masakhaner / README.md
lhoestq's picture
lhoestq HF staff
rename configs to config_name
9768b10
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- am
- ha
- ig
- lg
- luo
- pcm
- rw
- sw
- wo
- yo
license:
- unknown
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: MasakhaNER
dataset_info:
- config_name: amh
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
'7': B-DATE
'8': I-DATE
splits:
- name: train
num_bytes: 639911
num_examples: 1750
- name: validation
num_bytes: 92753
num_examples: 250
- name: test
num_bytes: 184271
num_examples: 500
download_size: 571951
dataset_size: 916935
- config_name: hau
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
'7': B-DATE
'8': I-DATE
splits:
- name: train
num_bytes: 929848
num_examples: 1912
- name: validation
num_bytes: 139503
num_examples: 276
- name: test
num_bytes: 282971
num_examples: 552
download_size: 633372
dataset_size: 1352322
- config_name: ibo
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
'7': B-DATE
'8': I-DATE
splits:
- name: train
num_bytes: 749196
num_examples: 2235
- name: validation
num_bytes: 110572
num_examples: 320
- name: test
num_bytes: 222192
num_examples: 638
download_size: 515415
dataset_size: 1081960
- config_name: kin
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
'7': B-DATE
'8': I-DATE
splits:
- name: train
num_bytes: 878746
num_examples: 2116
- name: validation
num_bytes: 120998
num_examples: 302
- name: test
num_bytes: 258638
num_examples: 605
download_size: 633024
dataset_size: 1258382
- config_name: lug
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
'7': B-DATE
'8': I-DATE
splits:
- name: train
num_bytes: 611917
num_examples: 1428
- name: validation
num_bytes: 70058
num_examples: 200
- name: test
num_bytes: 183063
num_examples: 407
download_size: 445755
dataset_size: 865038
- config_name: luo
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
'7': B-DATE
'8': I-DATE
splits:
- name: train
num_bytes: 314995
num_examples: 644
- name: validation
num_bytes: 43506
num_examples: 92
- name: test
num_bytes: 87716
num_examples: 186
download_size: 213281
dataset_size: 446217
- config_name: pcm
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
'7': B-DATE
'8': I-DATE
splits:
- name: train
num_bytes: 868229
num_examples: 2124
- name: validation
num_bytes: 126829
num_examples: 306
- name: test
num_bytes: 262185
num_examples: 600
download_size: 572054
dataset_size: 1257243
- config_name: swa
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
'7': B-DATE
'8': I-DATE
splits:
- name: train
num_bytes: 1001120
num_examples: 2109
- name: validation
num_bytes: 128563
num_examples: 300
- name: test
num_bytes: 272108
num_examples: 604
download_size: 686313
dataset_size: 1401791
- config_name: wol
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
'7': B-DATE
'8': I-DATE
splits:
- name: train
num_bytes: 602076
num_examples: 1871
- name: validation
num_bytes: 71535
num_examples: 267
- name: test
num_bytes: 191484
num_examples: 539
download_size: 364463
dataset_size: 865095
- config_name: yor
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
'7': B-DATE
'8': I-DATE
splits:
- name: train
num_bytes: 1016741
num_examples: 2171
- name: validation
num_bytes: 127415
num_examples: 305
- name: test
num_bytes: 359519
num_examples: 645
download_size: 751510
dataset_size: 1503675
config_names:
- am
- ha
- ig
- lg
- luo
- pcm
- rw
- sw
- wo
- yo
---
# Dataset Card for MasakhaNER
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [homepage](https://github.com/masakhane-io/masakhane-ner)
- **Repository:** [github](https://github.com/masakhane-io/masakhane-ner)
- **Paper:** [paper](https://arxiv.org/abs/2103.11811)
- **Point of Contact:** [Masakhane](https://www.masakhane.io/) or [email protected]
### Dataset Summary
MasakhaNER is the first large publicly available high-quality dataset for named entity recognition (NER) in ten African languages.
Named entities are phrases that contain the names of persons, organizations, locations, times and quantities. Example:
[PER Wolff] , currently a journalist in [LOC Argentina] , played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid] .
MasakhaNER is a named entity dataset consisting of PER, ORG, LOC, and DATE entities annotated by Masakhane for ten African languages:
- Amharic
- Hausa
- Igbo
- Kinyarwanda
- Luganda
- Luo
- Nigerian-Pidgin
- Swahili
- Wolof
- Yoruba
The train/validation/test sets are available for all the ten languages.
For more details see https://arxiv.org/abs/2103.11811
### Supported Tasks and Leaderboards
[More Information Needed]
- `named-entity-recognition`: The performance in this task is measured with [F1](https://huggingface.co/metrics/f1) (higher is better). A named entity is correct only if it is an exact match of the corresponding entity in the data.
