index
int64 0
731k
| package
stringlengths 2
98
⌀ | name
stringlengths 1
76
| docstring
stringlengths 0
281k
⌀ | code
stringlengths 4
1.07M
⌀ | signature
stringlengths 2
42.8k
⌀ |
---|---|---|---|---|---|
10,044 | sentence_transformers.SentenceTransformer | encode_multi_process |
This method allows to run encode() on multiple GPUs. The sentences are chunked into smaller packages
and sent to individual processes, which encode these on the different GPUs. This method is only suitable
for encoding large sets of sentences
:param sentences: List of sentences
:param pool: A pool of workers started with SentenceTransformer.start_multi_process_pool
:param prompt_name: The name of the prompt to use for encoding. Must be a key in the `prompts` dictionary,
which is either set in the constructor or loaded from the model configuration. For example if
`prompt_name` is ``"query"`` and the `prompts` is ``{"query": "query: {}", ...}``, then the sentence "What
is the capital of France?" will be encoded as "query: What is the capital of France?". If `prompt` is
also set, this argument is ignored.
:param prompt: The prompt to use for encoding. For example, if the prompt is ``"query: {}"``, then the
sentence "What is the capital of France?" will be encoded as "query: What is the capital of France?".
If `prompt` is set, `prompt_name` is ignored.
:param batch_size: Encode sentences with batch size
:param chunk_size: Sentences are chunked and sent to the individual processes. If none, it determine a sensible size.
:param normalize_embeddings: Whether to normalize returned vectors to have length 1. In that case,
the faster dot-product (util.dot_score) instead of cosine similarity can be used.
:return: 2d numpy array with shape [num_inputs, output_dimension]
| def encode_multi_process(
self,
sentences: List[str],
pool: Dict[str, object],
prompt_name: Optional[str] = None,
prompt: Optional[str] = None,
batch_size: int = 32,
chunk_size: int = None,
normalize_embeddings: bool = False,
):
"""
This method allows to run encode() on multiple GPUs. The sentences are chunked into smaller packages
and sent to individual processes, which encode these on the different GPUs. This method is only suitable
for encoding large sets of sentences
:param sentences: List of sentences
:param pool: A pool of workers started with SentenceTransformer.start_multi_process_pool
:param prompt_name: The name of the prompt to use for encoding. Must be a key in the `prompts` dictionary,
which is either set in the constructor or loaded from the model configuration. For example if
`prompt_name` is ``"query"`` and the `prompts` is ``{"query": "query: {}", ...}``, then the sentence "What
is the capital of France?" will be encoded as "query: What is the capital of France?". If `prompt` is
also set, this argument is ignored.
:param prompt: The prompt to use for encoding. For example, if the prompt is ``"query: {}"``, then the
sentence "What is the capital of France?" will be encoded as "query: What is the capital of France?".
If `prompt` is set, `prompt_name` is ignored.
:param batch_size: Encode sentences with batch size
:param chunk_size: Sentences are chunked and sent to the individual processes. If none, it determine a sensible size.
:param normalize_embeddings: Whether to normalize returned vectors to have length 1. In that case,
the faster dot-product (util.dot_score) instead of cosine similarity can be used.
:return: 2d numpy array with shape [num_inputs, output_dimension]
"""
if chunk_size is None:
chunk_size = min(math.ceil(len(sentences) / len(pool["processes"]) / 10), 5000)
logger.debug(f"Chunk data into {math.ceil(len(sentences) / chunk_size)} packages of size {chunk_size}")
input_queue = pool["input"]
last_chunk_id = 0
chunk = []
for sentence in sentences:
chunk.append(sentence)
if len(chunk) >= chunk_size:
input_queue.put([last_chunk_id, batch_size, chunk, prompt_name, prompt, normalize_embeddings])
last_chunk_id += 1
chunk = []
if len(chunk) > 0:
input_queue.put([last_chunk_id, batch_size, chunk, prompt_name, prompt, normalize_embeddings])
last_chunk_id += 1
output_queue = pool["output"]
results_list = sorted([output_queue.get() for _ in range(last_chunk_id)], key=lambda x: x[0])
embeddings = np.concatenate([result[1] for result in results_list])
return embeddings
| (self, sentences: List[str], pool: Dict[str, object], prompt_name: Optional[str] = None, prompt: Optional[str] = None, batch_size: int = 32, chunk_size: Optional[int] = None, normalize_embeddings: bool = False) |
10,045 | torch.nn.modules.module | eval | Set the module in evaluation mode.
This has any effect only on certain modules. See documentations of
particular modules for details of their behaviors in training/evaluation
mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
etc.
This is equivalent with :meth:`self.train(False) <torch.nn.Module.train>`.
See :ref:`locally-disable-grad-doc` for a comparison between
`.eval()` and several similar mechanisms that may be confused with it.
Returns:
Module: self
| def eval(self: T) -> T:
r"""Set the module in evaluation mode.
This has any effect only on certain modules. See documentations of
particular modules for details of their behaviors in training/evaluation
mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
etc.
This is equivalent with :meth:`self.train(False) <torch.nn.Module.train>`.
See :ref:`locally-disable-grad-doc` for a comparison between
`.eval()` and several similar mechanisms that may be confused with it.
Returns:
Module: self
"""
return self.train(False)
| (self: ~T) -> ~T |
10,046 | sentence_transformers.SentenceTransformer | evaluate |
Evaluate the model
:param evaluator:
the evaluator
:param output_path:
the evaluator can write the results to this path
| def evaluate(self, evaluator: SentenceEvaluator, output_path: str = None):
"""
Evaluate the model
:param evaluator:
the evaluator
:param output_path:
the evaluator can write the results to this path
"""
if output_path is not None:
os.makedirs(output_path, exist_ok=True)
return evaluator(self, output_path)
| (self, evaluator: sentence_transformers.evaluation.SentenceEvaluator.SentenceEvaluator, output_path: Optional[str] = None) |
10,047 | torch.nn.modules.container | extend | null | def extend(self, sequential) -> 'Sequential':
for layer in sequential:
self.append(layer)
return self
| (self, sequential) -> torch.nn.modules.container.Sequential |
10,048 | torch.nn.modules.module | extra_repr | Set the extra representation of the module.
To print customized extra information, you should re-implement
this method in your own modules. Both single-line and multi-line
strings are acceptable.
| def extra_repr(self) -> str:
r"""Set the extra representation of the module.
To print customized extra information, you should re-implement
this method in your own modules. Both single-line and multi-line
strings are acceptable.
"""
return ''
| (self) -> str |
10,049 | sentence_transformers.SentenceTransformer | fit |
Train the model with the given training objective
Each training objective is sampled in turn for one batch.
We sample only as many batches from each objective as there are in the smallest one
to make sure of equal training with each dataset.
:param train_objectives: Tuples of (DataLoader, LossFunction). Pass more than one for multi-task learning
:param evaluator: An evaluator (sentence_transformers.evaluation) evaluates the model performance during training on held-out dev data. It is used to determine the best model that is saved to disc.
:param epochs: Number of epochs for training
:param steps_per_epoch: Number of training steps per epoch. If set to None (default), one epoch is equal the DataLoader size from train_objectives.
:param scheduler: Learning rate scheduler. Available schedulers: constantlr, warmupconstant, warmuplinear, warmupcosine, warmupcosinewithhardrestarts
:param warmup_steps: Behavior depends on the scheduler. For WarmupLinear (default), the learning rate is increased from o up to the maximal learning rate. After these many training steps, the learning rate is decreased linearly back to zero.
:param optimizer_class: Optimizer
:param optimizer_params: Optimizer parameters
:param weight_decay: Weight decay for model parameters
:param evaluation_steps: If > 0, evaluate the model using evaluator after each number of training steps
:param output_path: Storage path for the model and evaluation files
:param save_best_model: If true, the best model (according to evaluator) is stored at output_path
:param max_grad_norm: Used for gradient normalization.
:param use_amp: Use Automatic Mixed Precision (AMP). Only for Pytorch >= 1.6.0
:param callback: Callback function that is invoked after each evaluation.
It must accept the following three parameters in this order:
`score`, `epoch`, `steps`
:param show_progress_bar: If True, output a tqdm progress bar
:param checkpoint_path: Folder to save checkpoints during training
:param checkpoint_save_steps: Will save a checkpoint after so many steps
:param checkpoint_save_total_limit: Total number of checkpoints to store
| def fit(
self,
train_objectives: Iterable[Tuple[DataLoader, nn.Module]],
evaluator: SentenceEvaluator = None,
epochs: int = 1,
steps_per_epoch=None,
scheduler: str = "WarmupLinear",
warmup_steps: int = 10000,
optimizer_class: Type[Optimizer] = torch.optim.AdamW,
optimizer_params: Dict[str, object] = {"lr": 2e-5},
weight_decay: float = 0.01,
evaluation_steps: int = 0,
output_path: str = None,
save_best_model: bool = True,
max_grad_norm: float = 1,
use_amp: bool = False,
callback: Callable[[float, int, int], None] = None,
show_progress_bar: bool = True,
checkpoint_path: str = None,
checkpoint_save_steps: int = 500,
checkpoint_save_total_limit: int = 0,
):
"""
Train the model with the given training objective
Each training objective is sampled in turn for one batch.
We sample only as many batches from each objective as there are in the smallest one
to make sure of equal training with each dataset.
:param train_objectives: Tuples of (DataLoader, LossFunction). Pass more than one for multi-task learning
:param evaluator: An evaluator (sentence_transformers.evaluation) evaluates the model performance during training on held-out dev data. It is used to determine the best model that is saved to disc.
:param epochs: Number of epochs for training
:param steps_per_epoch: Number of training steps per epoch. If set to None (default), one epoch is equal the DataLoader size from train_objectives.
:param scheduler: Learning rate scheduler. Available schedulers: constantlr, warmupconstant, warmuplinear, warmupcosine, warmupcosinewithhardrestarts
:param warmup_steps: Behavior depends on the scheduler. For WarmupLinear (default), the learning rate is increased from o up to the maximal learning rate. After these many training steps, the learning rate is decreased linearly back to zero.
:param optimizer_class: Optimizer
:param optimizer_params: Optimizer parameters
:param weight_decay: Weight decay for model parameters
:param evaluation_steps: If > 0, evaluate the model using evaluator after each number of training steps
:param output_path: Storage path for the model and evaluation files
:param save_best_model: If true, the best model (according to evaluator) is stored at output_path
:param max_grad_norm: Used for gradient normalization.
:param use_amp: Use Automatic Mixed Precision (AMP). Only for Pytorch >= 1.6.0
:param callback: Callback function that is invoked after each evaluation.
It must accept the following three parameters in this order:
`score`, `epoch`, `steps`
:param show_progress_bar: If True, output a tqdm progress bar
:param checkpoint_path: Folder to save checkpoints during training
:param checkpoint_save_steps: Will save a checkpoint after so many steps
:param checkpoint_save_total_limit: Total number of checkpoints to store
"""
##Add info to model card
# info_loss_functions = "\n".join(["- {} with {} training examples".format(str(loss), len(dataloader)) for dataloader, loss in train_objectives])
info_loss_functions = []
for dataloader, loss in train_objectives:
info_loss_functions.extend(ModelCardTemplate.get_train_objective_info(dataloader, loss))
info_loss_functions = "\n\n".join([text for text in info_loss_functions])
info_fit_parameters = json.dumps(
{
"evaluator": fullname(evaluator),
"epochs": epochs,
"steps_per_epoch": steps_per_epoch,
"scheduler": scheduler,
"warmup_steps": warmup_steps,
"optimizer_class": str(optimizer_class),
"optimizer_params": optimizer_params,
"weight_decay": weight_decay,
"evaluation_steps": evaluation_steps,
"max_grad_norm": max_grad_norm,
},
indent=4,
sort_keys=True,
)
self._model_card_text = None
self._model_card_vars["{TRAINING_SECTION}"] = ModelCardTemplate.__TRAINING_SECTION__.replace(
"{LOSS_FUNCTIONS}", info_loss_functions
).replace("{FIT_PARAMETERS}", info_fit_parameters)
if use_amp:
if is_torch_npu_available():
scaler = torch.npu.amp.GradScaler()
else:
scaler = torch.cuda.amp.GradScaler()
self.to(self.device)
dataloaders = [dataloader for dataloader, _ in train_objectives]
# Use smart batching
for dataloader in dataloaders:
dataloader.collate_fn = self.smart_batching_collate
loss_models = [loss for _, loss in train_objectives]
for loss_model in loss_models:
loss_model.to(self.device)
self.best_score = -9999999
if steps_per_epoch is None or steps_per_epoch == 0:
steps_per_epoch = min([len(dataloader) for dataloader in dataloaders])
num_train_steps = int(steps_per_epoch * epochs)
# Prepare optimizers
optimizers = []
schedulers = []
for loss_model in loss_models:
param_optimizer = list(loss_model.named_parameters())
no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
"weight_decay": weight_decay,
},
{"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = optimizer_class(optimizer_grouped_parameters, **optimizer_params)
scheduler_obj = self._get_scheduler(
optimizer, scheduler=scheduler, warmup_steps=warmup_steps, t_total=num_train_steps
)
optimizers.append(optimizer)
schedulers.append(scheduler_obj)
global_step = 0
data_iterators = [iter(dataloader) for dataloader in dataloaders]
num_train_objectives = len(train_objectives)
skip_scheduler = False
for epoch in trange(epochs, desc="Epoch", disable=not show_progress_bar):
training_steps = 0
for loss_model in loss_models:
loss_model.zero_grad()
loss_model.train()
for _ in trange(steps_per_epoch, desc="Iteration", smoothing=0.05, disable=not show_progress_bar):
for train_idx in range(num_train_objectives):
loss_model = loss_models[train_idx]
optimizer = optimizers[train_idx]
scheduler = schedulers[train_idx]
data_iterator = data_iterators[train_idx]
try:
data = next(data_iterator)
except StopIteration:
data_iterator = iter(dataloaders[train_idx])
data_iterators[train_idx] = data_iterator
data = next(data_iterator)
features, labels = data
labels = labels.to(self.device)
features = list(map(lambda batch: batch_to_device(batch, self.device), features))
if use_amp:
with torch.autocast(device_type=self.device.type):
loss_value = loss_model(features, labels)
scale_before_step = scaler.get_scale()
scaler.scale(loss_value).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(loss_model.parameters(), max_grad_norm)
scaler.step(optimizer)
scaler.update()
skip_scheduler = scaler.get_scale() != scale_before_step
else:
loss_value = loss_model(features, labels)
loss_value.backward()
torch.nn.utils.clip_grad_norm_(loss_model.parameters(), max_grad_norm)
optimizer.step()
optimizer.zero_grad()
if not skip_scheduler:
scheduler.step()
training_steps += 1
global_step += 1
if evaluation_steps > 0 and training_steps % evaluation_steps == 0:
self._eval_during_training(
evaluator, output_path, save_best_model, epoch, training_steps, callback
)
for loss_model in loss_models:
loss_model.zero_grad()
loss_model.train()
if (
checkpoint_path is not None
and checkpoint_save_steps is not None
and checkpoint_save_steps > 0
and global_step % checkpoint_save_steps == 0
):
self._save_checkpoint(checkpoint_path, checkpoint_save_total_limit, global_step)
self._eval_during_training(evaluator, output_path, save_best_model, epoch, -1, callback)
if evaluator is None and output_path is not None: # No evaluator, but output path: save final model version
self.save(output_path)
if checkpoint_path is not None:
self._save_checkpoint(checkpoint_path, checkpoint_save_total_limit, global_step)
| (self, train_objectives: Iterable[Tuple[torch.utils.data.dataloader.DataLoader, torch.nn.modules.module.Module]], evaluator: Optional[sentence_transformers.evaluation.SentenceEvaluator.SentenceEvaluator] = None, epochs: int = 1, steps_per_epoch=None, scheduler: str = 'WarmupLinear', warmup_steps: int = 10000, optimizer_class: Type[torch.optim.optimizer.Optimizer] = <class 'torch.optim.adamw.AdamW'>, optimizer_params: Dict[str, object] = {'lr': 2e-05}, weight_decay: float = 0.01, evaluation_steps: int = 0, output_path: Optional[str] = None, save_best_model: bool = True, max_grad_norm: float = 1, use_amp: bool = False, callback: Optional[Callable[[float, int, int], NoneType]] = None, show_progress_bar: bool = True, checkpoint_path: Optional[str] = None, checkpoint_save_steps: int = 500, checkpoint_save_total_limit: int = 0) |
10,050 | torch.nn.modules.module | float | Casts all floating point parameters and buffers to ``float`` datatype.
.. note::
This method modifies the module in-place.
Returns:
Module: self
| def float(self: T) -> T:
r"""Casts all floating point parameters and buffers to ``float`` datatype.
.. note::
This method modifies the module in-place.
Returns:
Module: self
"""
return self._apply(lambda t: t.float() if t.is_floating_point() else t)
| (self: ~T) -> ~T |
10,051 | torch.nn.modules.container | forward | null | def forward(self, input):
for module in self:
input = module(input)
return input
| (self, input) |
10,052 | torch.nn.modules.module | get_buffer | Return the buffer given by ``target`` if it exists, otherwise throw an error.
See the docstring for ``get_submodule`` for a more detailed
explanation of this method's functionality as well as how to
correctly specify ``target``.
Args:
target: The fully-qualified string name of the buffer
to look for. (See ``get_submodule`` for how to specify a
fully-qualified string.)
Returns:
torch.Tensor: The buffer referenced by ``target``
Raises:
AttributeError: If the target string references an invalid
path or resolves to something that is not a
buffer
| def get_buffer(self, target: str) -> "Tensor":
"""Return the buffer given by ``target`` if it exists, otherwise throw an error.
