dataset_name
stringclasses
4 values
dataset_version
timestamp[s]
qid
stringlengths
1
5
queId
stringlengths
32
32
competition_source_list
sequence
difficulty
stringclasses
5 values
qtype
stringclasses
1 value
problem
stringlengths
6
1.51k
answer_option_list
list
knowledge_point_routes
sequence
answer_analysis
sequence
answer_value
stringclasses
7 values
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
540
3fa3ca53534544b4965d9303e491d08d
[ "2009年黑龙江全国高中数学联赛竞赛初赛第9题5分" ]
3
single_choice
某电影院第一排共有$$9$$个座位,现有$$3$$名观众就座,若他们每两人都不能相邻且要求每人左右至多只有两个空位,那么不同的坐法种数共有.
[ [ { "aoVal": "A", "content": "$$36$$ " } ], [ { "aoVal": "B", "content": "$$42$$ " } ], [ { "aoVal": "C", "content": "$$48$$ " } ], [ { "aoVal": "D", "content": "$$54$$ " } ] ]
[ "竞赛->知识点->排列组合与概率->排列与组合" ]
[ "将座位从左至右编为$$1,2,\\cdots ,9$$,考虑从左至右第一个有人坐的座位号: ①如果是$$1$$,则另两个人的座位号只能是$$4$$和$$7$$,只有$$1$$种方法; ②如果是$$2$$,则下一个人可以坐$$4$$或$$5$$.若是$$4$$,则第三个人只能坐$$7$$号;若是$$5$$,则第三个人可以坐$$7$$或$$8$$.共有$$3$$种方法; ③如果是$$3$$,则下一个人可以坐$$5$$或$$6$$.若是$$5$$,则第三个人可以坐$$7$$或$$8$$;若是$$6$$,则第三个人可以坐$$8$$或$$9$$.共有$$2+2=4$$种方法. 所以,不同的坐法种数为$$\\left( 1+3+4 \\right)\\text{A}_{3}^{3}=48$$. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
686
52c23f2c492748e4ab76aef707ff1d70
[ "2021~2022学年安徽阜阳太和县安徽省太和中学高一下学期月考(竞赛考试)第8~8题" ]
3
single_choice
在锐角$$\vartriangle ABC$$中,$$a,b,c$$分别为角$$A,B,C$$的对边,已知$${{b}^{2}}+{{c}^{2}}={{a}^{2}}+bc,b=2$$,则$$\vartriangle ABC$$的面积\emph{S}的取值范围是(~~~~~~~)
[ [ { "aoVal": "A", "content": "$$\\left[ \\frac{\\sqrt{3}}{2},2\\sqrt{3} \\right)$$ " } ], [ { "aoVal": "B", "content": "$$\\left( \\frac{\\sqrt{3}}{2},2\\sqrt{2} \\right]$$ " } ], [ { "aoVal": "C", "content": "$$\\left( \\frac{\\sqrt{3}}{2},2\\sqrt{3} \\right)$$ " } ], [ { "aoVal": "D", "content": "$$\\left( \\frac{\\sqrt{3}}{2},2\\sqrt{2} \\right)$$ " } ] ]
[ "课内体系->知识点->解三角形" ]
[ "\\hfill\\break 【分析】\\\\ 根据条件求出$$A=\\frac{\\text{ } ! !\\pi ! !\\text{ }}{3}$$,利用三角形面积公式得到$${{S}_{\\vartriangle ABC}}=\\frac{1}{2}bc\\sin A=\\frac{\\sqrt{3}}{2}c$$,采用极端值方法求出$$c$$的最值,进而得到$$c$$的范围,求出面积的取值范围.\\\\ 【详解】\\\\ $$\\cos A=\\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}=\\frac{1}{2}$$,因为$$\\vartriangle ABC$$为锐角三角形,故$$A=\\frac{\\text{ } ! !\\pi ! !\\text{ }}{3}$$,\\\\ $${{S}_{\\vartriangle ABC}}=\\frac{1}{2}bc\\sin A=\\frac{\\sqrt{3}}{2}c$$,当\\emph{BC}⊥\\emph{AB}时,$$c=b\\cos A=1$$,当\\emph{CB}⊥\\emph{AC}时,$$c=\\frac b{\\cos A}=4$$,故$$c\\in \\left( 1,4 \\right)$$,所以$${{S}_{\\vartriangle ABC}}=\\frac{\\sqrt{3}}{2}c\\in \\left( \\frac{\\sqrt{3}}{2},2\\sqrt{3} \\right)$$.\\\\ 故选:C " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
713
9a6acc98891c444ab037d9f2efeb4aab
[ "2011年山东全国高中数学联赛竞赛初赛第2题6分" ]
0
single_choice
已知$$z={{(\sqrt{3}-3\text i)}^{n}}$$, 若$$z$$为实数,则最小的正整数$$n$$的值为.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ] ]
[ "竞赛->知识点->复数与平面向量->复数的概念与运算" ]
[ "$$z={{(\\sqrt{3}-3\\text i)}^{n}}={{(-2\\sqrt{3})}^{n}}{{(-\\frac{1}{2}+\\frac{\\sqrt{3}}{2}\\text i)}^{n}}$$,$$n=3$$是使$$z$$为实数的最小的正整数. " ]
A
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
915
dfe339efc17f4690a9ef18752acbcb8b
[ "2015年吉林全国高中数学联赛竞赛初赛第5题6分" ]
1
single_choice
已知$$f(x)=x\left\textbar{} x \right\textbar$$,若对任意的$$x\geqslant 1$$有$$f(x+m)+mf(x)\textless{}0$$恒成立,则实数$$m$$的取值范围是.
[ [ { "aoVal": "A", "content": "$$(-\\infty ,-1)$$ " } ], [ { "aoVal": "B", "content": "$$(-\\infty ,-1]$$ " } ], [ { "aoVal": "C", "content": "$$(-\\infty ,-2)$$ " } ], [ { "aoVal": "D", "content": "$$(-\\infty ,-2]$$ " } ] ]
[ "竞赛->知识点->函数->函数的图像与性质" ]
[ "显然$$m\\textless{}0$$,所以$$f\\left( x+m \\right)\\textless{}-mf\\left( x \\right)=f\\left( \\sqrt{-m}x \\right)$$. 因为$$f\\left( x \\right)$$是单调增的奇函数,所以$$x+m\\textless{}\\sqrt{-m}x$$,即$$\\left( \\sqrt{-m}-1 \\right)x\\textgreater m$$. 所以必须$$\\sqrt{-m}-1\\geqslant 0$$,$$m\\leqslant -1$$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
1129
e18b3207e5a740c59fa460158c0a3b9e
[ "2015年黑龙江全国高中数学联赛竞赛初赛第8题5分" ]
1
single_choice
设$$a\textgreater0,b\textgreater0$$,则下列不等式中不恒成立的是.
[ [ { "aoVal": "A", "content": "$$\\frac{2}{\\frac{1}{a}+\\frac{1}{b}}\\geqslant \\sqrt{ab}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{a}+\\frac{1}{b}\\geqslant \\frac{4}{a+b}$$ " } ], [ { "aoVal": "C", "content": "$$\\sqrt{\\textbar a-b\\textbar}\\geqslant \\sqrt{a}-\\sqrt{b}$$ " } ], [ { "aoVal": "D", "content": "$${{a}^{2}}+{{b}^{2}}+1\\textgreater a+b$$ " } ] ]
[ "课内体系->素养->逻辑推理", "课内体系->素养->数学运算", "课内体系->知识点->等式与不等式->不等式->不等式的性质->针对不等式变形判断正误", "课内体系->知识点->等式与不等式->不等式->基本不等式->基本不等式成立的条件", "课内体系->知识点->等式与不等式->不等式->基本不等式->利用基本不等式证明其它不等式", "课内体系->知识点->等式与不等式->不等式->基本不等式->基本不等式的实际应用" ]
[ "$$\\frac{1}{a}+\\frac{1}{b}\\geqslant 2\\sqrt{\\frac{1}{ab}}$$,则$$\\sqrt{ab}\\left( \\frac{1}{a}+\\frac{1}{b} \\right)\\geqslant 2$$,即$$\\frac{2}{\\frac{1}{a}+\\frac{1}{b}}\\leqslant \\sqrt{ab}$$,当且仅当$$a=b$$时取等号,故不等式不恒成立. " ]
A
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
158
4ad0aed456b848718fcb3553ee471743
[ "2021年贵州全国高中数学联赛竞赛初赛第7题" ]
1
single_choice
设$$G$$和$$O$$分别是$$\triangle ABC$$的重心和外心,且$$AB=\sqrt{3}$$,$$AC=3$$,则$$\overrightarrow{AG}\cdot \overrightarrow{AO}=$$~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{3}{2}$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{5}{2}$$ " } ] ]
[ "课内体系->知识点->平面向量", "竞赛->知识点->复数与平面向量->平面向量的概念与运算" ]
[ "因为$$O$$是$$\\triangle ABC$$的外心,故$$O$$在$$AB$$边上的投影为$$AB$$的中点, 故$$\\overrightarrow{AB}\\cdot \\overrightarrow{AO}=\\left\\textbar{} \\overrightarrow{AB} \\right\\textbar\\left\\textbar{} \\overrightarrow{AO} \\right\\textbar\\cdot \\cos \\angle BAO=\\frac{1}{2}{{\\left\\textbar{} \\overrightarrow{AB} \\right\\textbar}^{2}}$$, 同理可得,$$\\overrightarrow{AC}\\cdot \\overrightarrow{AO}=\\frac{1}{2}{{\\left\\textbar{} \\overrightarrow{AC} \\right\\textbar}^{2}}$$, 所以$$\\overrightarrow{AG}\\cdot \\overrightarrow{AO}=\\frac{1}{3}(\\overrightarrow{AB}+\\overrightarrow{AC})\\cdot \\overrightarrow{AO}=\\frac{1}{6}\\left( {{\\left\\textbar{} \\overrightarrow{AB} \\right\\textbar}^{2}}+{{\\left\\textbar{} \\overrightarrow{AC} \\right\\textbar}^{2}} \\right)=\\frac{1}{6}(3+9)=2$$. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
236
98dae8ac5e28461083e119e1eb95faab
[ "2012年吉林全国高中数学联赛竞赛初赛第3题5分" ]
1
single_choice
(★★)若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为``同族函数'',那么函数解析式为$$y=-{{x}^{2}}$$,值域为$$\left { 0, -1, -9 \right }$$的``同族函数''共有.
[ [ { "aoVal": "A", "content": "$$7$$个 " } ], [ { "aoVal": "B", "content": "$$8$$个 " } ], [ { "aoVal": "C", "content": "$$9$$个 " } ], [ { "aoVal": "D", "content": "$$10$$个 " } ] ]
[ "课内体系->知识点->函数的概念与性质->函数的概念及其表示->函数的概念->函数的定义", "竞赛->知识点->函数->函数的概念" ]
[ "$$1\\times 3\\times 3=9$$. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
504
3239768bc25f4cb6bd420e810cb9be59
[ "2013年辽宁全国高中数学联赛竞赛初赛第2题6分" ]
1
single_choice
原点的直线$$l$$交双曲线$$xy=-2\sqrt{2}$$于$$P,Q$$两点,其中$$P$$点在第二象限,将下半平面沿$$x$$轴折起使之与上半平面成直二面角,线段$$PQ$$的最短长度是.
[ [ { "aoVal": "A", "content": "$$2\\sqrt{2}$$ " } ], [ { "aoVal": "B", "content": "$$3\\sqrt{2}$$ " } ], [ { "aoVal": "C", "content": "$$4\\sqrt{2}$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "竞赛->知识点->解析几何->双曲线" ]
[ "设点$$P$$的坐标为$$\\left( x,y \\right)$$,由对称性$$Q$$的坐标为$$\\left( -x,-y \\right)$$,分别过$$P,Q$$作$$x$$轴的垂线,垂足分别为$${{P}_{1}}\\left( x,0 \\right){ }{{Q}_{1}}\\left( -x,0 \\right)$$,折成直二面角后, $${{\\left\\textbar{} PQ \\right\\textbar}^{2}}={{\\left\\textbar{} P{{P}_{1}} \\right\\textbar}^{2}}+{{\\left\\textbar{} {{P}_{1}}{{Q}_{1}} \\right\\textbar}^{2}}+{{\\left\\textbar{} {{Q}_{1}}Q \\right\\textbar}^{2}}$$ $$={{y}^{2}}+{{\\left( 2x \\right)}^{2}}+{{\\left( -y \\right)}^{2}}=4{{x}^{2}}+2{{\\left( \\frac{-2\\sqrt{2}}{x} \\right)}^{2}}$$ $$=4{{x}^{2}}+\\frac{16}{{{x}^{2}}}{\\geqslant }2\\sqrt{64}=16$$, 即$$\\left\\textbar{} PQ \\right\\textbar{\\geqslant }4$$;当$$4{{x}^{2}}=\\frac{16}{{{x}^{2}}}$$即$$x=\\sqrt{2}$$时,$$\\left\\textbar{} PQ \\right\\textbar=4$$. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
301
cbfebe1748534f2bb8fcb14432cd10e0
[ "竞赛第19题" ]
2
single_choice
正六棱柱的12个顶点的任意2个项点所在直线中,异面直线的对数为(~~~~~~~)
[ [ { "aoVal": "A", "content": "1125 " } ], [ { "aoVal": "B", "content": "1278 " } ], [ { "aoVal": "C", "content": "1350 " } ], [ { "aoVal": "D", "content": "1542 " } ] ]
[]
[ "\\hfill\\break 【分析】\\\\ 先考虑任取4个点,求出不共面的情形的个数,从而可求异面直线的对数.\\\\ 【详解】\\\\ 12个顶点构成的4点组有${\\mathrm{C}}_{12}^{4}=495$个,其中共面的4点组可以按在上下底面的个数分类讨论.\\\\ \\textbf{情形一}~~~全部在上底面或全部在下底面.共面4点组数为$2{\\mathrm{C}}_{6}^{4}=30$.\\\\ \\textbf{情形二}~~~两个底面各2个,共面4点组数按在上底面的2个点间的位置关系分类(此时上下底面的点分别连线,则连线平行),为$6\\times 3+6\\times 2+3\\times 3=39$.\\\\ 因此共面的4点组共有69个,进而不共面的4点组有426个,每个不共面的4点组贡献3对异面直线,且不同的4点组贡献的异面直线不同,\\\\ 因此所求异面直线的对数为$426\\times 3=1278$.\\\\ 故选:B. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
386
82fd9ed9d65e4e0aa950afc9bf57470b
[ "2008年湖南全国高中数学联赛竞赛初赛第7题5分" ]
1
single_choice
设$$a=\sin (\sin 2008{}^{}\circ )$$,$$b=\sin (\cos 2008{}^{}\circ )$$,$$c=\cos (\sin 2008{}^{}\circ )$$,$$d=\cos (\cos 2008{}^{}\circ )$$,则$$a$$、$$b$$、$$c$$、$$d$$的大小关系是.
[ [ { "aoVal": "A", "content": "$$a\\textless{}b\\textless{}c\\textless{}d$$ " } ], [ { "aoVal": "B", "content": "$$b\\textless{}a\\textless{}d\\textless{}c$$ " } ], [ { "aoVal": "C", "content": "$$c\\textless{}d\\textless{}b\\textless{}a$$ " } ], [ { "aoVal": "D", "content": "$$d\\textless{}c\\textless{}a\\textless{}b$$ " } ] ]
[ "竞赛->知识点->三角函数->三角函数的图像与性质" ]
[ "因为$$2008{}^{}\\circ =5\\times 360{}^{}\\circ +180{}^{}\\circ +28{}^{}\\circ $$,所以, $$a=\\sin (-\\sin 28{}^{}\\circ )=-\\sin (\\sin 28{}^{}\\circ )\\textless{}0$$; $$b=\\sin (-\\cos 28{}^{}\\circ )=-\\sin (\\cos 28{}^{}\\circ )\\textless{}0$$; $$c=\\cos (-\\sin 28{}^{}\\circ )=\\cos (\\sin 28{}^{}\\circ )\\textgreater0$$; $$d=\\cos (-\\cos 28{}^{}\\circ )=\\cos (\\cos 28{}^{}\\circ )\\textgreater0$$. 又$$\\sin 28{}^{}\\circ \\textless{}\\cos 28{}^{}\\circ $$,故$$b\\textless{}a\\textless{}d\\textless{}c.$$故选$$\\text{B}$$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
38
061c167dfb5e4bcdb4a8dc742d2921a9
[ "2008年天津全国高中数学联赛竞赛初赛第6题6分" ]
2
single_choice
设不定方程$${{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xyz+10=0$$的正整数解$$\left( x, y, z \right)$$中满足$$x, y, z$$均大于$$2008$$的不同解的数目为$$k$$,则$$k$$满足.
[ [ { "aoVal": "A", "content": "$$k=0$$ " } ], [ { "aoVal": "B", "content": "$$1\\leqslant k\\leqslant 2008$$ " } ], [ { "aoVal": "C", "content": "$$k\\textgreater2008$$,但$$k$$是有限的数 " } ], [ { "aoVal": "D", "content": "$$k$$是无穷大 " } ] ]
[ "竞赛->知识点->函数->韦达定理" ]
[ "由题意知$$\\left( {{x}_{0}}, {{y}_{0}}, {{z}_{0}} \\right)=\\left( 3, 4, 5 \\right)$$是原不定方程的一个特解.对于原不定方程的任意一个正整数解$$\\left( {{x}_{1}}, y, z \\right)$$,假设$${{x}_{1}}\\leqslant y\\leqslant z$$,且$${{x}_{1}}z$$.设关于$$x$$的二次方程$${{x}^{2}}-yz\\cdot x+{{y}^{2}}+{{z}^{2}}+10=0$$的两个根为$${{x}_{1}}, {{x}_{2}}$$,由韦达定理,$${{x}_{1}}+{{x}_{2}}=yz, {{x}_{1}}{{x}_{2}}={{y}^{2}}+{{z}^{2}}+10{{z}^{2}}$$,因此$${{x}_{2}}$$是正整数,且大于$$z$$,于是$$\\left( {{x}_{2}}, y, z \\right)$$也是原不定方程的一个解,由于原不定方程是轮换对称的,所以$$\\left( y, z, {{x}_{2}} \\right)$$也是它的解,并且它是由小到大排列的. 如此反复利用上面的结论,可以由一个特解得到无穷多个解,因此满足$$x, y, z$$均大于$$2008$$的解有无穷多个.故选$$\\text{D}$$. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
1200
fe3d8dfb91ad4ce5b5d0c479666a1074
[ "2018年湖北全国高中数学联赛竞赛初赛第1题10分" ]
1
single_choice
若对任意的$$\theta \in \left[ 0,\frac{\pi }{2} \right]$$,不等式$$4+2\sin \theta \cos \theta -a\sin \theta a\cos \theta \leqslant 0$$恒成立,则实数$$a$$的最小值为~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "知识标签->知识点->三角函数->三角函数的图象与性质->正弦型函数->正弦型函数的图象与性质", "知识标签->知识点->三角函数->三角恒等变换->二倍角公式->二倍角的正弦", "知识标签->题型->三角函数->三角函数的图象与性质->正弦型函数->正弦型三角函数图像与性质问题", "知识标签->题型->三角函数->三角恒等变换->倍角、半角公式问题", "知识标签->素养->数学运算" ]
[ "设$$x=\\sin \\theta +\\cos \\theta =\\sqrt{2}\\sin \\left( \\theta +\\frac{\\pi }{4} \\right)$$,则$$2\\sin \\theta \\cdot \\cos \\theta ={{x}^{2}}-1$$, 当$$\\theta \\in \\left[ 0,\\frac{\\pi }{2} \\right]$$时,得$$1\\leqslant x\\leqslant \\sqrt{2}$$, 故原不等式变为:$${{x}^{2}}-ax+3\\leqslant 0\\Rightarrow a\\geqslant x+\\frac{3}{x}$$, 此时,函数$$f\\left( x \\right)=x+\\frac{3}{x}$$单调递减, 从而,实数$$a$$的最小值为$$f\\left( 1 \\right)=4$$. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
1205
fe536d4330f64edea89419a3d2c06eb1
[ "竞赛第12题" ]
2
single_choice
已知一圆锥曲面顶点\emph{S},其母线与轴所成的角为$30{^{\circ}}$,在轴线上取一点\emph{C},使得$SC=5$,过点\emph{C}作一个与轴线夹角为$45{^{\circ}}$的截面,则截得的曲线方程可表示为(~~~~~~~)
[ [ { "aoVal": "A", "content": "$x^{2}+2y^{2}=25$ " } ], [ { "aoVal": "B", "content": "$x^{2}+3y^{2}=50$ " } ], [ { "aoVal": "C", "content": "$2x^{2}+5y^{2}=50$ " } ], [ { "aoVal": "D", "content": "$2x^{2}+6y^{2}=75$ " } ] ]
[]
[ "\\hfill\\break 【分析】\\\\ 根据平面截圆锥所得曲线形状的判断法则可得截得的曲线为椭圆且离心率为$e=\\frac{\\cos 45{^{\\circ}}}{\\cos 30{^{\\circ}}}$,求出其长轴后可得曲线方程.\\\\ 【详解】\\\\ 根据平面截圆锥所得曲线形状的判断法则,截得的曲线为椭圆,离心率$e=\\frac{\\cos 45{^{\\circ}}}{\\cos 30{^{\\circ}}}=\\frac{\\sqrt{6}}{3}$,\\\\ 且根据正弦定理,可得椭圆的长轴长$2a=SC\\cdot \\sin 30{^{\\circ}}\\left(\\frac{1}{\\sin 75{^{\\circ}}}+\\frac{1}{\\sin 15{^{\\circ}}}\\right)=5\\sqrt{6}$,\\\\ 因此椭圆的半焦距$c=5$,进而所求曲线方程为$\\frac{x^{2}}{\\frac{75}{2}}+\\frac{y^{2}}{\\frac{25}{2}}=1\\Rightarrow 2x^{2}+6y^{2}=75$.\\\\ 故选:D. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
746
9a9a036237e146479dbf32341380e5b9
[ "2008年山西全国高中数学联赛竞赛初赛第6题6分" ]
1
single_choice
设$${{a}_{n}}=\frac{n(n+1)}{2}$$,从数列$$ {{{a}_{n}} }$$中,去掉所有能被$$3$$整除的数后,剩下的项自小到大排成数列$$ {{{b}_{n}} }$$,则$${{b}_{200}}=$$.
[ [ { "aoVal": "A", "content": "$$200808$$ " } ], [ { "aoVal": "B", "content": "$$179101$$ " } ], [ { "aoVal": "C", "content": "$$153201$$ " } ], [ { "aoVal": "D", "content": "$$116808$$ " } ] ]
[ "竞赛->知识点->数列与数学归纳法->数列的通项与求和" ]
[ "当且仅当$$n=3k-2(k=1,2,\\cdots )$$时能被$$3$$整除, 故$${{b}_{k}}=\\frac{(3k-2)(3k-1)}{2}=1+\\frac{9k(k-1)}{2}$$, 所以 $${{b}_{200}}=1+\\frac{9\\times 200\\times 199}{2}=179101$$, 故选$$\\text{B}$$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
10
29da40057dbe4ce99e3400bf9d5755a3
[ "2010年辽宁全国高中数学联赛竞赛初赛第3题6分" ]
1
single_choice
某天下午要排物理、化学、生物和两节自习共$$5$$节课,如果第一节不排生物,最后一节不排物理,那么不同的排法共有.
