id
stringlengths
1
7
text
stringlengths
6
1.03M
dataset_id
stringclasses
1 value
4828718
<filename>scripts/deepsplines_tutorial.py<gh_stars>1-10 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This script exemplifies how to use DeepSplines in a network, starting from the PyTorch CIFAR-10 tutorial: https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html """ import time import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.nn.functional as F import torch.optim as optim # Need to import dsnn (takes the role of torch.nn for DeepSplines) from deepsplines.ds_modules import dsnn ######################################################################## # ReLU network class Net(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) self.num_params = sum(p.numel() for p in self.parameters()) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = torch.flatten(x, 1) # flatten all dimensions except batch x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x ######################################################################## # Deepspline network # We now show how to replace the ReLUs with DeepSpline activations in # the previous network. # we can use deepspline modules of three types: # - DeepBspline # - DeepBSplineExplicitLinear # - DeepReLUSpline # In this tutorial, we use the first as an example. # The model needs to inherit from dsnn.DSModule. This is a wrap around # nn.Module that contains all the DeepSpline functionality. class DSNet(dsnn.DSModule): def __init__(self): super().__init__() # we put the deepsplines (ds) of the convolutional and fully-connected # layers in two separate nn.ModuleList() for simplicty. self.conv_ds = nn.ModuleList() self.fc_ds = nn.ModuleList() # We define some optional parameters for the deepspline # (see DeepBSpline.__init__()) opt_params = { 'size': 51, 'range_': 4, 'init': 'leaky_relu', 'save_memory': False } self.conv1 = nn.Conv2d(3, 6, 5) # 1st parameter (mode): 'conv' (convolutional) / 'fc' (fully-connected) # 2nd parameter: nb. channels (mode='conv') / nb. neurons (mode='fc') self.conv_ds.append(dsnn.DeepBSpline('conv', 6, **opt_params)) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.conv_ds.append(dsnn.DeepBSpline('conv', 16, **opt_params)) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc_ds.append(dsnn.DeepBSpline('fc', 120, **opt_params)) self.fc2 = nn.Linear(120, 84) self.fc_ds.append(dsnn.DeepBSpline('fc', 84, **opt_params)) self.fc3 = nn.Linear(84, 10) self.initialization(opt_params['init'], init_type='He') self.num_params = self.get_num_params() def forward(self, x): x = self.pool(self.conv_ds[0](self.conv1(x))) x = self.pool(self.conv_ds[1](self.conv2(x))) x = torch.flatten(x, 1) # flatten all dimensions except batch x = self.fc_ds[0](self.fc1(x)) x = self.fc_ds[1](self.fc2(x)) x = self.fc3(x) return x if __name__ == "__main__": ######################################################################## # Load the data transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) batch_size = 4 trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f'\nDevice: {device}') ######################################################################## # Network, optimizer, loss net = Net() # relu network net.to(device) print('ReLU: nb. parameters - {:d}'.format(net.num_params)) optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) dsnet = DSNet() # deepsplines network dsnet.to(device) print('DeepSpline: nb. parameters - {:d}'.format(dsnet.num_params)) # For the parameters of the deepsplines, an optimizer different from "SGD" # is usually required for stability during training (Adam is recommended). # Therefore, when using an SGD optimizer for the network parameters, we # require an auxiliary one for the deepspline parameters. # Inherenting from DSModule allows us to use the parameters_deepspline() # and parameters_no_deepspline() methods for this. main_optimizer = optim.SGD(dsnet.parameters_no_deepspline(), lr=0.001, momentum=0.9) aux_optimizer = optim.Adam(dsnet.parameters_deepspline()) criterion = nn.CrossEntropyLoss() ######################################################################## # Training the ReLU network print('\nTraining ReLU network.') start_time = time.time() for epoch in range(2): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(trainloader, 0): # get the inputs; data is a list of [inputs, labels] inputs, labels = data[0].to(device), data[1].to(device) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.item() if i % 2000 == 1999: # print every 2000 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 end_time = time.time() print('Finished Training ReLU network. \n' 'Took {:d} seconds. '.format(int(end_time - start_time))) ######################################################################## # Training the DeepSpline network # Note: Since the original network is small, the time it takes to train # deepsplines is significantly larger. # Regularization weight for the TV(2)/BV(2) regularization # Needs to be tuned for performance lmbda = 1e-4 # lipschitz control: if True, BV(2) regularization is used instead of TV(2) lipschitz = False print('\nTraining DeepSpline network.') start_time = time.time() for epoch in range(2): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(trainloader, 0): # get the inputs; data is a list of [inputs, labels] inputs, labels = data[0].to(device), data[1].to(device) # zero the parameter gradients main_optimizer.zero_grad() aux_optimizer.zero_grad() # forward + backward + optimize outputs = dsnet(inputs) loss = criterion(outputs, labels) # add regularization loss if lipschitz is True: loss = loss + lmbda * dsnet.BV2() else: loss = loss + lmbda * dsnet.TV2() loss.backward() main_optimizer.step() aux_optimizer.step() # print statistics running_loss += loss.item() if i % 2000 == 1999: # print every 2000 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 end_time = time.time() print('Finished Training DeepSpline network. \n' 'Took {:d} seconds. '.format(int(end_time - start_time))) ######################################################################## # Testing the ReLU and DeepSpline networks for model, name in zip([net, dsnet], ['ReLU', 'DeepSpline']): print(f'\nTesting {name} network.') correct = 0 total = 0 # since we're not training, we don't need to calculate the gradients # for our outputs with torch.no_grad(): for data in testloader: images, labels = data[0].to(device), data[1].to(device) # calculate outputs by running images through the network outputs = model(images) # the class with the highest energy is what we choose # as prediction _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print(f'Accuracy of the {name} network ' 'on the 10000 test images: %d %%' % (100 * correct / total))
StarcoderdataPython
3271676
from trame.html import vuetify, Element, Div, Span def create_project_generation( validation_callback, validation_output, validation_check, run_variables ): with Div( classes="d-flex flex-column fill-height justify-space-around", v_if="currentView == 'Project Generation'", ): with Div(v_if=validation_check, classes="mx-6"): with vuetify.VCard(outlined=True, classes="pa-2 my-4"): vuetify.VCardTitle("Run variables") vuetify.VTextField( v_model=(run_variables["BaseUnit"], 1.0), label="TimingInfo.BaseUnit", ) vuetify.VTextField( v_model=(run_variables["DumpInterval"], 1.0), label="TimingInfo.DumpInterval", ) vuetify.VTextField( v_model=(run_variables["StartCount"], 0), label="TimingInfo.StartCount", ) vuetify.VTextField( v_model=(run_variables["StartTime"], 0.0), label="TimingInfo.StartTime", ) vuetify.VTextField( v_model=(run_variables["StopTime"], 1000.0), label="TimingInfo.StopTime", ) with vuetify.VCard(dark=True, outlined=True, classes="pa-2 my-4"): vuetify.VCardTitle("Validation console output") vuetify.VDivider() vuetify.VTextarea( value=(validation_output,), dark=True, readonly=True, style="font-family: monospace;", ) vuetify.VSpacer() with Div(v_if="projGenValidation.valid", classes="mx-6"): Span("Run Validated", classes="text-h5") with Div(classes="d-flex justify-end ma-6"): vuetify.VBtn( "Validate", click=validation_callback, color="primary", classes="mx-2" ) vuetify.VBtn( "Generate", disabled=("!projGenValidation.valid"), color="primary" )
StarcoderdataPython
1752464
<gh_stars>0 # -*- coding: utf-8 -*- # Copyright 2018 The Blueoil Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import time import os import sys from multiprocessing import Pool from time import sleep # HACK: cross py2-py3 compatible version try: from queue import Queue except ImportError: from Queue import Queue import click import cv2 import numpy as np from lmnet.common import get_color_map from lmnet.nnlib import NNLib from lmnet.utils.config import ( load_yaml, build_pre_process, build_post_process, ) from lmnet.utils.demo import ( add_rectangle, add_fps, run_inference, ) from lmnet.visualize import ( label_to_color_image, visualize_keypoint_detection, ) nn = None pre_process = None post_process = None class MyTime: def __init__(self, function_name): self.start_time = time.time() self.function_name = function_name def show(self): print("TIME: ", self.function_name, time.time() - self.start_time) def init_camera(camera_width, camera_height): if hasattr(cv2, 'cv'): vc = cv2.VideoCapture(0) vc.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, camera_width) vc.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, camera_height) vc.set(cv2.cv.CV_CAP_PROP_FPS, 10) else: vc = cv2.VideoCapture(1) vc.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width) vc.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height) vc.set(cv2.CAP_PROP_FPS, 10) return vc def add_class_label(canvas, text="Hello", font=cv2.FONT_HERSHEY_SIMPLEX, font_scale=0.42, font_color=(140, 40, 200), line_type=1, dl_corner=(50, 50)): cv2.putText(canvas, text, dl_corner, font, font_scale, font_color, line_type) def _run_inference(img): global nn, pre_process, post_process img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) result, fps, _ = run_inference(img, nn, pre_process, post_process) return result, fps def clear_queue(queue): while not queue.empty(): queue.get() return queue def swap_queue(q1, q2): return q2, q1 # These results are swapped def run_object_detection(config): global nn # Set variables camera_width = 320 camera_height = 240 window_name = "Object Detection Demo" input_width = config.IMAGE_SIZE[1] input_height = config.IMAGE_SIZE[0] vc = init_camera(camera_width, camera_height) pool = Pool(processes=1, initializer=nn.init) result = False fps = 1.0 q_save = Queue() q_show = Queue() grabbed, camera_img = vc.read() q_show.put(camera_img.copy()) input_img = camera_img.copy() # ----------- Beginning of Main Loop --------------- while True: m1 = MyTime("1 loop of while(1) of main()") pool_result = pool.apply_async(_run_inference, (input_img, )) is_first = True while True: grabbed, camera_img = vc.read() if is_first: input_img = camera_img.copy() is_first = False q_save.put(camera_img.copy()) if not q_show.empty(): window_img = q_show.get() if result: window_img = add_rectangle( config.CLASSES, window_img, result, (input_height, input_width) ) window_img = add_fps(window_img, fps) # ---------- END of if result != False ----------------- cv2.imshow(window_name, window_img) key = cv2.waitKey(2) # Wait for 2ms if key == 27: # ESC to quit return if pool_result.ready(): break # -------------- END of wait loop ---------------------- q_show = clear_queue(q_show) q_save, q_show = swap_queue(q_save, q_show) result, fps = pool_result.get() m1.show() # --------------------- End of main Loop ----------------------- def run_classification(config): global nn camera_height = 240 camera_width = 320 window_name = "Classification Demo" window_width = 320 window_height = 240 vc = init_camera(camera_width, camera_height) pool = Pool(processes=1, initializer=nn.init) grabbed, camera_img = vc.read() pool_result = pool.apply_async(_run_inference, (camera_img, )) result = None fps = 1.0 loop_count = 0 while 1: m1 = MyTime("1 loop of while(1) of main()") key = cv2.waitKey(2) # Wait for 2ms if key == 27: # ESC to quit break m2 = MyTime("vc.read()") grabbed, camera_img = vc.read() m2.show() if pool_result.ready(): result, fps = pool_result.get() pool_result = pool.apply_async(_run_inference, (camera_img, )) if (window_width == camera_width) and (window_height == camera_height): window_img = camera_img else: window_img = cv2.resize(camera_img, (window_width, window_height)) if result is not None: result_class = np.argmax(result, axis=1) add_class_label(window_img, text=str(result[0, result_class][0]), font_scale=0.52, dl_corner=(230, 230)) add_class_label(window_img, text=config.CLASSES[result_class[0]], font_scale=0.52, dl_corner=(230, 210)) window_img = add_fps(window_img, fps) loop_count += 1 print("loop_count:", loop_count) m3 = MyTime("cv2.imshow()") cv2.imshow(window_name, window_img) m3.show() m1.show() sleep(0.05) cv2.destroyAllWindows() def run_semantic_segmentation(config): global nn camera_width = 320 camera_height = 240 window_name = "Segmentation Demo" vc = init_camera(camera_width, camera_height) pool = Pool(processes=1, initializer=nn.init) result = None fps = 1.0 q_save = Queue() q_show = Queue() grabbed, camera_img = vc.read() q_show.put(camera_img.copy()) input_img = camera_img.copy() colormap = np.array(get_color_map(len(config['CLASSES'])), dtype=np.uint8) while True: m1 = MyTime("1 loop of while(1) of main()") pool_result = pool.apply_async(_run_inference, (input_img,)) is_first = True while True: grabbed, camera_img = vc.read() if is_first: input_img = camera_img.copy() is_first = False q_save.put(camera_img.copy()) if not q_show.empty(): window_img = q_show.get() overlay_img = window_img if result is not None: seg_img = label_to_color_image(result, colormap) seg_img = cv2.resize(seg_img, dsize=(camera_width, camera_height)) overlay_img = cv2.addWeighted(window_img, 1, seg_img, 0.8, 0) overlay_img = add_fps(overlay_img, fps) cv2.imshow(window_name, overlay_img) key = cv2.waitKey(2) # Wait for 2ms if key == 27: # ESC to quit return if pool_result.ready(): break q_show = clear_queue(q_show) q_save, q_show = swap_queue(q_save, q_show) result, fps = pool_result.get() m1.show() def run_keypoint_detection(config): global nn camera_width = 320 camera_height = 240 window_name = "Keypoint Detection Demo" input_width = config.IMAGE_SIZE[1] input_height = config.IMAGE_SIZE[0] vc = init_camera(camera_width, camera_height) pool = Pool(processes=1, initializer=nn.init) result = None fps = 1.0 q_save = Queue() q_show = Queue() grabbed, camera_img = vc.read() q_show.put(camera_img.copy()) input_img = camera_img.copy() while True: m1 = MyTime("1 loop of while(1) of main()") pool_result = pool.apply_async(_run_inference, (input_img,)) is_first = True while True: grabbed, camera_img = vc.read() if is_first: input_img = camera_img.copy() is_first = False q_save.put(camera_img.copy()) if not q_show.empty(): window_img = q_show.get() drawed_img = window_img if result is not None: drawed_img = visualize_keypoint_detection(window_img, result[0], (input_height, input_width)) drawed_img = add_fps(drawed_img, fps) cv2.imshow(window_name, drawed_img) key = cv2.waitKey(2) # Wait for 2ms # TODO(yang): Consider using another key for abort. if key == 27: # ESC to quit return # TODO(yang): Busy loop is not efficient here. Improve it and change them in other tasks. if pool_result.ready(): break q_show = clear_queue(q_show) q_save, q_show = swap_queue(q_save, q_show) result, fps = pool_result.get() m1.show() def run(model, config_file): global nn, pre_process, post_process filename, file_extension = os.path.splitext(model) supported_files = ['.so', '.pb'] if file_extension not in supported_files: raise Exception(""" Unknown file type. Got %s%s. Please check the model file (-m). Only .pb (protocol buffer) or .so (shared object) file is supported. """ % (filename, file_extension)) config = load_yaml(config_file) pre_process = build_pre_process(config.PRE_PROCESSOR) post_process = build_post_process(config.POST_PROCESSOR) if file_extension == '.so': # Shared library nn = NNLib() nn.load(model) elif file_extension == '.pb': # Protocol Buffer file # only load tensorflow if user wants to use GPU from lmnet.tensorflow_graph_runner import TensorflowGraphRunner nn = TensorflowGraphRunner(model) TASK_HANDLERS = {"IMAGE.CLASSIFICATION": run_classification, "IMAGE.OBJECT_DETECTION": run_object_detection, "IMAGE.SEMANTIC_SEGMENTATION": run_semantic_segmentation, "IMAGE.KEYPOINT_DETECTION": run_keypoint_detection} TASK_HANDLERS[config.TASK](config) @click.command(context_settings=dict(help_option_names=['-h', '--help'])) @click.option( "-m", "-l", "--model", type=click.Path(exists=True), help=u""" Inference Model filename (-l is deprecated please use -m instead) """, default="../models/lib/lib_fpga.so", ) @click.option( "-c", "--config_file", type=click.Path(exists=True), help=u"Config file Path", default="../models/meta.yaml", ) def main(model, config_file): _check_deprecated_arguments() run(model, config_file) def _check_deprecated_arguments(): argument_list = sys.argv if '-l' in argument_list: print("Deprecated warning: -l is deprecated please use -m instead") if __name__ == "__main__": main()
StarcoderdataPython
3203180
from base import BaseWorker
StarcoderdataPython
1604422
from oauth2_provider.middleware import OAuth2TokenMiddleware class AccesTokenOAuth2TokenMiddleware(OAuth2TokenMiddleware): def process_request(self, request): if not request.META.get('HTTP_AUTHORIZATION', '').startswith('Bearer') and \ request.GET.get('access_token'): bearer = 'Bearer %s' % request.GET.get('access_token') request.META['HTTP_AUTHORIZATION'] = bearer super().process_request(request=request)
StarcoderdataPython
3350891
from __future__ import annotations from pathlib import Path from typing import Type, TYPE_CHECKING, Any from pycep.typing import BicepJson from checkov.bicep.parser import Parser from checkov.bicep.utils import get_scannable_file_paths from checkov.common.graph.db_connectors.db_connector import DBConnector from checkov.common.graph.graph_manager import GraphManager from checkov.bicep.graph_builder.local_graph import BicepLocalGraph if TYPE_CHECKING: from checkov.common.graph.graph_builder.local_graph import LocalGraph class BicepGraphManager(GraphManager): def __init__(self, db_connector: DBConnector, source: str = "Bicep") -> None: super().__init__(db_connector=db_connector, parser=None, source=source) def build_graph_from_source_directory( self, source_dir: str, render_variables: bool = True, local_graph_class: Type[LocalGraph] = BicepLocalGraph, parsing_errors: dict[str, Exception] | None = None, download_external_modules: bool = False, excluded_paths: list[str] | None = None, ) -> tuple[LocalGraph, dict[Path, BicepJson]]: file_paths = get_scannable_file_paths(root_folder=source_dir) definitions, definitions_raw, parsing_errors = Parser().get_files_definitions(file_paths) # type:ignore[assignment] local_graph = self.build_graph_from_definitions(definitions) return local_graph, definitions def build_graph_from_definitions( self, definitions: dict[Path, BicepJson], render_variables: bool = True ) -> LocalGraph: local_graph = BicepLocalGraph(definitions) local_graph.build_graph(False) return local_graph
StarcoderdataPython
102695
<filename>Modules/tobii/eye_tracking_io/time/sync.py from tobii.eye_tracking_io._native import tetio from tobii.eye_tracking_io.time.clock import Clock from tobii.eye_tracking_io.mainloop import Mainloop, MainloopThread from tobii.eye_tracking_io.browsing import EyetrackerInfo class State(object): UNSYNCHRONIZED = 0 STABILIZING = 1 SYNCHRONIZED = 2 def __init__(self, internal_state): self._internal_state = internal_state @property def state_flag(self): """Returns either UNSYNCHRONIZED, STABILIZING or SYNCHRONIZED""" return self._internal_state.get_state_flag() @property def points_in_use(self): """Returns a list of tuples with three values in them, where the values in the tuple are: local_midpoint remote roundtrip """ return self._internal_state.get_points_in_use() @property def error_approximation(self): """Returns an approximation of the current synchronization error.""" return self._internal_state.get_error_approximation() class SyncManager(object): def __init__(self, clock, eyetracker_info, mainloop, error_handler=None, status_handler=None): if not isinstance(clock, Clock): raise TypeError("clock should be of type Clock") if not isinstance(eyetracker_info, (tetio.factory_info, EyetrackerInfo)): raise TypeError("factory_info should be of type EyetrackerInfo") if not isinstance(mainloop, Mainloop) and \ not isinstance(mainloop, MainloopThread): raise TypeError("mainloop should of type Mainloop or MainloopThread") if error_handler is not None: if not callable(error_handler): raise TypeError("error_handler should be callable") if status_handler is not None: if not callable(status_handler): raise TypeError("status_handler should be callable") cl = clock._clock ml = None if isinstance(mainloop, MainloopThread): ml = mainloop._mainloop.mainloop else: ml = mainloop.mainloop fi = None if isinstance(eyetracker_info, EyetrackerInfo): fi = eyetracker_info.factory_info else: fi = eyetracker_info self._error_handler = error_handler self._status_handler = status_handler self._sync_manager = tetio.SyncManager(cl, fi, ml, self._on_error, self._on_status) def convert_from_local_to_remote(self, local_usecs): return self._sync_manager.convert_from_local_to_remote(local_usecs) def convert_from_remote_to_local(self, remote_usecs): return self._sync_manager.convert_from_remote_to_local(remote_usecs) @property def sync_state(self): """Returns the current sync state""" return State(self._sync_manager.get_sync_state()) def _on_error(self, error): if self._error_handler is None: return try: self._error_handler(error) except: pass def _on_status(self, state): if self._status_handler is None: return try: self._status_handler(State(state)) except: pass
StarcoderdataPython
1659174
from backend.api.models import Horario from rest_framework import serializers class HorarioSerializer(serializers.ModelSerializer): """ HorarioSerializer Serializer de Horario Args: serializers (ModelSerializer): Serializer del modulo rest_framework """ class Meta: """ Metadatos de Horario """ model = Horario fields = ( "id", "lunes", "martes", "miercoles", "jueves", "viernes", "sabado", "domingo" )
StarcoderdataPython
1726206
<reponame>umihai1/github_publish #!/usr/bin/env python """ Main test function to execute all tests found in the current directory """ import sys import logging import xmlrunner try: import unittest2 as unittest except ImportError: import unittest def main(): tests = unittest.TestLoader().discover('.', 'test_*.py') testResult=xmlrunner.XMLTestRunner(output='test-reports').run(tests) if testResult.wasSuccessful(): return 0 else: return 1 if __name__ == '__main__': sys.exit(main())
StarcoderdataPython
3201439
from decimal import Decimal import decimal import time import json import random import argparse import requests from bitcoinrpc.authproxy import AuthServiceProxy, JSONRPCException import logging with open('config.json','r') as conf: configs = json.loads(conf.read()) rpc_user = configs['rpc_user'] rpc_password = configs['rpc_user'] account_pool_endpoint = configs['account_pool_endpoint'] parser = argparse.ArgumentParser(description='configs') parser.add_argument('--speed', dest='speed', type=int, help='how many accounts per minute') parser.add_argument('--debug', dest='debug', default=0, type=bool, help='debug') node_name = configs['node_name'] names = configs['names'] # rpc_connection.getnewaddress(node_name) if __name__ == "__main__": args = parser.parse_args() logging.basicConfig() logger = logging.getLogger(__name__) if args.debug: logger.setLevel(logging.DEBUG) while(True): try: rpc_connection = AuthServiceProxy("http://%s:%[email protected]:18443"%(rpc_user, rpc_password)) listunspent = [] while(not listunspent): r = requests.get(f'{account_pool_endpoint}/account/{node_name}') sender=r.json()["address"] logger.debug(f"sender: {str(sender)}") listunspent = rpc_connection.listunspent(0,9999,[f"{sender}"]) logger.debug(f"unspent:{listunspent}") unspent = random.choice(listunspent) while(unspent["amount"]<0.1): unspent = random.choice(listunspent) balance = unspent['amount'] logger.debug(f"-------------") logger.debug(f"unspent:{unspent}") logger.debug(unspent['spendable']) if unspent['spendable']: can_spend = 1 txid = unspent['txid'] vout = 0 amount_to_spend = Decimal(random.uniform(0,float(balance)*0.5)) fee = Decimal(0.00001111) change = balance-(amount_to_spend+fee) # unspent = random.choice(listunspent) # balance = unspent['amount'] # logger.debug("balance:",balance) # logger.debug("spendable?:",unspent['spendable']) # if unspent['spendable']: # txid = unspent['txid'] # vout = 0 # amount_to_spend = Decimal(random.uniform(0,float(balance)*0.5)) # fee = balance*Decimal(0.05) # change = balance-amount_to_spend-fee # break reciever = requests.get(f'{account_pool_endpoint}/account').json()["address"] logger.debug(f"amount_to_spend:{amount_to_spend}") logger.debug(f"change:{change}") logger.debug(f"fee:{fee}") rawtransaction =rpc_connection.createrawtransaction( [{"txid":txid,"vout":0}], {reciever:amount_to_spend,sender:change} ) logger.debug(f"rawtransaction:{rawtransaction}") privkey = rpc_connection.dumpprivkey( sender ) logger.debug(f"key:{privkey}") signed_transaction = rpc_connection.signrawtransactionwithkey( rawtransaction, [privkey] ) logger.debug(f"signed transaction:{signed_transaction}") hex = signed_transaction["hex"] logger.debug(f"hex:{hex}") sent_rawtransaction = rpc_connection.sendrawtransaction( hex ) logger.debug(f"sent_transaction:{sent_rawtransaction}") time.sleep(60/args.speed) except: pass # ./bitcoin-cli createrawtransaction "[{\"txid\":\"2f7aa4499f94371c942d326da5127c8cb15ea97b82c31453338de7eb15844d25\",\"vout\":0}]" "{\"2NBVRHmHS3ReJ7sTQxxAmVHyak9BwWUnxzA\":1.0,\"2N91bwsns4Hd5rLLMVMUVhqut17oq3L96nN\":45.52992940}" # 0200000001254d8415ebe78d335314c3827ba95eb18c7c12a56d322d941c37949f49a47a2f0000000000ffffffff0200e1f5050000000017a914c8218580adab134ef396f41436d5543af89ce8e887ac28610f0100000017a914acee84e3dc1719d398b82287ccd0db658561cbec8700000000 # ./bitcoin-cli signrawtransactionwithkey "0200000001254d8415ebe78d335314c3827ba95eb18c7c12a56d322d941c37949f49a47a2f0000000000ffffffff0200e1f5050000000017a914c8218580adab134ef396f41436d5543af89ce8e887ac28610f0100000017a914acee84e3dc1719d398b82287ccd0db658561cbec8700000000" "[\"cUCcoPJx2vaKL7CAAPbissa4bLuWivzyCC3JWzGTWhqVYkavc7Yc\"]" # { # "hex": "02000000000101254d8415ebe78d335314c3827ba95eb18c7c12a56d322d941c37949f49a47a2f000000001716001449ca9ac7497e741737f03f8f160b929de23f0924ffffffff0200e1f5050000000017a914c8218580adab134ef396f41436d5543af89ce8e887ac28610f0100000017a914acee84e3dc1719d398b82287ccd0db658561cbec8702473044022068665fa3259cd8e1fa9067ece0a05699546fa65a484d0370da7589311727092402204a5b36dbfe9d9c43df3fc09f971dd1cef28902b08b7354ea860e4f20df9e7965012103bd20c009a1d867482a4d1691d35ee7b7a228046f2c442a42a0b655336237ea0d00000000", # "complete": true # } # ./bitcoin-cli sendrawtransaction 02000000000101254d8415ebe78d335314c3827ba95eb18c7c12a56d322d941c37949f49a47a2f000000001716001449ca9ac7497e741737f03f8f160b929de23f0924ffffffff0200e1f5050000000017a914c8218580adab134ef396f41436d5543af89ce8e887ac28610f0100000017a914acee84e3dc1719d398b82287ccd0db658561cbec8702473044022068665fa3259cd8e1fa9067ece0a05699546fa65a484d0370da7589311727092402204a5b36dbfe9d9c43df3fc09f971dd1cef28902b08b7354ea860e4f20df9e7965012103bd20c009a1d867482a4d1691d35ee7b7a228046f2c442a42a0b655336237ea0d00000000 # 636620655b14c862b76aeef301029d1d147c559ab1152a137a7c78d7ffb47683 # ./bitcoin-cli listunspent 0 99999 "[\"<KEY>\"]"
StarcoderdataPython
3353138
"""Additional file information in Database Revision ID: ec66a0a3186b Revises: 4b41e84f7aac Create Date: 2022-01-20 17:00:16.089851 """ import sqlalchemy as sa from alembic import op from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = "ec66a0a3186b" down_revision = "4b41e84f7aac" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column("files", sa.Column("creation_date", sa.DateTime(), nullable=False)) op.add_column("files", sa.Column("update_date", sa.DateTime(), nullable=False)) op.add_column("files", sa.Column("format", sa.String(), nullable=False)) op.drop_column("files", "registration_date") # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column( "files", sa.Column( "registration_date", postgresql.TIMESTAMP(), autoincrement=False, nullable=True, ), ) op.drop_column("files", "format") op.drop_column("files", "update_date") op.drop_column("files", "creation_date") # ### end Alembic commands ###
StarcoderdataPython
1672335
<filename>protonfixes/gamefixes/312530.py """ Game fix for Duck Game """ #pylint: disable=C0103 from protonfixes import util def main(): """ https://www.protondb.com/app/312530#bXY0Kuwwlz """ util.winedll_override('dinput', 'n') util.append_argument('-nothreading')
StarcoderdataPython
180775