See the docstring for ``get_submodule`` for a more detailed
explanation of this method's functionality as well as how to
correctly specify ``target``.
Args:
target: The fully-qualified string name of the buffer
to look for. (See ``get_submodule`` for how to specify a
fully-qualified string.)
Returns:
torch.Tensor: The buffer referenced by ``target``
Raises:
AttributeError: If the target string references an invalid
path or resolves to something that is not a
buffer
"""
module_path, _, buffer_name = target.rpartition(".")
mod: torch.nn.Module = self.get_submodule(module_path)
if not hasattr(mod, buffer_name):
raise AttributeError(mod._get_name() + " has no attribute `"
+ buffer_name + "`")
buffer: torch.Tensor = getattr(mod, buffer_name)
if buffer_name not in mod._buffers:
raise AttributeError("`" + buffer_name + "` is not a buffer")
return buffer
| (self, target: str) -> torch.Tensor |
10,053 | torch.nn.modules.module | get_extra_state | Return any extra state to include in the module's state_dict.
Implement this and a corresponding :func:`set_extra_state` for your module
if you need to store extra state. This function is called when building the
module's `state_dict()`.
Note that extra state should be picklable to ensure working serialization
of the state_dict. We only provide provide backwards compatibility guarantees
for serializing Tensors; other objects may break backwards compatibility if
their serialized pickled form changes.
Returns:
object: Any extra state to store in the module's state_dict
| def get_extra_state(self) -> Any:
"""Return any extra state to include in the module's state_dict.
Implement this and a corresponding :func:`set_extra_state` for your module
if you need to store extra state. This function is called when building the
module's `state_dict()`.
Note that extra state should be picklable to ensure working serialization
of the state_dict. We only provide provide backwards compatibility guarantees
for serializing Tensors; other objects may break backwards compatibility if
their serialized pickled form changes.
Returns:
object: Any extra state to store in the module's state_dict
"""
raise RuntimeError(
"Reached a code path in Module.get_extra_state() that should never be called. "
"Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml "
"to report this bug.")
| (self) -> Any |
10,054 | sentence_transformers.SentenceTransformer | get_max_seq_length |
Returns the maximal sequence length for input the model accepts. Longer inputs will be truncated
| def get_max_seq_length(self):
"""
Returns the maximal sequence length for input the model accepts. Longer inputs will be truncated
"""
if hasattr(self._first_module(), "max_seq_length"):
return self._first_module().max_seq_length
return None
| (self) |
10,055 | torch.nn.modules.module | get_parameter | Return the parameter given by ``target`` if it exists, otherwise throw an error.
See the docstring for ``get_submodule`` for a more detailed
explanation of this method's functionality as well as how to
correctly specify ``target``.
Args:
target: The fully-qualified string name of the Parameter
to look for. (See ``get_submodule`` for how to specify a
fully-qualified string.)
Returns:
torch.nn.Parameter: The Parameter referenced by ``target``
Raises:
AttributeError: If the target string references an invalid
path or resolves to something that is not an
``nn.Parameter``
| def get_parameter(self, target: str) -> "Parameter":
"""Return the parameter given by ``target`` if it exists, otherwise throw an error.
See the docstring for ``get_submodule`` for a more detailed
explanation of this method's functionality as well as how to
correctly specify ``target``.
Args:
target: The fully-qualified string name of the Parameter
to look for. (See ``get_submodule`` for how to specify a
fully-qualified string.)
Returns:
torch.nn.Parameter: The Parameter referenced by ``target``
Raises:
AttributeError: If the target string references an invalid
path or resolves to something that is not an
``nn.Parameter``
"""
module_path, _, param_name = target.rpartition(".")
mod: torch.nn.Module = self.get_submodule(module_path)
if not hasattr(mod, param_name):
raise AttributeError(mod._get_name() + " has no attribute `"
+ param_name + "`")
param: torch.nn.Parameter = getattr(mod, param_name)
if not isinstance(param, torch.nn.Parameter):
raise AttributeError("`" + param_name + "` is not an "
"nn.Parameter")
return param
| (self, target: str) -> torch.nn.parameter.Parameter |
10,056 | sentence_transformers.SentenceTransformer | get_sentence_embedding_dimension |
:return: The number of dimensions in the output of `encode`. If it's not known, it's `None`.
| def get_sentence_embedding_dimension(self) -> Optional[int]:
"""
:return: The number of dimensions in the output of `encode`. If it's not known, it's `None`.
"""
output_dim = None
for mod in reversed(self._modules.values()):
sent_embedding_dim_method = getattr(mod, "get_sentence_embedding_dimension", None)
if callable(sent_embedding_dim_method):
output_dim = sent_embedding_dim_method()
break
if self.truncate_dim is not None:
# The user requested truncation. If they set it to a dim greater than output_dim,
# no truncation will actually happen. So return output_dim insead of self.truncate_dim
return min(output_dim or np.inf, self.truncate_dim)
return output_dim
| (self) -> Optional[int] |
10,057 | sentence_transformers.SentenceTransformer | get_sentence_features | null | def get_sentence_features(self, *features):
return self._first_module().get_sentence_features(*features)
| (self, *features) |
10,058 | torch.nn.modules.module | get_submodule | Return the submodule given by ``target`` if it exists, otherwise throw an error.
For example, let's say you have an ``nn.Module`` ``A`` that
looks like this:
.. code-block:: text
A(
(net_b): Module(
(net_c): Module(
(conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))
)
(linear): Linear(in_features=100, out_features=200, bias=True)
)
)
(The diagram shows an ``nn.Module`` ``A``. ``A`` has a nested
submodule ``net_b``, which itself has two submodules ``net_c``
and ``linear``. ``net_c`` then has a submodule ``conv``.)
To check whether or not we have the ``linear`` submodule, we
would call ``get_submodule("net_b.linear")``. To check whether
we have the ``conv`` submodule, we would call
``get_submodule("net_b.net_c.conv")``.
The runtime of ``get_submodule`` is bounded by the degree
of module nesting in ``target``. A query against
``named_modules`` achieves the same result, but it is O(N) in
the number of transitive modules. So, for a simple check to see
if some submodule exists, ``get_submodule`` should always be
used.
Args:
target: The fully-qualified string name of the submodule
to look for. (See above example for how to specify a
fully-qualified string.)
Returns:
torch.nn.Module: The submodule referenced by ``target``
Raises:
AttributeError: If the target string references an invalid
path or resolves to something that is not an
``nn.Module``
| def get_submodule(self, target: str) -> "Module":
"""Return the submodule given by ``target`` if it exists, otherwise throw an error.
For example, let's say you have an ``nn.Module`` ``A`` that
looks like this:
.. code-block:: text
A(
(net_b): Module(
(net_c): Module(
(conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))
)
(linear): Linear(in_features=100, out_features=200, bias=True)
)
)
(The diagram shows an ``nn.Module`` ``A``. ``A`` has a nested
submodule ``net_b``, which itself has two submodules ``net_c``
and ``linear``. ``net_c`` then has a submodule ``conv``.)
To check whether or not we have the ``linear`` submodule, we
would call ``get_submodule("net_b.linear")``. To check whether
we have the ``conv`` submodule, we would call
``get_submodule("net_b.net_c.conv")``.
The runtime of ``get_submodule`` is bounded by the degree
of module nesting in ``target``. A query against
``named_modules`` achieves the same result, but it is O(N) in
the number of transitive modules. So, for a simple check to see
if some submodule exists, ``get_submodule`` should always be
used.
Args:
target: The fully-qualified string name of the submodule
to look for. (See above example for how to specify a
fully-qualified string.)
Returns:
torch.nn.Module: The submodule referenced by ``target``
Raises:
AttributeError: If the target string references an invalid
path or resolves to something that is not an
``nn.Module``
"""
if target == "":
return self
atoms: List[str] = target.split(".")
mod: torch.nn.Module = self
for item in atoms:
if not hasattr(mod, item):
raise AttributeError(mod._get_name() + " has no "
"attribute `" + item + "`")
mod = getattr(mod, item)
if not isinstance(mod, torch.nn.Module):
raise AttributeError("`" + item + "` is not "
"an nn.Module")
return mod
| (self, target: str) -> torch.nn.modules.module.Module |
10,059 | torch.nn.modules.module | half | Casts all floating point parameters and buffers to ``half`` datatype.
.. note::
This method modifies the module in-place.
Returns:
Module: self
| def half(self: T) -> T:
r"""Casts all floating point parameters and buffers to ``half`` datatype.
.. note::
This method modifies the module in-place.
Returns:
Module: self
"""
return self._apply(lambda t: t.half() if t.is_floating_point() else t)
| (self: ~T) -> ~T |
10,060 | torch.nn.modules.container | insert | null | def insert(self, index: int, module: Module) -> 'Sequential':
if not isinstance(module, Module):
raise AssertionError(
f'module should be of type: {Module}')
n = len(self._modules)
if not (-n <= index <= n):
raise IndexError(
f'Index out of range: {index}')
if index < 0:
index += n
for i in range(n, index, -1):
self._modules[str(i)] = self._modules[str(i - 1)]
self._modules[str(index)] = module
return self
| (self, index: int, module: torch.nn.modules.module.Module) -> torch.nn.modules.container.Sequential |
10,061 | torch.nn.modules.module | ipu | Move all model parameters and buffers to the IPU.
This also makes associated parameters and buffers different objects. So
it should be called before constructing optimizer if the module will
live on IPU while being optimized.
.. note::
This method modifies the module in-place.
Arguments:
device (int, optional): if specified, all parameters will be
copied to that device
Returns:
Module: self
| def ipu(self: T, device: Optional[Union[int, device]] = None) -> T:
r"""Move all model parameters and buffers to the IPU.
This also makes associated parameters and buffers different objects. So
it should be called before constructing optimizer if the module will
live on IPU while being optimized.
.. note::
This method modifies the module in-place.
Arguments:
device (int, optional): if specified, all parameters will be
copied to that device
Returns:
Module: self
"""
return self._apply(lambda t: t.ipu(device))
| (self: ~T, device: Union[int, torch.device, NoneType] = None) -> ~T |
10,062 | sentence_transformers.SentenceTransformer | load | null | @staticmethod
def load(input_path):
return SentenceTransformer(input_path)
| (input_path) |
10,063 | torch.nn.modules.module | load_state_dict | Copy parameters and buffers from :attr:`state_dict` into this module and its descendants.
If :attr:`strict` is ``True``, then
the keys of :attr:`state_dict` must exactly match the keys returned
by this module's :meth:`~torch.nn.Module.state_dict` function.
.. warning::
If :attr:`assign` is ``True`` the optimizer must be created after
the call to :attr:`load_state_dict` unless
:func:`~torch.__future__.get_swap_module_params_on_conversion` is ``True``.
Args:
state_dict (dict): a dict containing parameters and
persistent buffers.
strict (bool, optional): whether to strictly enforce that the keys
in :attr:`state_dict` match the keys returned by this module's
:meth:`~torch.nn.Module.state_dict` function. Default: ``True``
assign (bool, optional): When ``False``, the properties of the tensors
in the current module are preserved while when ``True``, the
properties of the Tensors in the state dict are preserved. The only
exception is the ``requires_grad`` field of :class:`~torch.nn.Parameter`s
for which the value from the module is preserved.
Default: ``False``
Returns:
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* **missing_keys** is a list of str containing the missing keys
* **unexpected_keys** is a list of str containing the unexpected keys
Note:
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in :attr:`state_dict`, :meth:`load_state_dict` will raise a
``RuntimeError``.
| def load_state_dict(self, state_dict: Mapping[str, Any],
strict: bool = True, assign: bool = False):
r"""Copy parameters and buffers from :attr:`state_dict` into this module and its descendants.
If :attr:`strict` is ``True``, then
the keys of :attr:`state_dict` must exactly match the keys returned
by this module's :meth:`~torch.nn.Module.state_dict` function.
.. warning::
If :attr:`assign` is ``True`` the optimizer must be created after
the call to :attr:`load_state_dict` unless
:func:`~torch.__future__.get_swap_module_params_on_conversion` is ``True``.
Args:
state_dict (dict): a dict containing parameters and
persistent buffers.
strict (bool, optional): whether to strictly enforce that the keys
in :attr:`state_dict` match the keys returned by this module's
:meth:`~torch.nn.Module.state_dict` function. Default: ``True``
assign (bool, optional): When ``False``, the properties of the tensors
in the current module are preserved while when ``True``, the
properties of the Tensors in the state dict are preserved. The only
exception is the ``requires_grad`` field of :class:`~torch.nn.Parameter`s
for which the value from the module is preserved.
Default: ``False``
Returns:
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* **missing_keys** is a list of str containing the missing keys
* **unexpected_keys** is a list of str containing the unexpected keys
Note:
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in :attr:`state_dict`, :meth:`load_state_dict` will raise a
``RuntimeError``.
"""
if not isinstance(state_dict, Mapping):
raise TypeError(f"Expected state_dict to be dict-like, got {type(state_dict)}.")
missing_keys: List[str] = []
unexpected_keys: List[str] = []
error_msgs: List[str] = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, '_metadata', None)
state_dict = OrderedDict(state_dict)
if metadata is not None:
# mypy isn't aware that "_metadata" exists in state_dict
state_dict._metadata = metadata # type: ignore[attr-defined]
def load(module, local_state_dict, prefix=''):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
if assign:
local_metadata['assign_to_params_buffers'] = assign
module._load_from_state_dict(
local_state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
for name, child in module._modules.items():
if child is not None:
child_prefix = prefix + name + '.'
child_state_dict = {k: v for k, v in local_state_dict.items() if k.startswith(child_prefix)}
load(child, child_state_dict, child_prefix) # noqa: F821
# Note that the hook can modify missing_keys and unexpected_keys.
incompatible_keys = _IncompatibleKeys(missing_keys, unexpected_keys)
for hook in module._load_state_dict_post_hooks.values():
out = hook(module, incompatible_keys)
assert out is None, (
"Hooks registered with ``register_load_state_dict_post_hook`` are not"
"expected to return new values, if incompatible_keys need to be modified,"
"it should be done inplace."
)
load(self, state_dict)
del load
if strict:
if len(unexpected_keys) > 0:
error_msgs.insert(
0, 'Unexpected key(s) in state_dict: {}. '.format(
', '.join(f'"{k}"' for k in unexpected_keys)))
if len(missing_keys) > 0:
error_msgs.insert(
0, 'Missing key(s) in state_dict: {}. '.format(
', '.join(f'"{k}"' for k in missing_keys)))
if len(error_msgs) > 0:
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
self.__class__.__name__, "\n\t".join(error_msgs)))
return _IncompatibleKeys(missing_keys, unexpected_keys)
| (self, state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False) |
10,064 | torch.nn.modules.module | modules | Return an iterator over all modules in the network.
Yields:
Module: a module in the network
Note:
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example::
>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.modules()):
... print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)
| def modules(self) -> Iterator['Module']:
r"""Return an iterator over all modules in the network.
Yields:
Module: a module in the network
Note:
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example::
>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.modules()):
... print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)
"""
for _, module in self.named_modules():
yield module
| (self) -> Iterator[torch.nn.modules.module.Module] |
10,065 | torch.nn.modules.module | named_buffers | Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args:
prefix (str): prefix to prepend to all buffer names.
recurse (bool, optional): if True, then yields buffers of this module
and all submodules. Otherwise, yields only buffers that
are direct members of this module. Defaults to True.
remove_duplicate (bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields:
(str, torch.Tensor): Tuple containing the name and buffer
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> for name, buf in self.named_buffers():
>>> if name in ['running_var']:
>>> print(buf.size())
| def named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> Iterator[Tuple[str, Tensor]]:
r"""Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args:
prefix (str): prefix to prepend to all buffer names.
recurse (bool, optional): if True, then yields buffers of this module
and all submodules. Otherwise, yields only buffers that
are direct members of this module. Defaults to True.
remove_duplicate (bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields:
(str, torch.Tensor): Tuple containing the name and buffer
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> for name, buf in self.named_buffers():
>>> if name in ['running_var']:
>>> print(buf.size())
"""
gen = self._named_members(
lambda module: module._buffers.items(),
prefix=prefix, recurse=recurse, remove_duplicate=remove_duplicate)
yield from gen
| (self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> Iterator[Tuple[str, torch.Tensor]] |
10,066 | torch.nn.modules.module | named_children | Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields:
(str, Module): Tuple containing a name and child module
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> for name, module in model.named_children():
>>> if name in ['conv4', 'conv5']:
>>> print(module)
| def named_children(self) -> Iterator[Tuple[str, 'Module']]:
r"""Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields:
(str, Module): Tuple containing a name and child module
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> for name, module in model.named_children():
>>> if name in ['conv4', 'conv5']:
>>> print(module)
"""
memo = set()
for name, module in self._modules.items():
if module is not None and module not in memo:
memo.add(module)
yield name, module
| (self) -> Iterator[Tuple[str, torch.nn.modules.module.Module]] |
10,067 | torch.nn.modules.module | named_modules | Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args:
memo: a memo to store the set of modules already added to the result
prefix: a prefix that will be added to the name of the module
remove_duplicate: whether to remove the duplicated module instances in the result
or not
Yields:
(str, Module): Tuple of name and module
Note:
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example::
>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.named_modules()):
... print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
| def named_modules(self, memo: Optional[Set['Module']] = None, prefix: str = '', remove_duplicate: bool = True):
r"""Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args:
memo: a memo to store the set of modules already added to the result
prefix: a prefix that will be added to the name of the module
remove_duplicate: whether to remove the duplicated module instances in the result
or not
Yields:
(str, Module): Tuple of name and module
Note:
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example::
>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.named_modules()):
... print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
"""
if memo is None:
memo = set()
if self not in memo:
if remove_duplicate:
memo.add(self)
yield prefix, self
for name, module in self._modules.items():
if module is None:
continue
submodule_prefix = prefix + ('.' if prefix else '') + name
yield from module.named_modules(memo, submodule_prefix, remove_duplicate)
| (self, memo: Optional[Set[torch.nn.modules.module.Module]] = None, prefix: str = '', remove_duplicate: bool = True) |
10,068 | torch.nn.modules.module | named_parameters | Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args:
prefix (str): prefix to prepend to all parameter names.
recurse (bool): if True, then yields parameters of this module
and all submodules. Otherwise, yields only parameters that
are direct members of this module.
remove_duplicate (bool, optional): whether to remove the duplicated
parameters in the result. Defaults to True.