[ [ { "aoVal": "A", "content": "$$36$$种 " } ], [ { "aoVal": "B", "content": "$$39$$种 " } ], [ { "aoVal": "C", "content": "$$60$$种 " } ], [ { "aoVal": "D", "content": "$$78$$种 " } ] ]
[ "竞赛->知识点->排列组合与概率->排列与组合" ]
[ "不加限制的排法共有$$\\frac{\\text{A}_{5}^{5}}{2}=60$$种;生物排在第一节,物理排在最后一节各有$$\\frac{\\text{A}_{4}^{4}}{2}=12$$种,其中生物排在第一节且物理排在最后一节有$$\\frac{\\text{A}_{3}^{3}}{2}=3$$种.因此符合要求的排法共有$$60-12\\times 2+3=39$$种. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
136
100ccf0d9b0a48ff8d3bd3dc17413ee5
[ "2008年山东全国高中数学联赛竞赛初赛第10题6分" ]
2
single_choice
对于实数$$x$$,$$[x]$$表示不超过$$x$$的最大整数.已知正数数列$$ {{{a}_{n}} }$$满足:$${{a}_{1}}=1$$, $${{S}_{n}}=\frac{1}{2}\left( {{a}_{n}}+\frac{1}{{{a}_{n}}} \right)$$,其中$${{S}_{n}}$$为数列$$ {{{a}_{n}} }$$的前$$n$$项和,则$$\left[ \frac{1}{{{S}_{1}}}+\frac{1}{{{S}_{2}}}+\ldots +\frac{1}{{{S}_{100}}} \right]=$$.
[ [ { "aoVal": "A", "content": "$$17$$ " } ], [ { "aoVal": "B", "content": "$$18$$ " } ], [ { "aoVal": "C", "content": "$$19$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ] ]
[ "竞赛->知识点->数列与数学归纳法->数列的通项与求和" ]
[ "由$${{S}_{n}}=\\frac{1}{2}\\left( {{a}_{n}}+\\frac{1}{{{a}_{n}}} \\right)=\\frac{1}{2}\\left( {{S}_{n}}-{{S}_{n-1}}+\\frac{1}{{{S}_{n}}-{{S}_{n-1}}} \\right)$$, 得$${{S}_{n}}+{{S}_{n-1}}=\\frac{1}{{{S}_{n}}-{{S}_{n-1}}}$$, 即$$S_{n}^{2}=S_{n-1}^{2}+1$$. 因为$${{S}_{1}}={{a}_{1}}=1$$,所以$$S_{n}^{2}=n{{S}_{n}}=\\sqrt{n}$$. 因为$$\\sqrt{n}+\\sqrt{n-1}\\textless{}2\\sqrt{n}\\textless{}\\sqrt{n+1}+\\sqrt{n}$$, 所以$$\\frac{1}{\\sqrt{n+1}+\\sqrt{n}}=\\sqrt{n+1}-\\sqrt{n}\\textless{}\\frac{1}{2\\sqrt{n}}$$ $$\\textless{}\\frac{1}{\\sqrt{n}+\\sqrt{n-1}}=\\sqrt{n}-\\sqrt{n-1}$$, 令$$S=\\frac{1}{{{S}_{1}}}+\\frac{1}{{{S}_{2}}}+\\ldots +\\frac{1}{{{S}_{100}}}$$, 则$$\\frac{S}{2}\\textgreater\\sqrt{101}-1\\textgreater9$$, 解得$$S\\textgreater18$$. 又因为$${{S}_{1}}={{a}_{1}}=1$$,所以$$\\frac{S}{2}-\\frac{1}{2{{S}_{1}}}=\\frac{1}{2{{S}_{2}}}+\\frac{1}{2{{S}_{3}}}+\\ldots +\\frac{1}{2{{S}_{100}}}\\textless{}\\sqrt{100}-1=9$$, 即$$S\\textless{}2\\left( 9+\\frac{1}{2} \\right)=19$$,从而得$$[S]=18$$.故选$$\\text{B}$$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
211
1131e97a4a29405f93e10f6b35b53296
[ "2008年江西全国高中数学联赛竞赛初赛第6题6分" ]
1
single_choice
设$$n$$为正整数,且$$3n+1$$与$$5n-1$$皆为完全平方数,对于以下两个命题:(甲)$$7n+13$$必为合数;(乙)$$8\left( 17{{n}^{2}}+3n \right)$$必为两个平方数的和. 你的判断是.
[ [ { "aoVal": "A", "content": "甲对乙错 " } ], [ { "aoVal": "B", "content": "甲错乙对 " } ], [ { "aoVal": "C", "content": "甲、乙都对 " } ], [ { "aoVal": "D", "content": "甲、乙都不一定对 " } ] ]
[ "竞赛->知识点->数论模块->整除->质数(算数基本定理)" ]
[ "设$$3n+1={{a}^{2}}$$,$$5n-1={{b}^{2}}$$,$$a$$,$$b$$为正整数, 则$$7n+13=9\\left( 3n+1 \\right)-4\\left( 5n-1 \\right)={{\\left( 3a \\right)}^{2}}-{{\\left( 2b \\right)}^{2}}$$ $$=\\left( 3a-2b \\right)\\left( 3a+2b \\right)$$① 由此知,$$3a-2b$$为正整数,且$$3a-2b\\ne 1$$. 因为若$$3a-2b=1$$, 则$$27n+9={{\\left( 3a \\right)}^{2}}={{\\left( 2b+1 \\right)}^{2}}=4{{b}^{2}}+4b+1$$, 即$$27n=4\\left( {{b}^{2}}+b-2 \\right)$$,则$$4\\left\\textbar{} n \\right.$$,记$$n=4k$$, 得$$5n-1=20k-1$$不为平方数,矛盾! 所以$$3a-2b\\geqslant 2$$,故由①式得,$$7n+13$$为合数; 又因为$$8\\left( 17{{n}^{2}}+3n \\right)=\\left[ \\left( 3n+1 \\right)+\\left( 5n-1 \\right) \\right]\\left[ 4\\left( 3n+1 \\right)+\\left( 5n-1 \\right) \\right]$$ $$=\\left( {{a}^{2}}+{{b}^{2}} \\right)\\left[ {{\\left( 2a \\right)}^{2}}+{{b}^{2}} \\right]={{\\left( 2{{a}^{2}}+{{b}^{2}} \\right)}^{2}}+{{\\left( ab \\right)}^{2}}$$, 故选$$\\text{C}$$.(例如$$65$$即可为上述$$n$$的一个取值) " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
1009
e05ac10cdd7040ff96a9cb32b7400ce0
[ "2008年黑龙江全国高中数学联赛竞赛初赛第1题5分" ]
0
single_choice
设集合$$P= {(x,y)\textbar y=k }$$,$$Q= {(x,y)\textbar y={{a}^{x}}+1$$,$$a\textgreater0$$且$$a\ne 1 }$$,已知$$P\cap Q$$只有一个子集,那么$$k$$的取值范围.
[ [ { "aoVal": "A", "content": "$$(-\\infty ,1)$$ " } ], [ { "aoVal": "B", "content": "$$\\left( -\\infty ,+1 \\right]$$ " } ], [ { "aoVal": "C", "content": "$$(1,+\\infty )$$ " } ], [ { "aoVal": "D", "content": "$$(+\\infty ,+\\infty )$$ " } ] ]
[ "竞赛->知识点->集合->集合的概念与运算", "竞赛->知识点->函数->基本初等函数" ]
[ "$$P\\cap Q$$只有一个子集即$$P\\cap Q$$为空集, 数形结合可知$$k\\leqslant 1$$时,直线$$y=k$$与曲线$$y={{a}^{x}}+1$$无交点.故选$$\\text{B}$$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
680
faf98c239e6b4daa997a39d37e8a386c
[ "第二十届全国希望杯高一竞赛复赛邀请赛第1题4分" ]
1
single_choice
设函数$$f(x)$$,$$g(x)$$的定义域为$$D$$,又$$h(x)=f(x)+g(x)$$.若$$f(x),g(x)$$的最大值分别是$$M$$,$$N$$,最小值分别是$$m$$,$$n$$,则下面的结论中正确的是.
[ [ { "aoVal": "A", "content": "$$h(x)$$的最大值是$$M+N$$ " } ], [ { "aoVal": "B", "content": "$$h(x)$$的最小值是$$m+n$$ " } ], [ { "aoVal": "C", "content": "$$h(x)$$的值域为$$ {x\\textbar m+n\\leqslant x\\leqslant M+N }$$ " } ], [ { "aoVal": "D", "content": "$$h(x)$$的值域为$$ {x\\textbar m+n\\leqslant x\\leqslant M+N }$$的一个子集 " } ] ]
[ "竞赛->知识点->函数->函数的图像与性质" ]
[ "取$$f(x)=\\sin x,g(x)=\\cos x$$,$$D=\\mathbf{R}$$,即可知$$\\text A\\text B\\text C$$都不正确. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
895
9b590c238eaf4e9fbb3aff474ed4f210
[ "1999年全国全国高中数学联赛竞赛一试第1题6分" ]
2
single_choice
给定公比为$$q\left( q\ne 1 \right)$$的等比数列$$\left { {{a}_{n}} \right }$$,设$${{b}_{1}}={{a}_{1}}+{{a}_{2}}+{{a}_{3}}$$,$${{b}_{2}}={{a}_{4}}+{{a}_{5}}+{{a}_{6}}$$,\ldots,$${{b}_{n}}={{a}_{3n}}_{-2}+{{a}_{3n}}_{-1}+{{a}_{3n}}$$,\ldots,则数列$$\left { {{b}_{n}} \right }$$( ).
[ [ { "aoVal": "A", "content": "是等差数列 " } ], [ { "aoVal": "B", "content": "是公比为$$q$$的等比数列 " } ], [ { "aoVal": "C", "content": "是公比为$${{q}^{3}}$$的等比数列 " } ], [ { "aoVal": "D", "content": "既非等差数列也非等比数列 " } ] ]
[ "竞赛->知识点->数列与数学归纳法->等差数列与等比数列" ]
[ "由题设,$${{a}_{n}}={{a}_{1}}{{q}^{n-1}}$$, $$\\frac{{{b}_{n+1}}}{{{b}_{n}}}=\\frac{{{a}_{3n+1}}+{{a}_{3n+2}}+{{a}_{3n+3}}}{{{a}_{3n-2}}+{{a}_{3n-1}}+{{a}_{3n}}}=\\frac{{{a}_{1}}{{q}^{3n}}+{{a}_{1}}{{q}^{3n+1}}+{{a}_{1}}{{q}^{3n+2}}}{{{a}_{1}}{{q}^{3n-3}}+{{a}_{1}}{{q}^{3n-2}}+{{a}_{1}}{{q}^{3n-1}}}$$, $$=\\frac{{{a}_{1}}{{q}^{3n}}\\left( 1+q+{{q}^{2}} \\right)}{{{a}_{1}}{{q}^{3n-3}}\\left( 1+q+{{q}^{2}} \\right)}={{q}^{3}}$$, 因此,$$\\left { {{b}_{n}} \\right }$$是公比为$${{q}^{3}}$$的等比数列. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
404
79d6503bfc7a4500831da0ddd27da6b2
[ "2008年陕西全国高中数学联赛竞赛初赛第8题5分" ]
1
single_choice
已知函数$$f(x)={{x}^{3}}-{{\log }_{2}}(\sqrt{{{x}^{2}}+1}-x)$$,则对于任意实数$$a$$、$$b(a+b\ne 0)$$,$$\frac{f(a)+f(b)}{{{a}^{3}}+{{b}^{3}}}$$的值.
[ [ { "aoVal": "A", "content": "恒大于零 " } ], [ { "aoVal": "B", "content": "恒等于零 " } ], [ { "aoVal": "C", "content": "恒小于零 " } ], [ { "aoVal": "D", "content": "符号不确定 " } ] ]
[ "竞赛->知识点->函数->函数的图像与性质" ]
[ "因为$$f(-x)+f(x)$$ $$=-{{x}^{3}}-{{\\log }_{2}}(\\sqrt{{{x}^{2}}+1}+x)+{{x}^{3}}-{{\\log }_{2}}(\\sqrt{{{x}^{2}}+1}-x)$$ $$=-{{\\log }_{2}}[(\\sqrt{{{x}^{2}}+1}+x)(\\sqrt{{{x}^{2}}+1}-x)]=0$$, 所以$$f(-x)=-f(x)$$,即$$f(x)$$为奇函数. 又因为$$f(x)={{x}^{3}}-{{\\log }_{2}}(\\sqrt{{{x}^{2}}+1}-x)={{x}^{3}}+{{\\log }_{2}}(\\sqrt{{{x}^{2}}+1}+x)$$, 在$$(0,+\\infty )$$上单调递增,所以,$$f(x)$$在$$\\mathbf{R}$$上是增函数. 注意到$$f(a)-f(-b)$$与$$a-(-b)$$同号, 所以$$\\frac{f(a)+f(b)}{a+b}\\textgreater0$$. 又因为$${{a}^{3}}+{{b}^{3}}$$与$$a+b$$同号, 故$$\\frac{f(a)+f(b)}{{{a}^{3}}+{{b}^{3}}}\\textgreater0$$.故选$$\\text{A}$$. " ]
A
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
902
7cc1ca7283584029901d95edb7093879
[ "2019~2020学年3月湖北武汉洪山区武汉市洪山高级中学(武汉外国语学校光谷分校)高二下学期月考第10题", "2008年全国高中数学联赛竞赛一试第3题6分" ]
2
single_choice
甲乙两人进行乒乓球比赛,约定每局胜者得$$1$$分,负者得$$0$$分,比赛进行到有一人比对方多$$2$$分或打满$$6$$局时停止.设甲在每局中获胜的概率为$$\frac{2}{3}$$,乙在每局中获胜的概率为$$\frac{1}{3}$$,且各局胜负相互独立,则比赛停止时已打局数$$\xi $$的期望$$E\xi $$为(~ ~ ).
[ [ { "aoVal": "A", "content": "$$\\frac{241}{81}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{266}{81}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{274}{81}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{670}{243}$$ " } ] ]
[ "竞赛->知识点->排列组合与概率->概率初步" ]
[ "解法一: 依题意知,$$\\xi $$的所有可能值为$$2$$,$$4$$,$$6$$, 设每两局比赛为一轮,则该轮结束时比赛停止的概率为$${{\\left( \\frac{2}{3} \\right)}^{2}}+{{\\left( \\frac{1}{3} \\right)}^{2}}=\\frac{5}{9}$$, 若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响,从而有 $$P(\\xi =2)=\\frac{5}{9}$$, $$P(\\xi =4)=\\left( \\frac{4}{9} \\right)\\left( \\frac{5}{9} \\right)=\\frac{20}{81}$$, $$P(\\xi =6)={{\\left( \\frac{4}{9} \\right)}^{2}}=\\frac{16}{81}$$, 故$$E\\xi =2\\times \\frac{5}{9}+4\\times \\frac{20}{81}+6\\times \\frac{16}{81}=\\frac{266}{81}$$; 解法二: 依题意知,$$\\xi $$的所有可能值为$$2$$,$$4$$,$$6$$, 令$${{A}_{k}}$$表示甲在第$$k$$局比赛中获胜,则$${{\\bar{A}}_{k}}$$表示乙在第$$k$$局比赛中获胜, 由独立性与互不相容性得 $$P(\\xi =2)=P({{A}_{1}}{{A}_{2}})+P({{\\bar{A}}_{1}}{{\\bar{A}}_{2}})=\\frac{5}{9}$$, $$P(\\xi =4)=P({{A}_{1}}{{\\bar{A}}_{2}}{{A}_{3}}{{A}_{4}})+P({{A}_{1}}{{\\bar{A}}_{2}}{{\\bar{A}}_{3}}{{\\bar{A}}_{4}})+P({{\\bar{A}}_{1}}{{A}_{2}}{{A}_{3}}{{A}_{4}})+P({{\\bar{A}}_{1}}{{A}_{2}}{{\\bar{A}}_{3}}{{\\bar{A}}_{4}})$$ $$=2\\left[ {{\\left( \\frac{2}{3} \\right)}^{3}}\\left( \\frac{1}{3} \\right)+{{\\left( \\frac{1}{3} \\right)}^{3}}\\left( \\frac{2}{3} \\right) \\right]=\\frac{20}{81}$$, $$P(\\xi =6)=P({{A}_{1}}{{\\bar{A}}_{2}}{{A}_{3}}{{\\bar{A}}_{4}})+P({{A}_{1}}{{\\bar{A}}_{2}}{{\\bar{A}}_{3}}{{A}_{4}})+P({{\\bar{A}}_{1}}{{A}_{2}}{{A}_{3}}{{\\bar{A}}_{4}})+P({{\\bar{A}}_{1}}{{A}_{2}}{{\\bar{A}}_{3}}{{A}_{4}})$$ $$=4{{\\left( \\frac{2}{3} \\right)}^{2}}{{\\left( \\frac{1}{3} \\right)}^{2}}=\\frac{16}{81}$$, 故$$E\\xi =2\\times \\frac{5}{9}+4\\times \\frac{20}{81}+6\\times \\frac{16}{81}=\\frac{266}{81}$$. 故选$$\\text{B}$$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
830
d1d8411b4cc244d2898f061be9b42b32
[ "2013年黑龙江全国高中数学联赛竞赛初赛第9题5分", "高二上学期单元测试《三角恒等变形》自招第17题" ]
1
single_choice
化简$$\frac{\sin 4\alpha }{4{{\sin }^{2}}\left( \frac{ \pi }{4}+\alpha \right)\tan \left( \frac{ \pi }{4}-\alpha \right)}$$=.
[ [ { "aoVal": "A", "content": "$$\\cos 2\\alpha $$ " } ], [ { "aoVal": "B", "content": "$$\\sin 2\\alpha $$ " } ], [ { "aoVal": "C", "content": "$$\\cos \\alpha $$ " } ], [ { "aoVal": "D", "content": "$$\\sin \\alpha $$ " } ] ]
[ "竞赛->知识点->三角函数->三角恒等变换" ]
[ "$$\\frac{\\sin 4\\alpha }{4{{\\sin }^{2}}\\left( \\frac{ \\pi }{4}+\\alpha \\right)\\tan \\left( \\frac{ \\pi }{4}-\\alpha \\right)}=\\frac{\\sin 4\\alpha }{4\\sin \\left( \\frac{ \\pi }{4}+\\alpha \\right)\\sin \\left( \\frac{ \\pi }{4}-\\alpha \\right)}=\\frac{\\sin 4\\alpha }{2\\sin \\left( \\frac{ \\pi }{2}+2\\alpha \\right)}=\\sin 2\\alpha $$ " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
503
2df3aed39a514933860f65944addaed2
[ "2017年四川全国高中数学联赛竞赛初赛第12题5分" ]
1
single_choice
设集合$$M=\left { 1,2,3,4,5,6,7,8,9,10 \right }$$,$$A=\left { \left( x,y,z \right)\left\textbar{} x,y,z\in M,9\left\textbar{} \left( {{x}^{3}}+{{y}^{3}}+{{z}^{3}} \right) \right. \right. \right }$$,则集合$$A$$中元素的个数是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$143$$ " } ], [ { "aoVal": "B", "content": "$$224$$ " } ], [ { "aoVal": "C", "content": "$$243$$ " } ], [ { "aoVal": "D", "content": "$$268$$ " } ] ]
[ "竞赛->知识点->数论模块->同余->同余的概念与性质" ]
[ "因为$${{1}^{3}}\\equiv {{4}^{3}}\\equiv {{7}^{3}}\\equiv {{10}^{3}}\\equiv 1\\left( \\bmod 9 \\right)$$,$${{2}^{3}}\\equiv {{5}^{3}}\\equiv {{8}^{3}}\\equiv -1\\left( \\bmod 9 \\right)$$,$${{3}^{3}}\\equiv {{6}^{3}}\\equiv {{9}^{3}}\\equiv 0\\left( \\bmod 9 \\right)$$, 所以若$$9\\left\\textbar{} {{x}^{3}}+{{y}^{3}}+{{z}^{3}} \\right.$$,则$$x,y,z$$都是$$3$$的倍数或者$$3$$类数一样一个. 因此,$$A$$中元素的个数为$${{3}^{3}}+4\\times 3\\times 3\\times 3!=243$$. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
776
bf508dcf9365410b9d41e10c7592b396
[ "2022年江苏徐州贾汪区江苏省贾汪中学高一竞赛(下学期春季)第6题" ]
2
single_choice
定义在$R$上的函数$f\left( x \right)$满足:$f\left( x+3 \right)+f\left( x \right)=0$,且函数$f\left( x-\frac{3}{2} \right)$为奇函数$.$给出以下3个命题:\\ $①$函数$f\left( x \right)$的周期是6;~~~~~~$②$函数$f\left( x \right)$的图象关于点$\left( -\frac{3}{2},0 \right)$对称;\\ $③$函数$f\left( x \right)$的图象关于$y$轴对称$.$其中,真命题的个数是$($ $)$
[ [ { "aoVal": "A", "content": "3 " } ], [ { "aoVal": "B", "content": "2 " } ], [ { "aoVal": "C", "content": "1 " } ], [ { "aoVal": "D", "content": "0 " } ] ]
[]
[ "\\hfill\\break 【详解】\\\\ 由$f\\left( x+3 \\right)=-f\\left( x \\right)$,知$f\\left( x+6 \\right)=f\\left( x \\right)$.所以,①正确;\\\\ 将$f\\left( x-\\frac{3}{2} \\right)$的图像向左平移$\\frac{3}{2}$ 个单位,即为$f\\left( x \\right)$的图像,而$f\\left( x-\\frac{3}{2} \\right)$的图像关于原点对称,所以,②正确;\\\\ 由②知,$f\\left( -x \\right)=-f\\left( -3+x \\right)=f\\left( x \\right)$ ,则$f\\left( x \\right)$为偶函数,所以,③正确. " ]
A
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
536
4cf62f294aa949f4b0f6bb32d59bef45
[ "2010年山东全国高中数学联赛竞赛初赛第3题6分" ]
1
single_choice
若集合$$M=\left { x\left\textbar{} \frac{\left\textbar{} 3-x \right\textbar}{\left\textbar{} 5-x \right\textbar}\leqslant \frac{1}{2} \right. \right }$$和集合$$N= {x\textbar{{x}^{2}}-2x+c\leqslant 0 }$$满足$$M\cap N=M$$,则实数$$c$$的取值范围是.