from . import common class Devices(common.Resource): def __init__(self, sigfox): super().__init__(sigfox, "devices/") def retrieve_undelivered_callbacks(self, id, query=""): """ Retrieve a list of undelivered callbacks and errors for a given device, in reverse chronological order (most recent message first). """ response = self.sigfox.get( "{}{}/callbacks-not-delivered/".format(self.resource, id), query ) return response def retrieve_modem_certificate(self, id, query=""): """ Retrieve the modem certificate associated with a device. """ response = self.sigfox.get( "{}{}/certificate/modem/".format(self.resource, id), query ) return response def retrieve_product_certificate(self, id, query=""): """ Retrieve the modem certificate associated with a device. """ response = self.sigfox.get( "{}{}/certificate/product/".format(self.resource, id), query ) return response def retrieve_product_certificate_PAC(self, id, query): """ Retrieve the product certificate associated with a given device ID and PAC, when the device has not already been created on the portal, only in CRA. """ response = self.sigfox.get( "{}{}/product-certificate/".format(self.resource, id), query ) return response def retrieve_year_consumption(self, id, year): """ Retrieve a device's consumption for a given year.""" response = self.sigfox.get( "{}{}/consumption/{}".format(self.resource, id, year) ) return response def retrieve_month_consumption(self, id, year, month): """ Retrieve a device's consumption for a given year and month.""" response = self.sigfox.get( "{}{}/consumption/{}/{}".format(self.resource, id, year, month) ) return response def disable_sequence_number(self, id): """ Disable sequence number check for the next message. """ response = self.sigfox.post( "{}{}/disengage/".format(self.resource, id) ) return response def retrieve_messages_list(self, id, query=""): """ Retrieve a list of messages for a given device according to request filters, with a 3-day history. """ response = self.sigfox.get( "{}{}/messages".format(self.resource), query ) return response def retrieve_messages_metrics(self, id, query=""): """ Return the number of messages for a given device, for the last day, last week and last month. """ response = self.sigfox.get( "{}{}/messages/metric".format(self.resource), query ) return response def retrieve_location(self, id, query=""): """ Retrieve a list of location data of a device according to request filters. """ response = self.sigfox.get( "{}{}/locations".format(self.resource), query ) return response def unsubscribe_device(self, id, body): """ Set an unsubscription date for the device's token. """ response = self.sigfox.post( "{}{}/unsubscribe".format(self.resource), body ) return response def create_devices(self, body): """ Create multiple new devices with asynchronous job. """ response = self.sigfox.post( "{}bulk".format(self.resource), body ) return response def update_devices(self, body): """ Update or edit multiple devices with asynchronous job. """ response = self.sigfox.put( "{}bulk".format(self.resource), body ) return response def retrieve_job_status(self, job_id): """ Update or edit multiple devices with asynchronous job. """ response = self.sigfox.get( "{}bulk/{}".format(self.resource, job_id), ) return response def transfer_devices(self, body): """ Transfer multiple devices to another device type with asynchronous job. """ response = self.sigfox.post( "{}bulk/transfer".format(self.resource), body ) return response def replace_devices(self, body): """ Replace multiple devices (moving tokens from one device to another) with synchronous job. """ response = self.sigfox.post( "{}bulk/replace".format(self.resource), body ) return response def restart_devices(self, body): """ Restart multiple devices with asynchronous job. """ response = self.sigfox.post( "{}bulk/restart".format(self.resource), body ) return response def retrieve_restart_job_status(self, job_id): """ Retrieve the async job status for a restart devices action. """ response = self.sigfox.get( "{}bulk/restart/{}".format(self.resource, job_id), ) return response def suspend_devices(self, body): """ Suspend multiple devices with asynchronous job. """ response = self.sigfox.post( "{}bulk/suspend".format(self.resource), body ) return response def retrieve_suspend_job_status(self, job_id): """ Retrieve the async job status for a restart devices action. """ response = self.sigfox.get( "{}bulk/suspend/{}".format(self.resource, job_id), ) return response def resume_devices(self, body): """ Resume multiple devices with asynchronous job. """ response = self.sigfox.post( "{}bulk/resume".format(self.resource), body ) return response def retrieve_resume_job_status(self, job_id): """ Retrieve the async job status for a resume devices action. """ response = self.sigfox.get( "{}bulk/resume/{}".format(self.resource, job_id), ) return response def unsubscribe_devices(self, body): """ Unsubscribe multiple devices with asynchronous job. """ response = self.sigfox.post( "{}bulk/unsubscribe".format(self.resource), body ) return response def retrieve_unsubscribe_job_status(self, job_id): """ Retrieve the async job status for a unsubscribe devices action. """ response = self.sigfox.get( "{}bulk/unsubscribe/{}".format(self.resource, job_id), ) return response
StarcoderdataPython
3334373
<reponame>ZhengyangXu/Algorithm-Daily-Practice # # @lc app=leetcode.cn id=139 lang=python3 # # [139] 单词拆分 # # https://leetcode-cn.com/problems/word-break/description/ # # algorithms # Medium (49.95%) # Likes: 992 # Dislikes: 0 # Total Accepted: 146.7K # Total Submissions: 292.3K # Testcase Example: '"leetcode"\n["leet","code"]' # # 给定一个非空字符串 s 和一个包含非空单词的列表 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。 # # 说明: # # # 拆分时可以重复使用字典中的单词。 # 你可以假设字典中没有重复的单词。 # # # 示例 1: # # 输入: s = "leetcode", wordDict = ["leet", "code"] # 输出: true # 解释: 返回 true 因为 "leetcode" 可以被拆分成 "leet code"。 # # # 示例 2: # # 输入: s = "applepenapple", wordDict = ["apple", "pen"] # 输出: true # 解释: 返回 true 因为 "applepenapple" 可以被拆分成 "apple pen apple"。 # 注意你可以重复使用字典中的单词。 # # # 示例 3: # # 输入: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"] # 输出: false # # # # @lc code=start class Solution: def wordBreak(self, s: str, wordDict: List[str]) -> bool: if not s or not wordDict: return True n = len(s) @functools.lru_cache(None) def backtrack(s): if not s: return True res = False for i in range(1,len(s)+1): if s[:i] in wordDict: res = backtrack(s[i:]) or res return res return backtrack(s) # @lc code=end # def wordBreak(self, s: str, wordDict: List[str]) -> bool: # n = len(s) # dp = [False for _ in range(n+1)] # dp[0] = True # for i in range(n+1): # for j in range(i+1,n+1): # if dp[i] and s[i:j] in wordDict: # dp[j] = True # return dp[-1]
StarcoderdataPython
3298590
<reponame>piotr-worotnicki/raspberry-pi-rgb-led-controller # Generated by Django 2.1.2 on 2018-12-29 19:37 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('led', '0001_initial'), ] operations = [ migrations.CreateModel( name='LedState', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('order', models.IntegerField()), ('red', models.IntegerField(default=0)), ('green', models.IntegerField(default=0)), ('blue', models.IntegerField(default=0)), ], ), migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('hold_time', models.IntegerField()), ('fade_time', models.IntegerField()), ], ), migrations.AddField( model_name='ledstate', name='profile', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='led.Profile'), ), migrations.AddField( model_name='currentledstate', name='profile', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.DO_NOTHING, to='led.Profile'), ), ]
StarcoderdataPython
1673139
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from absl.testing import parameterized from tensorflow_addons.layers import Sparsemax from tensorflow_addons.utils import test_utils test_obs = 17 def _np_sparsemax(z): z = z - np.mean(z, axis=1)[:, np.newaxis] # sort z z_sorted = np.sort(z, axis=1)[:, ::-1] # calculate k(z) z_cumsum = np.cumsum(z_sorted, axis=1) k = np.arange(1, z.shape[1] + 1) z_check = 1 + k * z_sorted > z_cumsum # use argmax to get the index by row as .nonzero() doesn't # take an axis argument. np.argmax return the first index, but the last # index is required here, use np.flip to get the last index and # `z.shape[axis]` to compensate for np.flip afterwards. k_z = z.shape[1] - np.argmax(z_check[:, ::-1], axis=1) # calculate tau(z) tau_sum = z_cumsum[np.arange(0, z.shape[0]), k_z - 1] tau_z = ((tau_sum - 1) / k_z).reshape(-1, 1) # calculate p return np.maximum(0, z - tau_z) @parameterized.parameters([np.float32, np.float64]) @test_utils.run_all_in_graph_and_eager_modes class SparsemaxTest(tf.test.TestCase): def test_sparsemax_layer_against_numpy(self, dtype): """check sparsemax kernel against numpy.""" random = np.random.RandomState(1) z = random.uniform(low=-3, high=3, size=(test_obs, 10)).astype(dtype) test_utils.layer_test( Sparsemax, kwargs={'dtype': dtype}, input_data=z, expected_output=_np_sparsemax(z).astype(dtype)) if __name__ == '__main__': tf.test.main()
StarcoderdataPython
20272
<filename>tests/test_timeconversion.py import unittest from datetime import datetime, timezone from pyfuppes import timeconversion class TestTimeconv(unittest.TestCase): @classmethod def setUpClass(cls): # to run before all tests print("testing pyfuppes.timeconversion...") @classmethod def tearDownClass(cls): # to run after all tests pass def setUp(self): # to run before each test pass def tearDown(self): # to run after each test pass def test_dtstr_2_mdns(self): # no timezone t = ["2012-01-01T01:00:00", "2012-01-01T02:00:00"] f = "%Y-%m-%dT%H:%M:%S" result = list(map(int, timeconversion.dtstr_2_mdns(t, f))) self.assertEqual(result, [3600, 7200]) # with timezone t = ["2012-01-01T01:00:00+02:00", "2012-01-01T02:00:00+02:00"] f = "%Y-%m-%dT%H:%M:%S%z" result = list(map(int, timeconversion.dtstr_2_mdns(t, f))) self.assertEqual(result, [3600, 7200]) # zero case t = "2012-01-01T00:00:00+02:00" result = timeconversion.dtstr_2_mdns(t, f) self.assertEqual(int(result), 0) def test_dtobj_2_mdns(self): t = [datetime(2000, 1, 1, 1), datetime(2000, 1, 1, 2)] result = list(map(int, timeconversion.dtobj_2_mdns(t))) self.assertEqual(result, [3600, 7200]) t = [ datetime(2000, 1, 1, 1, tzinfo=timezone.utc), datetime(2000, 1, 1, 2, tzinfo=timezone.utc), ] result = list(map(int, timeconversion.dtobj_2_mdns(t))) self.assertEqual(result, [3600, 7200]) def test_posix_2_mdns(self): t = [3600, 7200, 10800] result = list(map(int, timeconversion.posix_2_mdns(t))) self.assertEqual(result, t) def test_mdns_2_dtobj(self): t = [3600, 10800, 864000] ref = datetime(2020, 5, 15, tzinfo=timezone.utc) result = list(map(int, timeconversion.mdns_2_dtobj(t, ref, posix=True))) self.assertEqual(result, [1589504400, 1589511600, 1590364800]) def test_daysSince_2_dtobj(self): t0, off = datetime(2020, 5, 10), 10.5 result = timeconversion.daysSince_2_dtobj(t0, off) self.assertEqual(result.hour, 12) self.assertEqual(result.day, 20) def test_dtstr_2_posix(self): result = timeconversion.dtstr_2_posix("2020-05-15", "%Y-%m-%d") self.assertAlmostEqual( result, datetime(2020, 5, 15, tzinfo=timezone.utc).timestamp() ) if __name__ == "__main__": unittest.main()
StarcoderdataPython
1628847
<reponame>camerondphillips/MAYAN from __future__ import absolute_import, unicode_literals from django.conf import settings from django.contrib import messages from django.core.exceptions import PermissionDenied from django.core.urlresolvers import reverse from django.http import HttpResponseRedirect, Http404 from django.shortcuts import get_object_or_404, render_to_response from django.template import RequestContext from django.utils.http import urlencode from django.utils.translation import ugettext_lazy as _, ungettext from acls.models import AccessEntry from documents.models import Document, DocumentType from documents.permissions import ( PERMISSION_DOCUMENT_TYPE_EDIT, PERMISSION_DOCUMENT_VIEW ) from documents.views import document_list from permissions.models import Permission from common.utils import encapsulate, generate_choices_w_labels from common.views import assign_remove from .api import save_metadata_list from .forms import ( AddMetadataForm, MetadataFormSet, MetadataRemoveFormSet, MetadataTypeForm ) from .models import DocumentMetadata, MetadataType from .permissions import ( PERMISSION_METADATA_DOCUMENT_ADD, PERMISSION_METADATA_DOCUMENT_EDIT, PERMISSION_METADATA_DOCUMENT_REMOVE, PERMISSION_METADATA_DOCUMENT_VIEW, PERMISSION_METADATA_TYPE_CREATE, PERMISSION_METADATA_TYPE_DELETE, PERMISSION_METADATA_TYPE_EDIT, PERMISSION_METADATA_TYPE_VIEW ) def metadata_edit(request, document_id=None, document_id_list=None): if document_id: document_id_list = unicode(document_id) documents = Document.objects.select_related('metadata').filter(pk__in=document_id_list.split(',')) try: Permission.objects.check_permissions(request.user, [PERMISSION_METADATA_DOCUMENT_EDIT]) except PermissionDenied: documents = AccessEntry.objects.filter_objects_by_access(PERMISSION_METADATA_DOCUMENT_EDIT, request.user, documents) if not documents: if document_id: raise Http404 else: messages.error(request, _('Must provide at least one document.')) return HttpResponseRedirect(request.META.get('HTTP_REFERER', reverse('main:home'))) if len(set([document.document_type.pk for document in documents])) > 1: messages.error(request, _('Only select documents of the same type.')) return HttpResponseRedirect(request.META.get('HTTP_REFERER', reverse('main:home'))) if set(documents.values_list('metadata__value', flat=True)) == set([None]): message = ungettext( 'The selected document doesn\'t have any metadata.', 'The selected documents don\'t have any metadata.', len(documents) ) messages.warning(request, message) return HttpResponseRedirect(request.META.get('HTTP_REFERER', reverse('main:home'))) post_action_redirect = reverse('documents:document_list_recent') next = request.POST.get('next', request.GET.get('next', request.META.get('HTTP_REFERER', post_action_redirect))) metadata = {} initial = [] for document in documents: document.add_as_recent_document_for_user(request.user) for item in document.metadata.all(): value = item.value if item.metadata_type in metadata: if value not in metadata[item.metadata_type]: metadata[item.metadata_type].append(value) else: metadata[item.metadata_type] = [value] if value else [] for key, value in metadata.items(): initial.append({ 'metadata_type': key, 'value': ', '.join(value) if value else '', 'required': key in document.document_type.metadata.filter(required=True), }) formset = MetadataFormSet(initial=initial) if request.method == 'POST': formset = MetadataFormSet(data=request.POST, initial=initial) if formset.is_valid(): for document in documents: errors = [] for form in formset.forms: if form.cleaned_data['update']: try: save_metadata_list([form.cleaned_data], document) except Exception as exception: errors.append(exception) if errors: for error in errors: if settings.DEBUG: raise else: messages.error(request, _('Error editing metadata for document %(document)s; %(exception)s.') % { 'document': document, 'exception': ', '.join(exception.messages)}) else: messages.success(request, _('Metadata for document %s edited successfully.') % document) return HttpResponseRedirect(next) context = { 'form_display_mode_table': True, 'form': formset, 'next': next, } if len(documents) == 1: context['object'] = documents[0] context['title'] = ungettext( 'Edit document metadata', 'Edit documents metadata', len(documents) ) return render_to_response('main/generic_form.html', context, context_instance=RequestContext(request)) def metadata_multiple_edit(request): return metadata_edit(request, document_id_list=request.GET.get('id_list', '')) def metadata_add(request, document_id=None, document_id_list=None): if document_id: documents = [get_object_or_404(Document, pk=document_id)] elif document_id_list: documents = [get_object_or_404(Document.objects.select_related('document_type'), pk=document_id) for document_id in document_id_list.split(',')] if len(set([document.document_type.pk for document in documents])) > 1: messages.error(request, _('Only select documents of the same type.')) return HttpResponseRedirect(request.META.get('HTTP_REFERER', reverse('main:home'))) try: Permission.objects.check_permissions(request.user, [PERMISSION_METADATA_DOCUMENT_ADD]) except PermissionDenied: documents = AccessEntry.objects.filter_objects_by_access(PERMISSION_METADATA_DOCUMENT_ADD, request.user, documents) if not documents: messages.error(request, _('Must provide at least one document.')) return HttpResponseRedirect(request.META.get('HTTP_REFERER', reverse('main:home'))) for document in documents: document.add_as_recent_document_for_user(request.user) post_action_redirect = reverse('documents:document_list_recent') next = request.POST.get('next', request.GET.get('next', request.META.get('HTTP_REFERER', post_action_redirect))) if request.method == 'POST': form = AddMetadataForm(data=request.POST, document_type=document.document_type) if form.is_valid(): metadata_type = form.cleaned_data['metadata_type'] for document in documents: try: document_metadata, created = DocumentMetadata.objects.get_or_create(document=document, metadata_type=metadata_type.metadata_type, defaults={'value': ''}) except Exception as exception: if getattr(settings, 'DEBUG', False): raise else: messages.error(request, _('Error adding metadata type "%(metadata_type)s" to document: %(document)s; %(exception)s') % { 'metadata_type': metadata_type, 'document': document, 'exception': ', '.join(getattr(exception, 'messages', exception))}) else: if created: messages.success(request, _('Metadata type: %(metadata_type)s successfully added to document %(document)s.') % { 'metadata_type': metadata_type, 'document': document}) else: messages.warning(request, _('Metadata type: %(metadata_type)s already present in document %(document)s.') % { 'metadata_type': metadata_type, 'document': document}) if len(documents) == 1: return HttpResponseRedirect('%s?%s' % ( reverse('metadata:metadata_edit', args=[document.pk]), urlencode({'next': next})) ) elif len(documents) > 1: return HttpResponseRedirect('%s?%s' % ( reverse('metadata:metadata_multiple_edit'), urlencode({'id_list': document_id_list, 'next': next})) ) else: form = AddMetadataForm(document_type=document.document_type) context = { 'form': form, 'next': next, } if len(documents) == 1: context['object'] = documents[0] context['title'] = ungettext( 'Add metadata types to document', 'Add metadata types to documents', len(documents) ) return render_to_response('main/generic_form.html', context, context_instance=RequestContext(request)) def metadata_multiple_add(request): return metadata_add(request, document_id_list=request.GET.get('id_list', [])) def metadata_remove(request, document_id=None, document_id_list=None): if document_id: document_id_list = unicode(document_id) documents = Document.objects.select_related('metadata').filter(pk__in=document_id_list.split(',')) try: Permission.objects.check_permissions(request.user, [PERMISSION_METADATA_DOCUMENT_REMOVE]) except PermissionDenied: documents = AccessEntry.objects.filter_objects_by_access(PERMISSION_METADATA_DOCUMENT_REMOVE, request.user, documents) if not documents: if document_id: raise Http404 else: messages.error(request, _('Must provide at least one document.')) return HttpResponseRedirect(request.META.get('HTTP_REFERER', reverse('main:home'))) if len(set([document.document_type.pk for document in documents])) > 1: messages.error(request, _('Only select documents of the same type.')) return HttpResponseRedirect(request.META.get('HTTP_REFERER', reverse('main:home'))) if set(documents.values_list('metadata__value', flat=True)) == set([None]): message = ungettext( 'The selected document doesn\'t have any metadata.', 'The selected documents doesn\'t have any metadata.', len(documents) ) messages.warning(request, message) return HttpResponseRedirect(request.META.get('HTTP_REFERER', reverse('main:home'))) post_action_redirect = reverse('documents:document_list_recent') next = request.POST.get('next', request.GET.get('next', request.META.get('HTTP_REFERER', post_action_redirect))) metadata = {} for document in documents: document.add_as_recent_document_for_user(request.user) for item in document.metadata.all(): value = item.value if item.metadata_type in metadata: if value not in metadata[item.metadata_type]: metadata[item.metadata_type].append(value) else: metadata[item.metadata_type] = [value] if value else '' initial = [] for key, value in metadata.items(): initial.append({ 'metadata_type': key, 'value': ', '.join(value) }) formset = MetadataRemoveFormSet(initial=initial) if request.method == 'POST': formset = MetadataRemoveFormSet(request.POST) if formset.is_valid(): for document in documents: for form in formset.forms: if form.cleaned_data['update']: metadata_type = get_object_or_404(MetadataType, pk=form.cleaned_data['id']) try: document_metadata = DocumentMetadata.objects.get(document=document, metadata_type=metadata_type) document_metadata.delete() messages.success(request, _('Successfully remove metadata type "%(metadata_type)s" from document: %(document)s.') % { 'metadata_type': metadata_type, 'document': document}) except Exception as exception: messages.error(request, _('Error removing metadata type "%(metadata_type)s" from document: %(document)s; %(exception)s') % { 'metadata_type': metadata_type, 'document': document, 'exception': ', '.join(exception.messages)}) return HttpResponseRedirect(next) context = { 'form_display_mode_table': True, 'form': formset, 'next': next, } if len(documents) == 1: context['object'] = documents[0] context['title'] = ungettext( 'Remove metadata types from the document', 'Remove metadata types from the documents', len(documents) ) return render_to_response('main/generic_form.html', context, context_instance=RequestContext(request)) def metadata_multiple_remove(request): return metadata_remove(request, document_id_list=request.GET.get('id_list', [])) def metadata_view(request, document_id): document = get_object_or_404(Document, pk=document_id) try: Permission.objects.check_permissions(request.user, [PERMISSION_METADATA_DOCUMENT_VIEW]) except PermissionDenied: AccessEntry.objects.check_access(PERMISSION_METADATA_DOCUMENT_VIEW, request.user, document) return render_to_response('main/generic_list.html', { 'title': _('Metadata for document: %s') % document, 'object_list': document.metadata.all(), 'extra_columns': [ {'name': _('Value'), 'attribute': 'value'}, {'name': _('Required'), 'attribute': encapsulate(lambda x: x.metadata_type in document.document_type.metadata.filter(required=True))} ], 'hide_link': True, 'object': document, }, context_instance=RequestContext(request)) def documents_missing_required_metadata(request): pre_object_list = Document.objects.filter(document_type__metadata__required=True, metadata__value__isnull=True) try: Permission.objects.check_permissions(request.user, [PERMISSION_DOCUMENT_VIEW]) except PermissionDenied: # If user doesn't have global permission, get a list of document # for which he/she does hace access use it to filter the # provided object_list object_list = AccessEntry.objects.filter_objects_by_access( PERMISSION_DOCUMENT_VIEW, request.user, pre_object_list) else: object_list = pre_object_list context = { 'object_list': object_list, 'title': _('Documents missing required metadata'), 'hide_links': True, } return document_list( request, extra_context=context ) # Setup views def setup_metadata_type_list(request): Permission.objects.check_permissions(request.user, [PERMISSION_METADATA_TYPE_VIEW]) context = { 'object_list': MetadataType.objects.all(), 'title': _('Metadata types'), 'hide_link': True, 'extra_columns': [ { 'name': _('Internal name'), 'attribute': 'name', }, ] } return render_to_response('main/generic_list.html', context, context_instance=RequestContext(request)) def setup_metadata_type_edit(request, metadatatype_id): Permission.objects.check_permissions(request.user, [PERMISSION_METADATA_TYPE_EDIT]) metadata_type = get_object_or_404(MetadataType, pk=metadatatype_id) if request.method == 'POST': form = MetadataTypeForm(instance=metadata_type, data=request.POST) if form.is_valid(): try: form.save() messages.success(request, _('Metadata type edited successfully')) return HttpResponseRedirect(reverse('metadata:setup_metadata_type_list')) except Exception as exception: messages.error(request, _('Error editing metadata type; %s') % exception) pass else: form = MetadataTypeForm(instance=metadata_type) return render_to_response('main/generic_form.html', { 'title': _('Edit metadata type: %s') % metadata_type, 'form': form, 'object': metadata_type, }, context_instance=RequestContext(request)) def setup_metadata_type_create(request): Permission.objects.check_permissions(request.user, [PERMISSION_METADATA_TYPE_CREATE]) if request.method == 'POST': form = MetadataTypeForm(request.POST) if form.is_valid(): form.save() messages.success(request, _('Metadata type created successfully')) return HttpResponseRedirect(reverse('metadata:setup_metadata_type_list')) else: form = MetadataTypeForm() return render_to_response('main/generic_form.html', { 'title': _('Create metadata type'), 'form': form, }, context_instance=RequestContext(request)) def setup_metadata_type_delete(request, metadatatype_id): Permission.objects.check_permissions(request.user, [PERMISSION_METADATA_TYPE_DELETE]) metadata_type = get_object_or_404(MetadataType, pk=metadatatype_id) post_action_redirect = reverse('metadata:setup_metadata_type_list') previous = request.POST.get('previous', request.GET.get('previous', request.META.get('HTTP_REFERER', post_action_redirect))) next = request.POST.get('next', request.GET.get('next', request.META.get('HTTP_REFERER', post_action_redirect))) if request.method == 'POST': try: metadata_type.delete() messages.success(request, _('Metadata type: %s deleted successfully.') % metadata_type) except Exception as exception: messages.error(request, _('Metadata type: %(metadata_type)s delete error: %(error)s') % { 'metadata_type': metadata_type, 'error': exception}) return HttpResponseRedirect(next) context = { 'delete_view': True, 'next': next, 'previous': previous, 'object': metadata_type, 'title': _('Are you sure you wish to delete the metadata type: %s?') % metadata_type, } return render_to_response('main/generic_confirm.html', context, context_instance=RequestContext(request)) def setup_document_type_metadata(request, document_type_id): Permission.objects.check_permissions(request.user, [PERMISSION_DOCUMENT_TYPE_EDIT]) document_type = get_object_or_404(DocumentType, pk=document_type_id) return assign_remove( request, left_list=lambda: generate_choices_w_labels(set(MetadataType.objects.all()) - set(MetadataType.objects.filter(id__in=document_type.metadata.values_list('metadata_type', flat=True))), display_object_type=False), right_list=lambda: generate_choices_w_labels(document_type.metadata.filter(required=False), display_object_type=False), add_method=lambda x: document_type.metadata.create(metadata_type=x, required=False), remove_method=lambda x: x.delete(), extra_context={ 'document_type': document_type, 'navigation_object_name': 'document_type', 'main_title': _('Optional metadata types for document type: %s') % document_type, }, decode_content_type=True, ) def setup_document_type_metadata_required(request, document_type_id): Permission.objects.check_permissions(request.user, [PERMISSION_DOCUMENT_TYPE_EDIT]) document_type = get_object_or_404(DocumentType, pk=document_type_id) return assign_remove( request, left_list=lambda: generate_choices_w_labels(set(MetadataType.objects.all()) - set(MetadataType.objects.filter(id__in=document_type.metadata.values_list('metadata_type', flat=True))), display_object_type=False), right_list=lambda: generate_choices_w_labels(document_type.metadata.filter(required=True), display_object_type=False), add_method=lambda x: document_type.metadata.create(metadata_type=x, required=True), remove_method=lambda x: x.delete(), extra_context={ 'document_type': document_type, 'navigation_object_name': 'document_type', 'main_title': _('Required metadata types for document type: %s') % document_type, }, decode_content_type=True, )
StarcoderdataPython
3220483
<gh_stars>1-10 from . import redshift_query import logging def main(): logging.basicConfig() redshift_query.query({}) return 0
StarcoderdataPython
1778424
<filename>src/token_auth/settings.py<gh_stars>1-10 # Django settings for cms project. DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('<NAME>', '<EMAIL>'), ) CACHE_BACKEND = 'locmem:///' MANAGERS = ADMINS # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be avilable on all operating systems. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'America/Los_Angeles' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # Absolute path to the directory that holds media. MEDIA_URL = '/media/uploaded/' ADMIN_MEDIA_PREFIX = '/media/admin/' # Make this unique, and don't share it with anybody. SECRET_KEY = '*xq7m@)*f2awoj!spa0(jibsrz9%c0d=e(g)v*!17y(vx0ue_3' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.load_template_source', 'django.template.loaders.app_directories.load_template_source', # 'django.template.loaders.eggs.load_template_source', ) TEMPLATE_CONTEXT_PROCESSORS = ( "django.core.context_processors.auth", "django.core.context_processors.i18n", "django.core.context_processors.debug", "django.core.context_processors.request", "django.core.context_processors.media", ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.middleware.doc.XViewMiddleware', 'django.contrib.csrf.middleware.CsrfMiddleware', 'token_auth.middleware.ProtectedURLMiddleware', ) ROOT_URLCONF = 'token_auth.urls' INSTALLED_APPS = ( 'token_auth', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.admin', 'django.contrib.sites', )
StarcoderdataPython
1688325
from azureml.core import Run from mlapp.main import MLApp from mlapp.handlers.wrappers.file_storage_wrapper import file_storage_instance from mlapp.integrations.aml.utils.run_class import load_config_from_string, tag_and_log_run, tag_and_log_outputs import argparse from config import settings from mlapp.managers.flow_manager import FlowManager parser = argparse.ArgumentParser() parser.add_argument('--config', type=str, dest='config', help='configuration') args = parser.parse_args() run = Run.get_context() # pre-processing config = load_config_from_string(args.config) tag_and_log_run(config) # init mlapp MLApp(settings) # run config _, output_ids, output_data = FlowManager(Run.get_context().id, config).run() # post-processing tag_and_log_outputs(output_ids) # post-processing file_storage_instance.postprocessing()
StarcoderdataPython
83482
class Calculator: def __init__(self): self.calculation = 0 self.operation = None def plus(self, num): self.calculation += num def minus(self, num): self.calculation -= num def multiply(self, num): self.calculation *= num def divide(self, num): self.calculation /= num
StarcoderdataPython
1744104
<filename>guess/urls.py<gh_stars>0 from django.conf.urls import url from .views import GuessResultList, CachedGuessResultList urlpatterns = [ url(r'^guessresult/(?P<pagepath>.+)/(?P<effectivetype>.+)/$', GuessResultList.as_view(), name='guess_result'), url(r'^guessresult/(?P<pagepath>.+)/$', GuessResultList.as_view(), name='guess_result_pagepath_only'), url(r'^cachedguessresult/(?P<pagepath>.+)/(?P<effectivetype>.+)/$', CachedGuessResultList.as_view(), name='cached_guess_result'), url(r'^cachedguessresult/(?P<pagepath>.+)/$', CachedGuessResultList.as_view(), name='cached_guess_result_pagepath_only'), ]
StarcoderdataPython
3326684
