line] @classmethod def get_trial_contents_as_dicts(cls, settings): """ This method opens the TRIALS metadata file in the .mantra folder and obtains each row of trial metadata. It then converts this data into a list of dictionaries, where the keys come from Trial.column_names Parameters ------------ settings - django.settings file Containing information like the MANTRA_PROJECT_ROOT constant Returns ------------ list of dicts - each dictionary containing keys (cls.column_names) and values (from the file) """ trial_contents = cls.get_trial_contents(settings=settings) return [dict(zip(cls.column_names, content)) for content in trial_contents] @classmethod def remove_group_hash_from_contents(cls, settings, trial_group_hash): """ This method takes a trial contents object - a list of metadata - and removes rows where the group trial hash == trial_group_hash Parameters ------------ settings - django.settings file Containing information like the MANTRA_PROJECT_ROOT constant group_trial_hash - str The hash of a group trial """ trial_contents = cls.get_trial_contents(settings=settings) new_contents = [trial for trial in trial_contents if not trial[3] == trial_group_hash] trial_folder_names = [trial[1] for trial in trial_contents if trial[3] == trial_group_hash] new_information = '\n'.join([" ".join(content) for content in new_contents]) + '\n' for trial_folder in trial_folder_names: try: shutil.rmtree('%s/%s/%s' % (settings.MANTRA_PROJECT_ROOT, 'trials', trial_folder)) # delete the trial folder except FileNotFoundError: continue # if it's not there, it's already deleted, so we can proceed to try to solely remove from TRIALS file with open("%s/.mantra/TRIALS" % settings.MANTRA_PROJECT_ROOT, "w") as trial_file: trial_file.write(new_information) @classmethod def get_trial_group_members(cls, settings, model_filter=None, data_filter=None): """ This method takes a trial contents object - a list of metadata - and removes rows where the group trial hash == trial_group_hash Parameters ------------ settings - django.settings file Containing information like the MANTRA_PROJECT_ROOT constant model_filter - None or str If str, will filter the trials so that the trial['model_name'] == model_filter data_filter - None or str If str, will filter the trials so that the trial['data_name'] == data_filter Returns ------------ dict - key is a trial group hash, value is a list of trials (dict metadata) that correspond to that trial group hash list - of trials """ trials = cls.get_trial_contents_as_dicts(settings=settings) if model_filter: trials = [trial for trial in trials if trial['model_name'] == model_filter] elif data_filter: trials = [trial for trial in trials if trial['data_name'] == data_filter] trial_group_hashs = list(set([model['trial_group_hash'] for model in trials])) trial_group_dict = {trial_group_hash: [trial for trial in trials if trial['trial_group_hash'] == trial_group_hash] for trial_group_hash in trial_group_hashs} return trial_group_dict, trials @classmethod def get_trial_group_name_dict(cls, settings): """ This method retrieves a dictionary with keys as trial group names, and values as string names for these ids. E.g.: {'ae42j2ff42f2jeduj4': 'Dropout Experiments'} This allows for trial groups to be named with human names, rather than dehumanising SHA-256 hashes. Parameters ------------ settings - django.settings file Containing information like the MANTRA_PROJECT_ROOT constant Returns ------------ dict - key is a trial group hash, value is a name for the trial group e.g. "Learning Rate Tests" """ with open("%s/.mantra/TRIAL_GROUP_NAMES" % settings.MANTRA_PROJECT_ROOT, "r") as trial_group_name_file: yaml_content = yaml.load(trial_group_name_file) if not yaml_content: yaml_content = {} return yaml_content @staticmethod def get_trial_group_name(trial_group_name_dict, trial_group_hash): """ Parameters ------------ trial_group_name_dict - dict The dictionary containing as keys trial group hashes, and as values trial group names, e.g. "Dropout Experiments" trial_group_hash - str The string for the trial group hash, e.g. a93idjj4v2ojf42of24cew... Returns ------------ str - the name of the trial group given the dictionary and the hash entered """ try: return trial_group_name_dict[trial_group_hash] except KeyError: return trial_group_hash[:6] @classmethod def get_trial_group_metadata(cls, settings, hash, trial_groups): """ This method obtains trial group metadata from a list of trial group dictionaries Parameters ------------ settings - django.settings file Containing information like the MANTRA_PROJECT_ROOT constant hash - str The hash for the trial group trial_groups - list List of dicts, where each dict contains metadata on a trial Returns ------------ dict - containing metadata on the trial group """ yaml_content = Trial.get_trial_group_name_dict(settings=settings) latest_trial_time = datetime.datetime.utcfromtimestamp(int(str(max([trial['start_timestamp'] for trial in trial_groups])))) trial_group_metadata = {} if not trial_groups: return trial_group_metadata example_trial = trial_groups[0] for metadata_name in ['trial_group_hash', 'folder_name', 'model_name', 'model_hash', 'data_name', 'task_name', 'task_hash', 'data_hash']: trial_group_metadata[metadata_name] = example_trial[metadata_name] try: dataset_metadata = Mantra.find_dataset_metadata(example_trial['data_name']) except ImportError: return {} task_metadata = Mantra.find_task_metadata(example_trial['task_name']) trial_group_metadata['time'] = latest_trial_time trial_group_metadata['timestamp'] = latest_trial_time.timestamp() trial_group_metadata['model_metadata'] = Mantra.find_model_metadata(trial_group_metadata['model_name']) trial_group_metadata['trial_group_name'] = Trial.get_trial_group_name(yaml_content, example_trial['trial_group_hash']) trial_group_metadata['latest_media'] = Mantra.find_latest_trial_media(trial_group_metadata['folder_name']) trial_group_metadata['data_full_name'] = dataset_metadata['name'] trial_group_metadata['task_full_name'] = task_metadata['name'] trial_group_metadata['data_image'] = dataset_metadata['data_image'] trial_group_metadata['n_trials'] = len(trial_groups) return trial_group_metadata @classmethod def get_all_trial_group_metadata(cls, settings, trial_group_members): """ This method obtains trial group metadata from a dictionary containing core trial group metadata Parameters ------------ settings - django.settings file Containing information like the MANTRA_PROJECT_ROOT constant trial_group_members - dict Keys are trial group hashes; values are list of trial dictionaries corresponding to that trial group Returns ------------ list of dicts - each containing metadata on the trial group """ trial_group_metadata = [cls.get_trial_group_metadata( settings=settings, hash=trial_group_hash, trial_groups=trial_groups) for trial_group_hash, trial_groups in trial_group_members.items()] return [group for group in trial_group_metadata if group] class Artefact: @classmethod def all(cls, settings, artefacts_folder): """ This method obtains a list of all artefacts in the artefact folder provided Parameters ------------ settings - django.settings file Containing information like the MANTRA_PROJECT_ROOT constant artefacts_folder - Path of the folder where the artefact folders are located Returns ------------ list of strs - the name of each artefact found in the artefacts_folder path """ artefacts_dir = os.path.join(settings.MANTRA_PROJECT_ROOT, artefacts_folder) if os.path.isdir(artefacts_dir): artefacts_list = [o for o in os.listdir(artefacts_dir) if os.path.isdir(os.path.join(artefacts_dir, o))] else: artefacts_list = [] return artefacts_list class Task: @classmethod def calculate_task_metadata(cls, settings, trials): """ This method produces a dictionary of tasks, with keys as the task names, which contain dictionaries of metadata such as the model with the best loss. Parameters ------------ settings - django.settings file Containing information like the MANTRA_PROJECT_ROOT constant trials - list of dicts Each dictionary containing trial metadata Returns ------------ dict - keys as task names, values as dictionaries containing metadata on each task """ tasks_used = [trial['task_name'] for trial in trials if trial['task_name'] != 'none'] occur = Counter(tasks_used) task_dict = dict(occur) # e.g. {'task_1': 6} - is a way for us to count the number of trials for each task for task_name, n_trials in task_dict.items(): task_dict[task_name] = {'n_trials': n_trials} task_dict[task_name].update(Mantra.find_task_metadata(task_name)) task_trials = [trial for trial in trials if trial['task_name'] == task_name] for task_trial in task_trials: try: task_trial['trial_metadata'] = yaml.load(open('%s/trials/%s/trial_metadata.yml' % (settings.MANTRA_PROJECT_ROOT, task_trial['folder_name']), 'r').read()) except: # can't load yaml task_trial['trial_metadata'] = {} try: trials_with_validation_loss = [trial for trial in task_trials if 'validation_loss' in trial['trial_metadata']] task_dict[task_name]['best_loss'] = min([trial['trial_metadata']['validation_loss'] for trial in trials_with_validation_loss]) task_dict[task_name]['best_model_folder'] = [trial for trial in trials_with_validation_loss if trial['trial_metadata']['validation_loss'] == task_dict[task_name]['best_loss']][0]['model_name'] task_dict[task_name]['best_model_metadata'] = Mantra.find_model_metadata(task_dict[task_name]['best_model_folder']) except AttributeError: task_dict[task_name]['best_loss'] = None task_dict[task_name]['best_model_folder'] = None if task_dict[task_name]['best_model_folder'] is not None: task_dict[task_name]['best_model_metadata'] = Mantra.find_model_metadata(task_dict[task_name]['best_model_folder']) else: task_dict[task_name]['best_model_metadata'] = None except ValueError: task_dict[task_name]['best_loss'] = None task_dict[task_name]['best_model_folder'] = None if task_dict[task_name]['best_model_folder'] is not None: task_dict[task_name]['best_model_metadata'] = Mantra.find_model_metadata(task_dict[task_name]['best_model_folder']) else: task_dict[task_name]['best_model_metadata'] = None return task_dict
StarcoderdataPython
1699118
# Should match the matlab version import matplotlib.pyplot as plt import numpy as np from scipy import signal A = np.array([[0.0, 1.0], [0.0, -10.0/100]]) B = np.array([[0.0], [1.0/100.0]]) C = np.array([1.0, 0.0]) D = np.array([0.0]) K = np.array([30.0, 70.0]) X = np.array([10, 0.0]) sys = signal.StateSpace(A-B*K, B, C, D) t, y = signal.step(sys, X0=X) plt.plot(t, y, 'b--', label="State Space") plt.show()
StarcoderdataPython
3217460
<filename>Lib/test/test_spwd.py import os import unittest from test import support spwd = support.import_module('spwd') @unittest.skipUnless(hasattr(os, 'geteuid') and os.geteuid() == 0, 'root privileges required') class TestSpwdRoot(unittest.TestCase): def test_getspall(self): entries = spwd.getspall() self.assertIsInstance(entries, list) for entry in entries: self.assertIsInstance(entry, spwd.struct_spwd) def test_getspnam(self): entries = spwd.getspall() if not entries: self.skipTest('empty shadow password database') random_name = entries[0].sp_namp entry = spwd.getspnam(random_name) self.assertIsInstance(entry, spwd.struct_spwd) self.assertEqual(entry.sp_namp, random_name) self.assertEqual(entry.sp_namp, entry[0]) self.assertEqual(entry.sp_namp, entry.sp_nam) self.assertIsInstance(entry.sp_pwdp, str) self.assertEqual(entry.sp_pwdp, entry[1]) self.assertEqual(entry.sp_pwdp, entry.sp_pwd) self.assertIsInstance(entry.sp_lstchg, int) self.assertEqual(entry.sp_lstchg, entry[2]) self.assertIsInstance(entry.sp_min, int) self.assertEqual(entry.sp_min, entry[3]) self.assertIsInstance(entry.sp_max, int) self.assertEqual(entry.sp_max, entry[4]) self.assertIsInstance(entry.sp_warn, int) self.assertEqual(entry.sp_warn, entry[5]) self.assertIsInstance(entry.sp_inact, int) self.assertEqual(entry.sp_inact, entry[6]) self.assertIsInstance(entry.sp_expire, int) self.assertEqual(entry.sp_expire, entry[7]) self.assertIsInstance(entry.sp_flag, int) self.assertEqual(entry.sp_flag, entry[8]) with self.assertRaises(KeyError) as cx: spwd.getspnam('invalid user name') self.assertEqual(str(cx.exception), "'getspnam(): name not found'") self.assertRaises(TypeError, spwd.getspnam) self.assertRaises(TypeError, spwd.getspnam, 0) self.assertRaises(TypeError, spwd.getspnam, random_name, 0) try: bytes_name = os.fsencode(random_name) except UnicodeEncodeError: pass else: self.assertRaises(TypeError, spwd.getspnam, bytes_name) @unittest.skipUnless(hasattr(os, 'geteuid') and os.geteuid() != 0, 'non-root user required') class TestSpwdNonRoot(unittest.TestCase): def test_getspnam_exception(self): name = 'bin' try: with self.assertRaises(PermissionError) as cm: spwd.getspnam(name) except KeyError as exc: self.skipTest("spwd entry %r doesn't exist: %s" % (name, exc)) if __name__ == "__main__": unittest.main()
StarcoderdataPython
3386230
<filename>gandalf/api/auth.py<gh_stars>0 from flask import Blueprint from flask_restful import Resource, Api auth_blueprint = Blueprint("auth", __name__, url_prefix="/auth") api = Api(auth_blueprint) class AuthPing(Resource): def get(self): return {"status": "success", "message": "pong!"} api.add_resource(AuthPing, "/ping")
StarcoderdataPython
3386941
import traceback from flask import Flask, redirect, request, render_template, session , url_for, jsonify from flask_socketio import SocketIO, emit from flask_compress import Compress import os from utils import * ResponseThread = None app = Flask(__name__) app.app_context().push() websocket = SocketIO(app) app.config["socket"] = websocket import config from db import User , Example,db from checklogin import login from mainpage import main app.register_blueprint(login) app.register_blueprint(main) Compress(app) manager = app.config["manager"] @websocket.on("connect",namespace="/gdb_listener") def connect_handler(): desired_gdbpid = int(request.args.get("gdbpid", 0)) try: if desired_gdbpid: debug_session = manager.connect_client_to_debug_session( desired_gdbpid=desired_gdbpid, client_id=request.sid ) emit( "debug_session_connection_event", { "ok": True, "started_new_gdb_process": False, "pid": debug_session.pid, "message": f"Connected to existing gdb process {desired_gdbpid}", }, ) else: gdb_command = request.args.get("gdb_command", app.config["gdb_command"]) mi_version = request.args.get("mi_version", "mi2") debug_session = manager.add_new_debug_session( gdb_command=gdb_command, mi_version=mi_version, client_id=request.sid ) emit( "debug_session_connection_event", { "ok": True, "started_new_gdb_process": True, "message": f"Started new gdb process, pid {debug_session.pid}", "pid": debug_session.pid, }, ) except Exception as e: emit( "debug_session_connection_event", {"message": f"Failed to establish gdb session: {e}", "ok": False}, ) if manager.gdb_reader_thread is None: manager.gdb_reader_thread = websocket.start_background_task( target=read_and_forward_gdb_and_pty_output ) logging.info("Created background thread to read gdb responses") @websocket.on("set_dir",namespace="/gdb_listener") def set_dir(data): id = data["id"] path = os.path.join(app.config["STORE_PATH"],id) client_id = request.sid debug_session = manager.debug_session_from_client_id(client_id) if not debug_session: emit("error_running_gdb_command", {"message": "no session"}) return pty_mi = debug_session.pygdbmi_controller if pty_mi is not None: try: cmds = [f"00-environment-cd {path}"] for cmd in cmds: pty_mi.write( cmd + "\n", timeout_sec=0, raise_error_on_timeout=False, read_response=False, ) except Exception: err = traceback.format_exc() logging.error(err) emit("error_running_gdb_command", {"message": err}) else: emit("error_running_gdb_command", {"message": "gdb is not running"}) @websocket.on("pty_interaction", namespace="/gdb_listener") def pty_interaction(message): debug_session = manager.debug_session_from_client_id(request.sid) if not debug_session: emit( "error_running_gdb_command", {"message": f"no gdb session available for client id {request.sid}"}, ) return try: data = message.get("data") print(data) pty_name = data.get("pty_name") if pty_name == "user_pty": pty = debug_session.pty_for_gdb elif pty_name == "program_pty": pty = debug_session.pty_for_debugged_program else: raise ValueError(f"Unknown pty: {pty_name}") action = data.get("action") if action == "write": key = data["key"] pty.write(key) elif action == "set_winsize": pty.set_winsize(data["rows"], data["cols"]) else: raise ValueError(f"Unknown action {action}") except Exception: err = traceback.format_exc() logging.error(err) emit("error_running_gdb_command", {"message": err}) @websocket.on("run_gdb_command", namespace="/gdb_listener") def run_gdb_command(message): client_id = request.sid debug_session = manager.debug_session_from_client_id(client_id) if not debug_session: emit("error_running_gdb_command", {"message": "no session"}) return pty_mi = debug_session.pygdbmi_controller if pty_mi is not None: try: cmds = message["cmd"] print(cmds) for cmd in cmds: pty_mi.write( cmd + "\n", timeout_sec=0, raise_error_on_timeout=False, read_response=False, ) except Exception: err = traceback.format_exc() logging.error(err) emit("error_running_gdb_command", {"message": err}) else: emit("error_running_gdb_command", {"message": "gdb is not running"}) @websocket.on("disconnect", namespace="/gdb_listener") def client_disconnected(): """do nothing if client disconnects""" manager.disconnect_client(request.sid) logging.info("Client websocket disconnected, id %s" % (request.sid)) def read_and_forward_gdb_and_pty_output(): while True: websocket.sleep(0.05) debug_sessions_to_remove = [] for debug_session, client_ids in manager.debug_session_to_client_ids.items(): try: try: response = debug_session.pygdbmi_controller.get_gdb_response( timeout_sec=0, raise_error_on_timeout=False ) except Exception: response = None send_msg_to_clients( client_ids, "The underlying gdb process has been killed. This tab will no longer function as expected.", error=True, ) debug_sessions_to_remove.append(debug_session) if response: for client_id in client_ids: logging.info( "emiting message to websocket client id " + client_id ) websocket.emit( "gdb_response", response, namespace="/gdb_listener", room=client_id, ) else: # there was no queued response from gdb, not a problem pass except Exception: logging.error("caught exception, continuing:" + traceback.format_exc()) debug_sessions_to_remove += check_and_forward_pty_output() for debug_session in set(debug_sessions_to_remove): manager.remove_debug_session(debug_session) def check_and_forward_pty_output(): debug_sessions_to_remove = [] for debug_session, client_ids in manager.debug_session_to_client_ids.items(): try: response = debug_session.pty_for_gdb.read() if response is not None: for client_id in client_ids: websocket.emit( "user_pty_response", response, namespace="/gdb_listener", room=client_id, ) response = debug_session.pty_for_debugged_program.read() if response is not None: for client_id in client_ids: websocket.emit( "program_pty_response", response, namespace="/gdb_listener", room=client_id, ) except Exception as e: debug_sessions_to_remove.append(debug_session) for client_id in client_ids: websocket.emit( "fatal_server_error", {"message": str(e)}, namespace="/gdb_listener", room=client_id, ) logging.error(e, exc_info=True) return debug_sessions_to_remove def send_msg_to_clients(client_ids, msg, error=False): if error: stream = "stderr" else: stream = "stdout" response = [{"message": None, "type": "console", "payload": msg, "stream": stream}] for client_id in client_ids: logging.info("emiting message to websocket client id " + client_id) websocket.emit( "gdb_response", response, namespace="/gdb_listener", room=client_id ) @websocket.on("compile",namespace="/gdb_listener") def compile_handler(data): id = data["id"] path = os.path.join(app.config["STORE_PATH"],id) purepath = Path(path) for x in purepath.iterdir(): if x.is_file() and (x.suffix == ".out" or x.suffix==".o"): os.remove(x.as_posix()) os.chdir(path) cmd = f"gcc -fno-stack-protector -g -c *.c " cmd += f"2>out 1>/dev/null" print(cmd) os.system(cmd) f = open(f"out", "r") data = f.read(20480) f.close() if data: emit("compile", { "status": False, "err": data }) return cmd = "ld -r *.o -o a.o " cmd += f" 2>out 1>/dev/null" os.system(cmd) f = open(f"out", "r") data = f.read(20480) f.close() if data: emit("compile", { "status": False, "err": data }) return cmd = "gcc -g -fno-stack-protector a.o " cmd += f"2>out 1>/dev/null" os.system(cmd) f = open(f"out", "r") data = f.read(20480) f.close() if data: emit("compile", { "status": False, "err": data }) return for x in purepath.iterdir(): if x.is_file() and x.suffix == ".out": emit("compile", { "status": True }) return emit("compile", { "status": False, "err": data }) @websocket.on("public_example",namespace="/gdb_listener") def public_example(data): data = data["data"] id = data["id"] author = data["author"] name = data["name"] description = data["description"] path = app.config["EXAMPLE_PATH"] example_path = os.path.join(path,id) cur_path = os.path.join(app.config["STORE_PATH"],id) out_path = os.path.join(cur_path,"a.out") print(out_path) if(not os.path.exists(out_path)): emit("public_example_response",{ "status":False, "err":f"This example is not compiled" }) return if(Example.find(name,id)): print(name,id) print(Example.find(name,id)) emit("public_example_response",{ "status":False, "err":f"an example named {name} is already existed!" }) return if(not os.path.exists(example_path)): make_dir(example_path) name_path = os.path.join(example_path,name) description_path = os.path.join(name_path,"description") author_path = os.path.join(name_path,"author") if(os.path.exists(name_path)): shutil.rmtree(name_path) os.mkdir(name_path) else: os.mkdir(name_path) mk_write_file(description_path,description) mk_write_file(author_path,author) copy_search_file(cur_path,name_path) Example.add(id,name,description,name_path) emit("public_example_response",{ "status":True, "err":f"" }) @websocket.on("get_example_list",namespace="/gdb_listener") def get_example_list(): all_example = Example.query.all() example_list = [] for example in all_example: example_list.append(f"{example.id} {example.name} {example.description}") emit("example_list",{ "list":example_list }) @websocket.on("get_path",namespace="/gdb_listener") def get_path(data): author_id = data["author_id"] id = data["id"] name = data["name"] path =os.path.join( app.config["EXAMPLE_PATH"],author_id) path =os.path.join( path,name) file_tree={} file_path=[] get_file(path,file_tree,file_path) cur_path = os.path.join(app.config["STORE_PATH"],id) clear_dir(cur_path) copy_search_file(path,cur_path) emit("get_path_response",{ "path":file_path }) @websocket.on("get_my_public",namespace="/gdb_listener") def get_my_public(data): author_id = data["id"] all_example = Example.find_by_id(author_id) example_list = [] for example in all_example: example_list.append(f"{example.id} {example.name} {example.description}") emit("get_my_public_response",{ "list":example_list }) @websocket.on("delete_my_public",namespace="/gdb_listener") def delete_my_public(data): author_id = data["id"] name = data["name"] find = Example.find(name,author_id) try: if(isinstance(find,list)): for fi in find: shutil.rmtree(fi.dir_path) db.session.delete(fi) db.session.commit() except AttributeError: emit("delete_my_public_response",{ "status":False }) return emit("delete_my_public_response",{ "status":True }) @websocket.on("line_change",namespace="/gdb_listener") def line_change(data): file = data["file"] id = data["id"] start = data["start"] num = data["num"] file_path = os.path.join(app.config["STORE_PATH"],id) file_path = Path(file_path) fs = [x for x in file_path.iterdir() if x.is_file() and x.suffix==".asset"] for f in fs: pos = f.stem.find(file) if(pos==-1): continue line = int(f.stem[pos+len(file):]) if(line>start): os.rename(f.as_posix(),os.path.join(file_path.as_posix(),f"{file}{line+num}.asset")) os.rename(os.path.join(file_path.as_posix(),f"{file}{line}.des"),os.path.join(file_path.as_posix(),f"{file}{line+num}.des")) @websocket.on("delete_attachment",namespace="/gdb_listener") def delete_attachment(data): id =data["id"] name = data["name"] file_path = os.path.join(app.config["STORE_PATH"],id) os.remove(os.path.join(file_path,f"{name}.asset")) os.remove(os.path.join(file_path,f"{name}.des")) emit("delete_attachment_response",{ "status":True }) if __name__ == '__main__': db.create_all() # User.add("0","0","swj","<EMAIL>") websocket.run(app, "0.0.0.0",debug=False)
StarcoderdataPython
46743
sessions = [{ "1": { "type": "session", "source": {"id": "scope"}, "id": "1", 'profile': {"id": "1"} } }] profiles = [ {"1": {'id': "1", "traits": {}}}, {"2": {'id': "2", "traits": {}}}, ] class MockStorageCrud: def __init__(self, index, domain_class_ref, entity): self.index = index self.domain_class_ref = domain_class_ref self.entity = entity if index == 'session': self.data = sessions elif index == 'profile': self.data = profiles async def load(self): for item in self.data: if self.entity.id in item: return self.domain_class_ref(**item[self.entity.id]) return None async def save(self): self.data.append({self.entity.id: self.entity.dict(exclude_unset=True)}) async def delete(self): del(self.data[self.entity.id]) class EntityStorageCrud: def __init__(self, index, entity): self.index = index self.entity = entity if index == 'session': self.data = sessions elif index == 'profile': self.data = profiles async def load(self, domain_class_ref): for item in self.data: if self.entity.id in item: return domain_class_ref(**item[self.entity.id]) return None async def save(self): self.data.append({self.entity.id: self.entity.dict(exclude_unset=True)}) async def delete(self): del(self.data[self.entity.id])
StarcoderdataPython
3210166
<filename>website_multi_company/tests/test_create.py # Copyright 2018 <NAME> <https://it-projects.info/team/yelizariev> # License MIT (https://opensource.org/licenses/MIT). from odoo.tests.common import TransactionCase class TestCreate(TransactionCase): at_install = True post_install = True def test_create_partner(self): company = self.env["res.company"].create({"name": "Non default Company"}) website = self.env.ref("website.website2") website.company_id = company Partner = self.env["res.partner"].with_context(website_id=website.id) p = Partner.create({"name": "Test"}) # Default value in res.partner is computed via env['res.company']._company_default_get # _company_default_get is computed via env['res.users']._get_company() # _get_company is redefined in website_multi_company to use website_id from context self.assertEqual( p.company_id.id, company.id, "Partner creation ignore current website from context", )
StarcoderdataPython
145611
<filename>courses/migrations/0001_initial.py # -*- coding: utf-8 -*- # Generated by Django 1.9 on 2016-03-03 15:51 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Course', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=255)), ('edx_course_key', models.CharField(blank=True, max_length=255, null=True)), ('enrollment_start', models.DateTimeField(blank=True, null=True)), ('start_date', models.DateTimeField(blank=True, null=True)), ('enrollment_url', models.URLField(blank=True, null=True)), ('prerequisites', models.TextField(blank=True, null=True)), ], ), migrations.CreateModel( name='Program', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=255)), ('live', models.BooleanField(default=False)), ], ), migrations.AddField( model_name='course', name='program', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='courses.Program'), ), ]
StarcoderdataPython
182546
# Copyright 2018 Owkin, inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from .users.bootstrap_admin import bootstrap_admin from .users.admin import admin from orderer.orderers.orderer1 import orderer1 SUBSTRA_PATH = os.getenv('SUBSTRA_PATH', '/substra') orderer = { 'type': 'orderer', 'name': 'orderer', 'mspid': 'ordererMSP', 'broadcast_dir': { 'external': f'{SUBSTRA_PATH}/data/log/broadcast', 'internal': '/etc/hyperledger/fabric/broadcast' }, 'tls': { # careful, `ca-cert.pem` is the default cert name file and a # example file with this name is already present in the docker # image, do not forget to remove these examples files in your # docker CMD overriding if naming the same way 'certfile': { 'external': f'{SUBSTRA_PATH}/data/orgs/orderer/tls-ca-cert.pem', 'internal': '/etc/hyperledger/fabric/ca/tls-ca-cert.pem' }, 'clientkey': '' }, 'ca': { 'name': 'rca-orderer', 'host': 'rca-orderer', 'certfile': { 'external': f'{SUBSTRA_PATH}/data/orgs/orderer/ca-cert.pem', 'internal': '/etc/hyperledger/fabric/ca/ca-cert.pem' }, 'keyfile': { 'external': f'{SUBSTRA_PATH}/data/orgs/orderer/ca-key.pem', 'internal': '/etc/hyperledger/fabric/ca/ca-key.pem' }, 'port': { 'internal': 7054, 'external': 9054 }, 'url': 'https://rca-orderer:7054', 'logfile': f'{SUBSTRA_PATH}/data/log/rca-orderer.log', 'server-config-path': f'{SUBSTRA_PATH}/conf/orderer/fabric-ca-server-config.yaml', 'client-config-path': f'{SUBSTRA_PATH}/conf/orderer/fabric-ca-client-config.yaml', 'affiliations': { 'owkin': ['paris'] }, 'users': { 'bootstrap_admin': bootstrap_admin, }, }, 'users': { 'admin': admin, }, 'csr': { 'cn': 'rca-orderer', # The "hosts" value is a list of the domain names which the certificate should be valid for. 'hosts': ['rca-orderer'], 'names': [ {'C': 'FR', 'ST': 'Ile-de-France', 'L': 'Paris', 'O': 'owkin', 'OU': None} ], }, 'core_dir': { 'internal': '/etc/hyperledger/fabric', }, 'orderers': [orderer1], }
StarcoderdataPython
140757
"""The tests for deCONZ logbook.""" from copy import deepcopy from homeassistant.components import logbook from homeassistant.components.deconz.deconz_event import CONF_DECONZ_EVENT from homeassistant.components.deconz.gateway import get_gateway_from_config_entry from homeassistant.const import CONF_DEVICE_ID, CONF_EVENT, CONF_ID, CONF_UNIQUE_ID from homeassistant.setup import async_setup_component from .test_gateway import DECONZ_WEB_REQUEST, setup_deconz_integration from tests.components.logbook.test_init import MockLazyEventPartialState async def test_humanifying_deconz_event(hass): """Test humanifying deCONZ event.""" data = deepcopy(DECONZ_WEB_REQUEST) data["sensors"] = { "0": { "id": "Switch 1 id", "name": "Switch 1", "type": "ZHASwitch", "state": {"buttonevent": 1000}, "config": {}, "uniqueid": "00:00:00:00:00:00:00:01-00", }, "1": { "id": "Hue remote id", "name": "Hue remote", "type": "ZHASwitch", "modelid": "RWL021", "state": {"buttonevent": 1000}, "config": {}, "uniqueid": "0fc00:db20:35b:7399::5-00", }, } config_entry = await setup_deconz_integration(hass, get_state_response=data) gateway = get_gateway_from_config_entry(hass, config_entry) hass.config.components.add("recorder") assert await async_setup_component(hass, "logbook", {}) entity_attr_cache = logbook.EntityAttributeCache(hass) events = list( logbook.humanify( hass, [ MockLazyEventPartialState( CONF_DECONZ_EVENT, { CONF_DEVICE_ID: gateway.events[0].device_id, CONF_EVENT: 2000, CONF_ID: gateway.events[0].event_id, CONF_UNIQUE_ID: gateway.events[0].serial, }, ), MockLazyEventPartialState( CONF_DECONZ_EVENT, { CONF_DEVICE_ID: gateway.events[1].device_id, CONF_EVENT: 2001, CONF_ID: gateway.events[1].event_id, CONF_UNIQUE_ID: gateway.events[1].serial, }, ), ], entity_attr_cache, {}, ) ) assert events[0]["name"] == "Switch 1" assert events[0]["domain"] == "deconz" assert events[0]["message"] == "fired event '2000'." assert events[1]["name"] == "Hue remote" assert events[1]["domain"] == "deconz" assert events[1]["message"] == "'Long press' event for 'Dim up' was fired."