[ [ { "aoVal": "A", "content": "$$c\\leqslant -\\frac{44}{9}$$ " } ], [ { "aoVal": "B", "content": "$$c\\leqslant -\\frac{55}{9}$$ " } ], [ { "aoVal": "C", "content": "$$c\\leqslant -\\frac{66}{9}$$ " } ], [ { "aoVal": "D", "content": "$$c\\leqslant -\\frac{77}{9}$$ " } ] ]
[ "竞赛->知识点->不等式->不等式的解法" ]
[ "因$$x\\ne 5$$,有$$\\frac{\\left\\textbar{} 3-x \\right\\textbar}{\\left\\textbar{} 5-x \\right\\textbar}\\leqslant \\frac{1}{2}\\Leftrightarrow 2\\left\\textbar{} 3-x \\right\\textbar\\leqslant \\left\\textbar{} 5-x \\right\\textbar$$. 当$$x\\leqslant 3$$时,$$2(3-x)\\leqslant (5-x)$$,解得$$x\\geqslant 1$$; 当$$3\\textless{}x\\textless{}5$$时,$$2(x-3)\\leqslant (5-x)$$,解得$$x\\leqslant \\frac{11}{3}$$; 当$$x\\textgreater5$$时,$$2(x-3)\\leqslant x-5$$,无解. 所以$$M=\\left { x\\textbar1\\leqslant x\\leqslant \\frac{11}{3} \\right }$$. 又因$${{x}^{2}}-2x+c=0,x=1\\pm \\sqrt{1-c}$$, 所以$$N=\\left { x\\textbar1-\\sqrt{1-c}\\leqslant x\\leqslant 1+\\sqrt{1-c} \\right }$$. 显然,$$1-\\sqrt{1-c}\\leqslant 1$$, 所以只要$$1+\\sqrt{1-c}\\geqslant \\frac{11}{3}$$,即$$c\\leqslant -\\frac{55}{9}$$,即有$$M\\cap N=M$$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
997
a54b8f2fd0dd49b0a2e8595ca247ffe1
[ "2022~2023学年陕西西安高一上学期期末(高新唐南中学)第7题", "2021~2022学年重庆高一上学期期末第6题", "2022~2023学年山东滨州高一上学期期末(北镇中学)第6题", "2022~2023学年甘肃兰州高一上学期期末(第六十中学)第6题", "2021~2022学年福建莆田城厢区莆田第一中学高一下学期开学考试(学科素养能力竞赛)第5~5题", "2022~2023学年甘肃兰州高一上学期期末(第六十中学)第6题", "2022~2023学年山东滨州高一上学期期末(北镇中学)第6题", "2022~2023学年甘肃兰州高一上学期期末(第六十中学)第6题", "2022~2023学年陕西西安高一上学期期末(高新唐南中学)第7题", "2022~2023学年陕西西安高一上学期期末(高新唐南中学)第7题", "2022~2023学年陕西西安高一上学期期末(高新唐南中学)第7题", "2022~2023学年广东广州荔湾区广州市协和中学高二上学期期末第4题" ]
1
single_choice
已知$$a={{2}^{0.3}}$$,$$b={{3}^{0.4}}$$,$$c={{\log }_{0.2}}0.3$$,则(~~~~~~~)
[ [ { "aoVal": "A", "content": "$$a\\textgreater b\\textgreater c$$ " } ], [ { "aoVal": "B", "content": "$$b\\textgreater c\\textgreater a$$ " } ], [ { "aoVal": "C", "content": "$$c\\textgreater b\\textgreater a$$ " } ], [ { "aoVal": "D", "content": "$$b\\textgreater a\\textgreater c$$ " } ] ]
[ "课内体系->知识点->基本初等函数" ]
[ "\\hfill\\break 【分析】\\\\ 比较大小,可先与常见的常数$$0,1$$进行比较,然后根据函数的单调性进行比较大小\\\\ 【详解】\\\\ $$c={{\\log }_{0.2}}0.3\\textless{} {{\\log }_{0.2}}0.2=1$$\\\\ $$a={{2}^{0.3}}\\textgreater1$$\\\\ $$b={{3}^{0.4}}\\textgreater1$$\\\\ 则有:$$a\\textgreater c,b\\textgreater c$$\\\\ $$a={{2}^{0.3}}\\textless{} {{3}^{0.3}}\\textless{} {{3}^{0.4}}$$\\\\ 故有:$$b\\textgreater a\\textgreater c$$\\\\ 故选:D " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
897
cd800a13c3f64f9eb98c7d445d7a8af2
[ "2008年黑龙江全国高中数学联赛竞赛初赛第8题5分", "2017~2018学年江西赣州寻乌县寻乌县第二中学高三上学期期中理科第11题5分", "2005年高考真题福建卷理科第10题5分", "2021年陕西宝鸡渭滨区高三二模理科第6题5分", "2013~2014学年12月辽宁沈阳沈河区沈阳市第二中学高二上学期月考理科第10题5分", "2016~2017学年12月北京海淀区中央民族大学附属中学高二上学期月考理科第6题5分" ]
1
single_choice
已知$${{F}_{1}}$$、$${{F}_{2}}$$是双曲线$$\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1(a\textgreater0$$,$$b\textgreater0)$$的两焦点,以线段$${{F}_{1}}{{F}_{2}}$$为边作正三角形$$M{{F}_{1}}{{F}_{2}}$$,若边$$M{{F}_{1}}$$的中点在双曲线上,则双曲线的离心率是(~ ).
[ [ { "aoVal": "A", "content": "$$4+2\\sqrt{3}$$ " } ], [ { "aoVal": "B", "content": "$$\\sqrt{3}-1$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{\\sqrt{3}+1}{2}$$ " } ], [ { "aoVal": "D", "content": "$$\\sqrt{3}+1$$ " } ] ]
[ "课内体系->素养->数学抽象", "课内体系->素养->数学运算", "课内体系->知识点->圆锥曲线->双曲线->双曲线的几何性质->双曲线的离心率->求双曲线的离心率" ]
[ "$$\\triangle M{{F}_{1}}{{F}_{2}}$$是正三角形,且边$$M{{F}_{1}}$$的中点在双曲线上, 设边$$M{{F}_{1}}$$的中点为$$P$$,则有$$\\angle {{F}_{1}}P{{F}_{2}}=90{}^{}\\circ $$, 从而$$\\left\\textbar{} P{{F}_{2}} \\right\\textbar=\\sqrt{3}c$$,$$\\left\\textbar{} P{{F}_{1}} \\right\\textbar=c$$. 根据双曲线的定义可知$$2a=\\left\\textbar{} P{{F}_{2}} \\right\\textbar-\\left\\textbar{} P{{F}_{1}} \\right\\textbar=\\left( \\sqrt{3}-1 \\right)c$$, 解得$$e=\\frac{c}{a}=\\frac{2}{\\sqrt{3}-1}=\\sqrt{3}+1$$. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
875
8582733c3a9e43858046d08252c5bfe4
[ "1985年全国高中数学联赛竞赛一试第5题" ]
1
single_choice
设$$Z,W,\lambda $$为复数$$\lambda \ne 1$$,关于$$Z$$的方程$$\overline{Z}-\lambda Z=W$$有下面四个结论: (1).$$Z=\frac{\overline{ \lambda }W=\overline{W}}{1-\textbar\lambda{{\textbar}^{2}}}$$是这个方程的解; (2)这个方程只有一个解; (3)这个方程有两个解; (4)这个方程有无穷多解.则.
[ [ { "aoVal": "A", "content": "只有(1)和(2)是正确的 " } ], [ { "aoVal": "B", "content": "只有(1)和(3)是正确的 " } ], [ { "aoVal": "C", "content": "只有(1)和(4)是正确的 " } ], [ { "aoVal": "D", "content": "以上$$A$$、$$B$$、$$C$$都不正确 " } ] ]
[ "竞赛->知识点->复数与平面向量->复数的概念与运算" ]
[ "由题中给出的四个结论,可知本题需根据解方程的情况作出选择,于是考虑在方程 $$\\overline{Z}-\\lambda Z=W$$ 的两端同取共轭,得 $$Z-\\overline{\\lambda Z}=\\overline{W}$$, 以$$\\lambda $$乘两端,得 $$\\lambda Z-{{\\left\\textbar{} \\lambda \\right\\textbar}^{2}}\\overline{Z}=\\lambda \\overline{W}$$ 与原方程两端分别相加,得 $$\\overline{Z}(1-{{\\left\\textbar{} \\lambda \\right\\textbar}^{2}})=\\lambda \\overline{W}+W$$ 两端在取共轭,得 $$\\overline{Z}(1-{{\\left\\textbar{} \\lambda \\right\\textbar}^{2}})=\\overline{\\lambda }W+\\overline{W}$$ ∵$$ {{\\left\\textbar{} \\lambda \\right\\textbar}^{2}}\\ne 1$$,∴$$Z=\\frac{\\overline{\\lambda }W+\\overline{W}}{1-{{\\left\\textbar{} \\lambda \\right\\textbar}^{2}}}$$. " ]
A
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
433
4c34b2c005be4421bf113da45f7c432e
[ "2012年山东全国高中数学联赛竞赛初赛第8题5分" ]
2
single_choice
称分子和分母的最大公约数为$$1$$的分数为既约分数,所有分母为$$100$$的正的既约真分数之和为.
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$30$$ " } ], [ { "aoVal": "C", "content": "$$35$$ " } ], [ { "aoVal": "D", "content": "$$45$$ " } ] ]
[ "竞赛->知识点->数论模块->整除->最大公约数和最小公倍数" ]
[ "由$$100={{2}^{2}}{{5}^{2}}$$,令 $$A=\\left { n\\left\\textbar{} 2 \\right\\textbar n, n\\leqslant 100, n\\in {{\\mathbf{N}}^{*}} \\right }$$, $$B=\\left { n\\left\\textbar{} 5 \\right\\textbar n, n\\leqslant 100, n\\in {{\\mathbf{N}}^{*}} \\right }$$, 则$$\\left\\textbar{} A\\cup B \\right\\textbar=\\left\\textbar{} A \\right\\textbar+\\left\\textbar{} B \\right\\textbar-\\left\\textbar{} A\\cap B \\right\\textbar=50+20-10=60$$. 因此符合条件的真分数共有$$40$$个. 又若正数$$i$$和$$100$$互质,则$$100-i$$和$$100$$也互质,因此若$$\\frac{i}{100}$$是一个正的既约真分数,则$$\\frac{100-i}{100}$$也为一正的既约真分数,则$$\\frac{100-i}{100}+\\frac{i}{100}=1$$.因此所有真分数之和为$$20$$. " ]
A
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
475
a2afc80629d94e45bef8fdceade30c34
[ "2017年四川全国高中数学联赛竞赛初赛第1题5分" ]
1
single_choice
已知函数$$f\left( x \right)=a\ln x+{{x}^{2}}$$在$$x=1$$处有极值,则实数$$a$$的值是.
[ [ { "aoVal": "A", "content": "$$-2$$ " } ], [ { "aoVal": "B", "content": "$$-1$$ " } ], [ { "aoVal": "C", "content": "$$1$$ " } ], [ { "aoVal": "D", "content": "$$2$$ " } ] ]
[ "竞赛->知识点->导数模块->导数" ]
[ "$${f}'\\left( x \\right)=\\frac{a}{x}+2x$$,由题设$${f}'\\left( 1 \\right)=0$$,解得$$a=-2$$ " ]
A
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
98
0b70d044123f4da7bf58cfa5f8c0bf51
[ "1986年全国高中数学联赛竞赛一试第6题" ]
1
single_choice
边长为$$a$$、$$b$$、$$c$$的三角形,其面积等于$$\frac{1}{4}$$,而外接圆半径为$$1$$,若$$s=\sqrt{a}+\sqrt{b}+\sqrt{c}$$,$$t=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$$,则$$s$$与$$t$$的大小关系是.
[ [ { "aoVal": "A", "content": "$$s\\textgreater t$$ " } ], [ { "aoVal": "B", "content": "$$s=t$$ " } ], [ { "aoVal": "C", "content": "$$s\\textless{}t$$ " } ], [ { "aoVal": "D", "content": "不确定 " } ] ]
[ "竞赛->知识点->三角函数->三角形中的问题->解三角形", "竞赛->知识点->不等式->几个重要的不等式->均值" ]
[ "∵$$c=2R\\sin C=2\\sin C$$,又$$\\frac{1}{2}ab\\sin C=\\frac{1}{4}$$, ∴$$abc=1$$,于是 $$t=\\frac{1}{a}+\\frac{1}{b}+\\frac{1}{c}$$ $$=\\frac{1}{2}\\left( \\frac{1}{a}+\\frac{1}{b} \\right)+\\frac{1}{2}\\left( \\frac{1}{b}+\\frac{1}{c} \\right)+\\frac{1}{2}\\left( \\frac{1}{c}+\\frac{1}{a} \\right)$$ $$\\mathsf{\\geqslant }\\sqrt{\\frac{\\mathsf{1}}{ab}}+\\sqrt{\\frac{1}{bc}}+\\sqrt{\\frac{1}{ca}}$$ $$=\\frac{\\sqrt{c}+\\sqrt{a}+\\sqrt{b}}{\\sqrt{abc}}$$ $$=\\sqrt{a}+\\sqrt{b}+\\sqrt{c}$$ $$=s$$. 且其中等号不可能取到,否则$$a=b=c=R=1$$,这显然是不可能的. 故选$$\\text{C}$$. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
447
5550e1cfc3654d8c859fea8d447e43ab
[ "2015年河南全国高中数学联赛高二竞赛初赛第5题8分", "2016~2017学年江苏无锡高三上学期期中第13题5分" ]
1
single_choice
已知正数$$a,b$$满足:$$a+3b=7$$,则$$\frac{1}{1+a}+\frac{4}{2+b}$$的最小值为.
[ [ { "aoVal": "A", "content": "$$\\frac{13+2\\sqrt{3}}{14}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{13+3\\sqrt{3}}{14}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{13+4\\sqrt{3}}{14}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{13+5\\sqrt{3}}{14}$$ " } ] ]
[ "课内体系->知识点->等式与不等式->不等式->柯西不等式", "竞赛->知识点->不等式->几个重要的不等式->柯西" ]
[ "由柯西不等式,$$\\left[ 1+a+3\\left( 2+b \\right) \\right]\\left( \\frac{1}{1+a}+\\frac{4}{2+b} \\right)\\geqslant {{\\left( 1+2\\sqrt{3} \\right)}^{2}}$$, 所以$$\\frac{1}{1+a}+\\frac{4}{2+b}\\geqslant \\frac{13+4\\sqrt{3}}{14}$$. $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\frac{1}{1+a}+\\frac{4}{2+b}$$ $$=\\frac{1}{14}\\left[ \\left( a+1 \\right)+3\\left( 2+b \\right) \\right]\\cdot \\left( \\frac{1}{1+a}+\\frac{4}{2+b} \\right)$$ $$=\\frac{1}{14}\\left[ 13+\\frac{3\\left( 2+b \\right)}{a+1}+\\frac{4\\left( a+1 \\right)}{2+b} \\right]$$ $$\\geqslant \\frac{1}{14}\\left[ 13+2\\sqrt{\\frac{3\\left( 2+b \\right)}{a+1}\\cdot \\frac{4\\left( a+1 \\right)}{2+b}} \\right]$$ $$=\\frac{13+4\\sqrt{3}}{14}$$, 当且仅当$$\\frac{3\\left( 2+b \\right)}{a+1}=\\frac{4\\left( a+1 \\right)}{2+b}$$, 即$$a=\\frac{\\sqrt{3}}{2}b+\\sqrt{3-1}$$时等号成立, 故应填$$\\frac{13+4\\sqrt{3}}{14}$$. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
1100
ca8c43dea02442aaa64eedf289d800c6
[ "2011年全国高中数学联赛竞赛复赛一试第8题8分" ]
3
single_choice
已知$${{a}_{n}}=\text{C}_{200}^{n}{{\left( \sqrt[3]{6} \right)}^{200-n}}{{\left( \frac{1}{\sqrt{2}} \right)}^{n}}\left( n=1,2,\cdots ,95 \right)$$,则数列$$\left { {{a}_{n}} \right }$$中整数项有个.
[ [ { "aoVal": "A", "content": "$10$ " } ], [ { "aoVal": "B", "content": "$15$ " } ], [ { "aoVal": "C", "content": "$20$ " } ], [ { "aoVal": "D", "content": "$25$ " } ] ]
[ "竞赛->知识点->排列组合与概率->二项式定理及其应用" ]
[ "$${{a}_{n}}=\\text{C}_{200}^{n}\\cdot {{3}^{\\frac{200-n}{3}}}\\cdot {{2}^{\\frac{400-5 \\pi }{6}}}$$, 要使$${{a}_{n}}(1\\leqslant n\\leqslant 95)$$为整数,必有$$\\frac{200-n}{3}$$,$$\\frac{400-5n}{6}$$均为整数,从而$$6\\textbar n+4$$. 当$$n=2,8,14,20,26,32,38,44,50,56,62,68,74,80$$时,$$\\frac{200-n}{3}$$和$$\\frac{400-5n}{6}$$均为非负整数,所以$${{a}_{n}}$$为整数,共有$$14$$个. 当$$n=86$$时,$${{a}_{n}}=\\text{C}_{200}^{86}\\cdot {{3}^{38}}\\cdot 2_{{}}^{-5}$$,在$$\\text{C}_{200}^{86}=\\frac{200!}{86!\\cdot 114!}$$中, $$200$$中因数$$2$$的个数为$$\\left[ \\frac{200}{2} \\right]+\\left[ \\frac{200}{{{2}^{2}}} \\right]+\\left[ \\frac{200}{{{2}^{3}}} \\right]+\\left[ \\frac{200}{{{2}^{4}}} \\right]+\\left[ \\frac{200}{{{2}^{5}}} \\right]+\\left[ \\frac{200}{{{2}^{6}}} \\right]+\\left[ \\frac{200}{{{2}^{7}}} \\right]=197$$, 同理可计算得$$86$$中因数$$2$$的个数为$$82$$,$$114$$中因数$$2$$的个数为$$110$$, 所以$$\\text{C}_{200}^{86}$$中因数$$2$$的个数为$$197-82-110=5$$,故$${{a}_{86}}$$是整数. 当$$n=92$$时,$${{a}_{92}}=\\text{C}_{200}^{92}\\cdot {{3}^{36}}\\cdot {{2}^{-10}} $$在$$\\text{C}_{200}^{92}=\\frac{200!}{92!108!}$$中,同样可求得$$92$$中因数$$2$$的个数为$$88$$,$$108$$中因数$$2$$的个数为$$105$$,故$$\\text{C}_{200}^{86}$$中因数$$2$$的个数为$$197-88-105=4$$,故不是整数. 因此,整数项的个数为$$14+1=15$$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
373
506027439ec34c6a8270c63ce79c26ac
[ "2021年福建全国高中数学联赛竞赛初赛第5题6分" ]
1
single_choice
已知$$f\left( x \right)$$和$$g\left( x \right)$$)是两个二次项系数均为$$1$$的二次函数.若$$g\left( 6 \right)=35$$﹐$$\frac{f\left( -1 \right)}{g\left( -1 \right)}=\frac{f\left( 1 \right)}{g\left( 1 \right)}=\frac{21}{20}$$,则$$f\left( 6 \right)=$$~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$31$$ " } ], [ { "aoVal": "B", "content": "$$32$$ " } ], [ { "aoVal": "C", "content": "$$33$$ " } ], [ { "aoVal": "D", "content": "$$34$$ " } ], [ { "aoVal": "E", "content": "$$35$$ " } ] ]
[ "课内体系->知识点->函数的概念与性质", "竞赛->知识点->函数->二次函数" ]
[ "设$$f\\left( x \\right)={{x}^{2}}+ax+b$$,$$g\\left( x \\right)={{x}^{2}}+cx+d$$, 则由题设条件可得 $$20\\left( 1-a+b \\right)=21\\left( 1-c+d \\right)\\cdots \\cdots $$①﹐$$20\\left( 1+a+b \\right)=21\\left( 1+c+d \\right)\\cdots \\cdots $$②. ①、②两式左右两边分别相加,得$$40+40b=42+42d$$,$$20b=1+21d$$﹔ ①、②两式左右两边分别相减,得$$-40a=-42c$$,$$20a=21c$$. 另由$$g\\left( 6 \\right)=35$$,得$$36+6c+d=35$$. 所以,$$36+6\\times \\frac{20}{21}a+\\frac{20b-1}{21}=35$$,$$6a+b=-1$$, 所以,$$f\\left( 6 \\right)=36+6a+b=35$$. 设$$h\\left( x \\right)=21g\\left( x \\right)-20f\\left( x \\right)$$, 则由条件知$$h\\left( x \\right)$$是二次项系数为$$1$$的二次函数. 又$$h\\left( -1 \\right)=21g\\left( -1 \\right)-20f\\left( -1 \\right)=0$$,$$h\\left( 1 \\right)=21g\\left( 1 \\right)-20f\\left( 1 \\right)=0$$, 所以,$$h(x)=(x+1)(x-1)={{x}^{2}}-1$$. 因此,$$h\\left( 6 \\right)=21g\\left( 6 \\right)-20f\\left( 6 \\right)={{6}^{2}}-1=35$$. 所以,$$21\\times 35-20f\\left( 6 \\right)=35$$,$$f\\left( 6 \\right)=35$$. " ]
E
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
810
6a08a426b0614c16875d740e354edb3c
[ "全国高中数学联赛竞赛模拟一试(十三)第6题" ]
2
single_choice
已知$$a$$,$$b$$,$$c$$,$$d$$为正数,且$$a+2b=c+2d=1$$.则$$\frac{1}{a}+\frac{1}{bcd}$$的最小值为~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$12$$ " } ], [ { "aoVal": "B", "content": "$$18$$ " } ], [ { "aoVal": "C", "content": "$$24$$ " } ], [ { "aoVal": "D", "content": "$$25$$ " } ] ]
[ "竞赛->知识点->不等式->多元函数极值(一试)", "竞赛->知识点->不等式->几个重要的不等式->柯西", "课内体系->知识点->等式与不等式->不等式->柯西不等式", "课内体系->方法->均值不等式法" ]
[ "由均值不等式及题设条件知 $$2cd\\leqslant {{\\left( \\frac{c+2d}{2} \\right)}^{2}}=\\frac{1}{4}\\Rightarrow cd\\leqslant \\frac{1}{8}$$①. 当且仅当$$c=\\frac{1}{2}$$,$$d=\\frac{1}{4}$$时,以上两式的等号成立. 此时,由式①得$$\\frac{1}{a}+\\frac{1}{bcd}\\geqslant \\frac{1}{a}+\\frac{8}{b}$$. 又由条件及柯西不等式得 $$\\frac{1}{a}+\\frac{8}{b}=\\left( \\frac{1}{a}+\\frac{8}{b} \\right)\\left( a+2b \\right)\\geqslant {{\\left( 1+4 \\right)}^{2}}=25$$, 当且仅当$$b=2a$$时,上式等号成立. 结合条件,知此时$$a=\\frac{1}{5}$$,$$b=\\frac{2}{5}$$. 于是,$$\\frac{1}{a}+\\frac{1}{bcd}\\geqslant 25$$. 当 $$a=\\frac{1}{5}$$,$$b=\\frac{2}{5}$$,$$c=\\frac{1}{2}$$,$$d=\\frac{1}{4}$$时, $$\\frac{1}{a}+\\frac{1}{bcd}$$取得最小值$$25$$. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
214
113a508bb2cf4164b4e51d1f236fb695
[ "2008年全国高中数学联赛竞赛一试第10题9分", "2010年河南全国高中数学联赛竞赛初赛第12题5分" ]
1
single_choice
设数列$$ {{{a}_{n}} }$$的前$$n$$项和$${{S}_{n}}$$满足:$${{S}_{n}}+{{a}_{n}}=\frac{n-1}{n(n+1)}$$,$$n=1,2,\cdots $$,则通项$${{a}_{n}}=$$~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{{{2}^{n}}}+\\frac{1}{n(n+1)}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{{{2}^{n}}}-\\frac{1}{n(n+1)}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{{{2}^{n}}}+\\frac{1}{n(n-1)}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{1}{{{2}^{n}}}-\\frac{1}{n(n-1)}$$ " } ] ]
[ "竞赛->知识点->数列与数学归纳法->数列的通项与求和", "课内体系->知识点->数列" ]
[ "$${{a}_{n+1}}={{S}_{n+1}}-{{S}_{n}}=\\frac{n}{(n+1)(n+2)}-{{a}_{n+1}}-\\frac{n-1}{n(n+1)}+{{a}_{n}}$$, 即$$2{{a}_{n+1}}=\\frac{n+2-2}{(n+1)(n+2)}-\\frac{1}{n+1}+\\frac{1}{n(n+1)}+{{a}_{\\begin{smallmatrix} n \\end{smallmatrix}}}$$ $$=\\frac{-2}{(n+1)(n+2)}+{{a}_{n}}+\\frac{1}{n(n+1)}$$, 由此得$$2\\left( {{a}_{n+1}}+\\frac{1}{(n+1)(n+2)} \\right)={{a}_{n}}+\\frac{1}{n(n+1)}$$, 令$${{b}_{n}}={{a}_{n}}+\\frac{1}{n(n+1)}$$,$${{b}_{1}}={{a}_{1}}+\\frac{1}{2}=\\frac{1}{2}({{a}_{1}}=0)$$, 有$${{b}_{n+1}}=\\frac{1}{2}{{b}_{n}}$$,故$${{b}_{n}}=\\frac{1}{{{2}^{n}}}$$,所以$${{a}_{n}}=\\frac{1}{{{2}^{n}}}-\\frac{1}{n(n+1)}$$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
150
14401eaf8eab4ee28ce7ff62fa2c6767
[ "2019年上海全国高中数学联赛高三竞赛初赛第4题7分", "2019年上海全国高中数学联赛竞赛初赛第4题7分" ]
2
single_choice
设等差数列$$\left { {{a}_{n}} \right }$$的公差为$$d\left( d\ne 0 \right)$$,前$$n$$项和为$${{S}_{n}}$$.若数列$$\left { \sqrt{8{{S}_{n}}+2n} \right }$$也是公差为$$d$$的等差数列,则数列$$\left { {{a}_{n}} \right }$$的通项$${{a}_{n}}=$$~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$4n-\\frac{3}{4}$$ " } ], [ { "aoVal": "B", "content": "$$4n-\\frac{5}{4}$$ " } ], [ { "aoVal": "C", "content": "$$4n-\\frac{7}{4}$$ " } ], [ { "aoVal": "D", "content": "$$4n-\\frac{9}{4}$$ " } ] ]
[ "竞赛->知识点->数列与数学归纳法->等差数列与等比数列", "课内体系->知识点->数列->等差数列->等差数列的概念与通项公式->等差数列求通项问题" ]
[ "由$$\\sqrt{8{{S}_{n+1}}+2\\left( n+1 \\right)}-\\sqrt{8{{S}_{n}}+2n}=d\\left( n\\geqslant 1 \\right)$$ $$\\Rightarrow 8{{S}_{n+1}}-8{{S}_{n}}+2=d+2d\\sqrt{8{{S}_{n}}+2n}$$ $$\\Rightarrow 8{{a}_{n+1}}+2=d+2d\\sqrt{8{{S}_{n}}+2n}$$, 类似地, $$8{{a}_{n+2}}+2=d+2d\\sqrt{8{{S}_{n+1}}+2\\left( n+1 \\right)}$$, 将以上两式相减得 $$8\\left( {{a}_{n+2}}-{{a}_{n+1}} \\right)=2d\\left( \\sqrt{8{{S}_{n+1}}+2\\left( n+1 \\right)}-\\sqrt{8{{S}_{n}}+2n} \\right)$$ $$\\Rightarrow 8d=2{{d}^{2}}$$, 而$$d\\ne 0$$,故$$d=4$$, 又$$\\sqrt{8{{S}_{2}}+4}-\\sqrt{8{{S}_{1}}+2}=\\sqrt{16{{a}_{1}}+36}-\\sqrt{8{{a}_{1}}+2}=4$$, 由此解得$${{a}_{1}}=\\frac{7}{4}$$, 从而,$${{a}_{n}}=\\frac{7}{4}+4\\left( n-1 \\right)=4n-\\frac{9}{4}$$. 故答案为:$$4n-\\frac{9}{4}$$. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
675
4574c1ca60094c808583788fbb75fce1
[ "2010年AMC10竞赛B第11题" ]
1
single_choice
$$2010-AMC10B-11$$ A shopper plans to purchase an item that has a listed price greater than $$$100$$ and can use any one of the three coupons. Coupon $$A$$ gives $$15$$\% off the listed price, Coupon $$B$$ gives $$$30$$ off the listed price, and Coupon $$C$$ gives $$25$$\% off the amount by which the listed price exceeds $$$100$$. Let $$x$$ and $$y$$ be the smallest and largest prices, respectively, for which Coupon $$A$$ saves at least as many dollars as Coupon $$B$$ or Coupon $$C$$. What is $$y- x$$? 购物者计划购买标价大于 $100 的商品,并且可以使用三种优惠券中的任何一种。 优惠券$$A$$ 优惠$$15$$ 元,优惠券$$B$$ 优惠$$30$$ 元,优惠券$$C$$ 优惠25\%,超过$$100$$ 元的优惠券。 设 X 和 Y 分别是最小和最大的价格,对于该价格,优惠券 A 至少节省与优惠券 B 或优惠券 C 一样多的美元。y-x 是多少?
