index
int64 0
731k
| package
stringlengths 2
98
⌀ | name
stringlengths 1
76
| docstring
stringlengths 0
281k
⌀ | code
stringlengths 4
1.07M
⌀ | signature
stringlengths 2
42.8k
⌀ |
---|---|---|---|---|---|
8,957 | sentencepiece | Load | Overwride SentencePieceProcessor.Load to support both model_file and model_proto.
Args:
model_file: The sentencepiece model file path.
model_proto: The sentencepiece model serialized proto. Either `model_file`
or `model_proto` must be set.
| def Load(self, model_file=None, model_proto=None):
"""Overwride SentencePieceProcessor.Load to support both model_file and model_proto.
Args:
model_file: The sentencepiece model file path.
model_proto: The sentencepiece model serialized proto. Either `model_file`
or `model_proto` must be set.
"""
if model_file and model_proto:
raise RuntimeError('model_file and model_proto must be exclusive.')
if model_proto:
return self.LoadFromSerializedProto(model_proto)
return self.LoadFromFile(model_file)
| (self, model_file=None, model_proto=None) |
8,958 | sentencepiece | LoadFromFile | null | def LoadFromFile(self, arg):
return _sentencepiece.SentencePieceProcessor_LoadFromFile(self, arg)
| (self, arg) |
8,959 | sentencepiece | LoadFromSerializedProto | null | def LoadFromSerializedProto(self, serialized):
return _sentencepiece.SentencePieceProcessor_LoadFromSerializedProto(self, serialized)
| (self, serialized) |
8,960 | sentencepiece | LoadVocabulary | null | def LoadVocabulary(self, filename, threshold):
return _sentencepiece.SentencePieceProcessor_LoadVocabulary(self, filename, threshold)
| (self, filename, threshold) |
8,961 | sentencepiece | NBestEncode | NBestEncode text input to segmented ids or tokens.
Args:
input: input string. accepsts list of string.
out_type: output type. int or str.
add_bos: Add <s> to the result (Default = false)
add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled).
reverse: Reverses the tokenized sequence (Default = false)
emit_unk_piece: Emits the unk literal string (Default = false)
nbest_size: nbest size
| def NBestEncode(self,
input,
out_type=None,
add_bos=None,
add_eos=None,
reverse=None,
emit_unk_piece=None,
nbest_size=None):
"""NBestEncode text input to segmented ids or tokens.
Args:
input: input string. accepsts list of string.
out_type: output type. int or str.
add_bos: Add <s> to the result (Default = false)
add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled).
reverse: Reverses the tokenized sequence (Default = false)
emit_unk_piece: Emits the unk literal string (Default = false)
nbest_size: nbest size
"""
if out_type is None:
out_type = self._out_type
if add_bos is None:
add_bos = self._add_bos
if add_eos is None:
add_eos = self._add_eos
if reverse is None:
reverse = self._reverse
if emit_unk_piece is None:
emit_unk_piece = self._emit_unk_piece
if nbest_size is None:
nbest_size = self._nbest_size
if nbest_size <= 0:
nbest_size=1
def _encode(text):
if out_type is int:
return self._NBestEncodeAsIds(text, nbest_size,
add_bos, add_eos, reverse, emit_unk_piece)
if out_type is str:
return self._NBestEncodeAsPieces(text, nbest_size,
add_bos, add_eos, reverse, emit_unk_piece)
if out_type == 'serialized_proto' or out_type == 'proto':
return self._NBestEncodeAsSerializedProto(text, nbest_size,
add_bos, add_eos, reverse, emit_unk_piece)
if out_type == 'immutable_proto':
return self._NBestEncodeAsImmutableProto(text, nbest_size,
add_bos, add_eos, reverse, emit_unk_piece)
raise RuntimeError('unknown out_type')
if type(input) is list:
return [_encode(n) for n in input]
return _encode(input)
| (self, input, out_type=None, add_bos=None, add_eos=None, reverse=None, emit_unk_piece=None, nbest_size=None) |
8,962 | sentencepiece | NBestEncodeAsIds | null | def NBestEncodeAsIds(self, input, nbest_size=None, **kwargs):
return self.NBestEncode(input=input, nbest_size=nbest_size,
out_type=int, **kwargs)
| (self, input, nbest_size=None, **kwargs) |
8,963 | sentencepiece | NBestEncodeAsImmutableProto | null | def NBestEncodeAsImmutableProto(self, input, nbest_size=None, **kwargs):
return self.NBestEncode(input=input, nbest_size=nbest_size,
out_type='immutable_proto', **kwargs)
| (self, input, nbest_size=None, **kwargs) |
8,964 | sentencepiece | NBestEncodeAsPieces | null | def NBestEncodeAsPieces(self, input, nbest_size=None, **kwargs):
return self.NBestEncode(input=input, nbest_size=nbest_size,
out_type=str, **kwargs)
| (self, input, nbest_size=None, **kwargs) |
8,965 | sentencepiece | NBestEncodeAsSerializedProto | null | def NBestEncodeAsSerializedProto(self, input, nbest_size=None, **kwargs):
return self.NBestEncode(input=input, nbest_size=nbest_size,
out_type='serialized_proto', **kwargs)
| (self, input, nbest_size=None, **kwargs) |
8,967 | sentencepiece | OverrideNormalizerSpec | null | def OverrideNormalizerSpec(self, **kwargs):
new_kwargs = {}
for key, value in kwargs.items():
new_kwargs[key] = str(value)
return self._OverrideNormalizerSpec(new_kwargs)
| (self, **kwargs) |
8,969 | sentencepiece | ResetVocabulary | null | def ResetVocabulary(self):
return _sentencepiece.SentencePieceProcessor_ResetVocabulary(self)
| (self) |
8,970 | sentencepiece | SampleEncodeAndScore | SampleEncodeAndScore text input to segmented ids or tokens.