<gh_stars>0 import itertools import types import numpy as np import hierarchy as hrcy def test_get_transition_rate(): capacities = [3, 1] state_in = [[2, 1], [1, 0]] state_out = [[2, 0], [1, 0]] r = 1.1 lmbda = [2, 3] mu = [[0.2, 0.1], [1.2, 1.1]] assert ( hrcy.transitions.get_rate( state_in=state_in, state_out=state_out, capacities=capacities, r=r, lmbda=lmbda, mu=mu, ) == 0.1 ) state_out = [[1, 1], [1, 0]] assert ( hrcy.transitions.get_rate( state_in=state_in, state_out=state_out, capacities=capacities, r=r, lmbda=lmbda, mu=mu, ) == 0.2 ) state_out = [[1, 0], [1, 0]] assert ( hrcy.transitions.get_rate( state_in=state_in, state_out=state_out, capacities=capacities, r=r, lmbda=lmbda, mu=mu, ) == 0 ) state_out = [[1, 2], [1, 0]] assert ( hrcy.transitions.get_rate( state_in=state_in, state_out=state_out, capacities=capacities, r=r, lmbda=lmbda, mu=mu, ) == 0 ) def test_get_transition_matrix(): capacities = [2, 1] r = 1.1 lmbda = [2, 3] mu = [[0.2, 0.1], [1.2, 1.1]] matrix = hrcy.transitions.get_transition_matrix( capacities=capacities, r=r, lmbda=lmbda, mu=mu ) assert np.array_equal(matrix.shape, np.array([5, 5])) expected_matrix = np.array( [ [-0.1, 0.0, 0.0, 0.1, 0.0], [0.0, -0.3, 0.0, 0.2, 0.1], [0.0, 0.0, -0.2, 0.0, 0.2], [3.0, 2.0, 0.0, -5.0, 0.0], [0.0, 3.0, 2.0, 0.0, -5.0], ] ) assert np.allclose(matrix, expected_matrix) def test_get_transition_matrix_example_two(): capacities = [4, 2, 1] r = 1.1 lmbda = [2, 3] mu = [[0.2, 0.1], [1.2, 1.1], [1.5, 1.7]] matrix = hrcy.transitions.get_transition_matrix( capacities=capacities, r=r, lmbda=lmbda, mu=mu ) assert np.array_equal(matrix.shape, np.array([45, 45])) assert np.allclose(np.sum(matrix, axis=1), 0) def test_get_potential_states_hire(): capacities = [4, 2, 1] state_in = [[2, 1], [2, 0], [1, 0]] potential_states = hrcy.transitions.get_potential_states( state_in=state_in, capacities=capacities ) expected_states = ([[3, 1], [2, 0], [1, 0]], [[2, 2], [2, 0], [1, 0]]) assert all( np.array_equal(potential, expected) for potential, expected in zip(potential_states, expected_states) ) def test_get_potential_states_promotion(): capacities = [4, 2, 1] state_in = [[2, 2], [1, 0], [1, 0]] potential_states = hrcy.transitions.get_potential_states( state_in=state_in, capacities=capacities ) expected_states = ([[1, 2], [2, 0], [1, 0]], [[2, 1], [1, 1], [1, 0]]) assert len(expected_states) == len(potential_states) assert all( np.array_equal(potential, expected) for potential, expected in zip(potential_states, expected_states) ) def test_get_potential_states_promotion_all_capacities_one(): capacities = [1, 1, 1] state_in = [[0, 1], [0, 0], [0, 1]] potential_states = hrcy.transitions.get_potential_states( state_in=state_in, capacities=capacities ) expected_states = ([[0, 0], [0, 1], [0, 1]],) assert len(expected_states) == len(potential_states) assert all( np.array_equal(potential, expected) for potential, expected in zip(potential_states, expected_states) ) def test_get_potential_states_retirement(): capacities = [4, 2, 1] state_in = [[2, 2], [1, 1], [1, 0]] potential_states = hrcy.transitions.get_potential_states( state_in=state_in, capacities=capacities ) expected_states = ( [[1, 2], [1, 1], [1, 0]], [[2, 1], [1, 1], [1, 0]], [[2, 2], [0, 1], [1, 0]], [[2, 2], [1, 0], [1, 0]], ) assert len(expected_states) == len(potential_states) assert all( np.array_equal(potential, expected) for potential, expected in zip(potential_states, expected_states) ) def test_is_full(): capacities = [4, 2, 1] state_in = [[2, 2], [2, 0], [1, 0]] assert hrcy.transitions.is_full(state_in=state_in, capacities=capacities) state_in = [[2, 2], [1, 0], [1, 0]] assert not hrcy.transitions.is_full( state_in=state_in, capacities=capacities ) def test_find_free_levels(): capacities = [4, 2, 1] state_in = [[2, 2], [2, 0], [1, 0]] assert ( list( hrcy.transitions.find_free_levels( state_in=state_in, capacities=capacities ) ) == [] ) state_in = [[2, 2], [1, 0], [1, 0]] assert list( hrcy.transitions.find_free_levels( state_in=state_in, capacities=capacities ) ) == [1] def test_promotion_is_affected_by_top_level(): capacities = [4, 3, 2, 1] lmbda = [1, 1] r = 5 mu = [[1, 1], [1, 1], [1, 1]] state_in = np.array([[1.0, 3.0], [2.0, 1.0], [0.0, 1.0], [1.0, 0.0]]) state_out = np.array([[1.0, 3.0], [1.0, 1.0], [1.0, 1.0], [1.0, 0.0]]) assert ( hrcy.transitions.get_rate(state_in, state_out, capacities, r, lmbda, mu) == r )
StarcoderdataPython
3252114
import time from turtle import Screen from player import Player from car_manager import CarManager from scoreboard import Scoreboard screen = Screen() screen.setup(width=600, height=600) screen.tracer(0) player=Player() car_manager=CarManager() scoreboard=Scoreboard() screen.listen() screen.onkeypress(player.move_forwards,"Up") game_is_on = True while game_is_on: time.sleep(0.1) screen.update() car_manager.create_car() car_manager.move_cars() for car in car_manager.all_cars: if car.distance(player)<20: game_is_on=False scoreboard.game_over() if player.ycor()>=280: scoreboard.point() scoreboard.update_score() player.start() car_manager.level_up() screen.exitonclick()
StarcoderdataPython
1613875
<filename>src/visualizers/error.py from pathlib import Path def check_directory_exists(dir_path: Path, dir_type: str): if not dir_path.exists(): print(f"{dir_type} directory doesn't exists: {dir_path}") exit(1)
StarcoderdataPython
169574
<filename>tests/test_eval_metrics.py import unittest from citeomatic.eval_metrics import precision_recall_f1_at_ks, average_results class TestEvalMetrics(unittest.TestCase): def test_precision_recall_f1_at_ks(self): gold_y = ['1', '2', '3'] pred_y = ['1', '4', '3'] scores_y = [1.0, 0.1, 0.5] k = [1, 2, 3] results = precision_recall_f1_at_ks(gold_y, pred_y, scores=None, k_list=k) assert results['precision'] == [1.0, 0.5, 2/3] assert results['recall'] == [1/3, 1/3, 2/3] assert results['f1'] == [1/2, 2/5, 2/3] assert results['mrr'] == 1.0 results_2 = precision_recall_f1_at_ks(gold_y, pred_y, scores_y, k) assert results_2['precision'] == [1.0, 1.0, 2/3] assert results_2['recall'] == [1/3, 2/3, 2/3] assert results_2['f1'] == [1/2, 4/5, 2/3] assert results_2['mrr'] == 1.0 def test_average_results(self): r1 = { 'precision': [1.0, 0.5, 2/3], 'recall': [1.0, 0.5, 2/3], 'f1': [1.0, 0.5, 2/3], 'mrr': 1.0, } r2 = { 'precision': [3.0, 1.0, 4/3], 'recall': [3.0, 1.0, 4/3], 'f1': [3.0, 1.0, 4/3], 'mrr': 0.5, } averaged_results = average_results([r1, r2]) assert averaged_results['precision'] == [2.0, 0.75, 1.0] assert averaged_results['mrr'] == 0.75 if __name__ == '__main__': unittest.main()
StarcoderdataPython
1648612
<gh_stars>0 import sqlite3 import pandas as pd class DBConnect: def __init__(self, db_path): self.con = sqlite3.connect(db_path) self.cur = self.con.cursor() def initialize_db(self): self.cur.execute("DROP TABLE IF EXISTS officer_payment") self.cur.execute("DROP TABLE IF EXISTS schedule_j") self.cur.execute("DROP TABLE IF EXISTS irs_dashboard") self.cur.execute("DROP TABLE IF EXISTS grants") self.cur.execute(officer_payment_sql) self.cur.execute(schedule_j_sql) self.cur.execute(irs_dashboard_sql) self.cur.execute(grants_sql) def saveDF(self, df_pandas, table, insert="replace", index=False): df_pandas.to_sql(table, con=self.con, if_exists=insert, index=index) def query(self, sqlStr): df = pd.read_sql(sqlStr, con=self.con) return df irs_dashboard_sql = """ CREATE TABLE irs_dashboard ( EIN text, URL text, LastUpdated text, OrganizationName text, TaxPeriod text, TaxPeriodBeginDt text, TaxPeriodEndDt text, TaxYr text, StateAbbr text, Mission text, TotalEmployee text, ObjectId text, NTEECommonCode text, Foundation text, OfficerName text, OfficerTitle text, OfficerCompensationPart9 float, GrantDesc text, GrantMoneyTotal float, ProgramExpenses float, PYTotalRevenue float, CYTotalRevenue float, PYRevenuesLessExpenses float, CYRevenuesLessExpenses float, PYSalaryBenefitsPaid float, CYSalaryBenefitsPaid float, TotalAssetsBOY float, TotalAssetsEOY float, TotalLiabilitiesBOY float, TotalLiabilitiesEOY float, TotalExpenses float, CYTotalExpenses float, PYTotalExpenses float, Part9_1GrantsGov float, Part9_2GrantsIndv float, Part9_3GrantsForGov float, Part9_4Benefits float, Part9_5OfficerComp float, Part9_6DisqComp float, Part9_7OtherSalary float, Part9_8Pension float, Part9_9OtherBenefits float, WorkingCapital float, LiabilitiesToAsset float, SurplusMargin float, ProgramExp float, ScheduleA text, ScheduleJ text, ScheduleI text, ScheduleO text)""" officer_payment_sql = """ CREATE TABLE officer_payment ( EIN text PRIMARY KEY, ObjectId text, OrganizationName text, TaxYr text, StateAbbr text, PersonNm text, TitleTxt text, AverageHoursPerWeekRt float, ReportableCompFromOrgAmt float, OtherCompensationAmt float, ReportableCompFromRltdOrgAmt float, AverageHoursPerWeekRltdOrgRt float, IndividualTrusteeOrDirectorInd bool, OfficerInd bool, HighestCompensatedEmployeeInd bool, FormerOfcrDirectorTrusteeInd bool, KeyEmployeeInd bool, InstitutionalTrusteeInd bool, TotalCompFromOrgAmt float)""" schedule_j_sql = """ CREATE TABLE schedule_j ( EIN text, ObjectId text, OrganizationName text, StateAbbr text, TaxYr text, PersonNm text, TitleTxt text, TotalCompensationFilingOrgAmt float, BaseCompensationFilingOrgAmt float, BonusFilingOrganizationAmount float, OtherCompensationFilingOrgAmt float, DeferredCompensationFlngOrgAmt float, NontaxableBenefitsFilingOrgAmt float, TotalCompensationRltdOrgsAmt float, OtherCompensationRltdOrgsAmt float, BonusRelatedOrganizationsAmt float, CompensationBasedOnRltdOrgsAmt float, DeferredCompRltdOrgsAmt float, NontaxableBenefitsRltdOrgsAmt float, CompReportPrior990FilingOrgAmt float, CompReportPrior990RltdOrgsAmt float, SeverancePaymentInd bool, TravelForCompanionsInd text)""" grants_sql = """ CREATE TABLE grants ( EIN text, ObjectId text, OrganizationName text, TaxYr text, Address text, City text, StateAbbr text, RecipientEIN text, RecipientBusinessName_BusinessNameLine1Txt text, PurposeOfGrantTxt text, CashGrantAmt float, NonCashAssistanceAmt float, NonCashAssistanceDesc text, IRCSectionDesc text, USAddress_CityNm text, USAddress_StateAbbreviationCd text, ForeignAddress_AddressLine1Txt text, ForeignAddress_CountryCd text)"""
StarcoderdataPython
1681470
"""/** * @author [<NAME>] * @email [<EMAIL>] * @create date 2020-05-14 11:49:34 * @modify date 2020-05-14 11:49:34 * @desc [ Data module for statistics. Prefix SUF indicates "sufficient". Used for data mins. ] */ """ ########## # Sufficient Data Checks ########## SUF_TABLE_DATA = 5 SUF_ERR_LIST = 5 SUF_ANSWERED_TABLES = 15
StarcoderdataPython
1726570
from django.http import JsonResponse, HttpResponseBadRequest, HttpResponse from src.tipboard.app.applicationconfig import getRedisPrefix from src.tipboard.app.properties import BASIC_CONFIG, REDIS_DB, DEBUG, ALLOWED_TILES from src.tipboard.app.cache import MyCache, save_tile from src.tipboard.app.utils import checkAccessToken from src.tipboard.app.parser import getConfigNames def project_info(request): """ Return info of server tipboard """ cache = MyCache() return JsonResponse(dict(is_redis_connected=cache.isRedisConnected, last_update=cache.getLastUpdateTime(), first_start=cache.getFirstTimeStarter(), project_default_config=BASIC_CONFIG, dashboard_list=getConfigNames(), redis_db=REDIS_DB)) def get_tile(request, tile_key): """ Return Json from redis for tile_key """ if not checkAccessToken(method='GET', request=request, unsecured=True): return HttpResponse('API KEY incorrect', status=401) redis = MyCache().redis if redis.exists(getRedisPrefix(tile_key)): return HttpResponse(redis.get(tile_key)) return HttpResponseBadRequest(f'{tile_key} key does not exist.') def delete_tile(request, tile_key): """ Delete in redis """ if not checkAccessToken(method='DELETE', request=request, unsecured=True): return HttpResponse('API KEY incorrect', status=401) redis = MyCache().redis if redis.exists(getRedisPrefix(tile_key)): redis.delete(tile_key) return HttpResponse('Tile\'s data deleted.') return HttpResponseBadRequest(f'{tile_key} key does not exist.') def tile_rest(request, tile_key): """ Handles reading and deleting of tile's data """ if request.method == 'DELETE': return delete_tile(request, tile_key) if request.method == 'GET': return get_tile(request, tile_key) def sanity_push_api(request, unsecured): """ Test token, all data present, correct tile_template and tile_id present in cache """ if not checkAccessToken(method='POST', request=request, unsecured=unsecured): return False, HttpResponse('API KEY incorrect', status=401) HttpData = request.POST if not HttpData.get('tile_id', None) or not HttpData.get('tile_template', None) or \ not HttpData.get('data', None): return False, HttpResponseBadRequest('Missing data') if HttpData.get('tile_template', None) not in ALLOWED_TILES: tile_template = HttpData.get('tile_template', None) return False, HttpResponseBadRequest(f'tile_template: {tile_template} is unknow') cache = MyCache() tilePrefix = getRedisPrefix(HttpData.get('tile_id', None)) if not cache.redis.exists(tilePrefix) and not DEBUG: return False, HttpResponseBadRequest(f'tile_id: {tilePrefix} is unknow') return True, HttpData def push_api(request, unsecured=False): """ Update the content of a tile (widget) """ if request.method == 'POST': state, HttpData = sanity_push_api(request, unsecured) if state: tile_id = HttpData.get('tile_id', None) tile_template = HttpData.get('tile_template', None) tile_data = HttpData.get('data', None) tile_meta = HttpData.get('meta', None) if save_tile(tile_id=tile_id, template=tile_template, data=tile_data, meta=tile_meta): return HttpResponse(f'{tile_id} data updated successfully.') HttpData = HttpResponse(f'Error while saving tile with tile_id: {tile_id}') return HttpData
StarcoderdataPython
3385110
import os import numpy as np import gensim class YearTextEmbeddings: """ Representation of the year using average base embeddings of entities """ def __init__(self, entity_embeddings, years_folder, output_file, tfidf = False): self.entity_embeddings = entity_embeddings self.years_folder = years_folder self.output_file = output_file self.tfidf = tfidf self.entities_inside_year = dict() self.model = None def get_entities_of_years(self, year): """ For a given year, retrieves the list of the entities contained inside that year. This method will load all the entities for all the years once for all. :param year: :return: """ if self.entities_inside_year is False: for file_name in os.listdir(self.years_folder): path = (os.path.join(self.years_folder, file_name)) with open(path, "r") as filino: read_entities = filino.readlines() entities = read_entities[0].split() self.entities_inside_year[file_name] = entities return self.entities_inside_year[year] def fit(self): with open(self.output_file, "w") as file_with_output_model: folders = os.listdir(self.years_folder) num_files = len(folders) dimensions = len(self.entity_embeddings[self.entity_embeddings.wv.vocab[0]]) file_with_output_model.write(str(num_files) + " " + str(dimensions) + " " + "\n") for name in folders: path = (os.path.join(self.years_folder, name)) with open(path, "r") as filino: coso = filino.readlines() entities = (coso[0].split()) collect_embeddings = [] for entity in set(entities): try: time_array = self.entity_embeddings[entity] collect_embeddings.append(time_array) except: continue collect_embeddings = np.average(collect_embeddings, axis=0) embedding_list = collect_embeddings.tolist() string_to_save = ' '.join(map(str, embedding_list)) self.output_file.write(str(name) + " " + string_to_save + "\n") self.model = gensim.models.KeyedVectors.load_word2vec_format(self.output_file)
StarcoderdataPython
1780375
"""This module is part of the CFSAN SNP Pipeline. It contains the code to calculate the pairwise SNP distances between samples. """ from __future__ import print_function from __future__ import absolute_import import itertools from snppipeline import utils from snppipeline.utils import verbose_print def calculate_snp_distances(args): """Calculate pairwise sample SNP distances. Calculate pairwise SNP distances from the multi-fasta SNP matrix. Generate a file of pairwise distances and a file containing a matrix of distances. This function expects, or creates '(*)', the following files: snpma.fasta snp_distance_pairwise.tsv* snp_distance_matrix.tsv* The files are used as follows: 1. The snpma.fasta input file contains the snp matrix for all samples 2. The snp_distance_pairwise.tsv output file contains a three column tab-separated table of distances between all pairs of samples 2. The snp_distance_matrix.tsv output file contains a matrix of distances between all samples. Parameters ---------- args : Namespace inputFile: File path (not just file name) for the snp matrix in fasta format pairwiseFile: File path (not just file name) of the output pairwise distance file matrixFile: File path (not just file name) for the output distance matrix file Raises: Examples: args = argparse.Namespace args.inputFile = 'snpma.fasta' args.pairwiseFile = 'snp_distance_pairwise.tsv' args.matrixFile = 'snp_distance_matrix.tsv' calculate_snp_distances(args) """ utils.print_log_header() utils.print_arguments(args) #========================================================================== # Validate arguments #========================================================================== input_file = args.inputFile pairwise_file = args.pairwiseFile matrix_file = args.matrixFile force_flag = args.forceFlag bad_file_count = utils.verify_existing_input_files("SNP matrix file", [input_file]) if bad_file_count > 0: utils.global_error("Error: cannot calculate sequence distances without the snp matrix file.") if not pairwise_file and not matrix_file: utils.global_error("Error: no output file specified.") #========================================================================== # Check freshness #========================================================================== rebuild_pairwise_file = pairwise_file and utils.target_needs_rebuild([input_file], pairwise_file) rebuild_matrix_file = matrix_file and utils.target_needs_rebuild([input_file], matrix_file) if force_flag or rebuild_pairwise_file or rebuild_matrix_file: #------------------------------ # Read in snp matrix file #------------------------------ seqs = {} with open(input_file) as ifile: for line in ifile: line = line.rstrip('\n') if line.startswith('>'): curr_sample = line.lstrip('>') seqs[curr_sample] = '' else: seqs[curr_sample] += str(line) #------------------------------ # Count mismatches #------------------------------ verbose_print("# %s %s" % (utils.timestamp(), "Calculating all pairwise distances")) ids = sorted(seqs.keys()) pairwise_mismatches = dict() # tuple (seq1 id, seq2 id) -> int for id1, id2 in itertools.combinations(ids, 2): mismatches = utils.calculate_sequence_distance(seqs[id1], seqs[id2]) pairwise_mismatches[(id1, id2)] = mismatches pairwise_mismatches[(id2, id1)] = mismatches #------------------------------ # Print distance files #------------------------------ if pairwise_file: with open(pairwise_file, 'w') as p_out: p_out.write('%s\n' % '\t'.join(['Seq1', 'Seq2', 'Distance'])) for id1, id2 in itertools.product(ids, ids): mismatches = pairwise_mismatches.get((id1, id2), 0) # zero when id1=id2 p_out.write("%s\t%s\t%i\n" % (id1, id2, mismatches)) if matrix_file: with open(matrix_file, 'w') as m_out: m_out.write('\t%s\n' % '\t'.join(ids)) # matrix header # write table of mismatches for id1 in ids: mismatches = [pairwise_mismatches.get((id1, id2), 0) for id2 in ids] mismatch_strs = map(str, mismatches) m_out.write("%s\t%s\n" % (id1, '\t'.join(mismatch_strs))) else: utils.verbose_print("Distance files have already been freshly built. Use the -f option to force a rebuild.")
StarcoderdataPython
1721091
import mxnet as mx from mxnet import gluon from mxnet.gluon import HybridBlock from ceecnet.utils.get_norm import * class Conv2DNormed(HybridBlock): """ Convenience wrapper layer for 2D convolution followed by a normalization layer All other keywords are the same as gluon.nn.Conv2D """ def __init__(self, channels, kernel_size, strides=(1, 1), padding=(0, 0), dilation=(1, 1), activation=None, weight_initializer=None, in_channels=0, _norm_type = 'BatchNorm', norm_groups=None, axis =1 , groups=1, **kwards): super().__init__(**kwards) with self.name_scope(): self.conv2d = gluon.nn.Conv2D(channels, kernel_size = kernel_size, strides= strides, padding=padding, dilation= dilation, activation=activation, use_bias=False, weight_initializer = weight_initializer, groups=groups, in_channels=0) self.norm_layer = get_norm(_norm_type, axis=axis, norm_groups= norm_groups) def hybrid_forward(self,F,_x): x = self.conv2d(_x) x = self.norm_layer(x) return x
StarcoderdataPython
1697682
from permutation import Permutation from itertools import permutations from time import time import numpy as np import math """ This has several perfect hash functions to give each position of the cube a unique coordinate. It can also reverse the hash function to give the relavent cube information back from a coordinate. """ def co_ori(co_ori): ''' co_perm_ori 8-bit ternary, but only the first 7 bits are used ''' rank = 0 for i in range(7): rank += co_ori[i]*(3**(6-i)) return rank def co_ori_inv(rank): ''' 0 <= rank < 3^7 ''' rank = np.base_repr(rank, base=3) co_ori = bytearray([0]*8) start = 7-len(rank) for i in range(start, 7): co_ori[i] = int(rank[i-start]) co_ori[7] = (3-sum(co_ori)%3)%3 return co_ori def eg_ori(eg_ori): ''' eg_ori is a 12-bit binary, but only the first 11 bits are used ''' rank = 0 for i in range(11): rank += eg_ori[i]*(2**(10-i)) return rank def eg_ori_inv(rank): ''' 0 <= rank < 2^11 ''' rank = np.base_repr(rank, base=2) eg_ori = bytearray([0]*12) start = 11-len(rank) for i in range(start, 11): eg_ori[i] = int(rank[i-start]) eg_ori[11] = (2-sum(eg_ori)%2)%2 return eg_ori def ud_edges(egs): ''' egs is a set of 12 numbers ranging from 0 to 11 we are only interested in entries that are bigger than 7 ''' start = False k = -1 sum = 0 for n, eg in enumerate(egs): if eg >= 8: start = True k += 1 elif start: sum += math.comb(n, k) return sum def ud_edges_inv(rank): k = 3 egs = [0]*12 for n in reversed(range(12)): n_choose_k = math.comb(n, k) if rank-n_choose_k >= 0: rank -= n_choose_k else: egs[n] = 8+k k -= 1 if k < 0: break return egs def co_perm(co_perm): ''' co_perm is a permutation of 0-7 ''' return Permutation(*[i+1 for i in co_perm]).lehmer(8) def co_perm_inv(rank): return [i-1 for i in (Permutation.from_lehmer(rank, 8)).to_image(8)] def eg_perm(eg_perm): ''' eg_perm is a permutation of 0-7, so same as corners ''' return Permutation(*[i+1 for i in eg_perm]).lehmer(8) def eg_perm_inv(rank): return [i-1 for i in (Permutation.from_lehmer(rank, 8)).to_image(8)] def ud_perm(ud_perm): ''' We treat ud_perm as a permutation of 0-3 ''' return Permutation(*[i-7 for i in ud_perm]).lehmer(4) def ud_perm_inv(rank): return [i+7 for i in (Permutation.from_lehmer(rank, 4)).to_image(4)] if __name__ == "__main__": print(co_ori([2, 1, 2, 1, 1, 0, 0, 2])) pass
StarcoderdataPython
3246164
<reponame>Elzei/show-off #!/usr/bin/env python2.7 def dividers(value): answer = [] for i in xrange(1, (value // 2 ) + 1): if (value % i) == 0: answer.append(i) return answer def dividers2(value): return filter(lambda x: (value % x) == 0, xrange(1, (value // 2) + 1)) def dividers_gen(value): half_range = (value // 2) + 1 for i in xrange(1, half_range): if (value % i) == 0: yield i def dividers2_gen(value): half_range = (value // 2) + 1 return (i for i in xrange(1, half_range) if (value % i) == 0) def perfect(value): answer = [] for i in xrange(2, value + 1): if i == reduce(lambda x, y: x + y, dividers_gen(i)): answer.append(i) return answer def perfect2(value): return filter(lambda x: x == reduce(lambda x, y: x + y, dividers_gen(x)), xrange(2, value + 1) ) def perfect_gen(value): for i in xrange(2, value + 1): if i == reduce(lambda x, y: x + y, dividers_gen(i)): yield i def perfect2_gen(value): return (i for i in xrange(2, value + 1) if i == reduce(lambda x, y: x + y, dividers_gen(i))) if __name__ == '__main__': print dividers(1024) print dividers2(1024) print "-" * 10 for i in dividers_gen(1024): print i, print "\n", "-" * 10 for i in dividers2_gen(1024): print i, print "\n", "-" * 10 print perfect2(100) print "-" * 10 for i in perfect_gen(9000): print i, print "\n", "-" * 10 for i in perfect2_gen(9000): print i,
StarcoderdataPython
1766898
from algoliasearch_django import AlgoliaIndex from algoliasearch_django.decorators import register from products.models import Product @register(Product) class ProductIndex(AlgoliaIndex): # should_index = "is_expensive_item" fields = ["user", "title", "content", "price", "is_public"] tags = 'get_random_model_tag' settings = { "searchableAttributes": ["title", "content"], "attributesForFacetting": ["user", "is_public"], }
StarcoderdataPython
1657048
<reponame>focusunsink/study_python<filename>np/8_assure_quality_with_testing/7_to_8_all_close.py<gh_stars>0 # -*- coding:utf-8 -*- """ Project : numpy File Name : 7_to_8_all_close Author : Focus Date : 8/23/2021 9:02 AM Keywords : assert_allclose, assert_array_equal, Abstract : |a - b| <= (atol + rtol * |b|) Param : Usage : py 7_to_8_all_close Reference : """ import numpy as np import matplotlib.pyplot as plt import sys l0 = [0, 0.123456789, np.nan] l1 = [0, 0.123456780, np.nan] print("Pass", np.testing.assert_allclose(l0, l1, rtol=1e-7, atol=0)) print("Fail", np.testing.assert_array_equal(l0, l1))
StarcoderdataPython
1766553
<filename>primetest.py import time NUM_PRIMES = 50000 array = list(range(0, NUM_PRIMES)) isPrime = True t1 = time.time() i = 2 idx = 0 while (idx < NUM_PRIMES): isPrime = True; y = 0 for y in range(0, idx): if (i % array[y] == 0): isPrime = False break if (isPrime): array[idx] = i idx += 1 i += 1 t2 = time.time() for x in range(0, 100): print(array[x], end="\t") elapsedMsec = (t2 - t1) * 1000.0; print("\nTime needed for process:", elapsedMsec, "Milliseconds."); input()
StarcoderdataPython
1626222
<reponame>mikemartino/cookbook from recipebook.cookbook import Cookbook from recipebook.ingredient import Ingredient from recipebook.recipe import Recipe, Time def main(): cookbook = Cookbook() print(cookbook.table_of_contents.pretty_print()) # cookbook.recipes.append(Recipe("Chickpea Burgers", Time(45, Time.Unit.MINUTES))) # cookbook.recipes.append(Recipe("Black Bean Burgers", Time(45, Time.Unit.MINUTES))) # cookbook.recipes.append(Recipe("Homemade Sesame Seed Hamburger Buns", Time(2, Time.Unit.HOURS))) save_a_recipe(cookbook) print(cookbook.table_of_contents.pretty_print()) for recipe in cookbook.recipes: print(recipe) def save_a_recipe(cookbook: Cookbook) -> Cookbook: recipe = Recipe("Sweet Potato Hash and Poached Egg", Time(20, Time.Unit.MINUTES)) recipe.ingredients = [ Ingredient("Olive oil", 1, Ingredient.UnitOfMeasurement.Tablespoons), Ingredient("Large sweet potato", 0.5, Ingredient.UnitOfMeasurement.NA), Ingredient("Medium onion", 0.5, Ingredient.UnitOfMeasurement.NA), Ingredient("Egg", 1, Ingredient.UnitOfMeasurement.NA), Ingredient("Garlic powder", 0.5, Ingredient.UnitOfMeasurement.Teaspoons), Ingredient("Smoked paprika", 0.5, Ingredient.UnitOfMeasurement.Teaspoons), Ingredient("Black pepper", 0.25, Ingredient.UnitOfMeasurement.Teaspoons), Ingredient("Water", 1, Ingredient.UnitOfMeasurement.Tablespoons) ] recipe.instructions = [ "Put the burner on medium heat.", "Put the olive oil in the pan.", "Shred the onion and sweet potato using a cheese grater.", "Cook the onion and sweet potato mix for 5 to 7 minutes.", "Form the hash into a circle, making the edges slightly higher than the centre.", "Crack the egg into the centre of the hash.", "Sprinkle garlic powder, smoked paprika, and black pepper over the mix.", "Add a little water to the pan to steam the egg. Cover pan with lid and cook for 5 minutes.", "Continue to cook egg and hash until it's reached a consistency of your liking." ] cookbook.recipes.append(recipe) return cookbook if __name__ == '__main__': main()
StarcoderdataPython
4804958
<gh_stars>1-10 from django import forms from djangoProject1.polls.models import Profile class AddProfileForm(forms.ModelForm): MAX_LENGTH = 30 first_name = forms.CharField(max_length=15, label="First Name", widget=forms.TextInput(attrs={ 'id': "id_first_name", "type": "text", "name": "first_name", "max_length": 15 })) second_name = forms.CharField(max_length=15, label="Last Name", widget=forms.TextInput(attrs={ 'id': "id_last_name", "type": "text", "name": "last_name", "max_length": 15 })) age = forms.IntegerField(label="Age", widget=forms.NumberInput(attrs={ 'id': "id_age", "type": "number", "name": "age", })) image_url = forms.URLField(label="Link to Profile Image", widget=forms.URLInput(attrs={ 'id': "id_image", "type": "url", "name": "profile_image", })) class Meta: model = Profile fields = "__all__"
StarcoderdataPython
3223447
<reponame>mazurbeam/django-cities from django.contrib.gis.db import models class AlternativeNameManager(models.Manager): def get_queryset(self): return super(AlternativeNameManager, self).get_queryset().exclude(kind='link')
StarcoderdataPython
3246205
def wordBreakCount(dictionary, txt): txtl = len(txt) maxw = 0 d = dict() lens = set() for word in dictionary: wlen = len(word) maxw = max(wlen, maxw) if wlen not in d: d[wlen] = [] d[wlen].append(word) lens.add(wlen) print(txtl, d, lens, maxw) dp = [0] * (txtl + 1) dp[0] = 1 dp[1] = 1 for i in range(2, txtl + 1): count = 0 for j in lens: if i - j - 1 >= 0: print(i, j, i - j, txt[i - j - 1:i - 1]) if txt[i - j - 1:i - 1] in d[j]: count += dp[i - j] print("*", count) dp[i] = count print(dp) return dp[txtl] import pytest @pytest.mark.parametrize("dictionary,txt,expected", [ ([ "kick", "start", "kickstart", "is", "awe", "some", "awesome", ], "kickstartisawesome", 4), ]) def test_edit_distance(dictionary, txt, expected): assert(wordBreakCount(dictionary, txt) == expected) pytest.main()
StarcoderdataPython
3346722
<reponame>Feuoy/campus-network-login<filename>signIn.py # coding:utf-8 from selenium import webdriver from selenium.webdriver.common.keys import Keys from PIL import Image import pandas as pd import time import identifyRandcode # import getValidAccount class Cn_SignIn(): """ 这个类模拟登录校园网 """ def __init__(self, username, password, current_ip): """ __init__ :param username: :param password: :param randcode: :param current_ip: 本机当前ip,cmd//ipconfig查询,如10.19.170.01 :param url: 登录网址,需要参数current_ip """ self.username = username self.password = password self.randcode = 1000 self.current_ip = current_ip self.url = '' def __main__(self): """ __main__ """ # self.username = input("请输入学号:") # self.password = input("请输入密码:") self.randcode = 1000 # self.current_ip = input("请输入当前IP地址:") self.url = "http://enet.10000.gd.cn:10001/login.jsp?wlanuserip=" \ + self.current_ip + "&wlanacip=192.168.127.12" # self.username = '' # self.password = '' # self.randcode = 1000 # self.current_ip = '' # self.url = '' bool_sign_in = self.sign_in() return bool_sign_in def cut_picture(self, img1_path, img2_path): """ 剪裁图片 :param img1_path: 需要剪裁图片路径 :param img2_path: 剪裁后图片存放路径 """ # 选择验证码所在页面的像素边界 left = int(800) top = int(225) right = int(885) bottom = int(255) # 剪裁图像 im = Image.open(img1_path) im = im.crop((left, top, right, bottom)) im.save(img2_path) def transfer_picture_format(self, img1_path, img2_path): """ 转换图片格式 :param img1_path: 原png格式图片路径 :param img2_path: 转换后jpg图片存放路径 """ # png转jpg img = Image.open(img1_path) bg = Image.new("RGB", img.size, (255, 255, 255)) bg.paste(img, img) bg.save(img2_path) def sign_in(self): """通过webdriver模拟登入 """ # 打开webdriver driver = webdriver.Chrome() # 先打开校园网 driver.get(self.url) # 再打开百度,保留窗口,并验证是否成功联网 # driver.execute_script('window.open("https://www.baidu.com/")') # 获取整个校园网登入页面截图 driver.get_screenshot_as_file('image/screenshot_PNG.png') # 剪裁图片 self.cut_picture('image/screenshot_PNG.png', 'image/screenshot_randcode_PNG.png') # 转换图片格式 self.transfer_picture_format("image/screenshot_randcode_PNG.png", "image/screenshot_randcode_JPG.jpg") # 识别图片,获取验证码 self.randcode = identifyRandcode.identify_randcode('image/screenshot_randcode_JPG.jpg', 'image/screenshot_randcode_JPG_adjusted.jpg')[0:4] # 模拟填入账号,密码,验证码 driver.find_elements_by_xpath('//*[@id="userName1"]')[0].send_keys(self.username) driver.find_elements_by_xpath('//*[@id="password1"]')[0].send_keys(self.password) driver.find_elements_by_xpath('//*[@id="rand"]')[0].send_keys(self.randcode) # 模拟点击登录 driver.find_element_by_xpath('//*[@id="login1"]/table/tbody/tr/td/table[1]/tbody/tr[4]/td[2]/img').click() time.sleep(1) # 判断是否登录成功 if driver.current_url == 'http://enet.10000.gd.cn:10001/success.jsp': print(self.username + '登录成功') else: driver.close() print(self.username + '登录失败') return 'login failure' # # 关闭窗口 # driver.close() return driver def sign_out(self, driver): if type(driver) == type("aa"): return # 模拟点击下线 driver.find_element_by_xpath('//*[@id="logout"]').click() # # 回车确定 # driver.find_element_by_id('kw').send_keys(Keys.ENTER) # 处理弹窗确定 alert = driver.switch_to_alert() time.sleep(1) # 一定要等待 print(alert.text) # 打印警告对话框内容 alert.accept() time.sleep(1) # 判断是否下线成功 if driver.current_url == 'http://enet.10000.gd.cn:10001/logoutsuccess.jsp': print(self.username + '下线成功') driver.close() else: print(self.username + '下线失败') driver.close() return "end" if __name__ == '__main__': signIn = Cn_SignIn() bool_sign_in = signIn.__main__() end = bool_sign_in.signOut() print(end)
