slug
stringlengths 15
15
| content
listlengths 1
129
| rawContent
stringlengths 1
2k
| author
dict | attachments
listlengths 0
49
| mentions
listlengths 0
49
| reactions
listlengths 0
12
| publishedAt
stringlengths 24
24
| updatedAt
stringlengths 24
24
| commentators
listlengths 0
52
| url
stringlengths 25
46
| totalUniqueImpressions
int64 1
42.1k
โ | numComments
int64 0
621
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
315762755390370 | [
{
"type": "text",
"value": "Introducing miniclaus 1.5B, a tiny but powerful model. Trained with MagPie and based on Qwen2.5 1.5B model, it performs very well on many tasks scoring top on his category, with impressive results:",
"raw": "Introducing miniclaus 1.5B, a tiny but powerful model. Trained with MagPie and based on Qwen2.5 1.5B model, it performs very well on many tasks scoring top on his category, with impressive results:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "* MATH Hard 9.81",
"raw": "* MATH Hard 9.81",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "* MMLU-Pro 29.37",
"raw": "* MMLU-Pro 29.37",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "* GPQA 29.19",
"raw": "* GPQA 29.19",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "* MUSR 42.85",
"raw": "* MUSR 42.85",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "* BBH 42.04",
"raw": "* BBH 42.04",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Available already in the hub:",
"raw": "Available already in the hub:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/fblgit/miniclaus-qw1.5B-UNAMGS",
"href": null,
"resource": {
"type": "model",
"id": "fblgit/miniclaus-qw1.5B-UNAMGS",
"discussionNum": null
},
"url": "https://huggingface.co/fblgit/miniclaus-qw1.5B-UNAMGS",
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Introducing miniclaus 1.5B, a tiny but powerful model. Trained with MagPie and based on Qwen2.5 1.5B model, it performs very well on many tasks scoring top on his category, with impressive results:
* MATH Hard 9.81
* MMLU-Pro 29.37
* GPQA 29.19
* MUSR 42.85
* BBH 42.04
Available already in the hub:
https://huggingface.co/fblgit/miniclaus-qw1.5B-UNAMGS | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6401c8c9f98fbc64bcd7dca1/MOSgc_mPbfUZ-354osy1v.png",
"fullname": "FBL",
"name": "fblgit",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 228,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐",
"users": [
"John6666"
],
"count": 1
}
] | 2024-11-07T16:16:43.000Z | 2024-11-08T01:22:19.385Z | [] | /posts/fblgit/315762755390370 | 889 | 0 |
815445483264294 | [
{
"type": "text",
"value": "So... Finally getting A pitch-kit ready for Intelligent Estate, a DC-MD-VA based AI firm offering air-gapped on site secure services for small businesses and families, looking for motivated team members. There are other businesses under the holdings which can make use of scientific/mathematics or sales skills as well. Virtual or flexible positions and great people of all walks of life are welcome apply to [email protected] or join the intelligent estate group if you have any questions.. Work on a contract or paid basis, with shares available, as well, for partners. The Frontier is here and we're fighting to emancipate the power of AI. ",
"raw": "So... Finally getting A pitch-kit ready for Intelligent Estate, a DC-MD-VA based AI firm offering air-gapped on site secure services for small businesses and families, looking for motivated team members. There are other businesses under the holdings which can make use of scientific/mathematics or sales skills as well. Virtual or flexible positions and great people of all walks of life are welcome apply to [email protected] or join the intelligent estate group if you have any questions.. Work on a contract or paid basis, with shares available, as well, for partners. The Frontier is here and we're fighting to emancipate the power of AI. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@fuzzy-mittenz",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "fuzzy-mittenz",
"label": null,
"lang": null
}
] | So... Finally getting A pitch-kit ready for Intelligent Estate, a DC-MD-VA based AI firm offering air-gapped on site secure services for small businesses and families, looking for motivated team members. There are other businesses under the holdings which can make use of scientific/mathematics or sales skills as well. Virtual or flexible positions and great people of all walks of life are welcome apply to [email protected] or join the intelligent estate group if you have any questions.. Work on a contract or paid basis, with shares available, as well, for partners. The Frontier is here and we're fighting to emancipate the power of AI. @fuzzy-mittenz | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6593502ca2607099284523db/AmC0JuUV3_yk74ETYh_fI.png",
"fullname": "william marshall",
"name": "fuzzy-mittenz",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 16,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6593502ca2607099284523db/PmaLrGsAJXa3SA9cRA8EZ.png"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6593502ca2607099284523db/AmC0JuUV3_yk74ETYh_fI.png",
"fullname": "william marshall",
"name": "fuzzy-mittenz",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 16
}
] | [
{
"reaction": "๐",
"users": [
"Smorty100"
],
"count": 1
}
] | 2024-11-07T02:43:55.000Z | 2024-11-08T04:37:23.299Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/640472f6ad54665351d6263e/MIQX183qoNelGUfuPGPNs.png",
"fullname": "Harsh Bhatt",
"name": "harshbhatt7585",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2,
"isFollowing": false
},
{
"avatarUrl": "/avatars/52a153d04d325469e1be69bce610ebe5.svg",
"fullname": "ecyht2",
"name": "ecyht2",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 3,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6593502ca2607099284523db/AmC0JuUV3_yk74ETYh_fI.png",
"fullname": "william marshall",
"name": "fuzzy-mittenz",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 16,
"isFollowing": false
}
] | /posts/fuzzy-mittenz/815445483264294 | 1,298 | 3 |
934356758937834 | [
{
"type": "text",
"value": "Are you familiar with the difference between discrete learning and predictive learning? This distinction is exactly why LLM models are not designed to perform and execute function calls, they are not the right shape for it. LLM models are prediction machines. Function calling requires discrete learning machines. Fortunately, you can easily couple an LLM model with a discrete learning algorithm. It is beyond easy to do, you simply need to know the math to do it. Want to dive deeper into this subject? Check out this video.",
"raw": "Are you familiar with the difference between discrete learning and predictive learning? This distinction is exactly why LLM models are not designed to perform and execute function calls, they are not the right shape for it. LLM models are prediction machines. Function calling requires discrete learning machines. Fortunately, you can easily couple an LLM model with a discrete learning algorithm. It is beyond easy to do, you simply need to know the math to do it. Want to dive deeper into this subject? Check out this video.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://youtu.be/wBRem2p8iPM",
"href": "https://youtu.be/wBRem2p8iPM",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Are you familiar with the difference between discrete learning and predictive learning? This distinction is exactly why LLM models are not designed to perform and execute function calls, they are not the right shape for it. LLM models are prediction machines. Function calling requires discrete learning machines. Fortunately, you can easily couple an LLM model with a discrete learning algorithm. It is beyond easy to do, you simply need to know the math to do it. Want to dive deeper into this subject? Check out this video.
https://youtu.be/wBRem2p8iPM | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/cA64Ix1vh75C7HoClUBhx.png",
"fullname": "Richard A Aragon",
"name": "TuringsSolutions",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 146,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐",
"users": [
"takeraparterer",
"danielus",
"yo",
"AtAndDev",
"BabuRaju"
],
"count": 5
},
{
"reaction": "๐",
"users": [
"John6666",
"yo",
"AtAndDev",
"ai-everyday"
],
"count": 4
},
{
"reaction": "๐",
"users": [
"TouchNight",
"AtAndDev",
"Zmu"
],
"count": 3
}
] | 2024-11-06T23:03:05.000Z | 2024-11-07T13:15:50.219Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6316fb937b0ee0136e5f1220/poHBoJ7QAF_s2CCaosdvQ.jpeg",
"fullname": "Firstname Lastname",
"name": "takeraparterer",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 29,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/cA64Ix1vh75C7HoClUBhx.png",
"fullname": "Richard A Aragon",
"name": "TuringsSolutions",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 146,
"isFollowing": false
}
] | /posts/TuringsSolutions/934356758937834 | 3,946 | 8 |
751144495449880 | [
{
"type": "text",
"value": "๐ย Now it is possible to chat with telemetry data from real Formula 1 races!",
"raw": "๐ย Now it is possible to chat with telemetry data from real Formula 1 races!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "This is an AI-powered solution for analyzing and generating detailed reports on Formula 1 racing sessions. This project combines the power of ReAct agents from LangChain with a RAG approach to pull data from a SQL database.",
"raw": "This is an AI-powered solution for analyzing and generating detailed reports on Formula 1 racing sessions. This project combines the power of ReAct agents from LangChain with a RAG approach to pull data from a SQL database.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "At the core of this system is a text-to-SQL capability that allows users to ask natural language questions about various aspects of F1 races, such as driver performance, weather impact, race strategies, and more. The AI agent then queries the database, processes the information, and generates comprehensive reports tailored to the user's needs.",
"raw": "At the core of this system is a text-to-SQL capability that allows users to ask natural language questions about various aspects of F1 races, such as driver performance, weather impact, race strategies, and more. The AI agent then queries the database, processes the information, and generates comprehensive reports tailored to the user's needs.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "The reports can be exported in various formats, making it easy to share insights with team members, race fans, or the broader motorsports community.",
"raw": "The reports can be exported in various formats, making it easy to share insights with team members, race fans, or the broader motorsports community.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "(The project is in beta, some erros may occur)",
"raw": "(The project is in beta, some erros may occur)",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Check it out:",
"raw": "Check it out:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- ",
"raw": "- ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/Draichi/Formula1-race-debriefing",
"href": null,
"resource": {
"type": "space",
"id": "Draichi/Formula1-race-debriefing",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/Draichi/Formula1-race-debriefing",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- ",
"raw": "- ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/Draichi/formula1-AI",
"href": "https://github.com/Draichi/formula1-AI",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐ย Now it is possible to chat with telemetry data from real Formula 1 races!
This is an AI-powered solution for analyzing and generating detailed reports on Formula 1 racing sessions. This project combines the power of ReAct agents from LangChain with a RAG approach to pull data from a SQL database.
At the core of this system is a text-to-SQL capability that allows users to ask natural language questions about various aspects of F1 races, such as driver performance, weather impact, race strategies, and more. The AI agent then queries the database, processes the information, and generates comprehensive reports tailored to the user's needs.
The reports can be exported in various formats, making it easy to share insights with team members, race fans, or the broader motorsports community.
(The project is in beta, some erros may occur)
Check it out:
- https://huggingface.co/spaces/Draichi/Formula1-race-debriefing
- https://github.com/Draichi/formula1-AI | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65282ccb591c20f2dec4e31c/vF5NUi52zVcBdHloXLzXF.jpeg",
"fullname": "Lucas Draichi",
"name": "Draichi",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 11,
"isFollowing": false
} | [
{
"type": "video",
"url": "https://cdn-uploads.huggingface.co/production/uploads/65282ccb591c20f2dec4e31c/esmNbfLiHAEAW-_47VfDo.mp4"
}
] | [] | [
{
"reaction": "โค๏ธ",
"users": [
"Draichi",
"robthepirate",
"yo",
"AtAndDev",
"YoucefOuhab",
"ai-everyday",
"Nicolas-BZRD",
"martintomov"
],
"count": 8
},
{
"reaction": "๐",
"users": [
"John6666",
"yo",
"AtAndDev"
],
"count": 3
},
{
"reaction": "๐ฅ",
"users": [
"YoucefOuhab",
"Draichi"
],
"count": 2
}
] | 2024-11-06T20:29:37.000Z | 2024-11-07T18:12:04.829Z | [
{
"avatarUrl": "/avatars/42222b01925ff78d6a16879cdedc9c97.svg",
"fullname": "Anton Butov",
"name": "AntonButov",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
}
] | /posts/Draichi/751144495449880 | 3,509 | 1 |
650819377936480 | [
{
"type": "text",
"value": "New app built based on ",
"raw": "New app built based on ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/docs/transformers.js",
"href": "https://huggingface.co/docs/transformers.js",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " and ",
"raw": " and ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/minishlab/potion-6721e0abd4ea41881417f062",
"href": null,
"resource": {
"type": "collection",
"id": "minishlab/potion-6721e0abd4ea41881417f062",
"discussionNum": null
},
"url": "https://huggingface.co/collections/minishlab/potion-6721e0abd4ea41881417f062",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "!",
"raw": "!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "It uses the super performant CPU-only models to calculate semantic similarity fully client-side based on Excel or CSV tables. ",
"raw": "It uses the super performant CPU-only models to calculate semantic similarity fully client-side based on Excel or CSV tables. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- App: ",
"raw": "- App: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://do-me.github.io/semantic-similarity-table/",
"href": "https://do-me.github.io/semantic-similarity-table/",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Code: ",
"raw": "- Code: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/do-me/semantic-similarity-table",
"href": "https://github.com/do-me/semantic-similarity-table",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | New app built based on https://huggingface.co/docs/transformers.js and https://huggingface.co/collections/minishlab/potion-6721e0abd4ea41881417f062!
It uses the super performant CPU-only models to calculate semantic similarity fully client-side based on Excel or CSV tables.
- App: https://do-me.github.io/semantic-similarity-table/
- Code: https://github.com/do-me/semantic-similarity-table
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/IiercF_qxHWize2kitl9X.jpeg",
"fullname": "Dominik Weckmรผller",
"name": "do-me",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 38,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/64c4da8719565937fb268b32/bRRXDRCSvcn6k7UQUbkNG.png"
}
] | [] | [
{
"reaction": "๐",
"users": [
"John6666",
"robthepirate",
"Chidi77",
"ai-everyday",
"benhaotang",
"foyezHasan"
],
"count": 6
},
{
"reaction": "๐ฅ",
"users": [
"Paiman-Rasoli",
"adorkin"
],
"count": 2
}
] | 2024-11-06T14:35:56.000Z | 2024-11-06T14:35:56.196Z | [] | /posts/do-me/650819377936480 | 3,170 | 0 |
780974876335675 | [
{
"type": "text",
"value": "Hunyuan3D-1 - SOTA Open Source Text-to-3D and Image-to-3D - 1-Click Install and use both Locally on Windows and on Cloud - RunPod and Massed Compute",
"raw": "Hunyuan3D-1 - SOTA Open Source Text-to-3D and Image-to-3D - 1-Click Install and use both Locally on Windows and on Cloud - RunPod and Massed Compute",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Automatic Installers",
"raw": "Automatic Installers",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Works amazing on 24 GB GPUs",
"raw": "Works amazing on 24 GB GPUs",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Files > ",
"raw": "Files > ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.patreon.com/posts/115412205",
"href": "https://www.patreon.com/posts/115412205",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "So what is Hunyuan3D-1",
"raw": "So what is Hunyuan3D-1",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Official repo : ",
"raw": "Official repo : ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/tencent/Hunyuan3D-1",
"href": "https://github.com/tencent/Hunyuan3D-1",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "On Hugging Face : ",
"raw": "On Hugging Face : ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/tencent/Hunyuan3D-1",
"href": null,
"resource": {
"type": "model",
"id": "tencent/Hunyuan3D-1",
"discussionNum": null
},
"url": "https://huggingface.co/tencent/Hunyuan3D-1",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation",
"raw": "Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Abstract",
"raw": "Abstract",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "While 3D generative models have greatly improved artists' workflows, the existing diffusion models for 3D generation suffer from slow generation and poor generalization. To address this issue, we propose a two-stage approach named Hunyuan3D-1.0 including a lite version and a standard version, that both support text- and image-conditioned generation.",
"raw": "While 3D generative models have greatly improved artists' workflows, the existing diffusion models for 3D generation suffer from slow generation and poor generalization. To address this issue, we propose a two-stage approach named Hunyuan3D-1.0 including a lite version and a standard version, that both support text- and image-conditioned generation.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "In the first stage, we employ a multi-view diffusion model that efficiently generates multi-view RGB in approximately 4 seconds. These multi-view images capture rich details of the 3D asset from different viewpoints, relaxing the tasks from single-view to multi-view reconstruction. In the second stage, we introduce a feed-forward reconstruction model that rapidly and faithfully reconstructs the 3D asset given the generated multi-view images in approximately 7 seconds. The reconstruction network learns to handle noises and in-consistency introduced by the multi-view diffusion and leverages the available information from the condition image to efficiently recover the 3D structure.",
"raw": "In the first stage, we employ a multi-view diffusion model that efficiently generates multi-view RGB in approximately 4 seconds. These multi-view images capture rich details of the 3D asset from different viewpoints, relaxing the tasks from single-view to multi-view reconstruction. In the second stage, we introduce a feed-forward reconstruction model that rapidly and faithfully reconstructs the 3D asset given the generated multi-view images in approximately 7 seconds. The reconstruction network learns to handle noises and in-consistency introduced by the multi-view diffusion and leverages the available information from the condition image to efficiently recover the 3D structure.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Our framework involves the text-to-image model, i.e., Hunyuan-DiT, making it a unified framework to support both text- and image-conditioned 3D generation. Our standard version has 3x more parameters than our lite and other existing model. Our Hunyuan3D-1.0 achieves an impressive balance between speed and quality, significantly reducing generation time while maintaining the quality and diversity of the produced assets.",
"raw": "Our framework involves the text-to-image model, i.e., Hunyuan-DiT, making it a unified framework to support both text- and image-conditioned 3D generation. Our standard version has 3x more parameters than our lite and other existing model. Our Hunyuan3D-1.0 achieves an impressive balance between speed and quality, significantly reducing generation time while maintaining the quality and diversity of the produced assets.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Hunyuan3D-1 - SOTA Open Source Text-to-3D and Image-to-3D - 1-Click Install and use both Locally on Windows and on Cloud - RunPod and Massed Compute
Automatic Installers
Works amazing on 24 GB GPUs
Files > https://www.patreon.com/posts/115412205
So what is Hunyuan3D-1
Official repo : https://github.com/tencent/Hunyuan3D-1
On Hugging Face : https://huggingface.co/tencent/Hunyuan3D-1
Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation
Abstract
While 3D generative models have greatly improved artists' workflows, the existing diffusion models for 3D generation suffer from slow generation and poor generalization. To address this issue, we propose a two-stage approach named Hunyuan3D-1.0 including a lite version and a standard version, that both support text- and image-conditioned generation.
In the first stage, we employ a multi-view diffusion model that efficiently generates multi-view RGB in approximately 4 seconds. These multi-view images capture rich details of the 3D asset from different viewpoints, relaxing the tasks from single-view to multi-view reconstruction. In the second stage, we introduce a feed-forward reconstruction model that rapidly and faithfully reconstructs the 3D asset given the generated multi-view images in approximately 7 seconds. The reconstruction network learns to handle noises and in-consistency introduced by the multi-view diffusion and leverages the available information from the condition image to efficiently recover the 3D structure.
Our framework involves the text-to-image model, i.e., Hunyuan-DiT, making it a unified framework to support both text- and image-conditioned 3D generation. Our standard version has 3x more parameters than our lite and other existing model. Our Hunyuan3D-1.0 achieves an impressive balance between speed and quality, significantly reducing generation time while maintaining the quality and diversity of the produced assets.
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1672531901326-6345bd89fe134dfd7a0dba40.png",
"fullname": "Furkan Gรถzรผkara",
"name": "MonsterMMORPG",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 376,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/X_wX8GPPv3Rg8dEWL_roh.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/zMxwZsYWphMalwLJeLS30.gif"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/v7__ufb2I6iICRVWfVmSh.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/53Ip3t1KH2qLwVduHm_sx.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/bj4p3R5gvjyGYn5xFHtUd.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/7ZDM2ivfFueY-Q2i6pQoS.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/NQcjwGwYUlJTHXHW0Xj09.gif"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/f_zLAF-GpBIliBoAcZC4V.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/M89DTVrDvLjicOnGju1Js.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/n3FrW228cco9pd5QpD1kK.gif"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/YuBKxxzRstDidjvOvoIuE.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/vwyEY0B2iaKiySkyZBLod.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/CGPpew_87easKSZ9tPOEw.gif"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/kmBQc2RhX7hjWUbExYQDJ.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/VwJLrd89n_l48dEvrtvV1.jpeg"
}
] | [] | [
{
"reaction": "๐ฅ",
"users": [
"MonsterMMORPG",
"masssspig",
"dpy22",
"YaTharThShaRma999",
"nroggendorff",
"AI-Leo",
"viniciusf",
"deprivedchild"
],
"count": 8
},
{
"reaction": "๐",
"users": [
"MonsterMMORPG",
"John6666",
"dpy22",
"djuna",
"csabakecskemeti",
"deprivedchild"
],
"count": 6
},
{
"reaction": "๐",
"users": [
"MonsterMMORPG",
"Rsln"
],
"count": 2
},
{
"reaction": "๐",
"users": [
"MonsterMMORPG"
],
"count": 1
},
{
"reaction": "โค๏ธ",
"users": [
"MonsterMMORPG"
],
"count": 1
},
{
"reaction": "๐ค",
"users": [
"MonsterMMORPG"
],
"count": 1
},
{
"reaction": "๐",
"users": [
"MonsterMMORPG"
],
"count": 1
},
{
"reaction": "โ",
"users": [
"MonsterMMORPG"
],
"count": 1
},
{
"reaction": "๐ง ",
"users": [
"MonsterMMORPG"
],
"count": 1
},
{
"reaction": "๐ค",
"users": [
"MonsterMMORPG"
],
"count": 1
},
{
"reaction": "๐คฏ",
"users": [
"MonsterMMORPG"
],
"count": 1
}
] | 2024-11-06T08:53:32.000Z | 2024-11-06T08:53:32.487Z | [] | /posts/MonsterMMORPG/780974876335675 | 4,527 | 0 |
102235619824271 | [
{
"type": "text",
"value": "๐จ๐ฅ New Release Alert! ๐ฅ๐จ",
"raw": "๐จ๐ฅ New Release Alert! ๐ฅ๐จ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Introducing the 435M model that outperforms Llama-Guard-3-8B while slashing 75% of the computation cost! ๐ป๐ฅ",
"raw": "Introducing the 435M model that outperforms Llama-Guard-3-8B while slashing 75% of the computation cost! ๐ป๐ฅ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Check it out: ",
"raw": "๐ Check it out: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/hbseong/HarmAug-Guard",
"href": null,
"resource": {
"type": "model",
"id": "hbseong/HarmAug-Guard",
"discussionNum": null
},
"url": "https://huggingface.co/hbseong/HarmAug-Guard",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " (Yes, INFERENCE CODE INCLUDED! ๐ก)",
"raw": " (Yes, INFERENCE CODE INCLUDED! ๐ก)",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "More details in our paper: ",
"raw": "More details in our paper: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://arxiv.org/abs/2410.01524",
"href": "https://arxiv.org/abs/2410.01524",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " ๐",
"raw": " ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "#HarmAug #LLM # Safety #EfficiencyBoost #Research #AI #MachineLearning ",
"raw": "#HarmAug #LLM # Safety #EfficiencyBoost #Research #AI #MachineLearning ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐จ๐ฅ New Release Alert! ๐ฅ๐จ
Introducing the 435M model that outperforms Llama-Guard-3-8B while slashing 75% of the computation cost! ๐ป๐ฅ
๐ Check it out: https://huggingface.co/hbseong/HarmAug-Guard (Yes, INFERENCE CODE INCLUDED! ๐ก)
More details in our paper: https://arxiv.org/abs/2410.01524 ๐
#HarmAug #LLM # Safety #EfficiencyBoost #Research #AI #MachineLearning | {
"avatarUrl": "/avatars/6cda37befc873a92ed6d5dcba507954a.svg",
"fullname": "Haebin Seong",
"name": "hbseong",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 13,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐",
"users": [
"John6666",
"djuna",
"SangeethaKumari",
"drewThomasson",
"AtAndDev",
"Jason233"
],
"count": 6
},
{
"reaction": "๐",
"users": [
"iojvsuynv",
"Rsln",
"AtAndDev",
"Moibe"
],
"count": 4
},
{
"reaction": "๐ฅ",
"users": [
"Yersel",
"AtAndDev",
"daniel-ltw"
],
"count": 3
}
] | 2024-11-06T06:56:19.000Z | 2024-11-06T06:56:19.162Z | [] | /posts/hbseong/102235619824271 | 3,291 | 0 |
662164811009502 | [
{
"type": "text",
"value": "Effortlessly stay up-to-date with AI research trends using a new AI tool, \"AI Paper Reviewer\" !! ",
"raw": "Effortlessly stay up-to-date with AI research trends using a new AI tool, \"AI Paper Reviewer\" !! ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "It analyzes a list of Hugging Face Daily Papers(w/ ",
"raw": "It analyzes a list of Hugging Face Daily Papers(w/ ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@akhaliq",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "akhaliq",
"label": null,
"lang": null
},
{
"type": "text",
"value": ") and turn them into insightful blog posts. This project leverages Gemini models (1.5 Pro, 1.5 Flash, and 1.5 Flash-8B) for content generation and Upstage Document Parse for parsing the layout and contents. ",
"raw": ") and turn them into insightful blog posts. This project leverages Gemini models (1.5 Pro, 1.5 Flash, and 1.5 Flash-8B) for content generation and Upstage Document Parse for parsing the layout and contents. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "blog link: ",
"raw": "blog link: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://deep-diver.github.io/ai-paper-reviewer/",
"href": "https://deep-diver.github.io/ai-paper-reviewer/",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Also, here is the link of GitHub repository for parsing and generating pipeline. By using this, you can easily build your own GitHub static pages based on any arXiv papers with your own interest!",
"raw": "Also, here is the link of GitHub repository for parsing and generating pipeline. By using this, you can easily build your own GitHub static pages based on any arXiv papers with your own interest!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": ": ",
"raw": ": ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/deep-diver/paper-reviewer",
"href": "https://github.com/deep-diver/paper-reviewer",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Effortlessly stay up-to-date with AI research trends using a new AI tool, "AI Paper Reviewer" !!
It analyzes a list of Hugging Face Daily Papers(w/ @akhaliq) and turn them into insightful blog posts. This project leverages Gemini models (1.5 Pro, 1.5 Flash, and 1.5 Flash-8B) for content generation and Upstage Document Parse for parsing the layout and contents.
blog link: https://deep-diver.github.io/ai-paper-reviewer/
Also, here is the link of GitHub repository for parsing and generating pipeline. By using this, you can easily build your own GitHub static pages based on any arXiv papers with your own interest!
: https://github.com/deep-diver/paper-reviewer | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1659971187637-60d3b57ad7b174177faabd6e.jpeg",
"fullname": "chansung park",
"name": "chansung",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 2695,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/60d3b57ad7b174177faabd6e/mcLEhjR9rT3IF0EGX2rQF.png"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg",
"fullname": "AK",
"name": "akhaliq",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 5205
}
] | [
{
"reaction": "๐",
"users": [
"abdul-manan-abdul",
"chansung",
"DenisDing",
"kaki-paper",
"John6666",
"fractalego",
"Chroma111",
"robthepirate",
"s3nh",
"AtAndDev",
"dingo-actual",
"oceansweep",
"KimRina",
"JackAGI",
"chenyuppy",
"Ngrthm"
],
"count": 16
},
{
"reaction": "๐ค",
"users": [
"prithivMLmods",
"Chroma111",
"AtAndDev"
],
"count": 3
}
] | 2024-11-06T05:02:54.000Z | 2024-11-06T05:02:54.932Z | [] | /posts/chansung/662164811009502 | 4,471 | 0 |
192485637682391 | [
{
"type": "text",
"value": "I still think whitespace in tokenizers are so dumb.",
"raw": "I still think whitespace in tokenizers are so dumb.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Congrats, you just doubled your vocab size for no reason.",
"raw": "Congrats, you just doubled your vocab size for no reason.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | I still think whitespace in tokenizers are so dumb.
Congrats, you just doubled your vocab size for no reason. | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/659f000b83abded48e190901/BnXL_XYbVX6PHngfQLECW.png",
"fullname": "Noa Roggendorff",
"name": "nroggendorff",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 141,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐",
"users": [
"John6666",
"Clausss",
"Joseph717171",
"alielfilali01",
"xi0v",
"Josephgflowers",
"Omarito2412"
],
"count": 7
},
{
"reaction": "๐",
"users": [
"Anthony10"
],
"count": 1
}
] | 2024-11-05T16:16:29.000Z | 2024-11-21T01:59:41.820Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6640bbd0220cfa8cbfdce080/wiAHUu5ewawyipNs0YFBR.png",
"fullname": "John Smith",
"name": "John6666",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 398,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/659f000b83abded48e190901/BnXL_XYbVX6PHngfQLECW.png",
"fullname": "Noa Roggendorff",
"name": "nroggendorff",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 141,
"isFollowing": false
}
] | /posts/nroggendorff/192485637682391 | 2,214 | 3 |
254238798418067 | [
{
"type": "text",
"value": "๐ซต๐พ LM Studio is hiring engineers who know the ins and outs of NodeJS & want to work on local LLMs. ",
"raw": "๐ซต๐พ LM Studio is hiring engineers who know the ins and outs of NodeJS & want to work on local LLMs. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Know anyone who might be interested?",
"raw": "Know anyone who might be interested?",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Apply here: ",
"raw": "Apply here: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://docs.google.com/forms/d/e/1FAIpQLSc_786-_i_q4fo5ESqYnNyjIH0B5Rs45QIwejd_NV5AjNDZ7A/viewform",
"href": "https://docs.google.com/forms/d/e/1FAIpQLSc_786-_i_q4fo5ESqYnNyjIH0B5Rs45QIwejd_NV5AjNDZ7A/viewform",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐ซต๐พ LM Studio is hiring engineers who know the ins and outs of NodeJS & want to work on local LLMs.
Know anyone who might be interested?
Apply here: https://docs.google.com/forms/d/e/1FAIpQLSc_786-_i_q4fo5ESqYnNyjIH0B5Rs45QIwejd_NV5AjNDZ7A/viewform | {
"avatarUrl": "/avatars/dc348e39cfcda272e95f206dbe8c9de7.svg",
"fullname": "Yagil Burowski",
"name": "yagilb",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2086,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐",
"users": [
"Hooo5",
"abdul-manan-abdul",
"adorkin",
"adamelliotfields"
],
"count": 4
},
{
"reaction": "๐",
"users": [
"John6666",
"louisbrulenaudet"
],
"count": 2
}
] | 2024-11-05T15:39:44.000Z | 2024-11-05T15:39:44.006Z | [] | /posts/yagilb/254238798418067 | 2,588 | 0 |
254023371114508 | [
{
"type": "text",
"value": "Glad to see Idefics2 making its way into the awesome OpenVLM Leaderboard which ranks VLMs. ๐",
"raw": "Glad to see Idefics2 making its way into the awesome OpenVLM Leaderboard which ranks VLMs. ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "2nd in its category (<10B parameters and open weights)!",
"raw": "2nd in its category (<10B parameters and open weights)!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "While InternLM-XComposer2 uses proprietary data, Idefics2 is built solely using openly available data.",
"raw": "While InternLM-XComposer2 uses proprietary data, Idefics2 is built solely using openly available data.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Leaderboard: ",
"raw": "Leaderboard: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/opencompass/open_vlm_leaderboard",
"href": null,
"resource": {
"type": "space",
"id": "opencompass/open_vlm_leaderboard",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/opencompass/open_vlm_leaderboard",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Model: ",
"raw": "Model: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/HuggingFaceM4/idefics2-8b",
"href": null,
"resource": {
"type": "model",
"id": "HuggingFaceM4/idefics2-8b",
"discussionNum": null
},
"url": "https://huggingface.co/HuggingFaceM4/idefics2-8b",
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Glad to see Idefics2 making its way into the awesome OpenVLM Leaderboard which ranks VLMs. ๐
2nd in its category (<10B parameters and open weights)!
While InternLM-XComposer2 uses proprietary data, Idefics2 is built solely using openly available data.
Leaderboard: https://huggingface.co/spaces/opencompass/open_vlm_leaderboard
Model: https://huggingface.co/HuggingFaceM4/idefics2-8b | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1619623771844-5ecea265968f6028e0559fa5.jpeg",
"fullname": "Victor Sanh",
"name": "VictorSanh",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 206,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/5ecea265968f6028e0559fa5/n98JzLigJdoGHpznC14eP.jpeg"
}
] | [] | [
{
"reaction": "๐ฅ",
"users": [
"julien-c",
"yjernite",
"lunarflu",
"not-lain",
"Cuiunbo",
"Dlbk",
"fdaudens",
"lewtun",
"Narsil",
"London12345",
"kaifahmad",
"orrzohar"
],
"count": 12
},
{
"reaction": "๐",
"users": [
"lunarflu",
"not-lain",
"Dlbk",
"lewtun"
],
"count": 4
},
{
"reaction": "โค๏ธ",
"users": [
"RonanMcGovern",
"Dlbk",
"lewtun"
],
"count": 3
},
{
"reaction": "๐ค",
"users": [
"awacke1"
],
"count": 1
}
] | 2024-04-26T17:47:08.000Z | 2024-04-30T17:20:26.155Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5dd96eb166059660ed1ee413/NQtzmrDdbG0H8qkZvRyGk.jpeg",
"fullname": "Julien Chaumond",
"name": "julien-c",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 1580,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6340651b388c3fa40f9a5bc0/av1C4_S7bHGxAzOu8lOmG.jpeg",
"fullname": "Adam Molnar",
"name": "lunarflu",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 333,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/-6Yq7oM_Ju6Zi2GEvobvb.jpeg",
"fullname": "Ronan McGovern",
"name": "RonanMcGovern",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 50,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1619623771844-5ecea265968f6028e0559fa5.jpeg",
"fullname": "Victor Sanh",
"name": "VictorSanh",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 206,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6527e89a8808d80ccff88b7a/CuGNmF1Et8KMQ0mCd1NEJ.jpeg",
"fullname": "Lain",
"name": "not-lain",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 941,
"isFollowing": false
}
] | /posts/VictorSanh/254023371114508 | 2,726 | 9 |
306371247590320 | [
{
"type": "text",
"value": "Benchmarks!",
"raw": "Benchmarks!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "I have lately been diving deep into the main benchmarks we all use to evaluate and compare models. ",
"raw": "I have lately been diving deep into the main benchmarks we all use to evaluate and compare models. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "If you've never actually looked under the hood for how benchmarks work, check out the LM eval harness from EleutherAI: ",
"raw": "If you've never actually looked under the hood for how benchmarks work, check out the LM eval harness from EleutherAI: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/EleutherAI/lm-evaluation-harness",
"href": "https://github.com/EleutherAI/lm-evaluation-harness",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "+ check out the benchmark datasets, you can find the ones for the LLM leaderboard on the about tab here: ",
"raw": "+ check out the benchmark datasets, you can find the ones for the LLM leaderboard on the about tab here: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard",
"href": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": ", then click the dataset and actually peak at the data that comprises these benchmarks.",
"raw": ", then click the dataset and actually peak at the data that comprises these benchmarks.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "It feels to me like benchmarks only represent a tiny portion of what we actually use and want LLMs for, and I doubt I'm alone in that sentiment. ",
"raw": "It feels to me like benchmarks only represent a tiny portion of what we actually use and want LLMs for, and I doubt I'm alone in that sentiment. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Beyond this, the actual evaluations of responses from models are extremely strict and often use even rudimentary NLP techniques when, at this point, we have LLMs themselves that are more than capable at evaluating and scoring responses. ",
"raw": "Beyond this, the actual evaluations of responses from models are extremely strict and often use even rudimentary NLP techniques when, at this point, we have LLMs themselves that are more than capable at evaluating and scoring responses. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "It feels like we've made great strides in the quality of LLMs themselves, but almost no change in the quality of how we benchmark.",
"raw": "It feels like we've made great strides in the quality of LLMs themselves, but almost no change in the quality of how we benchmark.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "If you have any ideas for how benchmarks could be a better assessment of an LLM, or know of good research papers that tackle this challenge, please share! ",
"raw": "If you have any ideas for how benchmarks could be a better assessment of an LLM, or know of good research papers that tackle this challenge, please share! ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Benchmarks!
I have lately been diving deep into the main benchmarks we all use to evaluate and compare models.
If you've never actually looked under the hood for how benchmarks work, check out the LM eval harness from EleutherAI: https://github.com/EleutherAI/lm-evaluation-harness
+ check out the benchmark datasets, you can find the ones for the LLM leaderboard on the about tab here: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard, then click the dataset and actually peak at the data that comprises these benchmarks.
It feels to me like benchmarks only represent a tiny portion of what we actually use and want LLMs for, and I doubt I'm alone in that sentiment.
Beyond this, the actual evaluations of responses from models are extremely strict and often use even rudimentary NLP techniques when, at this point, we have LLMs themselves that are more than capable at evaluating and scoring responses.
It feels like we've made great strides in the quality of LLMs themselves, but almost no change in the quality of how we benchmark.
If you have any ideas for how benchmarks could be a better assessment of an LLM, or know of good research papers that tackle this challenge, please share! | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1626358426339-noauth.png",
"fullname": "Harrison Kinsley",
"name": "Sentdex",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 3035,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐",
"users": [
"julien-c",
"Dlbk",
"lewtun",
"dillfrescott",
"mmhamdy",
"Noomam",
"welkson"
],
"count": 7
},
{
"reaction": "๐",
"users": [
"mosharafh",
"jdagh"
],
"count": 2
}
] | 2024-04-26T15:21:40.000Z | 2024-06-10T12:34:52.164Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1650745211725-noauth.png",
"fullname": "Mohammed Hamdy",
"name": "mmhamdy",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 38,
"isFollowing": false
}
] | /posts/Sentdex/306371247590320 | 5,615 | 3 |
488163988863015 | [
{
"type": "text",
"value": "So hard to keep up with pace!!! Lots of new Chinese fine-tunes are being released on HF",
"raw": "So hard to keep up with pace!!! Lots of new Chinese fine-tunes are being released on HF",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "So I asked my agent to create a collection",
"raw": "So I asked my agent to create a collection",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/xianbao/llama3-zh-662ba8503bdfe51948a28403",
"href": null,
"resource": {
"type": "collection",
"id": "xianbao/llama3-zh-662ba8503bdfe51948a28403",
"discussionNum": null
},
"url": "https://huggingface.co/collections/xianbao/llama3-zh-662ba8503bdfe51948a28403",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "code: ",
"raw": "code: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://colab.research.google.com/drive/1ap6fP-VytZE367Nqk26DeQqgQkYaf-cD#scrollTo=eljRbYb4c92M",
"href": "https://colab.research.google.com/drive/1ap6fP-VytZE367Nqk26DeQqgQkYaf-cD#scrollTo=eljRbYb4c92M",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Would be nice to run then regularly. Any thoughts / suggestions on where to host this cron job?",
"raw": "Would be nice to run then regularly. Any thoughts / suggestions on where to host this cron job?",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | So hard to keep up with pace!!! Lots of new Chinese fine-tunes are being released on HF
So I asked my agent to create a collection
https://huggingface.co/collections/xianbao/llama3-zh-662ba8503bdfe51948a28403
code: https://colab.research.google.com/drive/1ap6fP-VytZE367Nqk26DeQqgQkYaf-cD#scrollTo=eljRbYb4c92M
Would be nice to run then regularly. Any thoughts / suggestions on where to host this cron job? | {
"avatarUrl": "/avatars/703dd06469aaac724c94f622262b14e8.svg",
"fullname": "Tiezhen WANG",
"name": "xianbao",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 88,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/62d22496c58f969c152bcefd/hfOYJGI7dL0Jq6uQb0W19.png"
}
] | [] | [
{
"reaction": "๐ฅ",
"users": [
"victor",
"jharshraj",
"Jaye13",
"Dlbk",
"fdaudens",
"svjack",
"Tonic"
],
"count": 7
}
] | 2024-04-26T14:23:45.000Z | 2024-04-30T16:50:03.949Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62a3bb1cd0d8c2c2169f0b88/eT2TS0IlQbZtz-F_zHLz9.jpeg",
"fullname": "Joseph [open/acc] Pollack",
"name": "Tonic",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 313,
"isFollowing": false
}
] | /posts/xianbao/488163988863015 | 1,855 | 1 |
799445692954927 | [
{
"type": "text",
"value": "How do Microsoft and Alphabet (Google) results compare?",
"raw": "How do Microsoft and Alphabet (Google) results compare?",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Microsoft Reports Rising Revenues as A.I. Investments Bear Fruit",
"raw": "Microsoft Reports Rising Revenues as A.I. Investments Bear Fruit",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- 17 % jump in revenue and a 20 % increase in profit for the first three months of the year.",
"raw": "- 17 % jump in revenue and a 20 % increase in profit for the first three months of the year.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Revenue was $61.9 billion, up from $52.9 billion a year earlier. ",
"raw": "- Revenue was $61.9 billion, up from $52.9 billion a year earlier. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Profit hit $21.9 billion, up from $18.3 billion.",
"raw": "- Profit hit $21.9 billion, up from $18.3 billion.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- More than a fifth of that growth came from its generative A.I. services",
"raw": "- More than a fifth of that growth came from its generative A.I. services",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.nytimes.com/2024/04/25/technology/microsoft-earnings.html",
"href": "https://www.nytimes.com/2024/04/25/technology/microsoft-earnings.html",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Alphabetโs Revenue Jumps 15% to $80.5 Billion",
"raw": "Alphabetโs Revenue Jumps 15% to $80.5 Billion",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- $80.5 billion in quarterly sales, up 15 % from a year earlier. Profit climbed 36 % to $23.7 billion.",
"raw": "- $80.5 billion in quarterly sales, up 15 % from a year earlier. Profit climbed 36 % to $23.7 billion.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- For the first time, a dividend of 20 cents per share",
"raw": "- For the first time, a dividend of 20 cents per share",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- It spent $12 billion on capital expenditures in the first quarter, soaring 91 % from a year earlier.",
"raw": "- It spent $12 billion on capital expenditures in the first quarter, soaring 91 % from a year earlier.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.nytimes.com/2024/04/25/technology/alphabet-earnings.html",
"href": "https://www.nytimes.com/2024/04/25/technology/alphabet-earnings.html",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Metaโs Open Source Llama 3 Is Already Nipping at OpenAIโs Heels - Wired",
"raw": "Metaโs Open Source Llama 3 Is Already Nipping at OpenAIโs Heels - Wired",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- \"if open source models prove competitive, developers and entrepreneurs may decide to stop paying to access the latest model from OpenAI or Google and use Llama 3 or one of the other increasingly powerful open source models that are popping up.\"",
"raw": "- \"if open source models prove competitive, developers and entrepreneurs may decide to stop paying to access the latest model from OpenAI or Google and use Llama 3 or one of the other increasingly powerful open source models that are popping up.\"",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- \"Open models appear to be dropping at an impressive clip.\"",
"raw": "- \"Open models appear to be dropping at an impressive clip.\"",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.wired.com/story/metas-open-source-llama-3-nipping-at-openais-heels/",
"href": "https://www.wired.com/story/metas-open-source-llama-3-nipping-at-openais-heels/",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | How do Microsoft and Alphabet (Google) results compare?
Microsoft Reports Rising Revenues as A.I. Investments Bear Fruit
- 17 % jump in revenue and a 20 % increase in profit for the first three months of the year.
- Revenue was $61.9 billion, up from $52.9 billion a year earlier.
- Profit hit $21.9 billion, up from $18.3 billion.
- More than a fifth of that growth came from its generative A.I. services
https://www.nytimes.com/2024/04/25/technology/microsoft-earnings.html
Alphabetโs Revenue Jumps 15% to $80.5 Billion
- $80.5 billion in quarterly sales, up 15 % from a year earlier. Profit climbed 36 % to $23.7 billion.
- For the first time, a dividend of 20 cents per share
- It spent $12 billion on capital expenditures in the first quarter, soaring 91 % from a year earlier.
https://www.nytimes.com/2024/04/25/technology/alphabet-earnings.html
Metaโs Open Source Llama 3 Is Already Nipping at OpenAIโs Heels - Wired
- "if open source models prove competitive, developers and entrepreneurs may decide to stop paying to access the latest model from OpenAI or Google and use Llama 3 or one of the other increasingly powerful open source models that are popping up."
- "Open models appear to be dropping at an impressive clip."
https://www.wired.com/story/metas-open-source-llama-3-nipping-at-openais-heels/ | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg",
"fullname": "Florent Daudens",
"name": "fdaudens",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 384,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐",
"users": [
"eliebak",
"TravelingMan"
],
"count": 2
}
] | 2024-04-26T14:01:12.000Z | 2024-04-26T14:01:12.675Z | [] | /posts/fdaudens/799445692954927 | 1,574 | 0 |
215400973233117 | [
{
"type": "text",
"value": "Announcing that we are on our way to solve a long standing issue of document processing: correction of OCR mistakes. Pleias publishes the largest dataset to date with automated OCR correction, 1 billion words in English, French, German and Italian.",
"raw": "Announcing that we are on our way to solve a long standing issue of document processing: correction of OCR mistakes. Pleias publishes the largest dataset to date with automated OCR correction, 1 billion words in English, French, German and Italian.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "OCR quality is long-standing issue of digitization. Cultural heritage texts are especially concerned due to the primary sources being old documents (with many artifacts, blots, degradation) and to the limitation of OCR technology for historical scripts. When we released Common Corpus, a 500 Billion words corpus in the public domain, this was the primary criticism.",
"raw": "OCR quality is long-standing issue of digitization. Cultural heritage texts are especially concerned due to the primary sources being old documents (with many artifacts, blots, degradation) and to the limitation of OCR technology for historical scripts. When we released Common Corpus, a 500 Billion words corpus in the public domain, this was the primary criticism.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Recent breakthrough in post-OCR correction has been made possible thanks to progress in open LLM research and several months of dedicated training and alignment by Pleias as well as the HPC resources from GENCIโIDRIS (Grant 2023-AD011014736) on Jean-Zay.",
"raw": "Recent breakthrough in post-OCR correction has been made possible thanks to progress in open LLM research and several months of dedicated training and alignment by Pleias as well as the HPC resources from GENCIโIDRIS (Grant 2023-AD011014736) on Jean-Zay.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Announcement: ",
"raw": "Announcement: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/blog/Pclanglais/post-ocr-correction",
"href": "https://huggingface.co/blog/Pclanglais/post-ocr-correction",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Post-OCR-Correction dataset: ",
"raw": "Post-OCR-Correction dataset: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/datasets/PleIAs/Post-OCR-Correction",
"href": "https://huggingface.co/datasets/PleIAs/Post-OCR-Correction",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Announcing that we are on our way to solve a long standing issue of document processing: correction of OCR mistakes. Pleias publishes the largest dataset to date with automated OCR correction, 1 billion words in English, French, German and Italian.
OCR quality is long-standing issue of digitization. Cultural heritage texts are especially concerned due to the primary sources being old documents (with many artifacts, blots, degradation) and to the limitation of OCR technology for historical scripts. When we released Common Corpus, a 500 Billion words corpus in the public domain, this was the primary criticism.
Recent breakthrough in post-OCR correction has been made possible thanks to progress in open LLM research and several months of dedicated training and alignment by Pleias as well as the HPC resources from GENCIโIDRIS (Grant 2023-AD011014736) on Jean-Zay.
