code
stringlengths
12
2.05k
label_name
stringclasses
5 values
label
int64
0
4
process_open(u_int32_t id) { u_int32_t pflags; Attrib a; char *name; int r, handle, fd, flags, mode, status = SSH2_FX_FAILURE; if ((r = sshbuf_get_cstring(iqueue, &name, NULL)) != 0 || (r = sshbuf_get_u32(iqueue, &pflags)) != 0 || /* portable flags */ (r = decode_attrib(iqueue, &a)) != 0) fatal("%s: buffer error: %s", __func__, ssh_err(r)); debug3("request %u: open flags %d", id, pflags); flags = flags_from_portable(pflags); mode = (a.flags & SSH2_FILEXFER_ATTR_PERMISSIONS) ? a.perm : 0666; logit("open \"%s\" flags %s mode 0%o", name, string_from_portable(pflags), mode); if (readonly && ((flags & O_ACCMODE) == O_WRONLY || (flags & O_ACCMODE) == O_RDWR)) { verbose("Refusing open request in read-only mode"); status = SSH2_FX_PERMISSION_DENIED; } else { fd = open(name, flags, mode); if (fd < 0) { status = errno_to_portable(errno); } else { handle = handle_new(HANDLE_FILE, name, fd, flags, NULL); if (handle < 0) { close(fd); } else { send_handle(id, handle); status = SSH2_FX_OK; } } } if (status != SSH2_FX_OK) send_status(id, status); free(name); }
Class
2
mark_trusted_task_thread_func (GTask *task, gpointer source_object, gpointer task_data, GCancellable *cancellable) { MarkTrustedJob *job = task_data; CommonJob *common; common = (CommonJob *) job; nautilus_progress_info_start (job->common.progress); mark_desktop_file_trusted (common, cancellable, job->file, job->interactive); }
Class
2
do_decrypt (const RIJNDAEL_context *ctx, unsigned char *bx, const unsigned char *ax) { #ifdef USE_AMD64_ASM return _gcry_aes_amd64_decrypt_block(ctx->keyschdec, bx, ax, ctx->rounds, &dec_tables); #elif defined(USE_ARM_ASM) return _gcry_aes_arm_decrypt_block(ctx->keyschdec, bx, ax, ctx->rounds, &dec_tables); #else return do_decrypt_fn (ctx, bx, ax); #endif /*!USE_ARM_ASM && !USE_AMD64_ASM*/ }
Class
2
static int read_public_key(RSA *rsa) { int r; sc_path_t path; sc_file_t *file; u8 buf[2048], *p = buf; size_t bufsize, keysize; r = select_app_df(); if (r) return 1; sc_format_path("I1012", &path); r = sc_select_file(card, &path, &file); if (r) { fprintf(stderr, "Unable to select public key file: %s\n", sc_strerror(r)); return 2; } bufsize = file->size; sc_file_free(file); r = sc_read_binary(card, 0, buf, bufsize, 0); if (r < 0) { fprintf(stderr, "Unable to read public key file: %s\n", sc_strerror(r)); return 2; } bufsize = r; do { if (bufsize < 4) return 3; keysize = (p[0] << 8) | p[1]; if (keysize == 0) break; if (keysize < 3) return 3; if (p[2] == opt_key_num) break; p += keysize; bufsize -= keysize; } while (1); if (keysize == 0) { printf("Key number %d not found.\n", opt_key_num); return 2; } return parse_public_key(p, keysize, rsa); }
Class
2
char *string_crypt(const char *key, const char *salt) { assertx(key); assertx(salt); char random_salt[12]; if (!*salt) { memcpy(random_salt,"$1$",3); ito64(random_salt+3,rand(),8); random_salt[11] = '\0'; return string_crypt(key, random_salt); } auto const saltLen = strlen(salt); if ((saltLen > sizeof("$2X$00$")) && (salt[0] == '$') && (salt[1] == '2') && (salt[2] >= 'a') && (salt[2] <= 'z') && (salt[3] == '$') && (salt[4] >= '0') && (salt[4] <= '3') && (salt[5] >= '0') && (salt[5] <= '9') && (salt[6] == '$')) { // Bundled blowfish crypt() char output[61]; static constexpr size_t maxSaltLength = 123; char paddedSalt[maxSaltLength + 1]; paddedSalt[0] = paddedSalt[maxSaltLength] = '\0'; memset(&paddedSalt[1], '$', maxSaltLength - 1); memcpy(paddedSalt, salt, std::min(maxSaltLength, saltLen)); paddedSalt[saltLen] = '\0'; if (php_crypt_blowfish_rn(key, paddedSalt, output, sizeof(output))) { return strdup(output); } } else { // System crypt() function #ifdef USE_PHP_CRYPT_R return php_crypt_r(key, salt); #else static Mutex mutex; Lock lock(mutex); char *crypt_res = crypt(key,salt); if (crypt_res) { return strdup(crypt_res); } #endif } return ((salt[0] == '*') && (salt[1] == '0')) ? strdup("*1") : strdup("*0"); }
Base
1
static void free_clt(struct rtrs_clt_sess *clt) { free_permits(clt); free_percpu(clt->pcpu_path); mutex_destroy(&clt->paths_ev_mutex); mutex_destroy(&clt->paths_mutex); /* release callback will free clt in last put */ device_unregister(&clt->dev); }
Variant
0
struct net *get_net_ns_by_id(struct net *net, int id) { struct net *peer; if (id < 0) return NULL; rcu_read_lock(); spin_lock_bh(&net->nsid_lock); peer = idr_find(&net->netns_ids, id); if (peer) get_net(peer); spin_unlock_bh(&net->nsid_lock); rcu_read_unlock(); return peer; }
Variant
0
static bigint *sig_verify(BI_CTX *ctx, const uint8_t *sig, int sig_len, bigint *modulus, bigint *pub_exp) { int i, size; bigint *decrypted_bi, *dat_bi; bigint *bir = NULL; uint8_t *block = (uint8_t *)malloc(sig_len); /* decrypt */ dat_bi = bi_import(ctx, sig, sig_len); ctx->mod_offset = BIGINT_M_OFFSET; /* convert to a normal block */ decrypted_bi = bi_mod_power2(ctx, dat_bi, modulus, pub_exp); bi_export(ctx, decrypted_bi, block, sig_len); ctx->mod_offset = BIGINT_M_OFFSET; i = 10; /* start at the first possible non-padded byte */ while (block[i++] && i < sig_len); size = sig_len - i; /* get only the bit we want */ if (size > 0) { int len; const uint8_t *sig_ptr = get_signature(&block[i], &len); if (sig_ptr) { bir = bi_import(ctx, sig_ptr, len); } } free(block); /* save a few bytes of memory */ bi_clear_cache(ctx); return bir; }
Base
1
void spl_filesystem_info_set_filename(spl_filesystem_object *intern, char *path, int len, int use_copy TSRMLS_DC) /* {{{ */ { char *p1, *p2; if (intern->file_name) { efree(intern->file_name); } intern->file_name = use_copy ? estrndup(path, len) : path; intern->file_name_len = len; while(IS_SLASH_AT(intern->file_name, intern->file_name_len-1) && intern->file_name_len > 1) { intern->file_name[intern->file_name_len-1] = 0; intern->file_name_len--; } p1 = strrchr(intern->file_name, '/'); #if defined(PHP_WIN32) || defined(NETWARE) p2 = strrchr(intern->file_name, '\\'); #else p2 = 0; #endif if (p1 || p2) { intern->_path_len = (p1 > p2 ? p1 : p2) - intern->file_name; } else { intern->_path_len = 0; } if (intern->_path) { efree(intern->_path); } intern->_path = estrndup(path, intern->_path_len); } /* }}} */
Base
1
qedi_dbg_notice(struct qedi_dbg_ctx *qedi, const char *func, u32 line, const char *fmt, ...) { va_list va; struct va_format vaf; char nfunc[32]; memset(nfunc, 0, sizeof(nfunc)); memcpy(nfunc, func, sizeof(nfunc) - 1); va_start(va, fmt); vaf.fmt = fmt; vaf.va = &va; if (!(qedi_dbg_log & QEDI_LOG_NOTICE)) goto ret; if (likely(qedi) && likely(qedi->pdev)) pr_notice("[%s]:[%s:%d]:%d: %pV", dev_name(&qedi->pdev->dev), nfunc, line, qedi->host_no, &vaf); else pr_notice("[0000:00:00.0]:[%s:%d]: %pV", nfunc, line, &vaf); ret: va_end(va); }
Base
1
static int apparmor_setprocattr(struct task_struct *task, char *name, void *value, size_t size) { struct common_audit_data sa; struct apparmor_audit_data aad = {0,}; char *command, *args = value; size_t arg_size; int error; if (size == 0) return -EINVAL; /* args points to a PAGE_SIZE buffer, AppArmor requires that * the buffer must be null terminated or have size <= PAGE_SIZE -1 * so that AppArmor can null terminate them */ if (args[size - 1] != '\0') { if (size == PAGE_SIZE) return -EINVAL; args[size] = '\0'; } /* task can only write its own attributes */ if (current != task) return -EACCES; args = value; args = strim(args); command = strsep(&args, " "); if (!args) return -EINVAL; args = skip_spaces(args); if (!*args) return -EINVAL; arg_size = size - (args - (char *) value); if (strcmp(name, "current") == 0) { if (strcmp(command, "changehat") == 0) { error = aa_setprocattr_changehat(args, arg_size, !AA_DO_TEST); } else if (strcmp(command, "permhat") == 0) { error = aa_setprocattr_changehat(args, arg_size, AA_DO_TEST); } else if (strcmp(command, "changeprofile") == 0) { error = aa_setprocattr_changeprofile(args, !AA_ONEXEC, !AA_DO_TEST); } else if (strcmp(command, "permprofile") == 0) { error = aa_setprocattr_changeprofile(args, !AA_ONEXEC, AA_DO_TEST); } else goto fail; } else if (strcmp(name, "exec") == 0) { if (strcmp(command, "exec") == 0) error = aa_setprocattr_changeprofile(args, AA_ONEXEC, !AA_DO_TEST); else goto fail; } else /* only support the "current" and "exec" process attributes */ return -EINVAL; if (!error) error = size; return error; fail: sa.type = LSM_AUDIT_DATA_NONE; sa.aad = &aad; aad.profile = aa_current_profile(); aad.op = OP_SETPROCATTR; aad.info = name; aad.error = -EINVAL; aa_audit_msg(AUDIT_APPARMOR_DENIED, &sa, NULL); return -EINVAL; }
Class
2
static __u8 *mr_report_fixup(struct hid_device *hdev, __u8 *rdesc, unsigned int *rsize) { if (*rsize >= 30 && rdesc[29] == 0x05 && rdesc[30] == 0x09) { hid_info(hdev, "fixing up button/consumer in HID report descriptor\n"); rdesc[30] = 0x0c; } return rdesc; }
Class
2
static ssize_t o2nm_node_num_store(struct config_item *item, const char *page, size_t count) { struct o2nm_node *node = to_o2nm_node(item); struct o2nm_cluster *cluster = to_o2nm_cluster_from_node(node); unsigned long tmp; char *p = (char *)page; int ret = 0; tmp = simple_strtoul(p, &p, 0); if (!p || (*p && (*p != '\n'))) return -EINVAL; if (tmp >= O2NM_MAX_NODES) return -ERANGE; /* once we're in the cl_nodes tree networking can look us up by * node number and try to use our address and port attributes * to connect to this node.. make sure that they've been set * before writing the node attribute? */ if (!test_bit(O2NM_NODE_ATTR_ADDRESS, &node->nd_set_attributes) || !test_bit(O2NM_NODE_ATTR_PORT, &node->nd_set_attributes)) return -EINVAL; /* XXX */ write_lock(&cluster->cl_nodes_lock); if (cluster->cl_nodes[tmp]) ret = -EEXIST; else if (test_and_set_bit(O2NM_NODE_ATTR_NUM, &node->nd_set_attributes)) ret = -EBUSY; else { cluster->cl_nodes[tmp] = node; node->nd_num = tmp; set_bit(tmp, cluster->cl_nodes_bitmap); } write_unlock(&cluster->cl_nodes_lock); if (ret) return ret; return count; }
