code
stringlengths
12
2.05k
label_name
stringclasses
5 values
label
int64
0
4
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); output->type = input->type; TfLiteIntArray* output_size = TfLiteIntArrayCopy(input->dims); return context->ResizeTensor(context, output, output_size); }
Base
1
bool CxImage::Transfer(CxImage &from, bool bTransferFrames /*=true*/) { if (!Destroy()) return false; memcpy(&head,&from.head,sizeof(BITMAPINFOHEADER)); memcpy(&info,&from.info,sizeof(CXIMAGEINFO)); pDib = from.pDib; pSelection = from.pSelection; pAlpha = from.pAlpha; ppLayers = from.ppLayers; memset(&from.head,0,sizeof(BITMAPINFOHEADER)); memset(&from.info,0,sizeof(CXIMAGEINFO)); from.pDib = from.pSelection = from.pAlpha = NULL; from.ppLayers = NULL; if (bTransferFrames){ DestroyFrames(); ppFrames = from.ppFrames; from.ppFrames = NULL; } return true; }
Base
1
inline typename V::VariantType FBUnserializer<V>::unserialize( folly::StringPiece serialized) { FBUnserializer<V> unserializer(serialized); return unserializer.unserializeThing(); }
Class
2
int64_t MemFile::readImpl(char *buffer, int64_t length) { assertx(m_len != -1); assertx(length > 0); int64_t remaining = m_len - m_cursor; if (remaining < length) length = remaining; if (length > 0) { memcpy(buffer, (const void *)(m_data + m_cursor), length); } m_cursor += length; return length; }
Base
1
TEST_P(SslSPIFFECertValidatorIntegrationTest, ServerRsaSPIFFEValidatorSANNotMatch) { auto typed_conf = new envoy::config::core::v3::TypedExtensionConfig(); TestUtility::loadFromYaml(TestEnvironment::substitute(R"EOF( name: envoy.tls.cert_validator.spiffe typed_config: "@type": type.googleapis.com/envoy.extensions.transport_sockets.tls.v3.SPIFFECertValidatorConfig trust_domains: - name: lyft.com trust_bundle: filename: "{{ test_rundir }}/test/config/integration/certs/cacert.pem" )EOF"), *typed_conf); custom_validator_config_ = typed_conf; envoy::type::matcher::v3::StringMatcher matcher; matcher.set_prefix("spiffe://example.com/"); // The cert has "DNS.1 = lyft.com" but SPIFFE validator must ignore SAN types other than URI. matcher.set_prefix("www.lyft.com"); san_matchers_ = {matcher}; initialize(); auto conn = makeSslClientConnection({}); if (tls_version_ == envoy::extensions::transport_sockets::tls::v3::TlsParameters::TLSv1_2) { auto codec = makeRawHttpConnection(std::move(conn), absl::nullopt); EXPECT_FALSE(codec->connected()); } else { auto codec = makeHttpConnection(std::move(conn)); ASSERT_TRUE(codec->waitForDisconnect()); codec->close(); } checkVerifyErrorCouter(1); }
Base
1
static int putint(jas_stream_t *out, int sgnd, int prec, long val) { int n; int c; bool s; ulong tmp; assert((!sgnd && prec >= 1) || (sgnd && prec >= 2)); if (sgnd) { val = encode_twos_comp(val, prec); } assert(val >= 0); val &= (1 << prec) - 1; n = (prec + 7) / 8; while (--n >= 0) { c = (val >> (n * 8)) & 0xff; if (jas_stream_putc(out, c) != c) return -1; } return 0; }
Base
1
void TLSOutStream::flush() { U8* sentUpTo = start; while (sentUpTo < ptr) { int n = writeTLS(sentUpTo, ptr - sentUpTo); sentUpTo += n; offset += n; } ptr = start; out->flush(); }
Base
1
TfLiteStatus MockCustom::Invoke(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = tflite::GetInput(context, node, 0); const int32_t* input_data = input->data.i32; const TfLiteTensor* weight = tflite::GetInput(context, node, 1); const uint8_t* weight_data = weight->data.uint8; TfLiteTensor* output = GetOutput(context, node, 0); int32_t* output_data = output->data.i32; output_data[0] = 0; // Catch output tensor sharing memory with an input tensor output_data[0] = input_data[0] + weight_data[0]; return kTfLiteOk; }
Base
1
void ZlibInStream::setUnderlying(InStream* is, int bytesIn_) { underlying = is; bytesIn = bytesIn_; ptr = end = start; }
Base
1
DSA_Signature_Operation(const DSA_PrivateKey& dsa, const std::string& emsa) : PK_Ops::Signature_with_EMSA(emsa), m_group(dsa.get_group()), m_x(dsa.get_x()), m_mod_q(dsa.group_q()) { #if defined(BOTAN_HAS_RFC6979_GENERATOR) m_rfc6979_hash = hash_for_emsa(emsa); #endif }
Class
2
static port::StatusOr<CudnnRnnSequenceTensorDescriptor> Create( GpuExecutor* parent, int max_seq_length, int batch_size, int data_size, cudnnDataType_t data_type) { CHECK_GT(max_seq_length, 0); int dims[] = {batch_size, data_size, 1}; int strides[] = {dims[1] * dims[2], dims[2], 1}; TensorDescriptor tensor_desc = CreateTensorDescriptor(); RETURN_IF_CUDNN_ERROR(cudnnSetTensorNdDescriptor( /*tensorDesc=*/tensor_desc.get(), /*dataType=*/data_type, /*nbDims=*/sizeof(dims) / sizeof(dims[0]), /*dimA=*/dims, /*strideA=*/strides)); return CudnnRnnSequenceTensorDescriptor(parent, max_seq_length, batch_size, data_size, data_type, nullptr, std::move(tensor_desc)); }
Class
2
TEST_CASE_METHOD(TestFixture, "ECDSA AES get public key", "[ecdsa-aes-get-pub-key]") { int errStatus = 0; vector<char> errMsg(BUF_LEN, 0); vector <uint8_t> encPrivKey(BUF_LEN, 0); vector<char> pubKeyX(BUF_LEN, 0); vector<char> pubKeyY(BUF_LEN, 0); uint32_t encLen = 0; PRINT_SRC_LINE auto status = trustedGenerateEcdsaKeyAES(eid, &errStatus, errMsg.data(), encPrivKey.data(), &encLen, pubKeyX.data(), pubKeyY.data()); REQUIRE(status == SGX_SUCCESS); REQUIRE(errStatus == SGX_SUCCESS); vector<char> receivedPubKeyX(BUF_LEN, 0); vector<char> receivedPubKeyY(BUF_LEN, 0); PRINT_SRC_LINE status = trustedGetPublicEcdsaKeyAES(eid, &errStatus, errMsg.data(), encPrivKey.data(), encLen, receivedPubKeyX.data(), receivedPubKeyY.data()); REQUIRE(status == SGX_SUCCESS); REQUIRE(errStatus == SGX_SUCCESS); }
Base
1
TfLiteRegistration AddOpRegistration() { TfLiteRegistration reg = {nullptr, nullptr, nullptr, nullptr}; reg.custom_name = "my_add"; reg.builtin_code = tflite::BuiltinOperator_CUSTOM; reg.prepare = [](TfLiteContext* context, TfLiteNode* node) { // Set output size to input size const TfLiteTensor* input1 = GetInput(context, node, 0); const TfLiteTensor* input2 = GetInput(context, node, 1); TfLiteTensor* output = GetOutput(context, node, 0); TF_LITE_ENSURE_EQ(context, input1->dims->size, input2->dims->size); for (int i = 0; i < input1->dims->size; ++i) { TF_LITE_ENSURE_EQ(context, input1->dims->data[i], input2->dims->data[i]); } TF_LITE_ENSURE_STATUS(context->ResizeTensor( context, output, TfLiteIntArrayCopy(input1->dims))); return kTfLiteOk; }; reg.invoke = [](TfLiteContext* context, TfLiteNode* node) { // Copy input data to output data. const TfLiteTensor* a0 = GetInput(context, node, 0); TF_LITE_ENSURE(context, a0); TF_LITE_ENSURE(context, a0->data.f); const TfLiteTensor* a1 = GetInput(context, node, 1); TF_LITE_ENSURE(context, a1); TF_LITE_ENSURE(context, a1->data.f); TfLiteTensor* out = GetOutput(context, node, 0); TF_LITE_ENSURE(context, out); TF_LITE_ENSURE(context, out->data.f); int num = a0->dims->data[0]; for (int i = 0; i < num; i++) { out->data.f[i] = a0->data.f[i] + a1->data.f[i]; } return kTfLiteOk; }; return reg; }
Base
1
TEST_P(Http2CodecImplTest, TestLargeRequestHeadersAtLimitAccepted) { uint32_t codec_limit_kb = 64; max_request_headers_kb_ = codec_limit_kb; initialize(); TestHeaderMapImpl request_headers; HttpTestUtility::addDefaultHeaders(request_headers); std::string key = "big"; uint32_t head_room = 77; uint32_t long_string_length = codec_limit_kb * 1024 - request_headers.byteSize() - key.length() - head_room; std::string long_string = std::string(long_string_length, 'q'); request_headers.addCopy(key, long_string); // The amount of data sent to the codec is not equivalent to the size of the // request headers that Envoy computes, as the codec limits based on the // entire http2 frame. The exact head room needed (76) was found through iteration. ASSERT_EQ(request_headers.byteSize() + head_room, codec_limit_kb * 1024); EXPECT_CALL(request_decoder_, decodeHeaders_(_, _)); request_encoder_->encodeHeaders(request_headers, true); }
Class
2
void Compute(OpKernelContext* ctx) override { const Tensor& handle = ctx->input(0); const string& name = handle.scalar<tstring>()(); Tensor val; OP_REQUIRES_OK(ctx, ctx->session_state()->GetTensor(name, &val)); ctx->set_output(0, val); }
Base
1
int64_t MemFile::readImpl(char *buffer, int64_t length) { assertx(m_len != -1); assertx(length > 0); int64_t remaining = m_len - m_cursor; if (remaining < length) length = remaining; if (length > 0) { memcpy(buffer, (const void *)(m_data + m_cursor), length); } m_cursor += length; return length; }
Base
1
void DCR_CLASS dcr_cam_xyz_coeff (DCRAW* p, double cam_xyz[4][3]) { double cam_rgb[4][3], inverse[4][3], num; int i, j, k; for (i=0; i < p->colors; i++) /* Multiply out XYZ colorspace */ for (j=0; j < 3; j++) for (cam_rgb[i][j] = k=0; k < 3; k++) cam_rgb[i][j] += cam_xyz[i][k] * xyz_rgb[k][j]; for (i=0; i < p->colors; i++) { /* Normalize cam_rgb so that */ for (num=j=0; j < 3; j++) /* cam_rgb * (1,1,1) is (1,1,1,1) */ num += cam_rgb[i][j]; for (j=0; j < 3; j++) cam_rgb[i][j] /= num; p->pre_mul[i] = 1 / (float)num; } dcr_pseudoinverse (cam_rgb, inverse, p->colors); for (p->raw_color = i=0; i < 3; i++) for (j=0; j < p->colors; j++) p->rgb_cam[i][j] = (float)inverse[j][i]; }