StarcoderdataPython
3377954
<filename>functions_legacy/FactorAnalysis.py<gh_stars>1-10 import matplotlib.pyplot as plt import numpy as np from numpy import sum as npsum from numpy import zeros, sort, diag, eye, abs, sqrt, tile, maximum, argsort, max as npmax from numpy.linalg import eig, matrix_rank plt.style.use('seaborn') from functions_legacy.ConditionalPC import ConditionalPC def FactorAnalysis(c2,d,k_): # This function computes the Low Rank Diagonal Conditional Correlation # INPUT: # c2 :[matrix](n_ x n_) correlation matrix # d :[matrix](m_ x n_) matrix of constraints # k_ :[scalar] rank of matrix beta. # OP: # c2_LRD :[matrix](n_ x n_) shrunk matrix of the form [email protected]+I-diag([email protected]) where beta is a n_ x k_ matrix # beta :[matrix](n_ x k_) low rank matrix: n_ x k_ # iter :[scalar] number of iterations # constraint :[scalar] boolean indicator, it is equal to 1 in case the constraint is satisfied, i.e. d@beta = 0 # For details on the exercise, see here . ## Code CONDITIONAL=1 if npsum(abs(d.flatten()))==0: CONDITIONAL=0 n_ = c2.shape[0] if k_ > n_-matrix_rank(d): raise Warning('k_ has to be <= rho.shape[0]-rank[d]') NmaxIter = 1000 eps1 = 1e-9 eta = 0.01 gamma = 0.1 constraint = 0 #initialize output c2_LRD = c2 dist = zeros iter = 0 #0. Initialize Diag_lambda2, e = eig(c2) lambda2 = Diag_lambda2 lambda2_ord, order = sort(lambda2)[::-1], argsort(lambda2)[::-1] lam = np.real(sqrt(lambda2_ord[:k_])) e_ord = e[:, order] beta = np.real(e_ord[:n_,:k_]@np.diagflat(maximum(lam,eps1))) c = c2 for j in range(NmaxIter): #1. Conditional PC a = c-eye(n_)+np.diagflat(diag([email protected])) if CONDITIONAL==1: lambda2, E = ConditionalPC(a, d) lambda2 = lambda2[:k_] E = E[:,:k_] lam = sqrt(lambda2) else: #if there aren't constraints: standard PC using the covariance matrix Diag_lambda2, e = eig(a) lambda2 = Diag_lambda2 lambda2_ord, order = sort(lambda2)[::-1], argsort(lambda2)[::-1] e_ord = e[:, order] E = e_ord[:,:k_] lam = sqrt(lambda2_ord[:k_]) #2.loadings beta_new = [email protected](maximum(lam,eps1)) #3. Rows length l_n = sqrt(npsum(beta_new**2,1)) #4. Rows scaling beta_new[l_n > 1,:] = beta_new[l_n > 1,:]/tile(l_n[l_n > 1,np.newaxis]*(1+gamma),(1,k_)) #5. reconstruction c = beta_new@beta_new.T+eye(n_,n_)-diag(diag(beta_new@beta_new.T)) #6. check for convergence distance = 1/n_*npsum(sqrt(npsum((beta_new-beta)**2,1))) if distance <= eta: c2_LRD = c dist = distance iter = j beta = beta_new.copy() if d.shape == (1,1): tol = npmax(abs(d*beta)) else: tol = npmax(abs(d.dot(beta))) if tol < 1e-9: constraint = 1 break else: beta = beta_new.copy() beta = np.real(beta) c2_LRD = np.real(c2_LRD) c2_LRD = (c2_LRD+c2_LRD.T)/2 return c2_LRD, beta, dist, iter, constraint
StarcoderdataPython
107247
#!/usr/bin/python # script preparing tab file to plot in R for small RNA profiling # version 1 29-1-2012 # Usage plotter.py <bowtie input> <min size> <max size> <normalization factor> <tabular output> import sys def acquisition (file2parse, sizerange): F = open (file2parse) plus_table = {} minus_table = {} for line in F: field = line.split() coordinate = int( field[3] ) strand = field[1] sequence = field[4] size = len (sequence ) if strand == "+" and size in sizerange: plus_table[coordinate] = plus_table.get(coordinate, 0) + 1 if strand == "-" and size in sizerange: coordinate = coordinate + size -1 # 23-11-2012 : this line was missing ! it is a BUG that probably altered the Nature maps :-(( minus_table[coordinate] = minus_table.get(coordinate, 0) + 1 return plus_table, minus_table def output_table (plus_table, minus_table, Nfactor, output): Nfactor = float(Nfactor) plus_coordinates = set( plus_table.keys() ) minus_coordinates = set( minus_table.keys() ) coords = sorted (plus_coordinates.union (minus_coordinates) ) ## added 23-2-2013 to have, instead, exaustive coordinates ## coords = range (min(coords), max(coords) + 1) ## OUT = open (output, "w") print >> OUT, "coord\tplus\tminus" for coordinate in coords : print >> OUT, "%s\t%s\t%s" % ( coordinate, plus_table.get(coordinate, 0)*Nfactor, - minus_table.get(coordinate, 0)*Nfactor ) def sizing (minsize, maxsize) : size_range = range ( int (minsize), int (maxsize) + 1 ) return size_range plus_table, minus_table = acquisition (sys.argv[1], sizing ( sys.argv[2], sys.argv[3] ) ) output_table ( plus_table, minus_table, sys.argv[4], sys.argv[5] )
StarcoderdataPython
3282783
import os import jinja2 import reconcile.templates as templates def get_package_environment(): """Loads templates from the current Python package""" templates_dir = os.path.dirname(templates.__file__) template_loader = jinja2.FileSystemLoader(searchpath=templates_dir) return jinja2.Environment(loader=template_loader)
StarcoderdataPython
1651153
import subprocess as sp import torch as th def run_bench(name, *args, device="cpu"): args = list(args) args += ["-d", device] if device == "cuda" and not th.cuda.is_available(): return "Not available /!\\" return sp.check_output(["python3", "-m", f"bench.{name}"] + args).decode('utf8') def main(): template = f"""\ ## Benchmarking and verification of Julius In order to verify the correctness and speed of the implementations in Julius, we compare ourselves to different reference implementations, comparing speed and checking how far we are. ### ResampleFrac We compare `julius.resample` to `resampy`, on an input of size (32, 8 * 44100), i.e. a batch of size 16 of 8 second of audio at 44.1kHz. We use the same number of zero crossing as `resampy` for this benchmark. The small delta is probably due to the different window function used. On CPU we have: {run_bench('resample')} On GPU we have: {run_bench('resample', device='cuda')} ### FFTConv1d We compare to `pytorch.nn.functional.conv1d`, on a input of size [32, 32, 10240], for a convolution with 32 input channels, 64 output channels and various kernel sizes. On CPU we have: {run_bench('fftconv')} On GPU we have: {run_bench('fftconv', device='cuda')} ### LowPassFilter We do not compare to anything, but measure the attenuation in dB of a pure tone at `0.9 * cutoff`, at the `cutoff`, and at `1.1 * cutoff`. Note that our implementation automatically choses to use FFTConv1d or not when appropriate. On CPU we have: {run_bench('lowpass')} On GPU we have: {run_bench('lowpass', device='cuda')} """ print(template) if __name__ == "__main__": main()
StarcoderdataPython
71437
<gh_stars>0 # Author: <NAME> # Date: 2015 """ Visualize the generated localization synthetic data stored in h5 data-bases """ from __future__ import division import io import os import os.path as osp import numpy as np import matplotlib.pyplot as plt import h5py from common import * import string import random from PIL import Image OUT_FOLD = 'output' anno_fold = 'annotations' img_fold = 'images' def id_generator(size=8, chars=string.ascii_lowercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) def save_textbb(fid, out_fold ,text_im, charBB_list, wordBB, txt, alpha=1.0): """ text_im : image containing text charBB_list : list of 2x4xn_i bounding-box matrices wordBB : 2x4xm matrix of word coordinates """ image = Image.fromarray(np.uint8(text_im)) sfp = os.path.join(OUT_FOLD, img_fold) image.save(os.path.join(sfp, fid+'.jpg')) H,W = text_im.shape[:2] txt_out = [] for t in txt: txt_out += t.decode('utf-8').split() dimset = [] # plot the word-BB: for i in range(wordBB.shape[-1]): bb = wordBB[:,:,i] bb = np.c_[bb,bb[:,0]] # visualize the indiv vertices: xyset = [] for j in range(4): xyset.append(int(bb[0,j])) xyset.append(int(bb[1,j])) dimset.append(xyset) fp = os.path.join(OUT_FOLD, anno_fold) afp = os.path.join(fp, fid + '.txt') with open(afp, 'w') as f: assert len(txt_out) == len(dimset) for i in range(len(txt_out)): str_out = ','.join(str(x) for x in dimset[i]) str_out += ',' + txt_out[i] f.write('{}\n'.format(str_out)) def main(db_fname, OUT_FOLD): db = h5py.File(db_fname, 'r') dsets = sorted(db['data'].keys()) print("total number of images : ", colorize(Color.RED, len(dsets), highlight=True)) for k in dsets: rgb = db['data'][k][...] charBB = db['data'][k].attrs['charBB'] wordBB = db['data'][k].attrs['wordBB'] txt = db['data'][k].attrs['txt'] fid = id_generator() save_textbb(fid, OUT_FOLD, rgb, [charBB], wordBB, txt) print("image name : ", colorize(Color.RED, k, bold=True)) print(" ** no. of chars : ", colorize(Color.YELLOW, charBB.shape[-1])) print(" ** no. of words : ", colorize(Color.YELLOW, wordBB.shape[-1])) print(" ** text : ", colorize(Color.GREEN, txt)) db.close() if __name__=='__main__': if not os.path.exists(OUT_FOLD): os.makedirs(OUT_FOLD) if not os.path.exists(os.path.join(OUT_FOLD, anno_fold)): os.makedirs(os.path.join(OUT_FOLD, anno_fold)) os.makedirs(os.path.join(OUT_FOLD, img_fold)) main('results/SynthText.h5', OUT_FOLD)
StarcoderdataPython
1657579
import datetime import logging import mock import os import shutil import socket import tempfile import unittest from lib.purge_remote_folder import PurgeRemoteFolders class TestPurgeRemoteFolders(unittest.TestCase): @staticmethod def _to_unix_timestamp(date_obj): return (date_obj - datetime.date(1970, 1, 1)).total_seconds() def setUp(self): self.age_in_days = 30 self.dryrun = True self.directory = tempfile.mkdtemp() self.files = [ os.path.basename(tempfile.mkstemp(prefix=name, dir=self.directory)[1]) for name in [ "too_old", "too_new", "KEEP_"]] for tfile in self.files: atime = self._to_unix_timestamp(datetime.date.today()) mtime = atime if tfile.startswith("too_new") else \ self._to_unix_timestamp(datetime.date.today() - datetime.timedelta(days=(self.age_in_days + 1))) os.utime(os.path.join(self.directory, tfile), (atime, mtime)) self.execution_id = "this-is-an-execution-id" self.action = self.get_instance( os.path.basename(self.directory), self.age_in_days, self.dryrun, self.execution_id) self.action.archive_base_dir = self.directory def get_instance(self, *args): inst = PurgeRemoteFolders(*args) inst.log = mock.MagicMock(spec=logging.Logger) return inst def tearDown(self): shutil.rmtree(self.directory, ignore_errors=True) def test_sanitize_path(self): root_dir = os.path.join("/path", "to", "root") abs_path = os.path.join("/this", "is", "an", "absolute", "path") escape_path = os.path.join("..", "some", "other", "dir") upward_path = os.path.join("this", "..", "path", "..", "has", "..", "upward", "..", "references", "..") good_path = os.path.join("and", "subdirectory") self.assertRaisesRegexp(ValueError, "absolute path which", self.action.sanitize_path, abs_path, root_dir) self.assertRaisesRegexp(ValueError, "path outside of", self.action.sanitize_path, escape_path, root_dir) self.assertEqual(root_dir, self.action.sanitize_path(upward_path, root_dir)) self.assertEqual(os.path.join(root_dir, good_path), self.action.sanitize_path(good_path, root_dir)) # create symlinks that may escape from directory abs_symlink = "abs_symlink" escape_symlink = "escape_symlink" good_symlink = "good_symlink" os.symlink(abs_path, os.path.join(self.directory, abs_symlink)) os.symlink(escape_path, os.path.join(self.directory, escape_symlink)) os.symlink(os.path.join(self.directory, good_path), os.path.join(self.directory, good_symlink)) self.assertRaisesRegexp( ValueError, "path outside of", self.action.sanitize_path, abs_symlink, self.directory) self.assertRaisesRegexp( ValueError, "path outside of", self.action.sanitize_path, escape_symlink, self.directory) self.assertEqual( os.path.join(self.directory, good_path), self.action.sanitize_path(good_symlink, self.directory)) def test_get_files_and_folders(self): expected_files_and_folders = filter( lambda p: os.path.basename(p).startswith("too_old"), self.files) observed_files_and_folders = self.action.get_files_and_folders() self.assertListEqual(expected_files_and_folders, observed_files_and_folders) def test_purge_files_and_folders(self): self.action.purge_files_and_folders(self.files) self.assertTrue(all(map(lambda p: os.path.exists(os.path.join(self.directory, p)), self.files))) self.action.dryrun = False self.action.purge_files_and_folders(self.files) self.assertFalse(any(map(lambda p: os.path.exists(os.path.join(self.directory, p)), self.files))) self.action.purge_files_and_folders([""]) self.assertFalse(os.path.exists(self.directory)) def test_run(self): directory_pattern = os.path.join("path", "to", "archive") expected_directory = os.path.join("/data", socket.gethostname(), directory_pattern) expected_output = filter(lambda p: p.startswith("too_old"), self.files) self.action = self.get_instance(directory_pattern, self.age_in_days, self.dryrun, self.execution_id) self.assertEqual(expected_directory, self.action.archive_base_dir) with mock.patch.object( self.action, 'get_files_and_folders') as get_files_and_folders, mock.patch.object( self.action, 'purge_files_and_folders') as purge_files_and_folders: get_files_and_folders.return_value = expected_output observed_output = self.action.purge() self.assertListEqual(expected_output, observed_output) get_files_and_folders.assert_called_once_with() purge_files_and_folders.assert_called_once_with(expected_output) # also, ensure that exceptions are handled properly purge_files_and_folders.side_effect = IOError("key error raised by mock") self.assertRaises(IOError, self.action.purge) get_files_and_folders.side_effect = ValueError("value error raised by mock") self.assertRaises(ValueError, self.action.purge)
StarcoderdataPython
3243559
<gh_stars>0 import argparse import os, sys import json from shutil import copyfile this_file_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(this_file_path.split('generators')[0]) from helper_functions import get_Manchester_Syntax if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--example_config", type=str, default=this_file_path.split('generators')[0]+"dl-foil/DLFoil2/ntn.xml", \ help="Path to an example configuration file") args = parser.parse_args() kbs = ["carcinogenesis", "mutagenesis", "family-benchmark", "semantic_bible", "vicodi"] for kb in kbs: path = this_file_path.split('generators')[0]+"dl-foil/DLFoil2/ontos/"+kb+".owl" if kb == "family-benchmark": path = this_file_path.split('generators')[0]+"dl-foil/DLFoil2/ontos/"+kb+"_rich_background.owl" if not os.path.isfile(path): if kb != "family-benchmark": copyfile(this_file_path.split('generators')[0]+"Datasets/"+kb+"/"+kb+".owl", this_file_path.split('generators')[0]+"dl-foil/DLFoil2/ontos/"+kb+".owl") else: copyfile(this_file_path.split('generators')[0]+"Datasets/"+kb+"/"+kb+"_rich_background.owl", this_file_path.split('generators')[0]+"dl-foil/DLFoil2/ontos/"+kb+"_rich_background.owl") for kb in kbs: with open(this_file_path.split('generators')[0]+"dl-foil/DLFoil2/"+kb+"_config.xml", "w") as file_config: with open(this_file_path.split('generators')[0]+"Datasets/"+kb+"/Results/concept_learning_results_celoe_clp.json") as file_lp: lps = json.load(file_lp)["Learned Concept"] with open(args.example_config) as file_example: example_lines = file_example.readlines() i = 0 for line in example_lines: if "<kb>file" in line: file_name = kb+".owl" if kb != "family-benchmark" else "family-benchmark_rich_background.owl" file_config.write("<kb>file:./ontos/"+file_name+"</kb>") i += 1 continue file_config.write(line) i += 1 if "\t<targets>" in line: break file_config.write("\n") for lp in lps: file_config.write("\t\t<target>\n") file_config.write("\t\t"+get_Manchester_Syntax(lp)+"\n") file_config.write("\t\t</target>\n") file_config.write("\n") write = False while i < len(example_lines): if "</targets>" in example_lines[i]: write = True if write: file_config.write(example_lines[i]) i += 1
StarcoderdataPython
1656669
""" Find the largest 0 to 9 pandigital that can be formed by concatenating products """
StarcoderdataPython
58027
<reponame>husqvarnagroup/GETL """ The Utils module containing utility functions for lift jobs. Utilities supported: 1. json_to_spark_schema: Converts a json schema to spark schema. 2. delete_files: Deletes a list of s3 files provided. 3. copy_keys: Copies files between S3 buckets. 4. copy_and_cleanup: Copies files between S3 and removes them from source. """ from typing import Dict, List, Tuple, TypeVar from pyspark.sql.types import StructType from getl.logging import get_logger from .s3path import S3Path LOGGER = get_logger(__name__) JsonSchemaType = TypeVar("T", int, float, str) def json_to_spark_schema(json_schema: Dict[str, JsonSchemaType]) -> StructType: """ Return Spark Schema for a JSON schema. Args: json_schema (Dict[str, JSON_SCHEMA_TYPE]): schema in json format. Returns: StructType: Spark Schema for the corresponding JSON schema. Raises: KeyError: Missing Schema key fields Name/Field/Nullable TypeError: Invalid json was provided """ try: return StructType.fromJson(json_schema) except KeyError as key_error: LOGGER.error(str(key_error)) raise KeyError( "Missing key: {0}. Valid format: {1}".format( str(key_error), "All schema columns must have a name, type and nullable key", ) ) except TypeError as key_error: LOGGER.error(str(key_error)) raise TypeError("Invalid json was provided") def delete_files(paths: List[str]) -> None: """Delete list of files from S3 bucket. Args: paths (List[str]): A list of paths pointing out to a key Returns: None Raises: PermissionError: When requested to deleted files from raw layer Sample Use: delete_files(['s3://landingzone/amc-connect/file.txt', 's3://datalake/amc/raw/file.txt']) """ # TODO: remove me if any("husqvarna-datalake/raw/" in path for path in paths): raise PermissionError( "Access Denied: Not possible to remove files from raw layer" ) for path in paths: s3path = S3Path(path) s3path.delete() def copy_and_cleanup(paths: List[Tuple[str]]) -> None: """Move files from source S3 bucket to the destination bucket. Args: paths (List[Tuple[str]]): a list that represents [('source', 'target')...] Returns: None Calls: copy_keys to copy files between buckets delete_files for source cleanup Sample Use: copy_keys([('landingzone/amc-connect/file.txt', 'datalake/amc/raw/file.txt')]) """ copy_keys(paths) delete_files([t[0] for t in paths]) def copy_keys(paths: List[Tuple[str]]) -> None: """Copy files from source S3 bucket to the destination bucket. Args: paths (List[Tuple[str]]): a list that represents [('source', 'target')...] Returns: None Raises: FileNotFoundError: When any of requested files are not found in S3 Sample Use: copy_keys([('landingzone/amc-connect/file.txt', 'datalake/amc/raw/file.txt')]) """ # TODO: Remove me for path in paths: source = S3Path(path[0]) target = S3Path(path[1]) source.copy(target)
StarcoderdataPython
1678039
import sqlite3 from sqlbuilder.smartsql import Q, T, Result from sqlbuilder.smartsql.dialects.sqlite import compile from .Users import Users class DbUsers(Users): def __init__(self, db_name: str) -> None: self.db_name = db_name def add(self, email): # type: (str) -> None with sqlite3.connect(self.db_name) as connection: connection.execute( *Q( T.user, result=Result(compile=compile) ).insert( { T.user.email: email } ) ) def contains(self, email): # type: (str) -> bool contains = False with sqlite3.connect(self.db_name) as connection: info = connection.execute( *compile(Q(T.user).fields('*').where(T.user.email == email)) ).fetchone() if info: contains = True return contains
StarcoderdataPython
10036
# -*- coding: utf-8 -*- from __future__ import unicode_literals from appconf import AppConf from django.conf import settings # noqa class LabjsConf(AppConf): ENABLED = not settings.DEBUG DEBUG_TOGGLE = 'labjs'
StarcoderdataPython
171610
from django.test import TestCase from devnotes.models import Devnote class DevnoteTestCases(TestCase): def setUp(self): Devnote.objects.create(name='testnote', description='testnote description') def test_retrieve_note(self): """retrieve the testnote""" testnote=Devnote.objects.all()[0] self.assertEqual(testnote.name, 'testnote') def test_create_new_entry(self): """create new note""" new_note = Devnote.objects.create(name='newnote', description='newnote description') db_entry= Devnote.objects.order_by('-created_at')[0] self.assertEqual(new_note.name,db_entry.name)
StarcoderdataPython
88417
<gh_stars>0 import json import requests from requests.models import Response from src.models.GithubException import GithubException class Graphql: url: str items_per_request: int cursor = None def __init__(self, url: str, items_per_request: int) -> None: self.url = url self.items_per_request = items_per_request def get_disk_usage_query(self, owner: str, name: str): return """ query { repository(owner: "%(owner)s", name: "%(name)s") { diskUsage } } """ % { 'owner': owner, 'name': name, } def get_labels_query(self, owner: str, name: str): return """ query { repository(owner: "%(owner)s", name: "%(name)s") { labels(first: 10, query: "bug error fix") { nodes { ... on Label { name } } } } } """ % { 'owner': owner, 'name': name, 'after': ('"{}"'.format(self.cursor) if self.cursor else 'null') } def get_issues_query(self, owner: str, name: str, labels: list[str]): return """ query { repository(owner: "%(owner)s", name: "%(name)s") { issues(first: %(issues)i, labels: [%(labels)s],after: %(after)s) { pageInfo { hasNextPage } edges { cursor node { ... on Issue { id state } } } } } } """ % { 'owner': owner, 'name': name, 'issues': self.items_per_request, 'labels': ','.join('"{}"'.format(item) for item in labels), 'after': ('"{}"'.format(self.cursor) if self.cursor else 'null') } def get_prs_query(self, owner: str, name: str, labels: list[str]): return """ query { repository(owner: "%(owner)s", name: "%(name)s") { pullRequests(first: %(issues)i, after: %(after)s) { pageInfo { hasNextPage } edges { cursor node { ... on PullRequest { id state body labels(first: 10) { nodes { name } } } } } } } } """ % { 'owner': owner, 'name': name, 'issues': self.items_per_request, 'after': ('"{}"'.format(self.cursor) if self.cursor else 'null') } def _fetch_data(self, query: str, token: str) -> dict: response: Response = requests.post(self.url, json={'query': query}, headers={ 'Authorization': token }) if response.status_code != 200: raise GithubException( 'There was an error while trying to make the request' ) return json.loads(response.text) def get_labels_data(self, query: str, token: str): json_data = self._fetch_data(query, token) labels_nodes = json_data['data']['repository']['labels']['nodes'] return [item['name'] for item in labels_nodes] def get_disk_usage_data(self, query: str, token: str): json_data = self._fetch_data(query, token) disk_usage = json_data['data']['repository']['diskUsage'] return disk_usage def get_issues_data(self, query: str, token: str): json_data = self._fetch_data(query, token) issues = json_data['data']['repository']['issues'] has_next_page = issues['pageInfo']['hasNextPage'] edges: list = issues['edges'] if not has_next_page: self.cursor = None else: self.cursor = edges[-1]['cursor'] return edges, has_next_page def get_prs_data(self, query: str, token: str): json_data = self._fetch_data(query, token) prs = json_data['data']['repository']['pullRequests'] has_next_page = prs['pageInfo']['hasNextPage'] edges: list = prs['edges'] if not has_next_page: self.cursor = None else: self.cursor = edges[-1]['cursor'] return edges, has_next_page
StarcoderdataPython
157617
"""Part of the flag-loader project. Copyright: (C) 2014 <NAME> License: MIT License (see LICENSE.txt) Exported classes: BaseResolver """ from abc import ABCMeta, abstractmethod class BaseResolver(object, metaclass=ABCMeta): """Abstract base class for all resolvers.""" @abstractmethod def get_flag(self, data): pass @abstractmethod def normalize(self, data): pass
StarcoderdataPython
127362
<reponame>AlbertSuarez/casescan from src.engine.initializator import cases_db from src.helper import response_builder def get(case_id=None): if case_id: if case_id in cases_db: return response_builder.make( False, response=dict(results=[dict(case_id=case_id, sections=cases_db.get(case_id))]) ) else: return response_builder.make(True, message=f'Clinical case with id [{case_id}] could not be found.') else: return response_builder.make( False, response=dict(results=[dict(case_id=k, sections=v) for k, v in cases_db.items()]) )
StarcoderdataPython
3262464
import warnings # Version __version__ = '0.2.0' # Check for dependencies hard_dependencies = ['numpy','pandas','seaborn','scipy','matplotlib','sklearn'] missing_dependencies = [] for dependency in hard_dependencies: try: __import__(dependency) except ImportError as e: missing_dependencies.append(dependency) if missing_dependencies: warnings.warn("Missing required dependencies {0}".format(missing_dependencies), ImportWarning) del hard_dependencies, dependency, missing_dependencies
StarcoderdataPython
11818
<filename>algorithms/python/118.py class Solution: def generate(self, numRows): """ :type numRows: int :rtype: List[List[int]] """ if numRows == 0: return [] rls = [[1]] for i in range(2, numRows+1): row = [1] * i for j in range(1, i-1): row[j] = rls[-1][j-1] + rls[-1][j] rls.append(row) return rls
StarcoderdataPython
1617739
<reponame>IvanGavrilin/pyview # The MIT License (MIT) # # Copyright (c) 2016 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # marker: see MPL doc _SUPPORTED_ARGS = dict(size=1, color=1, alpha=1, zorder=1) _FLOAT_ARGS = dict(alpha=1, size=1) class Channel: def __init__(self, stream, ax, **kw): self.stream = stream self.dirty = True self.datatm = [] self.data = [] self.axes = ax args = {} for k, v in kw.items(): if not k in _SUPPORTED_ARGS: #raise Exception("Line: unknown arg '{}'".format(k)) continue if k in _FLOAT_ARGS: args[k] = float(v) else: args[k] = str(v) self.props = args def prepare_artists(self): if not self.dirty: return False if self.data: self.axes.set_title(self.data[-1], **self.props) self.dirty = False return True def destroy(self): self.axes.set_title('') self.stream = None def update_from_str(self, tm, line): self.dirty = True self.datatm.append(tm) self.data.append(line) self.stream.invalidate() def _update_text(self, text, text_tm): old_title = self.axes.get_title() if old_title != text: self.axes.set_title(text, **self.props) return (True, text_tm) return (False, ) def mouse_move(self, event): for i in range(len(self.datatm)-1, -1, -1): if event.xdata >= self.datatm[i]: return self._update_text(self.data[i], self.datatm[i]) return self._update_text('', None) def mouse_leave(self, event): return self._update_text(self.data[-1], None)
StarcoderdataPython
3327281
import numpy as np from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from data_utils import * def predict_all(model, all_data): """ Predict odor probabilities for all trials. :param model: (keras) decoding model :param all_data: (4d numpy array) data of format [trial, window, neuron, time] :return: (3d numpy array) prediction of format [trial, time, odor] """ test = stack_data(all_data, 25, 10) n_trial, n_window = test.shape[0:2] all_pred = np.zeros((n_trial, n_window, 5)) for i in range(n_trial): all_pred[i, :, :] = model.predict(test[i, :, :, :]) return all_pred def extract_latent(intermediate_layer, spike_data, lfp_data, tetrode_ids, tetrode_units, window, stride): """ Extract latent representation of decoding model. :param intermediate_layer: (keras) function that outputs last hidden layer :param spike_data: (3d numpy array) spike train data of format [trial, neuron, time] :param lfp_data: (3d numpy array ) LFP data of format [trial, tetrode, time] :param tetrode_ids: (list) of tetrode ids in the order of LFP data :param tetrode_units: (dict) number of neuron units on each tetrode :param window: (int) time window size must be the same for training the model :param stride: (int) moving window stride :return: (3d numpy array) latent space of format [trial, window, dim] """ spike_stack = stack_data(spike_data, window, stride) lfp_stack = stack_data(lfp_data, window, stride) n_trial, n_window = spike_stack.shape[:2] all_latent = np.zeros((n_trial, n_window, 10)) for i in range(n_window): test_data = organize_tetrode(spike_stack[:, i, :, :], lfp_stack[:, i, :, :], tetrode_ids, tetrode_units, verbose=False) latent = intermediate_layer.predict(test_data) all_latent[:, i, :] = latent return all_latent def latent_models(latent_data, latent_target, decoding_index): """ Create models in latent space: PCA model to reduce dimensionality and logistic regression model for decoding. :param latent_data: (3d numpy array) latent space of format [trial, window, dim] :param latent_target: (1d numpy array) odor target :param decoding_index: (int) which time window to use :return: (sklearn) PCA and LR models """ temp = np.split(latent_data, latent_data.shape[1], axis=1) latent_stack = np.vstack([x[:, 0, :] for x in temp]) pca = PCA(n_components=2) pca = pca.fit(latent_stack) latent_decoding = pca.transform(latent_data[:, decoding_index, :]) clf = LogisticRegression(multi_class='multinomial', solver='lbfgs') clf = clf.fit(latent_decoding, latent_target) return pca, clf def latent_grid(latent_data, pca, clf, h=0.01): """ Create grid in latent for visualization. """ temp = np.split(latent_data, latent_data.shape[1], axis=1) latent_stack = np.vstack([x[:, 0, :] for x in temp]) principal = pca.transform(latent_stack) x_max, y_max = np.max(principal, axis=0) + 0.1 x_min, y_min = np.min(principal, axis=0) - 0.1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) return xx, yy, Z def align_rolling(trial_idx, time_idx, data_spike, scaler, decoder): """ Predict with a rolling window around SWR events. """ rolling_hat = np.zeros((20, 4)) for i in range(20): current_start = time_idx - 20 + i * 2 current_end = current_start + 25 current_window = np.expand_dims(data_spike[trial_idx, :, current_start:current_end], axis=0) current_data = scaler.transform(np.mean(current_window, axis=2)) current_hat = decoder.predict_proba(current_data) rolling_hat[i, :] = current_hat return rolling_hat
StarcoderdataPython
1669854
<reponame>bcpki/bitcoin #!/usr/bin/env python # # BCPKI - BlockchainPKI # Copyright (C) 2013 <EMAIL>, <EMAIL> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import sys, getopt, os from bcert import * # default ascii = data = binhex = store = filename = False pretty = True optlist,args = getopt.getopt(sys.argv[1:],'adxsf') for (k,v) in optlist: if k in ["-a","-d","-x","-f"]: pretty = False if k == "-a": ascii = True elif k == "-d": data = True elif k == "-x": binhex = True elif k == "-s": store = True elif k == "-f": filename = True if store: idx = alias2idx(args[0]) fname = os.path.expanduser('~/.bitcoin/testnet3/bcerts/'+idx+'.bcrt') if filename: print idx else: fname = args[0] bcrt = open(fname).read() if pretty: print bcrt2cert(bcrt) if ascii: print bcrt2asciiarmored(bcrt) if data: print bcrt2hashx(bcrt) if binhex: print bcrt.encode('hex')
StarcoderdataPython
4802130
