Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
parquet
Languages:
English
Size:
10K - 100K
License:
metadata
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': brick
'1': carpet
'2': ceramic
'3': fabric
'4': foliage
'5': food
'6': glass
'7': hair
'8': leather
'9': metal
'10': mirror
'11': other
'12': painted
'13': paper
'14': plastic
'15': polishedstone
'16': skin
'17': sky
'18': stone
'19': tile
'20': wallpaper
'21': water
'22': wood
splits:
- name: train
num_bytes: 2017774670.25
num_examples: 48875
- name: test
num_bytes: 240662928
num_examples: 5750
- name: validation
num_bytes: 135991437.125
num_examples: 2875
download_size: 2350770974
dataset_size: 2394429035.375
license: cc-by-4.0
task_categories:
- image-classification
language:
- en
size_categories:
- 10K<n<100K
Materials in Context Dataset (MINC-2500)
Dataset Description
- Homepage: http://opensurfaces.cs.cornell.edu/publications/minc/
- Paper: https://openaccess.thecvf.com/content_cvpr_2015/html/Bell_Material_Recognition_in_2015_CVPR_paper.html
Dataset Summary
(from the website) MINC-2500 is a patch classification dataset with 2500 samples per category (Section 5.4 of the paper). This is a subset of MINC where samples have been sized to 362 x 362 and each category is sampled evenly. The original resolution images are not needed as we include the extracted patches in the archive.