StarcoderdataPython
93997
from setuptools import setup setup( name="medicus", version="0.1", packages=["medicus"] )
StarcoderdataPython
151039
<filename>home/hairygael/InMoov2.minimalTorso.py #file : InMoov2.minimalTorso.py # this will run with versions of MRL 1.0.107 # a very minimal script for InMoov # although this script is very short you can still # do voice control of a right Arm # for any command which you say - you will be required to say a confirmation # e.g. you say -> test stomach, InMoov will ask -> "Did you say test stomach?", you will need to # respond with a confirmation ("yes","correct","yeah","ya") from java.lang import String from org.myrobotlab.service import Runtime import urllib2 import os # To set a directory # Modify this line according to your directory and version of MRL os.chdir("C:/myrobotlab/myrobotlab.1.0.107/audioFile/google/en_gb/audrey") # the name of the local file # remove the file if it already exist in the Audiofile directory soundfilename="starting mouth.mp3"; try: mp3file = urllib2.urlopen('http://www.inmoov.fr/wp-content/uploads/2015/05/starting-mouth.mp3') output = open(soundfilename,'wb') output.write(mp3file.read()) output.close() except IOError: print "Check access right on the directory" except Exception: print "Can't get the sound File ! Check internet Connexion" leftPort = "COM20" #modify port according to your board i01 = Runtime.createAndStart("i01", "InMoov") i01.startEar() mouth = Runtime.createAndStart("mouth","Speech") i01.startMouth() ############## torso = i01.startTorso("COM20") #modify port according to your board # tweaking default torso settings torso.topStom.setMinMax(0,180) torso.topStom.map(0,180,67,110) torso.midStom.setMinMax(0,180) torso.midStom.map(0,180,60,120) #torso.lowStom.setMinMax(0,180) #torso.lowStom.map(0,180,60,110) #torso.topStom.setRest(90) #torso.midStom.setRest(90) #torso.lowStom.setRest(90) ################# # verbal commands ear = i01.ear ear.addCommand("attach everything", "i01", "attach") ear.addCommand("disconnect everything", "i01", "detach") ear.addCommand("attach torso", "i01.torso", "attach") ear.addCommand("disconnect torso", "i01.torso", "detach") ear.addCommand("rest", "python", "rest") ear.addCommand("capture gesture", ear.getName(), "captureGesture") ear.addCommand("manual", ear.getName(), "lockOutAllGrammarExcept", "voice control") ear.addCommand("voice control", ear.getName(), "clearLock") ear.addCommand("test your stomach", "python", "teststomach") ear.addComfirmations("yes","correct","ya","yeah", "yes please", "yes of course") ear.addNegations("no","wrong","nope","nah","no thank you", "no thanks") ear.startListening() def teststomach(): i01.setTorsoSpeed(0.75,0.55,0.75) i01.moveTorso(90,90,90) sleep(2) i01.moveTorso(45,90,90) sleep(4) i01.moveTorso(90,90,90) sleep(2) i01.moveTorso(135,90,90) sleep(4) i01.moveTorso(90,90,90) sleep(2) i01.moveTorso(90,45,90) sleep(3) i01.moveTorso(90,135,90) sleep(3) i01.moveTorso(90,90,45) sleep(3) i01.moveTorso(90,90,135) sleep(3)
StarcoderdataPython
3399520
<reponame>k1lgor/linux-update #!/bin/python3 from time import sleep import os def update(): """Update method""" print(''' ===================== Updating has begun... ===================== ''') os.system("apt update && apt dist-upgrade -y") sleep(2) os.system("apt autoclean && apt autoremove -y") sleep(2) # removes all leftover config files os.system("apt purge $(dpkg -l | grep '^rc' | awk '{print$2}')") sleep(2) os.system("echo 3 > /proc/sys/vm/drop_caches") if __name__ == '__main__': if os.geteuid() != 0: exit(''' ERROR ============== ERROR Run it as root ERROR ============== ''') else: update() print(''' ======================== Updating has finished... ======================== ''')
StarcoderdataPython
3208705
<reponame>KinmanCovey/fifth-row-py<filename>fifth-row-test.py #!/usr/bin/env python import unittest, fifthrow from fifthrow.fifthrow import * class FifthRowTest(unittest.TestCase): def test_sandboxed_url(self): ''' FifthRow object's url should be the sandboxed url. ''' self.assertEqual(FifthRow(sandbox=True).url, 'sandbox.the5throw.com') def test_sandboxed_token(self): ''' A sandboxed FifthRow should have a token of 'sandbox' regardless of token parameter. ''' self.assertEqual(FifthRow(sandbox=True, token=5555).token, 'sandbox') def test_none_token(self): ''' TokenError should be raised if token != an integer. ''' self.assertRaises(TokenError, FifthRow, sandbox=False, token=None) if __name__ == '__main__': unittest.main()
StarcoderdataPython
55094
from components.base.ecu.types.impl_ecu_simple import SimpleECU from components.base.ecu.software.ecu_software import ECUSoftware from components.security.ecu.software.impl_app_layer_secure import SecureApplicationLayer from layers.impl_comm_module_my_protocol import MyProtocolCommModule class MyProtocolECU(SimpleECU): def __init__(self, sim_env=None, ecu_id=None, data_rate=None, size_sending_buffer=None, size_receive_buffer=None): ''' Constructor Input: sim_env simpy.Environment environment in which this ECU lives ecu_id string id of this ECU component data_rate integer data_rate of the connected bus size_sending_buffer float size of the sending buffer of this ECU size_receive_buffer float size of the receiving buffer of this ECU Output: - ''' # set settings self.set_settings() if sim_env == None: return # set SW and HW SimpleECU.__init__(self, sim_env, ecu_id, data_rate, size_sending_buffer, size_receive_buffer) self.ecuSW = ECUSoftware(sim_env, MyProtocolCommModule(sim_env, ecu_id), SecureApplicationLayer(sim_env, ecu_id)) # connect self._connect_hw_sw() def add_sending(self, start_time, interval, message_id, data, data_len): ''' this method adds a new sending action to the application layer of this ECU. Then the message will start sending messages in the defined interval starting at the specified start_time Input: start_time float time at which the first message is sent interval float period within which the messages are sent message_id integer message identifier of the messages that are sent data object/.. content of the messages that are sent data_length float size of one message Output: - ''' self.ecuSW.app_lay.add_sending(start_time, interval, message_id, data, data_len) def get_type_id(self): ''' returns the id of this ECU type Input: - Output: ecu_type string type of this ECU; e.g.'TLSECU' ''' return "MyProtocolECU" def add_stream(self, new_stream): ''' this method adds a new stream that is allowed to the TESLA environment. This stream will then be legal and the ECUs will send according to those streams. Input: new_stream MessageStream message stream that is added to the environment Output: - ''' # push to communication module self.ecuSW.comm_mod.add_stream(new_stream) # add HW filter if self.ecu_id in new_stream.receivers and \ new_stream.message_id not in self._allowed_streams: self._allowed_streams += [new_stream.message_id] self.ecuHW.transceiver.install_filter(self._allowed_streams) def set_max_message_number(self, nr_messages): ''' sets the number of messages that are sent by this ecu per stream Input: nr_messages int number of messages sent Output: - ''' self.ecuSW.app_lay.set_max_message_number(nr_messages) def set_settings(self): ''' sets the initial setting association between the settings variables and the actual parameter Input: - Output: - ''' self.settings = {} return self.settings def monitor_update(self): ''' returns a list of monitor inputs Input: - Output: list list list of MonitorInput objects ''' return self.ecuSW.comm_mod.monitor_update() '''class StdTLSECUTimingFunctions(object): def __init__(self, main_library_tag='CyaSSL'): self.available_tags = ['CyaSSL', 'Crypto_Lib_HW', 'Crypto_Lib_SW'] self.library_tag = main_library_tag # e.g. CyaSSL, or CryptoLib self.function_map = {} # Record Layer self.function_map['t_tls_record_compression'] = self.c_t_tls_record_compression self.function_map['t_tls_record_decompression'] = self.c_t_tls_record_decompression def get_function_map(self): return self.function_map def c_t_timing_function_1(self, msg_size, compr_alg): if compr_alg == CompressionMethod.NULL: return 0 return 0 def c_t_timing_function_2(self, compressed_msg_size, compr_alg): if compr_alg == CompressionMethod.NULL: return 0 return 0 '''
StarcoderdataPython
4813804
################################################################################################# # Visual object tracking in panoramic video # Master thesis at Brno University of Technology - Faculty of Information Technology # Author: <NAME> (<EMAIL>) # Supervisor: Doc. Ing. <NAME>, Ph.D. # Module: evaluation.py # Description: Evaluation of single object trackers in custom groundtruth dataset. # Drawing groundtruth+result bounding boxes or computing metrics. ################################################################################################# from cv2 import cv2 import numpy as np import sys import glob import os currentdir = os.path.dirname(os.path.realpath(__file__)) parentdir = os.path.dirname(currentdir) sys.path.insert(0, parentdir) from code.boundingbox import Parser from code.boundingbox import BoundingBox class Evaluation: """ Evaluation of single object trackers in custom groundtruth dataset. Drawing groundtruth+result bounding boxes or computing metrics. """ def __init__(self, path: str, groundtruthPath: str, resultPath: str): # list of annotated groundtruth bounding box objects self.gt_bounding_boxes = [] # list of tracker result bounding boxes self.gt_bounding_boxes = [] # path of video file or directory with *.jpg images self.path = path # path of file with groundtruth data self.groundtruth_path = groundtruthPath # path of file with groundtruth data self.result_path = resultPath # enable parsing/creating methods self.parser = Parser() self.video = None self.video_width = None self.video_height = None # constants for sizes and positions of opencv rectangles and texts self.RECTANGLE_BORDER_PX = 2 self.FONT_SCALE = 0.75 self.FONT_WEIGHT = 2 self.TEXT_ROW1_POS = (20,30) self.TEXT_ROW2_POS = (20,60) self.TEXT_ROW2_POS2 = (280,60) self.TEXT_ROW3_POS = (20,90) self.TEXT_ROW3_POS2 = (280,90) self.WINDOW_NAME = "Evaluation" def loadInit(self): """Method for loading video, groundtruth and result data""" # Read video self.video = cv2.VideoCapture(self.path) # Exit if video not opened. if not self.video.isOpened(): print("Error - Could not open video") sys.exit(-1) # store video width/height to variables self.video_width = int(self.video.get(cv2.CAP_PROP_FRAME_WIDTH)) self.video_height = int(self.video.get(cv2.CAP_PROP_FRAME_HEIGHT)) # Read and parse existing groundtruth file if not(os.path.exists(self.groundtruth_path)): print("Error - Could not read a groundtruth file") sys.exit(-1) # Read and parse existing tracking result file if not(os.path.exists(self.result_path)): print("Error - Could not read a tracking result file") sys.exit(-1) # list of annotated bounding box objects self.gt_bounding_boxes = [] # list of tracking result bounding box objects self.result_bounding_boxes = [] # parsing groundtruth and result files self.gt_bounding_boxes = self.parser.parseGivenDataFile(self.groundtruth_path, self.video_width) self.result_bounding_boxes = self.parser.parseGivenDataFile(self.result_path, self.video_width) ############################################################ ################ Intersection over Union ################### ############################################################ def computeIntersectionOverUnion(self): """ Method for computing IoU metric between groundtruth and result bounding boxes Intersection over Union is an evaluation metric used to measure the accuracy/success of an object tracker/detector """ if len(self.gt_bounding_boxes) == len(self.result_bounding_boxes): iou_string = "" # loop in bounding_boxes lists for idx in range(len(self.gt_bounding_boxes)): gt_bbox = self.gt_bounding_boxes[idx] result_bbox = self.result_bounding_boxes[idx] # check if ground truth is not nan (occlusion) -> ignore occluded frames if gt_bbox.point1 and gt_bbox.point2: iou = self.intersectionOverUnion(gt_bbox, result_bbox) # store iou results to list iou_string += str(iou) + "\n" # saving file on drive saveFilePath = self.result_path.replace(".txt", "-iou.txt") newFile = open(saveFilePath, "w") newFile.write(iou_string) newFile.close() print("File '" + saveFilePath + "' has been created.") self.video.release() # inspired and modified from https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/ def intersectionOverUnion(self, bboxA: BoundingBox, bboxB: BoundingBox): """Method for computing IoU metric between 2 given bounding boxes""" if bboxA.point1 and bboxA.point2 and bboxB.point1 and bboxB.point2: # bboxA and bboxB have valid coordinates # determine the (x,y)-coordinates of the intersection rectangle left_top_x = max(bboxA.get_point1_x(), bboxB.get_point1_x()) left_top_y = max(bboxA.get_point1_y(), bboxB.get_point1_y()) # not using point2 directly for right_bottom # because point1 could be on right border, and point2 could be on left border of image right_bottom_x = min(bboxA.get_point1_x() + bboxA.get_width(), bboxB.get_point1_x() + bboxB.get_width()) right_bottom_y = min(bboxA.get_point1_y() + bboxA.get_height(), bboxB.get_point1_y() + bboxB.get_height()) # compute the area of intersection rectangle (inc +1 because of zero indexing in pixels coordinates) intersection_area = max(0, right_bottom_x - left_top_x + 1) * max(0, right_bottom_y - left_top_y + 1) # compute the area of both the prediction and ground-truth rectangles bboxA_area = bboxA.get_width() * bboxA.get_height() bboxB_area = bboxB.get_width() * bboxB.get_height() # compute the intersection over union by taking the intersection area # and dividing it by the sum of result + ground-truth areas - the interesection area iou = intersection_area / float(bboxA_area + bboxB_area - intersection_area) # possible fix because of previous float rounding - max iou is 1.0 if iou > 1.0: iou = 1.0 return iou else: # tracker failures return 0.0 ############################################################ ################ Euclidian distance (L2 norm) ############## ############################################################ def computeCenterError(self): """ Method for computing Location error metric between groundtruth and result bounding boxes centers Location error is an evaluation metric used to measure the accuracy of an object tracker/detector """ if len(self.gt_bounding_boxes) == len(self.result_bounding_boxes): center_error_string = "" # loop in bounding_boxes lists for idx in range(len(self.gt_bounding_boxes)): gt_bbox = self.gt_bounding_boxes[idx] result_bbox = self.result_bounding_boxes[idx] # check if ground truth is not Nan (occlusion) -> ignore occluded frames if gt_bbox.point1 and gt_bbox.point2: center_error = self.centerError(gt_bbox, result_bbox) center_error_string += str(center_error) + "\n" # saving file on drive saveFilePath = self.result_path.replace(".txt", "-centererror.txt") newFile = open(saveFilePath, "w") newFile.write(center_error_string) newFile.close() print("File '" + saveFilePath + "' has been created.") self.video.release() def centerError(self, bboxA: BoundingBox, bboxB: BoundingBox): """ Method for computing Euclidian distance between 2 given bounding boxes This method also normalizes distance according to video height (our dataset varies a lot in resolution -smallest 720p, highest 2160p) """ if bboxA.point1 and bboxA.point2 and bboxB.point1 and bboxB.point2: # centers for distance from left point to right (modulo by video width) centerA1 = np.array([(bboxA.get_point1_x() + bboxA.get_width()/2) % self.video_width, bboxA.get_point1_y() + bboxA.get_height()/2]) centerB1 = np.array([(bboxB.get_point1_x() + bboxB.get_width()/2) % self.video_width, bboxB.get_point1_y() + bboxB.get_height()/2]) # centers for distance from right point to left (possible in equirectangular panorama) # center bboxA x could be on video_width-100, center bboxB x could be on 100 (distance is 200 in equirectangular) centerA2 = np.array([]) centerB2 = np.array([]) if centerA1[0] < centerB1[0]: # e.g. center bboxA x is 100, center bboxB x is video_width - 100 centerA2 = np.array([self.video_width + centerA1[0], centerA1[1]]) centerB2 = np.array([centerB1[0], centerB1[1]]) else: # e.g. center bboxA x is video_width - 100, center bboxB x is 100 centerA2 = np.array([centerA1[0], centerA1[1]]) centerB2 = np.array([self.video_width + centerB1[0], centerB1[1]]) ################################## Stackoverflow atribution ####################################### # https://stackoverflow.com/questions/1401712/how-can-the-euclidean-distance-be-calculated-with-numpy # Asked by <NAME>: https://stackoverflow.com/users/1084/nathan-fellman # Answeerd by u0b34a0f6ae: https://stackoverflow.com/users/137317/u0b34a0f6ae # euclidian distance is L2 norm euclidian_dist1 = np.linalg.norm(centerA1 - centerB1) euclidian_dist2 = np.linalg.norm(centerA2 - centerB2) euclidian_dist = euclidian_dist1 if euclidian_dist1 < euclidian_dist2 else euclidian_dist2 # our dataset varies a lot in resolution (smallest 720p, highest 2160p) SMALLEST_VIDEO_HEIGHT = 720 correct_ratio = self.video_width / SMALLEST_VIDEO_HEIGHT # normalize it for correct plots euclidian_dist = euclidian_dist / correct_ratio # possible fix because of previous float rounding - min center error is 0 if euclidian_dist < 0: euclidian_dist = 0 # return the intersection over union value return euclidian_dist else: # precision plots got X range (0,51) - 100px should define tracker failure quite well MAX_ERROR = 100 return MAX_ERROR ############################################################ ############## Displaying results + groundtruth ############ ############################################################ def runVideo(self): """Method for running video and drawing groundtruth + result bounding boxes""" # resize window (lets define max width is 1600px) if self.video_width < 1600: cv2.namedWindow(self.WINDOW_NAME) else: cv2.namedWindow(self.WINDOW_NAME, cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) whRatio = self.video_width / self.video_height if whRatio == 2: # pure equirectangular 2:1 cv2.resizeWindow(self.WINDOW_NAME, 1600, 800) else: # default 16:9 cv2.resizeWindow(self.WINDOW_NAME, 1600, 900) scaleFactor = self.video_width / 1600 self.RECTANGLE_BORDER_PX = int(self.RECTANGLE_BORDER_PX * scaleFactor) self.FONT_SCALE = self.FONT_SCALE * scaleFactor self.FONT_WEIGHT = int(self.FONT_WEIGHT * scaleFactor) + 1 self.TEXT_ROW1_POS = (int(self.TEXT_ROW1_POS[0] * scaleFactor), int(self.TEXT_ROW1_POS[1] * scaleFactor)) self.TEXT_ROW2_POS = (int(self.TEXT_ROW2_POS[0] * scaleFactor), int(self.TEXT_ROW2_POS[1] * scaleFactor)) self.TEXT_ROW2_POS2 = (int(self.TEXT_ROW2_POS2[0] * scaleFactor), int(self.TEXT_ROW2_POS2[1] * scaleFactor)) self.TEXT_ROW3_POS = (int(self.TEXT_ROW3_POS[0] * scaleFactor), int(self.TEXT_ROW3_POS[1] * scaleFactor)) self.TEXT_ROW3_POS2 = (int(self.TEXT_ROW3_POS2[0] * scaleFactor), int(self.TEXT_ROW3_POS2[1] * scaleFactor)) # prints just basic guide and info print("----------------------------------------------------") print("This script shows groundtruth and also tracker results bounding boxes of particular objects for purpose of visual object tracking evaluation") print("Press 'Esc' or 'Q' key to exit") print("----------------------------------------------------") # FPS according to the original video fps = self.video.get(cv2.CAP_PROP_FPS) # fps = 30 # calculate the interval between frame. interval = int(1000/fps) # counter of frames currentFrame = 0 # Just read first frame for sure ok, frame = self.video.read() if not ok: print("Error - Could not read a video file") self.video.release() cv2.destroyAllWindows() sys.exit(-1) # keep looping until end of video, or until 'q' or 'Esc' key pressed while True: if currentFrame > 0: # Read a new frame ok, frame = self.video.read() if not ok: break # increment counter of frames currentFrame += 1 # video might be longer than groundtruth annotations if currentFrame <= len(self.gt_bounding_boxes): gt_bb = self.gt_bounding_boxes[currentFrame - 1] # show annotations if gt_bb and gt_bb.is_annotated: pt1 = gt_bb.point1 pt2 = gt_bb.point2 if (gt_bb.is_on_border()): # draw two rectangles around the region of interest rightBorderPoint = (self.video_width - 1, pt2[1]) cv2.rectangle(frame, pt1, rightBorderPoint, (0, 255, 0), self.RECTANGLE_BORDER_PX) leftBorderPoint = (0, pt1[1]) cv2.rectangle(frame, leftBorderPoint, pt2, (0, 255, 0), self.RECTANGLE_BORDER_PX) else: # draw a rectangle around the region of interest cv2.rectangle(frame, pt1, pt2, (0, 255, 0), self.RECTANGLE_BORDER_PX) if currentFrame <= len(self.result_bounding_boxes): res_bb = self.result_bounding_boxes[currentFrame - 1] # show annotations if res_bb and res_bb.is_annotated: pt1 = res_bb.point1 pt2 = res_bb.point2 if (res_bb.is_on_border()): # draw two rectangles around the region of interest rightBorderPoint = (self.video_width - 1, pt2[1]) cv2.rectangle(frame, pt1, rightBorderPoint, (255, 0, 0), self.RECTANGLE_BORDER_PX) leftBorderPoint = (0, pt1[1]) cv2.rectangle(frame, leftBorderPoint, pt2, (255, 0, 0), self.RECTANGLE_BORDER_PX) else: # draw a rectangle around the region of interest cv2.rectangle(frame, pt1, pt2, (255, 0, 0), self.RECTANGLE_BORDER_PX) # display (annotated) frame # print("Frame #" + str(currentFrame)) cv2.putText(frame, "Frame #" + str(currentFrame), (20,30), cv2.FONT_HERSHEY_SIMPLEX, self.FONT_SCALE, (250, 250, 0), self.FONT_WEIGHT) cv2.putText(frame, "Groundtruth (green)", self.TEXT_ROW2_POS, cv2.FONT_HERSHEY_SIMPLEX, self.FONT_SCALE, (0, 250, 0), self.FONT_WEIGHT) cv2.putText(frame, ": " + self.parser.bboxString(gt_bb), self.TEXT_ROW2_POS2, cv2.FONT_HERSHEY_SIMPLEX, self.FONT_SCALE, (0, 250, 0), self.FONT_WEIGHT) cv2.putText(frame, "Tracker result (blue)", self.TEXT_ROW3_POS, cv2.FONT_HERSHEY_SIMPLEX, self.FONT_SCALE, (250, 0, 0), self.FONT_WEIGHT) cv2.putText(frame, ": " + self.parser.bboxString(res_bb), self.TEXT_ROW3_POS2, cv2.FONT_HERSHEY_SIMPLEX, self.FONT_SCALE, (250, 0, 0), self.FONT_WEIGHT) cv2.imshow(self.WINDOW_NAME, frame) # Exit if ESC or Q pressed k = cv2.waitKey(interval) & 0xff if k == 27 or k == ord('q'): break self.video.release() cv2.destroyAllWindows()
StarcoderdataPython
3324676
<gh_stars>0 """ :author: <NAME> """ from typing import Union, Optional, Sequence, Tuple, Set NargsValue = Union[str, int, Tuple[int, Optional[int]], Sequence[int], Set[int], range] NARGS_STR_RANGES = {'?': (0, 1), '*': (0, None), '+': (1, None)} SET_ERROR_FMT = 'Invalid nargs={!r} set - expected non-empty set where all values are integers >= 0' SEQ_ERROR_FMT = 'Invalid nargs={!r} sequence - expected 2 ints where 0 <= a <= b or b is None' class Nargs: """ Helper class for validating the number of values provided for a given :class:`~.parameters.Parameter`. Unifies the handling of different ways of specifying the required number of values. Acceptable values include ``?``, ``*``, and ``+``, and they have the same meaning that they have in argparse. Additionally, integers, a range of integers, or a set/tuple of integers are accepted for more specific requirements. """ def __init__(self, nargs: NargsValue): self._orig = nargs self.range = None if isinstance(nargs, int): if nargs < 0: raise ValueError(f'Invalid nargs={nargs!r} integer - must be >= 0') self.min = self.max = nargs self.allowed = (nargs,) elif isinstance(nargs, str): try: self.min, self.max = self.allowed = NARGS_STR_RANGES[nargs] except KeyError as e: raise ValueError(f'Invalid nargs={nargs!r} string - expected one of ?, *, or +') from e elif isinstance(nargs, range): if not 0 <= nargs.start < nargs.stop or nargs.step < 0: raise ValueError(f'Invalid nargs={nargs!r} range - expected positive step and 0 <= start < stop') self.range = nargs self.allowed = nargs self.min = nargs.start # As long as range.start < range.stop and range.step > 0, it will yield at least 1 value self.max = next(reversed(nargs)) # simpler than calculating, especially for step!=1 elif isinstance(nargs, set): if not nargs: raise ValueError(SET_ERROR_FMT.format(nargs)) elif not all(isinstance(v, int) for v in nargs): raise TypeError(SET_ERROR_FMT.format(nargs)) self.allowed = self._orig = frozenset(nargs) # Prevent modification after init self.min = min(nargs) if self.min < 0: raise ValueError(SET_ERROR_FMT.format(nargs)) self.max = max(nargs) elif isinstance(nargs, Sequence): try: self.min, self.max = self.allowed = a, b = nargs except (ValueError, TypeError) as e: raise e.__class__(SEQ_ERROR_FMT.format(nargs)) from e if not (isinstance(a, int) and (b is None or isinstance(b, int))): raise TypeError(SEQ_ERROR_FMT.format(nargs)) elif 0 > a or (b is not None and a > b): raise ValueError(SEQ_ERROR_FMT.format(nargs)) else: raise TypeError(f'Unexpected type={nargs.__class__.__name__} for nargs={nargs!r}') self.variable = self.min != self.max def __repr__(self) -> str: return f'{self.__class__.__name__}({self._orig!r})' def __str__(self) -> str: rng = self.range if rng is not None: return f'{rng.start} ~ {rng.stop}' if rng.step == 1 else f'{rng.start} ~ {rng.stop} (step={rng.step})' elif self.max is None: return f'{self.min} or more' elif self.min == self.max: return str(self.min) elif isinstance(self.allowed, frozenset): return '{{{}}}'.format(','.join(map(str, sorted(self.allowed)))) else: return f'{self.min} ~ {self.max}' def __contains__(self, num: int) -> bool: """See :meth:`.satisfied`""" return self.satisfied(num) def __eq__(self, other: Union['Nargs', int]) -> bool: if isinstance(other, Nargs): if self.max is None: return other.max is None and self.min == other.min elif other.max is None: return False elif isinstance(other._orig, type(self._orig)): return self.allowed == other.allowed # After this point, the allowed / range attribute types cannot match because the originals did not match elif isinstance(self.allowed, frozenset): return self._compare_allowed_set(other) elif isinstance(other.allowed, frozenset): return other._compare_allowed_set(self) rng = self.range or other.range if rng: return self.min == other.min and self.max == other.max and rng.step == 1 else: return self.min == other.min and self.max == other.max elif isinstance(other, int): return self.min == self.max == other else: return NotImplemented def _compare_allowed_set(self, other: 'Nargs') -> bool: """ Used internally to determine whether 2 Nargs instances are equivalent when they were initialized with different types of arguments. """ allowed = self.allowed if other.range is not None: try_all = other.min in allowed and other.max in allowed return try_all and all(v in allowed for v in other.range) # less mem than large set(other.range) else: return allowed == set(other.allowed) def __hash__(self) -> int: return hash(self.__class__) ^ hash(self._orig) def satisfied(self, count: int) -> bool: """ Returns True if the minimum number of values have been provided to satisfy the requirements, and if the number of values has not exceeded the maximum allowed. Returns False if the count is below the minimum or above the maximum. For more advanced use cases, such as range or a set of counts, the count must also match one of the specific numbers provided for this to return True. """ if self.max is None: return count >= self.min else: return count in self.allowed
StarcoderdataPython
4810621
import abc class Recorder: def __init__(self): self.record = 0 def Record(self): if self.record == 0: self.record = 1 def RecordStop(self): if self.record == 1: self.record = 0 @abc.abstractmethod def ProcessRecord(self, value): pass
StarcoderdataPython
83680
<filename>satchless/image/views.py from django.http import HttpResponseNotFound from django.shortcuts import get_object_or_404, redirect from . import IMAGE_SIZES from . import models def thumbnail(request, image_id, size): image = get_object_or_404(models.Image, id=image_id) if not size in IMAGE_SIZES: return HttpResponseNotFound() return redirect(models.Thumbnail.objects.get_or_create_at_size(image.id, size))
StarcoderdataPython
3267056
# Generated by Django 2.2.13 on 2020-06-18 17:56 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('sites', '0041_remove_action_equivalent_command'), ] operations = [ migrations.AddField( model_name='site', name='admin_comments', field=models.TextField(blank=True, help_text='Administrative comments. If availability != enabled, this will be shown to the user.'), ), migrations.AddField( model_name='site', name='availability', field=models.CharField(choices=[('enabled', 'Enabled (fully functional)'), ('not-served', 'Not served publicly'), ('disabled', 'Disabled (not served, only viewable/editable by admins)')], default='enabled', help_text='Controls availability of the site (whether it is served publicly and whether it is editable)', max_length=10), ), ]
StarcoderdataPython
191131
import tkinter as tk from tkinter import ttk from pprint import pprint app = tk.Tk() # ------------ Label --------- label1Top = tk.Label(app, text = "Нажми на Checkbox") label1Top.pack() def checkbutton_check(): print('checkbox', var1.get()) label1Top.config(text=var1.get()) # ---------- CheckBox ------------ var1 = tk.BooleanVar() chb1 = tk.Checkbutton(app, text='Python', variable=var1, onvalue=True, offvalue=False, command=checkbutton_check) chb1.pack() app.mainloop()
StarcoderdataPython
1783563