<filename>00Python/day07/basic02.py<gh_stars>100-1000 """ 函数中的局部变量的释放狮是在函数执行完后就马上消失 全局变量是等真个程序运行完后进行销毁,作用域是整个函数 1- 如果局部变量名和全局的相同,那么执行的时候根据就近原则 2- 如果函数内找不到该变量名,那么就去找全局变量 3- 如果函数内想要就该外面的全局变量,使用globe关键字 """ num = 10 def my_func01(): # num = 20 这里是创建一个新的内部变量 global num num = 20 # 这里告诉函数并非创建新的局部变量,而是使用全局的变量操作 print("内部num = %s" % num) my_func01() print("外部num = %s" % num) """ 函数自建函数文档说明help(len) 如果函数内没有自定义文档说明,那么就返回找函数名上面一行的注释 """ help(len) # 这里是没有专门的说明进行返回的内容 def my_func02(num01, num02): """ 返回两个参数的和 :param num01: 数字1 :param num02: 数字2 :return: 两个数字的和 """ return num01 + num02 help(my_func02) """ id(obj)查找obj内存的物理地址引用门牌号 类似:定了一个房间但是没有入住,调用的时候才入住 a,b指向同一个房间,节省内存 """ a = 1000 b = 1000 c = "abc" # 字符串,元祖()等不可不的数据类型,修改的话是copy重新开一个房间 d = "abc" # 列表[],字典可变数据结构,修改的话是在同一个房间进行修改的。 c = "abcd" print(id(a)) print(id(b)) print(id(c)) print(id(d))
StarcoderdataPython
4819287
<filename>backend/simulation/demandside/building.py from simulation.demandside.component import ComponentSim from simulation.location_entity import LocationEntity from database.models import Building class BuildingSim(LocationEntity): def __init__(self, name, lat, long, listOfComponents, historicalData, hour = 0): LocationEntity.__init__(self, name, lat, long) self.listOfComponets = listOfComponents self.historicalData = historicalData self.hour = hour @classmethod def createFromModel(cls, building): listOfComponets = [] for comp in building.components: listOfComponets.append(ComponentSim(comp.name, comp.est, comp.let, comp.e, comp.lot)) return cls(building.name, building.lat, building.long, listOfComponets, building.historicalData) @classmethod def household(cls, name, lat, long): washing_machine = ComponentSim("washing_machine", 9, 17, 2, 2) dish_washer = ComponentSim("dish_washer", 9, 12, 1.8, 2) spin_dryer = ComponentSim("spin_dryer", 13, 18, 2.5, 1) electrical_vehicle = ComponentSim("electrical_vehicle", 18, 24, 3.5, 3) vacuum_cleaner = ComponentSim("vacuum_cleaner", 9, 17, 1.2, 1) listOfComponets = [washing_machine, dish_washer, spin_dryer, electrical_vehicle, vacuum_cleaner] historicalData = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] return cls(name, lat, long, listOfComponets, historicalData) @classmethod def office(cls, name, lat, long): dish_washer1 = ComponentSim("dish_washer1", 9, 12, 1.8, 2) dish_washer2 = ComponentSim("dish_washer2", 9, 12, 1.8, 2) dish_washer3 = ComponentSim("dish_washer3",9, 12, 1.8, 2) dish_washer4 = ComponentSim("dish_washer4",9, 12, 1.8, 2) vacuum_cleaner1 = ComponentSim("vacuum_cleaner1", 7, 10, 1.2, 1) vacuum_cleaner2 = ComponentSim("vacuum_cleaner2", 7, 9, 1.2, 1) vacuum_cleaner3 = ComponentSim("vacuum_cleaner3", 19, 21, 1.2, 1) vacuum_cleaner4 = ComponentSim("vacuum_cleaner4", 19, 23, 1.2, 1) electrical_vehicle1 = ComponentSim("electrical_vehicle1", 8, 18, 3.5, 3) electrical_vehicle2 = ComponentSim("electrical_vehicle2",18, 24, 3.5, 3) listOfComponets = [dish_washer1, dish_washer2, dish_washer3, dish_washer4, vacuum_cleaner1, vacuum_cleaner2, vacuum_cleaner3, vacuum_cleaner4, electrical_vehicle1, electrical_vehicle2] historicalData = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] return cls(name, lat, long, listOfComponets, historicalData) def currentDemand(self): '''returns the current demand of this building''' demandSum = self.historicalData[self.hour]; for component in self.listOfComponets: demandSum += component.currentDemand() return demandSum def update(self, hour): '''updates the state of all components in this building with the current time''' self.hour = hour % 24 for component in self.listOfComponets: component.update(hour) if __name__ == "__main__": home = BuildingSim.household("home1", 0, 0) for hour in range(0, 25): home.update(hour) print("----------------------------") print("Hour: " + str(hour)) print("Current Demand: " + str(home.currentDemand(hour))) for comp in home.listOfComponets: print(comp.state, "\t" + comp.name)
StarcoderdataPython
78492
<filename>vim/inference_rt.py import os import sys sys.path.insert(1, os.path.join(sys.path[0], '../')) import numpy as np import h5py import argparse import time import logging from sklearn import metrics from utils import utilities, data_generator, agument import tensorflow as tf slim = tf.contrib.slim import pandas as pd import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from mfcc import vggish_input as mfcc from mfcc import vggish_params import multiprocessing as mp import audio_sample try: import cPickle except BaseException: import _pickle as cPickle # Environment replace Speech labels = ['Environment', 'Male_speechAND_man_speaking', 'Female_speechAND_woman_speaking' , 'Child_speechAND_kid_speaking', 'Conversation', 'NarrationAND_monologue' , 'Babbling', 'Speech_synthesizer', 'Shout', 'Bellow', 'Whoop', 'Yell' , 'Battle_cry', 'Children_shouting', 'Screaming', 'Whispering', 'Laughter' , 'Baby_laughter', 'Giggle', 'Snicker', 'Belly_laugh', 'ChuckleAND_chortle' , 'CryingAND_sobbing', 'Baby_cryAND_infant_cry', 'Whimper', 'WailAND_moan' , 'Sigh', 'Singing', 'Choir', 'Yodeling', 'Chant', 'Mantra', 'Male_singing' , 'Female_singing', 'Child_singing', 'Synthetic_singing', 'Rapping', 'Humming' , 'Groan', 'Grunt', 'Whistling', 'Breathing', 'Wheeze', 'Snoring', 'Gasp', 'Pant' , 'Snort', 'Cough', 'Throat_clearing', 'Sneeze', 'Sniff', 'Run', 'Shuffle' , 'WalkAND_footsteps', 'ChewingAND_mastication', 'Biting', 'Gargling' , 'Stomach_rumble', 'BurpingAND_eructation', 'Hiccup', 'Fart', 'Hands' , 'Finger_snapping', 'Clapping', 'Heart_soundsAND_heartbeat', 'Heart_murmur' , 'Cheering', 'Applause', 'Chatter', 'Crowd' , 'HubbubAND_speech_noiseAND_speech_babble', 'Children_playing', 'Animal' , 'Domestic_animalsAND_pets', 'Dog', 'Bark', 'Yip', 'Howl', 'Bow-wow', 'Growling' , 'Whimper_(dog)', 'Cat', 'Purr', 'Meow', 'Hiss', 'Caterwaul' , 'LivestockAND_farm_animalsAND_working_animals', 'Horse', 'Clip-clop' , 'NeighAND_whinny', 'CattleAND_bovinae', 'Moo', 'Cowbell', 'Pig', 'Oink', 'Goat' , 'Bleat', 'Sheep', 'Fowl', 'ChickenAND_rooster', 'Cluck' , 'CrowingAND_cock-a-doodle-doo', 'Turkey', 'Gobble', 'Duck', 'Quack', 'Goose' , 'Honk', 'Wild_animals', 'Roaring_cats_(lionsAND_tigers)', 'Roar', 'Bird' , 'Bird_vocalizationAND_bird_callAND_bird_song', 'ChirpAND_tweet', 'Squawk' , 'PigeonAND_dove', 'Coo', 'Crow', 'Caw', 'Owl', 'Hoot' , 'Bird_flightAND_flapping_wings', 'CanidaeAND_dogsAND_wolves' , 'RodentsAND_ratsAND_mice', 'Mouse', 'Patter', 'Insect', 'Cricket', 'Mosquito' , 'FlyAND_housefly', 'Buzz', 'BeeAND_waspAND_etc.', 'Frog', 'Croak', 'Snake' , 'Rattle', 'Whale_vocalization', 'Music', 'Musical_instrument' , 'Plucked_string_instrument', 'Guitar', 'Electric_guitar', 'Bass_guitar' , 'Acoustic_guitar', 'Steel_guitarAND_slide_guitar' , 'Tapping_(guitar_technique)', 'Strum', 'Banjo', 'Sitar', 'Mandolin', 'Zither' , 'Ukulele', 'Keyboard_(musical)', 'Piano', 'Electric_piano', 'Organ' , 'Electronic_organ', 'Hammond_organ', 'Synthesizer', 'Sampler', 'Harpsichord' , 'Percussion', 'Drum_kit', 'Drum_machine', 'Drum', 'Snare_drum', 'Rimshot' , 'Drum_roll', 'Bass_drum', 'Timpani', 'Tabla', 'Cymbal', 'Hi-hat', 'Wood_block' , 'Tambourine', 'Rattle_(instrument)', 'Maraca', 'Gong', 'Tubular_bells' , 'Mallet_percussion', 'MarimbaAND_xylophone', 'Glockenspiel', 'Vibraphone' , 'Steelpan', 'Orchestra', 'Brass_instrument', 'French_horn', 'Trumpet' , 'Trombone', 'Bowed_string_instrument', 'String_section', 'ViolinAND_fiddle' , 'Pizzicato', 'Cello', 'Double_bass' , 'Wind_instrumentAND_woodwind_instrument', 'Flute', 'Saxophone', 'Clarinet' , 'Harp', 'Bell', 'Church_bell', 'Jingle_bell', 'Bicycle_bell', 'Tuning_fork' , 'Chime', 'Wind_chime', 'Change_ringing_(campanology)', 'Harmonica' , 'Accordion', 'Bagpipes', 'Didgeridoo', 'Shofar', 'Theremin', 'Singing_bowl' , 'Scratching_(performance_technique)', 'Pop_music', 'Hip_hop_music' , 'Beatboxing', 'Rock_music', 'Heavy_metal', 'Punk_rock', 'Grunge' , 'Progressive_rock', 'Rock_and_roll', 'Psychedelic_rock', 'Rhythm_and_blues' , 'Soul_music', 'Reggae', 'Country', 'Swing_music', 'Bluegrass', 'Funk' , 'Folk_music', 'Middle_Eastern_music', 'Jazz', 'Disco', 'Classical_music' , 'Opera', 'Electronic_music', 'House_music', 'Techno', 'Dubstep' , 'Drum_and_bass', 'Electronica', 'Electronic_dance_music', 'Ambient_music' , 'Trance_music', 'Music_of_Latin_America', 'Salsa_music', 'Flamenco', 'Blues' , 'Music_for_children', 'New-age_music', 'Vocal_music', 'A_capella' , 'Music_of_Africa', 'Afrobeat', 'Christian_music', 'Gospel_music' , 'Music_of_Asia', 'Carnatic_music', 'Music_of_Bollywood', 'Ska' , 'Traditional_music', 'Independent_music', 'Song', 'Background_music' , 'Theme_music', 'Jingle_(music)', 'Soundtrack_music', 'Lullaby' , 'Video_game_music', 'Christmas_music', 'Dance_music', 'Wedding_music' , 'Happy_music', 'Funny_music', 'Sad_music', 'Tender_music', 'Exciting_music' , 'Angry_music', 'Scary_music', 'Wind', 'Rustling_leaves' , 'Wind_noise_(microphone)', 'Thunderstorm', 'Thunder', 'Water', 'Rain' , 'Raindrop', 'Rain_on_surface', 'Stream', 'Waterfall', 'Ocean', 'WavesAND_surf' , 'Steam', 'Gurgling', 'Fire', 'Crackle', 'Vehicle', 'BoatAND_Water_vehicle' , 'SailboatAND_sailing_ship', 'RowboatAND_canoeAND_kayak' , 'MotorboatAND_speedboat', 'Ship', 'Motor_vehicle_(road)', 'Car' , 'Vehicle_hornAND_car_hornAND_honking', 'Toot', 'Car_alarm' , 'Power_windowsAND_electric_windows', 'Skidding', 'Tire_squeal' , 'Car_passing_by', 'Race_carAND_auto_racing', 'Truck', 'Air_brake' , 'Air_hornAND_truck_horn', 'Reversing_beeps' , 'Ice_cream_truckAND_ice_cream_van', 'Bus', 'Emergency_vehicle' , 'Police_car_(siren)', 'Ambulance_(siren)' , 'Fire_engineAND_fire_truck_(siren)', 'Motorcycle' , 'Traffic_noiseAND_roadway_noise', 'Rail_transport', 'Train', 'Train_whistle' , 'Train_horn', 'Railroad_carAND_train_wagon', 'Train_wheels_squealing' , 'SubwayAND_metroAND_underground', 'Aircraft', 'Aircraft_engine' , 'Jet_engine', 'PropellerAND_airscrew', 'Helicopter' , 'Fixed-wing_aircraftAND_airplane', 'Bicycle', 'Skateboard', 'Engine' , 'Light_engine_(high_frequency)', "Dental_drillAND_dentist's_drill" , 'Lawn_mower', 'Chainsaw', 'Medium_engine_(mid_frequency)' , 'Heavy_engine_(low_frequency)', 'Engine_knocking', 'Engine_starting' , 'Idling', 'AcceleratingAND_revvingAND_vroom', 'Door', 'Doorbell', 'Ding-dong' , 'Sliding_door', 'Slam', 'Knock', 'Tap', 'Squeak', 'Cupboard_open_or_close' , 'Drawer_open_or_close', 'DishesAND_potsAND_and_pans' , 'CutleryAND_silverware', 'Chopping_(food)', 'Frying_(food)' , 'Microwave_oven', 'Blender', 'Water_tapAND_faucet' , 'Sink_(filling_or_washing)', 'Bathtub_(filling_or_washing)', 'Hair_dryer' , 'Toilet_flush', 'Toothbrush', 'Electric_toothbrush', 'Vacuum_cleaner' , 'Zipper_(clothing)', 'Keys_jangling', 'Coin_(dropping)', 'Scissors' , 'Electric_shaverAND_electric_razor', 'Shuffling_cards', 'Typing' , 'Typewriter', 'Computer_keyboard', 'Writing', 'Alarm', 'Telephone' , 'Telephone_bell_ringing', 'Ringtone', 'Telephone_dialingAND_DTMF' , 'Dial_tone', 'Busy_signal', 'Alarm_clock', 'Siren', 'Civil_defense_siren' , 'Buzzer', 'Smoke_detectorAND_smoke_alarm', 'Fire_alarm', 'Foghorn', 'Whistle' , 'Steam_whistle', 'Mechanisms', 'RatchetAND_pawl', 'Clock', 'Tick', 'Tick-tock' , 'Gears', 'Pulleys', 'Sewing_machine', 'Mechanical_fan', 'Air_conditioning' , 'Cash_register', 'Printer', 'Camera', 'Single-lens_reflex_camera', 'Tools' , 'Hammer', 'Jackhammer', 'Sawing', 'Filing_(rasp)', 'Sanding', 'Power_tool' , 'Drill', 'Explosion', 'GunshotAND_gunfire', 'Machine_gun', 'Fusillade' , 'Artillery_fire', 'Cap_gun', 'Fireworks', 'Firecracker', 'BurstAND_pop' , 'Eruption', 'Boom', 'Wood', 'Chop', 'Splinter', 'Crack', 'Glass' , 'ChinkAND_clink', 'Shatter', 'Liquid', 'SplashAND_splatter', 'Slosh', 'Squish' , 'Drip', 'Pour', 'TrickleAND_dribble', 'Gush', 'Fill_(with_liquid)', 'Spray' , 'Pump_(liquid)', 'Stir', 'Boiling', 'Sonar', 'Arrow' , 'WhooshAND_swooshAND_swish', 'ThumpAND_thud', 'Thunk', 'Electronic_tuner' , 'Effects_unit', 'Chorus_effect', 'Basketball_bounce', 'Bang', 'SlapAND_smack' , 'WhackAND_thwack', 'SmashAND_crash', 'Breaking', 'Bouncing', 'Whip', 'Flap' , 'Scratch', 'Scrape', 'Rub', 'Roll', 'Crushing', 'CrumplingAND_crinkling' , 'Tearing', 'BeepAND_bleep', 'Ping', 'Ding', 'Clang', 'Squeal', 'Creak', 'Rustle' , 'Whir', 'Clatter', 'Sizzle', 'Clicking', 'Clickety-clack', 'Rumble', 'Plop' , 'JingleAND_tinkle', 'Hum', 'Zing', 'Boing', 'Crunch', 'Silence', 'Sine_wave' , 'Harmonic', 'Chirp_tone', 'Sound_effect', 'Pulse', 'InsideAND_small_room' , 'InsideAND_large_room_or_hall', 'InsideAND_public_space' , 'OutsideAND_urban_or_manmade', 'OutsideAND_rural_or_natural' , 'Reverberation', 'Echo', 'Noise', 'Environmental_noise', 'Static', 'Mains_hum' , 'Distortion', 'Sidetone', 'Cacophony', 'White_noise', 'Pink_noise' , 'Throbbing', 'Vibration', 'Television', 'Radio', 'Field_recording'] _TOTAL_NUM_CLASS = 527 __FILE_CLASS_LABELS = '../audiosetdl/class_labels_indices.csv' # MODEL_PATH = 'work/models/main/balance_type=balance_in_batch/model_type=decision_level_average_pooling/' MODEL_PATH = 'checkpoints_transfer/' meta_path = MODEL_PATH + 'model.ckpt-{}.meta'.format(40000) model_path = MODEL_PATH + 'model.ckpt-{}'.format(40000) _DURATION = 3 # seconds def print_prediction(out, mfcclen): # print('mfcclen', mfcclen) sorted_out = np.argsort(-out) # print(out[sorted_out[:100]]) for i in range(3): prob = out[sorted_out[i]] if prob > 0.8 and (sorted_out[i] != 0): print("\033[1;32;40m{} \t prob: {}\033[0m".format (labels[sorted_out[i]], prob)) elif prob > 0.3: print('{} \t prob: {}'.format(labels[sorted_out[i]], prob)) # print('') def get_name_list(audio_path): result = [] flist = os.listdir(audio_path) for afile in flist: if os.path.basename(afile).split('.')[-1] == 'wav': # name.wav.short bug fix afile_path = bytes(os.path.join(audio_path, afile), encoding='utf-8') result.append(afile_path) return result def raw2mfcc(raw_wav_data): raw_wav_data = np.array(raw_wav_data) try: amfcc = mfcc.waveform_to_examples(raw_wav_data / 32768.0, 16000) alen = amfcc.shape[0] if (alen < 240): amfcc = np.concatenate((amfcc, np.zeros(shape=((240 - alen), amfcc.shape[1]))), axis=0) elif (alen > 240): alen = 240 amfcc = amfcc[:240] except Exception as e: print('axs') print('Error while processing audio: {} '.format(e)) return amfcc, alen def core(args): data_dir = args.data_dir workspace = args.workspace filename = args.filename model_type = args.model_type # model = args.model q = mp.Queue (maxsize=20) # Load data load_time = time.time() # tensorflow graph saver = tf.train.import_meta_graph(meta_path) # import graph config = tf.ConfigProto() config.gpu_options.allow_growth=True with tf.Session(config=config) as sess: saver.restore(sess, model_path) # graph = tf.get_default_graph() # Locate all the tensors and ops we need for the training loop. features_tensor = sess.graph.get_tensor_by_name( vggish_params.INPUT_TENSOR_NAME) sequence_length_tensor = sess.graph.get_tensor_by_name( 'vggish/input_sequence_length:0') output_tensor = sess.graph.get_tensor_by_name( 'mix/prediction:0') mp.Process (target = audio_sample.core, args = (q,)).start() # start audio sample combined = [] _960ms = [] while True: _960ms = q.get() # print(q.qsize()) while q.qsize() > 0: _960ms = q.get() combined += _960ms if (len(combined) / audio_sample.buf_size) >= _DURATION: # print('combined', len(combined)) test_x_mfcc, test_x_len = raw2mfcc(combined) [[output], sl] = sess.run([output_tensor, sequence_length_tensor], feed_dict={features_tensor: [test_x_mfcc,], sequence_length_tensor: [test_x_len,]}) #output = model.predict(input) print_prediction(output, sl) combined[0:len(_960ms)] = []
StarcoderdataPython
128957
import time from datetime import timedelta from django.db import transaction from dpq.queue import AtLeastOnceQueue from dpq.decorators import repeat def foo(queue, job): transaction.on_commit(lambda: 1/0) print('foo {}'.format(job.args)) def timer(queue, job): print(time.time() - job.args['time']) def n_times(queue, job): print('n_times', job.args['count']) if job.args['count'] > 1: queue.enqueue(job.task, {'count': job.args['count'] - 1}) @repeat(timedelta(seconds=1)) def repeater(queue, job): print('repeat {}; eta {}'.format(job, job.execute_at)) def long_task(queue, job): print('job started: {}'.format(job.id)) time.sleep(10) print('job finished: {}'.format(job.id)) queue = AtLeastOnceQueue( notify_channel='channel', tasks={ 'foo': foo, 'timer': timer, 'repeater': repeater, 'n_times': n_times, 'long_task': long_task, }, )
StarcoderdataPython
4829892
<filename>20-no-commitment/plugins-src/words1.py import sys, re, string def extract_words(path_to_file): """ Takes a path to a file and returns the non-stop words, after properly removing nonalphanumeric chars and normalizing for lower case """ if type(path_to_file) is not str or not path_to_file: return [] try: with open(path_to_file) as f: str_data = f.read() except IOError as e: print "I/O error({0}) when opening {1}: {2}".format(e.errno, path_to_file, e.strerror) return [] pattern = re.compile('[\W_]+') word_list = pattern.sub(' ', str_data).lower().split() try: with open('../stop_words.txt') as f: stop_words = f.read().split(',') except IOError as e: print "I/O error({0}) when opening ../stops_words.txt: {1}".format(e.errno, e.strerror) return [] stop_words.extend(list(string.ascii_lowercase)) return [w for w in word_list if not w in stop_words]
StarcoderdataPython
3335486
<reponame>victorjourne/ezibpy #!/usr/bin/env python # -*- coding: UTF-8 -*- # # ezIBpy: a Pythonic Client for Interactive Brokers API # https://github.com/ranaroussi/ezibpy # # Copyright 2015-2019 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "1.12.70" __author__ = "<NAME>" __all__ = ['ezIBpy', 'dataTypes', 'utils'] from ezibpy.ezibpy import ezIBpy from ezibpy.utils import dataTypes import ezibpy.utils as utils
StarcoderdataPython
107774
<reponame>Saicharan67/Interview-Coding-Questions """ Given an Array of non-negative intergers find if we can divide the array into two sub arrays of equal sum """ dp = ([[False for i in range(50)] for i in range(10)]) def EqualSumDp(a, n): s = sum(a) if s & 1: return False s = s//2 for j in range(n+1): dp[j][0] = True for j in range(1, s+1): dp[0][j] = False for i in range(1, n+1): for j in range(1, s+1): dp[i][j] = dp[i-1][j] if a[i-1] <= j: dp[i][j] |= dp[i-1][j-a[i-1]] print(dp) return dp[n][s] print(EqualSumDp([1, 5, 5, 11], 4))
StarcoderdataPython
147497
<gh_stars>10-100 import csv symptomlist = ['suicidal','hallucinations auditory','irritable mood','agitation'] disease_ = [] disease_list = [] for s in symptomlist: with open("bucketmap.csv","rb") as csvfile: reader = csv.reader(csvfile) for row in reader: if s in row: disease_.append((row[0],s)) disease_list.append(row[0]) with open("node.csv","wb") as csvfile: writer = csv.writer(csvfile) writer.writerow(["Id","Label","Attribute"]) for n in symptomlist: writer.writerow([n,n,"Symptom"]) for d in disease_list: writer.writerow([d,d,"Disease"]) with open("edge.csv","wb") as csvfile: writer = csv.writer(csvfile) writer.writerow(["Source","Target"]) for d in disease_: dis,sym = d writer.writerow([dis,sym])
StarcoderdataPython
1677920
<gh_stars>10-100 from .modules import Module, Dropout
StarcoderdataPython
185858
from opymize import Variable, LinOp from opymize.linear.sparse import idxop, einsumop import numba import numpy as np from numpy.linalg import norm try: import opymize.tools.gpu from opymize.tools.gpu import prepare_kernels from pkg_resources import resource_stream except: # no cuda support pass def indexedmult_prepare_gpu(B, P, x, type_t="double"): J = B.shape[0] K = x[0]['shape'][1] L = B.shape[2] M = B.shape[1] N = x[0]['shape'][0] constvars = { 'J': J, 'K': K, 'L': L, 'M': M, 'N': N, 'P': P, 'B': B, 'TYPE_T': type_t } files = [resource_stream('opymize.linear', 'indexed.cu')] templates = [ ("indexedmult", "PP", (N, J, M), (32, 24, 1)), ("indexedmultadj", "PP", (N, 1, 1), (512, 1, 1)) ] return prepare_kernels(files, templates, constvars) class IndexedMultAdj(LinOp): """ for k,l,i do (Ax)[i,P[j,l]] -= \sum_m B[j,m,l] * x[j,i,m] """ def __init__(self, K, N, P, B, adjoint=None): LinOp.__init__(self) assert P.shape[0] == B.shape[0] assert P.shape[1] == B.shape[2] self.x = Variable((B.shape[0],N,B.shape[1])) self.y = Variable((N,K)) self.P = P self.B = B if adjoint is None: self.adjoint = IndexedMult(K, N, B, P, adjoint=self) else: self.adjoint = adjoint self._kernel = None self.spmat = self.adjoint.spmat.T def prepare_gpu(self, kernels=None, type_t="double"): if self._kernel is not None: return if kernels is None: kernels = indexedmult_prepare_gpu(self.B, self.P, self.y, type_t=type_t) self._kernel = kernels['indexedmultadj'] self.adjoint.prepare_gpu(kernels, type_t=type_t) def _call_gpu(self, x, y=None, add=False): assert y is not None if not add: y.fill(0.0) self._kernel(x, y) class IndexedMult(LinOp): """ (Ax)[j,i,m] -= \sum_l B[j,m,l] * x[i,P[j,l]] """ def __init__(self, K, N, B, P, adjoint=None): LinOp.__init__(self) assert P.shape[0] == B.shape[0] assert P.shape[1] == B.shape[2] self.x = Variable((N,K)) self.y = Variable((B.shape[0],N,B.shape[1])) self.P = P self.B = B self._kernel = None spP = [idxop(Pj, K) for Pj in P] spP = einsumop("jlk,ik->jil", spP, dims={ 'i': N }) self.spmat = -einsumop("jml,jil->jim", B, dims={ 'i': N }).dot(spP) if adjoint is None: self.adjoint = IndexedMultAdj(K, N, P, B, adjoint=self) else: self.adjoint = adjoint def prepare_gpu(self, kernels=None, type_t="double"): if self._kernel is not None: return if kernels is None: kernels = indexedmult_prepare_gpu(self.B, self.P, self.x, type_t=type_t) self._kernel = kernels['indexedmult'] self.adjoint.prepare_gpu(kernels, type_t=type_t) def _call_gpu(self, x, y=None, add=False): assert y is not None if not add: y.fill(0.0) self._kernel(x, y)
StarcoderdataPython
50526
<filename>modules/sed.py import re import string from util.esc import unescape """ The 'tr' implementation was based on github:ikegami-yukino/python-tr. """ all = [chr(i) for i in range(256)] def mklist(src): src = src.replace("\\/", "/") \ .replace("[:upper:]", string.ascii_uppercase) \ .replace("[:lower:]", string.ascii_lowercase) \ .replace("[:alpha:]", string.ascii_letters) \ .replace("[:digit:]", string.digits) \ .replace("[:xdigit:]", string.hexdigits) \ .replace("[:alnum:]", string.digits + string.ascii_letters) \ .replace("[:blank:]", string.whitespace) \ .replace("[:punct:]", string.punctuation) \ .replace("[:cntrl:]", "".join([i for i in all if i not in string.printable])) \ .replace("[:print:]", string.printable) lst = [] bs = False hy = False for ch in src: if ch == "\\": if not bs: bs = True continue elif ch == "-" and not bs: hy = True continue elif hy: lst.extend(range(lst[-1] + 1, ord(ch))) lst.append(ord(ch)) bs = False hy = False return "".join([chr(i) for i in lst]) def squeeze(lst, src): for ch in lst: src = re.sub(ch + r"{2,}", ch, src) return src def tr(frm, to, src): return src.translate(str.maketrans(frm, to)) def create_sub_function(rhs): return lambda matchobj: "\x16{0}\x16".format(rhs) class SedModule: subre = re.compile(r"^(?:(\S+)[:,]\s)?(?:s|(.+?)/s)/((?:\\/|[^/])+)\/((?:\\/|[^/])*?)/([gixs]{0,4})?(?: .*)?$") trre = re.compile("^(?:(\S+)[:,]\s)?(?:y|(.+?)/y)/((?:\\/|[^/])+)\/((?:\\/|[^/])*?)/([cds]{0,3})?(?: .*)?$") def __init__(self, circa): self.circa = circa self.events = { "message": [self.sub, self.tr] } self.docs = "Performs sed's s/// and y/// functions.\n" \ "[<nick>: ][<search>/]s/<pattern>/<replacement>/[gixs] → performs s/// on the last line in nick's messages that matches the search pattern.\n" \ "[<nick>: ][<search>/]y/<set1>/<set2>/[cds] → performs y/// on the last line in nick's messages that matches the search pattern.\n" \ "See online docs for more info." def sub(self, fr, to, msg, m): match = self.subre.match(msg) if match: target, search, lhs, rhs, flags = match.groups() user = target or fr msgs = reversed(self.circa.channels[to[1:]].users[user].messages) msgs = [line for line in msgs if not self.subre.match(line)] if search: msgs = [line for line in msgs if search.lower() in line.lower()] msgs = [line for line in msgs if re.search(lhs, line)] if len(msgs): u = msgs[0] f = 0 if "i" in flags: f |= re.I rhs = rhs.replace("\\/", "/") rhs = re.sub(r"(?<!\\)(\\)(?=\d+|g<\w+>)", r"\\\\", rhs) rhs = unescape(rhs) count = int("g" not in flags) t = u[len("\x01ACTION "):] if u.startswith("\x01ACTION ") else u t = re.sub(lhs, create_sub_function(rhs), t, count=count, flags=f) t = t.replace("\n", " ").replace("\r", " ") if u.startswith("\x01ACTION ") or t.startswith("\x01ACTION "): if t.startswith("\x01ACTION "): t = t[len("\x01ACTION "):] t = t.replace("\x01", "") self.circa.say(to, "\x02* {0}\x02 {1}".format(user, t)) else: self.circa.say(to, "<{0}> {1}".format(user, t)) def tr(self, fr, to, msg, m): match = self.trre.match(msg) if match: target, search, lhs, rhs, flags = match.groups() user = target or fr msgs = reversed(self.circa.channels[to[1:]].users[user].messages) msgs = [line for line in msgs if not self.trre.match(line)] if search: msgs = [line for line in msgs if search.lower() in line.lower()] lhslst = mklist(lhs) rhslst = unescape(mklist(rhs.replace("\\/", "/")).replace("\\", "\\\\")) find = [c for c in all if c not in lhslst] if "c" in flags else lhslst msgs = [line for line in msgs if len(set(line) & set(find))] if len(msgs): u = msgs[0] t = u[len("\x01ACTION "):] if u.startswith("\x01ACTION ") else u if "d" in flags: todel = lhslst[len(rhslst):] lhslst = lhslst[:len(rhslst)] t = "".join([c for c in t if c not in todel]) else: if len(rhslst) < len(lhslst): rhslst += "".join([rhslst[-1]] * (len(lhslst) - len(rhslst))) else: rhslst = rhslst[:len(lhslst)] t = tr(lhslst, rhslst, t) if "s" in flags: t = squeeze(rhslst, t) t = t.replace("\n", " ").replace("\r", " ") if u.startswith("\x01ACTION "): t = t.replace("\x01", "") self.circa.say(to, "\x02* {0}\x02 {1}".format(user, t)) else: self.circa.say(to, "<{0}> {1}".format(user, t)) module = SedModule
StarcoderdataPython
3363177
<filename>distro/src/bin/atlas_stop.py #!/usr/bin/env python # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from signal import SIGTERM import sys import traceback import atlas_config as mc def main(): metadata_home = mc.metadataDir() confdir = mc.dirMustExist(mc.confDir(metadata_home)) mc.executeEnvSh(confdir) piddir = mc.dirMustExist(mc.logDir(metadata_home)) metadata_pid_file = mc.pidFile(metadata_home) try: pf = file(metadata_pid_file, 'r') pid = int(pf.read().strip()) pf.close() except: pid = None if not pid: sys.stderr.write("No process ID file found. Server not running?\n") return os.kill(pid, SIGTERM) # assuming kill worked since process check on windows is more involved... if os.path.exists(metadata_pid_file): os.remove(metadata_pid_file) if __name__ == '__main__': try: returncode = main() except Exception as e: print "Exception: %s " % str(e) print traceback.format_exc() returncode = -1 sys.exit(returncode)
StarcoderdataPython
3228799
import numpy as np import tensorflow as tf from unittest import TestCase from .context import conv_gp from conv_gp.views import RandomPartialView, FullView from conv_gp.mean_functions import PatchwiseConv2d, Conv2dMean class TestMeanFunction(TestCase): def test_patchwise_conv(self): filter_size = 5 patch_count = 9 view = RandomPartialView((28, 28), filter_size, 1, patch_count) mean = PatchwiseConv2d(filter_size, 1, 3, 3) images = np.random.randn(10, 28, 28, 1) PNL_patches = view.extract_patches_PNL(images) sess = mean.enquire_session() mean_patches = sess.run(mean(PNL_patches)) self.assertEqual(mean_patches.shape[0], 10) self.assertEqual(mean_patches.shape[1], 9) def test_full_patchwise_conv(self): filter_size = 5 patch_count = 9 view = FullView((28, 28), filter_size, 1) mean = PatchwiseConv2d(filter_size, 1, 24, 24) images = np.random.randn(10, 28, 28, 1) PNL_patches = view.extract_patches_PNL(images) sess = mean.enquire_session() mean_patches = sess.run(mean(PNL_patches)) self.assertEqual(mean_patches.shape[0], 10) self.assertEqual(mean_patches.shape[1], 576) conv_mean = Conv2dMean(filter_size, 1) conv_mean_patches = sess.run(conv_mean(images)) self.assertEqual(conv_mean_patches.shape, mean_patches.shape) def test_feature_maps(self): full_conv = Conv2dMean(3, 1, 3) random_input = np.random.randn(4, 28, 28, 1) sess = full_conv.enquire_session() convolved = sess.run(full_conv(random_input)) self.assertEqual(convolved.shape, (4, 676*3))
StarcoderdataPython
82060