Yields:
(str, Parameter): Tuple containing the name and parameter
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> for name, param in self.named_parameters():
>>> if name in ['bias']:
>>> print(param.size())
| def named_parameters(
self,
prefix: str = '',
recurse: bool = True,
remove_duplicate: bool = True
) -> Iterator[Tuple[str, Parameter]]:
r"""Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args:
prefix (str): prefix to prepend to all parameter names.
recurse (bool): if True, then yields parameters of this module
and all submodules. Otherwise, yields only parameters that
are direct members of this module.
remove_duplicate (bool, optional): whether to remove the duplicated
parameters in the result. Defaults to True.
Yields:
(str, Parameter): Tuple containing the name and parameter
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> for name, param in self.named_parameters():
>>> if name in ['bias']:
>>> print(param.size())
"""
gen = self._named_members(
lambda module: module._parameters.items(),
prefix=prefix, recurse=recurse, remove_duplicate=remove_duplicate)
yield from gen
| (self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> Iterator[Tuple[str, torch.nn.parameter.Parameter]] |
10,069 | torch.nn.modules.module | parameters | Return an iterator over module parameters.
This is typically passed to an optimizer.
Args:
recurse (bool): if True, then yields parameters of this module
and all submodules. Otherwise, yields only parameters that
are direct members of this module.
Yields:
Parameter: module parameter
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> for param in model.parameters():
>>> print(type(param), param.size())
<class 'torch.Tensor'> (20L,)
<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
| def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
r"""Return an iterator over module parameters.
This is typically passed to an optimizer.
Args:
recurse (bool): if True, then yields parameters of this module
and all submodules. Otherwise, yields only parameters that
are direct members of this module.
Yields:
Parameter: module parameter
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> for param in model.parameters():
>>> print(type(param), param.size())
<class 'torch.Tensor'> (20L,)
<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
"""
for name, param in self.named_parameters(recurse=recurse):
yield param
| (self, recurse: bool = True) -> Iterator[torch.nn.parameter.Parameter] |
10,070 | torch.nn.modules.container | pop | null | def pop(self, key: Union[int, slice]) -> Module:
v = self[key]
del self[key]
return v
| (self, key: Union[int, slice]) -> torch.nn.modules.module.Module |
10,071 | sentence_transformers.SentenceTransformer | push_to_hub |
Uploads all elements of this Sentence Transformer to a new HuggingFace Hub repository.
:param repo_id: Repository name for your model in the Hub, including the user or organization.
:param token: An authentication token (See https://huggingface.co/settings/token)
:param private: Set to true, for hosting a private model
:param safe_serialization: If true, save the model using safetensors. If false, save the model the traditional PyTorch way
:param commit_message: Message to commit while pushing.
:param local_model_path: Path of the model locally. If set, this file path will be uploaded. Otherwise, the current model will be uploaded
:param exist_ok: If true, saving to an existing repository is OK. If false, saving only to a new repository is possible
:param replace_model_card: If true, replace an existing model card in the hub with the automatically created model card
:param train_datasets: Datasets used to train the model. If set, the datasets will be added to the model card in the Hub.
:return: The url of the commit of your model in the repository on the Hugging Face Hub.
| def push_to_hub(
self,
repo_id: str,
token: Optional[str] = None,
private: Optional[bool] = None,
safe_serialization: bool = True,
commit_message: str = "Add new SentenceTransformer model.",
local_model_path: Optional[str] = None,
exist_ok: bool = False,
replace_model_card: bool = False,
train_datasets: Optional[List[str]] = None,
) -> str:
"""
Uploads all elements of this Sentence Transformer to a new HuggingFace Hub repository.
:param repo_id: Repository name for your model in the Hub, including the user or organization.
:param token: An authentication token (See https://huggingface.co/settings/token)
:param private: Set to true, for hosting a private model
:param safe_serialization: If true, save the model using safetensors. If false, save the model the traditional PyTorch way
:param commit_message: Message to commit while pushing.
:param local_model_path: Path of the model locally. If set, this file path will be uploaded. Otherwise, the current model will be uploaded
:param exist_ok: If true, saving to an existing repository is OK. If false, saving only to a new repository is possible
:param replace_model_card: If true, replace an existing model card in the hub with the automatically created model card
:param train_datasets: Datasets used to train the model. If set, the datasets will be added to the model card in the Hub.
:return: The url of the commit of your model in the repository on the Hugging Face Hub.
"""
api = HfApi(token=token)
repo_url = api.create_repo(
repo_id=repo_id,
private=private,
repo_type=None,
exist_ok=exist_ok,
)
repo_id = repo_url.repo_id # Update the repo_id in case the old repo_id didn't contain a user or organization
if local_model_path:
folder_url = api.upload_folder(
repo_id=repo_id, folder_path=local_model_path, commit_message=commit_message
)
else:
with tempfile.TemporaryDirectory() as tmp_dir:
create_model_card = replace_model_card or not os.path.exists(os.path.join(tmp_dir, "README.md"))
self.save(
tmp_dir,
model_name=repo_url.repo_id,
create_model_card=create_model_card,
train_datasets=train_datasets,
safe_serialization=safe_serialization,
)
folder_url = api.upload_folder(repo_id=repo_id, folder_path=tmp_dir, commit_message=commit_message)
refs = api.list_repo_refs(repo_id=repo_id)
for branch in refs.branches:
if branch.name == "main":
return f"https://huggingface.co/{repo_id}/commit/{branch.target_commit}"
# This isn't expected to ever be reached.
return folder_url
| (self, repo_id: str, token: Optional[str] = None, private: Optional[bool] = None, safe_serialization: bool = True, commit_message: str = 'Add new SentenceTransformer model.', local_model_path: Optional[str] = None, exist_ok: bool = False, replace_model_card: bool = False, train_datasets: Optional[List[str]] = None) -> str |
10,072 | torch.nn.modules.module | register_backward_hook | Register a backward hook on the module.
This function is deprecated in favor of :meth:`~torch.nn.Module.register_full_backward_hook` and
the behavior of this function will change in future versions.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
| def register_backward_hook(
self, hook: Callable[['Module', _grad_t, _grad_t], Union[None, _grad_t]]
) -> RemovableHandle:
r"""Register a backward hook on the module.
This function is deprecated in favor of :meth:`~torch.nn.Module.register_full_backward_hook` and
the behavior of this function will change in future versions.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
if self._is_full_backward_hook is True:
raise RuntimeError("Cannot use both regular backward hooks and full backward hooks on a "
"single Module. Please use only one of them.")
self._is_full_backward_hook = False
handle = hooks.RemovableHandle(self._backward_hooks)
self._backward_hooks[handle.id] = hook
return handle
| (self, hook: Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]]) -> torch.utils.hooks.RemovableHandle |
10,073 | torch.nn.modules.module | register_buffer | Add a buffer to the module.
This is typically used to register a buffer that should not to be
considered a model parameter. For example, BatchNorm's ``running_mean``
is not a parameter, but is part of the module's state. Buffers, by
default, are persistent and will be saved alongside parameters. This
behavior can be changed by setting :attr:`persistent` to ``False``. The
only difference between a persistent buffer and a non-persistent buffer
is that the latter will not be a part of this module's
:attr:`state_dict`.
Buffers can be accessed as attributes using given names.
Args:
name (str): name of the buffer. The buffer can be accessed
from this module using the given name
tensor (Tensor or None): buffer to be registered. If ``None``, then operations
that run on buffers, such as :attr:`cuda`, are ignored. If ``None``,
the buffer is **not** included in the module's :attr:`state_dict`.
persistent (bool): whether the buffer is part of this module's
:attr:`state_dict`.
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> self.register_buffer('running_mean', torch.zeros(num_features))
| def register_buffer(self, name: str, tensor: Optional[Tensor], persistent: bool = True) -> None:
r"""Add a buffer to the module.
This is typically used to register a buffer that should not to be
considered a model parameter. For example, BatchNorm's ``running_mean``
is not a parameter, but is part of the module's state. Buffers, by
default, are persistent and will be saved alongside parameters. This
behavior can be changed by setting :attr:`persistent` to ``False``. The
only difference between a persistent buffer and a non-persistent buffer
is that the latter will not be a part of this module's
:attr:`state_dict`.
Buffers can be accessed as attributes using given names.
Args:
name (str): name of the buffer. The buffer can be accessed
from this module using the given name
tensor (Tensor or None): buffer to be registered. If ``None``, then operations
that run on buffers, such as :attr:`cuda`, are ignored. If ``None``,
the buffer is **not** included in the module's :attr:`state_dict`.
persistent (bool): whether the buffer is part of this module's
:attr:`state_dict`.
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> self.register_buffer('running_mean', torch.zeros(num_features))
"""
if persistent is False and isinstance(self, torch.jit.ScriptModule):
raise RuntimeError("ScriptModule does not support non-persistent buffers")
if '_buffers' not in self.__dict__:
raise AttributeError(
"cannot assign buffer before Module.__init__() call")
elif not isinstance(name, str):
raise TypeError(f"buffer name should be a string. Got {torch.typename(name)}")
elif '.' in name:
raise KeyError("buffer name can't contain \".\"")
elif name == '':
raise KeyError("buffer name can't be empty string \"\"")
elif hasattr(self, name) and name not in self._buffers:
raise KeyError(f"attribute '{name}' already exists")
elif tensor is not None and not isinstance(tensor, torch.Tensor):
raise TypeError(f"cannot assign '{torch.typename(tensor)}' object to buffer '{name}' "
"(torch Tensor or None required)"
)
else:
for hook in _global_buffer_registration_hooks.values():
output = hook(self, name, tensor)
if output is not None:
tensor = output
self._buffers[name] = tensor
if persistent:
self._non_persistent_buffers_set.discard(name)
else:
self._non_persistent_buffers_set.add(name)
| (self, name: str, tensor: Optional[torch.Tensor], persistent: bool = True) -> NoneType |
10,074 | torch.nn.modules.module | register_forward_hook | Register a forward hook on the module.
The hook will be called every time after :func:`forward` has computed an output.
If ``with_kwargs`` is ``False`` or not specified, the input contains only
the positional arguments given to the module. Keyword arguments won't be
passed to the hooks and only to the ``forward``. The hook can modify the
output. It can modify the input inplace but it will not have effect on
forward since this is called after :func:`forward` is called. The hook
should have the following signature::
hook(module, args, output) -> None or modified output
If ``with_kwargs`` is ``True``, the forward hook will be passed the
``kwargs`` given to the forward function and be expected to return the
output possibly modified. The hook should have the following signature::
hook(module, args, kwargs, output) -> None or modified output
Args:
hook (Callable): The user defined hook to be registered.
prepend (bool): If ``True``, the provided ``hook`` will be fired
before all existing ``forward`` hooks on this
:class:`torch.nn.modules.Module`. Otherwise, the provided
``hook`` will be fired after all existing ``forward`` hooks on
this :class:`torch.nn.modules.Module`. Note that global
``forward`` hooks registered with
:func:`register_module_forward_hook` will fire before all hooks
registered by this method.
Default: ``False``
with_kwargs (bool): If ``True``, the ``hook`` will be passed the
kwargs given to the forward function.
Default: ``False``
always_call (bool): If ``True`` the ``hook`` will be run regardless of
whether an exception is raised while calling the Module.
Default: ``False``
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
| def register_forward_hook(
self,
hook: Union[
Callable[[T, Tuple[Any, ...], Any], Optional[Any]],
Callable[[T, Tuple[Any, ...], Dict[str, Any], Any], Optional[Any]],
],
*,
prepend: bool = False,
with_kwargs: bool = False,
always_call: bool = False,
) -> RemovableHandle:
r"""Register a forward hook on the module.
The hook will be called every time after :func:`forward` has computed an output.
If ``with_kwargs`` is ``False`` or not specified, the input contains only
the positional arguments given to the module. Keyword arguments won't be
passed to the hooks and only to the ``forward``. The hook can modify the
output. It can modify the input inplace but it will not have effect on
forward since this is called after :func:`forward` is called. The hook
should have the following signature::
hook(module, args, output) -> None or modified output
If ``with_kwargs`` is ``True``, the forward hook will be passed the
``kwargs`` given to the forward function and be expected to return the
output possibly modified. The hook should have the following signature::
hook(module, args, kwargs, output) -> None or modified output
Args:
hook (Callable): The user defined hook to be registered.
prepend (bool): If ``True``, the provided ``hook`` will be fired
before all existing ``forward`` hooks on this
:class:`torch.nn.modules.Module`. Otherwise, the provided
``hook`` will be fired after all existing ``forward`` hooks on
this :class:`torch.nn.modules.Module`. Note that global
``forward`` hooks registered with
:func:`register_module_forward_hook` will fire before all hooks
registered by this method.
Default: ``False``
with_kwargs (bool): If ``True``, the ``hook`` will be passed the
kwargs given to the forward function.
Default: ``False``
always_call (bool): If ``True`` the ``hook`` will be run regardless of
whether an exception is raised while calling the Module.
Default: ``False``
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = hooks.RemovableHandle(
self._forward_hooks,
extra_dict=[self._forward_hooks_with_kwargs, self._forward_hooks_always_called],
)
self._forward_hooks[handle.id] = hook
if with_kwargs:
self._forward_hooks_with_kwargs[handle.id] = True
if always_call:
self._forward_hooks_always_called[handle.id] = True
if prepend:
self._forward_hooks.move_to_end(handle.id, last=False) # type: ignore[attr-defined]
return handle
| (self, hook: Union[Callable[[~T, Tuple[Any, ...], Any], Optional[Any]], Callable[[~T, Tuple[Any, ...], Dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> torch.utils.hooks.RemovableHandle |
10,075 | torch.nn.modules.module | register_forward_pre_hook | Register a forward pre-hook on the module.
The hook will be called every time before :func:`forward` is invoked.
If ``with_kwargs`` is false or not specified, the input contains only
the positional arguments given to the module. Keyword arguments won't be
passed to the hooks and only to the ``forward``. The hook can modify the
input. User can either return a tuple or a single modified value in the
hook. We will wrap the value into a tuple if a single value is returned
(unless that value is already a tuple). The hook should have the
following signature::
hook(module, args) -> None or modified input
If ``with_kwargs`` is true, the forward pre-hook will be passed the
kwargs given to the forward function. And if the hook modifies the
input, both the args and kwargs should be returned. The hook should have
the following signature::
hook(module, args, kwargs) -> None or a tuple of modified input and kwargs
Args:
hook (Callable): The user defined hook to be registered.
prepend (bool): If true, the provided ``hook`` will be fired before
all existing ``forward_pre`` hooks on this
:class:`torch.nn.modules.Module`. Otherwise, the provided
``hook`` will be fired after all existing ``forward_pre`` hooks
on this :class:`torch.nn.modules.Module`. Note that global
``forward_pre`` hooks registered with
:func:`register_module_forward_pre_hook` will fire before all
hooks registered by this method.
Default: ``False``
with_kwargs (bool): If true, the ``hook`` will be passed the kwargs
given to the forward function.
Default: ``False``
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
| def register_forward_pre_hook(
self,
hook: Union[
Callable[[T, Tuple[Any, ...]], Optional[Any]],
Callable[[T, Tuple[Any, ...], Dict[str, Any]], Optional[Tuple[Any, Dict[str, Any]]]],
],
*,
prepend: bool = False,
with_kwargs: bool = False,
) -> RemovableHandle:
r"""Register a forward pre-hook on the module.
The hook will be called every time before :func:`forward` is invoked.
If ``with_kwargs`` is false or not specified, the input contains only
the positional arguments given to the module. Keyword arguments won't be
passed to the hooks and only to the ``forward``. The hook can modify the
input. User can either return a tuple or a single modified value in the
hook. We will wrap the value into a tuple if a single value is returned
(unless that value is already a tuple). The hook should have the
following signature::
hook(module, args) -> None or modified input
If ``with_kwargs`` is true, the forward pre-hook will be passed the
kwargs given to the forward function. And if the hook modifies the
input, both the args and kwargs should be returned. The hook should have
the following signature::
hook(module, args, kwargs) -> None or a tuple of modified input and kwargs
Args:
hook (Callable): The user defined hook to be registered.
prepend (bool): If true, the provided ``hook`` will be fired before
all existing ``forward_pre`` hooks on this
:class:`torch.nn.modules.Module`. Otherwise, the provided
``hook`` will be fired after all existing ``forward_pre`` hooks
on this :class:`torch.nn.modules.Module`. Note that global
``forward_pre`` hooks registered with
:func:`register_module_forward_pre_hook` will fire before all
hooks registered by this method.
Default: ``False``
with_kwargs (bool): If true, the ``hook`` will be passed the kwargs
given to the forward function.
