Dataset Viewer
Auto-converted to Parquet
SMILES
stringlengths
1
228
Y
int64
0
1
Assay_ID
stringlengths
12
13
RegressionProperty
float64
-49,800
1,000,000,000,000,000B
LogRegressionProperty
float64
-15
21.8
βŒ€
Relation
stringclasses
7 values
C(#Cc1ccc2ccccc2n1)c1cncnc1
0
CHEMBL2345734
22.45
7.648784
=
Fc1cnc(C#Cc2ccc3ccccc3n2)nc1
0
CHEMBL2345734
15.59
7.807154
=
FC(F)(F)c1ccnc(C#Cc2ccc3ccccc3n2)n1
0
CHEMBL2345734
15.87
7.799423
=
C(#Cc1ncccn1)c1ccc2ccccc2n1
0
CHEMBL2345734
28.63
7.543179
=
COc1cccc(C#Cc2ccc3ccccc3n2)n1
0
CHEMBL2345734
48.62
7.313185
=
Fc1cccc(C#Cc2ccc3ccccc3n2)n1
0
CHEMBL2345734
46.9
7.328827
=
N#Cc1cccc(C#Cc2ccc3ccccc3n2)n1
1
CHEMBL2345734
64.82
7.188291
=
FC(F)(F)c1cccc(C#Cc2ccc3ccccc3n2)n1
0
CHEMBL2345734
28.66
7.542724
=
Cc1ccc(C#Cc2ccc3ccccc3n2)nc1
1
CHEMBL2345734
66.27
7.178683
=
Fc1ccc(C#Cc2ccc3ccccc3n2)nc1
1
CHEMBL2345734
63.29
7.198665
=
FC(F)(F)c1ccc(C#Cc2ccc3ccccc3n2)nc1
1
CHEMBL2345734
50.66
7.295335
=
Cc1ccnc(C#Cc2ccc3ccccc3n2)c1
1
CHEMBL2345734
66.48
7.177309
=
N#Cc1ccnc(C#Cc2ccc3ccccc3n2)c1
1
CHEMBL2345734
76.09
7.118672
=
FC(F)(F)c1ccnc(C#Cc2ccc3ccccc3n2)c1
1
CHEMBL2345734
58.04
7.236273
=
Cc1cccnc1C#Cc1ccc2ccccc2n1
0
CHEMBL2345734
40.09
7.396964
=
Fc1cccnc1C#Cc1ccc2ccccc2n1
1
CHEMBL2345734
55.24
7.257746
=
FC(F)(F)c1cccnc1C#Cc1ccc2ccccc2n1
0
CHEMBL2345734
16.43
7.784362
=
Brc1cccc2nc(C#Cc3ccccn3)ccc12
1
CHEMBL2345734
77.52
7.110586
=
Clc1cccc2nc(C#Cc3ccccn3)ccc12
1
CHEMBL2345734
64.31
7.191721
=
Oc1cccc2nc(C#Cc3ccccn3)ccc12
0
CHEMBL2345734
22.15
7.654626
=
CC(C)(C)C(=O)Oc1cccc2nc(C#Cc3ccccn3)ccc12
1
CHEMBL2345734
62.44
7.204537
=
C(#Cc1ccc2ccccc2n1)c1ccccn1
1
CHEMBL2345734
76.66
7.115431
=
Brc1cccc2nc(C#Cc3cccnc3)ccc12
0
CHEMBL2345734
40.07
7.397181
=
Clc1cccc2nc(C#Cc3cccnc3)ccc12
0
CHEMBL2345734
28.35
7.547447
=
Oc1cccc2nc(C#Cc3cccnc3)ccc12
0
CHEMBL2345734
17.58
7.754981
=
CC(C)(C)C(=O)Oc1cccc2nc(C#Cc3cccnc3)ccc12
0
CHEMBL2345734
28.5
7.545155
=
CCOc1cccc2nc(C#Cc3cccnc3)ccc12
1
CHEMBL2345734
66.63
7.17633
=
COc1cccc2nc(C#Cc3cccnc3)ccc12
1
CHEMBL2345734
67.72
7.169283
=
C(#Cc1ccc2ccccc2n1)c1cccnc1
1
CHEMBL2345734
65.78
7.181906
=
Brc1cccc2nc(C#Cc3ccccc3)ccc12
0
CHEMBL2345734
20.67
7.68466
=
Clc1cccc2nc(C#Cc3ccccc3)ccc12
0
CHEMBL2345734
8.02
8.095826
=
Oc1cccc2nc(C#Cc3ccccc3)ccc12
0
CHEMBL2345734
24.32
7.614036
=
CC(C)(C)C(=O)Oc1cccc2nc(C#Cc3ccccc3)ccc12
0
CHEMBL2345734
23.77
7.623971