<reponame>faragher/LibreSignage #!/usr/bin/env python3 # # Main test unit class. # import requests; from requests.models import Response; from typing import Callable, Dict, Any, List; from resptypes import RespVal; from uniterr import *; import json; import sys; import re; class Unit: # HTTP methods. METHOD_GET: str = "GET"; METHOD_POST: str = "POST"; # Response mimetypes. MIME_TEXT: str = "text/plain"; MIME_JSON: str = "application/json"; resp_mime: str = ""; def __init__( self, host: str, name: str, url: str, request_method: str, preexec: Callable[[], Dict[str, Any]], postexec: Callable[[bool, Response], None], data_request: Any, headers_request: Dict[str, str], cookies_request: Any, data_expect_strict: bool, headers_expect_strict: bool, status_expect: int, data_expect: Any, headers_expect: Dict[str, RespVal]) -> None: self.host = host; self.name = name; self.url = url; if (request_method == self.METHOD_GET or request_method == self.METHOD_POST): self.request_method = request_method; self.preexec = preexec; self.postexec = postexec; self.data_request = data_request; self.headers_request = headers_request; self.cookies_request = cookies_request; self.headers_expect_strict = headers_expect_strict; self.data_expect_strict = data_expect_strict; self.status_expect = status_expect; self.data_expect = data_expect; self.headers_expect = headers_expect; def run(self) -> None: ret: List[UnitError] = []; req = Response(); status = True; data: str = ""; params: Dict[str, str] = {}; print("== " + self.name + ": "); # Run the preexec function and set the # returned values. if (self.preexec): print("[INFO] Running preexec."); tmp = self.preexec(); if (tmp and 'data_request' in tmp): self.headers_request.update( tmp['data_request'] ); if (tmp and 'headers_request' in tmp): self.headers_request.update( tmp['headers_request'] ); # Convert data to the correct format. req_ct = self.get_req_header('Content-Type'); if (self.request_method == self.METHOD_POST): params = {}; if (req_ct == self.MIME_JSON): data = json.dumps(self.data_request); else: data = self.data_request; elif (self.request_method == self.METHOD_GET): data = ""; params = self.data_request; # Send the correct request. try: req = requests.request( method = self.request_method, url = self.host + self.url, data = data, params = params, cookies = self.cookies_request, headers = self.headers_request ); except requests.exceptions.ConnectionError: print( "[ERROR] Failed to connect to server. " + "Is the server running?" ); sys.exit(1); # Store the response mimetype. resp_ct = req.headers['Content-Type']; if (not resp_ct or re.match('^' + self.MIME_TEXT + '.*', resp_ct)): self.resp_mime = self.MIME_TEXT; elif (re.match('^' + self.MIME_JSON + '.*', resp_ct)): self.resp_mime = self.MIME_JSON; else: print( "Unknown response mimetype: '" + resp_ct + "'. Using '" + self.MIME_TEXT + "'." ); self.resp_mime = self.MIME_TEXT; # Validate response. ret += self.handle_status(req); ret += self.handle_headers(req); ret += self.handle_data(req); if (len(ret)): # Print errors. for err in ret: err.printerr(); print("############ Information ############\n"); # Dump request and response. print("======= Request ======="); print(">> URL: " + req.url); print(">> Header dump:"); print(json.dumps( self.headers_request, indent=4 )); print(">> Body dump:"); print(json.dumps( self.data_request, indent=4 )); print("========================\n"); print("======= Response ======="); print(">> Status code: " + str(req.status_code)); print(">> Header dump:"); print(json.dumps( dict(req.headers.items()), indent=4 )); print(">> Body dump:"); if (self.resp_mime == self.MIME_JSON): try: print(json.dumps( req.json(), indent=4 )); except json.decoder.JSONDecodeError: print(">>> JSON decoding " + "failed. Printing " + "raw dump."); print(req.text); elif (self.resp_mime == self.MIME_TEXT): print(req.text); else: raise Exception( "Unknown response mime type." ); print("========================\n") print("#####################################"); # Run the postexec function. if (self.postexec): print("[INFO] Running postexec."); self.postexec(len(ret) == 0, req); def get_req_header(self, header): if (header in self.headers_request): return self.headers_request[header]; else: return None; def handle_status(self, req: Response) -> List[UnitError]: if not self.status_expect == req.status_code: return [UnitStatusError( req.status_code, self.status_expect )]; else: return []; def handle_headers(self, req: Response) -> List[UnitError]: # # Compare the response headers of 'req' with the # expected headers. # ret: List[UnitError] = []; r = req.headers; e = self.headers_expect; # Check expected header keys. if self.headers_expect_strict: if not set(r.keys()) == set(e.keys()): ret.append(UnitHeaderKeyError( r.keys(), e.keys(), True )); return ret; else: if not (set(r.keys()) & set(e.keys()) == set(e.keys())): ret.append(UnitHeaderKeyError( r.keys(), e.keys(), False )); return ret; # Check expected header values. for k in e.keys(): if not (e[k].validate(r[k])): ret.append(UnitHeaderError( k, r[k], e[k] )); return ret; def handle_data(self, req: Response) -> List[UnitError]: # # Handle response data. # if (self.resp_mime == self.MIME_JSON): return self.handle_json(req); elif (self.resp_mime == self.MIME_TEXT): return self.handle_text(req); def handle_json(self, req: Response) -> List[UnitError]: # # Compare the response JSON of 'req' with the # expected JSON response. # ret: List[UnitError] = []; r = None; e = self.data_expect; # Parse JSON response. try: r = req.json(); except ValueError: ret.append(UnitDataTypeError("JSON").printerr()); return ret; # Check expected keys. if (self.data_expect_strict): if not (set(e.keys()) == set(r.keys())): ret.append(UnitJsonDataKeyError( r.keys(), e.keys(), True )); return ret; else: if not (set(e.keys()) & set(r.keys()) == set(e.keys())): ret.append(UnitJsonDataKeyError( r.keys(), e.keys(), False )); return ret; # Check expected data. for k in e.keys(): if not e[k].validate(r[k]): ret.append(UnitJsonDataError( k, r[k], e[k] )); return ret; def handle_text(self, req: Response) -> List[UnitError]: if self.data_expect == None: return []; elif not self.data_expect.validate(req.text): return [UnitTextDataError( req.text, self.data_expect )]; return []; def run_tests(tests: list) -> None: for t in tests: t.run();
StarcoderdataPython
3306935
# Copyright 2020 Curtin University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Author: <NAME> import os import unittest from click.testing import CliRunner from observatory.platform.cli.generate_command import GenerateCommand class TestGenerateCommand(unittest.TestCase): def test_generate_fernet_key(self): cmd = GenerateCommand() # Test that keys are random num_keys = 100 random_keys = [cmd.generate_fernet_key() for _ in range(num_keys)] self.assertEqual(len(set(random_keys)), num_keys) # Test that keys have length of 44 expected_key_len = 44 [self.assertEqual(expected_key_len, len(key)) for key in random_keys] def test_generate_local_config(self): cmd = GenerateCommand() config_path = 'config.yaml' with CliRunner().isolated_filesystem(): cmd.generate_local_config(config_path) self.assertTrue(os.path.exists(config_path)) def test_generate_terraform_config(self): cmd = GenerateCommand() config_path = 'config-terraform.yaml' with CliRunner().isolated_filesystem(): cmd.generate_terraform_config(config_path) self.assertTrue(os.path.exists(config_path))
StarcoderdataPython
57323
"""test_cvvidproc.py First, shows image of ISCO pump setup, closes when user clicks spacebar Second, shows first frame of video of inner stream, closes when user clicks spacebar Third, computes background of samples video. Should look like first frame^ w/o objects. """ import time import cv2 import cvvidproc import sys sys.path.append('../src/') import cvimproc.improc as improc # test 0: shows image of isco pump image = cv2.imread('../input/images/img.jpg') cv2.imshow('Click spacebar', image) cv2.waitKey(0) cv2.destroyAllWindows() # test 1: shows frame from vide of inner stream vid_path = '../input/videos/vid2.mp4' # loads video cap = cv2.VideoCapture(vid_path) ret, frame = cap.read() cv2.imshow('Click spacebar', frame) cv2.waitKey(0) cv2.destroyAllWindows() cap.release() # test 2: computes background from video and shows result bkgd = improc.compute_bkgd_med_thread(vid_path, num_frames=1000, max_threads=12) cv2.imshow('Background -- click spacebar', bkgd) cv2.waitKey(0) cv2.destroyAllWindows() # compare to previous, unoptimized, fully Python background algorithm in "Kornfield/ANALYSIS/improc-dev/bkg_alg_koe/test_python_speed.py"
StarcoderdataPython
3295784
from pepmass.glycomass import GlycanNode from print_tree import print_tree class print_glycan_struct(print_tree): def __init__(self, glycan, **kwargs): if isinstance(glycan, str): glycan = GlycanNode.from_str(glycan) super(print_glycan_struct, self).__init__(glycan, **kwargs) def get_children(self, node): return node.children or [] def get_node_str(self, node): return str(node.monosaccharide) if __name__ == '__main__': print_glycan_struct('(N(N(H(H(H(H)))(H(H(H(H)))))))') print_glycan_struct('(N(N(H(H)(H(H(H))(H(H(H)))))))') print_glycan_struct('(N(N(H(H(H(H)))(H(H)(H(H))))))')
StarcoderdataPython
74165
<gh_stars>0 # -*- coding: utf-8 -*- import base64 from marshmallow import Schema, post_load, fields from fuocore.schemas import SongSchema from fuocore.utils import elfhash SOURCE = 'local' class EasyMP3MetadataSongSchema(Schema): """EasyMP3 metadata""" url = fields.Str(required=True) title_list = fields.List(fields.Str(), load_from='title', required=True) duration = fields.Float(required=True) artist_name_list = fields.List(fields.Str(), load_from='artist') album_name_list = fields.List(fields.Str(), load_from='album') @post_load def create_song_model(self, data): title_list = data.get('title_list', []) title = title_list[0] if title_list else 'Unknown' artist_name_list = data.get('artist_name_list', []) album_name_list = data.get('album_name_list', []) identifier = str(elfhash(base64.b64encode(bytes(data['url'], 'utf-8')))) song_data = { 'source': SOURCE, 'identifier': identifier, 'title': title, 'duration': data['duration'], 'url': data['url'], 'artists': [{'name': name, 'identifier': name, 'source': SOURCE} for name in artist_name_list] } if album_name_list: song_data['album'] = {'name': album_name_list[0], 'identifier': album_name_list[0], 'source': SOURCE} song, _ = SongSchema(strict=True).load(song_data) return song
StarcoderdataPython
1797441
#! /usr/bin/env python #coding=utf-8 from setuptools import setup import linciclient setup_args = { 'name': "linciclient", 'version': linciclient.__version__, 'description': "linci client tools", 'long_description': "linci client tools for ", 'author': linciclient.__author__, 'author_email': linciclient.__author_email__, 'url': linciclient.__url__, 'license': linciclient.__license__, 'classifiers': [ 'Development Status :: 2 - Pre-Alpha', 'Environment :: No Input/Output (Daemon)', 'Environment :: Console', 'Framework :: Uliweb', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Topic :: Software Development :: Build Tools', 'Topic :: Software Development :: Testing', ], 'packages': [ "linciclient", ], 'entry_points' : { 'console_scripts': [ 'linci_client_config = linciclient.config:main', 'linci_arti_open = linciclient.artifact.open:main', 'linci_arti_upload = linciclient.artifact.upload:main', 'linci_arti_set_ready = linciclient.artifact.set_ready:main', 'linci_arti_fix = linciclient.artifact.fix:main', 'linci_arti_download = linciclient.artifact.download:main', 'linci_arti_close = linciclient.artifact.close:main', 'linci_worker = linciclient.worker:main', ], }, } setup(**setup_args)
StarcoderdataPython
1714725
<reponame>langrenn-sprint/race-service """Module for raceplan commands.""" from datetime import date, datetime, time, timedelta from typing import Any, Dict, List, Tuple, Union from race_service.models import IndividualSprintRace, Raceplan async def calculate_raceplan_individual_sprint( # noqa: C901 event: dict, format_configuration: dict, raceclasses: List[dict], ) -> Tuple[Raceplan, List[IndividualSprintRace]]: """Calculate raceplan for Individual Sprint event.""" # Initialize raceplan = Raceplan(event_id=event["id"], races=list()) races: List[IndividualSprintRace] = [] # We get the number of contestants in plan from the raceclasses: raceplan.no_of_contestants = sum( raceclass["no_of_contestants"] for raceclass in raceclasses ) # First we prepare the parameters: # get the time_between_groups as timedelta: TIME_BETWEEN_GROUPS = timedelta( hours=time.fromisoformat(format_configuration["time_between_groups"]).hour, minutes=time.fromisoformat(format_configuration["time_between_groups"]).minute, seconds=time.fromisoformat(format_configuration["time_between_groups"]).second, ) TIME_BETWEEN_HEATS = timedelta( hours=time.fromisoformat(format_configuration["time_between_heats"]).hour, minutes=time.fromisoformat(format_configuration["time_between_heats"]).minute, seconds=time.fromisoformat(format_configuration["time_between_heats"]).second, ) TIME_BETWEEN_ROUNDS = timedelta( hours=time.fromisoformat(format_configuration["time_between_rounds"]).hour, minutes=time.fromisoformat(format_configuration["time_between_rounds"]).minute, seconds=time.fromisoformat(format_configuration["time_between_rounds"]).second, ) # get the first start_time from the event: start_time = datetime.combine( date.fromisoformat(event["date_of_event"]), time.fromisoformat(event["time_of_event"]), ) # Sort the raceclasses on group and order: raceclasses_sorted = sorted(raceclasses, key=lambda k: (k["group"], k["order"])) # We need to group the raceclasses by group: d: Dict[int, list] = {} for raceclass in raceclasses_sorted: d.setdefault(raceclass["group"], []).append(raceclass) raceclasses_grouped = list(d.values()) # Generate the races, group by group, based on configuration and number of contestants order = 1 for raceclasses in raceclasses_grouped: # Initalize ConfigMatrix pr group: ConfigMatrix.initialize(format_configuration, raceclasses) for round in ConfigMatrix.get_rounds(): for raceclass in raceclasses: for index in reversed(ConfigMatrix.get_race_indexes(raceclass, round)): for heat in range( 1, ConfigMatrix.get_no_of_heats(raceclass, round, index) + 1 ): race = IndividualSprintRace( id="", order=order, raceclass=raceclass["name"], round=round, index="" if round in ["Q", "R1", "R2"] else index, heat=heat, start_time=start_time, max_no_of_contestants=format_configuration[ "max_no_of_contestants_in_race" ], no_of_contestants=0, rule={} if round in ["F", "R2"] else ConfigMatrix.get_rule_from_to(raceclass, round, index), event_id=event["id"], raceplan_id="", start_entries=[], results={}, ) order += 1 # Calculate start_time for next heat: start_time = start_time + TIME_BETWEEN_HEATS # Add the race to the raceplan: races.append(race) # Calculate start_time for next round: if round in ConfigMatrix.get_rounds_in_raceclass(raceclass): start_time = start_time - TIME_BETWEEN_HEATS + TIME_BETWEEN_ROUNDS # Calculate start_time for next group: start_time = start_time + TIME_BETWEEN_GROUPS # We need to calculate the number of contestants pr race: for raceclasses in raceclasses_grouped: for raceclass in raceclasses: if raceclass["ranking"]: await _calculate_number_of_contestants_pr_race_in_raceclass_ranked( raceclass, races ) else: await _calculate_number_of_contestants_pr_race_in_raceclass_non_ranked( raceclass, races ) return raceplan, races async def _calculate_number_of_contestants_pr_race_in_raceclass_ranked( # noqa: C901 raceclass: dict, races: List[IndividualSprintRace] ) -> None: """Calculate number of contestants pr race in given raceclass.""" no_of_Qs = len( [ race for race in races if race.raceclass == raceclass["name"] and race.round == "Q" ] ) no_of_SAs = len( [ race for race in races if race.raceclass == raceclass["name"] and race.round == "S" and race.index == "A" ] ) no_of_SCs = len( [ race for race in races if race.raceclass == raceclass["name"] and race.round == "S" and race.index == "C" ] ) no_of_contestants_to_Qs = raceclass["no_of_contestants"] no_of_contestants_to_SAs = 0 no_of_contestants_to_SCs = 0 no_of_contestants_to_FA = 0 no_of_contestants_to_FB = 0 no_of_contestants_to_FC = 0 # Calculate number of contestants pr heat in Q: for race in [ race for race in races if race.raceclass == raceclass["name"] and race.round == "Q" ]: # First we calculate no of contestants in each Q race: # We need to "smooth" the contestants across the heats: quotient, remainder = divmod( no_of_contestants_to_Qs, no_of_Qs, ) if race.heat <= remainder: race.no_of_contestants = quotient + 1 else: race.no_of_contestants = quotient # If there is to be a round "S" or "F", calculate number of contestants in SA, SC and FC: for race in [ race for race in races if race.raceclass == raceclass["name"] and race.round == "Q" ]: if "S" in race.rule: # Then, for each race in round Q, some goes to SA: no_of_contestants_to_SAs += race.rule["S"]["A"] # type: ignore # rest to SC: if race.rule["S"]["C"] != 0: no_of_contestants_to_SCs += race.no_of_contestants - race.rule["S"]["A"] # type: ignore # or the rest may in some cases go directly to FC: if "F" in race.rule: if "C" in race.rule["F"]: no_of_contestants_to_FC += race.no_of_contestants - race.rule["S"]["A"] # type: ignore if "A" in race.rule["F"]: if race.rule["F"]["A"] > race.no_of_contestants: no_of_contestants_to_FA = race.no_of_contestants else: no_of_contestants_to_FA += race.rule["F"]["A"] # type: ignore # rest to FB: if "B" in race.rule["F"]: if race.rule["F"]["B"] < float("inf"): no_of_contestants_to_FB += race.rule["F"]["B"] # type: ignore else: no_of_contestants_to_FB += race.no_of_contestants - race.rule["F"]["A"] # type: ignore # Calculate number of contestants pr heat in SA: for race in [ race for race in races if race.raceclass == raceclass["name"] and race.round == "S" and race.index == "A" ]: quotient, remainder = divmod( no_of_contestants_to_SAs, no_of_SAs, ) if race.heat <= remainder: race.no_of_contestants = quotient + 1 else: race.no_of_contestants = quotient # Calculate number of contestants pr heat in SC: for race in [ race for race in races if race.raceclass == raceclass["name"] and race.round == "S" and race.index == "C" ]: quotient, remainder = divmod( no_of_contestants_to_SCs, no_of_SCs, ) if race.heat <= remainder: race.no_of_contestants = quotient + 1 else: race.no_of_contestants = quotient # Calculate number of contestants in FA, FB and FC: for race in [ race for race in races if race.raceclass == raceclass["name"] and race.round == "S" ]: if "F" in race.rule: if "A" in race.rule["F"]: no_of_contestants_to_FA += race.rule["F"]["A"] # type: ignore if "B" in race.rule["F"]: if race.rule["F"]["B"] < float("inf"): no_of_contestants_to_FB += race.rule["F"]["B"] # type: ignore else: no_of_contestants_to_FB += race.no_of_contestants - race.rule["F"]["A"] # type: ignore if "C" in race.rule["F"]: no_of_contestants_to_FC += race.rule["F"]["C"] # type: ignore # Calculate number of contestants pr heat in FA: for race in [ race for race in races if race.raceclass == raceclass["name"] and race.round == "F" and race.index == "A" ]: # There will always be only on FA, simplifying: race.no_of_contestants = no_of_contestants_to_FA # Calculate number of contestants pr heat in FB: for race in [ race for race in races if race.raceclass == raceclass["name"] and race.round == "F" and race.index == "B" ]: # There will always be only on FB, simplifying: race.no_of_contestants = no_of_contestants_to_FB # Calculate number of contestants pr heat in FC: for race in [ race for race in races if race.raceclass == raceclass["name"] and race.round == "F" and race.index == "C" ]: # There will always be only on FC, simplifying: race.no_of_contestants = no_of_contestants_to_FC async def _calculate_number_of_contestants_pr_race_in_raceclass_non_ranked( # noqa: C901 raceclass: dict, races: List[IndividualSprintRace] ) -> None: """Calculate number of contestants pr race in given raceclass.""" no_of_R1s = no_of_R2s = len( [ race for race in races if race.raceclass == raceclass["name"] and race.round == "R1" ] ) no_of_contestants_to_R1 = no_of_contestants_to_R2 = raceclass["no_of_contestants"] # Calculate number of contestants pr heat in R1: for race in [ race for race in races if race.raceclass == raceclass["name"] and race.round == "R1" ]: # First we calculate no of contestants in each Q race: # We need to "smooth" the contestants across the heats: quotient, remainder = divmod( no_of_contestants_to_R1, no_of_R1s, ) if race.heat <= remainder: race.no_of_contestants = quotient + 1 else: race.no_of_contestants = quotient # Calculate number of contestants pr heat in R2: for race in [ race for race in races if race.raceclass == raceclass["name"] and race.round == "R2" ]: # First we calculate no of contestants in each Q race: # We need to "smooth" the contestants across the heats: quotient, remainder = divmod( no_of_contestants_to_R2, no_of_R2s, ) if race.heat <= remainder: race.no_of_contestants = quotient + 1 else: race.no_of_contestants = quotient class ConfigMatrix: """Class to represent the config matrix.""" ROUNDS: List[str] = [] RANKING: bool = True MAX_NO_OF_CONTESTANTS_IN_RACECLASS: int MAX_NO_OF_CONTESTANTS_IN_RACE: int m: Dict[int, Dict[str, Any]] = {} @classmethod def initialize( cls: Any, format_configuration: Dict, raceclasses_in_group: List[Dict] ) -> None: """Initalize parameters based on format-configuration and raceclasses in group.""" if raceclasses_in_group[0]["ranking"]: ConfigMatrix.RANKING = True else: ConfigMatrix.RANKING = False if ConfigMatrix.RANKING: ConfigMatrix.ROUNDS = ["Q", "S", "F"] else: ConfigMatrix.ROUNDS = ["R1", "R2"] ConfigMatrix.MAX_NO_OF_CONTESTANTS_IN_RACECLASS = format_configuration[ "max_no_of_contestants_in_raceclass" ] ConfigMatrix.MAX_NO_OF_CONTESTANTS_IN_RACE = format_configuration[ "max_no_of_contestants_in_race" ] # Initialize matrix # TODO: Get this from format-configuration ALL = ConfigMatrix.MAX_NO_OF_CONTESTANTS_IN_RACE REST = float("inf") if ConfigMatrix.RANKING: # ConfigMatrix for ranked raceclasses: ConfigMatrix.m[1] = { "lim_no_contestants": 7, "rounds": ["Q", "F"], "no_of_heats": { "Q": {"A": 1}, "F": {"A": 1, "B": 0, "C": 0}, }, "from_to": { "Q": {"A": {"F": {"A": ALL, "B": 0}}, "C": {"F": {"C": 0}}}, }, } ConfigMatrix.m[2] = { "lim_no_contestants": 16, "rounds": ["Q", "F"], "no_of_heats": { "Q": {"A": 2}, "F": {"A": 1, "B": 1, "C": 0}, }, "from_to": { "Q": {"A": {"F": {"A": 4, "B": REST}}, "C": {"F": {"C": 0}}}, }, } ConfigMatrix.m[3] = { "lim_no_contestants": 24, "rounds": ["Q", "S", "F"], "no_of_heats": { "Q": {"A": 3}, "S": {"A": 2, "C": 0}, "F": {"A": 1, "B": 1, "C": 1}, }, "from_to": { "Q": {"A": {"S": {"A": 5, "C": 0}, "F": {"C": REST}}}, "S": {"A": {"F": {"A": 4, "B": REST}}, "C": {"F": {"C": 0}}}, }, } ConfigMatrix.m[4] = { "lim_no_contestants": 32, "rounds": ["Q", "S", "F"], "no_of_heats": { "Q": {"A": 4}, "S": {"A": 2, "C": 2}, "F": {"A": 1, "B": 1, "C": 1}, }, "from_to": { "Q": {"A": {"S": {"A": 4, "C": REST}}}, "S": {"A": {"F": {"A": 4, "B": REST}}, "C": {"F": {"C": 4}}}, }, } ConfigMatrix.m[5] = { "lim_no_contestants": 40, "rounds": ["Q", "S", "F"], "no_of_heats": { "Q": {"A": 6}, "S": {"A": 4, "C": 2}, "F": {"A": 1, "B": 1, "C": 1}, }, "from_to": { "Q": {"A": {"S": {"A": 4, "C": REST}}}, "S": {"A": {"F": {"A": 2, "B": 2}}, "C": {"F": {"C": 4}}}, }, } ConfigMatrix.m[6] = { "lim_no_contestants": 48, "rounds": ["Q", "S", "F"], "no_of_heats": { "Q": {"A": 6}, "S": {"A": 4, "C": 4}, "F": {"A": 1, "B": 1, "C": 1}, }, "from_to": { "Q": {"A": {"S": {"A": 4, "C": REST}}}, "S": {"A": {"F": {"A": 2, "B": 2}}, "C": {"F": {"C": 2}}}, }, } ConfigMatrix.m[7] = { "lim_no_contestants": 56, "rounds": ["Q", "S", "F"], "no_of_heats": { "Q": {"A": 7}, "S": {"A": 4, "C": 4}, "F": {"A": 1, "B": 1, "C": 1}, }, "from_to": { "Q": {"A": {"S": {"A": 4, "C": REST}}}, "S": {"A": {"F": {"A": 2, "B": 2}}, "C": {"F": {"C": 2}}}, }, } ConfigMatrix.m[8] = { "lim_no_contestants": ConfigMatrix.MAX_NO_OF_CONTESTANTS_IN_RACECLASS, "rounds": ["Q", "S", "F"], "no_of_heats": { "Q": {"A": 8}, "S": {"A": 4, "C": 4}, "F": {"A": 1, "B": 1, "C": 1}, }, "from_to": { "Q": {"A": {"S": {"A": 4, "C": REST}}}, "S": {"A": {"F": {"A": 2, "B": 2}}, "C": {"F": {"C": 2}}}, }, } else: # ConfigMatrix for non ranked raceclasses: ConfigMatrix.m[1] = { "lim_no_contestants": 7, "rounds": ["R1", "R2"], "no_of_heats": { "R1": {"A": 1}, "R2": {"A": 1}, }, "from_to": { "R1": {"A": {"R2": {"A": REST}}}, }, } ConfigMatrix.m[2] = { "lim_no_contestants": 16, "rounds": ["R1", "R2"], "no_of_heats": { "R1": {"A": 2}, "R2": {"A": 2}, }, "from_to": { "R1": {"A": {"R2": {"A": REST}}}, }, } ConfigMatrix.m[3] = { "lim_no_contestants": 24, "rounds": ["R1", "R2"], "no_of_heats": { "R1": {"A": 3}, "R2": {"A": 3}, }, "from_to": { "R1": {"A": {"R2": {"A": REST}}}, }, } ConfigMatrix.m[4] = { "lim_no_contestants": 32, "rounds": ["R1", "R2"], "no_of_heats": { "R1": {"A": 4}, "R2": {"A": 4}, }, "from_to": { "R1": {"A": {"R2": {"A": REST}}}, }, } ConfigMatrix.m[5] = { "lim_no_contestants": 40, "rounds": ["R1", "R2"], "no_of_heats": { "R1": {"A": 6}, "R2": {"A": 6}, }, "from_to": { "R1": {"A": {"R2": {"A": REST}}}, }, } ConfigMatrix.m[6] = { "lim_no_contestants": 48, "rounds": ["R1", "R2"], "no_of_heats": { "R1": {"A": 6}, "R2": {"A": 6}, }, "from_to": { "R1": {"A": {"R2": {"A": REST}}}, }, } ConfigMatrix.m[7] = { "lim_no_contestants": 56, "rounds": ["R1", "R2"], "no_of_heats": { "R1": {"A": 7}, "R2": {"A": 7}, }, "from_to": { "R1": {"A": {"R2": {"A": REST}}}, }, } ConfigMatrix.m[8] = { "lim_no_contestants": ConfigMatrix.MAX_NO_OF_CONTESTANTS_IN_RACECLASS, "rounds": ["R1", "R2"], "no_of_heats": { "R1": {"A": 8}, "R2": {"A": 8}, }, "from_to": { "R1": {"A": {"R2": {"A": REST}}}, }, } @classmethod def get_rounds(cls: Any) -> list: """Get default rounds.""" return ConfigMatrix.ROUNDS @classmethod def get_rounds_in_raceclass(cls: Any, raceclass: dict) -> list: """Get actual rounds in raceclass.""" _key = ConfigMatrix._get_key(raceclass["no_of_contestants"]) return ConfigMatrix.m[_key]["rounds"] @classmethod def get_no_of_heats(cls: Any, raceclass: dict, round: str, index: str) -> int: """Get no of heats pr round and index.""" _key = ConfigMatrix._get_key(raceclass["no_of_contestants"]) return ConfigMatrix.m[_key]["no_of_heats"][round][index] @classmethod def get_race_indexes(cls: Any, raceclass: dict, round: str) -> list: """Get race indexes pr round.""" _key = ConfigMatrix._get_key(raceclass["no_of_contestants"]) if round not in ConfigMatrix.m[_key]["no_of_heats"]: return [] return [key for key in ConfigMatrix.m[_key]["no_of_heats"][round]] @classmethod def get_rule_from_to( cls: Any, raceclass: dict, from_round: str, from_index: str, ) -> Dict[str, Dict[str, Union[int, float]]]: """Get race rule pr round and index.""" _key = ConfigMatrix._get_key(raceclass["no_of_contestants"]) return ConfigMatrix.m[_key]["from_to"][from_round][from_index] @classmethod def _get_key(cls: Any, no_of_contestants: int) -> int: """Looks up key of matrix based on no_of_contestants.""" if 1 <= no_of_contestants <= 7: return 1 elif 7 < no_of_contestants <= 16: return 2 elif 16 < no_of_contestants <= 24: return 3 elif 24 < no_of_contestants <= 32: return 4 elif 32 < no_of_contestants <= 40: return 5 elif 40 < no_of_contestants <= 48: return 6 elif 48 < no_of_contestants <= 56: return 7 elif 56 < no_of_contestants <= ConfigMatrix.MAX_NO_OF_CONTESTANTS_IN_RACECLASS: return 8 else: raise ValueError( f"Unsupported value for no of contestants: {no_of_contestants}" )
StarcoderdataPython
31582
# pyright: reportUnknownMemberType=false import logging import zipfile from pathlib import Path from typing import Dict import requests from us_pls._config import Config from us_pls._download.interface import IDownloadService from us_pls._download.models import DatafileType, DownloadType from us_pls._logger.interface import ILoggerFactory from us_pls._persistence.interface import IOnDiskCache from us_pls._scraper.interface import IScrapingService BASE_URL = "https://www.imls.gov" class DownloadService(IDownloadService): _config: Config _scraper: IScrapingService _cache: IOnDiskCache _logger: logging.Logger def __init__( self, config: Config, scraper: IScrapingService, cache: IOnDiskCache, logger_factory: ILoggerFactory, ) -> None: self._config = config self._scraper = scraper self._cache = cache self._logger = logger_factory.get_logger(__name__) def download(self) -> None: scraped_dict = self._scraper.scrape_files() scraped_dict_for_year = scraped_dict.get(str(self._config.year)) if scraped_dict_for_year is None: self._logger.info(f"There is no data for {self._config.year}") return self._try_download_resource( scraped_dict_for_year, "Documentation", DownloadType.Documentation ) self._try_download_resource(scraped_dict_for_year, "CSV", DownloadType.CsvZip) self._try_download_resource( scraped_dict_for_year, "Data Element Definitions", DownloadType.DataElementDefinitions, ) self._clean_up_readme() def _try_download_resource( self, scraped_dict: Dict[str, str], resource: str, download_type: DownloadType ) -> None: route = scraped_dict.get(resource) self._logger.debug(f"Trying to download {resource}") if route is None: self._logger.warning( f"The resource `{resource}` does not exist for {self._config.year}" ) return if self._resource_already_exists(download_type): self._logger.debug( f"Resources have already been downloaded for {download_type.value}" ) return url = f"{BASE_URL}/{route[1:] if route.startswith('/') else route}" res = requests.get(url) if res.status_code != 200: msg = f"Received a non-200 status code for {url}: {res.status_code}" self._logger.warning(msg) return self._write_content( download_type, res.content, should_unzip=str(download_type.value).endswith(".zip"), ) def _resource_already_exists(self, download_type: DownloadType) -> bool: if download_type in [ DownloadType.Documentation, DownloadType.DataElementDefinitions, ]: return self._cache.exists(download_type.value) elif download_type == DownloadType.CsvZip: return all( [ self._cache.exists(str(datafile_type.value)) for datafile_type in DatafileType ] ) return False def _write_content( self, download_type: DownloadType, content: bytes, should_unzip: bool = False ) -> None: self._cache.put(content, download_type.value) if should_unzip: zip_path = self._cache.cache_path / Path(download_type.value) with zipfile.ZipFile(zip_path, "r") as zip_ref: zip_ref.extractall(self._cache.cache_path) self._move_content() self._cache.remove(zip_path) def _move_content(self) -> None: for path in self._cache.cache_path.iterdir(): if not path.is_dir(): self._rename(path) continue for sub_path in path.iterdir(): self._rename(sub_path) self._cache.remove(path) def _rename(self, path: Path) -> None: new_name: str = path.name if "_ae_" in path.name.lower() or "ld" in path.name.lower(): new_name = DatafileType.SystemData.value elif "_outlet_" in path.name.lower() or "out" in path.name.lower(): new_name = DatafileType.OutletData.value elif "_state_" in path.name.lower() or "sum" in path.name.lower(): new_name = DatafileType.SummaryData.value elif "readme" in path.name.lower(): new_name = "README.txt" self._cache.rename(path, Path(new_name)) def _clean_up_readme(self): self._logger.debug("Cleaning up readme") readme_text = self._cache.get( "README.txt", "txt", encoding="utf-8", errors="surrogateescape", ) if readme_text is None: self._logger.debug("No readme exists for this year") return cleaned_readme_text = "".join([c if ord(c) < 128 else "'" for c in readme_text]) self._cache.put( bytes(cleaned_readme_text, "utf-8"), "README.txt", )
StarcoderdataPython
1662578
