|
--- |
|
version: 1.0.0 |
|
language: en |
|
license: mit |
|
source_datasets: curated |
|
task_categories: |
|
- tabular-regression |
|
tags: |
|
- chemistry |
|
- cheminformatics |
|
pretty_name: Aqueous Solubility Database (AqSolDB) |
|
dataset_summary: >- |
|
AqsolDB contains solubility data for 9,982 unique compounds, curated from nine publicly available aqueous solubility datasets. |
|
citation: >- |
|
@article{ |
|
author = {Murat Cihan Sorkun, Abhishek Khetan \& Süleyman Er}, |
|
title = {AqSolDB, a curated reference set of aqueous solubility and 2D descriptors for a diverse set of compounds}, |
|
journal = {Scientific Data}, |
|
year = {2019}, |
|
volume = {6}, |
|
number = {143}, |
|
month = {aug}, |
|
url = {https://www.nature.com/articles/s41597-019-0151-1}, |
|
publisher = {Springer Nature} |
|
size_categories: |
|
- 1K<n<10K |
|
config_names: |
|
- AqSolDB |
|
configs: |
|
- config_name: AqSolDB |
|
data_files: |
|
- split: test |
|
path: AqSolDB/test.csv |
|
- split: train |
|
path: AqSolDB/train.csv |
|
dataset_info: |
|
- config_name: AqSolDB |
|
features: |
|
- name: "ID" |
|
dtype: string |
|
- name: "Name" |
|
dtype: string |
|
- name: "InChI" |
|
dtype: string |
|
- name: "InChIKey" |
|
dtype: string |
|
- name: "SMILES" |
|
dtype: string |
|
- name: "Y" |
|
dtype: float64 |
|
- name: "SD" |
|
dtype: float64 |
|
- name: "Ocurrences" |
|
dtype: int64 |
|
- name: "Group" |
|
dtype: string |
|
- name: "MolWt" |
|
dtype: float64 |
|
- name: "MolLogP" |
|
dtype: float64 |
|
- name: "MolMR" |
|
dtype: float64 |
|
- name: "HeavyAtomCount" |
|
dtype: float64 |
|
- name: "NumHAcceptors" |
|
dtype: float64 |
|
- name: "NumHDonors" |
|
dtype: float64 |
|
- name: "NumHeteroatoms" |
|
dtype: float64 |
|
- name: "NumRotatableBonds" |
|
dtype: float64 |
|
- name: "NumValenceElectrons" |
|
dtype: float64 |
|
- name: "NumAromaticRings" |
|
dtype: float64 |
|
- name: "NumSaturatedRings" |
|
dtype: float64 |
|
- name: "NumAliphaticRings" |
|
dtype: float64 |
|
- name: "RingCount" |
|
dtype: float64 |
|
- name: "TPSA" |
|
dtype: float64 |
|
- name: "LabuteASA" |
|
dtype: float64 |
|
- name: "BalabanJ" |
|
dtype: float64 |
|
- name: "BertzCT" |
|
dtype: float64 |
|
- name: "ClusterNo" |
|
dtype: int64 |
|
- name: "MolCount" |
|
dtype: int64 |
|
- name: "group" |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1737344 |
|
num_examples: 7488 |
|
- name: test |
|
num_bytes: 578736 |
|
num_examples: 2494 |
|
--- |
|
|
|
# Aqueous Solubility Database (AqSolDB) |
|
|
|
AqSolDB is created by the Autonomous Energy Materials Discovery [AMD] research group, consists of aqueous solubility values of |
|
9,982 unique compounds curated from 9 different publicly available aqueous solubility datasets. This openly accessible dataset, |
|
which is the largest of its kind, and will not only serve as a useful reference source of measured solubility data, but also |
|
as a much improved and generalizable training data source for building data-driven models. |
|
|
|
This is a mirror of the [official Github repo](https://github.com/mcsorkun/AqSolDB) where the dataset was uploaded in 2019. |
|
|
|
|
|
## Quickstart Usage |
|
|
|
### Load a dataset in python |
|
Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library. |
|
First, from the command line install the `datasets` library |
|
|
|
$ pip install datasets |
|
|
|
then, from within python load the datasets library |
|
|
|
>>> import datasets |
|
|
|
and load one of the `AqSolDB` datasets, e.g., |
|
|
|
>>> AqSolDB = datasets.load_dataset("maomlab/AqSolDB", name = "AqSolDB") |
|
Downloading readme: 100%|████████████████████| 10.2k/10.2k [00:00<00:00, 4.41MB/s] |
|
Downloading data: 100%|█████████████████████████| 972k/972k [00:02<00:00, 432kB/s] |
|
Downloading data: 100%|██████████████████████| 2.88M/2.88M [00:01<00:00, 1.92MB/s] |
|
Generating test split: 100%|████████| 2494/2494 [00:00<00:00, 44727.48 examples/s] |
|
Generating train split: 100%|██████| 7488/7488 [00:00<00:00, 144316.82 examples/s] |
|
|
|
and inspecting the loaded dataset |
|
|
|
>>> AqSolDB |
|
AqSolDB |
|
DatasetDict({ |
|
test: Dataset({ |
|