Base
1
int kvm_iommu_map_pages(struct kvm *kvm, struct kvm_memory_slot *slot) { gfn_t gfn, end_gfn; pfn_t pfn; int r = 0; struct iommu_domain *domain = kvm->arch.iommu_domain; int flags; /* check if iommu exists and in use */ if (!domain) return 0; gfn = slot->base_gfn; end_gfn = gfn + slot->npages; flags = IOMMU_READ; if (!(slot->flags & KVM_MEM_READONLY)) flags |= IOMMU_WRITE; if (!kvm->arch.iommu_noncoherent) flags |= IOMMU_CACHE; while (gfn < end_gfn) { unsigned long page_size; /* Check if already mapped */ if (iommu_iova_to_phys(domain, gfn_to_gpa(gfn))) { gfn += 1; continue; } /* Get the page size we could use to map */ page_size = kvm_host_page_size(kvm, gfn); /* Make sure the page_size does not exceed the memslot */ while ((gfn + (page_size >> PAGE_SHIFT)) > end_gfn) page_size >>= 1; /* Make sure gfn is aligned to the page size we want to map */ while ((gfn << PAGE_SHIFT) & (page_size - 1)) page_size >>= 1; /* Make sure hva is aligned to the page size we want to map */ while (__gfn_to_hva_memslot(slot, gfn) & (page_size - 1)) page_size >>= 1; /* * Pin all pages we are about to map in memory. This is * important because we unmap and unpin in 4kb steps later. */ pfn = kvm_pin_pages(slot, gfn, page_size); if (is_error_noslot_pfn(pfn)) { gfn += 1; continue; } /* Map into IO address space */ r = iommu_map(domain, gfn_to_gpa(gfn), pfn_to_hpa(pfn), page_size, flags); if (r) { printk(KERN_ERR "kvm_iommu_map_address:" "iommu failed to map pfn=%llx\n", pfn); kvm_unpin_pages(kvm, pfn, page_size); goto unmap_pages; } gfn += page_size >> PAGE_SHIFT; } return 0; unmap_pages: kvm_iommu_put_pages(kvm, slot->base_gfn, gfn - slot->base_gfn); return r; }
Class
2
ast_type_init(PyObject *self, PyObject *args, PyObject *kw) { _Py_IDENTIFIER(_fields); Py_ssize_t i, numfields = 0; int res = -1; PyObject *key, *value, *fields; fields = _PyObject_GetAttrId((PyObject*)Py_TYPE(self), &PyId__fields); if (!fields) PyErr_Clear(); if (fields) { numfields = PySequence_Size(fields); if (numfields == -1) goto cleanup; } res = 0; /* if no error occurs, this stays 0 to the end */ if (PyTuple_GET_SIZE(args) > 0) { if (numfields != PyTuple_GET_SIZE(args)) { PyErr_Format(PyExc_TypeError, "%.400s constructor takes %s" "%zd positional argument%s", Py_TYPE(self)->tp_name, numfields == 0 ? "" : "either 0 or ", numfields, numfields == 1 ? "" : "s"); res = -1; goto cleanup; } for (i = 0; i < PyTuple_GET_SIZE(args); i++) { /* cannot be reached when fields is NULL */ PyObject *name = PySequence_GetItem(fields, i); if (!name) { res = -1; goto cleanup; } res = PyObject_SetAttr(self, name, PyTuple_GET_ITEM(args, i)); Py_DECREF(name); if (res < 0) goto cleanup; } } if (kw) { i = 0; /* needed by PyDict_Next */ while (PyDict_Next(kw, &i, &key, &value)) { res = PyObject_SetAttr(self, key, value); if (res < 0) goto cleanup; } } cleanup: Py_XDECREF(fields); return res; }
Base
1
latin_ptr2len(char_u *p) { return MB_BYTE2LEN(*p); }
Variant
0
find_match_text(colnr_T startcol, int regstart, char_u *match_text) { colnr_T col = startcol; int c1, c2; int len1, len2; int match; for (;;) { match = TRUE; len2 = MB_CHAR2LEN(regstart); // skip regstart for (len1 = 0; match_text[len1] != NUL; len1 += MB_CHAR2LEN(c1)) { c1 = PTR2CHAR(match_text + len1); c2 = PTR2CHAR(rex.line + col + len2); if (c1 != c2 && (!rex.reg_ic || MB_CASEFOLD(c1) != MB_CASEFOLD(c2))) { match = FALSE; break; } len2 += MB_CHAR2LEN(c2); } if (match // check that no composing char follows && !(enc_utf8 && utf_iscomposing(PTR2CHAR(rex.line + col + len2)))) { cleanup_subexpr(); if (REG_MULTI) { rex.reg_startpos[0].lnum = rex.lnum; rex.reg_startpos[0].col = col; rex.reg_endpos[0].lnum = rex.lnum; rex.reg_endpos[0].col = col + len2; } else { rex.reg_startp[0] = rex.line + col; rex.reg_endp[0] = rex.line + col + len2; } return 1L; } // Try finding regstart after the current match. col += MB_CHAR2LEN(regstart); // skip regstart if (skip_to_start(regstart, &col) == FAIL) break; } return 0L; }
Variant
0
static int __poke_user(struct task_struct *child, addr_t addr, addr_t data) { struct user *dummy = NULL; addr_t offset; if (addr < (addr_t) &dummy->regs.acrs) { /* * psw and gprs are stored on the stack */ if (addr == (addr_t) &dummy->regs.psw.mask) { unsigned long mask = PSW_MASK_USER; mask |= is_ri_task(child) ? PSW_MASK_RI : 0; if ((data & ~mask) != PSW_USER_BITS) return -EINVAL; if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA)) return -EINVAL; } *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data; } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) { /* * access registers are stored in the thread structure */ offset = addr - (addr_t) &dummy->regs.acrs; #ifdef CONFIG_64BIT /* * Very special case: old & broken 64 bit gdb writing * to acrs[15] with a 64 bit value. Ignore the lower * half of the value and write the upper 32 bit to * acrs[15]. Sick... */ if (addr == (addr_t) &dummy->regs.acrs[15]) child->thread.acrs[15] = (unsigned int) (data >> 32); else #endif *(addr_t *)((addr_t) &child->thread.acrs + offset) = data; } else if (addr == (addr_t) &dummy->regs.orig_gpr2) { /* * orig_gpr2 is stored on the kernel stack */ task_pt_regs(child)->orig_gpr2 = data; } else if (addr < (addr_t) &dummy->regs.fp_regs) { /* * prevent writes of padding hole between * orig_gpr2 and fp_regs on s390. */ return 0; } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) { /* * floating point regs. are stored in the thread structure */ if (addr == (addr_t) &dummy->regs.fp_regs.fpc) if ((unsigned int) data != 0 || test_fp_ctl(data >> (BITS_PER_LONG - 32))) return -EINVAL; offset = addr - (addr_t) &dummy->regs.fp_regs; *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data; } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) { /* * Handle access to the per_info structure. */ addr -= (addr_t) &dummy->regs.per_info; __poke_user_per(child, addr, data); } return 0; }
Class
2
snmp_ber_encode_type(unsigned char *out, uint32_t *out_len, uint8_t type) { *out-- = type; (*out_len)++; return out; }
Base
1
ikev2_auth_print(netdissect_options *ndo, u_char tpay, const struct isakmp_gen *ext, u_int item_len _U_, const u_char *ep, uint32_t phase _U_, uint32_t doi _U_, uint32_t proto _U_, int depth _U_) { struct ikev2_auth a; const char *v2_auth[]={ "invalid", "rsasig", "shared-secret", "dsssig" }; const u_char *authdata = (const u_char*)ext + sizeof(a); unsigned int len; ND_TCHECK(*ext); UNALIGNED_MEMCPY(&a, ext, sizeof(a)); ikev2_pay_print(ndo, NPSTR(tpay), a.h.critical); len = ntohs(a.h.len); ND_PRINT((ndo," len=%d method=%s", len-4, STR_OR_ID(a.auth_method, v2_auth))); if (1 < ndo->ndo_vflag && 4 < len) { ND_PRINT((ndo," authdata=(")); if (!rawprint(ndo, (const uint8_t *)authdata, len - sizeof(a))) goto trunc; ND_PRINT((ndo,") ")); } else if(ndo->ndo_vflag && 4 < len) { if(!ike_show_somedata(ndo, authdata, ep)) goto trunc; } return (const u_char *)ext + len; trunc: ND_PRINT((ndo," [|%s]", NPSTR(tpay))); return NULL; }
Base
1
processBatchMultiRuleset(batch_t *pBatch) { ruleset_t *currRuleset; batch_t snglRuleBatch; int i; int iStart; /* start index of partial batch */ int iNew; /* index for new (temporary) batch */ DEFiRet; CHKiRet(batchInit(&snglRuleBatch, pBatch->nElem)); snglRuleBatch.pbShutdownImmediate = pBatch->pbShutdownImmediate; while(1) { /* loop broken inside */ /* search for first unprocessed element */ for(iStart = 0 ; iStart < pBatch->nElem && pBatch->pElem[iStart].state == BATCH_STATE_DISC ; ++iStart) /* just search, no action */; if(iStart == pBatch->nElem) FINALIZE; /* everything processed */ /* prepare temporary batch */ currRuleset = batchElemGetRuleset(pBatch, iStart); iNew = 0; for(i = iStart ; i < pBatch->nElem ; ++i) { if(batchElemGetRuleset(pBatch, i) == currRuleset) { batchCopyElem(&(snglRuleBatch.pElem[iNew++]), &(pBatch->pElem[i])); /* We indicate the element also as done, so it will not be processed again */ pBatch->pElem[i].state = BATCH_STATE_DISC; } } snglRuleBatch.nElem = iNew; /* was left just right by the for loop */ batchSetSingleRuleset(&snglRuleBatch, 1); /* process temp batch */ processBatch(&snglRuleBatch); } batchFree(&snglRuleBatch); finalize_it: RETiRet; }
Base
1
static pj_status_t STATUS_FROM_SSL_ERR(char *action, pj_ssl_sock_t *ssock, unsigned long err) { int level = 0; int len = 0; //dummy ERROR_LOG("STATUS_FROM_SSL_ERR", err, ssock); level++; /* General SSL error, dig more from OpenSSL error queue */ if (err == SSL_ERROR_SSL) { err = ERR_get_error(); ERROR_LOG("STATUS_FROM_SSL_ERR", err, ssock); } ssock->last_err = err; return GET_STATUS_FROM_SSL_ERR(err); }
Class
2
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) { u64 now; if (cfs_b->quota == RUNTIME_INF) return; now = sched_clock_cpu(smp_processor_id()); cfs_b->runtime = cfs_b->quota; cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); cfs_b->expires_seq++; }
Class
2
de_dotdot( char* file ) { char* cp; char* cp2; int l; /* Collapse any multiple / sequences. */ while ( ( cp = strstr( file, "//") ) != (char*) 0 ) { for ( cp2 = cp + 2; *cp2 == '/'; ++cp2 ) continue; (void) strcpy( cp + 1, cp2 ); } /* Remove leading ./ and any /./ sequences. */ while ( strncmp( file, "./", 2 ) == 0 ) (void) memmove( file, file + 2, strlen( file ) - 1 ); while ( ( cp = strstr( file, "/./") ) != (char*) 0 ) (void) memmove( cp, cp + 2, strlen( file ) - 1 ); /* Alternate between removing leading ../ and removing xxx/../ */ for (;;) { while ( strncmp( file, "../", 3 ) == 0 ) (void) memmove( file, file + 3, strlen( file ) - 2 ); cp = strstr( file, "/../" ); if ( cp == (char*) 0 ) break; for ( cp2 = cp - 1; cp2 >= file && *cp2 != '/'; --cp2 ) continue; (void) strcpy( cp2 + 1, cp + 4 ); } /* Also elide any xxx/.. at the end. */ while ( ( l = strlen( file ) ) > 3 && strcmp( ( cp = file + l - 3 ), "/.." ) == 0 ) { for ( cp2 = cp - 1; cp2 >= file && *cp2 != '/'; --cp2 ) continue; if ( cp2 < file ) break; *cp2 = '\0'; } }