Args:
input: input string. accepsts list of string.
out_type: output type. int or str or 'serialized_proto' or 'immutable_proto'
add_bos: Add <s> to the result (Default = false)
add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled).
reverse: Reverses the tokenized sequence (Default = false)
emit_unk_piece: Emits the unk literal string (Default = false)
num_samples: How many samples to return (Default = 1)
alpha: inverse temperature for sampling
wor: whether to sample without replacement (Default = false)
include_best: whether to include the best tokenization, requires wor=True (Default = false)
| def SampleEncodeAndScore(self,
input,
out_type=None,
add_bos=None,
add_eos=None,
reverse=None,
emit_unk_piece=None,
num_samples=None,
alpha=None,
wor=None,
include_best=None):
"""SampleEncodeAndScore text input to segmented ids or tokens.
Args:
input: input string. accepsts list of string.
out_type: output type. int or str or 'serialized_proto' or 'immutable_proto'
add_bos: Add <s> to the result (Default = false)
add_eos: Add </s> to the result (Default = false) <s>/</s> is added after reversing (if enabled).
reverse: Reverses the tokenized sequence (Default = false)
emit_unk_piece: Emits the unk literal string (Default = false)
num_samples: How many samples to return (Default = 1)
alpha: inverse temperature for sampling
wor: whether to sample without replacement (Default = false)
include_best: whether to include the best tokenization, requires wor=True (Default = false)
"""
if out_type is None:
out_type = self._out_type
if add_bos is None:
add_bos = self._add_bos
if add_eos is None:
add_eos = self._add_eos
if reverse is None:
reverse = self._reverse
if emit_unk_piece is None:
emit_unk_piece = self._emit_unk_piece
if num_samples is None:
num_samples = 1
if alpha is None:
alpha = 1.
if wor is None:
wor = False
if include_best is None:
include_best = False
if num_samples <= 0:
raise RuntimeError('num_examples must be positive')
if include_best and not wor:
raise RuntimeError('When include_best is True, We must specify "wor = True".')