[ [ { "aoVal": "A", "content": "$$50$$ " } ], [ { "aoVal": "B", "content": "$$60$$ " } ], [ { "aoVal": "C", "content": "$$75$$ " } ], [ { "aoVal": "D", "content": "$$80$$ " } ], [ { "aoVal": "E", "content": "$$100$$ " } ] ]
[ "课内体系->知识点->函数的应用->函数的实际应用->一次函数模型", "美国AMC10/12->Knowledge Point->Algebra->Application->Equation Word Problems" ]
[ "Let the listed price be $$(100+p)$$, where $$p\\textgreater0$$. Coupon $$A$$ saves us: $$0.15(100+p)=(0.15 p+15)$$. Coupon $$B$$ saves us: $$30$$. Coupon $$C$$ saves us: $$0.25p$$. Now, the condition is that $$A$$ has to be greater than or equal to either $$B$$ or $$C$$ which give us the following inequalities: $$A≥B⇒0.15 p+15≥30⇒p≥100$$, $$A≥C⇒0.15 p+15≥0.25p⇒p≤150$$. We see here that the greatest possible value for $$p$$ is $$150$$,~ thus $$y= 100+150=250$$ and the smallest value for $$p$$ is $$100$$ so $$x= 100+100=200$$. The difference between $$y$$ and $$x$$ is $$y-x=250-200=(\\rm A) 50$$. " ]
A
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
92
210e9a45d67446cab2d715742c6d7231
[ "2017年天津全国高中数学联赛竞赛初赛第6题5分" ]
2
single_choice
设复数$$z$$满足$$\left\textbar{} z-\left\textbar{} z+1 \right\textbar{} \right\textbar=\left\textbar{} z+\left\textbar{} z-1 \right\textbar{} \right\textbar$$,则下列判断错误的是.
[ [ { "aoVal": "A", "content": "$$z$$可能为纯虚数 " } ], [ { "aoVal": "B", "content": "$$z$$可能为实数 " } ], [ { "aoVal": "C", "content": "$$z$$的实部小于$$2$$ " } ], [ { "aoVal": "D", "content": "$$z$$的辐角可能为$$\\frac{ \\pi }{4}$$ " } ] ]
[ "竞赛->知识点->复数与平面向量->复数的应用", "竞赛->知识点->复数与平面向量->复数的概念与运算" ]
[ "令$$z=b\\text{i}$$,不难算出$$\\left\\textbar{} z-\\left\\textbar{} z+1 \\right\\textbar{} \\right\\textbar=\\sqrt{{{b}^{2}}+{{b}^{2}}+1}=\\left\\textbar{} z+\\left\\textbar{} z-1 \\right\\textbar{} \\right\\textbar$$,$$A$$对; 令$$z=0$$,显然$$\\left\\textbar{} z-\\left\\textbar{} z+1 \\right\\textbar{} \\right\\textbar=\\left\\textbar{} z+\\left\\textbar{} z-1 \\right\\textbar{} \\right\\textbar=1$$,$$B$$对; 设$$z=a+b\\text{i}$$,由题意,$${{\\left( a-\\sqrt{{{\\left( a+1 \\right)}^{2}}+{{b}^{2}}} \\right)}^{2}}={{\\left( a+\\sqrt{{{\\left( a-1 \\right)}^{2}}+{{b}^{2}}} \\right)}^{2}}$$, 若$$a\\geqslant 2$$,则$${{\\left( a-\\sqrt{{{\\left( a+1 \\right)}^{2}}+{{b}^{2}}} \\right)}^{2}}\\textless{}{{\\left( a+1 \\right)}^{2}}+{{b}^{2}}$$, 但$${{\\left( a+\\sqrt{{{\\left( a-1 \\right)}^{2}}+{{b}^{2}}} \\right)}^{2}}\\geqslant {{\\left( a+\\sqrt{1+{{b}^{2}}} \\right)}^{2}}={{a}^{2}}+1+{{b}^{2}}+2a\\sqrt{1+{{b}^{2}}}\\geqslant {{a}^{2}}+1+{{b}^{2}}+2a={{\\left( a+1 \\right)}^{2}}+{{b}^{2}}$$, 矛盾,所以$$a\\textless{}2$$,$$C$$对; " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
773
84d0181f56f041fba26956f813a926fe
[ "2008年甘肃全国高中数学联赛竞赛初赛第6题6分" ]
1
single_choice
若实数$$x$$、$$y$$满足$${{(x-3)}^{2}}+4{{(y-1)}^{2}}=4$$,则$$\frac{x+y-3}{x-y+1}$$的最大值和最小值是.
[ [ { "aoVal": "A", "content": "$$1$$,$$0$$ " } ], [ { "aoVal": "B", "content": "$$0$$,$$-1$$ " } ], [ { "aoVal": "C", "content": "$$1$$,$$-1$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{1}{2}$$,$$-\\frac{1}{2}$$ " } ] ]
[ "竞赛->知识点->不等式->换元技巧->三角换元" ]
[ "设$$\\begin{cases}x=3+2\\cos \\theta y=1+\\sin \\theta \\end{cases}$$, 则$$t=\\frac{x+y-3}{x-y+1}=\\frac{2\\cos \\theta +\\sin \\theta +1}{2\\cos \\theta -\\sin \\theta +3}$$, 化为$$(2t-2)\\cos \\theta -(t+1)\\sin \\theta +3t-1=0$$, 由万能公式得$$(t+1){{\\tan }^{2}}\\frac{\\theta }{2}-2(t+1)\\tan \\frac{\\theta }{2}+5t-3=0$$. 当$$t\\ne 1$$时,$$\\frac{1}{4}\\Delta ={{(t+1)}^{2}}-(t+1)(5t-3)\\geqslant 0$$, 所以$$-1\\textless{}t\\leqslant 1$$; 当$$t=-1$$时,解得$$\\cos \\theta =-1$$有意义.故选$$\\text{C}$$. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
129
0c40a6bafec84cf3a486847b2b22e3ef
[ "2012年AMC10竞赛A第16题" ]
2
single_choice
$$2012-AMC10A-16$$ Three runners start running simultaneously from the same point on a $$500-$$meter circular track. They each run clockwise around the course maintaining constant speeds of $$4.4$$, $$4.8$$, and $$5.0$$ meters per second. The runners stop once they are all together again somewhere on the circular course. How many seconds do the runners run? 三名跑者在一条 500 米的环形跑道上从同一点同时开始跑步。 他们每个人都绕着赛道顺时针运行,保持每秒 4.4、$$4.8$$ 和 5.0 米的恒定速度。 一旦他们再次聚集在圆形路线上的某个地方,跑步者就会停下来。 跑者跑多少秒?
[ [ { "aoVal": "A", "content": "$$1000$$ " } ], [ { "aoVal": "B", "content": "$$1250$$ " } ], [ { "aoVal": "C", "content": "$$2500$$ " } ], [ { "aoVal": "D", "content": "$$5000$$ " } ], [ { "aoVal": "E", "content": "$$10000$$ " } ] ]
[ "课内体系->知识点->等式与不等式->等式->方程组的解集", "美国AMC10/12->Knowledge Point->Algebra->Application->Equation Word Problems" ]
[ "First consider the first two runners. The faster runner will lap the slower runner exactly once, or run $$500$$ meters farther. Let $$x$$ be the time these runners run in seconds. Because $$4.8x-4.4x=500\\Rightarrow x=1250$$ is a multiple of $$500$$, it turns out they just meet back at the start line. Now we must find a time that is a multiple of $$1250$$ and results in the $$5.0\\rm m/s$$ runner to end up on the start line. Every $$1250$$ seconds, that fastest runner goes $$5.0(1250)=6250$$ meters. In $$2(1250)=2500$$ seconds, he goes $$5.0(2500)=12500$$ meters. Therefore the runners run $$\\boxed{\\rm(C)\\textasciitilde2500} $$seconds. Working backwards from the answers starting with the smallest answer, if they had run $$1000$$ seconds, they would have run $$4400$$, $$4800$$, $$5000$$ meters, respectively. The first two runners have a difference of $$400$$ meters, which is not a multiple of $$500$$ (one lap), so they are not in the same place. If they had run $$1250$$ seconds, the runners would have run $$5500$$, $$6000$$, $$6250$$ meters, respectively. The last two runners have a difference of $$250$$ meters, which is not a multiple of $$500$$. If they had run $$2500$$ seconds, the runners would have run $$11000$$, $$12000$$, $$12500$$ meters, respectively. The distance separating each pair of runners is a multiple of $$500$$, so the answer is $$\\boxed{\\rm(C)\\textasciitilde2500}$$ seconds. Let $$t$$ be the time run in seconds, then the difference in meters run between the three runners is $$0.2t$$, $$0.4t$$, $$0.6t$$. For them to be at the same location all of them need to be multiples of $$500$$. It is now easy to see that $$0.2t=500$$, $$0.4t=1000$$, $$0.6t=1500$$, so $$t=\\boxed{\\rm(C)\\textasciitilde2500}$$. After $$t$$ seconds, respectively the runners would\\textquotesingle ve ran $$4.4t$$, $$4.8t$$ and $$5t$$ meters. Their current positions on the track are these values $$(\\rm mod\\textasciitilde500)$$. We\\textquotesingle re trying to find the value of $$t$$ such that $$4.4t\\equiv 4.8t\\equiv 5t\\textasciitilde{} \\rm (mod \\textasciitilde500)$$ Subtracting $$4.4t$$ on all sides, we get $$0\\equiv 0.4t\\equiv 0.6t\\textasciitilde{} \\rm (mod \\textasciitilde500)$$ Now, we must find a value for $$t$$ such that both $$0.6t$$ and $$0.4t$$ are simultaneously multiples of $$500$$. Plugging in $$500$$ for $$0.4t$$ we get $$t=1250$$, but this does not work for $$0.6t$$ ( $$750$$ isn\\textquotesingle t a multiple of $$500$$). Plugging in $$0.4t=1000$$, we get $$t=2500$$, and this does work for $$0.6t$$. Therefore, $$t=2500$$ and the answer is $$\\rm(C)\\textasciitilde2500$$. $$\\cdot$$ Note: Modular Arithmetic works only for integral values, so my usage of decimals is technically incorrect but the intuition leads to the right answer. Similar to the solution above, but is much quicker and does not involve trial and error. This uses decimal mod arithmetic, which can be justified by intuition $$\\cdots$$~~After $$t$$ seconds, respectively the runners would\\textquotesingle ve ran $$4.4t$$, $$4.8t$$, and $$5t$$ meters. These three values are congruent $$\\rm(mod\\textasciitilde500)$$, so $$4.4t\\equiv 4.8t\\equiv 5t\\textasciitilde{} \\rm (mod \\textasciitilde500)$$. Subtract $$4.4t$$ from all three sides to get $$0$$, $$0.4t$$, and $$0.6t$$ are congruent. Now all we need to find is a value of t for which $$0.4t$$ and $$0.6t$$ are congruent mod $$500$$. Subtract $$0.4t$$ from both sides to get $$0.2t$$ and $$0$$ are congruent mod $$500$$, or that $$0.2t=\\frac t5$$ is a multiple of $$500$$. Let $$t=500k$$, so we want $$100k$$ to be a multiple of $$500$$, or $$k$$ to be a multiple of $$5$$. Therefore, thes mallest value of $$t$$ is when $$k=5$$, and when $$t=500k=500(5)=2500\\rm(C)$$. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
358
674011ecdd154aefbc33befad21694ad
[ "2009年吉林全国高中数学联赛竞赛初赛第5题5分" ]
1
single_choice
已知$$I$$是$$\triangle ABC$$的内心,$$AC=2,BC=3,AB=4$$,若$$\overrightarrow{AI}=x+y\overrightarrow{AC}$$,则$$x+y$$的值为.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{3}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{2}{3}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{4}{9}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{5}{9}$$ " } ] ]
[ "竞赛->知识点->复数与平面向量->平面向量的概念与运算", "竞赛->知识点->平面几何->内心相关问题(二试)" ]
[ "在$$\\triangle ABC$$中,$$I$$为内心,连$$AI$$并延长交$$BC$$于$$D$$点, 则$$D$$分$$BC$$的比$$\\lambda =\\frac{AB}{AC}=\\frac{4}{2}=2$$. 故$$\\overrightarrow{AD}=\\frac{1}{3}\\overrightarrow{AB}+\\frac{2}{3}\\overrightarrow{AC}$$.又$$BC=3$$,故$$BD=2, DC=1$$. 又在$$\\triangle ABD$$中,$$I$$分$$AD$$的比$${\\lambda }'=\\frac{AB}{BD}=\\frac{4}{2}=2$$, 即$$\\overrightarrow{AI}=\\frac{2}{3}\\overrightarrow{AD}=\\frac{2}{9}\\overrightarrow{AB}+\\frac{4}{9}\\overrightarrow{AC}$$,所以$$x+y=\\frac{2}{3}$$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
420
47920f405e6b4c16b9e9f846f25754d3
[ "2002年全国全国高中数学联赛竞赛一试第5题6分" ]
2
single_choice
已知两个实数集合$$A=\left { {{a}_{1}},{{a}_{2}},\cdots ,{{a}_{100}} \right }$$与$$B=\left { {{b}_{1}},{{b}_{2}},\cdots ,{{b}_{50}} \right }$$,若从$$A$$到$$B$$的映射$$f$$使得$$B$$中的每一个元素都有原象,且$$f\left( {{a}_{1}} \right)\leqslant f\left( {{a}_{2}} \right)\leqslant \cdots \leqslant f\left( {{a}_{100}} \right)$$,则这样的映射共有.
[ [ { "aoVal": "A", "content": "$$\\text{C}_{100}^{50}$$ " } ], [ { "aoVal": "B", "content": "$$\\text{C}_{90}^{50}$$ " } ], [ { "aoVal": "C", "content": "$$\\text{C}_{100}^{49}$$ " } ], [ { "aoVal": "D", "content": "$$\\text{C}_{99}^{49}$$ " } ] ]
[ "课内体系->知识点->函数的概念与性质->函数的概念及其表示->函数的概念->映射", "课内体系->知识点->计数原理->排列与组合->组合->隔板法", "课内体系->素养->逻辑推理" ]
[ "不妨设$${{b}_{1}}\\textless{}{{b}_{2}}\\textless{}\\cdots \\textless{}{{b}_{50}}$$,将$$A$$中元素$${{a}_{1}}$$,$${{a}_{2}}$$,\\ldots,$${{a}_{100}}$$按顺序分为非空的$$50$$组,定义映射$$f:A\\to B$$,使得第$$i$$组的元素在$$f$$之下的象都是$${{b}_{i}}\\left( i=1,2, \\cdots ,50 \\right)$$,易知这样的$$f$$满足题设要求,每个这样的分组都一一对应满足条件的映射,于是满足题设要求的映射$$f$$的个数与$$A$$按足码顺序分为$$50$$组的分法数相等,而$$A$$的分法数为$$\\text{C}_{99}^{49}$$,则这样的映射共有$$\\text{C}_{99}^{49}$$. 故选$$\\text{D}$$. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
145
1cee0f83b227494a951c7573cafea3ff
[ "2023年江苏连云港灌南县灌南县中学高三竞赛(下学期3月解题能力竞赛)第1题" ]
0
single_choice
已知集合$A=\left {x\left\textbar{} x\textless{} 2\right.\right }$,$B=\left {x\left\textbar{} x^{2}-2x-3\leq 0\right.\right }$,则$A\cup B=$(~~~~~~~)
[ [ { "aoVal": "A", "content": "$\\left[-1,2\\right)$ " } ], [ { "aoVal": "B", "content": "$\\left(2,3\\right]$ " } ], [ { "aoVal": "C", "content": "$\\left(-1,3\\right]$ " } ], [ { "aoVal": "D", "content": "$\\left(-\\mathrm{\\infty },3\\right]$ " } ] ]
[]
[ "\\hfill\\break 【分析】\\\\ 先求出集合$B$,再依据并集的定义求并集.\\\\ 【详解】\\\\ $B=\\left {x\\left\\textbar{} x^{2}-2x-3\\leq 0\\right.\\right }=\\left {x\\left\\textbar{} -1\\leq x\\leq 3\\right.\\right }$,又$A=\\left {x\\left\\textbar{} x\\textless{} 2\\right.\\right }$,\\\\ 所以$A\\cup B=\\left(-\\mathrm{\\infty }\\mathrm{,}3\\right]$\\\\ 故选:D " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
819
8d4177ff1279401a96c785c9b3c4b54d
[ "2009年河北全国高中数学联赛竞赛初赛第2题6分" ]
1
single_choice
如果函数$$f(x)={{a}^{x}}({{a}^{x}}-3{{a}^{2}}-1)(a\textgreater0$$且$$a\ne 1)$$在区间$$[0,+\infty ]$$上是增函数,那么实数$$a$$的取值范围是.