Default: ``False``
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = hooks.RemovableHandle(
self._forward_pre_hooks,
extra_dict=self._forward_pre_hooks_with_kwargs
)
self._forward_pre_hooks[handle.id] = hook
if with_kwargs:
self._forward_pre_hooks_with_kwargs[handle.id] = True
if prepend:
self._forward_pre_hooks.move_to_end(handle.id, last=False) # type: ignore[attr-defined]
return handle
| (self, hook: Union[Callable[[~T, Tuple[Any, ...]], Optional[Any]], Callable[[~T, Tuple[Any, ...], Dict[str, Any]], Optional[Tuple[Any, Dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> torch.utils.hooks.RemovableHandle |
10,076 | torch.nn.modules.module | register_full_backward_hook | Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module
are computed, i.e. the hook will execute if and only if the gradients with
respect to module outputs are computed. The hook should have the following
signature::
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The :attr:`grad_input` and :attr:`grad_output` are tuples that contain the gradients
with respect to the inputs and outputs respectively. The hook should
not modify its arguments, but it can optionally return a new gradient with
respect to the input that will be used in place of :attr:`grad_input` in
subsequent computations. :attr:`grad_input` will only correspond to the inputs given
as positional arguments and all kwarg arguments are ignored. Entries
in :attr:`grad_input` and :attr:`grad_output` will be ``None`` for all non-Tensor
arguments.
For technical reasons, when this hook is applied to a Module, its forward function will
receive a view of each Tensor passed to the Module. Similarly the caller will receive a view
of each Tensor returned by the Module's forward function.
.. warning ::
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.
Args:
hook (Callable): The user-defined hook to be registered.
prepend (bool): If true, the provided ``hook`` will be fired before
all existing ``backward`` hooks on this
:class:`torch.nn.modules.Module`. Otherwise, the provided
``hook`` will be fired after all existing ``backward`` hooks on
this :class:`torch.nn.modules.Module`. Note that global
``backward`` hooks registered with
:func:`register_module_full_backward_hook` will fire before
all hooks registered by this method.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
| def register_full_backward_hook(
self,
hook: Callable[["Module", _grad_t, _grad_t], Union[None, _grad_t]],
prepend: bool = False,
) -> RemovableHandle:
r"""Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module
are computed, i.e. the hook will execute if and only if the gradients with
respect to module outputs are computed. The hook should have the following
signature::
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The :attr:`grad_input` and :attr:`grad_output` are tuples that contain the gradients
with respect to the inputs and outputs respectively. The hook should
not modify its arguments, but it can optionally return a new gradient with
respect to the input that will be used in place of :attr:`grad_input` in
subsequent computations. :attr:`grad_input` will only correspond to the inputs given
as positional arguments and all kwarg arguments are ignored. Entries
in :attr:`grad_input` and :attr:`grad_output` will be ``None`` for all non-Tensor
arguments.
For technical reasons, when this hook is applied to a Module, its forward function will
receive a view of each Tensor passed to the Module. Similarly the caller will receive a view
of each Tensor returned by the Module's forward function.
.. warning ::
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.
Args:
hook (Callable): The user-defined hook to be registered.
prepend (bool): If true, the provided ``hook`` will be fired before
all existing ``backward`` hooks on this
:class:`torch.nn.modules.Module`. Otherwise, the provided
``hook`` will be fired after all existing ``backward`` hooks on
this :class:`torch.nn.modules.Module`. Note that global
``backward`` hooks registered with
:func:`register_module_full_backward_hook` will fire before
all hooks registered by this method.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
if self._is_full_backward_hook is False:
raise RuntimeError("Cannot use both regular backward hooks and full backward hooks on a "
"single Module. Please use only one of them.")
self._is_full_backward_hook = True
handle = hooks.RemovableHandle(self._backward_hooks)
self._backward_hooks[handle.id] = hook
if prepend:
self._backward_hooks.move_to_end(handle.id, last=False) # type: ignore[attr-defined]
return handle
| (self, hook: Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]], prepend: bool = False) -> torch.utils.hooks.RemovableHandle |
10,077 | torch.nn.modules.module | register_full_backward_pre_hook | Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed.
The hook should have the following signature::
hook(module, grad_output) -> tuple[Tensor] or None
The :attr:`grad_output` is a tuple. The hook should
not modify its arguments, but it can optionally return a new gradient with
respect to the output that will be used in place of :attr:`grad_output` in
subsequent computations. Entries in :attr:`grad_output` will be ``None`` for
all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will
receive a view of each Tensor passed to the Module. Similarly the caller will receive a view
of each Tensor returned by the Module's forward function.
.. warning ::
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.
Args:
hook (Callable): The user-defined hook to be registered.
prepend (bool): If true, the provided ``hook`` will be fired before
all existing ``backward_pre`` hooks on this
:class:`torch.nn.modules.Module`. Otherwise, the provided
``hook`` will be fired after all existing ``backward_pre`` hooks
on this :class:`torch.nn.modules.Module`. Note that global
``backward_pre`` hooks registered with
:func:`register_module_full_backward_pre_hook` will fire before
all hooks registered by this method.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
| def register_full_backward_pre_hook(
self,
hook: Callable[["Module", _grad_t], Union[None, _grad_t]],
prepend: bool = False,
) -> RemovableHandle:
r"""Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed.
The hook should have the following signature::
hook(module, grad_output) -> tuple[Tensor] or None
The :attr:`grad_output` is a tuple. The hook should
not modify its arguments, but it can optionally return a new gradient with
respect to the output that will be used in place of :attr:`grad_output` in
subsequent computations. Entries in :attr:`grad_output` will be ``None`` for
all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will
receive a view of each Tensor passed to the Module. Similarly the caller will receive a view
of each Tensor returned by the Module's forward function.
.. warning ::
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.
Args:
hook (Callable): The user-defined hook to be registered.
prepend (bool): If true, the provided ``hook`` will be fired before
all existing ``backward_pre`` hooks on this
:class:`torch.nn.modules.Module`. Otherwise, the provided
``hook`` will be fired after all existing ``backward_pre`` hooks
on this :class:`torch.nn.modules.Module`. Note that global
``backward_pre`` hooks registered with
:func:`register_module_full_backward_pre_hook` will fire before
all hooks registered by this method.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = hooks.RemovableHandle(self._backward_pre_hooks)
self._backward_pre_hooks[handle.id] = hook
if prepend:
self._backward_pre_hooks.move_to_end(handle.id, last=False) # type: ignore[attr-defined]
return handle
| (self, hook: Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]], prepend: bool = False) -> torch.utils.hooks.RemovableHandle |
10,078 | torch.nn.modules.module | register_load_state_dict_post_hook | Register a post hook to be run after module's ``load_state_dict`` is called.
It should have the following signature::
hook(module, incompatible_keys) -> None
The ``module`` argument is the current module that this hook is registered
on, and the ``incompatible_keys`` argument is a ``NamedTuple`` consisting
of attributes ``missing_keys`` and ``unexpected_keys``. ``missing_keys``
is a ``list`` of ``str`` containing the missing keys and
``unexpected_keys`` is a ``list`` of ``str`` containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling :func:`load_state_dict` with
``strict=True`` are affected by modifications the hook makes to
``missing_keys`` or ``unexpected_keys``, as expected. Additions to either
set of keys will result in an error being thrown when ``strict=True``, and
clearing out both missing and unexpected keys will avoid an error.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
| def register_load_state_dict_post_hook(self, hook):
r"""Register a post hook to be run after module's ``load_state_dict`` is called.
It should have the following signature::
hook(module, incompatible_keys) -> None
The ``module`` argument is the current module that this hook is registered
on, and the ``incompatible_keys`` argument is a ``NamedTuple`` consisting
of attributes ``missing_keys`` and ``unexpected_keys``. ``missing_keys``
is a ``list`` of ``str`` containing the missing keys and
``unexpected_keys`` is a ``list`` of ``str`` containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling :func:`load_state_dict` with
``strict=True`` are affected by modifications the hook makes to
``missing_keys`` or ``unexpected_keys``, as expected. Additions to either
set of keys will result in an error being thrown when ``strict=True``, and
clearing out both missing and unexpected keys will avoid an error.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = hooks.RemovableHandle(self._load_state_dict_post_hooks)
self._load_state_dict_post_hooks[handle.id] = hook
return handle
| (self, hook) |
10,079 | torch.nn.modules.module | register_module | Alias for :func:`add_module`. | def register_module(self, name: str, module: Optional['Module']) -> None:
r"""Alias for :func:`add_module`."""
self.add_module(name, module)
| (self, name: str, module: Optional[torch.nn.modules.module.Module]) -> NoneType |
10,080 | torch.nn.modules.module | register_parameter | Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args:
name (str): name of the parameter. The parameter can be accessed
from this module using the given name
param (Parameter or None): parameter to be added to the module. If
``None``, then operations that run on parameters, such as :attr:`cuda`,
are ignored. If ``None``, the parameter is **not** included in the
module's :attr:`state_dict`.
| def register_parameter(self, name: str, param: Optional[Parameter]) -> None:
r"""Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args:
name (str): name of the parameter. The parameter can be accessed
from this module using the given name
param (Parameter or None): parameter to be added to the module. If
``None``, then operations that run on parameters, such as :attr:`cuda`,
are ignored. If ``None``, the parameter is **not** included in the
module's :attr:`state_dict`.
"""
if '_parameters' not in self.__dict__:
raise AttributeError(
"cannot assign parameter before Module.__init__() call")
elif not isinstance(name, str):
raise TypeError(f"parameter name should be a string. Got {torch.typename(name)}")
elif '.' in name:
raise KeyError("parameter name can't contain \".\"")
elif name == '':
raise KeyError("parameter name can't be empty string \"\"")
elif hasattr(self, name) and name not in self._parameters:
raise KeyError(f"attribute '{name}' already exists")
if param is None:
self._parameters[name] = None
elif not isinstance(param, Parameter):
raise TypeError(f"cannot assign '{torch.typename(param)}' object to parameter '{name}' "
"(torch.nn.Parameter or None required)"
)
elif param.grad_fn:
raise ValueError(
f"Cannot assign non-leaf Tensor to parameter '{name}'. Model "
f"parameters must be created explicitly. To express '{name}' "
"as a function of another Tensor, compute the value in "
"the forward() method.")
else:
for hook in _global_parameter_registration_hooks.values():
output = hook(self, name, param)
if output is not None:
param = output
self._parameters[name] = param
| (self, name: str, param: Optional[torch.nn.parameter.Parameter]) -> NoneType |
10,081 | torch.nn.modules.module | register_state_dict_pre_hook | Register a pre-hook for the :meth:`~torch.nn.Module.state_dict` method.
These hooks will be called with arguments: ``self``, ``prefix``,
and ``keep_vars`` before calling ``state_dict`` on ``self``. The registered
hooks can be used to perform pre-processing before the ``state_dict``
call is made.
| def register_state_dict_pre_hook(self, hook):
r"""Register a pre-hook for the :meth:`~torch.nn.Module.state_dict` method.
These hooks will be called with arguments: ``self``, ``prefix``,
and ``keep_vars`` before calling ``state_dict`` on ``self``. The registered
hooks can be used to perform pre-processing before the ``state_dict``
call is made.
"""
handle = hooks.RemovableHandle(self._state_dict_pre_hooks)
self._state_dict_pre_hooks[handle.id] = hook
return handle
| (self, hook) |
10,082 | torch.nn.modules.module | requires_grad_ | Change if autograd should record operations on parameters in this module.
This method sets the parameters' :attr:`requires_grad` attributes
in-place.
This method is helpful for freezing part of the module for finetuning
or training parts of a model individually (e.g., GAN training).
See :ref:`locally-disable-grad-doc` for a comparison between
`.requires_grad_()` and several similar mechanisms that may be confused with it.
Args:
requires_grad (bool): whether autograd should record operations on
parameters in this module. Default: ``True``.
Returns:
Module: self
| def requires_grad_(self: T, requires_grad: bool = True) -> T:
r"""Change if autograd should record operations on parameters in this module.
This method sets the parameters' :attr:`requires_grad` attributes
in-place.
This method is helpful for freezing part of the module for finetuning
or training parts of a model individually (e.g., GAN training).
See :ref:`locally-disable-grad-doc` for a comparison between
`.requires_grad_()` and several similar mechanisms that may be confused with it.
Args:
requires_grad (bool): whether autograd should record operations on
parameters in this module. Default: ``True``.
Returns:
Module: self
"""
for p in self.parameters():
p.requires_grad_(requires_grad)
return self
| (self: ~T, requires_grad: bool = True) -> ~T |
10,083 | sentence_transformers.SentenceTransformer | save |
Saves all elements for this seq. sentence embedder into different sub-folders
:param path: Path on disc
:param model_name: Optional model name
:param create_model_card: If True, create a README.md with basic information about this model
:param train_datasets: Optional list with the names of the datasets used to to train the model
:param safe_serialization: If true, save the model using safetensors. If false, save the model the traditional PyTorch way
| def save(
self,
path: str,
model_name: Optional[str] = None,
create_model_card: bool = True,
train_datasets: Optional[List[str]] = None,
safe_serialization: bool = True,
):
"""
Saves all elements for this seq. sentence embedder into different sub-folders
:param path: Path on disc
:param model_name: Optional model name
:param create_model_card: If True, create a README.md with basic information about this model
:param train_datasets: Optional list with the names of the datasets used to to train the model
:param safe_serialization: If true, save the model using safetensors. If false, save the model the traditional PyTorch way
"""
if path is None:
return
os.makedirs(path, exist_ok=True)
logger.info("Save model to {}".format(path))
modules_config = []
# Save some model info
if "__version__" not in self._model_config:
self._model_config["__version__"] = {
"sentence_transformers": __version__,
"transformers": transformers.__version__,
"pytorch": torch.__version__,
}
with open(os.path.join(path, "config_sentence_transformers.json"), "w") as fOut:
config = self._model_config.copy()
config["prompts"] = self.prompts
config["default_prompt_name"] = self.default_prompt_name
json.dump(config, fOut, indent=2)
# Save modules
for idx, name in enumerate(self._modules):
module = self._modules[name]
if idx == 0 and isinstance(module, Transformer): # Save transformer model in the main folder
model_path = path + "/"
else:
model_path = os.path.join(path, str(idx) + "_" + type(module).__name__)
os.makedirs(model_path, exist_ok=True)
if isinstance(module, Transformer):
module.save(model_path, safe_serialization=safe_serialization)
else:
module.save(model_path)
modules_config.append(
{"idx": idx, "name": name, "path": os.path.basename(model_path), "type": type(module).__module__}
)
with open(os.path.join(path, "modules.json"), "w") as fOut:
json.dump(modules_config, fOut, indent=2)
# Create model card
if create_model_card:
self._create_model_card(path, model_name, train_datasets)
| (self, path: str, model_name: Optional[str] = None, create_model_card: bool = True, train_datasets: Optional[List[str]] = None, safe_serialization: bool = True) |
10,084 | sentence_transformers.SentenceTransformer | save_to_hub |
DEPRECATED, use `push_to_hub` instead.
Uploads all elements of this Sentence Transformer to a new HuggingFace Hub repository.
:param repo_id: Repository name for your model in the Hub, including the user or organization.
:param token: An authentication token (See https://huggingface.co/settings/token)
:param private: Set to true, for hosting a private model
:param safe_serialization: If true, save the model using safetensors. If false, save the model the traditional PyTorch way
:param commit_message: Message to commit while pushing.
:param local_model_path: Path of the model locally. If set, this file path will be uploaded. Otherwise, the current model will be uploaded
:param exist_ok: If true, saving to an existing repository is OK. If false, saving only to a new repository is possible
:param replace_model_card: If true, replace an existing model card in the hub with the automatically created model card
:param train_datasets: Datasets used to train the model. If set, the datasets will be added to the model card in the Hub.
:param organization: Deprecated. Organization in which you want to push your model or tokenizer (you must be a member of this organization).
:return: The url of the commit of your model in the repository on the Hugging Face Hub.
| def tokenize(self, texts: Union[List[str], List[Dict], List[Tuple[str, str]]]):
"""
Tokenizes the texts
"""
kwargs = {}
# HPU models reach optimal performance if the padding is not dynamic
if self.device.type == "hpu":
kwargs["padding"] = "max_length"
try:
return self._first_module().tokenize(texts, **kwargs)
except TypeError:
# In case some Module does not allow for kwargs in tokenize, we also try without any
return self._first_module().tokenize(texts)
| (self, repo_id: str, organization: Optional[str] = None, token: Optional[str] = None, private: Optional[bool] = None, safe_serialization: bool = True, commit_message: str = 'Add new SentenceTransformer model.', local_model_path: Optional[str] = None, exist_ok: bool = False, replace_model_card: bool = False, train_datasets: Optional[List[str]] = None) -> str |
10,085 | torch.nn.modules.module | set_extra_state | Set extra state contained in the loaded `state_dict`.
This function is called from :func:`load_state_dict` to handle any extra state
found within the `state_dict`. Implement this function and a corresponding
:func:`get_extra_state` for your module if you need to store extra state within its
`state_dict`.
Args:
state (dict): Extra state from the `state_dict`
| def set_extra_state(self, state: Any) -> None:
"""Set extra state contained in the loaded `state_dict`.
This function is called from :func:`load_state_dict` to handle any extra state
found within the `state_dict`. Implement this function and a corresponding
:func:`get_extra_state` for your module if you need to store extra state within its
`state_dict`.
Args:
state (dict): Extra state from the `state_dict`
"""
raise RuntimeError(
"Reached a code path in Module.set_extra_state() that should never be called. "
"Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml "
"to report this bug.")
| (self, state: Any) -> NoneType |
10,086 | sentence_transformers.SentenceTransformer | set_pooling_include_prompt |
Sets the `include_prompt` attribute in the pooling layer in the model, if there is one.
:param include_prompt: Whether to include the prompt in the pooling layer.
| def set_pooling_include_prompt(self, include_prompt: bool) -> None:
"""
Sets the `include_prompt` attribute in the pooling layer in the model, if there is one.
:param include_prompt: Whether to include the prompt in the pooling layer.