def _encode(text):
if out_type is int:
return self._SampleEncodeAndScoreAsIds(text, num_samples, alpha, wor, include_best,
add_bos, add_eos, reverse, emit_unk_piece)
if out_type is str:
return self._SampleEncodeAndScoreAsPieces(text, num_samples, alpha, wor, include_best,
add_bos, add_eos, reverse, emit_unk_piece)
if out_type == 'serialized_proto' or out_type == 'proto':
return self._SampleEncodeAndScoreAsSerializedProto(text, num_samples, alpha, wor, include_best,
add_bos, add_eos, reverse, emit_unk_piece)
if out_type == 'immutable_proto':
return self._SampleEncodeAndScoreAsImmutableProto(text, num_samples, alpha, wor, include_best,
add_bos, add_eos, reverse, emit_unk_piece)
raise RuntimeError('unknown output type')
if type(input) is list:
return [_encode(n) for n in input]
return _encode(input)
| (self, input, out_type=None, add_bos=None, add_eos=None, reverse=None, emit_unk_piece=None, num_samples=None, alpha=None, wor=None, include_best=None) |
8,971 | sentencepiece | SampleEncodeAndScoreAsIds | null | def SampleEncodeAndScoreAsIds(self, input, num_samples=None, alpha=None, **kwargs):
return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha,
out_type=int, **kwargs)
| (self, input, num_samples=None, alpha=None, **kwargs) |
8,972 | sentencepiece | SampleEncodeAndScoreAsImmutableProto | null | def SampleEncodeAndScoreAsImmutableProto(self, input, num_samples=None, alpha=None, **kwargs):
return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha,
out_type='immutable_proto', **kwargs)
| (self, input, num_samples=None, alpha=None, **kwargs) |
8,973 | sentencepiece | SampleEncodeAndScoreAsPieces | null | def SampleEncodeAndScoreAsPieces(self, input, num_samples=None, alpha=None, **kwargs):
return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha,
out_type=str, **kwargs)
| (self, input, num_samples=None, alpha=None, **kwargs) |
8,974 | sentencepiece | SampleEncodeAndScoreAsSerializedProto | null | def SampleEncodeAndScoreAsSerializedProto(self, input, num_samples=None, alpha=None, **kwargs):
return self.SampleEncodeAndScore(input=input, num_samples=num_samples, alpha=alpha,
out_type='serialized_proto', **kwargs)
| (self, input, num_samples=None, alpha=None, **kwargs) |
8,975 | sentencepiece | SampleEncodeAsIds | null | def SampleEncodeAsIds(self, input, nbest_size=None, alpha=None,**kwargs):
return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha,
out_type=int, enable_sampling=True, **kwargs)
| (self, input, nbest_size=None, alpha=None, **kwargs) |
8,976 | sentencepiece | SampleEncodeAsImmutableProto | null | def SampleEncodeAsImmutableProto(self, input, nbest_size=None, alpha=None, **kwargs):
return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha,
out_type='immutable_proto', enable_sampling=True, **kwargs)
| (self, input, nbest_size=None, alpha=None, **kwargs) |
8,977 | sentencepiece | SampleEncodeAsPieces | null | def SampleEncodeAsPieces(self, input, nbest_size=None, alpha=None, **kwargs):
return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha,
out_type=str, enable_sampling=True, **kwargs)
| (self, input, nbest_size=None, alpha=None, **kwargs) |
8,978 | sentencepiece | SampleEncodeAsSerializedProto | null | def SampleEncodeAsSerializedProto(self, input, nbest_size=None, alpha=None, **kwargs):
return self.Encode(input=input, nbest_size=nbest_size, alpha=alpha,
out_type='serialized_proto', enable_sampling=True, **kwargs)
| (self, input, nbest_size=None, alpha=None, **kwargs) |
8,979 | sentencepiece | SetDecodeExtraOptions | null | def SetDecodeExtraOptions(self, extra_option):
return _sentencepiece.SentencePieceProcessor_SetDecodeExtraOptions(self, extra_option)
| (self, extra_option) |
8,980 | sentencepiece | SetEncodeExtraOptions | null | def SetEncodeExtraOptions(self, extra_option):
return _sentencepiece.SentencePieceProcessor_SetEncodeExtraOptions(self, extra_option)
| (self, extra_option) |
8,981 | sentencepiece | SetVocabulary | null | def SetVocabulary(self, valid_vocab):
return _sentencepiece.SentencePieceProcessor_SetVocabulary(self, valid_vocab)
| (self, valid_vocab) |
8,983 | sentencepiece | _CalculateEntropy | null | def _CalculateEntropy(self, text, alpha):
return _sentencepiece.SentencePieceProcessor__CalculateEntropy(self, text, alpha)
| (self, text, alpha) |
8,984 | sentencepiece | _CalculateEntropyBatch | null | def _CalculateEntropyBatch(self, ins, alpha, num_threads):
return _sentencepiece.SentencePieceProcessor__CalculateEntropyBatch(self, ins, alpha, num_threads)
| (self, ins, alpha, num_threads) |
8,985 | sentencepiece | _DecodeIds | null | def _DecodeIds(self, ids):
return _sentencepiece.SentencePieceProcessor__DecodeIds(self, ids)
| (self, ids) |
8,986 | sentencepiece | _DecodeIdsAsBytes | null | def _DecodeIdsAsBytes(self, ids):
return _sentencepiece.SentencePieceProcessor__DecodeIdsAsBytes(self, ids)
| (self, ids) |