Class
2
IW_IMPL(unsigned int) iw_get_ui16le(const iw_byte *b) { return b[0] | (b[1]<<8); }
Pillar
3
static void coerce_reg_to_32(struct bpf_reg_state *reg) { /* clear high 32 bits */ reg->var_off = tnum_cast(reg->var_off, 4); /* Update bounds */ __update_reg_bounds(reg); }
Class
2
int insn_get_code_seg_params(struct pt_regs *regs) { struct desc_struct *desc; short sel; if (v8086_mode(regs)) /* Address and operand size are both 16-bit. */ return INSN_CODE_SEG_PARAMS(2, 2); sel = get_segment_selector(regs, INAT_SEG_REG_CS); if (sel < 0) return sel; desc = get_desc(sel); if (!desc) return -EINVAL; /* * The most significant byte of the Type field of the segment descriptor * determines whether a segment contains data or code. If this is a data * segment, return error. */ if (!(desc->type & BIT(3))) return -EINVAL; switch ((desc->l << 1) | desc->d) { case 0: /* * Legacy mode. CS.L=0, CS.D=0. Address and operand size are * both 16-bit. */ return INSN_CODE_SEG_PARAMS(2, 2); case 1: /* * Legacy mode. CS.L=0, CS.D=1. Address and operand size are * both 32-bit. */ return INSN_CODE_SEG_PARAMS(4, 4); case 2: /* * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit; * operand size is 32-bit. */ return INSN_CODE_SEG_PARAMS(4, 8); case 3: /* Invalid setting. CS.L=1, CS.D=1 */ /* fall through */ default: return -EINVAL; } }
Variant
0
static Jsi_RC NumberToExponentialCmd(Jsi_Interp *interp, Jsi_Value *args, Jsi_Value *_this, Jsi_Value **ret, Jsi_Func *funcPtr) { char buf[100]; int prec = 0, skip = 0; Jsi_Number num; Jsi_Value *v; ChkStringN(_this, funcPtr, v); if (Jsi_GetIntFromValue(interp, Jsi_ValueArrayIndex(interp, args, skip), &prec) != JSI_OK) return JSI_ERROR; if (prec<0) prec = 0; Jsi_GetDoubleFromValue(interp, v, &num); snprintf(buf, sizeof(buf), "%.*" JSI_NUMEFMT, prec, num); #ifdef __WIN32 char *e = strrchr(buf, 'e'); if (e && (e[1]=='+' || e[1]=='-')) { e++; int eNum = atoi(e); if (e[0]=='-') eNum = -eNum; e++; snprintf(e, (e-buf), "%02d", eNum); } #endif Jsi_ValueMakeStringDup(interp, ret, buf); return JSI_OK; }
Base
1
const char * util_acl_to_str(const sc_acl_entry_t *e) { static char line[80], buf[20]; unsigned int acl; if (e == NULL) return "N/A"; line[0] = 0; while (e != NULL) { acl = e->method; switch (acl) { case SC_AC_UNKNOWN: return "N/A"; case SC_AC_NEVER: return "NEVR"; case SC_AC_NONE: return "NONE"; case SC_AC_CHV: strcpy(buf, "CHV"); if (e->key_ref != SC_AC_KEY_REF_NONE) sprintf(buf + 3, "%d", e->key_ref); break; case SC_AC_TERM: strcpy(buf, "TERM"); break; case SC_AC_PRO: strcpy(buf, "PROT"); break; case SC_AC_AUT: strcpy(buf, "AUTH"); if (e->key_ref != SC_AC_KEY_REF_NONE) sprintf(buf + 4, "%d", e->key_ref); break; case SC_AC_SEN: strcpy(buf, "Sec.Env. "); if (e->key_ref != SC_AC_KEY_REF_NONE) sprintf(buf + 3, "#%d", e->key_ref); break; case SC_AC_SCB: strcpy(buf, "Sec.ControlByte "); if (e->key_ref != SC_AC_KEY_REF_NONE) sprintf(buf + 3, "Ox%X", e->key_ref); break; case SC_AC_IDA: strcpy(buf, "PKCS#15 AuthID "); if (e->key_ref != SC_AC_KEY_REF_NONE) sprintf(buf + 3, "#%d", e->key_ref); break; default: strcpy(buf, "????"); break; } strcat(line, buf); strcat(line, " "); e = e->next; } line[strlen(line)-1] = 0; /* get rid of trailing space */ return line; }
Class
2
PJ_DEF(pj_status_t) pjsip_endpt_send_request_stateless(pjsip_endpoint *endpt, pjsip_tx_data *tdata, void *token, pjsip_send_callback cb) { pjsip_host_info dest_info; pjsip_send_state *stateless_data; pj_status_t status; PJ_ASSERT_RETURN(endpt && tdata, PJ_EINVAL); /* Get destination name to contact. */ status = pjsip_process_route_set(tdata, &dest_info); if (status != PJ_SUCCESS) return status; /* Keep stateless data. */ stateless_data = PJ_POOL_ZALLOC_T(tdata->pool, pjsip_send_state); stateless_data->token = token; stateless_data->endpt = endpt; stateless_data->tdata = tdata; stateless_data->app_cb = cb; /* If destination info has not been initialized (this applies for most * all requests except CANCEL), resolve destination host. The processing * then resumed when the resolving callback is called. For CANCEL, the * destination info must have been copied from the original INVITE so * proceed to sending the request directly. */ if (tdata->dest_info.addr.count == 0) { /* Copy the destination host name to TX data */ pj_strdup(tdata->pool, &tdata->dest_info.name, &dest_info.addr.host); pjsip_endpt_resolve( endpt, tdata->pool, &dest_info, stateless_data, &stateless_send_resolver_callback); } else { PJ_LOG(5,(THIS_FILE, "%s: skipping target resolution because " "address is already set", pjsip_tx_data_get_info(tdata))); stateless_send_resolver_callback(PJ_SUCCESS, stateless_data, &tdata->dest_info.addr); } return PJ_SUCCESS; }
Base
1
static int is_integer(char *string) { if (isdigit(string[0]) || string[0] == '-' || string[0] == '+') { while (*++string && isdigit(*string)) ; /* deliberately empty */ if (!*string) return 1; } return 0; }
Class
2
ResolveStateAndPredicate(ExprDef *expr, enum xkb_match_operation *pred_rtrn, xkb_mod_mask_t *mods_rtrn, CompatInfo *info) { if (expr == NULL) { *pred_rtrn = MATCH_ANY_OR_NONE; *mods_rtrn = MOD_REAL_MASK_ALL; return true; } *pred_rtrn = MATCH_EXACTLY; if (expr->expr.op == EXPR_ACTION_DECL) { const char *pred_txt = xkb_atom_text(info->ctx, expr->action.name); if (!LookupString(symInterpretMatchMaskNames, pred_txt, pred_rtrn)) { log_err(info->ctx, "Illegal modifier predicate \"%s\"; Ignored\n", pred_txt); return false; } expr = expr->action.args; } else if (expr->expr.op == EXPR_IDENT) { const char *pred_txt = xkb_atom_text(info->ctx, expr->ident.ident); if (pred_txt && istreq(pred_txt, "any")) { *pred_rtrn = MATCH_ANY; *mods_rtrn = MOD_REAL_MASK_ALL; return true; } } return ExprResolveModMask(info->ctx, expr, MOD_REAL, &info->mods, mods_rtrn); }
Base
1
int socket_create(uint16_t port) { int sfd = -1; int yes = 1; #ifdef WIN32 WSADATA wsa_data; if (!wsa_init) { if (WSAStartup(MAKEWORD(2,2), &wsa_data) != ERROR_SUCCESS) { fprintf(stderr, "WSAStartup failed!\n"); ExitProcess(-1); } wsa_init = 1; } #endif struct sockaddr_in saddr; if (0 > (sfd = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP))) { perror("socket()"); return -1; } if (setsockopt(sfd, SOL_SOCKET, SO_REUSEADDR, (void*)&yes, sizeof(int)) == -1) { perror("setsockopt()"); socket_close(sfd); return -1; } memset((void *) &saddr, 0, sizeof(saddr)); saddr.sin_family = AF_INET; saddr.sin_addr.s_addr = htonl(INADDR_ANY); saddr.sin_port = htons(port); if (0 > bind(sfd, (struct sockaddr *) &saddr, sizeof(saddr))) { perror("bind()"); socket_close(sfd); return -1; } if (listen(sfd, 1) == -1) { perror("listen()"); socket_close(sfd); return -1; } return sfd; }
Pillar
3
buflist_getfile( int n, linenr_T lnum, int options, int forceit) { buf_T *buf; win_T *wp = NULL; pos_T *fpos; colnr_T col; buf = buflist_findnr(n); if (buf == NULL) { if ((options & GETF_ALT) && n == 0) emsg(_(e_no_alternate_file)); else semsg(_(e_buffer_nr_not_found), n); return FAIL; } // if alternate file is the current buffer, nothing to do if (buf == curbuf) return OK; if (text_locked()) { text_locked_msg(); return FAIL; } if (curbuf_locked()) return FAIL; // altfpos may be changed by getfile(), get it now if (lnum == 0) { fpos = buflist_findfpos(buf); lnum = fpos->lnum; col = fpos->col; } else col = 0; if (options & GETF_SWITCH) { // If 'switchbuf' contains "useopen": jump to first window containing // "buf" if one exists if (swb_flags & SWB_USEOPEN) wp = buf_jump_open_win(buf); // If 'switchbuf' contains "usetab": jump to first window in any tab // page containing "buf" if one exists if (wp == NULL && (swb_flags & SWB_USETAB)) wp = buf_jump_open_tab(buf); // If 'switchbuf' contains "split", "vsplit" or "newtab" and the // current buffer isn't empty: open new tab or window if (wp == NULL && (swb_flags & (SWB_VSPLIT | SWB_SPLIT | SWB_NEWTAB)) && !BUFEMPTY()) { if (swb_flags & SWB_NEWTAB) tabpage_new(); else if (win_split(0, (swb_flags & SWB_VSPLIT) ? WSP_VERT : 0) == FAIL) return FAIL; RESET_BINDING(curwin); } } ++RedrawingDisabled; if (GETFILE_SUCCESS(getfile(buf->b_fnum, NULL, NULL, (options & GETF_SETMARK), lnum, forceit))) { --RedrawingDisabled; // cursor is at to BOL and w_cursor.lnum is checked due to getfile() if (!p_sol && col != 0) { curwin->w_cursor.col = col; check_cursor_col(); curwin->w_cursor.coladd = 0; curwin->w_set_curswant = TRUE; } return OK; } --RedrawingDisabled; return FAIL; }
Variant
0
static int validate_user_key(struct fscrypt_info *crypt_info, struct fscrypt_context *ctx, u8 *raw_key, const char *prefix) { char *description; struct key *keyring_key; struct fscrypt_key *master_key; const struct user_key_payload *ukp; int res; description = kasprintf(GFP_NOFS, "%s%*phN", prefix, FS_KEY_DESCRIPTOR_SIZE, ctx->master_key_descriptor); if (!description) return -ENOMEM; keyring_key = request_key(&key_type_logon, description, NULL); kfree(description); if (IS_ERR(keyring_key)) return PTR_ERR(keyring_key); if (keyring_key->type != &key_type_logon) { printk_once(KERN_WARNING "%s: key type must be logon\n", __func__); res = -ENOKEY; goto out; } down_read(&keyring_key->sem); ukp = user_key_payload(keyring_key); if (ukp->datalen != sizeof(struct fscrypt_key)) { res = -EINVAL; up_read(&keyring_key->sem); goto out; } master_key = (struct fscrypt_key *)ukp->data; BUILD_BUG_ON(FS_AES_128_ECB_KEY_SIZE != FS_KEY_DERIVATION_NONCE_SIZE); if (master_key->size != FS_AES_256_XTS_KEY_SIZE) { printk_once(KERN_WARNING "%s: key size incorrect: %d\n", __func__, master_key->size); res = -ENOKEY; up_read(&keyring_key->sem); goto out; } res = derive_key_aes(ctx->nonce, master_key->raw, raw_key); up_read(&keyring_key->sem); if (res) goto out; crypt_info->ci_keyring_key = keyring_key; return 0; out: key_put(keyring_key); return res; }