<gh_stars>0 import unittest import numpy as np import numpy.testing as tst import splearn as spl class TestSp(unittest.TestCase): def setUp(self): self.data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype='float64') self.target = np.array([[0, 0], [1, 0], [1, 0], [0, 1]], dtype='float64') def test_constructor(self): randomlayers = np.random.randint(1, 6, 5) def test_numpy(expected, value): expected.insert(0, np.zeros(shape=(2, 1))) expected.append(np.zeros(shape=(2, 1))) for exp, t in zip(expected, value): self.assertTrue(exp.shape, t.shape) # Test constructor with values for layers neural1 = spl.MLP(9, 5).fit(self.data, self.target) test_numpy([np.zeros(shape=(9, 1)) for _ in range(5)], neural1._network) # Test constructor for iterable neural2 = spl.MLP(randomlayers).fit(self.data, self.target) test_numpy([np.zeros(shape=(value, 1)) for value in randomlayers], neural2._network) # Test constructor with integer neural3 = spl.MLP(9).fit(self.data, self.target) test_numpy([np.zeros(shape=(9, 1)) for _ in range(9)], neural3._network) # Test constructor with package neural4 = spl.MLP(*randomlayers).fit(self.data, self.target) test_numpy([np.zeros(shape=(value, 1)) for value in randomlayers], neural4._network) # Testing wrong constructors with self.assertRaises(TypeError): wronglayers = np.random.rand(3) print("Shape wronglayers: {0}".format(wronglayers.shape)) # Test constructor with float spl.MLP(3.7) # Test constructor with string spl.MLP("marcelinho") # Test constructor with random type spl.MLP(int) # Test constructor with array of floats spl.MLP(wronglayers) # Test constructor with sequence of floats spl.MLP(*wronglayers) def test_fitting(self): ml = spl.MLP([2]) ml.fit(self.data, self.target) for layer in ml._network: print(layer) spl.MLP(2, 1).fit(self.data, self.target) def test_foward(self): weight1 = np.array([[0.3, 0.8, 0.7], [0.5, 0.6, 0.2]]) weight2 = np.array([[0.1, 0.4, 0.9], [0.5, 0.3, 0.6]]) first = np.array([[0.0, 0.0]]) target = np.array([[0.0, 0.0]]) testinput = np.array([0.0, 0.0]) neural = spl.MLP(2, 1).fit(first, target) neural._weights[0] = weight1 neural._weights[1] = weight2 testtarget = np.array([0.33, 0.425]).reshape(2, 1) tst.assert_almost_equal(neural._forward(testinput), testtarget, decimal=2) def test_predict(self): neural = spl.MLP(2, 1).fit(self.data, self.target) result = neural.predict(np.array([[1, 1]])) print("prediction:", result) def test_back(self): weight1 = np.array([[0.3, 0.8, 0.7], [0.5, 0.6, 0.2]]) weight2 = np.array([[0.1, 0.4, 0.9], [0.5, 0.3, 0.6]]) first = np.array([[0.0, 0.0]]) target = np.array([[0.0, 0.0]]) testinput = np.array([0.0, 0.0]) expected = np.array([0.0, 0.0]) # Results from classroom assignment nweights = [np.array([[0.3, 0.8, 0.71], [0.5, 0.6, 0.21]]), np.array([[0.08, 0.38, 0.93], [0.48, 0.28, 0.65]])] neural = spl.MLP(2, 1).fit(first, target) neural._weights[0] = weight1 neural._weights[1] = weight2 neural._forward(testinput) neural._backprop(expected) for old, new in zip(neural._weights, nweights): tst.assert_almost_equal(old, new, decimal=2) def test_describe(self): neural = spl.MLP(2, 1).fit(self.data, self.target) neural.describe() def test_batch(self): pass def test_iris(self): pass
StarcoderdataPython
3385027
import sys import zipfile import os, os.path class TA98ScrapedData(object): def __init__(self, scraped_zipfile): self.scraped_zipfile = scraped_zipfile def __enter__(self): self.zfile = zipfile.ZipFile(self.scraped_zipfile) self.ids = ['A'+y for y in (x[3:].split(' ')[0] for x in self.zfile.namelist() if x.startswith('en')) if y] self.ids.remove('A02.5.00.000') # bug: this isn't the latin version return self def get_html(self, id, lang='en'): idx = id[1:] if lang == 'en': filename = f'en/{idx} Entity TA98 EN.htm' elif lang == 'la': filename = f'la/{idx} Latin TA98.htm' else: raise ValueError("en or la") ret = None with self.zfile.open(filename, 'r') as fp: ret = fp.read() return ret def items_en(self): for i in self.ids: yield (i, self.get_html(i, 'en')) def items_la(self): for i in self.ids: yield (i, self.get_html(i, 'la')) def keys(self): yield from self.ids def __exit__(self, type, value, traceback): self.zfile.close() if __name__ == '__main__': def main(scraped_zipfile): with TAScrapedData(scraped_zipfile) as sinfo: list(sinfo.items_la()) list(sinfo.items_en()) scraped_zipfile = sys.argv[1] main(scraped_zipfile)
StarcoderdataPython
67315
<gh_stars>0 # Copyright 2019 New Vector Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import Any, Dict, List, Optional, Tuple from twisted.internet.address import IPv4Address from twisted.internet.protocol import Protocol from twisted.web.resource import Resource from synapse.app.generic_worker import GenericWorkerServer from synapse.http.site import SynapseRequest, SynapseSite from synapse.replication.http import ReplicationRestResource from synapse.replication.tcp.client import ReplicationDataHandler from synapse.replication.tcp.handler import ReplicationCommandHandler from synapse.replication.tcp.protocol import ClientReplicationStreamProtocol from synapse.replication.tcp.resource import ( ReplicationStreamProtocolFactory, ServerReplicationStreamProtocol, ) from synapse.server import HomeServer from tests import unittest from tests.server import FakeTransport try: import hiredis except ImportError: hiredis = None # type: ignore logger = logging.getLogger(__name__) class BaseStreamTestCase(unittest.HomeserverTestCase): """Base class for tests of the replication streams""" # hiredis is an optional dependency so we don't want to require it for running # the tests. if not hiredis: skip = "Requires hiredis" def prepare(self, reactor, clock, hs): # build a replication server server_factory = ReplicationStreamProtocolFactory(hs) self.streamer = hs.get_replication_streamer() self.server: ServerReplicationStreamProtocol = server_factory.buildProtocol( IPv4Address("TCP", "127.0.0.1", 0) ) # Make a new HomeServer object for the worker self.reactor.lookups["testserv"] = "172.16.31.10" self.worker_hs = self.setup_test_homeserver( federation_http_client=None, homeserver_to_use=GenericWorkerServer, config=self._get_worker_hs_config(), reactor=self.reactor, ) # Since we use sqlite in memory databases we need to make sure the # databases objects are the same. self.worker_hs.get_datastores().main.db_pool = hs.get_datastores().main.db_pool # Normally we'd pass in the handler to `setup_test_homeserver`, which would # eventually hit "Install @cache_in_self attributes" in tests/utils.py. # Unfortunately our handler wants a reference to the homeserver. That leaves # us with a chicken-and-egg problem. # We can workaround this: create the homeserver first, create the handler # and bodge it in after the fact. The bodging requires us to know the # dirty details of how `cache_in_self` works. We politely ask mypy to # ignore our dirty dealings. self.test_handler = self._build_replication_data_handler() self.worker_hs._replication_data_handler = self.test_handler # type: ignore[attr-defined] repl_handler = ReplicationCommandHandler(self.worker_hs) self.client = ClientReplicationStreamProtocol( self.worker_hs, "client", "test", clock, repl_handler, ) self._client_transport = None self._server_transport = None def create_resource_dict(self) -> Dict[str, Resource]: d = super().create_resource_dict() d["/_synapse/replication"] = ReplicationRestResource(self.hs) return d def _get_worker_hs_config(self) -> dict: config = self.default_config() config["worker_app"] = "synapse.app.generic_worker" config["worker_replication_host"] = "testserv" config["worker_replication_http_port"] = "8765" return config def _build_replication_data_handler(self): return TestReplicationDataHandler(self.worker_hs) def reconnect(self): if self._client_transport: self.client.close() if self._server_transport: self.server.close() self._client_transport = FakeTransport(self.server, self.reactor) self.client.makeConnection(self._client_transport) self._server_transport = FakeTransport(self.client, self.reactor) self.server.makeConnection(self._server_transport) def disconnect(self): if self._client_transport: self._client_transport = None self.client.close() if self._server_transport: self._server_transport = None self.server.close() def replicate(self): """Tell the master side of replication that something has happened, and then wait for the replication to occur. """ self.streamer.on_notifier_poke() self.pump(0.1) def handle_http_replication_attempt(self) -> SynapseRequest: """Asserts that a connection attempt was made to the master HS on the HTTP replication port, then proxies it to the master HS object to be handled. Returns: The request object received by master HS. """ # We should have an outbound connection attempt. clients = self.reactor.tcpClients self.assertEqual(len(clients), 1) (host, port, client_factory, _timeout, _bindAddress) = clients.pop(0) self.assertEqual(host, "1.2.3.4") self.assertEqual(port, 8765) # Set up client side protocol client_protocol = client_factory.buildProtocol(None) # Set up the server side protocol channel = self.site.buildProtocol(None) # hook into the channel's request factory so that we can keep a record # of the requests requests: List[SynapseRequest] = [] real_request_factory = channel.requestFactory def request_factory(*args, **kwargs): request = real_request_factory(*args, **kwargs) requests.append(request) return request channel.requestFactory = request_factory # Connect client to server and vice versa. client_to_server_transport = FakeTransport( channel, self.reactor, client_protocol ) client_protocol.makeConnection(client_to_server_transport) server_to_client_transport = FakeTransport( client_protocol, self.reactor, channel ) channel.makeConnection(server_to_client_transport) # The request will now be processed by `self.site` and the response # streamed back. self.reactor.advance(0) # We tear down the connection so it doesn't get reused without our # knowledge. server_to_client_transport.loseConnection() client_to_server_transport.loseConnection() # there should have been exactly one request self.assertEqual(len(requests), 1) return requests[0] def assert_request_is_get_repl_stream_updates( self, request: SynapseRequest, stream_name: str ): """Asserts that the given request is a HTTP replication request for fetching updates for given stream. """ path: bytes = request.path # type: ignore self.assertRegex( path, br"^/_synapse/replication/get_repl_stream_updates/%s/[^/]+$" % (stream_name.encode("ascii"),), ) self.assertEqual(request.method, b"GET") class BaseMultiWorkerStreamTestCase(unittest.HomeserverTestCase): """Base class for tests running multiple workers. Automatically handle HTTP replication requests from workers to master, unlike `BaseStreamTestCase`. """ def setUp(self): super().setUp() # build a replication server self.server_factory = ReplicationStreamProtocolFactory(self.hs) self.streamer = self.hs.get_replication_streamer() # Fake in memory Redis server that servers can connect to. self._redis_server = FakeRedisPubSubServer() # We may have an attempt to connect to redis for the external cache already. self.connect_any_redis_attempts() store = self.hs.get_datastores().main self.database_pool = store.db_pool self.reactor.lookups["testserv"] = "172.16.31.10" self.reactor.lookups["localhost"] = "127.0.0.1" # A map from a HS instance to the associated HTTP Site to use for # handling inbound HTTP requests to that instance. self._hs_to_site = {self.hs: self.site} if self.hs.config.redis.redis_enabled: # Handle attempts to connect to fake redis server. self.reactor.add_tcp_client_callback( "localhost", 6379, self.connect_any_redis_attempts, ) self.hs.get_replication_command_handler().start_replication(self.hs) # When we see a connection attempt to the master replication listener we # automatically set up the connection. This is so that tests don't # manually have to go and explicitly set it up each time (plus sometimes # it is impossible to write the handling explicitly in the tests). # # Register the master replication listener: self.reactor.add_tcp_client_callback( "1.2.3.4", 8765, lambda: self._handle_http_replication_attempt(self.hs, 8765), ) def create_test_resource(self): """Overrides `HomeserverTestCase.create_test_resource`.""" # We override this so that it automatically registers all the HTTP # replication servlets, without having to explicitly do that in all # subclassses. resource = ReplicationRestResource(self.hs) for servlet in self.servlets: servlet(self.hs, resource) return resource def make_worker_hs( self, worker_app: str, extra_config: Optional[dict] = None, **kwargs ) -> HomeServer: """Make a new worker HS instance, correctly connecting replcation stream to the master HS. Args: worker_app: Type of worker, e.g. `synapse.app.federation_sender`. extra_config: Any extra config to use for this instances. **kwargs: Options that get passed to `self.setup_test_homeserver`, useful to e.g. pass some mocks for things like `federation_http_client` Returns: The new worker HomeServer instance. """ config = self._get_worker_hs_config() config["worker_app"] = worker_app config.update(extra_config or {}) worker_hs = self.setup_test_homeserver( homeserver_to_use=GenericWorkerServer, config=config, reactor=self.reactor, **kwargs, ) # If the instance is in the `instance_map` config then workers may try # and send HTTP requests to it, so we register it with # `_handle_http_replication_attempt` like we do with the master HS. instance_name = worker_hs.get_instance_name() instance_loc = worker_hs.config.worker.instance_map.get(instance_name) if instance_loc: # Ensure the host is one that has a fake DNS entry. if instance_loc.host not in self.reactor.lookups: raise Exception( "Host does not have an IP for instance_map[%r].host = %r" % ( instance_name, instance_loc.host, ) ) # Copy the port into a new, non-Optional variable so mypy knows we're # not going to reset `instance_loc` to `None` under its feet. See # https://mypy.readthedocs.io/en/latest/common_issues.html#narrowing-and-inner-functions port = instance_loc.port self.reactor.add_tcp_client_callback( self.reactor.lookups[instance_loc.host], instance_loc.port, lambda: self._handle_http_replication_attempt(worker_hs, port), ) store = worker_hs.get_datastores().main store.db_pool._db_pool = self.database_pool._db_pool # Set up TCP replication between master and the new worker if we don't # have Redis support enabled. if not worker_hs.config.redis.redis_enabled: repl_handler = ReplicationCommandHandler(worker_hs) client = ClientReplicationStreamProtocol( worker_hs, "client", "test", self.clock, repl_handler, ) server = self.server_factory.buildProtocol( IPv4Address("TCP", "127.0.0.1", 0) ) client_transport = FakeTransport(server, self.reactor) client.makeConnection(client_transport) server_transport = FakeTransport(client, self.reactor) server.makeConnection(server_transport) # Set up a resource for the worker resource = ReplicationRestResource(worker_hs) for servlet in self.servlets: servlet(worker_hs, resource) self._hs_to_site[worker_hs] = SynapseSite( logger_name="synapse.access.http.fake", site_tag="{}-{}".format( worker_hs.config.server.server_name, worker_hs.get_instance_name() ), config=worker_hs.config.server.listeners[0], resource=resource, server_version_string="1", max_request_body_size=4096, reactor=self.reactor, ) if worker_hs.config.redis.redis_enabled: worker_hs.get_replication_command_handler().start_replication(worker_hs) return worker_hs def _get_worker_hs_config(self) -> dict: config = self.default_config() config["worker_replication_host"] = "testserv" config["worker_replication_http_port"] = "8765" return config def replicate(self): """Tell the master side of replication that something has happened, and then wait for the replication to occur. """ self.streamer.on_notifier_poke() self.pump() def _handle_http_replication_attempt(self, hs, repl_port): """Handles a connection attempt to the given HS replication HTTP listener on the given port. """ # We should have at least one outbound connection attempt, where the # last is one to the HTTP repication IP/port. clients = self.reactor.tcpClients self.assertGreaterEqual(len(clients), 1) (host, port, client_factory, _timeout, _bindAddress) = clients.pop() self.assertEqual(host, "1.2.3.4") self.assertEqual(port, repl_port) # Set up client side protocol client_protocol = client_factory.buildProtocol(None) # Set up the server side protocol channel = self._hs_to_site[hs].buildProtocol(None) # Connect client to server and vice versa. client_to_server_transport = FakeTransport( channel, self.reactor, client_protocol ) client_protocol.makeConnection(client_to_server_transport) server_to_client_transport = FakeTransport( client_protocol, self.reactor, channel ) channel.makeConnection(server_to_client_transport) # Note: at this point we've wired everything up, but we need to return # before the data starts flowing over the connections as this is called # inside `connecTCP` before the connection has been passed back to the # code that requested the TCP connection. def connect_any_redis_attempts(self): """If redis is enabled we need to deal with workers connecting to a redis server. We don't want to use a real Redis server so we use a fake one. """ clients = self.reactor.tcpClients while clients: (host, port, client_factory, _timeout, _bindAddress) = clients.pop(0) self.assertEqual(host, "localhost") self.assertEqual(port, 6379) client_protocol = client_factory.buildProtocol(None) server_protocol = self._redis_server.buildProtocol(None) client_to_server_transport = FakeTransport( server_protocol, self.reactor, client_protocol ) client_protocol.makeConnection(client_to_server_transport) server_to_client_transport = FakeTransport( client_protocol, self.reactor, server_protocol ) server_protocol.makeConnection(server_to_client_transport) class TestReplicationDataHandler(ReplicationDataHandler): """Drop-in for ReplicationDataHandler which just collects RDATA rows""" def __init__(self, hs: HomeServer): super().__init__(hs) # list of received (stream_name, token, row) tuples self.received_rdata_rows: List[Tuple[str, int, Any]] = [] async def on_rdata(self, stream_name, instance_name, token, rows): await super().on_rdata(stream_name, instance_name, token, rows) for r in rows: self.received_rdata_rows.append((stream_name, token, r)) class FakeRedisPubSubServer: """A fake Redis server for pub/sub.""" def __init__(self): self._subscribers = set() def add_subscriber(self, conn): """A connection has called SUBSCRIBE""" self._subscribers.add(conn) def remove_subscriber(self, conn): """A connection has called UNSUBSCRIBE""" self._subscribers.discard(conn) def publish(self, conn, channel, msg) -> int: """A connection want to publish a message to subscribers.""" for sub in self._subscribers: sub.send(["message", channel, msg]) return len(self._subscribers) def buildProtocol(self, addr): return FakeRedisPubSubProtocol(self) class FakeRedisPubSubProtocol(Protocol): """A connection from a client talking to the fake Redis server.""" transport: Optional[FakeTransport] = None def __init__(self, server: FakeRedisPubSubServer): self._server = server self._reader = hiredis.Reader() def dataReceived(self, data): self._reader.feed(data) # We might get multiple messages in one packet. while True: msg = self._reader.gets() if msg is False: # No more messages. return if not isinstance(msg, list): # Inbound commands should always be a list raise Exception("Expected redis list") self.handle_command(msg[0], *msg[1:]) def handle_command(self, command, *args): """Received a Redis command from the client.""" # We currently only support pub/sub. if command == b"PUBLISH": channel, message = args num_subscribers = self._server.publish(self, channel, message) self.send(num_subscribers) elif command == b"SUBSCRIBE": (channel,) = args self._server.add_subscriber(self) self.send(["subscribe", channel, 1]) # Since we use SET/GET to cache things we can safely no-op them. elif command == b"SET": self.send("OK") elif command == b"GET": self.send(None) else: raise Exception("Unknown command") def send(self, msg): """Send a message back to the client.""" assert self.transport is not None raw = self.encode(msg).encode("utf-8") self.transport.write(raw) self.transport.flush() def encode(self, obj): """Encode an object to its Redis format. Supports: strings/bytes, integers and list/tuples. """ if isinstance(obj, bytes): # We assume bytes are just unicode strings. obj = obj.decode("utf-8") if obj is None: return "$-1\r\n" if isinstance(obj, str): return f"${len(obj)}\r\n{obj}\r\n" if isinstance(obj, int): return f":{obj}\r\n" if isinstance(obj, (list, tuple)): items = "".join(self.encode(a) for a in obj) return f"*{len(obj)}\r\n{items}" raise Exception("Unrecognized type for encoding redis: %r: %r", type(obj), obj) def connectionLost(self, reason): self._server.remove_subscriber(self)
StarcoderdataPython
11156
def compareMetaboliteDicts(d1, d2): sorted_d1_keys = sorted(d1.keys()) sorted_d2_keys = sorted(d2.keys()) for i in range(len(sorted_d1_keys)): if not compareMetabolites(sorted_d1_keys[i], sorted_d2_keys[i], naive=True): return False elif not d1[sorted_d1_keys[i]] == d2[sorted_d2_keys[i]]: return False else: return True def compareMetabolites(met1, met2, naive=False): if isinstance(met1, set): return compareReactions(list(met1), list(met2), naive) if isinstance(met1, list): if not isinstance(met2, list): return False elif len(met1) != len(met2): return False else: for i in range(len(met1)): if not compareMetabolites(met1[i], met2[i], naive): return False else: return True else: if not True: #can never be entered pass elif not met1._bound == met2._bound: return False elif not met1._constraint_sense == met2._constraint_sense: return False #elif not met1.annotation == met2.annotation: # return False elif not met1.charge == met2.charge: return False elif not met1.compartment == met2.compartment: return False elif not met1.name == met2.name: return False elif not met1.compartment == met2.compartment: return False #elif not met1.notes == met2.notes: # return False elif not naive: if not compareReactions(met1._reaction, met2._reaction, naive=True): return False elif not compareModels(met1._model, met2._model, naive=True): return False else: return True else: return True def compareReactions(r1, r2, naive=False): if isinstance(r1, set): return compareReactions(list(r1), list(r2), naive) if isinstance(r1, list): if not isinstance(r2, list): return False elif len(r1) != len(r2): return False else: for i in range(len(r1)): if not compareReactions(r1[i], r2[i],naive): return False else: return True else: if not True: #can never be entered pass #elif not r1._compartments == r2._compartments: # return False #elif not r1._forward_variable == r2._forward_variable: # return False elif not r1._gene_reaction_rule == r2._gene_reaction_rule: return False elif not r1._id == r2._id: return False elif not r1._lower_bound == r2._lower_bound: return False #elif not r1._model == r2._model: # return False #elif not r1._reverse_variable == r2._reverse_variable: # return False elif not r1._upper_bound == r2._upper_bound: return False #elif not r1.annotation == r2.annotation: # return False elif not r1.name== r2.name: return False #elif not r1.notes == r2.notes: # return False elif not r1.subsystem == r2.subsystem: return False elif not r1.variable_kind == r2.variable_kind: return False elif not naive: if not compareMetaboliteDicts(r1._metabolites, r2._metabolites): return False elif not compareGenes(r1._genes,r2._genes, naive=True): return False else: return True else: return True def compareGenes(g1, g2, naive=False): if isinstance(g1, set): return compareGenes(list(g1), list(g2), naive) if isinstance(g1, list): if not isinstance(g2, list): return False elif len(g1) != len(g2): return False else: for i in range(len(g1)): if not compareGenes(g1[i], g2[i], naive): return False else: return True else: if not True: #can never be entered pass elif not g1._functional == g2._functional: return False elif not g1._id == g2._id: return False #elif not g1._model == g2._model: # return False elif not g1.annotation == g2.annotation: return False elif not g1.name == g2.name: return False #elif not g1.notes == g2.notes: # return False elif not naive: if not compareReactions(g1._reaction,g2._reaction, naive=True): return False else: return True else: return True def compareModels(m1, m2, naive=False): if not True: #can never be entered pass #elif not m1._compartments == m2._compartments: # return False #elif not m1._contexts == m2._contexts: # return False #elif not m1._solver == m2._solver: # return False elif not m1._id == m2._id: return False #elif not m1._trimmed == m2.trimmed: # return False #elif not m1._trimmed_genes == m2._trimmed_genes: # return False #elif not m1._trimmed_reactions == m2._trimmed_reactions: # return False #elif not m1.annotation == m2.annotation: # return False elif not m1.bounds == m2.bounds: return False elif not m1.name == m2.name: return False #elif not m1.notes == m2.notes: # return False #elif not m1.quadratic_component == m2.quadratic_component: # return False elif not naive: if not compareGenes(m1.genes, m2.genes): return False elif not compareMetabolites(m1.metabolites, m2.metabolites): return False elif not compareReactions(m1.reactions,m2.reactions): return False else: return True else: return True
StarcoderdataPython
102565
#!/usr/bin/env python from __future__ import division """@package etddf ROS interface script for delta tiering filter Filter operates in ENU """ from etddf.delta_tier import DeltaTier import rospy import threading from minau.msg import ControlStatus from etddf.msg import Measurement, MeasurementPackage, NetworkEstimate, AssetEstimate, EtddfStatistics, PositionVelocity from etddf.srv import GetMeasurementPackage import numpy as np import tf np.set_printoptions(suppress=True) from copy import deepcopy from std_msgs.msg import Header, Float64 from geometry_msgs.msg import PoseWithCovariance, Pose, Point, Quaternion, Twist, Vector3, TwistWithCovariance, PoseWithCovarianceStamped from nav_msgs.msg import Odometry from minau.msg import SonarTargetList, SonarTarget from cuprint.cuprint import CUPrint __author__ = "<NAME>" __copyright__ = "Copyright 2020, COHRINT Lab" __email__ = "<EMAIL>" __status__ = "Development" __license__ = "MIT" __maintainer__ = "<NAME>" __version__ = "3.0" NUM_OWNSHIP_STATES = 6 class ETDDF_Node: def __init__(self, my_name, \ update_rate, \ delta_tiers, \ asset2id, \ delta_codebook_table, \ buffer_size, \ meas_space_table, \ missed_meas_tolerance_table, \ x0,\ P0,\ Q,\ default_meas_variance, use_control_input): self.update_rate = update_rate self.asset2id = asset2id self.Q = Q self.use_control_input = use_control_input self.default_meas_variance = default_meas_variance self.my_name = my_name self.landmark_dict = rospy.get_param("~landmarks", {}) self.cuprint = CUPrint(rospy.get_name()) self.filter = DeltaTier(NUM_OWNSHIP_STATES, \ x0,\ P0,\ buffer_size,\ meas_space_table,\ missed_meas_tolerance_table, \ delta_codebook_table,\ delta_tiers,\ self.asset2id,\ my_name) self.network_pub = rospy.Publisher("etddf/estimate/network", NetworkEstimate, queue_size=10) self.statistics_pub = rospy.Publisher("etddf/statistics", EtddfStatistics, queue_size=10) self.statistics = EtddfStatistics(0, rospy.get_rostime(), 0, 0, delta_tiers, [0 for _ in delta_tiers], 0.0, [], False) self.asset_pub_dict = {} for asset in self.asset2id.keys(): if "surface" in asset: continue self.asset_pub_dict[asset] = rospy.Publisher("etddf/estimate/" + asset, Odometry, queue_size=10) self.update_seq = 0 self.last_depth_meas = None rospy.sleep(rospy.Duration(1 / self.update_rate)) self.last_update_time = rospy.get_rostime() - rospy.Duration(1 / self.update_rate) self.meas_lock = threading.Lock() self.update_lock = threading.Lock() self.last_orientation = None self.red_asset_found = False self.red_asset_names = rospy.get_param("~red_team_names") # Depth Sensor if rospy.get_param("~measurement_topics/depth") != "None": rospy.Subscriber(rospy.get_param("~measurement_topics/depth"), Float64, self.depth_callback, queue_size=1) # Modem & Measurement Packages rospy.Subscriber("etddf/packages_in", MeasurementPackage, self.meas_pkg_callback, queue_size=1) if self.use_control_input: self.control_input = None rospy.Subscriber("uuv_control/control_status", ControlStatus, self.control_status_callback, queue_size=1) if rospy.get_param("~strapdown"): rospy.Subscriber(rospy.get_param("~measurement_topics/imu_est"), Odometry, self.orientation_estimate_callback, queue_size=1) rospy.wait_for_message(rospy.get_param("~measurement_topics/imu_est"), Odometry) # IMU Covariance Intersection if rospy.get_param("~strapdown") and rospy.get_param("~measurement_topics/imu_ci") != "None": self.cuprint("Intersecting with strapdown") self.intersection_pub = rospy.Publisher("strapdown/intersection_result", PositionVelocity, queue_size=1) rospy.Subscriber(rospy.get_param("~measurement_topics/imu_ci"), PositionVelocity, self.nav_filter_callback, queue_size=1) else: self.cuprint("Not intersecting with strapdown filter") rospy.Timer(rospy.Duration(1 / self.update_rate), self.no_nav_filter_callback) # Sonar Subscription if rospy.get_param("~measurement_topics/sonar") != "None": rospy.Subscriber(rospy.get_param("~measurement_topics/sonar"), SonarTargetList, self.sonar_callback) self.data_x, self.data_y = None, None # rospy.Subscriber("pose_gt", Odometry, self.gps_callback, queue_size=1) # Initialize Buffer Service rospy.Service('etddf/get_measurement_package', GetMeasurementPackage, self.get_meas_pkg_callback) self.cuprint("loaded") def gps_callback(self, msg): self.data_x = msg.pose.pose.position.x + np.random.normal(0, scale=0.05) self.data_y = msg.pose.pose.position.y + np.random.normal(0, scale=0.05) def orientation_estimate_callback(self, odom): self.meas_lock.acquire() self.last_orientation = odom.pose.pose.orientation self.last_orientation_cov = np.array(odom.pose.covariance).reshape(6,6) self.last_orientation_dot = odom.twist.twist.angular self.last_orientation_dot_cov = np.array(odom.twist.covariance).reshape(6,6) self.meas_lock.release() def sonar_callback(self, sonar_list): for target in sonar_list.targets: # self.cuprint("Receiving sonar measurements") if self.last_orientation is None: # No orientation, no linearization of the sonar measurement # print("no ori") return if target.id == "detection": continue # self.cuprint("Receiving sonar data") # Convert quaternions to Euler angles. self.meas_lock.acquire() (r, p, y) = tf.transformations.euler_from_quaternion([self.last_orientation.x, \ self.last_orientation.y, self.last_orientation.z, self.last_orientation.w]) self.meas_lock.release() # y = (np.pi/180.0) * 8 bearing_world = y + target.bearing_rad z = target.range_m * np.sin(target.elevation_rad) xy_dist = target.range_m * np.cos(target.elevation_rad) x = xy_dist * np.cos(bearing_world) y = xy_dist * np.sin(bearing_world) now = rospy.get_rostime() sonar_x, sonar_y = None, None if "landmark_" in target.id: sonar_x = Measurement("sonar_x", now, self.my_name, "", x, self.default_meas_variance["sonar_x"], self.landmark_dict[target.id[len("landmark_"):]]) sonar_y = Measurement("sonar_y", now, self.my_name, "", y, self.default_meas_variance["sonar_x"], self.landmark_dict[target.id[len("landmark_"):]]) else: sonar_x = Measurement("sonar_x", now, self.my_name, target.id, x, self.default_meas_variance["sonar_x"], []) sonar_y = Measurement("sonar_y", now, self.my_name, target.id, y, self.default_meas_variance["sonar_y"], []) if target.id in self.red_asset_names and not self.red_asset_found: self.cuprint("Red Asset detected!") self.red_asset_found = True # sonar_z = Measurement("sonar_z", now, self.my_name, target.id, z, self.default_meas_variance["sonar_z"], [] self.filter.add_meas(sonar_x) self.filter.add_meas(sonar_y) # self.filter.add_meas(sonar_z) # self.cuprint("meas added") def publish_stats(self, last_update_time): self.statistics.seq = self.update_seq self.statistics.stamp = last_update_time self.statistics.overflown, delta, buffer = self.filter.peek_buffer() self.statistics.current_lowest_multiplier = delta