"""
for module in self:
if isinstance(module, Pooling):
module.include_prompt = include_prompt
break
| (self, include_prompt: bool) -> NoneType |
10,087 | torch.nn.modules.module | share_memory | See :meth:`torch.Tensor.share_memory_`. | def share_memory(self: T) -> T:
r"""See :meth:`torch.Tensor.share_memory_`."""
return self._apply(lambda t: t.share_memory_())
| (self: ~T) -> ~T |
10,088 | sentence_transformers.SentenceTransformer | smart_batching_collate |
Transforms a batch from a SmartBatchingDataset to a batch of tensors for the model
Here, batch is a list of InputExample instances: [InputExample(...), ...]
:param batch:
a batch from a SmartBatchingDataset
:return:
a batch of tensors for the model
| def smart_batching_collate(self, batch: List["InputExample"]) -> Tuple[List[Dict[str, Tensor]], Tensor]:
"""
Transforms a batch from a SmartBatchingDataset to a batch of tensors for the model
Here, batch is a list of InputExample instances: [InputExample(...), ...]
:param batch:
a batch from a SmartBatchingDataset
:return:
a batch of tensors for the model
"""
texts = [example.texts for example in batch]
sentence_features = [self.tokenize(sentence) for sentence in zip(*texts)]
labels = torch.tensor([example.label for example in batch])
return sentence_features, labels
| (self, batch: List[ForwardRef('InputExample')]) -> Tuple[List[Dict[str, torch.Tensor]], torch.Tensor] |
10,089 | sentence_transformers.SentenceTransformer | start_multi_process_pool |
Starts multi process to process the encoding with several, independent processes.
This method is recommended if you want to encode on multiple GPUs or CPUs. It is advised
to start only one process per GPU. This method works together with encode_multi_process
and stop_multi_process_pool.
:param target_devices: PyTorch target devices, e.g. ["cuda:0", "cuda:1", ...], ["npu:0", "npu:1", ...] or
["cpu", "cpu", "cpu", "cpu"]. If target_devices is None and CUDA/NPU is available, then all available
CUDA/NPU devices will be used. If target_devices is None and CUDA/NPU is not available, then 4 CPU
devices will be used.
:return: Returns a dict with the target processes, an input queue and and output queue.
| def start_multi_process_pool(self, target_devices: List[str] = None):
"""
Starts multi process to process the encoding with several, independent processes.
This method is recommended if you want to encode on multiple GPUs or CPUs. It is advised
to start only one process per GPU. This method works together with encode_multi_process
and stop_multi_process_pool.
:param target_devices: PyTorch target devices, e.g. ["cuda:0", "cuda:1", ...], ["npu:0", "npu:1", ...] or
["cpu", "cpu", "cpu", "cpu"]. If target_devices is None and CUDA/NPU is available, then all available
CUDA/NPU devices will be used. If target_devices is None and CUDA/NPU is not available, then 4 CPU
devices will be used.
:return: Returns a dict with the target processes, an input queue and and output queue.
"""
if target_devices is None:
if torch.cuda.is_available():
target_devices = ["cuda:{}".format(i) for i in range(torch.cuda.device_count())]
elif is_torch_npu_available():
target_devices = ["npu:{}".format(i) for i in range(torch.npu.device_count())]
else:
logger.info("CUDA/NPU is not available. Starting 4 CPU workers")
target_devices = ["cpu"] * 4
logger.info("Start multi-process pool on devices: {}".format(", ".join(map(str, target_devices))))
self.to("cpu")
self.share_memory()
ctx = mp.get_context("spawn")
input_queue = ctx.Queue()
output_queue = ctx.Queue()
processes = []
for device_id in target_devices:
p = ctx.Process(
target=SentenceTransformer._encode_multi_process_worker,
args=(device_id, self, input_queue, output_queue),
daemon=True,
)
p.start()
processes.append(p)
return {"input": input_queue, "output": output_queue, "processes": processes}
| (self, target_devices: Optional[List[str]] = None) |
10,090 | torch.nn.modules.module | state_dict | Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are
included. Keys are corresponding parameter and buffer names.
Parameters and buffers set to ``None`` are not included.
.. note::
The returned object is a shallow copy. It contains references
to the module's parameters and buffers.
.. warning::
Currently ``state_dict()`` also accepts positional arguments for
``destination``, ``prefix`` and ``keep_vars`` in order. However,
this is being deprecated and keyword arguments will be enforced in
future releases.
.. warning::
Please avoid the use of argument ``destination`` as it is not
designed for end-users.
Args:
destination (dict, optional): If provided, the state of module will
be updated into the dict and the same object is returned.
Otherwise, an ``OrderedDict`` will be created and returned.
Default: ``None``.
prefix (str, optional): a prefix added to parameter and buffer
names to compose the keys in state_dict. Default: ``''``.
keep_vars (bool, optional): by default the :class:`~torch.Tensor` s
returned in the state dict are detached from autograd. If it's
set to ``True``, detaching will not be performed.
Default: ``False``.
Returns:
dict:
a dictionary containing a whole state of the module
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> module.state_dict().keys()
['bias', 'weight']
| def state_dict(self, *args, destination=None, prefix='', keep_vars=False):
r"""Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are
included. Keys are corresponding parameter and buffer names.
Parameters and buffers set to ``None`` are not included.
.. note::
The returned object is a shallow copy. It contains references
to the module's parameters and buffers.
.. warning::
Currently ``state_dict()`` also accepts positional arguments for
``destination``, ``prefix`` and ``keep_vars`` in order. However,
this is being deprecated and keyword arguments will be enforced in
future releases.
.. warning::
Please avoid the use of argument ``destination`` as it is not
designed for end-users.
Args:
destination (dict, optional): If provided, the state of module will
be updated into the dict and the same object is returned.
Otherwise, an ``OrderedDict`` will be created and returned.
Default: ``None``.
prefix (str, optional): a prefix added to parameter and buffer
names to compose the keys in state_dict. Default: ``''``.
keep_vars (bool, optional): by default the :class:`~torch.Tensor` s
returned in the state dict are detached from autograd. If it's
set to ``True``, detaching will not be performed.
Default: ``False``.
Returns:
dict:
a dictionary containing a whole state of the module
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> module.state_dict().keys()
['bias', 'weight']
"""
# TODO: Remove `args` and the parsing logic when BC allows.
if len(args) > 0:
if destination is None:
destination = args[0]
if len(args) > 1 and prefix == '':
prefix = args[1]
if len(args) > 2 and keep_vars is False:
keep_vars = args[2]
# DeprecationWarning is ignored by default
warnings.warn(
"Positional args are being deprecated, use kwargs instead. Refer to "
"https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict"
" for details.")
if destination is None:
destination = OrderedDict()
destination._metadata = OrderedDict()
local_metadata = dict(version=self._version)
if hasattr(destination, "_metadata"):
destination._metadata[prefix[:-1]] = local_metadata
for hook in self._state_dict_pre_hooks.values():
hook(self, prefix, keep_vars)
self._save_to_state_dict(destination, prefix, keep_vars)
for name, module in self._modules.items():
if module is not None:
module.state_dict(destination=destination, prefix=prefix + name + '.', keep_vars=keep_vars)
for hook in self._state_dict_hooks.values():
hook_result = hook(self, destination, prefix, local_metadata)
if hook_result is not None:
destination = hook_result
return destination
| (self, *args, destination=None, prefix='', keep_vars=False) |
10,091 | sentence_transformers.SentenceTransformer | stop_multi_process_pool |
Stops all processes started with start_multi_process_pool
| @staticmethod
def stop_multi_process_pool(pool):
"""
Stops all processes started with start_multi_process_pool
"""
for p in pool["processes"]:
p.terminate()
for p in pool["processes"]:
p.join()
p.close()
pool["input"].close()
pool["output"].close()
| (pool) |
10,092 | torch.nn.modules.module | to | Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False)
:noindex:
.. function:: to(dtype, non_blocking=False)
:noindex:
.. function:: to(tensor, non_blocking=False)
:noindex:
.. function:: to(memory_format=torch.channels_last)
:noindex:
Its signature is similar to :meth:`torch.Tensor.to`, but only accepts
floating point or complex :attr:`dtype`\ s. In addition, this method will
only cast the floating point or complex parameters and buffers to :attr:`dtype`
(if given). The integral parameters and buffers will be moved
:attr:`device`, if that is given, but with dtypes unchanged. When
:attr:`non_blocking` is set, it tries to convert/move asynchronously
with respect to the host if possible, e.g., moving CPU Tensors with
pinned memory to CUDA devices.
See below for examples.
.. note::
This method modifies the module in-place.
Args:
device (:class:`torch.device`): the desired device of the parameters
and buffers in this module
dtype (:class:`torch.dtype`): the desired floating point or complex dtype of
the parameters and buffers in this module
tensor (torch.Tensor): Tensor whose dtype and device are the desired
dtype and device for all parameters and buffers in this module
memory_format (:class:`torch.memory_format`): the desired memory
format for 4D parameters and buffers in this module (keyword
only argument)
Returns:
Module: self
Examples::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> linear = nn.Linear(2, 2)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
>>> linear.to(torch.double)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=torch.float64)
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1)
>>> gpu1 = torch.device("cuda:1")
>>> linear.to(gpu1, dtype=torch.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')
>>> cpu = torch.device("cpu")
>>> linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=torch.float16)
>>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble)
>>> linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128)
>>> linear(torch.ones(3, 2, dtype=torch.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
| def to(self, *args, **kwargs):
r"""Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False)
:noindex:
.. function:: to(dtype, non_blocking=False)
:noindex:
.. function:: to(tensor, non_blocking=False)
:noindex:
.. function:: to(memory_format=torch.channels_last)
:noindex:
Its signature is similar to :meth:`torch.Tensor.to`, but only accepts
floating point or complex :attr:`dtype`\ s. In addition, this method will
only cast the floating point or complex parameters and buffers to :attr:`dtype`
(if given). The integral parameters and buffers will be moved
:attr:`device`, if that is given, but with dtypes unchanged. When
:attr:`non_blocking` is set, it tries to convert/move asynchronously
with respect to the host if possible, e.g., moving CPU Tensors with
pinned memory to CUDA devices.
See below for examples.
.. note::
This method modifies the module in-place.
Args:
device (:class:`torch.device`): the desired device of the parameters
and buffers in this module
dtype (:class:`torch.dtype`): the desired floating point or complex dtype of
the parameters and buffers in this module
tensor (torch.Tensor): Tensor whose dtype and device are the desired
dtype and device for all parameters and buffers in this module
memory_format (:class:`torch.memory_format`): the desired memory
format for 4D parameters and buffers in this module (keyword
only argument)
Returns:
Module: self
Examples::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> linear = nn.Linear(2, 2)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
>>> linear.to(torch.double)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=torch.float64)
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1)
>>> gpu1 = torch.device("cuda:1")
>>> linear.to(gpu1, dtype=torch.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')
>>> cpu = torch.device("cpu")
>>> linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=torch.float16)
>>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble)
>>> linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128)
>>> linear(torch.ones(3, 2, dtype=torch.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
"""
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
if dtype is not None:
if not (dtype.is_floating_point or dtype.is_complex):
raise TypeError('nn.Module.to only accepts floating point or complex '
f'dtypes, but got desired dtype={dtype}')
if dtype.is_complex:
warnings.warn(
"Complex modules are a new feature under active development whose design may change, "
"and some modules might not work as expected when using complex tensors as parameters or buffers. "
"Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml "
"if a complex module does not work as expected.")
def convert(t):
try:
if convert_to_format is not None and t.dim() in (4, 5):
return t.to(
device,
dtype if t.is_floating_point() or t.is_complex() else None,
non_blocking,
memory_format=convert_to_format,
)
return t.to(
device,
dtype if t.is_floating_point() or t.is_complex() else None,
non_blocking,
)
except NotImplementedError as e:
if str(e) == "Cannot copy out of meta tensor; no data!":
raise NotImplementedError(
f"{e} Please use torch.nn.Module.to_empty() instead of torch.nn.Module.to() "
f"when moving module from meta to a different device."
) from None
else:
raise
return self._apply(convert)
| (self, *args, **kwargs) |
10,093 | torch.nn.modules.module | to_empty | Move the parameters and buffers to the specified device without copying storage.
Args:
device (:class:`torch.device`): The desired device of the parameters
and buffers in this module.
recurse (bool): Whether parameters and buffers of submodules should
be recursively moved to the specified device.
Returns:
Module: self
| def to_empty(self: T, *, device: Optional[DeviceLikeType], recurse: bool = True) -> T:
r"""Move the parameters and buffers to the specified device without copying storage.
Args:
device (:class:`torch.device`): The desired device of the parameters
and buffers in this module.
recurse (bool): Whether parameters and buffers of submodules should
be recursively moved to the specified device.
Returns:
Module: self
"""
return self._apply(lambda t: torch.empty_like(t, device=device), recurse=recurse)
| (self: ~T, *, device: Union[int, str, torch.device, NoneType], recurse: bool = True) -> ~T |
10,094 | sentence_transformers.SentenceTransformer | tokenize |
Tokenizes the texts
| def tokenize(self, texts: Union[List[str], List[Dict], List[Tuple[str, str]]]):
"""
Tokenizes the texts
"""
kwargs = {}
# HPU models reach optimal performance if the padding is not dynamic
if self.device.type == "hpu":
kwargs["padding"] = "max_length"
try:
return self._first_module().tokenize(texts, **kwargs)
except TypeError:
# In case some Module does not allow for kwargs in tokenize, we also try without any
return self._first_module().tokenize(texts)
| (self, texts: Union[List[str], List[Dict], List[Tuple[str, str]]]) |
10,095 | torch.nn.modules.module | train | Set the module in training mode.
This has any effect only on certain modules. See documentations of
particular modules for details of their behaviors in training/evaluation
mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
etc.
Args:
mode (bool): whether to set training mode (``True``) or evaluation
mode (``False``). Default: ``True``.
Returns:
Module: self
| def train(self: T, mode: bool = True) -> T:
r"""Set the module in training mode.
This has any effect only on certain modules. See documentations of
particular modules for details of their behaviors in training/evaluation
mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
etc.
Args:
mode (bool): whether to set training mode (``True``) or evaluation
mode (``False``). Default: ``True``.
Returns:
Module: self
"""
if not isinstance(mode, bool):
raise ValueError("training mode is expected to be boolean")
self.training = mode
for module in self.children():
module.train(mode)
return self
| (self: ~T, mode: bool = True) -> ~T |
10,096 | sentence_transformers.SentenceTransformer | truncate_sentence_embeddings |
In this context, `model.encode` outputs sentence embeddings truncated at dimension `truncate_dim`.
This may be useful when you are using the same model for different applications where different dimensions
are needed.
:param truncate_dim: The dimension to truncate sentence embeddings to. `None` does no truncation.
Example::
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("model-name")
with model.truncate_sentence_embeddings(truncate_dim=16):
embeddings_truncated = model.encode(["hello there", "hiya"])
assert embeddings_truncated.shape[-1] == 16
| def encode(
self,
sentences: Union[str, List[str]],
prompt_name: Optional[str] = None,
prompt: Optional[str] = None,
batch_size: int = 32,
show_progress_bar: bool = None,
output_value: Optional[Literal["sentence_embedding", "token_embeddings"]] = "sentence_embedding",
precision: Literal["float32", "int8", "uint8", "binary", "ubinary"] = "float32",
convert_to_numpy: bool = True,
convert_to_tensor: bool = False,
device: str = None,
normalize_embeddings: bool = False,
) -> Union[List[Tensor], ndarray, Tensor]:
"""
Computes sentence embeddings.
:param sentences: the sentences to embed.
:param prompt_name: The name of the prompt to use for encoding. Must be a key in the `prompts` dictionary,
which is either set in the constructor or loaded from the model configuration. For example if
`prompt_name` is ``"query"`` and the `prompts` is ``{"query": "query: ", ...}``, then the sentence "What
is the capital of France?" will be encoded as "query: What is the capital of France?" because the sentence
is appended to the prompt. If `prompt` is also set, this argument is ignored.
:param prompt: The prompt to use for encoding. For example, if the prompt is ``"query: "``, then the
sentence "What is the capital of France?" will be encoded as "query: What is the capital of France?"
because the sentence is appended to the prompt. If `prompt` is set, `prompt_name` is ignored.
:param batch_size: the batch size used for the computation.
:param show_progress_bar: Whether to output a progress bar when encode sentences.
:param output_value: The type of embeddings to return: "sentence_embedding" to get sentence embeddings,
"token_embeddings" to get wordpiece token embeddings, and `None`, to get all output values. Defaults
to "sentence_embedding".
:param precision: The precision to use for the embeddings. Can be "float32", "int8", "uint8", "binary", or
"ubinary". All non-float32 precisions are quantized embeddings. Quantized embeddings are smaller in
size and faster to compute, but may have a lower accuracy. They are useful for reducing the size
of the embeddings of a corpus for semantic search, among other tasks. Defaults to "float32".
:param convert_to_numpy: Whether the output should be a list of numpy vectors. If False, it is a list of PyTorch tensors.
:param convert_to_tensor: Whether the output should be one large tensor. Overwrites `convert_to_numpy`.
:param device: Which `torch.device` to use for the computation.
:param normalize_embeddings: Whether to normalize returned vectors to have length 1. In that case,
the faster dot-product (util.dot_score) instead of cosine similarity can be used.
:return: By default, a 2d numpy array with shape [num_inputs, output_dimension] is returned. If only one string
input is provided, then the output is a 1d array with shape [output_dimension]. If `convert_to_tensor`, a
torch Tensor is returned instead. If `self.truncate_dim <= output_dimension` then output_dimension is
`self.truncate_dim`.