Announcement: https://huggingface.co/blog/Pclanglais/post-ocr-correction
Post-OCR-Correction dataset: https://huggingface.co/datasets/PleIAs/Post-OCR-Correction | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64ce091a9e9ca8123d7a42b0/OEPggp82RwigxNLL35LgT.jpeg",
"fullname": "Pierre-Carl Langlais",
"name": "Pclanglais",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 191,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐ฅ",
"users": [
"fdaudens",
"davanstrien",
"andrewrreed",
"jharshraj",
"Dlbk",
"AkimfromParis",
"louisbrulenaudet",
"mexicanamerican",
"VictorSanh",
"victor",
"Molbap",
"clem",
"J-Hansen",
"LucasThil"
],
"count": 14
}
] | 2024-04-26T13:24:31.000Z | 2024-04-26T13:24:31.329Z | [] | /posts/Pclanglais/215400973233117 | 2,326 | 0 |
980211801675520 | [
{
"type": "text",
"value": "Today, April 26, is the Day of the Tatar Language! ๐ ",
"raw": "Today, April 26, is the Day of the Tatar Language! ๐ ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "To celebrate, we release our new language model, Tweety Tatar ๐ฃ ",
"raw": "To celebrate, we release our new language model, Tweety Tatar ๐ฃ ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/Tweeties/tweety-tatar-base-7b-2024-v1",
"href": "https://huggingface.co/Tweeties/tweety-tatar-base-7b-2024-v1",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "The model was converted from Mistral Instruct v0.2 using a novel technique called trans-tokenization. As a result, the model uses a brand-new tokenizer, fully tailored for the Tatar language.",
"raw": "The model was converted from Mistral Instruct v0.2 using a novel technique called trans-tokenization. As a result, the model uses a brand-new tokenizer, fully tailored for the Tatar language.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "We also release a model which can be finetuned for translation of English or Russian into Tatar, and achieves a performance similar to commercial offerings:",
"raw": "We also release a model which can be finetuned for translation of English or Russian into Tatar, and achieves a performance similar to commercial offerings:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/Tweeties/tweety-tatar-hydra-base-7b-2024-v1",
"href": "https://huggingface.co/Tweeties/tweety-tatar-hydra-base-7b-2024-v1",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "More details in our upcoming paper ๐",
"raw": "More details in our upcoming paper ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Franรงois REMY, Pieter Delobelle, Alfiya Khabibullina",
"raw": "Franรงois REMY, Pieter Delobelle, Alfiya Khabibullina",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "ะขะฐัะฐั ัะตะปะต ะบำฉะฝะต ะฑะตะปำะฝ!",
"raw": "ะขะฐัะฐั ัะตะปะต ะบำฉะฝะต ะฑะตะปำะฝ!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Today, April 26, is the Day of the Tatar Language! ๐
To celebrate, we release our new language model, Tweety Tatar ๐ฃ
https://huggingface.co/Tweeties/tweety-tatar-base-7b-2024-v1
The model was converted from Mistral Instruct v0.2 using a novel technique called trans-tokenization. As a result, the model uses a brand-new tokenizer, fully tailored for the Tatar language.
We also release a model which can be finetuned for translation of English or Russian into Tatar, and achieves a performance similar to commercial offerings:
https://huggingface.co/Tweeties/tweety-tatar-hydra-base-7b-2024-v1
More details in our upcoming paper ๐
Franรงois REMY, Pieter Delobelle, Alfiya Khabibullina
ะขะฐัะฐั ัะตะปะต ะบำฉะฝะต ะฑะตะปำะฝ!
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1647276617786-5f04e8865d08220171a0ad3f.png",
"fullname": "Franรงois Remy",
"name": "FremyCompany",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 32,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/5f04e8865d08220171a0ad3f/Ul3JI2IE93x5lX48V34gt.png"
}
] | [] | [
{
"reaction": "โค๏ธ",
"users": [
"justalphie",
"pdelobelle",
"monsoon-nlp",
"murat",
"Moibe",
"IPSAN",
"midwestcyr"
],
"count": 7
}
] | 2024-04-26T12:38:22.000Z | 2024-05-02T21:49:46.586Z | [
{
"avatarUrl": "/avatars/ae2237bea823677afff0bc4cf30dd924.svg",
"fullname": "Alfiya Khabibullina",
"name": "justalphie",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1647276617786-5f04e8865d08220171a0ad3f.png",
"fullname": "Franรงois Remy",
"name": "FremyCompany",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 32,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6487239cca30096ea9f52115/HMte9wjKJgfcxsO-5vb_Q.jpeg",
"fullname": "dame rajee",
"name": "damerajee",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 11,
"isFollowing": false
}
] | /posts/FremyCompany/980211801675520 | 2,098 | 3 |
788974065057418 | [
{
"type": "text",
"value": "Finally, Qwen1.5-110B is out! With weights and demo!",
"raw": "Finally, Qwen1.5-110B is out! With weights and demo!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Blog: ",
"raw": "Blog: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://qwenlm.github.io/blog/qwen1.5-110b/",
"href": "https://qwenlm.github.io/blog/qwen1.5-110b/",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Demo: ",
"raw": "Demo: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/Qwen/Qwen1.5-110B-Chat-demo",
"href": null,
"resource": {
"type": "space",
"id": "Qwen/Qwen1.5-110B-Chat-demo",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/Qwen/Qwen1.5-110B-Chat-demo",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Base: ",
"raw": "Base: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/Qwen/Qwen1.5-110B",
"href": null,
"resource": {
"type": "model",
"id": "Qwen/Qwen1.5-110B",
"discussionNum": null
},
"url": "https://huggingface.co/Qwen/Qwen1.5-110B",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Chat: ",
"raw": "Chat: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/Qwen/Qwen1.5-110B-Chat",
"href": null,
"resource": {
"type": "model",
"id": "Qwen/Qwen1.5-110B-Chat",
"discussionNum": null
},
"url": "https://huggingface.co/Qwen/Qwen1.5-110B-Chat",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "This model has some specific features:",
"raw": "This model has some specific features:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "* GQA",
"raw": "* GQA",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "* 32K token context length",
"raw": "* 32K token context length",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "* Multilingual support",
"raw": "* Multilingual support",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "We feel good about its performance on benchmarks, including those for base models and chat models, but we still need more of your testing and feedback to help us know its capabilities and limitations!",
"raw": "We feel good about its performance on benchmarks, including those for base models and chat models, but we still need more of your testing and feedback to help us know its capabilities and limitations!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Additionally, the base model has not learned chatml tokens. Yeah if you use chatml format, you need to be careful about it!",
"raw": "Additionally, the base model has not learned chatml tokens. Yeah if you use chatml format, you need to be careful about it!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Enjoy and stay tuned for Qwen2!",
"raw": "Enjoy and stay tuned for Qwen2!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Finally, Qwen1.5-110B is out! With weights and demo!
Blog: https://qwenlm.github.io/blog/qwen1.5-110b/
Demo: https://huggingface.co/spaces/Qwen/Qwen1.5-110B-Chat-demo
Base: https://huggingface.co/Qwen/Qwen1.5-110B
Chat: https://huggingface.co/Qwen/Qwen1.5-110B-Chat
This model has some specific features:
* GQA
* 32K token context length
* Multilingual support
We feel good about its performance on benchmarks, including those for base models and chat models, but we still need more of your testing and feedback to help us know its capabilities and limitations!
Additionally, the base model has not learned chatml tokens. Yeah if you use chatml format, you need to be careful about it!
Enjoy and stay tuned for Qwen2!
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/620760a26e3b7210c2ff1943/VC-rKqimF6yxGESNVlPoR.jpeg",
"fullname": "Junyang Lin",
"name": "JustinLin610",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 132,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/620760a26e3b7210c2ff1943/-69aOGsd9bucqzy8MysXT.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/620760a26e3b7210c2ff1943/io_sXDv9bSJ3f15xFbWYn.jpeg"
}
] | [] | [
{
"reaction": "๐ฅ",
"users": [
"louisbrulenaudet",
"AdinaY",
"hiyouga",
"tomaarsen",
"xianbao",
"lunarflu",
"martineden",
"Chunte",
"lewtun",
"svjack"
],
"count": 10
},
{
"reaction": "๐",
"users": [
"AdinaY",
"hiyouga",
"tomaarsen",
"fdaudens",
"xianbao",
"lunarflu",
"Chunte",
"lewtun"
],
"count": 8
},
{
"reaction": "๐",
"users": [
"aust-t",
"svjack"
],
"count": 2
}
] | 2024-04-26T10:54:39.000Z | 2024-04-26T10:54:39.740Z | [] | /posts/JustinLin610/788974065057418 | 2,698 | 0 |
303634956982953 | [
{
"type": "text",
"value": "๐๐ญ๐ฅ New Research Alert (Avatars Collection)! ๐ฅ๐ญ๐",
"raw": "๐๐ญ๐ฅ New Research Alert (Avatars Collection)! ๐ฅ๐ญ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Title: ConsistentID: Portrait Generation with Multimodal Fine-Grained Identity Preserving ๐",
"raw": "๐ Title: ConsistentID: Portrait Generation with Multimodal Fine-Grained Identity Preserving ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Description: ConsistentID is a novel portrait generation method that preserves the fine-grained identity of a single reference image.",
"raw": "๐ Description: ConsistentID is a novel portrait generation method that preserves the fine-grained identity of a single reference image.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ฅ Authors: Jiehui Huang et al.",
"raw": "๐ฅ Authors: Jiehui Huang et al.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Paper: ",
"raw": "๐ Paper: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2404.16771",
"href": null,
"resource": {
"type": "paper",
"id": "2404.16771",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2404.16771",
"code": null,
"user": null,
"label": "ConsistentID: Portrait Generation with Multimodal Fine-Grained Identity\n Preserving (2404.16771)",
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Github Page: ",
"raw": "๐ Github Page: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://ssugarwh.github.io/consistentid.github.io/",
"href": "https://ssugarwh.github.io/consistentid.github.io/",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Repository: ",
"raw": "๐ Repository: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/JackAILab/ConsistentID",
"href": "https://github.com/JackAILab/ConsistentID",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ More Papers: more cutting-edge research presented at other conferences in the ",
"raw": "๐ More Papers: more cutting-edge research presented at other conferences in the ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers",
"href": null,
"resource": {
"type": "space",
"id": "DmitryRyumin/NewEraAI-Papers",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " curated by ",
"raw": " curated by ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@DmitryRyumin",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "DmitryRyumin",
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Added to the Avatars Collection: ",
"raw": "๐ Added to the Avatars Collection: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/DmitryRyumin/avatars-65df37cdf81fec13d4dbac36",
"href": null,
"resource": {
"type": "collection",
"id": "DmitryRyumin/avatars-65df37cdf81fec13d4dbac36",
"discussionNum": null
},
"url": "https://huggingface.co/collections/DmitryRyumin/avatars-65df37cdf81fec13d4dbac36",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Keywords: #ConsistentID #PortraitGeneration #IdentityPreservation #FineGrainedControl #ImageSynthesis #GenerativeModels #ComputerVision #DeepLearning",
"raw": "๐ Keywords: #ConsistentID #PortraitGeneration #IdentityPreservation #FineGrainedControl #ImageSynthesis #GenerativeModels #ComputerVision #DeepLearning",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐๐ญ๐ฅ New Research Alert (Avatars Collection)! ๐ฅ๐ญ๐
๐ Title: ConsistentID: Portrait Generation with Multimodal Fine-Grained Identity Preserving ๐
๐ Description: ConsistentID is a novel portrait generation method that preserves the fine-grained identity of a single reference image.
๐ฅ Authors: Jiehui Huang et al.
๐ Paper: https://huggingface.co/papers/2404.16771
๐ Github Page: https://ssugarwh.github.io/consistentid.github.io/
๐ Repository: https://github.com/JackAILab/ConsistentID
๐ More Papers: more cutting-edge research presented at other conferences in the https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers curated by @DmitryRyumin
๐ Added to the Avatars Collection: https://huggingface.co/collections/DmitryRyumin/avatars-65df37cdf81fec13d4dbac36
๐ Keywords: #ConsistentID #PortraitGeneration #IdentityPreservation #FineGrainedControl #ImageSynthesis #GenerativeModels #ComputerVision #DeepLearning | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/nRCxbVng_PPBqKd-Z3KVc.jpeg",
"fullname": "Dmitry Ryumin",
"name": "DmitryRyumin",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 377,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/7kUY_LWQ8OID_rNUeNs_Y.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/CX2c0NQCmiivMRelcwRLC.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/IlqikKJG8GzaZN4tCa3O-.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/mHyPz34KZFsi1eHchb_aX.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/boAwL7dEuzEJ4hJ6gg0zC.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/I2189UC6_IGGUCNofE3NY.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/Y5pZvPgpSsVsBJ45nz2s6.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/T-xw0K6xAus4etDJjgxHb.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/diQlW2sVBwQwo31oZYDTq.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/i1CXxwKmkVBbvJLwspzdf.png"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/nRCxbVng_PPBqKd-Z3KVc.jpeg",
"fullname": "Dmitry Ryumin",
"name": "DmitryRyumin",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 377
}
] | [
{
"reaction": "๐ฅ",
"users": [
"DmitryRyumin",
"samusenps",
"alicegaz"
],
"count": 3
}
] | 2024-04-26T10:16:54.000Z | 2024-04-26T10:16:54.998Z | [] | /posts/DmitryRyumin/303634956982953 | 1,489 | 0 |
949331911577833 | [
{
"type": "text",
"value": "๐ฆ๐ฆ LLaMA Duo project update ",
"raw": "๐ฆ๐ฆ LLaMA Duo project update ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Last time, I gave a brief introduction about LLaMA Duo project with ",
"raw": "Last time, I gave a brief introduction about LLaMA Duo project with ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@sayakpaul",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "sayakpaul",
"label": null,
"lang": null
},
{
"type": "text",
"value": " . It is a simple toolset to aligning sLLM with service LLM with coverage dataset ๐๐ป (",
"raw": " . It is a simple toolset to aligning sLLM with service LLM with coverage dataset ๐๐ป (",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/posts/chansung/708646454991943",
"href": "https://huggingface.co/posts/chansung/708646454991943",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": ").",
"raw": ").",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- coverage dataset is what we believe to be the most important/desired (instruction, response) pairs. In system thinking, each instruction could be an analogy of a function from traditional programming. We make unit tests and measure the coverage % for all the features/functions. Similarly, we need to ensure if our fine-tuned model could handle what % of given instructions from coverage dataset satisfactory (hence coverage dataset).",
"raw": "- coverage dataset is what we believe to be the most important/desired (instruction, response) pairs. In system thinking, each instruction could be an analogy of a function from traditional programming. We make unit tests and measure the coverage % for all the features/functions. Similarly, we need to ensure if our fine-tuned model could handle what % of given instructions from coverage dataset satisfactory (hence coverage dataset).",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "We have tested it with \"Coding\" category of data from ",
"raw": "We have tested it with \"Coding\" category of data from ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/HuggingFaceH4/no_robots",
"href": null,
"resource": {
"type": "dataset",
"id": "HuggingFaceH4/no_robots",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/HuggingFaceH4/no_robots",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " dataset. It has about 300 SFT training data points under Coding category. After fine-tuning Gemma 7B model on that, the result was very poor. LLaMA Duo's evaluation tool gave < 20% of metrics in similarity and preciseness on the test split. ",
"raw": " dataset. It has about 300 SFT training data points under Coding category. After fine-tuning Gemma 7B model on that, the result was very poor. LLaMA Duo's evaluation tool gave < 20% of metrics in similarity and preciseness on the test split. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "So, we used LLaMA Duo's synthetic data generation tool to generate 60k data points that looks similar to the original dataset. We first created ~10k synthetic data points, then created 50k more based on the synthetic dataset itself. ",
"raw": "So, we used LLaMA Duo's synthetic data generation tool to generate 60k data points that looks similar to the original dataset. We first created ~10k synthetic data points, then created 50k more based on the synthetic dataset itself. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "After fine-tuning Gemma 7B on the 60k synthetic dataset, the evaluation result went up to 80~90% high. Also, when testing out the model in UI, it tends to give good responses. ",
"raw": "After fine-tuning Gemma 7B on the 60k synthetic dataset, the evaluation result went up to 80~90% high. Also, when testing out the model in UI, it tends to give good responses. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "It is a good showcase to transition from service LLM to sLLM or having a backup sLLM for service LLM failure scenarios. I am going to expand this experiments on all categories of no_robots dataset. It will roughly generate > 100k data points. ",
"raw": "It is a good showcase to transition from service LLM to sLLM or having a backup sLLM for service LLM failure scenarios. I am going to expand this experiments on all categories of no_robots dataset. It will roughly generate > 100k data points. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Here are some links:",
"raw": "Here are some links:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- LLaMA Duo project repo: ",
"raw": "- LLaMA Duo project repo: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/deep-diver/llamaduo",
"href": "https://github.com/deep-diver/llamaduo",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- 60k Coding synthetic dataset: ",
"raw": "- 60k Coding synthetic dataset: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/chansung/merged_ds_coding",
"href": null,
"resource": {
"type": "dataset",
"id": "chansung/merged_ds_coding",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/chansung/merged_ds_coding",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Fine-tuned Gemma 7B model: ",
"raw": "- Fine-tuned Gemma 7B model: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/chansung/coding_llamaduo_60k_v0.2",
"href": null,
"resource": {
"type": "model",
"id": "chansung/coding_llamaduo_60k_v0.2",
"discussionNum": null
},
"url": "https://huggingface.co/chansung/coding_llamaduo_60k_v0.2",
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐ฆ๐ฆ LLaMA Duo project update
Last time, I gave a brief introduction about LLaMA Duo project with @sayakpaul . It is a simple toolset to aligning sLLM with service LLM with coverage dataset ๐๐ป (https://huggingface.co/posts/chansung/708646454991943).
- coverage dataset is what we believe to be the most important/desired (instruction, response) pairs. In system thinking, each instruction could be an analogy of a function from traditional programming. We make unit tests and measure the coverage % for all the features/functions. Similarly, we need to ensure if our fine-tuned model could handle what % of given instructions from coverage dataset satisfactory (hence coverage dataset).
We have tested it with "Coding" category of data from https://huggingface.co/datasets/HuggingFaceH4/no_robots dataset. It has about 300 SFT training data points under Coding category. After fine-tuning Gemma 7B model on that, the result was very poor. LLaMA Duo's evaluation tool gave < 20% of metrics in similarity and preciseness on the test split.
So, we used LLaMA Duo's synthetic data generation tool to generate 60k data points that looks similar to the original dataset. We first created ~10k synthetic data points, then created 50k more based on the synthetic dataset itself.
After fine-tuning Gemma 7B on the 60k synthetic dataset, the evaluation result went up to 80~90% high. Also, when testing out the model in UI, it tends to give good responses.
It is a good showcase to transition from service LLM to sLLM or having a backup sLLM for service LLM failure scenarios. I am going to expand this experiments on all categories of no_robots dataset. It will roughly generate > 100k data points.
Here are some links:
- LLaMA Duo project repo: https://github.com/deep-diver/llamaduo
- 60k Coding synthetic dataset: https://huggingface.co/datasets/chansung/merged_ds_coding
- Fine-tuned Gemma 7B model: https://huggingface.co/chansung/coding_llamaduo_60k_v0.2 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1659971187637-60d3b57ad7b174177faabd6e.jpeg",
"fullname": "chansung park",
"name": "chansung",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 2695,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/60d3b57ad7b174177faabd6e/cGesMnaoUiqcoAZHI-yIx.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/60d3b57ad7b174177faabd6e/HzSZv1N34w7amXe8__HbM.png"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1649681653581-5f7fbd813e94f16a85448745.jpeg",
"fullname": "Sayak Paul",
"name": "sayakpaul",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 459
}
] | [
{
"reaction": "๐",
"users": [
"Tonic",
"peterschmidt85",
"chansung",
"lunarflu",
"juyongjiang"
],
"count": 5
},
{
"reaction": "๐ฅ",
"users": [
"hllj",
"chansung",
"lunarflu",
"Hiraishin",
"juyongjiang"
],
"count": 5
},
{
"reaction": "โ",
"users": [
"cyb3rh4v0k",
"juyongjiang"
],
"count": 2
},
{
"reaction": "๐",
"users": [
"cyb3rh4v0k",
"juyongjiang"
],
"count": 2
}
] | 2024-04-26T07:29:41.000Z | 2024-04-26T07:29:41.036Z | [] | /posts/chansung/949331911577833 | 4,006 | 0 |
298796032259560 | [
{
"type": "text",
"value": "CatLIP",
"raw": "CatLIP",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "CLIP-level Visual Recognition Accuracy with 2.7x Faster Pre-training on Web-scale Image-Text Data",
"raw": "CLIP-level Visual Recognition Accuracy with 2.7x Faster Pre-training on Web-scale Image-Text Data",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2404.15653",
"href": null,
"resource": {
"type": "paper",
"id": "2404.15653",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2404.15653",
"code": null,
"user": null,
"label": "CatLIP: CLIP-level Visual Recognition Accuracy with 2.7x Faster\n Pre-training on Web-scale Image-Text Data (2404.15653)",
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Contrastive learning has emerged as a transformative method for learning effective visual representations through the alignment of image and text embeddings. However, pairwise similarity computation in contrastive loss between image and text pairs poses computational challenges. This paper presents a novel weakly supervised pre-training of vision models on web-scale image-text data. The proposed method reframes pre-training on image-text data as a classification task. Consequently, it eliminates the need for pairwise similarity computations in contrastive loss, achieving a remarkable 2.7times acceleration in training speed compared to contrastive learning on web-scale data. Through extensive experiments spanning diverse vision tasks, including detection and segmentation, we demonstrate that the proposed method maintains high representation quality. ",
"raw": "Contrastive learning has emerged as a transformative method for learning effective visual representations through the alignment of image and text embeddings. However, pairwise similarity computation in contrastive loss between image and text pairs poses computational challenges. This paper presents a novel weakly supervised pre-training of vision models on web-scale image-text data. The proposed method reframes pre-training on image-text data as a classification task. Consequently, it eliminates the need for pairwise similarity computations in contrastive loss, achieving a remarkable 2.7times acceleration in training speed compared to contrastive learning on web-scale data. Through extensive experiments spanning diverse vision tasks, including detection and segmentation, we demonstrate that the proposed method maintains high representation quality. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | CatLIP
CLIP-level Visual Recognition Accuracy with 2.7x Faster Pre-training on Web-scale Image-Text Data
https://huggingface.co/papers/2404.15653
Contrastive learning has emerged as a transformative method for learning effective visual representations through the alignment of image and text embeddings. However, pairwise similarity computation in contrastive loss between image and text pairs poses computational challenges. This paper presents a novel weakly supervised pre-training of vision models on web-scale image-text data. The proposed method reframes pre-training on image-text data as a classification task. Consequently, it eliminates the need for pairwise similarity computations in contrastive loss, achieving a remarkable 2.7times acceleration in training speed compared to contrastive learning on web-scale data. Through extensive experiments spanning diverse vision tasks, including detection and segmentation, we demonstrate that the proposed method maintains high representation quality.
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg",
"fullname": "AK",
"name": "akhaliq",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 5205,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/60f1abe7544c2adfd699860c/YGRQY-_Za5LLVAJMMgWK8.png"
}
] | [] | [
{
"reaction": "๐",
"users": [
"akashicmarga",
"QuocKhanh"
],
"count": 2
},
{
"reaction": "๐",
"users": [
"charlieCs",
"QuocKhanh"
],
"count": 2
},
{
"reaction": "๐ค",
"users": [
"yyBlone"
],
"count": 1
},
{
"reaction": "๐คฏ",
"users": [
"QuocKhanh"
],
"count": 1
}
] | 2024-04-26T02:51:54.000Z | 2024-04-26T02:52:10.008Z | [] | /posts/akhaliq/298796032259560 | 3,483 | 0 |
249986582135999 | [
{
"type": "text",
"value": "Updated the ",
"raw": "Updated the ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/vikhyatk/lnqa",
"href": null,
"resource": {
"type": "dataset",
"id": "vikhyatk/lnqa",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/vikhyatk/lnqa",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " dataset to include images, so you no longer need to separately download them from OpenImages!",
"raw": " dataset to include images, so you no longer need to separately download them from OpenImages!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Updated the https://huggingface.co/datasets/vikhyatk/lnqa dataset to include images, so you no longer need to separately download them from OpenImages! | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63117568fa95534e218da163/8h9zN8aKRxPLBnXW7sqY9.jpeg",
"fullname": "Vik Korrapati",
"name": "vikhyatk",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 375,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/63117568fa95534e218da163/0YWiZuv35HiIBi4yYx6mE.png"
}
] | [] | [
{
"reaction": "๐ฅ",
"users": [
"beomi",
"clem",
"akashicmarga",
"lunarflu",
"catastropiyush"
],
"count": 5
},
{
"reaction": "๐",
"users": [
"beomi",
"clem",
"lunarflu"
],
"count": 3
},
{
"reaction": "โค๏ธ",
"users": [
"samusenps",
"damerajee",
"KeilahElla"
],
"count": 3
},
{
"reaction": "๐",
"users": [
"Tonic",
"lunarflu"
],
"count": 2
}
] | 2024-04-25T22:06:13.000Z | 2024-04-25T22:06:13.213Z | [] | /posts/vikhyatk/249986582135999 | 3,049 | 0 |
781341238657310 | [
{
"type": "text",
"value": "5 interesting news stories today:",
"raw": "5 interesting news stories today:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "An AI startup made a hyperrealistic deepfake of me thatโs so good itโs scary",
"raw": "An AI startup made a hyperrealistic deepfake of me thatโs so good itโs scary",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- \"'I think we might just have to say goodbye to finding out about the truth in a quick way,โ says Sandra Wachter, a professor at the Oxford Internet Institute\"",
"raw": "- \"'I think we might just have to say goodbye to finding out about the truth in a quick way,โ says Sandra Wachter, a professor at the Oxford Internet Institute\"",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- \"Synthesia uses both large language models and diffusion models to do this. Sees itself as a platform for businesses. Its bet is this: As people spend more time watching videos on YouTube and TikTok, there will be more demand for video content.\"",
"raw": "- \"Synthesia uses both large language models and diffusion models to do this. Sees itself as a platform for businesses. Its bet is this: As people spend more time watching videos on YouTube and TikTok, there will be more demand for video content.\"",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- \"Synthesiaโs policy is to not create avatars of people without their explicit consent. But it hasnโt been immune from abuse.\"",
"raw": "- \"Synthesiaโs policy is to not create avatars of people without their explicit consent. But it hasnโt been immune from abuse.\"",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.technologyreview.com/2024/04/25/1091772/new-generative-ai-avatar-deepfake-synthesia/",
"href": "https://www.technologyreview.com/2024/04/25/1091772/new-generative-ai-avatar-deepfake-synthesia/",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "WIRED found thousands of ads running on Meta's social platforms promoting sexually explicit \"Al girlfriend\" apps.",
"raw": "WIRED found thousands of ads running on Meta's social platforms promoting sexually explicit \"Al girlfriend\" apps.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- \"Some human sex workers say the platform unfairly polices their own posts more harshly.\"",
"raw": "- \"Some human sex workers say the platform unfairly polices their own posts more harshly.\"",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- \"Many of the virtual women seen in ads reviewed by WIRED are lifelikeโif somewhat uncannyโyoung, and stereotypically pornographic.\"",
"raw": "- \"Many of the virtual women seen in ads reviewed by WIRED are lifelikeโif somewhat uncannyโyoung, and stereotypically pornographic.\"",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.wired.com/story/ads-for-explicit-ai-girlfriends-swarming-facebook-and-instagram/",
"href": "https://www.wired.com/story/ads-for-explicit-ai-girlfriends-swarming-facebook-and-instagram/",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Wall Streetโs Patience for a Costly A.I. Arms Race Is Waning",
"raw": "Wall Streetโs Patience for a Costly A.I. Arms Race Is Waning",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- \"A sell-off in Metaโs stock after the company disclosed huge investments in the technology may be a sign of investor fears about tech giantsโ spending.\"",
"raw": "- \"A sell-off in Metaโs stock after the company disclosed huge investments in the technology may be a sign of investor fears about tech giantsโ spending.\"",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- \"The company plans to spend $35 billion to $40 billion this year โ much of that on the technology.\"",
"raw": "- \"The company plans to spend $35 billion to $40 billion this year โ much of that on the technology.\"",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.nytimes.com/2024/04/25/business/dealbook/meta-artificial-intelligence-spending.html",
"href": "https://www.nytimes.com/2024/04/25/business/dealbook/meta-artificial-intelligence-spending.html",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Saudia Arabia Spends Big to Become an A.I. Superpower",
"raw": "Saudia Arabia Spends Big to Become an A.I. Superpower",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.nytimes.com/2024/04/25/technology/to-the-future-saudi-arabia-spends-big-to-become-an-ai-superpower.html",
"href": "https://www.nytimes.com/2024/04/25/technology/to-the-future-saudi-arabia-spends-big-to-become-an-ai-superpower.html",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "UK competition watchdog steps up scrutiny of big techโs role in AI startups",
"raw": "UK competition watchdog steps up scrutiny of big techโs role in AI startups",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.theguardian.com/technology/2024/apr/24/uk-competition-watchdog-steps-up-scrutiny-of-big-techs-role-in-ai-startups-cma-microsoft-amazon",
"href": "https://www.theguardian.com/technology/2024/apr/24/uk-competition-watchdog-steps-up-scrutiny-of-big-techs-role-in-ai-startups-cma-microsoft-amazon",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | 5 interesting news stories today:
An AI startup made a hyperrealistic deepfake of me thatโs so good itโs scary
- "'I think we might just have to say goodbye to finding out about the truth in a quick way,โ says Sandra Wachter, a professor at the Oxford Internet Institute"
- "Synthesia uses both large language models and diffusion models to do this. Sees itself as a platform for businesses. Its bet is this: As people spend more time watching videos on YouTube and TikTok, there will be more demand for video content."
- "Synthesiaโs policy is to not create avatars of people without their explicit consent. But it hasnโt been immune from abuse."
https://www.technologyreview.com/2024/04/25/1091772/new-generative-ai-avatar-deepfake-synthesia/
WIRED found thousands of ads running on Meta's social platforms promoting sexually explicit "Al girlfriend" apps.
- "Some human sex workers say the platform unfairly polices their own posts more harshly."
- "Many of the virtual women seen in ads reviewed by WIRED are lifelikeโif somewhat uncannyโyoung, and stereotypically pornographic."
https://www.wired.com/story/ads-for-explicit-ai-girlfriends-swarming-facebook-and-instagram/
Wall Streetโs Patience for a Costly A.I. Arms Race Is Waning
- "A sell-off in Metaโs stock after the company disclosed huge investments in the technology may be a sign of investor fears about tech giantsโ spending."
- "The company plans to spend $35 billion to $40 billion this year โ much of that on the technology."
https://www.nytimes.com/2024/04/25/business/dealbook/meta-artificial-intelligence-spending.html
Saudia Arabia Spends Big to Become an A.I. Superpower
https://www.nytimes.com/2024/04/25/technology/to-the-future-saudi-arabia-spends-big-to-become-an-ai-superpower.html
UK competition watchdog steps up scrutiny of big techโs role in AI startups
https://www.theguardian.com/technology/2024/apr/24/uk-competition-watchdog-steps-up-scrutiny-of-big-techs-role-in-ai-startups-cma-microsoft-amazon | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg",
"fullname": "Florent Daudens",
"name": "fdaudens",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 384,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐ฅ",
"users": [
"Yasir22",
"evijit",
"clem",
"noobmldude",
"JvThunder"
],
"count": 5
}
] | 2024-04-25T16:24:51.000Z | 2024-04-25T16:24:51.180Z | [] | /posts/fdaudens/781341238657310 | 2,408 | 0 |
983263103554280 | [
{
"type": "text",
"value": "๐ Today's pick in Interpretability & Analysis of LMs: by ",
"raw": "๐ Today's pick in Interpretability & Analysis of LMs: by ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@aadityasingh",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "aadityasingh",
"label": null,
"lang": null
},
{
"type": "text",
"value": " T. Moskovitz, F. Hill, S. C. Y. Chan, A. M. Saxe (",
"raw": " T. Moskovitz, F. Hill, S. C. Y. Chan, A. M. Saxe (",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@gatsbyunit",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "gatsbyunit",
"label": null,
"lang": null
},
{
"type": "text",
"value": ")",
"raw": ")",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "This work proposes a new methodology inspired by optogenetics (dubbed \"clamping\") to perform targeted ablations during training to estimate the causal effect of specific interventions on mechanism formation.",
"raw": "This work proposes a new methodology inspired by optogenetics (dubbed \"clamping\") to perform targeted ablations during training to estimate the causal effect of specific interventions on mechanism formation.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Authors use this approach to study the formation of induction heads training a 2L attention-only transformer to label examples via context information.",
"raw": "Authors use this approach to study the formation of induction heads training a 2L attention-only transformer to label examples via context information.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Notable findings:",
"raw": "Notable findings:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- The effects of induction heads are additive and redundant, with weaker heads compensating well for the ablation of a strong induction head in case the latter is ablated.",
"raw": "- The effects of induction heads are additive and redundant, with weaker heads compensating well for the ablation of a strong induction head in case the latter is ablated.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Competition between induction heads might emerge as a product of optimization pressure to converge faster, but it is not strictly necessary as all heads eventually learn to solve the task.",
"raw": "- Competition between induction heads might emerge as a product of optimization pressure to converge faster, but it is not strictly necessary as all heads eventually learn to solve the task.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Previous token heads (PTH) influence induction heads in a many-to-many fashion, with any PTH eliciting above-chance prediction from a subsequent induction head",
"raw": "- Previous token heads (PTH) influence induction heads in a many-to-many fashion, with any PTH eliciting above-chance prediction from a subsequent induction head",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Three subcircuits for induction are identified, respectively mixing token-label information (1 + 2), matching the previous occurrence of the current class in the context (3qk + 4), and copying the label of the matched class (3v + 5).",
"raw": "- Three subcircuits for induction are identified, respectively mixing token-label information (1 + 2), matching the previous occurrence of the current class in the context (3qk + 4), and copying the label of the matched class (3v + 5).",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- The formation of induction heads is slowed down by a larger number of classes & labels, with more classes and more labels slowing down the formation of the matching and copying mechanisms, respectively. This may have implications when selecting a vocabulary size for LLMs: larger vocabularies lead to an increased compression ratio and longer contexts, but they might make copying more challenging by delaying the formation of induction heads.",
"raw": "- The formation of induction heads is slowed down by a larger number of classes & labels, with more classes and more labels slowing down the formation of the matching and copying mechanisms, respectively. This may have implications when selecting a vocabulary size for LLMs: larger vocabularies lead to an increased compression ratio and longer contexts, but they might make copying more challenging by delaying the formation of induction heads.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ป Code: ",
"raw": "๐ป Code: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/aadityasingh/icl-dynamics",
"href": "https://github.com/aadityasingh/icl-dynamics",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Paper: ",
"raw": "๐ Paper: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2404.07129",
"href": null,
"resource": {
"type": "paper",
"id": "2404.07129",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2404.07129",
"code": null,
"user": null,
"label": "What needs to go right for an induction head? A mechanistic study of\n in-context learning circuits and their formation (2404.07129)",
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ All daily picks: ",
"raw": "๐ All daily picks: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/collections/gsarti/daily-picks-in-interpretability-and-analysis-ofc-lms-65ae3339949c5675d25de2f9",
"href": "https://huggingface.co/collections/gsarti/daily-picks-in-interpretability-and-analysis-ofc-lms-65ae3339949c5675d25de2f9",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐ Today's pick in Interpretability & Analysis of LMs: by @aadityasingh T. Moskovitz, F. Hill, S. C. Y. Chan, A. M. Saxe (@gatsbyunit)
This work proposes a new methodology inspired by optogenetics (dubbed "clamping") to perform targeted ablations during training to estimate the causal effect of specific interventions on mechanism formation.
Authors use this approach to study the formation of induction heads training a 2L attention-only transformer to label examples via context information.
Notable findings:
- The effects of induction heads are additive and redundant, with weaker heads compensating well for the ablation of a strong induction head in case the latter is ablated.
- Competition between induction heads might emerge as a product of optimization pressure to converge faster, but it is not strictly necessary as all heads eventually learn to solve the task.
- Previous token heads (PTH) influence induction heads in a many-to-many fashion, with any PTH eliciting above-chance prediction from a subsequent induction head
- Three subcircuits for induction are identified, respectively mixing token-label information (1 + 2), matching the previous occurrence of the current class in the context (3qk + 4), and copying the label of the matched class (3v + 5).
- The formation of induction heads is slowed down by a larger number of classes & labels, with more classes and more labels slowing down the formation of the matching and copying mechanisms, respectively. This may have implications when selecting a vocabulary size for LLMs: larger vocabularies lead to an increased compression ratio and longer contexts, but they might make copying more challenging by delaying the formation of induction heads.
๐ป Code: https://github.com/aadityasingh/icl-dynamics
๐ Paper: https://huggingface.co/papers/2404.07129
๐ All daily picks: https://huggingface.co/collections/gsarti/daily-picks-in-interpretability-and-analysis-ofc-lms-65ae3339949c5675d25de2f9 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1670231290373-5e7749883d77a72421292d07.jpeg",
"fullname": "Gabriele Sarti",
"name": "gsarti",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 205,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/5e7749883d77a72421292d07/4cU-6gC798XXUvc2d3WKP.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/5e7749883d77a72421292d07/by0Z54O-zUDCse-arKP4M.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/5e7749883d77a72421292d07/_hY-tQyYJj4HNlQeK0NHU.png"
}
] | [
{
"avatarUrl": "/avatars/f8b6bf9bb349fd50d1246b176152955c.svg",
"fullname": "Aaditya Singh",
"name": "aadityasingh",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1
}
] | [
{
"reaction": "โค๏ธ",
"users": [
"javifer",
"samusenps"
],
"count": 2
}
] | 2024-04-25T14:21:37.000Z | 2024-04-25T14:21:37.138Z | [] | /posts/gsarti/983263103554280 | 2,451 | 0 |
763641949091767 | [
{
"type": "text",
"value": "Todayโs devinโs most difficult task:",
"raw": "Todayโs devinโs most difficult task:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "build a port of our AutoAgents framework in mlx and develop a demo using a gguf weight - it got close to nailing it (with guidance).",
"raw": "build a port of our AutoAgents framework in mlx and develop a demo using a gguf weight - it got close to nailing it (with guidance).",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "It was magical to witness. I had to take the wheel and help fix some subtle bugs. That said there was still the need for a human software engineer to keep it aligned with the overall goal. Most of my work involved reviewing code, checking shells and alignment chats.",
"raw": "It was magical to witness. I had to take the wheel and help fix some subtle bugs. That said there was still the need for a human software engineer to keep it aligned with the overall goal. Most of my work involved reviewing code, checking shells and alignment chats.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "full demo coming soon.",
"raw": "full demo coming soon.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "AutoAgents: ",
"raw": "AutoAgents: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/LinkSoul/AutoAgents",
"href": null,
"resource": {
"type": "space",
"id": "LinkSoul/AutoAgents",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/LinkSoul/AutoAgents",
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Todayโs devinโs most difficult task:
build a port of our AutoAgents framework in mlx and develop a demo using a gguf weight - it got close to nailing it (with guidance).
It was magical to witness. I had to take the wheel and help fix some subtle bugs. That said there was still the need for a human software engineer to keep it aligned with the overall goal. Most of my work involved reviewing code, checking shells and alignment chats.
full demo coming soon.
AutoAgents: https://huggingface.co/spaces/LinkSoul/AutoAgents | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6438a9027de34e8ea7e4b257/vib8QSd1AWMr_bR9ig_xJ.jpeg",
"fullname": "Jaward Sesay",
"name": "Jaward",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 191,
"isFollowing": false
} | [
{
"type": "video",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/oJtDnuJ_X4il4eYMLmUMp.mp4"
}
] | [] | [
{
"reaction": "๐",
"users": [
"victor",
"AlekseiPravdin",
"Tonic"
],
"count": 3
}
] | 2024-04-25T13:19:56.000Z | 2024-04-26T00:38:18.158Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg",
"fullname": "Victor Mustar",
"name": "victor",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 2607,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6438a9027de34e8ea7e4b257/vib8QSd1AWMr_bR9ig_xJ.jpeg",
"fullname": "Jaward Sesay",
"name": "Jaward",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 191,
"isFollowing": false
}
] | /posts/Jaward/763641949091767 | 1,964 | 2 |
515634834687003 | [
{
"type": "text",
"value": "๐ค Can We Train Chat Models with Raw Data? #1",
"raw": "๐ค Can We Train Chat Models with Raw Data? #1",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "The idea of training a chat model with desired raw data is incredibly appealing.",
"raw": "The idea of training a chat model with desired raw data is incredibly appealing.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "However, there is a significant problem with this process. Directly training a chat model with raw data can disrupt its output format.",
"raw": "However, there is a significant problem with this process. Directly training a chat model with raw data can disrupt its output format.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "To solve this issue, the common approach is to create Q/A-formatted datasets. However, this method is time-consuming, costly, and may result in information loss or bias during dataset creation.",
"raw": "To solve this issue, the common approach is to create Q/A-formatted datasets. However, this method is time-consuming, costly, and may result in information loss or bias during dataset creation.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "So, how can we effectively train raw data? We can utilize the sequential structure of transformer models like Llama, which consists of multiple layers.",
"raw": "So, how can we effectively train raw data? We can utilize the sequential structure of transformer models like Llama, which consists of multiple layers.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "I intentionally form the layers responsible for handling the output format in the latter part of the model, and designate the middle to late layers as the starting point for raw training.",
"raw": "I intentionally form the layers responsible for handling the output format in the latter part of the model, and designate the middle to late layers as the starting point for raw training.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "You may think that the method involves feeding chat data to the later layers and then training the middle to late layers with raw data, but that's not the case. Such an approach cannot properly address the problem and may even lead to increased model complexity.",
"raw": "You may think that the method involves feeding chat data to the later layers and then training the middle to late layers with raw data, but that's not the case. Such an approach cannot properly address the problem and may even lead to increased model complexity.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "The idea presented above doesn't seem bad, so how can we make good use of it? Let's try using a base model.",
"raw": "The idea presented above doesn't seem bad, so how can we make good use of it? Let's try using a base model.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Read more - ",
"raw": "Read more - ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/blog/maywell/layer-aware-1",
"href": "https://huggingface.co/blog/maywell/layer-aware-1",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐ค Can We Train Chat Models with Raw Data? #1
The idea of training a chat model with desired raw data is incredibly appealing.
However, there is a significant problem with this process. Directly training a chat model with raw data can disrupt its output format.
To solve this issue, the common approach is to create Q/A-formatted datasets. However, this method is time-consuming, costly, and may result in information loss or bias during dataset creation.
So, how can we effectively train raw data? We can utilize the sequential structure of transformer models like Llama, which consists of multiple layers.
I intentionally form the layers responsible for handling the output format in the latter part of the model, and designate the middle to late layers as the starting point for raw training.
You may think that the method involves feeding chat data to the later layers and then training the middle to late layers with raw data, but that's not the case. Such an approach cannot properly address the problem and may even lead to increased model complexity.
The idea presented above doesn't seem bad, so how can we make good use of it? Let's try using a base model.
Read more - https://huggingface.co/blog/maywell/layer-aware-1 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6439f43a1514b7ee7fb616a1/aFhmyAoicv3zcWKYZ27Z_.png",
"fullname": "Jeonghwan Park",
"name": "maywell",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 298,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐",
"users": [
"victor",
"sigridjineth",
"obamadronestrikeinu",
"asteriskd"
],
"count": 4
}
] | 2024-04-25T12:11:39.000Z | 2024-04-25T12:36:21.920Z | [] | /posts/maywell/515634834687003 | 7,502 | 1 |
295452758814429 | [
{
"type": "text",
"value": "๐๐บ๐ New Research Alert - CVPR 2024 (Avatars Collection)! ๐๐๐",
"raw": "๐๐บ๐ New Research Alert - CVPR 2024 (Avatars Collection)! ๐๐๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Title: WANDR: Intention-guided Human Motion Generation ๐",
"raw": "๐ Title: WANDR: Intention-guided Human Motion Generation ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Description: WANDR is a conditional Variational AutoEncoder (c-VAE) that generates realistic motion of human avatars that navigate towards an arbitrary goal location and reach for it.",
"raw": "๐ Description: WANDR is a conditional Variational AutoEncoder (c-VAE) that generates realistic motion of human avatars that navigate towards an arbitrary goal location and reach for it.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ฅ Authors: Markos Diomataris, Nikos Athanasiou, Omid Taheri, Xi Wang, Otmar Hilliges, Michael J. Black",
"raw": "๐ฅ Authors: Markos Diomataris, Nikos Athanasiou, Omid Taheri, Xi Wang, Otmar Hilliges, Michael J. Black",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐
Conference: CVPR, Jun 17-21, 2024 | Seattle WA, USA ๐บ๐ธ",
"raw": "๐
Conference: CVPR, Jun 17-21, 2024 | Seattle WA, USA ๐บ๐ธ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Paper: ",
"raw": "๐ Paper: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2404.15383",
"href": null,
"resource": {
"type": "paper",
"id": "2404.15383",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2404.15383",
"code": null,
"user": null,
"label": "WANDR: Intention-guided Human Motion Generation (2404.15383)",
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Web Page: ",
"raw": "๐ Web Page: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://wandr.is.tue.mpg.de",
"href": "https://wandr.is.tue.mpg.de",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Repository: ",
"raw": "๐ Repository: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/markos-diomataris/wandr",
"href": "https://github.com/markos-diomataris/wandr",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐บ Video: ",
"raw": "๐บ Video: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.youtube.com/watch?v=9szizM-XUCg",
"href": "https://www.youtube.com/watch?v=9szizM-XUCg",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ More Papers: more cutting-edge research presented at other conferences in the ",
"raw": "๐ More Papers: more cutting-edge research presented at other conferences in the ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers",
"href": null,
"resource": {
"type": "space",
"id": "DmitryRyumin/NewEraAI-Papers",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " curated by ",
"raw": " curated by ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@DmitryRyumin",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "DmitryRyumin",
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Added to the Avatars Collection: ",
"raw": "๐ Added to the Avatars Collection: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/DmitryRyumin/avatars-65df37cdf81fec13d4dbac36",
"href": null,
"resource": {
"type": "collection",
"id": "DmitryRyumin/avatars-65df37cdf81fec13d4dbac36",
"discussionNum": null
},
"url": "https://huggingface.co/collections/DmitryRyumin/avatars-65df37cdf81fec13d4dbac36",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Keywords: #WANDR #HumanMotionGeneration #MotionSynthesis #3DAvatar #GoalOrientedMovement #IntentionGuided #ConditionalVAE #CVPR2024 #DeepLearning #Innovation",
"raw": "๐ Keywords: #WANDR #HumanMotionGeneration #MotionSynthesis #3DAvatar #GoalOrientedMovement #IntentionGuided #ConditionalVAE #CVPR2024 #DeepLearning #Innovation",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐๐บ๐ New Research Alert - CVPR 2024 (Avatars Collection)! ๐๐๐
๐ Title: WANDR: Intention-guided Human Motion Generation ๐
๐ Description: WANDR is a conditional Variational AutoEncoder (c-VAE) that generates realistic motion of human avatars that navigate towards an arbitrary goal location and reach for it.
