Convert dataset to Parquet

#1
by mapama247 - opened
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
- pretty_name: WikiHow-ES
3
- license: cc-by-nc-sa-3.0
4
- size_categories: 1K<n<10K
5
  language: es
 
6
  multilinguality: monolingual
 
7
  task_categories:
8
  - text-classification
9
  - question-answering
10
  - conversational
11
  - summarization
 
12
  tags:
13
  - Spanish
14
  - WikiHow
@@ -16,6 +16,609 @@ tags:
16
  - Tutorials
17
  - Step-By-Step
18
  - Instruction Tuning
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  ---
20
 
21
  ### Dataset Summary
 
1
  ---
 
 
 
2
  language: es
3
+ license: cc-by-nc-sa-3.0
4
  multilinguality: monolingual
5
+ size_categories: 1K<n<10K
6
  task_categories:
7
  - text-classification
8
  - question-answering
9
  - conversational
10
  - summarization
11
+ pretty_name: WikiHow-ES
12
  tags:
13
  - Spanish
14
  - WikiHow
 
16
  - Tutorials
17
  - Step-By-Step
18
  - Instruction Tuning
19
+ dataset_info:
20
+ - config_name: adolescentes
21
+ features:
22
+ - name: category
23
+ dtype: string
24
+ - name: question
25
+ dtype: string
26
+ - name: introduction
27
+ dtype: string
28
+ - name: answers
29
+ sequence: string
30
+ - name: short_answers
31
+ sequence: string
32
+ - name: url
33
+ dtype: string
34
+ - name: num_answers
35
+ dtype: int32
36
+ - name: num_refs
37
+ dtype: int32
38
+ - name: expert_author
39
+ dtype: bool
40
+ splits:
41
+ - name: train
42
+ num_bytes: 1991245
43
+ num_examples: 201
44
+ download_size: 1153947
45
+ dataset_size: 1991245
46
+ - config_name: all
47
+ features:
48
+ - name: category
49
+ dtype: string
50
+ - name: question
51
+ dtype: string
52
+ - name: introduction
53
+ dtype: string
54
+ - name: answers
55
+ sequence: string
56
+ - name: short_answers
57
+ sequence: string
58
+ - name: url
59
+ dtype: string
60
+ - name: num_answers
61
+ dtype: int32
62
+ - name: num_refs
63
+ dtype: int32
64
+ - name: expert_author
65
+ dtype: bool
66
+ splits:
67
+ - name: train
68
+ num_bytes: 70513673
69
+ num_examples: 7380
70
+ download_size: 38605450
71
+ dataset_size: 70513673
72
+ - config_name: arte-y-entretenimiento
73
+ features:
74
+ - name: category
75
+ dtype: string
76
+ - name: question
77
+ dtype: string
78
+ - name: introduction
79
+ dtype: string
80
+ - name: answers
81
+ sequence: string
82
+ - name: short_answers
83
+ sequence: string
84
+ - name: url
85
+ dtype: string
86
+ - name: num_answers
87
+ dtype: int32
88
+ - name: num_refs
89
+ dtype: int32
90
+ - name: expert_author
91
+ dtype: bool
92
+ splits:
93
+ - name: train
94
+ num_bytes: 2567138
95
+ num_examples: 254
96
+ download_size: 1438019
97
+ dataset_size: 2567138
98
+ - config_name: automóviles-y-otros-vehículos
99
+ features:
100
+ - name: category
101
+ dtype: string
102
+ - name: question
103
+ dtype: string
104
+ - name: introduction
105
+ dtype: string
106
+ - name: answers
107
+ sequence: string
108
+ - name: short_answers
109
+ sequence: string
110
+ - name: url
111
+ dtype: string
112
+ - name: num_answers
113
+ dtype: int32
114
+ - name: num_refs
115
+ dtype: int32
116
+ - name: expert_author
117
+ dtype: bool
118
+ splits:
119
+ - name: train
120
+ num_bytes: 890122
121
+ num_examples: 100
122
+ download_size: 480587
123
+ dataset_size: 890122
124
+ - config_name: carreras-y-educación
125
+ features:
126
+ - name: category
127
+ dtype: string
128
+ - name: question
129
+ dtype: string
130
+ - name: introduction
131
+ dtype: string
132
+ - name: answers
133
+ sequence: string
134
+ - name: short_answers
135
+ sequence: string
136
+ - name: url
137
+ dtype: string
138
+ - name: num_answers
139
+ dtype: int32
140