[ [ { "aoVal": "A", "content": "$$\\left( 0,\\frac{2}{3} \\right]$$ " } ], [ { "aoVal": "B", "content": "$$\\left[ \\frac{\\sqrt{3}}{3},1 \\right)$$ " } ], [ { "aoVal": "C", "content": "$$(0,\\sqrt{3}]$$ " } ], [ { "aoVal": "D", "content": "$$\\left[ \\frac{3}{2},+\\infty \\right)$$ " } ] ]
[ "竞赛->知识点->函数->函数的图像与性质" ]
[ "利用复合函数的单调性求解,令$${{a}^{x}}=t$$,则 $$y=g(t)={{t}^{2}}-(3{{a}^{2}}+1)t$$. ①当$$a\\textgreater1$$时,$$t$$是关于$$x$$的增函数,欲使$$f(x)$$在$$x\\in [0,+\\infty )$$上是增函数,需$$g(t)$$在$$t\\in [1,+\\infty )$$上是增函数,故$$\\frac{3{{a}^{2}}+1}{2}\\leqslant 1$$,即$${{a}^{2}}\\leqslant \\frac{1}{3}$$,矛盾. ②当$$0\\textless{}a\\textless{}1$$时,$$t$$是关于$$x$$的减函数,欲使$$f(x)$$在$$x\\in [0,+\\infty )$$上是增函数,需$$g(t)$$在$$t\\in (0,1]$$上是减函数,故$$\\frac{3{{a}^{2}}+1}{2}\\geqslant 1$$,即$${{a}^{2}}\\geqslant \\frac{1}{3}$$,所以$$\\frac{\\sqrt{3}}{3}\\leqslant a\\textless{}1$$. 综上可知选$$\\text{B}$$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
1074
d7d0bcc25c024651a1708865633015f5
[ "竞赛第1题" ]
1
single_choice
已知集合$A=\left {a_{1},a_{2},\cdots ,a_{n}\right }$,任取$1\leq i\textless{} j\textless{} k\leq n,a_{i}+a_{j}\in A,a_{j}+a_{k}\in A,a_{i}+a_{k}\in A$中至少有一个成立,则\emph{n}的最大值为(~~~~~~~)
[ [ { "aoVal": "A", "content": "3 " } ], [ { "aoVal": "B", "content": "5 " } ], [ { "aoVal": "C", "content": "7 " } ], [ { "aoVal": "D", "content": "9 " } ] ]
[]
[ "\\hfill\\break 【分析】\\\\ 可证明集合\\emph{A}的正数至多有3个,负数至多有3个,故可判断\\emph{n}的最大值.\\\\ 【详解】\\\\ 不妨设$a_{1}\\textgreater{} a_{2}\\textgreater{} \\cdots \\textgreater{} a_{n}$,若集合\\emph{A}中的正数个数不小于4,取$(i,j,k)=(1,2,3)$,\\\\ 可得$a_{2}+a_{3}=a_{1}$,取$(i,j,k)=(1,2,4)$,可得$a_{2}+a_{4}=a_{1}$,因此$a_{3}=a_{4}$,矛盾.\\\\ 因此集合\\emph{A}的正数至多有3个,同理,集合\\emph{A}中的负数至多有3个.\\\\ 又考虑$A= {3,2,1,0,-1,-2,-3 }$,\\\\ 符合题意,因此\\emph{n}的最大值为7.\\\\ 故选:C. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
1198
f0621a4b7a49472fa0d5ac0e1ca8673f
[ "2005年全国高中数学联赛竞赛一试第2题6分" ]
2
single_choice
空间四点$$A$$、$$B$$、$$C$$、$$D$$满足$$\textbar\overrightarrow{AB}\textbar=3$$,$$\textbar\overrightarrow{BC}\textbar=7$$,$$\textbar\overrightarrow{CD}\textbar=11$$,$$\textbar\overrightarrow{DA}\textbar=9$$,则$$\overrightarrow{AC}\cdot \overrightarrow{BD}$$=~\uline{~~~~~~~~~~}~
[ [ { "aoVal": "A", "content": "只有一个 " } ], [ { "aoVal": "B", "content": "有二个 " } ], [ { "aoVal": "C", "content": "有四个 " } ], [ { "aoVal": "D", "content": "有无穷多个 " } ] ]
[ "竞赛->知识点->立体几何与空间向量->空间向量" ]
[ "注意到$${{3}^{2}}+{{11}^{2}}=1130={{7}^{2}}+{{9}^{2}}$$,由于$$\\overrightarrow{AB}+\\overrightarrow{BC}+\\overrightarrow{CD}+\\overrightarrow{DA}=\\vec{0}$$, 则$$D{{A}^{2}}={{\\overrightarrow{DA}}^{2}}={{(\\overrightarrow{AB}+\\overrightarrow{BC}+\\overrightarrow{CD})}^{2}}=A{{B}^{2}}+B{{C}^{2}}+C{{D}^{2}}+2(\\overrightarrow{AB}\\cdot \\overrightarrow{BC}+\\overrightarrow{BC}\\cdot \\overrightarrow{CD}+\\overrightarrow{CD}\\cdot \\overrightarrow{AB})$$ $$=A{{B}^{2}}-B{{C}^{2}}+C{{D}^{2}}+2({{\\overline{BC}}^{2}}+\\overrightarrow{AB}\\cdot \\overrightarrow{BC}+\\overrightarrow{BC}\\cdot \\overrightarrow{CD}+\\overrightarrow{CD}\\cdot \\overrightarrow{AB})$$ $$=A{{B}^{2}}-B{{C}^{2}}+C{{D}^{2}}+2(\\overrightarrow{AB}+\\overrightarrow{BC})\\cdot (\\overrightarrow{BC}+\\overrightarrow{CD})$$, 即$$2\\overrightarrow{AC}\\cdot \\overrightarrow{BD}=A{{D}^{2}}+B{{C}^{2}}-A{{B}^{2}}-C{{D}^{2}}=0$$,∴$$\\overrightarrow{AC}\\cdot \\overrightarrow{BD}$$只有一个值得$$0$$, 故选$$\\text{A}$$. " ]
A
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
47
93f64c91ac624999b0562988739ffa14
[ "2016年天津全国高中数学联赛竞赛初赛第6题6分", "2016年高考真题天津卷" ]
1
single_choice
设函数$$f\left( x \right)$$的定义域是$$\left( -\infty ,+\infty \right)$$,对于下列($$1$$)$$\sim $$($$4$$)的四个命题: ($$1$$)若$$f\left( x \right)$$是奇函数,则$$f\left( f\left( x \right) \right)$$也是奇函数; ($$2$$)若$$f\left( x \right)$$是周期函数,则$$f\left( f\left( x \right) \right)$$也是周期函数; ($$3$$)若$$f\left( x \right)$$是单调递减函数,则$$f\left( f\left( x \right) \right)$$是单调递增函数; 正确的命题共有.
[ [ { "aoVal": "A", "content": "$$1$$个 " } ], [ { "aoVal": "B", "content": "$$2$$个 " } ], [ { "aoVal": "C", "content": "$$3$$个 " } ], [ { "aoVal": "D", "content": "$$0$$个 " } ] ]
[ "知识标签->知识点->函数->函数的应用->简单的函数方程", "知识标签->知识点->函数->函数及其表示->函数的概念->复合函数", "知识标签->知识点->函数->函数的性质->单调性", "知识标签->知识点->函数->函数的性质->奇偶性", "知识标签->知识点->函数->函数的性质->周期性", "知识标签->素养->数学运算", "知识标签->素养->数据分析", "知识标签->素养->逻辑推理", "知识标签->题型->函数->函数的性质->周期性->函数周期性判断", "知识标签->题型->函数->函数的性质->单调性->用定义法证明函数的单调性", "知识标签->题型->函数->函数的性质->奇偶性->利用定义判断函数奇偶性" ]
[ "若$$f\\left( x \\right)$$是奇函数,则$$f\\left( f\\left( -x \\right) \\right)=f\\left( -f\\left( x \\right) \\right)=-f\\left( f\\left( x \\right) \\right)$$,($$1$$)对; 若$$f\\left( x+T \\right)=f\\left( x \\right)$$,则$$f\\left( f\\left( x+T \\right) \\right)=f\\left( f\\left( x \\right) \\right)$$,($$2$$)对; 对任意$${{x}_{1}}\\textless{}{{x}_{2}}$$,有$$f\\left( {{x}_{1}} \\right)\\textgreater f\\left( {{x}_{2}} \\right)$$,则$$f\\left( f\\left( {{x}_{1}} \\right) \\right)\\textless{}f\\left( f\\left( {{x}_{2}} \\right) \\right)$$,($$3$$)对; 取$$f\\left( x \\right)=\\begin{cases}1,x=0 0,x=1 \\left\\textbar{} x \\right\\textbar+1,其它 \\end{cases}$$,则$$f\\left( f\\left( x \\right) \\right)=\\begin{cases}0,x=0 1,x=1 \\left\\textbar{} x \\right\\textbar+2,其它 \\end{cases}$$,($$4$$)错. 故选$$\\text{C}$$. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
455
3a5da8ec9c1d4521a0f276ded97a6195
[ "2018年山西全国高中数学联赛竞赛初赛第6题8分" ]
1
single_choice
计算$$\cos \frac{2\pi }{7}\cos \frac{4\pi }{7}\cos \frac{6\pi }{7}$$的值为~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{8}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{4}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{2}$$ " } ], [ { "aoVal": "D", "content": "$$1$$ " } ] ]
[ "课内体系->知识点->三角函数->三角恒等变换->二倍角公式->二倍角的正弦", "课内体系->知识点->三角函数->三角恒等变换->二倍角公式->半角公式", "课内体系->素养->数学运算" ]
[ "记$$S=\\cos \\frac{2\\pi }{7}\\cos \\frac{4\\pi }{7}\\cos \\frac{6\\pi }{7}$$,则$$S=-\\cos \\frac{\\pi }{7}\\cos \\frac{2\\pi }{7}\\cos \\frac{4\\pi }{7}$$, $$-S\\cdot 8\\sin \\frac{\\pi }{7}=8\\sin \\frac{\\pi }{7}\\cdot \\cos \\frac{\\pi }{7}\\cos \\frac{2\\pi }{7}\\cos \\frac{4\\pi }{7}=4\\sin \\frac{2\\pi }{7}\\cdot \\cos \\frac{2\\pi }{7}\\cos \\frac{4\\pi }{7}=2\\sin \\frac{4\\pi }{7}\\cos \\frac{4\\pi }{7}$$ $$=\\sin \\frac{8\\pi }{7}=-\\sin \\frac{\\pi }{7}$$,所以,$$S=\\frac{1}{8}$$. " ]
A
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
512
5a4c2c653f9e4d30b2a30aacc7937a0c
[ "2004年高考真题天津卷文科第9题5分", "2008年贵州全国高中数学联赛竞赛初赛第3题5分" ]
0
single_choice
函数$$y={{3}^{x+1}}(-1\leqslant x\textless{}0)$$的反函数是.
[ [ { "aoVal": "A", "content": "$$y=1+{{\\log }_{3}}x(x\\textgreater0)$$ " } ], [ { "aoVal": "B", "content": "$$y=-1+{{\\log }_{3}}x(x\\textgreater0)$$ " } ], [ { "aoVal": "C", "content": "$$y=1+{{\\log }_{3}}x(1\\leqslant x\\textless{}3)$$ " } ], [ { "aoVal": "D", "content": "$$y=-1+{{\\log }_{3}}x(1\\leqslant x\\textless{}3)$$ " } ] ]
[ "竞赛->知识点->函数->基本初等函数" ]
[ "由$$y={{3}^{x+1}}$$解得,$$x=-1+{{\\log }_{3}}y$$, 因为$$-1\\leqslant x\\textless{}0$$,得$$1\\textless{}y\\textless{}3$$, 所以函数$$y={{3}^{x+1}}(-1\\leqslant x\\textless{}0)$$的反函数是$$y=-1+{{\\log }_{3}}x(1\\leqslant x\\textless{}3)$$, 故选$$\\text{D}$$. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
131
8705857d51684aea8292bc2bf34fa058
[ "2008年贵州全国高中数学联赛竞赛初赛第8题5分" ]
1
single_choice
把函数$$y=\sin \left( 2x+\frac{ \pi }{6} \right)-1$$的图象按向量$$\overrightarrow{a}=\left( \frac{ \pi }{6},1 \right)$$平移,再把所得图象上各点的横坐标缩短为原来的$$\frac{1}{2}$$,则所得图象的函数解析式是.
[ [ { "aoVal": "A", "content": "$$y=\\sin \\left( 4x+\\frac{2 \\pi }{3} \\right)-2$$ " } ], [ { "aoVal": "B", "content": "$$y=\\sin \\left( 4x-\\frac{ \\pi }{6} \\right)$$ " } ], [ { "aoVal": "C", "content": "$$y=\\sin \\left( 2x+\\frac{ \\pi }{6} \\right)$$ " } ], [ { "aoVal": "D", "content": "$$y=\\cos \\left( 4x+\\frac{2 \\pi }{3} \\right)$$ " } ] ]
[ "竞赛->知识点->三角函数->三角函数的图像与性质" ]
[ "由题意,把函数$$y=\\sin \\left( 2x+\\frac{ \\pi }{6} \\right)-1$$的图象按向量$$\\overrightarrow{a}=\\left( \\frac{ \\pi }{6},1 \\right)$$平移, 可得$$y=\\sin \\left[ 2\\left( x-\\frac{ \\pi }{6} \\right)+\\frac{ \\pi }{6} \\right]=\\sin \\left( 2x-\\frac{ \\pi }{6} \\right)$$, 再把所得图象上各点的横坐标缩短为原来的$$\\frac{1}{2}$$, 可得$$y=\\sin \\left( 4x-\\frac{ \\pi }{6} \\right)$$,故选$$\\text{B}$$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
625
e84f00d563e840d99296186bef846387
[ "2008年辽宁全国高中数学联赛竞赛初赛第6题5分" ]
1
single_choice
从正方体的$$8$$个顶点的任意两个所确定的所有直线中取出两条,则这两条直线是异面直线的概率是.
[ [ { "aoVal": "A", "content": "$$\\frac{29}{189}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{29}{63}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{34}{63}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{4}{7}$$ " } ] ]
[ "竞赛->知识点->立体几何与空间向量->空间中的角与距离", "竞赛->知识点->排列组合与概率->概率初步" ]
[ "从$$8$$个顶点中任取两点可确定$$\\text{C}_{8}^{2}=28$$(条)直线, 从$$8$$个顶点中任取$$4$$个不共面的点共有$$\\text{C}_{8}^{4}-12$$组, 而其中每一组不共面的$$4$$点可出现$$3$$对异面直线, 所以所求的概率为$$\\frac{3(\\text{C}_{8}^{4}-12)}{\\text{C}_{28}^{2}}=\\frac{29}{63}$$. 故选$$\\text{B}$$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
624
5f8ed4e0cbe34685a843d40f72a5f12b
[ "2011年甘肃全国高中数学联赛竞赛初赛第8题7分" ]
2
single_choice
设$$[x]$$表示不超过实数$$x$$的最大整数,则在平面上,由满足$${{[x]}^{2}}+{{[y]}^{2}}=50$$的点所形成的图形的面积是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ], [ { "aoVal": "E", "content": "$$12$$ " } ] ]
[ "课内体系->知识点->几何证明选讲", "竞赛->知识点->组合->容斥原理与极端原理(二试)", "竞赛->知识点->数论模块->取整函数->与[x]有关的方程和不等式" ]
[ "在平面上,由满足$${{[x]}^{2}}+{{[y]}^{2}}=50$$的点所形成的图形关于$$x$$轴,y轴对称,可先考察第一象限的情况,即当$$x\\textgreater0, y\\textgreater0$$时,由$${{[x]}^{2}}+{{[y]}^{2}}=50$$得 $$\\begin{cases}{{[x]}^{2}}=49 {{[y]}^{2}}=1 \\end{cases}\\begin{cases}{{[x]}^{2}}=25 {{[y]}^{2}}=25 \\end{cases}\\begin{cases}{{[x]}^{2}}=1 {{\\left[ y \\right]}^{2}}=49 \\end{cases}$$ 所以相应有 $$\\begin{cases}[x]=7 [y]=1 \\end{cases}\\begin{cases}[x]=5 [y]=5 \\end{cases}\\begin{cases}[x]=1 [y]=7 \\end{cases}$$ 因此 $$\\begin{cases}7\\leqslant x\\textless{}8 1\\leqslant y\\textless{}2 \\end{cases}\\begin{cases}5\\leqslant x\\textless{}6 5\\leqslant y\\textless{}6 \\end{cases}\\begin{cases}1\\leqslant x\\textless{}2 7\\leqslant y\\textless{}8 \\end{cases}$$ 所以在第一象限形成的图形的面积由容斥原理计算为$$3$$. 故在平面上,由满足$${{[x]}^{2}}+{{[y]}^{2}}=50$$的点所形成的图形的面积是$$12$$. " ]
E
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
258
2b4e09c82a4e426f804fcd4a4e3d5fb3
[ "1995年全国高中数学联赛竞赛一试第2题" ]
2
single_choice
设复平面上单位圆内接正$$20$$边形的$$20$$个顶点所对应的复数依次为$${{Z}_{1}}{{Z}_{2}}\ldots {{Z}_{20}}$$,则复数$$Z_{1}^{1995}$$,$$Z_{2}^{1995}\ldots Z_{20}^{1995}$$所对应的不同点的个数是(~ ~ ).
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ] ]
[ "竞赛->知识点->复数与平面向量->模、辐角与单位根", "竞赛->知识点->复数与平面向量->复数的概念与运算" ]
[ "设$${{Z}_{1}}=\\cos \\theta +\\text{i}\\sin \\theta $$,则: $${{Z}_{k}}=(\\cos \\theta +\\text{i}\\sin \\theta )(\\cos \\frac{2(k-1)\\mathsf{\\pi }}{20}+\\text{isin }\\frac{2(k-1)\\mathsf{\\pi }}{20})$$,$$1\\mathsf{\\leqslant }k\\mathsf{\\leqslant }20$$由$$1995=20\\times 99+15$$,得 $$\\mathop{Z}_{k}^{1995}=(\\cos 1995\\theta +\\text{isin 1995}\\theta ){{(\\cos \\frac{3\\mathsf{\\pi }}{2}+\\text{isin }\\frac{3\\mathsf{\\pi }}{2})}^{k-1}}$$ $$=(\\cos 1995\\theta +\\text{isin 1995}\\theta ){{(-i)}^{k-1}}$$,$$k=1$$,$$2$$,$$\\ldots $$,$$20$$, 共有四个不同的值. 故选$$\\text{A}$$. " ]
A
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
254
26d9a99e444440708ee3c903243fc30d
[ "1999年全国全国高中数学联赛竞赛一试第4题6分" ]
0
single_choice
给定下列两个关于异面直线的命题: 命题Ⅰ:若平面$$\alpha $$上的直线$$a$$与平面$$\beta $$上的直线$$b$$为异面直线,直线$$c$$是$$\alpha $$与$$\beta $$的交线,那么,$$c$$至多与$$a,b$$中的一条相交; 命题Ⅱ:不存在这样的无穷多条直线,它们中的任意两条都是异面直线. 那么( ).
[ [ { "aoVal": "A", "content": "命题Ⅰ正确,命题Ⅱ不正确 " } ], [ { "aoVal": "B", "content": "命题Ⅱ正确,命题Ⅰ不正确 " } ], [ { "aoVal": "C", "content": "两个命题都正确 " } ], [ { "aoVal": "D", "content": "两个命题都不正确 " } ] ]
[ "竞赛->知识点->立体几何与空间向量->空间中的平行和垂直" ]
[ "易知命题Ⅰ不正确; 又可以取无穷多个平行平面, 在每个平面上取一条直线, 且使这些直线两两不同向, 则这些直线中的任意两条都是异面直线, 从而命题Ⅱ也不正确. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
173
109afa59a7fd4f1ca82dca1e823e9bc4
[ "2012年陕西全国高中数学联赛竞赛初赛第10题8分" ]
1
single_choice
从公路旁的材料工地沿笔直公路向同一方向运送电线杆到$$500\text{m}$$以外的公路边埋栽,在$$500\text{m}$$处栽一根,然后每间隔$$50\text{m}$$在公路边栽一根.已知运输车辆一次最多只能运$$3$$根,要完成运栽$$20$$根电线杆的任务,并返回材料工地,则运输车总的行程最小为~ .
[ [ { "aoVal": "A", "content": "$$13000$$ " } ], [ { "aoVal": "B", "content": "$$14000$$ " } ], [ { "aoVal": "C", "content": "$$15000$$ " } ], [ { "aoVal": "D", "content": "以上都不对 " } ] ]
[ "竞赛->知识点->数列与数学归纳法->数列的通项与求和", "课内体系->知识点->数列" ]
[ "先假设要完成$$21$$根电线杆的运栽,每次$$3$$根,设第$$k$$次往返的路程为$${{a}_{k}}\\left( k=1, 2,\\cdots , 7 \\right)$$,则$${{a}_{1}}=2\\times 600=1200$$,且 $${{a}_{k+1}}={{a}_{k}}+2\\times 150\\left( k=1, 2,\\cdots , 6 \\right)$$. 所以$$\\left { {{a}_{n}} \\right }$$是首项为$$1200$$,公差为$$300$$的等差数列. 故$${{S}_{7}}=7\\times 1200+\\frac{7\\times 6}{2}\\times 300=14700$$(m). 但实际只运栽$$20$$根,那么必有一次运$$2$$根,其余$$6$$次均运$$3$$根. 若将运$$2$$根的安排在第$$k$$次($$k=1, 2,\\cdots , 7$$),则$${{a}_{1}}, {{a}_{2}},\\cdots , {{a}_{k-1}}$$均不变,$${{a}_{k}}, {{a}_{k+1}},\\cdots , {{a}_{7}}$$各减少$$100\\text{m}$$,所以 $${{S}_{7}}\\left( k \\right)={{S}_{7}}-100\\left( 8-k \\right)=13800+100k$$. 显然,当$$k=1$$,即第$$1$$次运$$2$$根,其余$$6$$次各运$$3$$根时,总的行程最小,最小值为$$14000\\text{m}$$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
342
1f62468d2e59472cad7d21bc8a0c0c36
[ "2005年全国高中数学联赛竞赛一试第6题6分" ]
2
single_choice
记集合$$T= {0,1,2,3,4,5,6 }$$,$$M=\left { \frac{{{a}_{1}}}{7}+\frac{{{a}_{2}}}{{{7}^{2}}}+\frac{{{a}_{3}}}{{{7}^{3}}}+\frac{{{a}_{4}}}{{{7}^{4}}}\textbar{{a}_{i}}\in T,i=1,2,3,4 \right }$$,将$$M$$中的元素按从大到小的顺序排列,则第$$2005$$个数是(~ ~ ).
[ [ { "aoVal": "A", "content": "$$\\frac{5}{7}+\\frac{5}{{{7}^{2}}}+\\frac{6}{{{7}^{3}}}+\\frac{3}{{{7}^{4}}}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{5}{7}+\\frac{5}{{{7}^{2}}}+\\frac{6}{{{7}^{3}}}+\\frac{2}{{{7}^{4}}}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{7}+\\frac{1}{{{7}^{2}}}+\\frac{0}{{{7}^{3}}}+\\frac{4}{{{7}^{4}}}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{1}{7}+\\frac{1}{{{7}^{2}}}+\\frac{0}{{{7}^{3}}}+\\frac{3}{{{7}^{4}}}$$ " } ] ]
[ "竞赛->知识点->数论模块->整除->质数(算数基本定理)", "竞赛->知识点->集合->集合的概念与运算" ]
[ "用$${{[{{a}_{1}}{{a}_{2}}\\ldots {{a}_{k}}]}_{p}}$$表示$$k$$位$$p$$进制数,将集合$$M$$中的每个数乘以$${{7}^{4}}$$,得 $${{M}^{\\prime }}= {{{a}_{1}}\\cdot {{7}^{3}}+{{a}_{2}}\\cdot {{7}^{2}}+{{a}_{3}}\\cdot 7+{{a}_{4}}\\textbar{{a}_{i}}\\in T,i=1,2,3,4 }= {{{[{{a}_{1}}{{a}_{2}}{{a}_{3}}{{a}_{4}}]}_{7}}\\textbar{{a}_{i}}\\in T,i=1,2,3,4 }$$. $${{M}^{\\prime }}$$中的最大数为$${{[6666]}_{7}}={{[2400]}_{10}}$$. 在十进制数中,从$$2400$$起从大到小顺序排列的第$$2005$$个数是$$2400-2004=396$$. 而$${{[396]}_{10}}={{[1104]}_{7}}$$将此数除以$${{7}^{4}}$$,便得$$M$$中的数$$\\frac{1}{7}+\\frac{1}{{{7}^{2}}}+\\frac{0}{{{7}^{3}}}+\\frac{4}{{{7}^{4}}}$$. 故选$$\\text{C}$$. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
975
edf277585f0b410c86cb3d78db0c16d1
[ "2009年山东全国高中数学联赛竞赛初赛第9题6分" ]
2
single_choice
以四面体的顶点和各棱中点为顶点的空间四边形有 .