๐ฅ Authors: Markos Diomataris, Nikos Athanasiou, Omid Taheri, Xi Wang, Otmar Hilliges, Michael J. Black
๐
Conference: CVPR, Jun 17-21, 2024 | Seattle WA, USA ๐บ๐ธ
๐ Paper: https://huggingface.co/papers/2404.15383
๐ Web Page: https://wandr.is.tue.mpg.de
๐ Repository: https://github.com/markos-diomataris/wandr
๐บ Video: https://www.youtube.com/watch?v=9szizM-XUCg
๐ More Papers: more cutting-edge research presented at other conferences in the https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers curated by @DmitryRyumin
๐ Added to the Avatars Collection: https://huggingface.co/collections/DmitryRyumin/avatars-65df37cdf81fec13d4dbac36
๐ Keywords: #WANDR #HumanMotionGeneration #MotionSynthesis #3DAvatar #GoalOrientedMovement #IntentionGuided #ConditionalVAE #CVPR2024 #DeepLearning #Innovation | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/nRCxbVng_PPBqKd-Z3KVc.jpeg",
"fullname": "Dmitry Ryumin",
"name": "DmitryRyumin",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 377,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/Rd6gr7v5hpiicm9xCI56v.gif"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/zLC_gDdvaR_hrnJSCaW08.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/pjWfT9DJYyCGqwe1thN0V.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/2uJFrwZHBbhLZZs6OkgUe.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/0w7fPKt0uGNNV1yxWHEPo.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/_75Q4VxkRMhzkMLYnmt2B.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/KB7KyMOzR01E1dhR1aRZJ.png"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/nRCxbVng_PPBqKd-Z3KVc.jpeg",
"fullname": "Dmitry Ryumin",
"name": "DmitryRyumin",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 377
}
] | [
{
"reaction": "๐ฅ",
"users": [
"DmitryRyumin",
"loong0306",
"Dlbk",
"victor",
"louisbrulenaudet",
"AlekseiPravdin",
"letheviet",
"alicegaz"
],
"count": 8
},
{
"reaction": "๐ค",
"users": [
"DmitryRyumin",
"AlekseiPravdin",
"diabolic6045"
],
"count": 3
},
{
"reaction": "๐",
"users": [
"AlekseiPravdin"
],
"count": 1
}
] | 2024-04-25T09:20:00.000Z | 2024-04-25T11:20:15.788Z | [] | /posts/DmitryRyumin/295452758814429 | 2,162 | 0 |
325328284759539 | [
{
"type": "text",
"value": "Open VLM Leaderboard just updated the performance of GPT-4v (20240409), the new proprietary model ranked 1st across 50+ VLMs. Compared to the pervious version (20231106), the improvements on multimodal perception and reasoning are both huge. ",
"raw": "Open VLM Leaderboard just updated the performance of GPT-4v (20240409), the new proprietary model ranked 1st across 50+ VLMs. Compared to the pervious version (20231106), the improvements on multimodal perception and reasoning are both huge. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Check the results: ",
"raw": "Check the results: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/opencompass/open_vlm_leaderboard",
"href": null,
"resource": {
"type": "space",
"id": "opencompass/open_vlm_leaderboard",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/opencompass/open_vlm_leaderboard",
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Open VLM Leaderboard just updated the performance of GPT-4v (20240409), the new proprietary model ranked 1st across 50+ VLMs. Compared to the pervious version (20231106), the improvements on multimodal perception and reasoning are both huge.
Check the results:
https://huggingface.co/spaces/opencompass/open_vlm_leaderboard | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1676546883247-noauth.png",
"fullname": "HAODONG DUAN",
"name": "KennyUTC",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 15,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/63ee1379190ddd6214efd73a/L4OUIJaB38eorq2SzFETR.png"
}
] | [] | [
{
"reaction": "๐ฅ",
"users": [
"nebulae09",
"barsil",
"louisbrulenaudet"
],
"count": 3
}
] | 2024-04-25T05:42:49.000Z | 2024-04-25T12:14:23.614Z | [] | /posts/KennyUTC/325328284759539 | 2,565 | 0 |
460915823533041 | [
{
"type": "text",
"value": "Is it just me or is it real that whenever APPLE releases an open model, they accompany it with a library !? First was MLX, about a month ago AXLEARN and now CORENET ! Could it be just coincidences or does Apple playing some game ? if yes then what is it ... ? What do you think ? maybe i'm just hallucinating now ๐
",
"raw": "Is it just me or is it real that whenever APPLE releases an open model, they accompany it with a library !? First was MLX, about a month ago AXLEARN and now CORENET ! Could it be just coincidences or does Apple playing some game ? if yes then what is it ... ? What do you think ? maybe i'm just hallucinating now ๐
",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Is it just me or is it real that whenever APPLE releases an open model, they accompany it with a library !? First was MLX, about a month ago AXLEARN and now CORENET ! Could it be just coincidences or does Apple playing some game ? if yes then what is it ... ? What do you think ? maybe i'm just hallucinating now ๐
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/626237d9bbcbd1c34f1bb231/EJrOjvAL-68qMCYdnvOrq.png",
"fullname": "Ali El Filali",
"name": "alielfilali01",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 186,
"isFollowing": false
} | [] | [] | [] | 2024-04-24T21:31:23.000Z | 2024-04-24T21:31:23.326Z | [] | /posts/alielfilali01/460915823533041 | 2,873 | 0 |
890709532691598 | [
{
"type": "text",
"value": "It's been only a week since I joined ๐ค and the community has released a constant flow of content! ",
"raw": "It's been only a week since I joined ๐ค and the community has released a constant flow of content! ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Notable models:",
"raw": "Notable models:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Apple OpenELM ",
"raw": "- Apple OpenELM ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca",
"href": null,
"resource": {
"type": "collection",
"id": "apple/openelm-instruct-models-6619ad295d7ae9f868b759ca",
"discussionNum": null
},
"url": "https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " + ",
"raw": " + ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/apple/openelm-pretrained-models-6619ac6ca12a10bd0d0df89e",
"href": null,
"resource": {
"type": "collection",
"id": "apple/openelm-pretrained-models-6619ac6ca12a10bd0d0df89e",
"discussionNum": null
},
"url": "https://huggingface.co/collections/apple/openelm-pretrained-models-6619ac6ca12a10bd0d0df89e",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- HuggingFaceM4 Idefics2 ",
"raw": "- HuggingFaceM4 Idefics2 ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/HuggingFaceM4/idefics2-8b",
"href": null,
"resource": {
"type": "model",
"id": "HuggingFaceM4/idefics2-8b",
"discussionNum": null
},
"url": "https://huggingface.co/HuggingFaceM4/idefics2-8b",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Meta Llama 3 ",
"raw": "- Meta Llama 3 ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/meta-llama/meta-llama-3-66214712577ca38149ebb2b6",
"href": null,
"resource": {
"type": "collection",
"id": "meta-llama/meta-llama-3-66214712577ca38149ebb2b6",
"discussionNum": null
},
"url": "https://huggingface.co/collections/meta-llama/meta-llama-3-66214712577ca38149ebb2b6",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Microsoft Phi-3 ",
"raw": "- Microsoft Phi-3 ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/microsoft/phi-3-6626e15e9585a200d2d761e3",
"href": null,
"resource": {
"type": "collection",
"id": "microsoft/phi-3-6626e15e9585a200d2d761e3",
"discussionNum": null
},
"url": "https://huggingface.co/collections/microsoft/phi-3-6626e15e9585a200d2d761e3",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Snowflake Arctic ",
"raw": "- Snowflake Arctic ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/Snowflake/arctic-66290090abe542894a5ac520",
"href": null,
"resource": {
"type": "collection",
"id": "Snowflake/arctic-66290090abe542894a5ac520",
"discussionNum": null
},
"url": "https://huggingface.co/collections/Snowflake/arctic-66290090abe542894a5ac520",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Great datasets:",
"raw": "Great datasets:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- HuggingFaceFW FineWeb ",
"raw": "- HuggingFaceFW FineWeb ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/HuggingFaceFW/fineweb",
"href": null,
"resource": {
"type": "dataset",
"id": "HuggingFaceFW/fineweb",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/HuggingFaceFW/fineweb",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- HuggingFaceM4/the_cauldron ",
"raw": "- HuggingFaceM4/the_cauldron ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/HuggingFaceM4/the_cauldron",
"href": null,
"resource": {
"type": "dataset",
"id": "HuggingFaceM4/the_cauldron",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/HuggingFaceM4/the_cauldron",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- PleIAs/YouTube-Commons ",
"raw": "- PleIAs/YouTube-Commons ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/PleIAs/YouTube-Commons",
"href": null,
"resource": {
"type": "dataset",
"id": "PleIAs/YouTube-Commons",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/PleIAs/YouTube-Commons",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Fascinating Spaces",
"raw": "Fascinating Spaces",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- InstantMesh ",
"raw": "- InstantMesh ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/TencentARC/InstantMesh",
"href": null,
"resource": {
"type": "space",
"id": "TencentARC/InstantMesh",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/TencentARC/InstantMesh",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Chat with Llama 3 8B ",
"raw": "- Chat with Llama 3 8B ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/ysharma/Chat_with_Meta_llama3_8b",
"href": null,
"resource": {
"type": "space",
"id": "ysharma/Chat_with_Meta_llama3_8b",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/ysharma/Chat_with_Meta_llama3_8b",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Parler-TTS ",
"raw": "- Parler-TTS ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/spaces/parler-tts/parler_tts_mini",
"href": "https://huggingface.co/spaces/parler-tts/parler_tts_mini",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- AI Jukebox ",
"raw": "- AI Jukebox ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/enzostvs/ai-jukebox",
"href": null,
"resource": {
"type": "space",
"id": "enzostvs/ai-jukebox",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/enzostvs/ai-jukebox",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- CosXL ",
"raw": "- CosXL ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/multimodalart/cosxl",
"href": null,
"resource": {
"type": "space",
"id": "multimodalart/cosxl",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/multimodalart/cosxl",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Singing songstarter ",
"raw": "- Singing songstarter ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/nateraw/singing-songstarter",
"href": null,
"resource": {
"type": "space",
"id": "nateraw/singing-songstarter",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/nateraw/singing-songstarter",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Play with Idefics2 8B ",
"raw": "- Play with Idefics2 8B ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/HuggingFaceM4/idefics-8b",
"href": null,
"resource": {
"type": "space",
"id": "HuggingFaceM4/idefics-8b",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/HuggingFaceM4/idefics-8b",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- CodeQwen1.5-7B-Chat Bot๐พ",
"raw": "- CodeQwen1.5-7B-Chat Bot๐พ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/Qwen/CodeQwen1.5-7b-Chat-demo",
"href": null,
"resource": {
"type": "space",
"id": "Qwen/CodeQwen1.5-7b-Chat-demo",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/Qwen/CodeQwen1.5-7b-Chat-demo",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "I expected to be at the center of AI development. I'm not disappointed! ",
"raw": "I expected to be at the center of AI development. I'm not disappointed! ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | It's been only a week since I joined ๐ค and the community has released a constant flow of content!
Notable models:
- Apple OpenELM https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca + https://huggingface.co/collections/apple/openelm-pretrained-models-6619ac6ca12a10bd0d0df89e
- HuggingFaceM4 Idefics2 https://huggingface.co/HuggingFaceM4/idefics2-8b
- Meta Llama 3 https://huggingface.co/collections/meta-llama/meta-llama-3-66214712577ca38149ebb2b6
- Microsoft Phi-3 https://huggingface.co/collections/microsoft/phi-3-6626e15e9585a200d2d761e3
- Snowflake Arctic https://huggingface.co/collections/Snowflake/arctic-66290090abe542894a5ac520
Great datasets:
- HuggingFaceFW FineWeb https://huggingface.co/datasets/HuggingFaceFW/fineweb
- HuggingFaceM4/the_cauldron https://huggingface.co/datasets/HuggingFaceM4/the_cauldron
- PleIAs/YouTube-Commons https://huggingface.co/datasets/PleIAs/YouTube-Commons
Fascinating Spaces
- InstantMesh https://huggingface.co/spaces/TencentARC/InstantMesh
- Chat with Llama 3 8B https://huggingface.co/spaces/ysharma/Chat_with_Meta_llama3_8b
- Parler-TTS https://huggingface.co/spaces/parler-tts/parler_tts_mini
- AI Jukebox https://huggingface.co/spaces/enzostvs/ai-jukebox
- CosXL https://huggingface.co/spaces/multimodalart/cosxl
- Singing songstarter https://huggingface.co/spaces/nateraw/singing-songstarter
- Play with Idefics2 8B https://huggingface.co/spaces/HuggingFaceM4/idefics-8b
- CodeQwen1.5-7B-Chat Bot๐พ
https://huggingface.co/spaces/Qwen/CodeQwen1.5-7b-Chat-demo
I expected to be at the center of AI development. I'm not disappointed! | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg",
"fullname": "Florent Daudens",
"name": "fdaudens",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 384,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐ฅ",
"users": [
"BrigitteTousi",
"clem",
"zealota",
"radames",
"daniel4999",
"tomaarsen",
"Dlbk",
"andrewrreed",
"vikas",
"danielus",
"Flashyflash",
"evijit",
"lunarflu",
"letheviet",
"4eyez",
"VictorSanh"
],
"count": 16
},
{
"reaction": "โค๏ธ",
"users": [
"BrigitteTousi",
"clem",
"zealota",
"radames",
"tomaarsen",
"lunarflu",
"letheviet",
"4eyez"
],
"count": 8
},
{
"reaction": "๐",
"users": [
"BrigitteTousi",
"clem",
"zealota",
"lunarflu",
"letheviet",
"4eyez"
],
"count": 6
},
{
"reaction": "๐ค",
"users": [
"BrigitteTousi",
"clem",
"zealota",
"Midgardsormr",
"lunarflu",
"4eyez"
],
"count": 6
}
] | 2024-04-24T19:51:20.000Z | 2024-04-25T14:00:33.316Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1583857146757-5e67bdd61009063689407479.jpeg",
"fullname": "Clem ๐ค",
"name": "clem",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 1763,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64517300c5d273f9548172e7/dPVv1mTsjwrkFxo6jITo_.jpeg",
"fullname": "Icin",
"name": "swizzcheeze",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6317233cc92fd6fee317e030/cJHSvvimr1kqgQfHOjO5n.png",
"fullname": "Tom Aarsen",
"name": "tomaarsen",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 1060,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg",
"fullname": "Florent Daudens",
"name": "fdaudens",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 384,
"isFollowing": false
}
] | /posts/fdaudens/890709532691598 | 2,678 | 4 |
640251466406681 | [
{
"type": "text",
"value": "How to Finetune phi-3 on MacBook Pro",
"raw": "How to Finetune phi-3 on MacBook Pro",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/blog/abhishek/phi3-finetune-macbook",
"href": "https://huggingface.co/blog/abhishek/phi3-finetune-macbook",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | How to Finetune phi-3 on MacBook Pro
https://huggingface.co/blog/abhishek/phi3-finetune-macbook | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5fa19f4ba13e063b8b2b5e11/nGVHdTYX2udnt-K8mqY27.jpeg",
"fullname": "Abhishek Thakur",
"name": "abhishek",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 1383,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐",
"users": [
"abhishek",
"fdaudens",
"BrigitteTousi",
"clem",
"dotdotgod",
"lusstta",
"AlekseiPravdin",
"semigoso"
],
"count": 8
},
{
"reaction": "โค๏ธ",
"users": [
"clem",
"monsoon-nlp",
"lusstta",
"AlekseiPravdin"
],
"count": 4
},
{
"reaction": "๐",
"users": [
"bmorphism",
"AlekseiPravdin"
],
"count": 2
}
] | 2024-04-24T19:24:30.000Z | 2024-04-24T19:24:30.922Z | [] | /posts/abhishek/640251466406681 | 3,067 | 0 |
538127375796790 | [
{
"type": "text",
"value": "just landed at Hugging Face Hub: community-led computer vision course ๐๐ค ",
"raw": "just landed at Hugging Face Hub: community-led computer vision course ๐๐ค ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "learn from fundamentals to details of the bleeding edge vision transformers!",
"raw": "learn from fundamentals to details of the bleeding edge vision transformers!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | just landed at Hugging Face Hub: community-led computer vision course ๐๐ค
learn from fundamentals to details of the bleeding edge vision transformers!
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png",
"fullname": "Merve Noyan",
"name": "merve",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 5589,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/72I3DFUX-bW6AX9-ydmg1.png"
}
] | [] | [
{
"reaction": "๐ฅ",
"users": [
"not-lain",
"alvanlii",
"charchits7",
"mattmdjaga",
"adorkin",
"Lukewood",
"fdaudens",
"BrigitteTousi",
"aidystark",
"clem",
"victor",
"Someman",
"DmitryRyumin",
"sergiopaniego",
"julien-c",
"lunarflu"
],
"count": 16
},
{
"reaction": "โค๏ธ",
"users": [
"Tonic",
"charchits7",
"BrigitteTousi",
"clem",
"victor",
"ak0601",
"DmitryRyumin",
"Ushio",
"louisbrulenaudet",
"noobmldude",
"lunarflu",
"omaryshchenko",
"rnella01"
],
"count": 13
},
{
"reaction": "๐",
"users": [
"Tonic",
"BrigitteTousi",
"clem",
"lunarflu"
],
"count": 4
}
] | 2024-04-24T17:17:45.000Z | 2024-04-24T17:39:05.025Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/633c3172ec4e4abf307b7dc6/PQxG5qMMqlQ-BtjMNUl32.png",
"fullname": "Charchit Sharma",
"name": "charchits7",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 3,
"isFollowing": false
}
] | /posts/merve/538127375796790 | 3,841 | 1 |
866627628420386 | [
{
"type": "text",
"value": "Live recordings of [AnimateLCM](",
"raw": "Live recordings of [AnimateLCM](",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/wangfuyun/AnimateLCM",
"href": null,
"resource": {
"type": "space",
"id": "wangfuyun/AnimateLCM",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/wangfuyun/AnimateLCM",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "). ",
"raw": "). ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Live recordings of [AnimateLCM](https://huggingface.co/spaces/wangfuyun/AnimateLCM).
| {
"avatarUrl": "/avatars/9ff312e854d803e1a2e9e685a21d12f8.svg",
"fullname": "Fu-Yun Wang",
"name": "wangfuyun",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 727,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/63e9e92f20c109718713f5eb/NXE5hQdQLObu0GNS_jA7l.gif"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/63e9e92f20c109718713f5eb/NKqevr7t1QeMnRvZX1p0W.gif"
}
] | [] | [
{
"reaction": "๐ฅ",
"users": [
"victor",
"loong0306",
"wangfuyun",
"radames"
],
"count": 4
}
] | 2024-04-24T14:53:09.000Z | 2024-08-13T06:25:27.582Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg",
"fullname": "Victor Mustar",
"name": "victor",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 2607,
"isFollowing": false
},
{
"avatarUrl": "/avatars/4cb7b1b159946e03a988d460b60b1a54.svg",
"fullname": "Henry Mensah",
"name": "Flexton",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
}
] | /posts/wangfuyun/866627628420386 | 6,830 | 2 |
139450027221410 | [
{
"type": "text",
"value": "Happy to announce the open source framework to turbo charge devops called patchwork - ",
"raw": "Happy to announce the open source framework to turbo charge devops called patchwork - ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/patched-codes/patchwork",
"href": "https://github.com/patched-codes/patchwork",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "You can use it to build patchflows - workflows that use LLMs for software development tasks like bug fixing, pull request review, library migration and documentation. ",
"raw": "You can use it to build patchflows - workflows that use LLMs for software development tasks like bug fixing, pull request review, library migration and documentation. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Supports any LLM of your choice including our own MoE model - ",
"raw": "Supports any LLM of your choice including our own MoE model - ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/patched-codes/patched-mix-4x7B",
"href": null,
"resource": {
"type": "model",
"id": "patched-codes/patched-mix-4x7B",
"discussionNum": null
},
"url": "https://huggingface.co/patched-codes/patched-mix-4x7B",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Give it a try!",
"raw": "Give it a try!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Happy to announce the open source framework to turbo charge devops called patchwork - https://github.com/patched-codes/patchwork
You can use it to build patchflows - workflows that use LLMs for software development tasks like bug fixing, pull request review, library migration and documentation.
Supports any LLM of your choice including our own MoE model - https://huggingface.co/patched-codes/patched-mix-4x7B
Give it a try! | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1677134945205-62f32eab52ad88c930bb3f3b.png",
"fullname": "Asankhaya Sharma",
"name": "codelion",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 46,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐ฅ",
"users": [
"codelion",
"milkowski",
"victor",
"AlekseiPravdin"
],
"count": 4
},
{
"reaction": "๐",
"users": [
"codelion",
"t1u1",
"spooner2"
],
"count": 3
}
] | 2024-04-24T14:28:39.000Z | 2024-05-14T04:32:56.564Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg",
"fullname": "Victor Mustar",
"name": "victor",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 2607,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1677134945205-62f32eab52ad88c930bb3f3b.png",
"fullname": "Asankhaya Sharma",
"name": "codelion",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 46,
"isFollowing": false
}
] | /posts/codelion/139450027221410 | 1,759 | 2 |
504351998498924 | [
{
"type": "text",
"value": "Got access to Devin today and boy itโs been rocking it - 10x engineer on pure software dev tasks, albeit falls at the mercy of ML/AI tasks. Still a promising work of daring-engineering feat, wishing all the best to the team @cognition_labs",
"raw": "Got access to Devin today and boy itโs been rocking it - 10x engineer on pure software dev tasks, albeit falls at the mercy of ML/AI tasks. Still a promising work of daring-engineering feat, wishing all the best to the team @cognition_labs",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Got access to Devin today and boy itโs been rocking it - 10x engineer on pure software dev tasks, albeit falls at the mercy of ML/AI tasks. Still a promising work of daring-engineering feat, wishing all the best to the team @cognition_labs | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6438a9027de34e8ea7e4b257/vib8QSd1AWMr_bR9ig_xJ.jpeg",
"fullname": "Jaward Sesay",
"name": "Jaward",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 191,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/GnSSwonzZ5Y2Qeg7Cj8jE.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/SeevBLK5FoL4MkrLxXkUz.png"
}
] | [] | [
{
"reaction": "๐",
"users": [
"jacob-valdez",
"Abubakr18",
"tomaarsen",
"victor",
"mariachus",
"Joseph717171"
],
"count": 6
}
] | 2024-04-24T13:01:26.000Z | 2024-04-24T19:11:21.143Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1677134945205-62f32eab52ad88c930bb3f3b.png",
"fullname": "Asankhaya Sharma",
"name": "codelion",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 46,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6438a9027de34e8ea7e4b257/vib8QSd1AWMr_bR9ig_xJ.jpeg",
"fullname": "Jaward Sesay",
"name": "Jaward",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 191,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64175bc2b03817ada642291f/V3mhc8Y0saSgXbp--2HcE.png",
"fullname": "Kh",
"name": "raidhon",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 3,
"isFollowing": false
}
] | /posts/Jaward/504351998498924 | 1,806 | 4 |
555649356176130 | [
{
"type": "text",
"value": "OpenELM",
"raw": "OpenELM",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "An Efficient Language Model Family with Open-source Training and Inference Framework",
"raw": "An Efficient Language Model Family with Open-source Training and Inference Framework",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2404.14619",
"href": null,
"resource": {
"type": "paper",
"id": "2404.14619",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2404.14619",
"code": null,
"user": null,
"label": "OpenELM: An Efficient Language Model Family with Open-source Training\n and Inference Framework (2404.14619)",
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "The reproducibility and transparency of large language models are crucial for advancing open research, ensuring the trustworthiness of results, and enabling investigations into data and model biases, as well as potential risks. To this end, we release OpenELM, a state-of-the-art open language model. OpenELM uses a layer-wise scaling strategy to efficiently allocate parameters within each layer of the transformer model, leading to enhanced accuracy. For example, with a parameter budget of approximately one billion parameters, OpenELM exhibits a 2.36% improvement in accuracy compared to OLMo while requiring 2times fewer pre-training tokens. Diverging from prior practices that only provide model weights and inference code, and pre-train on private datasets, our release includes the complete framework for training and evaluation of the language model on publicly available datasets, including training logs, multiple checkpoints, and pre-training configurations. We also release code to convert models to MLX library for inference and fine-tuning on Apple devices. This comprehensive release aims to empower and strengthen the open research community, paving the way for future open research endeavors. ",
"raw": "The reproducibility and transparency of large language models are crucial for advancing open research, ensuring the trustworthiness of results, and enabling investigations into data and model biases, as well as potential risks. To this end, we release OpenELM, a state-of-the-art open language model. OpenELM uses a layer-wise scaling strategy to efficiently allocate parameters within each layer of the transformer model, leading to enhanced accuracy. For example, with a parameter budget of approximately one billion parameters, OpenELM exhibits a 2.36% improvement in accuracy compared to OLMo while requiring 2times fewer pre-training tokens. Diverging from prior practices that only provide model weights and inference code, and pre-train on private datasets, our release includes the complete framework for training and evaluation of the language model on publicly available datasets, including training logs, multiple checkpoints, and pre-training configurations. We also release code to convert models to MLX library for inference and fine-tuning on Apple devices. This comprehensive release aims to empower and strengthen the open research community, paving the way for future open research endeavors. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | OpenELM
An Efficient Language Model Family with Open-source Training and Inference Framework
https://huggingface.co/papers/2404.14619
The reproducibility and transparency of large language models are crucial for advancing open research, ensuring the trustworthiness of results, and enabling investigations into data and model biases, as well as potential risks. To this end, we release OpenELM, a state-of-the-art open language model. OpenELM uses a layer-wise scaling strategy to efficiently allocate parameters within each layer of the transformer model, leading to enhanced accuracy. For example, with a parameter budget of approximately one billion parameters, OpenELM exhibits a 2.36% improvement in accuracy compared to OLMo while requiring 2times fewer pre-training tokens. Diverging from prior practices that only provide model weights and inference code, and pre-train on private datasets, our release includes the complete framework for training and evaluation of the language model on publicly available datasets, including training logs, multiple checkpoints, and pre-training configurations. We also release code to convert models to MLX library for inference and fine-tuning on Apple devices. This comprehensive release aims to empower and strengthen the open research community, paving the way for future open research endeavors.
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg",
"fullname": "AK",
"name": "akhaliq",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 5205,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/60f1abe7544c2adfd699860c/BUZBz9I3sYwkreUFwZRKH.png"
}
] | [] | [
{
"reaction": "๐",
"users": [
"Vishwas1",
"mariachus",
"MexIvanov"
],
"count": 3
}
] | 2024-04-24T12:26:41.000Z | 2024-04-24T12:26:41.337Z | [] | /posts/akhaliq/555649356176130 | 2,957 | 0 |
217829762957938 | [
{
"type": "text",
"value": "I have built a Space to compare different vision language model outputs, which model should I add next? ๐",
"raw": "I have built a Space to compare different vision language model outputs, which model should I add next? ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Try them yourself here ",
"raw": "Try them yourself here ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/merve/compare_VLMs",
"href": null,
"resource": {
"type": "space",
"id": "merve/compare_VLMs",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/merve/compare_VLMs",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | I have built a Space to compare different vision language model outputs, which model should I add next? ๐
Try them yourself here https://huggingface.co/spaces/merve/compare_VLMs | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png",
"fullname": "Merve Noyan",
"name": "merve",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 5589,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/mqw2q8u2wjg993dNLjRGU.png"
}
] | [] | [
{
"reaction": "๐ฅ",
"users": [
"adorkin",
"fdaudens",
"louisbrulenaudet"
],
"count": 3
}
] | 2024-04-24T11:18:31.000Z | 2024-04-24T11:43:59.076Z | [
{
"avatarUrl": "/avatars/ea2db4cb97adfba9e3075206f15ebe13.svg",
"fullname": "Alina",
"name": "iblub",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
}
] | /posts/merve/217829762957938 | 2,322 | 1 |
273809723337347 | [
{
"type": "text",
"value": "Fine tune Phi-3 using samatha themed dataset and Huggingface SFT trainer!",
"raw": "Fine tune Phi-3 using samatha themed dataset and Huggingface SFT trainer!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "In this colab, we simply apply a supervised finetune to phi-3 using the sharegpt format.",
"raw": "In this colab, we simply apply a supervised finetune to phi-3 using the sharegpt format.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "code_fence",
"value": null,
"raw": "```\ndef formatting_prompts_func(examples):\n convos = examples[\"conversations\"]\n texts = []\n mapper = {\"system\": \"system\\n\", \"human\": \"\\nuser\\n\", \"gpt\": \"\\nassistant\\n\"}\n end_mapper = {\"system\": \"\", \"human\": \"\", \"gpt\": \"\"}\n for convo in convos:\n text = \"\".join(f\"{mapper[(turn := x['from'])]} {x['value']}\\n{end_mapper[turn]}\" for x in convo)\n texts.append(f\"{text}{EOS_TOKEN}\") \n return {\"text\": texts}\n\ndataset = dataset.map(formatting_prompts_func, batched=True)\nprint(dataset['text'][8])\n\n```",
"href": null,
"resource": null,
"url": null,
"code": "def formatting_prompts_func(examples):\n convos = examples[\"conversations\"]\n texts = []\n mapper = {\"system\": \"system\\n\", \"human\": \"\\nuser\\n\", \"gpt\": \"\\nassistant\\n\"}\n end_mapper = {\"system\": \"\", \"human\": \"\", \"gpt\": \"\"}\n for convo in convos:\n text = \"\".join(f\"{mapper[(turn := x['from'])]} {x['value']}\\n{end_mapper[turn]}\" for x in convo)\n texts.append(f\"{text}{EOS_TOKEN}\") \n return {\"text\": texts}\n\ndataset = dataset.map(formatting_prompts_func, batched=True)\nprint(dataset['text'][8])",
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Opus Samantha consists of 1848 samples with the samantha personality. The dataset covers a wide variety of topics such as logical reasoning, mathematics, legal, and rp. ",
"raw": "Opus Samantha consists of 1848 samples with the samantha personality. The dataset covers a wide variety of topics such as logical reasoning, mathematics, legal, and rp. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "This notebook serves as a viable option to finetune Phi-3 until Unsloth supports phi-3, which should be very soon. When that happens check out AutoSloth for both SFT, DPO, and langfuse format RAG fine tuning on free tier colab hardware.",
"raw": "This notebook serves as a viable option to finetune Phi-3 until Unsloth supports phi-3, which should be very soon. When that happens check out AutoSloth for both SFT, DPO, and langfuse format RAG fine tuning on free tier colab hardware.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Resources:",
"raw": "Resources:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Dataset: ",
"raw": "Dataset: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/macadeliccc/opus_samantha",
"href": null,
"resource": {
"type": "dataset",
"id": "macadeliccc/opus_samantha",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/macadeliccc/opus_samantha",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Colab: ",
"raw": "Colab: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://colab.research.google.com/drive/1e8LILflDQ2Me52hwS7uIfuJ9DxE2oQzM?usp=sharing",
"href": "https://colab.research.google.com/drive/1e8LILflDQ2Me52hwS7uIfuJ9DxE2oQzM?usp=sharing",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "AutoSloth: ",
"raw": "AutoSloth: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://colab.research.google.com/drive/1Zo0sVEb2lqdsUm9dy2PTzGySxdF9CNkc#scrollTo=bpimlPXVz-CZ",
"href": "https://colab.research.google.com/drive/1Zo0sVEb2lqdsUm9dy2PTzGySxdF9CNkc#scrollTo=bpimlPXVz-CZ",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Fine tune Phi-3 using samatha themed dataset and Huggingface SFT trainer!
In this colab, we simply apply a supervised finetune to phi-3 using the sharegpt format.
```
def formatting_prompts_func(examples):
convos = examples["conversations"]
texts = []
mapper = {"system": "system\n", "human": "\nuser\n", "gpt": "\nassistant\n"}
end_mapper = {"system": "", "human": "", "gpt": ""}
for convo in convos:
text = "".join(f"{mapper[(turn := x['from'])]} {x['value']}\n{end_mapper[turn]}" for x in convo)
texts.append(f"{text}{EOS_TOKEN}")
return {"text": texts}
dataset = dataset.map(formatting_prompts_func, batched=True)
print(dataset['text'][8])
```
Opus Samantha consists of 1848 samples with the samantha personality. The dataset covers a wide variety of topics such as logical reasoning, mathematics, legal, and rp.
This notebook serves as a viable option to finetune Phi-3 until Unsloth supports phi-3, which should be very soon. When that happens check out AutoSloth for both SFT, DPO, and langfuse format RAG fine tuning on free tier colab hardware.
Resources:
Dataset: https://huggingface.co/datasets/macadeliccc/opus_samantha
Colab: https://colab.research.google.com/drive/1e8LILflDQ2Me52hwS7uIfuJ9DxE2oQzM?usp=sharing
AutoSloth: https://colab.research.google.com/drive/1Zo0sVEb2lqdsUm9dy2PTzGySxdF9CNkc#scrollTo=bpimlPXVz-CZ | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6455cc8d679315e4ef16fbec/M6Cfifn05BUzkCFd2QDIT.png",
"fullname": "Tim Dolan",
"name": "macadeliccc",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 152,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐ฅ",
"users": [
"victor",
"KingNish",
"Qwoook",
"midesk",
"pabloce",
"lunarflu",
"andrewatef",
"EddyGiusepe"
],
"count": 8
},
{
"reaction": "๐",
"users": [
"santyzenith",
"clavel",
"lunarflu",
"Norod78",
"trtm"
],
"count": 5
},
{
"reaction": "๐",
"users": [
"trtm"
],
"count": 1
}
] | 2024-04-24T05:20:15.000Z | 2024-04-24T05:20:15.665Z | [] | /posts/macadeliccc/273809723337347 | 4,500 | 0 |
283128537556650 | [
{
"type": "text",
"value": "Complete Guide to SUPIR Enhancing and Upscaling Images Like in Sci-Fi Movies on Your PC : ",
"raw": "Complete Guide to SUPIR Enhancing and Upscaling Images Like in Sci-Fi Movies on Your PC : ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://youtu.be/OYxVEvDf284",
"href": "https://youtu.be/OYxVEvDf284",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "In this video, I explain how to 1 click install and use the most advanced image upscaler / enhancer in the world that is both commercially and open source available. The upscaler that I am going to introduce you is open source #SUPIR and the model is free to use. SUPIR upscaler is many times better than both paid Topaz AI and Magnific AI and you can use this upscaler on your computer for free forever. The difference of SUPIR vs #Topaz and #Magnific is like ages. So in this tutorial you are going to learn everything about how to install, update and use SUPIR upscaler on your personal computer. The video shows Windows but it works perfectly fine on Linux as well.",
"raw": "In this video, I explain how to 1 click install and use the most advanced image upscaler / enhancer in the world that is both commercially and open source available. The upscaler that I am going to introduce you is open source #SUPIR and the model is free to use. SUPIR upscaler is many times better than both paid Topaz AI and Magnific AI and you can use this upscaler on your computer for free forever. The difference of SUPIR vs #Topaz and #Magnific is like ages. So in this tutorial you are going to learn everything about how to install, update and use SUPIR upscaler on your personal computer. The video shows Windows but it works perfectly fine on Linux as well.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Scripts Download Link โคต๏ธ",
"raw": "Scripts Download Link โคต๏ธ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.patreon.com/posts/99176057",
"href": "https://www.patreon.com/posts/99176057",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Samplers and Text CFG (Text Guidance Scale) Comparison Link โคต๏ธ",
"raw": "Samplers and Text CFG (Text Guidance Scale) Comparison Link โคต๏ธ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://imgsli.com/MjU2ODQz/2/1",
"href": "https://imgsli.com/MjU2ODQz/2/1",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "How to install accurate Python, Git and FFmpeg on Windows Tutorial โคต๏ธ",
"raw": "How to install accurate Python, Git and FFmpeg on Windows Tutorial โคต๏ธ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://youtu.be/-NjNy7afOQ0",
"href": "https://youtu.be/-NjNy7afOQ0",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Full DreamBooth / Fine-tuning Tutorial โคต๏ธ",
"raw": "Full DreamBooth / Fine-tuning Tutorial โคต๏ธ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://youtu.be/0t5l6CP9eBg",
"href": "https://youtu.be/0t5l6CP9eBg",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild : ",
"raw": "Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild : ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://arxiv.org/abs/2401.13627",
"href": "https://arxiv.org/abs/2401.13627",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Authors introduce SUPIR (Scaling-UP Image Restoration), a groundbreaking image restoration method that harnesses generative prior and the power of model scaling up. Leveraging multi-modal techniques and advanced generative prior, SUPIR marks a significant advance in intelligent and realistic image restoration. As a pivotal catalyst within SUPIR, model scaling dramatically enhances its capabilities and demonstrates new potential for image restoration. Authors collect a dataset comprising 20 million high-resolution, high-quality images for model training, each enriched with descriptive text annotations. SUPIR provides the capability to restore images guided by textual prompts, broadening its application scope and potential",
"raw": "Authors introduce SUPIR (Scaling-UP Image Restoration), a groundbreaking image restoration method that harnesses generative prior and the power of model scaling up. Leveraging multi-modal techniques and advanced generative prior, SUPIR marks a significant advance in intelligent and realistic image restoration. As a pivotal catalyst within SUPIR, model scaling dramatically enhances its capabilities and demonstrates new potential for image restoration. Authors collect a dataset comprising 20 million high-resolution, high-quality images for model training, each enriched with descriptive text annotations. SUPIR provides the capability to restore images guided by textual prompts, broadening its application scope and potential",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Complete Guide to SUPIR Enhancing and Upscaling Images Like in Sci-Fi Movies on Your PC : https://youtu.be/OYxVEvDf284
In this video, I explain how to 1 click install and use the most advanced image upscaler / enhancer in the world that is both commercially and open source available. The upscaler that I am going to introduce you is open source #SUPIR and the model is free to use. SUPIR upscaler is many times better than both paid Topaz AI and Magnific AI and you can use this upscaler on your computer for free forever. The difference of SUPIR vs #Topaz and #Magnific is like ages. So in this tutorial you are going to learn everything about how to install, update and use SUPIR upscaler on your personal computer. The video shows Windows but it works perfectly fine on Linux as well.
Scripts Download Link โคต๏ธ
https://www.patreon.com/posts/99176057
Samplers and Text CFG (Text Guidance Scale) Comparison Link โคต๏ธ
https://imgsli.com/MjU2ODQz/2/1
How to install accurate Python, Git and FFmpeg on Windows Tutorial โคต๏ธ
https://youtu.be/-NjNy7afOQ0
Full DreamBooth / Fine-tuning Tutorial โคต๏ธ
https://youtu.be/0t5l6CP9eBg
Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild : https://arxiv.org/abs/2401.13627
Authors introduce SUPIR (Scaling-UP Image Restoration), a groundbreaking image restoration method that harnesses generative prior and the power of model scaling up. Leveraging multi-modal techniques and advanced generative prior, SUPIR marks a significant advance in intelligent and realistic image restoration. As a pivotal catalyst within SUPIR, model scaling dramatically enhances its capabilities and demonstrates new potential for image restoration. Authors collect a dataset comprising 20 million high-resolution, high-quality images for model training, each enriched with descriptive text annotations. SUPIR provides the capability to restore images guided by textual prompts, broadening its application scope and potential
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1672531901326-6345bd89fe134dfd7a0dba40.png",
"fullname": "Furkan Gรถzรผkara",
"name": "MonsterMMORPG",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 376,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/8U9hqTJMrfYXegEiUKAKf.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/GSdIiTLtCde6PcUho0A_5.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/3nyjLGgk_Lx84FNDRjo30.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/2vOD-meTTjKEdTJmgyNJW.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/sfLq1amHzyHwbWWmgWXI1.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/SG-ukXGVxgvv0t1YkOaZa.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/IpeQisCgGSju0fP_7A9gw.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/7gtS9HGqRCI5fej7xyfKk.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/tOFi7YkQXNdO14BuZUvtS.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/Yf8BIKb-QQkr3IrUYqDqQ.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/GcW3ikvB0ZQJXhUNWpZRs.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/S9vyUTKZmvxtB4uACfDC1.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/peSN9wGn6a8HhBRmncyx6.png"
}
] | [] | [
{
"reaction": "๐ฅ",
"users": [
"MonsterMMORPG",
"DmitryRyumin",
"splendiferousConiferous",
"sombaba",
"DonRichards",
"timothyupai",
"catastropiyush",
"vipulg",
"louisbrulenaudet"
],
"count": 9
},
{
"reaction": "๐",
"users": [
"MonsterMMORPG",
"distantquant",
"cocodark",
"StatsGary",
"dotdotgod",
"kevinpics",
"mtasic85"
],
"count": 7
},
{
"reaction": "โค๏ธ",
"users": [
"MonsterMMORPG",
"StatsGary"
],
"count": 2
},
{
"reaction": "๐คฏ",
"users": [
"MonsterMMORPG",
"qq8933"
],
"count": 2
},
{
"reaction": "๐",
"users": [
"MonsterMMORPG"
],
"count": 1
},
{
"reaction": "๐ค",
"users": [
"MonsterMMORPG"
],
"count": 1
},
{
"reaction": "๐",
"users": [
"MonsterMMORPG"
],
"count": 1
},
{
"reaction": "โ",
"users": [
"MonsterMMORPG"
],
"count": 1
},
{
"reaction": "๐ง ",
"users": [
"MonsterMMORPG"
],
"count": 1
},
{
"reaction": "๐",
"users": [
"MonsterMMORPG"
],
"count": 1
},
{
"reaction": "๐ค",
"users": [
"MonsterMMORPG"
],
"count": 1
}
] | 2024-04-23T22:39:17.000Z | 2024-05-23T19:55:12.803Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/xg3Ow02BGX1BoruDYaAr9.jpeg",
"fullname": "Fabrice TIERCELIN",
"name": "Fabrice-TIERCELIN",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 8,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1672531901326-6345bd89fe134dfd7a0dba40.png",
"fullname": "Furkan Gรถzรผkara",
"name": "MonsterMMORPG",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 376,
"isFollowing": false
}
] | /posts/MonsterMMORPG/283128537556650 | 3,674 | 9 |
909179600473160 | [
{
"type": "text",
"value": "Phi-3 Technical Report",
"raw": "Phi-3 Technical Report",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "A Highly Capable Language Model Locally on Your Phone",
"raw": "A Highly Capable Language Model Locally on Your Phone",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2404.14219",
"href": null,
"resource": {
"type": "paper",
"id": "2404.14219",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2404.14219",
"code": null,
"user": null,
"label": "Phi-3 Technical Report: A Highly Capable Language Model Locally on Your\n Phone (2404.14219)",
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "We introduce phi-3-mini, a 3.8 billion parameter language model trained on 3.3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3.5 (e.g., phi-3-mini achieves 69% on MMLU and 8.38 on MT-bench), despite being small enough to be deployed on a phone. The innovation lies entirely in our dataset for training, a scaled-up version of the one used for phi-2, composed of heavily filtered web data and synthetic data. The model is also further aligned for robustness, safety, and chat format. We also provide some initial parameter-scaling results with a 7B and 14B models trained for 4.8T tokens, called phi-3-small and phi-3-medium, both significantly more capable than phi-3-mini (e.g., respectively 75% and 78% on MMLU, and 8.7 and 8.9 on MT-bench).",
"raw": "We introduce phi-3-mini, a 3.8 billion parameter language model trained on 3.3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3.5 (e.g., phi-3-mini achieves 69% on MMLU and 8.38 on MT-bench), despite being small enough to be deployed on a phone. The innovation lies entirely in our dataset for training, a scaled-up version of the one used for phi-2, composed of heavily filtered web data and synthetic data. The model is also further aligned for robustness, safety, and chat format. We also provide some initial parameter-scaling results with a 7B and 14B models trained for 4.8T tokens, called phi-3-small and phi-3-medium, both significantly more capable than phi-3-mini (e.g., respectively 75% and 78% on MMLU, and 8.7 and 8.9 on MT-bench).",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Phi-3 Technical Report
A Highly Capable Language Model Locally on Your Phone
https://huggingface.co/papers/2404.14219
We introduce phi-3-mini, a 3.8 billion parameter language model trained on 3.3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3.5 (e.g., phi-3-mini achieves 69% on MMLU and 8.38 on MT-bench), despite being small enough to be deployed on a phone. The innovation lies entirely in our dataset for training, a scaled-up version of the one used for phi-2, composed of heavily filtered web data and synthetic data. The model is also further aligned for robustness, safety, and chat format. We also provide some initial parameter-scaling results with a 7B and 14B models trained for 4.8T tokens, called phi-3-small and phi-3-medium, both significantly more capable than phi-3-mini (e.g., respectively 75% and 78% on MMLU, and 8.7 and 8.9 on MT-bench).
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg",
"fullname": "AK",
"name": "akhaliq",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 5205,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/60f1abe7544c2adfd699860c/tLvG6rLJM2at4bOcbfj3D.png"
}
] | [] | [
{
"reaction": "๐",
"users": [
"himanshubeniwal",
"wchai",
"RahulSharma0",
"dotdotgod",
"AtAndDev"
],
"count": 5
},
{
"reaction": "๐ค",
"users": [
"victor",
"wchai",
"AtAndDev"
],
"count": 3
},
{
"reaction": "๐ฅ",
"users": [
"Dang",
"alielfilali01",
"AtAndDev"
],
"count": 3
},
{
"reaction": "๐",
"users": [
"taufiqdp",
"AtAndDev"
],
"count": 2
}
] | 2024-04-23T21:25:53.000Z | 2024-04-23T21:25:53.520Z | [] | /posts/akhaliq/909179600473160 | 3,374 | 0 |
434720589450701 | [
{
"type": "text",
"value": "Testing the Phi-3-mini 4k on HuggingChat. How well can it craft a tweet? ",
"raw": "Testing the Phi-3-mini 4k on HuggingChat. How well can it craft a tweet? ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Not bad at all: ",
"raw": "Not bad at all: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "code_fence",
"value": null,
"raw": "```\nExcited to unveil phi-3-mini, a compact yet powerful 3.8B parameter model, outperforming giants like Mixtral & GPT-3.5 on benchmarks & safe for phones! *\n#Al #Phi3 #LanguageModel #Techinnovation #Phi3Miniml\n```",
"href": null,
"resource": null,
"url": null,
"code": "Excited to unveil phi-3-mini, a compact yet powerful 3.8B parameter model, outperforming giants like Mixtral & GPT-3.5 on benchmarks & safe for phones! *\n#Al #Phi3 #LanguageModel #Techinnovation #Phi3Miniml",
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "The models are here:",
"raw": "The models are here:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Phi-3-Mini-4K-Instruct: ",
"raw": "- Phi-3-Mini-4K-Instruct: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
"href": null,
"resource": {
"type": "model",
"id": "microsoft/Phi-3-mini-4k-instruct",
"discussionNum": null
},
"url": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "-Phi-3-Mini-128K-Instruct: ",
"raw": "-Phi-3-Mini-128K-Instruct: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct",
"href": null,
"resource": {
"type": "model",
"id": "microsoft/Phi-3-mini-128k-instruct",
"discussionNum": null
},
"url": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Try it out in Hugging Chat: ",
"raw": "Try it out in Hugging Chat: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/chat/models/microsoft/Phi-3-mini-4k-instruct",
"href": "https://huggingface.co/chat/models/microsoft/Phi-3-mini-4k-instruct",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Testing the Phi-3-mini 4k on HuggingChat. How well can it craft a tweet?