meas_name_list = [x.meas_type for x in buffer] self.statistics.current_lowest_buffer = meas_name_list self.statistics_pub.publish(self.statistics) def no_nav_filter_callback(self, event): t_now = rospy.get_rostime() delta_t_ros = t_now - self.last_update_time self.update_lock.acquire() ### Run Prediction ### ### Run Prediction ### if self.use_control_input and self.control_input is not None: self.filter.predict(self.control_input, self.Q, delta_t_ros.to_sec(), False) else: self.filter.predict(np.zeros((3,1)), self.Q, delta_t_ros.to_sec(), False) ### Run Correction ### # Construct depth measurement z_r = self.default_meas_variance["depth"] z_data = self.last_depth_meas if z_data != None: z = Measurement("depth", t_now, self.my_name,"", z_data, z_r, []) self.filter.add_meas(z) self.last_depth_meas = None # correction self.filter.correct(t_now) self.publish_estimates(t_now) self.last_update_time = t_now self.update_seq += 1 self.update_lock.release() self.publish_stats(t_now) def nav_filter_callback(self, pv_msg): # Update at specified rate t_now = rospy.get_rostime() delta_t_ros = t_now - self.last_update_time if delta_t_ros < rospy.Duration(1/self.update_rate): return self.update_lock.acquire() ### Run Prediction ### if self.use_control_input and self.control_input is not None: self.filter.predict(self.control_input, self.Q, delta_t_ros.to_sec(), False) else: self.filter.predict(np.zeros((3,1)), self.Q, delta_t_ros.to_sec(), False) ### Run Correction ### # Construct depth measurement z_r = self.default_meas_variance["depth"] z_data = self.last_depth_meas if z_data != None: z = Measurement("depth", t_now, self.my_name,"", z_data, z_r, []) # Flip z data to transform enu -> NED self.filter.add_meas(z) self.last_depth_meas = None if self.data_x != None: x = Measurement("gps_x", t_now, self.my_name,"", self.data_x, 0.1, []) self.filter.add_meas(x) self.data_x = None if self.data_y != None: y = Measurement("gps_y", t_now, self.my_name,"", self.data_y, 0.1, []) self.filter.add_meas(y) self.data_y = None # correction self.filter.correct(t_now) ### Covariancee Intersect ### # Turn odom estimate into numpy mean = np.array([[pv_msg.position.x, pv_msg.position.y, pv_msg.position.z, \ pv_msg.velocity.x, pv_msg.velocity.y, pv_msg.velocity.z]]).T cov = np.array(pv_msg.covariance).reshape(6,6) # Run covariance intersection c_bar, Pcc = self.filter.intersect(mean, cov) position = Vector3(c_bar[0,0], c_bar[1,0], c_bar[2,0]) velocity = Vector3(c_bar[3,0], c_bar[4,0], c_bar[5,0]) covariance = list(Pcc.flatten()) new_pv_msg = PositionVelocity(position, velocity, covariance) self.intersection_pub.publish(new_pv_msg) self.publish_estimates(t_now) self.last_update_time = t_now self.update_seq += 1 self.update_lock.release() self.publish_stats(t_now) def control_status_callback(self, msg): self.update_lock.acquire() if msg.is_setpoint_active and msg.is_heading_velocity_setpoint_active: self.control_input = np.array([[msg.setpoint_velocity.y, msg.setpoint_velocity.z, -msg.setpoint_velocity.z]]).T else: self.control_input = None # GRAB CONTROL INPUT self.update_lock.release() def depth_callback(self, msg): self.meas_lock.acquire() self.last_depth_meas = msg.data self.meas_lock.release() def publish_estimates(self, timestamp): ne = NetworkEstimate() for asset in self.asset2id.keys(): if "surface" in asset: continue if "red" in asset and not self.red_asset_found: continue # else: # print("publishing " + asset + "'s estimate") # Construct Odometry Msg for Asset mean, cov = self.filter.get_asset_estimate(asset) pose_cov = np.zeros((6,6)) pose_cov[:3,:3] = cov[:3,:3] if asset == self.my_name: pose = Pose(Point(mean[0],mean[1],mean[2]), \ self.last_orientation) pose_cov[3:,3:] = self.last_orientation_cov[3:,3:] else: pose = Pose(Point(mean[0],mean[1],mean[2]), \ Quaternion(0,0,0,1)) pose_cov[3:,3:] = np.eye(3) * 3 pwc = PoseWithCovariance(pose, list(pose_cov.flatten())) twist_cov = np.zeros((6,6)) twist_cov[:3,:3] = cov[3:6,3:6] if asset == self.my_name: tw = Twist(Vector3(mean[3],mean[4],mean[5]), self.last_orientation_dot) twist_cov[3:, 3:] = self.last_orientation_dot_cov[3:,3:] else: tw = Twist(Vector3(mean[3],mean[4],mean[5]), Vector3(0,0,0)) twist_cov[3:, 3:] = np.eye(3) * -1 twc = TwistWithCovariance(tw, list(twist_cov.flatten())) h = Header(self.update_seq, timestamp, "map") o = Odometry(h, "map", pwc, twc) ae = AssetEstimate(o, asset) ne.assets.append(ae) self.asset_pub_dict[asset].publish(o) self.network_pub.publish(ne) def meas_pkg_callback(self, msg): # Modem Meas taken by surface if msg.src_asset == "surface": self.cuprint("Receiving Surface Modem Measurements") for meas in msg.measurements: # Approximate the fuse on the next update, so we can get other asset's position immediately if meas.meas_type == "modem_elevation": rospy.logerr("Ignoring Modem Elevation Measurement since we have depth measurements") continue elif meas.meas_type == "modem_azimuth": meas.global_pose = list(meas.global_pose) # self.cuprint("azimuth: " + str(meas.data)) meas.data = (meas.data * np.pi) / 180 meas.variance = self.default_meas_variance["modem_azimuth"] elif meas.meas_type == "modem_range": meas.global_pose = list(meas.global_pose) # self.cuprint("range: " + str(meas.data)) meas.variance = self.default_meas_variance["modem_range"] self.filter.add_meas(meas, force_fuse=True) # Modem Meas taken by me elif msg.src_asset == self.my_name: # self.cuprint("Receiving Modem Measurements Taken by Me") for meas in msg.measurements: # Approximate the fuse on the next update, so we can get other asset's position immediately if meas.meas_type == "modem_elevation": rospy.logerr("Ignoring Modem Elevation Measurement since we have depth measurements") continue elif meas.meas_type == "modem_azimuth": meas.global_pose = list(meas.global_pose) meas.data = (meas.data * np.pi) / 180 meas.variance = self.default_meas_variance["modem_azimuth"] elif meas.meas_type == "modem_range": meas.global_pose = list(meas.global_pose) meas.variance = self.default_meas_variance["modem_range"] self.filter.add_meas(meas, force_fuse=True) # Buffer else: self.cuprint("receiving buffer") self.update_lock.acquire() # Loop through buffer and see if we've found the red agent for m in msg.measurements: if m.measured_asset in self.red_asset_names and not self.red_asset_found: self.red_asset_found = True self.cuprint("Red asset measurement received!") implicit_cnt, explicit_cnt = self.filter.catch_up(msg.delta_multiplier, msg.measurements) self.cuprint("...caught up") self.update_lock.release() self.statistics.implicit_count += implicit_cnt self.statistics.explicit_count += explicit_cnt def get_meas_pkg_callback(self, req): self.cuprint("pulling buffer") delta, buffer = self.filter.pull_buffer() ind = self.statistics.delta_tiers.index(delta) self.statistics.buffer_counts[ind] += 1 mp = MeasurementPackage(buffer, self.my_name, delta) print(mp) return mp ################################ ### Initialization Functions ### ################################ def get_indices_from_asset_names(blue_team): my_name = rospy.get_param("~my_name") red_team = rospy.get_param("~red_team_names") asset2id = {} asset2id[my_name] = 0 next_index = 1 for asset in blue_team: if asset == my_name: continue else: asset2id[asset] = next_index next_index += 1 for asset in red_team: asset2id[asset] = next_index next_index += 1 if my_name != "surface": asset2id["surface"] = -1 # arbitrary negative number return asset2id def get_delta_codebook_table(): delta_codebook = {} meas_info = rospy.get_param("~measurements") for meas in meas_info.keys(): base_et_delta = meas_info[meas]["base_et_delta"] delta_codebook[meas] = base_et_delta return delta_codebook def get_missed_meas_tolerance_table(): meas_tolerance_table = {} meas_info = rospy.get_param("~measurements") for meas in meas_info.keys(): meas_tolerance_table[meas] = meas_info[meas]["missed_tolerance"] return meas_tolerance_table def get_meas_space_table(): meas_space_table = {} meas_info = rospy.get_param("~measurements") for meas in meas_info.keys(): meas_space_table[meas] = meas_info[meas]["buffer_size"] meas_space_table["bookstart"] = rospy.get_param("~buffer_space/bookstart") meas_space_table["bookend"] = rospy.get_param("~buffer_space/bookend") meas_space_table["final_time"] = rospy.get_param("~buffer_space/final_time") return meas_space_table def _dict2arr(d): return np.array([[d["x"]],\ [d["y"]],\ [d["z"]],\ [d["x_vel"]], \ [d["y_vel"]],\ [d["z_vel"]]]) def _list2arr(l): return np.array([l]).reshape(-1,1) def _add_velocity_states(base_states): velocities = np.zeros((base_states.size,1)) return np.concatenate((base_states, velocities), axis=0) def get_initial_estimate(num_states, blue_team_names, blue_team_positions): default_starting_position = _dict2arr(rospy.get_param("~default_starting_position")) uncertainty_known_starting_position = _dict2arr( rospy.get_param("~initial_uncertainty/known_starting_position")) uncertainty_unknown_starting_position = _dict2arr( rospy.get_param("~initial_uncertainty/unknown_starting_position")) my_starting_position = rospy.get_param("~starting_position") if not my_starting_position: my_starting_position = deepcopy(default_starting_position) else: my_starting_position = _add_velocity_states( _list2arr(my_starting_position)) ownship_uncertainty = _dict2arr( rospy.get_param("~initial_uncertainty/ownship") ) uncertainty = np.zeros((num_states,num_states)) uncertainty_vector = np.zeros((num_states,1)) uncertainty_vector[:NUM_OWNSHIP_STATES] = ownship_uncertainty uncertainty += np.eye(num_states) * uncertainty_vector state_vector = my_starting_position my_name = rospy.get_param("~my_name") red_team_names = rospy.get_param("~red_team_names") next_index_unc = 1 next_index_pos = 1 for asset in blue_team_names: if asset == my_name: next_index_pos += 1 continue if len(blue_team_positions) >= next_index_pos: # we were given the positione of this asset in roslaunch next_position = _add_velocity_states( _list2arr( blue_team_positions[next_index_pos-1])) uncertainty_vector = np.zeros((num_states,1)) uncertainty_vector[next_index_unc*NUM_OWNSHIP_STATES:(next_index_unc+1)*NUM_OWNSHIP_STATES] = uncertainty_known_starting_position uncertainty += np.eye(num_states) * uncertainty_vector else: next_position = deepcopy(default_starting_position) uncertainty_vector = np.zeros((num_states,1)) uncertainty_vector[next_index_unc*NUM_OWNSHIP_STATES:(next_index_unc+1)*NUM_OWNSHIP_STATES] = uncertainty_unknown_starting_position uncertainty += np.eye(num_states) * uncertainty_vector state_vector = np.concatenate((state_vector, next_position),axis=0) next_index_unc += 1 next_index_pos += 1 for asset in red_team_names: next_position = deepcopy(default_starting_position) state_vector = np.concatenate((state_vector, next_position),axis=0) uncertainty_vector = np.zeros((num_states,1)) uncertainty_vector[next_index_unc*NUM_OWNSHIP_STATES:(next_index_unc+1)*NUM_OWNSHIP_STATES] = uncertainty_unknown_starting_position uncertainty += np.eye(num_states) * uncertainty_vector next_index_unc += 1 return state_vector, uncertainty def get_process_noise(num_states, blue_team_names): Q = np.zeros((num_states, num_states)) ownship_Q = _dict2arr(rospy.get_param("~process_noise/ownship")) blueteam_Q = _dict2arr(rospy.get_param("~process_noise/blueteam")) redteam_Q = _dict2arr(rospy.get_param("~process_noise/redteam")) Q_vec = np.zeros((num_states,1)) Q_vec[:NUM_OWNSHIP_STATES] = ownship_Q Q += np.eye(num_states) * Q_vec my_name = rospy.get_param("~my_name") red_team_names = rospy.get_param("~red_team_names") next_index = 1 for asset in blue_team_names: if asset == my_name: continue Q_vec = np.zeros((num_states,1)) Q_vec[next_index*NUM_OWNSHIP_STATES:(next_index+1)*NUM_OWNSHIP_STATES] = blueteam_Q Q += np.eye(num_states) * Q_vec next_index += 1 for asset in red_team_names: Q_vec = np.zeros((num_states,1)) Q_vec[next_index*NUM_OWNSHIP_STATES:(next_index+1)*NUM_OWNSHIP_STATES] = redteam_Q Q += np.eye(num_states) * Q_vec next_index += 1 return Q def get_default_meas_variance(): meas_vars = {} meas_info = rospy.get_param("~measurements") for meas in meas_info.keys(): sd = meas_info[meas]["default_sd"] meas_vars[meas] = sd ** 2 return meas_vars if __name__ == "__main__": rospy.init_node("etddf_node") my_name = rospy.get_param("~my_name") update_rate = rospy.get_param("~update_rate") delta_tiers = rospy.get_param("~delta_tiers") blue_team_names = rospy.get_param("~blue_team_names") blue_team_positions = rospy.get_param("~blue_team_positions") # Don't track surface if it isn't this agent if my_name != "surface": ind = blue_team_names.index("surface") if ind >= 0: blue_team_names.pop(ind) blue_team_positions.pop(ind) asset2id = get_indices_from_asset_names(blue_team_names) delta_codebook_table = get_delta_codebook_table() buffer_size = rospy.get_param("~buffer_space/capacity") meas_space_table = get_meas_space_table() missed_meas_tolerance_table = get_missed_meas_tolerance_table() if my_name != "surface": num_assets = len(asset2id) - 1 # subtract surface else: num_assets = len(asset2id) x0, P0 = get_initial_estimate(num_assets * NUM_OWNSHIP_STATES, blue_team_names, blue_team_positions) Q = get_process_noise(num_assets * NUM_OWNSHIP_STATES, blue_team_names) rospy.logwarn("{}, {}, {}, {}".format(my_name, x0.shape, P0.shape, Q.shape)) default_meas_variance = get_default_meas_variance() use_control_input = rospy.get_param("~use_control_input") et_node = ETDDF_Node(my_name, update_rate, \ delta_tiers, \ asset2id, \ delta_codebook_table, \ buffer_size, \ meas_space_table, \ missed_meas_tolerance_table, \ x0,\ P0,\ Q,\ default_meas_variance,\ use_control_input) rospy.spin()
StarcoderdataPython
1704397
# -*- coding: utf-8 -*- from string import Template showfun = ''' <li class= "optitem" width="100%%"> <div style="float: left; width: 20px">&nbsp;</div> <a onclick="server.spring()" python="%s" href="#" width="100%%">%s</a> </li> ''' #hr = '''<HR>''' jsonlib = r''' if (!this.JSON) { this.JSON = {}; } (function () { "use strict"; function f(n) { // Format integers to have at least two digits. return n < 10 ? '0' + n : n; } if (typeof Date.prototype.toJSON !== 'function') { Date.prototype.toJSON = function (key) { return isFinite(this.valueOf()) ? this.getUTCFullYear() + '-' + f(this.getUTCMonth() + 1) + '-' + f(this.getUTCDate()) + 'T' + f(this.getUTCHours()) + ':' + f(this.getUTCMinutes()) + ':' + f(this.getUTCSeconds()) + 'Z' : null; }; String.prototype.toJSON = Number.prototype.toJSON = Boolean.prototype.toJSON = function (key) { return this.valueOf(); }; } var cx = /[\u0000\u00ad\u0600-\u0604\u070f\u17b4\u17b5\u200c-\u200f\u2028-\u202f\u2060-\u206f\ufeff\ufff0-\uffff]/g, escapable = /[\\\"\x00-\x1f\x7f-\x9f\u00ad\u0600-\u0604\u070f\u17b4\u17b5\u200c-\u200f\u2028-\u202f\u2060-\u206f\ufeff\ufff0-\uffff]/g, gap, indent, meta = { // table of character substitutions '\b': '\\b', '\t': '\\t', '\n': '\\n', '\f': '\\f', '\r': '\\r', '"' : '\\"', '\\': '\\\\' }, rep; function quote(string) { // If the string contains no control characters, no quote characters, and no // backslash characters, then we can safely slap some quotes around it. // Otherwise we must also replace the offending characters with safe escape // sequences. escapable.lastIndex = 0; return escapable.test(string) ? '"' + string.replace(escapable, function (a) { var c = meta[a]; return typeof c === 'string' ? c : '\\u' + ('0000' + a.charCodeAt(0).toString(16)).slice(-4); }) + '"' : '"' + string + '"'; } function str(key, holder) { // Produce a string from holder[key]. var i, // The loop counter. k, // The member key. v, // The member value. length, mind = gap, partial, value = holder[key]; // If the value has a toJSON method, call it to obtain a replacement value. if (value && typeof value === 'object' && typeof value.toJSON === 'function') { value = value.toJSON(key); } // If we were called with a replacer function, then call the replacer to // obtain a replacement value. if (typeof rep === 'function') { value = rep.call(holder, key, value); } // What happens next depends on the value's type. switch (typeof value) { case 'string': return quote(value); case 'number': // JSON numbers must be finite. Encode non-finite numbers as null. return isFinite(value) ? String(value) : 'null'; case 'boolean': case 'null': // If the value is a boolean or null, convert it to a string. Note: // typeof null does not produce 'null'. The case is included here in // the remote chance that this gets fixed someday. return String(value); // If the type is 'object', we might be dealing with an object or an array or // null. case 'object': // Due to a specification blunder in ECMAScript, typeof null is 'object', // so watch out for that case. if (!value) { return 'null'; } // Make an array to hold the partial results of stringifying this object value. gap += indent; partial = []; // Is the value an array? if (Object.prototype.toString.apply(value) === '[object Array]') { // The value is an array. Stringify every element. Use null as a placeholder // for non-JSON values. length = value.length; for (i = 0; i < length; i += 1) { partial[i] = str(i, value) || 'null'; } // Join all of the elements together, separated with commas, and wrap them in // brackets. v = partial.length === 0 ? '[]' : gap ? '[\n' + gap + partial.join(',\n' + gap) + '\n' + mind + ']' : '[' + partial.join(',') + ']'; gap = mind; return v; } // If the replacer is an array, use it to select the members to be stringified. if (rep && typeof rep === 'object') { length = rep.length; for (i = 0; i < length; i += 1) { k = rep[i]; if (typeof k === 'string') { v = str(k, value); if (v) { partial.push(quote(k) + (gap ? ': ' : ':') + v); } } } } else { // Otherwise, iterate through all of the keys in the object. for (k in value) { if (Object.hasOwnProperty.call(value, k)) { v = str(k, value); if (v) { partial.push(quote(k) + (gap ? ': ' : ':') + v); } } } } // Join all of the member texts together, separated with commas, // and wrap them in braces. v = partial.length === 0 ? '{}' : gap ? '{\n' + gap + partial.join(',\n' + gap) + '\n' + mind + '}' : '{' + partial.join(',') + '}'; gap = mind; return v; } } // If the JSON object does not yet have a stringify method, give it one. if (typeof JSON.stringify !== 'function') { JSON.stringify = function (value, replacer, space) { // The stringify method takes a value and an optional replacer, and an optional // space parameter, and returns a JSON text. The replacer can be a function // that can replace values, or an array of strings that will select the keys. // A default replacer method can be provided. Use of the space parameter can // produce text that is more easily readable. var i; gap = ''; indent = ''; // If the space parameter is a number, make an indent string containing that // many spaces. if (typeof space === 'number') { for (i = 0; i < space; i += 1) { indent += ' '; } // If the space parameter is a string, it will be used as the indent string. } else if (typeof space === 'string') { indent = space; } // If there is a replacer, it must be a function or an array. // Otherwise, throw an error. rep = replacer; if (replacer && typeof replacer !== 'function' && (typeof replacer !== 'object' || typeof replacer.length !== 'number')) { throw new Error('JSON.stringify'); } // Make a fake root object containing our value under the key of ''. // Return the result of stringifying the value. return str('', {'': value}); }; } // If the JSON object does not yet have a parse method, give it one. if (typeof JSON.parse !== 'function') { JSON.parse = function (text, reviver) { // The parse method takes a text and an optional reviver function, and returns // a JavaScript value if the text is a valid JSON text. var j; function walk(holder, key) { // The walk method is used to recursively walk the resulting structure so // that modifications can be made. var k, v, value = holder[key]; if (value && typeof value === 'object') { for (k in value) { if (Object.hasOwnProperty.call(value, k)) { v = walk(value, k); if (v !== undefined) { value[k] = v; } else { delete value[k]; } } } } return reviver.call(holder, key, value); } // Parsing happens in four stages. In the first stage, we replace certain // Unicode characters with escape sequences. JavaScript handles many characters // incorrectly, either silently deleting them, or treating them as line endings. text = String(text); cx.lastIndex = 0; if (cx.test(text)) { text = text.replace(cx, function (a) { return '\\u' + ('0000' + a.charCodeAt(0).toString(16)).slice(-4); }); } // In the second stage, we run the text against regular expressions that look // for non-JSON patterns. We are especially concerned with '()' and 'new' // because they can cause invocation, and '=' because it can cause mutation. // But just to be safe, we want to reject all unexpected forms. // We split the second stage into 4 regexp operations in order to work around // crippling inefficiencies in IE's and Safari's regexp engines. First we // replace the JSON backslash pairs with '@' (a non-JSON character). Second, we // replace all simple value tokens with ']' characters. Third, we delete all // open brackets that follow a colon or comma or that begin the text. Finally, // we look to see that the remaining characters are only whitespace or ']' or // ',' or ':' or '{' or '}'. If that is so, then the text is safe for eval. if (/^[\],:{}\s]*$/ .test(text.replace(/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g, '@') .replace(/"[^"\\\n\r]*"|true|false|null|-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g, ']') .replace(/(?:^|:|,)(?:\s*\[)+/g, ''))) { // In the third stage we use the eval function to compile the text into a // JavaScript structure. The '{' operator is subject to a syntactic ambiguity // in JavaScript: it can begin a block or an object literal. We wrap the text // in parens to eliminate the ambiguity. j = eval('(' + text + ')'); // In the optional fourth stage, we recursively walk the new structure, passing // each name/value pair to a reviver function for possible transformation. return typeof reviver === 'function' ? walk({'': j}, '') : j; } // If the text is not JSON parseable, then a SyntaxError is thrown. throw new SyntaxError('JSON.parse'); }; } }()); ''' maincss = r''' body { font: 90% Arial, Verdana, Helvetica, sans-serif; height: 100%; background: #FFFFFF; margin: 0; padding: 0; text-align: center; color: #000000; } .twoColHybLt #toptip { position:absolute; z-index:100; } .twoColHybLt #main_toolbar { width: auto; text-align: right; margin: 0; border-bottom: 1px solid #C2CFF1; overflow:auto; height: 20px; } .twoColHybLt #main_title h3 { margin: 0; } .twoColHybLt #main_title { font: 120% Arial; width: auto; text-align: left; margin: 0; overflow:auto; height: 40px; } .twoColHybLt #container { width: auto; border: 0px none #000000; text-align: left; margin-top: 0; margin-right: 0px; margin-bottom: 0; margin-left: 0px; overflow:auto; } .twoColHybLt #sidebar { float: left; width: 18em; padding-right: 0; padding-left: 0; overflow: auto; } .twoColHybLt #splitbar { float: left; width: 8px; background: #EBEFF9; padding-right: 0; padding-left: 0; overflow: auto; border-left: 1px solid #C2CFF1; } .twoColHybLt #splitbar:hover { background: #C2CFF1; } .twoColHybLt #sidebar h3, .twoColHybLt #sidebar p { margin-left: 10px; margin-right: 10px; } .twoColHybLt #mainContent { margin: 0 0 0 13em; } #mainContent #tabcontent { overflow: auto; } .twoColHybLt #topbar { font: 170% arial; width: auto; height: 30px; background: #C2CFF1; overflow: auto; padding: 5px 15px 0 10px; } #topnav { float: left; } #topmenu { float: right; } #toptitle { width: auto; } #switch_argbar { font: 50% arial; color: #0000CC; float: right; position: relative; top: 5px; } .twoColHybLt #argbar { font: 120% arial; width: auto; height: auto !important; height: 30px; min-height: 30px; text-align: left; background: #EBEFF9; border-bottom: 1px solid #C2CFF1; overflow: auto; padding: 0 10px 0 10px; } #argbar dl .first { border-top: 0; } #argbar dl { padding: 0px 10px 0px 10px; border-top: 1px dashed #C2CFF1; overflow: hidden; margin: 0; } #argbar dt { float: left; width: 60px; font-weight: bold; text-align: right; padding: 2px 0 0 0; } #argbar dd { overflow: auto; width: auto; padding: 0 0 0 20px; } #argbar dd div { font: 60% arial; float: left; width: 100px; height: 20px; border: 3px solid #B6CDDC; -moz-border-radius: 5px; -webkit-border-radius: 5px; border-radius: 5px; margin: 0 10px 1px 0; } #argbar dd div:hover { background: white; } #argbar dd select { min-width: 220px; height: 26px; border: 3px solid #B6CDDC; -moz-border-radius: 5px; -webkit-border-radius: 5px; border-radius: 5px; background: #EBEFF9; } #argbar dd select:hover { background: white; } #argbar dd input[type=text] { min-width: 220px; height: 20px; border: 3px solid #B6CDDC; -moz-border-radius: 5px; -webkit-border-radius: 5px; border-radius: 5px; background: #EBEFF9; } #argbar dd input[type=text]:hover { background: white; } .twoColHybLt #contentzone { overflow: scroll; } .opts { padding: 5px 0px 5px 0px; margin: 0; border-top: 1px solid #C2CFF1; } .opts span { padding-left: 5px; margin-bottom: 25px; font-weight: bold; } .optitem { list-style-type:none; padding-right: 0; padding-left: 0; } .optitem:hover{ background: #FFFFAA; } .optitem a { text-decoration: none; color: #3f3f3f; } .fltrt { float: right; margin-left: 8px; } .fltlft { float: left; margin-right: 8px; } .clearfloat { clear:both; height: 100%; font-size: 1px; line-height: 0px; } html { height:100%; } ''' maincss = maincss + ''' .ep-table { padding: 0; margin: 0; } caption { padding: 0 0 5px 0; width: 700px; font: italic 11px "Trebuchet MS", Verdana, Arial, Helvetica, sans-serif; text-align: right; } th { font: bold 11px "Trebuchet MS", Verdana, Arial, Helvetica, sans-serif; color: #4f6b72; border-right: 1px solid #C1DAD7; border-bottom: 1px solid #C1DAD7; border-top: 1px solid #C1DAD7; letter-spacing: 2px; text-align: left; padding: 6px 6px 6px 12px; background: #CAE8EA; width: 30px; } th.nobg { border-top: 0; border-left: 0; border-right: 1px solid #C1DAD7; background: none; } td { border-right: 1px solid #C1DAD7; border-bottom: 1px solid #C1DAD7; background: #fff; padding: 6px 6px 6px 12px; color: #4f6b72; } td.alt { background: #F5FAFA; color: #797268; } th.spec { border-left: 1px solid #C1DAD7; border-top: 0; background: #fff; font: bold 10px "Trebuchet MS", Verdana, Arial, Helvetica, sans-serif; } th.specalt { border-left: 1px solid #C1DAD7; border-top: 0; background: #f5fafa url(images/bullet2.gif) no-repeat; font: bold 10px "Trebuchet MS", Verdana, Arial, Helvetica, sans-serif; color: #797268; } .ep-bar { height: 100%; _position: relative; margin: 0 auto; padding: 1px 1px 1px 1px; } .ep-bar-in { height: 100%; background-color: #B1D632; position: relative; display: table; } .ep-bar-iin{ _position: absolute; _top: 50%; vertical-align: middle; display: table-cell; } .ep-bar-iiin { _position: relative; width: 100%; height: 100%; _top: -50%; } .ep-number { white-space: nowrap; } ''' ajaxlib = r''' function Server() { this.url = document.URL; try { this.conn = new XMLHttpRequest(); } catch(exp) { this.conn = new ActiveXObject("MSXML2.XMLHTTP.3.0"); }; this.resizecontainzone = function() { function $(id){ return window.document.getElementById(id); } var h = document.getElementById( "mainContent" ).offsetHeight; h = h - document.getElementById( "topbar" ).offsetHeight; h = h - document.getElementById( "argbar" ).offsetHeight; $("contentzone").style.height = h + "px"; }; this.conn.onreadystatechange = function() { if( this.readyState == 4 ) { if ( this.status == "200" ) { eval( this.responseText ) ; function $(id){ return window.document.getElementById(id); } var h = document.getElementById( "mainContent" ).offsetHeight; h = h - document.getElementById( "topbar" ).offsetHeight; h = h - document.getElementById( "argbar" ).offsetHeight; $("contentzone").style.height = h + "px"; tip = document.getElementById("toptip") ; tip.style.display = "none" ; } else { tip = document.getElementById("toptip") ; tip.style.display = "none" ; tip.innerHTML = "error catched : " + this.status ; tip.style.display = "" ; } } }; this.ajaxcall = function( content, info ) { ajaxurl = this.url; if ( info != null ) { tip = document.getElementById("toptip") ; tip.style.display = "none" ; tip.innerHTML = info ; tip.style.display = "" ; } content = JSON.stringify(content); this.conn.open( "POST" , ajaxurl , true ); this.conn.setRequestHeader("Content-Length", content.length); this.conn.send( content ); }; this.onload = function() { var content = { id:null, event:"onload", python:"", uri:document.URL }; this.ajaxcall( content, "loading page..." ); }; this.spring = function() { var ev = window.event || arguments.callee.caller.arguments[0]; var target = ev.srcElement || ev.target; var python = target.getAttribute("python"); if( python == null ) { python = ""; } var content = { id:target.id, event:ev.type, python:python, uri:document.URL }; this.ajaxcall( content, "loading page..." ); }; this.ontimer = function() { var d = document.getElementById( this.id ); if ( d === undefined || d == null ) { this.removetimer(); return; } var content = { id:this.id, event:"timer", python:this.info, uri:document.URL }; this.ajaxcall( content, null ); }; this.settimer = function(info, id) { this.info = info; this.id = id; var _this = this; this.timer = setInterval(function(){_this.ontimer();}, 2000 ); }; this.removetimer = function() { clearInterval(this.timer); }; }; var server = new Server(); ''' jsothers = r''' window.onload = function(){ resize(); server.onload(); }; window.onresize = resize; function $(id){ return window.document.getElementById(id); } function resize(){ var doc = window.document; var h = Math.max(doc.body.offsetHeight, doc.documentElement.offsetHeight); h = h - document.getElementById( "main_toolbar" ).offsetHeight; h = h - document.getElementById( "main_title" ).offsetHeight; $("container").style.height = h + "px"; $("sidebar").style.height = h + "px"; $("splitbar").style.height = h + "px"; $("mainContent").style.height = h + "px"; server.resizecontainzone() doc = null; } function hidesidebar() { if (this.visibale) { $("sidebar").style.display = "none"; //$("mainContent").style.width = "100%"; $("topnav").style.display = "block"; this.visibale = 0; //resize(); } else { //$("mainContent").style.width = "auto"; $("sidebar").style.display = "block"; $("topnav").style.display = "none"; this.visibale = 1; //resize(); } } hidesidebar.visibale = 1; function hideargbar() { if (this.visibale) { $("argbar").style.display = "none"; $("switch_argbar").innerHTML = "显示参数栏"; this.visibale = 0; resize(); } else { $("argbar").style.display = "block"; $("switch_argbar").innerHTML = "隐藏参数栏"; this.visibale = 1; resize(); } } hideargbar.visibale = 1; ''' mainhtml = r''' <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>Monitor</title> <style type="text/css"> $maincss </style> <!