[ [ { "aoVal": "A", "content": "$$141$$个 " } ], [ { "aoVal": "B", "content": "$$144$$个 " } ], [ { "aoVal": "C", "content": "$$423$$个 " } ], [ { "aoVal": "D", "content": "$$432$$个 " } ] ]
[ "竞赛->知识点->排列组合与概率->两个基本计数原理", "竞赛->知识点->排列组合与概率->排列与组合" ]
[ "四面体有$$4$$个顶点和$$6$$条棱,每条棱有$$1$$个中点,其有$$10$$个点,从其中任取$$4$$个不共面的点有以下几种情况: ①这$$4$$个点都是顶点的取法只有$$1$$种; ②这$$4$$个点中有$$3$$个顶点的取法共有$$4\\times 3$$=12(种); ③这$$4$$个点中有$$2$$顶点的取法共有$$6\\times (\\text{C}_{5}^{2}-2)=48$$(种); ④这$$4$$个点中有$$1$$个顶点的取法共有$$4\\times (\\text{C}_{6}^{3}-3)=68$$(种); ⑤这$$4$$个点中没有顶点的取法共有$$\\text{C}_{6}^{4}-3=12$$(种). 综上所述,从这$$10$$个点中取$$4$$个不共面的点的取法共有 $$1+12+48+68+12=141$$(种). 每不共面的$$4$$个点可以构成$$3$$个不同的空间四边形,则以这$$10$$个点为顶点的空间四边形共有$$141\\times 3=423$$(个). ", "<p>从这$$10$$个点中任取$$4$$个,共有$$\\text{C}_{10}^{4}=210$$(种)取法,其中取出的$$4$$个点共面的情况共有以下$$3$$种:</p>\n<p>①从每个面上的$$6$$个点中任取$$4$$个点都共面,这样的取法共有$$4\\text{C}_{6}^{4}=60$$(种);</p>\n<p>②每个棱上的$$3$$个点与相对棱的中点共面,这样的取法共有$$6$$种;</p>\n<p>③去掉$$1$$组相对棱后,其余四棱的中点共面,这样的取法共有$$3$$种.</p>\n<p>综上所述,所取$$4$$点共面的取法共$$60+6+3=69$$(种).所以,所取$$4$$点不共面的取法共有$$210-69=141$$(种),以下同方法$$1$$.故选$$\\text{C}$$.</p>\n" ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
329
27c49ff13b074fdd8b8bc29df3c47760
[ "2012年天津全国高中数学联赛竞赛初赛第4题6分" ]
0
single_choice
设椭圆与$$x$$轴交于$$A$$、$$B$$两点,已知对于椭圆上不同于$$A$$、$$B$$的任意一点$$P$$,直线$$AP$$与$$BP$$的斜率之积均为$$-\frac{1}{2}$$,则椭圆的离心率为.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{\\sqrt{3}}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{\\sqrt{2}}{\\sqrt{3}}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{2}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{1}{\\sqrt{2}}$$ " } ] ]
[ "竞赛->知识点->解析几何->椭圆" ]
[ "设椭圆方程为$$\\frac{{{x}^{2}}}{{{a}^{2}}}+\\frac{{{y}^{2}}}{{{b}^{2}}}=1$$,则$$-\\frac{{{b}^{2}}}{{{a}^{2}}}=-\\frac{1}{2}$$,于是$$e=\\sqrt{\\frac{{{c}^{2}}}{{{a}^{2}}}}=\\sqrt{\\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}}}=\\sqrt{\\frac{1}{2}}$$. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
1011
b2fcc21b93074c5ab13d330047150335
[ "2003年AMC12竞赛B第11题" ]
2
single_choice
$$2003-AMC12B-11$$ Cassandra sets her watch to the correct time at noon. At the actual time of $$1:00$$ PM, she notices that her watch reads $$12:57$$ and $$36$$ seconds. Assuming that her watch loses time at a constant rate, what will be the actual time when her watch first reads $$10:00$$ PM? 卡桑德拉将手表调到中午的正确时间。 在 $$1:00$$ PM 的实际时间,她注意到她的手表显示 $$12:57$$ : $$36$$ 。 假设她的手表以恒定的速率走时,当她的手表第一次显示 $$10:00$$PM 时的实际时间是多少?
[ [ { "aoVal": "A", "content": "$$10:22$$ PM and $$24$$ seconds " } ], [ { "aoVal": "B", "content": "$$10:24$$ PM " } ], [ { "aoVal": "C", "content": "$$10:25$$ PM " } ], [ { "aoVal": "D", "content": "$$10:27$$ PM " } ], [ { "aoVal": "E", "content": "$$10:30$$ PM " } ] ]
[ "课内体系->知识点->函数的应用->函数的实际应用->一次函数模型", "美国AMC10/12->Knowledge Point->Combination->Reasoning->Simple Logical Reasoning" ]
[ "$\\dfrac{57.6}{60}=\\dfrac{600}{X}$ $X=625$ " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
66
20dbfc38ad8d48bfb497fc722a6dc1cd
[ "2020~2021学年12月贵州贵阳观山湖区贵阳市第一中学高一上学期月考第12题3分", "2017年天津全国高中数学联赛竞赛初赛第4题5分" ]
1
single_choice
如果$$x\in \left[ 0,1 \right]$$,且$${{\log }_{2}}{{\log }_{2}}\left( 2x+2 \right)+{{2}^{2x+2}}$$为整数,则满足此条件的实数$$x$$有.
[ [ { "aoVal": "A", "content": "$$12$$个 " } ], [ { "aoVal": "B", "content": "$$13$$个 " } ], [ { "aoVal": "C", "content": "$$14$$个 " } ], [ { "aoVal": "D", "content": "$$15$$个 " } ] ]
[ "竞赛->知识点->函数->基本初等函数", "竞赛->知识点->函数->函数的图像与性质" ]
[ "因为$$f\\left( x \\right)={{\\log }_{2}}{{\\log }_{2}}\\left( 2x+2 \\right)+{{2}^{2x+2}}$$在$$\\left[ 0,1 \\right]$$上单调增,且$$f\\left( 0 \\right)=4$$,$$f\\left( 1 \\right)=17$$. 所以,$$f\\left( x \\right)$$可以取到$$4$$至$$17$$之间的所有整数,共$$14$$个. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
60
0a69a63af48b4bbfb0da6ab776e66741
[ "2008年湖南全国高中数学联赛竞赛初赛第8题5分" ]
1
single_choice
设函数$$f(x)={{x}^{3}}+3{{x}^{2}}+6x+14$$,且$$f(a)=1$$,$$f(b)=19$$,则$$a+b=$$.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$0$$ " } ], [ { "aoVal": "D", "content": "$$-2$$ " } ] ]
[ "竞赛->知识点->函数->函数的图像与性质" ]
[ "由$$f(x)={{x}^{3}}+3{{x}^{2}}+6x+14={{\\left( x+1 \\right)}^{3}}+3\\left( x+1 \\right)+10$$, 令$$g(y)={{y}^{3}}+3y$$,则$$g(y)$$为奇函数且单调递增. 而$$f(a)={{\\left( a+1 \\right)}^{3}}+3\\left( a+1 \\right)+10=1$$, $$f(b)={{\\left( b+1 \\right)}^{3}}+3\\left( b+1 \\right)+10=19$$, 所以$$g(a+1)=-9$$,$$g(b+1)=9$$,$$g(-b-1)=-9$$, 从而$$g(a+1)=g(-b-1)$$, 即$$a+1=-b-1$$,故$$a+b=-2$$.选$$\\text{D}$$. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
878
9fc8c52661bf4a52b4097c9b5db78ee5
[ "2017年AMC12竞赛B第16题", "2017年AMC10竞赛B第20题" ]
2
single_choice
$$2017~ AMC10B$$ P20 The number $$21!=51,090,942,171,709,440,000$$, has over $$60,000$$ positive integer divisors. One of them is chosen at random. What is the probability that it is odd? 数字21!=51,090,942,171,709,440,000,有超过$60,000$ 个的正整数因数。随机选择其中一个,它是奇数的概率是多少?
[ [ { "aoVal": "A", "content": "$$\\frac{1}{21}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{19}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{18}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{1}{2}$$ " } ], [ { "aoVal": "E", "content": "$$\\frac{11}{21}$$ " } ] ]
[ "美国AMC10/12->Knowledge Point->Combination->Probability Calculation->Classical Models of Probabilities" ]
[ "Solution 1 We note that the only thing that affects the parity of the factor are the powers of $$2$$. There are $$10+5+2+1=18$$ factors of $$2$$ in the number. Thus, there are $$18$$ cases in which a factor of $$21!$$ would be even (have a factor of $$2$$ in its prime factorization), and $$1$$ case in which a factor of $$21!$$ would be odd. Therefore, the answer is $$\\frac 1{19}$$. Solution 2 Consider how to construct any divisor $$D$$ of $$21!$$. First by Legendre\\textquotesingle s theorem for the divisors of a factorial , we have that there are a total of $$18$$ factors of $$2$$ in the number. $$D$$ can take up either $$0$$,$$1$$,$$2$$,$$3$$,$$\\cdots$$, or all $$18$$ factors of $$2$$, for a total of $$19$$ possible cases. In order for $$D$$ to be odd, however, it must have $$0$$ factors of $$2$$, meaning that there is a probability of $$1$$ case$$/19$$ cases$$=\\frac 1{19}$$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
1066
ceac6bffc7524a0cb7f95d9303326db7
[ "1998年全国高中数学联赛竞赛一试第13题20分" ]
2
single_choice
已知复数$$z=1-\sin \theta +\text{i}\cos \theta \left( \frac{ \pi }{2} ~\textless{} ~\theta ~~\textless{} ~ \pi \right)$$,求$$z$$的共轭复数$$\overline{z}$$的辐角主值.
[ [ { "aoVal": "A", "content": "$$\\frac{ \\pi }{4}-\\frac{\\theta }{2}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{ \\pi }{4}+\\frac{\\theta }{2}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{3 \\pi }{4}-\\frac{\\theta }{2}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{3 \\pi }{4}+\\frac{\\theta }{2}$$ " } ] ]
[ "课内体系->知识点->复数->复数的三角形式", "竞赛->知识点->复数与平面向量->模、辐角与单位根" ]
[ "$$z=1+\\cos \\left( \\frac{ \\pi }{2}+\\theta \\right)+\\text{i}\\sin \\left( \\frac{ \\pi }{2}+\\theta \\right)=2{{\\cos }^{2}}\\frac{\\frac{ \\pi }{2}+\\theta }{2}+2\\text{i}\\sin \\frac{\\frac{ \\pi }{2}+\\theta }{2}\\cos \\frac{\\frac{ \\pi }{2}+\\theta }{2}$$ $$=2\\cos \\frac{\\frac{ \\pi }{2}+\\theta }{2}\\left( \\cos \\frac{\\frac{ \\pi }{2}+\\theta }{2}+\\text{i}\\sin \\frac{\\frac{ \\pi }{2}+\\theta }{2} \\right)$$. 当$$\\frac{ \\pi }{2} ~\\textless{} ~\\theta ~~\\textless{} ~ \\pi $$时,$$\\overline{z}=-2\\cos \\frac{\\frac{ \\pi }{2}+\\theta }{2}\\left( -\\cos \\frac{\\frac{ \\pi }{2}+\\theta }{2}+\\text{i}\\sin \\frac{\\frac{ \\pi }{2}+\\theta }{2} \\right)$$ $$=-2\\cos \\left( \\frac{ \\pi }{4}+\\frac{\\theta }{2} \\right)\\left( \\cos \\left( \\frac{3 \\pi }{4}-\\frac{\\theta }{2} \\right)+\\text{i}\\sin \\left( \\frac{3 \\pi }{4}-\\frac{\\theta }{2} \\right) \\right)$$. ∴辐角主值为$$\\frac{3 \\pi }{4}-\\frac{\\theta }{2}$$. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
886
96bb1534f35f4ee4b1787ad3b8aa25d3
[ "高二上学期单元测试《代数变形(3)》自招第11题", "1987年全国高中数学联赛竞赛一试第1题" ]
2
single_choice
对任意给定的自然数$$n$$,若$${{n}^{6}}+3a$$为正整数的立方,则(~ ).
[ [ { "aoVal": "A", "content": "这样的$$a$$有无穷多个 " } ], [ { "aoVal": "B", "content": "这样的$$a$$存在,但只有有限个 " } ], [ { "aoVal": "C", "content": "这样的$$a$$不存在 " } ], [ { "aoVal": "D", "content": "以上$$\\text{A}$$、$$\\text{B}$$、$$\\text{C}$$的结论都不正确 " } ] ]
[ "竞赛->知识点->数论模块->不定方程->因式分解与恒等变形" ]
[ "对任意自然数$$k$$,取 $$a=3{{n}^{4}}k+9{{n}^{2}}{{k}^{2}}+9{{k}^{2}}$$, 则$${{n}^{6}}+3a={{({{n}^{2}}+3k)}^{3}}$$. 故选$$\\text{A}$$. " ]
A
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
574
ba02b8c75db2419195dbc3e0d52a97bc
[ "1983年全国高中数学联赛竞赛一试第6题" ]
2
single_choice
设$$a$$、$$b$$、$$c$$、$$d$$、$$m$$、$$n$$都是正实数.$$P=\sqrt{ab}+\sqrt{cd},Q=\sqrt{ma+nc}\cdot \sqrt{\frac{b}{m}+\frac{d}{n}}$$,那么.
[ [ { "aoVal": "A", "content": "$$P\\mathsf{\\geqslant }Q$$ " } ], [ { "aoVal": "B", "content": "$$P\\mathsf{\\leqslant }Q$$ " } ], [ { "aoVal": "C", "content": "$$P ~\\textless{} ~Q$$ " } ], [ { "aoVal": "D", "content": "$$P,Q$$间的大小关系确定,而与$$m,n$$的大小有关 " } ] ]
[ "课内体系->素养->数学运算", "课内体系->知识点->等式与不等式->不等式->基本不等式->基本不等式的概念", "课内体系->知识点->等式与不等式->不等式->基本不等式->基本不等式与恒成立问题", "课内体系->知识点->等式与不等式->不等式->基本不等式->利用基本不等式求最值" ]
[ "$$P=\\sqrt{ab}+\\sqrt{cd}$$,$$Q=\\sqrt{am+nc}\\cdot \\sqrt{\\frac{b}{m}+\\frac{d}{n}}$$. $${{P}^{2}}=ab+cd+2\\sqrt{abcd}$$. $${{Q}^{2}}=(am+nc)(\\frac{b}{m}+\\frac{d}{n})=ab+cd+\\frac{nbc}{m}+\\frac{mad}{n}$$. $$\\therefore \\frac{nbc}{m}+\\frac{mad}{n}\\mathsf{\\geqslant 2}\\sqrt{\\frac{nbc}{m}\\cdot \\frac{mad}{n}}=2\\sqrt{abcd}$$. $$\\because {{Q}^{2}}\\mathsf{\\geqslant }{{P}^{2}}$$, 由于$$P\\mathsf{,}Q$$均为正数. $$\\therefore Q\\mathsf{\\geqslant P}$$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
925
9b9c064151ef4b9687cb0ea061d675af
[ "2019年全国高中数学联赛竞赛初赛第6题" ]
1
single_choice
设整数$$n\textgreater4$$,$${{(x+2\sqrt{y}-1)}^{n}}$$的展开式中$${{x}^{n-4}}$$与$$xy$$两项的系数相等,则$$n$$的值为~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$31$$ " } ], [ { "aoVal": "B", "content": "$$41$$ " } ], [ { "aoVal": "C", "content": "$$51$$ " } ], [ { "aoVal": "D", "content": "$$61$$ " } ] ]
[ "课内体系->知识点->计数原理->二项式定理", "竞赛->知识点->排列组合与概率->二项式定理及其应用" ]
[ "根据二项式定理,通项$${{T}_{r}}=\\text{C}_{n}^{r}{{x}^{n-r}}{{(2\\sqrt{y}-1)}^{r}}$$, 于是根据题意得 $${{T}_{4}}={{T}_{n-1}}\\Rightarrow \\text{C}_{n}^{4}=\\text{C}_{n}^{n-1}\\text{C}_{n-1}^{2}\\cdot 4\\cdot {{(-1)}^{n-3}}$$, 解得$$n=51$$. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
51
048cc396a0c74868ab6065d454fe33fc
[ "2012年湖南全国高中数学联赛竞赛初赛第1题6分" ]
0
single_choice
若实数$$x$$满足:对任意正数$$a$$,均有$${{x}^{2}}\textless{}1+a$$,则$$x$$的最小值是
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$-1$$ " } ], [ { "aoVal": "D", "content": "不存在 " } ] ]
[ "竞赛->知识点->函数->二次函数" ]
[ "因为$$a\\textgreater0$$,所以$$a+1\\textgreater1$$,$${{x}^{2}}\\textless{}1+a$$等价于$${{x}^{2}}\\leqslant 1$$,$$-1\\leqslant x\\leqslant 1$$. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
964
e4adc205019e485bbd30705678c30ef7
[ "2002年AMC10竞赛B第21题", "2002年AMC12竞赛B第17题" ]
3
single_choice
$$2002-AMC12B-17$$ Andy's lawn has twice as much area as Beth's lawn and three times as much area as Carlos' lawn. Carlos' lawn mower cuts half as fast as Beth's mower and one third as fast as Andy's mower. If they all start to mow their lawns at the same time, who will finish first? 安迪的草坪面积是贝丝草坪的两倍,是卡洛斯草坪的三倍。 卡洛斯的割草机的割草速度是贝丝的割草机的一半,是安迪的割草机的三分之一。 如果他们同时开始修剪草坪,谁会先完成?
[ [ { "aoVal": "A", "content": " Andy " } ], [ { "aoVal": "B", "content": " Beth " } ], [ { "aoVal": "C", "content": " Carlos " } ], [ { "aoVal": "D", "content": "Andy and Carlos tie for first " } ], [ { "aoVal": "E", "content": "All three tie " } ] ]
[ "美国AMC10/12->Knowledge Point->Algebra->Application->Proportion Word Problems", "课内体系->知识点->函数的应用->函数的实际应用->分式函数模型" ]
[ "We say Andy\\textquotesingle s lawn has an area of $$x$$. Beth\\textquotesingle s lawn thus has an area of $$\\dfrac{x}{2}$$, and Carlos\\textquotesingle s lawn has an area of $$\\dfrac{x}{3}$$. We say Andy\\textquotesingle s lawn mower cuts at a speed of $$y$$. Carlos\\textquotesingle s cuts at a speed of $$\\dfrac{y}{3}$$, and Beth\\textquotesingle s cuts at a speed $$\\dfrac{2y}{3}$$. Each person\\textquotesingle s lawn is cut at a speed of $$\\dfrac{\\rm area}{\\rm rate}$$, so Andy\\textquotesingle s is cut in $$\\dfrac{x}{y}$$ time, as is Carlos\\textquotesingle s. Beth\\textquotesingle s is cut in $$\\dfrac{3}{4}\\times\\dfrac{x}{y}$$, so the first one to finish is Beth. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
929
92abc587a5e14747bd2d865aa2e8bf22
[ "1996年全国高中数学联赛竞赛一试第3题" ]
1
single_choice
存在整数$$n$$,使$$\sqrt{p+n}+\sqrt{n}$$是整数的质数$$p$$(~ ~ ).
[ [ { "aoVal": "A", "content": "不存在 " } ], [ { "aoVal": "B", "content": "只有一个 " } ], [ { "aoVal": "C", "content": "多于一个,但为有限个 " } ], [ { "aoVal": "D", "content": "有无穷多个 " } ] ]
[ "竞赛->知识点->数论模块->不定方程->因式分解与恒等变形" ]
[ "设$$p$$为任意奇质数,且$$p=2k+1$$,于是$$n={{k}^{2}}$$,便有: $$\\sqrt{p+n}+\\sqrt{n}=\\sqrt{2k+1+{{k}^{2}}}+\\sqrt{{{k}^{2}}}=2k+1$$, 所以,每个奇质数都有题设的性质. 故选$$\\text{D}$$. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
904
8a3bb6c59daa4c879e3c708784a96baa
[ "2015年吉林全国高中数学联赛竞赛初赛第5题6分" ]
1
single_choice
已知$$f(x)=x\left\textbar{} x \right\textbar$$,若对任意的$$x\geqslant 1$$有$$f(x+m)+mf(x)\textless{}0$$恒成立,则实数$$m$$的取值范围是.
[ [ { "aoVal": "A", "content": "$$(-\\infty ,-1)$$ " } ], [ { "aoVal": "B", "content": "$$(-\\infty ,-1]$$ " } ], [ { "aoVal": "C", "content": "$$(-\\infty ,-2)$$ " } ], [ { "aoVal": "D", "content": "$$(-\\infty ,-2]$$ " } ] ]
[ "竞赛->知识点->函数->函数的图像与性质" ]
[ "显然$$m\\textless{}0$$,所以$$f\\left( x+m \\right)\\textless{}-mf\\left( x \\right)=f\\left( \\sqrt{-m}x \\right)$$. 因为$$f\\left( x \\right)$$是单调增的奇函数,所以$$x+m\\textless{}\\sqrt{-m}x$$,即$$\\left( \\sqrt{-m}-1 \\right)x\\textgreater m$$. 所以必须$$\\sqrt{-m}-1\\geqslant 0$$,$$m\\leqslant -1$$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
961
b2857b62b8b14721bee93beae2ac2a53
[ "2011年山东全国高中数学联赛竞赛初赛第7题6分" ]
2
single_choice
有$$6$$名同学咨询成绩.老师说:甲不是$$6$$人中成绩最好的,乙不是$$6$$人中成绩最差的,而且$$6$$人的成绩各不相同.那么他们$$6$$人的成绩不同的可能排序共有 .
[ [ { "aoVal": "A", "content": "$$120$$种 " } ], [ { "aoVal": "B", "content": "$$216$$ 种 " } ], [ { "aoVal": "C", "content": "$$384$$ 种 " } ], [ { "aoVal": "D", "content": "$$504$$种 " } ] ]
[ "竞赛->知识点->排列组合与概率->排列与组合" ]
[ "解法一 以$$A$$记甲成绩排名第一的所有可能的排序之集, 以$$B$$记乙成绩排名为最后的所有可能的排序之集,则$$\\left\\textbar{} A \\right\\textbar=\\left\\textbar{} B \\right\\textbar=5!$$,$$\\left\\textbar{} A\\cap B \\right\\textbar=4!$$. 甲排名第一或乙排名最后的所有可能的排序数为 $$\\left\\textbar{} A\\cup B \\right\\textbar=\\left\\textbar{} A \\right\\textbar+\\left\\textbar{} B \\right\\textbar-\\left\\textbar{} A\\cap B \\right\\textbar=216$$. 按照老师所述,这6位同学成绩可能的排序数为$$6!-216=504$$. 解法二 以乙的成绩不在最后为前提,考虑甲的成绩不在第一的所有可能排序. ($$1$$)甲的成绩排在最后的所有可能的排序数为$$A_{5}^{5}=120$$; ($$2$$)甲的成绩不在最后,又不在第一的所有可能排序数为$$C_{4}^{1}\\cdot C_{4}^{1}\\cdot A_{4}^{4}=384$$. 所以甲不在首,乙不在尾的所有可能排序数为$$120+384=504$$. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
1105
eeeab4aa05af44109e7a5ac0ca514591
[ "2008年四川全国高中数学联赛竞赛初赛第4题5分" ]
2
single_choice
设有一体积为$$54$$的正四面体,若以它的四个面的中心为顶点作一个四面体,则所作四面体的体积为.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "竞赛->知识点->立体几何与空间向量->空间几何体中的求值问题" ]
[ "由对称性可知,所作的四面体也是正四面体, 设原四面体的棱长、体积分别为$${{a}_{1}}$$、$${{V}_{1}}$$, 所作四面体的棱长、体积分别为$${{a}_{2}}$$、$${{V}_{2}}$$, 则由几何性质得$$\\frac{{{a}_{2}}}{{{a}_{1}}}=\\frac{1}{3}$$,故$$\\frac{{{V}_{2}}}{{{V}_{1}}}={{\\left( \\frac{1}{3} \\right)}^{3}}$$. 所以,所作的四面体的体积$${{V}_{2}}=\\frac{1}{27}{{V}_{1}}=2$$.故选$$\\text{B}$$ " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
853
8d7ad978eb6e4b87ba295d59e2a15696
[ "2015年黑龙江全国高中数学联赛竞赛初赛第11题5分" ]
1
single_choice
四棱锥$$P-ABCD$$中,底面$$ABCD$$是正方形,边长为$$a,PD=a,PA=PC=\sqrt{2}a$$,在这个四棱锥中放入一个球,则球的最大半径为.