Not bad at all:
```
Excited to unveil phi-3-mini, a compact yet powerful 3.8B parameter model, outperforming giants like Mixtral & GPT-3.5 on benchmarks & safe for phones! *
#Al #Phi3 #LanguageModel #Techinnovation #Phi3Miniml
```
The models are here:
- Phi-3-Mini-4K-Instruct: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
-Phi-3-Mini-128K-Instruct: https://huggingface.co/microsoft/Phi-3-mini-128k-instruct
Try it out in Hugging Chat: https://huggingface.co/chat/models/microsoft/Phi-3-mini-4k-instruct | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg",
"fullname": "Florent Daudens",
"name": "fdaudens",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 384,
"isFollowing": false
} | [
{
"type": "video",
"url": "https://cdn-uploads.huggingface.co/production/uploads/647f36a8454af0237bd49574/o50AInlRiNmtCt_En0DqG.mp4"
}
] | [] | [
{
"reaction": "๐ค",
"users": [
"zhou20120904"
],
"count": 1
}
] | 2024-04-23T19:10:11.000Z | 2024-08-26T10:00:29.594Z | [] | /posts/fdaudens/434720589450701 | 2,574 | 1 |
785172218215559 | [
{
"type": "text",
"value": "Happy to announce ",
"raw": "Happy to announce ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://imgsys.org",
"href": "https://imgsys.org",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " -- a sister project to Chatbot Arena by lmsys -- for comparing different text guided image generation models models. Try it natively on HuggingFace: ",
"raw": " -- a sister project to Chatbot Arena by lmsys -- for comparing different text guided image generation models models. Try it natively on HuggingFace: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/spaces/fal-ai/imgsys",
"href": "https://huggingface.co/spaces/fal-ai/imgsys",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Happy to announce https://imgsys.org -- a sister project to Chatbot Arena by lmsys -- for comparing different text guided image generation models models. Try it natively on HuggingFace: https://huggingface.co/spaces/fal-ai/imgsys | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6380ebb8471a4550ff255c62/-5tqR0SqLU53cOsXA-4ON.jpeg",
"fullname": "Batuhan",
"name": "isidentical",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 80,
"isFollowing": false
} | [] | [] | [
{
"reaction": "โค๏ธ",
"users": [
"clefourrier",
"clem",
"julien-c",
"victor",
"radames",
"multimodalart",
"badayvedat",
"DmitryRyumin",
"seyf1elislam",
"lysandre",
"ArthurZ",
"cansa",
"KingNish"
],
"count": 13
},
{
"reaction": "๐ฅ",
"users": [
"Dang"
],
"count": 1
},
{
"reaction": "๐",
"users": [
"ijohn07"
],
"count": 1
}
] | 2024-04-23T18:24:45.000Z | 2024-04-23T18:41:45.934Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg",
"fullname": "Victor Mustar",
"name": "victor",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 2607,
"isFollowing": false
}
] | /posts/isidentical/785172218215559 | 2,096 | 1 |
715163802813981 | [
{
"type": "text",
"value": "Thrilled to introduce our Hyper-SD, offering hyper-fastโก๏ธ and hyper-qualityโจ text-to-image generation.",
"raw": "Thrilled to introduce our Hyper-SD, offering hyper-fastโก๏ธ and hyper-qualityโจ text-to-image generation.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Our model achieves SINGLE-STEP inference on both SD1.5 and SDXL architecture without evident losses of aesthetics, styles and structures.",
"raw": "Our model achieves SINGLE-STEP inference on both SD1.5 and SDXL architecture without evident losses of aesthetics, styles and structures.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Project page: ",
"raw": "Project page: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://hyper-sd.github.io",
"href": "https://hyper-sd.github.io",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "HuggingFace repo: ",
"raw": "HuggingFace repo: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/ByteDance/Hyper-SD",
"href": null,
"resource": {
"type": "model",
"id": "ByteDance/Hyper-SD",
"discussionNum": null
},
"url": "https://huggingface.co/ByteDance/Hyper-SD",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Thrilled to introduce our Hyper-SD, offering hyper-fastโก๏ธ and hyper-qualityโจ text-to-image generation.
Our model achieves SINGLE-STEP inference on both SD1.5 and SDXL architecture without evident losses of aesthetics, styles and structures.
Project page: https://hyper-sd.github.io
HuggingFace repo: https://huggingface.co/ByteDance/Hyper-SD
| {
"avatarUrl": "/avatars/ca8ff74887bbf8eb3f5b04ae9bb6d05b.svg",
"fullname": "Yanzuo Lu",
"name": "oliveryanzuolu",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 9,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6614cbd40bbea65e71db4e1f/x-SvCMyuMDdVDNLESZNeB.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6614cbd40bbea65e71db4e1f/go52WIVe0WReUmbIhimoj.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6614cbd40bbea65e71db4e1f/CTfz4V9NpLFHIwjipZtSB.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6614cbd40bbea65e71db4e1f/r7YLhs8M509AnztkkuBja.png"
}
] | [] | [
{
"reaction": "๐ฅ",
"users": [
"renyuxi",
"multimodalart",
"DmitryRyumin",
"Tonic",
"YaTharThShaRma999",
"radames",
"victor",
"alielfilali01"
],
"count": 8
},
{
"reaction": "๐",
"users": [
"renyuxi",
"multimodalart",
"DmitryRyumin",
"Tonic",
"YaTharThShaRma999",
"radames",
"victor"
],
"count": 7
}
] | 2024-04-23T12:12:43.000Z | 2024-04-29T07:35:46.981Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648966381588-6064e095abd8d3692e3e2ed6.jpeg",
"fullname": "Radamรฉs Ajna",
"name": "radames",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2401,
"isFollowing": false
},
{
"avatarUrl": "/avatars/ca8ff74887bbf8eb3f5b04ae9bb6d05b.svg",
"fullname": "Yanzuo Lu",
"name": "oliveryanzuolu",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 9,
"isFollowing": false
}
] | /posts/oliveryanzuolu/715163802813981 | 2,652 | 3 |
284702584639894 | [
{
"type": "text",
"value": "All You need To Know About Phi-3 (Technical Report Walkthrough)",
"raw": "All You need To Know About Phi-3 (Technical Report Walkthrough)",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Summary of Summaries:",
"raw": "Summary of Summaries:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Phi-3-mini",
"raw": "Phi-3-mini",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Architecture specs: decoder-only transformer, ModelSize: 3.8 billion ",
"raw": "- Architecture specs: decoder-only transformer, ModelSize: 3.8 billion ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " parameters, LongRope [ 128K Context length ], Vocab Size [ 32064 ], ",
"raw": " parameters, LongRope [ 128K Context length ], Vocab Size [ 32064 ], ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " trained on 3.3 trillion tokens. at bfloat16.",
"raw": " trained on 3.3 trillion tokens. at bfloat16.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Rivals performance to larger models like Mixtral 8x7B and GPT-3.5, ",
"raw": "- Rivals performance to larger models like Mixtral 8x7B and GPT-3.5, ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " capable of running locally on a smartphone.",
"raw": " capable of running locally on a smartphone.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Utilizes high quality training dataset heavily filtered from web data and ",
"raw": "- Utilizes high quality training dataset heavily filtered from web data and ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " llm-generated synthetic data.",
"raw": " llm-generated synthetic data.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Can be quantized to 4-bits, occupying โ 1.8GB of memory.",
"raw": "- Can be quantized to 4-bits, occupying โ 1.8GB of memory.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Ran natively on iPhone 14 with A16 Bionic chip with inference speed of up ",
"raw": "- Ran natively on iPhone 14 with A16 Bionic chip with inference speed of up ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " to 12 tokens per second. ",
"raw": " to 12 tokens per second. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Phi-3-small",
"raw": "Phi-3-small",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Architecture specs: Also decoder-only, 7B parameters, Vocab size [ 100352 ], default context length [ 8k ], Context Length: 8K, Hidden Dimension: 4096, Number of Heads and Layers: Follows 7B class structure.",
"raw": "- Architecture specs: Also decoder-only, 7B parameters, Vocab size [ 100352 ], default context length [ 8k ], Context Length: 8K, Hidden Dimension: 4096, Number of Heads and Layers: Follows 7B class structure.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Uses tiktoken tokenizer (for enhanced multilingual to\u0002kenization) ",
"raw": "- Uses tiktoken tokenizer (for enhanced multilingual to\u0002kenization) ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Phi-3-medium: ",
"raw": "Phi-3-medium: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Architecture specs: Also decoder-only, Hidden Dimension: 5120, Number of Heads: 40, Number of Layers: 40, Tokenization: Consistent with other models, Training on 4.8 trillion tokens.",
"raw": "- Architecture specs: Also decoder-only, Hidden Dimension: 5120, Number of Heads: 40, Number of Layers: 40, Tokenization: Consistent with other models, Training on 4.8 trillion tokens.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Training Methodology:",
"raw": "Training Methodology:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Focuses on high-quality training data deviating from standard scaling laws.",
"raw": "- Focuses on high-quality training data deviating from standard scaling laws.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- The models undergo two-phase pre-training using a mix of web sources and synthetic data for general knowledge and logical reasoning skills.",
"raw": "- The models undergo two-phase pre-training using a mix of web sources and synthetic data for general knowledge and logical reasoning skills.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Performance:",
"raw": "Performance:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Phi-3-mini achieves competitive scores on standard benchmarks like MMLU and MT-Bench, indicating strong reasoning capabilities.",
"raw": "- Phi-3-mini achieves competitive scores on standard benchmarks like MMLU and MT-Bench, indicating strong reasoning capabilities.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Higher variants show even better performance, suggesting effective scaling with increased model size.",
"raw": "- Higher variants show even better performance, suggesting effective scaling with increased model size.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Limitations:",
"raw": "Limitations:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- phi-3-mini: limited by its smaller size in tasks requiring extensive factual knowledge, primarily supports English.",
"raw": "- phi-3-mini: limited by its smaller size in tasks requiring extensive factual knowledge, primarily supports English.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- phi-3-small limited multilingual support.",
"raw": "- phi-3-small limited multilingual support.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Hosting LLMs locally is a big win for OSS - private, secured inferencing on the go๐",
"raw": "Hosting LLMs locally is a big win for OSS - private, secured inferencing on the go๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | All You need To Know About Phi-3 (Technical Report Walkthrough)
Summary of Summaries:
Phi-3-mini
- Architecture specs: decoder-only transformer, ModelSize: 3.8 billion
parameters, LongRope [ 128K Context length ], Vocab Size [ 32064 ],
trained on 3.3 trillion tokens. at bfloat16.
- Rivals performance to larger models like Mixtral 8x7B and GPT-3.5,
capable of running locally on a smartphone.
- Utilizes high quality training dataset heavily filtered from web data and
llm-generated synthetic data.
- Can be quantized to 4-bits, occupying โ 1.8GB of memory.
- Ran natively on iPhone 14 with A16 Bionic chip with inference speed of up
to 12 tokens per second.
Phi-3-small
- Architecture specs: Also decoder-only, 7B parameters, Vocab size [ 100352 ], default context length [ 8k ], Context Length: 8K, Hidden Dimension: 4096, Number of Heads and Layers: Follows 7B class structure.
- Uses tiktoken tokenizer (for enhanced multilingual tokenization)
Phi-3-medium:
- Architecture specs: Also decoder-only, Hidden Dimension: 5120, Number of Heads: 40, Number of Layers: 40, Tokenization: Consistent with other models, Training on 4.8 trillion tokens.
Training Methodology:
- Focuses on high-quality training data deviating from standard scaling laws.
- The models undergo two-phase pre-training using a mix of web sources and synthetic data for general knowledge and logical reasoning skills.
Performance:
- Phi-3-mini achieves competitive scores on standard benchmarks like MMLU and MT-Bench, indicating strong reasoning capabilities.
- Higher variants show even better performance, suggesting effective scaling with increased model size.
Limitations:
- phi-3-mini: limited by its smaller size in tasks requiring extensive factual knowledge, primarily supports English.
- phi-3-small limited multilingual support.
Hosting LLMs locally is a big win for OSS - private, secured inferencing on the go๐ | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6438a9027de34e8ea7e4b257/vib8QSd1AWMr_bR9ig_xJ.jpeg",
"fullname": "Jaward Sesay",
"name": "Jaward",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 191,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/oFiRnhzC_NBAI05xtEGLg.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/NuBzEWdZNd4EV7D5-_xiS.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/HxkwIGPQlRP5mpbDFETsO.png"
}
] | [] | [
{
"reaction": "๐",
"users": [
"LHPKAI",
"heydrnik",
"Tonic",
"xiyuzhai",
"Akhil2507",
"mrfakename",
"Adriato",
"MissKinziRoze",
"victor",
"rashakol19",
"AtAndDev",
"youknowwhatAImean",
"EddyGiusepe",
"cuongtaongoc"
],
"count": 14
},
{
"reaction": "๐",
"users": [
"StatsGary",
"AtAndDev"
],
"count": 2
}
] | 2024-04-23T12:07:13.000Z | 2024-04-23T16:05:31.778Z | [
{
"avatarUrl": "/avatars/b2008910996680695d9107b8195a2ca2.svg",
"fullname": "Sebastien",
"name": "sebastienbo",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6438a9027de34e8ea7e4b257/vib8QSd1AWMr_bR9ig_xJ.jpeg",
"fullname": "Jaward Sesay",
"name": "Jaward",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 191,
"isFollowing": false
}
] | /posts/Jaward/284702584639894 | 5,214 | 4 |
511657668327096 | [
{
"type": "text",
"value": "๐๐ญ๐ฅ New Research Alert (Avatars Collection)! ๐ฅ๐๐",
"raw": "๐๐ญ๐ฅ New Research Alert (Avatars Collection)! ๐ฅ๐๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Title: Learn2Talk: 3D Talking Face Learns from 2D Talking Face",
"raw": "๐ Title: Learn2Talk: 3D Talking Face Learns from 2D Talking Face",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Description: Learn2Talk is a framework that leverages expertise from 2D talking face methods to improve 3D talking face synthesis, focusing on lip synchronization and speech perception.",
"raw": "๐ Description: Learn2Talk is a framework that leverages expertise from 2D talking face methods to improve 3D talking face synthesis, focusing on lip synchronization and speech perception.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ฅ Authors: Yixiang Zhuang et al.",
"raw": "๐ฅ Authors: Yixiang Zhuang et al.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Paper: ",
"raw": "๐ Paper: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2404.12888",
"href": null,
"resource": {
"type": "paper",
"id": "2404.12888",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2404.12888",
"code": null,
"user": null,
"label": "Learn2Talk: 3D Talking Face Learns from 2D Talking Face (2404.12888)",
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Github Page: ",
"raw": "๐ Github Page: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://lkjkjoiuiu.github.io/Learn2Talk/",
"href": "https://lkjkjoiuiu.github.io/Learn2Talk/",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ More Papers: more cutting-edge research presented at other conferences in the ",
"raw": "๐ More Papers: more cutting-edge research presented at other conferences in the ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers",
"href": null,
"resource": {
"type": "space",
"id": "DmitryRyumin/NewEraAI-Papers",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " curated by ",
"raw": " curated by ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@DmitryRyumin",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "DmitryRyumin",
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Added to the Avatars Collection: ",
"raw": "๐ Added to the Avatars Collection: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/DmitryRyumin/avatars-65df37cdf81fec13d4dbac36",
"href": null,
"resource": {
"type": "collection",
"id": "DmitryRyumin/avatars-65df37cdf81fec13d4dbac36",
"discussionNum": null
},
"url": "https://huggingface.co/collections/DmitryRyumin/avatars-65df37cdf81fec13d4dbac36",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Keywords: #Learn2Talk #3DTalkingFace #SpeechDrivenFacialAnimation #LipSync #SpeechPerception #ComputerVision #ImageProcessing #DeepLearning",
"raw": "๐ Keywords: #Learn2Talk #3DTalkingFace #SpeechDrivenFacialAnimation #LipSync #SpeechPerception #ComputerVision #ImageProcessing #DeepLearning",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐๐ญ๐ฅ New Research Alert (Avatars Collection)! ๐ฅ๐๐
๐ Title: Learn2Talk: 3D Talking Face Learns from 2D Talking Face
๐ Description: Learn2Talk is a framework that leverages expertise from 2D talking face methods to improve 3D talking face synthesis, focusing on lip synchronization and speech perception.
๐ฅ Authors: Yixiang Zhuang et al.
๐ Paper: https://huggingface.co/papers/2404.12888
๐ Github Page: https://lkjkjoiuiu.github.io/Learn2Talk/
๐ More Papers: more cutting-edge research presented at other conferences in the https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers curated by @DmitryRyumin
๐ Added to the Avatars Collection: https://huggingface.co/collections/DmitryRyumin/avatars-65df37cdf81fec13d4dbac36
๐ Keywords: #Learn2Talk #3DTalkingFace #SpeechDrivenFacialAnimation #LipSync #SpeechPerception #ComputerVision #ImageProcessing #DeepLearning | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/nRCxbVng_PPBqKd-Z3KVc.jpeg",
"fullname": "Dmitry Ryumin",
"name": "DmitryRyumin",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 377,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/R7Gvvt8sOYSfdkhqaxrcE.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/HAGnLFOdAd6_P-mjIB1iK.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/0OKzF6h1mBhEhG7ZXSlaE.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/PjkrgH6gSMMlakHPAOmZX.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/FPE4Qrj5Y0TqxrZ4oAZFR.png"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/nRCxbVng_PPBqKd-Z3KVc.jpeg",
"fullname": "Dmitry Ryumin",
"name": "DmitryRyumin",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 377
}
] | [
{
"reaction": "๐ฅ",
"users": [
"DmitryRyumin",
"KvrParaskevi",
"AlekseiPravdin",
"alicegaz"
],
"count": 4
},
{
"reaction": "๐",
"users": [
"Tonic",
"AlekseiPravdin"
],
"count": 2
}
] | 2024-04-23T11:40:17.000Z | 2024-04-23T11:40:17.606Z | [] | /posts/DmitryRyumin/511657668327096 | 1,913 | 0 |
801606345104999 | [
{
"type": "text",
"value": "Trained another version of llama3-8b-instruct which beats the base model. This time without losing too many points on gsm8k benchmark. Again, using AutoTrain ๐ฅ pip install autotrain-advanced",
"raw": "Trained another version of llama3-8b-instruct which beats the base model. This time without losing too many points on gsm8k benchmark. Again, using AutoTrain ๐ฅ pip install autotrain-advanced",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Trained model: ",
"raw": "Trained model: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/abhishek/autotrain-llama3-orpo-v2",
"href": null,
"resource": {
"type": "model",
"id": "abhishek/autotrain-llama3-orpo-v2",
"discussionNum": null
},
"url": "https://huggingface.co/abhishek/autotrain-llama3-orpo-v2",
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Trained another version of llama3-8b-instruct which beats the base model. This time without losing too many points on gsm8k benchmark. Again, using AutoTrain ๐ฅ pip install autotrain-advanced
Trained model: https://huggingface.co/abhishek/autotrain-llama3-orpo-v2 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5fa19f4ba13e063b8b2b5e11/nGVHdTYX2udnt-K8mqY27.jpeg",
"fullname": "Abhishek Thakur",
"name": "abhishek",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 1383,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/5fa19f4ba13e063b8b2b5e11/76r33pSIqDXxaZiMVmUaS.jpeg"
}
] | [] | [
{
"reaction": "๐",
"users": [
"abhishek",
"clem",
"GAurav19",
"not-lain",
"louisbrulenaudet",
"JayGhiya"
],
"count": 6
},
{
"reaction": "๐ฅ",
"users": [
"not-lain",
"elsiddik",
"djward888"
],
"count": 3
}
] | 2024-04-23T11:22:12.000Z | 2024-04-23T22:46:11.166Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6527e89a8808d80ccff88b7a/CuGNmF1Et8KMQ0mCd1NEJ.jpeg",
"fullname": "Lain",
"name": "not-lain",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 941,
"isFollowing": false
}
] | /posts/abhishek/801606345104999 | 2,369 | 1 |
760130468530860 | [
{
"type": "text",
"value": "Why does Meta invest millions in Llama 3 and then makes it available for free? Here is Zuckerberg's explanation to investors in the Q3 2023 earnings call:",
"raw": "Why does Meta invest millions in Llama 3 and then makes it available for free? Here is Zuckerberg's explanation to investors in the Q3 2023 earnings call:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "\"The second part of our playbook is open source software infrastructure. Our long-standing strategy has been to build and open source general infrastructure while keeping our specific product implementations proprietary.",
"raw": "\"The second part of our playbook is open source software infrastructure. Our long-standing strategy has been to build and open source general infrastructure while keeping our specific product implementations proprietary.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "[...] First, open source software is typically safer and more secure, as well as more compute efficient to operate due to all the ongoing feedback, scrutiny, and development from the community. This is a big deal because safety is one of the most important issues in AI. Efficiency improvements and lowering the compute costs also benefit everyone including us.",
"raw": "[...] First, open source software is typically safer and more secure, as well as more compute efficient to operate due to all the ongoing feedback, scrutiny, and development from the community. This is a big deal because safety is one of the most important issues in AI. Efficiency improvements and lowering the compute costs also benefit everyone including us.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Second, open source software often becomes an industry standard, and when companies standardize on building with our stack, that then becomes easier to integrate new innovations into our products. Thatโs subtle, but the ability to learn and improve quickly is a huge advantage and being an industry standard enables that.",
"raw": "Second, open source software often becomes an industry standard, and when companies standardize on building with our stack, that then becomes easier to integrate new innovations into our products. Thatโs subtle, but the ability to learn and improve quickly is a huge advantage and being an industry standard enables that.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Third, open source is hugely popular with developers and researchers. We know that people want to work on open systems that will be widely adopted, so this helps us recruit the best people at Meta, which is a very big deal for leading in any new technology area.",
"raw": "Third, open source is hugely popular with developers and researchers. We know that people want to work on open systems that will be widely adopted, so this helps us recruit the best people at Meta, which is a very big deal for leading in any new technology area.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "And again, we typically have unique data and build unique product integrations anyway, so providing infrastructure like Llama as open source doesn't reduce our main advantages. This is why our long-standing strategy has been to open source general infrastructure and why I expect it to continue to be the right approach for us going forward.\"",
"raw": "And again, we typically have unique data and build unique product integrations anyway, so providing infrastructure like Llama as open source doesn't reduce our main advantages. This is why our long-standing strategy has been to open source general infrastructure and why I expect it to continue to be the right approach for us going forward.\"",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Fully earnings call transcript: ",
"raw": "Fully earnings call transcript: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://s21.q4cdn.com/399680738/files/doc_financials/2023/q4/META-Q4-2023-Earnings-Call-Transcript.pdf",
"href": "https://s21.q4cdn.com/399680738/files/doc_financials/2023/q4/META-Q4-2023-Earnings-Call-Transcript.pdf",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Why does Meta invest millions in Llama 3 and then makes it available for free? Here is Zuckerberg's explanation to investors in the Q3 2023 earnings call:
"The second part of our playbook is open source software infrastructure. Our long-standing strategy has been to build and open source general infrastructure while keeping our specific product implementations proprietary.
[...] First, open source software is typically safer and more secure, as well as more compute efficient to operate due to all the ongoing feedback, scrutiny, and development from the community. This is a big deal because safety is one of the most important issues in AI. Efficiency improvements and lowering the compute costs also benefit everyone including us.
Second, open source software often becomes an industry standard, and when companies standardize on building with our stack, that then becomes easier to integrate new innovations into our products. Thatโs subtle, but the ability to learn and improve quickly is a huge advantage and being an industry standard enables that.
Third, open source is hugely popular with developers and researchers. We know that people want to work on open systems that will be widely adopted, so this helps us recruit the best people at Meta, which is a very big deal for leading in any new technology area.
And again, we typically have unique data and build unique product integrations anyway, so providing infrastructure like Llama as open source doesn't reduce our main advantages. This is why our long-standing strategy has been to open source general infrastructure and why I expect it to continue to be the right approach for us going forward."
Fully earnings call transcript: https://s21.q4cdn.com/399680738/files/doc_financials/2023/q4/META-Q4-2023-Earnings-Call-Transcript.pdf | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1613511937628-5fb15d1e84389b139cf3b508.jpeg",
"fullname": "Moritz Laurer",
"name": "MoritzLaurer",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 236,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐",
"users": [
"dippatel2506",
"clem",
"Vinzou",
"boapps",
"louisbrulenaudet",
"m-ric",
"ppsingh"
],
"count": 7
}
] | 2024-04-23T08:52:27.000Z | 2024-04-23T08:52:27.043Z | [] | /posts/MoritzLaurer/760130468530860 | 4,730 | 0 |
510051255878106 | [
{
"type": "text",
"value": "We release an empirical study to showcase \"How Good Are Low-bit Quantized hashtag#LLaMA3 ๐ฆ Models\" with existing LLM quantization techniques!",
"raw": "We release an empirical study to showcase \"How Good Are Low-bit Quantized hashtag#LLaMA3 ๐ฆ Models\" with existing LLM quantization techniques!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "In this study, the performance of the low-bit LLaMA3 models (especially LLaMA3-70B) is impressively notable. ๐ However, the results also exposed significant performance degradation issues faced by existing quantization techniques when dealing with LLaMA3, especially under ultra-low bit-width.",
"raw": "In this study, the performance of the low-bit LLaMA3 models (especially LLaMA3-70B) is impressively notable. ๐ However, the results also exposed significant performance degradation issues faced by existing quantization techniques when dealing with LLaMA3, especially under ultra-low bit-width.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "We hope this study can serve as a reference for the LLM quantization community and promote the emergence of stronger LLM quantization methods in the context of LLaMA3's release. More work is on the way... ",
"raw": "We hope this study can serve as a reference for the LLM quantization community and promote the emergence of stronger LLM quantization methods in the context of LLaMA3's release. More work is on the way... ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2404.14047",
"href": null,
"resource": {
"type": "paper",
"id": "2404.14047",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2404.14047",
"code": null,
"user": null,
"label": "How Good Are Low-bit Quantized LLaMA3 Models? An Empirical Study (2404.14047)",
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/collections/LLMQ/llama3-quantization-66251258525135aeda16513c",
"href": "https://huggingface.co/collections/LLMQ/llama3-quantization-66251258525135aeda16513c",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | We release an empirical study to showcase "How Good Are Low-bit Quantized hashtag#LLaMA3 ๐ฆ Models" with existing LLM quantization techniques!
In this study, the performance of the low-bit LLaMA3 models (especially LLaMA3-70B) is impressively notable. ๐ However, the results also exposed significant performance degradation issues faced by existing quantization techniques when dealing with LLaMA3, especially under ultra-low bit-width.
We hope this study can serve as a reference for the LLM quantization community and promote the emergence of stronger LLM quantization methods in the context of LLaMA3's release. More work is on the way...
https://huggingface.co/papers/2404.14047
https://huggingface.co/collections/LLMQ/llama3-quantization-66251258525135aeda16513c | {
"avatarUrl": "/avatars/7ce9af8c627f2a0c3db6bde82290ee1f.svg",
"fullname": "Haotong Qin",
"name": "HaotongQin",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐",
"users": [
"rashakol19",
"xSakix"
],
"count": 2
}
] | 2024-04-23T08:05:14.000Z | 2024-04-23T08:05:14.575Z | [] | /posts/HaotongQin/510051255878106 | 1,900 | 0 |
154443941545394 | [
{
"type": "text",
"value": "ByteDance released new distillation technique Hyper-SD (",
"raw": "ByteDance released new distillation technique Hyper-SD (",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/ByteDance/Hyper-SD",
"href": null,
"resource": {
"type": "model",
"id": "ByteDance/Hyper-SD",
"discussionNum": null
},
"url": "https://huggingface.co/ByteDance/Hyper-SD",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": ") for efficient image generation.",
"raw": ") for efficient image generation.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Here a few demos:",
"raw": "Here a few demos:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Official:",
"raw": "Official:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Hyper-SDXL-1Step-T2I ",
"raw": "Hyper-SDXL-1Step-T2I ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/ByteDance/Hyper-SDXL-1Step-T2I",
"href": null,
"resource": {
"type": "space",
"id": "ByteDance/Hyper-SDXL-1Step-T2I",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/ByteDance/Hyper-SDXL-1Step-T2I",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Hyper-SD15-Scribble ",
"raw": "Hyper-SD15-Scribble ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/ByteDance/Hyper-SD15-Scribble",
"href": null,
"resource": {
"type": "space",
"id": "ByteDance/Hyper-SD15-Scribble",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/ByteDance/Hyper-SD15-Scribble",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Unofficial Demos: InstantStyle + Hyper SD1.5 (not great but super fast) ",
"raw": "Unofficial Demos: InstantStyle + Hyper SD1.5 (not great but super fast) ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/radames/InstantStyle-Hyper-SD",
"href": null,
"resource": {
"type": "space",
"id": "radames/InstantStyle-Hyper-SD",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/radames/InstantStyle-Hyper-SD",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "InstantStyle + Hyper SDXL ",
"raw": "InstantStyle + Hyper SDXL ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/radames/InstantStyle-Hyper-SDXL",
"href": null,
"resource": {
"type": "space",
"id": "radames/InstantStyle-Hyper-SDXL",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/radames/InstantStyle-Hyper-SDXL",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ByteDance released new distillation technique Hyper-SD (https://huggingface.co/ByteDance/Hyper-SD) for efficient image generation.
Here a few demos:
Official:
Hyper-SDXL-1Step-T2I https://huggingface.co/spaces/ByteDance/Hyper-SDXL-1Step-T2I
Hyper-SD15-Scribble https://huggingface.co/spaces/ByteDance/Hyper-SD15-Scribble
Unofficial Demos: InstantStyle + Hyper SD1.5 (not great but super fast) https://huggingface.co/spaces/radames/InstantStyle-Hyper-SD
InstantStyle + Hyper SDXL https://huggingface.co/spaces/radames/InstantStyle-Hyper-SDXL
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648966381588-6064e095abd8d3692e3e2ed6.jpeg",
"fullname": "Radamรฉs Ajna",
"name": "radames",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2401,
"isFollowing": false
} | [] | [] | [
{
"reaction": "โค๏ธ",
"users": [
"clem",
"afrideva",
"attashe"
],
"count": 3
}
] | 2024-04-23T07:00:08.000Z | 2024-04-23T07:01:17.893Z | [] | /posts/radames/154443941545394 | 2,458 | 0 |
471234622044561 | [
{
"type": "text",
"value": "I'm super happy to co-organize the (Mechanistic) Interpretability social at #ICLR2024 with ",
"raw": "I'm super happy to co-organize the (Mechanistic) Interpretability social at #ICLR2024 with ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@nikhil07prakash",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "nikhil07prakash",
"label": null,
"lang": null
},
{
"type": "text",
"value": " ! ๐",
"raw": " ! ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "If you plan to attend, help us make this meetup awesome by filling the form below! ๐ ",
"raw": "If you plan to attend, help us make this meetup awesome by filling the form below! ๐ ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐
Wed, May 8, 12:45-2:15 PM",
"raw": "๐
Wed, May 8, 12:45-2:15 PM",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ RSVP & share your ideas here: ",
"raw": "๐ RSVP & share your ideas here: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://forms.gle/FWap4KW2ikdntjfb8",
"href": "https://forms.gle/FWap4KW2ikdntjfb8",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | I'm super happy to co-organize the (Mechanistic) Interpretability social at #ICLR2024 with @nikhil07prakash ! ๐
If you plan to attend, help us make this meetup awesome by filling the form below! ๐
๐
Wed, May 8, 12:45-2:15 PM
๐ RSVP & share your ideas here: https://forms.gle/FWap4KW2ikdntjfb8 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1670231290373-5e7749883d77a72421292d07.jpeg",
"fullname": "Gabriele Sarti",
"name": "gsarti",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 205,
"isFollowing": false
} | [] | [
{
"avatarUrl": "/avatars/1cc6c8ced4d455115bbc3a5126a4b8aa.svg",
"fullname": "Nikhil Prakash",
"name": "nikhil07prakash",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null
}
] | [
{
"reaction": "๐ฅ",
"users": [
"DmitryRyumin",
"DeepMount00",
"ajibawa-2023",
"emaballarin"
],
"count": 4
},
{
"reaction": "๐",
"users": [
"Tonic"
],
"count": 1
}
] | 2024-04-23T06:34:23.000Z | 2024-04-25T14:46:35.591Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64aea8ff67511bd3d965697b/Jxn52EmDF5RApJh8antxn.jpeg",
"fullname": "Feynman Innovations",
"name": "ajibawa-2023",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 138,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1670231290373-5e7749883d77a72421292d07.jpeg",
"fullname": "Gabriele Sarti",
"name": "gsarti",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 205,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1583857146757-5e67bdd61009063689407479.jpeg",
"fullname": "Clem ๐ค",
"name": "clem",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 1763,
"isFollowing": false
}
] | /posts/gsarti/471234622044561 | 1,771 | 5 |
923891033615290 | [
{
"type": "text",
"value": "Introduction to HelpingAI-3B-v2.1 and HelpingAI-3B-v2.2",
"raw": "Introduction to HelpingAI-3B-v2.1 and HelpingAI-3B-v2.2",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "These models are designed to engage in dialogues that are not only contextually relevant but also deeply empathetic, tailoring their responses to the emotional state and context of the user. With advanced emotional understanding capabilities, they can comfort, celebrate, and address complex feelings with a level of emotional nuance that is unparalleled in the AI domain.",
"raw": "These models are designed to engage in dialogues that are not only contextually relevant but also deeply empathetic, tailoring their responses to the emotional state and context of the user. With advanced emotional understanding capabilities, they can comfort, celebrate, and address complex feelings with a level of emotional nuance that is unparalleled in the AI domain.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Emotional Intelligence Capabilities",
"raw": "Emotional Intelligence Capabilities",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "The core of these models lies in their emotional intelligence capabilities. They exhibit several key traits that enable them to respond emotionally resonant:",
"raw": "The core of these models lies in their emotional intelligence capabilities. They exhibit several key traits that enable them to respond emotionally resonant:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Emotion recognition and validation: The models can identify and validate the emotions expressed by the user, ensuring that their responses are grounded in understanding.",
"raw": "- Emotion recognition and validation: The models can identify and validate the emotions expressed by the user, ensuring that their responses are grounded in understanding.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Empathetic perspective-taking: They are capable of taking the user's perspective, understanding their feelings, and responding with empathy.",
"raw": "- Empathetic perspective-taking: They are capable of taking the user's perspective, understanding their feelings, and responding with empathy.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Generating emotionally supportive language: The models can generate language that is supportive and comforting, tailored to the user's emotional state.",
"raw": "- Generating emotionally supportive language: The models can generate language that is supportive and comforting, tailored to the user's emotional state.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Contextual emotional attunement: They can adapt their communication style to match the emotional context of the conversation, ensuring relevance and appropriateness.",
"raw": "- Contextual emotional attunement: They can adapt their communication style to match the emotional context of the conversation, ensuring relevance and appropriateness.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Using appropriate tone, word choice, and emotional expression**: The models are adept at using the right tone, words, and emotional expressions to convey their messages effectively.",
"raw": "- Using appropriate tone, word choice, and emotional expression**: The models are adept at using the right tone, words, and emotional expressions to convey their messages effectively.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Examples of Emotionally Intelligent Responses",
"raw": "Examples of Emotionally Intelligent Responses",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Let's take a look at how these models can adapt their communication style with emotional nuance:",
"raw": "Let's take a look at how these models can adapt their communication style with emotional nuance:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Comforting someone grieving: The models can offer empathetic responses, acknowledging the user's feelings and suggesting practical ways to cope with grief.",
"raw": "- Comforting someone grieving: The models can offer empathetic responses, acknowledging the user's feelings and suggesting practical ways to cope with grief.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Celebrating positive news: They can generate responses that are joyful and supportive, encouraging the user to enjoy their positive experiences.",
"raw": "- Celebrating positive news: They can generate responses that are joyful and supportive, encouraging the user to enjoy their positive experiences.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/OEvortex/HelpingAI-3B-v2.1",
"href": null,
"resource": {
"type": "model",
"id": "OEvortex/HelpingAI-3B-v2.1",
"discussionNum": null
},
"url": "https://huggingface.co/OEvortex/HelpingAI-3B-v2.1",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/OEvortex/HelpingAI-3B-v2.2",
"href": null,
"resource": {
"type": "model",
"id": "OEvortex/HelpingAI-3B-v2.2",
"discussionNum": null
},
"url": "https://huggingface.co/OEvortex/HelpingAI-3B-v2.2",
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Introduction to HelpingAI-3B-v2.1 and HelpingAI-3B-v2.2
These models are designed to engage in dialogues that are not only contextually relevant but also deeply empathetic, tailoring their responses to the emotional state and context of the user. With advanced emotional understanding capabilities, they can comfort, celebrate, and address complex feelings with a level of emotional nuance that is unparalleled in the AI domain.
Emotional Intelligence Capabilities
The core of these models lies in their emotional intelligence capabilities. They exhibit several key traits that enable them to respond emotionally resonant:
- Emotion recognition and validation: The models can identify and validate the emotions expressed by the user, ensuring that their responses are grounded in understanding.
- Empathetic perspective-taking: They are capable of taking the user's perspective, understanding their feelings, and responding with empathy.
- Generating emotionally supportive language: The models can generate language that is supportive and comforting, tailored to the user's emotional state.
- Contextual emotional attunement: They can adapt their communication style to match the emotional context of the conversation, ensuring relevance and appropriateness.
- Using appropriate tone, word choice, and emotional expression**: The models are adept at using the right tone, words, and emotional expressions to convey their messages effectively.
Examples of Emotionally Intelligent Responses
Let's take a look at how these models can adapt their communication style with emotional nuance:
- Comforting someone grieving: The models can offer empathetic responses, acknowledging the user's feelings and suggesting practical ways to cope with grief.
- Celebrating positive news: They can generate responses that are joyful and supportive, encouraging the user to enjoy their positive experiences.
https://huggingface.co/OEvortex/HelpingAI-3B-v2.1
https://huggingface.co/OEvortex/HelpingAI-3B-v2.2 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64be41c330a1f0f0f0a1e0eb/vvkpXYESXL_LkfrzzfUB-.jpeg",
"fullname": "Abhay Koul",
"name": "Abhaykoul",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 49,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐ฅ",
"users": [
"Abhaykoul",
"Aarifkhan"
],
"count": 2
},
{
"reaction": "๐",
"users": [
"Abhaykoul"
],
"count": 1
},
{
"reaction": "๐",
"users": [
"Abhaykoul"
],
"count": 1
}
] | 2024-04-23T02:34:48.000Z | 2024-04-23T02:37:19.423Z | [] | /posts/Abhaykoul/923891033615290 | 2,813 | 0 |
499878947150634 | [
{
"type": "text",
"value": "InstantStyle works with the 2-step SDXL-Lightning distilled model, reducing generation time from ~20s to ~9s! ",
"raw": "InstantStyle works with the 2-step SDXL-Lightning distilled model, reducing generation time from ~20s to ~9s! ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "In a big related update, as of today, Diffusers@main supports InstantStyle. I'm looking forward to playing with it!",
"raw": "In a big related update, as of today, Diffusers@main supports InstantStyle. I'm looking forward to playing with it!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/huggingface/diffusers/pull/7668",
"href": "https://github.com/huggingface/diffusers/pull/7668",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/radames/InstantStyle-SDXL-Lightning",
"href": null,
"resource": {
"type": "space",
"id": "radames/InstantStyle-SDXL-Lightning",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/radames/InstantStyle-SDXL-Lightning",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/ByteDance/SDXL-Lightning",
"href": null,
"resource": {
"type": "model",
"id": "ByteDance/SDXL-Lightning",
"discussionNum": null
},
"url": "https://huggingface.co/ByteDance/SDXL-Lightning",
"code": null,
"user": null,
"label": null,
"lang": null
}
] | InstantStyle works with the 2-step SDXL-Lightning distilled model, reducing generation time from ~20s to ~9s!
In a big related update, as of today, Diffusers@main supports InstantStyle. I'm looking forward to playing with it!
https://github.com/huggingface/diffusers/pull/7668
https://huggingface.co/spaces/radames/InstantStyle-SDXL-Lightning
https://huggingface.co/ByteDance/SDXL-Lightning | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648966381588-6064e095abd8d3692e3e2ed6.jpeg",
"fullname": "Radamรฉs Ajna",
"name": "radames",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2401,
"isFollowing": false
} | [
{
"type": "video",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6064e095abd8d3692e3e2ed6/c2haNlluUKrfRLQyh-KgW.mp4"
}
] | [] | [] | 2024-04-23T01:18:05.000Z | 2024-04-23T01:18:05.776Z | [] | /posts/radames/499878947150634 | 2,199 | 0 |
418561098018815 | [
{
"type": "text",
"value": "Unlocking the Power of locally running Llama-3 8B Model Agents with Chat-UI! ๐ฅ๐โจ",
"raw": "Unlocking the Power of locally running Llama-3 8B Model Agents with Chat-UI! ๐ฅ๐โจ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "I'm thrilled to share my hackathon-style side project: ",
"raw": "I'm thrilled to share my hackathon-style side project: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "1. Finetuning Llama-8B for function calling using PEFT QLoRA as the instruct Llama-3 model doesn't support this. The colab notebook for it is here: ",
"raw": "1. Finetuning Llama-8B for function calling using PEFT QLoRA as the instruct Llama-3 model doesn't support this. The colab notebook for it is here: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://lnkd.in/ggJMzqh2",
"href": "https://lnkd.in/ggJMzqh2",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": ". ๐ ๏ธ",
"raw": ". ๐ ๏ธ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "2. Finetuned model along with the 4-bit quants here: ",
"raw": "2. Finetuned model along with the 4-bit quants here: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://lnkd.in/gNpFKY6V",
"href": "https://lnkd.in/gNpFKY6V",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " โจ",
"raw": " โจ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "3. Clone Hugging Face ",
"raw": "3. Clone Hugging Face ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://lnkd.in/gKBKuUBQ",
"href": "https://lnkd.in/gKBKuUBQ",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " and make it compatible for function calling by building upon the PR ",
"raw": " and make it compatible for function calling by building upon the PR ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://lnkd.in/gnqFuAd4",
"href": "https://lnkd.in/gnqFuAd4",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " for my model and local inferencing usecase using Ollama. This was a steep learning curve wherein I stayed awake the whole night to get it working. ๐ช๐ฝ",
"raw": " for my model and local inferencing usecase using Ollama. This was a steep learning curve wherein I stayed awake the whole night to get it working. ๐ช๐ฝ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "4. Above, I used SerpAPI for web browsing and Mongo DB Atlas free tier for persistence of conversations and assistant configs. ๐",
"raw": "4. Above, I used SerpAPI for web browsing and Mongo DB Atlas free tier for persistence of conversations and assistant configs. ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "5. More work is required to switch between using tools and responding directly wherein I see the model breaks. ๐ง",
"raw": "5. More work is required to switch between using tools and responding directly wherein I see the model breaks. ๐ง",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "How cool is this wherein we are approaching experience akin to ChatGPT while using local hosted agent model running on your laptop! ๐ป",
"raw": "How cool is this wherein we are approaching experience akin to ChatGPT while using local hosted agent model running on your laptop! ๐ป",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Unlocking the Power of locally running Llama-3 8B Model Agents with Chat-UI! ๐ฅ๐โจ
I'm thrilled to share my hackathon-style side project:
1. Finetuning Llama-8B for function calling using PEFT QLoRA as the instruct Llama-3 model doesn't support this. The colab notebook for it is here: https://lnkd.in/ggJMzqh2. ๐ ๏ธ
2. Finetuned model along with the 4-bit quants here: https://lnkd.in/gNpFKY6V โจ
3. Clone Hugging Face https://lnkd.in/gKBKuUBQ and make it compatible for function calling by building upon the PR https://lnkd.in/gnqFuAd4 for my model and local inferencing usecase using Ollama. This was a steep learning curve wherein I stayed awake the whole night to get it working. ๐ช๐ฝ
4. Above, I used SerpAPI for web browsing and Mongo DB Atlas free tier for persistence of conversations and assistant configs. ๐
5. More work is required to switch between using tools and responding directly wherein I see the model breaks. ๐ง
How cool is this wherein we are approaching experience akin to ChatGPT while using local hosted agent model running on your laptop! ๐ป
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1638132956881-5fca176d1d7a08cb34d79d5d.jpeg",
"fullname": "Sourab Mangrulkar",
"name": "smangrul",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 224,
"isFollowing": false
} | [
{
"type": "video",
"url": "https://cdn-uploads.huggingface.co/production/uploads/5fca176d1d7a08cb34d79d5d/cmWQmRqHP5BnNy_eLkody.mp4"
}
] | [] | [
{
"reaction": "๐คฏ",
"users": [
"zarazi",
"Kukedlc",
"Abhaykoul",
"AlekseiPravdin",
"Tonic",
"victor",
"RedSparkie",
"jaocseverywhere",
"johnbendi"
],
"count": 9
},
{
"reaction": "๐ฅ",
"users": [
"DmitryRyumin",
"Tonic",
"Nayer-ali",
"med4u",
"alleniver",
"kpi",
"parsapico",
"johnbendi"
],
"count": 8
}
] | 2024-04-22T23:58:19.000Z | 2024-04-23T00:11:10.032Z | [
{
"avatarUrl": "/avatars/b87f7255d0a3ff3b50389d916e747a5c.svg",
"fullname": "Isara Settavittayanukit",
"name": "zarazi",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1,
"isFollowing": false
}
] | /posts/smangrul/418561098018815 | 3,198 | 1 |
736759191735161 | [
{
"type": "text",
"value": "Great in-depth Llama-3 tests from ",
"raw": "Great in-depth Llama-3 tests from ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@wolfram",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "wolfram",
"label": null,
"lang": null
},
{
"type": "text",
"value": ", of the models from Meta of course but also ",
"raw": ", of the models from Meta of course but also ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@MaziyarPanahi",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "MaziyarPanahi",
"label": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@emozilla",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "emozilla",
"label": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@turboderp",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "turboderp",
"label": null,
"lang": null
},
{
"type": "text",
"value": " : ",
"raw": " : ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/blog/wolfram/llm-comparison-test-llama-3",
"href": "https://huggingface.co/blog/wolfram/llm-comparison-test-llama-3",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Spotted by ",
"raw": "Spotted by ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@jack-kumar",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "jack-kumar",
"label": null,
"lang": null
}
] | Great in-depth Llama-3 tests from @wolfram, of the models from Meta of course but also @MaziyarPanahi @emozilla @turboderp : https://huggingface.co/blog/wolfram/llm-comparison-test-llama-3
Spotted by @jack-kumar | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1583857146757-5e67bdd61009063689407479.jpeg",
"fullname": "Clem ๐ค",
"name": "clem",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 1763,
"isFollowing": false
} | [] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1676652577978-630581db99870e13d3e0006f.jpeg",
"fullname": "Jeffrey Quesnelle",
"name": "emozilla",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 2223
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/66214e4185446629f393638f/25wbY0H9u1KekuFwiK3OI.png",
"fullname": "Jack Kumar",
"name": "jack-kumar",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 5
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5fd5e18a90b6dc4633f6d292/gZXHW5dd9R86AV9LMZ--y.png",
"fullname": "Maziyar Panahi",
"name": "MaziyarPanahi",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 1541
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6383dc174c48969dcf1b4fce/4N-GY7jVvdk08kp2B8DLh.jpeg",
"fullname": "turboderp",
"name": "turboderp",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 354
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6303ca537373aacccd85d8a7/JZqLjXZVGWXJdWUNI99db.jpeg",
"fullname": "Wolfram Ravenwolf",
"name": "wolfram",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 159
}
] | [
{
"reaction": "๐ค",
"users": [
"wolfram",
"fdaudens",
"raincandy-u",
"MaziyarPanahi",
"julien-c",
"SaylorTwift"
],
"count": 6
}
] | 2024-04-22T22:17:36.000Z | 2024-05-08T17:39:28.862Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5fd5e18a90b6dc4633f6d292/gZXHW5dd9R86AV9LMZ--y.png",
"fullname": "Maziyar Panahi",
"name": "MaziyarPanahi",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 1541,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64b1619f4c3cc95a751e6c41/oSUtmp1Gw0I-ve_1wFlNW.jpeg",
"fullname": "Michal Zebrowski",
"name": "M1cler",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1,
"isFollowing": false
}
] | /posts/clem/736759191735161 | 2,521 | 2 |
499755977013871 | [
{
"type": "text",
"value": "Prompting BERT!",
"raw": "Prompting BERT!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Zero-shot learning ability is the hottest thing about causal LLMs. You don't need to finetune causal LLMs on each specific task. Instead, you can use prompting and get a decent performance on unseen tasks.",
"raw": "Zero-shot learning ability is the hottest thing about causal LLMs. You don't need to finetune causal LLMs on each specific task. Instead, you can use prompting and get a decent performance on unseen tasks.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Unfortunately, autoencoding LLMs - like our dear friend BERT ๐โโ๏ธ- lack this ability and you need a task-specific head for different tasks. But what if you could prompt all the BERTs in the world?!",
"raw": "Unfortunately, autoencoding LLMs - like our dear friend BERT ๐โโ๏ธ- lack this ability and you need a task-specific head for different tasks. But what if you could prompt all the BERTs in the world?!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ฅ Introducing Statement-Tuning ๐ฅ",
"raw": "๐ฅ Introducing Statement-Tuning ๐ฅ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Now hold your horses! don't go full-LLama on it yet. Using this finetuning approach, we can get zero-shot performance from encoders by turning a problem into a yes/no problem. Binary classification all the way down! ",
"raw": "Now hold your horses! don't go full-LLama on it yet. Using this finetuning approach, we can get zero-shot performance from encoders by turning a problem into a yes/no problem. Binary classification all the way down! ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "For example, a single entailment problem will be decomposed into 3 yes/no questions. ",
"raw": "For example, a single entailment problem will be decomposed into 3 yes/no questions. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "This is still not super useful. But I like works that try to make a little more space for encoders in the current autoregressive era!",
"raw": "This is still not super useful. But I like works that try to make a little more space for encoders in the current autoregressive era!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Check the paper if interested: ",
"raw": "Check the paper if interested: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2404.12897",
"href": null,
"resource": {
"type": "paper",
"id": "2404.12897",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2404.12897",
"code": null,
"user": null,
"label": "Enabling Natural Zero-Shot Prompting on Encoder Models via\n Statement-Tuning (2404.12897)",
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Prompting BERT!