### Languages
There are ten languages available :
- Amharic (amh)
- Hausa (hau)
- Igbo (ibo)
- Kinyarwanda (kin)
- Luganda (kin)
- Luo (luo)
- Nigerian-Pidgin (pcm)
- Swahili (swa)
- Wolof (wol)
- Yoruba (yor)
## Dataset Structure
### Data Instances
The examples look like this for Yorùbá:
```
from datasets import load_dataset
data = load_dataset('masakhaner', 'yor')
# Please, specify the language code
# A data point consists of sentences seperated by empty line and tab-seperated tokens and tags.
{'id': '0',
'ner_tags': [B-DATE, I-DATE, 0, 0, 0, 0, 0, B-PER, I-PER, I-PER, O, O, O, O],
'tokens': ['Wákàtí', 'méje', 'ti', 'ré', 'kọjá', 'lọ', 'tí', 'Luis', 'Carlos', 'Díaz', 'ti', 'di', 'awati', '.']
}
```
### Data Fields
- `id`: id of the sample
- `tokens`: the tokens of the example text
- `ner_tags`: the NER tags of each token
The NER tags correspond to this list:
```
"O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-DATE", "I-DATE",
```
In the NER tags, a B denotes the first item of a phrase and an I any non-initial word. There are four types of phrases: person names (PER), organizations (ORG), locations (LOC) and dates & time (DATE).
It is assumed that named entities are non-recursive and non-overlapping. In case a named entity is embedded in another named entity usually, only the top level entity is marked.
### Data Splits
For all languages, there are three splits.
The original splits were named `train`, `dev` and `test` and they correspond to the `train`, `validation` and `test` splits.
The splits have the following sizes :
| Language | train | validation | test |
|-----------------|------:|-----------:|-----:|
| Amharic | 1750 | 250 | 500 |
| Hausa | 1903 | 272 | 545 |
| Igbo | 2233 | 319 | 638 |
| Kinyarwanda | 2110 | 301 | 604 |
| Luganda | 2003 | 200 | 401 |
| Luo | 644 | 92 | 185 |
| Nigerian-Pidgin | 2100 | 300 | 600 |
| Swahili | 2104 | 300 | 602 |
| Wolof | 1871 | 267 | 536 |
| Yoruba | 2124 | 303 | 608 |
## Dataset Creation
### Curation Rationale
The dataset was introduced to introduce new resources to ten languages that were under-served for natural language processing.
[More Information Needed]
### Source Data
The source of the data is from the news domain, details can be found here https://arxiv.org/abs/2103.11811
#### Initial Data Collection and Normalization
The articles were word-tokenized, information on the exact pre-processing pipeline is unavailable.
#### Who are the source language producers?
The source language was produced by journalists and writers employed by the news agency and newspaper mentioned above.
### Annotations
#### Annotation process
Details can be found here https://arxiv.org/abs/2103.11811
#### Who are the annotators?
Annotators were recruited from [Masakhane](https://www.masakhane.io/)
### Personal and Sensitive Information
The data is sourced from newspaper source and only contains mentions of public figures or individuals
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
Users should keep in mind that the dataset only contains news text, which might limit the applicability of the developed systems to other domains.
## Additional Information
### Dataset Curators
### Licensing Information
The licensing status of the data is CC 4.0 Non-Commercial
### Citation Information
Provide the [BibTex](http://www.bibtex.org/)-formatted reference for the dataset. For example:
```
@article{Adelani2021MasakhaNERNE,
title={MasakhaNER: Named Entity Recognition for African Languages},
author={D. Adelani and Jade Abbott and Graham Neubig and Daniel D'Souza and Julia Kreutzer and Constantine Lignos
and Chester Palen-Michel and Happy Buzaaba and Shruti Rijhwani and Sebastian Ruder and Stephen Mayhew and
Israel Abebe Azime and S. Muhammad and Chris C. Emezue and Joyce Nakatumba-Nabende and Perez Ogayo and
Anuoluwapo Aremu and Catherine Gitau and Derguene Mbaye and J. Alabi and Seid Muhie Yimam and Tajuddeen R. Gwadabe and
Ignatius Ezeani and Rubungo Andre Niyongabo and Jonathan Mukiibi and V. Otiende and Iroro Orife and Davis David and
Samba Ngom and Tosin P. Adewumi and Paul Rayson and Mofetoluwa Adeyemi and Gerald Muriuki and Emmanuel Anebi and
C. Chukwuneke and N. Odu and Eric Peter Wairagala and S. Oyerinde and Clemencia Siro and Tobius Saul Bateesa and
Temilola Oloyede and Yvonne Wambui and Victor Akinode and Deborah Nabagereka and Maurice Katusiime and
Ayodele Awokoya and Mouhamadane Mboup and D. Gebreyohannes and Henok Tilaye and Kelechi Nwaike and Degaga Wolde and
Abdoulaye Faye and Blessing Sibanda and Orevaoghene Ahia and Bonaventure F. P. Dossou and Kelechi Ogueji and
Thierno Ibrahima Diop and A. Diallo and Adewale Akinfaderin and T. Marengereke and Salomey Osei},
journal={ArXiv},
year={2021},
volume={abs/2103.11811}
}
```
### Contributions
Thanks to [@dadelani](https://github.com/dadelani) for adding this dataset.