+ - name: num_refs
141
+ dtype: int32
142
+ - name: expert_author
143
+ dtype: bool
144
+ splits:
145
+ - name: train
146
+ num_bytes: 6020903
147
+ num_examples: 564
148
+ download_size: 3261593
149
+ dataset_size: 6020903
150
+ - config_name: comida-y-diversión
151
+ features:
152
+ - name: category
153
+ dtype: string
154
+ - name: question
155
+ dtype: string
156
+ - name: introduction
157
+ dtype: string
158
+ - name: answers
159
+ sequence: string
160
+ - name: short_answers
161
+ sequence: string
162
+ - name: url
163
+ dtype: string
164
+ - name: num_answers
165
+ dtype: int32
166
+ - name: num_refs
167
+ dtype: int32
168
+ - name: expert_author
169
+ dtype: bool
170
+ splits:
171
+ - name: train
172
+ num_bytes: 3602835
173
+ num_examples: 454
174
+ download_size: 1866935
175
+ dataset_size: 3602835
176
+ - config_name: computadoras-y-electrónica
177
+ features:
178
+ - name: category
179
+ dtype: string
180
+ - name: question
181
+ dtype: string
182
+ - name: introduction
183
+ dtype: string
184
+ - name: answers
185
+ sequence: string
186
+ - name: short_answers
187
+ sequence: string
188
+ - name: url
189
+ dtype: string
190
+ - name: num_answers
191
+ dtype: int32
192
+ - name: num_refs
193
+ dtype: int32
194
+ - name: expert_author
195
+ dtype: bool
196
+ splits:
197
+ - name: train
198
+ num_bytes: 5457681
199
+ num_examples: 821
200
+ download_size: 2647916
201
+ dataset_size: 5457681
202
+ - config_name: cuidado-y-estilo-personal
203
+ features:
204
+ - name: category
205
+ dtype: string
206
+ - name: question
207
+ dtype: string
208
+ - name: introduction
209
+ dtype: string
210
+ - name: answers
211
+ sequence: string
212
+ - name: short_answers
213
+ sequence: string
214
+ - name: url
215
+ dtype: string
216
+ - name: num_answers
217
+ dtype: int32
218
+ - name: num_refs
219
+ dtype: int32
220
+ - name: expert_author
221
+ dtype: bool
222
+ splits:
223
+ - name: train
224
+ num_bytes: 7368188
225
+ num_examples: 724
226
+ download_size: 4088837
227
+ dataset_size: 7368188
228
+ - config_name: deportes
229
+ features:
230
+ - name: category
231
+ dtype: string
232
+ - name: question
233
+ dtype: string
234
+ - name: introduction
235
+ dtype: string
236
+ - name: answers
237
+ sequence: string
238
+ - name: short_answers
239
+ sequence: string
240
+ - name: url
241
+ dtype: string
242
+ - name: num_answers
243
+ dtype: int32
244
+ - name: num_refs
245
+ dtype: int32
246
+ - name: expert_author
247
+ dtype: bool
248
+ splits:
249
+ - name: train
250
+ num_bytes: 1935432
251
+ num_examples: 201
252
+ download_size: 1028678
253
+ dataset_size: 1935432
254
+ - config_name: días-de-fiesta-y-tradiciones
255
+ features:
256
+ - name: category
257
+ dtype: string
258
+ - name: question
259
+ dtype: string
260
+ - name: introduction
261
+ dtype: string
262
+ - name: answers
263
+ sequence: string
264
+ - name: short_answers
265
+ sequence: string
266
+ - name: url
267
+ dtype: string
268
+ - name: num_answers
269
+ dtype: int32
270
+ - name: num_refs
271
+ dtype: int32
272
+ - name: expert_author
273
+ dtype: bool
274
+ splits:
275
+ - name: train
276
+ num_bytes: 920660
277
+ num_examples: 86
278
+ download_size: 534900
279
+ dataset_size: 920660
280
+ - config_name: en-el-trabajo
281
+ features:
282
+ - name: category
283
+ dtype: string
284
+ - name: question
285
+ dtype: string
286
+ - name: introduction
287
+ dtype: string
288
+ - name: answers
289
+ sequence: string
290
+ - name: short_answers
291
+ sequence: string
292
+ - name: url
293
+ dtype: string
294
+ - name: num_answers
295
+ dtype: int32
296
+ - name: num_refs
297
+ dtype: int32
298
+ - name: expert_author