Variant
0
spnego_gss_wrap_iov_length(OM_uint32 *minor_status, gss_ctx_id_t context_handle, int conf_req_flag, gss_qop_t qop_req, int *conf_state, gss_iov_buffer_desc *iov, int iov_count) { OM_uint32 ret; ret = gss_wrap_iov_length(minor_status, context_handle, conf_req_flag, qop_req, conf_state, iov, iov_count); return (ret); }
Base
1
void luaD_shrinkstack (lua_State *L) { int inuse = stackinuse(L); int goodsize = inuse + (inuse / 8) + 2*EXTRA_STACK; if (goodsize > LUAI_MAXSTACK) goodsize = LUAI_MAXSTACK; /* respect stack limit */ /* if thread is currently not handling a stack overflow and its good size is smaller than current size, shrink its stack */ if (inuse <= (LUAI_MAXSTACK - EXTRA_STACK) && goodsize < L->stacksize) luaD_reallocstack(L, goodsize, 0); /* ok if that fails */ else /* don't change stack */ condmovestack(L,{},{}); /* (change only for debugging) */ luaE_shrinkCI(L); /* shrink CI list */ }
Variant
0
PHP_FUNCTION(radius_get_vendor_attr) { int res; const void *data; int len; u_int32_t vendor; if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s", &data, &len) == FAILURE) { return; } res = rad_get_vendor_attr(&vendor, &data, (size_t *) &len); if (res == -1) { RETURN_FALSE; } else { array_init(return_value); add_assoc_long(return_value, "attr", res); add_assoc_long(return_value, "vendor", vendor); add_assoc_stringl(return_value, "data", (char *) data, len, 1); return; } }
Class
2
static int rawv6_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, size_t len, int noblock, int flags, int *addr_len) { struct ipv6_pinfo *np = inet6_sk(sk); struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)msg->msg_name; struct sk_buff *skb; size_t copied; int err; if (flags & MSG_OOB) return -EOPNOTSUPP; if (addr_len) *addr_len=sizeof(*sin6); if (flags & MSG_ERRQUEUE) return ipv6_recv_error(sk, msg, len); if (np->rxpmtu && np->rxopt.bits.rxpmtu) return ipv6_recv_rxpmtu(sk, msg, len); skb = skb_recv_datagram(sk, flags, noblock, &err); if (!skb) goto out; copied = skb->len; if (copied > len) { copied = len; msg->msg_flags |= MSG_TRUNC; } if (skb_csum_unnecessary(skb)) { err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); } else if (msg->msg_flags&MSG_TRUNC) { if (__skb_checksum_complete(skb)) goto csum_copy_err; err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); } else { err = skb_copy_and_csum_datagram_iovec(skb, 0, msg->msg_iov); if (err == -EINVAL) goto csum_copy_err; } if (err) goto out_free; /* Copy the address. */ if (sin6) { sin6->sin6_family = AF_INET6; sin6->sin6_port = 0; sin6->sin6_addr = ipv6_hdr(skb)->saddr; sin6->sin6_flowinfo = 0; sin6->sin6_scope_id = ipv6_iface_scope_id(&sin6->sin6_addr, IP6CB(skb)->iif); } sock_recv_ts_and_drops(msg, sk, skb); if (np->rxopt.all) ip6_datagram_recv_ctl(sk, msg, skb); err = copied; if (flags & MSG_TRUNC) err = skb->len; out_free: skb_free_datagram(sk, skb); out: return err; csum_copy_err: skb_kill_datagram(sk, skb, flags); /* Error for blocking case is chosen to masquerade as some normal condition. */ err = (flags&MSG_DONTWAIT) ? -EAGAIN : -EHOSTUNREACH; goto out; }
Class
2
static int ax25_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; struct sk_buff *skb; int copied; int err = 0; lock_sock(sk); /* * This works for seqpacket too. The receiver has ordered the * queue for us! We do one quick check first though */ if (sk->sk_type == SOCK_SEQPACKET && sk->sk_state != TCP_ESTABLISHED) { err = -ENOTCONN; goto out; } /* Now we can treat all alike */ skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &err); if (skb == NULL) goto out; if (!ax25_sk(sk)->pidincl) skb_pull(skb, 1); /* Remove PID */ skb_reset_transport_header(skb); copied = skb->len; if (copied > size) { copied = size; msg->msg_flags |= MSG_TRUNC; } skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); if (msg->msg_namelen != 0) { struct sockaddr_ax25 *sax = (struct sockaddr_ax25 *)msg->msg_name; ax25_digi digi; ax25_address src; const unsigned char *mac = skb_mac_header(skb); memset(sax, 0, sizeof(struct full_sockaddr_ax25)); ax25_addr_parse(mac + 1, skb->data - mac - 1, &src, NULL, &digi, NULL, NULL); sax->sax25_family = AF_AX25; /* We set this correctly, even though we may not let the application know the digi calls further down (because it did NOT ask to know them). This could get political... **/ sax->sax25_ndigis = digi.ndigi; sax->sax25_call = src; if (sax->sax25_ndigis != 0) { int ct; struct full_sockaddr_ax25 *fsa = (struct full_sockaddr_ax25 *)sax; for (ct = 0; ct < digi.ndigi; ct++) fsa->fsa_digipeater[ct] = digi.calls[ct]; } msg->msg_namelen = sizeof(struct full_sockaddr_ax25); } skb_free_datagram(sk, skb); err = copied; out: release_sock(sk); return err; }
Class
2
void lpc546xxEthEnableIrq(NetInterface *interface) { //Enable Ethernet MAC interrupts NVIC_EnableIRQ(ETHERNET_IRQn); //Valid Ethernet PHY or switch driver? if(interface->phyDriver != NULL) { //Enable Ethernet PHY interrupts interface->phyDriver->enableIrq(interface); } else if(interface->switchDriver != NULL) { //Enable Ethernet switch interrupts interface->switchDriver->enableIrq(interface); } else { //Just for sanity } }
Class
2
static void put_ucounts(struct ucounts *ucounts) { unsigned long flags; if (atomic_dec_and_test(&ucounts->count)) { spin_lock_irqsave(&ucounts_lock, flags); hlist_del_init(&ucounts->node); spin_unlock_irqrestore(&ucounts_lock, flags); kfree(ucounts); } }
Variant
0
static void vector64_dst_append(RStrBuf *sb, csh *handle, cs_insn *insn, int n, int i) { cs_arm64_op op = INSOP64 (n); if (op.vector_index != -1) { i = op.vector_index; } #if CS_API_MAJOR == 4 const bool isvessas = (op.vess || op.vas); #else const bool isvessas = op.vas; #endif if (isvessas && i != -1) { int size = vector_size (&op); int shift = i * size; char *regc = "l"; size_t s = sizeof (bitmask_by_width) / sizeof (*bitmask_by_width); size_t index = size > 0? (size - 1) % s: 0; if (index >= BITMASK_BY_WIDTH_COUNT) { index = 0; } ut64 mask = bitmask_by_width[index]; if (shift >= 64) { shift -= 64; regc = "h"; } if (shift > 0 && shift < 64) { r_strbuf_appendf (sb, "%d,SWAP,0x%"PFMT64x",&,<<,%s%s,0x%"PFMT64x",&,|,%s%s", shift, mask, REG64 (n), regc, VEC64_MASK (shift, size), REG64 (n), regc); } else { int dimsize = size % 64; r_strbuf_appendf (sb, "0x%"PFMT64x",&,%s%s,0x%"PFMT64x",&,|,%s%s", mask, REG64 (n), regc, VEC64_MASK (shift, dimsize), REG64 (n), regc); } } else { r_strbuf_appendf (sb, "%s", REG64 (n)); } }
Base
1
int jpg_validate(jas_stream_t *in) { uchar buf[JPG_MAGICLEN]; int i; int n; assert(JAS_STREAM_MAXPUTBACK >= JPG_MAGICLEN); /* Read the validation data (i.e., the data used for detecting the format). */ if ((n = jas_stream_read(in, buf, JPG_MAGICLEN)) < 0) { return -1; } /* Put the validation data back onto the stream, so that the stream position will not be changed. */ for (i = n - 1; i >= 0; --i) { if (jas_stream_ungetc(in, buf[i]) == EOF) { return -1; } } /* Did we read enough data? */ if (n < JPG_MAGICLEN) { return -1; } /* Does this look like JPEG? */ if (buf[0] != (JPG_MAGIC >> 8) || buf[1] != (JPG_MAGIC & 0xff)) { return -1; } return 0; }
Base
1
ber_parse_header(STREAM s, int tagval, int *length) { int tag, len; if (tagval > 0xff) { in_uint16_be(s, tag); } else { in_uint8(s, tag); } if (tag != tagval) { logger(Core, Error, "ber_parse_header(), expected tag %d, got %d", tagval, tag); return False; } in_uint8(s, len); if (len & 0x80) { len &= ~0x80; *length = 0; while (len--) next_be(s, *length); } else *length = len; return s_check(s); }
Base
1
static int snd_ctl_tlv_ioctl(struct snd_ctl_file *file, struct snd_ctl_tlv __user *_tlv, int op_flag) { struct snd_card *card = file->card; struct snd_ctl_tlv tlv; struct snd_kcontrol *kctl; struct snd_kcontrol_volatile *vd; unsigned int len; int err = 0; if (copy_from_user(&tlv, _tlv, sizeof(tlv))) return -EFAULT; if (tlv.length < sizeof(unsigned int) * 2) return -EINVAL; down_read(&card->controls_rwsem); kctl = snd_ctl_find_numid(card, tlv.numid); if (kctl == NULL) { err = -ENOENT; goto __kctl_end; } if (kctl->tlv.p == NULL) { err = -ENXIO; goto __kctl_end; } vd = &kctl->vd[tlv.numid - kctl->id.numid]; if ((op_flag == 0 && (vd->access & SNDRV_CTL_ELEM_ACCESS_TLV_READ) == 0) || (op_flag > 0 && (vd->access & SNDRV_CTL_ELEM_ACCESS_TLV_WRITE) == 0) || (op_flag < 0 && (vd->access & SNDRV_CTL_ELEM_ACCESS_TLV_COMMAND) == 0)) { err = -ENXIO; goto __kctl_end; } if (vd->access & SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK) { if (vd->owner != NULL && vd->owner != file) { err = -EPERM; goto __kctl_end; } err = kctl->tlv.c(kctl, op_flag, tlv.length, _tlv->tlv); if (err > 0) { up_read(&card->controls_rwsem); snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_TLV, &kctl->id); return 0; } } else { if (op_flag) { err = -ENXIO; goto __kctl_end; } len = kctl->tlv.p[1] + 2 * sizeof(unsigned int); if (tlv.length < len) { err = -ENOMEM; goto __kctl_end; } if (copy_to_user(_tlv->tlv, kctl->tlv.p, len)) err = -EFAULT; } __kctl_end: up_read(&card->controls_rwsem); return err; }
Variant
0
beep_print(netdissect_options *ndo, const u_char *bp, u_int length) { if (l_strnstart("MSG", 4, (const char *)bp, length)) /* A REQuest */ ND_PRINT((ndo, " BEEP MSG")); else if (l_strnstart("RPY ", 4, (const char *)bp, length)) ND_PRINT((ndo, " BEEP RPY")); else if (l_strnstart("ERR ", 4, (const char *)bp, length)) ND_PRINT((ndo, " BEEP ERR")); else if (l_strnstart("ANS ", 4, (const char *)bp, length)) ND_PRINT((ndo, " BEEP ANS")); else if (l_strnstart("NUL ", 4, (const char *)bp, length)) ND_PRINT((ndo, " BEEP NUL")); else if (l_strnstart("SEQ ", 4, (const char *)bp, length)) ND_PRINT((ndo, " BEEP SEQ")); else if (l_strnstart("END", 4, (const char *)bp, length)) ND_PRINT((ndo, " BEEP END")); else ND_PRINT((ndo, " BEEP (payload or undecoded)")); }