import click import requests import pandas from io import StringIO import re import os class CurrencyCode(click.ParamType): name = 'symbol' def convert(self, value, param, ctx): if value.isalpha(): return value.upper() self.fail('%s is not a valid symbol' % value, param, ctx) class PortfolioEntry(click.ParamType): name = 'portfolio' def convert(self, value, param, ctx): if re.match("^[0-9]+x[A-Z]+$", value): arg_parts = value.split('x') return dict( symbol=arg_parts[1], count=int(arg_parts[0]) ) self.fail('%s does not follow the specified format: <Count>x<Symbol>. e.g. 100xMSFT' % value, param, ctx) CURRENCY_CODE_TYPE = CurrencyCode() PORTFOLIO_ENTRY_TYPE = PortfolioEntry() @click.command() @click.option('--in', '-i', 'in_currency', type=CURRENCY_CODE_TYPE, default='USD') @click.argument('portfolios', type=PORTFOLIO_ENTRY_TYPE, nargs=-1) def cli(portfolios, in_currency): """ Calcuate the value of stocks in chosen currency Pass in you portfolio in this format: <Count>x<Symbol>. For example, if you have 100 Microsoft stock, pass: 100xMSFT. The script will calculate the value of your portfolio. You can pass the `--in` parameter to specify a currency to use for the evaluation. The script will use the latest exchange rate for the day. \f :param tuple portfolios: Argument :param str in_currency: currency used for evaluation""" api_key = os.environ.get('ALPHAVANTAGE_API_KEY') if not api_key: click.echo('AlphaVantage API Key not set. Please set the ALPHAVANTAGE_API_KEY variable', err=True) raise click.ClickException('AlphaVantage API KEY not set!') alphavantage = AlphaVantage(api_key) total_in_usd = 0.0 with click.progressbar(portfolios, label='Fetching the latest stock price', length=len(portfolios)) as pb: for portfolio in pb: latest_price = alphavantage.get_latest_stock_value(portfolio['symbol']) total_in_usd += latest_price * portfolio['count'] click.echo("Total value in USD: {:20,.2f}".format(total_in_usd)) if in_currency != 'USD': exchange_rate = alphavantage.get_latest_exchange_rate(to_currency=in_currency) click.echo("Latest exchange rate for {}: {} ".format(in_currency, exchange_rate)) total_in_currency = total_in_usd * exchange_rate click.echo("Total value in {}: {:20,.2f}".format(in_currency, total_in_currency)) class AlphaVantage: BASE_URL = "https://www.alphavantage.co/query" TIME_SERIES_DAILY_FUNC = 'TIME_SERIES_DAILY' FOREX_FUNC = 'CURRENCY_EXCHANGE_RATE' def __init__(self, api_key): self._api_key = api_key def get_latest_stock_value(self, symbol): try: response = requests.get( self.BASE_URL, params=dict( function=self.TIME_SERIES_DAILY_FUNC, symbol=symbol, apikey=self._api_key, datatype='csv' ) ) except requests.exceptions.RequestException as e: # TODO: Error handling return data_table = pandas.read_csv(StringIO(response.text)) return data_table.iloc[0]['close'] def get_latest_exchange_rate(self, to_currency, from_currency='USD'): try: response = requests.get( self.BASE_URL, params=dict( function=self.FOREX_FUNC, from_currency=from_currency, to_currency=to_currency, apikey=self._api_key ) ) except requests.exceptions.RequestException as e: # TODO: Error handling return # FIXME: Don't like the hard-coded strings here, can we do something better? return float(response.json()['Realtime Currency Exchange Rate']['5. Exchange Rate']) if __name__ == '__main__': cli()
StarcoderdataPython
4802580
#! /usr/bin/env python3 import glob import jinja2 import re import os import subprocess import sys import textwrap import yaml from typing import List TEMPLATE = """ vars.http_vhosts["{{hostname}}"] = { http_uri = "{{ uri }}" http_vhost = "{{ vhost | default(hostname) }}" http_ssl = {{ ssl | default('true') }} {% if expect %} http_expect = "{{ expect }}" {% endif %} } """ DEBUG = os.getenv("DEBUG", None) def get_vhosts() -> List[str]: vhosts = set() for filename in glob.glob("/etc/nginx/sites-enabled/*"): with open(filename, "r") as f: matches = re.findall("server_name\s+(.+);", f.read()) if not matches: print("Warning: could not find any vhosts in file: {}".format(filename)) for match in matches: for server_name in match.split(" "): vhosts.add(server_name) for i in read_config()["exclude_vhosts"]: vhosts.discard(i) for vhost in list(vhosts): if "*." in vhost: # assumption: in a wildcard setup, the hostname _wildcard should be reachable vhosts.remove(vhost) vhosts.add(vhost.replace("*.", "_wildcard.")) for vhost in read_config()["vhosts"].keys(): if vhost not in vhosts: vhosts.add(vhost) rv = list(vhosts) rv.sort() return rv def read_config() -> dict: # dummy configuration in case the path can't be resolved data = { "vhosts": [], "exclude_vhosts": [], } config_path = os.path.abspath( os.path.join( os.path.dirname(os.path.realpath(__file__)), "config.yml" ) ) try: with open(config_path, "r") as f: data = yaml.load(f.read(), Loader=yaml.SafeLoader) except Exception as e: print("Warning: could not open configuration file {}: " "{}".format(config_path, repr(e)), file=sys.stderr) return data def render(vhost: str) -> str: template = jinja2.Template(TEMPLATE) vars = { "hostname": vhost, "uri": "/", } vhosts = read_config()["vhosts"] # if it's a wildcard host, assume 404 as default status if "_wildcard." in vhost: vars["expect"] = 404 if vhost in vhosts: vars.update(vhosts[vhost]) result = template.render(**vars) return result def main(): vhosts = get_vhosts() f = None try: if DEBUG: # overwrite f with sys.stdout f = sys.stdout else: dirpath = "/etc/icinga2/conf.d/" os.makedirs(dirpath, exist_ok=True) f = open(os.path.join(dirpath, "nginx-vhosts.conf"), "w") preamble = textwrap.dedent("""\ # autogenerated vhosts list """) f.write(preamble) for vhost in vhosts: data = render(vhost) f.write(data) f.write("\n") except: raise else: subprocess.check_output("service icinga2 reload".split()) finally: if not DEBUG: if f is not None: f.close() if __name__ == "__main__": sys.exit(main())
StarcoderdataPython
1662622
import torch from torchvision import transforms as T device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def to_same_size(A, focus_map): ''' Input: aim_size_image Image_need_to_be_resize Output: resized_image ''' A_size = list(A.size()) focus_map = focus_map.squeeze(dim = 0).squeeze(dim = 1).cpu() focus_map = T.ToPILImage()(focus_map) crop_obt = T.CenterCrop((A_size[2],A_size[3])) focus_map = crop_obt(focus_map) focus_map = T.ToTensor()(focus_map) focus_map = focus_map.unsqueeze(dim = 0).to(device) return focus_map
StarcoderdataPython
3260745
#!/usr/bin/env python # -*- coding: utf-8 -*- # 该例程将提供print_string服务,std_srvs::SetBool import rospy from std_srvs.srv import SetBool, SetBoolResponse def stringCallback(req): # 显示请求数据 if req.data: rospy.loginfo("Hello ROS!") # 反馈数据 return SetBoolResponse(True, "Print Successully") else: # 反馈数据 return SetBoolResponse(False, "Print Failed") def string_server(): # ROS节点初始化 rospy.init_node('string_server') # 创建一个名为/print_string的server,注册回调函数stringCallback s = rospy.Service('print_string', SetBool, stringCallback) # 循环等待回调函数 print "Ready to print hello string." rospy.spin() if __name__ == "__main__": string_server()
StarcoderdataPython
1708860
<filename>utils_eval.py import sys print(sys.executable) import sklearn sklearn.__version__ import torch.nn as nn import torch.optim as optim import nltk from nltk import word_tokenize nltk.download('punkt') import dill print('next') from torchtext import data from torchtext import datasets from torchtext.vocab import GloVe import torch import torchtext.vocab as vocab import time from torchtext.data import Field from torchtext.datasets import IMDB from torchtext.data import BucketIterator from pytorch_lightning.core.lightning import LightningModule from pytorch_lightning import Trainer from pytorch_lightning.loggers import TensorBoardLogger from torch.optim.lr_scheduler import ReduceLROnPlateau device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") import tensorboard from pytorch_lightning.metrics import functional as FM from pytorch_lightning.callbacks import LearningRateMonitor from pytorch_lightning.callbacks import EarlyStopping import pytorch_lightning as pl from pytorch_lightning import seed_everything seed_everything(42) from torch.nn.utils.rnn import pack_padded_sequence,pad_packed_sequence print(device) from collections import Counter class AWE(nn.Module): def __init__(self, input_size, embed_size, hidden_size, num_layers): super(AWE, self).__init__() self.embedding = nn.Embedding(input_size, embed_size) def forward(self, x): embedded = self.embedding(x) awe = torch.mean(embedded, axis=1) # outputs, _ = self.rnn(embedded, (h0, c0)) # prediction = self.fc_out(outputs[-1, :, :]) return awe class AverageEmbeddings(LightningModule): def __init__(self, config, text, train_iter, dev_iter, test_iter ): super().__init__() self.nli_net = NLINet(config, text).to(device = device) weight = torch.FloatTensor(3).fill_(1) self.loss_function = nn.CrossEntropyLoss(weight=weight) self.valid_losses = [] self.train_iter = train_iter self.dev_iter = dev_iter self.test_iter = test_iter def forward(self, x): # X is vector of shape (batch, input, ) # need to be permuted because by default X is batch first return self.nli_net(x[0], x[1]) # def on_epoch_end(self): # # print(trainer.optimizers[0].param_groups[0].keys()) # print('HOOK') # dic = self.trainer.optimizers[0].param_groups[0] # lr = dic['lr'] # print(lr) # self.log('learning_rate', lr) # # early stopping # if lr < 1e-5: # raise KeyboardInterrupt def training_step(self, batch, batch_idx): premise = batch.premise[0].to(device=device) hypothesis = batch.hypothesis[0].to(device=device) targets = batch.label.to(device=device) # TODO: Accuracies in all of the,loops y_hat = self.nli_net(premise, hypothesis) loss = self.loss_function(y_hat, targets.type_as(y_hat).long()) predict = torch.argmax(y_hat, axis=1) acc = FM.accuracy(predict, targets) metrics_train = {'train_acc': acc, 'train_loss': loss} self.log('train_loss', loss, on_step=True) self.log('train_acc', acc, on_step=True, on_epoch=True, prog_bar=True, logger=True) self.log('train_loss_epoch', loss, on_epoch=True, prog_bar=True, logger=True) return loss def validation_step(self, batch, batch_idx): premise = batch.premise[0].to(device=device) hypothesis = batch.hypothesis[0].to(device=device) targets = batch.label.to(device=device) y_hat = self.nli_net(premise, hypothesis) loss = self.loss_function(y_hat, targets.type_as(y_hat).long()) predict = torch.argmax(y_hat, axis=1) acc = FM.accuracy(predict, targets) metrics_val = {'val_acc': acc, 'val_loss': loss} self.log_dict(metrics_val) self.log('val_acc_on_EPOCH', acc, on_epoch=True) return metrics_val def test_step(self, batch, batch_idx): premise = batch.premise[0].to(device=device) hypothesis = batch.hypothesis[0].to(device=device) targets = batch.label.to(device=device) y_hat = self.nli_net(premise, hypothesis) loss = self.loss_function(y_hat, targets.type_as(y_hat).long()) predict = torch.argmax(y_hat, axis=1) predict = torch.argmax(y_hat, axis=1) acc = FM.accuracy(predict, targets) metrics_test = {'test_acc': acc, 'test_loss': loss} self.log_dict(metrics_test, prog_bar=True, logger=True) class Recurrent(LightningModule): def __init__(self, config, text, train_iter, dev_iter, test_iter): super().__init__() self.nli_net = NLINet(config, text) weight = torch.FloatTensor(3).fill_(1) self.loss_function = nn.CrossEntropyLoss(weight=weight) self.valid_losses = [] self.train_iter = train_iter self.dev_iter = dev_iter self.test_iter = test_iter def forward(self, x): # X is sentence 1 and 2 return self.nli_net(x[0], x[1]) # def on_epoch_end(self): # print(trainer.optimizers[0].param_groups[0].keys()) # print('HOOK') # dic = self.trainer.optimizers[0].param_groups[0] # lr = dic['lr'] # print(lr) # self.log('learning_rate', lr) # # early stopping # if lr < 1e-5: # raise KeyboardInterrupt def training_step(self, batch, batch_idx): premise = batch.premise hypothesis = batch.hypothesis targets = batch.label # TODO: Accuracies in all of the,loops y_hat = self.nli_net(premise, hypothesis) loss = self.loss_function(y_hat, targets.type_as(y_hat).long()) predict = torch.argmax(y_hat, axis=1) acc = FM.accuracy(predict, targets) metrics_train = {'train_acc': acc, 'train_loss': loss} self.log('train_loss', loss, on_step=True) self.log('train_acc', acc, on_step=True, on_epoch=True, prog_bar=True, logger=True) self.log('train_loss_epoch', loss, on_epoch=True, prog_bar=True, logger=True) return loss def validation_step(self, batch, batch_idx): premise = batch.premise hypothesis = batch.hypothesis targets = batch.label y_hat = self.nli_net(premise, hypothesis) loss = self.loss_function(y_hat, targets.type_as(y_hat).long()) predict = torch.argmax(y_hat, axis=1) acc = FM.accuracy(predict, targets) metrics_val = {'val_acc': acc, 'val_loss': loss} self.log_dict(metrics_val) self.log('val_acc_on_EPOCH', acc, on_epoch=True) return metrics_val def test_step(self, batch, batch_idx): premise = batch.premise hypothesis = batch.hypothesis targets = batch.label y_hat = self.nli_net(premise, hypothesis) loss = self.loss_function(y_hat, targets.type_as(y_hat).long()) predict = torch.argmax(y_hat, axis=1) acc = FM.accuracy(predict, targets) metrics_test = {'test_acc': acc, 'test_loss': loss} self.log_dict(metrics_test, prog_bar=True, logger=True) def configure_optimizers(self): # TODO: Learning_RATE optimizer = optim.SGD(self.parameters(), lr=0.1) # scheduler1 = ReduceLROnPlateau(optimizer, mode='max', factor=0.2, verbose=True, patience=2) return ({'optimizer': optimizer, "lr_scheduler": scheduler1, "monitor": "val_acc"}) def train_dataloader(self): return self.train_iter def val_dataloader(self): return self.dev_iter def test_dataloader(self): return self.test_iter class RNN_LSTM(nn.Module): def __init__(self, input_size, embed_size, hidden_size, num_layers): super(RNN_LSTM, self).__init__() self.hidden_size = 2048 self.num_layers = 1 embed_size = 300 self.embedding = nn.Embedding(input_size, embed_size, padding_idx=1) self.rnn = nn.LSTM(input_size=embed_size, hidden_size=self.hidden_size, num_layers=self.num_layers, bidirectional=False) def forward(self, x): src, src_len = x[0], x[1] src = self.embedding(src) src = pack_padded_sequence(src, src_len, batch_first=True, enforce_sorted=False) # Set initial hidden and cell states h0 = torch.zeros(self.num_layers, x[0].shape[0], self.hidden_size) c0 = torch.zeros(self.num_layers, x[0].shape[0], self.hidden_size) output, (hn, cn) = self.rnn(src, (h0, c0)) return hn[0] class RNN_BiLSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, num_classes): super(RNN_BiLSTM, self).__init__() self.hidden_size = 2048 self.num_layers = 1 embed_size = 300 self.embedding = nn.Embedding(input_size, embed_size, padding_idx=1) self.rnn = nn.LSTM(input_size=embed_size, hidden_size=self.hidden_size, num_layers=self.num_layers, bidirectional=True) def forward(self, x): # Set initial states src, src_len = x[0], x[1] src = self.embedding(src) src = pack_padded_sequence(src, src_len, batch_first=True, enforce_sorted=False) h0 = torch.zeros(self.num_layers * 2, x[0].shape[0], self.hidden_size) c0 = torch.zeros(self.num_layers * 2, x[0].shape[0], self.hidden_size) # Forward propagate LSTM output, (hn, cn) = self.rnn(src, (h0, c0)) forward_state = hn[-2, :, :] backward_state = hn[-1, :, :] representation = torch.cat((forward_state, backward_state), dim=1) return representation class NLINet(nn.Module): def __init__(self, config, text): super(NLINet, self).__init__() # classifier self.nonlinear_fc = True self.n_classes = 3 self.enc_lstm_dim = 300 self.dpout_fc = 0.1 self.fc_dim = 512 self.n_classes = 3 self.hidden = config.hidden_dim #default 2048 # TODO: CHANGABLE ENCODERS if config.model_name == 'AWE': self.encoder = AWE(37179, 300, self.hidden, 1) self.inputdim = 4 * 300 if config.model_name == 'LSTM': self.encoder = RNN_LSTM(37179, self.enc_lstm_dim, self.hidden, 1) self.inputdim = 4 * 2048 if config.model_name == 'BiLSTM': self.encoder = RNN_BiLSTM(37179, self.enc_lstm_dim, self.hidden, 1) self.inputdim = 4 * 4096 pretrained_embeddings = torch.cat((text.vocab.vectors, torch.zeros(4, 300)), 0) self.encoder.embedding.weight.data.copy_(pretrained_embeddings) if self.nonlinear_fc: self.classifier = nn.Sequential( nn.Dropout(p=self.dpout_fc), nn.Linear(self.inputdim, self.fc_dim), nn.Tanh(), nn.Dropout(p=self.dpout_fc), nn.Linear(self.fc_dim, self.fc_dim), nn.Tanh(), nn.Dropout(p=self.dpout_fc), nn.Linear(self.fc_dim, self.n_classes), ) else: self.classifier = nn.Sequential( nn.Linear(self.inputdim, self.fc_dim), nn.Linear(self.fc_dim, self.fc_dim), nn.Linear(self.fc_dim, self.n_classes) ) def forward(self, s1, s2): u = self.encoder(s1) v = self.encoder(s2) features = torch.cat((u, v, torch.abs(u - v), u * v), 1) output = self.classifier(features) return output def encode(self, s1): emb = self.encoder(s1) return emb
StarcoderdataPython
132916
""" Plotting convenience functions. """ from math import ceil import ipywidgets as widgets import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import numpy as np from model_base import get_ext_input # define basics prop_cycle = plt.rcParams["axes.prop_cycle"] colors = prop_cycle.by_key()["color"] plt.style.use("seaborn-muted") INPUT_START = 1000 # dt, i.e. 100ms LABEL_SIZE = 16 def setup_sliders_layout(model_specific_sliders): """ Set up interactive part of the plot, i.e. sliders and grid layout. model_params: list of model parameters names """ assert isinstance(model_specific_sliders, dict) num_model_sliders = len(model_specific_sliders) # define general sliders I_m_slider = widgets.FloatSlider( min=-5, max=20, step=0.5, value=10.0, description="I max" ) T_slider = widgets.IntSlider( min=500, max=2000, step=5, value=750, description="time" ) I_types = widgets.ToggleButtons( options=["constant", "sq. pulse", "sine", "ramp", "Ornstein-Uhlenbeck"], value="constant", description="Current type", disabled=False, layout=widgets.Layout(height="auto", width="auto"), ) I_period = widgets.FloatSlider( min=10, max=1000, step=5, value=200, description="I period" ) # define grid grid = widgets.GridspecLayout(ceil(5 + num_model_sliders / 2), 2) grid[0, :] = widgets.Button( description="Model parameters", layout=widgets.Layout(height="auto", width="auto"), ) # assign model sliders for idx, (_, slider) in enumerate(model_specific_sliders.items()): grid[idx // 2 + 1, idx % 2] = slider grid[idx // 2 + 2, :] = widgets.Button( description="External current parameters", layout=widgets.Layout(height="auto", width="auto"), ) grid[idx // 2 + 3, 0] = I_period grid[idx // 2 + 4, 0] = I_m_slider grid[idx // 2 + 4, 1] = T_slider grid[idx // 2 + 5, :] = I_types sliders = { **model_specific_sliders, "I_max": I_m_slider, "I_period": I_period, "T": T_slider, "current_type": I_types, } for _, slider in sliders.items(): # lower number of "waiting" updates in the pipe slider.msg_throttle = 1 return grid, sliders def integrate_and_plot(model_cls, **kwargs): """ Integrate the model given its parameters and plot. """ T = kwargs.pop("T") I_max = kwargs.pop("I_max") I_period = kwargs.pop("I_period") current_type = kwargs.pop("current_type") model = model_cls(parameters=kwargs, T=T) ext_current = np.zeros((model.n_points + 1)) input_length = ext_current.shape[0] - INPUT_START ext_current[INPUT_START:] = get_ext_input( I_max, I_period, current_type, model.T_total, input_length ) model.set_input(ext_current) t, y = model.integrate() # set up figure fig = plt.figure(constrained_layout=True, figsize=(15, 8)) spec = gridspec.GridSpec(ncols=3, nrows=3, figure=fig) # set up axis for timeseries of input current ax2 = fig.add_subplot(spec[2, :2]) ax2.set_ylim([-20, 30]) ax2.set_ylabel("INPUT CURRENT [AU]", size=LABEL_SIZE) ax2.set_xlabel("TIME [ms]", size=LABEL_SIZE) ax2.axvline(100.0, 0, 1, linestyle="--", color="grey", linewidth=0.7) ax2.spines["right"].set_visible(False) ax2.spines["top"].set_visible(False) ax2.tick_params(axis="both", which="major", labelsize=LABEL_SIZE - 2) # set up axis for timeseries of state vector ax1 = fig.add_subplot(spec[:2, :2], sharex=ax2) ax1.set_ylim([-90, 30]) ax1.set_ylabel("MEMBRANE POTENTIAL [mV]", size=LABEL_SIZE) ax1.spines["right"].set_visible(False) ax1.spines["top"].set_visible(False) ax1.spines["bottom"].set_visible(False) ax1.axvline(100.0, 0, 1, linestyle="--", color="grey", linewidth=0.7) ax1.tick_params(axis="both", which="major", labelsize=LABEL_SIZE - 2) ax12 = ax1.twinx() ax12.set_ylim([-20, 10]) ax12.set_yticklabels([]) ax12.set_yticks([]) ax12.spines["right"].set_visible(False) ax12.spines["top"].set_visible(False) ax12.spines["bottom"].set_visible(False) ax12.tick_params(axis="both", which="major", labelsize=LABEL_SIZE - 2) # set up axis for scatter u vs v ax3 = fig.add_subplot(spec[:2, 2], sharey=ax1) ax3.spines["right"].set_visible(False) ax3.spines["top"].set_visible(False) ax3.set_xlabel("MEMBRANE RECOVERY", size=LABEL_SIZE) scatter_colors = colors[3] ax3.set_ylim([-90, 30]) ax3.set_xlim([-20, 10]) ax3.tick_params(axis="both", which="major", labelsize=LABEL_SIZE - 2) # plot ax1.plot(t, y[0, :], color=colors[0], linewidth=2.5) ax12.plot(t, y[1:, :].T, color=colors[1]) ax2.plot(t, model.ext_current[1:], color=colors[2]) ax3.scatter(y[1, :], y[0, :], s=7, c=scatter_colors) plt.suptitle(f"Number of spikes: {model.num_spikes}", size=LABEL_SIZE + 3)
StarcoderdataPython
1678578
<reponame>sajjadt/competitive-programming from functools import lru_cache from operator import getitem LIMIT = 10000 + 1 pow_table = [1] for i in range(LIMIT): pow_table.append(2*pow_table[-1]) best_choice = [0, 0, 0, 1] for disp in range(3, 150): b = best_choice[-1] for j in range(disp): best_choice.append(b+j) @lru_cache(maxsize=(2**14)) def f(n): if n <= 1: return n k = best_choice[n] sol = 2*f(k) + 2**(n-k) - 1 return sol while True: try: inp = int(input()) print(f(inp)) except(EOFError): break
StarcoderdataPython
169266
<reponame>plutoyuxie/mmgeneration import os.path as osp from mmgen.datasets.builder import build_dataloader, build_dataset class TestPersistentWorker(object): @classmethod def setup_class(cls): imgs_root = osp.join(osp.dirname(__file__), '..', 'data/image') train_pipeline = [ dict(type='LoadImageFromFile', io_backend='disk', key='real_img') ] cls.config = dict( samples_per_gpu=1, workers_per_gpu=4, drop_last=True, persistent_workers=True) cls.data_cfg = dict( type='UnconditionalImageDataset', imgs_root=imgs_root, pipeline=train_pipeline, test_mode=False) def test_persistent_worker(self): # test non-persistent-worker dataset = build_dataset(self.data_cfg) build_dataloader(dataset, **self.config)
StarcoderdataPython
3283011
<reponame>luisriverag/certbot """Common utilities for certbot_apache.""" import shutil import sys import unittest import augeas import josepy as jose try: import mock except ImportError: # pragma: no cover from unittest import mock # type: ignore from certbot.compat import os from certbot.plugins import common from certbot.tests import util as test_util from certbot.display import util as display_util from certbot_apache._internal import configurator from certbot_apache._internal import entrypoint from certbot_apache._internal import obj class ApacheTest(unittest.TestCase): def setUp(self, test_dir="debian_apache_2_4/multiple_vhosts", config_root="debian_apache_2_4/multiple_vhosts/apache2", vhost_root="debian_apache_2_4/multiple_vhosts/apache2/sites-available"): # pylint: disable=arguments-differ self.temp_dir, self.config_dir, self.work_dir = common.dir_setup( test_dir=test_dir, pkg=__name__) self.config_path = os.path.join(self.temp_dir, config_root) self.vhost_path = os.path.join(self.temp_dir, vhost_root) self.rsa512jwk = jose.JWKRSA.load(test_util.load_vector( "rsa512_key.pem")) self.config = get_apache_configurator(self.config_path, vhost_root, self.config_dir, self.work_dir) # Make sure all vhosts in sites-enabled are symlinks (Python packaging # does not preserve symlinks) sites_enabled = os.path.join(self.config_path, "sites-enabled") if not os.path.exists(sites_enabled): return for vhost_basename in os.listdir(sites_enabled): # Keep the one non-symlink test vhost in place if vhost_basename == "non-symlink.conf": continue vhost = os.path.join(sites_enabled, vhost_basename) if not os.path.islink(vhost): # pragma: no cover os.remove(vhost) target = os.path.join( os.path.pardir, "sites-available", vhost_basename) os.symlink(target, vhost) def tearDown(self): shutil.rmtree(self.temp_dir) shutil.rmtree(self.config_dir) shutil.rmtree(self.work_dir) class ParserTest(ApacheTest): def setUp(self, test_dir="debian_apache_2_4/multiple_vhosts", config_root="debian_apache_2_4/multiple_vhosts/apache2", vhost_root="debian_apache_2_4/multiple_vhosts/apache2/sites-available"): super().setUp(test_dir, config_root, vhost_root) from certbot_apache._internal.parser import ApacheParser self.aug = augeas.Augeas( flags=augeas.Augeas.NONE | augeas.Augeas.NO_MODL_AUTOLOAD) with mock.patch("certbot_apache._internal.parser.ApacheParser." "update_runtime_variables"): self.parser = ApacheParser( self.config_path, self.vhost_path, configurator=self.config) def get_apache_configurator( config_path, vhost_path, config_dir, work_dir, version=(2, 4, 7), os_info="generic", conf_vhost_path=None, use_parsernode=False, openssl_version="1.1.1a"): """Create an Apache Configurator with the specified options. :param conf: Function that returns binary paths. self.conf in Configurator """ backups = os.path.join(work_dir, "backups") mock_le_config = mock.MagicMock( apache_server_root=config_path, apache_vhost_root=None, apache_le_vhost_ext="-le-ssl.conf", apache_challenge_location=config_path, apache_enmod=None, backup_dir=backups, config_dir=config_dir, http01_port=80, temp_checkpoint_dir=os.path.join(work_dir, "temp_checkpoints"), in_progress_dir=os.path.join(backups, "IN_PROGRESS"), work_dir=work_dir) with mock.patch("certbot_apache._internal.configurator.util.run_script"): with mock.patch("certbot_apache._internal.configurator.util." "exe_exists") as mock_exe_exists: mock_exe_exists.return_value = True with mock.patch("certbot_apache._internal.parser.ApacheParser." "update_runtime_variables"): with mock.patch("certbot_apache._internal.apache_util.parse_from_subprocess") as mock_sp: mock_sp.return_value = [] try: config_class = entrypoint.OVERRIDE_CLASSES[os_info] except KeyError: config_class = configurator.ApacheConfigurator config = config_class(config=mock_le_config, name="apache", version=version, use_parsernode=use_parsernode, openssl_version=openssl_version) if not conf_vhost_path: config_class.OS_DEFAULTS.vhost_root = vhost_path else: # Custom virtualhost path was requested config.config.apache_vhost_root = conf_vhost_path config.config.apache_ctl = config_class.OS_DEFAULTS.ctl config.prepare() return config def get_vh_truth(temp_dir, config_name): """Return the ground truth for the specified directory.""" if config_name == "debian_apache_2_4/multiple_vhosts": prefix = os.path.join( temp_dir, config_name, "apache2/sites-enabled") aug_pre = "/files" + prefix vh_truth = [ obj.VirtualHost( os.path.join(prefix, "encryption-example.conf"), os.path.join(aug_pre, "encryption-example.conf/Virtualhost"), {obj.Addr.fromstring("*:80")}, False, True, "encryption-example.demo"), obj.VirtualHost( os.path.join(prefix, "default-ssl.conf"), os.path.join(aug_pre, "default-ssl.conf/IfModule/VirtualHost"), {obj.Addr.fromstring("_default_:443")}, True, True), obj.VirtualHost( os.path.join(prefix, "000-default.conf"), os.path.join(aug_pre, "000-default.conf/VirtualHost"), {obj.Addr.fromstring("*:80"), obj.Addr.fromstring("[::]:80")}, False, True, "ip-172-30-0-17"), obj.VirtualHost( os.path.join(prefix, "certbot.conf"), os.path.join(aug_pre, "certbot.conf/VirtualHost"), {obj.Addr.fromstring("*:80")}, False, True, "certbot.demo", aliases=["www.certbot.demo"]), obj.VirtualHost( os.path.join(prefix, "mod_macro-example.conf"), os.path.join(aug_pre, "mod_macro-example.conf/Macro/VirtualHost"), {obj.Addr.fromstring("*:80")}, False, True, modmacro=True), obj.VirtualHost( os.path.join(prefix, "default-ssl-port-only.conf"), os.path.join(aug_pre, ("default-ssl-port-only.conf/" "IfModule/VirtualHost")), {obj.Addr.fromstring("_default_:443")}, True, True), obj.VirtualHost( os.path.join(prefix, "wildcard.conf"), os.path.join(aug_pre, "wildcard.conf/VirtualHost"), {obj.Addr.fromstring("*:80")}, False, True, "ip-172-30-0-17", aliases=["*.blue.purple.com"]), obj.VirtualHost( os.path.join(prefix, "ocsp-ssl.conf"), os.path.join(aug_pre, "ocsp-ssl.conf/IfModule/VirtualHost"), {obj.Addr.fromstring("10.2.3.4:443")}, True, True, "ocspvhost.com"), obj.VirtualHost( os.path.join(prefix, "non-symlink.conf"), os.path.join(aug_pre, "non-symlink.conf/VirtualHost"), {obj.Addr.fromstring("*:80")}, False, True, "nonsym.link"), obj.VirtualHost( os.path.join(prefix, "default-ssl-port-only.conf"), os.path.join(aug_pre, "default-ssl-port-only.conf/VirtualHost"), {obj.Addr.fromstring("*:80")}, True, True, ""), obj.VirtualHost( os.path.join(temp_dir, config_name, "apache2/apache2.conf"), "/files" + os.path.join(temp_dir, config_name, "apache2/apache2.conf/VirtualHost"), {obj.Addr.fromstring("*:80")}, False, True, "vhost.in.rootconf"), obj.VirtualHost( os.path.join(prefix, "duplicatehttp.conf"), os.path.join(aug_pre, "duplicatehttp.conf/VirtualHost"), {obj.Addr.fromstring("10.2.3.4:80")}, False, True, "duplicate.example.com"), obj.VirtualHost( os.path.join(prefix, "duplicatehttps.conf"), os.path.join(aug_pre, "duplicatehttps.conf/IfModule/VirtualHost"), {obj.Addr.fromstring("10.2.3.4:443")}, True, True, "duplicate.example.com")] return vh_truth if config_name == "debian_apache_2_4/multi_vhosts": prefix = os.path.join( temp_dir, config_name, "apache2/sites-available") aug_pre = "/files" + prefix vh_truth = [ obj.VirtualHost( os.path.join(prefix, "default.conf"), os.path.join(aug_pre, "default.conf/VirtualHost[1]"), {obj.Addr.fromstring("*:80")}, False, True, "ip-172-30-0-17"), obj.VirtualHost( os.path.join(prefix, "default.conf"), os.path.join(aug_pre, "default.conf/VirtualHost[2]"), {obj.Addr.fromstring("*:80")}, False, True, "banana.vomit.com"), obj.VirtualHost( os.path.join(prefix, "multi-vhost.conf"), os.path.join(aug_pre, "multi-vhost.conf/VirtualHost[1]"), {obj.Addr.fromstring("*:80")}, False, True, "1.multi.vhost.tld"), obj.VirtualHost( os.path.join(prefix, "multi-vhost.conf"), os.path.join(aug_pre, "multi-vhost.conf/IfModule/VirtualHost"), {obj.Addr.fromstring("*:80")}, False, True, "2.multi.vhost.tld"), obj.VirtualHost( os.path.join(prefix, "multi-vhost.conf"), os.path.join(aug_pre, "multi-vhost.conf/VirtualHost[2]"), {obj.Addr.fromstring("*:80")}, False, True, "3.multi.vhost.tld")] return vh_truth return None # pragma: no cover
StarcoderdataPython
1715318
<reponame>rexor12/holobot<gh_stars>1-10 from .action_base import ActionBase from .do_nothing_action import DoNothingAction from .reply_action import ReplyAction
StarcoderdataPython
3324670