Base
1
Jsi_RC jsi_evalcode(jsi_Pstate *ps, Jsi_Func *func, Jsi_OpCodes *opcodes, jsi_ScopeChain *scope, Jsi_Value *fargs, Jsi_Value *_this, Jsi_Value **vret) { Jsi_Interp *interp = ps->interp; if (interp->exited) return JSI_ERROR; Jsi_RC rc; jsi_Frame frame = *interp->framePtr; frame.parent = interp->framePtr; interp->framePtr = &frame; frame.parent->child = interp->framePtr = &frame; frame.ps = ps; frame.ingsc = scope; frame.incsc = fargs; frame.inthis = _this; frame.opcodes = opcodes; frame.fileName = ((func && func->script)?func->script:interp->curFile); frame.funcName = interp->curFunction; frame.dirName = interp->curDir; if (frame.fileName && frame.fileName == frame.parent->fileName) frame.logflag = frame.parent->logflag; else frame.logflag = 0; frame.level = frame.parent->level+1; frame.evalFuncPtr = func; frame.arguments = NULL; // if (func && func->strict) // frame.strict = 1; if (interp->curIp) frame.parent->line = interp->curIp->Line; frame.ip = interp->curIp; interp->refCount++; interp->level++; Jsi_IncrRefCount(interp, fargs); rc = jsi_evalcode_sub(ps, opcodes, scope, fargs, _this, *vret); Jsi_DecrRefCount(interp, fargs); if (interp->didReturn == 0 && !interp->exited) { if ((interp->evalFlags&JSI_EVAL_RETURN)==0) Jsi_ValueMakeUndef(interp, vret); /*if (interp->framePtr->Sp != oldSp) //TODO: at some point after memory refs??? Jsi_LogBug("Stack not balance after execute script");*/ } if (frame.arguments) Jsi_DecrRefCount(interp, frame.arguments); interp->didReturn = 0; interp->refCount--; interp->level--; interp->framePtr = frame.parent; interp->framePtr->child = NULL; interp->curIp = frame.ip; if (interp->exited) rc = JSI_ERROR; return rc; }
Base
1
void ComputeAsync(OpKernelContext* c, DoneCallback done) override { auto col_params = new CollectiveParams(); auto done_with_cleanup = [col_params, done = std::move(done)]() { done(); col_params->Unref(); }; core::RefCountPtr<CollectiveGroupResource> resource; OP_REQUIRES_OK_ASYNC(c, LookupResource(c, HandleFromInput(c, 1), &resource), done); Tensor group_assignment = c->input(2); OP_REQUIRES_OK_ASYNC( c, FillCollectiveParams(col_params, group_assignment, REDUCTION_COLLECTIVE, resource.get()), done); col_params->instance.shape = c->input(0).shape(); col_params->merge_op = merge_op_.get(); col_params->final_op = final_op_.get(); VLOG(1) << "CollectiveReduceV3 group_size " << col_params->group.group_size << " group_key " << col_params->group.group_key << " instance_key " << col_params->instance.instance_key; // Allocate the output tensor, trying to reuse the input. Tensor* output = nullptr; OP_REQUIRES_OK_ASYNC(c, c->forward_input_or_allocate_output( {0}, 0, col_params->instance.shape, &output), done_with_cleanup); Run(c, col_params, std::move(done_with_cleanup)); }
Variant
0
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* lookup = GetInput(context, node, 0); const TfLiteTensor* value = GetInput(context, node, 1); TfLiteTensor* output = GetOutput(context, node, 0); switch (value->type) { case kTfLiteFloat32: return EvalSimple(context, node, lookup, value, output); case kTfLiteUInt8: case kTfLiteInt8: if (output->type == kTfLiteFloat32) { return EvalHybrid(context, node, lookup, value, output); } else { return EvalSimple(context, node, lookup, value, output); } default: context->ReportError(context, "Type not currently supported."); return kTfLiteError; } }
Base
1
MONGO_EXPORT int bson_append_element( bson *b, const char *name_or_null, const bson_iterator *elem ) { bson_iterator next = *elem; int size; bson_iterator_next( &next ); size = next.cur - elem->cur; if ( name_or_null == NULL ) { if( bson_ensure_space( b, size ) == BSON_ERROR ) return BSON_ERROR; bson_append( b, elem->cur, size ); } else { int data_size = size - 2 - strlen( bson_iterator_key( elem ) ); bson_append_estart( b, elem->cur[0], name_or_null, data_size ); bson_append( b, bson_iterator_value( elem ), data_size ); } return BSON_OK; }
Base
1
TEST_F(HeaderTableTests, set_capacity) { HPACKHeader accept("accept-encoding", "gzip"); uint32_t max = 10; uint32_t capacity = accept.bytes() * max; HeaderTable table(capacity); // fill the table for (size_t i = 0; i < max; i++) { EXPECT_EQ(table.add(accept), true); } // change capacity table.setCapacity(capacity / 2); EXPECT_EQ(table.size(), max / 2); EXPECT_EQ(table.bytes(), capacity / 2); }
Variant
0
MpdCantataMounterInterface * RemoteFsDevice::mounter() { if (!mounterIface) { if (!QDBusConnection::systemBus().interface()->isServiceRegistered(MpdCantataMounterInterface::staticInterfaceName())) { QDBusConnection::systemBus().interface()->startService(MpdCantataMounterInterface::staticInterfaceName()); } mounterIface=new MpdCantataMounterInterface(MpdCantataMounterInterface::staticInterfaceName(), "/Mounter", QDBusConnection::systemBus(), this); connect(mounterIface, SIGNAL(mountStatus(const QString &, int, int)), SLOT(mountStatus(const QString &, int, int))); connect(mounterIface, SIGNAL(umountStatus(const QString &, int, int)), SLOT(umountStatus(const QString &, int, int))); } return mounterIface; }
Class
2
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* start = GetInput(context, node, kStartTensor); const TfLiteTensor* limit = GetInput(context, node, kLimitTensor); const TfLiteTensor* delta = GetInput(context, node, kDeltaTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); if (IsDynamicTensor(output)) { TF_LITE_ENSURE_OK(context, ResizeOutput(context, start, limit, delta, output)); } switch (output->type) { case kTfLiteInt32: { EvalImpl<int32_t>(start, delta, output); break; } case kTfLiteFloat32: { EvalImpl<float>(start, delta, output); break; } default: { context->ReportError(context, "Unsupported data type: %d", output->type); return kTfLiteError; } } return kTfLiteOk; }
Base
1
static bool TryParse(const char* inp, int length, TypedValue* buf, Variant& out, JSONContainerType container_type, bool is_tsimplejson) { SimpleParser parser(inp, length, buf, container_type, is_tsimplejson); bool ok = parser.parseValue(); parser.skipSpace(); if (!ok || parser.p != inp + length) { // Unsupported, malformed, or trailing garbage. Release entire stack. tvDecRefRange(buf, parser.top); return false; } out = Variant::attach(*--parser.top); return true; }
Base
1
void FdInStream::readBytes(void* data, int length) { if (length < MIN_BULK_SIZE) { InStream::readBytes(data, length); return; } U8* dataPtr = (U8*)data; int n = end - ptr; if (n > length) n = length; memcpy(dataPtr, ptr, n); dataPtr += n; length -= n; ptr += n; while (length > 0) { n = readWithTimeoutOrCallback(dataPtr, length); dataPtr += n; length -= n; offset += n; } }
Base
1
int jas_seq2d_output(jas_matrix_t *matrix, FILE *out) { #define MAXLINELEN 80 int i; int j; jas_seqent_t x; char buf[MAXLINELEN + 1]; char sbuf[MAXLINELEN + 1]; int n; fprintf(out, "%"PRIiFAST32" %"PRIiFAST32"\n", jas_seq2d_xstart(matrix), jas_seq2d_ystart(matrix)); fprintf(out, "%"PRIiFAST32" %"PRIiFAST32"\n", jas_matrix_numcols(matrix), jas_matrix_numrows(matrix)); buf[0] = '\0'; for (i = 0; i < jas_matrix_numrows(matrix); ++i) { for (j = 0; j < jas_matrix_numcols(matrix); ++j) { x = jas_matrix_get(matrix, i, j); sprintf(sbuf, "%s%4ld", (strlen(buf) > 0) ? " " : "", JAS_CAST(long, x)); n = JAS_CAST(int, strlen(buf)); if (n + JAS_CAST(int, strlen(sbuf)) > MAXLINELEN) { fputs(buf, out); fputs("\n", out); buf[0] = '\0'; } strcat(buf, sbuf); if (j == jas_matrix_numcols(matrix) - 1) { fputs(buf, out); fputs("\n", out); buf[0] = '\0'; } } } fputs(buf, out); return 0; }
Class
2
TfLiteStatus PrepareHashtableImport(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 3); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 0); const TfLiteTensor* input_resource_id_tensor = GetInput(context, node, kInputResourceIdTensor); TF_LITE_ENSURE_EQ(context, input_resource_id_tensor->type, kTfLiteInt32); TF_LITE_ENSURE_EQ(context, NumDimensions(input_resource_id_tensor), 1); TF_LITE_ENSURE_EQ(context, SizeOfDimension(input_resource_id_tensor, 0), 1); const TfLiteTensor* key_tensor = GetInput(context, node, kKeyTensor); const TfLiteTensor* value_tensor = GetInput(context, node, kValueTensor); TF_LITE_ENSURE(context, (key_tensor->type == kTfLiteInt64 && value_tensor->type == kTfLiteString) || (key_tensor->type == kTfLiteString && value_tensor->type == kTfLiteInt64)); // TODO(b/144731295): Tensorflow lookup ops support 1-D vector in storing // values. TF_LITE_ENSURE(context, HaveSameShapes(key_tensor, value_tensor)); return kTfLiteOk; }
Base
1
int64_t OutputFile::readImpl(char* /*buffer*/, int64_t /*length*/) { raise_warning("cannot read from a php://output stream"); return -1; }
Base
1
void PngImg::InitStorage_() { rowPtrs_.resize(info_.height, nullptr); data_ = new png_byte[info_.height * info_.rowbytes]; for(size_t i = 0; i < info_.height; ++i) { rowPtrs_[i] = data_ + i * info_.rowbytes; } }
Base
1