"""
if self.device.type == "hpu" and not self.is_hpu_graph_enabled:
import habana_frameworks.torch as ht
ht.hpu.wrap_in_hpu_graph(self, disable_tensor_cache=True)
self.is_hpu_graph_enabled = True
self.eval()
if show_progress_bar is None:
show_progress_bar = (
logger.getEffectiveLevel() == logging.INFO or logger.getEffectiveLevel() == logging.DEBUG
)
if convert_to_tensor:
convert_to_numpy = False
if output_value != "sentence_embedding":
convert_to_tensor = False
convert_to_numpy = False
input_was_string = False
if isinstance(sentences, str) or not hasattr(
sentences, "__len__"
): # Cast an individual sentence to a list with length 1
sentences = [sentences]
input_was_string = True
if prompt is None:
if prompt_name is not None:
try:
prompt = self.prompts[prompt_name]
except KeyError:
raise ValueError(
f"Prompt name '{prompt_name}' not found in the configured prompts dictionary with keys {list(self.prompts.keys())!r}."
)
elif self.default_prompt_name is not None:
prompt = self.prompts.get(self.default_prompt_name, None)
else:
if prompt_name is not None:
logger.warning(
"Encode with either a `prompt`, a `prompt_name`, or neither, but not both. "
"Ignoring the `prompt_name` in favor of `prompt`."
)
extra_features = {}
if prompt is not None:
sentences = [prompt + sentence for sentence in sentences]
# Some models (e.g. INSTRUCTOR, GRIT) require removing the prompt before pooling
# Tracking the prompt length allow us to remove the prompt during pooling
tokenized_prompt = self.tokenize([prompt])
if "input_ids" in tokenized_prompt:
extra_features["prompt_length"] = tokenized_prompt["input_ids"].shape[-1] - 1
if device is None:
device = self.device
self.to(device)
all_embeddings = []
length_sorted_idx = np.argsort([-self._text_length(sen) for sen in sentences])
sentences_sorted = [sentences[idx] for idx in length_sorted_idx]
for start_index in trange(0, len(sentences), batch_size, desc="Batches", disable=not show_progress_bar):
sentences_batch = sentences_sorted[start_index : start_index + batch_size]
features = self.tokenize(sentences_batch)
features = batch_to_device(features, device)
features.update(extra_features)
with torch.no_grad():
out_features = self.forward(features)
out_features["sentence_embedding"] = truncate_embeddings(
out_features["sentence_embedding"], self.truncate_dim
)
if output_value == "token_embeddings":
embeddings = []
for token_emb, attention in zip(out_features[output_value], out_features["attention_mask"]):
last_mask_id = len(attention) - 1
while last_mask_id > 0 and attention[last_mask_id].item() == 0:
last_mask_id -= 1
embeddings.append(token_emb[0 : last_mask_id + 1])
elif output_value is None: # Return all outputs
embeddings = []
for sent_idx in range(len(out_features["sentence_embedding"])):
row = {name: out_features[name][sent_idx] for name in out_features}
embeddings.append(row)
else: # Sentence embeddings
embeddings = out_features[output_value]
embeddings = embeddings.detach()
if normalize_embeddings:
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
# fixes for #522 and #487 to avoid oom problems on gpu with large datasets
if convert_to_numpy:
embeddings = embeddings.cpu()
all_embeddings.extend(embeddings)
all_embeddings = [all_embeddings[idx] for idx in np.argsort(length_sorted_idx)]
if precision and precision != "float32":
all_embeddings = quantize_embeddings(all_embeddings, precision=precision)
if convert_to_tensor:
if len(all_embeddings):
if isinstance(all_embeddings, np.ndarray):
all_embeddings = torch.from_numpy(all_embeddings)
else:
all_embeddings = torch.stack(all_embeddings)
else:
all_embeddings = torch.Tensor()
elif convert_to_numpy:
if not isinstance(all_embeddings, np.ndarray):
all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
elif isinstance(all_embeddings, np.ndarray):
all_embeddings = [torch.from_numpy(embedding) for embedding in all_embeddings]
if input_was_string:
all_embeddings = all_embeddings[0]
return all_embeddings
| (self, truncate_dim: Optional[int]) |
10,097 | torch.nn.modules.module | type | Casts all parameters and buffers to :attr:`dst_type`.
.. note::
This method modifies the module in-place.
Args:
dst_type (type or string): the desired type
Returns:
Module: self
| def type(self: T, dst_type: Union[dtype, str]) -> T:
r"""Casts all parameters and buffers to :attr:`dst_type`.
.. note::
This method modifies the module in-place.
Args:
dst_type (type or string): the desired type
Returns:
Module: self
"""
return self._apply(lambda t: t.type(dst_type))
| (self: ~T, dst_type: Union[torch.dtype, str]) -> ~T |
10,098 | torch.nn.modules.module | xpu | Move all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So
it should be called before constructing optimizer if the module will
live on XPU while being optimized.
.. note::
This method modifies the module in-place.
Arguments:
device (int, optional): if specified, all parameters will be
copied to that device
Returns:
Module: self
| def xpu(self: T, device: Optional[Union[int, device]] = None) -> T:
r"""Move all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So
it should be called before constructing optimizer if the module will
live on XPU while being optimized.
.. note::
This method modifies the module in-place.
Arguments:
device (int, optional): if specified, all parameters will be
copied to that device
Returns:
Module: self
"""
return self._apply(lambda t: t.xpu(device))
| (self: ~T, device: Union[int, torch.device, NoneType] = None) -> ~T |
10,099 | torch.nn.modules.module | zero_grad | Reset gradients of all model parameters.
See similar function under :class:`torch.optim.Optimizer` for more context.
Args:
set_to_none (bool): instead of setting to zero, set the grads to None.
See :meth:`torch.optim.Optimizer.zero_grad` for details.
| def zero_grad(self, set_to_none: bool = True) -> None:
r"""Reset gradients of all model parameters.
See similar function under :class:`torch.optim.Optimizer` for more context.
Args:
set_to_none (bool): instead of setting to zero, set the grads to None.
See :meth:`torch.optim.Optimizer.zero_grad` for details.
"""
if getattr(self, '_is_replica', False):
warnings.warn(
"Calling .zero_grad() from a module created with nn.DataParallel() has no effect. "
"The parameters are copied (in a differentiable manner) from the original module. "
"This means they are not leaf nodes in autograd and so don't accumulate gradients. "
"If you need gradients in your forward method, consider using autograd.grad instead.")
for p in self.parameters():
if p.grad is not None:
if set_to_none:
p.grad = None
else:
if p.grad.grad_fn is not None:
p.grad.detach_()
else:
p.grad.requires_grad_(False)
p.grad.zero_()
| (self, set_to_none: bool = True) -> NoneType |
10,100 | sentence_transformers.datasets.SentencesDataset | SentencesDataset |
DEPRECATED: This class is no longer used. Instead of wrapping your List of InputExamples in a SentencesDataset
and then passing it to the DataLoader, you can pass the list of InputExamples directly to the dataset loader.
| class SentencesDataset(Dataset):
"""
DEPRECATED: This class is no longer used. Instead of wrapping your List of InputExamples in a SentencesDataset
and then passing it to the DataLoader, you can pass the list of InputExamples directly to the dataset loader.
"""
def __init__(self, examples: List[InputExample], model: SentenceTransformer):
self.examples = examples
def __getitem__(self, item):
return self.examples[item]
def __len__(self):
return len(self.examples)
| (examples: List[sentence_transformers.readers.InputExample.InputExample], model: <module 'sentence_transformers.SentenceTransformer' from '/usr/local/lib/python3.10/site-packages/sentence_transformers/SentenceTransformer.py'>) |
10,102 | sentence_transformers.datasets.SentencesDataset | __getitem__ | null | def __getitem__(self, item):
return self.examples[item]
| (self, item) |
10,103 | sentence_transformers.datasets.SentencesDataset | __init__ | null | def __init__(self, examples: List[InputExample], model: SentenceTransformer):
self.examples = examples
| (self, examples: List[sentence_transformers.readers.InputExample.InputExample], model: <module 'sentence_transformers.SentenceTransformer' from '/usr/local/lib/python3.10/site-packages/sentence_transformers/SentenceTransformer.py'>) |
10,104 | sentence_transformers.datasets.SentencesDataset | __len__ | null | def __len__(self):
return len(self.examples)
| (self) |
10,111 | sentence_transformers.quantization | quantize_embeddings |
Quantizes embeddings to a lower precision. This can be used to reduce the memory footprint and increase the
speed of similarity search. The supported precisions are "float32", "int8", "uint8", "binary", and "ubinary".
:param embeddings: Unquantized (e.g. float) embeddings with to quantize to a given precision
:param precision: The precision to convert to. Options are "float32", "int8", "uint8", "binary", "ubinary".
:param ranges: Ranges for quantization of embeddings. This is only used for int8 quantization, where the ranges
refers to the minimum and maximum values for each dimension. So, it's a 2D array with shape (2, embedding_dim).
Default is None, which means that the ranges will be calculated from the calibration embeddings.
:type ranges: Optional[np.ndarray]
:param calibration_embeddings: Embeddings used for calibration during quantization. This is only used for int8
quantization, where the calibration embeddings can be used to compute ranges, i.e. the minimum and maximum
values for each dimension. Default is None, which means that the ranges will be calculated from the query
embeddings. This is not recommended.
:type calibration_embeddings: Optional[np.ndarray]
:return: Quantized embeddings with the specified precision
| def quantize_embeddings(
embeddings: Union[Tensor, np.ndarray],
precision: Literal["float32", "int8", "uint8", "binary", "ubinary"],
ranges: Optional[np.ndarray] = None,
calibration_embeddings: Optional[np.ndarray] = None,
) -> np.ndarray:
"""
Quantizes embeddings to a lower precision. This can be used to reduce the memory footprint and increase the
speed of similarity search. The supported precisions are "float32", "int8", "uint8", "binary", and "ubinary".
:param embeddings: Unquantized (e.g. float) embeddings with to quantize to a given precision
:param precision: The precision to convert to. Options are "float32", "int8", "uint8", "binary", "ubinary".
:param ranges: Ranges for quantization of embeddings. This is only used for int8 quantization, where the ranges
refers to the minimum and maximum values for each dimension. So, it's a 2D array with shape (2, embedding_dim).
Default is None, which means that the ranges will be calculated from the calibration embeddings.
:type ranges: Optional[np.ndarray]
:param calibration_embeddings: Embeddings used for calibration during quantization. This is only used for int8
quantization, where the calibration embeddings can be used to compute ranges, i.e. the minimum and maximum
values for each dimension. Default is None, which means that the ranges will be calculated from the query
embeddings. This is not recommended.
:type calibration_embeddings: Optional[np.ndarray]
:return: Quantized embeddings with the specified precision
"""
if isinstance(embeddings, Tensor):
embeddings = embeddings.cpu().numpy()
elif isinstance(embeddings, list):
if isinstance(embeddings[0], Tensor):
embeddings = [embedding.cpu().numpy() for embedding in embeddings]
embeddings = np.array(embeddings)
if embeddings.dtype in (np.uint8, np.int8):
raise Exception("Embeddings to quantize must be float rather than int8 or uint8.")
if precision == "float32":
return embeddings.astype(np.float32)
if precision.endswith("int8"):
# Either use the 1. provided ranges, 2. the calibration dataset or 3. the provided embeddings
if ranges is None:
if calibration_embeddings is not None:
ranges = np.vstack((np.min(calibration_embeddings, axis=0), np.max(calibration_embeddings, axis=0)))
else:
if embeddings.shape[0] < 100:
logger.warning(
f"Computing {precision} quantization buckets based on {len(embeddings)} embedding{'s' if len(embeddings) != 1 else ''}."
f" {precision} quantization is more stable with `ranges` calculated from more embeddings "
"or a `calibration_embeddings` that can be used to calculate the buckets."
)
ranges = np.vstack((np.min(embeddings, axis=0), np.max(embeddings, axis=0)))
starts = ranges[0, :]
steps = (ranges[1, :] - ranges[0, :]) / 255
if precision == "uint8":
return ((embeddings - starts) / steps).astype(np.uint8)
elif precision == "int8":
return ((embeddings - starts) / steps - 128).astype(np.int8)
if precision == "binary":
return (np.packbits(embeddings > 0).reshape(embeddings.shape[0], -1) - 128).astype(np.int8)
if precision == "ubinary":
return np.packbits(embeddings > 0).reshape(embeddings.shape[0], -1)
raise ValueError(f"Precision {precision} is not supported")
| (embeddings: Union[torch.Tensor, numpy.ndarray], precision: Literal['float32', 'int8', 'uint8', 'binary', 'ubinary'], ranges: Optional[numpy.ndarray] = None, calibration_embeddings: Optional[numpy.ndarray] = None) -> numpy.ndarray |
10,115 | tree_format._text | format_tree | null | def format_tree(node, format_node, get_children):
lines = itertools.chain(
[format_node(node)],
_format_tree(node, format_node, get_children),
[u''],
)
return u'\n'.join(lines)
| (node, format_node, get_children) |
10,116 | tree_format._text | print_tree | null | def print_tree(*args, **kwargs):
print(format_tree(*args, **kwargs))
| (*args, **kwargs) |
10,117 | importlib.metadata | metadata | Get the metadata for the named package.
:param distribution_name: The name of the distribution package to query.
:return: A PackageMetadata containing the parsed metadata.
| def metadata(distribution_name) -> _meta.PackageMetadata:
"""Get the metadata for the named package.
:param distribution_name: The name of the distribution package to query.
:return: A PackageMetadata containing the parsed metadata.
"""
return Distribution.from_name(distribution_name).metadata
| (distribution_name) -> importlib.metadata._meta.PackageMetadata |
10,119 | pygments.formatter | Formatter |
Converts a token stream to text.
Formatters should have attributes to help selecting them. These
are similar to the corresponding :class:`~pygments.lexer.Lexer`
attributes.
.. autoattribute:: name
:no-value:
.. autoattribute:: aliases
:no-value:
.. autoattribute:: filenames
:no-value:
You can pass options as keyword arguments to the constructor.
All formatters accept these basic options:
``style``
The style to use, can be a string or a Style subclass
(default: "default"). Not used by e.g. the
TerminalFormatter.
``full``
Tells the formatter to output a "full" document, i.e.
a complete self-contained document. This doesn't have
any effect for some formatters (default: false).
``title``
If ``full`` is true, the title that should be used to
caption the document (default: '').
``encoding``
If given, must be an encoding name. This will be used to
convert the Unicode token strings to byte strings in the
output. If it is "" or None, Unicode strings will be written
to the output file, which most file-like objects do not
support (default: None).
``outencoding``
Overrides ``encoding`` if given.
| class Formatter:
"""
Converts a token stream to text.
Formatters should have attributes to help selecting them. These
are similar to the corresponding :class:`~pygments.lexer.Lexer`
attributes.
.. autoattribute:: name
:no-value:
.. autoattribute:: aliases
:no-value:
.. autoattribute:: filenames
:no-value:
You can pass options as keyword arguments to the constructor.
All formatters accept these basic options:
``style``
The style to use, can be a string or a Style subclass
(default: "default"). Not used by e.g. the
TerminalFormatter.
``full``
Tells the formatter to output a "full" document, i.e.
a complete self-contained document. This doesn't have
any effect for some formatters (default: false).
``title``
If ``full`` is true, the title that should be used to
caption the document (default: '').
``encoding``
If given, must be an encoding name. This will be used to
convert the Unicode token strings to byte strings in the
output. If it is "" or None, Unicode strings will be written
to the output file, which most file-like objects do not
support (default: None).
``outencoding``
Overrides ``encoding`` if given.
"""
#: Full name for the formatter, in human-readable form.
name = None
#: A list of short, unique identifiers that can be used to lookup
#: the formatter from a list, e.g. using :func:`.get_formatter_by_name()`.
aliases = []
#: A list of fnmatch patterns that match filenames for which this
#: formatter can produce output. The patterns in this list should be unique
#: among all formatters.
filenames = []
#: If True, this formatter outputs Unicode strings when no encoding
#: option is given.
unicodeoutput = True
def __init__(self, **options):
"""
As with lexers, this constructor takes arbitrary optional arguments,
and if you override it, you should first process your own options, then
call the base class implementation.
"""
self.style = _lookup_style(options.get('style', 'default'))
self.full = get_bool_opt(options, 'full', False)
self.title = options.get('title', '')
self.encoding = options.get('encoding', None) or None
if self.encoding in ('guess', 'chardet'):
# can happen for e.g. pygmentize -O encoding=guess
self.encoding = 'utf-8'
self.encoding = options.get('outencoding') or self.encoding
self.options = options
def get_style_defs(self, arg=''):
"""
This method must return statements or declarations suitable to define
the current style for subsequent highlighted text (e.g. CSS classes
in the `HTMLFormatter`).
The optional argument `arg` can be used to modify the generation and
is formatter dependent (it is standardized because it can be given on
the command line).
This method is called by the ``-S`` :doc:`command-line option <cmdline>`,
the `arg` is then given by the ``-a`` option.
"""
return ''
def format(self, tokensource, outfile):
"""
This method must format the tokens from the `tokensource` iterable and
write the formatted version to the file object `outfile`.
Formatter options can control how exactly the tokens are converted.
"""
if self.encoding:
# wrap the outfile in a StreamWriter
outfile = codecs.lookup(self.encoding)[3](outfile)
return self.format_unencoded(tokensource, outfile)
# Allow writing Formatter[str] or Formatter[bytes]. That's equivalent to
# Formatter. This helps when using third-party type stubs from typeshed.
def __class_getitem__(cls, name):
return cls
| (**options) |
10,120 | pygments.formatter | __init__ |
As with lexers, this constructor takes arbitrary optional arguments,
and if you override it, you should first process your own options, then
call the base class implementation.
| def __init__(self, **options):
"""
As with lexers, this constructor takes arbitrary optional arguments,
and if you override it, you should first process your own options, then
call the base class implementation.