Base
1
static inline int _setEdgePixel(const gdImagePtr src, unsigned int x, unsigned int y, gdFixed coverage, const int bgColor) { const gdFixed f_127 = gd_itofx(127); register int c = src->tpixels[y][x]; c = c | (( (int) (gd_fxtof(gd_mulfx(coverage, f_127)) + 50.5f)) << 24); return _color_blend(bgColor, c); }
Base
1
fp_setreadl(struct tok_state *tok, const char* enc) { PyObject *readline, *io, *stream; _Py_IDENTIFIER(open); _Py_IDENTIFIER(readline); int fd; long pos; fd = fileno(tok->fp); /* Due to buffering the file offset for fd can be different from the file * position of tok->fp. If tok->fp was opened in text mode on Windows, * its file position counts CRLF as one char and can't be directly mapped * to the file offset for fd. Instead we step back one byte and read to * the end of line.*/ pos = ftell(tok->fp); if (pos == -1 || lseek(fd, (off_t)(pos > 0 ? pos - 1 : pos), SEEK_SET) == (off_t)-1) { PyErr_SetFromErrnoWithFilename(PyExc_OSError, NULL); return 0; } io = PyImport_ImportModuleNoBlock("io"); if (io == NULL) return 0; stream = _PyObject_CallMethodId(io, &PyId_open, "isisOOO", fd, "r", -1, enc, Py_None, Py_None, Py_False); Py_DECREF(io); if (stream == NULL) return 0; readline = _PyObject_GetAttrId(stream, &PyId_readline); Py_DECREF(stream); if (readline == NULL) return 0; Py_XSETREF(tok->decoding_readline, readline); if (pos > 0) { PyObject *bufobj = PyObject_CallObject(readline, NULL); if (bufobj == NULL) return 0; Py_DECREF(bufobj); } return 1; }
Base
1
static int ax25_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; struct sk_buff *skb; int copied; int err = 0; lock_sock(sk); /* * This works for seqpacket too. The receiver has ordered the * queue for us! We do one quick check first though */ if (sk->sk_type == SOCK_SEQPACKET && sk->sk_state != TCP_ESTABLISHED) { err = -ENOTCONN; goto out; } /* Now we can treat all alike */ skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &err); if (skb == NULL) goto out; if (!ax25_sk(sk)->pidincl) skb_pull(skb, 1); /* Remove PID */ skb_reset_transport_header(skb); copied = skb->len; if (copied > size) { copied = size; msg->msg_flags |= MSG_TRUNC; } skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); if (msg->msg_namelen != 0) { struct sockaddr_ax25 *sax = (struct sockaddr_ax25 *)msg->msg_name; ax25_digi digi; ax25_address src; const unsigned char *mac = skb_mac_header(skb); memset(sax, 0, sizeof(struct full_sockaddr_ax25)); ax25_addr_parse(mac + 1, skb->data - mac - 1, &src, NULL, &digi, NULL, NULL); sax->sax25_family = AF_AX25; /* We set this correctly, even though we may not let the application know the digi calls further down (because it did NOT ask to know them). This could get political... **/ sax->sax25_ndigis = digi.ndigi; sax->sax25_call = src; if (sax->sax25_ndigis != 0) { int ct; struct full_sockaddr_ax25 *fsa = (struct full_sockaddr_ax25 *)sax; for (ct = 0; ct < digi.ndigi; ct++) fsa->fsa_digipeater[ct] = digi.calls[ct]; } msg->msg_namelen = sizeof(struct full_sockaddr_ax25); } skb_free_datagram(sk, skb); err = copied; out: release_sock(sk); return err; }
Class
2
static void copy_fields(const FieldMatchContext *fm, AVFrame *dst, const AVFrame *src, int field) { int plane; for (plane = 0; plane < 4 && src->data[plane]; plane++) av_image_copy_plane(dst->data[plane] + field*dst->linesize[plane], dst->linesize[plane] << 1, src->data[plane] + field*src->linesize[plane], src->linesize[plane] << 1, get_width(fm, src, plane), get_height(fm, src, plane) / 2); }
Class
2
pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr) { int mmc; /* Number of msi messages must be a power of 2 between 1 and 32 */ assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32); mmc = ffs(msgnum) - 1; bzero(msicap, sizeof(struct msicap)); msicap->capid = PCIY_MSI; msicap->nextptr = nextptr; msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1); }
Base
1
png_check_chunk_length(png_const_structrp png_ptr, const png_uint_32 length) { png_alloc_size_t limit = PNG_UINT_31_MAX; # ifdef PNG_SET_USER_LIMITS_SUPPORTED if (png_ptr->user_chunk_malloc_max > 0 && png_ptr->user_chunk_malloc_max < limit) limit = png_ptr->user_chunk_malloc_max; # elif PNG_USER_CHUNK_MALLOC_MAX > 0 if (PNG_USER_CHUNK_MALLOC_MAX < limit) limit = PNG_USER_CHUNK_MALLOC_MAX; # endif if (png_ptr->chunk_name == png_IDAT) { png_alloc_size_t idat_limit = PNG_UINT_31_MAX; size_t row_factor = (png_ptr->width * png_ptr->channels * (png_ptr->bit_depth > 8? 2: 1) + 1 + (png_ptr->interlaced? 6: 0)); if (png_ptr->height > PNG_UINT_32_MAX/row_factor) idat_limit=PNG_UINT_31_MAX; else idat_limit = png_ptr->height * row_factor; row_factor = row_factor > 32566? 32566 : row_factor; idat_limit += 6 + 5*(idat_limit/row_factor+1); /* zlib+deflate overhead */ idat_limit=idat_limit < PNG_UINT_31_MAX? idat_limit : PNG_UINT_31_MAX; limit = limit < idat_limit? idat_limit : limit; } if (length > limit) { png_debug2(0," length = %lu, limit = %lu", (unsigned long)length,(unsigned long)limit); png_chunk_error(png_ptr, "chunk data is too large"); } }
Base
1
vrrp_tfile_end_handler(void) { vrrp_tracked_file_t *tfile = LIST_TAIL_DATA(vrrp_data->vrrp_track_files); struct stat statb; FILE *tf; int ret; if (!tfile->file_path) { report_config_error(CONFIG_GENERAL_ERROR, "No file set for track_file %s - removing", tfile->fname); free_list_element(vrrp_data->vrrp_track_files, vrrp_data->vrrp_track_files->tail); return; } if (track_file_init == TRACK_FILE_NO_INIT) return; ret = stat(tfile->file_path, &statb); if (!ret) { if (track_file_init == TRACK_FILE_CREATE) { /* The file exists */ return; } if ((statb.st_mode & S_IFMT) != S_IFREG) { /* It is not a regular file */ report_config_error(CONFIG_GENERAL_ERROR, "Cannot initialise track file %s - it is not a regular file", tfile->fname); return; } /* Don't overwrite a file on reload */ if (reload) return; } if (!__test_bit(CONFIG_TEST_BIT, &debug)) { /* Write the value to the file */ if ((tf = fopen(tfile->file_path, "w"))) { fprintf(tf, "%d\n", track_file_init_value); fclose(tf); } else report_config_error(CONFIG_GENERAL_ERROR, "Unable to initialise track file %s", tfile->fname); } }
Base
1
static int jas_iccgetuint64(jas_stream_t *in, jas_iccuint64_t *val) { ulonglong tmp; if (jas_iccgetuint(in, 8, &tmp)) return -1; *val = tmp; return 0; }
Base
1
int imap_subscribe (char *path, int subscribe) { IMAP_DATA *idata; char buf[LONG_STRING]; char mbox[LONG_STRING]; char errstr[STRING]; BUFFER err, token; IMAP_MBOX mx; if (!mx_is_imap (path) || imap_parse_path (path, &mx) || !mx.mbox) { mutt_error (_("Bad mailbox name")); return -1; } if (!(idata = imap_conn_find (&(mx.account), 0))) goto fail; imap_fix_path (idata, mx.mbox, buf, sizeof (buf)); if (!*buf) strfcpy (buf, "INBOX", sizeof (buf)); if (option (OPTIMAPCHECKSUBSCRIBED)) { mutt_buffer_init (&token); mutt_buffer_init (&err); err.data = errstr; err.dsize = sizeof (errstr); snprintf (mbox, sizeof (mbox), "%smailboxes \"%s\"", subscribe ? "" : "un", path); if (mutt_parse_rc_line (mbox, &token, &err)) dprint (1, (debugfile, "Error adding subscribed mailbox: %s\n", errstr)); FREE (&token.data); } if (subscribe) mutt_message (_("Subscribing to %s..."), buf); else mutt_message (_("Unsubscribing from %s..."), buf); imap_munge_mbox_name (idata, mbox, sizeof(mbox), buf); snprintf (buf, sizeof (buf), "%sSUBSCRIBE %s", subscribe ? "" : "UN", mbox); if (imap_exec (idata, buf, 0) < 0) goto fail; imap_unmunge_mbox_name(idata, mx.mbox); if (subscribe) mutt_message (_("Subscribed to %s"), mx.mbox); else mutt_message (_("Unsubscribed from %s"), mx.mbox); FREE (&mx.mbox); return 0; fail: FREE (&mx.mbox); return -1; }
Base
1
static const char *parse_array( cJSON *item, const char *value ) { cJSON *child; if ( *value != '[' ) { /* Not an array! */ ep = value; return 0; } item->type = cJSON_Array; value = skip( value + 1 ); if ( *value == ']' ) return value + 1; /* empty array. */ if ( ! ( item->child = child = cJSON_New_Item() ) ) return 0; /* memory fail */ if ( ! ( value = skip( parse_value( child, skip( value ) ) ) ) ) return 0; while ( *value == ',' ) { cJSON *new_item; if ( ! ( new_item = cJSON_New_Item() ) ) return 0; /* memory fail */ child->next = new_item; new_item->prev = child; child = new_item; if ( ! ( value = skip( parse_value( child, skip( value+1 ) ) ) ) ) return 0; /* memory fail */ } if ( *value == ']' ) return value + 1; /* end of array */ /* Malformed. */ ep = value; return 0; }
Base
1
mcs_parse_domain_params(STREAM s) { int length; ber_parse_header(s, MCS_TAG_DOMAIN_PARAMS, &length); in_uint8s(s, length); return s_check(s); }
Base
1
void imap_quote_string (char *dest, size_t dlen, const char *src) { static const char quote[] = "\"\\"; char *pt; const char *s; pt = dest; s = src; *pt++ = '"'; /* save room for trailing quote-char */ dlen -= 2; for (; *s && dlen; s++) { if (strchr (quote, *s)) { dlen -= 2; if (!dlen) break; *pt++ = '\\'; *pt++ = *s; } else { *pt++ = *s; dlen--; } } *pt++ = '"'; *pt = 0; }
Base
1