299
+ dtype: bool
300
+ splits:
301
+ - name: train
302
+ num_bytes: 2313935
303
+ num_examples: 211
304
+ download_size: 1274004
305
+ dataset_size: 2313935
306
+ - config_name: en-la-casa-y-el-jardín
307
+ features:
308
+ - name: category
309
+ dtype: string
310
+ - name: question
311
+ dtype: string
312
+ - name: introduction
313
+ dtype: string
314
+ - name: answers
315
+ sequence: string
316
+ - name: short_answers
317
+ sequence: string
318
+ - name: url
319
+ dtype: string
320
+ - name: num_answers
321
+ dtype: int32
322
+ - name: num_refs
323
+ dtype: int32
324
+ - name: expert_author
325
+ dtype: bool
326
+ splits:
327
+ - name: train
328
+ num_bytes: 4311584
329
+ num_examples: 496
330
+ download_size: 2293097
331
+ dataset_size: 4311584
332
+ - config_name: filosofía-y-religión
333
+ features:
334
+ - name: category
335
+ dtype: string
336
+ - name: question
337
+ dtype: string
338
+ - name: introduction
339
+ dtype: string
340
+ - name: answers
341
+ sequence: string
342
+ - name: short_answers
343
+ sequence: string
344
+ - name: url
345
+ dtype: string
346
+ - name: num_answers
347
+ dtype: int32
348
+ - name: num_refs
349
+ dtype: int32
350
+ - name: expert_author
351
+ dtype: bool
352
+ splits:
353
+ - name: train
354
+ num_bytes: 2717929
355
+ num_examples: 264
356
+ download_size: 1547991
357
+ dataset_size: 2717929
358
+ - config_name: finanzas-y-negocios
359
+ features:
360
+ - name: category
361
+ dtype: string
362
+ - name: question
363
+ dtype: string
364
+ - name: introduction
365
+ dtype: string
366
+ - name: answers
367
+ sequence: string
368
+ - name: short_answers
369
+ sequence: string
370
+ - name: url
371
+ dtype: string
372
+ - name: num_answers
373
+ dtype: int32
374
+ - name: num_refs
375
+ dtype: int32
376
+ - name: expert_author
377
+ dtype: bool
378
+ splits:
379
+ - name: train
380
+ num_bytes: 5183587
381
+ num_examples: 459
382
+ download_size: 2761337
383
+ dataset_size: 5183587
384
+ - config_name: mascotas-y-animales
385
+ features:
386
+ - name: category
387
+ dtype: string
388
+ - name: question
389
+ dtype: string
390
+ - name: introduction
391
+ dtype: string
392
+ - name: answers
393
+ sequence: string
394
+ - name: short_answers
395
+ sequence: string
396
+ - name: url
397
+ dtype: string
398
+ - name: num_answers
399
+ dtype: int32
400
+ - name: num_refs
401
+ dtype: int32
402
+ - name: expert_author
403
+ dtype: bool
404
+ splits:
405
+ - name: train
406
+ num_bytes: 3224822
407
+ num_examples: 338
408
+ download_size: 1772324
409
+ dataset_size: 3224822
410
+ - config_name: pasatiempos
411
+ features:
412
+ - name: category
413
+ dtype: string
414
+ - name: question
415
+ dtype: string
416
+ - name: introduction
417
+ dtype: string
418
+ - name: answers
419
+ sequence: string
420
+ - name: short_answers
421
+ sequence: string
422
+ - name: url
423
+ dtype: string
424
+ - name: num_answers
425
+ dtype: int32
426
+ - name: num_refs
427
+ dtype: int32
428
+ - name: expert_author
429
+ dtype: bool
430
+ splits:
431
+ - name: train
432
+ num_bytes: 6366593
433
+ num_examples: 729
434
+ download_size: 3430327
435
+ dataset_size: 6366593
436
+ - config_name: relaciones
437
+ features:
438
+ - name: category
439
+ dtype: string
440
+ - name: question
441
+ dtype: string
442
+ - name: introduction
443
+ dtype: string
444
+ - name: answers
445
+ sequence: string
446
+ - name: short_answers
447
+ sequence: string
448
+ - name: url
449
+ dtype: string
450
+ - name: num_answers
451
+ dtype: int32
452
+ - name: num_refs
453
+ dtype: int32
454
+ - name: expert_author
455
+ dtype: bool
456
+ splits:
457
+ - name: train
458
+ num_bytes: 4053092
