Datasets:
Upload MolData_preprocessing.py
Browse files- MolData_preprocessing.py +220 -0
MolData_preprocessing.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This is a script for MolData dataset preprocessing
|
2 |
+
|
3 |
+
# 1. Load modules
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import urllib.request
|
7 |
+
import rdkit
|
8 |
+
from rdkit import Chem
|
9 |
+
import os
|
10 |
+
import molvs
|
11 |
+
import csv
|
12 |
+
import json
|
13 |
+
import tqdm
|
14 |
+
|
15 |
+
standardizer = molvs.Standardizer()
|
16 |
+
fragment_remover = molvs.fragment.FragmentRemover()
|
17 |
+
|
18 |
+
|
19 |
+
# 2. Download the original dataset
|
20 |
+
# https://github.com/LumosBio/MolData
|
21 |
+
# Suppose that 'all_molecular_data.csv' has been downloaded from GitHub
|
22 |
+
|
23 |
+
|
24 |
+
# 3. Check if any SMILES is missing in the dataset (first column)
|
25 |
+
df = pd.read_csv('all_molecular_data.csv')
|
26 |
+
|
27 |
+
missing_SMILES = df[df.iloc[:, 0].isna()]
|
28 |
+
|
29 |
+
print(f'There are {len(missing_SMILES)} rows with missing SMILES.') # This prints 'There are 0 rows with missing SMILES.'
|
30 |
+
|
31 |
+
|
32 |
+
# 4. Sanitize SMILES with MolVS and print problems
|
33 |
+
# Since the dataset is large, we divided it into four portions to sanitize
|
34 |
+
quarter_df_1 = df.iloc[:len(df)//4]
|
35 |
+
|
36 |
+
quarter_df_1['X'] = [ \
|
37 |
+
rdkit.Chem.MolToSmiles(
|
38 |
+
fragment_remover.remove(
|
39 |
+
standardizer.standardize(
|
40 |
+
rdkit.Chem.MolFromSmiles(
|
41 |
+
smiles))))
|
42 |
+
for smiles in quarter_df_1['smiles']]
|
43 |
+
|
44 |
+
problems = []
|
45 |
+
for index, row in tqdm.tqdm(quarter_df_1.iterrows()):
|
46 |
+
result = molvs.validate_smiles(row['X'])
|
47 |
+
if len(result) == 0:
|
48 |
+
continue
|
49 |
+
problems.append((row['X'], result))
|
50 |
+
|
51 |
+
# Most are because it includes the salt form and/or it is not neutralized
|
52 |
+
for result, alert in problems:
|
53 |
+
print(f"SMILES: {result}, problem: {alert[0]}")
|
54 |
+
|
55 |
+
quarter_df_1.to_csv('MolData_sanitized_0.25.csv')
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
quarter_df_2 = df.iloc[len(df)//4 : len(df)//2]
|
60 |
+
|
61 |
+
quarter_df_2['X'] = [ \
|
62 |
+
rdkit.Chem.MolToSmiles(
|
63 |
+
fragment_remover.remove(
|
64 |
+
standardizer.standardize(
|
65 |
+
rdkit.Chem.MolFromSmiles(
|
66 |
+
smiles))))
|
67 |
+
for smiles in quarter_df_2['smiles']]
|
68 |
+
|
69 |
+
problems = []
|
70 |
+
for index, row in tqdm.tqdm(quarter_df_2.iterrows()):
|
71 |
+
result = molvs.validate_smiles(row['X'])
|
72 |
+
if len(result) == 0:
|
73 |
+
continue
|
74 |
+
problems.append((row['X'], result))
|
75 |
+
|
76 |
+
# Most are because it includes the salt form and/or it is not neutralized
|
77 |
+
for result, alert in problems:
|
78 |
+
print(f"SMILES: {result}, problem: {alert[0]}")
|
79 |
+
|
80 |
+
quarter_df_2.to_csv('MolData_sanitized_0.5.csv')
|
81 |
+
|
82 |
+
|
83 |
+
quarter_df_3 = df.iloc[len(df)//2 : 3 *len(df)//4]
|
84 |
+
|
85 |
+
quarter_df_3['X'] = [ \
|
86 |
+
rdkit.Chem.MolToSmiles(
|
87 |
+
fragment_remover.remove(
|
88 |
+
standardizer.standardize(
|
89 |
+
rdkit.Chem.MolFromSmiles(
|
90 |
+
smiles))))
|
91 |
+
for smiles in quarter_df_3['smiles']]
|
92 |
+
|
93 |
+
problems = []
|
94 |
+
for index, row in tqdm.tqdm(quarter_df_3.iterrows()):
|
95 |
+
result = molvs.validate_smiles(row['X'])
|
96 |
+
if len(result) == 0:
|
97 |
+
continue
|
98 |
+
problems.append((row['X'], result))
|
99 |
+
|
100 |
+
# Most are because it includes the salt form and/or it is not neutralized
|
101 |
+
for result, alert in problems:
|
102 |
+
print(f"SMILES: {result}, problem: {alert[0]}")
|
103 |
+
|
104 |
+
quarter_df_3.to_csv('MolData_sanitized_0.75.csv')
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
quarter_df_4 = df.iloc[3 *len(df)//4 :len(df)]
|
109 |
+
|
110 |
+
quarter_df_4['X'] = [ \
|
111 |
+
rdkit.Chem.MolToSmiles(
|
112 |
+
fragment_remover.remove(
|
113 |
+
standardizer.standardize(
|
114 |
+
rdkit.Chem.MolFromSmiles(
|
115 |
+
smiles))))
|
116 |
+
for smiles in quarter_df_4['smiles']]
|
117 |
+
|
118 |
+
problems = []
|
119 |
+
for index, row in tqdm.tqdm(quarter_df_4.iterrows()):
|
120 |
+
result = molvs.validate_smiles(row['X'])
|
121 |
+
if len(result) == 0:
|
122 |
+
continue
|
123 |
+
problems.append((row['X'], result))
|
124 |
+
|
125 |
+
# Most are because it includes the salt form and/or it is not neutralized
|
126 |
+
for result, alert in problems:
|
127 |
+
print(f"SMILES: {result}, problem: {alert[0]}")
|
128 |
+
|
129 |
+
quarter_df_4.to_csv('MolData_sanitized_1.0.csv')
|
130 |
+
|
131 |
+
|
132 |
+
# 4. Concatenate
|
133 |
+
sanitized1 = pd.read_csv('MolData_sanitized_0.25.csv')
|
134 |
+
sanitized2 = pd.read_csv('MolData_sanitized_0.5.csv')
|
135 |
+
sanitized3 = pd.read_csv('MolData_sanitized_0.75.csv')
|
136 |
+
sanitized4 = pd.read_csv('MolData_sanitized_1.0.csv')
|
137 |
+
|
138 |
+
smiles_concatenated = pd.concat([sanitized1, sanitized2, sanitized3, sanitized4], ignore_index=True)
|
139 |
+
|
140 |
+
smiles_concatenated.to_csv('MolData_sanitized_concatenated.csv', index = False)