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 0); OpData* op_data = reinterpret_cast<OpData*>(node->user_data); OpContext op_context(context, node); TF_LITE_ENSURE(context, op_context.input->type == kTfLiteUInt8 || op_context.input->type == kTfLiteInt8 || op_context.input->type == kTfLiteInt16 || op_context.input->type == kTfLiteFloat16); TF_LITE_ENSURE(context, op_context.ref->type == kTfLiteFloat32); op_data->max_diff = op_data->tolerance * op_context.input->params.scale; switch (op_context.input->type) { case kTfLiteUInt8: case kTfLiteInt8: op_data->max_diff *= (1 << 8); break; case kTfLiteInt16: op_data->max_diff *= (1 << 16); break; default: break; } // Allocate tensor to store the dequantized inputs. if (op_data->cache_tensor_id == kTensorNotAllocated) { TF_LITE_ENSURE_OK( context, context->AddTensors(context, 1, &op_data->cache_tensor_id)); } TfLiteIntArrayFree(node->temporaries); node->temporaries = TfLiteIntArrayCreate(1); node->temporaries->data[0] = op_data->cache_tensor_id; TfLiteTensor* dequantized = GetTemporary(context, node, /*index=*/0); dequantized->type = op_context.ref->type; dequantized->allocation_type = kTfLiteDynamic; TF_LITE_ENSURE_OK(context, context->ResizeTensor( context, dequantized, TfLiteIntArrayCopy(op_context.input->dims))); return kTfLiteOk; }
Base
1
boost::optional<SaplingNotePlaintext> SaplingNotePlaintext::decrypt( const SaplingEncCiphertext &ciphertext, const uint256 &ivk, const uint256 &epk, const uint256 &cmu ) { auto pt = AttemptSaplingEncDecryption(ciphertext, ivk, epk); if (!pt) { return boost::none; } // Deserialize from the plaintext CDataStream ss(SER_NETWORK, PROTOCOL_VERSION); ss << pt.get(); SaplingNotePlaintext ret; ss >> ret; assert(ss.size() == 0); uint256 pk_d; if (!librustzcash_ivk_to_pkd(ivk.begin(), ret.d.data(), pk_d.begin())) { return boost::none; } uint256 cmu_expected; if (!librustzcash_sapling_compute_cm( ret.d.data(), pk_d.begin(), ret.value(), ret.rcm.begin(), cmu_expected.begin() )) { return boost::none; } if (cmu_expected != cmu) { return boost::none; } return ret; }
Class
2
static void exif_process_APP12(image_info_type *ImageInfo, char *buffer, size_t length) { size_t l1, l2=0; if ((l1 = php_strnlen(buffer+2, length-2)) > 0) { exif_iif_add_tag(ImageInfo, SECTION_APP12, "Company", TAG_NONE, TAG_FMT_STRING, l1, buffer+2); if (length > 2+l1+1) { l2 = php_strnlen(buffer+2+l1+1, length-2-l1+1); exif_iif_add_tag(ImageInfo, SECTION_APP12, "Info", TAG_NONE, TAG_FMT_STRING, l2, buffer+2+l1+1); } } }
Base
1
MpdCantataMounterInterface * RemoteFsDevice::mounter() { if (!mounterIface) { if (!QDBusConnection::systemBus().interface()->isServiceRegistered(MpdCantataMounterInterface::staticInterfaceName())) { QDBusConnection::systemBus().interface()->startService(MpdCantataMounterInterface::staticInterfaceName()); } mounterIface=new MpdCantataMounterInterface(MpdCantataMounterInterface::staticInterfaceName(), "/Mounter", QDBusConnection::systemBus(), this); connect(mounterIface, SIGNAL(mountStatus(const QString &, int, int)), SLOT(mountStatus(const QString &, int, int))); connect(mounterIface, SIGNAL(umountStatus(const QString &, int, int)), SLOT(umountStatus(const QString &, int, int))); } return mounterIface; }
Base
1
BGD_DECLARE(void) gdImageWBMPCtx(gdImagePtr image, int fg, gdIOCtx *out) { int x, y, pos; Wbmp *wbmp; /* create the WBMP */ if((wbmp = createwbmp(gdImageSX(image), gdImageSY(image), WBMP_WHITE)) == NULL) { gd_error("Could not create WBMP\n"); return; } /* fill up the WBMP structure */ pos = 0; for(y = 0; y < gdImageSY(image); y++) { for(x = 0; x < gdImageSX(image); x++) { if(gdImageGetPixel(image, x, y) == fg) { wbmp->bitmap[pos] = WBMP_BLACK; } pos++; } } /* write the WBMP to a gd file descriptor */ if(writewbmp(wbmp, &gd_putout, out)) { gd_error("Could not save WBMP\n"); } /* des submitted this bugfix: gdFree the memory. */ freewbmp(wbmp); }
Variant
0
void Compute(OpKernelContext* ctx) override { const Tensor& values_tensor = ctx->input(0); const Tensor& value_range_tensor = ctx->input(1); const Tensor& nbins_tensor = ctx->input(2); OP_REQUIRES(ctx, TensorShapeUtils::IsVector(value_range_tensor.shape()), errors::InvalidArgument("value_range should be a vector.")); OP_REQUIRES(ctx, (value_range_tensor.shape().num_elements() == 2), errors::InvalidArgument( "value_range should be a vector of 2 elements.")); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(nbins_tensor.shape()), errors::InvalidArgument("nbins should be a scalar.")); const auto values = values_tensor.flat<T>(); const auto value_range = value_range_tensor.flat<T>(); const auto nbins = nbins_tensor.scalar<int32>()(); OP_REQUIRES( ctx, (value_range(0) < value_range(1)), errors::InvalidArgument("value_range should satisfy value_range[0] < " "value_range[1], but got '[", value_range(0), ", ", value_range(1), "]'")); OP_REQUIRES( ctx, (nbins > 0), errors::InvalidArgument("nbins should be a positive number, but got '", nbins, "'")); Tensor* out_tensor; OP_REQUIRES_OK(ctx, ctx->allocate_output(0, TensorShape({nbins}), &out_tensor)); auto out = out_tensor->flat<Tout>(); OP_REQUIRES_OK( ctx, functor::HistogramFixedWidthFunctor<Device, T, Tout>::Compute( ctx, values, value_range, nbins, out)); }
Class
2
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* data = GetInput(context, node, kInputDataTensor); const TfLiteTensor* segment_ids = GetInput(context, node, kInputSegmentIdsTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); TF_LITE_ENSURE(context, data->type == kTfLiteInt32 || data->type == kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, segment_ids->type, kTfLiteInt32); if (!IsConstantTensor(data) || !IsConstantTensor(segment_ids)) { SetTensorToDynamic(output); return kTfLiteOk; } return ResizeOutputTensor(context, data, segment_ids, output); }
Base
1
TfLiteStatus LeakyReluPrepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input = GetInput(context, node, 0); TfLiteTensor* output = GetOutput(context, node, 0); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); LeakyReluOpData* data = reinterpret_cast<LeakyReluOpData*>(node->user_data); if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8 || output->type == kTfLiteInt16) { const auto* params = reinterpret_cast<TfLiteLeakyReluParams*>(node->builtin_data); double alpha_multiplier = input->params.scale * params->alpha / output->params.scale; QuantizeMultiplier(alpha_multiplier, &data->output_multiplier_alpha, &data->output_shift_alpha); double identity_multiplier = input->params.scale / output->params.scale; QuantizeMultiplier(identity_multiplier, &data->output_multiplier_identity, &data->output_shift_identity); } return context->ResizeTensor(context, output, TfLiteIntArrayCopy(input->dims)); }
Base
1
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, node->inputs->size, 1); TF_LITE_ENSURE_EQ(context, node->outputs->size, 1); const TfLiteTensor* input_resource_id_tensor = GetInput(context, node, kInputVariableId); TF_LITE_ENSURE_EQ(context, input_resource_id_tensor->type, kTfLiteInt32); TF_LITE_ENSURE_EQ(context, NumElements(input_resource_id_tensor), 1); TfLiteTensor* output = GetOutput(context, node, kOutputValue); SetTensorToDynamic(output); return kTfLiteOk; }
Base
1
inline void StringData::setSize(int len) { assertx(!isImmutable() && !hasMultipleRefs()); assertx(len >= 0 && len <= capacity()); mutableData()[len] = 0; m_lenAndHash = len; assertx(m_hash == 0); assertx(checkSane()); }
Base
1
auto ReferenceHandle::Get(Local<Value> key_handle, MaybeLocal<Object> maybe_options) -> Local<Value> { return ThreePhaseTask::Run<async, GetRunner>(*isolate, *this, key_handle, maybe_options, inherit); }
Class
2
static Jsi_RC StringSearchCmd(Jsi_Interp *interp, Jsi_Value *args, Jsi_Value *_this, Jsi_Value **ret, Jsi_Func *funcPtr) { int sLen, bLen; const char *source_str; ChkString(_this, funcPtr, source_str, &sLen, &bLen); char *v = _this->d.obj->d.s.str; Jsi_Value *seq = Jsi_ValueArrayIndex(interp, args, skip); if (Jsi_ValueIsString(interp, seq)) { char *ce, *cp = Jsi_ValueString(interp, seq, NULL); int n = -1; if ((ce = Jsi_Strstr(source_str, cp))) { n = (ce-source_str); } Jsi_ValueMakeNumber(interp, ret, n); return JSI_OK; } if (!seq || seq->vt != JSI_VT_OBJECT || seq->d.obj->ot != JSI_OT_REGEXP) { Jsi_ValueMakeNumber(interp, ret, -1); return JSI_OK; } regex_t *reg = &seq->d.obj->d.robj->reg; regmatch_t pos[MAX_SUBREGEX] = {}; int r; if ((r = regexec(reg, v, MAX_SUBREGEX, pos, 0)) != 0) { if (r == REG_NOMATCH) { Jsi_ValueMakeNumber(interp, ret, -1.0); return JSI_OK; } if (r >= REG_BADPAT) { char buf[100]; regerror(r, reg, buf, sizeof(buf)); Jsi_LogError("error while matching pattern: %s", buf); return JSI_ERROR; } } Jsi_ValueMakeNumber(interp, ret, (Jsi_Number)pos[0].rm_so); return JSI_OK; }
Base
1