static int dccp_error(struct net *net, struct nf_conn *tmpl, struct sk_buff *skb, unsigned int dataoff, enum ip_conntrack_info *ctinfo, u_int8_t pf, unsigned int hooknum) { struct dccp_hdr _dh, *dh; unsigned int dccp_len = skb->len - dataoff; unsigned int cscov; const char *msg; dh = skb_header_pointer(skb, dataoff, sizeof(_dh), &dh); if (dh == NULL) { msg = "nf_ct_dccp: short packet "; goto out_invalid; } if (dh->dccph_doff * 4 < sizeof(struct dccp_hdr) || dh->dccph_doff * 4 > dccp_len) { msg = "nf_ct_dccp: truncated/malformed packet "; goto out_invalid; } cscov = dccp_len; if (dh->dccph_cscov) { cscov = (dh->dccph_cscov - 1) * 4; if (cscov > dccp_len) { msg = "nf_ct_dccp: bad checksum coverage "; goto out_invalid; } } if (net->ct.sysctl_checksum && hooknum == NF_INET_PRE_ROUTING && nf_checksum_partial(skb, hooknum, dataoff, cscov, IPPROTO_DCCP, pf)) { msg = "nf_ct_dccp: bad checksum "; goto out_invalid; } if (dh->dccph_type >= DCCP_PKT_INVALID) { msg = "nf_ct_dccp: reserved packet type "; goto out_invalid; } return NF_ACCEPT; out_invalid: if (LOG_INVALID(net, IPPROTO_DCCP)) nf_log_packet(net, pf, 0, skb, NULL, NULL, NULL, "%s", msg); return -NF_ACCEPT; }
Class
2
NOEXPORT int parse_socket_error(CLI *c, const char *text) { switch(get_last_socket_error()) { /* http://tangentsoft.net/wskfaq/articles/bsd-compatibility.html */ case 0: /* close on read, or close on write on WIN32 */ #ifndef USE_WIN32 case EPIPE: /* close on write on Unix */ #endif case S_ECONNABORTED: s_log(LOG_INFO, "%s: Socket is closed", text); return 0; case S_EINTR: s_log(LOG_DEBUG, "%s: Interrupted by a signal: retrying", text); return 1; case S_EWOULDBLOCK: s_log(LOG_NOTICE, "%s: Would block: retrying", text); s_poll_sleep(1, 0); /* Microsoft bug KB177346 */ return 1; #if S_EAGAIN!=S_EWOULDBLOCK case S_EAGAIN: s_log(LOG_DEBUG, "%s: Temporary lack of resources: retrying", text); return 1; #endif #ifdef USE_WIN32 case S_ECONNRESET: /* dying "exec" processes on Win32 cause reset instead of close */ if(c->opt->exec_name) { s_log(LOG_INFO, "%s: Socket is closed (exec)", text); return 0; } /* fall through */ #endif default: sockerror(text); throw_exception(c, 1); return -1; /* some C compilers require a return value */ } }
Base
1
static int jas_iccgetsint32(jas_stream_t *in, jas_iccsint32_t *val) { ulonglong tmp; if (jas_iccgetuint(in, 4, &tmp)) return -1; *val = (tmp & 0x80000000) ? (-JAS_CAST(longlong, (((~tmp) & 0x7fffffff) + 1))) : JAS_CAST(longlong, tmp); return 0; }
Base
1
int jffs2_set_acl(struct inode *inode, struct posix_acl *acl, int type) { int rc, xprefix; switch (type) { case ACL_TYPE_ACCESS: xprefix = JFFS2_XPREFIX_ACL_ACCESS; if (acl) { umode_t mode = inode->i_mode; rc = posix_acl_equiv_mode(acl, &mode); if (rc < 0) return rc; if (inode->i_mode != mode) { struct iattr attr; attr.ia_valid = ATTR_MODE | ATTR_CTIME; attr.ia_mode = mode; attr.ia_ctime = CURRENT_TIME_SEC; rc = jffs2_do_setattr(inode, &attr); if (rc < 0) return rc; } if (rc == 0) acl = NULL; } break; case ACL_TYPE_DEFAULT: xprefix = JFFS2_XPREFIX_ACL_DEFAULT; if (!S_ISDIR(inode->i_mode)) return acl ? -EACCES : 0; break; default: return -EINVAL; } rc = __jffs2_set_acl(inode, xprefix, acl); if (!rc) set_cached_acl(inode, type, acl); return rc; }
Class
2
static long do_get_mempolicy(int *policy, nodemask_t *nmask, unsigned long addr, unsigned long flags) { int err; struct mm_struct *mm = current->mm; struct vm_area_struct *vma = NULL; struct mempolicy *pol = current->mempolicy; if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) return -EINVAL; if (flags & MPOL_F_MEMS_ALLOWED) { if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) return -EINVAL; *policy = 0; /* just so it's initialized */ task_lock(current); *nmask = cpuset_current_mems_allowed; task_unlock(current); return 0; } if (flags & MPOL_F_ADDR) { /* * Do NOT fall back to task policy if the * vma/shared policy at addr is NULL. We * want to return MPOL_DEFAULT in this case. */ down_read(&mm->mmap_sem); vma = find_vma_intersection(mm, addr, addr+1); if (!vma) { up_read(&mm->mmap_sem); return -EFAULT; } if (vma->vm_ops && vma->vm_ops->get_policy) pol = vma->vm_ops->get_policy(vma, addr); else pol = vma->vm_policy; } else if (addr) return -EINVAL; if (!pol) pol = &default_policy; /* indicates default behavior */ if (flags & MPOL_F_NODE) { if (flags & MPOL_F_ADDR) { err = lookup_node(addr); if (err < 0) goto out; *policy = err; } else if (pol == current->mempolicy && pol->mode == MPOL_INTERLEAVE) { *policy = next_node_in(current->il_prev, pol->v.nodes); } else { err = -EINVAL; goto out; } } else { *policy = pol == &default_policy ? MPOL_DEFAULT : pol->mode; /* * Internal mempolicy flags must be masked off before exposing * the policy to userspace. */ *policy |= (pol->flags & MPOL_MODE_FLAGS); } if (vma) { up_read(&current->mm->mmap_sem); vma = NULL; } err = 0; if (nmask) { if (mpol_store_user_nodemask(pol)) { *nmask = pol->w.user_nodemask; } else { task_lock(current); get_policy_nodemask(pol, nmask); task_unlock(current); } } out: mpol_cond_put(pol); if (vma) up_read(&current->mm->mmap_sem); return err; }
Variant
0
static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) { struct dentry *dir; struct fscrypt_info *ci; int dir_has_key, cached_with_key; if (flags & LOOKUP_RCU) return -ECHILD; dir = dget_parent(dentry); if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) { dput(dir); return 0; } ci = d_inode(dir)->i_crypt_info; if (ci && ci->ci_keyring_key && (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) | (1 << KEY_FLAG_REVOKED) | (1 << KEY_FLAG_DEAD)))) ci = NULL; /* this should eventually be an flag in d_flags */ spin_lock(&dentry->d_lock); cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY; spin_unlock(&dentry->d_lock); dir_has_key = (ci != NULL); dput(dir); /* * If the dentry was cached without the key, and it is a * negative dentry, it might be a valid name. We can't check * if the key has since been made available due to locking * reasons, so we fail the validation so ext4_lookup() can do * this check. * * We also fail the validation if the dentry was created with * the key present, but we no longer have the key, or vice versa. */ if ((!cached_with_key && d_is_negative(dentry)) || (!cached_with_key && dir_has_key) || (cached_with_key && !dir_has_key)) return 0; return 1; }
Variant
0
static __u8 *nci_extract_rf_params_nfcb_passive_poll(struct nci_dev *ndev, struct rf_tech_specific_params_nfcb_poll *nfcb_poll, __u8 *data) { nfcb_poll->sensb_res_len = *data++; pr_debug("sensb_res_len %d\n", nfcb_poll->sensb_res_len); memcpy(nfcb_poll->sensb_res, data, nfcb_poll->sensb_res_len); data += nfcb_poll->sensb_res_len; return data; }
Class
2
ex_function(exarg_T *eap) { (void)define_function(eap, NULL); }
Variant
0
dbcs_ptr2len( char_u *p) { int len; // Check if second byte is not missing. len = MB_BYTE2LEN(*p); if (len == 2 && p[1] == NUL) len = 1; return len; }
Variant
0
static int add_attributes(PyTypeObject* type, char**attrs, int num_fields) { int i, result; _Py_IDENTIFIER(_attributes); PyObject *s, *l = PyTuple_New(num_fields); if (!l) return 0; for (i = 0; i < num_fields; i++) { s = PyUnicode_FromString(attrs[i]); if (!s) { Py_DECREF(l); return 0; } PyTuple_SET_ITEM(l, i, s); } result = _PyObject_SetAttrId((PyObject*)type, &PyId__attributes, l) >= 0; Py_DECREF(l); return result; }
Base
1
error_t ftpClientParsePwdReply(FtpClientContext *context, char_t *path, size_t maxLen) { size_t length; char_t *p; //Search for the last double quote p = strrchr(context->buffer, '\"'); //Failed to parse the response? if(p == NULL) return ERROR_INVALID_SYNTAX; //Split the string *p = '\0'; //Search for the first double quote p = strchr(context->buffer, '\"'); //Failed to parse the response? if(p == NULL) return ERROR_INVALID_SYNTAX; //Retrieve the length of the working directory length = osStrlen(p + 1); //Limit the number of characters to copy length = MIN(length, maxLen); //Copy the string osStrncpy(path, p + 1, length); //Properly terminate the string with a NULL character path[length] = '\0'; //Successful processing return NO_ERROR; }
Class
2
static void put_crypt_info(struct fscrypt_info *ci) { if (!ci) return; key_put(ci->ci_keyring_key); crypto_free_skcipher(ci->ci_ctfm); kmem_cache_free(fscrypt_info_cachep, ci); }
Variant
0
static int may_create_in_sticky(struct dentry * const dir, struct inode * const inode) { if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || likely(!(dir->d_inode->i_mode & S_ISVTX)) || uid_eq(inode->i_uid, dir->d_inode->i_uid) || uid_eq(current_fsuid(), inode->i_uid)) return 0; if (likely(dir->d_inode->i_mode & 0002) || (dir->d_inode->i_mode & 0020 && ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { const char *operation = S_ISFIFO(inode->i_mode) ? "sticky_create_fifo" : "sticky_create_regular"; audit_log_path_denied(AUDIT_ANOM_CREAT, operation); return -EACCES; } return 0; }
Variant
0
static int hns_gmac_get_sset_count(int stringset) { if (stringset == ETH_SS_STATS) return ARRAY_SIZE(g_gmac_stats_string); return 0; }
Class
2
void lpc546xxEthDisableIrq(NetInterface *interface) { //Disable Ethernet MAC interrupts NVIC_DisableIRQ(ETHERNET_IRQn); //Valid Ethernet PHY or switch driver? if(interface->phyDriver != NULL) { //Disable Ethernet PHY interrupts interface->phyDriver->disableIrq(interface); } else if(interface->switchDriver != NULL) { //Disable Ethernet switch interrupts interface->switchDriver->disableIrq(interface); } else { //Just for sanity } }
Class
2