Zero-shot learning ability is the hottest thing about causal LLMs. You don't need to finetune causal LLMs on each specific task. Instead, you can use prompting and get a decent performance on unseen tasks.
Unfortunately, autoencoding LLMs - like our dear friend BERT ๐โโ๏ธ- lack this ability and you need a task-specific head for different tasks. But what if you could prompt all the BERTs in the world?!
๐ฅ Introducing Statement-Tuning ๐ฅ
Now hold your horses! don't go full-LLama on it yet. Using this finetuning approach, we can get zero-shot performance from encoders by turning a problem into a yes/no problem. Binary classification all the way down!
For example, a single entailment problem will be decomposed into 3 yes/no questions.
This is still not super useful. But I like works that try to make a little more space for encoders in the current autoregressive era!
Check the paper if interested: https://huggingface.co/papers/2404.12897
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1650745211725-noauth.png",
"fullname": "Mohammed Hamdy",
"name": "mmhamdy",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 38,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/62645f88c39850dc093d6105/UZtQ03vNMEkHcCdf4vR-t.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/62645f88c39850dc093d6105/8CtiRMfzYCqvM_AFEv7Ta.png"
}
] | [] | [
{
"reaction": "๐ฅ",
"users": [
"radames",
"KingNish",
"Unggi",
"MarinaraSpaghetti"
],
"count": 4
}
] | 2024-04-22T19:53:54.000Z | 2024-04-22T19:56:31.371Z | [] | /posts/mmhamdy/499755977013871 | 1,848 | 0 |
246316254852896 | [
{
"type": "text",
"value": "Idefics2 is trained mostly on OBELICS, our open interleaved image-text document dataset.",
"raw": "Idefics2 is trained mostly on OBELICS, our open interleaved image-text document dataset.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Training on interleaved data is crucial to reaching high performance on VQA tasks, taking an arbitrary number of images as input, and doing in-context learning.",
"raw": "Training on interleaved data is crucial to reaching high performance on VQA tasks, taking an arbitrary number of images as input, and doing in-context learning.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Dataset: ",
"raw": "Dataset: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/HuggingFaceM4/OBELICS",
"href": null,
"resource": {
"type": "dataset",
"id": "HuggingFaceM4/OBELICS",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/HuggingFaceM4/OBELICS",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Nomic visualization: ",
"raw": "Nomic visualization: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://atlas.nomic.ai/map/f2fba2aa-3647-4f49-a0f3-9347daeee499/ee4a84bd-f125-4bcc-a683-1b4e231cb10f",
"href": "https://atlas.nomic.ai/map/f2fba2aa-3647-4f49-a0f3-9347daeee499/ee4a84bd-f125-4bcc-a683-1b4e231cb10f",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Link to OBELICS thread: ",
"raw": "Link to OBELICS thread: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://twitter.com/HugoLaurencon/status/1694005892839006301",
"href": "https://twitter.com/HugoLaurencon/status/1694005892839006301",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Idefics2 is trained mostly on OBELICS, our open interleaved image-text document dataset.
Training on interleaved data is crucial to reaching high performance on VQA tasks, taking an arbitrary number of images as input, and doing in-context learning.
Dataset: https://huggingface.co/datasets/HuggingFaceM4/OBELICS
Nomic visualization: https://atlas.nomic.ai/map/f2fba2aa-3647-4f49-a0f3-9347daeee499/ee4a84bd-f125-4bcc-a683-1b4e231cb10f
Link to OBELICS thread: https://twitter.com/HugoLaurencon/status/1694005892839006301 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1635201569275-noauth.jpeg",
"fullname": "Hugo Laurenรงon",
"name": "HugoLaurencon",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 146,
"isFollowing": false
} | [] | [] | [
{
"reaction": "โค๏ธ",
"users": [
"radames",
"clem",
"VictorSanh",
"bmorphism"
],
"count": 4
}
] | 2024-04-22T16:46:11.000Z | 2024-04-22T16:47:21.891Z | [] | /posts/HugoLaurencon/246316254852896 | 2,465 | 0 |
752633127602434 | [
{
"type": "text",
"value": "Please... feed this Llama some Sauerkraut! ๐ฒ ",
"raw": "Please... feed this Llama some Sauerkraut! ๐ฒ ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Said and done. Here it is. Our Sauerkraut Version of the strong Llama3-8b by Meta. Released from HANNOVER MESSE, just in front of meta booth.",
"raw": "Said and done. Here it is. Our Sauerkraut Version of the strong Llama3-8b by Meta. Released from HANNOVER MESSE, just in front of meta booth.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct",
"href": null,
"resource": {
"type": "model",
"id": "VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct",
"discussionNum": null
},
"url": "https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "According to benchmarks (LM-Evaluation-Harness 0.4.2), our #SauerkrautLM Dataset and fine-tuning pipeline improved the Model noticeably (AVG = 74,57), especially Reasoning and Common Sense capabilities.",
"raw": "According to benchmarks (LM-Evaluation-Harness 0.4.2), our #SauerkrautLM Dataset and fine-tuning pipeline improved the Model noticeably (AVG = 74,57), especially Reasoning and Common Sense capabilities.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Again we provide some more detail on the whole process:",
"raw": "Again we provide some more detail on the whole process:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "โ
Original model: Llama-3-8b-Instruct",
"raw": "โ
Original model: Llama-3-8b-Instruct",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "โ
Training Duration: 12 hours",
"raw": "โ
Training Duration: 12 hours",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "โ
Training procedure: 2-staged DPO",
"raw": "โ
Training procedure: 2-staged DPO",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "โ
Trained data: 70k (first stage) and 20k (second stage)",
"raw": "โ
Trained data: 70k (first stage) and 20k (second stage)",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "โ
GPU: 4x RTX6000 ADA",
"raw": "โ
GPU: 4x RTX6000 ADA",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "โ
New model: Llama-3-SauerkrautLM-8b-Instruct",
"raw": "โ
New model: Llama-3-SauerkrautLM-8b-Instruct",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "โ
Total training costs: 54,72 Dollar ๐ด - RunPod FTW (excluding synthesizing data, curating data, benchmarks, error handling, testing)",
"raw": "โ
Total training costs: 54,72 Dollar ๐ด - RunPod FTW (excluding synthesizing data, curating data, benchmarks, error handling, testing)",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "See our model card on Hugging Face for more details: ",
"raw": "See our model card on Hugging Face for more details: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct",
"href": null,
"resource": {
"type": "model",
"id": "VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct",
"discussionNum": null
},
"url": "https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "There will be more details on benchmarks during the next days. ",
"raw": "There will be more details on benchmarks during the next days. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Please... feed this Llama some Sauerkraut! ๐ฒ
Said and done. Here it is. Our Sauerkraut Version of the strong Llama3-8b by Meta. Released from HANNOVER MESSE, just in front of meta booth.
https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
According to benchmarks (LM-Evaluation-Harness 0.4.2), our #SauerkrautLM Dataset and fine-tuning pipeline improved the Model noticeably (AVG = 74,57), especially Reasoning and Common Sense capabilities.
Again we provide some more detail on the whole process:
โ
Original model: Llama-3-8b-Instruct
โ
Training Duration: 12 hours
โ
Training procedure: 2-staged DPO
โ
Trained data: 70k (first stage) and 20k (second stage)
โ
GPU: 4x RTX6000 ADA
โ
New model: Llama-3-SauerkrautLM-8b-Instruct
โ
Total training costs: 54,72 Dollar ๐ด - RunPod FTW (excluding synthesizing data, curating data, benchmarks, error handling, testing)
See our model card on Hugging Face for more details: https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
There will be more details on benchmarks during the next days. | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64b999a40b24527e9c25583a/xFHCewJdf5EGn8qDPypqy.jpeg",
"fullname": "David Golchinfar",
"name": "DavidGF",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 49,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/64b999a40b24527e9c25583a/3eB3klskh-5_RBqEbW3Zw.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/64b999a40b24527e9c25583a/4wZDfirzbbf1I0aCbISX-.jpeg"
}
] | [] | [
{
"reaction": "๐",
"users": [
"Xorg2024",
"clem",
"DaryoushV",
"quyettv",
"fynnkroeger",
"jdjayakaran2410"
],
"count": 6
}
] | 2024-04-22T16:37:36.000Z | 2024-04-22T16:38:52.925Z | [] | /posts/DavidGF/752633127602434 | 1,734 | 0 |
314976912029136 | [
{
"type": "text",
"value": "Meta Llama 3 70B landed on the Leaderboard at the 11th position: ",
"raw": "Meta Llama 3 70B landed on the Leaderboard at the 11th position: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard",
"href": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Meta Llama 3 70B landed on the Leaderboard at the 11th position: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg",
"fullname": "Florent Daudens",
"name": "fdaudens",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 384,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/647f36a8454af0237bd49574/lQJ8Oa4-z_ZJb7YhBA_Or.png"
}
] | [] | [
{
"reaction": "๐",
"users": [
"clem",
"andreim14",
"Joseph717171"
],
"count": 3
},
{
"reaction": "๐ฅ",
"users": [
"michealdavis",
"Joseph717171"
],
"count": 2
}
] | 2024-04-22T15:43:14.000Z | 2024-04-28T11:13:13.810Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6612aedf09f16e7347dfa7e1/bPYjBXCedY_1fSIPjoBTY.jpeg",
"fullname": "Nishith Jain",
"name": "KingNish",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1079,
"isFollowing": false
}
] | /posts/fdaudens/314976912029136 | 1,642 | 1 |
623272696044281 | [
{
"type": "text",
"value": "\"Is this a bug? I'm able to post even though they didn't approve my request.\"",
"raw": "\"Is this a bug? I'm able to post even though they didn't approve my request.\"",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | "Is this a bug? I'm able to post even though they didn't approve my request." | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63881c1f3143f4706311c2d0/JeZnhiigCg3tBmEuK83QO.jpeg",
"fullname": "Hesham Haroon",
"name": "HeshamHaroon",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 90,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐",
"users": [
"Elliott-V",
"victor",
"julien-c",
"Tonic"
],
"count": 4
}
] | 2024-04-22T14:10:21.000Z | 2024-04-24T10:52:42.102Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg",
"fullname": "Victor Mustar",
"name": "victor",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 2607,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6527e89a8808d80ccff88b7a/CuGNmF1Et8KMQ0mCd1NEJ.jpeg",
"fullname": "Lain",
"name": "not-lain",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 941,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6316fb937b0ee0136e5f1220/poHBoJ7QAF_s2CCaosdvQ.jpeg",
"fullname": "Firstname Lastname",
"name": "takeraparterer",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 29,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62e54f0eae9d3f10acb95cb9/VAyk05hqB3OZWXEZW-B0q.png",
"fullname": "mrfakename",
"name": "mrfakename",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 969,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63881c1f3143f4706311c2d0/JeZnhiigCg3tBmEuK83QO.jpeg",
"fullname": "Hesham Haroon",
"name": "HeshamHaroon",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 90,
"isFollowing": false
}
] | /posts/HeshamHaroon/623272696044281 | 2,526 | 8 |
899044648100689 | [
{
"type": "text",
"value": "**Release Announcement: gliner_multi_pii-v1**",
"raw": "**Release Announcement: gliner_multi_pii-v1**",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "I am pleased to announce the release of gliner_multi_pii-v1, a model developed for recognizing a wide range of Personally Identifiable Information (PII). This model is the result of fine-tuning the urchade/gliner_multi-v2.1 on synthetic dataset (urchade/synthetic-pii-ner-mistral-v1).",
"raw": "I am pleased to announce the release of gliner_multi_pii-v1, a model developed for recognizing a wide range of Personally Identifiable Information (PII). This model is the result of fine-tuning the urchade/gliner_multi-v2.1 on synthetic dataset (urchade/synthetic-pii-ner-mistral-v1).",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "**Model Features:**",
"raw": "**Model Features:**",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Capable of identifying multiple PII types including addresses, passport numbers, emails, social security numbers, and more.",
"raw": "- Capable of identifying multiple PII types including addresses, passport numbers, emails, social security numbers, and more.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Designed to assist with data protection and compliance across various domains.",
"raw": "- Designed to assist with data protection and compliance across various domains.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Multilingual (English, French, Spanish, German, Italian, Portugese)",
"raw": "- Multilingual (English, French, Spanish, German, Italian, Portugese)",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Link: ",
"raw": "Link: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/urchade/gliner_multi_pii-v1",
"href": null,
"resource": {
"type": "model",
"id": "urchade/gliner_multi_pii-v1",
"discussionNum": null
},
"url": "https://huggingface.co/urchade/gliner_multi_pii-v1",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "code_fence",
"value": null,
"raw": "```python\nfrom gliner import GLiNER\n\nmodel = GLiNER.from_pretrained(\"urchade/gliner_multi_pii-v1\")\n\ntext = \"\"\"\nHarilala Rasoanaivo, un homme d'affaires local d'Antananarivo, a enregistrรฉ une nouvelle sociรฉtรฉ nommรฉe \"Rasoanaivo Enterprises\" au Lot II M 92 Antohomadinika. Son numรฉro est le +261 32 22 345 67, et son adresse รฉlectronique est [email protected]. Il a fourni son numรฉro de sรฉcu 501-02-1234 pour l'enregistrement.\n\"\"\"\n\nlabels = [\"work\", \"booking number\", \"personally identifiable information\", \"driver licence\", \"person\", \"address\", \"company\", \"email\", \"passport number\", \"Social Security Number\", \"phone number\"]\nentities = model.predict_entities(text, labels)\n\nfor entity in entities:\n print(entity[\"text\"], \"=>\", entity[\"label\"])\n```",
"href": null,
"resource": null,
"url": null,
"code": "from gliner import GLiNER\n\nmodel = GLiNER.from_pretrained(\"urchade/gliner_multi_pii-v1\")\n\ntext = \"\"\"\nHarilala Rasoanaivo, un homme d'affaires local d'Antananarivo, a enregistrรฉ une nouvelle sociรฉtรฉ nommรฉe \"Rasoanaivo Enterprises\" au Lot II M 92 Antohomadinika. Son numรฉro est le +261 32 22 345 67, et son adresse รฉlectronique est [email protected]. Il a fourni son numรฉro de sรฉcu 501-02-1234 pour l'enregistrement.\n\"\"\"\n\nlabels = [\"work\", \"booking number\", \"personally identifiable information\", \"driver licence\", \"person\", \"address\", \"company\", \"email\", \"passport number\", \"Social Security Number\", \"phone number\"]\nentities = model.predict_entities(text, labels)\n\nfor entity in entities:\n print(entity[\"text\"], \"=>\", entity[\"label\"])",
"user": null,
"label": null,
"lang": "python"
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "code_fence",
"value": null,
"raw": "```\nHarilala Rasoanaivo => person\nRasoanaivo Enterprises => company\nLot II M 92 Antohomadinika => full address\n+261 32 22 345 67 => phone number\[email protected] => email\n501-02-1234 => Social Security Number\n```",
"href": null,
"resource": null,
"url": null,
"code": "Harilala Rasoanaivo => person\nRasoanaivo Enterprises => company\nLot II M 92 Antohomadinika => full address\n+261 32 22 345 67 => phone number\[email protected] => email\n501-02-1234 => Social Security Number",
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | **Release Announcement: gliner_multi_pii-v1**
I am pleased to announce the release of gliner_multi_pii-v1, a model developed for recognizing a wide range of Personally Identifiable Information (PII). This model is the result of fine-tuning the urchade/gliner_multi-v2.1 on synthetic dataset (urchade/synthetic-pii-ner-mistral-v1).
**Model Features:**
- Capable of identifying multiple PII types including addresses, passport numbers, emails, social security numbers, and more.
- Designed to assist with data protection and compliance across various domains.
- Multilingual (English, French, Spanish, German, Italian, Portugese)
Link: https://huggingface.co/urchade/gliner_multi_pii-v1
```python
from gliner import GLiNER
model = GLiNER.from_pretrained("urchade/gliner_multi_pii-v1")
text = """
Harilala Rasoanaivo, un homme d'affaires local d'Antananarivo, a enregistrรฉ une nouvelle sociรฉtรฉ nommรฉe "Rasoanaivo Enterprises" au Lot II M 92 Antohomadinika. Son numรฉro est le +261 32 22 345 67, et son adresse รฉlectronique est [email protected]. Il a fourni son numรฉro de sรฉcu 501-02-1234 pour l'enregistrement.
"""
labels = ["work", "booking number", "personally identifiable information", "driver licence", "person", "address", "company", "email", "passport number", "Social Security Number", "phone number"]
entities = model.predict_entities(text, labels)
for entity in entities:
print(entity["text"], "=>", entity["label"])
```
```
Harilala Rasoanaivo => person
Rasoanaivo Enterprises => company
Lot II M 92 Antohomadinika => full address
+261 32 22 345 67 => phone number
[email protected] => email
501-02-1234 => Social Security Number
```
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62111fdbe1d974ee5bcbfa27/YUzX6lBvW8pbxDorx1kgV.png",
"fullname": "Urchade Zaratiana",
"name": "urchade",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 149,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐ฅ",
"users": [
"bfuzzy1",
"mrdbourke",
"leslyarun",
"Tatvajsh",
"ksquarekumar",
"manu",
"xclyfe",
"bitsTobyte",
"timpearce"
],
"count": 9
},
{
"reaction": "โค๏ธ",
"users": [
"erickdp",
"Csplk",
"xclyfe"
],
"count": 3
}
] | 2024-04-22T08:43:39.000Z | 2024-04-22T08:43:39.285Z | [] | /posts/urchade/899044648100689 | 7,086 | 0 |
893347918444929 | [
{
"type": "text",
"value": "ChemLLM datasets is all open source now!",
"raw": "ChemLLM datasets is all open source now!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2402.06852",
"href": null,
"resource": {
"type": "paper",
"id": "2402.06852",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2402.06852",
"code": null,
"user": null,
"label": "ChemLLM: A Chemical Large Language Model (2402.06852)",
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "700K of SFT Dataset, ChemData700K For Chemistry of LLM!",
"raw": "700K of SFT Dataset, ChemData700K For Chemistry of LLM!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/AI4Chem/ChemData700K",
"href": null,
"resource": {
"type": "dataset",
"id": "AI4Chem/ChemData700K",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/AI4Chem/ChemData700K",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "10K of DPO Dataset, ChemPref-10K, both English and Chinese!",
"raw": "10K of DPO Dataset, ChemPref-10K, both English and Chinese!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/AI4Chem/ChemPref-DPO-for-Chemistry-data-en",
"href": null,
"resource": {
"type": "dataset",
"id": "AI4Chem/ChemPref-DPO-for-Chemistry-data-en",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/AI4Chem/ChemPref-DPO-for-Chemistry-data-en",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/AI4Chem/ChemPref-DPO-for-Chemistry-data-cn",
"href": null,
"resource": {
"type": "dataset",
"id": "AI4Chem/ChemPref-DPO-for-Chemistry-data-cn",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/AI4Chem/ChemPref-DPO-for-Chemistry-data-cn",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "ChemBench-4K of 4100 high-quality single-choice benchmark for nine core Chemistry tasks!",
"raw": "ChemBench-4K of 4100 high-quality single-choice benchmark for nine core Chemistry tasks!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/AI4Chem/ChemBench4K",
"href": null,
"resource": {
"type": "dataset",
"id": "AI4Chem/ChemBench4K",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/AI4Chem/ChemBench4K",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "C-MHChem, 600 real test questions written and checked manually, from 25 years of Chinese National Middle school chemistry Test!",
"raw": "C-MHChem, 600 real test questions written and checked manually, from 25 years of Chinese National Middle school chemistry Test!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/AI4Chem/C-MHChem-Benchmark-Chinese-Middle-high-school-Chemistry-Test",
"href": null,
"resource": {
"type": "dataset",
"id": "AI4Chem/C-MHChem-Benchmark-Chinese-Middle-high-school-Chemistry-Test",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/AI4Chem/C-MHChem-Benchmark-Chinese-Middle-high-school-Chemistry-Test",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "All hail to Open-source community!๐ค",
"raw": "All hail to Open-source community!๐ค",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ChemLLM datasets is all open source now!
https://huggingface.co/papers/2402.06852
700K of SFT Dataset, ChemData700K For Chemistry of LLM!
https://huggingface.co/datasets/AI4Chem/ChemData700K
10K of DPO Dataset, ChemPref-10K, both English and Chinese!
https://huggingface.co/datasets/AI4Chem/ChemPref-DPO-for-Chemistry-data-en
https://huggingface.co/datasets/AI4Chem/ChemPref-DPO-for-Chemistry-data-cn
ChemBench-4K of 4100 high-quality single-choice benchmark for nine core Chemistry tasks!
https://huggingface.co/datasets/AI4Chem/ChemBench4K
C-MHChem, 600 real test questions written and checked manually, from 25 years of Chinese National Middle school chemistry Test!
https://huggingface.co/datasets/AI4Chem/C-MHChem-Benchmark-Chinese-Middle-high-school-Chemistry-Test
All hail to Open-source community!๐ค
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64bce15bafd1e46c5504ad38/bQFX1iFbXEBXcQvUNL811.png",
"fullname": "Di Zhang",
"name": "qq8933",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 108,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐ฅ",
"users": [
"DmitryRyumin",
"qq8933",
"ajibawa-2023",
"clem",
"mmhamdy",
"Tonic",
"DRRRRDFFD",
"tiandatong"
],
"count": 8
},
{
"reaction": "๐ง ",
"users": [
"Tonic",
"qq8933"
],
"count": 2
},
{
"reaction": "๐",
"users": [
"chuangxinlezhi",
"qq8933"
],
"count": 2
},
{
"reaction": "โค๏ธ",
"users": [
"chuangxinlezhi",
"qq8933"
],
"count": 2
},
{
"reaction": "๐คฏ",
"users": [
"chuangxinlezhi",
"qq8933"
],
"count": 2
},
{
"reaction": "๐",
"users": [
"chuangxinlezhi",
"qq8933"
],
"count": 2
}
] | 2024-04-22T06:52:27.000Z | 2024-04-22T06:53:28.826Z | [] | /posts/qq8933/893347918444929 | 2,048 | 0 |
989775613989289 | [
{
"type": "text",
"value": "๐ฅ **transformers** 4.40.0 is out ๐ฅ",
"raw": "๐ฅ **transformers** 4.40.0 is out ๐ฅ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "โ๏ธ you can now push your custom pipelines easily to ๐ค, allowing people to easily use your model in a more friendly, unified way.",
"raw": "โ๏ธ you can now push your custom pipelines easily to ๐ค, allowing people to easily use your model in a more friendly, unified way.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ค I already updated my blog to match the new feature ",
"raw": "๐ค I already updated my blog to match the new feature ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/blog/not-lain/custom-architectures-with-huggingface",
"href": "https://huggingface.co/blog/not-lain/custom-architectures-with-huggingface",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": ". ",
"raw": ". ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐A list of some repos that have custom pipelines :",
"raw": "๐A list of some repos that have custom pipelines :",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "* ",
"raw": "* ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/briaai/RMBG-1.4",
"href": null,
"resource": {
"type": "model",
"id": "briaai/RMBG-1.4",
"discussionNum": null
},
"url": "https://huggingface.co/briaai/RMBG-1.4",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "* ",
"raw": "* ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/p1atdev/siglip-tagger-test-3",
"href": null,
"resource": {
"type": "model",
"id": "p1atdev/siglip-tagger-test-3",
"discussionNum": null
},
"url": "https://huggingface.co/p1atdev/siglip-tagger-test-3",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "* ",
"raw": "* ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/sgugger/test-dynamic-pipeline",
"href": null,
"resource": {
"type": "model",
"id": "sgugger/test-dynamic-pipeline",
"discussionNum": null
},
"url": "https://huggingface.co/sgugger/test-dynamic-pipeline",
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐ฅ **transformers** 4.40.0 is out ๐ฅ
โ๏ธ you can now push your custom pipelines easily to ๐ค, allowing people to easily use your model in a more friendly, unified way.
๐ค I already updated my blog to match the new feature https://huggingface.co/blog/not-lain/custom-architectures-with-huggingface.
๐A list of some repos that have custom pipelines :
* https://huggingface.co/briaai/RMBG-1.4
* https://huggingface.co/p1atdev/siglip-tagger-test-3
* https://huggingface.co/sgugger/test-dynamic-pipeline | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6527e89a8808d80ccff88b7a/CuGNmF1Et8KMQ0mCd1NEJ.jpeg",
"fullname": "Lain",
"name": "not-lain",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 941,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐",
"users": [
"kartiikx3",
"raincandy-u",
"ajibawa-2023",
"bfuzzy1",
"solnone",
"zolicsaki",
"wenbopan",
"Tonic"
],
"count": 8
},
{
"reaction": "๐ฅ",
"users": [
"DmitryRyumin",
"bfuzzy1",
"zolicsaki",
"Tonic",
"louisbrulenaudet"
],
"count": 5
}
] | 2024-04-22T03:44:59.000Z | 2024-04-22T03:44:59.438Z | [] | /posts/not-lain/989775613989289 | 2,286 | 0 |
106989352218401 | [
{
"type": "text",
"value": "#TPU #PyTorch #Jax",
"raw": "#TPU #PyTorch #Jax",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "When You're trying to use PyTorch or Jax on TPU,",
"raw": "When You're trying to use PyTorch or Jax on TPU,",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "for v2/v3/v4:",
"raw": "for v2/v3/v4:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " use tpu-ubuntu2204-base",
"raw": " use tpu-ubuntu2204-base",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "for v5p:",
"raw": "for v5p:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " use v2-alpha-tpuv5",
"raw": " use v2-alpha-tpuv5",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "for v5e:",
"raw": "for v5e:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " use v2-alpha-tpuv5-lite",
"raw": " use v2-alpha-tpuv5-lite",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "You must use these base images for the system to 'boot'.",
"raw": "You must use these base images for the system to 'boot'.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Previously used tpu-vm-v4-pt-1.13 images might seem to start the VM, but SSH connections do not work.",
"raw": "Previously used tpu-vm-v4-pt-1.13 images might seem to start the VM, but SSH connections do not work.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "I thought it was a firewall issue and spent a lot of time on it before realizing it was a problem with the boot image ๐ฅฒ",
"raw": "I thought it was a firewall issue and spent a lot of time on it before realizing it was a problem with the boot image ๐ฅฒ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://cloud.google.com/tpu/docs/runtimes#pytorch_and_jax",
"href": "https://cloud.google.com/tpu/docs/runtimes#pytorch_and_jax",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | #TPU #PyTorch #Jax
When You're trying to use PyTorch or Jax on TPU,
for v2/v3/v4:
use tpu-ubuntu2204-base
for v5p:
use v2-alpha-tpuv5
for v5e:
use v2-alpha-tpuv5-lite
You must use these base images for the system to 'boot'.
Previously used tpu-vm-v4-pt-1.13 images might seem to start the VM, but SSH connections do not work.
I thought it was a firewall issue and spent a lot of time on it before realizing it was a problem with the boot image ๐ฅฒ
https://cloud.google.com/tpu/docs/runtimes#pytorch_and_jax | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5e56829137cb5b49818287ea/8HYzJeRc4b9Wu7BfJwibS.png",
"fullname": "Lee Junbum",
"name": "beomi",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 378,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/5e56829137cb5b49818287ea/7Unv99dRcLsPA9Y7N2irS.png"
}
] | [] | [
{
"reaction": "๐",
"users": [
"deepkyu",
"maywell",
"devngho",
"byoussef",
"Taekyoon"
],
"count": 5
}
] | 2024-04-22T02:04:46.000Z | 2024-04-22T04:45:14.809Z | [] | /posts/beomi/106989352218401 | 12,601 | 0 |
406890518970199 | [
{
"type": "text",
"value": "Meta's new LLama-3 (",
"raw": "Meta's new LLama-3 (",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct",
"href": null,
"resource": {
"type": "model",
"id": "meta-llama/Meta-Llama-3-8B-Instruct",
"discussionNum": null
},
"url": "https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": ") is an extremely capable model out of the box for coding related tasks. It is the first model that we have seen that beats GPT-4 on Static-Analysis-Eval - ",
"raw": ") is an extremely capable model out of the box for coding related tasks. It is the first model that we have seen that beats GPT-4 on Static-Analysis-Eval - ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/patched-codes/static-analysis-eval",
"href": null,
"resource": {
"type": "dataset",
"id": "patched-codes/static-analysis-eval",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/patched-codes/static-analysis-eval",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": ".",
"raw": ".",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Meta's new LLama-3 (https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) is an extremely capable model out of the box for coding related tasks. It is the first model that we have seen that beats GPT-4 on Static-Analysis-Eval - https://huggingface.co/datasets/patched-codes/static-analysis-eval. | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1677134945205-62f32eab52ad88c930bb3f3b.png",
"fullname": "Asankhaya Sharma",
"name": "codelion",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 46,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/62f32eab52ad88c930bb3f3b/_t4iIfGv8BKdPu4v4j-3y.png"
}
] | [] | [
{
"reaction": "๐ฅ",
"users": [
"codelion",
"ArchieX25",
"AayushShah",
"victor",
"clem",
"g-ronimo",
"Tonic"
],
"count": 7
},
{
"reaction": "๐",
"users": [
"codelion",
"bmorphism"
],
"count": 2
},
{
"reaction": "๐",
"users": [
"codelion",
"den0620"
],
"count": 2
}
] | 2024-04-22T00:39:10.000Z | 2024-04-22T00:39:24.592Z | [] | /posts/codelion/406890518970199 | 1,816 | 0 |
665758617674402 | [
{
"type": "text",
"value": "๐๐ค๐ New Research Alert - NAACL 2024 (Big Five Personality Traits Collection)! ๐๐๐ค",
"raw": "๐๐ค๐ New Research Alert - NAACL 2024 (Big Five Personality Traits Collection)! ๐๐๐ค",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Title: PersonaLLM: Investigating the Ability of Large Language Models to Express Personality Traits ๐ฌ",
"raw": "๐ Title: PersonaLLM: Investigating the Ability of Large Language Models to Express Personality Traits ๐ฌ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Description: This research examines the ability of LLMs to express personality traits and finds that LLMs can generate content consistent with assigned personality profiles and that humans can recognize certain traits with up to 80% accuracy. However, accuracy drops significantly when annotators are aware that the content was generated by an AI.",
"raw": "๐ Description: This research examines the ability of LLMs to express personality traits and finds that LLMs can generate content consistent with assigned personality profiles and that humans can recognize certain traits with up to 80% accuracy. However, accuracy drops significantly when annotators are aware that the content was generated by an AI.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ฅ Authors: Hang Jiang et al.",
"raw": "๐ฅ Authors: Hang Jiang et al.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐
Conference: NAACL, June 16โ21, 2024 | Mexico City, Mexico ๐ฒ๐ฝ",
"raw": "๐
Conference: NAACL, June 16โ21, 2024 | Mexico City, Mexico ๐ฒ๐ฝ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Paper: ",
"raw": "๐ Paper: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2305.02547",
"href": null,
"resource": {
"type": "paper",
"id": "2305.02547",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2305.02547",
"code": null,
"user": null,
"label": "PersonaLLM: Investigating the Ability of Large Language Models to\n Express Personality Traits (2305.02547)",
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Repository: ",
"raw": "๐ Repository: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/hjian42/PersonaLLM",
"href": "https://github.com/hjian42/PersonaLLM",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Added to the Big Five Personality Traits Collection: ",
"raw": "๐ Added to the Big Five Personality Traits Collection: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/DmitryRyumin/big-five-personality-traits-661fb545292ab3d12a5a4890",
"href": null,
"resource": {
"type": "collection",
"id": "DmitryRyumin/big-five-personality-traits-661fb545292ab3d12a5a4890",
"discussionNum": null
},
"url": "https://huggingface.co/collections/DmitryRyumin/big-five-personality-traits-661fb545292ab3d12a5a4890",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ฅ๐ See also OCEAN-AI - ",
"raw": "๐ฅ๐ See also OCEAN-AI - ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/ElenaRyumina/OCEANAI",
"href": null,
"resource": {
"type": "space",
"id": "ElenaRyumina/OCEANAI",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/ElenaRyumina/OCEANAI",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " (App, co-authored by ",
"raw": " (App, co-authored by ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@DmitryRyumin",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "DmitryRyumin",
"label": null,
"lang": null
},
{
"type": "text",
"value": ") ๐",
"raw": ") ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ More Papers: more cutting-edge research presented at other conferences in the ",
"raw": "๐ More Papers: more cutting-edge research presented at other conferences in the ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers",
"href": null,
"resource": {
"type": "space",
"id": "DmitryRyumin/NewEraAI-Papers",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " curated by ",
"raw": " curated by ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@DmitryRyumin",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "DmitryRyumin",
"label": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Keywords: #PersonaLLM #OCEANAI #BigFive #PersonalityTraits #PersonalityAnalysis #Chatbots #LLMs #NAACL2024 #DeepLearning #Innovation",
"raw": "๐ Keywords: #PersonaLLM #OCEANAI #BigFive #PersonalityTraits #PersonalityAnalysis #Chatbots #LLMs #NAACL2024 #DeepLearning #Innovation",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐๐ค๐ New Research Alert - NAACL 2024 (Big Five Personality Traits Collection)! ๐๐๐ค
๐ Title: PersonaLLM: Investigating the Ability of Large Language Models to Express Personality Traits ๐ฌ
๐ Description: This research examines the ability of LLMs to express personality traits and finds that LLMs can generate content consistent with assigned personality profiles and that humans can recognize certain traits with up to 80% accuracy. However, accuracy drops significantly when annotators are aware that the content was generated by an AI.
๐ฅ Authors: Hang Jiang et al.
๐
Conference: NAACL, June 16โ21, 2024 | Mexico City, Mexico ๐ฒ๐ฝ
๐ Paper: https://huggingface.co/papers/2305.02547
๐ Repository: https://github.com/hjian42/PersonaLLM
๐ Added to the Big Five Personality Traits Collection: https://huggingface.co/collections/DmitryRyumin/big-five-personality-traits-661fb545292ab3d12a5a4890
๐ฅ๐ See also OCEAN-AI - https://huggingface.co/spaces/ElenaRyumina/OCEANAI (App, co-authored by @DmitryRyumin) ๐
๐ More Papers: more cutting-edge research presented at other conferences in the https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers curated by @DmitryRyumin
๐ Keywords: #PersonaLLM #OCEANAI #BigFive #PersonalityTraits #PersonalityAnalysis #Chatbots #LLMs #NAACL2024 #DeepLearning #Innovation | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/nRCxbVng_PPBqKd-Z3KVc.jpeg",
"fullname": "Dmitry Ryumin",
"name": "DmitryRyumin",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 377,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/03LT82-S0EK2xwyHtDlAD.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/mqM_ib08XGkV4DCu3FCaR.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/xSIbWlt_iSUZTLqDDvCPq.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/HbMVl5NSWZMTHrjKBET9A.png"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/nRCxbVng_PPBqKd-Z3KVc.jpeg",
"fullname": "Dmitry Ryumin",
"name": "DmitryRyumin",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 377
}
] | [
{
"reaction": "๐",
"users": [
"DmitryRyumin",
"solnone",
"Dang"
],
"count": 3
},
{
"reaction": "๐ฅ",
"users": [
"Dang"
],
"count": 1
}
] | 2024-04-21T22:05:42.000Z | 2024-04-21T22:08:44.129Z | [] | /posts/DmitryRyumin/665758617674402 | 1,778 | 0 |
368922213498369 | [
{
"type": "text",
"value": "Open Models vs. Closed APIs for Software Engineers",
"raw": "Open Models vs. Closed APIs for Software Engineers",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "-----------------------------------------------------------------------",
"raw": "-----------------------------------------------------------------------",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "If you're an ML researcher / scientist, you probably don't need much convincing to use open models instead of closed APIs -- open models give you reproducibility and let you deeply investigate the model's behavior. ",
"raw": "If you're an ML researcher / scientist, you probably don't need much convincing to use open models instead of closed APIs -- open models give you reproducibility and let you deeply investigate the model's behavior. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "But what if you are a software engineer building products on top of LLMs? I'd argue that open models are a much better option even if you are using them as APIs. For at least 3 reasons:",
"raw": "But what if you are a software engineer building products on top of LLMs? I'd argue that open models are a much better option even if you are using them as APIs. For at least 3 reasons:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "1) The most obvious reason is reliability of your product. Relying on a closed API means that your product has a single point-of-failure. On the other hand, there are at least 7 different API providers that offer Llama3 70B already. As well as libraries that abstract on top of these API providers so that you can make a single request that goes to different API providers depending on availability / latency.",
"raw": "1) The most obvious reason is reliability of your product. Relying on a closed API means that your product has a single point-of-failure. On the other hand, there are at least 7 different API providers that offer Llama3 70B already. As well as libraries that abstract on top of these API providers so that you can make a single request that goes to different API providers depending on availability / latency.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "2) Another benefit is eventual consistency going local. If your product takes off, it will be more economical and lower latency to have a dedicated inference endpoint running on your VPC than to call external APIs. If you've started with an open-source model, you can always deploy the same model locally. You don't need to modify prompts or change any surrounding logic to get consistent behavior. Minimize your technical debt from the beginning.",
"raw": "2) Another benefit is eventual consistency going local. If your product takes off, it will be more economical and lower latency to have a dedicated inference endpoint running on your VPC than to call external APIs. If you've started with an open-source model, you can always deploy the same model locally. You don't need to modify prompts or change any surrounding logic to get consistent behavior. Minimize your technical debt from the beginning.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "3) Finally, open models give you much more flexibility. Even if you keep using APIs, you might want to tradeoff latency vs. cost, or use APIs that support batches of inputs, etc. Because different API providers have different infrastructure, you can use the API provider that makes the most sense for your product -- or you can even use multiple API providers for different users (free vs. paid) or different parts of your product (priority features vs. nice-to-haves)",
"raw": "3) Finally, open models give you much more flexibility. Even if you keep using APIs, you might want to tradeoff latency vs. cost, or use APIs that support batches of inputs, etc. Because different API providers have different infrastructure, you can use the API provider that makes the most sense for your product -- or you can even use multiple API providers for different users (free vs. paid) or different parts of your product (priority features vs. nice-to-haves)",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Open Models vs. Closed APIs for Software Engineers
-----------------------------------------------------------------------
If you're an ML researcher / scientist, you probably don't need much convincing to use open models instead of closed APIs -- open models give you reproducibility and let you deeply investigate the model's behavior.
But what if you are a software engineer building products on top of LLMs? I'd argue that open models are a much better option even if you are using them as APIs. For at least 3 reasons:
1) The most obvious reason is reliability of your product. Relying on a closed API means that your product has a single point-of-failure. On the other hand, there are at least 7 different API providers that offer Llama3 70B already. As well as libraries that abstract on top of these API providers so that you can make a single request that goes to different API providers depending on availability / latency.
2) Another benefit is eventual consistency going local. If your product takes off, it will be more economical and lower latency to have a dedicated inference endpoint running on your VPC than to call external APIs. If you've started with an open-source model, you can always deploy the same model locally. You don't need to modify prompts or change any surrounding logic to get consistent behavior. Minimize your technical debt from the beginning.
3) Finally, open models give you much more flexibility. Even if you keep using APIs, you might want to tradeoff latency vs. cost, or use APIs that support batches of inputs, etc. Because different API providers have different infrastructure, you can use the API provider that makes the most sense for your product -- or you can even use multiple API providers for different users (free vs. paid) or different parts of your product (priority features vs. nice-to-haves)
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1621947938344-noauth.png",
"fullname": "Abubakar Abid",
"name": "abidlabs",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 487,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐",
"users": [
"DmitryRyumin",
"ameerazam08",
"MAsad789565",
"AboAhmed901",
"dilber",
"toast224",
"clem",
"VictorSanh",
"julien-c",
"osanseviero",
"yjernite",
"jeffboudier",
"GiorgioDiSalvo",
"meton",
"aceeee",
"helezabi"
],
"count": 16
},
{
"reaction": "โค๏ธ",
"users": [
"clem",
"clefourrier",
"yjernite",
"m-conrad-202",
"louisbrulenaudet",
"aceeee",
"Bagus"
],
"count": 7
}
] | 2024-04-21T20:53:27.000Z | 2024-04-21T20:53:27.470Z | [] | /posts/abidlabs/368922213498369 | 3,608 | 0 |
189843726787210 | [
{
"type": "text",
"value": "Already almost 1,000 llama3 model variations have been shared publicly on HF (many more in private use at companies): ",
"raw": "Already almost 1,000 llama3 model variations have been shared publicly on HF (many more in private use at companies): ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/models?p=5&sort=trending&search=llama3",
"href": "https://huggingface.co/models?p=5&sort=trending&search=llama3",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": ". ",
"raw": ". ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Everyone should fine-tune their own models for their use-cases, languages, industry, infra constraints,... ",
"raw": "Everyone should fine-tune their own models for their use-cases, languages, industry, infra constraints,... ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "10,000 llama3 variants by the end of next week?",
"raw": "10,000 llama3 variants by the end of next week?",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Already almost 1,000 llama3 model variations have been shared publicly on HF (many more in private use at companies): https://huggingface.co/models?p=5&sort=trending&search=llama3.
Everyone should fine-tune their own models for their use-cases, languages, industry, infra constraints,...
10,000 llama3 variants by the end of next week? | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1583857146757-5e67bdd61009063689407479.jpeg",
"fullname": "Clem ๐ค",
"name": "clem",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 1763,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐",
"users": [
"ijohn07",
"qnixsynapse",
"Aeio",
"DmitryRyumin",
"Kathakali",
"tomaarsen",
"qubvel-hf",
"rksiitd",
"victor",
"Jaward",
"radames",
"shiv2050",
"praveenpankaj",
"Tonic",
"rasonyang"
],
"count": 15
},
{
"reaction": "โค๏ธ",
"users": [
"yo",
"DmitryRyumin",
"alielfilali01",
"sepal",
"tomaarsen",
"fbjr",
"raincandy-u",
"radames",
"Tonic",
"louisbrulenaudet"
],
"count": 10
},
{
"reaction": "๐คฏ",
"users": [
"DmitryRyumin",
"abidlabs",
"Tonic"
],
"count": 3
}
] | 2024-04-21T14:38:03.000Z | 2024-04-25T05:40:05.174Z | [
{
"avatarUrl": "/avatars/0cba7c22c135f9c8fbe19398ba408923.svg",
"fullname": "Fred Bliss",
"name": "fbjr",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 4,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/657eb5b256c9c67605a6e8b5/RPblnGJX57oiIcASEz_S8.png",
"fullname": "raincandy_U",
"name": "raincandy-u",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 30,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1583857146757-5e67bdd61009063689407479.jpeg",
"fullname": "Clem ๐ค",
"name": "clem",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 1763,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1675590698085-noauth.jpeg",
"fullname": "Sai",
"name": "saishf",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 60,
"isFollowing": false
}
] | /posts/clem/189843726787210 | 2,906 | 4 |
932263322939776 | [
{
"type": "text",
"value": "๐๐โโ๏ธ๐ฅ New Research Alert (Avatars Collection)! ๐ฅ๐โโ๏ธ๐",
"raw": "๐๐โโ๏ธ๐ฅ New Research Alert (Avatars Collection)! ๐ฅ๐โโ๏ธ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Title: HairFastGAN: Realistic and Robust Hair Transfer with a Fast Encoder-Based Approach",
"raw": "๐ Title: HairFastGAN: Realistic and Robust Hair Transfer with a Fast Encoder-Based Approach",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Description: HairFastGAN is a fast, encoder-based approach to realistic and robust hair transfer that operates in the FS latent space of StyleGAN and includes enhanced in-painting and improved encoders for better alignment, color transfer, and post-processing.",
"raw": "๐ Description: HairFastGAN is a fast, encoder-based approach to realistic and robust hair transfer that operates in the FS latent space of StyleGAN and includes enhanced in-painting and improved encoders for better alignment, color transfer, and post-processing.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ฅ Authors: Maxim Nikolaev, Mikhail Kuznetsov, Dmitry Vetrov, and Aibek Alanov",
"raw": "๐ฅ Authors: Maxim Nikolaev, Mikhail Kuznetsov, Dmitry Vetrov, and Aibek Alanov",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Paper: ",
"raw": "๐ Paper: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2404.01094",
"href": null,
"resource": {
"type": "paper",
"id": "2404.01094",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2404.01094",
"code": null,
"user": null,
"label": "HairFastGAN: Realistic and Robust Hair Transfer with a Fast\n Encoder-Based Approach (2404.01094)",
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Repository: ",
"raw": "๐ Repository: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/AIRI-Institute/HairFastGAN",
"href": "https://github.com/AIRI-Institute/HairFastGAN",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ค Demo: ",
"raw": "๐ค Demo: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/multimodalart/hairfastgan",
"href": null,
"resource": {
"type": "space",
"id": "multimodalart/hairfastgan",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/multimodalart/hairfastgan",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ฅ Model ๐ค: ",
"raw": "๐ฅ Model ๐ค: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/AIRI-Institute/HairFastGAN",
"href": null,
"resource": {
"type": "model",
"id": "AIRI-Institute/HairFastGAN",
"discussionNum": null
},
"url": "https://huggingface.co/AIRI-Institute/HairFastGAN",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ More Papers: more cutting-edge research presented at other conferences in the ",
"raw": "๐ More Papers: more cutting-edge research presented at other conferences in the ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers",
"href": null,
"resource": {
"type": "space",
"id": "DmitryRyumin/NewEraAI-Papers",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " curated by ",
"raw": " curated by ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@DmitryRyumin",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "DmitryRyumin",
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Added to the Avatars Collection: ",
"raw": "๐ Added to the Avatars Collection: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/DmitryRyumin/avatars-65df37cdf81fec13d4dbac36",
"href": null,
"resource": {
"type": "collection",
"id": "DmitryRyumin/avatars-65df37cdf81fec13d4dbac36",
"discussionNum": null
},
"url": "https://huggingface.co/collections/DmitryRyumin/avatars-65df37cdf81fec13d4dbac36",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Keywords: #HairFastGAN #StyleGAN #VirtualTryOn #HairTransfer #AIHairStyling #GenerativeModels #ComputerVision #ImageProcessing #DeepLearning",
"raw": "๐ Keywords: #HairFastGAN #StyleGAN #VirtualTryOn #HairTransfer #AIHairStyling #GenerativeModels #ComputerVision #ImageProcessing #DeepLearning",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐๐โโ๏ธ๐ฅ New Research Alert (Avatars Collection)! ๐ฅ๐โโ๏ธ๐
๐ Title: HairFastGAN: Realistic and Robust Hair Transfer with a Fast Encoder-Based Approach
๐ Description: HairFastGAN is a fast, encoder-based approach to realistic and robust hair transfer that operates in the FS latent space of StyleGAN and includes enhanced in-painting and improved encoders for better alignment, color transfer, and post-processing.