"""
self.style = _lookup_style(options.get('style', 'default'))
self.full = get_bool_opt(options, 'full', False)
self.title = options.get('title', '')
self.encoding = options.get('encoding', None) or None
if self.encoding in ('guess', 'chardet'):
# can happen for e.g. pygmentize -O encoding=guess
self.encoding = 'utf-8'
self.encoding = options.get('outencoding') or self.encoding
self.options = options
| (self, **options) |
10,121 | pygments.formatter | format |
This method must format the tokens from the `tokensource` iterable and
write the formatted version to the file object `outfile`.
Formatter options can control how exactly the tokens are converted.
| def format(self, tokensource, outfile):
"""
This method must format the tokens from the `tokensource` iterable and
write the formatted version to the file object `outfile`.
Formatter options can control how exactly the tokens are converted.
"""
if self.encoding:
# wrap the outfile in a StreamWriter
outfile = codecs.lookup(self.encoding)[3](outfile)
return self.format_unencoded(tokensource, outfile)
| (self, tokensource, outfile) |
10,122 | pygments.formatter | get_style_defs |
This method must return statements or declarations suitable to define
the current style for subsequent highlighted text (e.g. CSS classes
in the `HTMLFormatter`).
The optional argument `arg` can be used to modify the generation and
is formatter dependent (it is standardized because it can be given on
the command line).
This method is called by the ``-S`` :doc:`command-line option <cmdline>`,
the `arg` is then given by the ``-a`` option.
| def get_style_defs(self, arg=''):
"""
This method must return statements or declarations suitable to define
the current style for subsequent highlighted text (e.g. CSS classes
in the `HTMLFormatter`).
The optional argument `arg` can be used to modify the generation and
is formatter dependent (it is standardized because it can be given on
the command line).
This method is called by the ``-S`` :doc:`command-line option <cmdline>`,
the `arg` is then given by the ``-a`` option.
"""
return ''
| (self, arg='') |
10,123 | pygments.formatters.html | HtmlFormatter |
Format tokens as HTML 4 ``<span>`` tags. By default, the content is enclosed
in a ``<pre>`` tag, itself wrapped in a ``<div>`` tag (but see the `nowrap` option).
The ``<div>``'s CSS class can be set by the `cssclass` option.
If the `linenos` option is set to ``"table"``, the ``<pre>`` is
additionally wrapped inside a ``<table>`` which has one row and two
cells: one containing the line numbers and one containing the code.
Example:
.. sourcecode:: html
<div class="highlight" >
<table><tr>
<td class="linenos" title="click to toggle"
onclick="with (this.firstChild.style)
{ display = (display == '') ? 'none' : '' }">
<pre>1
2</pre>
</td>
<td class="code">
<pre><span class="Ke">def </span><span class="NaFu">foo</span>(bar):
<span class="Ke">pass</span>
</pre>
</td>
</tr></table></div>
(whitespace added to improve clarity).
A list of lines can be specified using the `hl_lines` option to make these
lines highlighted (as of Pygments 0.11).
With the `full` option, a complete HTML 4 document is output, including
the style definitions inside a ``<style>`` tag, or in a separate file if
the `cssfile` option is given.
When `tagsfile` is set to the path of a ctags index file, it is used to
generate hyperlinks from names to their definition. You must enable
`lineanchors` and run ctags with the `-n` option for this to work. The
`python-ctags` module from PyPI must be installed to use this feature;
otherwise a `RuntimeError` will be raised.
The `get_style_defs(arg='')` method of a `HtmlFormatter` returns a string
containing CSS rules for the CSS classes used by the formatter. The
argument `arg` can be used to specify additional CSS selectors that
are prepended to the classes. A call `fmter.get_style_defs('td .code')`
would result in the following CSS classes:
.. sourcecode:: css
td .code .kw { font-weight: bold; color: #00FF00 }
td .code .cm { color: #999999 }
...
If you have Pygments 0.6 or higher, you can also pass a list or tuple to the
`get_style_defs()` method to request multiple prefixes for the tokens:
.. sourcecode:: python
formatter.get_style_defs(['div.syntax pre', 'pre.syntax'])
The output would then look like this:
.. sourcecode:: css
div.syntax pre .kw,
pre.syntax .kw { font-weight: bold; color: #00FF00 }
div.syntax pre .cm,
pre.syntax .cm { color: #999999 }
...
Additional options accepted:
`nowrap`
If set to ``True``, don't add a ``<pre>`` and a ``<div>`` tag
around the tokens. This disables most other options (default: ``False``).
`full`
Tells the formatter to output a "full" document, i.e. a complete
self-contained document (default: ``False``).
`title`
If `full` is true, the title that should be used to caption the
document (default: ``''``).
`style`
The style to use, can be a string or a Style subclass (default:
``'default'``). This option has no effect if the `cssfile`
and `noclobber_cssfile` option are given and the file specified in
`cssfile` exists.
`noclasses`
If set to true, token ``<span>`` tags (as well as line number elements)
will not use CSS classes, but inline styles. This is not recommended
for larger pieces of code since it increases output size by quite a bit
(default: ``False``).
`classprefix`
Since the token types use relatively short class names, they may clash
with some of your own class names. In this case you can use the
`classprefix` option to give a string to prepend to all Pygments-generated
CSS class names for token types.
Note that this option also affects the output of `get_style_defs()`.
`cssclass`
CSS class for the wrapping ``<div>`` tag (default: ``'highlight'``).
If you set this option, the default selector for `get_style_defs()`
will be this class.
.. versionadded:: 0.9
If you select the ``'table'`` line numbers, the wrapping table will
have a CSS class of this string plus ``'table'``, the default is
accordingly ``'highlighttable'``.
`cssstyles`
Inline CSS styles for the wrapping ``<div>`` tag (default: ``''``).
`prestyles`
Inline CSS styles for the ``<pre>`` tag (default: ``''``).
.. versionadded:: 0.11
`cssfile`
If the `full` option is true and this option is given, it must be the
name of an external file. If the filename does not include an absolute
path, the file's path will be assumed to be relative to the main output
file's path, if the latter can be found. The stylesheet is then written
to this file instead of the HTML file.
.. versionadded:: 0.6
`noclobber_cssfile`
If `cssfile` is given and the specified file exists, the css file will
not be overwritten. This allows the use of the `full` option in
combination with a user specified css file. Default is ``False``.
.. versionadded:: 1.1
`linenos`
If set to ``'table'``, output line numbers as a table with two cells,
one containing the line numbers, the other the whole code. This is
copy-and-paste-friendly, but may cause alignment problems with some
browsers or fonts. If set to ``'inline'``, the line numbers will be
integrated in the ``<pre>`` tag that contains the code (that setting
is *new in Pygments 0.8*).
For compatibility with Pygments 0.7 and earlier, every true value
except ``'inline'`` means the same as ``'table'`` (in particular, that
means also ``True``).
The default value is ``False``, which means no line numbers at all.
**Note:** with the default ("table") line number mechanism, the line
numbers and code can have different line heights in Internet Explorer
unless you give the enclosing ``<pre>`` tags an explicit ``line-height``
CSS property (you get the default line spacing with ``line-height:
125%``).
`hl_lines`
Specify a list of lines to be highlighted. The line numbers are always
relative to the input (i.e. the first line is line 1) and are
independent of `linenostart`.
.. versionadded:: 0.11
`linenostart`
The line number for the first line (default: ``1``).
`linenostep`
If set to a number n > 1, only every nth line number is printed.
`linenospecial`
If set to a number n > 0, every nth line number is given the CSS
class ``"special"`` (default: ``0``).
`nobackground`
If set to ``True``, the formatter won't output the background color
for the wrapping element (this automatically defaults to ``False``
when there is no wrapping element [eg: no argument for the
`get_syntax_defs` method given]) (default: ``False``).
.. versionadded:: 0.6
`lineseparator`
This string is output between lines of code. It defaults to ``"\n"``,
which is enough to break a line inside ``<pre>`` tags, but you can
e.g. set it to ``"<br>"`` to get HTML line breaks.
.. versionadded:: 0.7
`lineanchors`
If set to a nonempty string, e.g. ``foo``, the formatter will wrap each
output line in an anchor tag with an ``id`` (and `name`) of ``foo-linenumber``.
This allows easy linking to certain lines.
.. versionadded:: 0.9
`linespans`
If set to a nonempty string, e.g. ``foo``, the formatter will wrap each
output line in a span tag with an ``id`` of ``foo-linenumber``.
This allows easy access to lines via javascript.
.. versionadded:: 1.6
`anchorlinenos`
If set to `True`, will wrap line numbers in <a> tags. Used in
combination with `linenos` and `lineanchors`.
`tagsfile`
If set to the path of a ctags file, wrap names in anchor tags that
link to their definitions. `lineanchors` should be used, and the
tags file should specify line numbers (see the `-n` option to ctags).
The tags file is assumed to be encoded in UTF-8.
.. versionadded:: 1.6
`tagurlformat`
A string formatting pattern used to generate links to ctags definitions.
Available variables are `%(path)s`, `%(fname)s` and `%(fext)s`.
Defaults to an empty string, resulting in just `#prefix-number` links.
.. versionadded:: 1.6
`filename`
A string used to generate a filename when rendering ``<pre>`` blocks,
for example if displaying source code. If `linenos` is set to
``'table'`` then the filename will be rendered in an initial row
containing a single `<th>` which spans both columns.
.. versionadded:: 2.1
`wrapcode`
Wrap the code inside ``<pre>`` blocks using ``<code>``, as recommended
by the HTML5 specification.
.. versionadded:: 2.4
`debug_token_types`
Add ``title`` attributes to all token ``<span>`` tags that show the
name of the token.
.. versionadded:: 2.10
**Subclassing the HTML formatter**
.. versionadded:: 0.7
The HTML formatter is now built in a way that allows easy subclassing, thus
customizing the output HTML code. The `format()` method calls
`self._format_lines()` which returns a generator that yields tuples of ``(1,
line)``, where the ``1`` indicates that the ``line`` is a line of the
formatted source code.
If the `nowrap` option is set, the generator is the iterated over and the
resulting HTML is output.
Otherwise, `format()` calls `self.wrap()`, which wraps the generator with
other generators. These may add some HTML code to the one generated by
`_format_lines()`, either by modifying the lines generated by the latter,
then yielding them again with ``(1, line)``, and/or by yielding other HTML
code before or after the lines, with ``(0, html)``. The distinction between
source lines and other code makes it possible to wrap the generator multiple
times.
The default `wrap()` implementation adds a ``<div>`` and a ``<pre>`` tag.
A custom `HtmlFormatter` subclass could look like this:
.. sourcecode:: python
class CodeHtmlFormatter(HtmlFormatter):
def wrap(self, source, *, include_div):
return self._wrap_code(source)
def _wrap_code(self, source):
yield 0, '<code>'
for i, t in source:
if i == 1:
# it's a line of formatted code
t += '<br>'
yield i, t
yield 0, '</code>'
This results in wrapping the formatted lines with a ``<code>`` tag, where the
source lines are broken using ``<br>`` tags.
After calling `wrap()`, the `format()` method also adds the "line numbers"
and/or "full document" wrappers if the respective options are set. Then, all
HTML yielded by the wrapped generator is output.
| class HtmlFormatter(Formatter):
r"""
Format tokens as HTML 4 ``<span>`` tags. By default, the content is enclosed
in a ``<pre>`` tag, itself wrapped in a ``<div>`` tag (but see the `nowrap` option).
The ``<div>``'s CSS class can be set by the `cssclass` option.
If the `linenos` option is set to ``"table"``, the ``<pre>`` is
additionally wrapped inside a ``<table>`` which has one row and two
cells: one containing the line numbers and one containing the code.
Example:
.. sourcecode:: html
<div class="highlight" >
<table><tr>
<td class="linenos" title="click to toggle"
onclick="with (this.firstChild.style)
{ display = (display == '') ? 'none' : '' }">
<pre>1
2</pre>
</td>
<td class="code">
<pre><span class="Ke">def </span><span class="NaFu">foo</span>(bar):
<span class="Ke">pass</span>
</pre>
</td>
</tr></table></div>
(whitespace added to improve clarity).
A list of lines can be specified using the `hl_lines` option to make these
lines highlighted (as of Pygments 0.11).
With the `full` option, a complete HTML 4 document is output, including
the style definitions inside a ``<style>`` tag, or in a separate file if
the `cssfile` option is given.
When `tagsfile` is set to the path of a ctags index file, it is used to
generate hyperlinks from names to their definition. You must enable
`lineanchors` and run ctags with the `-n` option for this to work. The
`python-ctags` module from PyPI must be installed to use this feature;
otherwise a `RuntimeError` will be raised.
The `get_style_defs(arg='')` method of a `HtmlFormatter` returns a string
containing CSS rules for the CSS classes used by the formatter. The
argument `arg` can be used to specify additional CSS selectors that
are prepended to the classes. A call `fmter.get_style_defs('td .code')`
would result in the following CSS classes:
.. sourcecode:: css
td .code .kw { font-weight: bold; color: #00FF00 }
td .code .cm { color: #999999 }
...
If you have Pygments 0.6 or higher, you can also pass a list or tuple to the
`get_style_defs()` method to request multiple prefixes for the tokens:
.. sourcecode:: python
formatter.get_style_defs(['div.syntax pre', 'pre.syntax'])
The output would then look like this:
.. sourcecode:: css
div.syntax pre .kw,
pre.syntax .kw { font-weight: bold; color: #00FF00 }
div.syntax pre .cm,
pre.syntax .cm { color: #999999 }
...
Additional options accepted:
`nowrap`
If set to ``True``, don't add a ``<pre>`` and a ``<div>`` tag
around the tokens. This disables most other options (default: ``False``).
`full`
Tells the formatter to output a "full" document, i.e. a complete
self-contained document (default: ``False``).
`title`
If `full` is true, the title that should be used to caption the
document (default: ``''``).
`style`
The style to use, can be a string or a Style subclass (default:
``'default'``). This option has no effect if the `cssfile`
and `noclobber_cssfile` option are given and the file specified in
`cssfile` exists.
`noclasses`
If set to true, token ``<span>`` tags (as well as line number elements)
will not use CSS classes, but inline styles. This is not recommended
for larger pieces of code since it increases output size by quite a bit
(default: ``False``).
`classprefix`
Since the token types use relatively short class names, they may clash
with some of your own class names. In this case you can use the
`classprefix` option to give a string to prepend to all Pygments-generated
CSS class names for token types.
Note that this option also affects the output of `get_style_defs()`.
`cssclass`
CSS class for the wrapping ``<div>`` tag (default: ``'highlight'``).
If you set this option, the default selector for `get_style_defs()`
will be this class.
.. versionadded:: 0.9
If you select the ``'table'`` line numbers, the wrapping table will
have a CSS class of this string plus ``'table'``, the default is
accordingly ``'highlighttable'``.
`cssstyles`
Inline CSS styles for the wrapping ``<div>`` tag (default: ``''``).
`prestyles`
Inline CSS styles for the ``<pre>`` tag (default: ``''``).
.. versionadded:: 0.11
`cssfile`
If the `full` option is true and this option is given, it must be the
name of an external file. If the filename does not include an absolute
path, the file's path will be assumed to be relative to the main output
file's path, if the latter can be found. The stylesheet is then written
to this file instead of the HTML file.
.. versionadded:: 0.6
`noclobber_cssfile`
If `cssfile` is given and the specified file exists, the css file will
not be overwritten. This allows the use of the `full` option in
combination with a user specified css file. Default is ``False``.
.. versionadded:: 1.1
`linenos`
If set to ``'table'``, output line numbers as a table with two cells,
one containing the line numbers, the other the whole code. This is
copy-and-paste-friendly, but may cause alignment problems with some
browsers or fonts. If set to ``'inline'``, the line numbers will be
integrated in the ``<pre>`` tag that contains the code (that setting
is *new in Pygments 0.8*).
For compatibility with Pygments 0.7 and earlier, every true value
except ``'inline'`` means the same as ``'table'`` (in particular, that
means also ``True``).
The default value is ``False``, which means no line numbers at all.
**Note:** with the default ("table") line number mechanism, the line
numbers and code can have different line heights in Internet Explorer
unless you give the enclosing ``<pre>`` tags an explicit ``line-height``
CSS property (you get the default line spacing with ``line-height:
125%``).
`hl_lines`
Specify a list of lines to be highlighted. The line numbers are always
relative to the input (i.e. the first line is line 1) and are
independent of `linenostart`.
.. versionadded:: 0.11
`linenostart`
The line number for the first line (default: ``1``).
`linenostep`
If set to a number n > 1, only every nth line number is printed.
`linenospecial`
If set to a number n > 0, every nth line number is given the CSS
class ``"special"`` (default: ``0``).
`nobackground`
If set to ``True``, the formatter won't output the background color
for the wrapping element (this automatically defaults to ``False``
when there is no wrapping element [eg: no argument for the
`get_syntax_defs` method given]) (default: ``False``).
.. versionadded:: 0.6
`lineseparator`
This string is output between lines of code. It defaults to ``"\n"``,
which is enough to break a line inside ``<pre>`` tags, but you can
e.g. set it to ``"<br>"`` to get HTML line breaks.
.. versionadded:: 0.7
`lineanchors`
If set to a nonempty string, e.g. ``foo``, the formatter will wrap each
output line in an anchor tag with an ``id`` (and `name`) of ``foo-linenumber``.
This allows easy linking to certain lines.