--[if IE]> <style type="text/css"> .twoColHybLt #sidebar { padding-top: 30px; } .twoColHybLt #mainContent { zoom: 1; padding-top: 15px; } </style> <![endif]--> <script type="text/javascript"> $ajaxlib </script> <script type="text/javascript"> $jsothers </script> </head> <body class="twoColHybLt"> <div id="toptip" style="display:none;">A</div> <div id="main_toolbar"> Login </div> <div id="main_title"> <h3>$title</h3> </div> <div id="container"> <div id="sidebar"> $funclist </div> <div id="splitbar" onclick="hidesidebar()"></div> <div id="mainContent"> <div id="topbar" > <div id="topnav" style="display:none;" > <input type="button" value="导航" /> </div> <div id="topmenu"> <input type="button" value="提交/刷新" /> </div> <div id="switch_argbar" onclick="hideargbar()">隐藏参数栏</div> <div id="toptitle"></div> </div> <div id="argbar" ></div> <div id="contentzone" ></div> </div> </div> </body> </html> ''' mainhtml = Template(mainhtml) from Al import easydoc from Al.__furture__ import easyprint as eprint import json from pprint import pprint from urlparse import urlparse import xml.sax.saxutils class EasyWeb( object ): def __init__( self, title = None ): self.title = title or "EasyWeb" self.methods = dict( ( k[4:], getattr( self, k ) ) for k in dir(self) if k.startswith('web_') ) self.respmakers = dict( ( k[5:], getattr( self, k ) ) for k in dir(self) if k.startswith('resp_') ) self.methods[''] = self._web_default self.methods[None] = self.main_page self.methods_meta = dict( ( k, easydoc.parse( v.__doc__, 'object_ex' ) ) for k, v in self.methods.items() ) #pprint( self.methods_meta ) self.mp = self.make_mainpage() def make_mainpage( self ): ''' ''' funclist = [ ( k, v.get( 'name', k), v.get('group', '') ) for k, v in self.methods_meta.items() if k ] grps = set( g for f, n, g in funclist ) funclist = [ '\n'.join( [ showfun % (f, n) for f, n, _g in funclist if _g == g ] ) for g in grps ] grps = [ ( ( '<span>' + g + '</span>\n' ) if g else '' ) for g in grps ] funclist = [ '<ul class="opts">' + g + fl + '</ul>' for g , fl in zip( grps, funclist ) ] funclist = '\n'.join(funclist) #return mainhtml % ( 'Monitor', funlist ) return mainhtml.safe_substitute( title = self.title, funclist = funclist, jsothers = jsothers, ajaxlib = ajaxlib, maincss = maincss, ) def run( self, env, start_response ): uri = env['PATH_INFO'] qs = env['QUERY_STRING'] work_n = None args = [] if env['REQUEST_METHOD'] == 'GET' : page = uri.split('#',1)[0] if page != '/' : start_response( '404 NOT FOUND', [] ) #yield resp.get( 'body', '' ) return elif env['REQUEST_METHOD'] == 'POST' : clen = int(env['CONTENT_LENGTH']) req = json.loads( env['wsgi.input'].read(clen) ) if req['event'] == 'onload' : page = ( uri.split('#',1)+[''] )[1] if 'uri' not in req else \ urlparse(req['uri']).fragment print page if page != '' : page = page.split('/') work_n, args = page[0], page[1:] #work = self.methods[work_n] else : work_n = '' else : work_n = req['python'] args = [] else : raise Exception, 'not supported' work = self.methods[work_n] rtmk = self.respmakers[ self.methods_meta[work_n]['showtype'] ] resp = rtmk( work( None, *args ) ) start_response( '200 OK', [] ) yield resp if work_n is None : return yield '''document.getElementById('toptitle').innerHTML = '%s';''' \ % ( str(self.methods_meta[work_n].get('name', work_n )), ) if req['event'] == 'onload' : return yield '''window.location.href=window.location.href+"%s";''' \ %( str(work_n), ) showargs = self.methods_meta[work_n].get( "arguments", {} ) showargs = self.make_args( showargs ) yield '''document.getElementById('argbar').innerHTML = '%s';''' \ % ( showargs.encode('string_escape'), ) def make_args( self, args ): r = [ getattr(self,'arg_'+v[''] )( k, v ) for k, v in args.items() ] r = [ '<dl>\n<dt>%s</dt><dd>%s\n</dd></dl>' % ( k, i ) for k, i in zip(args.keys(), r)] r = '\n'.join(r) return r def arg_dropdownlist( self, name, arg ): items = eval( arg['items'] ) default = eval( arg.get( 'default','None') ) r = [ '<option value="%s" %s >%s</option>' \ % ( i, 'selected="selected"' if i == default else '', i) for i in items ] r = '\n'.join(r) r = ( '<select name="%s">\n' % (name,) ) + r + '\n</select>' return r def arg_selectlist( self, name, arg ): items = eval( arg['items'] ) _its = [ ( name+'_'+str(idx), i ) for idx, i in enumerate(items) ] r = [ '<div><input type="checkbox" id="%s" name="%s" value="%s" /><label for="%s">%s</lable></div>' \ % ( idx, name, i, idx, i ) for idx, i in _its ] r = '\n'.join(r) #r = ( '<dl>\n<dt>%s</dt><dd>' % (name,) ) + r + '\n</dd></dl>' return r def arg_text( self, name, arg ): default = eval( arg.get( 'default','""') ) r = '<input type="text" name="%s" value="%s" />' % ( name, default) return r def serve( self, port, engine = '' ): if engine == '' : from wsgiref.simple_server import make_server httpd = make_server( '', port, self.run ) print "Serving HTTP on port %d..." % ( port, ) # Respond to requests until process is killed httpd.serve_forever() return elif engine == 'flup.fastcgi' : from flup.server.fcgi_fork import WSGIServer # Respond to requests until process is killed WSGIServer( wflow.run , bindAddress=port ).run() return raise Exception, 'unsupported engine.' def main_page( self, user ): ''' showtype: html ''' return self.mp def _web_default( self, user ): ''' showtype: text ''' return "hello world" def resp_html( self, r ): return r def resp_raw( self, r ): if type(r) == type(u''): r = r.encode('utf-8') if type(r) != type(''): r = str(r) return '''document.getElementById('contentzone').innerHTML = '%s';''' \ % ( r.encode('string_escape'), ) def resp_text( self, r ): if type(r) == type(u''): r = r.encoding('utf-8') if type(r) != type(''): r = str(r) r = xml.sax.saxutils.escape(r) return '''document.getElementById('contentzone').innerHTML = '%s';''' \ % ( r.encode('string_escape'), ) def resp_table( self, r ): r = eprint.Table( r, attr={"cellSpacing":0} ).htmlformat() return self.resp_raw(r) class EasyWebTest( EasyWeb ): def web_test( self, user ): ''' arguments: input1: dropdownlist items: ['table','list'] default: 'table' input2: text default: 'hello' input3: selectlist items: [1,2,3,4,5,6,7,8,9] showtype: text ''' return def web_test2( self, user ): ''' showtype: table name: hello world group: Hello ''' d = [ { 'colA' : 'A.1.alpha\r\nA.1.beta' , 'colB' : [1,2], 'colC' : 'B.1.alpha\r\nB.1.beta\r\nB.1.gamma\r\nB.1.delta', }, { 'colA' : 'A.2.alpha\r\nA.2.beta' , 'colB' : [0.1,0.9,0.3,0,-1], 'colC' : [3,0.7,{'B.2.alpha':'z','B.1':'qew' },True,False], }, ] return d def web_test3( self, user ): ''' showtype: text name: sleep 1 sec group: Hello ''' import time time.sleep(1) return 'server sleeped 1 sec' if __name__ == '__main__' : t = EasyWebTest() #print t.methods t.serve(1088)
StarcoderdataPython
1618444
# -*- coding:utf-8 -*- # Create by 27 # @Time : 2020/3/1 02:23 __author__ = '27' class NoneLocal: def __init__(self, v): self.v = v n = NoneLocal(1)
StarcoderdataPython
1746803
<filename>sztuczna_inteligencja/1-lab/picture_row.py def howManyHaveToFlip(list, windowSize): oneSymbol = 1 leastFlips = len(list) OnesInList = 0 for x in list: if x == oneSymbol: OnesInList += 1 OnesInWindow = 0 for i in range(windowSize): if list[i] == oneSymbol: OnesInWindow += 1 for i in range(len(list) - windowSize - 1): leastFlips = min( (windowSize - OnesInWindow) + (OnesInList - OnesInWindow), leastFlips ) if list[i] == oneSymbol: OnesInWindow -= 1 if list[i + windowSize] == oneSymbol: OnesInWindow += 1 return leastFlips
StarcoderdataPython
1621248
<gh_stars>1-10 from . import (pp, Session) from ..db.database import get_db from .base import CRUDBase from ..models.models_patch import Patch from ..schemas.schemas_patch import PatchCreate, PatchUpdate class CRUDPatch(CRUDBase[Patch, PatchCreate, PatchUpdate]): pass patch = CRUDPatch(Patch)
StarcoderdataPython
108123
<filename>backend/app/utils/get_param.py from flask_restful import request, abort def get_param(param_name, default, is_valid, to_value, error_message): param_string = request.args.get(param_name) if param_string is None: param_string = default elif not is_valid(param_string): abort(400, message=error_message) return to_value(param_string) def get_string_param(param_name: str, default: str, valid_words: list[str] = None) -> str: """Get query parameter in form of string. Args: param_name (str): Name of parameter. default (str): Default value of parameter. valid_words (list[str]): List of valid strings. """ def is_valid(string): return True if valid_words is not None: is_valid = valid_words.__contains__ def to_value(string): return string error_message = 'problem with query' if valid_words is not None: error_message = f'{param_name} should be: ' + ', '.join(valid_words) return get_param(param_name, default, is_valid, to_value, error_message) def get_bool_param(param_name: str, default: bool) -> bool: """Get query parameter in form of boolean. Args: param_name (str): Name of parameter. default (bool): Default value of parameter. """ default = str(default).lower() is_valid = ['true', 'false'].__contains__ def to_value(string): return string == "true" error_message = f'{param_name} should be "true" or "false"' return get_param(param_name, default, is_valid, to_value, error_message) def get_int_param(param_name: str, default: int) -> int: """Get query parameter in form of integer. Args: param_name (str): Name of parameter. default (int): Default value of parameter. """ default = str(default) is_valid = str.isdigit to_value = int error_message = f'{param_name} should be an integer' return get_param(param_name, default, is_valid, to_value, error_message)
StarcoderdataPython
1720235
<gh_stars>10-100 """ Reference Compositions ======================= This page presents the range of compositions within the reference compositon database accessible within :mod:`pyrolite`. It's currently a work in progress, but will soon contain extended descriptions and notes for some of the compositions and associated references. """ import matplotlib.pyplot as plt from pyrolite.geochem.norm import all_reference_compositions, get_reference_composition # sphinx_gallery_thumbnail_number = 11 refcomps = all_reference_compositions() norm = "Chondrite_PON" # a constant composition to normalise to ######################################################################################## # Chondrites # ----------- # fltr = lambda c: c.reservoir == "Chondrite" compositions = [x for (name, x) in refcomps.items() if fltr(x)] fig, ax = plt.subplots(1) for composition in compositions: composition.set_units("ppm") df = composition.comp.pyrochem.normalize_to(norm, units="ppm") df.pyroplot.REE(unity_line=True, ax=ax, label=composition.name) ax.legend() plt.show() ######################################################################################## # Mantle # ------- # # Primitive Mantle & Pyrolite # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # fltr = lambda c: c.reservoir in ["PrimitiveMantle", "BSE"] compositions = [x for (name, x) in refcomps.items() if fltr(x)] fig, ax = plt.subplots(1) for composition in compositions: composition.set_units("ppm") df = composition.comp.pyrochem.normalize_to(norm, units="ppm") df.pyroplot.REE(unity_line=True, ax=ax, label=composition.name) ax.legend() plt.show() ######################################################################################## # Depleted Mantle # ~~~~~~~~~~~~~~~~ # fltr = lambda c: ("Depleted" in c.reservoir) & ("Mantle" in c.reservoir) compositions = [x for (name, x) in refcomps.items() if fltr(x)] fig, ax = plt.subplots(1) for composition in compositions: composition.set_units("ppm") df = composition.comp.pyrochem.normalize_to(norm, units="ppm") df.pyroplot.REE(unity_line=True, ax=ax, label=composition.name) ax.legend() plt.show() ######################################################################################## # Mid-Ocean Ridge Basalts (MORB) # ------------------------------- # # # Average MORB, NMORB # ~~~~~~~~~~~~~~~~~~~~~ # fltr = lambda c: c.reservoir in ["MORB", "NMORB"] compositions = [x for (name, x) in refcomps.items() if fltr(x)] fig, ax = plt.subplots(1) for composition in compositions: composition.set_units("ppm") df = composition.comp.pyrochem.normalize_to(norm, units="ppm") df.pyroplot.REE(unity_line=True, ax=ax, label=composition.name) ax.legend() plt.show() ######################################################################################## # # Enriched MORB # ~~~~~~~~~~~~~ # fltr = lambda c: "EMORB" in c.reservoir compositions = [x for (name, x) in refcomps.items() if fltr(x)] fig, ax = plt.subplots(1) for composition in compositions: composition.set_units("ppm") df = composition.comp.pyrochem.normalize_to(norm, units="ppm") df.pyroplot.REE(unity_line=True, ax=ax, label=composition.name) ax.legend() plt.show() ######################################################################################## # Ocean Island Basalts # -------------------- # fltr = lambda c: "OIB" in c.reservoir compositions = [x for (name, x) in refcomps.items() if fltr(x)] fig, ax = plt.subplots(1) for composition in compositions: composition.set_units("ppm") df = composition.comp.pyrochem.normalize_to(norm, units="ppm") df.pyroplot.REE(unity_line=True, ax=ax, label=composition.name) ax.legend() plt.show() ######################################################################################## # Continental Crust # ----------------- # # Bulk Continental Crust # ~~~~~~~~~~~~~~~~~~~~~~~ # fltr = lambda c: c.reservoir == "BulkContinentalCrust" compositions = [x for (name, x) in refcomps.items() if fltr(x)] fig, ax = plt.subplots(1) for composition in compositions: composition.set_units("ppm") df = composition.comp.pyrochem.normalize_to(norm, units="ppm") df.pyroplot.REE(unity_line=True, ax=ax, label=composition.name) ax.legend() plt.show() ######################################################################################## # Upper Continental Crust # ~~~~~~~~~~~~~~~~~~~~~~~ # fltr = lambda c: c.reservoir == "UpperContinentalCrust" compositions = [x for (name, x) in refcomps.items() if fltr(x)] fig, ax = plt.subplots(1) for composition in compositions: composition.set_units("ppm") df = composition.comp.pyrochem.normalize_to(norm, units="ppm") df.pyroplot.REE(unity_line=True, ax=ax, label=composition.name) ax.legend() plt.show() ######################################################################################## # Mid-Continental Crust # ~~~~~~~~~~~~~~~~~~~~~ # fltr = lambda c: c.reservoir == "MidContinentalCrust" compositions = [x for (name, x) in refcomps.items() if fltr(x)] fig, ax = plt.subplots(1) for composition in compositions: composition.set_units("ppm") df = composition.comp.pyrochem.normalize_to(norm, units="ppm") df.pyroplot.REE(unity_line=True, ax=ax, label=composition.name) ax.legend() plt.show() ######################################################################################## # Lower Continental Crust # ~~~~~~~~~~~~~~~~~~~~~~~ # fltr = lambda c: c.reservoir == "LowerContinentalCrust" compositions = [x for (name, x) in refcomps.items() if fltr(x)] fig, ax = plt.subplots(1) for composition in compositions: composition.set_units("ppm") df = composition.comp.pyrochem.normalize_to(norm, units="ppm") df.pyroplot.REE(unity_line=True, ax=ax, label=composition.name) ax.legend() plt.show() ######################################################################################## # Shales # ------ # fltr = lambda c: "Shale" in c.reservoir compositions = [x for (name, x) in refcomps.items() if fltr(x)] fig, ax = plt.subplots(1) for composition in compositions: composition.set_units("ppm") df = composition.comp.pyrochem.normalize_to(norm, units="ppm") df.pyroplot.REE(unity_line=True, ax=ax, label=composition.name) ax.legend() plt.show() ######################################################################################## # Composition List # ----------------- # # |refcomps| # # .. seealso:: # # Examples: # `Normalisation <../examples/geochem/normalization.html>`__ #
StarcoderdataPython
1607158
<reponame>carlsummer/python_developer_tools # !/usr/bin/env python # -- coding: utf-8 -- # @Author zengxiaohui # Datatime:4/29/2021 8:41 PM # @File:time_utils import datetime import time def get_time_stamp(): """获取毫秒级的时间""" ct = time.time() local_time = time.localtime(ct) data_head = time.strftime("%Y-%m-%d %H:%M:%S", local_time) data_secs = (ct - int(ct)) * 1000 time_stamp = "%s.%03d" % (data_head, data_secs) return time_stamp def str2datetime(dd): """ # str转时间格式: dd = '2019-03-17 11:00:00' dd = datetime.datetime.strptime(dd, "%Y-%m-%d %H:%M:%S") print(dd,type(dd)) """ return datetime.datetime.strptime(dd, "%Y-%m-%d %H:%M:%S") def datetime2str(mtime): """datetime格式转str""" return mtime.strftime("%Y-%m-%d %H:%M:%S")
StarcoderdataPython
4841837
<gh_stars>1-10 from scipy.fft import fft, fftfreq import numpy as np from scipy import signal import matplotlib.pyplot as plt from scipy.signal import hann # Number of sample points N = 1024 # sample spacing Fs = 48000 T = 1.0 / Fs #X axis x = np.linspace(0.0, N*T, N, endpoint=False) #Signal y = np.cos(2.0*np.pi*x*5000) #Window w = hann(N) #FFT of signal without window yf = fft(y) #FFT of signal with window ywf = fft(y*w) # Used to calculate bins # We only grab the first half of the bins # because we don't need the negative frequencies xf = np.arange(0,Fs/2,Fs/N) plt.semilogy(xf[0:int(N/2)], 2.0/N * np.abs(yf[0:int(N/2)]), '-b') plt.semilogy(xf[0:int(N/2)], 2.0/N * np.abs(ywf[0:int(N/2)]), '-r') plt.legend(['FFT without Window', 'FFT with Window']) plt.grid() plt.show()
StarcoderdataPython
3221156
#!/usr/bin/env python # -*- coding: utf-8 -*- """High-level interface to a opus decoder functions""" __author__ = '<NAME> <<EMAIL>>' __copyright__ = 'Copyright (c) 2012, SvartalF' __license__ = 'BSD 3-Clause License' import opuslib.api.decoder import opuslib.api.encoder import opuslib.api.ctl import opuslib.constants class Decoder(object): def __init__(self, fs, channels): """ Parameters: fs : sampling rate channels : number of channels """ self._fs = fs self._channels = channels self._state = opuslib.api.decoder.create(fs, channels) def __del__(self): if hasattr(self, '_state'): # Destroying state only if __init__ completed successfully opuslib.api.decoder.destroy(self._state) def reset_state(self): """ Resets the codec state to be equivalent to a freshly initialized state """ opuslib.api.decoder.opuslib.api.ctl( self._state, opuslib.api.ctl.reset_state) def decode(self, data, frame_size, decode_fec=False): return opuslib.api.decoder.decode( self._state, data, len(data), frame_size, decode_fec, channels=self._channels) def decode_float(self, data, frame_size, decode_fec=False): return opuslib.api.decoder.decode_float( self._state, data, len(data), frame_size, decode_fec, channels=self._channels) # CTL interfaces _get_final_range = lambda self: opuslib.api.decoder.opuslib.api.ctl( self._state, opuslib.api.ctl.get_final_range) final_range = property(_get_final_range) _get_bandwidth = lambda self: opuslib.api.decoder.opuslib.api.ctl( self._state, opuslib.api.ctl.get_bandwidth) bandwidth = property(_get_bandwidth) _get_pitch = lambda self: opuslib.api.decoder.opuslib.api.ctl( self._state, opuslib.api.ctl.get_pitch) pitch = property(_get_pitch) _get_lsb_depth = lambda self: opuslib.api.decoder.opuslib.api.ctl( self._state, opuslib.api.ctl.get_lsb_depth) _set_lsb_depth = lambda self, x: opuslib.api.decoder.opuslib.api.ctl( self._state, opuslib.api.ctl.set_lsb_depth, x) lsb_depth = property(_get_lsb_depth, _set_lsb_depth) _get_gain = lambda self: opuslib.api.decoder.opuslib.api.ctl( self._state, opuslib.api.ctl.get_gain) _set_gain = lambda self, x: opuslib.api.decoder.opuslib.api.ctl( self._state, opuslib.api.ctl.set_gain, x) gain = property(_get_gain, _set_gain) class Encoder(object): def __init__(self, fs, channels, application): """ Parameters: fs : sampling rate channels : number of channels """ if application in opuslib.constants.APPLICATION_TYPES_MAP.keys(): application = opuslib.constants.APPLICATION_TYPES_MAP[application] elif application in opuslib.constants.APPLICATION_TYPES_MAP.values(): pass # Nothing to do here else: raise ValueError( "`application` value must be in 'voip', 'audio' or " "'restricted_lowdelay'") self._fs = fs self._channels = channels self._application = application self._state = opuslib.api.encoder.create(fs, channels, application) def __del__(self): if hasattr(self, '_state'): # Destroying state only if __init__ completed successfully opuslib.api.encoder.destroy(self._state) def reset_state(self): """ Resets the codec state to be equivalent to a freshly initialized state """ opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.reset_state) def encode(self, data, frame_size): return opuslib.api.encoder.encode( self._state, data, frame_size, len(data)) def encode_float(self, data, frame_size, decode_fec=False): return opuslib.api.encoder.encode_float( self._state, data, frame_size, len(data)) # CTL interfaces _get_final_range = lambda self: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.get_final_range) final_range = property(_get_final_range) _get_bandwidth = lambda self: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.get_bandwidth) bandwidth = property(_get_bandwidth) _get_pitch = lambda self: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.get_pitch) pitch = property(_get_pitch) _get_lsb_depth = lambda self: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.get_lsb_depth) _set_lsb_depth = lambda self, x: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.set_lsb_depth, x) lsb_depth = property(_get_lsb_depth, _set_lsb_depth) _get_complexity = lambda self: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.get_complexity) _set_complexity = lambda self, x: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.set_complexity, x) complexity = property(_get_complexity, _set_complexity) _get_bitrate = lambda self: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.get_bitrate) _set_bitrate = lambda self, x: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.set_bitrate, x) bitrate = property(_get_bitrate, _set_bitrate) _get_vbr = lambda self: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.get_vbr) _set_vbr = lambda self, x: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.set_vbr, x) vbr = property(_get_vbr, _set_vbr) _get_vbr_constraint = lambda self: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.get_vbr_constraint) _set_vbr_constraint = lambda self, x: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.set_vbr_constraint, x) vbr_constraint = property(_get_vbr_constraint, _set_vbr_constraint) _get_force_channels = lambda self: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.get_force_channels) _set_force_channels = lambda self, x: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.set_force_channels, x) force_channels = property(_get_force_channels, _set_force_channels) _get_max_bandwidth = lambda self: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.get_max_bandwidth) _set_max_bandwidth = lambda self, x: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.set_max_bandwidth, x) max_bandwidth = property(_get_max_bandwidth, _set_max_bandwidth) _set_bandwidth = lambda self, x: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.set_bandwidth, x) bandwidth = property(None, _set_bandwidth) _get_signal = lambda self: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.get_signal) _set_signal = lambda self, x: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.set_signal, x) signal = property(_get_signal, _set_signal) _get_application = lambda self: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.get_application) _set_application = lambda self, x: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.set_application, x) application = property(_get_application, _set_application) _get_sample_rate = lambda self: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.get_sample_rate) sample_rate = property(_get_sample_rate) _get_lookahead = lambda self: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.get_lookahead) lookahead = property(_get_lookahead) _get_inband_fec = lambda self: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.get_inband_fec) _set_inband_fec = lambda self, x: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.set_inband_fec) inband_fec = property(_get_inband_fec, _set_inband_fec) _get_packet_loss_perc = lambda self: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.get_packet_loss_perc) _set_packet_loss_perc = \ lambda self, x: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.set_packet_loss_perc, x) packet_loss_perc = property(_get_packet_loss_perc, _set_packet_loss_perc) _get_dtx = lambda self: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.get_dtx) _set_dtx = lambda self, x: opuslib.api.encoder.ctl( self._state, opuslib.api.ctl.get_dtx, x)
StarcoderdataPython
1735686
<reponame>raminjafary/ethical-hacking<filename>src/14 keylogger/keylogger_3.py #!/usr/bin/python import pynput.keyboard import threading log = "" def process_key_press(key): global log try: log = log + str(key.char) except AttributeError: if key == key.space: log = log + " " else: log = log +" " + str(key) + " " print (log) def report(): global log print (log) log = "" timer = threading.Timer(5,report) timer.start() keyboard_listener=pynput.keyboard.Listener(on_press=process_key_press) with keyboard_listener: report() keyboard_listener.join()
StarcoderdataPython
17774
<reponame>HangeZoe/django-todo-list<filename>todolist/wsgi.py import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'todolist.settings') application = get_wsgi_application()
StarcoderdataPython
142254
<reponame>Wanghp119/py-st-dbscan from datetime import timedelta from geopy.distance import great_circle def st_dbscan(df, spatial_threshold, temporal_threshold, min_neighbors): """ Python st-dbscan implementation. INPUTS: df={o1,o2,...,on} Set of objects spatial_threshold = Maximum geographical coordinate (spatial) distance value temporal_threshold = Maximum non-spatial distance value min_neighbors = Minimun number of points within Eps1 and Eps2 distance OUTPUT: C = {c1,c2,...,ck} Set of clusters """ cluster_label = 0 noise = -1 unmarked = 777777 stack = [] # initialize each point with unmarked df['cluster'] = unmarked # for each point in database for index, point in df.iterrows(): if df.loc[index]['cluster'] == unmarked: neighborhood = retrieve_neighbors(index, df, spatial_threshold, temporal_threshold) if len(neighborhood) < min_neighbors: df.set_value(index, 'cluster', noise) else: # found a core point cluster_label += 1 # assign a label to core point df.set_value(index, 'cluster', cluster_label) # assign core's label to its neighborhood for neig_index in neighborhood: df.set_value(neig_index, 'cluster', cluster_label) stack.append(neig_index) # append neighborhood to stack # find new neighbors from core point neighborhood while len(stack) > 0: current_point_index = stack.pop() new_neighborhood = retrieve_neighbors( current_point_index, df, spatial_threshold, temporal_threshold) # current_point is a new core if len(new_neighborhood) >= min_neighbors: for neig_index in new_neighborhood: neig_cluster = df.loc[neig_index]['cluster'] if all([neig_cluster != noise, neig_cluster == unmarked]): # TODO: verify cluster average # before add new point df.set_value(neig_index, 'cluster', cluster_label) stack.append(neig_index) return df def retrieve_neighbors(index_center, df, spatial_threshold, temporal_threshold): neigborhood = [] center_point = df.loc[index_center] # filter by time min_time = center_point['date_time'] - timedelta(seconds=temporal_threshold) max_time = center_point['date_time'] + timedelta(seconds=temporal_threshold) df = df[(df['date_time'] >= min_time) & (df['date_time'] <= max_time)] # filter by distance for index, point in df.iterrows(): if index != index_center: distance = great_circle( (center_point['latitude'], center_point['longitude']), (point['latitude'], point['longitude'])).meters if distance <= spatial_threshold: neigborhood.append(index) return neigborhood
StarcoderdataPython
107962