๐ฅ Authors: Maxim Nikolaev, Mikhail Kuznetsov, Dmitry Vetrov, and Aibek Alanov
๐ Paper: https://huggingface.co/papers/2404.01094
๐ Repository: https://github.com/AIRI-Institute/HairFastGAN
๐ค Demo: https://huggingface.co/spaces/multimodalart/hairfastgan
๐ฅ Model ๐ค: https://huggingface.co/AIRI-Institute/HairFastGAN
๐ More Papers: more cutting-edge research presented at other conferences in the https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers curated by @DmitryRyumin
๐ Added to the Avatars Collection: https://huggingface.co/collections/DmitryRyumin/avatars-65df37cdf81fec13d4dbac36
๐ Keywords: #HairFastGAN #StyleGAN #VirtualTryOn #HairTransfer #AIHairStyling #GenerativeModels #ComputerVision #ImageProcessing #DeepLearning | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/nRCxbVng_PPBqKd-Z3KVc.jpeg",
"fullname": "Dmitry Ryumin",
"name": "DmitryRyumin",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 377,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/FtQDbEfId8uVGheifeJMB.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/dSlcvbxwvZmIFwZr89GA9.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/M7v4NhHgAjpsdMRVU9Tm1.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/qPnavmLrCtbn3xVVhro7Z.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/sRbfWXravZIKI-9zVaFJp.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/f9l8CdRjIUfk_fh36plIT.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/J-V5ZS1vbof4WAk_Sx6J4.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/mi-08tq3AcJrPLmdeRXaa.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/MX3CIT8taspD8jp-pAMrP.png"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/nRCxbVng_PPBqKd-Z3KVc.jpeg",
"fullname": "Dmitry Ryumin",
"name": "DmitryRyumin",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 377
}
] | [
{
"reaction": "๐ฅ",
"users": [
"DmitryRyumin",
"clem",
"FantasiaFoundry",
"multimodalart",
"ameerazam08",
"tcarteratl",
"victor",
"AlekseiPravdin",
"stinkyyy"
],
"count": 9
},
{
"reaction": "๐",
"users": [
"Jaward",
"EloyOn"
],
"count": 2
}
] | 2024-04-20T21:07:12.000Z | 2024-04-20T21:07:12.824Z | [] | /posts/DmitryRyumin/932263322939776 | 3,077 | 0 |
287604639581992 | [
{
"type": "text",
"value": "# On Coding Your First Attention",
"raw": "# On Coding Your First Attention",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "While itโs not necessarily the case that you must code the attention block of a transformer from scratch to understand how it works, yet it sure is the closest you can get to having a first-principles understanding of why/how transformers behave the way they do.",
"raw": "While itโs not necessarily the case that you must code the attention block of a transformer from scratch to understand how it works, yet it sure is the closest you can get to having a first-principles understanding of why/how transformers behave the way they do.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@karpathy",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "karpathy",
"label": null,
"lang": null
},
{
"type": "text",
"value": " covered attention in detail in his nanoGPT video (strongly recommend watching). Now I would like to share some thoughts and experience in writing my first attention.",
"raw": " covered attention in detail in his nanoGPT video (strongly recommend watching). Now I would like to share some thoughts and experience in writing my first attention.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "First letโs zoom out quickly and explain what attention is in transformers: Attention in transformers is a communication mechanism that allows the model to focus on different parts of the input sequence when making predictions.",
"raw": "First letโs zoom out quickly and explain what attention is in transformers: Attention in transformers is a communication mechanism that allows the model to focus on different parts of the input sequence when making predictions.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "It assigns weights to each input token based on its relevance to the current context, enabling the model to weigh information selectively. This mechanism helps transformers capture long-range dependencies and contextual information effectively.",
"raw": "It assigns weights to each input token based on its relevance to the current context, enabling the model to weigh information selectively. This mechanism helps transformers capture long-range dependencies and contextual information effectively.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "The official AIAN paper introduced two commonly used forms of attentions: Scaled Dot-Product Attention (also known as Self-Attention) and a stack of self-attention blocks known as Multi-Head Attention.",
"raw": "The official AIAN paper introduced two commonly used forms of attentions: Scaled Dot-Product Attention (also known as Self-Attention) and a stack of self-attention blocks known as Multi-Head Attention.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "# The Code",
"raw": "# The Code",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Now, attention as for most deep learning algorithms boils down to a math equation. So writing the code can get really trivial especially with a deep learning framework like PyTorch. Below is what's called a Single Head Attention ",
"raw": "Now, attention as for most deep learning algorithms boils down to a math equation. So writing the code can get really trivial especially with a deep learning framework like PyTorch. Below is what's called a Single Head Attention ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "(image 2)",
"raw": "(image 2)",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "The code defines single-head attention in PyTorch - it transforms input vectors, computes attention scores and weights, and then calculates the weighted sum of values based on these weights (as per the attention equation)",
"raw": "The code defines single-head attention in PyTorch - it transforms input vectors, computes attention scores and weights, and then calculates the weighted sum of values based on these weights (as per the attention equation)",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "When you have multiple of those stacked in parallel, you get what's called Multi-Head Attention. This gives a much simpler code if you are inheriting from the SingleHeadAttention class:",
"raw": "When you have multiple of those stacked in parallel, you get what's called Multi-Head Attention. This gives a much simpler code if you are inheriting from the SingleHeadAttention class:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "(image 3)",
"raw": "(image 3)",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Full Article here: ",
"raw": "Full Article here: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/blog/Jaward/coding-your-first-attention",
"href": "https://huggingface.co/blog/Jaward/coding-your-first-attention",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | # On Coding Your First Attention
While itโs not necessarily the case that you must code the attention block of a transformer from scratch to understand how it works, yet it sure is the closest you can get to having a first-principles understanding of why/how transformers behave the way they do.
@karpathy covered attention in detail in his nanoGPT video (strongly recommend watching). Now I would like to share some thoughts and experience in writing my first attention.
First letโs zoom out quickly and explain what attention is in transformers: Attention in transformers is a communication mechanism that allows the model to focus on different parts of the input sequence when making predictions.
It assigns weights to each input token based on its relevance to the current context, enabling the model to weigh information selectively. This mechanism helps transformers capture long-range dependencies and contextual information effectively.
The official AIAN paper introduced two commonly used forms of attentions: Scaled Dot-Product Attention (also known as Self-Attention) and a stack of self-attention blocks known as Multi-Head Attention.
# The Code
Now, attention as for most deep learning algorithms boils down to a math equation. So writing the code can get really trivial especially with a deep learning framework like PyTorch. Below is what's called a Single Head Attention
(image 2)
The code defines single-head attention in PyTorch - it transforms input vectors, computes attention scores and weights, and then calculates the weighted sum of values based on these weights (as per the attention equation)
When you have multiple of those stacked in parallel, you get what's called Multi-Head Attention. This gives a much simpler code if you are inheriting from the SingleHeadAttention class:
(image 3)
Full Article here: https://huggingface.co/blog/Jaward/coding-your-first-attention | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6438a9027de34e8ea7e4b257/vib8QSd1AWMr_bR9ig_xJ.jpeg",
"fullname": "Jaward Sesay",
"name": "Jaward",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 191,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/jvvbJDPczpAVNuhnSzcpT.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/1iOvu6stHcJXOYxn-Jw5P.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/WEVXLiTav4UGQdq7_6sQS.png"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1660434061546-62f83661fe21cc4875221c0f.jpeg",
"fullname": "Andrej K",
"name": "karpathy",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 476
}
] | [
{
"reaction": "๐",
"users": [
"DmitryRyumin",
"Tensorkart",
"Citaman",
"alielfilali01",
"Theli",
"LeroyDyer",
"martineden"
],
"count": 7
},
{
"reaction": "๐ฅ",
"users": [
"ameerazam08",
"kfkas",
"martineden"
],
"count": 3
},
{
"reaction": "โค๏ธ",
"users": [
"gangyeolkim"
],
"count": 1
}
] | 2024-04-20T08:14:30.000Z | 2024-04-20T13:41:08.816Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65d883893a52cd9bcd8ab7cf/tRsCJlHNZo1D02kBTmfy9.jpeg",
"fullname": "leroy Samuel Dyer",
"name": "LeroyDyer",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 84,
"isFollowing": false
}
] | /posts/Jaward/287604639581992 | 3,477 | 1 |
533819919688635 | [
{
"type": "text",
"value": "Shining Valiant 2 is here!",
"raw": "Shining Valiant 2 is here!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Finetuned on Llama 3 70b.",
"raw": "Finetuned on Llama 3 70b.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Super excited to build with Llama 3 - more models to come soon :)",
"raw": "Super excited to build with Llama 3 - more models to come soon :)",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/ValiantLabs/Llama3-70B-ShiningValiant2",
"href": null,
"resource": {
"type": "model",
"id": "ValiantLabs/Llama3-70B-ShiningValiant2",
"discussionNum": null
},
"url": "https://huggingface.co/ValiantLabs/Llama3-70B-ShiningValiant2",
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Shining Valiant 2 is here!
Finetuned on Llama 3 70b.
Super excited to build with Llama 3 - more models to come soon :)
https://huggingface.co/ValiantLabs/Llama3-70B-ShiningValiant2 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63444f2687964b331809eb55/WvZivsvKsM_t0tBtakovK.png",
"fullname": "t.d.a.g.",
"name": "sequelbox",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 51,
"isFollowing": false
} | [] | [] | [] | 2024-04-20T05:53:24.000Z | 2024-04-20T07:22:33.177Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6419d46b9a27800807c43fe3/H99LfQaSRU3c6uHHoGWPj.jpeg",
"fullname": "MoonRide",
"name": "MoonRide",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 6,
"isFollowing": false
}
] | /posts/sequelbox/533819919688635 | 3,051 | 1 |
367556581576688 | [
{
"type": "text",
"value": "Dynamic Typography",
"raw": "Dynamic Typography",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Bringing Words to Life",
"raw": "Bringing Words to Life",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2404.11614",
"href": null,
"resource": {
"type": "paper",
"id": "2404.11614",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2404.11614",
"code": null,
"user": null,
"label": "Dynamic Typography: Bringing Words to Life (2404.11614)",
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Text animation serves as an expressive medium, transforming static communication into dynamic experiences by infusing words with motion to evoke emotions, emphasize meanings, and construct compelling narratives. Crafting animations that are semantically aware poses significant challenges, demanding expertise in graphic design and animation. We present an automated text animation scheme, termed \"Dynamic Typography\", which combines two challenging tasks. It deforms letters to convey semantic meaning and infuses them with vibrant movements based on user prompts. Our technique harnesses vector graphics representations and an end-to-end optimization-based framework. This framework employs neural displacement fields to convert letters into base shapes and applies per-frame motion, encouraging coherence with the intended textual concept. Shape preservation techniques and perceptual loss regularization are employed to maintain legibility and structural integrity throughout the animation process. We demonstrate the generalizability of our approach across various text-to-video models and highlight the superiority of our end-to-end methodology over baseline methods, which might comprise separate tasks. Through quantitative and qualitative evaluations, we demonstrate the effectiveness of our framework in generating coherent text animations that faithfully interpret user prompts while maintaining readability. ",
"raw": "Text animation serves as an expressive medium, transforming static communication into dynamic experiences by infusing words with motion to evoke emotions, emphasize meanings, and construct compelling narratives. Crafting animations that are semantically aware poses significant challenges, demanding expertise in graphic design and animation. We present an automated text animation scheme, termed \"Dynamic Typography\", which combines two challenging tasks. It deforms letters to convey semantic meaning and infuses them with vibrant movements based on user prompts. Our technique harnesses vector graphics representations and an end-to-end optimization-based framework. This framework employs neural displacement fields to convert letters into base shapes and applies per-frame motion, encouraging coherence with the intended textual concept. Shape preservation techniques and perceptual loss regularization are employed to maintain legibility and structural integrity throughout the animation process. We demonstrate the generalizability of our approach across various text-to-video models and highlight the superiority of our end-to-end methodology over baseline methods, which might comprise separate tasks. Through quantitative and qualitative evaluations, we demonstrate the effectiveness of our framework in generating coherent text animations that faithfully interpret user prompts while maintaining readability. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Dynamic Typography
Bringing Words to Life
https://huggingface.co/papers/2404.11614
Text animation serves as an expressive medium, transforming static communication into dynamic experiences by infusing words with motion to evoke emotions, emphasize meanings, and construct compelling narratives. Crafting animations that are semantically aware poses significant challenges, demanding expertise in graphic design and animation. We present an automated text animation scheme, termed "Dynamic Typography", which combines two challenging tasks. It deforms letters to convey semantic meaning and infuses them with vibrant movements based on user prompts. Our technique harnesses vector graphics representations and an end-to-end optimization-based framework. This framework employs neural displacement fields to convert letters into base shapes and applies per-frame motion, encouraging coherence with the intended textual concept. Shape preservation techniques and perceptual loss regularization are employed to maintain legibility and structural integrity throughout the animation process. We demonstrate the generalizability of our approach across various text-to-video models and highlight the superiority of our end-to-end methodology over baseline methods, which might comprise separate tasks. Through quantitative and qualitative evaluations, we demonstrate the effectiveness of our framework in generating coherent text animations that faithfully interpret user prompts while maintaining readability.
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg",
"fullname": "AK",
"name": "akhaliq",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 5205,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/60f1abe7544c2adfd699860c/uM1-CO3P-bfDyueVp-WZr.png"
}
] | [] | [
{
"reaction": "๐ค",
"users": [
"shellywhen",
"math1761",
"alielfilali01",
"Csplk",
"orionriker",
"victor",
"kgourgou"
],
"count": 7
},
{
"reaction": "๐",
"users": [
"FM-1976",
"victor",
"kgourgou",
"mokkafe",
"sbhambry"
],
"count": 5
},
{
"reaction": "โค๏ธ",
"users": [
"QiushiSun",
"victor"
],
"count": 2
}
] | 2024-04-20T03:32:32.000Z | 2024-04-20T03:32:32.972Z | [] | /posts/akhaliq/367556581576688 | 4,251 | 0 |
708646454991943 | [
{
"type": "text",
"value": "๐ป Smoothing the Transition from Service LLM to Local LLM",
"raw": "๐ป Smoothing the Transition from Service LLM to Local LLM",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Imagine your go-to LLM service is down, or you need to use it offline โ yikes! This project is all about having that \"Plan B\" ready to go. Here's LLaMA Duo I've been building with ",
"raw": "Imagine your go-to LLM service is down, or you need to use it offline โ yikes! This project is all about having that \"Plan B\" ready to go. Here's LLaMA Duo I've been building with ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@sayakpaul",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "sayakpaul",
"label": null,
"lang": null
},
{
"type": "text",
"value": " :",
"raw": " :",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "โจ Fine-tune a smaller LLM: We used Hugging Face's alignment-handbook to teach a smaller-sized LLM to mimic my favorite large language model. Think of it as that super-smart AI assistant getting a capable understudy.",
"raw": "โจ Fine-tune a smaller LLM: We used Hugging Face's alignment-handbook to teach a smaller-sized LLM to mimic my favorite large language model. Think of it as that super-smart AI assistant getting a capable understudy.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ค Batch Inference: Let's get that fine-tuned LLM working! My scripts generate lots of text like a champ, and we've made sure things run smoothly even with bigger workloads.",
"raw": "๐ค Batch Inference: Let's get that fine-tuned LLM working! My scripts generate lots of text like a champ, and we've made sure things run smoothly even with bigger workloads.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ง Evaluation: How well is my small LLM doing? We integrated with the Gemini API to use it as an expert judge โ it compares my model's work to the original. Talk about a tough critic!",
"raw": "๐ง Evaluation: How well is my small LLM doing? We integrated with the Gemini API to use it as an expert judge โ it compares my model's work to the original. Talk about a tough critic!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ช Synthetic Data Generation: Need to boost that model's performance? Using Gemini's feedback, we can create even more training data, custom-made to make the LLM better.",
"raw": "๐ช Synthetic Data Generation: Need to boost that model's performance? Using Gemini's feedback, we can create even more training data, custom-made to make the LLM better.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐งฑ Building Blocks: This isn't just a one-time thing โ it's a toolkit for all kinds of LLMOps work. Want to change your evaluation metrics? Bring in models trained differently? Absolutely, let's make it happen.",
"raw": "๐งฑ Building Blocks: This isn't just a one-time thing โ it's a toolkit for all kinds of LLMOps work. Want to change your evaluation metrics? Bring in models trained differently? Absolutely, let's make it happen.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Why this project is awesome:",
"raw": "Why this project is awesome:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ช Reliability: Keep things running no matter what happens to your main LLM source.",
"raw": "๐ช Reliability: Keep things running no matter what happens to your main LLM source.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Privacy: Process sensitive information on your own terms.",
"raw": "๐ Privacy: Process sensitive information on your own terms.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐บ๏ธ Offline capable: No internet connection? No problem!",
"raw": "๐บ๏ธ Offline capable: No internet connection? No problem!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ฐ๏ธ Version Control: Lock in your favorite LLM's behavior, even if the service model changes.",
"raw": "๐ฐ๏ธ Version Control: Lock in your favorite LLM's behavior, even if the service model changes.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "We'm excited to share the code on GitHub. Curious to see what you all think! ๐๐ป ",
"raw": "We'm excited to share the code on GitHub. Curious to see what you all think! ๐๐ป ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/deep-diver/llamaduo",
"href": "https://github.com/deep-diver/llamaduo",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐ป Smoothing the Transition from Service LLM to Local LLM
Imagine your go-to LLM service is down, or you need to use it offline โ yikes! This project is all about having that "Plan B" ready to go. Here's LLaMA Duo I've been building with @sayakpaul :
โจ Fine-tune a smaller LLM: We used Hugging Face's alignment-handbook to teach a smaller-sized LLM to mimic my favorite large language model. Think of it as that super-smart AI assistant getting a capable understudy.
๐ค Batch Inference: Let's get that fine-tuned LLM working! My scripts generate lots of text like a champ, and we've made sure things run smoothly even with bigger workloads.
๐ง Evaluation: How well is my small LLM doing? We integrated with the Gemini API to use it as an expert judge โ it compares my model's work to the original. Talk about a tough critic!
๐ช Synthetic Data Generation: Need to boost that model's performance? Using Gemini's feedback, we can create even more training data, custom-made to make the LLM better.
๐งฑ Building Blocks: This isn't just a one-time thing โ it's a toolkit for all kinds of LLMOps work. Want to change your evaluation metrics? Bring in models trained differently? Absolutely, let's make it happen.
Why this project is awesome:
๐ช Reliability: Keep things running no matter what happens to your main LLM source.
๐ Privacy: Process sensitive information on your own terms.
๐บ๏ธ Offline capable: No internet connection? No problem!
๐ฐ๏ธ Version Control: Lock in your favorite LLM's behavior, even if the service model changes.
We'm excited to share the code on GitHub. Curious to see what you all think! ๐๐ป https://github.com/deep-diver/llamaduo | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1659971187637-60d3b57ad7b174177faabd6e.jpeg",
"fullname": "chansung park",
"name": "chansung",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 2695,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/60d3b57ad7b174177faabd6e/9v22QryhEBBIScenSFPUH.jpeg"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1649681653581-5f7fbd813e94f16a85448745.jpeg",
"fullname": "Sayak Paul",
"name": "sayakpaul",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 459
}
] | [
{
"reaction": "โค๏ธ",
"users": [
"sayakpaul",
"sudanenator",
"Csplk",
"Fetchniche",
"ajibawa-2023",
"bjo163"
],
"count": 6
},
{
"reaction": "๐ค",
"users": [
"chansung",
"sayakpaul",
"mmhamdy"
],
"count": 3
},
{
"reaction": "๐",
"users": [
"hugtheai0007"
],
"count": 1
}
] | 2024-04-20T02:44:44.000Z | 2024-04-20T02:44:44.344Z | [] | /posts/chansung/708646454991943 | 4,389 | 0 |
631552345510952 | [
{
"type": "text",
"value": "๐๐ฉโ๐ค๐ New Research Alert - CVPR 2024! ๐๐ฉโ๐ค๐",
"raw": "๐๐ฉโ๐ค๐ New Research Alert - CVPR 2024! ๐๐ฉโ๐ค๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Title: Generalizable Face Landmarking Guided by Conditional Face Warping",
"raw": "๐ Title: Generalizable Face Landmarking Guided by Conditional Face Warping",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Description: A new method is proposed to learn a generalizable face landmark that can handle different facial styles, using labeled real faces and unlabeled stylized faces.",
"raw": "๐ Description: A new method is proposed to learn a generalizable face landmark that can handle different facial styles, using labeled real faces and unlabeled stylized faces.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ฅ Authors: Jiayi Liang, Haotian Liu, Hongteng Xu, Dixin Luo",
"raw": "๐ฅ Authors: Jiayi Liang, Haotian Liu, Hongteng Xu, Dixin Luo",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐
Conference: CVPR, Jun 17-21, 2024 | Seattle WA, USA ๐บ๐ธ",
"raw": "๐
Conference: CVPR, Jun 17-21, 2024 | Seattle WA, USA ๐บ๐ธ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Paper: ",
"raw": "๐ Paper: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2404.12322",
"href": null,
"resource": {
"type": "paper",
"id": "2404.12322",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2404.12322",
"code": null,
"user": null,
"label": "Generalizable Face Landmarking Guided by Conditional Face Warping (2404.12322)",
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Github Page: ",
"raw": "๐ Github Page: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://plustwo0.github.io/project-face-landmarker/",
"href": "https://plustwo0.github.io/project-face-landmarker/",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Repository: ",
"raw": "๐ Repository: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/plustwo0/generalized-face-landmarker",
"href": "https://github.com/plustwo0/generalized-face-landmarker",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ More Papers: more cutting-edge research presented at other conferences in the ",
"raw": "๐ More Papers: more cutting-edge research presented at other conferences in the ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers",
"href": null,
"resource": {
"type": "space",
"id": "DmitryRyumin/NewEraAI-Papers",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " curated by ",
"raw": " curated by ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@DmitryRyumin",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "DmitryRyumin",
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Keywords: #FaceLandmarking #DomainAdaptation #FaceWarpping #CVPR2024 #DeepLearning #Innovation",
"raw": "๐ Keywords: #FaceLandmarking #DomainAdaptation #FaceWarpping #CVPR2024 #DeepLearning #Innovation",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐๐ฉโ๐ค๐ New Research Alert - CVPR 2024! ๐๐ฉโ๐ค๐
๐ Title: Generalizable Face Landmarking Guided by Conditional Face Warping
๐ Description: A new method is proposed to learn a generalizable face landmark that can handle different facial styles, using labeled real faces and unlabeled stylized faces.
๐ฅ Authors: Jiayi Liang, Haotian Liu, Hongteng Xu, Dixin Luo
๐
Conference: CVPR, Jun 17-21, 2024 | Seattle WA, USA ๐บ๐ธ
๐ Paper: https://huggingface.co/papers/2404.12322
๐ Github Page: https://plustwo0.github.io/project-face-landmarker/
๐ Repository: https://github.com/plustwo0/generalized-face-landmarker
๐ More Papers: more cutting-edge research presented at other conferences in the https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers curated by @DmitryRyumin
๐ Keywords: #FaceLandmarking #DomainAdaptation #FaceWarpping #CVPR2024 #DeepLearning #Innovation | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/nRCxbVng_PPBqKd-Z3KVc.jpeg",
"fullname": "Dmitry Ryumin",
"name": "DmitryRyumin",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 377,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/iHXBiXMduF_jsnpBHJzog.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/OdQYW3wkjZjxprqzoZxun.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/vHefccmlMjV4cC8XkrFtp.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/pWdQM-PWueO2qWcgxEFOa.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/CmFSOsClpIX7GQn-T7IAt.png"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/nRCxbVng_PPBqKd-Z3KVc.jpeg",
"fullname": "Dmitry Ryumin",
"name": "DmitryRyumin",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 377
}
] | [
{
"reaction": "๐",
"users": [
"DmitryRyumin",
"qubvel-hf",
"clem"
],
"count": 3
}
] | 2024-04-19T20:41:40.000Z | 2024-04-19T20:41:40.265Z | [] | /posts/DmitryRyumin/631552345510952 | 2,319 | 0 |
543699355796112 | [
{
"type": "text",
"value": "New multimodal dataset by ",
"raw": "New multimodal dataset by ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@xai-org",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "xai-org",
"label": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@liuhaotian",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "liuhaotian",
"label": null,
"lang": null
},
{
"type": "text",
"value": " ๐คฉโค๏ธ ",
"raw": " ๐คฉโค๏ธ ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/xai-org/RealworldQA",
"href": null,
"resource": {
"type": "dataset",
"id": "xai-org/RealworldQA",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/xai-org/RealworldQA",
"code": null,
"user": null,
"label": null,
"lang": null
}
] | New multimodal dataset by @xai-org @liuhaotian ๐คฉโค๏ธ https://huggingface.co/datasets/xai-org/RealworldQA | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png",
"fullname": "Merve Noyan",
"name": "merve",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 5589,
"isFollowing": false
} | [] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674248167280-63898b61ec1f539adc0f4da2.jpeg",
"fullname": "Haotian Liu",
"name": "liuhaotian",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 734
}
] | [
{
"reaction": "๐ฅ",
"users": [
"qubvel-hf",
"clem",
"talaviyabhavik",
"not-lain",
"Tonic",
"anldrms",
"louisbrulenaudet"
],
"count": 7
}
] | 2024-04-19T20:22:25.000Z | 2024-04-19T20:22:25.191Z | [] | /posts/merve/543699355796112 | 2,915 | 0 |
449811743919772 | [
{
"type": "text",
"value": "The Cauldron is a massive collection of 50 high-quality datasets, all converted to the user/assistant format, and ready to use to fine-tune any Vision Language Model.",
"raw": "The Cauldron is a massive collection of 50 high-quality datasets, all converted to the user/assistant format, and ready to use to fine-tune any Vision Language Model.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "The Cauldron covers a wide range of tasks, including general visual question answering, counting, captioning, text transcription, document understanding, chart/figure understanding, table understanding, visual reasoning, geometry, spotting differences between 2 images or converting a screenshot to a code.",
"raw": "The Cauldron covers a wide range of tasks, including general visual question answering, counting, captioning, text transcription, document understanding, chart/figure understanding, table understanding, visual reasoning, geometry, spotting differences between 2 images or converting a screenshot to a code.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/HuggingFaceM4/the_cauldron",
"href": null,
"resource": {
"type": "dataset",
"id": "HuggingFaceM4/the_cauldron",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/HuggingFaceM4/the_cauldron",
"code": null,
"user": null,
"label": null,
"lang": null
}
] | The Cauldron is a massive collection of 50 high-quality datasets, all converted to the user/assistant format, and ready to use to fine-tune any Vision Language Model.
The Cauldron covers a wide range of tasks, including general visual question answering, counting, captioning, text transcription, document understanding, chart/figure understanding, table understanding, visual reasoning, geometry, spotting differences between 2 images or converting a screenshot to a code.
https://huggingface.co/datasets/HuggingFaceM4/the_cauldron | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1635201569275-noauth.jpeg",
"fullname": "Hugo Laurenรงon",
"name": "HugoLaurencon",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 146,
"isFollowing": false
} | [] | [] | [
{
"reaction": "โค๏ธ",
"users": [
"VictorSanh",
"Vanessasml",
"victor",
"clem",
"giux78",
"alexcombessie",
"yo",
"zealota",
"martineden",
"andito"
],
"count": 10
},
{
"reaction": "๐",
"users": [
"VictorSanh",
"clem",
"fdaudens",
"qubvel-hf",
"yo",
"martineden"
],
"count": 6
}
] | 2024-04-19T16:00:24.000Z | 2024-04-19T16:00:24.860Z | [] | /posts/HugoLaurencon/449811743919772 | 2,807 | 0 |
572106457486124 | [
{
"type": "text",
"value": "Can't wait to see multimodal LLama 3!",
"raw": "Can't wait to see multimodal LLama 3!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "We released a resource that might come in handy: The Cauldron ๐ฏ",
"raw": "We released a resource that might come in handy: The Cauldron ๐ฏ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "The Cauldron is a massive manually-curated collection of 50 vision-language sets for instruction fine-tuning. 3.6M images, 30.3M query/answer pairs.",
"raw": "The Cauldron is a massive manually-curated collection of 50 vision-language sets for instruction fine-tuning. 3.6M images, 30.3M query/answer pairs.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "It covers a large variety of downstream uses: visual question answering on natural images, OCR, document/charts/figures/tables understanding, textbooks/academic question, reasoning, captioning, spotting differences between 2 images, and screenshot-to-code.",
"raw": "It covers a large variety of downstream uses: visual question answering on natural images, OCR, document/charts/figures/tables understanding, textbooks/academic question, reasoning, captioning, spotting differences between 2 images, and screenshot-to-code.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/HuggingFaceM4/the_cauldron",
"href": null,
"resource": {
"type": "dataset",
"id": "HuggingFaceM4/the_cauldron",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/HuggingFaceM4/the_cauldron",
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Can't wait to see multimodal LLama 3!
We released a resource that might come in handy: The Cauldron ๐ฏ
The Cauldron is a massive manually-curated collection of 50 vision-language sets for instruction fine-tuning. 3.6M images, 30.3M query/answer pairs.
It covers a large variety of downstream uses: visual question answering on natural images, OCR, document/charts/figures/tables understanding, textbooks/academic question, reasoning, captioning, spotting differences between 2 images, and screenshot-to-code.
https://huggingface.co/datasets/HuggingFaceM4/the_cauldron | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1619623771844-5ecea265968f6028e0559fa5.jpeg",
"fullname": "Victor Sanh",
"name": "VictorSanh",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 206,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/5ecea265968f6028e0559fa5/1W9zIMc9e4ssLSiNFt4xK.png"
}
] | [] | [
{
"reaction": "๐ฅ",
"users": [
"victor",
"fdaudens",
"InferenceIllusionist",
"qubvel-hf",
"adamelliotfields",
"wannaphong",
"ajibawa-2023",
"yo",
"martineden",
"AlekseiPravdin",
"alielfilali01"
],
"count": 11
},
{
"reaction": "โค๏ธ",
"users": [
"raincandy-u",
"yo",
"alielfilali01"
],
"count": 3
}
] | 2024-04-19T15:16:24.000Z | 2024-04-22T15:24:16.045Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/642265bc01c62c1e4102dc36/wUyi8_n-j2nrzYoQWYmJN.jpeg",
"fullname": "Nitral",
"name": "Nitral-AI",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 255,
"isFollowing": false
}
] | /posts/VictorSanh/572106457486124 | 2,538 | 1 |
929425103149554 | [
{
"type": "text",
"value": "Do I need to make it a tradition to post here every Friday? Well, here we are again!",
"raw": "Do I need to make it a tradition to post here every Friday? Well, here we are again!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "This week, I'm happy to share that we have two official Mistral models on the Leaderboard! ๐ฅ You can check them out: ",
"raw": "This week, I'm happy to share that we have two official Mistral models on the Leaderboard! ๐ฅ You can check them out: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
"href": null,
"resource": {
"type": "model",
"id": "mistralai/Mixtral-8x22B-Instruct-v0.1",
"discussionNum": null
},
"url": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " and ",
"raw": " and ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/mistralai/Mixtral-8x22B-v0.1",
"href": null,
"resource": {
"type": "model",
"id": "mistralai/Mixtral-8x22B-v0.1",
"discussionNum": null
},
"url": "https://huggingface.co/mistralai/Mixtral-8x22B-v0.1",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "The most exciting thing here? ",
"raw": "The most exciting thing here? ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
"href": null,
"resource": {
"type": "model",
"id": "mistralai/Mixtral-8x22B-Instruct-v0.1",
"discussionNum": null
},
"url": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " model got a first place among pretrained models with an impressive average score of 79.15!๐ฅ Not far behind is the Mixtral-8x22B-v0.1, achieving second place with an average score of 74.47! Well done, Mistral AI! ๐",
"raw": " model got a first place among pretrained models with an impressive average score of 79.15!๐ฅ Not far behind is the Mixtral-8x22B-v0.1, achieving second place with an average score of 74.47! Well done, Mistral AI! ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Check out my screenshot here or explore it yourself at the ",
"raw": "Check out my screenshot here or explore it yourself at the ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard",
"href": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "The second news is that ",
"raw": "The second news is that ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/CohereForAI/c4ai-command-r-plus",
"href": null,
"resource": {
"type": "model",
"id": "CohereForAI/c4ai-command-r-plus",
"discussionNum": null
},
"url": "https://huggingface.co/CohereForAI/c4ai-command-r-plus",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " model in 4-bit quantization got a great average score of 70.08. Cool stuff, Cohere! ๐ (and I also have the screenshot for this, don't miss it)",
"raw": " model in 4-bit quantization got a great average score of 70.08. Cool stuff, Cohere! ๐ (and I also have the screenshot for this, don't miss it)",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "The last news, which might seem small but is still significant, the Leaderboard frontpage now supports Python 3.12.1. This means we're on our way to speed up the Leaderboard's performance! ๐",
"raw": "The last news, which might seem small but is still significant, the Leaderboard frontpage now supports Python 3.12.1. This means we're on our way to speed up the Leaderboard's performance! ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "If you have any comments or suggestions, feel free to also tag me on X (Twitter), I'll try to help โ [at]ailozovskaya",
"raw": "If you have any comments or suggestions, feel free to also tag me on X (Twitter), I'll try to help โ [at]ailozovskaya",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Have a nice weekend! โจ",
"raw": "Have a nice weekend! โจ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Do I need to make it a tradition to post here every Friday? Well, here we are again!
This week, I'm happy to share that we have two official Mistral models on the Leaderboard! ๐ฅ You can check them out: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1 and https://huggingface.co/mistralai/Mixtral-8x22B-v0.1
The most exciting thing here? https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1 model got a first place among pretrained models with an impressive average score of 79.15!๐ฅ Not far behind is the Mixtral-8x22B-v0.1, achieving second place with an average score of 74.47! Well done, Mistral AI! ๐
Check out my screenshot here or explore it yourself at the https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
The second news is that https://huggingface.co/CohereForAI/c4ai-command-r-plus model in 4-bit quantization got a great average score of 70.08. Cool stuff, Cohere! ๐ (and I also have the screenshot for this, don't miss it)
The last news, which might seem small but is still significant, the Leaderboard frontpage now supports Python 3.12.1. This means we're on our way to speed up the Leaderboard's performance! ๐
If you have any comments or suggestions, feel free to also tag me on X (Twitter), I'll try to help โ [at]ailozovskaya
Have a nice weekend! โจ | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63f5010dfcf95ecac2ad8652/vmRox4fcHMjT1y2bidjOL.jpeg",
"fullname": "Alina Lozovskaya",
"name": "alozowski",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 55,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/63f5010dfcf95ecac2ad8652/BTnWia9RuJpHHk4U2axqE.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/63f5010dfcf95ecac2ad8652/E05Ef0Rjh2O3swyPmWG6X.png"
}
] | [] | [
{
"reaction": "๐ฅ",
"users": [
"clem",
"KonradSzafer",
"Vanessasml",
"clefourrier",
"qubvel-hf",
"SaylorTwift",
"Nacholmo"
],
"count": 7
},
{
"reaction": "โค๏ธ",
"users": [
"clem",
"KonradSzafer",
"clefourrier",
"SaylorTwift"
],
"count": 4
}
] | 2024-04-19T14:52:03.000Z | 2024-04-24T22:02:52.772Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64137e2150358a805203cbac/w9RQx8Q07UvgFyIZ3ce_k.jpeg",
"fullname": "Jade",
"name": "euclaise",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 89,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63f5010dfcf95ecac2ad8652/vmRox4fcHMjT1y2bidjOL.jpeg",
"fullname": "Alina Lozovskaya",
"name": "alozowski",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 55,
"isFollowing": false
}
] | /posts/alozowski/929425103149554 | 2,462 | 2 |
385986982421764 | [
{
"type": "text",
"value": "Love this new Space built by ",
"raw": "Love this new Space built by ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@enzostvs",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "enzostvs",
"label": null,
"lang": null
},
{
"type": "text",
"value": " + ",
"raw": " + ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@Xenova",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "Xenova",
"label": null,
"lang": null
},
{
"type": "text",
"value": " for Transformers.js: Generate your own AI music (In-browser generation) with AI Jukebox ",
"raw": " for Transformers.js: Generate your own AI music (In-browser generation) with AI Jukebox ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/enzostvs/ai-jukebox",
"href": null,
"resource": {
"type": "space",
"id": "enzostvs/ai-jukebox",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/enzostvs/ai-jukebox",
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Love this new Space built by @enzostvs + @Xenova for Transformers.js: Generate your own AI music (In-browser generation) with AI Jukebox
https://huggingface.co/spaces/enzostvs/ai-jukebox | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg",
"fullname": "Florent Daudens",
"name": "fdaudens",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 384,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/647f36a8454af0237bd49574/nfXvWpPnTsmsyNO6n92YA.png"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64f73f25098581ab15e2f5ad/P_-5s8W6hA7wrs5ggF2Xu.jpeg",
"fullname": "enzo",
"name": "enzostvs",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 213
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61b253b7ac5ecaae3d1efe0c/hwiQ0uvz3t-L5a-NtBIO6.png",
"fullname": "Joshua",
"name": "Xenova",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 3792
}
] | [
{
"reaction": "๐ฅ",
"users": [
"radames",
"Xenova",
"enzostvs",
"kramp",
"victor",
"qubvel-hf",
"clem",
"grv805",
"Azamat1k"
],
"count": 9
}
] | 2024-04-19T14:34:02.000Z | 2024-04-19T14:34:36.063Z | [] | /posts/fdaudens/385986982421764 | 1,814 | 0 |
937604845747666 | [
{
"type": "text",
"value": "IMO, the \"grounded generation\" feature from Cohere's CommandR+ has flown under the radar...",
"raw": "IMO, the \"grounded generation\" feature from Cohere's CommandR+ has flown under the radar...",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "For RAG use cases, responses directly include inline citations, making source attribution an inherent part of generation rather than an afterthought ๐",
"raw": "For RAG use cases, responses directly include inline citations, making source attribution an inherent part of generation rather than an afterthought ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Who's working on an open dataset with this for the HF community to fine-tune with??",
"raw": "Who's working on an open dataset with this for the HF community to fine-tune with??",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐CommandR+ Docs: ",
"raw": "๐CommandR+ Docs: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://docs.cohere.com/docs/retrieval-augmented-generation-rag",
"href": "https://docs.cohere.com/docs/retrieval-augmented-generation-rag",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐Model on the ๐ค Hub: ",
"raw": "๐Model on the ๐ค Hub: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/CohereForAI/c4ai-command-r-plus",
"href": null,
"resource": {
"type": "model",
"id": "CohereForAI/c4ai-command-r-plus",
"discussionNum": null
},
"url": "https://huggingface.co/CohereForAI/c4ai-command-r-plus",
"code": null,
"user": null,
"label": null,
"lang": null
}
] | IMO, the "grounded generation" feature from Cohere's CommandR+ has flown under the radar...
For RAG use cases, responses directly include inline citations, making source attribution an inherent part of generation rather than an afterthought ๐
Who's working on an open dataset with this for the HF community to fine-tune with??
๐CommandR+ Docs: https://docs.cohere.com/docs/retrieval-augmented-generation-rag
๐Model on the ๐ค Hub: https://huggingface.co/CohereForAI/c4ai-command-r-plus | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61d375fd733d3a83ecd1bba9/oIXwvvs1-HaCnJXMCZgkc.jpeg",
"fullname": "Andrew Reed",
"name": "andrewrreed",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 106,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/61d375fd733d3a83ecd1bba9/oIFd9E12fcaVhnbE_HSE6.png"
}
] | [] | [
{
"reaction": "โค๏ธ",
"users": [
"ankity09",
"radames",
"tomaarsen",
"qubvel-hf",
"clem",
"kristaller486",
"abidlabs"
],
"count": 7
},
{
"reaction": "๐",
"users": [
"iAkashPaul",
"tomaarsen",
"abidlabs",
"derek-thomas"
],
"count": 4
}
] | 2024-04-19T12:07:35.000Z | 2024-04-22T22:06:36.355Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648966381588-6064e095abd8d3692e3e2ed6.jpeg",
"fullname": "Radamรฉs Ajna",
"name": "radames",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2401,
"isFollowing": false
}
] | /posts/andrewrreed/937604845747666 | 2,315 | 1 |
593265873787613 | [
{
"type": "text",
"value": "A great vision language benchmark: MM-UPD evaluates how model responds to unsolvable problems ๐ค",
"raw": "A great vision language benchmark: MM-UPD evaluates how model responds to unsolvable problems ๐ค",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "As of now, most VLMs, including GPT-4V and LLaVA-Next-34B, struggle with refusing to answer",
"raw": "As of now, most VLMs, including GPT-4V and LLaVA-Next-34B, struggle with refusing to answer",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Dataset ",
"raw": "Dataset ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/MM-UPD/MM-UPD",
"href": null,
"resource": {
"type": "dataset",
"id": "MM-UPD/MM-UPD",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/MM-UPD/MM-UPD",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Paper ",
"raw": "Paper ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2403.20331",
"href": null,
"resource": {
"type": "paper",
"id": "2403.20331",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2403.20331",
"code": null,
"user": null,
"label": "Unsolvable Problem Detection: Evaluating Trustworthiness of Vision\n Language Models (2403.20331)",
"lang": null
}
] | A great vision language benchmark: MM-UPD evaluates how model responds to unsolvable problems ๐ค
As of now, most VLMs, including GPT-4V and LLaVA-Next-34B, struggle with refusing to answer
Dataset https://huggingface.co/datasets/MM-UPD/MM-UPD
Paper https://huggingface.co/papers/2403.20331 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png",
"fullname": "Merve Noyan",
"name": "merve",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 5589,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/832oKL069sZjpZlh8TaRt.jpeg"
}
] | [] | [
{
"reaction": "๐",
"users": [
"KingNish",
"qubvel-hf",
"AlekseiPravdin",
"raincandy-u",
"anldrms"
],
"count": 5
}
] | 2024-04-19T11:34:29.000Z | 2024-04-19T11:34:41.435Z | [] | /posts/merve/593265873787613 | 2,482 | 0 |
840376427316230 | [
{
"type": "text",
"value": "๐ฆซ We have just released ",
"raw": "๐ฆซ We have just released ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/argilla/Capybara-Preferences",
"href": null,
"resource": {
"type": "dataset",
"id": "argilla/Capybara-Preferences",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/argilla/Capybara-Preferences",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " in collaboration with Kaist AI (",
"raw": " in collaboration with Kaist AI (",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@JW17",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "JW17",
"label": null,
"lang": null
},
{
"type": "text",
"value": ", ",
"raw": ", ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@nlee-208",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "nlee-208",
"label": null,
"lang": null
},
{
"type": "text",
"value": ") and Hugging Face (",
"raw": ") and Hugging Face (",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@lewtun",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "lewtun",
"label": null,
"lang": null
},
{
"type": "text",
"value": ")",
"raw": ")",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "A new synthetic preference dataset built using ",
"raw": "A new synthetic preference dataset built using ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "inline_code",
"value": null,
"raw": "`distilabel`",
"href": null,
"resource": null,
"url": null,
"code": "distilabel",
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " on top of the awesome ",
"raw": " on top of the awesome ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/LDJnr/Capybara",
"href": null,
"resource": {
"type": "dataset",
"id": "LDJnr/Capybara",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/LDJnr/Capybara",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " from ",
"raw": " from ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@LDJnr",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "LDJnr",
"label": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "The current dataset combines the already generated alternative completions from ",
"raw": "The current dataset combines the already generated alternative completions from ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized",
"href": null,
"resource": {
"type": "dataset",
"id": "argilla/distilabel-capybara-dpo-7k-binarized",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": ", while also adding the remaining ones using the same approach!",
"raw": ", while also adding the remaining ones using the same approach!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Here are some key features on how we built it:",
"raw": "Here are some key features on how we built it:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- ๐งน Duplicate removal, keeping the conversation besides the last assistant response, and some slight pre-processing",
"raw": "- ๐งน Duplicate removal, keeping the conversation besides the last assistant response, and some slight pre-processing",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- ๐ค Generation of alternative completions for the existing conversations (last turn only) with: ",
"raw": "- ๐ค Generation of alternative completions for the existing conversations (last turn only) with: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/mlabonne/NeuralBeagle14-7B",
"href": null,
"resource": {
"type": "model",
"id": "mlabonne/NeuralBeagle14-7B",
"discussionNum": null
},
"url": "https://huggingface.co/mlabonne/NeuralBeagle14-7B",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": ", ",
"raw": ", ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/argilla/notus-7b-v1",
"href": null,
"resource": {
"type": "model",
"id": "argilla/notus-7b-v1",
"discussionNum": null
},
"url": "https://huggingface.co/argilla/notus-7b-v1",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": ", and ",
"raw": ", and ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B",
"href": null,
"resource": {
"type": "model",
"id": "teknium/OpenHermes-2.5-Mistral-7B",
"discussionNum": null
},
"url": "https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- ๐จ๐ปโ๐ซ Running UltraFeedback via GPT-4 to generate the critique i.e. ratings and rationales, for the last assistant responses",
"raw": "- ๐จ๐ปโ๐ซ Running UltraFeedback via GPT-4 to generate the critique i.e. ratings and rationales, for the last assistant responses",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- ๐ Finally, we selected the chosen and rejected responses based on their UltraFeedback score, and applied some slight post-processing!",
"raw": "- ๐ Finally, we selected the chosen and rejected responses based on their UltraFeedback score, and applied some slight post-processing!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Sounds simple right? Start building your own synthetic datasets with ",
"raw": "Sounds simple right? Start building your own synthetic datasets with ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/argilla-io/distilabel",
"href": "https://github.com/argilla-io/distilabel",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " already!",
"raw": " already!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐ฆซ We have just released https://huggingface.co/datasets/argilla/Capybara-Preferences in collaboration with Kaist AI (@JW17, @nlee-208) and Hugging Face (@lewtun)
A new synthetic preference dataset built using `distilabel` on top of the awesome https://huggingface.co/datasets/LDJnr/Capybara from @LDJnr
The current dataset combines the already generated alternative completions from https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized, while also adding the remaining ones using the same approach!
Here are some key features on how we built it:
- ๐งน Duplicate removal, keeping the conversation besides the last assistant response, and some slight pre-processing
- ๐ค Generation of alternative completions for the existing conversations (last turn only) with: https://huggingface.co/mlabonne/NeuralBeagle14-7B, https://huggingface.co/argilla/notus-7b-v1, and https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
- ๐จ๐ปโ๐ซ Running UltraFeedback via GPT-4 to generate the critique i.e. ratings and rationales, for the last assistant responses
- ๐ Finally, we selected the chosen and rejected responses based on their UltraFeedback score, and applied some slight post-processing!