TEST_F(HttpConnectionManagerImplTest, OverlyLongHeadersRejected) { setup(false, ""); std::string response_code; std::string response_body; EXPECT_CALL(*codec_, dispatch(_)).WillOnce(Invoke([&](Buffer::Instance&) -> void { StreamDecoder* decoder = &conn_manager_->newStream(response_encoder_); HeaderMapPtr headers{ new TestHeaderMapImpl{{":authority", "host"}, {":path", "/"}, {":method", "GET"}}}; headers->addCopy(LowerCaseString("Foo"), std::string(60 * 1024, 'a')); EXPECT_CALL(response_encoder_, encodeHeaders(_, true)) .WillOnce(Invoke([&response_code](const HeaderMap& headers, bool) -> void { response_code = std::string(headers.Status()->value().getStringView()); })); decoder->decodeHeaders(std::move(headers), true); conn_manager_->newStream(response_encoder_); })); Buffer::OwnedImpl fake_input("1234"); conn_manager_->onData(fake_input, false); // kick off request EXPECT_EQ("431", response_code); EXPECT_EQ("", response_body); }
Class
2
TfLiteStatus GenericPrepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input = GetInput(context, node, 0); TfLiteTensor* output = GetOutput(context, node, 0); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); return context->ResizeTensor(context, output, TfLiteIntArrayCopy(input->dims)); }
Base
1
int FdOutStream::overrun(int itemSize, int nItems) { if (itemSize > bufSize) throw Exception("FdOutStream overrun: max itemSize exceeded"); // First try to get rid of the data we have flush(); // Still not enough space? if (itemSize > end - ptr) { // Can we shuffle things around? // (don't do this if it gains us less than 25%) if ((sentUpTo - start > bufSize / 4) && (itemSize < bufSize - (ptr - sentUpTo))) { memmove(start, sentUpTo, ptr - sentUpTo); ptr = start + (ptr - sentUpTo); sentUpTo = start; } else { // Have to get rid of more data, so turn off non-blocking // for a bit... bool realBlocking; realBlocking = blocking; blocking = true; flush(); blocking = realBlocking; } } // Can we fit all the items asked for? if (itemSize * nItems > end - ptr) nItems = (end - ptr) / itemSize; return nItems; }
Base
1
TfLiteStatus PrepareHashtableSize(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input_resource_id_tensor = GetInput(context, node, kInputResourceIdTensor); TF_LITE_ENSURE_EQ(context, input_resource_id_tensor->type, kTfLiteInt32); TF_LITE_ENSURE_EQ(context, NumDimensions(input_resource_id_tensor), 1); TF_LITE_ENSURE_EQ(context, SizeOfDimension(input_resource_id_tensor, 0), 1); TfLiteTensor* output_tensor = GetOutput(context, node, kOutputTensor); TF_LITE_ENSURE(context, output_tensor != nullptr); TF_LITE_ENSURE_EQ(context, output_tensor->type, kTfLiteInt64); TfLiteIntArray* outputSize = TfLiteIntArrayCreate(1); outputSize->data[0] = 1; return context->ResizeTensor(context, output_tensor, outputSize); }
Base
1
void CheckAuthTest::TestValidToken(const std::string &auth_token, const std::string &user_info) { EXPECT_CALL(*raw_request_, FindHeader("x-goog-iap-jwt-assertion", _)) .WillOnce(Invoke([](const std::string &, std::string *token) { *token = ""; return false; })); EXPECT_CALL(*raw_request_, FindHeader(kAuthHeader, _)) .WillOnce(Invoke([auth_token](const std::string &, std::string *token) { *token = std::string(kBearer) + auth_token; return true; })); EXPECT_CALL(*raw_request_, SetAuthToken(auth_token)).Times(1); EXPECT_CALL(*raw_env_, DoRunHTTPRequest(_)) .Times(2) .WillOnce(Invoke([](HTTPRequest *req) { EXPECT_EQ(req->url(), kIssuer1OpenIdUrl); std::string body(kOpenIdContent); std::map<std::string, std::string> empty; req->OnComplete(Status::OK, std::move(empty), std::move(body)); })) .WillOnce(Invoke([](HTTPRequest *req) { EXPECT_EQ(req->url(), kIssuer1PubkeyUrl); std::string body(kPubkey); std::map<std::string, std::string> empty; req->OnComplete(Status::OK, std::move(empty), std::move(body)); })); std::cout << "need be replaced: " << user_info << std::endl; EXPECT_CALL(*raw_request_, AddHeaderToBackend(kEndpointApiUserInfo, user_info)) .WillOnce(Return(utils::Status::OK)); CheckAuth(context_, [](Status status) { ASSERT_TRUE(status.ok()); }); }
Base
1
TEST_F(SQLiteUtilTests, test_column_type_determination) { // Correct identification of text and ints testTypesExpected("select path, inode from file where path like '%'", TypeMap({{"path", TEXT_TYPE}, {"inode", INTEGER_TYPE}})); // Correctly treating BLOBs as text testTypesExpected("select CAST(seconds AS BLOB) as seconds FROM time", TypeMap({{"seconds", TEXT_TYPE}})); // Correctly treating ints cast as double as doubles testTypesExpected("select CAST(seconds AS DOUBLE) as seconds FROM time", TypeMap({{"seconds", DOUBLE_TYPE}})); // Correctly treating bools as ints testTypesExpected("select CAST(seconds AS BOOLEAN) as seconds FROM time", TypeMap({{"seconds", INTEGER_TYPE}})); // Correctly recognizing values from columns declared double as double, even // if they happen to have integer value. And also test multi-statement // queries. testTypesExpected( "CREATE TABLE test_types_table (username varchar(30) primary key, age " "double);INSERT INTO test_types_table VALUES (\"mike\", 23); SELECT age " "from test_types_table", TypeMap({{"age", DOUBLE_TYPE}})); }
Class
2
error_t tcpCheckSeqNum(Socket *socket, TcpHeader *segment, size_t length) { //Acceptability test for an incoming segment bool_t acceptable = FALSE; //Case where both segment length and receive window are zero if(!length && !socket->rcvWnd) { //Make sure that SEG.SEQ = RCV.NXT if(segment->seqNum == socket->rcvNxt) { acceptable = TRUE; } } //Case where segment length is zero and receive window is non zero else if(!length && socket->rcvWnd) { //Make sure that RCV.NXT <= SEG.SEQ < RCV.NXT+RCV.WND if(TCP_CMP_SEQ(segment->seqNum, socket->rcvNxt) >= 0 && TCP_CMP_SEQ(segment->seqNum, socket->rcvNxt + socket->rcvWnd) < 0) { acceptable = TRUE; } } //Case where both segment length and receive window are non zero else if(length && socket->rcvWnd) { //Check whether RCV.NXT <= SEG.SEQ < RCV.NXT+RCV.WND if(TCP_CMP_SEQ(segment->seqNum, socket->rcvNxt) >= 0 && TCP_CMP_SEQ(segment->seqNum, socket->rcvNxt + socket->rcvWnd) < 0) { acceptable = TRUE; } //or RCV.NXT <= SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND else if(TCP_CMP_SEQ(segment->seqNum + length - 1, socket->rcvNxt) >= 0 && TCP_CMP_SEQ(segment->seqNum + length - 1, socket->rcvNxt + socket->rcvWnd) < 0) { acceptable = TRUE; } } //Non acceptable sequence number? if(!acceptable) { //Debug message TRACE_WARNING("Sequence number is not acceptable!\r\n"); //If an incoming segment is not acceptable, an acknowledgment //should be sent in reply (unless the RST bit is set) if(!(segment->flags & TCP_FLAG_RST)) tcpSendSegment(socket, TCP_FLAG_ACK, socket->sndNxt, socket->rcvNxt, 0, FALSE); //Return status code return ERROR_FAILURE; } //Sequence number is acceptable return NO_ERROR; }
Class
2
TypedValue HHVM_FUNCTION(substr_compare, const String& main_str, const String& str, int offset, int length /* = INT_MAX */, bool case_insensitivity /* = false */) { int s1_len = main_str.size(); int s2_len = str.size(); if (length <= 0) { raise_warning("The length must be greater than zero"); return make_tv<KindOfBoolean>(false); } if (offset < 0) { offset = s1_len + offset; if (offset < 0) offset = 0; } if (offset >= s1_len) { raise_warning("The start position cannot exceed initial string length"); return make_tv<KindOfBoolean>(false); } int cmp_len = s1_len - offset; if (cmp_len < s2_len) cmp_len = s2_len; if (cmp_len > length) cmp_len = length; const char *s1 = main_str.data(); if (case_insensitivity) { return tvReturn(bstrcasecmp(s1 + offset, cmp_len, str.data(), cmp_len)); } return tvReturn(string_ncmp(s1 + offset, str.data(), cmp_len)); }
Base
1
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input = GetInput(context, node, kInputTensor); const TfLiteTensor* axis = GetInput(context, node, kAxis); // Make sure the axis is only 1 dimension. TF_LITE_ENSURE_EQ(context, NumElements(axis), 1); // Make sure the axis is only either int32 or int64. TF_LITE_ENSURE(context, axis->type == kTfLiteInt32 || axis->type == kTfLiteInt64); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); auto* params = reinterpret_cast<TfLiteArgMaxParams*>(node->builtin_data); switch (params->output_type) { case kTfLiteInt32: output->type = kTfLiteInt32; break; case kTfLiteInt64: output->type = kTfLiteInt64; break; default: context->ReportError(context, "Unknown index output data type: %d", params->output_type); return kTfLiteError; } // Check conditions for different types. switch (input->type) { case kTfLiteFloat32: case kTfLiteUInt8: case kTfLiteInt8: case kTfLiteInt32: break; default: context->ReportError( context, "Unknown input type: %d, only float32 and int types are supported", input->type); return kTfLiteError; } TF_LITE_ENSURE(context, NumDimensions(input) >= 1); if (IsConstantTensor(axis)) { TF_LITE_ENSURE_STATUS(ResizeOutput(context, input, axis, output)); } else { SetTensorToDynamic(output); } return kTfLiteOk; }
Base
1
CdsIntegrationTest() : HttpIntegrationTest(Http::CodecType::HTTP2, ipVersion(), ConfigHelper::discoveredClustersBootstrap( sotwOrDelta() == Grpc::SotwOrDelta::Sotw || sotwOrDelta() == Grpc::SotwOrDelta::UnifiedSotw ? "GRPC" : "DELTA_GRPC")) { if (sotwOrDelta() == Grpc::SotwOrDelta::UnifiedSotw || sotwOrDelta() == Grpc::SotwOrDelta::UnifiedDelta) { config_helper_.addRuntimeOverride("envoy.reloadable_features.unified_mux", "true"); } use_lds_ = false; sotw_or_delta_ = sotwOrDelta(); }