features: ['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'Y', 'SD', 'Ocurrences', 'Group', 'MolWt', 'MolLogP', 'MolMR', 'HeavyAtomCount', 'NumHAcceptors', 'NumHDonors', 'NumHeteroatoms', 'NumRotatableBonds', 'NumValenceEl\ |
|
ectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'TPSA', 'LabuteASA', 'BalabanJ', 'BertzCT', 'ClusterNo', 'MolCount', 'group'], |
|
num_rows: 2494 |
|
}) |
|
train: Dataset({ |
|
features: ['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'Y', 'SD', 'Ocurrences', 'Group', 'MolWt', 'MolLogP', 'MolMR', 'HeavyAtomCount', 'NumHAcceptors', 'NumHDonors', 'NumHeteroatoms', 'NumRotatableBonds', 'NumValenceEl\ |
|
ectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'TPSA', 'LabuteASA', 'BalabanJ', 'BertzCT', 'ClusterNo', 'MolCount', 'group'], |
|
num_rows: 7488 |
|
}) |
|
}) |
|
|
|
### Use a dataset to train a model |
|
One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia. |
|
First, from the command line, install `MolFlux` library with `catboost` and `rdkit` support |
|
|
|
pip install 'molflux[catboost,rdkit]' |
|
|
|
then load, featurize, split, fit, and evaluate the catboost model |
|
|
|
import json |
|
from datasets import load_dataset |
|
from molflux.datasets import featurise_dataset |
|
from molflux.features import load_from_dicts as load_representations_from_dicts |
|
from molflux.splits import load_from_dict as load_split_from_dict |
|
from molflux.modelzoo import load_from_dict as load_model_from_dict |
|
from molflux.metrics import load_suite |
|
|
|
split_dataset = load_dataset('maomlab/AqSolDB') |
|
|
|
split_featurised_dataset = featurise_dataset( |
|
split_dataset, |
|
column = "SMILES", |
|
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}])) |
|
|
|
model = load_model_from_dict({ |
|
"name": "cat_boost_regressor", |
|
"config": { |
|
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'], |
|
"y_features": ['Y']}}) |
|
|
|
model.train(split_featurised_dataset["train"]) |
|
preds = model.predict(split_featurised_dataset["test"]) |
|
|
|
regression_suite = load_suite("regression") |
|
|
|
scores = regression_suite.compute( |
|
references=split_featurised_dataset["test"]['Y'], |
|
predictions=preds["cat_boost_regressor::Y"]) |
|
|
|
|
|
## Aqueous Solubility Database |
|
|
|
### Data splits |
|
The original AqSoDB dataset does not define splits, so here we have used the `Realistic Split` method described |
|
in [(Martin et al., 2018)](https://doi.org/10.1021/acs.jcim.7b00166). |
|
|
|
### Citation |
|
TY - JOUR |
|
AU - Sorkun, Murat Cihan |
|
AU - Khetan, Abhishek |
|
AU - Er, Süleyman |
|
PY - 2019 |
|
DA - 2019/08/08 |
|
TI - AqSolDB, a curated reference set of aqueous solubility and 2D descriptors for a diverse set of compounds |
|
JO - Scientific Data |
|
SP - 143 |
|
VL - 6 |
|
IS - 1 |
|
AB - Water is a ubiquitous solvent in chemistry and life. |
|
It is therefore no surprise that the aqueous solubility of compounds has a key role in various domains, |
|
including but not limited to drug discovery, paint, coating, and battery materials design. |
|
Measurement and prediction of aqueous solubility is a complex and prevailing challenge in chemistry. |
|
For the latter, different data-driven prediction models have recently been developed to augment the physics-based modeling approaches. |
|
To construct accurate data-driven estimation models, it is essential that the underlying experimental calibration data used by these models is of high fidelity and quality. |
|
Existing solubility datasets show variance in the chemical space of compounds covered, measurement methods, experimental conditions, |
|
but also in the non-standard representations, size, and accessibility of data. |
|
To address this problem, we generated a new database of compounds, AqSolDB, by merging a total of nine different aqueous solubility datasets, |
|
curating the merged data, standardizing and validating the compound representation formats, marking with reliability labels, and providing 2D descriptors of compounds as a Supplementary Resource. |
|
SN - 2052-4463 |
|
UR - https://doi.org/10.1038/s41597-019-0151-1 |
|
DO - 10.1038/s41597-019-0151-1 |
|
ID - Sorkun2019 |
|
ER - |
|
``` |
|
|
|
|