File size: 6,775 Bytes
500a5b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# This is a script for MolData dataset preprocessing

# 1. Load modules
import pandas as pd
import numpy as np
import urllib.request
import rdkit
from rdkit import Chem
import os
import molvs
import csv
import json
import tqdm

standardizer = molvs.Standardizer()
fragment_remover = molvs.fragment.FragmentRemover()


# 2. Download the original dataset
# https://github.com/LumosBio/MolData
# Suppose that 'all_molecular_data.csv' has been downloaded from GitHub


# 3. Check if any SMILES is missing in the dataset (first column)
df = pd.read_csv('all_molecular_data.csv')  

missing_SMILES = df[df.iloc[:, 0].isna()]

print(f'There are {len(missing_SMILES)} rows with missing SMILES.')   # This prints 'There are 0 rows with missing SMILES.'


# 4. Sanitize SMILES with MolVS and print problems
# Since the dataset is large, we divided it into four portions to sanitize
quarter_df_1 = df.iloc[:len(df)//4]

quarter_df_1['X'] = [ \
    rdkit.Chem.MolToSmiles(
        fragment_remover.remove(
        standardizer.standardize(
        rdkit.Chem.MolFromSmiles(
        smiles))))
    for smiles in quarter_df_1['smiles']]

problems = []
for index, row in tqdm.tqdm(quarter_df_1.iterrows()):
    result = molvs.validate_smiles(row['X'])
    if len(result) == 0:
        continue
    problems.append((row['X'], result))

#   Most are because it includes the salt form and/or it is not neutralized
for result, alert in problems:
    print(f"SMILES: {result}, problem: {alert[0]}")

quarter_df_1.to_csv('MolData_sanitized_0.25.csv')   



quarter_df_2 = df.iloc[len(df)//4 : len(df)//2]

quarter_df_2['X'] = [ \
    rdkit.Chem.MolToSmiles(
        fragment_remover.remove(
        standardizer.standardize(
        rdkit.Chem.MolFromSmiles(
        smiles))))
    for smiles in quarter_df_2['smiles']]

problems = []
for index, row in tqdm.tqdm(quarter_df_2.iterrows()):
    result = molvs.validate_smiles(row['X'])
    if len(result) == 0:
        continue
    problems.append((row['X'], result))

#   Most are because it includes the salt form and/or it is not neutralized
for result, alert in problems:
    print(f"SMILES: {result}, problem: {alert[0]}")

quarter_df_2.to_csv('MolData_sanitized_0.5.csv')   


quarter_df_3 = df.iloc[len(df)//2 : 3 *len(df)//4]

quarter_df_3['X'] = [ \
    rdkit.Chem.MolToSmiles(
        fragment_remover.remove(
        standardizer.standardize(
        rdkit.Chem.MolFromSmiles(
        smiles))))
    for smiles in quarter_df_3['smiles']]

problems = []
for index, row in tqdm.tqdm(quarter_df_3.iterrows()):
    result = molvs.validate_smiles(row['X'])
    if len(result) == 0:
        continue
    problems.append((row['X'], result))

#   Most are because it includes the salt form and/or it is not neutralized
for result, alert in problems:
    print(f"SMILES: {result}, problem: {alert[0]}")

quarter_df_3.to_csv('MolData_sanitized_0.75.csv')



quarter_df_4 = df.iloc[3 *len(df)//4 :len(df)]

quarter_df_4['X'] = [ \
    rdkit.Chem.MolToSmiles(
        fragment_remover.remove(
        standardizer.standardize(
        rdkit.Chem.MolFromSmiles(
        smiles))))
    for smiles in quarter_df_4['smiles']]

problems = []
for index, row in tqdm.tqdm(quarter_df_4.iterrows()):
    result = molvs.validate_smiles(row['X'])
    if len(result) == 0:
        continue
    problems.append((row['X'], result))

#   Most are because it includes the salt form and/or it is not neutralized
for result, alert in problems:
    print(f"SMILES: {result}, problem: {alert[0]}")

quarter_df_4.to_csv('MolData_sanitized_1.0.csv')


# 4. Concatenate
sanitized1 = pd.read_csv('MolData_sanitized_0.25.csv')
sanitized2 = pd.read_csv('MolData_sanitized_0.5.csv')
sanitized3 = pd.read_csv('MolData_sanitized_0.75.csv')
sanitized4 = pd.read_csv('MolData_sanitized_1.0.csv')

smiles_concatenated = pd.concat([sanitized1, sanitized2, sanitized3, sanitized4], ignore_index=True)

smiles_concatenated.to_csv('MolData_sanitized_concatenated.csv', index = False) 




# 5. Formatting and naming (wide form to long form, & column naming)
# Due to the large size of the dataset, we processed it using chunks to efficiently handle the data.
chunk_size = 10**5  
input_file = 'MolData_sanitized_concatenated.csv'
output_prefix = 'MolData_long_form_'

column_names = pd.read_csv(input_file, nrows=1).columns
column_names = column_names.tolist()

column_names = ['SMILES' if col == 'X' else col for col in column_names]

var_name_list = [col for col in column_names if col.startswith('activity_')]

with pd.read_csv(input_file, chunksize=chunk_size) as reader:
    for i, chunk in enumerate(reader):
        chunk.columns = column_names  

        long_df = pd.melt(chunk, id_vars=['SMILES', 'PUBCHEM_CID', 'split'], 
                  value_vars=var_name_list, var_name='AID', value_name='score')
    
        long_df = long_df.dropna(subset=['score'])
        long_df['score'] = long_df['score'].astype('Int64') 

        output_file = f"{output_prefix}{i+1}.csv"  
        long_df.to_csv(output_file, index=False)  

        print(f"Saved: {output_file}")



# 6. Split into train, test, and validation 
chunk_size = 10**5
input_files = [f'MolData_long_form_{i+1}.csv' for i in range(15)] 

output_train_file = 'MolData_train.csv'
output_test_file = 'MolData_test.csv'
output_valid_file = 'MolData_validation.csv'

train_data = []
test_data = []
valid_data = []

for input_file in input_files:
    with pd.read_csv(input_file, chunksize=chunk_size) as reader:
        for chunk in reader:
            train_chunk = chunk[chunk['split'] == 'train']
            test_chunk = chunk[chunk['split'] == 'test']
            valid_chunk = chunk[chunk['split'] == 'validation']

            train_data.append(train_chunk)
            test_data.append(test_chunk)
            valid_data.append(valid_chunk)

train_df = pd.concat(train_data, ignore_index=True)
test_df = pd.concat(test_data, ignore_index=True)
valid_df = pd.concat(valid_data, ignore_index=True)

train_df.to_csv(output_train_file, index=False)
test_df.to_csv(output_test_file, index=False)
valid_df.to_csv(output_valid_file, index=False)


def fix_cid_column(df): 
    df['PUBCHEM_CID'] = df['PUBCHEM_CID'].astype(str).apply(lambda x: x.split(',')[0])  # Because some molecule have two CIDs
    df['PUBCHEM_CID'] = df['PUBCHEM_CID'].astype('Int64') 
    df = df.rename(columns = {'score' : 'Y'})  # This is for column renaming
    return df

train_csv = fix_cid_column(pd.read_csv('MolData_train.csv'))
test_csv = fix_cid_column(pd.read_csv('MolData_test.csv'))
valid_csv = fix_cid_column(pd.read_csv('MolData_validation.csv'))

train_csv.to_parquet('MolData_train.parquet', index=False)
test_csv.to_parquet('MolData_test.parquet', index=False)
valid_csv.to_parquet('MolData_validation.parquet', index=False)