=
COc1cccc2nc(C#Cc3ccccc3)ccc12
1
CHEMBL2345734
68.03
7.1673
=
C(#Cc1ccc2ccccc2n1)c1ccccc1
1
CHEMBL2345734
67.71
7.169347
=
c1csc(-c2cc(NC34CC5CC(CC(C5)C3)C4)no2)c1
0
CHEMBL3772465
32
7.49485
=
CCCc1cc(CNC23CC4CC(CC(C4)C2)C3)no1
1
CHEMBL3772465
73
7.136677
=
c1c(CNC23CC4CC(CC(C4)C2)C3)noc1C1CC1
0
CHEMBL3772465
42
7.376751
=
C(NC12CC3CC(CC(C3)C1)C2)c1noc(C2CC2)n1
1
CHEMBL3772465
82
7.086186
=
c1c(CNC23CC4CC(CC(C4)C2)C3)noc1C1CCC1
0
CHEMBL3772465
42
7.376751
=
CC(C)c1cc(CNC23CC4CC(CC(C4)C2)C3)no1
1
CHEMBL3772465
66
7.180456
=
c1c(CNC23CC4CC(CC(C4)C2)C3)noc1C1CCCCC1
1
CHEMBL3772465
57
7.244125
=
c1csc(-c2nc(CNC34CC5CC(CC(C5)C3)C4)no2)c1
1
CHEMBL3772465
66
7.180456
=
c1cc(-c2cc(CNC34CC5CC(CC(C5)C3)C4)no2)cs1
0
CHEMBL3772465
47
7.327902
=
c1cc(-c2nc(CNC34CC5CC(CC(C5)C3)C4)no2)cs1
1
CHEMBL3772465
74
7.130768
=
c1coc(-c2cc(CNC34CC5CC(CC(C5)C3)C4)no2)c1
0
CHEMBL3772465
47
7.327902
=
COc1ccsc1-c1cc(CNC23CC4CC(CC(C4)C2)C3)no1
0
CHEMBL3772465
39
7.408935
=
c1ccc(-c2cc(CNC34CC5CC(CC(C5)C3)C4)no2)cc1
0
CHEMBL3772465
26
7.585027
=
Clc1ccccc1-c1cc(CNC23CC4CC(CC(C4)C2)C3)no1
1
CHEMBL3772465
84
7.075721
=
Clc1ccccc1-c1nc(CNC23CC4CC(CC(C4)C2)C3)no1
1
CHEMBL3772465
88
7.055517
=
Fc1cccc(F)c1-c1cc(CNC23CC4CC(CC(C4)C2)C3)no1
0
CHEMBL3772465
56
7.251812
=
COc1ccc(-c2cc(CNC34CC5CC(CC(C5)C3)C4)no2)cc1
1
CHEMBL3772465
59
7.229148
=
COc1ccc(-c2nc(CNC34CC5CC(CC(C5)C3)C4)no2)cc1
1
CHEMBL3772465
92
7.036212
=
COc1cccc(-c2cc(CNC34CC5CC(CC(C5)C3)C4)no2)c1
0
CHEMBL3772465
39
7.408935
=
COc1ccccc1-c1nc(CNC23CC4CC(CC(C4)C2)C3)no1
1
CHEMBL3772465
66
7.180456
=
COc1ccc(-c2nc(CNC34CC5CC(CC(C5)C3)C4)no2)c(OC)c1
1
CHEMBL3772465
76
7.119186
=
c1csc(-c2nnc(CNC34CC5CC(CC(C5)C3)C4)s2)c1
0
CHEMBL3772465
39
7.408935
=
O=C1C2CC3CC1CC(NCc1cc(-c4cccs4)on1)(C3)C2
0
CHEMBL3772465
31
7.508638
=
OC1C2CC3CC1CC(NCc1cc(-c4cccs4)on1)(C3)C2
0
CHEMBL3772465
10
8
=
CC1(O)C2CC3CC1CC(NCc1cc(-c4cccs4)on1)(C3)C2
0
CHEMBL3772465
27
7.568636
=
c1csc(-c2cc(CNC34CC5CC(C3)C3(CO3)C(C5)C4)no2)c1
1
CHEMBL3772465
72
7.142668
=
c1csc(-c2cc(CNC34CC5COC(CC(C5)C3)C4)no2)c1
1
CHEMBL3772465
58
7.236572
=
OC12CC3CC(C1)CC(NCc1cc(-c4cccs4)on1)(C3)C2
0
CHEMBL3772465
40
7.39794
=
COc1ccsc1-c1cc(CNC23CC4CC(CC(O)(C4)C2)C3)no1
0
CHEMBL3772465
33
7.481486
=
OC12CC3CC(O)(C1)CC(NCc1cc(-c4cccs4)on1)(C3)C2
1
CHEMBL3772465
69
7.161151
=
CN(C)CCNC(=O)c1ccc(Cl)c2cc3ccccc3nc12
1
CHEMBL701039
33
7.481486
=