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
# 5. Formatting and naming (wide form to long form, & column naming)
|
146 |
+
# Due to the large size of the dataset, we processed it using chunks to efficiently handle the data.
|
147 |
+
chunk_size = 10**5
|
148 |
+
input_file = 'MolData_sanitized_concatenated.csv'
|
149 |
+
output_prefix = 'MolData_long_form_'
|
150 |
+
|
151 |
+
column_names = pd.read_csv(input_file, nrows=1).columns
|
152 |
+
column_names = column_names.tolist()
|
153 |
+
|
154 |
+
column_names = ['SMILES' if col == 'X' else col for col in column_names]
|
155 |
+
|
156 |
+
var_name_list = [col for col in column_names if col.startswith('activity_')]
|
157 |
+
|
158 |
+
with pd.read_csv(input_file, chunksize=chunk_size) as reader:
|
159 |
+
for i, chunk in enumerate(reader):
|
160 |
+
chunk.columns = column_names
|
161 |
+
|
162 |
+
long_df = pd.melt(chunk, id_vars=['SMILES', 'PUBCHEM_CID', 'split'],
|
163 |
+
value_vars=var_name_list, var_name='AID', value_name='score')
|
164 |
+
|
165 |
+
long_df = long_df.dropna(subset=['score'])
|
166 |
+
long_df['score'] = long_df['score'].astype('Int64')
|
167 |
+
|
168 |
+
output_file = f"{output_prefix}{i+1}.csv"
|
169 |
+
long_df.to_csv(output_file, index=False)
|
170 |
+
|
171 |
+
print(f"Saved: {output_file}")
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
# 6. Split into train, test, and validation
|
176 |
+
chunk_size = 10**5
|
177 |
+
input_files = [f'MolData_long_form_{i+1}.csv' for i in range(15)]
|
178 |
+
|
179 |
+
output_train_file = 'MolData_train.csv'
|
180 |
+
output_test_file = 'MolData_test.csv'
|
181 |
+
output_valid_file = 'MolData_validation.csv'
|
182 |
+
|
183 |
+
train_data = []
|
184 |
+
test_data = []
|
185 |
+
valid_data = []
|
186 |
+
|
187 |
+
for input_file in input_files:
|
188 |
+
with pd.read_csv(input_file, chunksize=chunk_size) as reader:
|
189 |
+
for chunk in reader:
|
190 |
+
train_chunk = chunk[chunk['split'] == 'train']
|
191 |
+
test_chunk = chunk[chunk['split'] == 'test']
|
192 |
+
valid_chunk = chunk[chunk['split'] == 'validation']
|
193 |
+
|
194 |
+
train_data.append(train_chunk)
|
195 |
+
test_data.append(test_chunk)
|
196 |
+
valid_data.append(valid_chunk)
|
197 |
+
|
198 |
+
train_df = pd.concat(train_data, ignore_index=True)
|
199 |
+
test_df = pd.concat(test_data, ignore_index=True)
|
200 |
+
valid_df = pd.concat(valid_data, ignore_index=True)
|
201 |
+
|
202 |
+
train_df.to_csv(output_train_file, index=False)
|
203 |
+
test_df.to_csv(output_test_file, index=False)
|
204 |
+
valid_df.to_csv(output_valid_file, index=False)
|
205 |
+
|
206 |
+
|
207 |
+
def fix_cid_column(df):
|
208 |
+
df['PUBCHEM_CID'] = df['PUBCHEM_CID'].astype(str).apply(lambda x: x.split(',')[0]) # Because some molecule have two CIDs
|
209 |
+
df['PUBCHEM_CID'] = df['PUBCHEM_CID'].astype('Int64')
|
210 |
+
df = df.rename(columns = {'score' : 'Y'}) # This is for column renaming
|
211 |
+
return df
|
212 |
+
|
213 |
+
train_csv = fix_cid_column(pd.read_csv('MolData_train.csv'))
|
214 |
+
test_csv = fix_cid_column(pd.read_csv('MolData_test.csv'))
|
215 |
+
valid_csv = fix_cid_column(pd.read_csv('MolData_validation.csv'))
|
216 |
+
|
217 |
+
train_csv.to_parquet('MolData_train.parquet', index=False)
|
218 |
+
test_csv.to_parquet('MolData_test.parquet', index=False)
|
219 |
+
valid_csv.to_parquet('MolData_validation.parquet', index=False)
|
220 |
+
|