metadata
task_categories:
- automatic-speech-recognition
language:
- ms
- en
- zh
- ta
- id
Malaysian STT Whisper format
Up to 15k hours annotated, we done heavy postprocessing and post-translation to improve pseudolabeled Whisper Large V3.
Also include word level timestamp.
Postprocessing
- Check repetitive trigrams.
- Verify Voice Activity using Silero-VAD.
- Verify scores using Force Alignment.
Post-translation
We use mesolitica/nanot5-base-malaysian-translation-v2.1.
Dataset involved
- Malaysian context v1
- Malaysian context v2
- Malay audiobook
- Singaporean context
- Indonesian context
- Mandarin audio
- Tamil audio
- Science context
- Malay sarawak
- Scripted Malay Daily Use Speech Corpus
- Malay Conversational Speech Corpus
- Iban
- Malay dialects
Word level timestamp
Source code
Source code at https://github.com/mesolitica/malaysian-dataset/tree/master/speech-to-text-semisupervised/distilled-malaysian-whisper