[ [ { "aoVal": "A", "content": "$$(\\sqrt{2}-1)a$$ " } ], [ { "aoVal": "B", "content": "$$\\sqrt{2}a$$ " } ], [ { "aoVal": "C", "content": "$$(1-\\frac{\\sqrt{2}}{2})a$$ " } ], [ { "aoVal": "D", "content": "$$a$$ " } ] ]
[ "竞赛->知识点->立体几何与空间向量->空间几何体中的求值问题" ]
[ "采用体积法. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
1059
c5878b1e839d4300b843800839434436
[ "2017年陕西全国高中数学联赛竞赛初赛第2题6分" ]
1
single_choice
设$$n$$是正整数,以下各组数$$a$$,$$b$$中,使$$\frac{b}{a}$$为既约分数的是( ~ ~).
[ [ { "aoVal": "A", "content": "$$a=n+1$$,$$b=2n-1$$ " } ], [ { "aoVal": "B", "content": "$$a=2n-1$$,$$b=5n+2$$ " } ], [ { "aoVal": "C", "content": "$$a=n+1$$,$$b=3n+1$$ " } ], [ { "aoVal": "D", "content": "$$a=3n+1$$,$$b=5n+2$$ " } ] ]
[ "课内体系->素养->数学运算", "课内体系->知识点->函数的应用->函数与方程" ]
[ "$$(3n+1,5n+2)=(3n+1,2n+1)=(n,2n+1)=1$$. 故选$$\\text{D}$$. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
437
8b7e0ffdfefa4b93bd5fe47d730154e0
[ "2010年山东全国高中数学联赛竞赛初赛第6题6分" ]
1
single_choice
已知$$0\textless{}a\textless{}b$$,在$$a,b$$之间插入一个正数$$k$$,使$$a,k,b$$成等比数列;在$$a,b$$之间插入两个正数$$m,n$$,使$$a,m,n,b$$成等差数列,则$${{(k+1)}^{2}}$$与$$(m+1)(n+1)$$的大小关系为.
[ [ { "aoVal": "A", "content": "$${{(k+1)}^{2}}\\textless{}(m+1)(n+1)$$ " } ], [ { "aoVal": "B", "content": "$${{(k+1)}^{2}}=(m+1)(n+1)$$ " } ], [ { "aoVal": "C", "content": "$${{(k+1)}^{2}}\\textgreater(m+1)(n+1)$$ " } ], [ { "aoVal": "D", "content": "不确定 " } ] ]
[ "竞赛->知识点->数列与数学归纳法->等差数列与等比数列" ]
[ "$$a,k,b$$成等比数列,$${{k}^{2}}=ab$$, 所以$${{(k+1)}^{2}}={{k}^{2}}+2k+1=ab+2\\sqrt{ab}+1$$ $$\\textless{}ab+a+b+1=(a+1)(b+1).$$ $$a,m,n,b$$成等差数列,所以$$a+b=m+n$$,且$$b-a\\textgreater n-m$$, 所以由$$(m+1)+(n+1)=(a+1)+(b+1)$$, 知$$(m+1)(n+1)\\textgreater(a+1)(b+1)$$. 所以$${{(k+1)}^{2}}\\textless{}(a+1)(b+1)\\textgreater(m+1)(n+1)$$. " ]
A
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
490
439f1f4bba3e4d04b6467a6001afe50f
[ "2016年AMC10竞赛B第12题" ]
1
single_choice
有五颗球分别标有 {$$1,2,3,4,5$$}, 从中一次性取出两个球,并且将球上的数字相乘,乘积是偶数的概率是多少?
[ [ { "aoVal": "A", "content": "$$0.2$$ " } ], [ { "aoVal": "B", "content": "$$0.3$$ " } ], [ { "aoVal": "C", "content": "$$0.5$$ " } ], [ { "aoVal": "D", "content": "$$0.7$$ " } ], [ { "aoVal": "E", "content": "$$0.8$$ " } ] ]
[ "美国AMC10/12->Knowledge Point->Combination->Probability Calculation->Classical Models of Probabilities", "课内体系->知识点->统计与概率->概率" ]
[ "The product will be even if at least one selected number is even, and odd if none are. Using complementary counting, the chance that both numbers are odd is $$\\dfrac{\\left( \\begin{array}{l} {3} {2} \\end{array}\\right)}{\\left( \\begin{array}{l} {5} {2} \\end{array}\\right)}=\\dfrac{3}{10}$$, so the answer is $$1-0.3$$ which is $$\\left(\\text{D}\\right) 0.7$$. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
1087
d7f595fecc56462fa01544eabd8e1dcc
[ "2009年湖南全国高中数学联赛竞赛初赛第5题5分" ]
1
single_choice
已知数列$$ {{{a}_{n}} }$$满足$${{a}_{1}}=0, {{a}_{n+1}}={{a}_{n}}+1+2\sqrt{1+{{a}_{n}}}(n=1, 2,\cdots )$$,则$${{a}_{2009}}=$$.
[ [ { "aoVal": "A", "content": "$$4036080$$ " } ], [ { "aoVal": "B", "content": "$$4036078$$ " } ], [ { "aoVal": "C", "content": "$$4036082$$ " } ], [ { "aoVal": "D", "content": "$$4036099$$ " } ] ]
[ "竞赛->知识点->数列与数学归纳法->等差数列与等比数列" ]
[ "由已知得 $${{a}_{n+1}}+1={{a}_{n}}+1+2\\sqrt{1+{{a}_{n}}}+1={{(\\sqrt{{{a}_{n}}+1}+1)}^{2}}$$. 又因为$${{a}_{n+1}}\\textgreater0$$,所以 $$\\sqrt{{{a}_{n+1}}+1}=\\sqrt{{{a}_{n}}+1}+1$$ 故数列$$ {\\sqrt{{{a}_{n}}+1} }$$是首项为$$1$$,公差为$$1$$的等差数列,$$\\sqrt{{{a}_{n}}+1}=n$$, 即$${{a}_{n}}={{n}^{2}}-1=(n-1)(n+1)$$. 所以$${{a}_{2009}}=2008\\times 2010=4 036 080.$$ 故选$$\\text{A}$$. " ]
A
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
616
b592502baa994c2c9c4187f549d71692
[ "2010年黑龙江全国高中数学联赛竞赛初赛第10题5分" ]
0
single_choice
将一骰子抛掷两次,所得向上点数分别为$$m$$和$$n$$,则函数$$y=\frac{2}{3}m{{x}^{3}}-nx+1$$在$$\left[ 1,\left. +\infty \right) \right.$$上为增函数的概率是.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{2}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{2}{3}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{3}{4}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{5}{6}$$ " } ] ]
[ "竞赛->知识点->排列组合与概率->概率初步", "竞赛->知识点->导数模块->导数" ]
[ "$${f}'(x)=2m{{x}^{2}}-n\\geqslant 0$$ 在$$\\left[ 1, +\\infty \\right]$$恒成立,即$$2{{x}^{2}}\\geqslant \\frac{n}{m}$$恒成立, 即$$2m\\geqslant n$$,但符合$$2m\\textless{}n$$条件的有($$1,3$$),($$1,4$$),($$1,5$$),($$1,6$$),($$2,5$$),($$2,6$$)共$$6$$种,故$$1-\\frac{6}{36}=\\frac{5}{6}$$. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
826
a8a1d71bd7e94694bf0eaac7a4c8d2b6
[ "2015~2016学年2月湖南长沙开福区长沙市第一中学高三下学期月考理科第8题5分", "2017~2018学年12月北京海淀区北京市育英中学高二上学期月考理科第5题", "2014年黑龙江全国高中数学联赛竞赛初赛第3题5分", "2009年高考真题山东卷理科第9题5分" ]
1
single_choice
设双曲线$$\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1$$的一条渐近线与抛物线$$y={{x}^{2}}+1$$只有一个公共点,则双曲线的离心率为.
[ [ { "aoVal": "A", "content": "$$\\frac{5}{4}$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{\\sqrt{5}}{2}$$ " } ], [ { "aoVal": "D", "content": "$$\\sqrt{5}$$ " } ] ]
[ "课内体系->知识点->圆锥曲线->双曲线->双曲线的几何性质->双曲线的渐近线", "课内体系->知识点->圆锥曲线->双曲线->双曲线的几何性质->双曲线的离心率->求双曲线的离心率", "课内体系->知识点->圆锥曲线->双曲线->双曲线的定义、标准方程->双曲线的标准方程", "课内体系->知识点->圆锥曲线->抛物线->直线和抛物线的位置关系", "课内体系->素养->数学运算", "课内体系->素养->逻辑推理" ]
[ "根据双曲线和抛物线的对称性,可设双曲线的渐近线$$y=\\frac{b}{a}x$$与抛物线$$y={{x}^{2}}+1$$只有一个公共点. 将$$y=\\frac{b}{a}x\\left( a\\textgreater0 \\right)$$代入$$y={{x}^{2}}+1$$,得$$a{{x}^{2}}-bx+a=0$$,$$a\\textgreater0$$.令$${{\\left( -b \\right)}^{2}}-4{{a}^{2}}=0$$,得$${{b}^{2}}=4{{a}^{2}}$$,$$a\\textgreater0$$, 所以$${{c}^{2}}={{a}^{2}}+{{b}^{2}}={{a}^{2}}+4{{a}^{2}}=5{{a}^{2}}$$,$$a\\textgreater0$$,$$b\\textgreater0$$,所以$$\\frac{c}{a}=\\sqrt{5}$$. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
594
90b5234a263a481587d8391d35b05ad3
[ "2016~2017学年广东深圳福田区深圳市红岭中学高二下学期期中理科第7题5分", "2019~2020学年12月福建厦门思明区福建省厦门第二中学高三上学期月考理科第4题5分", "2006年全国高中数学联赛竞赛一试第5题6分" ]
0
single_choice
设$$f(x)={{x}^{3}}+{{\log }_{2}}(x+\sqrt{{{x}^{2}}+1})$$,则对任意实数$$a$$,$$b$$,$$a+b\geqslant 0$$是$$f(a)+f(b)\geqslant 0$$的(~ ).
[ [ { "aoVal": "A", "content": "充分必要条件 " } ], [ { "aoVal": "B", "content": "充分而不必要条件 " } ], [ { "aoVal": "C", "content": "必要而不充分条件 " } ], [ { "aoVal": "D", "content": "既不充分也不必要条件 " } ] ]
[ "课内体系->知识点->函数的概念与性质->函数的性质->单调性", "课内体系->知识点->常用逻辑用语->充分条件与必要条件->充要条件与函数结合", "课内体系->素养->逻辑推理" ]
[ "$$f(x)$$为单调递增函数,且$$f(-x)=-{{x}^{3}}+{{\\log }_{2}}\\left( -x+\\sqrt{{{x}^{2}}+1} \\right)=-{{x}^{3}}+{{\\log }_{2}}\\left( \\frac{1}{x+\\sqrt{{{x}^{2}}+1}} \\right)=-f(x)$$, $$f(x)$$为奇函数,则对任意实数$$a$$,$$b$$,由$$a+b\\geqslant 0$$,得$$a\\geqslant -b$$, ∴$$f(a)\\geqslant f(-b)=-f(b)$$,∴$$f(a)+f(b)\\geqslant 0$$; 由$$f(a)+f(b)\\geqslant 0$$得$$f(a)\\geqslant -f(b)=f(-b)$$, 所以$$a\\geqslant -\\frac{1}{b}$$,∴$$a+b\\geqslant 0$$. 故选$$\\text{A}$$. " ]
A
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
775
72c38e5166b5464cbe02cac3229886a4
[ "2015年福建全国高中数学联赛竞赛初赛第4题6分" ]
0
single_choice
已知实数$$x$$,$$y$$,$$z$$满足$${{x}^{2}}+2{{y}^{2}}+3{{z}^{2}}=24$$,则$$x+2y+3z$$的最小值为 .
[ [ { "aoVal": "A", "content": "$$-12$$ " } ], [ { "aoVal": "B", "content": "$$12$$ " } ], [ { "aoVal": "C", "content": "$$-16$$ " } ], [ { "aoVal": "D", "content": "$$16$$ " } ] ]
[ "竞赛->知识点->不等式->几个重要的不等式->柯西", "课内体系->知识点->等式与不等式->不等式->柯西不等式" ]
[ "由柯西不等式,$${{\\left( x+2y+3z \\right)}^{2}}\\leqslant \\left( 1+2+3 \\right)\\left( {{x}^{2}}+2{{y}^{2}}+3{{z}^{2}} \\right)=144$$, 所以$$-12\\leqslant x+2y+3z\\leqslant 12$$. " ]
A
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
1044
aa5354bede64475796cb31c6c57db669
[ "2018~2019学年浙江杭州拱墅区杭州第十四中学康桥校区高一上学期期中第13题3分", "2012年浙江全国高中数学联赛竞赛初赛第10题5分" ]
2
single_choice
设$$f\left( x \right)={{x}^{2}}+bx+c$$,若方程$$f\left( x \right)=x$$无实根,则方程$$f\left( f\left( x \right) \right)=x$$.
[ [ { "aoVal": "A", "content": "有四个相异实根 " } ], [ { "aoVal": "B", "content": "有两个相异实根 " } ], [ { "aoVal": "C", "content": "有一个实根 " } ], [ { "aoVal": "D", "content": "无实数根 " } ] ]
[ "竞赛->知识点->函数->二次函数" ]
[ "$$f\\left( x \\right)=x$$无实根,则二次函数图象$$f\\left( x \\right)={{x}^{2}}+bx+c$$在直线$$y=x$$上方,即$$f\\left( x \\right)\\textgreater x$$,所以$$f\\left( f\\left( x \\right) \\right)\\textgreater f\\left( x \\right)\\textgreater x$$. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
712
4eaa93cb239043559f6f78dc3ffd4311
[ "2016年湖南全国高中数学联赛竞赛初赛第3题5分" ]
2
single_choice
设函数$$f\left( x \right)=2x-\cos x$$,$$\left { {{a}_{n}} \right }$$是公差为$$\frac{ \pi }{8}$$的等差数列,$$f\left( {{a}_{1}} \right)+f\left( {{a}_{2}} \right)+\cdots +f\left( {{a}_{5}} \right)=5 \pi $$,则$${{\left[ f\left( {{a}_{3}} \right) \right]}^{2}}-{{a}_{1}}{{a}_{5}}=$$(~ ~ ).
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{16} \\pi $$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{8} \\pi $$ " } ], [ { "aoVal": "D", "content": "$$\\frac{13}{16}{{ \\pi }^{2}}$$ " } ] ]
[ "课内体系->知识点->三角函数->三角函数的图象与性质->正弦型函数的图象与性质", "课内体系->知识点->三角函数->三角函数的图象与性质->正弦函数的图象和性质", "课内体系->知识点->三角函数->三角恒等变换->和差角公式->两角和与差的正弦", "课内体系->知识点->三角函数->三角恒等变换->和差角公式->两角和与差的余弦", "课内体系->知识点->三角函数->三角恒等变换->和差角公式->和差角公式化简求值综合运用", "课内体系->知识点->数列->等差数列->等差数列的概念与通项公式->等差数列求通项问题", "课内体系->知识点->数列->等差数列->等差数列的性质及应用", "课内体系->素养->数学运算" ]
[ "$$f\\left( {{a}_{1}} \\right)+f\\left( {{a}_{2}} \\right)+\\cdots +f\\left( {{a}_{5}} \\right)=\\sum\\limits_{i=1}^{5}{\\left( 2{{a}_{i}}-\\cos {{a}_{i}} \\right)}$$ $$=10{{a}_{3}}-\\left[ \\cos \\left( {{a}_{3}}-\\frac{ \\pi }{4} \\right)+\\cos \\left( {{a}_{3}}+\\frac{ \\pi }{4} \\right) \\right]-\\left[ \\cos \\left( {{a}_{3}}-\\frac{ \\pi }{8} \\right)+\\cos \\left( {{a}_{3}}+\\frac{ \\pi }{8} \\right) \\right]-\\cos {{a}_{3}}$$ $$=10{{a}_{3}}-2\\cos {{a}_{3}}\\cos \\frac{ \\pi }{4}-2\\cos {{a}_{3}}\\cos \\frac{ \\pi }{8}-\\cos {{a}_{3}}$$ 令$$g\\left( {{a}_{3}} \\right)=10{{a}_{3}}-\\left( \\sqrt{2}+2\\cos \\frac{ \\pi }{8}+1 \\right)\\cos {{a}_{3}}$$,则$${g}'\\left( {{a}_{3}} \\right)=10+\\left( \\sqrt{2}+2\\cos \\frac{ \\pi }{8}+1 \\right)\\sin {{a}_{3}}\\textgreater0$$,$$g\\left( {{a}_{3}} \\right)$$在$$\\mathbf{R}$$上单调增,又$$g\\left( \\frac{ \\pi }{2} \\right)=5 \\pi $$,所以$${{a}_{3}}=\\frac{ \\pi }{2}$$. 从而,$${{a}_{1}}=\\frac{ \\pi }{4}{{a}_{5}}=\\frac{3}{4} \\pi $$,$${{\\left[ f\\left( {{a}_{3}} \\right) \\right]}^{2}}-{{a}_{1}}{{a}_{5}}={{\\left( ~\\pi -\\cos \\frac{ \\pi }{2} \\right)}^{2}}-\\frac{ \\pi }{4}\\cdot \\frac{3}{4} \\pi =\\frac{13}{16}{{ \\pi }^{2}}$$. 故选$$\\text{D}$$. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
203
0dd33cb549a94f8e88f935e1b5a66384
[ "2020~2021学年河北石家庄新华区石家庄市第二中学高二上学期期中(竞赛班)第10题3分" ]
1
single_choice
若$${{a}_{0}}{{x}^{2020}}+{{a}_{1}}{{x}^{2019}}\left( 1-x \right)+{{a}_{2}}{{x}^{2018}}{{\left( 1-x \right)}^{2}}+\cdots +{{a}_{2020}}{{\left( 1-x \right)}^{2020}}=1$$,则$${{a}_{0}}+{{a}_{1}}+\cdots +{{a}_{2020}}=$$.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$0$$ " } ], [ { "aoVal": "C", "content": "$${{2}^{2020}}$$ " } ], [ { "aoVal": "D", "content": "$${{2}^{2021}}$$ " } ] ]
[ "课内体系->素养->数学运算", "课内体系->素养->逻辑推理", "课内体系->知识点->计数原理->二项式定理->二项式系数的性质", "课内体系->知识点->计数原理->二项式定理->二项式定理的展开式" ]
[ "因为$${{\\left[ x+\\left( 1-x \\right) \\right]}^{2020}}$$ $$={{a}_{0}}{{x}^{2020}}+{{a}_{1}}{{x}^{2019}}\\left( 1-x \\right)+{{a}_{2}}{{x}^{2018}}{{\\left( 1-x \\right)}^{2}}+\\cdots +{{a}_{2020}}{{\\left( 1-x \\right)}^{2020}}$$ $$=1$$. 且由二项式定理得,当$$0\\leqslant k\\leqslant 2020$$, 且$$k\\in \\mathbf{Z}$$时,$${{a}_{k}}=\\text{C}_{2020}^{k}$$, 所以$${{a}_{0}}+{{a}_{1}}+\\cdots +{{a}_{2020}}$$ $$=\\text{C}_{2020}^{0}+\\text{C}_{2020}^{1}+\\text{C}_{2020}^{2}+\\cdots +\\text{C}_{2020}^{2020}$$ $$={{2}^{2020}}$$. 故选$$\\text{C}$$. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
310
8b265def31ab4473a1e2a1680482ea22
[ "2008年黑龙江全国高中数学联赛竞赛初赛第5题5分" ]
1
single_choice
给定数列$$ {{{x}_{n}} }$$,$${{x}_{1}}=1$$,且$${{x}_{n+1}}=\frac{\sqrt{3}{{x}_{n}}+1}{\sqrt{3}-{{x}_{n}}}$$,则$$\sum\limits_{n=1}^{2008}{{{x}_{n}}=}$$.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$-1$$ " } ], [ { "aoVal": "C", "content": "$$2+\\sqrt{3}$$ " } ], [ { "aoVal": "D", "content": "$$-2+\\sqrt{3}$$ " } ] ]
[ "竞赛->知识点->数列与数学归纳法->(模)周期数列" ]
[ "由于$${{x}_{n+1}}=\\frac{{{x}_{n}}+\\frac{\\sqrt{3}}{3}}{1-\\frac{\\sqrt{3}}{3}{{x}_{n}}}$$,令$${{x}_{n}}=\\tan {{a}_{n}}$$, 因此$${{x}_{n+1}}=\\tan \\left( {{a}_{n}}+\\frac{ \\pi }{6} \\right)$$,$${{x}_{n+6}}={{x}_{n}}$$. 易算得$${{x}_{1}}=1$$,$${{x}_{2}}=2+\\sqrt{3}$$,$${{x}_{3}}=-2-\\sqrt{3}$$, $${{x}_{4}}=-1$$,$${{x}_{5}}=-2+\\sqrt{3}$$,$${{x}_{6}}=2-\\sqrt{3}$$,$${{x}_{7}}=1$$,\\ldots, 所以$$\\sum\\limits_{n=1}^{2008}{{{x}_{n}}={{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}=0}$$. 故选$$\\text{A}$$. " ]
A
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
640
a344f4062fc747fb96c3e635c0d4880b
[ "2020~2021学年北京高二单元测试", "竞赛", "2020年北京海淀区北京大学自主招生(强基计划)第7题5分", "2020~2021学年北京高三单元测试" ]
2
single_choice
方程$$19x+93y=4xy$$的整数解个数为.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$16$$ " } ], [ { "aoVal": "D", "content": "前三个答案都不对 " } ] ]
[ "竞赛->知识点->多项式与方程->解方程(组)" ]
[ "当$$x$$、$$y$$中有一个为$$0$$时,$$\\left( x,y \\right)$$只能为$$\\left( 0,0 \\right)$$. 当$$x$$、$$y$$均不为$$0$$时,由原式可以得到$$\\begin{cases}19\\frac{x}{y}+93=4x 19+93\\frac{y}{x}=4y \\end{cases}$$,两式左右两端均为整数,设$$k=\\frac{x}{y}$$,则$$19k\\in \\mathbf{Z}$$,$$\\frac{93}{k}\\in \\mathbf{Z}\\Rightarrow k=\\pm \\frac{1}{19}$$,$$\\pm \\frac{3}{19}$$,$$\\pm 1$$,$$\\pm \\frac{31}{19}$$,$$\\pm 3$$,$$\\pm \\frac{93}{19}$$,$$\\pm 31$$,$$\\pm 93$$,共$$8$$组. 由于$$19\\times 93\\equiv 3\\left( \\bmod 4 \\right)$$,$$93\\equiv 1\\left( \\bmod 4 \\right)$$,$$19\\equiv 3\\left( \\bmod 4 \\right)$$,故$$19\\frac{x}{y}\\equiv 3\\left( \\bmod 4 \\right)$$,$$93\\frac{y}{x}\\equiv 1\\left( \\bmod 4 \\right)$$,在$$k$$的$$8$$组取值中,每一组恰有一个取值能同时满足上述两同余方程, 但由于$$x$$、$$y$$均不为$$0$$,须舍去$$k=-\\frac{93}{19}$$,故此时$$\\left( x,y \\right)$$共有$$7$$组. 综上所述,原方程整数解的组数为$$8$$,故选$$\\text{B}$$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
596
51f2223572054bbb8cb5a4a57211764f
[ "2009年山东全国高中数学联赛竞赛初赛第8题6分" ]
2
single_choice
在复平面上,复数$${{z}_{1}}$$对应的点在连结$$1$$和$$\text{i}$$两点的线段上运动,复数$${{z}_{2}}$$对应的点在以原点为圆心.半径等于$$1$$的圆上运动.则复数$${{z}_{1}}+{{z}_{2}}$$对应的点所在区域的面积为 .