459
+ num_examples: 388
460
+ download_size: 2270175
461
+ dataset_size: 4053092
462
+ - config_name: salud
463
+ features:
464
+ - name: category
465
+ dtype: string
466
+ - name: question
467
+ dtype: string
468
+ - name: introduction
469
+ dtype: string
470
+ - name: answers
471
+ sequence: string
472
+ - name: short_answers
473
+ sequence: string
474
+ - name: url
475
+ dtype: string
476
+ - name: num_answers
477
+ dtype: int32
478
+ - name: num_refs
479
+ dtype: int32
480
+ - name: expert_author
481
+ dtype: bool
482
+ splits:
483
+ - name: train
484
+ num_bytes: 8334993
485
+ num_examples: 804
486
+ download_size: 4538289
487
+ dataset_size: 8334993
488
+ - config_name: viajes
489
+ features:
490
+ - name: category
491
+ dtype: string
492
+ - name: question
493
+ dtype: string
494
+ - name: introduction
495
+ dtype: string
496
+ - name: answers
497
+ sequence: string
498
+ - name: short_answers
499
+ sequence: string
500
+ - name: url
501
+ dtype: string
502
+ - name: num_answers
503
+ dtype: int32
504
+ - name: num_refs
505
+ dtype: int32
506
+ - name: expert_author
507
+ dtype: bool
508
+ splits:
509
+ - name: train
510
+ num_bytes: 1509893
511
+ num_examples: 139
512
+ download_size: 851347
513
+ dataset_size: 1509893
514
+ - config_name: vida-familiar
515
+ features:
516
+ - name: category
517
+ dtype: string
518
+ - name: question
519
+ dtype: string
520
+ - name: introduction
521
+ dtype: string
522
+ - name: answers
523
+ sequence: string
524
+ - name: short_answers
525
+ sequence: string
526
+ - name: url
527
+ dtype: string
528
+ - name: num_answers
529
+ dtype: int32
530
+ - name: num_refs
531
+ dtype: int32
532
+ - name: expert_author
533
+ dtype: bool
534
+ splits:
535
+ - name: train
536
+ num_bytes: 1743050
537
+ num_examples: 147
538
+ download_size: 984068
539
+ dataset_size: 1743050
540
+ configs:
541
+ - config_name: adolescentes
542
+ data_files:
543
+ - split: train
544
+ path: adolescentes/train-*
545
+ - config_name: all
546
+ data_files:
547
+ - split: train
548
+ path: all/train-*
549
+ default: true
550
+ - config_name: arte-y-entretenimiento
551
+ data_files:
552
+ - split: train
553
+ path: arte-y-entretenimiento/train-*
554
+ - config_name: automóviles-y-otros-vehículos
555
+ data_files:
556
+ - split: train
557
+ path: automóviles-y-otros-vehículos/train-*
558
+ - config_name: carreras-y-educación
559
+ data_files:
560
+ - split: train
561
+ path: carreras-y-educación/train-*
562
+ - config_name: comida-y-diversión
563
+ data_files:
564
+ - split: train
565
+ path: comida-y-diversión/train-*
566
+ - config_name: computadoras-y-electrónica
567
+ data_files:
568
+ - split: train
569
+ path: computadoras-y-electrónica/train-*
570
+ - config_name: cuidado-y-estilo-personal
571
+ data_files:
572
+ - split: train
573
+ path: cuidado-y-estilo-personal/train-*
574
+ - config_name: deportes
575
+ data_files:
576
+ - split: train
577
+ path: deportes/train-*
578
+ - config_name: días-de-fiesta-y-tradiciones
579
+ data_files:
580
+ - split: train
581
+ path: días-de-fiesta-y-tradiciones/train-*
582
+ - config_name: en-el-trabajo
583
+ data_files:
584
+ - split: train
585
+ path: en-el-trabajo/train-*
586
+ - config_name: en-la-casa-y-el-jardín
587
+ data_files:
588
+ - split: train
589
+ path: en-la-casa-y-el-jardín/train-*
590
+ - config_name: filosofía-y-religión
591
+ data_files:
592
+ - split: train
593
+ path: filosofía-y-religión/train-*
594
+ - config_name: finanzas-y-negocios
595
+ data_files:
596
+ - split: train
597
+ path: finanzas-y-negocios/train-*
598
+ - config_name: mascotas-y-animales
599
+ data_files:
600
+ - split: train
601
