|
|
|
|
|
|
|
import pandas as pd |
|
import numpy as np |
|
import urllib.request |
|
import rdkit |
|
from rdkit import Chem |
|
import os |
|
import molvs |
|
import csv |
|
import json |
|
import tqdm |
|
|
|
standardizer = molvs.Standardizer() |
|
fragment_remover = molvs.fragment.FragmentRemover() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df = pd.read_csv('all_molecular_data.csv') |
|
|
|
missing_SMILES = df[df.iloc[:, 0].isna()] |
|
|
|
print(f'There are {len(missing_SMILES)} rows with missing SMILES.') |
|
|
|
|
|
|
|
|
|
quarter_df_1 = df.iloc[:len(df)//4] |
|
|
|
quarter_df_1['X'] = [ \ |
|
rdkit.Chem.MolToSmiles( |
|
fragment_remover.remove( |
|
standardizer.standardize( |
|
rdkit.Chem.MolFromSmiles( |
|
smiles)))) |
|
for smiles in quarter_df_1['smiles']] |
|
|
|
problems = [] |
|
for index, row in tqdm.tqdm(quarter_df_1.iterrows()): |
|
result = molvs.validate_smiles(row['X']) |
|
if len(result) == 0: |
|
continue |
|
problems.append((row['X'], result)) |
|
|
|
|
|
for result, alert in problems: |
|
print(f"SMILES: {result}, problem: {alert[0]}") |
|
|
|
quarter_df_1.to_csv('MolData_sanitized_0.25.csv') |
|
|
|
|
|
|
|
quarter_df_2 = df.iloc[len(df)//4 : len(df)//2] |
|
|
|
quarter_df_2['X'] = [ \ |
|
rdkit.Chem.MolToSmiles( |
|
fragment_remover.remove( |
|
standardizer.standardize( |
|
rdkit.Chem.MolFromSmiles( |
|
smiles)))) |
|
for smiles in quarter_df_2['smiles']] |
|
|
|
problems = [] |
|
for index, row in tqdm.tqdm(quarter_df_2.iterrows()): |
|
result = molvs.validate_smiles(row['X']) |
|
if len(result) == 0: |
|
continue |
|
problems.append((row['X'], result)) |
|
|
|
|
|
for result, alert in problems: |
|
print(f"SMILES: {result}, problem: {alert[0]}") |
|
|
|
quarter_df_2.to_csv('MolData_sanitized_0.5.csv') |
|
|
|
|
|
quarter_df_3 = df.iloc[len(df)//2 : 3 *len(df)//4] |
|
|
|
quarter_df_3['X'] = [ \ |
|
rdkit.Chem.MolToSmiles( |
|
fragment_remover.remove( |
|
standardizer.standardize( |
|
rdkit.Chem.MolFromSmiles( |
|
smiles)))) |
|
for smiles in quarter_df_3['smiles']] |
|
|
|
problems = [] |
|
for index, row in tqdm.tqdm(quarter_df_3.iterrows()): |
|
result = molvs.validate_smiles(row['X']) |
|
if len(result) == 0: |
|
continue |
|
problems.append((row['X'], result)) |
|
|
|
|
|
for result, alert in problems: |
|
print(f"SMILES: {result}, problem: {alert[0]}") |
|
|
|
quarter_df_3.to_csv('MolData_sanitized_0.75.csv') |
|
|
|
|
|
|
|
quarter_df_4 = df.iloc[3 *len(df)//4 :len(df)] |
|
|
|
quarter_df_4['X'] = [ \ |
|
rdkit.Chem.MolToSmiles( |
|
fragment_remover.remove( |
|
standardizer.standardize( |
|
rdkit.Chem.MolFromSmiles( |
|
smiles)))) |
|
for smiles in quarter_df_4['smiles']] |
|
|
|
problems = [] |
|
for index, row in tqdm.tqdm(quarter_df_4.iterrows()): |
|
result = molvs.validate_smiles(row['X']) |
|
if len(result) == 0: |
|
continue |
|
problems.append((row['X'], result)) |
|
|
|
|
|
for result, alert in problems: |
|
print(f"SMILES: {result}, problem: {alert[0]}") |
|
|
|
quarter_df_4.to_csv('MolData_sanitized_1.0.csv') |
|
|
|
|
|
|
|