#!/usr/bin/env python3 # # Copyright 2014 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import argparse import itertools import logging import os import re import sys from cros.factory.utils import cros_board_utils from cros.factory.utils.process_utils import CheckOutput from cros.factory.utils.process_utils import Spawn RE_PACKAGE_FILES = re.compile(r'.*?files/') def GetFileToLint(path=None): output = CheckOutput( ['git', 'status', '--untracked-files=all', '--porcelain'], cwd=path, log=True) # Remove first three characters, and anything up to the -> for renames. uncommitted = [re.sub(r'^...(.+ -> )?', '', x) for x in output.splitlines()] # The output contains full path as # chromeos-base/{chromeos-,}factory-board/files/py/device/boards/test.py # and we want to strip until 'files/'. uncommitted = [re.sub(RE_PACKAGE_FILES, '', x) if path else x for x in uncommitted if x.endswith('.py') and '#' not in x] logging.info('Uncommitted files: %r', uncommitted) all_files = set(uncommitted) for i in itertools.count(): commit = 'HEAD~%d' % i proc = Spawn(['git', 'log', '-1', commit], cwd=path, read_stdout=True) if proc.returncode: # No more log entries break if '\n Reviewed-on: ' in proc.stdout_data: logging.info('%s has Reviewed-on; ending search', commit) break files = CheckOutput(['git', 'diff-tree', '--no-commit-id', '--name-only', '-r', commit], cwd=path, log=True).splitlines() logging.info('%s contains files %s', commit, files) for f in files: file_path = os.path.join(path, f) if path else f if f.endswith('.py') and os.path.exists(file_path): all_files.add(re.sub(RE_PACKAGE_FILES, '', f) if path else f) all_files = set(f for f in all_files if os.path.exists(f)) return all_files def main(): parser = argparse.ArgumentParser( description='Lints files that are new, changed, or in a pending CL.') parser.add_argument('--verbose', '-v', action='count') parser.add_argument('--overlay', '-o') args = parser.parse_args() logging.basicConfig(level=logging.WARNING - 10 * (args.verbose or 0)) # chdir to repo root so paths are all correct os.chdir(CheckOutput(['git', 'rev-parse', '--show-toplevel']).strip()) all_files = GetFileToLint() if args.overlay: overlay_path = cros_board_utils.GetChromeOSFactoryBoardPath(args.overlay) if overlay_path: all_files |= GetFileToLint(os.path.join(overlay_path, '../..')) CheckOutput(['make', 'overlay-%s' % args.overlay]) all_files_str = ' '.join(sorted(all_files)) overlay_args = ['-C', 'overlay-%s' % args.overlay] if args.overlay else [] proc = Spawn( ['make'] + overlay_args + ['lint', 'LINT_FILES=%s' % all_files_str], call=True, log=True) sys.exit(proc.returncode) if __name__ == '__main__': main()
StarcoderdataPython
146854
import os.path as op from pylama.check_async import check_async from pylama.config import parse_options from pylama.core import filter_errors, parse_modeline, run from pylama.errors import Error, remove_duplicates from pylama.hook import git_hook, hg_hook from pylama.main import shell, check_path def test_filter_errors(): assert list(filter_errors([Error(text='E1')], select=['E'], ignore=['E101'])) assert not list(filter_errors([Error(text='W1')], select=['W100'], ignore=['W'])) def test_remove_duplicates(): errors = [Error(linter='pycodestyle', text='E701'), Error(linter='pylint', text='C0321')] errors = list(remove_duplicates(errors)) assert len(errors) == 1 def test_parser_modeline(): code = """ bla bla bla # pylama: ignore=W12,E14:select=R:skip=0 """ params = parse_modeline(code) assert params == dict(ignore='W12,E14', select='R', skip='0') def test_checkpath(): path = op.abspath('dummy.py') options = parse_options([path]) result = check_path(options) assert result assert result[0].filename == 'dummy.py' def test_linters_params(): options = parse_options(linters='mccabe', config=False) options.linters_params['mccabe'] = dict(complexity=1) errors = run('dummy.py', options=options) assert len(errors) == 1 options.linters_params['mccabe'] = dict(complexity=20) errors = run('dummy.py', options=options) assert not errors def test_sort(): options = parse_options() options.sort = ['C', 'D'] errors = run('dummy.py', options=options) assert errors[0].type == 'C' def test_shell(): errors = shell('-o dummy dummy.py'.split(), error=False) assert errors errors = shell(['unknown.py'], error=False) assert not errors def test_git_hook(): assert not git_hook(False) def test_hg_hook(): assert not hg_hook(None, dict()) def test_async(): options = parse_options(config=False) errors = check_async(['dummy.py'], options=options, rootdir='.') assert errors
StarcoderdataPython
3210589
import xml.etree.ElementTree as ET import time import select from io import StringIO from threading import Thread, Event, Lock from os import read from .coqapi import Ok, Err from .xmltype import * class CoqHandler: def __init__(self, state_manager, printer): self.printer = printer self.state_manager = state_manager self.currentContent = "" self.oldProcess = None self.currentProcess = None self.messageLevel = None self.val = None self.state_id = None self.nextFlush = True self.goals = None self.goals_fg = [] self.goals_bg = 0 self.goals_shelved = 0 self.goals_given_up = 0 self.goal_id = None self.goal_hyps = [] self.goal_ccl = None # Call when an element starts def start(self, tag, attributes): if tag == 'value': self.currentProcess = 'value' self.val = attributes['val'] self.loc_s = None if not 'loc_s' in attributes else attributes['loc_s'] self.loc_e = None if not 'loc_e' in attributes else attributes['loc_e'] if tag == 'option' and attributes['val'] == 'none' and self.currentProcess == 'value': self.printer.addGoal(None) elif tag == 'goals' and self.currentProcess == 'value': self.currentProcess = 'goals_fg' elif tag == 'list' and self.currentProcess == 'goals_fg': self.currentProcess = 'fg' elif tag == 'goal' and self.currentProcess == 'fg': self.currentProcess = 'goal' elif tag == 'pair' and self.currentProcess == 'goals_bg': self.currentProcess = 'goals_bg_in' elif tag == 'goal' and self.currentProcess == 'goals_bg_in': self.goals_bg += 1 # TODO elif tag == 'goal' and self.currentProcess == 'goals_shelved': self.goals_shelved += 1 # TODO elif tag == 'goal' and self.currentProcess == 'goals_given_up': self.goals_given_up += 1 elif tag == 'string' and self.currentProcess == 'goal': self.currentProcess = 'goal_id' elif tag == 'list' and self.currentProcess == 'goal': self.currentProcess = 'goal_hyps' elif tag == 'state_id' and self.currentProcess == 'value': self.state_id = attributes['val'] elif tag == 'feedback_content' and attributes['val'] == 'message': self.currentProcess = 'waitmessage' elif tag == 'feedback_content' and attributes['val'] == 'processingin': self.currentProcess = 'waitworker' elif self.currentProcess == 'message' and tag == 'message_level': self.messageLevel = attributes['val'] elif tag == 'message': # older coq (8.6) use a message tag at top-level, newer ones use a # message tag inside a feedback_content one. # Since there might be more than one message, we want to track when # we came from a 'waitmessage' (newer coq). self.oldProcess = self.currentProcess self.currentProcess = 'message' # Call when an element ends def end(self, tag): if tag == "value": if self.nextFlush: self.printer.flushInfo() self.nextFlush = True if self.val == 'good': self.state_manager.pull_event(Ok(self.state_id)) else: self.state_manager.pull_event( Err(None, False if not hasattr(self, "loc_s") or self.loc_s is None else int(self.loc_s), False if not hasattr(self, "loc_e") or self.loc_e is None else int(self.loc_e))) self.printer.addInfo(self.currentContent) self.currentContent = '' self.nextFlush = False self.state_id = None self.val = None self.currentProcess = None elif tag == 'goals': self.printer.debug("Goals: " + str(self.goals_fg) + "\n;; " + str(self.goals_bg) + "\n;; " + str(self.goals_shelved) + "\n;; " + str(self.goals_given_up) + "\n") self.printer.addGoal(Goals(self.goals_fg, self.goals_bg, self.goals_shelved, self.goals_given_up)) self.goals_fg = [] self.goals_bg = 0 self.goals_shelved = 0 self.goals_given_up = 0 self.currentProcess = 'value' elif tag == 'string' and self.currentProcess == 'goal_id': self.goal_id = self.currentContent self.currentProcess = 'goal' self.currentContent = '' elif tag == 'goal' and self.currentProcess == 'goal': self.goals_fg.append(Goal(self.goal_id, self.goal_hyps, self.currentContent)) self.goal_hyps = [] self.currentContent = '' self.currentProcess = 'fg' elif tag == 'richpp' and self.currentProcess == 'goal_hyps': self.goal_hyps.append(self.currentContent) self.currentContent = '' elif tag == 'list' and self.currentProcess == 'goal_hyps': self.currentContent = '' self.currentProcess = 'goal' elif tag == 'list' and self.currentProcess == 'fg': self.currentContent = '' self.currentProcess = 'goals_bg' elif tag == 'pair' and self.currentProcess == 'goals_bg_in': self.currentContent = '' self.currentProcess = 'goals_bg' elif tag == 'feedback_content' and self.currentProcess == 'waitmessage': self.currentProcess = None self.oldProcess = None self.messageLevel = None self.currentContent = '' elif tag == 'feedback_content' and self.currentProcess == 'waitworker': self.state_manager.setWorker(self.currentContent) self.currentContent = '' elif tag == 'message' and self.currentProcess == 'message': self.currentProcess = 'waitmessage' self.printer.debug(self.messageLevel + ": " + str(self.currentContent) + "\n\n") self.printer.addInfo(self.currentContent) self.currentProcess = self.oldProcess self.messageLevel = None self.currentContent = '' # Call when a character is read def data(self, content): if self.currentProcess == 'message' or self.currentProcess == 'value' or \ self.currentProcess == 'goal_id' or self.currentProcess == 'goal' or \ self.currentProcess == 'waitworker' or self.currentProcess == 'goal_hyps': self.currentContent += content class CoqParser(Thread): def __init__(self, process, state_manager, printer): Thread.__init__(self) self.cont = True self.process = process self.printer = printer self.target = CoqHandler(state_manager, printer) self.parser = ET.XMLParser(target=self.target) self.parser.feed(""" <!DOCTYPE coq [ <!-- we replace non-breakable spaces with normal spaces, because it would make copy-pasting harder --> <!ENTITY nbsp \" \"> <!ENTITY gt \">\"> <!ENTITY lt \"<\"> <!ENTITY apos \"'\"> ]> <Root> """) def run(self): self.printer.debug("Running parser...\n") try: f = self.process.stdout while self.cont: r, w, e = select.select([ f ], [], [], 0.1) if f in r: content = read(f.fileno(), 0x400) self.printer.debug("<< " + str(content) + "\n") self.parser.feed(content) except Exception as e: self.printer.debug("WHOOPS!\n") self.printer.debug("WHOOPS! " + str(e) + "\n") self.printer.debug("WHOOPS! " + str(traceback.format_exc()) + "\n") try: self.parser.feed("</Root>") except: pass self.printer.debug("END OF PARSING\n") def stop(self): self.cont = False
StarcoderdataPython
3344658
"""Problem 51: Prime digit replacements""" import unittest from utils.primes import seive_of_erat def replace_digits(p, digits): """If p contains more than one of the same digit, replace them will all other possible digits.""" if 0 in digits: other_digits = [str(d) for d in list(range(1, 10)) if str(d) != str(p)[digits[0]]] else: other_digits = [str(d) for d in list(range(10)) if str(d) != str(p)[digits[0]]] generated_numbers = [] p_d = [str(d) for d in str(p)] for od in other_digits: for d in digits: p_d[d] = od generated_numbers.append(int("".join(p_d))) return generated_numbers def get_digits(n): """Get digits to replace in n""" d_tab = {} digits = [] for i, d in enumerate(str(n)): if d in d_tab: d_tab[d].append(i) else: d_tab[d] = [i] for d, locs in d_tab.items(): if len(locs) > 1: digits.append(locs) return digits def find_family(n, limit=100000): """Finds lowest prime in family of n primes, searches up to limit""" primes_list = seive_of_erat(limit) primes_set = set(primes_list) for p in primes_list: digits = get_digits(p) for d in digits: family = replace_digits(p, d) if family: size = len([m for m in family if m in primes_set]) if size + 1 == n: return p return False def solution(): return find_family(8, limit=1000000) class TestFunction(unittest.TestCase): def test_replacer(self): self.assertEqual(replace_digits(13, [0]), [23, 33, 43, 53, 63, 73, 83, 93]) self.assertEqual(replace_digits(56003, [2, 3]), [56113, 56223, 56333, 56443, 56553, 56663, 56773, 56883, 56993]) def test_digits(self): for digits in get_digits(13): self.assertIn(digits, [[0], [1]]) for digits in get_digits(56003): self.assertIn(digits, [[0], [1], [2, 3], [4]]) def test_finder(self): self.assertEqual(find_family(7), 56003) if __name__ == "__main__": print(solution()) unittest.main()
StarcoderdataPython
3251240
<gh_stars>1-10 from contextlib import suppress from discord.ext import commands class Context(commands.Context): async def send(self, content=None, *, tts=False, embed=None, file=None, files=None, delete_after=None, nonce=None, allowed_mentions=None, reference=None, mention_author=None): try: response = self.bot.old_responses[self.message.id] with suppress(Exception): await response.clear_reactions() return await response.edit(content=content, tts=tts, embed=embed, file=file, files=files, delete_after=delete_after, nonce=nonce, allowed_mentions=allowed_mentions, reference=reference, mention_author=mention_author) except KeyError: response = await super().send(content=content, tts=tts, embed=embed, file=file, files=files, delete_after=delete_after, nonce=nonce, allowed_mentions=allowed_mentions, reference=reference, mention_author=mention_author) self.bot.old_responses[self.message.id] = response return response async def reply(self, content=None, *, tts=False, embed=None, file=None, files=None, delete_after=None, nonce=None, allowed_mentions=None, mention_author=None): try: response = self.bot.old_responses[self.message.id] with suppress(Exception): await response.clear_reactions() return await response.edit(content=content, tts=tts, embed=embed, file=file, files=files, delete_after=delete_after, nonce=nonce, allowed_mentions=allowed_mentions, mention_author=mention_author) except KeyError: response = await super().reply(content=content, tts=tts, embed=embed, file=file, files=files, delete_after=delete_after, nonce=nonce, allowed_mentions=allowed_mentions, mention_author=mention_author) self.bot.old_responses[self.message.id] = response return response
StarcoderdataPython
3380501
from django.apps import AppConfig class IrekuaModelsConfig(AppConfig): name = 'irekua_models' verbose_name = 'irekua-models'
StarcoderdataPython
3296628
from fiber import Process, SimpleQueue def foo(q, a, b): q.put(a + b) if __name__ == '__main__': q = SimpleQueue() p = Process(target=foo, args=(q, 42, 21)) p.start() print(q.get()) p.join()
StarcoderdataPython
3277492
<filename>test/check-gui-sh.sikuli/check-gui-sh.py wait("1530638293676.png", 10)
StarcoderdataPython
129472
<reponame>crestdatasystems/rubrik-polaris-sdk-for-python<gh_stars>0 import os import pytest from conftest import util_load_json, BASE_URL from rubrik_polaris.sonar.scan import ERROR_MESSAGES FILE_TYPES = ['ANY', 'HITS', 'STALE', 'OPEN_ACCESS', 'STALE_HITS', 'OPEN_ACCESS_HITS'] @pytest.mark.parametrize("scan_name, resources, analyzer_groups", [ ("", [{"snappableFid": "dummy_id"}], [{"id": "dummy_id"}]), ("scan_name", [], [{"id": "dummy_id"}]), ("scan_name", [{"snappableFid": "dummy_id"}], []) ]) def test_trigger_on_demand_scan_when_invalid_values_are_provided(client, scan_name, resources, analyzer_groups): """ Tests trigger_on_demand_scan method of PolarisClient when invalid values are provided """ from rubrik_polaris.sonar.scan import trigger_on_demand_scan with pytest.raises(ValueError) as e: trigger_on_demand_scan(client, scan_name=scan_name, resources=resources, analyzer_groups=analyzer_groups) assert str(e.value) == ERROR_MESSAGES['MISSING_PARAMETERS_IN_SCAN'] def test_trigger_on_demand_scan_when_valid_values_are_provided(requests_mock, client): """ Tests trigger_on_demand_scan method of PolarisClient when valid values are provided """ from rubrik_polaris.sonar.scan import trigger_on_demand_scan expected_response = util_load_json(os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_data/on_demand_scan.json")) requests_mock.post(BASE_URL + "/graphql", json=expected_response) scan_name = "Scan from SDK" resources = [{"snappableFid": "dummy_id"}] analyzer_groups = [{"id": "dummy_id", "name": "name", "groupType": "group_type", "analyzers": [{}]}] response = trigger_on_demand_scan( client, scan_name=scan_name, resources=resources, analyzer_groups=analyzer_groups) assert response == expected_response def test_get_on_demand_scan_status_when_valid_values_are_provided(requests_mock, client): """ Tests get_on_demand_scan_status method of PolarisClient when valid values are provided """ from rubrik_polaris.sonar.scan import get_on_demand_scan_status expected_response = util_load_json(os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_data/on_demand_scan_status.json")) requests_mock.post(BASE_URL + "/graphql", json=expected_response) response = get_on_demand_scan_status(client, crawl_id="587d147a-add9-4152-b7a0-5a667d99f395") assert response == expected_response @pytest.mark.parametrize("crawl_id", [""]) def test_get_on_demand_scan_status_when_invalid_values_are_provided(client, crawl_id): """ Tests get_on_demand_scan_status method of PolarisClient when invalid values are provided """ from rubrik_polaris.sonar.scan import get_on_demand_scan_status with pytest.raises(ValueError) as e: get_on_demand_scan_status(client, crawl_id=crawl_id) assert str(e.value) == ERROR_MESSAGES['MISSING_PARAMETERS_IN_SCAN_STATUS'] @pytest.mark.parametrize("crawl_id, filters, err_msg", [ ("", {"fileType": "HITS"}, ERROR_MESSAGES['MISSING_PARAMETERS_IN_SCAN_RESULT']), ("scan_name", {}, ERROR_MESSAGES['MISSING_PARAMETERS_IN_SCAN_RESULT']), ("scan_name", {"fileType": "HIT"}, ERROR_MESSAGES['INVALID_FILE_TYPE'].format('HIT', FILE_TYPES)) ]) def test_get_on_demand_scan_result_when_invalid_values_are_provided(client, crawl_id, filters, err_msg, requests_mock): """ Tests get_on_demand_scan_result method of PolarisClient when invalid values are provided """ from rubrik_polaris.sonar.scan import get_on_demand_scan_result expected_response = util_load_json( os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_data/file_type_values.json") ) requests_mock.post(BASE_URL + "/graphql", json=expected_response) with pytest.raises(ValueError) as e: get_on_demand_scan_result(client, crawl_id=crawl_id, filters=filters) assert str(e.value) == err_msg def test_get_on_demand_scan_result_when_valid_values_are_provided(requests_mock, client): """ Tests get_on_demand_scan_result method of PolarisClient when valid values are provided """ from rubrik_polaris.sonar.scan import get_on_demand_scan_result query_response = util_load_json(os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_data/on_demand_scan_result.json")) enum_response = util_load_json( os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_data/file_type_values.json") ) responses = [ {'json': enum_response}, {'json': query_response} ] requests_mock.post(BASE_URL + "/graphql", responses) response = get_on_demand_scan_result(client, crawl_id="dummy_id", filters={"fileType": "HITS"}) assert response == query_response
StarcoderdataPython
1731833
from .custom_model import get_custom_model from . import archs
StarcoderdataPython
146602
import os import json from typing import Dict from fintools.settings import get_logger from fintools.utils import StringWrapper, timeit from .settings import ( INDUSTRY_SEARCH_DEFAULT_FILENAME, INDUSTRY_SEARCH_DEFAULT_THRESHOLD ) logger = get_logger(name=__name__) class Main: threshold = INDUSTRY_SEARCH_DEFAULT_THRESHOLD @timeit(logger=logger) def search(self, title: str, exact: bool = False, file: str = INDUSTRY_SEARCH_DEFAULT_FILENAME) -> str: pass
StarcoderdataPython
1625422
<filename>envs/CARLA/carla_lib/client_example.py #!/usr/bin/env python3 # Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de # Barcelona (UAB). # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. #### This script has been deprecated !!!! ##### """Basic CARLA client example.""" from __future__ import print_function import argparse import logging import random import time import numpy as np from carla.client import make_carla_client from carla.sensor import Camera, Lidar from carla.settings import CarlaSettings from carla.tcp import TCPConnectionError from carla.util import print_over_same_line from carla.image_converter import labels_to_array from carla.transform import Transform WIDTH = 512 HEIGHT = 256 def simplify_seg(array): classes = { 0: 0, # None 1: 1, # Buildings 2: 1, # Fences 3: 1, # Other 4: 1, # Pedestrians 5: 1, # Poles 6: 4, # RoadLines 7: 3, # Roads 8: 2, # Sidewalks 9: 1, # Vegetation 10: 5, # Vehicles 11: 1, # Walls 12: 1 # TrafficSigns } result = np.zeros_like(array, dtype=np.uint8) for key, value in classes.items(): result[np.where(array == key)] = value return result def convert_image(sensor_data, width, height, simple_seg=True): obs = np.frombuffer(sensor_data['CameraRGB'].raw_data, dtype=np.uint8).reshape((height, width, 4))[:, :, :3] mon = np.frombuffer(sensor_data['CameraMON'].raw_data, dtype=np.uint8).reshape((height, width, 4))[:, :, :3] seg = labels_to_array(sensor_data['CameraSegmentation']) if simple_seg: seg = simplify_seg(seg) return obs, seg, mon def get_bbox(self, measurement, seg): global width = WIDTH height = HEIGHT extrinsic = Transform(measurement.player_measurements.transform) * self.obs_to_car_transform bbox_list = [] orientation_list = [] distance_list = [] # main_rotation = measurement.player_measurements.transform.rotation player_location = measurement.player_measurements.transform.location player_location = np.array([player_location.x, player_location.y, player_location.z]) # collect the 2bbox generated from the 3d-bbox of non-player agents for agent in measurement.non_player_agents: if agent.HasField("vehicle"): # veh_id = agent.id # idx = self.nonplayer_ids[veh_id] vehicle_transform = Transform(agent.vehicle.transform) bbox_transform = Transform(agent.vehicle.bounding_box.transform) ext = agent.vehicle.bounding_box.extent bbox = np.array([ [ ext.x, ext.y, ext.z], [- ext.x, ext.y, ext.z], [ ext.x, - ext.y, ext.z], [- ext.x, - ext.y, ext.z], [ ext.x, ext.y, - ext.z], [- ext.x, ext.y, - ext.z], [ ext.x, - ext.y, - ext.z], [- ext.x, - ext.y, - ext.z] ]) bbox = bbox_transform.transform_points(bbox) bbox = vehicle_transform.transform_points(bbox) orientation = agent.vehicle.transform.orientation vehicle_location = agent.vehicle.transform.location cur_location = np.array([vehicle_location.x, vehicle_location.y, vehicle_location.z]) distance = np.linalg.norm(player_location - cur_location) vertices = [] for vertex in bbox: pos_vector = np.array([ [vertex[0,0]], # [[X, [vertex[0,1]], # Y, [vertex[0,2]], # Z, [1.0] # 1.0]] ]) transformed_3d_pos = np.dot(inv(extrinsic.matrix), pos_vector) pos2d = np.dot(self.intrinsic, transformed_3d_pos[:3]) pos2d = np.array([ pos2d[0] / pos2d[2], pos2d[1] / pos2d[2], pos2d[2] ]) if pos2d[2] > 0: x_2d = width - pos2d[0] y_2d = height - pos2d[1] vertices.append([x_2d, y_2d]) if len(vertices) > 1: # vehicle_rotation = agent.vehicle.transform.rotation vertices = np.array(vertices) bbox_list.append([np.min(vertices[:, 0]), np.min(vertices[:, 1]), np.max(vertices[:, 0]), np.max(vertices[:, 1])]) orientation_list.append(orientation) distance_list.append(distance) seg_bboxes = seg_to_bbox(seg) final_bboxes = [] final_directions = [] final_distances = [] assert(len(bbox_list) == len(orientation_list)) for i in range(len(bbox_list)): bbox = bbox_list[i] direction = orientation_list[i] xmin, ymin, xmax, ymax = bbox x1, y1, x2, y2 = width, height, 0, 0 for segbbox in seg_bboxes: xmin0, ymin0, xmax0, ymax0 = segbbox if xmin0 >= xmin - 5 and ymin0 >= ymin - 5 and xmax0 < xmax + 5 and ymax0 < ymax + 5: x1 = min(x1, xmin0) y1 = min(y1, ymin0) x2 = max(x2, xmax0) y2 = max(y2, ymax0) if x2 > x1 and y2 > y1 and [int(x1), int(y1), int(x2), int(y2)] not in final_bboxes: final_bboxes.append([int(x1), int(y1), int(x2), int(y2)]) relative_orientation = get_angle(direction.x, direction.y, self.orientation.x, self.orientation.y) final_directions.append(relative_orientation) final_distances.append(distance_list[i]) # for angle in final_directions: # self.angle_logger.write("timestep {}: {}\n".format(self.timestep, angle)) # self.angle_logger.flush() final_distances = np.array(final_distances) visible_coll_num = min(coll_veh_num, final_distances.size) coll_idx = np.argpartition(final_distances, visible_coll_num - 1)[:visible_coll_num] final_colls = [1 if i in coll_idx else 0 for i in range(final_distances.size)] return final_bboxes, final_directions, final_colls def run_carla_client(args): # Here we will run 3 episodes with 300 frames each. global WIDTH, HEIGHT number_of_episodes = 1 frames_per_episode = 300 # We assume the CARLA server is already waiting for a client to connect at # host:port. To create a connection we can use the `make_carla_client` # context manager, it creates a CARLA client object and starts the # connection. It will throw an exception if something goes wrong. The # context manager makes sure the connection is always cleaned up on exit. with make_carla_client(args.host, args.port) as client: print('CarlaClient connected') for episode in range(0, number_of_episodes): # Start a new episode. settings = CarlaSettings() settings.set( SynchronousMode=True, SendNonPlayerAgentsInfo=True, NumberOfVehicles=0, NumberOfPedestrians=60, WeatherId=1, PlayerVehicle='/Game/Blueprints/Vehicles/Mustang/Mustang.Mustang_C', QualityLevel='Epic') settings.randomize_seeds() # Now we want to add a couple of cameras to the player vehicle. # We will collect the images produced by these cameras every # frame. # The default camera captures RGB images of the scene. camera0 = Camera('CameraRGB') # Set image resolution in pixels. camera0.set_image_size(WIDTH, HEIGHT) # Set its position relative to the car in meters. camera0.set_position(1, 0, 2.50) camera0.set_rotation(0, 0, 0) settings.add_sensor(camera0) # Let's add another camera producing ground-truth depth. # camera1 = Camera('CameraDepth', PostProcessing='Depth') # camera1.set_image_size(800, 600) # camera1.set_position(0.30, 0, 1.30) # settings.add_sensor(camera1) camera2 = Camera('CameraSegmentation', PostProcessing='SemanticSegmentation') camera2.set_image_size(WIDTH, HEIGHT) camera2.set_position(1, 0, 2.50) settings.add_sensor(camera2) # Now we load these settings into the server. The server replies # with a scene description containing the available start spots for # the player. Here we can provide a CarlaSettings object or a # CarlaSettings.ini file as string. scene = client.load_settings(settings) # Choose one player start at random. # number_of_player_starts = len(scene.player_start_spots) # player_start = random.randint(0, max(0, number_of_player_starts - 1)) interval = lambda x, y: list(range(x, y+1)) player_starts = interval(29, 32) + interval(34, 43) + interval(45, 54) + interval(56, 57) + interval(64, 85) + interval(87, 96) + interval(98, 107) + interval(109, 118) + interval(120, 121) player_start = np.random.choice(player_starts) # Notify the server that we want to start the episode at the # player_start index. This function blocks until the server is ready # to start the episode. print('Starting new episode at %r...' % scene.map_name) client.start_episode(player_start) # Iterate every frame in the episode. for frame in range(0, frames_per_episode): # Read the data produced by the server this frame. measurements, sensor_data = client.read_data() obs, seg, mon = convert_image(sensor_data, WIDTH, HEIGHT, True) bboxes, directions, _ = get_bbox(measurements, seg) # Print some of the measurements. # print_measurements(measurements) # Save the images to disk if requested. if args.save_images_to_disk: for name, measurement in sensor_data.items(): filename = args.out_filename_format.format(episode, name, frame) measurement.save_to_disk(filename) # We can access the encoded data of a given image as numpy # array using its "data" property. For instance, to get the # depth value (normalized) at pixel X, Y # # depth_array = sensor_data['CameraDepth'].data # value_at_pixel = depth_array[Y, X] # # Now we have to send the instructions to control the vehicle. # If we are in synchronous mode the server will pause the # simulation until we send this control. control = measurements.player_measurements.autopilot_control control.steer += random.uniform(-0.1, 0.1) client.send_control(control) def print_measurements(measurements): number_of_agents = len(measurements.non_player_agents) player_measurements = measurements.player_measurements message = 'Vehicle at ({pos_x:.1f}, {pos_y:.1f}), ' message += '{speed:.0f} km/h, ' message += 'Collision: {{vehicles={col_cars:.0f}, pedestrians={col_ped:.0f}, other={col_other:.0f}}}, ' message += '{other_lane:.0f}% other lane, {offroad:.0f}% off-road, ' message += '({agents_num:d} non-player agents in the scene)' message = message.format( pos_x=player_measurements.transform.location.x, pos_y=player_measurements.transform.location.y, speed=player_measurements.forward_speed * 3.6, # m/s -> km/h col_cars=player_measurements.collision_vehicles, col_ped=player_measurements.collision_pedestrians, col_other=player_measurements.collision_other, other_lane=100 * player_measurements.intersection_otherlane, offroad=100 * player_measurements.intersection_offroad, agents_num=number_of_agents) print_over_same_line(message) def main(): argparser = argparse.ArgumentParser(description=__doc__) argparser.add_argument( '-v', '--verbose', action='store_true', dest='debug', help='print debug information') argparser.add_argument( '--host', metavar='H', default='localhost', help='IP of the host server (default: localhost)') argparser.add_argument( '-p', '--port', metavar='P', default=2000, type=int, help='TCP port to listen to (default: 2000)') argparser.add_argument( '-a', '--autopilot', action='store_true', help='enable autopilot') argparser.add_argument( '-l', '--lidar', action='store_true', help='enable Lidar') argparser.add_argument( '-q', '--quality-level', choices=['Low', 'Epic'], type=lambda s: s.title(), default='Epic', help='graphics quality level, a lower level makes the simulation run considerably faster.') argparser.add_argument( '-i', '--images-to-disk', action='store_true', dest='save_images_to_disk', help='save images (and Lidar data if active) to disk') argparser.add_argument( '-c', '--carla-settings', metavar='PATH', dest='settings_filepath', default=None, help='Path to a "CarlaSettings.ini" file') args = argparser.parse_args() log_level = logging.DEBUG if args.debug else logging.INFO logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level) logging.info('listening to server %s:%s', args.host, args.port) args.out_filename_format = '_out/episode_{:0>4d}/{:s}/{:0>6d}' while True: try: run_carla_client(args) print('Done.') return except TCPConnectionError as error: logging.error(error) time.sleep(1) if __name__ == '__main__': try: main() except KeyboardInterrupt: print('\nCancelled by user. Bye!')