8,987 | sentencepiece | _DecodeIdsAsBytesBatch | null | def _DecodeIdsAsBytesBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodeIdsAsBytesBatch(self, ins, num_threads)
| (self, ins, num_threads) |
8,988 | sentencepiece | _DecodeIdsAsImmutableProto | null | def _DecodeIdsAsImmutableProto(self, ids):
return _sentencepiece.SentencePieceProcessor__DecodeIdsAsImmutableProto(self, ids)
| (self, ids) |
8,989 | sentencepiece | _DecodeIdsAsImmutableProtoBatch | null | def _DecodeIdsAsImmutableProtoBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodeIdsAsImmutableProtoBatch(self, ins, num_threads)
| (self, ins, num_threads) |
8,990 | sentencepiece | _DecodeIdsAsSerializedProto | null | def _DecodeIdsAsSerializedProto(self, ids):
return _sentencepiece.SentencePieceProcessor__DecodeIdsAsSerializedProto(self, ids)
| (self, ids) |
8,991 | sentencepiece | _DecodeIdsAsSerializedProtoBatch | null | def _DecodeIdsAsSerializedProtoBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodeIdsAsSerializedProtoBatch(self, ins, num_threads)
| (self, ins, num_threads) |
8,992 | sentencepiece | _DecodeIdsBatch | null | def _DecodeIdsBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodeIdsBatch(self, ins, num_threads)
| (self, ins, num_threads) |
8,993 | sentencepiece | _DecodePieces | null | def _DecodePieces(self, pieces):
return _sentencepiece.SentencePieceProcessor__DecodePieces(self, pieces)
| (self, pieces) |
8,994 | sentencepiece | _DecodePiecesAsImmutableProto | null | def _DecodePiecesAsImmutableProto(self, pieces):
return _sentencepiece.SentencePieceProcessor__DecodePiecesAsImmutableProto(self, pieces)
| (self, pieces) |
8,995 | sentencepiece | _DecodePiecesAsImmutableProtoBatch | null | def _DecodePiecesAsImmutableProtoBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodePiecesAsImmutableProtoBatch(self, ins, num_threads)
| (self, ins, num_threads) |
8,996 | sentencepiece | _DecodePiecesAsSerializedProto | null | def _DecodePiecesAsSerializedProto(self, pieces):
return _sentencepiece.SentencePieceProcessor__DecodePiecesAsSerializedProto(self, pieces)
| (self, pieces) |
8,997 | sentencepiece | _DecodePiecesAsSerializedProtoBatch | null | def _DecodePiecesAsSerializedProtoBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodePiecesAsSerializedProtoBatch(self, ins, num_threads)
| (self, ins, num_threads) |
8,998 | sentencepiece | _DecodePiecesBatch | null | def _DecodePiecesBatch(self, ins, num_threads):
return _sentencepiece.SentencePieceProcessor__DecodePiecesBatch(self, ins, num_threads)
| (self, ins, num_threads) |
8,999 | sentencepiece | _EncodeAsIds | null | def _EncodeAsIds(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsIds(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
| (self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) |
9,000 | sentencepiece | _EncodeAsIdsBatch | null | def _EncodeAsIdsBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsIdsBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
| (self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) |
9,001 | sentencepiece | _EncodeAsImmutableProto | null | def _EncodeAsImmutableProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsImmutableProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
| (self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) |
9,002 | sentencepiece | _EncodeAsImmutableProtoBatch | null | def _EncodeAsImmutableProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsImmutableProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
| (self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) |
9,003 | sentencepiece | _EncodeAsPieces | null | def _EncodeAsPieces(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsPieces(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
| (self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) |
9,004 | sentencepiece | _EncodeAsPiecesBatch | null | def _EncodeAsPiecesBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsPiecesBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
| (self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) |
9,005 | sentencepiece | _EncodeAsSerializedProto | null | def _EncodeAsSerializedProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsSerializedProto(self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
| (self, text, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) |
9,006 | sentencepiece | _EncodeAsSerializedProtoBatch | null | def _EncodeAsSerializedProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__EncodeAsSerializedProtoBatch(self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece)
| (self, ins, num_threads, enable_sampling, nbest_size, alpha, add_bos, add_eos, reverse, emit_unk_piece) |
9,007 | sentencepiece | _NBestEncodeAsIds | null | def _NBestEncodeAsIds(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__NBestEncodeAsIds(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)