+ path: mascotas-y-animales/train-*
602
+ - config_name: pasatiempos
603
+ data_files:
604
+ - split: train
605
+ path: pasatiempos/train-*
606
+ - config_name: relaciones
607
+ data_files:
608
+ - split: train
609
+ path: relaciones/train-*
610
+ - config_name: salud
611
+ data_files:
612
+ - split: train
613
+ path: salud/train-*
614
+ - config_name: viajes
615
+ data_files:
616
+ - split: train
617
+ path: viajes/train-*
618
+ - config_name: vida-familiar
619
+ data_files:
620
+ - split: train
621
+ path: vida-familiar/train-*
622
  ---
623
 
624
  ### Dataset Summary
wikihow_es.jsonl → adolescentes/train-00000-of-00001.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9d857896c0bff56784249ac4e8e5fcc4ed007739ff74dcb1dce556a3ca8734c4
3
- size 66088317
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b55b8b957b4431670dd812b192150bf6683077900f474ac81506aae256452d6
3
+ size 1153947
all/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:134d448af5f7d3baf754f9cf4c208e097715f4b44d445169d6fdad5329957726
3
+ size 38605450
arte-y-entretenimiento/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eeb7f0bb111b1afe2d4b16200e8c783ac491f5fe83bb52b4da0e063c50d55cce
3
+ size 1438019
automóviles-y-otros-vehículos/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bf6c62dfdfa86eda420bd46d1c1a885fa81b60f5b984b3feff3849babe20aee
3
+ size 480587
carreras-y-educación/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cf77026fec730b462f2589bc30505aacfd0a44ccfce8e5bc3627cce05b12354
3
+ size 3261593
comida-y-diversión/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d34cd43a1354b3aecf2444404e82b569c17a1589f7fb079780398ca36212bd76
3
+ size 1866935
computadoras-y-electrónica/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3334559653662b96a7716063e9d4f5e79edee7c518b0653d3a9816bfbc3ede87
3
+ size 2647916
cuidado-y-estilo-personal/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d16d687aa70ddbeece603325665adba51357d9ce0d52e2c06d7c19d0d67ccca0
3
+ size 4088837
deportes/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02199404bec7ec3d275b757d0d2b640a7253bc41a72b6265868a0b2e3262d897
3
+ size 1028678
días-de-fiesta-y-tradiciones/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6f7208ccbd1fbfc01c8e8889b576883a33d41dc95f96ebd4dc794a5318cc4f1
3
+ size 534900
en-el-trabajo/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf4170c0b4008b7f79b4b088b288c9d6142f88b48efc5ed4fa63e4b5be1d707b
3
+ size 1274004
en-la-casa-y-el-jardín/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4aeb70dd5281895571623a7f546d1eae1e14da377a1df4f100659e718163b74d
3
+ size 2293097
filosofía-y-religión/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0db9f01e3380587f322cef94b7ad0b03af7e006248f2c67defaf2549ca9a3f2
3
+ size 1547991
finanzas-y-negocios/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c585cb72cf50c28697b1da5a29fe6841878441f886696d0330b266af56131e10
3
+ size 2761337
mascotas-y-animales/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3684d0a7cdb9ae297071e25ada76f59ca149feb2f2e7046a849ac17576353362
3
+ size 1772324
pasatiempos/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02737a09f6a0ae8446fde7d5f241aa74e2b8f5892b9df4e7fce19c1528184c23
3
+ size 3430327
relaciones/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b038ad70567f1c7883ff4c075773e30e39e630721a7dcd95f19b1a5af932e7d2
3
+ size 2270175
salud/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92ceba32f74cd71738eb500c53e59eed0292415b807aabd9caef429934016de0
3
+ size 4538289
viajes/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83886edb50d1063107cbb4c9a7c0f38700b9b64e4b0088150b65210e85329e14
3
+ size 851347