StarcoderdataPython
191914
<reponame>pvtokmakov/video_cluster from src.datasets.kinetics import load_annotation_data, get_video_names_and_annotations, load_value_file import os import torch import json import argparse from os.path import join import numpy as np from src.objectives.localagg import run_kmeans_multi_gpu, run_kmeans DEFAULT_KMEANS_SEED = 1234 def get_parser(): parser = argparse.ArgumentParser(description="IDT video inference") parser.add_argument("--k", type=int, help="Number of clusters.") parser.add_argument("--num_c", type=int, help="Number of clusterings.") parser.add_argument("--frames_path", help="Path to Kinetics frames.") parser.add_argument("--annotation_path", help="Path to Kinetics annotation.") parser.add_argument("--fv_path", help="Path to Fisher vectors.") parser.add_argument("--clusters_path", help="Path to save cluster.") parser.add_argument("--processed_annotation_path", help="Path to output annotation file.") parser.add_argument('--gpu', nargs='*', help='GPU id') return parser def compute_clusters(data, k, gpu_devices): pred_labels = [] data_npy = data.cpu().detach().numpy() data_npy = np.float32(data_npy) for k_idx, each_k in enumerate(k): # cluster the data if len(gpu_devices) == 1: # single gpu I, _ = run_kmeans(data_npy, each_k, seed=k_idx + DEFAULT_KMEANS_SEED, gpu_device=gpu_devices[0]) else: # multigpu I, _ = run_kmeans_multi_gpu(data_npy, each_k, seed=k_idx + DEFAULT_KMEANS_SEED, gpu_device=gpu_devices) clust_labels = np.asarray(I) pred_labels.append(clust_labels) pred_labels = np.stack(pred_labels, axis=0) pred_labels = torch.from_numpy(pred_labels).long() return pred_labels if __name__ == "__main__": args = get_parser().parse_args() gpu_devices = [] if args.gpu: ids_list = '' for i in range(len(args.gpu)): ids_list += args.gpu[i] + ',' gpu_devices.append(int(args.gpu[i])) ids_list = ids_list[:-1] os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = ids_list frames_path = args.frames_path annotation_path = args.annotation_path fv_path = args.fv_path k = args.k n_clusters = args.num_c data = load_annotation_data(annotation_path) video_names, annotations = get_video_names_and_annotations(data, "training") count_valid = 0 count_missing = 0 fvs = [] database = {} labels = set([]) for i in range(len(video_names)): if i % 1000 == 0: print('dataset loading [{}/{}]'.format(i, len(video_names))) vid_key = video_names[i].split("/")[-1] vid_label = video_names[i].split("/")[-2].replace("_", " ") video_path = os.path.join(frames_path, video_names[i]) if not os.path.exists(video_path): continue n_frames_file_path = os.path.join(video_path, 'n_frames') n_frames = int(load_value_file(n_frames_file_path)) if n_frames <= 0: continue count_valid += 1 fv_vid_path = os.path.join(fv_path, video_names[i]) + ".dat" if not os.path.exists(fv_vid_path): count_missing += 1 continue else: fv = torch.load(fv_vid_path) value = {} value['subset'] = 'training' value['annotations'] = {} value['annotations']['label'] = vid_label database[vid_key] = value labels.add(vid_label) fvs.append(fv.cpu().squeeze()) for key, value in data['database'].items(): this_subset = value['subset'] if (this_subset == 'validation' and (value['annotations']['label'] in labels)) or this_subset == 'testing': database[key] = value print("%d missing out of %d\n" % (count_missing, count_valid)) fvs = torch.stack(fvs) k = [k for _ in range(n_clusters)] cluster_labels = compute_clusters(fvs, k, gpu_devices) os.mkdir(join(args.clusters_path, "checkpoints")) torch.save({'cluster_labels': cluster_labels}, join(args.clusters_path, "checkpoints/checkpoint.pth.tar")) out = {} out['labels'] = list(labels) out['database'] = database with open(args.processed_annotation_path, 'w') as dst_file: json.dump(out, dst_file)
StarcoderdataPython
3240435
#!/usr/bin/env python # Copyright (c) 2007 XenSource, Inc. # # Permission to use, copy, modify, and distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. # Parse/regenerate the "disk provisioning" XML contained within templates # NB this provisioning XML refers to disks which should be created when # a VM is installed from this template. It does not apply to templates # which have been created from real VMs -- they have their own disks. import XenAPI import xml.dom.minidom class Disk: """Represents a disk which should be created for this VM""" def __init__(self, device : str =None, size : str =None, sr : str =None, bootable : bool =None, element=None): if element: self.device = element.getAttribute("device") self.size = element.getAttribute("size") self.sr = element.getAttribute("sr") self.bootable = element.getAttribute("bootable") == "true" else: if not any((device, size, sr, bootable)): raise ValueError("specify either Element or all of device, size, sr, bootable") self.device = device # 0, 1, 2, ... self.size = size # in bytes self.sr = sr # uuid of SR self.bootable = bootable def toElement(self, doc : xml.dom.minidom.Document): disk = doc.createElement("disk") disk.setAttribute("device", self.device) disk.setAttribute("size", self.size) disk.setAttribute("sr", self.sr) b = "false" if self.bootable: b = "true" disk.setAttribute("bootable", b) return disk class ProvisionSpec: """Represents a provisioning specification: currently a list of required disks""" def toElement(self, doc : xml.dom.minidom.Document): element = doc.createElement("provision") for disk in self.disks: element.appendChild(disk.toElement(doc)) return element def setSR(self, sr): """Set the requested SR for each disk""" for disk in self.disks: disk.sr = sr def setDiskSize(self, size): (self.disks)[0].size = size def __str__(self): doc = xml.dom.minidom.Document() doc.appendChild(self.toElement(doc)) return doc.toprettyxml() def __init__(self, spec=None): self.disks = [] if spec: doc = xml.dom.minidom.parseString(txt) all = doc.getElementsByTagName("provision") if len(all) != 1: raise "Expected to find exactly one <provision> element" disks = all[0].getElementsByTagName("disk") for disk in disks: self.disks.append(Disk(disk)) def getProvisionSpec(session, vm): """Read the provision spec of a template/VM""" other_config = session.xenapi.VM.get_other_config(vm) return ProvisionSpec(spec=other_config['disks']) def setProvisionSpec(session, vm, ps): """Set the provision spec of a template/VM""" txt = str(ps) try: session.xenapi.VM.remove_from_other_config(vm, "disks") except: pass session.xenapi.VM.add_to_other_config(vm, "disks", txt) if __name__ == "__main__": print ("Unit test of provision XML spec module") print ("--------------------------------------") ps = ProvisionSpec() ps.disks.append(Disk("0", "1024", "0000-0000", True)) ps.disks.append(Disk("1", "2048", "1111-1111", False)) print ("* Pretty-printing spec") txt = str(ps) print (txt) print ("* Re-parsing output") ps2 = ProvisionSpec(txt) print ("* Pretty-printing spec") txt2 = str(ps) print (txt2) if txt != txt2: raise "Sanity-check failed: print(parse(print(x))) <> print(x)" print ("* OK: print(parse(print(x))) == print(x)")
StarcoderdataPython
3346475
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from typing import Dict, List, NamedTuple, Optional from torch import Tensor EncoderOut = NamedTuple( "EncoderOut", [ ("encoder_out", Tensor), # T x B x C ("encoder_padding_mask", Optional[Tensor]), # B x T ("encoder_embedding", Optional[Tensor]), # B x T x C ("encoder_states", Optional[List[Tensor]]), # List[T x B x C] ("src_tokens", Optional[Tensor]), # B x T ("src_lengths", Optional[Tensor]), # B x 1 ], ) class FairseqEncoder(nn.Module): """Base class for encoders.""" def __init__(self, dictionary): super().__init__() self.dictionary = dictionary def forward(self, src_tokens, src_lengths=None, **kwargs): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (LongTensor): lengths of each source sentence of shape `(batch)` """ raise NotImplementedError def forward_torchscript(self, net_input: Dict[str, Tensor]): """A TorchScript-compatible version of forward. Encoders which use additional arguments may want to override this method for TorchScript compatibility. """ if torch.jit.is_scripting(): return self.forward( src_tokens=net_input["src_tokens"], src_lengths=net_input["src_lengths"], ) else: return self.forward_non_torchscript(net_input) @torch.jit.unused def forward_non_torchscript(self, net_input: Dict[str, Tensor]): encoder_input = { k: v for k, v in net_input.items() if k != "prev_output_tokens" } return self.forward(**encoder_input) def reorder_encoder_out(self, encoder_out, new_order): """ Reorder encoder output according to `new_order`. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: `encoder_out` rearranged according to `new_order` """ raise NotImplementedError def max_positions(self): """Maximum input length supported by the encoder.""" return 1e6 # an arbitrary large number def upgrade_state_dict(self, state_dict): """Upgrade a (possibly old) state dict for new versions of fairseq.""" return state_dict
StarcoderdataPython
74027
from setuptools import find_packages, setup description = 'Create webhook services for Dialogflow using Python' setup( name='dialogflow-fulfillment', version='0.4.4', author='<NAME>', author_email='<EMAIL>', packages=find_packages('src'), package_dir={'': 'src'}, url='https://github.com/gcaccaos/dialogflow-fulfillment', project_urls={ 'Documentation': 'https://dialogflow-fulfillment.readthedocs.io', }, license='Apache License 2.0', description=description, long_description_content_type='text/markdown', long_description=open('README.md').read(), include_package_data=True, python_requires='>=3', extras_require={ 'dev': [ 'tox==3.24.1', 'setuptools==57.4.0', 'wheel==0.36.2', 'twine==3.4.2', ], 'lint': [ 'flake8==3.9.2', 'flake8-docstrings==1.6.0', 'flake8-isort==4.0.0', 'pre-commit==2.13.0', ], 'docs': [ 'sphinx==4.1.2', 'sphinx-autobuild==2021.3.14', 'sphinx-rtd-theme==0.5.2', 'sphinxcontrib-mermaid==0.7.1' ], 'tests': [ 'pytest==6.2.4', 'coverage==5.5', ] }, keywords=[ 'dialogflow', 'fulfillment', 'webhook', 'api', 'python', ], classifiers=[ 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Software Development :: Libraries :: Python Modules', ], )
StarcoderdataPython
127021
<reponame>ShujaKhalid/deep-rl '''Autogenerated by xml_generate script, do not edit!''' from OpenGL import platform as _p, arrays # Code generation uses this from OpenGL.raw.GL import _types as _cs # End users want this... from OpenGL.raw.GL._types import * from OpenGL.raw.GL import _errors from OpenGL.constant import Constant as _C import ctypes _EXTENSION_NAME = 'GL_SUN_triangle_list' def _f( function ): return _p.createFunction( function,_p.PLATFORM.GL,'GL_SUN_triangle_list',error_checker=_errors._error_checker) GL_R1UI_C3F_V3F_SUN=_C('GL_R1UI_C3F_V3F_SUN',0x85C6) GL_R1UI_C4F_N3F_V3F_SUN=_C('GL_R1UI_C4F_N3F_V3F_SUN',0x85C8) GL_R1UI_C4UB_V3F_SUN=_C('GL_R1UI_C4UB_V3F_SUN',0x85C5) GL_R1UI_N3F_V3F_SUN=_C('GL_R1UI_N3F_V3F_SUN',0x85C7) GL_R1UI_T2F_C4F_N3F_V3F_SUN=_C('GL_R1UI_T2F_C4F_N3F_V3F_SUN',0x85CB) GL_R1UI_T2F_N3F_V3F_SUN=_C('GL_R1UI_T2F_N3F_V3F_SUN',0x85CA) GL_R1UI_T2F_V3F_SUN=_C('GL_R1UI_T2F_V3F_SUN',0x85C9) GL_R1UI_V3F_SUN=_C('GL_R1UI_V3F_SUN',0x85C4) GL_REPLACEMENT_CODE_ARRAY_POINTER_SUN=_C('GL_REPLACEMENT_CODE_ARRAY_POINTER_SUN',0x85C3) GL_REPLACEMENT_CODE_ARRAY_STRIDE_SUN=_C('GL_REPLACEMENT_CODE_ARRAY_STRIDE_SUN',0x85C2) GL_REPLACEMENT_CODE_ARRAY_SUN=_C('GL_REPLACEMENT_CODE_ARRAY_SUN',0x85C0) GL_REPLACEMENT_CODE_ARRAY_TYPE_SUN=_C('GL_REPLACEMENT_CODE_ARRAY_TYPE_SUN',0x85C1) GL_REPLACEMENT_CODE_SUN=_C('GL_REPLACEMENT_CODE_SUN',0x81D8) GL_REPLACE_MIDDLE_SUN=_C('GL_REPLACE_MIDDLE_SUN',0x0002) GL_REPLACE_OLDEST_SUN=_C('GL_REPLACE_OLDEST_SUN',0x0003) GL_RESTART_SUN=_C('GL_RESTART_SUN',0x0001) GL_TRIANGLE_LIST_SUN=_C('GL_TRIANGLE_LIST_SUN',0x81D7) @_f @_p.types(None,_cs.GLenum,_cs.GLsizei,arrays.GLvoidpArray) def glReplacementCodePointerSUN(type,stride,pointer):pass @_f @_p.types(None,_cs.GLubyte) def glReplacementCodeubSUN(code):pass @_f @_p.types(None,arrays.GLubyteArray) def glReplacementCodeubvSUN(code):pass @_f @_p.types(None,_cs.GLuint) def glReplacementCodeuiSUN(code):pass @_f @_p.types(None,arrays.GLuintArray) def glReplacementCodeuivSUN(code):pass @_f @_p.types(None,_cs.GLushort) def glReplacementCodeusSUN(code):pass @_f @_p.types(None,arrays.GLushortArray) def glReplacementCodeusvSUN(code):pass
StarcoderdataPython
36897
import pandas as pd from visions import visions_string, visions_datetime from visions.core.model import TypeRelation from visions.core.model.relations import InferenceRelation from visions.utils.coercion import test_utils def to_datetime_year_week(series): """Convert a series of the format YYYY/UU (year, week) to datetime. A '0' is added as day dummy value, as pandas requires a day value to parse. Args: series: the Series to parse Returns: A datetime series Examples: >>> series = pd.Series(['2018/47', '2018/12', '2018/03']) >>> parsed_series = to_datetime_year_week(series) >>> print(parsed_series.dt.week) 0 47 1 12 2 3 dtype: int64 """ return pd.to_datetime(series + "0", format="%Y/%U%w") def to_datetime_year_month_day(series): """Convert a series of the format YYYYMMDD (year, month, day) to datetime. Args: series: the Series to parse Returns: A datetime series Examples: >>> series = pd.Series(['20181201', '20181202', '20181203']) >>> parsed_series = to_datetime_year_week(series) >>> print(parsed_series.dt.day) 0 1 1 2 2 3 dtype: int64 """ return pd.to_datetime(series, format="%Y%m%d") def get_string_datetime_type_relation(func): return InferenceRelation( relationship=test_utils.coercion_test(func), transformer=func, related_type=visions_string, type=visions_datetime, ) def string_to_datetime_year_week(): return get_string_datetime_type_relation(to_datetime_year_week) def string_to_datetime_year_month_day(): return get_string_datetime_type_relation(to_datetime_year_month_day)
StarcoderdataPython
3388038
class GenericUriParser(UriParser): """ A customizable parser for a hierarchical URI. GenericUriParser(options: GenericUriParserOptions) """ @staticmethod def __new__(self,options): """ __new__(cls: type,options: GenericUriParserOptions) """ pass
StarcoderdataPython
182208
<filename>ae5_tools/cli/commands/pod.py import sys import click from ..login import cluster_call from ..utils import add_param, ident_filter, global_options @click.group(short_help='info, list', epilog='Type "ae5 user <command> --help" for help on a specific command.') @global_options def pod(): '''Commands related to the AE5 pods (sessions, deployments, runs). These commands require that either K8S deployment to be live on the platform, or the --k8s-ssh-user option be supplied with a valid username. ''' pass @pod.command() @ident_filter('pod') @global_options def list(**kwargs): '''List all nodes.''' cluster_call('pod_list', **kwargs) @pod.command() @ident_filter('pod', required=True) @global_options def info(**kwargs): '''Get information about a specific pod.''' cluster_call('pod_info', **kwargs)
StarcoderdataPython
1623308
<gh_stars>1-10 """ Module for definig an instance of a detected symptom """ class Symptom: """ An object to represent an occurence of a specific symptom""" def __init__(self, tag, action_msg, signal): self.tag = tag self.action_msg = action_msg self.signal = signal self.start_timestamp = signal.start_timestamp self.duration = signal.duration def convert_to_dict(self): dict_form = self.__dict__ dict_form["start_timestamp"] = str(dict_form["start_timestamp"]) dict_form["duration"] = str(dict_form["duration"]) dict_form["signal"] = dict_form["signal"].convert_to_dict() return dict_form
StarcoderdataPython
3244649
import discord import discord.ext.commands as commands import time as time_module import sys import pickle import asyncio sys.path.insert(0, "../") import util class Reminders(commands.Cog): def __init__(self, bot, timeouts, generic_responses): self.bot = bot self.timeouts = timeouts self.generic_responses = generic_responses try: self.reminders = pickle.load(open("user_data/reminders.pickle", "rb")) except FileNotFoundError: self.reminders = list() self.reminders_changed = False try: self.reminders_blocklist = pickle.load(open("user_data/reminders_blocklist.pickle", "rb")) except FileNotFoundError: self.reminders_blocklist = dict() self.reminders_blocklist_changed = False bot.loop.create_task(self.reminders_autoflush()) bot.loop.create_task(self.reminders_remind()) async def reminders_autoflush(self): while True: await asyncio.sleep(20) if self.reminders_changed: pickle.dump(self.reminders, open("user_data/reminders.pickle", "wb")) self.reminders_changed = False if self.reminders_blocklist_changed: pickle.dump(self.reminders_blocklist, open("user_data/reminders_blocklist.pickle", "wb")) self.reminders_blocklist_changed = False async def reminders_remind(self): while True: await asyncio.sleep(10) current_time = time_module.time() reminders = self.reminders.copy() for reminder in reminders: try: if reminder[1] < current_time: user = self.bot.get_user(reminder[0]) user_dm = await user.create_dm() if len(reminder) == 3: # old reminders without a message link await user_dm.send("привет. you wanted me to remind you of:\n```" + reminder[2] + "```(no message link available)") else: await user_dm.send("привет. you wanted me to remind you of:\n```" + reminder[2] + "```https://discordapp.com/channels/" + reminder[3]) self.reminders.remove(reminder) self.reminders_changed = True except: pass def add_reminder(self, user, timestamp, text, link): self.reminders.append([user, timestamp, text, link]) self.reminders_changed = True def get_reminders(self, user): reminders_list = list() for reminder in self.reminders: if reminder[0] == user: buffer = reminder.copy() buffer = buffer[1:] reminders_list.append(buffer) reminders_list.sort() return reminders_list @commands.command() async def remind(self, ctx, time, *message): # TODO: Rewrite this command as a command group, so it's less cluttered """The remind command can remind you or another user of something. Usage: remind [time] [message] will set a reminder for yourself remind [@user] [time] [message] will set a reminder for another user remind list will send a message with a list of set reminders remind list [@user] will send a message with a list of set reminders for the mentioned user remind remove [id] will remove the specified reminder remind blocklist will send a message with a list of blocked users (who can't set reminders for you) remind blocklist add [@user] will add a user to your blocklist remind blocklist remove [@user] will remove a user from your blocklist""" message = " ".join(message) if time == "list": if len(ctx.message.mentions) > 0: user = ctx.message.mentions[0] else: user = ctx.message.author reminders_list = self.get_reminders(user.id) if len(reminders_list) == 0: await ctx.send("No reminders are set!") return current_time = int(time_module.time()) i = 0 message = "**Reminders for " + user.name + "**\n" for reminder in reminders_list: message += "**[" + str(i) + "]**" + " in " + util.time_calc.time_period_human_readable(reminder[0] - current_time) + " `" + reminder[1] + "`\n" i += 1 await ctx.send(message[:-1]) elif time == "blocklist": if len(ctx.message.mentions) > 0: message = message.split(" ") user = ctx.message.mentions[0] if ctx.message.author.id not in self.reminders_blocklist: self.reminders_blocklist[ctx.message.author.id] = list() if message[0] == "add": self.reminders_blocklist[ctx.message.author.id].append(user.id) self.reminders_blocklist_changed = True await ctx.send("Added **" + user.name + "** to your blocklist!") elif message[0] == "remove": try: self.reminders_blocklist[ctx.message.author.id].remove(user.id) self.reminders_blocklist_changed = True await ctx.send("Removed **" + user.name + "** from your blocklist!") except ValueError: await ctx.send("**" + user.name + "** was not found in your blocklist!") else: if ctx.message.author.id not in self.reminders_blocklist or len(self.reminders_blocklist[ctx.message.author.id]) == 0: await ctx.send("**You haven't blocked anyone!**") return message = "**Reminders blocklist:**\n" for blocked in self.reminders_blocklist[ctx.message.author.id]: user = self.bot.get_user(blocked) if user == None: username = "[Username not available]" else: username = user.name message += "**" + username + "** (" + str(blocked) + ")\n" await ctx.send(message) elif time == "remove": eyedee = int(message[0]) reminders = self.get_reminders(ctx.message.author.id) reminder = reminders[eyedee] self.reminders.remove([ctx.message.author.id, *reminder]) self.reminders_changed = True await ctx.send("Removed reminder #" + str(eyedee)) else: if len(ctx.message.mentions) > 0 and time.startswith("<@"): user = ctx.message.mentions[0] offset_args = True else: user = ctx.message.author offset_args = False if offset_args: time = message.split(" ")[0] message = " ".join(message.split(" ")[1:]) if user.id == self.bot.user.id: await ctx.send("and i say no") return timestamp = int(util.time_calc.timestamp_in(time)) if user.id in self.reminders_blocklist and ctx.message.author.id in self.reminders_blocklist[user.id]: await ctx.send("This user has blocked you from creating reminders for them!") return link = str(ctx.message.guild.id) + "/" + str(ctx.message.channel.id) + "/" + str(ctx.message.id) self.add_reminder(user.id, timestamp, message, link) if offset_args: await ctx.send("я буду remind " + user.name) else: await ctx.send("я буду remind you")
StarcoderdataPython
1610091
<filename>patch_performance/__init__.py from cb_performance import get_all_cb_sets_perf, group_poll_results, get_perf_totals from cb_score import compute_overhead from perf_constants import SIZE_PERF_NAME from farnsworth.models import PatchScore, Round, PatchType import logging l = logging.getLogger("patch_performance.main") def compute_patch_performance(target_cs): """ Compute patch performance for all patched binaries of given CS. This will update DB with results. :param target_cs: CS for which patch performance needs to be computed. :return: None. """ l.info("Trying to compute patch performance for CS:" + str(target_cs.id)) patched_bins_perf = get_all_cb_sets_perf(target_cs) l.info("Got Raw Perf Scores.") l.info("Trying to Group Raw Scores.") grouped_perf_results = group_poll_results(patched_bins_perf) l.info("Grouped Raw Scores.") original_cbs_perf = [] if 'original' in grouped_perf_results: original_cbs_perf = grouped_perf_results['original'] del grouped_perf_results['original'] if len(original_cbs_perf) <= 0: l.warning("No polls have been evaluated against original binary. " "Ignoring this round of patch performance computation.") return if len(original_cbs_perf['fail']) > 0: l.warning("Weired. There are some failed polls for original binary, ignoring failed polls.") # consider only passed polls original_cbs_perf = original_cbs_perf['pass'] for curr_patch_type in grouped_perf_results: l.info("Computing Scores for Patch Type:" + str(curr_patch_type)) pass_perf_objects = grouped_perf_results[curr_patch_type]['pass'] patched_cbs_pass_poll_ids = [] if len(pass_perf_objects) > 0: patched_cbs_pass_poll_ids = map(lambda perf_obj: perf_obj.poll.id, pass_perf_objects) else: l.warning("No passed polls found for Patch Type:" + str(curr_patch_type)) # skip to next patch type continue failed_perf_objects = grouped_perf_results[curr_patch_type]['fail'] has_fails = len(failed_perf_objects) > 0 failed_polls = [] if has_fails: failed_polls = map(lambda perf_obj: perf_obj.poll.id, failed_perf_objects) failed_polls_json = {'poll_ids': list(failed_polls)} original_cbs_pass_poll_ids = map(lambda perf_obj: perf_obj.poll.id, original_cbs_perf) common_pass_poll_ids = set(original_cbs_pass_poll_ids) common_pass_poll_ids.intersection_update(patched_cbs_pass_poll_ids) if not (len(common_pass_poll_ids) > 0): l.warning("No polls have been common between original and patched cbs. Ignoring patch type:" + str(curr_patch_type)) # skip to next patch type continue polls_included = {'poll_ids': list(common_pass_poll_ids)} base_perf_objects = filter(lambda perf_obj: perf_obj.poll.id in common_pass_poll_ids, original_cbs_perf) patched_perf_objects = filter(lambda perf_obj: perf_obj.poll.id in common_pass_poll_ids, pass_perf_objects) base_perf_jsons = map(lambda perf_obj: perf_obj.performances['perf']['median'], base_perf_objects) patched_perf_jsons = map(lambda perf_obj: perf_obj.performances['perf']['median'], patched_perf_objects) base_perf_total = get_perf_totals(base_perf_jsons) # get the size of binaries, size of the binaries will be same on all runs base_perf_total[SIZE_PERF_NAME] = base_perf_jsons[0][SIZE_PERF_NAME] patched_perf_total = get_perf_totals(patched_perf_jsons) # again size of binaries will be same across all tests. patched_perf_total[SIZE_PERF_NAME] = patched_perf_jsons[0][SIZE_PERF_NAME] target_score = compute_overhead(base_perf_total, patched_perf_total) l.info("Trying to create PatchScore into DB for patch type:" + str(curr_patch_type) + " for cs:" + str(target_cs.id)) # convert patch type name to PatchType curr_patch_type = PatchType.get(PatchType.name == curr_patch_type) # create patch score PatchScore.create(cs=target_cs, patch_type=curr_patch_type, num_polls=len(common_pass_poll_ids), polls_included=polls_included, has_failed_polls=has_fails, failed_polls=failed_polls_json, round=Round.current_round(), perf_score=target_score)
StarcoderdataPython
1722918
# Reads data from QuickBooks Excel output, and combines two detail profit and loss files (from two time periods) into one # file which keeps the detail from each time period but also shows the comparision between the two periods import numpy as np import pandas as pd def read_db_from_file(filename): # Read in the data from Excel and drop unusued columns df = pd.read_excel(filename) del df['Unnamed: 6'] df = df.drop([0,1,2,3,4]) return df def parse_QB_data(filename): # df1 will be our output dataframe df1 = pd.DataFrame(columns=['Category','Date','Memo', 'Amount']) lastdescr = 'start' newheading = False descr = "" for index, row in df.iterrows(): descr = row["Business name"] date1 = row['Unnamed: 1'] memo1 = row['Unnamed: 3'] memo2 = row['Unnamed: 4'] amount = row['Unnamed: 5'] if np.isnan(amount): lastdescr = descr if isinstance(descr, float): if np.isnan(descr): # This code is to combine the memo1 and memo2, removing NaNs (equivalent to blank cells in the original files): concat_memo = True if isinstance(memo1, float): if np.isnan(memo1): memo = str(memo2) concat_memo = False if isinstance(memo2, float): if np.isnan(memo2): memo = str(memo1) concat_memo = False if isinstance(memo1, float) and isinstance(memo2, float): if np.isnan(memo1) and np.isnan(memo2): memo = "" concat_memo = False if concat_memo: memo = str(memo1) + ", " + str(memo2) df1 = df1.append({"Category": lastdescr, "Date": date1, "Memo": memo, "Amount": amount}, ignore_index=True) df1['Date'] = pd.to_datetime(df1['Date']) return df1 def combine_year_data(df2019, df2020): dfout = pd.DataFrame(columns=['Category', 'Date', 'Memo', 'Amount', 'Total','Difference','Difference_Percent']) lastcategory = "start" total = 0 for index, row in df2019.iterrows(): category = row["Category"] date = row['Date'] memo = row['Memo'] amount = row['Amount'] if category != lastcategory: # We found a new category # Write out a subtotal dfout = dfout.append({"Memo": "A:", "Total": total}, ignore_index=True) # Find the next year's entries for that category total2 = 0 for index2, row2 in df2020.iterrows(): # This simplistic approach is really slow (? O(n^2)) but works fine for this use case # which is just a small number of transactions category2 = row2["Category"] date2 = row2['Date'] memo2 = row2['Memo'] amount2 = row2['Amount'] if category2 == lastcategory: dfout = dfout.append(row2) total2 += amount2 # Write out a subtotal dfout = dfout.append({"Memo": "B:", "Total": total2}, ignore_index=True) if total == 0: # Don't calculate percentage if total = 0 as that will throw an error dfout = dfout.append({"Difference": total2-total}, ignore_index=True) else: dfout = dfout.append({"Difference": total2-total, "Difference_Percent": (total2-total)/total}, ignore_index=True) dfout = dfout.append({"Category": ""}, ignore_index=True) total = 0 dfout = dfout.append({"Category": category, "Date": date, "Memo": memo, "Amount": amount}, ignore_index=True) lastcategory = category total += amount return dfout df = read_db_from_file(r'2019.xlsx') df2019 = parse_QB_data(df) df = read_db_from_file(r'2020.xlsx') df2020 = parse_QB_data(df) dfout = combine_year_data(df2019, df2020) dfout.to_excel("out.xlsx", index=False)
StarcoderdataPython
3379425
<gh_stars>1-10 # Simple Class with class variable # Class with init # Class with StaticMethod # Class with print method # Advance class with inheritance class Person: Answer = 42 # Class Variable, Shared by all instance def __init__(self, name): self.name = name # Instance Variable @staticmethod def something(): return Person.Answer abc = Person("ABC") pqr = Person("pqr") print(abc.name) print(abc.Answer) print(pqr.name) print(pqr.Answer) abc.Answer = 0 print(abc.Answer) print(pqr.Answer) Person.Answer = "How about now?" print(pqr.Answer) print(abc.Answer) del abc.Answer print(abc.Answer) print(Person.something()) print("\n\n") #### Advance Class class Person: def __init__(self, name, age): self.name = name self.age = age def __repr__(self): return repr((self.name,self.age)) def __eq__(self, other): if isinstance(other, Person): return self.name == other.name def print_age_class(self): print("Child" if self.age < 13 else "Something-else") @classmethod def class_method(cls): def new_method(self): print(f"New Method {self.name}") setattr(cls, 'new_method', new_method) x = Person("ABC",50) print(x) x.print_age_class() # x.new_method() # This will not work. x.class_method() x.new_method() # OR Person.new_method() ###### Inheritance class Child(Person): def __init__(self, name, age): super().__init__(name, age) self.age_class = "Child" def print_category(self): print(self.name,self.age,self.age_class) def new_method(self): print("This will be overridden") c = Child("Child",2) c.print_category() c.new_method() c.class_method() c.new_method() #### Decorator def uppercase_decorator(function): def wrapper(): result_of_function_execution = function() uppercased = result_of_function_execution.upper() return uppercased return wrapper def some_string(): return "Hello World!" print(some_string()) decorate = uppercase_decorator(some_string) print(decorate()) @uppercase_decorator def some_string_annotation(): return "Uppercase String!" print(some_string_annotation()) # Decorator use case: import requests @uppercase_decorator def get_results(): return requests.get("http://www.mocky.io/v2/5dadc1602d00008040e4bcb3").text print(get_results()) #### Generator def number_generator(stop,multiply): num = 0 while(num < stop): num += 1 yield num*multiply print(type(number_generator(5,10))) print(list(number_generator(5,10))) print([f"${i}" for i in number_generator(5,10)]) #### Write decorate which converts number list to string with currency symbol # List: [1, 2, 3, 4] # Outcome: ['$0', '$1', '$2', '$3', '$4']
StarcoderdataPython
1607294
<filename>studentdb/api/urls.py from django.urls import path from rest_framework.urlpatterns import format_suffix_patterns from api import views urlpatterns = [ path('add', views.AddAPIView.as_view()), path('students', views.StudentListAPIView.as_view()), path('student/<id>', views.StudentDetailAPIView.as_view()), path('students/<id>', views.StudentUpdateAPIView.as_view()), path('clear', views.ClearStudentRecordsAPIView.as_view()), ] urlpatterns = format_suffix_patterns(urlpatterns)
StarcoderdataPython
1692788