| (self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece) |
9,008 | sentencepiece | _NBestEncodeAsImmutableProto | null | def _NBestEncodeAsImmutableProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__NBestEncodeAsImmutableProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)
| (self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece) |
9,009 | sentencepiece | _NBestEncodeAsPieces | null | def _NBestEncodeAsPieces(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__NBestEncodeAsPieces(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)
| (self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece) |
9,010 | sentencepiece | _NBestEncodeAsSerializedProto | null | def _NBestEncodeAsSerializedProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__NBestEncodeAsSerializedProto(self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece)
| (self, text, nbest_size, add_bos, add_eos, reverse, emit_unk_piece) |
9,011 | sentencepiece | _Normalize | null | def _Normalize(self, text):
return _sentencepiece.SentencePieceProcessor__Normalize(self, text)
| (self, text) |
9,012 | sentencepiece | _NormalizeWithOffsets | null | def _NormalizeWithOffsets(self, text):
return _sentencepiece.SentencePieceProcessor__NormalizeWithOffsets(self, text)
| (self, text) |
9,013 | sentencepiece | _OverrideNormalizerSpec | null | def _OverrideNormalizerSpec(self, args):
return _sentencepiece.SentencePieceProcessor__OverrideNormalizerSpec(self, args)
| (self, args) |
9,014 | sentencepiece | _SampleEncodeAndScoreAsIds | null | def _SampleEncodeAndScoreAsIds(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsIds(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)
| (self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece) |
9,015 | sentencepiece | _SampleEncodeAndScoreAsImmutableProto | null | def _SampleEncodeAndScoreAsImmutableProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsImmutableProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)
| (self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece) |
9,016 | sentencepiece | _SampleEncodeAndScoreAsPieces | null | def _SampleEncodeAndScoreAsPieces(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsPieces(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)
| (self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece) |
9,017 | sentencepiece | _SampleEncodeAndScoreAsSerializedProto | null | def _SampleEncodeAndScoreAsSerializedProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece):
return _sentencepiece.SentencePieceProcessor__SampleEncodeAndScoreAsSerializedProto(self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece)
| (self, text, num_samples, alpha, wor, include_best, add_bos, add_eos, reverse, emit_unk_piece) |
9,018 | sentencepiece | __getitem__ | null | def __getitem__(self, piece):
return self.PieceToId(piece)
| (self, piece) |
9,021 | sentencepiece | __len__ | null | def __len__(self):
return self.GetPieceSize()
| (self) |
9,024 | sentencepiece | bos_id | null | def bos_id(self):
return _sentencepiece.SentencePieceProcessor_bos_id(self)
| (self) |
9,039 | sentencepiece | eos_id | null | def eos_id(self):
return _sentencepiece.SentencePieceProcessor_eos_id(self)
| (self) |
9,059 | sentencepiece | pad_id | null | def pad_id(self):
return _sentencepiece.SentencePieceProcessor_pad_id(self)
| (self) |
9,060 | sentencepiece | piece_size | null | def piece_size(self):
return self.GetPieceSize()
| (self) |
9,072 | sentencepiece | serialized_model_proto | null | def serialized_model_proto(self):
return _sentencepiece.SentencePieceProcessor_serialized_model_proto(self)
| (self) |
9,077 | sentencepiece | unk_id | null | def unk_id(self):
return _sentencepiece.SentencePieceProcessor_unk_id(self)
| (self) |
9,078 | sentencepiece | vocab_size | null | def vocab_size(self):
return self.GetPieceSize()
| (self) |
9,079 | sentencepiece | SentencePieceTrainer | null | class SentencePieceTrainer(object):
thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
def __init__(self, *args, **kwargs):
raise AttributeError("No constructor defined")
__repr__ = _swig_repr
@staticmethod
def _TrainFromString(arg):
return _sentencepiece.SentencePieceTrainer__TrainFromString(arg)
@staticmethod
def _TrainFromMap(args):
return _sentencepiece.SentencePieceTrainer__TrainFromMap(args)
@staticmethod
def _TrainFromMap2(args, iter):
return _sentencepiece.SentencePieceTrainer__TrainFromMap2(args, iter)
@staticmethod
def _TrainFromMap3(args):
return _sentencepiece.SentencePieceTrainer__TrainFromMap3(args)
@staticmethod
def _TrainFromMap4(args, iter):
return _sentencepiece.SentencePieceTrainer__TrainFromMap4(args, iter)
@staticmethod
def _Train(arg=None, **kwargs):
"""Train Sentencepiece model. Accept both kwargs and legacy string arg."""
if arg is not None and type(arg) is str:
return SentencePieceTrainer._TrainFromString(arg)
def _encode(value):
"""Encode value to CSV.."""