request_env(agooReq req, VALUE self) { if (Qnil == (VALUE)req->env) { volatile VALUE env = rb_hash_new(); // As described by // http://www.rubydoc.info/github/rack/rack/master/file/SPEC and // https://github.com/rack/rack/blob/master/SPEC. rb_hash_aset(env, request_method_val, req_method(req)); rb_hash_aset(env, script_name_val, req_script_name(req)); rb_hash_aset(env, path_info_val, req_path_info(req)); rb_hash_aset(env, query_string_val, req_query_string(req)); rb_hash_aset(env, server_name_val, req_server_name(req)); rb_hash_aset(env, server_port_val, req_server_port(req)); fill_headers(req, env); rb_hash_aset(env, rack_version_val, rack_version_val_val); rb_hash_aset(env, rack_url_scheme_val, req_rack_url_scheme(req)); rb_hash_aset(env, rack_input_val, req_rack_input(req)); rb_hash_aset(env, rack_errors_val, req_rack_errors(req)); rb_hash_aset(env, rack_multithread_val, req_rack_multithread(req)); rb_hash_aset(env, rack_multiprocess_val, Qfalse); rb_hash_aset(env, rack_run_once_val, Qfalse); rb_hash_aset(env, rack_logger_val, req_rack_logger(req)); rb_hash_aset(env, rack_upgrade_val, req_rack_upgrade(req)); rb_hash_aset(env, rack_hijackq_val, Qtrue); // TBD should return IO on #call and set hijack_io on env object that // has a call method that wraps the req->res->con->sock then set the // sock to 0 or maybe con. mutex? env[rack.hijack_io] = IO.new(sock, // "rw") - maybe it works. // // set a flag on con to indicate it has been hijacked // then set sock to 0 in con loop and destroy con rb_hash_aset(env, rack_hijack_val, self); rb_hash_aset(env, rack_hijack_io_val, Qnil); if (agoo_server.rack_early_hints) { volatile VALUE eh = agoo_early_hints_new(req); rb_hash_aset(env, early_hints_val, eh); } req->env = (void*)env; } return (VALUE)req->env; }
Base
1
static int kvm_ioctl_create_device(struct kvm *kvm, struct kvm_create_device *cd) { struct kvm_device_ops *ops = NULL; struct kvm_device *dev; bool test = cd->flags & KVM_CREATE_DEVICE_TEST; int ret; if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) return -ENODEV; ops = kvm_device_ops_table[cd->type]; if (ops == NULL) return -ENODEV; if (test) return 0; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; dev->ops = ops; dev->kvm = kvm; mutex_lock(&kvm->lock); ret = ops->create(dev, cd->type); if (ret < 0) { mutex_unlock(&kvm->lock); kfree(dev); return ret; } list_add(&dev->vm_node, &kvm->devices); mutex_unlock(&kvm->lock); if (ops->init) ops->init(dev); ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); if (ret < 0) { ops->destroy(dev); mutex_lock(&kvm->lock); list_del(&dev->vm_node); mutex_unlock(&kvm->lock); return ret; } kvm_get_kvm(kvm); cd->fd = ret; return 0; }
Variant
0
modify_bar_registration(struct pci_vdev *dev, int idx, int registration) { int error; struct inout_port iop; struct mem_range mr; if (is_pci_gvt(dev)) { /* GVT device is the only one who traps the pci bar access and * intercepts the corresponding contents in kernel. It needs * register pci resource only, but no need to register the * region. * * FIXME: This is a short term solution. This patch will be * obsoleted with the migration of using OVMF to do bar * addressing and generate ACPI PCI resource from using * acrn-dm. */ printf("modify_bar_registration: bypass for pci-gvt\n"); return; } switch (dev->bar[idx].type) { case PCIBAR_IO: bzero(&iop, sizeof(struct inout_port)); iop.name = dev->name; iop.port = dev->bar[idx].addr; iop.size = dev->bar[idx].size; if (registration) { iop.flags = IOPORT_F_INOUT; iop.handler = pci_emul_io_handler; iop.arg = dev; error = register_inout(&iop); } else error = unregister_inout(&iop); break; case PCIBAR_MEM32: case PCIBAR_MEM64: bzero(&mr, sizeof(struct mem_range)); mr.name = dev->name; mr.base = dev->bar[idx].addr; mr.size = dev->bar[idx].size; if (registration) { mr.flags = MEM_F_RW; mr.handler = pci_emul_mem_handler; mr.arg1 = dev; mr.arg2 = idx; error = register_mem(&mr); } else error = unregister_mem(&mr); break; default: error = EINVAL; break; } assert(error == 0); }
Base
1
struct dst_entry *inet6_csk_route_req(const struct sock *sk, struct flowi6 *fl6, const struct request_sock *req, u8 proto) { struct inet_request_sock *ireq = inet_rsk(req); const struct ipv6_pinfo *np = inet6_sk(sk); struct in6_addr *final_p, final; struct dst_entry *dst; memset(fl6, 0, sizeof(*fl6)); fl6->flowi6_proto = proto; fl6->daddr = ireq->ir_v6_rmt_addr; final_p = fl6_update_dst(fl6, np->opt, &final); fl6->saddr = ireq->ir_v6_loc_addr; fl6->flowi6_oif = ireq->ir_iif; fl6->flowi6_mark = ireq->ir_mark; fl6->fl6_dport = ireq->ir_rmt_port; fl6->fl6_sport = htons(ireq->ir_num); security_req_classify_flow(req, flowi6_to_flowi(fl6)); dst = ip6_dst_lookup_flow(sk, fl6, final_p); if (IS_ERR(dst)) return NULL; return dst; }
Variant
0
SPL_METHOD(SplFileObject, rewind) { spl_filesystem_object *intern = (spl_filesystem_object*)zend_object_store_get_object(getThis() TSRMLS_CC); if (zend_parse_parameters_none() == FAILURE) { return; } spl_filesystem_file_rewind(getThis(), intern TSRMLS_CC); } /* }}} */
Base
1
eval_lambda( char_u **arg, typval_T *rettv, evalarg_T *evalarg, int verbose) // give error messages { int evaluate = evalarg != NULL && (evalarg->eval_flags & EVAL_EVALUATE); typval_T base = *rettv; int ret; rettv->v_type = VAR_UNKNOWN; if (**arg == '{') { // ->{lambda}() ret = get_lambda_tv(arg, rettv, FALSE, evalarg); } else { // ->(lambda)() ++*arg; ret = eval1(arg, rettv, evalarg); *arg = skipwhite_and_linebreak(*arg, evalarg); if (**arg != ')') { emsg(_(e_missing_closing_paren)); ret = FAIL; } ++*arg; } if (ret != OK) return FAIL; else if (**arg != '(') { if (verbose) { if (*skipwhite(*arg) == '(') emsg(_(e_nowhitespace)); else semsg(_(e_missing_parenthesis_str), "lambda"); } clear_tv(rettv); ret = FAIL; } else ret = call_func_rettv(arg, evalarg, rettv, evaluate, NULL, &base); // Clear the funcref afterwards, so that deleting it while // evaluating the arguments is possible (see test55). if (evaluate) clear_tv(&base); return ret; }
Variant
0
mcs_recv_connect_response(STREAM mcs_data) { UNUSED(mcs_data); uint8 result; int length; STREAM s; RD_BOOL is_fastpath; uint8 fastpath_hdr; logger(Protocol, Debug, "%s()", __func__); s = iso_recv(&is_fastpath, &fastpath_hdr); if (s == NULL) return False; ber_parse_header(s, MCS_CONNECT_RESPONSE, &length); ber_parse_header(s, BER_TAG_RESULT, &length); in_uint8(s, result); if (result != 0) { logger(Protocol, Error, "mcs_recv_connect_response(), result=%d", result); return False; } ber_parse_header(s, BER_TAG_INTEGER, &length); in_uint8s(s, length); /* connect id */ mcs_parse_domain_params(s); ber_parse_header(s, BER_TAG_OCTET_STRING, &length); sec_process_mcs_data(s); /* if (length > mcs_data->size) { logger(Protocol, Error, "mcs_recv_connect_response(), expected length=%d, got %d",length, mcs_data->size); length = mcs_data->size; } in_uint8a(s, mcs_data->data, length); mcs_data->p = mcs_data->data; mcs_data->end = mcs_data->data + length; */ return s_check_end(s); }
Base
1
static const char *parse_object( cJSON *item, const char *value ) { cJSON *child; if ( *value != '{' ) { /* Not an object! */ ep = value; return 0; } item->type = cJSON_Object; value =skip( value + 1 ); if ( *value == '}' ) return value + 1; /* empty array. */ if ( ! ( item->child = child = cJSON_New_Item() ) ) return 0; if ( ! ( value = skip( parse_string( child, skip( value ) ) ) ) ) return 0; child->string = child->valuestring; child->valuestring = 0; if ( *value != ':' ) { /* Fail! */ ep = value; return 0; } if ( ! ( value = skip( parse_value( child, skip( value + 1 ) ) ) ) ) return 0; while ( *value == ',' ) { cJSON *new_item; if ( ! ( new_item = cJSON_New_Item() ) ) return 0; /* memory fail */ child->next = new_item; new_item->prev = child; child = new_item; if ( ! ( value = skip( parse_string( child, skip( value + 1 ) ) ) ) ) return 0; child->string = child->valuestring; child->valuestring = 0; if ( *value != ':' ) { /* Fail! */ ep = value; return 0; } if ( ! ( value = skip( parse_value( child, skip( value + 1 ) ) ) ) ) return 0; } if ( *value == '}' ) return value + 1; /* end of array */ /* Malformed. */ ep = value; return 0; }
Base
1
static int hci_sock_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t len, int flags) { int noblock = flags & MSG_DONTWAIT; struct sock *sk = sock->sk; struct sk_buff *skb; int copied, err; BT_DBG("sock %p, sk %p", sock, sk); if (flags & (MSG_OOB)) return -EOPNOTSUPP; if (sk->sk_state == BT_CLOSED) return 0; skb = skb_recv_datagram(sk, flags, noblock, &err); if (!skb) return err; msg->msg_namelen = 0; copied = skb->len; if (len < copied) { msg->msg_flags |= MSG_TRUNC; copied = len; } skb_reset_transport_header(skb); err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); switch (hci_pi(sk)->channel) { case HCI_CHANNEL_RAW: hci_sock_cmsg(sk, msg, skb); break; case HCI_CHANNEL_USER: case HCI_CHANNEL_CONTROL: case HCI_CHANNEL_MONITOR: sock_recv_timestamp(msg, sk, skb); break; } skb_free_datagram(sk, skb); return err ? : copied; }
Class
2
int secure_check(void *data) { const at91_secure_header_t *header; void *file; if (secure_decrypt(data, sizeof(*header), 0)) return -1; header = (const at91_secure_header_t *)data; if (header->magic != AT91_SECURE_MAGIC) return -1; file = (unsigned char *)data + sizeof(*header); return secure_decrypt(file, header->file_size, 1); }
Base
1
fm_mgr_config_init ( OUT p_fm_config_conx_hdlt *p_hdl, IN int instance, OPTIONAL IN char *rem_address, OPTIONAL IN char *community ) { fm_config_conx_hdl *hdl; fm_mgr_config_errno_t res = FM_CONF_OK; if ( (hdl = calloc(1,sizeof(fm_config_conx_hdl))) == NULL ) { res = FM_CONF_NO_MEM; goto cleanup; } hdl->instance = instance; *p_hdl = hdl; // connect to the snmp agent via localhost? if(!rem_address || (strcmp(rem_address,"localhost") == 0)) { if ( fm_mgr_config_mgr_connect(hdl, FM_MGR_SM) == FM_CONF_INIT_ERR ) { res = FM_CONF_INIT_ERR; goto cleanup; } if ( fm_mgr_config_mgr_connect(hdl, FM_MGR_PM) == FM_CONF_INIT_ERR ) { res = FM_CONF_INIT_ERR; goto cleanup; } if ( fm_mgr_config_mgr_connect(hdl, FM_MGR_FE) == FM_CONF_INIT_ERR ) { res = FM_CONF_INIT_ERR; goto cleanup; } } return res; cleanup: if ( hdl ) { free(hdl); hdl = NULL; } return res; }
Class
2
static char* cJSON_strdup( const char* str ) { size_t len; char* copy; len = strlen( str ) + 1; if ( ! ( copy = (char*) cJSON_malloc( len ) ) ) return 0; memcpy( copy, str, len ); return copy; }
Base
1