Class
2
void writeStats(Array& /*ret*/) override { fprintf(stderr, "writeStats start\n"); // RetSame: the return value is the same instance every time // HasThis: call has a this argument // AllSame: all returns were the same data even though args are different // MemberCount: number of different arg sets (including this) fprintf(stderr, "Count Function MinSerLen MaxSerLen RetSame HasThis " "AllSame MemberCount\n"); for (auto& me : m_memos) { if (me.second.m_ignore) continue; if (me.second.m_count == 1) continue; int min_ser_len = 999999999; int max_ser_len = 0; int count = 0; int member_count = 0; bool all_same = true; if (me.second.m_has_this) { bool any_multiple = false; auto& fr = me.second.m_member_memos.begin()->second.m_return_value; member_count = me.second.m_member_memos.size(); for (auto& mme : me.second.m_member_memos) { if (mme.second.m_return_value != fr) all_same = false; count += mme.second.m_count; auto ser_len = mme.second.m_return_value.length(); min_ser_len = std::min(min_ser_len, ser_len); max_ser_len = std::max(max_ser_len, ser_len); if (mme.second.m_count > 1) any_multiple = true; } if (!any_multiple && !all_same) continue; } else { min_ser_len = max_ser_len = me.second.m_return_value.length(); count = me.second.m_count; all_same = me.second.m_ret_tv_same; } fprintf(stderr, "%d %s %d %d %s %s %s %d\n", count, me.first.data(), min_ser_len, max_ser_len, me.second.m_ret_tv_same ? " true" : "false", me.second.m_has_this ? " true" : "false", all_same ? " true" : "false", member_count ); } fprintf(stderr, "writeStats end\n"); }
Base
1
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteDivParams*>(node->builtin_data); OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input1; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor1, &input1)); const TfLiteTensor* input2; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor2, &input2)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); if (output->type == kTfLiteFloat32 || output->type == kTfLiteInt32) { EvalDiv<kernel_type>(context, node, params, data, input1, input2, output); } else if (output->type == kTfLiteUInt8) { TF_LITE_ENSURE_OK( context, EvalQuantized<kernel_type>(context, node, params, data, input1, input2, output)); } else { context->ReportError( context, "Div only supports FLOAT32, INT32 and quantized UINT8 now, got %d.", output->type); return kTfLiteError; } return kTfLiteOk; }
Base
1
R_API RBinJavaVerificationObj *r_bin_java_verification_info_from_type(RBinJavaObj *bin, R_BIN_JAVA_STACKMAP_TYPE type, ut32 value) { RBinJavaVerificationObj *se = R_NEW0 (RBinJavaVerificationObj); if (!se) { return NULL; } se->tag = type; if (se->tag == R_BIN_JAVA_STACKMAP_OBJECT) { se->info.obj_val_cp_idx = (ut16) value; } else if (se->tag == R_BIN_JAVA_STACKMAP_UNINIT) { /*if (bin->offset_sz == 4) { se->info.uninit_offset = value; } else { se->info.uninit_offset = (ut16) value; }*/ se->info.uninit_offset = (ut16) value; } return se; }
Base
1
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); // Reinterprete the opaque data provided by user. OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type); const TfLiteType type = input1->type; if (type != kTfLiteBool) { context->ReportError(context, "Logical ops only support bool type."); return kTfLiteError; } output->type = type; data->requires_broadcast = !HaveSameShapes(input1, input2); TfLiteIntArray* output_size = nullptr; if (data->requires_broadcast) { TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast( context, input1, input2, &output_size)); } else { output_size = TfLiteIntArrayCopy(input1->dims); } return context->ResizeTensor(context, output, output_size); }
Base
1
TEST(BasicInterpreter, AllocateTwice) { Interpreter interpreter; ASSERT_EQ(interpreter.AddTensors(2), kTfLiteOk); ASSERT_EQ(interpreter.SetInputs({0}), kTfLiteOk); ASSERT_EQ(interpreter.SetOutputs({1}), kTfLiteOk); TfLiteQuantizationParams quantized; ASSERT_EQ(interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "", {3}, quantized), kTfLiteOk); ASSERT_EQ(interpreter.SetTensorParametersReadWrite(1, kTfLiteFloat32, "", {3}, quantized), kTfLiteOk); TfLiteRegistration reg = {nullptr, nullptr, nullptr, nullptr}; reg.prepare = [](TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* tensor0 = GetInput(context, node, 0); TfLiteTensor* tensor1 = GetOutput(context, node, 0); TfLiteIntArray* newSize = TfLiteIntArrayCopy(tensor0->dims); return context->ResizeTensor(context, tensor1, newSize); }; reg.invoke = [](TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* a0 = GetInput(context, node, 0); TfLiteTensor* a1 = GetOutput(context, node, 0); int num = a0->dims->data[0]; for (int i = 0; i < num; i++) { a1->data.f[i] = a0->data.f[i]; } return kTfLiteOk; }; ASSERT_EQ( interpreter.AddNodeWithParameters({0}, {1}, nullptr, 0, nullptr, &reg), kTfLiteOk); ASSERT_EQ(interpreter.ResizeInputTensor(0, {3}), kTfLiteOk); ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.Invoke(), kTfLiteOk); char* old_tensor0_ptr = interpreter.tensor(0)->data.raw; char* old_tensor1_ptr = interpreter.tensor(1)->data.raw; ASSERT_EQ(interpreter.AllocateTensors(), kTfLiteOk); ASSERT_EQ(interpreter.Invoke(), kTfLiteOk); ASSERT_EQ(old_tensor0_ptr, interpreter.tensor(0)->data.raw); ASSERT_EQ(old_tensor1_ptr, interpreter.tensor(1)->data.raw); }
Base
1
NTLM_AV_PAIR* ntlm_av_pair_get(NTLM_AV_PAIR* pAvPairList, size_t cbAvPairList, NTLM_AV_ID AvId, size_t* pcbAvPairListRemaining) { size_t cbAvPair = cbAvPairList; NTLM_AV_PAIR* pAvPair = pAvPairList; if (!ntlm_av_pair_check(pAvPair, cbAvPair)) pAvPair = NULL; while (pAvPair) { UINT16 id = ntlm_av_pair_get_id(pAvPair); if (id == AvId) break; if (id == MsvAvEOL) { pAvPair = NULL; break; } pAvPair = ntlm_av_pair_next(pAvPair, &cbAvPair); } if (!pAvPair) cbAvPair = 0; if (pcbAvPairListRemaining) *pcbAvPairListRemaining = cbAvPair; return pAvPair; }
Base
1
TestCertificateValidationContextConfig( envoy::config::core::v3::TypedExtensionConfig config, bool allow_expired_certificate = false, std::vector<envoy::type::matcher::v3::StringMatcher> san_matchers = {}) : allow_expired_certificate_(allow_expired_certificate), api_(Api::createApiForTest()), custom_validator_config_(config), san_matchers_(san_matchers){};
Base
1
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); // Reinterprete the opaque data provided by user. OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type); const TfLiteType type = input1->type; if (type != kTfLiteBool) { context->ReportError(context, "Logical ops only support bool type."); return kTfLiteError; } output->type = type; data->requires_broadcast = !HaveSameShapes(input1, input2); TfLiteIntArray* output_size = nullptr; if (data->requires_broadcast) { TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast( context, input1, input2, &output_size)); } else { output_size = TfLiteIntArrayCopy(input1->dims); } return context->ResizeTensor(context, output, output_size); }
Base
1
bool ContentSettingsObserver::AllowScript(bool enabled_per_settings) { if (!enabled_per_settings) return false; if (IsScriptDisabledForPreview(render_frame())) return false; if (is_interstitial_page_) return true; blink::WebLocalFrame* frame = render_frame()->GetWebFrame(); const auto it = cached_script_permissions_.find(frame); if (it != cached_script_permissions_.end()) return it->second; // Evaluate the content setting rules before // IsWhitelistedForContentSettings(); if there is only the default rule // allowing all scripts, it's quicker this way. bool allow = true; if (content_setting_rules_) { ContentSetting setting = GetContentSettingFromRules( content_setting_rules_->script_rules, frame, url::Origin(frame->GetDocument().GetSecurityOrigin()).GetURL()); allow = setting != CONTENT_SETTING_BLOCK; } allow = allow || IsWhitelistedForContentSettings(); cached_script_permissions_[frame] = allow; return allow; }
Class
2
TEST_P(WasmTest, DivByZero) { Stats::IsolatedStoreImpl stats_store; Api::ApiPtr api = Api::createApiForTest(stats_store); Upstream::MockClusterManager cluster_manager; Event::DispatcherPtr dispatcher(api->allocateDispatcher()); auto scope = Stats::ScopeSharedPtr(stats_store.createScope("wasm.")); NiceMock<LocalInfo::MockLocalInfo> local_info; auto name = ""; auto root_id = ""; auto vm_id = ""; auto vm_configuration = ""; auto plugin = std::make_shared<Extensions::Common::Wasm::Plugin>( name, root_id, vm_id, envoy::api::v2::core::TrafficDirection::UNSPECIFIED, local_info, nullptr); auto wasm = std::make_unique<Extensions::Common::Wasm::Wasm>( absl::StrCat("envoy.wasm.runtime.", GetParam()), vm_id, vm_configuration, plugin, scope, cluster_manager, *dispatcher); EXPECT_NE(wasm, nullptr); const auto code = TestEnvironment::readFileToStringForTest(TestEnvironment::substitute( "{{ test_rundir }}/test/extensions/wasm/test_data/segv_cpp.wasm")); EXPECT_FALSE(code.empty()); auto context = std::make_unique<TestContext>(wasm.get()); EXPECT_CALL(*context, scriptLog_(spdlog::level::err, Eq("before div by zero"))); EXPECT_TRUE(wasm->initialize(code, false)); wasm->setContext(context.get()); if (GetParam() == "v8") { EXPECT_THROW_WITH_MESSAGE( context->onLog(), Extensions::Common::Wasm::WasmException, "Function: proxy_onLog failed: Uncaught RuntimeError: divide by zero"); } else if (GetParam() == "wavm") { EXPECT_THROW_WITH_REGEX(context->onLog(), Extensions::Common::Wasm::WasmException, "Function: proxy_onLog failed: wavm.integerDivideByZeroOrOverflow.*"); } else { ASSERT_FALSE(true); // Neither of the above was matched. } }