if type(value) is list:
if sys.version_info[0] == 3:
f = StringIO()
else:
f = BytesIO()
writer = csv.writer(f, lineterminator='')
writer.writerow([str(v) for v in value])
return f.getvalue()
else:
return str(value)
sentence_iterator = None
model_writer = None
new_kwargs = {}
for key, value in kwargs.items():
if key in ['sentence_iterator', 'sentence_reader']:
sentence_iterator = value
elif key in ['model_writer']:
model_writer = value
else:
new_kwargs[key] = _encode(value)
if model_writer:
if sentence_iterator:
model_proto = SentencePieceTrainer._TrainFromMap4(new_kwargs,
sentence_iterator)
else:
model_proto = SentencePieceTrainer._TrainFromMap3(new_kwargs)
model_writer.write(model_proto)
else:
if sentence_iterator:
return SentencePieceTrainer._TrainFromMap2(new_kwargs, sentence_iterator)
else:
return SentencePieceTrainer._TrainFromMap(new_kwargs)
return None
@staticmethod
def Train(arg=None, logstream=None, **kwargs):
with _LogStream(ostream=logstream):
SentencePieceTrainer._Train(arg=arg, **kwargs)
| (*args, **kwargs) |
9,080 | sentencepiece | Train | null | @staticmethod
def Train(arg=None, logstream=None, **kwargs):
with _LogStream(ostream=logstream):
SentencePieceTrainer._Train(arg=arg, **kwargs)
| (arg=None, logstream=None, **kwargs) |
9,081 | sentencepiece | _Train | Train Sentencepiece model. Accept both kwargs and legacy string arg. | @staticmethod
def _Train(arg=None, **kwargs):
"""Train Sentencepiece model. Accept both kwargs and legacy string arg."""
if arg is not None and type(arg) is str:
return SentencePieceTrainer._TrainFromString(arg)
def _encode(value):
"""Encode value to CSV.."""
if type(value) is list:
if sys.version_info[0] == 3:
f = StringIO()
else:
f = BytesIO()
writer = csv.writer(f, lineterminator='')
writer.writerow([str(v) for v in value])
return f.getvalue()
else:
return str(value)
sentence_iterator = None
model_writer = None
new_kwargs = {}
for key, value in kwargs.items():
if key in ['sentence_iterator', 'sentence_reader']:
sentence_iterator = value
elif key in ['model_writer']:
model_writer = value
else:
new_kwargs[key] = _encode(value)
if model_writer:
if sentence_iterator:
model_proto = SentencePieceTrainer._TrainFromMap4(new_kwargs,
sentence_iterator)
else:
model_proto = SentencePieceTrainer._TrainFromMap3(new_kwargs)
model_writer.write(model_proto)
else:
if sentence_iterator:
return SentencePieceTrainer._TrainFromMap2(new_kwargs, sentence_iterator)
else:
return SentencePieceTrainer._TrainFromMap(new_kwargs)
return None
| (arg=None, **kwargs) |
9,082 | sentencepiece | _TrainFromMap | null | @staticmethod
def _TrainFromMap(args):
return _sentencepiece.SentencePieceTrainer__TrainFromMap(args)
| (args) |
9,083 | sentencepiece | _TrainFromMap2 | null | @staticmethod
def _TrainFromMap2(args, iter):
return _sentencepiece.SentencePieceTrainer__TrainFromMap2(args, iter)
| (args, iter) |
9,084 | sentencepiece | _TrainFromMap3 | null | @staticmethod
def _TrainFromMap3(args):
return _sentencepiece.SentencePieceTrainer__TrainFromMap3(args)
| (args) |
9,085 | sentencepiece | _TrainFromMap4 | null | @staticmethod
def _TrainFromMap4(args, iter):
return _sentencepiece.SentencePieceTrainer__TrainFromMap4(args, iter)
| (args, iter) |
9,086 | sentencepiece | _TrainFromString | null | @staticmethod
def _TrainFromString(arg):
return _sentencepiece.SentencePieceTrainer__TrainFromString(arg)
| (arg) |
9,087 | sentencepiece | __init__ | null | def __init__(self, *args, **kwargs):
raise AttributeError("No constructor defined")
| (self, *args, **kwargs) |
9,090 | sentencepiece | SetMinLogLevel | null | def SetMinLogLevel(v):
return _sentencepiece.SetMinLogLevel(v)
| (v) |
9,091 | sentencepiece | SetRandomGeneratorSeed | null | def SetRandomGeneratorSeed(seed):
return _sentencepiece.SetRandomGeneratorSeed(seed)
| (seed) |
9,093 | sentencepiece | _LogStream | null | class _LogStream(object):
def __init__(self, ostream=None):
self.ostream = ostream
if self.ostream is not None:
self.orig_stream_fileno = sys.stderr.fileno()
def __enter__(self):
if self.ostream is not None:
self.orig_stream_dup = os.dup(self.orig_stream_fileno)
os.dup2(self.ostream.fileno(), self.orig_stream_fileno)
def __exit__(self, type, value, traceback):
if self.ostream is not None:
os.close(self.orig_stream_fileno)
os.dup2(self.orig_stream_dup, self.orig_stream_fileno)
os.close(self.orig_stream_dup)
self.ostream.close()
| (ostream=None) |
9,094 | sentencepiece | __enter__ | null | def __enter__(self):
if self.ostream is not None:
self.orig_stream_dup = os.dup(self.orig_stream_fileno)
os.dup2(self.ostream.fileno(), self.orig_stream_fileno)
| (self) |
9,095 | sentencepiece | __exit__ | null | def __exit__(self, type, value, traceback):
if self.ostream is not None:
os.close(self.orig_stream_fileno)
os.dup2(self.orig_stream_dup, self.orig_stream_fileno)
os.close(self.orig_stream_dup)
self.ostream.close()
| (self, type, value, traceback) |
9,096 | sentencepiece | __init__ | null | def __init__(self, ostream=None):
self.ostream = ostream
if self.ostream is not None:
self.orig_stream_fileno = sys.stderr.fileno()
| (self, ostream=None) |
9,097 | sentencepiece | _SwigNonDynamicMeta | Meta class to enforce nondynamic attributes (no new attributes) for a class | class _SwigNonDynamicMeta(type):
"""Meta class to enforce nondynamic attributes (no new attributes) for a class"""
__setattr__ = _swig_setattr_nondynamic_class_variable(type.__setattr__)
| null |
9,098 | sentencepiece | set_class_attr | null | def _swig_setattr_nondynamic_class_variable(set):
def set_class_attr(cls, name, value):
if hasattr(cls, name) and not isinstance(getattr(cls, name), property):
set(cls, name, value)
else:
raise AttributeError("You cannot add class attributes to %s" % cls)
return set_class_attr
| (cls, name, value) |
9,100 | sentencepiece | _add_snake_case | Added snake_cased method from CammelCased method. | def _add_snake_case(classname):
"""Added snake_cased method from CammelCased method."""
snake_map = {}
for k, v in classname.__dict__.items():
if re.match(r'^[A-Z]+', k):
snake = re.sub(r'(?<!^)(?=[A-Z])', '_',
k).lower().replace('n_best', 'nbest')
snake_map[snake] = v
for k, v in snake_map.items():
setattr(classname, k, v)
| (classname) |
9,101 | sentencepiece | _batchnize | Enables batch request for the method classname.name. | def _batchnize(classname, name):
"""Enables batch request for the method classname.name."""
func = getattr(classname, name, None)
def _func(v, n):
if type(n) is int and (n < 0 or n >= v.piece_size()):
raise IndexError('piece id is out of range.')
return func(v, n)
def _batched_func(self, arg):
if type(arg) is list:
return [_func(self, n) for n in arg]
else:
return _func(self, arg)
setattr(classname, name, _batched_func)
| (classname, name) |
9,103 | sentencepiece | __init__ | null | def __init__(self):
_sentencepiece.SentencePieceNormalizer_swiginit(self, _sentencepiece.new_SentencePieceNormalizer())
| (self) |
9,104 | sentencepiece | __init__ | null | def __init__(self):
_sentencepiece.SentencePieceProcessor_swiginit(self, _sentencepiece.new_SentencePieceProcessor())
| (self) |
9,105 | sentencepiece | _swig_add_metaclass | Class decorator for adding a metaclass to a SWIG wrapped class - a slimmed down version of six.add_metaclass | def _swig_add_metaclass(metaclass):
"""Class decorator for adding a metaclass to a SWIG wrapped class - a slimmed down version of six.add_metaclass"""
def wrapper(cls):
return metaclass(cls.__name__, cls.__bases__, cls.__dict__.copy())
return wrapper
| (metaclass) |
9,108 | sentencepiece | _swig_setattr_nondynamic_instance_variable | null | def _swig_setattr_nondynamic_instance_variable(set):
def set_instance_attr(self, name, value):
if name == "this":
set(self, name, value)
elif name == "thisown":
self.this.own(value)
elif hasattr(self, name) and isinstance(getattr(type(self), name), property):
set(self, name, value)
else:
raise AttributeError("You cannot add instance attributes to %s" % self)
return set_instance_attr
| (set) |
9,116 | geonamescache | GeonamesCache | null | class GeonamesCache:
us_states = geonamesdata.us_states
continents = None
countries = None
cities = None
cities_items = None
cities_by_names = {}
us_counties = None
def __init__(self, min_city_population=15000):
self.min_city_population = min_city_population
def get_dataset_by_key(self, dataset, key):
return dict((d[key], d) for c, d in list(dataset.items()))
def get_continents(self):
if self.continents is None:
self.continents = self._load_data(
self.continents, 'continents.json')
return self.continents
def get_countries(self):
if self.countries is None:
self.countries = self._load_data(self.countries, 'countries.json')
return self.countries
def get_us_states(self):
return self.us_states
def get_countries_by_names(self):
return self.get_dataset_by_key(self.get_countries(), 'name')
def get_us_states_by_names(self):
return self.get_dataset_by_key(self.get_us_states(), 'name')
def get_cities(self):
"""Get a dictionary of cities keyed by geonameid."""