O=C(NCCNCCO)c1cccc2cc3ccccc3nc12
1
CHEMBL701039
240
6.619789
=
CN(C)CCNC(=O)c1cccc2c(N)c3ccccc3nc12
1
CHEMBL701039
15
7.823909
=
Cc1ccc2cc3cccc(C(=O)NCCN(C)C)c3nc2c1
1
CHEMBL701039
121
6.917215
=
COc1cccc2nc3c(C(=O)NCCN(C)C)cccc3cc12
1
CHEMBL701039
58
7.236572
=
Cc1cccc2cc3cccc(C(=O)NCCN(C)C)c3nc12
1
CHEMBL701039
4.3
8.366532
=
Cc1c2ccccc2nc2c(C(=O)NCCN(C)C)cccc12
1
CHEMBL701039
150
6.823909
=
CN(C)CCCCCNC(=O)c1cccc2cc3ccccc3nc12
1
CHEMBL701039
450
6.346787
=
Cc1ccc(C(=O)NCCN(C)C)c2nc3ccccc3cc12
1
CHEMBL701039
37
7.431798
=
COc1ccc(C(=O)NCCN(C)C)c2nc3ccccc3cc12
1
CHEMBL701039
8.8
8.055517
=
CN(C)CCCNC(=O)c1cccc2cc3ccccc3nc12
1
CHEMBL701039
370
6.431798
=
CNCCNC(=O)c1cccc2cc3ccccc3nc12
1
CHEMBL701039
240
6.619789
=
CN(C)CCNC(=O)c1ccc2cc3ccccc3nc2c1
1
CHEMBL701039
8,100
5.091515
=
Cc1cccc2nc3c(C(=O)NCCN(C)C)cccc3cc12
1
CHEMBL701039
140
6.853872
=
CN(C)CCNC(=O)c1cccc2cc3ccccc3nc12
1
CHEMBL701039
105
6.978811
=
CN(C)CCCCNC(=O)c1cccc2cc3ccccc3nc12
1
CHEMBL701039
160
6.79588
=
CN(C)CCNC(=O)c1cc(Cl)cc2cc3ccccc3nc12
1
CHEMBL701039
31
7.508638
=
COc1ccc2nc3c(C(=O)NCCN(C)C)cccc3cc2c1
1
CHEMBL701039
640
6.19382
=
COc1cccc2cc3cccc(C(=O)NCCN(C)C)c3nc12
1
CHEMBL701039
12
7.920819
=
NCCNC(=O)c1cccc2cc3ccccc3nc12
1
CHEMBL701039
275
6.560667
=
COc1ccc2cc3cccc(C(=O)NCCN(C)C)c3nc2c1
1
CHEMBL701039
210
6.677781
=
Cc1cc(C(=O)NCCN(C)C)c2nc3ccccc3cc2c1
1
CHEMBL701039
130
6.886057
=
Cc1ccc2cc3ccccc3nc2c1C(=O)NCCN(C)C
0
CHEMBL701039
12,700
4.896196
=
COc1cc(C(=O)NCCN(C)C)c2nc3ccccc3cc2c1
1
CHEMBL701039
30
7.522879
=
Cc1ccc2nc3c(C(=O)NCCN(C)C)cccc3cc2c1
1
CHEMBL701039
200
6.69897
=
CN(C)CCNC(=O)c1cccc2cc3cc(Cl)ccc3nc12
1
CHEMBL701039
250
6.60206
=
CN(C)CCNC(=O)c1cccc2cc3ccc(Cl)cc3nc12
1
CHEMBL701039
6.4
8.19382
=
CN(C)CCNC(=O)c1cccc2cc3c(Cl)cccc3nc12
1
CHEMBL701039
160
6.79588
=
CN(C)CCCCCCNC(=O)c1cccc2cc3ccccc3nc12
1
CHEMBL701039
550
6.259637
=
CCN(CC)CCNC(=O)c1cccc2cc3ccccc3nc12
1
CHEMBL701039
630
6.200659
=
CN(C)CCNC(=O)c1cccc2cc3cccc(Cl)c3nc12
1
CHEMBL701039
6.9
8.161151
=
CN(C)CCNC(=O)c1cccc2nc3ccccc3cc12
0
CHEMBL701039
17,900
4.747147
=
CN(C)CCNC(=O)c1ccc2nc3ccccc3cc2c1
1
CHEMBL701039
9,300
5.031517
=
Cn1c(SSc2c(C(=O)Nc3ccccc3)c3cccc(Cl)c3n2C)c(C(=O)Nc2ccccc2)c2cccc(Cl)c21
0
CHEMBL843949
100,000
4
>
COc1cccc2c(C(=O)Nc3ccccc3)c(SSc3c(C(=O)Nc4ccccc4)c4cccc(OC)c4n3C)n(C)c12
1
CHEMBL843949
3,600
5.443697
=
End of preview. Expand in Data Studio