Base
1
bool WebContents::SendIPCMessageToFrame(bool internal, int32_t frame_id, const std::string& channel, v8::Local<v8::Value> args) { v8::Isolate* isolate = JavascriptEnvironment::GetIsolate(); blink::CloneableMessage message; if (!gin::ConvertFromV8(isolate, args, &message)) { isolate->ThrowException(v8::Exception::Error( gin::StringToV8(isolate, "Failed to serialize arguments"))); return false; } auto frames = web_contents()->GetAllFrames(); auto iter = std::find_if(frames.begin(), frames.end(), [frame_id](auto* f) { return f->GetRoutingID() == frame_id; }); if (iter == frames.end()) return false; if (!(*iter)->IsRenderFrameLive()) return false; mojo::AssociatedRemote<mojom::ElectronRenderer> electron_renderer; (*iter)->GetRemoteAssociatedInterfaces()->GetInterface(&electron_renderer); electron_renderer->Message(internal, channel, std::move(message), 0 /* sender_id */); return true; }
Class
2
bool MemFile::seek(int64_t offset, int whence /* = SEEK_SET */) { assertx(m_len != -1); if (whence == SEEK_CUR) { if (offset > 0 && offset < bufferedLen()) { setReadPosition(getReadPosition() + offset); setPosition(getPosition() + offset); return true; } offset += getPosition(); whence = SEEK_SET; } // invalidate the current buffer setWritePosition(0); setReadPosition(0); if (whence == SEEK_SET) { m_cursor = offset; } else { assertx(whence == SEEK_END); m_cursor = m_len + offset; } setPosition(m_cursor); return true; }
Base
1
std::string decodeBase64( const std::string& encoded) { if (encoded.size() == 0) { // special case, to prevent an integer overflow down below. return ""; } using namespace boost::archive::iterators; using b64it = transform_width<binary_from_base64<std::string::const_iterator>, 8, 6>; std::string decoded = std::string(b64it(std::begin(encoded)), b64it(std::end(encoded))); uint32_t numPadding = std::count(encoded.begin(), encoded.end(), '='); decoded.erase(decoded.end() - numPadding, decoded.end()); return decoded; }
Base
1
char* HexOutStream::binToHexStr(const char* data, int length) { char* buffer = new char[length*2+1]; for (int i=0; i<length; i++) { buffer[i*2] = intToHex((data[i] >> 4) & 15); buffer[i*2+1] = intToHex((data[i] & 15)); if (!buffer[i*2] || !buffer[i*2+1]) { delete [] buffer; return 0; } } buffer[length*2] = 0; return buffer; }
Base
1
ALWAYS_INLINE String serialize_impl(const Variant& value, const SerializeOptions& opts) { switch (value.getType()) { case KindOfClass: case KindOfLazyClass: case KindOfPersistentString: case KindOfString: { auto const str = isStringType(value.getType()) ? value.getStringData() : isClassType(value.getType()) ? classToStringHelper(value.toClassVal()) : lazyClassToStringHelper(value.toLazyClassVal()); auto const size = str->size(); if (size >= RuntimeOption::MaxSerializedStringSize) { throw Exception("Size of serialized string (%d) exceeds max", size); } StringBuffer sb; sb.append("s:"); sb.append(size); sb.append(":\""); sb.append(str->data(), size); sb.append("\";"); return sb.detach(); } case KindOfResource: return s_Res; case KindOfUninit: case KindOfNull: case KindOfBoolean: case KindOfInt64: case KindOfFunc: case KindOfPersistentVec: case KindOfVec: case KindOfPersistentDict: case KindOfDict: case KindOfPersistentKeyset: case KindOfKeyset: case KindOfPersistentDArray: case KindOfDArray: case KindOfPersistentVArray: case KindOfVArray: case KindOfDouble: case KindOfObject: case KindOfClsMeth: case KindOfRClsMeth: case KindOfRFunc: case KindOfRecord: break; } VariableSerializer vs(VariableSerializer::Type::Serialize); if (opts.keepDVArrays) vs.keepDVArrays(); if (opts.forcePHPArrays) vs.setForcePHPArrays(); if (opts.warnOnHackArrays) vs.setHackWarn(); if (opts.warnOnPHPArrays) vs.setPHPWarn(); if (opts.ignoreLateInit) vs.setIgnoreLateInit(); if (opts.serializeProvenanceAndLegacy) vs.setSerializeProvenanceAndLegacy(); // Keep the count so recursive calls to serialize() embed references properly. return vs.serialize(value, true, true); }
Base
1
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); switch (input->type) { case kTfLiteInt64: reference_ops::Negate( GetTensorShape(input), GetTensorData<int64_t>(input), GetTensorShape(output), GetTensorData<int64_t>(output)); break; case kTfLiteInt32: reference_ops::Negate( GetTensorShape(input), GetTensorData<int32_t>(input), GetTensorShape(output), GetTensorData<int32_t>(output)); break; case kTfLiteFloat32: reference_ops::Negate(GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); break; default: context->ReportError( context, "Neg only currently supports int64, int32, and float32, got %d.", input->type); return kTfLiteError; } return kTfLiteOk; }
Base
1
Status CheckInputs(Tensor group_size_t, Tensor group_key_t) { if (group_size_t.dims() > 0) { return errors::Internal( "Unexpected dimensions on input group_size. " "It shoulbe a scalar, got tensor with shape ", group_size_t.shape().DebugString()); } if (group_key_t.dims() > 0) { return errors::Internal("Unexpected dimensions on input group_key, got ", group_key_t.shape().DebugString()); } auto group_size = group_size_t.unaligned_flat<int32>()(0); if (group_size <= 0) { return errors::InvalidArgument( "group_size must be positive integer but got ", group_size); } return Status::OK(); }
Variant
0
int64_t BZ2File::readImpl(char * buf, int64_t length) { if (length == 0) { return 0; } assertx(m_bzFile); int len = BZ2_bzread(m_bzFile, buf, length); /* Sometimes libbz2 will return fewer bytes than requested, and set bzerror * to BZ_STREAM_END, but it's not actually EOF, and you can keep reading from * the file - so, only set EOF after a failed read. This matches PHP5. */ if (len <= 0) { setEof(true); if (len < 0) { return -1; } } return len; }
Base
1
void onComplete(const Status& status, ContextImpl& context) const override { auto& completion_state = context.getCompletionState(this); if (completion_state.is_completed_) { return; } // If any of children is OK, return OK if (Status::Ok == status) { completion_state.is_completed_ = true; completeWithStatus(status, context); return; } // Then wait for all children to be done. if (++completion_state.number_completed_children_ == verifiers_.size()) { // Aggregate all children status into a final status. // JwtMissing should be treated differently than other failure status // since it simply means there is not Jwt token for the required provider. // If there is a failure status other than JwtMissing in the children, // it should be used as the final status. Status final_status = Status::JwtMissed; for (const auto& it : verifiers_) { // If a Jwt is extracted from a location not specified by the required provider, // the authenticator returns JwtUnknownIssuer. It should be treated the same as // JwtMissed. Status child_status = context.getCompletionState(it.get()).status_; if (child_status != Status::JwtMissed && child_status != Status::JwtUnknownIssuer) { final_status = child_status; } } if (is_allow_missing_or_failed_) { final_status = Status::Ok; } else if (is_allow_missing_ && final_status == Status::JwtMissed) { final_status = Status::Ok; } completion_state.is_completed_ = true; completeWithStatus(final_status, context); } }
Class
2
static String HHVM_FUNCTION(bcsub, const String& left, const String& right, int64_t scale /* = -1 */) { if (scale < 0) scale = BCG(bc_precision); bc_num first, second, result; bc_init_num(&first); bc_init_num(&second); bc_init_num(&result); php_str2num(&first, (char*)left.data()); php_str2num(&second, (char*)right.data()); bc_sub(first, second, &result, scale); if (result->n_scale > scale) { result->n_scale = scale; } String ret(bc_num2str(result), AttachString); bc_free_num(&first); bc_free_num(&second); bc_free_num(&result); return ret; }
Base
1
TfLiteTensor* GetOutput(TfLiteContext* context, const TfLiteNode* node, int index) { if (index >= 0 && index < node->outputs->size) { const int tensor_index = node->outputs->data[index]; if (tensor_index != kTfLiteOptionalTensor) { if (context->tensors != nullptr) { return &context->tensors[tensor_index]; } else { return context->GetTensor(context, tensor_index); } } } return nullptr; }
Base
1
QInt16() {}
Base
1