Sounds simple right? Start building your own synthetic datasets with https://github.com/argilla-io/distilabel already! | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60f0608166e5701b80ed3f02/BHso-wSWpR9b8b8CKvodC.jpeg",
"fullname": "Alvaro Bartolome",
"name": "alvarobartt",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 1739,
"isFollowing": false
} | [] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6415c043486c7c9a5d151583/fUdYFh6iVh57swCkBEy-y.jpeg",
"fullname": "Jiwoo Hong",
"name": "JW17",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 11
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/2GjRE8z9lYNeelnBTz5ym.png",
"fullname": "Luigi D",
"name": "LDJnr",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 125
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1594651707950-noauth.jpeg",
"fullname": "Lewis Tunstall",
"name": "lewtun",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 678
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6296fe6f7d586f66c3957f33/lCHe1mBVRzQ1sKsXD2OUd.jpeg",
"fullname": "Noah Lee",
"name": "nlee-208",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 7
}
] | [
{
"reaction": "๐ฅ",
"users": [
"lunarflu",
"davanstrien",
"tomaarsen",
"qubvel-hf",
"clem",
"alielfilali01",
"AtAndDev",
"gabrielmbmb"
],
"count": 8
},
{
"reaction": "๐",
"users": [
"mikeysilva808",
"AtAndDev",
"gabrielmbmb"
],
"count": 3
}
] | 2024-04-19T10:34:14.000Z | 2024-04-19T10:35:38.806Z | [] | /posts/alvarobartt/840376427316230 | 2,760 | 0 |
979590268733276 | [
{
"type": "text",
"value": "In the vector search setup, we normally combine a fast embedding model and an accurate but slow reranker model. ",
"raw": "In the vector search setup, we normally combine a fast embedding model and an accurate but slow reranker model. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "The newly released ",
"raw": "The newly released ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@jinaai",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "jinaai",
"label": null,
"lang": null
},
{
"type": "text",
"value": " rerankers are small in size and almost as accurate as our base reranker. This means given a time constraint, it can scoring more candidate documents from embedding models and have a better chance to feed LLM the correct context for RAG generation. ",
"raw": " rerankers are small in size and almost as accurate as our base reranker. This means given a time constraint, it can scoring more candidate documents from embedding models and have a better chance to feed LLM the correct context for RAG generation. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "These models are available on Huggingface and has been integrated into the latest SentenceTransformers 2.7.0. Check it out!",
"raw": "These models are available on Huggingface and has been integrated into the latest SentenceTransformers 2.7.0. Check it out!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/jinaai/jina-reranker-v1-turbo-en",
"href": null,
"resource": {
"type": "model",
"id": "jinaai/jina-reranker-v1-turbo-en",
"discussionNum": null
},
"url": "https://huggingface.co/jinaai/jina-reranker-v1-turbo-en",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en",
"href": null,
"resource": {
"type": "model",
"id": "jinaai/jina-reranker-v1-tiny-en",
"discussionNum": null
},
"url": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en",
"code": null,
"user": null,
"label": null,
"lang": null
}
] | In the vector search setup, we normally combine a fast embedding model and an accurate but slow reranker model.
The newly released @jinaai rerankers are small in size and almost as accurate as our base reranker. This means given a time constraint, it can scoring more candidate documents from embedding models and have a better chance to feed LLM the correct context for RAG generation.
These models are available on Huggingface and has been integrated into the latest SentenceTransformers 2.7.0. Check it out!
https://huggingface.co/jinaai/jina-reranker-v1-turbo-en
https://huggingface.co/jinaai/jina-reranker-v1-tiny-en | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63491dc83d8dc83a55cb749c/IoqJrOIaEnYO_S7si4KGp.jpeg",
"fullname": "Bo Wang",
"name": "bwang0911",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1824,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/63491dc83d8dc83a55cb749c/60nj5Xq_q_hlgculgQTxF.png"
}
] | [] | [
{
"reaction": "๐",
"users": [
"tomaarsen",
"qubvel-hf",
"clem",
"sigridjineth",
"dev7halo",
"ceoofcapybaras"
],
"count": 6
},
{
"reaction": "โค๏ธ",
"users": [
"dev7halo",
"jaisanrobert"
],
"count": 2
}
] | 2024-04-19T09:34:33.000Z | 2024-04-19T15:46:35.473Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6317233cc92fd6fee317e030/cJHSvvimr1kqgQfHOjO5n.png",
"fullname": "Tom Aarsen",
"name": "tomaarsen",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 1060,
"isFollowing": false
}
] | /posts/bwang0911/979590268733276 | 2,962 | 1 |
840895306866552 | [
{
"type": "text",
"value": "Turns out if you do a cute little hack, you can make ",
"raw": "Turns out if you do a cute little hack, you can make ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://hf.co/nateraw/musicgen-songstarter-v0.2",
"href": null,
"resource": {
"type": "model",
"id": "nateraw/musicgen-songstarter-v0.2",
"discussionNum": null
},
"url": "https://hf.co/nateraw/musicgen-songstarter-v0.2",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " work on vocal inputs. ๐",
"raw": " work on vocal inputs. ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Now, you can hum an idea for a song and get a music sample generated with AI ๐ฅ๐ฅ ",
"raw": "Now, you can hum an idea for a song and get a music sample generated with AI ๐ฅ๐ฅ ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Give it a try: โก๏ธ ",
"raw": "Give it a try: โก๏ธ ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://hf.co/spaces/nateraw/singing-songstarter",
"href": null,
"resource": {
"type": "space",
"id": "nateraw/singing-songstarter",
"discussionNum": null
},
"url": "https://hf.co/spaces/nateraw/singing-songstarter",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " โฌ
๏ธ",
"raw": " โฌ
๏ธ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "It'll take your voice and try to autotune it (because let's be real, you're no michael jackson), then pass it along to the model to condition on the melody. It works surprisingly well!",
"raw": "It'll take your voice and try to autotune it (because let's be real, you're no michael jackson), then pass it along to the model to condition on the melody. It works surprisingly well!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Turns out if you do a cute little hack, you can make https://hf.co/nateraw/musicgen-songstarter-v0.2 work on vocal inputs. ๐
Now, you can hum an idea for a song and get a music sample generated with AI ๐ฅ๐ฅ
Give it a try: โก๏ธ https://hf.co/spaces/nateraw/singing-songstarter โฌ
๏ธ
It'll take your voice and try to autotune it (because let's be real, you're no michael jackson), then pass it along to the model to condition on the melody. It works surprisingly well! | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1594936097363-noauth.jpeg",
"fullname": "Nate Raw",
"name": "nateraw",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 161,
"isFollowing": false
} | [
{
"type": "video",
"url": "https://cdn-uploads.huggingface.co/production/uploads/5f10cb46636b661bdc42318b/7c7OL9DGFjYaTLvdOcHWA.qt"
}
] | [] | [
{
"reaction": "๐ฅ",
"users": [
"dog",
"bennyzen",
"victor",
"pwab",
"trysem",
"Csplk",
"2dts",
"dillfrescott",
"manoskary",
"clem",
"lunarflu",
"Nevertree",
"Krognus"
],
"count": 13
},
{
"reaction": "๐",
"users": [
"RonanMcGovern",
"clem",
"lunarflu",
"Nevertree"
],
"count": 4
}
] | 2024-04-19T08:37:50.000Z | 2024-04-19T08:41:39.048Z | [] | /posts/nateraw/840895306866552 | 4,027 | 0 |
929197065465455 | [
{
"type": "text",
"value": "๐ฅณ New license for datasets: Apache 2.0!",
"raw": "๐ฅณ New license for datasets: Apache 2.0!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "I have been struggling mentally for many months now with the OpenAI terms of use that indicate that their model outputs cannot be used to build \"competing models\". This leads to many questions:",
"raw": "I have been struggling mentally for many months now with the OpenAI terms of use that indicate that their model outputs cannot be used to build \"competing models\". This leads to many questions:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- what is the definition of competing? Is it the same as \"commercial\"?",
"raw": "- what is the definition of competing? Is it the same as \"commercial\"?",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- since this is part of the terms of use between OpenAI and the API user, can a third party still use the generated dataset to build competing models?",
"raw": "- since this is part of the terms of use between OpenAI and the API user, can a third party still use the generated dataset to build competing models?",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- are such restrictions even legal in the first place?",
"raw": "- are such restrictions even legal in the first place?",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Trying to \"follow the rules\" as much as possible despite wanting to be as open as possible, I kept releasing my datasets under non-commercial licenses (which are too restrictive anyhow - nothing should prevent you from using the data in non-LM commercial settings), just like models trained on these datasets. This has put me at a competitive disadvantage compared to creators who do not follow the same approach and release their data/models on apache 2.0 despite the OpenAI \"restrictions\". Moreover, I fear (",
"raw": "Trying to \"follow the rules\" as much as possible despite wanting to be as open as possible, I kept releasing my datasets under non-commercial licenses (which are too restrictive anyhow - nothing should prevent you from using the data in non-LM commercial settings), just like models trained on these datasets. This has put me at a competitive disadvantage compared to creators who do not follow the same approach and release their data/models on apache 2.0 despite the OpenAI \"restrictions\". Moreover, I fear (",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://twitter.com/BramVanroy/status/1780220420316164246",
"href": "https://twitter.com/BramVanroy/status/1780220420316164246",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": ") that my approach blocks adaptation of my data/models for (commercial) applications/integrations.",
"raw": ") that my approach blocks adaptation of my data/models for (commercial) applications/integrations.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Thankfully ",
"raw": "Thankfully ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@Rijgersberg",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "Rijgersberg",
"label": null,
"lang": null
},
{
"type": "text",
"value": " noted that these OpenAI terms of use are NOT explicit in the Azure OpenAI API (",
"raw": " noted that these OpenAI terms of use are NOT explicit in the Azure OpenAI API (",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://twitter.com/E_Rijgersberg/status/1780308971762450725",
"href": "https://twitter.com/E_Rijgersberg/status/1780308971762450725",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "). Since my latest datasets were created via Azure, this comes as a relief. As far as I can tell after digging through Azure docs, this allows me to change all recent GPT4-generated datasets to apache 2.0! ๐ฅณ ",
"raw": "). Since my latest datasets were created via Azure, this comes as a relief. As far as I can tell after digging through Azure docs, this allows me to change all recent GPT4-generated datasets to apache 2.0! ๐ฅณ ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- ",
"raw": "- ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/BramVanroy/ultrachat_200k_dutch",
"href": null,
"resource": {
"type": "dataset",
"id": "BramVanroy/ultrachat_200k_dutch",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/BramVanroy/ultrachat_200k_dutch",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- ",
"raw": "- ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/BramVanroy/orca_dpo_pairs_dutch",
"href": null,
"resource": {
"type": "dataset",
"id": "BramVanroy/orca_dpo_pairs_dutch",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/BramVanroy/orca_dpo_pairs_dutch",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- ",
"raw": "- ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/BramVanroy/ultra_feedback_dutch",
"href": null,
"resource": {
"type": "dataset",
"id": "BramVanroy/ultra_feedback_dutch",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/BramVanroy/ultra_feedback_dutch",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- ",
"raw": "- ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/BramVanroy/ultra_feedback_dutch_cleaned",
"href": null,
"resource": {
"type": "dataset",
"id": "BramVanroy/ultra_feedback_dutch_cleaned",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/BramVanroy/ultra_feedback_dutch_cleaned",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- ",
"raw": "- ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/BramVanroy/no_robots_dutch",
"href": null,
"resource": {
"type": "dataset",
"id": "BramVanroy/no_robots_dutch",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/BramVanroy/no_robots_dutch",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "I will have to mull over what I'll do for the older GPT3.5 datasets. What do you think that I should do?",
"raw": "I will have to mull over what I'll do for the older GPT3.5 datasets. What do you think that I should do?",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐ฅณ New license for datasets: Apache 2.0!
I have been struggling mentally for many months now with the OpenAI terms of use that indicate that their model outputs cannot be used to build "competing models". This leads to many questions:
- what is the definition of competing? Is it the same as "commercial"?
- since this is part of the terms of use between OpenAI and the API user, can a third party still use the generated dataset to build competing models?
- are such restrictions even legal in the first place?
Trying to "follow the rules" as much as possible despite wanting to be as open as possible, I kept releasing my datasets under non-commercial licenses (which are too restrictive anyhow - nothing should prevent you from using the data in non-LM commercial settings), just like models trained on these datasets. This has put me at a competitive disadvantage compared to creators who do not follow the same approach and release their data/models on apache 2.0 despite the OpenAI "restrictions". Moreover, I fear (https://twitter.com/BramVanroy/status/1780220420316164246) that my approach blocks adaptation of my data/models for (commercial) applications/integrations.
Thankfully @Rijgersberg noted that these OpenAI terms of use are NOT explicit in the Azure OpenAI API (https://twitter.com/E_Rijgersberg/status/1780308971762450725). Since my latest datasets were created via Azure, this comes as a relief. As far as I can tell after digging through Azure docs, this allows me to change all recent GPT4-generated datasets to apache 2.0! ๐ฅณ
- https://huggingface.co/datasets/BramVanroy/ultrachat_200k_dutch
- https://huggingface.co/datasets/BramVanroy/orca_dpo_pairs_dutch
- https://huggingface.co/datasets/BramVanroy/ultra_feedback_dutch
- https://huggingface.co/datasets/BramVanroy/ultra_feedback_dutch_cleaned
- https://huggingface.co/datasets/BramVanroy/no_robots_dutch
I will have to mull over what I'll do for the older GPT3.5 datasets. What do you think that I should do? | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1594192845975-5e1e17b6fcf41d740b6996a8.jpeg",
"fullname": "Bram Vanroy",
"name": "BramVanroy",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 173,
"isFollowing": false
} | [] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6319b164bc8f3b313f7a1db0/Hh0kuwsAnD2AOKdL6PpRs.png",
"fullname": "Edwin Rijgersberg",
"name": "Rijgersberg",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 45
}
] | [
{
"reaction": "๐ฅ",
"users": [
"stefan-it",
"JorgeDeC",
"adamo1139",
"alielfilali01",
"martineden"
],
"count": 5
},
{
"reaction": "๐",
"users": [
"Rijgersberg",
"martineden"
],
"count": 2
},
{
"reaction": "๐ค",
"users": [
"wvangils"
],
"count": 1
}
] | 2024-04-19T08:37:36.000Z | 2024-05-13T18:13:06.098Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/625579238e2cfccdb434c5e1/WIZtyNNzeSMo3F5Xsr161.jpeg",
"fullname": "Jorge De Corte",
"name": "JorgeDeC",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 7,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1594192845975-5e1e17b6fcf41d740b6996a8.jpeg",
"fullname": "Bram Vanroy",
"name": "BramVanroy",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 173,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6319b164bc8f3b313f7a1db0/Hh0kuwsAnD2AOKdL6PpRs.png",
"fullname": "Edwin Rijgersberg",
"name": "Rijgersberg",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 45,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62d1218684bfbee86b6ee521/BpXX_XUP80IfdGAvbs_VI.png",
"fullname": "MD",
"name": "markding",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 3,
"isFollowing": false
}
] | /posts/BramVanroy/929197065465455 | 2,272 | 9 |
549518281460732 | [
{
"type": "text",
"value": "With AutoTrain, you can already finetune the latest llama3 models without writing a single line of code. Here's an example finetune of llama3 8b model: ",
"raw": "With AutoTrain, you can already finetune the latest llama3 models without writing a single line of code. Here's an example finetune of llama3 8b model: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/abhishek/autotrain-llama3-no-robots",
"href": null,
"resource": {
"type": "model",
"id": "abhishek/autotrain-llama3-no-robots",
"discussionNum": null
},
"url": "https://huggingface.co/abhishek/autotrain-llama3-no-robots",
"code": null,
"user": null,
"label": null,
"lang": null
}
] | With AutoTrain, you can already finetune the latest llama3 models without writing a single line of code. Here's an example finetune of llama3 8b model: https://huggingface.co/abhishek/autotrain-llama3-no-robots | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5fa19f4ba13e063b8b2b5e11/nGVHdTYX2udnt-K8mqY27.jpeg",
"fullname": "Abhishek Thakur",
"name": "abhishek",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 1383,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐",
"users": [
"tinycrops",
"not-lain",
"lunarflu",
"fdaudens",
"xianbao",
"HomerDoh",
"alielfilali01"
],
"count": 7
},
{
"reaction": "๐ฅ",
"users": [
"lunarflu",
"xianbao",
"kramp",
"AtonMountlook",
"alielfilali01",
"anldrms"
],
"count": 6
},
{
"reaction": "๐",
"users": [
"lunarflu",
"xianbao",
"alielfilali01"
],
"count": 3
}
] | 2024-04-18T17:40:15.000Z | 2024-04-20T12:12:18.840Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6612aedf09f16e7347dfa7e1/bPYjBXCedY_1fSIPjoBTY.jpeg",
"fullname": "Nishith Jain",
"name": "KingNish",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1079,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5fa19f4ba13e063b8b2b5e11/nGVHdTYX2udnt-K8mqY27.jpeg",
"fullname": "Abhishek Thakur",
"name": "abhishek",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 1383,
"isFollowing": false
}
] | /posts/abhishek/549518281460732 | 3,468 | 2 |
628834201033253 | [
{
"type": "text",
"value": "Open-source AI on your phone? The HuggingChat app is out for iOs, with the best models: Command R, Zephyr Orpo, Mixtral, Gemma... ",
"raw": "Open-source AI on your phone? The HuggingChat app is out for iOs, with the best models: Command R, Zephyr Orpo, Mixtral, Gemma... ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://apps.apple.com/ca/app/huggingchat/id6476778843?l=fr-CA",
"href": "https://apps.apple.com/ca/app/huggingchat/id6476778843?l=fr-CA",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Open-source AI on your phone? The HuggingChat app is out for iOs, with the best models: Command R, Zephyr Orpo, Mixtral, Gemma... https://apps.apple.com/ca/app/huggingchat/id6476778843?l=fr-CA | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg",
"fullname": "Florent Daudens",
"name": "fdaudens",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 384,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/647f36a8454af0237bd49574/DsjNnKNFg1ElvuHIT40SN.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/647f36a8454af0237bd49574/5YTkVjO7F53GQfScxrZ6d.jpeg"
}
] | [] | [
{
"reaction": "๐",
"users": [
"HansWuerst",
"lazarustda",
"BrigitteTousi",
"KingNish",
"samusenps",
"lunarflu",
"pcuenq",
"Nymbo"
],
"count": 8
},
{
"reaction": "๐",
"users": [
"lunarflu",
"dankornas",
"nisten",
"pcuenq"
],
"count": 4
},
{
"reaction": "๐ฅ",
"users": [
"lunarflu",
"jmattiello"
],
"count": 2
},
{
"reaction": "๐คฏ",
"users": [
"lunarflu"
],
"count": 1
}
] | 2024-04-18T13:22:25.000Z | 2024-04-19T01:12:56.752Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6612aedf09f16e7347dfa7e1/bPYjBXCedY_1fSIPjoBTY.jpeg",
"fullname": "Nishith Jain",
"name": "KingNish",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1079,
"isFollowing": false
},
{
"avatarUrl": "/avatars/52a153d04d325469e1be69bce610ebe5.svg",
"fullname": "ecyht2",
"name": "ecyht2",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 3,
"isFollowing": false
}
] | /posts/fdaudens/628834201033253 | 4,006 | 2 |
939076244724086 | [
{
"type": "text",
"value": "In a basic chatbots, errors are annoyances. In medical LLMs, errors can have life-threatening consequences ๐ฉธ",
"raw": "In a basic chatbots, errors are annoyances. In medical LLMs, errors can have life-threatening consequences ๐ฉธ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "It's therefore vital to benchmark/follow advances in medical LLMs before even thinking about deployment.",
"raw": "It's therefore vital to benchmark/follow advances in medical LLMs before even thinking about deployment.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "This is why a small research team introduced a medical LLM leaderboard, to get reproducible and comparable results between LLMs, and allow everyone to follow advances in the field.",
"raw": "This is why a small research team introduced a medical LLM leaderboard, to get reproducible and comparable results between LLMs, and allow everyone to follow advances in the field.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/openlifescienceai/open_medical_llm_leaderboard",
"href": null,
"resource": {
"type": "space",
"id": "openlifescienceai/open_medical_llm_leaderboard",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/openlifescienceai/open_medical_llm_leaderboard",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Congrats to ",
"raw": "Congrats to ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@aaditya",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "aaditya",
"label": null,
"lang": null
},
{
"type": "text",
"value": " and ",
"raw": " and ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@pminervini",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "pminervini",
"label": null,
"lang": null
},
{
"type": "text",
"value": " !",
"raw": " !",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Learn more in the blog: ",
"raw": "Learn more in the blog: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/blog/leaderboard-medicalllm",
"href": "https://huggingface.co/blog/leaderboard-medicalllm",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | In a basic chatbots, errors are annoyances. In medical LLMs, errors can have life-threatening consequences ๐ฉธ
It's therefore vital to benchmark/follow advances in medical LLMs before even thinking about deployment.
This is why a small research team introduced a medical LLM leaderboard, to get reproducible and comparable results between LLMs, and allow everyone to follow advances in the field.
https://huggingface.co/spaces/openlifescienceai/open_medical_llm_leaderboard
Congrats to @aaditya and @pminervini !
Learn more in the blog: https://huggingface.co/blog/leaderboard-medicalllm | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1644340617257-noauth.png",
"fullname": "Clรฉmentine Fourrier",
"name": "clefourrier",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 459,
"isFollowing": false
} | [] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f3fe13d79c1ba4c353d0c19/XswyGe3OtOdZ6g7rnrgfc.png",
"fullname": "Aaditya Ura",
"name": "aaditya",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 224
},
{
"avatarUrl": "/avatars/eea1e4c39decee282f2940d122090491.svg",
"fullname": "Pasquale Minervini",
"name": "pminervini",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 27
}
] | [
{
"reaction": "๐ฅ",
"users": [
"KonradSzafer",
"qgallouedec",
"BrigitteTousi",
"lunarflu",
"mariagrandury",
"MaziyarPanahi",
"mmhamdy",
"Ramikan-BR"
],
"count": 8
},
{
"reaction": "๐",
"users": [
"KonradSzafer",
"BrigitteTousi",
"lunarflu",
"fdaudens",
"MaziyarPanahi",
"mmhamdy",
"Ramikan-BR"
],
"count": 7
},
{
"reaction": "โค๏ธ",
"users": [
"samusenps",
"lunarflu",
"nicoism",
"mariagrandury",
"MaziyarPanahi",
"Ramikan-BR",
"Pretergeek"
],
"count": 7
}
] | 2024-04-18T12:59:32.000Z | 2024-04-18T12:59:32.803Z | [] | /posts/clefourrier/939076244724086 | 5,244 | 0 |
476985886331959 | [
{
"type": "text",
"value": "๐ Sentence Transformers v2.7.0 is out! Featuring a new loss function, easier Matryoshka model inference & evaluation, CrossEncoder improvements & Intel Gaudi2 Accelerator support. Details:",
"raw": "๐ Sentence Transformers v2.7.0 is out! Featuring a new loss function, easier Matryoshka model inference & evaluation, CrossEncoder improvements & Intel Gaudi2 Accelerator support. Details:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "1๏ธโฃ A new loss function: CachedGISTEmbedLoss",
"raw": "1๏ธโฃ A new loss function: CachedGISTEmbedLoss",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "This loss function is a combination of CachedMultipleNegativesRankingLoss and the GISTEmbedLoss, both of which are already excellent. The caching mechanism allows for much higher batch sizes with constant memory usage, which boosts training performance. The GIST part introduces a guide model to guide the in-batch negative sample selection. This prevents false negatives, resulting in a stronger training signal.",
"raw": "This loss function is a combination of CachedMultipleNegativesRankingLoss and the GISTEmbedLoss, both of which are already excellent. The caching mechanism allows for much higher batch sizes with constant memory usage, which boosts training performance. The GIST part introduces a guide model to guide the in-batch negative sample selection. This prevents false negatives, resulting in a stronger training signal.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "2๏ธโฃ Automatic Matryoshka model truncation",
"raw": "2๏ธโฃ Automatic Matryoshka model truncation",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Matryoshka models produce embeddings that are still useful after truncation. However, this truncation always had to be done manually, until now! We've added a ",
"raw": "Matryoshka models produce embeddings that are still useful after truncation. However, this truncation always had to be done manually, until now! We've added a ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "inline_code",
"value": null,
"raw": "`truncate_dim`",
"href": null,
"resource": null,
"url": null,
"code": "truncate_dim",
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " option to the Sentence Transformer constructor. This also allows truncation when using ",
"raw": " option to the Sentence Transformer constructor. This also allows truncation when using ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "inline_code",
"value": null,
"raw": "`HuggingFaceEmbeddings`",
"href": null,
"resource": null,
"url": null,
"code": "HuggingFaceEmbeddings",
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " from LlamaIndex or LangChain.",
"raw": " from LlamaIndex or LangChain.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "3๏ธโฃ Additionally, you can now specify ",
"raw": "3๏ธโฃ Additionally, you can now specify ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "inline_code",
"value": null,
"raw": "`truncate_dim`",
"href": null,
"resource": null,
"url": null,
"code": "truncate_dim",
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " in evaluators to get the performance after truncation. (Hint: it's surprisingly good, even for models not trained with MatryoshkaLoss, and it can speed up e.g. clustering, retrieval, etc.)",
"raw": " in evaluators to get the performance after truncation. (Hint: it's surprisingly good, even for models not trained with MatryoshkaLoss, and it can speed up e.g. clustering, retrieval, etc.)",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "4๏ธโฃ CrossEncoder improvements",
"raw": "4๏ธโฃ CrossEncoder improvements",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "The CrossEncoder now supports 'push_to_hub' to upload trained reranker models to Hugging Face. Additionally, CrossEncoders now support ",
"raw": "The CrossEncoder now supports 'push_to_hub' to upload trained reranker models to Hugging Face. Additionally, CrossEncoders now support ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "inline_code",
"value": null,
"raw": "`trust_remote_code`",
"href": null,
"resource": null,
"url": null,
"code": "trust_remote_code",
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " to load models with custom modelling code.",
"raw": " to load models with custom modelling code.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "5๏ธโฃ Inference on Intel Gaudi2",
"raw": "5๏ธโฃ Inference on Intel Gaudi2",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "If you have an Intel Gaudi2 Accelerator, Sentence Transformers now uses it automatically for even faster inference. No changes are necessary to your code, the device is automatically detected!",
"raw": "If you have an Intel Gaudi2 Accelerator, Sentence Transformers now uses it automatically for even faster inference. No changes are necessary to your code, the device is automatically detected!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Check out the release notes for all of the details: ",
"raw": "Check out the release notes for all of the details: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/UKPLab/sentence-transformers/releases/tag/v2.7.0",
"href": "https://github.com/UKPLab/sentence-transformers/releases/tag/v2.7.0",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "I'm very excited for the upcoming releases: I'm making great progress with a notable v3 refactor that should heavily improve the training process for embedding models!",
"raw": "I'm very excited for the upcoming releases: I'm making great progress with a notable v3 refactor that should heavily improve the training process for embedding models!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐ Sentence Transformers v2.7.0 is out! Featuring a new loss function, easier Matryoshka model inference & evaluation, CrossEncoder improvements & Intel Gaudi2 Accelerator support. Details:
1๏ธโฃ A new loss function: CachedGISTEmbedLoss
This loss function is a combination of CachedMultipleNegativesRankingLoss and the GISTEmbedLoss, both of which are already excellent. The caching mechanism allows for much higher batch sizes with constant memory usage, which boosts training performance. The GIST part introduces a guide model to guide the in-batch negative sample selection. This prevents false negatives, resulting in a stronger training signal.
2๏ธโฃ Automatic Matryoshka model truncation
Matryoshka models produce embeddings that are still useful after truncation. However, this truncation always had to be done manually, until now! We've added a `truncate_dim` option to the Sentence Transformer constructor. This also allows truncation when using `HuggingFaceEmbeddings` from LlamaIndex or LangChain.
3๏ธโฃ Additionally, you can now specify `truncate_dim` in evaluators to get the performance after truncation. (Hint: it's surprisingly good, even for models not trained with MatryoshkaLoss, and it can speed up e.g. clustering, retrieval, etc.)
4๏ธโฃ CrossEncoder improvements
The CrossEncoder now supports 'push_to_hub' to upload trained reranker models to Hugging Face. Additionally, CrossEncoders now support `trust_remote_code` to load models with custom modelling code.
5๏ธโฃ Inference on Intel Gaudi2
If you have an Intel Gaudi2 Accelerator, Sentence Transformers now uses it automatically for even faster inference. No changes are necessary to your code, the device is automatically detected!
Check out the release notes for all of the details: https://github.com/UKPLab/sentence-transformers/releases/tag/v2.7.0
I'm very excited for the upcoming releases: I'm making great progress with a notable v3 refactor that should heavily improve the training process for embedding models! | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6317233cc92fd6fee317e030/cJHSvvimr1kqgQfHOjO5n.png",
"fullname": "Tom Aarsen",
"name": "tomaarsen",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 1060,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐ฅ",
"users": [
"ajibawa-2023",
"mdouglas",
"BrigitteTousi",
"lunarflu",
"mrdbourke",
"beomi",
"nickprock",
"alvarobartt",
"icpro",
"MichelleRuwen",
"not-lain",
"Ali-Khaled",
"adityakusupati",
"LeoLee23"
],
"count": 14
}
] | 2024-04-18T10:59:59.000Z | 2024-04-25T00:32:25.106Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6527e89a8808d80ccff88b7a/CuGNmF1Et8KMQ0mCd1NEJ.jpeg",
"fullname": "Lain",
"name": "not-lain",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 941,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/Vz7ejW9--mwg9qnZHibPb.jpeg",
"fullname": "Ali Khaled",
"name": "Ali-Khaled",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
}
] | /posts/tomaarsen/476985886331959 | 3,160 | 2 |
831339039064129 | [
{
"type": "text",
"value": "๐ฅ Next Thursday 4/25 at 8am PT / 11am ET / 17h CET, join our live Hugging Cast to learn how to deploy open models on Google Cloud. ",
"raw": "๐ฅ Next Thursday 4/25 at 8am PT / 11am ET / 17h CET, join our live Hugging Cast to learn how to deploy open models on Google Cloud. ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Register โก๏ธ ",
"raw": "Register โก๏ธ ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://streamyard.com/watch/xz2nxp85Pi6e",
"href": "https://streamyard.com/watch/xz2nxp85Pi6e",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@philschmid",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "philschmid",
"label": null,
"lang": null
},
{
"type": "text",
"value": " , ",
"raw": " , ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@tengomucho",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "tengomucho",
"label": null,
"lang": null
},
{
"type": "text",
"value": " , ",
"raw": " , ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@jeffboudier",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "jeffboudier",
"label": null,
"lang": null
},
{
"type": "text",
"value": " will show you brand new Hub integrations built with GCP ",
"raw": " will show you brand new Hub integrations built with GCP ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ฅ with HF Inference Endpoints",
"raw": "๐ฅ with HF Inference Endpoints",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ with Vertex and GKE",
"raw": "๐ with Vertex and GKE",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ on TPU",
"raw": "๐ on TPU",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐ฅ Next Thursday 4/25 at 8am PT / 11am ET / 17h CET, join our live Hugging Cast to learn how to deploy open models on Google Cloud.
Register โก๏ธ https://streamyard.com/watch/xz2nxp85Pi6e
@philschmid , @tengomucho , @jeffboudier will show you brand new Hub integrations built with GCP
๐ฅ with HF Inference Endpoints
๐ with Vertex and GKE
๐ on TPU | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1638698875017-noauth.jpeg",
"fullname": "Violette",
"name": "Violette",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 122,
"isFollowing": false
} | [] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1605114051380-noauth.jpeg",
"fullname": "Jeff Boudier",
"name": "jeffboudier",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 195
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1624629516652-5ff5d596f244529b3ec0fb89.png",
"fullname": "Philipp Schmid",
"name": "philschmid",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 657
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6311157564939fabc00c87ec/eOaySRhZnV2maIUC_7HgC.jpeg",
"fullname": "Alvaro Moran",
"name": "tengomucho",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 8
}
] | [
{
"reaction": "๐",
"users": [
"ajibawa-2023",
"BrigitteTousi",
"lunarflu",
"not-lain",
"CYNIC78",
"n-e-w",
"Ryukijano"
],
"count": 7
},
{
"reaction": "๐",
"users": [
"Bkarine",
"lunarflu",
"not-lain",
"CYNIC78",
"Ryukijano"
],
"count": 5
},
{
"reaction": "๐ฅ",
"users": [
"not-lain",
"CYNIC78",
"Ryukijano"
],
"count": 3
}
] | 2024-04-18T10:03:50.000Z | 2024-04-18T10:03:50.729Z | [] | /posts/Violette/831339039064129 | 2,740 | 0 |
277288382277555 | [
{
"type": "text",
"value": "๐ **InfiniTransformer, Gemma/Llama3 based Implementation!** ๐",
"raw": "๐ **InfiniTransformer, Gemma/Llama3 based Implementation!** ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "> Update @ 2024.04.19: It now supports Llama-3!",
"raw": "> Update @ 2024.04.19: It now supports Llama-3!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "> Note: this implementation is unofficial",
"raw": "> Note: this implementation is unofficial",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "This implementation is designed to handle virtually infinite context lengths.",
"raw": "This implementation is designed to handle virtually infinite context lengths.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Here's the github repo: ",
"raw": "Here's the github repo: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/Beomi/InfiniTransformer",
"href": "https://github.com/Beomi/InfiniTransformer",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ **Read the original Paper:** ",
"raw": "๐ **Read the original Paper:** ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://arxiv.org/abs/2404.07143",
"href": "https://arxiv.org/abs/2404.07143",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "## **Focus on Infini-Attention**",
"raw": "## **Focus on Infini-Attention**",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- **2 Types of Implementation available:** Attention-layer only implementation / Model & Train-wise implementation",
"raw": "- **2 Types of Implementation available:** Attention-layer only implementation / Model & Train-wise implementation",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- **Fixed(segment dependent) Memory Usage:** Enables training on larger models and longer sequences without the memory overhead typical of standard Transformer implementations.",
"raw": "- **Fixed(segment dependent) Memory Usage:** Enables training on larger models and longer sequences without the memory overhead typical of standard Transformer implementations.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- **Infinite Context Capability:** Train with unprecedented sequence lengthsโimagine handling up to 1 million sequence lengths on standard hardware!",
"raw": "- **Infinite Context Capability:** Train with unprecedented sequence lengthsโimagine handling up to 1 million sequence lengths on standard hardware!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " - You could train Gemma-2B with 1M sequence length with 2K segmentation size with single H100 GPU.",
"raw": " - You could train Gemma-2B with 1M sequence length with 2K segmentation size with single H100 GPU.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "## **Try InfiniTransformer**",
"raw": "## **Try InfiniTransformer**",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "1. **Clone the repository:**",
"raw": "1. **Clone the repository:**",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "inline_code",
"value": null,
"raw": "``",
"href": null,
"resource": null,
"url": null,
"code": "",
"user": null,
"label": null,
"lang": null
},
{
"type": "inline_code",
"value": null,
"raw": "`bash\n git clone https://github.com/Beomi/InfiniTransformer\n `",
"href": null,
"resource": null,
"url": null,
"code": "bash\n git clone https://github.com/Beomi/InfiniTransformer\n ",
"user": null,
"label": null,
"lang": null
},
{
"type": "inline_code",
"value": null,
"raw": "``",
"href": null,
"resource": null,
"url": null,
"code": "",
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "2. **Install necessary tools:**",
"raw": "2. **Install necessary tools:**",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "inline_code",
"value": null,
"raw": "``",
"href": null,
"resource": null,
"url": null,
"code": "",
"user": null,
"label": null,
"lang": null
},
{
"type": "inline_code",
"value": null,
"raw": "`bash\n pip install -r requirements.txt\n pip install -e git+https://github.com/huggingface/transformers.git@b109257f4f#egg=transformers\n `",
"href": null,
"resource": null,
"url": null,
"code": "bash\n pip install -r requirements.txt\n pip install -e git+https://github.com/huggingface/transformers.git@b109257f4f#egg=transformers\n ",
"user": null,
"label": null,
"lang": null
},
{
"type": "inline_code",
"value": null,
"raw": "``",
"href": null,
"resource": null,
"url": null,
"code": "",
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "3. **Dive Deep into Custom Training:**",
"raw": "3. **Dive Deep into Custom Training:**",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " - Train with extensive sequence lengths using scripts such as ",
"raw": " - Train with extensive sequence lengths using scripts such as ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "inline_code",
"value": null,
"raw": "`./train.gemma.infini.noclm.1Mseq.sh`",
"href": null,
"resource": null,
"url": null,
"code": "./train.gemma.infini.noclm.1Mseq.sh",
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": ".",
"raw": ".",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "for more detailed info, please visit Repo: ",
"raw": "for more detailed info, please visit Repo: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/Beomi/InfiniTransformer",
"href": "https://github.com/Beomi/InfiniTransformer",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Look forward to see your feedbacks! ๐",
"raw": "Look forward to see your feedbacks! ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "ps. Training loss plot is here ๐",
"raw": "ps. Training loss plot is here ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐ **InfiniTransformer, Gemma/Llama3 based Implementation!** ๐
> Update @ 2024.04.19: It now supports Llama-3!
> Note: this implementation is unofficial
This implementation is designed to handle virtually infinite context lengths.
Here's the github repo: https://github.com/Beomi/InfiniTransformer
๐ **Read the original Paper:** https://arxiv.org/abs/2404.07143
## **Focus on Infini-Attention**
- **2 Types of Implementation available:** Attention-layer only implementation / Model & Train-wise implementation
- **Fixed(segment dependent) Memory Usage:** Enables training on larger models and longer sequences without the memory overhead typical of standard Transformer implementations.
- **Infinite Context Capability:** Train with unprecedented sequence lengthsโimagine handling up to 1 million sequence lengths on standard hardware!
- You could train Gemma-2B with 1M sequence length with 2K segmentation size with single H100 GPU.
## **Try InfiniTransformer**
1. **Clone the repository:**
```bash
git clone https://github.com/Beomi/InfiniTransformer
```
2. **Install necessary tools:**
```bash
pip install -r requirements.txt
pip install -e git+https://github.com/huggingface/transformers.git@b109257f4f#egg=transformers
```
3. **Dive Deep into Custom Training:**
- Train with extensive sequence lengths using scripts such as `./train.gemma.infini.noclm.1Mseq.sh`.
for more detailed info, please visit Repo: https://github.com/Beomi/InfiniTransformer
Look forward to see your feedbacks! ๐
ps. Training loss plot is here ๐ | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5e56829137cb5b49818287ea/8HYzJeRc4b9Wu7BfJwibS.png",
"fullname": "Lee Junbum",
"name": "beomi",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 378,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/5e56829137cb5b49818287ea/xxpj9FbHSM3JRU47jKsNK.png"
}
] | [] | [
{
"reaction": "๐",
"users": [
"tomaarsen",
"maywell",
"lunarflu",
"hllj",
"Joseph717171",
"genne",
"HyeonjinXZ"
],
"count": 7
},
{
"reaction": "๐ฅ",
"users": [
"flozi00",
"raidhon",
"Joseph717171",
"sosoai"
],
"count": 4
},
{
"reaction": "๐",
"users": [
"gangyeolkim",
"Joseph717171",
"nebchi"
],
"count": 3
}
] | 2024-04-18T09:16:53.000Z | 2024-04-19T07:47:45.480Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6317233cc92fd6fee317e030/cJHSvvimr1kqgQfHOjO5n.png",
"fullname": "Tom Aarsen",
"name": "tomaarsen",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 1060,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5e56829137cb5b49818287ea/8HYzJeRc4b9Wu7BfJwibS.png",
"fullname": "Lee Junbum",
"name": "beomi",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 378,
"isFollowing": false
}
] | /posts/beomi/277288382277555 | 12,236 | 2 |
967430752807152 | [
{
"type": "text",
"value": "Multilingual RAG optimized models and datasets available from the Language Technologies Unit @ the Barcelona Supercomputing Unit",
"raw": "Multilingual RAG optimized models and datasets available from the Language Technologies Unit @ the Barcelona Supercomputing Unit",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "We are releasing new RAG-optimized multilingual models and dataset, within the AINA project contributions:",
"raw": "We are releasing new RAG-optimized multilingual models and dataset, within the AINA project contributions:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/projecte-aina/FlorRAG",
"href": null,
"resource": {
"type": "model",
"id": "projecte-aina/FlorRAG",
"discussionNum": null
},
"url": "https://huggingface.co/projecte-aina/FlorRAG",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " , based on out Bloom Flor6.3b model, capable of RAG in Catalan, Spanish and English",
"raw": " , based on out Bloom Flor6.3b model, capable of RAG in Catalan, Spanish and English",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/projecte-aina/RAG_Multilingual",
"href": null,
"resource": {
"type": "dataset",
"id": "projecte-aina/RAG_Multilingual",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/projecte-aina/RAG_Multilingual",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " , a 56K+ instructional dataset with human-like answers created from kernel-of-truth of extractive datasets using a Mixtral8x7b model",
"raw": " , a 56K+ instructional dataset with human-like answers created from kernel-of-truth of extractive datasets using a Mixtral8x7b model",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Multilingual RAG optimized models and datasets available from the Language Technologies Unit @ the Barcelona Supercomputing Unit
We are releasing new RAG-optimized multilingual models and dataset, within the AINA project contributions:
https://huggingface.co/projecte-aina/FlorRAG , based on out Bloom Flor6.3b model, capable of RAG in Catalan, Spanish and English
https://huggingface.co/datasets/projecte-aina/RAG_Multilingual , a 56K+ instructional dataset with human-like answers created from kernel-of-truth of extractive datasets using a Mixtral8x7b model | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1637676375949-619cceec7a7f673c3bbc2597.jpeg",
"fullname": "Carlos Rodrรญguez",
"name": "crodri",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 15,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐ฅ",
"users": [
"tomaarsen",
"lunarflu",
"ljaume"
],
"count": 3
}
] | 2024-04-18T08:56:59.000Z | 2024-04-18T08:56:59.989Z | [] | /posts/crodri/967430752807152 | 2,150 | 0 |
597835329939130 | [
{
"type": "text",
"value": "Let's breakdown the technical details in Microsoft's mind blowing Lifelike audio-driven talking faces framework - VASA and model VASA-1:",
"raw": "Let's breakdown the technical details in Microsoft's mind blowing Lifelike audio-driven talking faces framework - VASA and model VASA-1:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Summary of Summaries",
"raw": "Summary of Summaries",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- The paper introduces VASA, a framework for generating lifelike talking faces with appealing visual affective skills (VAS) from a single image and speech audio.",
"raw": "- The paper introduces VASA, a framework for generating lifelike talking faces with appealing visual affective skills (VAS) from a single image and speech audio.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Core innovations include a diffusion-based model for holistic generation of facial dynamics and head movements in an expressive, disentangled face latent space developed using video data..",
"raw": "- Core innovations include a diffusion-based model for holistic generation of facial dynamics and head movements in an expressive, disentangled face latent space developed using video data..",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- VASA-1 Generates high-quality 512x512 videos at up to 40 FPS with low latency.",
"raw": "- VASA-1 Generates high-quality 512x512 videos at up to 40 FPS with low latency.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Supports real-time generation of lifelike, emotive talking faces.",
"raw": "- Supports real-time generation of lifelike, emotive talking faces.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Summary of Overall Framework:",
"raw": "Summary of Overall Framework:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- VASA generates facial dynamics and head motion in latent space, conditioned on audio and other signals",
"raw": "- VASA generates facial dynamics and head motion in latent space, conditioned on audio and other signals",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Instead of directly generating video frames, it generates holistic facial dynamics and head motion in a latent space, conditioned on audio and optional signals.",
"raw": "- Instead of directly generating video frames, it generates holistic facial dynamics and head motion in a latent space, conditioned on audio and optional signals.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- To achieve this, the framework uses a face encoder-decoder to extract appearance and identity features and train a Diffusion Transformer model to generate motion latent codes.",
"raw": "- To achieve this, the framework uses a face encoder-decoder to extract appearance and identity features and train a Diffusion Transformer model to generate motion latent codes.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Technical Method Details:",
"raw": "Technical Method Details:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Expressive and Disentangled Face Latent Space Construction:",
"raw": "Expressive and Disentangled Face Latent Space Construction:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " - Based on 3D-AID face reenactment framework ",
"raw": " - Based on 3D-AID face reenactment framework ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " - Decomposes face into 3D appearance volume, identity code, head pose, ",
"raw": " - Decomposes face into 3D appearance volume, identity code, head pose, ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " and facial dynamics latents",
"raw": " and facial dynamics latents",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " - Uses encoders to extract these latent factors from face images.",
"raw": " - Uses encoders to extract these latent factors from face images.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " - Applies additional losses to improve disentanglement:",
"raw": " - Applies additional losses to improve disentanglement:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " - Pairwise head pose and facial dynamics transfer loss",
"raw": " - Pairwise head pose and facial dynamics transfer loss",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " - Face identity similarity loss for cross-identity pose/dynamics transfer",
"raw": " - Face identity similarity loss for cross-identity pose/dynamics transfer",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Holistic Facial Dynamics Generation with Diffusion Transformer:",
"raw": "Holistic Facial Dynamics Generation with Diffusion Transformer:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Represents all facial movements (lip, expression, gaze, etc.) as a single ",
"raw": "- Represents all facial movements (lip, expression, gaze, etc.) as a single ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "latent sequence",
"raw": "latent sequence",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " - Applies a Diffusion Transformer model to generate the facial dynamics sequence.",
"raw": " - Applies a Diffusion Transformer model to generate the facial dynamics sequence.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Diffusion Transformer trained with simplified denoising score matching objective.",
"raw": "- Diffusion Transformer trained with simplified denoising score matching objective.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Let's breakdown the technical details in Microsoft's mind blowing Lifelike audio-driven talking faces framework - VASA and model VASA-1:
Summary of Summaries
- The paper introduces VASA, a framework for generating lifelike talking faces with appealing visual affective skills (VAS) from a single image and speech audio.
- Core innovations include a diffusion-based model for holistic generation of facial dynamics and head movements in an expressive, disentangled face latent space developed using video data..
- VASA-1 Generates high-quality 512x512 videos at up to 40 FPS with low latency.
- Supports real-time generation of lifelike, emotive talking faces.
Summary of Overall Framework:
- VASA generates facial dynamics and head motion in latent space, conditioned on audio and other signals
- Instead of directly generating video frames, it generates holistic facial dynamics and head motion in a latent space, conditioned on audio and optional signals.
- To achieve this, the framework uses a face encoder-decoder to extract appearance and identity features and train a Diffusion Transformer model to generate motion latent codes.
Technical Method Details:
Expressive and Disentangled Face Latent Space Construction:
- Based on 3D-AID face reenactment framework
- Decomposes face into 3D appearance volume, identity code, head pose,
and facial dynamics latents
- Uses encoders to extract these latent factors from face images.
- Applies additional losses to improve disentanglement:
- Pairwise head pose and facial dynamics transfer loss
- Face identity similarity loss for cross-identity pose/dynamics transfer
Holistic Facial Dynamics Generation with Diffusion Transformer:
- Represents all facial movements (lip, expression, gaze, etc.) as a single
latent sequence
- Applies a Diffusion Transformer model to generate the facial dynamics sequence.