FS-Mol

FS-Mol is a dataset curated from ChEMBL27 for small molecule activity prediction. It consists of 5,120 distinct assays and includes a total of 233,786 unique compounds. This is a mirror of the Official Github repo where the dataset was uploaded in 2021.

Preprocessing

We utilized the raw data uploaded on Github and performed several preprocessing:

  1. Sanitize the molecules using RDKit and MolVS (standardize SMILES format)
  2. Formatting (Combine jsonl.gz files to one csv/parquet file)
  3. Rename the columns ('Property' to 'Y')
  4. Convert the floats in 'Y' column to integers
  5. Split the dataset (train, test, validation)

If you would like to try our pre-processing steps, run our script.

Quickstart Usage

Load a dataset in python

Each subset can be loaded into python using the Huggingface datasets library. First, from the command line install the datasets library

$ pip install datasets

then, from within python load the datasets library

>>> import datasets

and load the FSMol datasets, e.g.,

>>> FSMol = datasets.load_dataset("maomlab/FSMol", name = "FSMol")
train-00000-of-00001.parquet: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 152M/152M [00:03<00:00, 39.4MB/s]
test-00000-of-00001.parquet: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1.54M/1.54M [00:00<00:00, 33.3MB/s]
validation-00000-of-00001.parquet: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 517k/517k [00:00<00:00, 52.6MB/s]
Generating train split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5038727/5038727 [00:08<00:00, 600413.56 examples/s]
Generating test split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 56220/56220 [00:00<00:00, 974722.00 examples/s]
Generating validation split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 19008/19008 [00:00<00:00, 871143.71 examples/s]

and inspecting the loaded dataset

>>> FSMol
DatasetDict({
        train: Dataset({
            features: ['SMILES', 'Y', 'Assay_ID', 'RegressionProperty', 'LogRegressionProperty', 'Relation'],
            num_rows: 5038727
        })
        test: Dataset({
            features: ['SMILES', 'Y', 'Assay_ID', 'RegressionProperty', 'LogRegressionProperty', 'Relation'],
            num_rows: 56220
        })
        validation: Dataset({
            features: ['SMILES', 'Y', 'Assay_ID', 'RegressionProperty', 'LogRegressionProperty', 'Relation'],
            num_rows: 19008
        })

})

Use a dataset to train a model

One way to use the dataset is through the MolFlux package developed by Exscientia. First, from the command line, install MolFlux library with catboost and rdkit support

pip install 'molflux[catboost,rdkit]'

then load, featurize, split, fit, and evaluate the catboost model

import json
from datasets import load_dataset
from molflux.datasets import featurise_dataset
from molflux.features import load_from_dicts as load_representations_from_dicts
from molflux.splits import load_from_dict as load_split_from_dict
from molflux.modelzoo import load_from_dict as load_model_from_dict
from molflux.metrics import load_suite

Split and evaluate the catboost model

split_dataset = load_dataset('maomlab/FSMol', name = 'FSMol')

split_featurised_dataset = featurise_dataset(
  split_dataset,
  column = "SMILES",
  representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))

model = load_model_from_dict({
    "name": "cat_boost_classifier",
    "config": {
        "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
        "y_features": ['Y']}})

model.train(split_featurised_dataset["train"])
preds = model.predict(split_featurised_dataset["test"])

classification_suite = load_suite("classification")

scores = classification_suite.compute(
references=split_featurised_dataset["test"]['Y'],
predictions=preds["cat_boost_classifier::Y"])

Citation

@article{stanley2021fs, title={FS-Mol: A Few-Shot Learning Dataset of Molecules}, author={Stanley, Matthew and Ramsundar, Bharath and Kearnes, Steven and Riley, Patrick}, journal={NeurIPS 2021 AI for Science Workshop}, year={2021}, url={https://www.microsoft.com/en-us/research/publication/fs-mol-a-few-shot-learning-dataset-of-molecules/

Downloads last month
97

Collection including maomlab/FSMol