if self.cities is None:
self.cities = self._load_data(self.cities, f'cities{self.min_city_population}.json')
return self.cities
def get_cities_by_name(self, name):
"""Get a list of city dictionaries with the given name.
City names cannot be used as keys, as they are not unique.
"""
if name not in self.cities_by_names:
if self.cities_items is None:
self.cities_items = list(self.get_cities().items())
self.cities_by_names[name] = [dict({gid: city})
for gid, city in self.cities_items if city['name'] == name]
return self.cities_by_names[name]
def get_us_counties(self):
if self.us_counties is None:
self.us_counties = self._load_data(self.us_counties, 'us_counties.json')
return self.us_counties
def search_cities(self, query, attribute='alternatenames', case_sensitive=False, contains_search=True):
"""Search all city records and return list of records, that match query for given attribute."""
results = []
query = (case_sensitive and query) or query.casefold()
for record in self.get_cities().values():
record_value = record[attribute]
if contains_search:
if isinstance(record_value, list):
if any(query in ((case_sensitive and value) or value.casefold()) for value in record_value):
results.append(record)
elif query in ((case_sensitive and record_value) or record_value.casefold()):
results.append(record)
else:
if isinstance(record_value, list):
if case_sensitive:
if query in record_value:
results.append(record)
else:
if any(query == value.casefold() for value in record_value):
results.append(record)
elif query == ((case_sensitive and record_value) or record_value.casefold()):
results.append(record)
return results
@staticmethod
def _load_data(datadict, datafile):
if datadict is None:
with open(os.path.join(os.path.dirname(__file__), 'data', datafile)) as f:
datadict = json.load(f)
return datadict
| (min_city_population=15000) |
9,117 | geonamescache | __init__ | null | def __init__(self, min_city_population=15000):
self.min_city_population = min_city_population
| (self, min_city_population=15000) |
9,118 | geonamescache | _load_data | null | @staticmethod
def _load_data(datadict, datafile):
if datadict is None:
with open(os.path.join(os.path.dirname(__file__), 'data', datafile)) as f:
datadict = json.load(f)
return datadict
| (datadict, datafile) |
9,119 | geonamescache | get_cities | Get a dictionary of cities keyed by geonameid. | def get_cities(self):
"""Get a dictionary of cities keyed by geonameid."""
if self.cities is None:
self.cities = self._load_data(self.cities, f'cities{self.min_city_population}.json')
return self.cities
| (self) |
9,120 | geonamescache | get_cities_by_name | Get a list of city dictionaries with the given name.
City names cannot be used as keys, as they are not unique.
| def get_cities_by_name(self, name):
"""Get a list of city dictionaries with the given name.
City names cannot be used as keys, as they are not unique.
"""
if name not in self.cities_by_names:
if self.cities_items is None:
self.cities_items = list(self.get_cities().items())
self.cities_by_names[name] = [dict({gid: city})
for gid, city in self.cities_items if city['name'] == name]
return self.cities_by_names[name]
| (self, name) |
9,121 | geonamescache | get_continents | null | def get_continents(self):
if self.continents is None:
self.continents = self._load_data(
self.continents, 'continents.json')
return self.continents
| (self) |
9,122 | geonamescache | get_countries | null | def get_countries(self):
if self.countries is None:
self.countries = self._load_data(self.countries, 'countries.json')
return self.countries
| (self) |
9,123 | geonamescache | get_countries_by_names | null | def get_countries_by_names(self):
return self.get_dataset_by_key(self.get_countries(), 'name')
| (self) |
9,124 | geonamescache | get_dataset_by_key | null | def get_dataset_by_key(self, dataset, key):
return dict((d[key], d) for c, d in list(dataset.items()))
| (self, dataset, key) |
9,125 | geonamescache | get_us_counties | null | def get_us_counties(self):
if self.us_counties is None:
self.us_counties = self._load_data(self.us_counties, 'us_counties.json')
return self.us_counties
| (self) |
Subsets and Splits