<gh_stars>1-10 import argparse import numpy as np import os import pandas as pd def main(num_tasks_all, datasets, algorithms, num_seeds, num_init_tasks, num_epochs, save_frequency, results_root): if len(num_tasks_all) == 1: num_tasks_all = num_tasks_all * len(datasets) if isinstance(datasets, str): datasets = [datasets] if isinstance(algorithms, str): algorithms = [algorithms] name_order = {'ER Dynamic': 0, 'ER Compositional': 1, 'ER Joint': 2, 'ER Nocomponents': 3, 'EWC Dynamic': 4, 'EWC Compositional': 5, 'EWC Joint': 6, 'EWC Nocomponents': 7, 'VAN Dynamic': 8, 'VAN Compositional': 9, 'VAN Joint': 10, 'VAN Nocomponents': 11, 'FM Dynamic': 12, 'FM Compositional': 13} version_map = {'Dynamic': 'Dyn. + Comp.', 'Compositional': 'Compositional', 'Joint': 'Joint', 'Nocomponents': 'No Comp.'} ylabel_map = {'acc': 'Accuracy', 'loss': 'Loss'} jumpstart_vals_all_datasets = {} finetuning_vals_all_datasets = {} forward_transfer_vals_all_datasets = {} final_vals_all_datasets = {} jumpstart_errs_all_datasets = {} finetuning_errs_all_datasets = {} forward_transfer_errs_all_datasets = {} final_errs_all_datasets = {} for i, dataset in enumerate(datasets): num_tasks = num_tasks_all[i] jumpstart_vals = {} finetuning_vals = {} forward_transfer_vals = {} final_vals = {} jumpstart_vals_all_algos = {} finetuning_vals_all_algos = {} forward_transfer_vals_all_algos = {} final_vals_all_algos = {} jumpstart_errs_all_algos = {} finetuning_errs_all_algos = {} forward_transfer_errs_all_algos = {} final_errs_all_algos = {} names = [] for algorithm in algorithms: jumpstart_vals[algorithm] = {} finetuning_vals[algorithm] = {} forward_transfer_vals[algorithm] = {} final_vals[algorithm] = {} for seed in range(num_seeds): iter_cnt = 0 prev_components = 4 for task_id in range(num_tasks): results_dir = os.path.join(results_root, dataset, algorithm, 'seed_{}'.format(seed), 'task_{}'.format(task_id)) if 'dynamic' in algorithm and task_id >= num_init_tasks: with open(os.path.join(results_dir, 'num_components.txt')) as f: line = f.readline() curr_components = int(line.lstrip('final components: ')) keep_component = curr_components > prev_components prev_components = curr_components with open(os.path.join(results_dir, 'log.txt')) as f: ##### JUMPSTART ######### next(f) for task in range(task_id): next(f) line = f.readline() line = line.rstrip('\n') i_0 = len('\ttask: {}\t'.format(task_id)) while i_0 != -1: i_f = line.find(':', i_0) key = line[i_0 : i_f] if task_id == 0 and seed == 0: jumpstart_vals[algorithm][key] = np.zeros((num_seeds, num_tasks)) finetuning_vals[algorithm][key] = np.zeros((num_seeds, num_tasks)) forward_transfer_vals[algorithm][key] = np.zeros((num_seeds, num_tasks)) final_vals[algorithm][key] = np.zeros((num_seeds, num_tasks)) if key not in jumpstart_vals_all_algos: jumpstart_vals_all_algos[key] = [] finetuning_vals_all_algos[key] = [] forward_transfer_vals_all_algos[key] = [] final_vals_all_algos[key] = [] jumpstart_errs_all_algos[key] = [] finetuning_errs_all_algos[key] = [] forward_transfer_errs_all_algos[key] = [] final_errs_all_algos[key] = [] if key not in jumpstart_vals_all_datasets: jumpstart_vals_all_datasets[key] = [] finetuning_vals_all_datasets[key] = [] forward_transfer_vals_all_datasets[key] = [] final_vals_all_datasets[key] = [] jumpstart_errs_all_datasets[key] = [] finetuning_errs_all_datasets[key] = [] forward_transfer_errs_all_datasets[key] = [] final_errs_all_datasets[key] = [] i_0 = line.find(key + ': ', i_0) + len(key + ': ') i_f = line.find('\t', i_0) substr = line[i_0 : i_f] if i_f != -1 else line[i_0:] try: val = float(substr) except: if keep_component: val = float(substr.split(',')[0].lstrip('(')) else: val = float(substr.split(',')[1].rstrip(')')) jumpstart_vals[algorithm][key][seed, task_id] = val i_0 = i_f if i_f == - 1 else i_f + 1 if task_id < num_init_tasks - 1: continue ###### IGNORE FINTEUNING PROCESS ######### if '_compositional' in algorithm or '_dynamic' in algorithm: stop_at = num_epochs - save_frequency else: stop_at = num_epochs for epoch in range(1, stop_at, save_frequency): try: next(f) # epochs: 100, training task: 9 except StopIteration: print(dataset, algorithm, seed, task_id, epoch) raise for task in range(task_id + 1): next(f) ###### FETUNING ########### next(f) if task_id == num_init_tasks - 1: start_loop_at = 0 elif task_id == num_tasks - 1 and '_compositional' not in algorithm and '_dynamic' not in algorithm: start_loop_at = 0 else: start_loop_at = task_id for task in range(start_loop_at): next(f) for task in range(start_loop_at, task_id + 1): line = f.readline() line = line.rstrip('\n') i_0 = len('\ttask: {}\t'.format(task)) while i_0 != -1: i_f = line.find(':', i_0) key = line[i_0 : i_f] i_0 = line.find(key + ': ', i_0) + len(key + ': ') i_f = line.find('\t', i_0) substr = line[i_0 : i_f] if i_f != -1 else line[i_0:] try: val = float(substr) except: if keep_component: val = float(substr.split(',')[0].lstrip('(')) else: val = float(substr.split(',')[1].rstrip(')')) if task == task_id or task_id == num_init_tasks - 1: finetuning_vals[algorithm][key][seed, task] = val if task_id == num_tasks - 1 and '_compositional' not in algorithm and '_dynamic' not in algorithm: final_vals[algorithm][key][seed, task] = val i_0 = i_f if i_f == - 1 else i_f + 1 ####### FORWARD TRANSFER ####### if ('_compositional' in algorithm or '_dynamic' in algorithm) and task_id != num_init_tasks - 1: if task_id == num_tasks - 1: start_loop_at = 0 next(f) for task in range(start_loop_at): next(f) for task in range(start_loop_at, task_id + 1): line = f.readline() line = line.rstrip('\n') i_0 = len('\ttask: {}\t'.format(task)) while i_0 != -1: i_f = line.find(':', i_0) key = line[i_0 : i_f] i_0 = line.find(key + ': ', i_0) + len(key + ': ') i_f = line.find('\t', i_0) substr = line[i_0 : i_f] if i_f != -1 else line[i_0:] try: val = float(substr) except: if keep_component: val = float(substr.split(',')[0].lstrip('(')) else: val = float(substr.split(',')[1].rstrip(')')) if task == task_id: forward_transfer_vals[algorithm][key][seed, task] = val if task_id == num_tasks - 1: final_vals[algorithm][key][seed][task] = val i_0 = i_f if i_f == - 1 else i_f + 1 else: for task in range(start_loop_at, task_id + 1): for key in finetuning_vals[algorithm]: forward_transfer_vals[algorithm][key][seed, task] = finetuning_vals[algorithm][key][seed, task] key = 'acc' if key in jumpstart_vals[algorithm]: jumpstart_vals_all_algos[key].append(jumpstart_vals[algorithm][key].mean()) jumpstart_errs_all_algos[key].append(jumpstart_vals[algorithm][key].mean(axis=1).std()) finetuning_vals_all_algos[key].append(finetuning_vals[algorithm][key].mean()) finetuning_errs_all_algos[key].append(finetuning_vals[algorithm][key].mean(axis=1).std()) forward_transfer_vals_all_algos[key].append(forward_transfer_vals[algorithm][key].mean()) forward_transfer_errs_all_algos[key].append(forward_transfer_vals[algorithm][key].mean(axis=1).std()) final_vals_all_algos[key].append(final_vals[algorithm][key].mean()) final_errs_all_algos[key].append(final_vals[algorithm][key].mean(axis=1).std()) names.append(algorithm.split('_')[0].upper() + ' ' + algorithm.split('_')[1].title()) # names.append(algorithm) idx = [x[0] for x in sorted(enumerate(names), key=lambda x:name_order[x[1]])] names = np.array(names)[idx] key = 'acc' if key in jumpstart_vals_all_algos: # Sort by names to group by base algorithm jumpstart_vals_all_algos[key] = np.array(jumpstart_vals_all_algos[key])[idx] jumpstart_errs_all_algos[key] = np.array(jumpstart_errs_all_algos[key])[idx] / np.sqrt(num_seeds) finetuning_vals_all_algos[key] = np.array(finetuning_vals_all_algos[key])[idx] finetuning_errs_all_algos[key] = np.array(finetuning_errs_all_algos[key])[idx] / np.sqrt(num_seeds) forward_transfer_vals_all_algos[key] = np.array(forward_transfer_vals_all_algos[key])[idx] forward_transfer_errs_all_algos[key] = np.array(forward_transfer_errs_all_algos[key])[idx] / np.sqrt(num_seeds) final_vals_all_algos[key] = np.array(final_vals_all_algos[key])[idx] final_errs_all_algos[key] = np.array(final_errs_all_algos[key])[idx] / np.sqrt(num_seeds) if key in jumpstart_vals[algorithm]: jumpstart_vals_all_datasets[key].append(jumpstart_vals_all_algos[key]) jumpstart_errs_all_datasets[key].append(jumpstart_errs_all_algos[key]) finetuning_vals_all_datasets[key].append(finetuning_vals_all_algos[key]) finetuning_errs_all_datasets[key].append(finetuning_errs_all_algos[key]) forward_transfer_vals_all_datasets[key].append(forward_transfer_vals_all_algos[key]) forward_transfer_errs_all_datasets[key].append(forward_transfer_errs_all_algos[key]) final_vals_all_datasets[key].append(final_vals_all_algos[key]) final_errs_all_datasets[key].append(final_errs_all_algos[key]) key = 'acc' if key in jumpstart_vals_all_datasets: jumpstart_vals_all_datasets[key] = np.array(jumpstart_vals_all_datasets[key]) finetuning_vals_all_datasets[key] = np.array(finetuning_vals_all_datasets[key]) forward_transfer_vals_all_datasets[key] = np.array(forward_transfer_vals_all_datasets[key]) final_vals_all_datasets[key] = np.array(final_vals_all_datasets[key]) jumpstart_errs_all_datasets[key] = np.array(jumpstart_errs_all_datasets[key]) finetuning_errs_all_datasets[key] = np.array(finetuning_errs_all_datasets[key]) forward_transfer_errs_all_datasets[key] = np.array(forward_transfer_errs_all_datasets[key]) final_errs_all_datasets[key] = np.array(final_errs_all_datasets[key]) # Group by base algorithm base_counts = np.array([sum(x.startswith('ER') for x in names), sum(x.startswith('EWC') for x in names), sum(x.startswith('VAN') for x in names), sum(x.startswith('FM') for x in names)]) base_nocomponents_pos = np.cumsum(base_counts) - 1 base_column = (['ER'] * base_counts[0] + ['EWC'] * base_counts[1] + ['VAN'] * base_counts[2] + ['FM'] * base_counts[3] ) best_idx_i = np.array([final_vals_all_datasets[key][:, base_nocomponents_pos[i-1]+1 if i > 0 else 0:base_nocomponents_pos[i]+1].argmax(axis=1) + (base_nocomponents_pos[i-1]+1 if i > 0 else 0) for i in range(len(base_counts)-1)]) best_idx_j = np.tile(np.arange(len(datasets)), (len(base_counts)-1, 1)) best_mask = np.zeros_like(final_vals_all_datasets[key].T, dtype=bool) best_mask[best_idx_i, best_idx_j] = True columns = ['Base', 'Algorithm'] + datasets results_df = pd.DataFrame(columns=columns) for name, base, row_val, row_err, row_best in zip(names, base_column, final_vals_all_datasets[key].T, final_errs_all_datasets[key].T, best_mask): algo = version_map[name.split(' ')[1]] row_dict = {'Base': base,'Algorithm': algo} row_val *= 100 row_err *= 100 row_dict.update({ d: '**{:.1f}\u00B1{:.1f}**%'.format(val, err) if best else '{:.1f}\u00B1{:.1f}%'.format(val, err) for d, val, err, best in zip(datasets, row_val, row_err, row_best) }) results_df = results_df.append(row_dict, ignore_index=True) results_df.set_index(['Base'],inplace=True) print(results_df.to_markdown() + '\n') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Create markdown results table lifelong compositional learning') parser.add_argument('-T', '--num_tasks', dest='num_tasks', default=10, type=int, nargs='+') parser.add_argument('-d', '--datasets', dest='datasets', default='MNIST', choices=['MNIST', 'Fashion', 'CIFAR', 'CUB', 'Omniglot', 'Landmine', 'LondonSchool', 'FacialRecognition', 'MNISTPixels'], nargs='+') parser.add_argument('-alg', '--algorithms', dest='algos', default='er_compositional', choices=['er_compositional', 'ewc_compositional', 'van_compositional', 'er_joint', 'ewc_joint', 'van_joint', 'er_nocomponents', 'ewc_nocomponents', 'van_nocomponents', 'er_dynamic', 'ewc_dynamic', 'van_dynamic', 'fm_compositional', 'fm_dynamic'], nargs='+') parser.add_argument('-e', '--num_epochs', dest='num_epochs', default=100, type=int) parser.add_argument('-sf', '--save_frequency', dest='save_frequency', default=1, type=int) parser.add_argument('-k', '--init_tasks', dest='num_init_tasks', default=4, type=int) parser.add_argument('-n', '--num_seeds', dest='num_seeds', default=1, type=int) parser.add_argument('-r', '--results_root', dest='results_root', default='./tmp/results') args = parser.parse_args() main(args.num_tasks, args.datasets, args.algos, args.num_seeds, args.num_init_tasks, args.num_epochs, args.save_frequency, args.results_root)
StarcoderdataPython
3229940
<filename>backend/user_application/sources/serializers/user_serializers.py from rest_framework import serializers class UserSerializer(serializers.Serializer): id = serializers.IntegerField() username = serializers.CharField() email = serializers.EmailField() date_joined = serializers.DateTimeField() last_login = serializers.DateTimeField() class UserRegisterSerializer(serializers.Serializer): email = serializers.EmailField() password = serializers.CharField()
StarcoderdataPython
1653431
# Provide an "eval()" service over BLE UART. from adafruit_ble import BLERadio from adafruit_ble.advertising.standard import ProvideServicesAdvertisement from adafruit_ble.services.nordic import UARTService from adafruit_circuitplayground import cp import time ble = BLERadio() uart = UARTService() advertisement = ProvideServicesAdvertisement(uart) ble.start_advertising(advertisement) print("Waiting to connect") while True: while not ble.connected: pass result = (cp.acceleration.x, cp.acceleration.y, cp.acceleration.z) if result: try: uart.write(str(result).encode("utf-8")) except Exception as e: print(repr(e)) time.sleep(0.5)
StarcoderdataPython
4818308
#!/usr/bin/env python """ Copyright (c) 2011, <NAME>, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the Willow Garage, Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES LOSS OF USE, DATA, OR PROFITS OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import roslib; roslib.load_manifest("interactive_markers") import rospy import copy from interactive_markers.interactive_marker_server import * from interactive_markers.menu_handler import * from geometry_msgs.msg import * from visualization_msgs.msg import * from tf import transformations from tf import TransformListener from jsk_2015_05_baxter_apc.msg import SetObjectPositionArray, WorkOrderArray import rospkg import yaml server = None menu_handler = MenuHandler() counter = 0 objects_name_list = None base_frame_id = "/base" def frameCallback( msg ): global counter, objects_name_list counter+=1 if objects_name_list: for object_name in objects_name_list: int_marker = server.get(object_name) if int_marker: cur_pose = int_marker.pose quat = transformations.quaternion_about_axis(2 * 3.14159286 * (1.0 / 1000), (0,0,1)) quat = transformations.quaternion_multiply([cur_pose.orientation.x, cur_pose.orientation.y, cur_pose.orientation.z, cur_pose.orientation.w], quat) cur_pose.orientation.x = quat[0] cur_pose.orientation.y = quat[1] cur_pose.orientation.z = quat[2] cur_pose.orientation.w = quat[3] server.setPose(int_marker.name, cur_pose); server.applyChanges() def processFeedback( feedback ): server.applyChanges() def makeTargetObject( msg, object_name ): marker = Marker() marker.type = Marker.MESH_RESOURCE marker.scale.x = msg.scale * 3 marker.scale.y = msg.scale * 3 marker.scale.z = msg.scale * 3 marker.mesh_resource = "package://jsk_apc2015_common/meshes/" + object_name +"/" + object_name + ".dae" marker.mesh_use_embedded_materials = True return marker def makeBoardObject( msg , object_name): marker = Marker() marker.type = Marker.CUBE marker.scale.x = 1 marker.scale.y = 5 marker.scale.z = 0.1 if object_name == "left_board": marker.color.r = 1 marker.color.g = 0.2 marker.color.b = 0.2 marker.color.a = 0.5 else: marker.color.r = 0.2 marker.color.g = 0.2 marker.color.b = 1 marker.color.a = 0.5 return marker def makeDaeObject( msg , object_name): marker = Marker() marker.type = Marker.MESH_RESOURCE marker.scale.x = msg.scale * 2 marker.scale.y = msg.scale * 2 marker.scale.z = msg.scale * 2 marker.mesh_resource = "package://jsk_apc2015_common/meshes/" + object_name +"/" + object_name + ".dae" marker.mesh_use_embedded_materials = True return marker def makeTargetObjectControl( msg, object_name ): control = InteractiveMarkerControl() control.always_visible = True control.markers.append( makeTargetObject(msg, object_name) ) msg.controls.append( control ) return control def makeBoardObjectControl( msg, object_name ): control = InteractiveMarkerControl() control.always_visible = True control.markers.append( makeBoardObject(msg, object_name) ) msg.controls.append( control ) return control def makeDaeObjectControl( msg, object_name ): control = InteractiveMarkerControl() control.always_visible = True control.markers.append( makeDaeObject(msg, object_name) ) msg.controls.append( control ) return control def makeInteractiveBoardObject( object_name, position, quaternion): global base_frame_id int_marker = InteractiveMarker() int_marker.header.frame_id = base_frame_id int_marker.pose.position = position int_marker.pose.orientation = quaternion int_marker.scale = 1 makeBoardObjectControl(int_marker, object_name) int_marker.controls[0].interaction_mode = InteractiveMarkerControl.NONE int_marker.name = object_name int_marker.description = object_name server.insert(int_marker, processFeedback) def makeInteractiveDaeObject( object_name, position, quaternion): global base_frame_id int_marker = InteractiveMarker() int_marker.header.frame_id = base_frame_id int_marker.pose.position = position int_marker.pose.orientation = quaternion int_marker.scale = 1 makeDaeObjectControl(int_marker, object_name) int_marker.controls[0].interaction_mode = InteractiveMarkerControl.NONE int_marker.name = object_name int_marker.description = object_name server.insert(int_marker, processFeedback) def make6DofMarker( object_name, position, quaternion ): global base_frame_id int_marker = InteractiveMarker() int_marker.header.frame_id = base_frame_id int_marker.pose.position = position int_marker.pose.orientation = quaternion int_marker.scale = 1 makeTargetObjectControl(int_marker, object_name) int_marker.controls[0].interaction_mode = InteractiveMarkerControl.MOVE_3D int_marker.name = object_name int_marker.description = object_name server.insert(int_marker, processFeedback) def setObjectPoses(msg): global tl for target_object in msg.objects: int_marker = server.get(target_object.object_name) if int_marker: transed_point = tl.transformPoint(base_frame_id, target_object.position) cur_pose = int_marker.pose cur_pose.position = transed_point.point server.setPose(int_marker.name, cur_pose); server.applyChanges() work_order_list={"right":[], "left":[]} def setWithWorkOrder(msg, callback_args): global work_order_list arm = callback_args["arm"] msg.array.reverse() if len(work_order_list[arm]) == 0: work_order_list[arm] = msg.array target_counter = 0 grabbed_counter = 0 for target_object in work_order_list[arm]: int_marker = server.get(target_object.object) if int_marker: cur_pose = Pose() if target_object in msg.array: cur_pose.position.y = 1 if arm == "left" else -1 cur_pose.position.x = - 0.5 - target_counter * 0.5 cur_pose.position.z = 0 cur_pose.orientation = int_marker.pose.orientation target_counter+=1 else: cur_pose.position.y = (2 + grabbed_counter * 0.5) * ( 1 if arm == "left" else -1) cur_pose.position.x = 5.0 cur_pose.position.z = 2.6 cur_pose.orientation = int_marker.pose.orientation grabbed_counter+=1 server.setPose(int_marker.name, cur_pose); server.applyChanges() if __name__=="__main__": rospy.init_node("target_object_marker_server") rospy.Subscriber('~set_pose', SetObjectPositionArray, setObjectPoses) rospy.Subscriber('/left/work_order_list', WorkOrderArray, setWithWorkOrder, {"arm":"left"}) rospy.Subscriber('/right/work_order_list', WorkOrderArray, setWithWorkOrder, {"arm":"right"}) tl = TransformListener() rospy.Timer(rospy.Duration(0.01), frameCallback) server = InteractiveMarkerServer("target_object_marker_server") rospack = rospkg.RosPack() with open(rospack.get_path("jsk_2015_05_baxter_apc") + "/data/object_list.yml", 'rb') as f: objects_name_list = yaml.load(f) for i,object_name in enumerate(objects_name_list): position = Point( - i / 5 - 5 , i % 5 - 2.5, 0) quat = transformations.quaternion_about_axis(2 * 3.14159286 * (i * 1.0 / len(objects_name_list)), (0,0,1)) quaternion = Quaternion(quat[0], quat[1], quat[2], quat[3]) make6DofMarker( object_name, position, quaternion ) position = Point( -2.8, -0.8, 0) quat = transformations.quaternion_about_axis(3.14159286/2, (0,0,1)) quaternion = Quaternion(quat[0], quat[1], quat[2], quat[3]) makeInteractiveBoardObject("left_board", position, quaternion) position = Point( -2.8, 0.8, 0) makeInteractiveBoardObject("right_board", position, quaternion) makeInteractiveBoardObject("right_board", position, quaternion) position = Point( 5, 0, 2) makeInteractiveDaeObject("score_board", position, quaternion) server.applyChanges() rospy.spin()
StarcoderdataPython
1724808
<gh_stars>0 from kivy.uix.textinput import TextInput from kivy.properties import NumericProperty import math class IntEntry(TextInput): value = NumericProperty(0.0) def __init__(self, low=-math.inf, high=math.inf, **kwds): if low >= 10: # Because otherwise we couldn't ever type the first digit # TODO: figure out how to fix this raise ValueError('low must be less than 10') if low >= high: raise ValueError('Empty slider') self.low = low self.high = high digits = math.log10(max(abs(low), abs(high))) + 1 self._width = int(min(digits, 12)) + (low < 0) super().__init__(multiline=False, **kwds) def insert_text(self, substring, from_undo=False): c = self.cursor[0] text = self.text[:c] + substring + self.text[c:] if self._validate(text): super().insert_text(substring, from_undo=from_undo) def on_text(self, _, text): self.value = int(text or '0') def on_value(self, _, value): self.text = str(value) def _validate(self, text): if text == '' or self.low < 0 and text == '-': return True try: return self.low <= int(text) <= self.high except Exception: pass class IntEntry2(TextInput): value = NumericProperty(0.0) def __init__(self, low=-math.inf, high=math.inf, **kwds): if low >= 10: # Because otherwise we couldn't ever type the first digit # TODO: figure out how to fix this raise ValueError('low must be less than 10') if low >= high: raise ValueError('Empty slider') self.low = low self.high = high digits = math.log10(max(abs(low), abs(high))) + 1 self._width = int(min(digits, 12)) + (low < 0) super().__init__(multiline=False, **kwds) def insert_text(self, substring, from_undo=False): c = self.cursor[0] text = self.text[:c] + substring + self.text[c:] if self._validate(text): super().insert_text(substring, from_undo=from_undo) def on_text(self, _, text): self.value = int(text or '0') def on_value(self, _, value): self.text = str(value) def _validate(self, text): if text == '' or self.low < 0 and text == '-': return True try: return self.low <= int(text) <= self.high except Exception: pass
StarcoderdataPython
3274357
"""Calculations with grid-aware data sets.""" import xgcm def calculate_moc(ds, region=""): """Calculate the MOC. Parameters ---------- ds : xarray dataset A grid-aware dataset as produced by `xorca.lib.preprocess_orca`. region : str A region string. Examples: `"atl"`, `"pac"`, `"ind"`. Defaults to `""`. Returns ------- moc : xarray data array A grid-aware data array with the moc for the specified region. The data array will have a coordinate called `"lat_moc{region}"` which is the weighted horizontal and vertical avarage of the latitude of all latitudes for the given point on the y-axis. """ grid = xgcm.Grid(ds, periodic=["Y", "X"]) vmaskname = "vmask" + region mocname = "moc" + region latname = "lat_moc" + region weights = ds[vmaskname] * ds.e3v * ds.e1v Ve3 = weights * ds.vomecrty # calculate indefinite vertical integral of V from bottom to top, then # integrate zonally, convert to [Sv], and rename to region moc = grid.cumsum(Ve3, "Z", to="left", boundary="fill") - Ve3.sum("z_c") moc = moc.sum("x_c") moc /= 1.0e6 moc = moc.rename(mocname) # calculate the weighted zonal and vertical mean of latitude lat_moc = ((weights * ds.llat_rc).sum(dim=["z_c", "x_c"]) / (weights).sum(dim=["z_c", "x_c"])) moc.coords[latname] = (["y_r", ], lat_moc.data) # also copy the relevant depth-coordinates moc.coords["depth_l"] = ds.coords["depth_l"] return moc def calculate_psi(ds): """Calculate the barotropic stream function. Parameters ---------- ds : xarray dataset A grid-aware dataset as produced by `xorca.lib.preprocess_orca`. Returns ------- psi : xarray data array A grid-aware data array with the barotropic stream function in `[Sv]`. """ grid = xgcm.Grid(ds, periodic=["Y", "X"]) U_bt = (ds.vozocrtx * ds.e3u).sum("z_c") psi = grid.cumsum(- U_bt * ds.e2u, "Y") / 1.0e6 psi -= psi.isel(y_r=-1, x_r=-1) # normalize upper right corner psi = psi.rename("psi") return psi def calculate_speed(ds): """Calculate speed on the central (T) grid. First, interpolate U and V to the central grid, then square, add, and take root. Parameters ---------- ds : xarray dataset A grid-aware dataset as produced by `xorca.lib.preprocess_orca`. Returns ------- speed : xarray data array A grid-aware data array with the speed in `[m/s]`. """ grid = xgcm.Grid(ds, periodic=["Y", "X"]) U_cc = grid.interp(ds.vozocrtx, "X", to="center") V_cc = grid.interp(ds.vomecrty, "Y", to="center") speed = (U_cc**2 + V_cc**2)**0.5 return speed
StarcoderdataPython
80679
<reponame>Octavian-ai/synthetic-graph-data<gh_stars>10-100 from basic_types import NanoType class Style(NanoType[str]): pass
StarcoderdataPython
159659
""" Reinforcement Learning Using Q-learning, Double Q-learning, and Dyna-Q. Copyright (c) 2020 <NAME> References ---------- - Based on project 7 in the Georgia Tech Spring 2020 course "Machine Learning for Trading" by Prof. <NAME>. - Course: http://quantsoftware.gatech.edu/CS7646_Spring_2020 - Project: http://quantsoftware.gatech.edu/Spring_2020_Project_7:_Qlearning_Robot - Main book reference: Sutton and Barto, "Reinforcement Learning: An Introduction" (http://incompleteideas.net/book/the-book-2nd.html) Characteristics --------------- - The code has been written and tested in Python 3.7.7. - Q-learning implementation for reinforcement learning. - Options: basic Q-learning, Dyna-Q (for model planning), double Q-learning (to avoid maximization bias). - Dyna-Q has been implemented with both a deterministic model and a probabilistic model. - The deterministic model and probabilistic model have both two versions, one using dictionaries (less memory but slower) and one using arrays (more memory but faster). - Double Q-learning can be used with basic Q-learning as well as with Dyna-Q. - The Q-learning class in <QLearner.py> can be used for any reinforcement learning problem, while <robot.py> and <test.py> are specific for a grid-world type of problem (i.e. finding the best policy to go from a start point to a goal point). - Usage: python test.py <csv-filename>. Parameters ---------- sys.argv[1] File name with the map layout passed as argument. It must be in a csv file, with the map elements specified using integer numbers. map_elements List of elements allowed in the map layout. reward_list List of rewards associated to each element in <map_elements>. move_list List of allowed moves for the robot. episodes Number of episodes (each episode is a trip from start to goal) max_steps Maximum number of steps allowed to reach the goal (for each episode). 0 <= random_rate <= 1 Probability the robot will move randomly instead to move as required. 0 <= alpha <= 1 Learning rate (used to vary the weight given to new experiences compared with past Q-values). 0 <= gamma <= 1 Discount factor (used to progressively reduce the value of future rewards). 0 <= rar <= 1 Probability of selecting a random action instead of using the action derived from the Q-table(s) (i.e. probability to explore). 0 <= radr <= 1 Rate decay for the probability to explore (used to reduce the probability to explore with time). dyna >= 0 Number of simulated updates in Dyna-Q (when equal to zero Dyna-Q is not used). model_type = 1, 2, 3, 4 Type of model used for the simulation in Dyna-Q (1-2 are deterministic models, 3-4 are probabilistic models). double_Q = True, False Specifies if double Q-learning is used (to avoid maximization bias). Examples -------- All examples are for the map layout in `map.csv`. All initial data are as in this file, except when differently specified. - Basic Q-learning, episodes = 1000, dyna = 0 REWARDS: mean = -63.1, median = -32.0, std = 109.8 STEPS: mean = 62.1, median = 34.0, std = 96.3 Number of updates done: 62085 BEST PATH: rewards = -22.0, Steps = 24.0 - Double Q learning, episodes = 1000, dyna = 0 REWARDS: mean = -85.0, median = -40.0, std = 132.7 STEPS: mean = 85.5, median = 42.0, std = 130.5 Number of updates done: 85473 BEST PATH: rewards = -22.0, Steps = 24.0 - Double Q-learning, episodes = 50, dyna = 200, model_type = 1 REWARDS: mean = -70.7, median = -28.0, std = 158.5 STEPS: mean = 52.9, median = 30.0, std = 93.5 Number of updates done: 531243 BEST PATH: rewards = -22.0, Steps = 24.0 - Basic Q-learning, episodes = 50, dyna = 200, model_type = 4 REWARDS: mean = -92.7, median = -42.5, std = 183.9 STEPS: mean = 76.9, median = 44.5, std = 94.5 Number of updates done: 567340 Number of updates skipped: 205103 BEST PATH: rewards = -22.0, Steps = 24.0 - Basic Q-learning, episodes = 1000, dyna = 0, but using an 8-way robot REWARDS: mean = -66.6, median = -25.0, std = 120.9 STEPS: mean = 63.3, median = 27.0, std = 100.1 Number of updates done: 63261 BEST PATH: rewards = -13.0, Steps = 15.0 """ import sys import numpy as np import QLearner as ql import robot as rb # Elements allowed in the map map_elements = [' ', # 0 = empty space '#', # 1 = wall/obstacle 'S', # 2 = start (must be defined) 'G', # 3 = goal (must be defined) '~'] # 4 = sand # Rewards (must correspond to elements in the map) reward_list = np.array([-1.0, # empty space -1.0, # wall/obstacle -1.0, # start (walk-back) +1.0, # goal -100.0]) # sand # Directions of motion (4-way robot) move_list = np.array([[-1, 0], # Go North one step [ 0, +1], # Go East one step [+1, 0], # Go South one step [ 0, -1]]) # Go West one step # Directions of motion (8-way robot) # move_list = np.array([[-1, 0], # Go North one step # [-1, +1], # Go North-East one step # [ 0, +1], # Go East one step # [+1, +1], # Go South-East one step # [+1, 0], # Go South one step # [+1, -1], # Go South-West one step # [ 0, -1], # Go West one step # [-1, -1]]) # Go North-West one step # Other grid-world parameters episodes = 1000 # Number of episodes max_steps = 10000 # Max. number of steps for each episode random_rate = 0.2 # Probability the robot will move randomly # Q-learner parameters alpha = 0.2 # Learning rate gamma = 0.9 # Discount factor rar = 0.50 # Probability to explore radr = 0.99 # Rate decay for the probability to explore dyna = 0 # Number of simulated updates in Dyna-Q (not used if zero) model_type = 1 # Type of model used for the simulation in Dyna-Q # 1 = Deterministic model (T and R defined as dictionaries) # 2 = Deterministic model (T and R defined as arrays) # 3 = Probabilistic model (T and R defined as dictionaries) # 4 = Probabilistic model (T and R defined as arrays) double_Q = False # True = use double Q-learning # False = don't use double Q-learning # ======= Main Code ======= # np.random.seed(1) # Read the map layout from the csv file specified on the command line if (len(sys.argv) != 2): print("Usage: python test.py <csv-filename>") sys.exit(1) map_layout = np.asarray(np.loadtxt(sys.argv[1], delimiter=','), dtype=int) # Initialize robot and map quantities bot = rb.robot(map_layout, map_elements, reward_list, move_list, max_steps=max_steps, random_rate=random_rate) # Initialize the Q-learner num_states = map_layout.size num_actions = move_list.shape[0] learner = ql.QLearner(num_states, num_actions, alpha=alpha, gamma=gamma, rar=rar, radr=radr, dyna=dyna, double_Q=double_Q, model_type=model_type) # Build the Q-table(s) scores, steps = bot.optimize_path(learner, episodes) # Print results print() print("REWARDS: mean = {0:6.1f}, median = {1:6.1f}, std = {2:5.1f}" .format(np.mean(scores), np.median(scores), np.std(scores))) print("STEPS: mean = {0:6.1f}, median = {1:6.1f}, std = {2:5.1f}" .format(np.mean(steps), np.median(steps), np.std(steps))) print("Number of updates done: ", learner.count_update_Q) if (dyna > 0 and (model_type == 2 or model_type == 4)): print("Number of updates skipped: ", learner.count_skip) # Print best map and corresponding rewards and steps best_map, best_reward, best_step = bot.best_path(learner) bot.show_map(best_map) print("BEST PATH: rewards = {0:5.1f}, Steps = {1:5.1f}". format(best_reward, best_step))
StarcoderdataPython
1604118
# -*- coding: utf-8 -*- ''' The main test runner script. Usage: :: python run_tests.py Skip slow tests python run_tests.py fast When there's no Internet python run_tests.py no-internet ''' from __future__ import unicode_literals import nose import sys def main(): args = get_argv() success = nose.run(argv=args) sys.exit(0) if success else sys.exit(1) def get_argv(): args = [sys.argv[0], "tests", '--verbosity', '2'] attr_conditions = [] attr_conditions.append("not skip") attr_expression = " and ".join(attr_conditions) if attr_expression: args.extend(["-A", attr_expression]) return args if __name__ == '__main__': main()
StarcoderdataPython