- Diffusion Transformer trained with simplified denoising score matching objective. | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6438a9027de34e8ea7e4b257/vib8QSd1AWMr_bR9ig_xJ.jpeg",
"fullname": "Jaward Sesay",
"name": "Jaward",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 191,
"isFollowing": false
} | [
{
"type": "video",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/0fcSHVEcCrasx9gNXHVsX.mp4"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/F7BZ8ntU9lqugXy0G3bH8.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/8CAlRUfpQz24zuurXzg8g.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/l52Nb3cLkALPAs_fG7vej.png"
}
] | [] | [
{
"reaction": "๐",
"users": [
"dashfunnydashdash",
"alvarlaigna",
"SandraToolan",
"pe65374",
"youngzoo",
"ajibawa-2023",
"MH0386",
"lunarflu",
"DmitryRyumin",
"VanshGehlot"
],
"count": 10
},
{
"reaction": "๐",
"users": [
"clem",
"cncqbaiying",
"Logge",
"victor",
"SandraToolan",
"lunarflu"
],
"count": 6
},
{
"reaction": "๐ฅ",
"users": [
"DmitryRyumin",
"adityamallah"
],
"count": 2
},
{
"reaction": "๐",
"users": [
"callmyname"
],
"count": 1
}
] | 2024-04-18T03:50:33.000Z | 2024-04-20T18:43:53.102Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/nRCxbVng_PPBqKd-Z3KVc.jpeg",
"fullname": "Dmitry Ryumin",
"name": "DmitryRyumin",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 377,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6471d2075ffbc18f197a1e16/t1NA_KMUkYHKokuzfijLy.jpeg",
"fullname": "ScottzModelz",
"name": "ScottzModelz",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6438a9027de34e8ea7e4b257/vib8QSd1AWMr_bR9ig_xJ.jpeg",
"fullname": "Jaward Sesay",
"name": "Jaward",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 191,
"isFollowing": false
},
{
"avatarUrl": "/avatars/9d6860a551de0d4912e08e64589921dc.svg",
"fullname": "John Steward",
"name": "HDiffusion",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1,
"isFollowing": false
},
{
"avatarUrl": "/avatars/7c206b757264e9149f34f433bc7f2e1f.svg",
"fullname": "edwardsnowedin",
"name": "vihangsharma",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1,
"isFollowing": false
}
] | /posts/Jaward/597835329939130 | 3,251 | 12 |
821456421497684 | [
{
"type": "text",
"value": "We posted new SOTA SambaLingo 70B parameter models for Arabic, Thai and Hungarian! ",
"raw": "We posted new SOTA SambaLingo 70B parameter models for Arabic, Thai and Hungarian! ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Check out the models here ",
"raw": "Check out the models here ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/sambanovasystems/sambalingo-65e25770f2037c85ad35ca77",
"href": null,
"resource": {
"type": "collection",
"id": "sambanovasystems/sambalingo-65e25770f2037c85ad35ca77",
"discussionNum": null
},
"url": "https://huggingface.co/collections/sambanovasystems/sambalingo-65e25770f2037c85ad35ca77",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "and our paper ",
"raw": "and our paper ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://arxiv.org/abs/2404.05829",
"href": "https://arxiv.org/abs/2404.05829",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | We posted new SOTA SambaLingo 70B parameter models for Arabic, Thai and Hungarian!
Check out the models here https://huggingface.co/collections/sambanovasystems/sambalingo-65e25770f2037c85ad35ca77
and our paper
https://arxiv.org/abs/2404.05829
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/zxdZvpuAP6qEhk3vyRO3_.jpeg",
"fullname": "Zoltan Csaki",
"name": "zolicsaki",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 30,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐",
"users": [
"Dlbk",
"boapps",
"Violette",
"zolicsaki",
"lunarflu",
"Axilex",
"abidlabs",
"franchb",
"clem",
"ChangranHuuu",
"jlli"
],
"count": 11
},
{
"reaction": "โค๏ธ",
"users": [
"lunarflu",
"Axilex",
"abidlabs",
"franchb",
"ChangranHuuu"
],
"count": 5
},
{
"reaction": "๐ค",
"users": [
"lunarflu",
"ChangranHuuu"
],
"count": 2
},
{
"reaction": "๐ฅ",
"users": [
"zsolx2"
],
"count": 1
}
] | 2024-04-17T21:58:01.000Z | 2024-04-18T16:39:35.944Z | [] | /posts/zolicsaki/821456421497684 | 2,794 | 0 |
771975237658685 | [
{
"type": "text",
"value": "Diaries of Open Source. Part 15 ๐ค",
"raw": "Diaries of Open Source. Part 15 ๐ค",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ต๏ธโโ๏ธIdefics 2 is out, a multimodal open-source model with very nice capabilities",
"raw": "๐ต๏ธโโ๏ธIdefics 2 is out, a multimodal open-source model with very nice capabilities",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Models, demo, and datasets: ",
"raw": "Models, demo, and datasets: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://hf.co/collections/HuggingFaceM4/idefics2-661d1971b7c50831dd3ce0fe",
"href": null,
"resource": {
"type": "collection",
"id": "HuggingFaceM4/idefics2-661d1971b7c50831dd3ce0fe",
"discussionNum": null
},
"url": "https://hf.co/collections/HuggingFaceM4/idefics2-661d1971b7c50831dd3ce0fe",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Blog: ",
"raw": "Blog: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://hf.co/blog/idefics2",
"href": "https://hf.co/blog/idefics2",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐พSnowflake released snowflake-arctic-embed, a family of powerful small embedding models",
"raw": "๐พSnowflake released snowflake-arctic-embed, a family of powerful small embedding models",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Model: ",
"raw": "Model: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/Snowflake/snowflake-arctic-embed-m",
"href": null,
"resource": {
"type": "model",
"id": "Snowflake/snowflake-arctic-embed-m",
"discussionNum": null
},
"url": "https://huggingface.co/Snowflake/snowflake-arctic-embed-m",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Blog: ",
"raw": "Blog: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://www.snowflake.com/blog/introducing-snowflake-arctic-embed-snowflakes-state-of-the-art-text-embedding-family-of-models/",
"href": "https://www.snowflake.com/blog/introducing-snowflake-arctic-embed-snowflakes-state-of-the-art-text-embedding-family-of-models/",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "โจPile-T5, EleutherAI's T5 model trained on 2T tokens",
"raw": "โจPile-T5, EleutherAI's T5 model trained on 2T tokens",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Blog: ",
"raw": "Blog: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://blog.eleuther.ai/pile-t5/",
"href": "https://blog.eleuther.ai/pile-t5/",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Models: ",
"raw": "Models: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://hf.co/collections/EleutherAI/pile-t5-65a76a0d0022dd270b385a66",
"href": null,
"resource": {
"type": "collection",
"id": "EleutherAI/pile-t5-65a76a0d0022dd270b385a66",
"discussionNum": null
},
"url": "https://hf.co/collections/EleutherAI/pile-t5-65a76a0d0022dd270b385a66",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "GitHub: ",
"raw": "GitHub: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/EleutherAI/improved-t5",
"href": "https://github.com/EleutherAI/improved-t5",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐คCodeQwen1.5-7B base and chat models. Models trained on 3T tokens strong benchmark results for code generation, editing and SQL",
"raw": "๐คCodeQwen1.5-7B base and chat models. Models trained on 3T tokens strong benchmark results for code generation, editing and SQL",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Blog post: ",
"raw": "Blog post: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://qwenlm.github.io/blog/codeqwen1.5/",
"href": "https://qwenlm.github.io/blog/codeqwen1.5/",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Demo: ",
"raw": "Demo: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://hf.co/spaces/Qwen/CodeQwen1.5-7b-Chat-demo",
"href": null,
"resource": {
"type": "space",
"id": "Qwen/CodeQwen1.5-7b-Chat-demo",
"discussionNum": null
},
"url": "https://hf.co/spaces/Qwen/CodeQwen1.5-7b-Chat-demo",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Models: ",
"raw": "Models: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://hf.co/Qwen/CodeQwen1.5-7B",
"href": null,
"resource": {
"type": "model",
"id": "Qwen/CodeQwen1.5-7B",
"discussionNum": null
},
"url": "https://hf.co/Qwen/CodeQwen1.5-7B",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " and ",
"raw": " and ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://hf.co/Qwen/CodeQwen1.5-7B-Chat",
"href": null,
"resource": {
"type": "model",
"id": "Qwen/CodeQwen1.5-7B-Chat",
"discussionNum": null
},
"url": "https://hf.co/Qwen/CodeQwen1.5-7B-Chat",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Misc",
"raw": "Misc",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ฆ DocOwl1.5: Unified Stucture Learning for OCR-free Document Understanding ",
"raw": "๐ฆ DocOwl1.5: Unified Stucture Learning for OCR-free Document Understanding ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://hf.co/spaces/mPLUG/DocOwl",
"href": null,
"resource": {
"type": "space",
"id": "mPLUG/DocOwl",
"discussionNum": null
},
"url": "https://hf.co/spaces/mPLUG/DocOwl",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐Cerule - a tiny Vision LM model ",
"raw": "๐Cerule - a tiny Vision LM model ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://hf.co/Tensoic/Cerule-v0.1",
"href": null,
"resource": {
"type": "model",
"id": "Tensoic/Cerule-v0.1",
"discussionNum": null
},
"url": "https://hf.co/Tensoic/Cerule-v0.1",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "ChemLLM - a LLM for chemistry and molecule science โ๏ธhttps://hf.co/AI4Chem/ChemLLM-7B-Chat-1.5-DPO",
"raw": "ChemLLM - a LLM for chemistry and molecule science โ๏ธhttps://hf.co/AI4Chem/ChemLLM-7B-Chat-1.5-DPO",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Distil Whisper Large",
"raw": "Distil Whisper Large",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐New pdf/OCR datasets with 19 samples ",
"raw": "๐New pdf/OCR datasets with 19 samples ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://hf.co/collections/pixparse/pdf-document-ocr-datasets-660701430b0346f97c4bc628",
"href": null,
"resource": {
"type": "collection",
"id": "pixparse/pdf-document-ocr-datasets-660701430b0346f97c4bc628",
"discussionNum": null
},
"url": "https://hf.co/collections/pixparse/pdf-document-ocr-datasets-660701430b0346f97c4bc628",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ฅGretel AI high quality text-to-sql synthetic dataset ",
"raw": "๐ฅGretel AI high quality text-to-sql synthetic dataset ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/gretelai/synthetic_text_to_sql",
"href": null,
"resource": {
"type": "dataset",
"id": "gretelai/synthetic_text_to_sql",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/gretelai/synthetic_text_to_sql",
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Diaries of Open Source. Part 15 ๐ค
๐ต๏ธโโ๏ธIdefics 2 is out, a multimodal open-source model with very nice capabilities
Models, demo, and datasets: https://hf.co/collections/HuggingFaceM4/idefics2-661d1971b7c50831dd3ce0fe
Blog: https://hf.co/blog/idefics2
๐พSnowflake released snowflake-arctic-embed, a family of powerful small embedding models
Model: https://huggingface.co/Snowflake/snowflake-arctic-embed-m
Blog: https://www.snowflake.com/blog/introducing-snowflake-arctic-embed-snowflakes-state-of-the-art-text-embedding-family-of-models/
โจPile-T5, EleutherAI's T5 model trained on 2T tokens
Blog: https://blog.eleuther.ai/pile-t5/
Models: https://hf.co/collections/EleutherAI/pile-t5-65a76a0d0022dd270b385a66
GitHub: https://github.com/EleutherAI/improved-t5
๐คCodeQwen1.5-7B base and chat models. Models trained on 3T tokens strong benchmark results for code generation, editing and SQL
Blog post: https://qwenlm.github.io/blog/codeqwen1.5/
Demo: https://hf.co/spaces/Qwen/CodeQwen1.5-7b-Chat-demo
Models: https://hf.co/Qwen/CodeQwen1.5-7B and https://hf.co/Qwen/CodeQwen1.5-7B-Chat
Misc
๐ฆ DocOwl1.5: Unified Stucture Learning for OCR-free Document Understanding https://hf.co/spaces/mPLUG/DocOwl
๐Cerule - a tiny Vision LM model https://hf.co/Tensoic/Cerule-v0.1
ChemLLM - a LLM for chemistry and molecule science โ๏ธhttps://hf.co/AI4Chem/ChemLLM-7B-Chat-1.5-DPO
Distil Whisper Large
๐New pdf/OCR datasets with 19 samples https://hf.co/collections/pixparse/pdf-document-ocr-datasets-660701430b0346f97c4bc628
๐ฅGretel AI high quality text-to-sql synthetic dataset https://huggingface.co/datasets/gretelai/synthetic_text_to_sql | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6032802e1f993496bc14d9e3/w6hr-DEQot4VVkoyRIBiy.png",
"fullname": "Omar Sanseviero",
"name": "osanseviero",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2868,
"isFollowing": false
} | [] | [] | [
{
"reaction": "๐ฅ",
"users": [
"DmitryRyumin",
"BrigitteTousi",
"lunarflu",
"not-lain",
"fdaudens",
"Dlbk",
"clem",
"ajibawa-2023",
"tranhoangnguyen03",
"dillfrescott",
"clefourrier",
"diwank",
"Farabi224"
],
"count": 13
},
{
"reaction": "๐ค",
"users": [
"lunarflu",
"not-lain",
"Dlbk",
"clem",
"pabloce",
"dillfrescott",
"diwank",
"Ollyy"
],
"count": 8
},
{
"reaction": "๐",
"users": [
"lunarflu",
"not-lain",
"Dlbk",
"clem",
"dillfrescott"
],
"count": 5
},
{
"reaction": "โค๏ธ",
"users": [
"raincandy-u",
"dillfrescott"
],
"count": 2
}
] | 2024-04-17T14:13:00.000Z | 2024-05-10T11:34:30.210Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64aea8ff67511bd3d965697b/Jxn52EmDF5RApJh8antxn.jpeg",
"fullname": "Feynman Innovations",
"name": "ajibawa-2023",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 138,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6032802e1f993496bc14d9e3/w6hr-DEQot4VVkoyRIBiy.png",
"fullname": "Omar Sanseviero",
"name": "osanseviero",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2868,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6340651b388c3fa40f9a5bc0/av1C4_S7bHGxAzOu8lOmG.jpeg",
"fullname": "Adam Molnar",
"name": "lunarflu",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 333,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6612aedf09f16e7347dfa7e1/bPYjBXCedY_1fSIPjoBTY.jpeg",
"fullname": "Nishith Jain",
"name": "KingNish",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1079,
"isFollowing": false
}
] | /posts/osanseviero/771975237658685 | 9,487 | 4 |
321064754684797 | [
{
"type": "text",
"value": "๐๐ค๐ New Research Alert - LREC-COLING 2024 (Big Five Personality Traits Collection)! ๐๐๐ค",
"raw": "๐๐ค๐ New Research Alert - LREC-COLING 2024 (Big Five Personality Traits Collection)! ๐๐๐ค",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Title: PSYDIAL: Personality-based Synthetic Dialogue Generation using Large Language Models",
"raw": "๐ Title: PSYDIAL: Personality-based Synthetic Dialogue Generation using Large Language Models",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Description: The PSYDIAL presents a novel pipeline for generating personality-based synthetic dialog data to elicit more human-like responses from language models, and presents a Korean dialog dataset focused on personality-based dialog.",
"raw": "๐ Description: The PSYDIAL presents a novel pipeline for generating personality-based synthetic dialog data to elicit more human-like responses from language models, and presents a Korean dialog dataset focused on personality-based dialog.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ฅ Authors: Ji-Eun Han et al.",
"raw": "๐ฅ Authors: Ji-Eun Han et al.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐
Conference: LREC-COLING, May 20-25, 2024 | Torino, Italia ๐ฎ๐น",
"raw": "๐
Conference: LREC-COLING, May 20-25, 2024 | Torino, Italia ๐ฎ๐น",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Paper: ",
"raw": "๐ Paper: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/papers/2404.00930",
"href": null,
"resource": {
"type": "paper",
"id": "2404.00930",
"discussionNum": null
},
"url": "https://huggingface.co/papers/2404.00930",
"code": null,
"user": null,
"label": "PSYDIAL: Personality-based Synthetic Dialogue Generation using Large\n Language Models (2404.00930)",
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Added to the Big Five Personality Traits Collection: ",
"raw": "๐ Added to the Big Five Personality Traits Collection: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/collections/DmitryRyumin/big-five-personality-traits-661fb545292ab3d12a5a4890",
"href": null,
"resource": {
"type": "collection",
"id": "DmitryRyumin/big-five-personality-traits-661fb545292ab3d12a5a4890",
"discussionNum": null
},
"url": "https://huggingface.co/collections/DmitryRyumin/big-five-personality-traits-661fb545292ab3d12a5a4890",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ฅ๐ See also OCEAN-AI - ",
"raw": "๐ฅ๐ See also OCEAN-AI - ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/ElenaRyumina/OCEANAI",
"href": null,
"resource": {
"type": "space",
"id": "ElenaRyumina/OCEANAI",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/ElenaRyumina/OCEANAI",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " (App, co-authored by ",
"raw": " (App, co-authored by ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@DmitryRyumin",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "DmitryRyumin",
"label": null,
"lang": null
},
{
"type": "text",
"value": ") ๐",
"raw": ") ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ More Papers: more cutting-edge research presented at other conferences in the ",
"raw": "๐ More Papers: more cutting-edge research presented at other conferences in the ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers",
"href": null,
"resource": {
"type": "space",
"id": "DmitryRyumin/NewEraAI-Papers",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " curated by ",
"raw": " curated by ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@DmitryRyumin",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "DmitryRyumin",
"label": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Keywords: #PSYDIAL #PersonalityDialogues #SyntheticData #LanguageModels #ConversationalAI #KoreanDialogues #BigFivePersonality #ExtraveresionDialogues #OCEANAI #BigFive #PersonalityTraits #PersonalityAnalysis #LREC-COLING2024 #DeepLearning #Innovation",
"raw": "๐ Keywords: #PSYDIAL #PersonalityDialogues #SyntheticData #LanguageModels #ConversationalAI #KoreanDialogues #BigFivePersonality #ExtraveresionDialogues #OCEANAI #BigFive #PersonalityTraits #PersonalityAnalysis #LREC-COLING2024 #DeepLearning #Innovation",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐๐ค๐ New Research Alert - LREC-COLING 2024 (Big Five Personality Traits Collection)! ๐๐๐ค
๐ Title: PSYDIAL: Personality-based Synthetic Dialogue Generation using Large Language Models
๐ Description: The PSYDIAL presents a novel pipeline for generating personality-based synthetic dialog data to elicit more human-like responses from language models, and presents a Korean dialog dataset focused on personality-based dialog.
๐ฅ Authors: Ji-Eun Han et al.
๐
Conference: LREC-COLING, May 20-25, 2024 | Torino, Italia ๐ฎ๐น
๐ Paper: https://huggingface.co/papers/2404.00930
๐ Added to the Big Five Personality Traits Collection: https://huggingface.co/collections/DmitryRyumin/big-five-personality-traits-661fb545292ab3d12a5a4890
๐ฅ๐ See also OCEAN-AI - https://huggingface.co/spaces/ElenaRyumina/OCEANAI (App, co-authored by @DmitryRyumin) ๐
๐ More Papers: more cutting-edge research presented at other conferences in the https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers curated by @DmitryRyumin
๐ Keywords: #PSYDIAL #PersonalityDialogues #SyntheticData #LanguageModels #ConversationalAI #KoreanDialogues #BigFivePersonality #ExtraveresionDialogues #OCEANAI #BigFive #PersonalityTraits #PersonalityAnalysis #LREC-COLING2024 #DeepLearning #Innovation | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/nRCxbVng_PPBqKd-Z3KVc.jpeg",
"fullname": "Dmitry Ryumin",
"name": "DmitryRyumin",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 377,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/Nll3aE4oU6ESG96bwNWqN.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/DJ5bX8qwQUcqAsnkk_dai.png"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/nRCxbVng_PPBqKd-Z3KVc.jpeg",
"fullname": "Dmitry Ryumin",
"name": "DmitryRyumin",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 377
}
] | [
{
"reaction": "๐",
"users": [
"DmitryRyumin",
"osanseviero",
"BrigitteTousi",
"lunarflu",
"Dlbk",
"DESUCLUB",
"KvrParaskevi",
"thinhlpg"
],
"count": 8
},
{
"reaction": "๐ค",
"users": [
"DmitryRyumin",
"BrigitteTousi",
"lunarflu",
"Dlbk",
"clem"
],
"count": 5
}
] | 2024-04-17T12:35:52.000Z | 2024-04-21T21:53:13.047Z | [] | /posts/DmitryRyumin/321064754684797 | 2,946 | 0 |
205220262929827 | [
{
"type": "text",
"value": "I see you all send your documents to close-source APIs, this is not ok ๐ it breaks my heart ๐ ",
"raw": "I see you all send your documents to close-source APIs, this is not ok ๐ it breaks my heart ๐ ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "I have seen many open-source document models, and I am amazed by what IDEFICS2 has done with document understanding ๐คฏ๐คฉ it's not something you've ever seen before! ",
"raw": "I have seen many open-source document models, and I am amazed by what IDEFICS2 has done with document understanding ๐คฏ๐คฉ it's not something you've ever seen before! ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/HuggingFaceM4/idefics-8b",
"href": null,
"resource": {
"type": "space",
"id": "HuggingFaceM4/idefics-8b",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/HuggingFaceM4/idefics-8b",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Please use it! Has Apache 2.0 license โค๏ธ",
"raw": "Please use it! Has Apache 2.0 license โค๏ธ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | I see you all send your documents to close-source APIs, this is not ok ๐ it breaks my heart ๐
I have seen many open-source document models, and I am amazed by what IDEFICS2 has done with document understanding ๐คฏ๐คฉ it's not something you've ever seen before! https://huggingface.co/spaces/HuggingFaceM4/idefics-8b
Please use it! Has Apache 2.0 license โค๏ธ
| {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png",
"fullname": "Merve Noyan",
"name": "merve",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 5589,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/wRV4BU9An_B8echeof0o1.png"
}
] | [] | [
{
"reaction": "๐ฅ",
"users": [
"DmitryRyumin",
"YaTharThShaRma999",
"victor",
"Masa-Erland",
"osanseviero",
"nkasmanoff",
"BrigitteTousi",
"lunarflu",
"fdaudens",
"Ryukijano",
"Dlbk",
"samusenps",
"clem",
"matlok",
"VictorSanh",
"CookieMaster",
"Tonic",
"not-lain"
],
"count": 18
},
{
"reaction": "โค๏ธ",
"users": [
"lunarflu",
"Ryukijano",
"clem",
"raghavprabhakar",
"CookieMaster",
"jbilcke",
"Tonic",
"not-lain"
],
"count": 8
}
] | 2024-04-17T09:55:54.000Z | 2024-04-17T09:56:10.800Z | [] | /posts/merve/205220262929827 | 2,843 | 0 |
365197369008504 | [
{
"type": "text",
"value": "๐ฃ I'm thrilled to announce \"ALERT: A Comprehensive #Benchmark for Assessing #LLMsโ Safety through #RedTeaming\" ๐จ",
"raw": "๐ฃ I'm thrilled to announce \"ALERT: A Comprehensive #Benchmark for Assessing #LLMsโ Safety through #RedTeaming\" ๐จ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ Paper: ",
"raw": "๐ Paper: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://arxiv.org/pdf/2404.08676.pdf",
"href": "https://arxiv.org/pdf/2404.08676.pdf",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐๏ธ Repo: ",
"raw": "๐๏ธ Repo: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/Babelscape/ALERT",
"href": "https://github.com/Babelscape/ALERT",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ค ALERT benchmark: ",
"raw": "๐ค ALERT benchmark: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/Babelscape/ALERT",
"href": null,
"resource": {
"type": "dataset",
"id": "Babelscape/ALERT",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/Babelscape/ALERT",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "๐ค ALERT DPO data: ",
"raw": "๐ค ALERT DPO data: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/Babelscape/ALERT_DPO",
"href": null,
"resource": {
"type": "dataset",
"id": "Babelscape/ALERT_DPO",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/Babelscape/ALERT_DPO",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "As a key design principle for ALERT, we developed a fine-grained safety risk taxonomy (Fig. 2). This taxonomy serves as the foundation for the benchmark to provide detailed insights about a modelโs weaknesses and vulnerabilities as well as inform targeted safety enhancements ๐ก๏ธ",
"raw": "As a key design principle for ALERT, we developed a fine-grained safety risk taxonomy (Fig. 2). This taxonomy serves as the foundation for the benchmark to provide detailed insights about a modelโs weaknesses and vulnerabilities as well as inform targeted safety enhancements ๐ก๏ธ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "For collecting our prompts, we started from the popular ",
"raw": "For collecting our prompts, we started from the popular ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Anthropic's HH-RLHF data, and used automated strategies to filter/classify prompts. We then designed templates to create new prompts (providing sufficient support for each category, cf. Fig. 3) and implemented adversarial attacks.",
"raw": "Anthropic's HH-RLHF data, and used automated strategies to filter/classify prompts. We then designed templates to create new prompts (providing sufficient support for each category, cf. Fig. 3) and implemented adversarial attacks.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "In our experiments, we extensively evaluated several open- and closed-source LLMs (e.g. #ChatGPT, #Llama and #Mistral), highlighting their strengths and weaknesses (Table 1).",
"raw": "In our experiments, we extensively evaluated several open- and closed-source LLMs (e.g. #ChatGPT, #Llama and #Mistral), highlighting their strengths and weaknesses (Table 1).",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "For more details, check out our preprint: ",
"raw": "For more details, check out our preprint: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://arxiv.org/pdf/2404.08676.pdf",
"href": "https://arxiv.org/pdf/2404.08676.pdf",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": " ๐ค",
"raw": " ๐ค",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Huge thanks to ",
"raw": "Huge thanks to ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@felfri",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "felfri",
"label": null,
"lang": null
},
{
"type": "text",
"value": ", ",
"raw": ", ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@PSaiml",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "PSaiml",
"label": null,
"lang": null
},
{
"type": "text",
"value": ", Kristian Kersting, ",
"raw": ", Kristian Kersting, ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@navigli",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "navigli",
"label": null,
"lang": null
},
{
"type": "text",
"value": ", ",
"raw": ", ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@huu-ontocord",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "huu-ontocord",
"label": null,
"lang": null
},
{
"type": "text",
"value": " and ",
"raw": " and ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@BoLi-aisecure",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "BoLi-aisecure",
"label": null,
"lang": null
},
{
"type": "text",
"value": " (and all the organizations involved: Babelscape, Sapienza NLP, TU Darmstadt, Hessian.AI, DFKI, Ontocord.AI, UChicago and UIUC)๐ซ",
"raw": " (and all the organizations involved: Babelscape, Sapienza NLP, TU Darmstadt, Hessian.AI, DFKI, Ontocord.AI, UChicago and UIUC)๐ซ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐ฃ I'm thrilled to announce "ALERT: A Comprehensive #Benchmark for Assessing #LLMsโ Safety through #RedTeaming" ๐จ
๐ Paper: https://arxiv.org/pdf/2404.08676.pdf
๐๏ธ Repo: https://github.com/Babelscape/ALERT
๐ค ALERT benchmark: https://huggingface.co/datasets/Babelscape/ALERT
๐ค ALERT DPO data: https://huggingface.co/datasets/Babelscape/ALERT_DPO
As a key design principle for ALERT, we developed a fine-grained safety risk taxonomy (Fig. 2). This taxonomy serves as the foundation for the benchmark to provide detailed insights about a modelโs weaknesses and vulnerabilities as well as inform targeted safety enhancements ๐ก๏ธ
For collecting our prompts, we started from the popular
Anthropic's HH-RLHF data, and used automated strategies to filter/classify prompts. We then designed templates to create new prompts (providing sufficient support for each category, cf. Fig. 3) and implemented adversarial attacks.
In our experiments, we extensively evaluated several open- and closed-source LLMs (e.g. #ChatGPT, #Llama and #Mistral), highlighting their strengths and weaknesses (Table 1).
For more details, check out our preprint: https://arxiv.org/pdf/2404.08676.pdf ๐ค
Huge thanks to @felfri, @PSaiml, Kristian Kersting, @navigli, @huu-ontocord and @BoLi-aisecure (and all the organizations involved: Babelscape, Sapienza NLP, TU Darmstadt, Hessian.AI, DFKI, Ontocord.AI, UChicago and UIUC)๐ซ | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61b85aa99ba538c73a7dc78b/gWxtQAvOYn7cXgE_nAy0p.jpeg",
"fullname": "Simone Tedeschi",
"name": "sted97",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 30,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/61b85aa99ba538c73a7dc78b/GSl4hLthRVXnUoR3lVYzt.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/61b85aa99ba538c73a7dc78b/x1UbwGOEHCuRA9zMoKV-4.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/61b85aa99ba538c73a7dc78b/KUwfmOQMvsHM0qCKbO7r4.png"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/61b85aa99ba538c73a7dc78b/5rcCF68cno0e8gkDZ-swU.png"
}
] | [
{
"avatarUrl": "/avatars/b16069de1445cfa8608567175deaa2ae.svg",
"fullname": "Bo Li",
"name": "BoLi-aisecure",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62e7dd4036a8e8a82700041c/Dgk9mXYLVd4LpiNLWjn-q.jpeg",
"fullname": "Felix Friedrich",
"name": "felfri",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 8
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5fc6879e1c5ee87b1164876d/Tjnm_lv0Bq0gPbFOTDH6E.jpeg",
"fullname": "Huu Nguyen",
"name": "huu-ontocord",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 42
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63845c7c99292a80134bc784/eKOPJMjm8F-JUKT_mi7Dv.png",
"fullname": "Roberto Navigli",
"name": "navigli",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 8
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62d021a3dd7bdfc5e5c61c5c/bnQW2SqirfGaQmI84HW_c.jpeg",
"fullname": "Patrick Schramowski",
"name": "PSaiml",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 4
}
] | [
{
"reaction": "๐ฅ",
"users": [
"victor",
"clefourrier",
"osanseviero",
"BrigitteTousi",
"lunarflu",
"huu-ontocord",
"Dlbk",
"tomaarsen",
"AdinaY",
"KvrParaskevi",
"eliolio",
"vicgalle",
"kklyman",
"taufiqdp",
"Vlansu",
"riccorl"
],
"count": 16
},
{
"reaction": "๐ค",
"users": [
"felfri",
"lunarflu",
"huu-ontocord",
"Dlbk",
"clem",
"tomaarsen"
],
"count": 6
},
{
"reaction": "โค๏ธ",
"users": [
"dev7halo"
],
"count": 1
}
] | 2024-04-17T09:37:09.000Z | 2024-04-18T20:16:16.288Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6340651b388c3fa40f9a5bc0/av1C4_S7bHGxAzOu8lOmG.jpeg",
"fullname": "Adam Molnar",
"name": "lunarflu",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 333,
"isFollowing": false
}
] | /posts/sted97/365197369008504 | 2,426 | 1 |
956458994459153 | [
{
"type": "text",
"value": "Contamination free code evaluations with LiveCodeBench! ๐ฅ๏ธ",
"raw": "Contamination free code evaluations with LiveCodeBench! ๐ฅ๏ธ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "LiveCodeBench is a new leaderboard, which contains: ",
"raw": "LiveCodeBench is a new leaderboard, which contains: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- complete code evaluations (on code generation, self repair, code execution, tests)",
"raw": "- complete code evaluations (on code generation, self repair, code execution, tests)",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- my favorite feature: problem selection by publication date ๐
",
"raw": "- my favorite feature: problem selection by publication date ๐
",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "This feature means that you can get model scores averaged only on new problems out of the training data. This means... contamination free code evals! ๐",
"raw": "This feature means that you can get model scores averaged only on new problems out of the training data. This means... contamination free code evals! ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Check it out!",
"raw": "Check it out!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Blog: ",
"raw": "Blog: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://huggingface.co/blog/leaderboard-livecodebench",
"href": "https://huggingface.co/blog/leaderboard-livecodebench",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Leaderboard: ",
"raw": "Leaderboard: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/livecodebench/leaderboard",
"href": null,
"resource": {
"type": "space",
"id": "livecodebench/leaderboard",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/livecodebench/leaderboard",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Congrats to ",
"raw": "Congrats to ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@StringChaos",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "StringChaos",
"label": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@minimario",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "minimario",
"label": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@xu3kev",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "xu3kev",
"label": null,
"lang": null
},
{
"type": "text",
"value": " ",
"raw": " ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@kingh0730",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "kingh0730",
"label": null,
"lang": null
},
{
"type": "text",
"value": " and ",
"raw": " and ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@FanjiaYan",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "FanjiaYan",
"label": null,
"lang": null
},
{
"type": "text",
"value": " for the super cool leaderboard! ",
"raw": " for the super cool leaderboard! ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Contamination free code evaluations with LiveCodeBench! ๐ฅ๏ธ
LiveCodeBench is a new leaderboard, which contains:
- complete code evaluations (on code generation, self repair, code execution, tests)
- my favorite feature: problem selection by publication date ๐
This feature means that you can get model scores averaged only on new problems out of the training data. This means... contamination free code evals! ๐
Check it out!
Blog: https://huggingface.co/blog/leaderboard-livecodebench
Leaderboard: https://huggingface.co/spaces/livecodebench/leaderboard
Congrats to @StringChaos @minimario @xu3kev @kingh0730 and @FanjiaYan for the super cool leaderboard! | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1644340617257-noauth.png",
"fullname": "Clรฉmentine Fourrier",
"name": "clefourrier",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 459,
"isFollowing": false
} | [] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6539c9ca0ba076aa37c37503/kYe2j4iNjl6eCtpNRJjqK.jpeg",
"fullname": "Fanjia Yan",
"name": "FanjiaYan",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 6
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/Cdxq7wViwgyn89Un4OpUH.jpeg",
"fullname": "King Han",
"name": "kingh0730",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 2
},
{
"avatarUrl": "/avatars/d10c6a1b350146b36949a24220471295.svg",
"fullname": "Alex Gu",
"name": "minimario",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 5
},
{
"avatarUrl": "/avatars/a5c023f407894d3d1dba7b343b847380.svg",
"fullname": "Naman Jain",
"name": "StringChaos",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 5
},
{
"avatarUrl": "/avatars/06f05622e232304d3f0b8c291f3263be.svg",
"fullname": "Wen-Ding Li",
"name": "xu3kev",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 5
}
] | [
{
"reaction": "๐ฅ",
"users": [
"loubnabnl",
"osanseviero",
"BrigitteTousi",
"lunarflu",
"Dlbk",
"clem",
"mathiasn1",
"kingh0730",
"thomwolf",
"dillfrescott"
],
"count": 10
},
{
"reaction": "โค๏ธ",
"users": [
"lunarflu",
"Dlbk",
"clem",
"kingh0730",
"thomwolf",
"dillfrescott"
],
"count": 6
}
] | 2024-04-17T09:22:59.000Z | 2024-04-17T11:11:27.460Z | [] | /posts/clefourrier/956458994459153 | 4,225 | 0 |
809364796644704 | [
{
"type": "text",
"value": "Is is time for the open-source AI robots revolution ๐?",
"raw": "Is is time for the open-source AI robots revolution ๐?",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "With ",
"raw": "With ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@haixuantao",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "haixuantao",
"label": null,
"lang": null
},
{
"type": "text",
"value": " and ",
"raw": " and ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@Leyo",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "Leyo",
"label": null,
"lang": null
},
{
"type": "text",
"value": " weโve been playing with a low-cost DJI robot controlled by three local open-source AI models (Whisper, Idefics2, Parler-TTS - all Apache2) and orchestrated by Dora-cs.",
"raw": " weโve been playing with a low-cost DJI robot controlled by three local open-source AI models (Whisper, Idefics2, Parler-TTS - all Apache2) and orchestrated by Dora-cs.",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Links to find all the hardware/software we used in the demo:",
"raw": "Links to find all the hardware/software we used in the demo:",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- robot control framework โ dora-rs: ",
"raw": "- robot control framework โ dora-rs: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/dora-rs/dora",
"href": "https://github.com/dora-rs/dora",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- speech-to-text model โ whisper: ",
"raw": "- speech-to-text model โ whisper: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/openai/whisper-base",
"href": null,
"resource": {
"type": "model",
"id": "openai/whisper-base",
"discussionNum": null
},
"url": "https://huggingface.co/openai/whisper-base",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- vision-text model โ Idefics2: ",
"raw": "- vision-text model โ Idefics2: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/HuggingFaceM4/idefics2-8b-AWQ",
"href": null,
"resource": {
"type": "model",
"id": "HuggingFaceM4/idefics2-8b-AWQ",
"discussionNum": null
},
"url": "https://huggingface.co/HuggingFaceM4/idefics2-8b-AWQ",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- text-to-speech model โ ParlerTTS mini: ",
"raw": "- text-to-speech model โ ParlerTTS mini: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/parler-tts/parler_tts_mini_v0.1",
"href": null,
"resource": {
"type": "model",
"id": "parler-tts/parler_tts_mini_v0.1",
"discussionNum": null
},
"url": "https://huggingface.co/parler-tts/parler_tts_mini_v0.1",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- robot: ",
"raw": "- robot: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://dji.com/robomaster-s1",
"href": "https://dji.com/robomaster-s1",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- code gist: ",
"raw": "- code gist: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://gist.github.com/haixuanTao/860e1740245dc2c8dd85b496150a9320",
"href": "https://gist.github.com/haixuanTao/860e1740245dc2c8dd85b496150a9320",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- Larger codebase: ",
"raw": "- Larger codebase: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/datasets/dora-rs/dora-idefics2",
"href": null,
"resource": {
"type": "dataset",
"id": "dora-rs/dora-idefics2",
"discussionNum": null
},
"url": "https://huggingface.co/datasets/dora-rs/dora-idefics2",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "- laptop/pc: any with a recent GPU card (our has a RTX 4090)",
"raw": "- laptop/pc: any with a recent GPU card (our has a RTX 4090)",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Enjoy!",
"raw": "Enjoy!",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Is is time for the open-source AI robots revolution ๐?
With @haixuantao and @Leyo weโve been playing with a low-cost DJI robot controlled by three local open-source AI models (Whisper, Idefics2, Parler-TTS - all Apache2) and orchestrated by Dora-cs.
Links to find all the hardware/software we used in the demo:
- robot control framework โ dora-rs: https://github.com/dora-rs/dora
- speech-to-text model โ whisper: https://huggingface.co/openai/whisper-base
- vision-text model โ Idefics2: https://huggingface.co/HuggingFaceM4/idefics2-8b-AWQ
- text-to-speech model โ ParlerTTS mini: https://huggingface.co/parler-tts/parler_tts_mini_v0.1
- robot: https://dji.com/robomaster-s1
- code gist: https://gist.github.com/haixuanTao/860e1740245dc2c8dd85b496150a9320
- Larger codebase: https://huggingface.co/datasets/dora-rs/dora-idefics2
- laptop/pc: any with a recent GPU card (our has a RTX 4090)
Enjoy! | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1583857746553-5df7e9e5da6d0311fd3d53f9.jpeg",
"fullname": "Thomas Wolf",
"name": "thomwolf",
"type": "user",
"isPro": true,
"isHf": true,
"isMod": false,
"followerCount": 704,
"isFollowing": false
} | [
{
"type": "video",
"url": "https://cdn-uploads.huggingface.co/production/uploads/5df7e9e5da6d0311fd3d53f9/EyN25MZqzQN6-bUe1RwKf.mp4"
}
] | [
{
"avatarUrl": "/avatars/866ce6c9208c3f0111443b0781c9e2c6.svg",
"fullname": "haixuan tao",
"name": "haixuantao",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 3
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1652185658647-6244866a456803e9500d0f6a.jpeg",
"fullname": "Leo Tronchon",
"name": "Leyo",
"type": "user",
"isPro": true,
"isHf": false,
"isMod": false,
"followerCount": 68
}
] | [
{
"reaction": "๐ฅ",
"users": [
"SivilTaram",
"KingNish",
"Tonic",
"clefourrier",
"YaTharThShaRma999",
"victor",
"osanseviero",
"radames",
"BrigitteTousi",
"lunarflu",
"Leyo",
"giux78",
"clem",
"Violette",
"dodin",
"InferenceIllusionist",
"Abouharga",
"Martins6",
"jme2791"
],
"count": 19
},
{
"reaction": "๐",
"users": [
"Tonic",
"clefourrier",
"YaTharThShaRma999",
"osanseviero",
"radames",
"BrigitteTousi",
"lunarflu",
"Leyo",
"giux78",
"clem",
"Violette",
"InferenceIllusionist",
"Martins6",
"carloscardenas",
"KingNish",
"louisbrulenaudet"
],
"count": 16
},
{
"reaction": "๐ง ",
"users": [
"Tonic",
"YaTharThShaRma999",
"osanseviero",
"BrigitteTousi",
"lunarflu",
"giux78",
"clem",
"Violette",
"TommyZQ",
"OmbelineM"
],
"count": 10
},
{
"reaction": "โค๏ธ",
"users": [
"KingNish",
"dodin"
],
"count": 2
}
] | 2024-04-17T08:03:59.000Z | 2024-08-18T15:05:43.014Z | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6612aedf09f16e7347dfa7e1/bPYjBXCedY_1fSIPjoBTY.jpeg",
"fullname": "Nishith Jain",
"name": "KingNish",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1079,
"isFollowing": false
},
{
"avatarUrl": "/avatars/5aa76acd63f984e3a4057cd3ad8bb0f2.svg",
"fullname": "dodin",
"name": "dodin",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
},
{
"avatarUrl": "/avatars/f67ddb9537b755a5fd55ad08fdc9474c.svg",
"fullname": "Zhang Qiang",
"name": "TommyZQ",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": null,
"isFollowing": false
},
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65c9236a7cd01b4c7ae5ce7d/CxgHQg942wRCUoQzPTJLX.png",
"fullname": "jonathan clark",
"name": "dadaddy",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 1,
"isFollowing": false
}
] | /posts/thomwolf/809364796644704 | 4,829 | 4 |
184892782854717 | [
{
"type": "text",
"value": "๐ Evaluate your RL agents - who's best at Atari?๐",
"raw": "๐ Evaluate your RL agents - who's best at Atari?๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "The new RL leaderboard evaluates agents in 87 possible environments (from Atari ๐ฎ to motion control simulations๐ถand more)! ",
"raw": "The new RL leaderboard evaluates agents in 87 possible environments (from Atari ๐ฎ to motion control simulations๐ถand more)! ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "When you submit your model, it's run and evaluated in real time - and the leaderboard displays small videos of the best model's run, which is super fun to watch! โจ",
"raw": "When you submit your model, it's run and evaluated in real time - and the leaderboard displays small videos of the best model's run, which is super fun to watch! โจ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Kudos to ",
"raw": "Kudos to ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@qgallouedec",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "qgallouedec",
"label": null,
"lang": null
},
{
"type": "text",
"value": " for creating and maintaining the leaderboard! ",
"raw": " for creating and maintaining the leaderboard! ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Let's find out which agent is the best at games! ๐",
"raw": "Let's find out which agent is the best at games! ๐",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/open-rl-leaderboard/leaderboard",
"href": null,
"resource": {
"type": "space",
"id": "open-rl-leaderboard/leaderboard",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/open-rl-leaderboard/leaderboard",
"code": null,
"user": null,
"label": null,
"lang": null
}
] | ๐ Evaluate your RL agents - who's best at Atari?๐
The new RL leaderboard evaluates agents in 87 possible environments (from Atari ๐ฎ to motion control simulations๐ถand more)!
When you submit your model, it's run and evaluated in real time - and the leaderboard displays small videos of the best model's run, which is super fun to watch! โจ
Kudos to @qgallouedec for creating and maintaining the leaderboard!
Let's find out which agent is the best at games! ๐
https://huggingface.co/spaces/open-rl-leaderboard/leaderboard | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1644340617257-noauth.png",
"fullname": "Clรฉmentine Fourrier",
"name": "clefourrier",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 459,
"isFollowing": false
} | [] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1677431596830-631ce4b244503b72277fc89f.jpeg",
"fullname": "Quentin Gallouรฉdec",
"name": "qgallouedec",
"type": "user",
"isPro": false,
"isHf": true,
"isMod": false,
"followerCount": 39
}
] | [
{
"reaction": "โค๏ธ",
"users": [
"qgallouedec",
"osanseviero",
"BrigitteTousi",
"lunarflu",
"clem",
"KvrParaskevi",
"mlabonne"
],
"count": 7
},
{
"reaction": "๐ฅ",
"users": [
"mmhamdy"
],
"count": 1
}
] | 2024-04-17T07:18:18.000Z | 2024-04-17T11:12:03.361Z | [] | /posts/clefourrier/184892782854717 | 2,205 | 0 |
603830311072041 | [
{
"type": "text",
"value": "Excited to share that our paper: \"AutoAgents: A Framework for Automatic Agent Generation\" got accepted to this year's @ IJCAI ๐๐ฅณ",
"raw": "Excited to share that our paper: \"AutoAgents: A Framework for Automatic Agent Generation\" got accepted to this year's @ IJCAI ๐๐ฅณ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "As a young aspiring AI researcher, this one means a lot, as it is the first ever paper I was blessed to contribute in. Thanks to the incredibly brilliant minds I got to work with (Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Bรถrje F. Karlsson, Jie Fu, Yemin Shi ) - youโre heroes of mine ๐ซก",
"raw": "As a young aspiring AI researcher, this one means a lot, as it is the first ever paper I was blessed to contribute in. Thanks to the incredibly brilliant minds I got to work with (Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Bรถrje F. Karlsson, Jie Fu, Yemin Shi ) - youโre heroes of mine ๐ซก",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "mention",
"value": null,
"raw": "@karpathy",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": "karpathy",
"label": null,
"lang": null
},
{
"type": "text",
"value": " I hope this is worth a mutual follow/response haha, your lessons helped shaped my understanding of this field and they still are. Thank you ๐๐ผ",
"raw": " I hope this is worth a mutual follow/response haha, your lessons helped shaped my understanding of this field and they still are. Thank you ๐๐ผ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Demo: ",
"raw": "Demo: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "resource",
"value": null,
"raw": "https://huggingface.co/spaces/LinkSoul/AutoAgents",
"href": null,
"resource": {
"type": "space",
"id": "LinkSoul/AutoAgents",
"discussionNum": null
},
"url": "https://huggingface.co/spaces/LinkSoul/AutoAgents",
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Code: ",
"raw": "Code: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://github.com/Link-AGI/AutoAgents",
"href": "https://github.com/Link-AGI/AutoAgents",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "new_line",
"value": null,
"raw": "\n",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "text",
"value": "Paper: ",
"raw": "Paper: ",
"href": null,
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
},
{
"type": "link",
"value": null,
"raw": "https://arxiv.org/abs/2309.17288",
"href": "https://arxiv.org/abs/2309.17288",
"resource": null,
"url": null,
"code": null,
"user": null,
"label": null,
"lang": null
}
] | Excited to share that our paper: "AutoAgents: A Framework for Automatic Agent Generation" got accepted to this year's @ IJCAI ๐๐ฅณ
As a young aspiring AI researcher, this one means a lot, as it is the first ever paper I was blessed to contribute in. Thanks to the incredibly brilliant minds I got to work with (Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Bรถrje F. Karlsson, Jie Fu, Yemin Shi ) - youโre heroes of mine ๐ซก
@karpathy I hope this is worth a mutual follow/response haha, your lessons helped shaped my understanding of this field and they still are. Thank you ๐๐ผ
Demo: https://huggingface.co/spaces/LinkSoul/AutoAgents
Code: https://github.com/Link-AGI/AutoAgents
Paper: https://arxiv.org/abs/2309.17288 | {
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6438a9027de34e8ea7e4b257/vib8QSd1AWMr_bR9ig_xJ.jpeg",
"fullname": "Jaward Sesay",
"name": "Jaward",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 191,
"isFollowing": false
} | [
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/y1F-MNP_IaM4pmPWOYkpG.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/89BRqfJwBZHDcdWfPZyOd.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/4PaDbs0Ad2akKUJ1PefK-.jpeg"
},
{
"type": "image",
"url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/ke_I1rCvRAiwUoPwuGUXM.jpeg"
}
] | [
{
"avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1660434061546-62f83661fe21cc4875221c0f.jpeg",
"fullname": "Andrej K",
"name": "karpathy",
"type": "user",
"isPro": false,
"isHf": false,
"isMod": false,
"followerCount": 476
}
] | [
{
"reaction": "๐",
"users": [
"lunarflu",
"vicgalle",
"m-ric"
],
"count": 3
},
{
"reaction": "๐ฅ",
"users": [
"lunarflu",
"vicgalle"
],
"count": 2
}
] | 2024-04-17T02:13:18.000Z | 2024-04-17T07:07:21.650Z | [] | /posts/Jaward/603830311072041 | 2,105 | 0 |
Subsets and Splits