vida-familiar/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:888b3943e23b36b632cbfc2f189665f4a78c270caf86ed9b4fc9beb73791c266
3
+ size 984068
wikihow_es.py DELETED
@@ -1,114 +0,0 @@
1
- import os
2
- import re
3
- import csv
4
- import json
5
- import datasets
6
-
7
- _DESCRIPTION = "Spanish articles from WikiHow"
8
- _HOMEPAGE = "https://www.wikihow.com"
9
- _LICENSE = "CC BY-NC-SA 3.0"
10
- _VERSION = "1.1.0"
11
-
12
- _DATAPATH = "wikihow_es.jsonl"
13
-
14
- _CATEGORIES = [
15
- "salud",
16
- "viajes",
17
- "deportes",
18
- "relaciones",
19
- "pasatiempos",
20
- "adolescentes",
21
- "vida-familiar",
22
- "en-el-trabajo",
23
- "comida-y-diversión",
24
- "finanzas-y-negocios",
25
- "mascotas-y-animales",
26
- "carreras-y-educación",
27
- "filosofía-y-religión",
28
- "arte-y-entretenimiento",
29
- "en-la-casa-y-el-jardín",
30
- "cuidado-y-estilo-personal",
31
- "computadoras-y-electrónica",
32
- "días-de-fiesta-y-tradiciones",
33
- "automóviles-y-otros-vehículos",
34
- ]
35
-
36
- def format_methods(methods, short=False):
37
- EOL = "\n" if short else "\n\n"
38
- formatted = []
39
- for method in methods:
40
- if method["title"].lower() != "pasos":
41
- content = f"Método {method['number']}: {method['title']}{EOL}"
42
- else:
43
- content = f"Sigue los siguientes pasos:{EOL}"
44
- for step in method["steps"]:
45
- step_content = re.sub(r"\n+", "\n", step).strip()
46
- if short:
47
- step_content = step_content.split("\n")[0]
48
- content += step_content + EOL
49
- formatted.append(content.strip())
50
- return formatted
51
-
52
-
53
- class WikiHowEs(datasets.GeneratorBasedBuilder):
54
- """ WikiHowEs: Collection of Spanish tutorials. """
55
-
56
- VERSION = datasets.Version(_VERSION)
57
-
58
- DEFAULT_CONFIG_NAME = "all"
59
- BUILDER_CONFIGS = [datasets.BuilderConfig(name="all", version=VERSION, description="All articles from WikiHow-ES.")]
60
- for _CAT in _CATEGORIES:
61
- BUILDER_CONFIGS.append(
62
- datasets.BuilderConfig(name=_CAT, version=VERSION, description=f"Articles from the category {_CAT}")
63
- )
64
-
65
- @staticmethod
66
- def _info():
67
- features = datasets.Features(
68
- {
69
- "category": datasets.Value("string"),
70
- "question": datasets.Value("string"),
71
- "introduction": datasets.Value("string"),
72
- "answers": datasets.features.Sequence(datasets.Value("string")),
73
- "short_answers": datasets.features.Sequence(datasets.Value("string")),
74
- "url": datasets.Value("string"),
75
- "num_answers": datasets.Value("int32"),
76
- "num_refs": datasets.Value("int32"),
77
- "expert_author": datasets.Value("bool"),
78
- }
79
- )
80
- return datasets.DatasetInfo(
81
- description=_DESCRIPTION,
82
- features=features,
83
- homepage=_HOMEPAGE,
84
- license=_LICENSE,
85
- )
86
-
87
- @staticmethod
88
- def _split_generators(dl_manager):
89
- data_dir = dl_manager.download_and_extract(_DATAPATH)
90
- return [
91
- datasets.SplitGenerator(
92
- name=datasets.Split.TRAIN,
93
- gen_kwargs={
94
- "filepath": data_dir,
95
- },
96
- ),
97
- ]
98
-
99
- def _generate_examples(self, filepath):
100
- with open(filepath, encoding="utf-8") as f:
101
- for key, row in enumerate(f):
102
- data = json.loads(row)
103
- if self.config.name in ["all", data["category"].lower()]:
104
- yield key, {
105
- "category": data["category"],
106
- "question": f"¿{data['title']}?",
107
- "introduction": data["intro"],
108
- "answers": format_methods(data["methods"], short=False),
109
- "short_answers": format_methods(data["methods"], short=True),
110
- "num_answers": data["num_methods"],
111
- "num_refs": data["num_refs"],
112
- "expert_author": data["expert_author"],
113
- "url": data["url"],
114
- }