add_mibfile(const char* tmpstr, const char* d_name, FILE *ip ) { FILE *fp; char token[MAXTOKEN], token2[MAXTOKEN]; /* * which module is this */ if ((fp = fopen(tmpstr, "r")) == NULL) { snmp_log_perror(tmpstr); return 1; } DEBUGMSGTL(("parse-mibs", "Checking file: %s...\n", tmpstr)); mibLine = 1; File = tmpstr; if (get_token(fp, token, MAXTOKEN) != LABEL) { fclose(fp); return 1; } /* * simple test for this being a MIB */ if (get_token(fp, token2, MAXTOKEN) == DEFINITIONS) { new_module(token, tmpstr); if (ip) fprintf(ip, "%s %s\n", token, d_name); fclose(fp); return 0; } else { fclose(fp); return 1; } }
Base
1
*/ static int wddx_stack_destroy(wddx_stack *stack) { register int i; if (stack->elements) { for (i = 0; i < stack->top; i++) { if (((st_entry *)stack->elements[i])->data) { zval_ptr_dtor(&((st_entry *)stack->elements[i])->data); } if (((st_entry *)stack->elements[i])->varname) { efree(((st_entry *)stack->elements[i])->varname); } efree(stack->elements[i]); } efree(stack->elements); } return SUCCESS;
Variant
0
check_entry_size_and_hooks(struct ip6t_entry *e, struct xt_table_info *newinfo, const unsigned char *base, const unsigned char *limit, const unsigned int *hook_entries, const unsigned int *underflows, unsigned int valid_hooks) { unsigned int h; int err; if ((unsigned long)e % __alignof__(struct ip6t_entry) != 0 || (unsigned char *)e + sizeof(struct ip6t_entry) >= limit || (unsigned char *)e + e->next_offset > limit) { duprintf("Bad offset %p\n", e); return -EINVAL; } if (e->next_offset < sizeof(struct ip6t_entry) + sizeof(struct xt_entry_target)) { duprintf("checking: element %p size %u\n", e, e->next_offset); return -EINVAL; } err = check_entry(e); if (err) return err; /* Check hooks & underflows */ for (h = 0; h < NF_INET_NUMHOOKS; h++) { if (!(valid_hooks & (1 << h))) continue; if ((unsigned char *)e - base == hook_entries[h]) newinfo->hook_entry[h] = hook_entries[h]; if ((unsigned char *)e - base == underflows[h]) { if (!check_underflow(e)) { pr_err("Underflows must be unconditional and " "use the STANDARD target with " "ACCEPT/DROP\n"); return -EINVAL; } newinfo->underflow[h] = underflows[h]; } } /* Clear counters and comefrom */ e->counters = ((struct xt_counters) { 0, 0 }); e->comefrom = 0; return 0; }
Class
2
static int mif_process_cmpt(mif_hdr_t *hdr, char *buf) { jas_tvparser_t *tvp; mif_cmpt_t *cmpt; int id; cmpt = 0; tvp = 0; if (!(cmpt = mif_cmpt_create())) { goto error; } cmpt->tlx = 0; cmpt->tly = 0; cmpt->sampperx = 0; cmpt->samppery = 0; cmpt->width = 0; cmpt->height = 0; cmpt->prec = 0; cmpt->sgnd = -1; cmpt->data = 0; if (!(tvp = jas_tvparser_create(buf))) { goto error; } while (!(id = jas_tvparser_next(tvp))) { switch (jas_taginfo_nonull(jas_taginfos_lookup(mif_tags, jas_tvparser_gettag(tvp)))->id) { case MIF_TLX: cmpt->tlx = atoi(jas_tvparser_getval(tvp)); break; case MIF_TLY: cmpt->tly = atoi(jas_tvparser_getval(tvp)); break; case MIF_WIDTH: cmpt->width = atoi(jas_tvparser_getval(tvp)); break; case MIF_HEIGHT: cmpt->height = atoi(jas_tvparser_getval(tvp)); break; case MIF_HSAMP: cmpt->sampperx = atoi(jas_tvparser_getval(tvp)); break; case MIF_VSAMP: cmpt->samppery = atoi(jas_tvparser_getval(tvp)); break; case MIF_PREC: cmpt->prec = atoi(jas_tvparser_getval(tvp)); break; case MIF_SGND: cmpt->sgnd = atoi(jas_tvparser_getval(tvp)); break; case MIF_DATA: if (!(cmpt->data = jas_strdup(jas_tvparser_getval(tvp)))) { return -1; } break; } } jas_tvparser_destroy(tvp); if (!cmpt->sampperx || !cmpt->samppery) { goto error; } if (mif_hdr_addcmpt(hdr, hdr->numcmpts, cmpt)) { goto error; } return 0; error: if (cmpt) { mif_cmpt_destroy(cmpt); } if (tvp) { jas_tvparser_destroy(tvp); } return -1; }
Variant
0
static UINT parallel_process_irp_create(PARALLEL_DEVICE* parallel, IRP* irp) { char* path = NULL; int status; UINT32 PathLength; Stream_Seek(irp->input, 28); /* DesiredAccess(4) AllocationSize(8), FileAttributes(4) */ /* SharedAccess(4) CreateDisposition(4), CreateOptions(4) */ Stream_Read_UINT32(irp->input, PathLength); status = ConvertFromUnicode(CP_UTF8, 0, (WCHAR*)Stream_Pointer(irp->input), PathLength / 2, &path, 0, NULL, NULL); if (status < 1) if (!(path = (char*)calloc(1, 1))) { WLog_ERR(TAG, "calloc failed!"); return CHANNEL_RC_NO_MEMORY; } parallel->id = irp->devman->id_sequence++; parallel->file = open(parallel->path, O_RDWR); if (parallel->file < 0) { irp->IoStatus = STATUS_ACCESS_DENIED; parallel->id = 0; } else { /* all read and write operations should be non-blocking */ if (fcntl(parallel->file, F_SETFL, O_NONBLOCK) == -1) { } } Stream_Write_UINT32(irp->output, parallel->id); Stream_Write_UINT8(irp->output, 0); free(path); return irp->Complete(irp); }
Base
1
error_t am335xEthDeleteVlanAddrEntry(uint_t port, uint_t vlanId, MacAddr *macAddr) { error_t error; uint_t index; Am335xAleEntry entry; //Search the ALE table for the specified VLAN/address entry index = am335xEthFindVlanAddrEntry(vlanId, macAddr); //Matching ALE entry found? if(index < CPSW_ALE_MAX_ENTRIES) { //Clear the contents of the entry entry.word2 = 0; entry.word1 = 0; entry.word0 = 0; //Update the ALE table am335xEthWriteEntry(index, &entry); //Sucessful processing error = NO_ERROR; } else { //Entry not found error = ERROR_NOT_FOUND; } //Return status code return error; }
Class
2
static void process_tree(struct rev_info *revs, struct tree *tree, show_object_fn show, struct strbuf *base, const char *name, void *cb_data) { struct object *obj = &tree->object; struct tree_desc desc; struct name_entry entry; enum interesting match = revs->diffopt.pathspec.nr == 0 ? all_entries_interesting: entry_not_interesting; int baselen = base->len; if (!revs->tree_objects) return; if (!obj) die("bad tree object"); if (obj->flags & (UNINTERESTING | SEEN)) return; if (parse_tree_gently(tree, revs->ignore_missing_links) < 0) { if (revs->ignore_missing_links) return; die("bad tree object %s", oid_to_hex(&obj->oid)); } obj->flags |= SEEN; show(obj, base, name, cb_data); strbuf_addstr(base, name); if (base->len) strbuf_addch(base, '/'); init_tree_desc(&desc, tree->buffer, tree->size); while (tree_entry(&desc, &entry)) { if (match != all_entries_interesting) { match = tree_entry_interesting(&entry, base, 0, &revs->diffopt.pathspec); if (match == all_entries_not_interesting) break; if (match == entry_not_interesting) continue; } if (S_ISDIR(entry.mode)) process_tree(revs, lookup_tree(entry.sha1), show, base, entry.path, cb_data); else if (S_ISGITLINK(entry.mode)) process_gitlink(revs, entry.sha1, show, base, entry.path, cb_data); else process_blob(revs, lookup_blob(entry.sha1), show, base, entry.path, cb_data); } strbuf_setlen(base, baselen); free_tree_buffer(tree); }
Class
2
pthread_mutex_unlock(pthread_mutex_t *mutex) { LeaveCriticalSection(mutex); return 0; }
Base
1
static int dispatch_discard_io(struct xen_blkif *blkif, struct blkif_request *req) { int err = 0; int status = BLKIF_RSP_OKAY; struct block_device *bdev = blkif->vbd.bdev; unsigned long secure; blkif->st_ds_req++; xen_blkif_get(blkif); secure = (blkif->vbd.discard_secure && (req->u.discard.flag & BLKIF_DISCARD_SECURE)) ? BLKDEV_DISCARD_SECURE : 0; err = blkdev_issue_discard(bdev, req->u.discard.sector_number, req->u.discard.nr_sectors, GFP_KERNEL, secure); if (err == -EOPNOTSUPP) { pr_debug(DRV_PFX "discard op failed, not supported\n"); status = BLKIF_RSP_EOPNOTSUPP; } else if (err) status = BLKIF_RSP_ERROR; make_response(blkif, req->u.discard.id, req->operation, status); xen_blkif_put(blkif); return err; }
Class
2
find_extend_vma(struct mm_struct *mm, unsigned long addr) { struct vm_area_struct *vma, *prev; addr &= PAGE_MASK; vma = find_vma_prev(mm, addr, &prev); if (vma && (vma->vm_start <= addr)) return vma; if (!prev || expand_stack(prev, addr)) return NULL; if (prev->vm_flags & VM_LOCKED) populate_vma_page_range(prev, addr, prev->vm_end, NULL); return prev; }
Class
2
show_tree(tree_t *t, /* I - Parent node */ int indent) /* I - Indentation */ { while (t) { if (t->markup == MARKUP_NONE) printf("%*s\"%s\"\n", indent, "", t->data); else printf("%*s%s\n", indent, "", _htmlMarkups[t->markup]); if (t->child) show_tree(t->child, indent + 2); t = t->next; } }
Base
1
entry_guard_obeys_restriction(const entry_guard_t *guard, const entry_guard_restriction_t *rst) { tor_assert(guard); if (! rst) return 1; // No restriction? No problem. // Only one kind of restriction exists right now return tor_memneq(guard->identity, rst->exclude_id, DIGEST_LEN); }
Class
2
static int do_i2c_loop(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { uint chip; int alen; uint addr; uint length; u_char bytes[16]; int delay; int ret; #if CONFIG_IS_ENABLED(DM_I2C) struct udevice *dev; #endif if (argc < 3) return CMD_RET_USAGE; /* * Chip is always specified. */ chip = hextoul(argv[1], NULL); /* * Address is always specified. */ addr = hextoul(argv[2], NULL); alen = get_alen(argv[2], DEFAULT_ADDR_LEN); if (alen > 3) return CMD_RET_USAGE; #if CONFIG_IS_ENABLED(DM_I2C) ret = i2c_get_cur_bus_chip(chip, &dev); if (!ret && alen != -1) ret = i2c_set_chip_offset_len(dev, alen); if (ret) return i2c_report_err(ret, I2C_ERR_WRITE); #endif /* * Length is the number of objects, not number of bytes. */ length = 1; length = hextoul(argv[3], NULL); if (length > sizeof(bytes)) length = sizeof(bytes); /* * The delay time (uSec) is optional. */ delay = 1000; if (argc > 3) delay = dectoul(argv[4], NULL); /* * Run the loop... */ while (1) { #if CONFIG_IS_ENABLED(DM_I2C) ret = dm_i2c_read(dev, addr, bytes, length); #else ret = i2c_read(chip, addr, alen, bytes, length); #endif if (ret) i2c_report_err(ret, I2C_ERR_READ); udelay(delay); } /* NOTREACHED */ return 0; }
Base
1
static void timerfd_remove_cancel(struct timerfd_ctx *ctx) { if (ctx->might_cancel) { ctx->might_cancel = false; spin_lock(&cancel_lock); list_del_rcu(&ctx->clist); spin_unlock(&cancel_lock); } }
Variant
0