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteIntArray* input_dims = input->dims; int input_dims_size = input_dims->size; TF_LITE_ENSURE(context, input_dims_size >= 2); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); TfLiteIntArray* output_shape = TfLiteIntArrayCreate(input_dims_size); for (int i = 0; i < input_dims_size; i++) { output_shape->data[i] = input_dims->data[i]; } // Resize the output tensor to the same size as the input tensor. output->type = input->type; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, output, output_shape)); return kTfLiteOk; }
Base
1
int ZlibInStream::overrun(int itemSize, int nItems, bool wait) { if (itemSize > bufSize) throw Exception("ZlibInStream overrun: max itemSize exceeded"); if (!underlying) throw Exception("ZlibInStream overrun: no underlying stream"); if (end - ptr != 0) memmove(start, ptr, end - ptr); offset += ptr - start; end -= ptr - start; ptr = start; while (end - ptr < itemSize) { if (!decompress(wait)) return 0; } if (itemSize * nItems > end - ptr) nItems = (end - ptr) / itemSize; return nItems; }
Class
2
static optional<Principal> parse_principal(CephContext* cct, TokenID t, string&& s) { // Wildcard! if ((t == TokenID::AWS) && (s == "*")) { return Principal::wildcard(); // Do nothing for now. } else if (t == TokenID::CanonicalUser) { // AWS ARNs } else if (t == TokenID::AWS) { auto a = ARN::parse(s); if (!a) { if (std::none_of(s.begin(), s.end(), [](const char& c) { return (c == ':') || (c == '/'); })) { // Since tenants are simply prefixes, there's no really good // way to see if one exists or not. So we return the thing and // let them try to match against it. return Principal::tenant(std::move(s)); } } if (a->resource == "root") { return Principal::tenant(std::move(a->account)); } static const char rx_str[] = "([^/]*)/(.*)"; static const regex rx(rx_str, sizeof(rx_str) - 1, ECMAScript | optimize); smatch match; if (regex_match(a->resource, match, rx)) { ceph_assert(match.size() == 3); if (match[1] == "user") { return Principal::user(std::move(a->account), match[2]); } if (match[1] == "role") { return Principal::role(std::move(a->account), match[2]); } } } ldout(cct, 0) << "Supplied principal is discarded: " << s << dendl; return boost::none; }
Base
1
void RemoteFsDevice::unmount() { if (details.isLocalFile()) { return; } if (!isConnected() || proc) { return; } if (messageSent) { return; } if (constSambaProtocol==details.url.scheme() || constSambaAvahiProtocol==details.url.scheme()) { mounter()->umount(mountPoint(details, false), getpid()); setStatusMessage(tr("Disconnecting...")); messageSent=true; return; } QString cmd; QStringList args; if (!details.isLocalFile()) { QString mp=mountPoint(details, false); if (!mp.isEmpty()) { cmd=Utils::findExe("fusermount"); if (!cmd.isEmpty()) { args << QLatin1String("-u") << QLatin1String("-z") << mp; } else { emit error(tr("\"fusermount\" is not installed!")); } } } if (!cmd.isEmpty()) { setStatusMessage(tr("Disconnecting...")); proc=new QProcess(this); proc->setProperty("unmount", true); connect(proc, SIGNAL(finished(int)), SLOT(procFinished(int))); proc->start(cmd, args, QIODevice::ReadOnly); } }
Class
2
void RemoteFsDevice::serviceRemoved(const QString &name) { if (name==details.serviceName && constSambaAvahiProtocol==details.url.scheme()) { sub=tr("Not Available"); updateStatus(); } }
Base
1
MONGO_EXPORT int bson_append_binary( bson *b, const char *name, char type, const char *str, int len ) { if ( type == BSON_BIN_BINARY_OLD ) { int subtwolen = len + 4; if ( bson_append_estart( b, BSON_BINDATA, name, 4+1+4+len ) == BSON_ERROR ) return BSON_ERROR; bson_append32( b, &subtwolen ); bson_append_byte( b, type ); bson_append32( b, &len ); bson_append( b, str, len ); } else { if ( bson_append_estart( b, BSON_BINDATA, name, 4+1+len ) == BSON_ERROR ) return BSON_ERROR; bson_append32( b, &len ); bson_append_byte( b, type ); bson_append( b, str, len ); } return BSON_OK; }
Base
1
static String HHVM_FUNCTION(bcmul, const String& left, const String& right, int64_t scale /* = -1 */) { if (scale < 0) scale = BCG(bc_precision); bc_num first, second, result; bc_init_num(&first); bc_init_num(&second); bc_init_num(&result); php_str2num(&first, (char*)left.data()); php_str2num(&second, (char*)right.data()); bc_multiply(first, second, &result, scale); if (result->n_scale > scale) { result->n_scale = scale; } String ret(bc_num2str(result), AttachString); bc_free_num(&first); bc_free_num(&second); bc_free_num(&result); return ret; }
Base
1
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteSpaceToDepthParams*>(node->builtin_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4); auto data_type = output->type; TF_LITE_ENSURE(context, data_type == kTfLiteFloat32 || data_type == kTfLiteUInt8 || data_type == kTfLiteInt8 || data_type == kTfLiteInt32 || data_type == kTfLiteInt64); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); const int block_size = params->block_size; const int input_height = input->dims->data[1]; const int input_width = input->dims->data[2]; int output_height = input_height / block_size; int output_width = input_width / block_size; TF_LITE_ENSURE_EQ(context, input_height, output_height * block_size); TF_LITE_ENSURE_EQ(context, input_width, output_width * block_size); TfLiteIntArray* output_size = TfLiteIntArrayCreate(4); output_size->data[0] = input->dims->data[0]; output_size->data[1] = output_height; output_size->data[2] = output_width; output_size->data[3] = input->dims->data[3] * block_size * block_size; return context->ResizeTensor(context, output, output_size); }
Base
1
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); // Reinterprete the opaque data provided by user. OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type); const TfLiteType type = input1->type; if (type != kTfLiteInt32 && type != kTfLiteFloat32 && type != kTfLiteInt64) { context->ReportError(context, "Type '%s' is not supported by floor_mod.", TfLiteTypeGetName(type)); return kTfLiteError; } output->type = type; data->requires_broadcast = !HaveSameShapes(input1, input2); TfLiteIntArray* output_size = nullptr; if (data->requires_broadcast) { TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast( context, input1, input2, &output_size)); } else { output_size = TfLiteIntArrayCopy(input1->dims); } return context->ResizeTensor(context, output, output_size); }
Base
1
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input = GetInput(context, node, kInputTensor); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); output->type = input->type; TfLiteIntArray* output_size = TfLiteIntArrayCopy(input->dims); return context->ResizeTensor(context, output, output_size); }
Base
1
TfLiteStatus UseDynamicOutputTensors(TfLiteContext* context, TfLiteNode* node) { for (int i = 0; i < NumOutputs(node); ++i) { SetTensorToDynamic(GetOutput(context, node, i)); } return kTfLiteOk; }
Base
1
TEST_P(SslSocketTest, FailedClientAuthSanVerificationNoClientCert) { const std::string client_ctx_yaml = R"EOF( common_tls_context: )EOF"; const std::string server_ctx_yaml = R"EOF( common_tls_context: tls_certificates: certificate_chain: filename: "{{ test_rundir }}/test/extensions/transport_sockets/tls/test_data/unittest_cert.pem" private_key: filename: "{{ test_rundir }}/test/extensions/transport_sockets/tls/test_data/unittest_key.pem" validation_context: trusted_ca: filename: "{{ test_rundir }}/test/extensions/transport_sockets/tls/test_data/ca_cert.pem" match_subject_alt_names: exact: "example.com" )EOF"; TestUtilOptions test_options(client_ctx_yaml, server_ctx_yaml, false, GetParam()); testUtil(test_options.setExpectedServerStats("ssl.fail_verify_no_cert")); }
Base
1
Status InferenceContext::Multiply(DimensionHandle first, DimensionOrConstant second, DimensionHandle* out) { const int64_t first_value = Value(first); const int64_t second_value = Value(second); // Special cases. if (first_value == 0) { *out = first; } else if (second_value == 0) { *out = MakeDim(second); } else if (first_value == 1) { *out = MakeDim(second); } else if (second_value == 1) { *out = first; } else if (first_value == kUnknownDim || second_value == kUnknownDim) { *out = UnknownDim(); } else { // Invariant: Both values are known and greater than 1. const int64_t product = first_value * second_value; if (product < 0) { return errors::InvalidArgument( "Negative dimension size caused by overflow when multiplying ", first_value, " and ", second_value); } *out = MakeDim(product); } return Status::OK(); }
Base
1
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteLSHProjectionParams*>(node->builtin_data); int32_t* out_buf = GetOutput(context, node, 0)->data.i32; const TfLiteTensor* hash = GetInput(context, node, 0); const TfLiteTensor* input = GetInput(context, node, 1); const TfLiteTensor* weight = NumInputs(node) == 2 ? nullptr : GetInput(context, node, 2); switch (params->type) { case kTfLiteLshProjectionDense: DenseLshProjection(hash, input, weight, out_buf); break; case kTfLiteLshProjectionSparse: SparseLshProjection(hash, input, weight, out_buf); break; default: return kTfLiteError; } return kTfLiteOk; }
Base
1