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ MAST Portal =========== Module to query the <NAME> Archive for Space Telescopes (MAST). """ from __future__ import print_function, division import warnings import json import time import os import re #import keyring import io import numpy as np from requests import HTTPError from getpass import getpass from base64 import b64encode import astropy.units as u import astropy.coordinates as coord from astropy.table import Table, Row, vstack, MaskedColumn from astropy.extern.six.moves.urllib.parse import quote as urlencode from astropy.extern.six.moves.http_cookiejar import Cookie from astropy.utils.exceptions import AstropyWarning from astropy.logger import log from ..query import BaseQuery from ..utils import commons, async_to_sync from ..utils.class_or_instance import class_or_instance from ..exceptions import (TimeoutError, InvalidQueryError, RemoteServiceError, LoginError, ResolverError, MaxResultsWarning, NoResultsWarning, InputWarning, AuthenticationWarning) from . import conf __all__ = ['Registry', 'RegistryClass'] # # Functions to help replace bytes with strings in astropy tables that came from VOTABLEs # def sval(val): """ Returns a string value for the given object. When the object is an instanceof bytes, utf-8 decoding is used. Parameters ---------- val : object The object to convert Returns ------- string The input value converted (if needed) to a string """ if (isinstance(val, bytes)): return str(val, 'utf-8') else: return str(val) # Create a version of sval() that operates on a whole column. svalv = np.vectorize(sval) def sval_whole_column(single_column): """ Returns a new column whose values are the string versions of the values in the input column. The new column also keeps the metadata from the input column. Parameters ---------- single_column : astropy.table.Column The input column to stringify Returns ------- astropy.table.Column Stringified version of input column """ new_col = svalv(single_column) new_col.meta = single_column.meta return new_col def stringify_table(t): """ Substitutes strings for bytes values in the given table. Parameters ---------- t : astropy.table.Table An astropy table assumed to have been created from a VOTABLE. Returns ------- astropy.table.Table The same table as input, but with bytes-valued cells replaced by strings. """ # This mess will look for columns that should be strings and convert them. if (len(t) is 0): return # Nothing to convert scols = [] for col in t.columns: colobj = t.columns[col] if (colobj.dtype == 'object' and isinstance(t[colobj.name][0], bytes)): scols.append(colobj.name) for colname in scols: t[colname] = sval_whole_column(t[colname]) class RegistryClass(BaseQuery): """ Registry query class. """ def __init__(self): super(RegistryClass, self).__init__() self._REGISTRY_TAP_SYNC_URL = conf.registry_tap_url + "/sync" def query(self, **kwargs): adql = self._build_adql(**kwargs) x = """ select b.waveband,b.short_name,a.ivoid,b.res_description,c.access_url,b.reference_url from rr.capability a natural join rr.resource b natural join rr.interface c where a.cap_type='SimpleImageAccess' and a.ivoid like 'ivo://%stsci%' order by short_name """ if 'debug' in kwargs and kwargs['debug']==True: print ('Registry: sending query ADQL = {}\n'.format(adql)) if 'method' in kwargs: method = kewargs['method'] else: method = 'POST' url = self._REGISTRY_TAP_SYNC_URL tap_params = { "request": "doQuery", "lang": "ADQL", "query": adql } response = self._request(method, url, data=tap_params) if 'debug' in kwargs and kwargs['debug']==True: print('Queried: {}\n'.format(response.url)) aptable = self._astropy_table_from_votable_response(response) return aptable def _build_adql(self, **kwargs): # Default values service_type="" keyword="" waveband="" source="" order_by="" logic_string=" and " # Find the keywords we recognize for key,val in kwargs.items(): if (key == 'service_type'): service_type = val elif (key == 'keyword'): keyword = val elif (key == 'waveband'): waveband = val elif (key == 'source'): source = val elif (key == 'order_by'): order_by = val elif (key == 'logic_string'): logic_string = val ## if "image" in service_type.lower(): service_type="simpleimageaccess" elif "spectr" in service_type.lower(): service_type="simplespectralaccess" elif "cone" in service_type.lower(): service_type="conesearch" else: service_type="tableaccess" query_retcols=""" select res.waveband,res.short_name,cap.ivoid,res.res_description, int.access_url, res.reference_url from rr.capability cap natural join rr.resource res natural join rr.interface int """ x = """ select b.waveband,b.short_name,a.ivoid,b.res_description,c.access_url,b.reference_url from rr.capability a natural join rr.resource b natural join rr.interface c """ query_where="where " wheres=[] if service_type is not "": wheres.append("cap.cap_type='{}'".format(service_type)) if source is not "": wheres.append("cap.ivoid like '%{}%'".format(source)) if waveband is not "": wheres.append("res.waveband like '%{}%'".format(waveband)) if (keyword is not ""): keyword_where = """ (res.res_description like '%{}%' or res.res_title like '%{}%' or cap.ivoid like '%{}%') """.format(keyword, keyword, keyword) wheres.append(keyword_where) query_where=query_where+logic_string.join(wheres) if order_by is not "": query_order="order by {}".format(order_by) else: query_order="" query=query_retcols+query_where+query_order return query def _astropy_table_from_votable_response(self, response): """ Takes a VOTABLE response from a web service and returns an astropy table. Parameters ---------- response : requests.Response Response whose contents are assumed to be a VOTABLE. Returns ------- astropy.table.Table Astropy Table containing the data from the first TABLE in the VOTABLE. """ # The astropy table reader would like a file-like object, so convert # the response content a byte stream. This assumes Python 3.x. # # (The reader also accepts just a string, but that seems to have two # problems: It looks for newlines to see if the string is itself a table, # and we need to support unicode content.) file_like_content = io.BytesIO(response.content) # The astropy table reader will auto-detect that the content is a VOTABLE # and parse it appropriately. aptable = Table.read(file_like_content) # String values in the VOTABLE are stored in the astropy Table as bytes instead # of strings. To makes accessing them more convenient, we will convert all those # bytes values to strings. stringify_table(aptable) return aptable Registry = RegistryClass()
StarcoderdataPython
1690092
import pytest from bids.layout import BIDSLayout from os.path import join, abspath, sep from bids.tests import get_test_data_path @pytest.fixture(scope='module') def layout(): data_dir = join(get_test_data_path(), '7t_trt') return BIDSLayout(data_dir) def test_bold_construction(layout): ents = dict(subject='01', run=1, task='rest', suffix='bold') assert layout.build_path(ents) == "sub-01/func/sub-01_task-rest_run-1_bold.nii.gz" ents['acquisition'] = 'random' assert layout.build_path(ents) == "sub-01/func/sub-01_task-rest_acq-random_run-1_bold.nii.gz" def test_invalid_file_construction(layout): # no hyphens allowed! ents = dict(subject='01', run=1, task='resting-state', suffix='bold') with pytest.raises(ValueError): layout.build_path(ents) target = "sub-01/func/sub-01_task-resting-state_run-1_bold.nii.gz" assert layout.build_path(ents, validate=False) == target def test_failed_file_construction(layout): ents = dict(subject='01', fakekey='foobar') with pytest.raises(ValueError): layout.build_path(ents, strict=True) @pytest.mark.parametrize("strict", [True, False]) @pytest.mark.parametrize("validate", [True, False]) def test_insufficient_entities(layout, strict, validate): """Check https://github.com/bids-standard/pybids/pull/574#discussion_r366447600.""" with pytest.raises(ValueError): layout.build_path({'subject': '01'}, strict=strict, validate=validate)
StarcoderdataPython
97935
"""empty message Revision ID: <PASSWORD> Revises: <PASSWORD> Create Date: 2018-07-18 12:08:54.854137 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. from alembic.ddl import postgresql revision = '<PASSWORD>' down_revision = '<PASSWORD>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('resource', 'approved') op.add_column('resource', sa.Column('approved', sa.String(), nullable=False, default="unapproved")) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('resource', 'approved') op.add_column('resource', sa.Column('approved', sa.Boolean(), nullable=False, default=False)) # ### end Alembic commands ###
StarcoderdataPython
3282513
<reponame>asl-usgs/earthquake-heliplot<filename>lib/parallelplotVelocity.py<gh_stars>1-10 #!/usr/bin/env python # -------------------------------------------------------------- # Filename: parallelplotVelocity.py # -------------------------------------------------------------- # Purpose: Plots velocity data (filtered/magnified stream) # --------------------------------------------------------------- # Methods: # launchWorkers() - multiprocessing pool for plotting # plotVelocity() - plots filtered/magnified streams # --------------------------------------------------------------- import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt # will use title, figure, savefig methods from obspy.core.utcdatetime import UTCDateTime from datetime import datetime, timedelta import matplotlib.image as img import multiprocessing from multiprocessing import Manager, Value import os, sys, string, subprocess import time, signal, glob, re from kill import Kill from interrupt import KeyboardInterruptError, TimeoutExpiredError # Unpack self from parallel method args and call method plotVelocity() def unwrap_self_plotVelocity(args, **kwargs): return ParallelPlotVelocity.plotVelocity(*args, **kwargs) class ParallelPlotVelocity(object): def __init__(self): # Initializes kill object for pool self.killproc = Kill() def plotVelocity(self, stream, stationName, filters): # -------------------------------- # Plots filtered/magnified streams # -------------------------------- try: streamID = stream[0].get_id() magnification = self.magnification[streamID] # magnification for station[i] trspacing = self.vertrange/magnification * 1000.0 # trace spacing # Get filter coefficients for every station if streamID in filters['streamID']: filtertype = filters['filtertype'] freqX = filters['freqX'] freqY = filters['freqY'] # set bounds x-label if filtertype == "highpass": bounds = str(freqX) elif filtertype == "bandpass": bounds = str(freqX) + "-" + str(freqY) elif filtertype == "bandstop": bounds = str(freqX) + "-" + str(freqY) elif filtertype == "lowpass": bounds = str(freqX) # pass explicit figure instance to set correct title and attributes # pix, resx, and resy are from station.cfg # - pix is dpi (arbitrary, but using 80 is easiest) # - resx and resy are in pixels - should be 800 x 600 to match expectations # of earthquake.usgs.gov Monitoring web pages dpl = plt.figure(dpi=self.pix, figsize=(self.resx/self.pix, self.resy/self.pix)) titlestartTime = self.datetimePlotstart.strftime("%Y/%m/%d %H:%M") titlestartTime = titlestartTime + " UTC" plotstart = self.datetimePlotstart plotend = self.datetimePlotend plotday = plotstart.day plothour = plotstart.hour # Need to check for streams that have a start time greater # than the query time, then trim based on the nearest hour streamstart = stream[0].stats.starttime.datetime streamstart = streamstart.strftime("%Y%m%d_%H:%M:00") streamstart = UTCDateTime(streamstart) if (streamstart.datetime <= plotstart.datetime): #print streamID + ": " + str(streamstart.datetime) + " < " + str(plotstart.datetime) + "\n" # Trim stream to starttime of plot # Round up to the nearest sample, this will take care # of sample drift for non-Q330 signals stream.trim(starttime=plotstart, endtime=plotend, nearest_sample=True) # selects sample nearest trim time # Check trimmed hour and round if != plotstart hour trimmedhour = stream[0].stats.starttime.hour if (trimmedhour != plothour): stream[0].stats.starttime.day = plotday stream[0].stats.starttime.hour = plothour stream[0].stats.starttime.minute = 0 stream[0].stats.starttime.second = 0 stream[0].stats.starttime.microsecond = 0 elif (streamstart.datetime > plotstart.datetime): #print streamID + ": " + str(streamstart.datetime) + " > " + str(plotstart.datetime) + "\n" # Trim stream to nearest hour when # the plot start time is less than # the stream start time year = streamstart.year # stream stats (date/time) month = streamstart.month day = streamstart.day hour = streamstart.hour minute = 0 # 00 to account for shift second = 0 currtime = datetime(year, month, day, hour, minute, second, 0) if int(hour) != 23: # increase trim time to next hour if h != 23 trimtime = currtime + timedelta(hours=1) else: # trim to next day if h = 23 hour = 0 # set time to 00:00:00 minute = 0 second = 0 trimtime = datetime(year, month, day, hour, minute, second, 0) + timedelta(days=1) trimtime = UTCDateTime(trimtime) startday = trimtime.day starthour = trimtime.hour stream.trim(starttime=trimtime, endtime=plotend, nearest_sample=True) # selects sample nearest trim time # Check trimmed hour and round if != trimhour trimmedhour = stream[0].stats.starttime.hour if (trimmedhour != starthour): stream[0].stats.starttime.day = startday stream[0].stats.starttime.hour = starthour stream[0].stats.starttime.minute = 0 stream[0].stats.starttime.second = 0 stream[0].stats.starttime.microsecond = 0 print("\nPlotting: " + str(stream)) stream.plot(startime=plotstart, endtime=plotend, type='dayplot', interval=60, vertical_scaling_range=self.vertrange, right_vertical_labels=False, number_of_ticks=7, one_tick_per_line=True, color=['k'], fig=dpl, show_y_UTC_label=True, title_size=-1) # set title, x/y labels and tick marks plt.title(streamID.replace('.',' ') + " " + "Starts: " + str(titlestartTime), fontsize=12) plt.xlabel('Time [m]\n(%s: %sHz Trace Spacing: %.2e mm/s)' % (str(filtertype), str(bounds), trspacing), fontsize=10) plt.ylabel('Time [h]', fontsize=10) locs, labels = plt.yticks() # pull current locs/labels hours = [0 for i in range(24)] # 24 hours # Create list of hours (if missing data, fill in beginning hours) if len(labels) < len(hours): tmptime = re.split(':', labels[0].get_text()) starthour = int(tmptime[0]) hour = 0 # fill in hour lastindex = len(hours) - len(labels) i = lastindex # Stream start hour can be < or > than the plot # start hour (if > then subtract, else start from # plot hour and add) # **NOTE: This fixes negative indexing if (plothour < starthour): while (i > 0): # fill beginning hours hour = starthour - i hours[lastindex-i] = str(hour)+":00" i = i - 1 i = 0 for i in range(len(labels)): # fill remaining hours tmptime = re.split(':', labels[i].get_text()) hour = int(tmptime[0]) hours[i+lastindex] = str(hour)+":00" else: # plothour > starthour while (i > 0): if (i > starthour): hour = plothour + (lastindex-i) hours[lastindex-i] = str(hour) +":00" elif (i <= starthour): # start at 0 hour = starthour - i hours[lastindex-i] = str(hour)+":00" i = i - 1 i = 0 for i in range(len(labels)): # fill remaining hours tmptime = re.split(':', labels[i].get_text()) hour = int(tmptime[0]) hours[i+lastindex] = str(hour)+":00" elif len(labels) == len(hours): for i in range(len(labels)): # extract hours from labels tmptime = re.split(':', labels[i].get_text()) hour = int(tmptime[0]) hours[i] = str(hour)+":00" # Create tick position list position = [i+0.5 for i in range(24)] position = position[::-1] # reverse list plt.yticks(position, hours, fontsize=9) # times in position #dpi=self.pix, size=(self.resx,self.resy)) # port to 3.6 cut off bottom legend, this fixes the problem plt.gcf().subplots_adjust(bottom=0.15) # GHSC version - use station as plot name name_components = stationName.split(".") station = name_components[1] plt.savefig(station + "." + self.imgformat) plt.close(dpl) except KeyboardInterrupt: print("KeyboardInterrupt plotVelocity(): terminate workers...") raise KeyboardInterruptError() return # return to plotVelocity() pool except Exception as e: print("UnknownException plotVelocity(): " + str(e)) return def launchWorkers(self, streams, plotspath, stationName, magnification, vertrange, datetimePlotstart, datetimePlotend, resx, resy, pix, imgformat, filters): # ------------------------ # Pool of plotting workers # ------------------------ print("------plotVelocity() Pool------\n") self.magnification = magnification self.vertrange = vertrange self.datetimePlotstart = datetimePlotstart self.datetimePlotend = datetimePlotend self.resx = resx self.resy = resy self.pix = pix self.imgformat = imgformat streamlen = len(streams) # clear output plots dir os.chdir(plotspath) imgfiles = glob.glob(plotspath+"*") for f in imgfiles: os.remove(f) # remove tmp png files from OutputPlots dir # Initialize multiprocessing pools for plotting PROCESSES = multiprocessing.cpu_count() print("PROCESSES: " + str(PROCESSES)) print("streamlen: " + str(streamlen) + "\n") pool = multiprocessing.Pool(PROCESSES) try: self.poolpid = os.getpid() self.poolname = "plotVelocity()" #print "pool PID: " + str(self.poolpid) + "\n" pool.map(unwrap_self_plotVelocity, list(zip([self]*streamlen, streams, stationName, filters))) # thread plots pool.close() pool.join() print("\n------plotVelocity() Pool Complete------\n\n") except KeyboardInterrupt: print("KeyboardInterrupt parallelplotVelocity(): terminating pool...") # find/kill all child processes killargs = {'pid': self.poolpid, 'name': self.poolname} self.killproc.killPool(**killargs) except Exception as e: print("Exception parallelplotVelocity(): terminating pool: " + str(e)) killargs = {'pid': self.poolpid, 'name': self.poolname} self.killproc.killPool(**killargs) else: # cleanup (close pool of workers) pool.close() pool.join()
StarcoderdataPython
3293599
<filename>src/mygrad/math/misc/funcs.py from mygrad.tensor_base import Tensor from .ops import Abs, Cbrt, Maximum, Minimum, Sqrt __all__ = ["abs", "absolute", "cbrt", "clip", "sqrt", "maximum", "minimum"] def abs(a, constant=False): """ ``f(a) -> abs(a)`` Parameters ---------- a : array_like constant : bool, optional(default=False) If ``True``, the returned tensor is a constant (it does not back-propagate a gradient) Returns ------- mygrad.Tensor Notes ----- The derivative at a == 0 returns nan""" return Tensor._op(Abs, a, constant=constant) absolute = abs def sqrt(a, constant=False): """ ``f(a) -> sqrt(a)`` Parameters ---------- a : array_like constant : bool, optional(default=False) If ``True``, the returned tensor is a constant (it does not backpropagate a gradient) Returns ------- mygrad.Tensor""" return Tensor._op(Sqrt, a, constant=constant) def cbrt(a, constant=False): """ ``f(a) -> cbrt(a)`` Parameters ---------- a : array_like constant : bool, optional(default=False) If ``True``, the returned tensor is a constant (it does not backpropagate a gradient) Returns ------- mygrad.Tensor""" return Tensor._op(Cbrt, a, constant=constant) def maximum(a, b, constant=False): """ Element-wise maximum of array elements. Parameters ---------- a : array_like b : array_like constant : bool, optional(default=False) If ``True``, the returned tensor is a constant (it does not backpropagate a gradient) Returns ------- mygrad.Tensor Notes ----- The gradient does not exist where a == b; we use a value of 0 here.""" return Tensor._op(Maximum, a, b, constant=constant) def minimum(a, b, constant=False): """ Element-wise minimum of array elements. Parameters ---------- a : array_like b : array_like constant : bool, optional(default=False) If ``True``, the returned tensor is a constant (it does not backpropagate a gradient) Returns ------- mygrad.Tensor Notes ----- The gradient does not exist where a == b; we use a value of 0 here.""" return Tensor._op(Minimum, a, b, constant=constant) def clip(a, a_min, a_max, constant=False): """ Clip (limit) the values in an array. Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of ``[0, 1]`` is specified, values smaller than 0 become 0, and values larger than 1 become 1. Equivalent to `mg.minimum(a_max, mg.maximum(a, a_min))``. No check is performed to ensure ``a_min < a_max``. This docstring was adapted from that of `numpy.clip` Parameters ---------- a : array_like Array containing elements to clip. a_min : Optional[float, array_like] Minimum value. If `None`, clipping is not performed on lower interval edge. Not more than one of `a_min` and `a_max` may be `None`. a_max : Optional[float, array_like] Maximum value. If `None`, clipping is not performed on upper interval edge. Not more than one of `a_min` and `a_max` may be `None`. If `a_min` or `a_max` are array_like, then the three arrays will be broadcasted to match their shapes. constant : bool, optional(default=False) If ``True``, the returned tensor is a constant (it does not backpropagate a gradient) Returns ------- Tensor A tensor with the elements of `a`, but where values < `a_min` are replaced with `a_min`, and those > `a_max` with `a_max`. Examples -------- >>> import mygrad as mg >>> a = mg.arange(10) >>> mg.clip(a, 1, 8) Tensor([1, 1, 2, 3, 4, 5, 6, 7, 8, 8]) >>> a Tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> mg.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8) Tensor([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])""" if a_min is None and a_max is None: raise ValueError("`a_min` and `a_max` cannot both be set to `None`") if a_min is not None: a = maximum(a_min, a, constant=constant) if a_max is not None: a = minimum(a_max, a, constant=constant) return a
StarcoderdataPython
1623304
<reponame>ottomattas/INFOMAIGT-AGENTS #! /usr/bin/env -S python -u from game import Game from random_agent import RandomAgent from bandit_agent import BanditAgent from neural_network_agent import NNAgent import argparse, time, cProfile import numpy as np import multiprocessing as mp from collections import Counter from itertools import starmap import tensorflow as tf def main(args): if args.input: # Load dataset data = read_games(args.input) #print("Game 1 array is \n", data[0]) # Count the board states board_state_count = 0 # For each _ element, and game element for _, game in data: # For each _ element as only the number of elements is relevant for _, _, _ in game: board_state_count += 1 #print("Board state count is ",board_state_count) # Create array for the input layer # (Columns: each possible move, represented in one-hot encoding # Rows: each possible board state) x_train = np.zeros((board_state_count,75),dtype=int) #print("X train is \n",x_train) # Create array for the output layer with the proper shape # (For each board state, save the winner) y_train = np.zeros(board_state_count,dtype=int) #y_train = tf.keras.utils.to_categorical(np.zeros(board_state_count,dtype=int),3) #print("Y train is \n",y_train) # Create indexes for game and board game_index = 0 board_index = 0 # Loop over all games and boards for winner, game in data: game_index += 1 for player, move, board in game: #print("Player is ", player) #print("Move is ", move) #print("Board is\n", board) #print("Winner is ", winner) ########################## # Create the input layer # ########################## # For each player, we want to look it from their perspective. # Set each player's move as 0 0 1 in x_train. # Define a list for appending the one-hot encoded players lst = [] # If player 1 move if player == 1: for x in range(5): for y in range(5): # When position value is 1 (player 1 move) if board[x, y] == 1: # Append 0 0 1 lst.append(0) lst.append(0) lst.append(1) # When position value is 2 (player 2 move) elif board[x, y] == 2: # Append 0 1 0 lst.append(0) lst.append(1) lst.append(0) # When position value is 0 (no player move yet) else: # Append 1 0 0 lst.append(1) lst.append(0) lst.append(0) # Save the one-hot encoded list in the x_train array # at position board_index x_train[board_index] = np.array(lst) #print("After player 1 move, encoded board is now \n", x_train[board_index]) #print("After player 1 move, x_train is now \n", x_train) # If player 2 move else: for x in range(5): for y in range(5): # When position value is 2 (player 2 move) if board[x, y] == 2: # Append 0 0 1 lst.append(0) lst.append(0) lst.append(1) # When position value is 1 (player 1 move) elif board[x, y] == 1: # Append 0 1 0 lst.append(0) lst.append(1) lst.append(0) # When position value is 0 (no player move yet) else: # Append 1 0 0 lst.append(1) lst.append(0) lst.append(0) # Save the one-hot encoded list in the x_train array # at position board_index x_train[board_index] = np.array(lst) #print("After player 2 move, encoded board is now \n", x_train[board_index]) #print("After player 2 move, x_train is now \n", x_train) ########################### # Create the output layer # ########################### # If draw if winner == 0: y_train[board_index] = 0 # If player 1 is winner elif winner == player: y_train[board_index] = 1 # If player 2 is winner else: y_train[board_index] = 2 #print("y_train is", y_train) board_index += 1 #print("This is game nr: ", game_index) #print("This is board nr: ", board_index) ############ # Training # ############ # Create the tf.keras.Sequential model by stacking layers. # Choose an optimizer and loss function for training. model = tf.keras.models.Sequential([ tf.keras.layers.InputLayer(input_shape=(75)), # array with 75 objects tf.keras.layers.Dense(75, activation='relu'), tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(50), tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(25), tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(3, activation='softmax') # win/loss/draw, so 3 ]) # # # Compile the model model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # # # Adjust the model parameters to minimize the loss model.fit(x_train, y_train, batch_size=200, epochs=5) # Checks the models performance #model.evaluate(x_test, y_test, verbose=2) # Save the model model.save("nn2_model", overwrite=False) work = [] for i in range(args.games): # swap order every game if i % 2 == 0: players = [BanditAgent(args.time,1), NNAgent(2)] else: players = [NNAgent(2), BanditAgent(args.time,1)] work.append((args.size, read_objectives(args.objectives), players, args.output, args.print_board)) start = time.perf_counter() # the tests can be run in parallel, or sequentially # it is recommended to only use the parallel version for large-scale testing # of your agent, as it is harder to debug your program when enabled if args.parallel == None or args.output != None: results = starmap(play_game, work) else: # you probably shouldn't set args.parallel to a value larger than the # number of cores on your CPU, as otherwise agents running in parallel # may compete for the time available during their turn with mp.Pool(args.parallel) as pool: results = pool.starmap(play_game, work) stats = Counter(results) end = time.perf_counter() print(f'Total score {stats[1]}/{stats[2]}/{stats[0]}.') print(f'Total time {end - start} seconds.') def play_game(boardsize, objectives, players, output, print_board = None): game = Game.new(boardsize, objectives, players, print_board == 'all') if output: with open(output, 'a') as outfile: print(boardsize, file = outfile) winner = game.play(outfile) print(f'winner={winner.id if winner else 0}', file = outfile) else: winner = game.play() if print_board == 'final': game.print_result(winner) return 0 if winner == None else winner.id def read_objectives(filename): with open(filename) as file: lines = [line.strip() for line in file] i = 0 shapes = [] while i < len(lines): shape = [] # shapes are separated by blank lines while i < len(lines) and lines[i].strip() != '': shape_line = [] for char in lines[i].strip(): shape_line.append(char == 'x') shape.append(shape_line) i += 1 shapes.append(np.transpose(np.array(shape))) i += 1 return shapes def read_games(filename): with open(filename) as file: lines = list(file) games = [] i = 0 while i < len(lines): game = [] boardsize = int(lines[i]) i += 1 while not lines[i].startswith('winner'): turn = int(lines[i]) i += 1 move = [int(x) for x in lines[i].split(',')] i += 1 board = np.zeros((boardsize, boardsize), dtype = int) for y in range(boardsize): row = lines[i].split(',') for x in range(boardsize): board[(x, y)] = int(row[x]) i += 1 game.append((turn, move, board)) winner = int(lines[i].split('=')[1]) games.append((winner, game)) i += 1 return games if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--size', type = int, default = 10, help = 'The size of the board.') parser.add_argument('--games', type = int, default = 1, help = 'The number of games to play.') parser.add_argument('--time', type = int, default = 10, help = 'The allowed time per move, in milliseconds.') parser.add_argument('--print-board', choices = ['all', 'final'], help = 'Show the board state, either every turn or only at the end.') parser.add_argument('--parallel', type = int, help = 'Run multiple games in parallel. Only use for large-scale ' 'testing.') parser.add_argument('--output', help = 'Write training data to the given file.') parser.add_argument('--input', help = 'Read training data from the given file.') parser.add_argument('objectives', help = 'The name of a file containing the objective shapes. The file ' 'should contain a rectangle with x on positions that should be ' 'occupied, and dots on other positions. Separate objective shapes ' 'should be separated by a blank line.') args = parser.parse_args() #cProfile.run('main(args)') main(args)
StarcoderdataPython
1730307
from enum import Enum class TankBody(Enum): VT1 = 1 VT2 = 2 VT3 = 3 VT4 = 4 class Tank: def __init__(self) -> None: self.body:TankBody = TankBody.VT1 self.hasExtraArmour: bool = False #附加装甲 self.hasAutomaticWeaponStation: bool = False #自动武器站 self.hasAirConditioner: bool = False #空调 self.hasIRCM: bool = False #红外对抗 self.hasActiveDefence: bool = False #主动防御 def cost(self)->int: """坦克报价""" price = 0 if self.body is TankBody.VT1: price += 30000 elif self.body is TankBody.VT2: price += 50000 elif self.body is TankBody.VT3: price += 70000 elif self.body is TankBody.VT4: price += 100000 else: pass if self.hasExtraArmour: price += 10000 if self.hasAutomaticWeaponStation: price += 20000 if self.hasAirConditioner: price += 3000 if self.hasIRCM: price += 30000 if self.hasActiveDefence: price += 35000 return price if __name__ == "__main__": tank1 = Tank() tank1.body = TankBody.VT4 tank1.hasActiveDefence = True tank1.hasAirConditioner = True tank1.hasAutomaticWeaponStation = True tank1.hasExtraArmour = True tank1.hasIRCM = True print(tank1.cost())
StarcoderdataPython
4838075
<reponame>ValRat/raster-vision from copy import deepcopy import rastervision as rv from rastervision.command import (CommandConfig, CommandConfigBuilder, BundleCommand) from rastervision.protos.command_pb2 \ import CommandConfig as CommandConfigMsg from rastervision.rv_config import RVConfig from rastervision.data import SceneConfig from rastervision.command.utils import (check_task_type, check_analyzers_type, check_backend_type) class BundleCommandConfig(CommandConfig): def __init__(self, root_uri, task, backend, scene, analyzers): super().__init__(rv.BUNDLE, root_uri) self.task = task self.backend = backend self.scene = scene self.analyzers = analyzers def create_command(self, tmp_dir=None): if not tmp_dir: _tmp_dir = RVConfig.get_tmp_dir() tmp_dir = _tmp_dir.name else: _tmp_dir = tmp_dir retval = BundleCommand(self) retval.set_tmp_dir(_tmp_dir) return retval def to_proto(self): msg = super().to_proto() task = self.task.to_proto() backend = self.backend.to_proto() scene = self.scene.to_proto() analyzers = list(map(lambda a: a.to_proto(), self.analyzers)) b = CommandConfigMsg.BundleConfig( task=task, backend=backend, scene=scene, analyzers=analyzers) msg.MergeFrom(CommandConfigMsg(bundle_config=b)) return msg @staticmethod def builder(): return BundleCommandConfigBuilder() class BundleCommandConfigBuilder(CommandConfigBuilder): def __init__(self, prev=None): super().__init__(prev) if prev is None: self.task = None self.backend = None self.scene = None self.analyzers = None else: self.task = prev.task self.backend = prev.backend self.scene = prev.scene self.analyzers = prev.analyzers def validate(self): super().validate() if self.task is None: raise rv.ConfigError('Task not set for BundleCommandConfig. ' 'Use with_task or with_experiment') check_task_type(self.task) if self.backend is None: raise rv.ConfigError('Backend not set for BundleCommandConfig. ' 'Use with_backend or with_experiment') check_backend_type(self.backend) if self.scene is None: raise rv.ConfigError( 'Template scene not set for BundleCommandConfig. ' 'Use with_scene or with_experiment') if not isinstance(self.scene, SceneConfig): raise rv.ConfigError( 'Template scene must be of class SceneConfig, got {}'.format( type(self.scene))) if self.analyzers is None: raise rv.ConfigError('Analyzers not set for BundleCommandConfig. ' 'Use with_analyzers or with_experiment') check_analyzers_type(self.analyzers) def build(self): self.validate() return BundleCommandConfig(self.root_uri, self.task, self.backend, self.scene, self.analyzers) def from_proto(self, msg): b = super().from_proto(msg) conf = msg.bundle_config task = rv.TaskConfig.from_proto(conf.task) backend = rv.BackendConfig.from_proto(conf.backend) scene = rv.SceneConfig.from_proto(conf.scene) analyzers = list(map(rv.AnalyzerConfig.from_proto, conf.analyzers)) b = b.with_task(task) b = b.with_backend(backend) b = b.with_scene(scene) b = b.with_analyzers(analyzers) return b def get_root_uri(self, experiment_config): return experiment_config.bundle_uri def with_experiment(self, experiment_config): b = super().with_experiment(experiment_config) b = b.with_task(experiment_config.task) b = b.with_backend(experiment_config.backend) b = b.with_scene(experiment_config.dataset.all_scenes()[0]) b = b.with_analyzers(experiment_config.analyzers) return b def with_task(self, task): """Sets a specific task type. Args: task: A TaskConfig object. """ b = deepcopy(self) b.task = task return b def with_backend(self, backend): b = deepcopy(self) b.backend = backend return b def with_scene(self, scene): b = deepcopy(self) b.scene = scene return b def with_analyzers(self, analyzers): b = deepcopy(self) b.analyzers = analyzers return b
StarcoderdataPython
121191
# -*- coding:utf-8 -*- from multiprocessing import Pool, Queue, Lock, SimpleQueue import Queue import os import time import random import argparse import utils MAX_PROCESS = 5 def executor(name, r_queue): # print 'Run task %s (%s)...' % (name, os.getpid()) start = time.time() time.sleep(random.random() * 3) end = time.time() # print 'Task %s runs %0.2f seconds.' % (name, (end - start)) r_queue.put('Task %s runs %0.2f seconds.' % (name, (end - start))) def printer(r_name, r_count, r_queue, lock): """ :param r_name: :param r_count: :param r_queue: :return: """ i = 0 while i < r_count: line = r_queue.get(True) if line: lock.acquire() print '[%d]' % (i + 1,), utils.print_output(line) lock.release() i += 1 r_queue.task_done() def main(r_parser): """ :param r_parser: 传入的参数 :return: """ r_parser.add_argument("-m", "--module", help="module", required=True) r_parser.add_argument("-u", "--user", help="remote machine user", required=True) r_parser.add_argument("-p", "--password", help="remote machine password") r_parser.add_argument("-d", "--destination", help="destination hosts group", required=True) r_parser.add_argument("-c", "--command", help="command or shell scripts", required=True) args = r_parser.parse_args() module = args.module user = args.user password = <PASSWORD> dest = args.destination command = args.command print 'Parent process %s.' % os.getpid() config = utils.read_config('./rcm.conf') hosts_lst = utils.get_hosts(config, dest) print hosts_lst _exe_command(hosts_lst, module, user, password, command) def _exe_command(r_hosts_lst, r_module, r_user, r_password, r_command): """ :param r_hosts_lst: :param r_module: :param r_user: :param r_password: :param r_command: :return: """ queue = SimpleQueue() lock = Lock() p = Pool(MAX_PROCESS) # p.apply_async(printer, args=('printer', len(r_hosts_lst), queue)) p.apply_async(printer, args=('printer', 5, queue, lock)) for i in range(5): p.apply_async(executor, args=(i, queue)) p.close() p.join() if __name__ == '__main__': parser = argparse.ArgumentParser(description='''execute command or scripts on remote machine''') main(parser)
StarcoderdataPython
4835379
import pytest from scrapy_autoextract.errors import QueryError, summarize_exception def test_query_error(): exc = QueryError({"foo": "bar"}, "sample error") assert str(exc) == "QueryError: message='sample error', query={'foo': 'bar'}" @pytest.mark.parametrize("exception, message", [ (QueryError({}, "domain xyz is occupied, please retry in 2.2 seconds"), "/query/domain occupied"), (QueryError({}, "Another thing"), "/query/Another thing"), (ValueError("Value Error"), "/rest/ValueError"), (TypeError("Type Error"), "/rest/TypeError"), ]) def test_summarize_exception(exception, message): assert summarize_exception(exception) == message
StarcoderdataPython