[ [ { "aoVal": "A", "content": "$$4+ \\pi $$ " } ], [ { "aoVal": "B", "content": "$$2\\sqrt{2}+\\pi $$ " } ], [ { "aoVal": "C", "content": "$$\\pi $$ " } ], [ { "aoVal": "D", "content": "$$\\frac{3\\pi }{2}+1$$ " } ] ]
[ "竞赛->知识点->复数与平面向量->复数的应用" ]
[ "由已知可得$${{z}_{1}}=t+(1-t)i(0\\leqslant t\\leqslant 1)$$.$${{z}_{2}}=\\cos \\theta +i\\sin \\theta $$,得 $${{z}_{1}}+{{z}_{2}}=t+\\cos \\theta +(1-t+\\sin \\theta )i$$. 设$${{z}_{1}}+{{z}_{2}}=x+yi$$,则$$\\begin{cases}x=t+\\cos \\theta y=1-t+\\sin \\theta \\end{cases}$$.消去$$\\theta $$,得 $${{(x-t)}^{2}}+{{[y-(1-t)]}^{2}}=1$$. 即$${{z}_{1}}+{{z}_{2}}$$对应的点以$$(t,1-t)$$为圆心,半径等于$$1$$的圆上,而因为 ($$0\\leqslant t\\leqslant 1$$).故$${{z}_{1}}+{{z}_{2}}$$对应点所在区域为图中阴影部分.其面积为 $$2\\cdot \\frac{\\pi }{2}+2\\cdot \\sqrt{2}=2\\sqrt{2}+\\pi $$. 故选$$\\text{B}$$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
1036
aeb394b959bc49b6a0b0b29005a90ad4
[ "2021年吉林全国高中数学联赛竞赛初赛第3题5分" ]
1
single_choice
关于$$x$$的方程$${{2}^{\left\textbar{} 2x-2 \right\textbar}}-a\cos \left( 1-x \right)=-1$$只有一个实数解,则.
[ [ { "aoVal": "A", "content": "$$a=-1$$ " } ], [ { "aoVal": "B", "content": "$$a=1$$ " } ], [ { "aoVal": "C", "content": "$$a=2$$ " } ], [ { "aoVal": "D", "content": "$$a$$的值不唯一 " } ] ]
[ "课内体系->知识点->函数的应用->函数的零点->函数零点的概念", "竞赛->知识点->函数->函数方程" ]
[ "函数$$f\\left( x \\right)={{2}^{\\left\\textbar{} 2x-2 \\right\\textbar}}-a\\cos \\left( 1-x \\right)+1$$的图象关于直线$$x=1$$对称, 又方程只有一个实数解, ∴$$f\\left( 1 \\right)=0$$,得$$a=2$$, 当$$a=1$$时,$$f\\left( x \\right)={{2}^{\\left\\textbar{} 2x-2 \\right\\textbar}}-2\\cos \\left( 1-x \\right)+1\\geqslant 1-2+1=0$$, 当且仅当$$x=1$$时取等号, 即方程$${{2}^{\\left\\textbar{} 2x-2 \\right\\textbar}}-a\\cos \\left( 1-x \\right)=-1$$只有一个实数解,符合题设. 故选$$\\text{C}$$. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
1114
ea6ebb272dc9469794d3ee1c10b4c1b2
[ "2015年黑龙江全国高中数学联赛竞赛初赛第12题5分" ]
3
single_choice
设等差数列$$ {{{a}_{n}} }$$满足:$$\frac{{{\sin }^{2}}{{a}_{3}}-{{\cos }^{2}}{{a}_{3}}+{{\cos }^{2}}{{a}_{3}}{{\cos }^{2}}{{a}_{6}}-{{\sin }^{2}}{{a}_{3}}{{\sin }^{2}}{{a}_{6}}}{\sin ({{a}_{4}}+{{a}_{5}})}=1$$,公差$$d\in (-1,0)$$,若当且仅当$$n=9$$时数列$$ {{{a}_{n}} }$$的前$$n$$项和$${{S}_{n}}$$取得最大值,则首项$${{a}_{1}}$$的取值范围是.
[ [ { "aoVal": "A", "content": "$$(\\frac{7 \\pi }{6},\\frac{4 \\pi }{3})$$ " } ], [ { "aoVal": "B", "content": "$$(\\frac{4 \\pi }{3},\\frac{3 \\pi }{2})$$ " } ], [ { "aoVal": "C", "content": "$$[\\frac{7 \\pi }{6},\\frac{4 \\pi }{3}]$$ " } ], [ { "aoVal": "D", "content": "$$[\\frac{4 \\pi }{3},\\frac{3 \\pi }{2}]$$ " } ] ]
[ "竞赛->知识点->数列与数学归纳法->数列的概念", "竞赛->知识点->数列与数学归纳法->数列的通项与求和", "竞赛->知识点->数列与数学归纳法->数列的综合应用", "竞赛->知识点->三角函数->三角恒等变换" ]
[ "$${{\\sin }^{2}}{{a}_{3}}-{{\\cos }^{2}}{{a}_{3}}+{{\\cos }^{2}}{{a}_{3}}{{\\cos }^{2}}{{a}_{6}}-{{\\sin }^{2}}{{a}_{3}}{{\\sin }^{2}}{{a}_{6}}={{\\sin }^{2}}{{a}_{3}}-{{\\sin }^{2}}{{a}_{6}}$$, 而$${{\\sin }^{2}}{{a}_{3}}-{{\\sin }^{2}}{{a}_{6}}=\\frac{1-\\cos 2{{a}_{3}}}{2}-\\frac{1-\\cos 2{{a}_{6}}}{2}=\\sin \\left( {{a}_{6}}+{{a}_{3}} \\right)\\sin \\left( {{a}_{3}}-{{a}_{6}} \\right)$$, 所以$$\\sin \\left( {{a}_{3}}-{{a}_{6}} \\right)=1$$,$${{a}_{3}}-{{a}_{6}}=-3d=2k \\pi +\\frac{ \\pi }{2}$$,所以$$d=-\\frac{2}{3}k \\pi -\\frac{ \\pi }{6}$$,$$k\\in \\mathbf{Z}$$. 由$$-1\\textless{}d\\textless{}0$$,可得$$-\\frac{1}{4}\\textless{}k\\textless{}-\\frac{1}{4}+\\frac{3}{2 \\pi }$$,所以$$k=0$$,$$d=-\\frac{ \\pi }{6}$$. 由$${{a}_{9}}\\textgreater0$$,$${{a}_{10}}\\textless{}0$$,可得$$\\begin{cases}{{a}_{1}}+8d\\textgreater0 {{a}_{1}}+9d\\textless{}0 \\end{cases}$$,解得$$\\frac{4}{3} \\pi \\textless{}{{a}_{1}}\\textless{}\\frac{3}{2} \\pi $$. " ]
B
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
890
859bd0a3e90d4056a703510642b208ce
[ "第二十届全国希望杯高一竞赛复赛邀请赛第7题4分" ]
1
single_choice
设$$x$$是某个三角形的最小内角,则$$y=\frac{\cos x}{\cos \frac{x}{2}-\sin \frac{x}{2}}$$的值域是.
[ [ { "aoVal": "A", "content": "$$(-\\sqrt{2},\\sqrt{2}]$$ " } ], [ { "aoVal": "B", "content": "$$\\left( -\\sqrt{2},\\frac{\\sqrt{3}+1}{2} \\right]$$ " } ], [ { "aoVal": "C", "content": "$$\\left( 1,\\frac{\\sqrt{3}+1}{2} \\right]$$ " } ], [ { "aoVal": "D", "content": "$$(0,\\sqrt{2}]$$ " } ] ]
[ "竞赛->知识点->三角函数->三角恒等变换", "竞赛->知识点->三角函数->三角函数的图像与性质" ]
[ "$$0\\textless{}x\\leqslant \\frac{ \\pi }{3}$$,$$y=\\frac{{{\\cos }^{2}}\\frac{x}{2}-{{\\sin }^{2}}\\frac{x}{2}}{\\cos \\frac{x}{2}-\\sin \\frac{x}{2}}=\\cos \\frac{x}{2}+\\sin \\frac{x}{2}=\\sqrt{2}\\sin \\left( \\frac{x}{2}+\\frac{ \\pi }{4} \\right)$$,即可得$$y$$的值域. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
458
59e9f02806b34c859178a6223ea073d5
[ "2008年天津全国高中数学联赛竞赛初赛第1题6分" ]
1
single_choice
已知二次函数$$f\left( x \right)={{x}^{2}}-3x+2$$,则方程$$f\left( f\left( x \right) \right)=0$$不同实数根的数目为.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "课内体系->方法->图象法", "课内体系->方法->换元法", "课内体系->知识点->函数的应用->函数的零点->函数零点的概念", "课内体系->知识点->函数的应用->函数的零点->零点的个数问题->零点、交点、根的等价转化", "课内体系->知识点->函数的应用->函数的实际应用->二次函数模型", "课内体系->素养->数学抽象", "课内体系->素养->逻辑推理", "课内体系->思想->数形结合思想" ]
[ "因为$$f\\left( f\\left( x \\right) \\right)={{\\left( {{x}^{2}}-3x+2 \\right)}^{2}}-3\\left( {{x}^{2}}-3x+2 \\right)+2={{x}^{4}}-6{{x}^{3}}+10{{x}^{2}}-3x$$, 所以有$$x\\left( x-3 \\right)\\left( {{x}^{2}}-3x+1 \\right)=0,{{x}_{1}}=0,{{x}_{2}}=3,{{x}_{34}}=\\frac{3\\pm \\sqrt{5}}{2}$$, 因此原方程有$$4$$个不同实根.故选$$\\text{D}$$. 注 也可以讨论$$f\\left( x \\right)=0$$根的分布情况. 因为当$$x\\leqslant \\frac{3}{2}$$时,函数$$f\\left( x \\right)$$单调递减,当$$x\\textgreater\\frac{3}{2}$$时,函数$$f\\left( x \\right)$$单调递增,且$$f\\left( x \\right)=0$$的两个根为$$1,2$$,所以当$$x\\leqslant \\frac{3}{2}$$时,函数$$f\\left( x \\right)\\in \\left[ -\\frac{1}{4},+\\infty \\right)\\supset \\left[ 1,2 \\right]$$,因此$$f\\left( f\\left( x \\right) \\right)=0$$有两个不同实根;当$$x\\textgreater\\frac{3}{2}$$时,函数$$f\\left( x \\right)\\in \\left( -\\frac{1}{4},+\\infty \\right)\\supset \\left[ 1,2 \\right]$$,因此$$f\\left( f\\left( x \\right) \\right)=0$$也有两个不同实根.综上所述,原方程有$$4$$个不同实根. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
808
e420994965964bd9880b490bdd3ecc5a
[ "2012年吉林全国高中数学联赛竞赛初赛第5题5分" ]
2
single_choice
设$${{A}_{1}}, {{A}_{2}},\cdots , {{A}_{n}}$$为集合$$S=\left { 1, 2,\cdots , n \right }$$的$$n$$个不同子集$$\left( n\geqslant 4 \right)$$,为了表示这些子集,作$$n$$行$$n$$列的数阵,规定第$$i$$行与第$$j$$列的数为$${{a}_{ij}}=\begin{cases}0, i\notin {{A}_{j}}, ,1, i\in {{A}_{j}},\end{cases}$$则下列说法错误的是
[ [ { "aoVal": "A", "content": "数阵中第一列的数全是$$0$$当且仅当$${{A}_{1}}=\\varnothing $$ " } ], [ { "aoVal": "B", "content": "数阵中第$$n$$列的数全是$$1$$当且仅当$${{A}_{n}}=S$$ " } ], [ { "aoVal": "C", "content": "数阵中第$$j$$行的数字和表明集合$${{A}_{j}}$$含有几个元素 " } ], [ { "aoVal": "D", "content": "数阵中所有的$${{n}^{2}}$$个数字之和不超过$${{n}^{2}}-n+1$$ " } ] ]
[ "竞赛->知识点->集合->集合的概念与运算" ]
[ "当$${{A}_{1}}, {{A}_{2}},\\cdots , {{A}_{n}}$$中一个为$$S$$本身,其余$$n-1$$个子集为$$S$$的互不相同的$$n-1$$元子集时,数阵中所有的$${{n}^{2}}$$个数字之和最大,为$${{n}^{2}}-n+1$$,因此,$$D$$是正确的.数阵中第$$j$$行的数字和表明元素$$j$$属于几个子集,因此,$$C$$是错误的. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
1071
b8280458692c418893cfebe0e2614b5f
[ "2022~2023学年湖南永州宁远县高一上学期月考(明德湘南中学基础知识竞赛)第8题", "2022~2023学年10月广东佛山禅城区佛山市第一中学高一上学期月考第7题5分" ]
2
single_choice
若两个正实数$$x$$,$$y$$满足$$2x+y=1$$且存在这样的$$x$$,$$y$$使不等式$$\dfrac{1}{x}+\dfrac{2}{y}\textless{} {{m}^{2}}+2m$$有解,则实数$$m$$的取值范围是(~~~~~~~)
[ [ { "aoVal": "A", "content": "$$ {m\\textbar m\\textless{} -4$$或$$m\\textgreater2 }$$ " } ], [ { "aoVal": "B", "content": "$$\\left { m\\left\\textbar{} -2 \\right.\\textless{} m\\textless{} 4 \\right }$$ " } ], [ { "aoVal": "C", "content": "$$ {m\\textbar m\\textless{} -2$$或$$m\\textgreater4 }$$ " } ], [ { "aoVal": "D", "content": "$$\\left { m\\left\\textbar{} -4 \\right.\\textless{} m\\textless{} 2 \\right }$$ " } ] ]
[ "课内体系->知识点->等式与不等式->不等式->解不等式", "课内体系->知识点->等式与不等式->不等式->基本不等式->基本不等式成立的条件" ]
[ "由题意,$$\\dfrac{1}{x}+\\dfrac{2}{y}=\\left(\\frac{1}{x}+\\dfrac{2}{y}\\right)(2x+y)$$ $$=4+\\dfrac{4x}{y}+\\dfrac{y}{x}\\geqslant 4+2\\sqrt{\\dfrac{4x}{y}\\times \\dfrac{y}{x}}=8$$, 当且仅当$$\\dfrac{4x}{y}=\\dfrac{y}{x}$$,即$$y=\\dfrac{1}{2},x=\\dfrac{1}{4}$$时等号成立. 故若存在这样的$$x$$,$$y$$使不等式$$\\dfrac{1}{x}+\\dfrac{2}{y}\\textless{} {{m}^{2}}+2m$$有解. 即$${{m}^{2}}+2m\\textgreater8\\Leftrightarrow (m-2)(m+4)\\textgreater0\\Leftrightarrow m\\textgreater2$$或$$m\\textless{} -4$$. 故选:$$\\text{A}$$. " ]
A
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
963
e4ac866820054340bf0afeb881c2de79
[ "第二十届全国希望杯高二竞赛初赛邀请赛第8题4分" ]
1
single_choice
设直线$$l$$:$$x+y=-2$$,抛物线$$C$$:$${{y}^{2}}=2x$$,当点$$P\in l$$,点$$Q\in C$$时,线段$$PQ$$的最小长度等于.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$\\sqrt{2}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{3\\sqrt{2}}{4}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{5\\sqrt{2}}{8}$$ " } ] ]
[ "竞赛->知识点->解析几何->直线与圆锥曲线" ]
[ "不难算出与$$x+y=-2$$平行且与$${{y}^{2}}=2x$$相切的直线方程为$$x+y=-\\frac{1}{2}$$,$$PQ$$的最短距离就是$$x+y=-2$$与$$x+y=-\\frac{1}{2}$$之间的距离,易算得为$$\\frac{\\left\\textbar{} -\\frac{1}{2}-(-2) \\right\\textbar}{\\sqrt{2}}=\\frac{3\\sqrt{2}}{4}$$. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
1206
fe5d355b7e8f4dae9ccf9f01aeed85ae
[ "2019年全国高中数学联赛竞赛初赛第3题" ]
1
single_choice
平面直角坐标系中,$$\overrightarrow{e}$$是单位向量,向量$$\overrightarrow{a}$$满足$$\overrightarrow{a}\cdot \overrightarrow{e}=2$$且$$\textbar\overrightarrow{a}{{\textbar}^{2}}\leqslant 5\textbar\overrightarrow{a}+t\overrightarrow{e}\textbar$$对任意实数$$t$$成立,则$$\textbar\overrightarrow{a}\textbar$$的取值范围是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$[1,4]$$ " } ], [ { "aoVal": "B", "content": "$$[5,8]$$ " } ], [ { "aoVal": "C", "content": "$$[5,20]$$ " } ], [ { "aoVal": "D", "content": "$$[\\sqrt{5},2\\sqrt{5}]$$ " } ] ]
[ "课内体系->知识点->平面向量->平面向量基本定理及其坐标表示", "竞赛->知识点->复数与平面向量->平面向量的概念与运算" ]
[ "设$$\\overrightarrow{e}=\\left( 1,0 \\right)$$,$$\\overrightarrow{a}=\\left( 2,x \\right)$$,则 $$\\forall t\\in \\mathbf{R}$$,$$4+{{x}^{2}}\\leqslant 5\\sqrt{{{\\left( 2+t \\right)}^{2}}+{{x}^{2}}}$$, 即$$4+{{x}^{2}}\\leqslant 5\\textbar x\\textbar\\Leftrightarrow 1\\textless{}\\textbar x\\textbar\\textless{}4$$, 于是$$\\textbar\\overrightarrow{a}\\textbar=\\sqrt{4+{{x}^{2}}}$$的取值范围是$$\\left[ \\sqrt{5},2\\sqrt{5} \\right]$$. 故答案为:$$\\left[ \\sqrt{5},2\\sqrt{5} \\right]$$. " ]
D
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
367
79b544af048843ecac49ce42d515d764
[ "2014年浙江全国高中数学联赛竞赛初赛第4题5分" ]
1
single_choice
已知等比数列$$\left { {{a}_{n}} \right }:{{a}_{1}}=5$$,$${{a}_{4}}=625$$,则$$\sum\limits_{k=1}^{2014}{\frac{1}{{{\log }_{5}}{{a}_{k}}{{\log }_{5}}{{a}_{k+1}}}=}$$.
[ [ { "aoVal": "A", "content": "$$\\frac{2014}{2015}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{2013}{2014}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{2012}{4028}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{2013}{4030}$$ " } ] ]
[ "竞赛->知识点->函数->基本初等函数" ]
[ "设等比数列的公比为$$q$$,则 $$625=5{{q}^{3}}\\Rightarrow q=5\\Rightarrow \\sum\\limits_{k=1}^{2014}{\\frac{1}{{{\\log }_{5}}{{a}_{k}}{{\\log }_{5}}{{a}_{k+1}}}=\\sum\\limits_{k=1}^{2014}{\\frac{1}{k\\left( k+1 \\right)}}=\\frac{2014}{2015}}$$. " ]
A
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
212
cbdb3f303635477087b9736b6dd06f40
[ "2014年天津全国高中数学联赛竞赛初赛第3题6分" ]
1
single_choice
等比数列$$\left { {{a}_{n}} \right }$$的前$$n$$项和为$${{S}_{n}}$$,并且对任意正整数$$n$$成立$${{S}_{n+2}}=4{{S}_{n}}+3$$,则$${{a}_{2}}$$的值是.
[ [ { "aoVal": "A", "content": "2 " } ], [ { "aoVal": "B", "content": "6 " } ], [ { "aoVal": "C", "content": "$$2$$或6 " } ], [ { "aoVal": "D", "content": "$$2$$或$$-6$$ " } ] ]
[ "竞赛->知识点->数列与数学归纳法->等差数列与等比数列" ]
[ "设公比为$$q$$.由于$$q{{S}_{n}}=q\\left( {{a}_{1}}+{{a}_{2}}+\\ldots +{{a}_{n}} \\right)={{a}_{2}}+{{a}_{3}}+\\ldots +{{a}_{n+1}}$$,所以$${{S}_{n+1}}=q{{S}_{n}}+{{a}_{1}}$$.进而$${{S}_{n+2}}=q\\left( q{{S}_{n}}+{{a}_{1}} \\right)+{{a}_{1}}={{q}^{2}}{{S}_{n}}+{{a}_{1}}\\left( q+1 \\right)$$.与已知条件比较可知$${{q}^{2}}=4$$,$${{a}_{1}}\\left( q+1 \\right)=3$$.所以$$q=2$$,$${{a}_{1}}=1$$,或$$q=-2$$,$${{a}_{1}}=-3$$.相应地,$${{a}_{2}}=2$$或$$6$$. " ]
C
high_math_competition_ch_single_choice_1.2K_dev
2023-07-07T00:00:00
1192
e2a73912929e4d788bbb89ca7c65fbb4
[ "1998年全国高中数学联赛竞赛一试第2题6分", "2009年黑龙江全国高中数学联赛竞赛初赛第2题5分" ]
0
single_choice
若非空集合$$A=\left { x\textbar2a+1\leqslant x\leqslant 3a-5 \right }$$,$$B=\left { x\textbar3\leqslant x\leqslant 22 \right }$$,则能使$$A\subseteq A\cap B$$成立的所有$$a$$的集合是(~ ~ ).
[ [ { "aoVal": "A", "content": "$$\\left { a\\textbar{} 1\\leqslant a\\leqslant 9 \\right }$$ " } ], [ { "aoVal": "B", "content": "$$\\left { a\\textbar{} 6\\leqslant a\\leqslant 9 \\right }$$ " } ], [ { "aoVal": "C", "content": "$$\\left { a\\textbar a\\leqslant 9 \\right }$$ " } ], [ { "aoVal": "D", "content": "$$\\varnothing $$ " } ] ]
[ "竞赛->知识点->集合->集合的概念与运算" ]
[ "$$A\\subseteq B$$,$$A\\ne \\varnothing $$.$$\\Rightarrow $$$$3\\leqslant 2a+1\\leqslant 3a-5\\leqslant 22$$,$$\\Rightarrow $$$$6\\leqslant a\\leqslant 9$$. 故选$$B$$. " ]
B