void *jas_malloc(size_t size) { void *result; JAS_DBGLOG(101, ("jas_malloc called with %zu\n", size)); result = malloc(size); JAS_DBGLOG(100, ("jas_malloc(%zu) -> %p\n", size, result)); return result; }
Base
1
Envoy::Ssl::ClientValidationStatus DefaultCertValidator::verifyCertificate( X509* cert, const std::vector<std::string>& verify_san_list, const std::vector<Matchers::StringMatcherImpl<envoy::type::matcher::v3::StringMatcher>>& subject_alt_name_matchers) { Envoy::Ssl::ClientValidationStatus validated = Envoy::Ssl::ClientValidationStatus::NotValidated; if (!verify_san_list.empty()) { if (!verifySubjectAltName(cert, verify_san_list)) { stats_.fail_verify_san_.inc(); return Envoy::Ssl::ClientValidationStatus::Failed; } validated = Envoy::Ssl::ClientValidationStatus::Validated; } if (!subject_alt_name_matchers.empty()) { if (!matchSubjectAltName(cert, subject_alt_name_matchers)) { stats_.fail_verify_san_.inc(); return Envoy::Ssl::ClientValidationStatus::Failed; } validated = Envoy::Ssl::ClientValidationStatus::Validated; } if (!verify_certificate_hash_list_.empty() || !verify_certificate_spki_list_.empty()) { const bool valid_certificate_hash = !verify_certificate_hash_list_.empty() && verifyCertificateHashList(cert, verify_certificate_hash_list_); const bool valid_certificate_spki = !verify_certificate_spki_list_.empty() && verifyCertificateSpkiList(cert, verify_certificate_spki_list_); if (!valid_certificate_hash && !valid_certificate_spki) { stats_.fail_verify_cert_hash_.inc(); return Envoy::Ssl::ClientValidationStatus::Failed; } validated = Envoy::Ssl::ClientValidationStatus::Validated; } return validated; }
Base
1
bool CFontFileType1::RemovePfbMarkers() { bool bSuccess = true; int nBlockType = 0; int nBlockLen = 0; int nChar = 0; unsigned char *sBuffer = NULL; int nBufLen = 0; while ( nBlockType != PFB_DONE ) { while ( 0 == nBlockLen ) { nChar = ReadU8( &bSuccess ); if ( !bSuccess ) return false; nBlockType = ReadU8( &bSuccess ); if ( !bSuccess || PFB_MARKER != nChar || ( PFB_ASCII != nBlockType && PFB_BINARY != nBlockType && PFB_DONE != nBlockType ) ) return false; if ( PFB_DONE == nBlockType ) break; nBlockLen = ReadU32LE( &bSuccess ); if ( !bSuccess ) return false; } // Читаем сам блок данных if ( nBlockLen > 0 ) { if ( !sBuffer ) { sBuffer = (unsigned char*)MemUtilsMalloc( nBlockLen ); if ( !sBuffer ) return false; } else sBuffer = (unsigned char*)MemUtilsRealloc( sBuffer, nBufLen + nBlockLen ); Read( sBuffer + nBufLen, nBlockLen ); nBufLen += nBlockLen; } nBlockLen = 0; } if ( m_bFreeFileData ) MemUtilsFree( m_sFile ); m_bFreeFileData = true; m_sFile = (unsigned char*)sBuffer; m_sFileData = m_sFile; m_nLen = nBufLen; m_nPos = 0; return true; }
Base
1
TEST(DefaultCertValidatorTest, TestCertificateVerificationWithSANMatcher) { Stats::TestUtil::TestStore test_store; SslStats stats = generateSslStats(test_store); // Create the default validator object. auto default_validator = std::make_unique<Extensions::TransportSockets::Tls::DefaultCertValidator>( /*CertificateValidationContextConfig=*/nullptr, stats, Event::GlobalTimeSystem().timeSystem()); bssl::UniquePtr<X509> cert = readCertFromFile(TestEnvironment::substitute( "{{ test_rundir }}/test/extensions/transport_sockets/tls/test_data/san_dns_cert.pem")); envoy::type::matcher::v3::StringMatcher matcher; matcher.MergeFrom(TestUtility::createRegexMatcher(".*.example.com")); std::vector<Matchers::StringMatcherImpl<envoy::type::matcher::v3::StringMatcher>> san_matchers; san_matchers.push_back(Matchers::StringMatcherImpl(matcher)); // Verify the certificate with correct SAN regex matcher. EXPECT_EQ(default_validator->verifyCertificate(cert.get(), /*verify_san_list=*/{}, san_matchers), Envoy::Ssl::ClientValidationStatus::Validated); EXPECT_EQ(stats.fail_verify_san_.value(), 0); matcher.MergeFrom(TestUtility::createExactMatcher("hello.example.com")); std::vector<Matchers::StringMatcherImpl<envoy::type::matcher::v3::StringMatcher>> invalid_san_matchers; invalid_san_matchers.push_back(Matchers::StringMatcherImpl(matcher)); // Verify the certificate with incorrect SAN exact matcher. EXPECT_EQ(default_validator->verifyCertificate(cert.get(), /*verify_san_list=*/{}, invalid_san_matchers), Envoy::Ssl::ClientValidationStatus::Failed); EXPECT_EQ(stats.fail_verify_san_.value(), 1); }
Base
1
static inline bool isMountable(const RemoteFsDevice::Details &d) { return RemoteFsDevice::constSshfsProtocol==d.url.scheme() || RemoteFsDevice::constSambaProtocol==d.url.scheme() || RemoteFsDevice::constSambaAvahiProtocol==d.url.scheme(); }
Class
2
TfLiteStatus ComputeDepthMultiplier(TfLiteContext* context, const TfLiteTensor* input, const TfLiteTensor* filter, int16* depth_multiplier) { int num_filter_channels = SizeOfDimension(filter, 3); int num_input_channels = SizeOfDimension(input, 3); TF_LITE_ENSURE_EQ(context, num_filter_channels % num_input_channels, 0); *depth_multiplier = num_filter_channels / num_input_channels; return kTfLiteOk; }
Base
1
shared_ptr <vector<uint8_t>> check_and_set_SEK(const string &SEK) { vector<char> decr_key(BUF_LEN, 0); vector<char> errMsg(BUF_LEN, 0); int err_status = 0; auto encrypted_SEK = make_shared < vector < uint8_t >> (BUF_LEN, 0); uint32_t l = 0; sgx_status_t status = trustedSetSEK_backup(eid, &err_status, errMsg.data(), encrypted_SEK->data(), &l, SEK.c_str()); encrypted_SEK->resize(l); HANDLE_TRUSTED_FUNCTION_ERROR(status, err_status, errMsg.data()); validate_SEK(); return encrypted_SEK; }
Base
1
string encryptBLSKeyShare2Hex(int *errStatus, char *err_string, const char *_key) { CHECK_STATE(errStatus); CHECK_STATE(err_string); CHECK_STATE(_key); auto keyArray = make_shared<vector<char>>(BUF_LEN, 0); auto encryptedKey = make_shared<vector<uint8_t>>(BUF_LEN, 0); vector<char> errMsg(BUF_LEN, 0); strncpy(keyArray->data(), _key, BUF_LEN); *errStatus = 0; unsigned int encryptedLen = 0; sgx_status_t status = trustedEncryptKeyAES(eid, errStatus, errMsg.data(), keyArray->data(), encryptedKey->data(), &encryptedLen); HANDLE_TRUSTED_FUNCTION_ERROR(status, *errStatus, errMsg.data()); SAFE_CHAR_BUF(resultBuf, 2 * BUF_LEN + 1); carray2Hex(encryptedKey->data(), encryptedLen, resultBuf, 2 * BUF_LEN + 1); return string(resultBuf); }
Base
1
static int burl_normalize_2F_to_slash_fix (buffer *b, int qs, int i) { char * const s = b->ptr; const int blen = (int)buffer_string_length(b); const int used = qs < 0 ? blen : qs; int j = i; for (; i < used; ++i, ++j) { s[j] = s[i]; if (s[i] == '%' && s[i+1] == '2' && s[i+2] == 'F') { s[j] = '/'; i+=2; } } if (qs >= 0) { memmove(s+j, s+qs, blen - qs); j += blen - qs; } buffer_string_set_length(b, j); return qs; }
Base
1
void writeBytes(const void* data, int length) { const U8* dataPtr = (const U8*)data; const U8* dataEnd = dataPtr + length; while (dataPtr < dataEnd) { int n = check(1, dataEnd - dataPtr); memcpy(ptr, dataPtr, n); ptr += n; dataPtr += n; } }
Base
1
TEST_CASE_METHOD(TestFixture, "DKG AES public shares test", "[dkg-aes-pub-shares]") { vector <uint8_t> encryptedDKGSecret(BUF_LEN, 0); vector<char> errMsg(BUF_LEN, 0); int errStatus = 0; uint32_t encLen = 0; unsigned t = 32, n = 32; PRINT_SRC_LINE auto status = trustedGenDkgSecretAES(eid, &errStatus, errMsg.data(), encryptedDKGSecret.data(), &encLen, n); REQUIRE(status == SGX_SUCCESS); REQUIRE(errStatus == SGX_SUCCESS); vector<char> errMsg1(BUF_LEN, 0); char colon = ':'; vector<char> pubShares(10000, 0); PRINT_SRC_LINE status = trustedGetPublicSharesAES(eid, &errStatus, errMsg1.data(), encryptedDKGSecret.data(), encLen, pubShares.data(), t, n); REQUIRE(status == SGX_SUCCESS); REQUIRE(errStatus == SGX_SUCCESS); vector <string> g2Strings = splitString(pubShares.data(), ','); vector <libff::alt_bn128_G2> pubSharesG2; for (u_int64_t i = 0; i < g2Strings.size(); i++) { vector <string> coeffStr = splitString(g2Strings.at(i).c_str(), ':'); pubSharesG2.push_back(TestUtils::vectStringToG2(coeffStr)); } vector<char> secret(BUF_LEN, 0); PRINT_SRC_LINE status = trustedDecryptDkgSecretAES(eid, &errStatus, errMsg1.data(), encryptedDKGSecret.data(), encLen, (uint8_t *) secret.data()); REQUIRE(status == SGX_SUCCESS); REQUIRE(errStatus == SGX_SUCCESS); signatures::Dkg dkgObj(t, n); vector <libff::alt_bn128_Fr> poly = TestUtils::splitStringToFr(secret.data(), colon); vector <libff::alt_bn128_G2> pubSharesDkg = dkgObj.VerificationVector(poly); for (uint32_t i = 0; i < pubSharesDkg.size(); i++) { libff::alt_bn128_G2 el = pubSharesDkg.at(i); el.to_affine_coordinates(); } REQUIRE(pubSharesG2 == pubSharesDkg); }
Base
1
static gboolean cosine_read(wtap *wth, int *err, gchar **err_info, gint64 *data_offset) { gint64 offset; int pkt_len; char line[COSINE_LINE_LENGTH]; /* Find the next packet */ offset = cosine_seek_next_packet(wth, err, err_info, line); if (offset < 0) return FALSE; *data_offset = offset; /* Parse the header */ pkt_len = parse_cosine_rec_hdr(&wth->phdr, line, err, err_info); if (pkt_len == -1) return FALSE; /* Convert the ASCII hex dump to binary data */ return parse_cosine_hex_dump(wth->fh, &wth->phdr, pkt_len, wth->frame_buffer, err, err_info); }
Class
2