sanitized1 = pd.read_csv('MolData_sanitized_0.25.csv') |
|
sanitized2 = pd.read_csv('MolData_sanitized_0.5.csv') |
|
sanitized3 = pd.read_csv('MolData_sanitized_0.75.csv') |
|
sanitized4 = pd.read_csv('MolData_sanitized_1.0.csv') |
|
|
|
smiles_concatenated = pd.concat([sanitized1, sanitized2, sanitized3, sanitized4], ignore_index=True) |
|
|
|
smiles_concatenated.to_csv('MolData_sanitized_concatenated.csv', index = False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
chunk_size = 10**5 |
|
input_file = 'MolData_sanitized_concatenated.csv' |
|
output_prefix = 'MolData_long_form_' |
|
|
|
column_names = pd.read_csv(input_file, nrows=1).columns |
|
column_names = column_names.tolist() |
|
|
|
column_names = ['SMILES' if col == 'X' else col for col in column_names] |
|
|
|
var_name_list = [col for col in column_names if col.startswith('activity_')] |
|
|
|
with pd.read_csv(input_file, chunksize=chunk_size) as reader: |
|
for i, chunk in enumerate(reader): |
|
chunk.columns = column_names |
|
|
|
long_df = pd.melt(chunk, id_vars=['SMILES', 'PUBCHEM_CID', 'split'], |
|
value_vars=var_name_list, var_name='AID', value_name='score') |
|
|
|
long_df = long_df.dropna(subset=['score']) |
|
long_df['score'] = long_df['score'].astype('Int64') |
|
|
|
output_file = f"{output_prefix}{i+1}.csv" |
|
long_df.to_csv(output_file, index=False) |
|
|
|
print(f"Saved: {output_file}") |
|
|
|
|
|
|
|
|
|
chunk_size = 10**5 |
|
input_files = [f'MolData_long_form_{i+1}.csv' for i in range(15)] |
|
|
|
output_train_file = 'MolData_train.csv' |
|
output_test_file = 'MolData_test.csv' |
|
output_valid_file = 'MolData_validation.csv' |
|
|
|
train_data = [] |
|
test_data = [] |
|
valid_data = [] |
|
|
|
for input_file in input_files: |
|
with pd.read_csv(input_file, chunksize=chunk_size) as reader: |
|
for chunk in reader: |
|
train_chunk = chunk[chunk['split'] == 'train'] |
|
test_chunk = chunk[chunk['split'] == 'test'] |
|
valid_chunk = chunk[chunk['split'] == 'validation'] |
|
|
|
train_data.append(train_chunk) |
|
test_data.append(test_chunk) |
|
valid_data.append(valid_chunk) |
|
|
|
train_df = pd.concat(train_data, ignore_index=True) |
|
test_df = pd.concat(test_data, ignore_index=True) |
|
valid_df = pd.concat(valid_data, ignore_index=True) |
|
|
|
train_df.to_csv(output_train_file, index=False) |
|
test_df.to_csv(output_test_file, index=False) |
|
valid_df.to_csv(output_valid_file, index=False) |
|
|
|
|
|
def fix_cid_column(df): |
|
df['PUBCHEM_CID'] = df['PUBCHEM_CID'].astype(str).apply(lambda x: x.split(',')[0]) |
|
df['PUBCHEM_CID'] = df['PUBCHEM_CID'].astype('Int64') |
|
df = df.rename(columns = {'score' : 'Y'}) |
|
return df |
|
|
|
train_csv = fix_cid_column(pd.read_csv('MolData_train.csv')) |
|
test_csv = fix_cid_column(pd.read_csv('MolData_test.csv')) |
|
valid_csv = fix_cid_column(pd.read_csv('MolData_validation.csv')) |
|
|
|
train_csv.to_parquet('MolData_train.parquet', index=False) |
|
test_csv.to_parquet('MolData_test.parquet', index=False) |
|
valid_csv.to_parquet('MolData_validation.parquet', index=False) |
|
|
|
|