.. versionadded:: 0.9
`linespans`
If set to a nonempty string, e.g. ``foo``, the formatter will wrap each
output line in a span tag with an ``id`` of ``foo-linenumber``.
This allows easy access to lines via javascript.
.. versionadded:: 1.6
`anchorlinenos`
If set to `True`, will wrap line numbers in <a> tags. Used in
combination with `linenos` and `lineanchors`.
`tagsfile`
If set to the path of a ctags file, wrap names in anchor tags that
link to their definitions. `lineanchors` should be used, and the
tags file should specify line numbers (see the `-n` option to ctags).
The tags file is assumed to be encoded in UTF-8.
.. versionadded:: 1.6
`tagurlformat`
A string formatting pattern used to generate links to ctags definitions.
Available variables are `%(path)s`, `%(fname)s` and `%(fext)s`.
Defaults to an empty string, resulting in just `#prefix-number` links.
.. versionadded:: 1.6
`filename`
A string used to generate a filename when rendering ``<pre>`` blocks,
for example if displaying source code. If `linenos` is set to
``'table'`` then the filename will be rendered in an initial row
containing a single `<th>` which spans both columns.
.. versionadded:: 2.1
`wrapcode`
Wrap the code inside ``<pre>`` blocks using ``<code>``, as recommended
by the HTML5 specification.
.. versionadded:: 2.4
`debug_token_types`
Add ``title`` attributes to all token ``<span>`` tags that show the
name of the token.
.. versionadded:: 2.10
**Subclassing the HTML formatter**
.. versionadded:: 0.7
The HTML formatter is now built in a way that allows easy subclassing, thus
customizing the output HTML code. The `format()` method calls
`self._format_lines()` which returns a generator that yields tuples of ``(1,
line)``, where the ``1`` indicates that the ``line`` is a line of the
formatted source code.
If the `nowrap` option is set, the generator is the iterated over and the
resulting HTML is output.
Otherwise, `format()` calls `self.wrap()`, which wraps the generator with
other generators. These may add some HTML code to the one generated by
`_format_lines()`, either by modifying the lines generated by the latter,
then yielding them again with ``(1, line)``, and/or by yielding other HTML
code before or after the lines, with ``(0, html)``. The distinction between
source lines and other code makes it possible to wrap the generator multiple
times.
The default `wrap()` implementation adds a ``<div>`` and a ``<pre>`` tag.
A custom `HtmlFormatter` subclass could look like this:
.. sourcecode:: python
class CodeHtmlFormatter(HtmlFormatter):
def wrap(self, source, *, include_div):
return self._wrap_code(source)
def _wrap_code(self, source):
yield 0, '<code>'
for i, t in source:
if i == 1:
# it's a line of formatted code
t += '<br>'
yield i, t
yield 0, '</code>'
This results in wrapping the formatted lines with a ``<code>`` tag, where the
source lines are broken using ``<br>`` tags.
After calling `wrap()`, the `format()` method also adds the "line numbers"
and/or "full document" wrappers if the respective options are set. Then, all
HTML yielded by the wrapped generator is output.
"""
name = 'HTML'
aliases = ['html']
filenames = ['*.html', '*.htm']
def __init__(self, **options):
Formatter.__init__(self, **options)
self.title = self._decodeifneeded(self.title)
self.nowrap = get_bool_opt(options, 'nowrap', False)
self.noclasses = get_bool_opt(options, 'noclasses', False)
self.classprefix = options.get('classprefix', '')
self.cssclass = self._decodeifneeded(options.get('cssclass', 'highlight'))
self.cssstyles = self._decodeifneeded(options.get('cssstyles', ''))
self.prestyles = self._decodeifneeded(options.get('prestyles', ''))
self.cssfile = self._decodeifneeded(options.get('cssfile', ''))
self.noclobber_cssfile = get_bool_opt(options, 'noclobber_cssfile', False)
self.tagsfile = self._decodeifneeded(options.get('tagsfile', ''))
self.tagurlformat = self._decodeifneeded(options.get('tagurlformat', ''))
self.filename = self._decodeifneeded(options.get('filename', ''))
self.wrapcode = get_bool_opt(options, 'wrapcode', False)
self.span_element_openers = {}
self.debug_token_types = get_bool_opt(options, 'debug_token_types', False)
if self.tagsfile:
if not ctags:
raise RuntimeError('The "ctags" package must to be installed '
'to be able to use the "tagsfile" feature.')
self._ctags = ctags.CTags(self.tagsfile)
linenos = options.get('linenos', False)
if linenos == 'inline':
self.linenos = 2
elif linenos:
# compatibility with <= 0.7
self.linenos = 1
else:
self.linenos = 0
self.linenostart = abs(get_int_opt(options, 'linenostart', 1))
self.linenostep = abs(get_int_opt(options, 'linenostep', 1))
self.linenospecial = abs(get_int_opt(options, 'linenospecial', 0))
self.nobackground = get_bool_opt(options, 'nobackground', False)
self.lineseparator = options.get('lineseparator', '\n')
self.lineanchors = options.get('lineanchors', '')
self.linespans = options.get('linespans', '')
self.anchorlinenos = get_bool_opt(options, 'anchorlinenos', False)
self.hl_lines = set()
for lineno in get_list_opt(options, 'hl_lines', []):
try:
self.hl_lines.add(int(lineno))
except ValueError:
pass
self._create_stylesheet()
def _get_css_class(self, ttype):
"""Return the css class of this token type prefixed with
the classprefix option."""
ttypeclass = _get_ttype_class(ttype)
if ttypeclass:
return self.classprefix + ttypeclass
return ''
def _get_css_classes(self, ttype):
"""Return the CSS classes of this token type prefixed with the classprefix option."""
cls = self._get_css_class(ttype)
while ttype not in STANDARD_TYPES:
ttype = ttype.parent
cls = self._get_css_class(ttype) + ' ' + cls
return cls or ''
def _get_css_inline_styles(self, ttype):
"""Return the inline CSS styles for this token type."""
cclass = self.ttype2class.get(ttype)
while cclass is None:
ttype = ttype.parent
cclass = self.ttype2class.get(ttype)
return cclass or ''
def _create_stylesheet(self):
t2c = self.ttype2class = {Token: ''}
c2s = self.class2style = {}
for ttype, ndef in self.style:
name = self._get_css_class(ttype)
style = ''
if ndef['color']:
style += 'color: {}; '.format(webify(ndef['color']))
if ndef['bold']:
style += 'font-weight: bold; '
if ndef['italic']:
style += 'font-style: italic; '
if ndef['underline']:
style += 'text-decoration: underline; '
if ndef['bgcolor']:
style += 'background-color: {}; '.format(webify(ndef['bgcolor']))
if ndef['border']:
style += 'border: 1px solid {}; '.format(webify(ndef['border']))
if style:
t2c[ttype] = name
# save len(ttype) to enable ordering the styles by
# hierarchy (necessary for CSS cascading rules!)
c2s[name] = (style[:-2], ttype, len(ttype))
def get_style_defs(self, arg=None):
"""
Return CSS style definitions for the classes produced by the current
highlighting style. ``arg`` can be a string or list of selectors to
insert before the token type classes.
"""
style_lines = []
style_lines.extend(self.get_linenos_style_defs())
style_lines.extend(self.get_background_style_defs(arg))
style_lines.extend(self.get_token_style_defs(arg))
return '\n'.join(style_lines)
def get_token_style_defs(self, arg=None):
prefix = self.get_css_prefix(arg)
styles = [
(level, ttype, cls, style)
for cls, (style, ttype, level) in self.class2style.items()
if cls and style
]
styles.sort()
lines = [
f'{prefix(cls)} {{ {style} }} /* {repr(ttype)[6:]} */'
for (level, ttype, cls, style) in styles
]
return lines
def get_background_style_defs(self, arg=None):
prefix = self.get_css_prefix(arg)
bg_color = self.style.background_color
hl_color = self.style.highlight_color
lines = []
if arg and not self.nobackground and bg_color is not None:
text_style = ''
if Text in self.ttype2class:
text_style = ' ' + self.class2style[self.ttype2class[Text]][0]
lines.insert(
0, '{}{{ background: {};{} }}'.format(
prefix(''), bg_color, text_style
)
)
if hl_color is not None:
lines.insert(
0, '{} {{ background-color: {} }}'.format(prefix('hll'), hl_color)
)
return lines
def get_linenos_style_defs(self):
lines = [
f'pre {{ {self._pre_style} }}',
f'td.linenos .normal {{ {self._linenos_style} }}',
f'span.linenos {{ {self._linenos_style} }}',
f'td.linenos .special {{ {self._linenos_special_style} }}',
f'span.linenos.special {{ {self._linenos_special_style} }}',
]
return lines
def get_css_prefix(self, arg):
if arg is None:
arg = ('cssclass' in self.options and '.'+self.cssclass or '')
if isinstance(arg, str):
args = [arg]
else:
args = list(arg)
def prefix(cls):
if cls:
cls = '.' + cls
tmp = []
for arg in args:
tmp.append((arg and arg + ' ' or '') + cls)
return ', '.join(tmp)
return prefix
@property
def _pre_style(self):
return 'line-height: 125%;'
@property
def _linenos_style(self):
color = self.style.line_number_color
background_color = self.style.line_number_background_color
return f'color: {color}; background-color: {background_color}; padding-left: 5px; padding-right: 5px;'
@property
def _linenos_special_style(self):
color = self.style.line_number_special_color
background_color = self.style.line_number_special_background_color
return f'color: {color}; background-color: {background_color}; padding-left: 5px; padding-right: 5px;'
def _decodeifneeded(self, value):
if isinstance(value, bytes):
if self.encoding:
return value.decode(self.encoding)
return value.decode()
return value
def _wrap_full(self, inner, outfile):
if self.cssfile:
if os.path.isabs(self.cssfile):
# it's an absolute filename
cssfilename = self.cssfile
else:
try:
filename = outfile.name
if not filename or filename[0] == '<':
# pseudo files, e.g. name == '<fdopen>'
raise AttributeError
cssfilename = os.path.join(os.path.dirname(filename),
self.cssfile)
except AttributeError:
print('Note: Cannot determine output file name, '
'using current directory as base for the CSS file name',
file=sys.stderr)
cssfilename = self.cssfile
# write CSS file only if noclobber_cssfile isn't given as an option.
try:
if not os.path.exists(cssfilename) or not self.noclobber_cssfile:
with open(cssfilename, "w", encoding="utf-8") as cf:
cf.write(CSSFILE_TEMPLATE %
{'styledefs': self.get_style_defs('body')})
except OSError as err:
err.strerror = 'Error writing CSS file: ' + err.strerror
raise
yield 0, (DOC_HEADER_EXTERNALCSS %
dict(title=self.title,
cssfile=self.cssfile,
encoding=self.encoding))
else:
yield 0, (DOC_HEADER %
dict(title=self.title,
styledefs=self.get_style_defs('body'),
encoding=self.encoding))
yield from inner
yield 0, DOC_FOOTER
def _wrap_tablelinenos(self, inner):
dummyoutfile = StringIO()
lncount = 0
for t, line in inner:
if t:
lncount += 1
dummyoutfile.write(line)
fl = self.linenostart
mw = len(str(lncount + fl - 1))
sp = self.linenospecial
st = self.linenostep
anchor_name = self.lineanchors or self.linespans
aln = self.anchorlinenos
nocls = self.noclasses
lines = []
for i in range(fl, fl+lncount):
print_line = i % st == 0
special_line = sp and i % sp == 0
if print_line:
line = '%*d' % (mw, i)
if aln:
line = '<a href="#%s-%d">%s</a>' % (anchor_name, i, line)
else:
line = ' ' * mw
if nocls:
if special_line:
style = f' style="{self._linenos_special_style}"'
else:
style = f' style="{self._linenos_style}"'
else:
if special_line:
style = ' class="special"'
else:
style = ' class="normal"'
if style:
line = f'<span{style}>{line}</span>'
lines.append(line)
ls = '\n'.join(lines)
# If a filename was specified, we can't put it into the code table as it
# would misalign the line numbers. Hence we emit a separate row for it.
filename_tr = ""
if self.filename:
filename_tr = (
'<tr><th colspan="2" class="filename">'
'<span class="filename">' + self.filename + '</span>'
'</th></tr>')
# in case you wonder about the seemingly redundant <div> here: since the
# content in the other cell also is wrapped in a div, some browsers in
# some configurations seem to mess up the formatting...
yield 0, (f'<table class="{self.cssclass}table">' + filename_tr +
'<tr><td class="linenos"><div class="linenodiv"><pre>' +
ls + '</pre></div></td><td class="code">')
yield 0, '<div>'
yield 0, dummyoutfile.getvalue()
yield 0, '</div>'
yield 0, '</td></tr></table>'
def _wrap_inlinelinenos(self, inner):
# need a list of lines since we need the width of a single number :(
inner_lines = list(inner)
sp = self.linenospecial
st = self.linenostep
num = self.linenostart
mw = len(str(len(inner_lines) + num - 1))
anchor_name = self.lineanchors or self.linespans
aln = self.anchorlinenos
nocls = self.noclasses
for _, inner_line in inner_lines:
print_line = num % st == 0
special_line = sp and num % sp == 0
if print_line:
line = '%*d' % (mw, num)
else:
line = ' ' * mw
if nocls:
if special_line:
style = f' style="{self._linenos_special_style}"'
else:
style = f' style="{self._linenos_style}"'
else:
if special_line:
style = ' class="linenos special"'
else:
style = ' class="linenos"'
if style:
linenos = f'<span{style}>{line}</span>'
else:
linenos = line
if aln:
yield 1, ('<a href="#%s-%d">%s</a>' % (anchor_name, num, linenos) +
inner_line)
else:
yield 1, linenos + inner_line
num += 1
def _wrap_lineanchors(self, inner):
s = self.lineanchors
# subtract 1 since we have to increment i *before* yielding
i = self.linenostart - 1
for t, line in inner:
if t:
i += 1
href = "" if self.linenos else ' href="#%s-%d"' % (s, i)
yield 1, '<a id="%s-%d" name="%s-%d"%s></a>' % (s, i, s, i, href) + line
else:
yield 0, line
def _wrap_linespans(self, inner):
s = self.linespans
i = self.linenostart - 1
for t, line in inner:
if t:
i += 1
yield 1, '<span id="%s-%d">%s</span>' % (s, i, line)
else:
yield 0, line
def _wrap_div(self, inner):
style = []
if (self.noclasses and not self.nobackground and
self.style.background_color is not None):
style.append(f'background: {self.style.background_color}')
if self.cssstyles:
style.append(self.cssstyles)
style = '; '.join(style)
yield 0, ('<div' + (self.cssclass and f' class="{self.cssclass}"') +
(style and (f' style="{style}"')) + '>')
yield from inner
yield 0, '</div>\n'
def _wrap_pre(self, inner):
style = []
if self.prestyles:
style.append(self.prestyles)
if self.noclasses:
style.append(self._pre_style)
style = '; '.join(style)
if self.filename and self.linenos != 1:
yield 0, ('<span class="filename">' + self.filename + '</span>')
# the empty span here is to keep leading empty lines from being
# ignored by HTML parsers
yield 0, ('<pre' + (style and f' style="{style}"') + '><span></span>')
yield from inner
yield 0, '</pre>'
def _wrap_code(self, inner):
yield 0, '<code>'
yield from inner
yield 0, '</code>'
@functools.lru_cache(maxsize=100)
def _translate_parts(self, value):
"""HTML-escape a value and split it by newlines."""
return value.translate(_escape_html_table).split('\n')
def _format_lines(self, tokensource):
"""
Just format the tokens, without any wrapping tags.
Yield individual lines.
"""
nocls = self.noclasses
lsep = self.lineseparator
tagsfile = self.tagsfile
lspan = ''
line = []
for ttype, value in tokensource:
try:
cspan = self.span_element_openers[ttype]
except KeyError:
title = ' title="{}"'.format('.'.join(ttype)) if self.debug_token_types else ''
if nocls:
css_style = self._get_css_inline_styles(ttype)
if css_style:
css_style = self.class2style[css_style][0]
cspan = f'<span style="{css_style}"{title}>'
else:
cspan = ''
else:
css_class = self._get_css_classes(ttype)
if css_class:
cspan = f'<span class="{css_class}"{title}>'
else:
cspan = ''
self.span_element_openers[ttype] = cspan
parts = self._translate_parts(value)
if tagsfile and ttype in Token.Name:
filename, linenumber = self._lookup_ctag(value)
if linenumber:
base, filename = os.path.split(filename)
if base:
base += '/'
filename, extension = os.path.splitext(filename)
url = self.tagurlformat % {'path': base, 'fname': filename,
'fext': extension}
parts[0] = "<a href=\"%s#%s-%d\">%s" % \
(url, self.lineanchors, linenumber, parts[0])
parts[-1] = parts[-1] + "</a>"
# for all but the last line
for part in parts[:-1]:
if line:
# Also check for part being non-empty, so we avoid creating
# empty <span> tags
if lspan != cspan and part:
line.extend(((lspan and '</span>'), cspan, part,
(cspan and '</span>'), lsep))
else: # both are the same, or the current part was empty
line.extend((part, (lspan and '</span>'), lsep))
yield 1, ''.join(line)
line = []
elif part:
yield 1, ''.join((cspan, part, (cspan and '</span>'), lsep))
else:
yield 1, lsep
# for the last line
if line and parts[-1]:
if lspan != cspan:
line.extend(((lspan and '</span>'), cspan, parts[-1]))
lspan = cspan
else:
line.append(parts[-1])
elif parts[-1]:
line = [cspan, parts[-1]]
lspan = cspan
# else we neither have to open a new span nor set lspan
if line:
line.extend(((lspan and '</span>'), lsep))
yield 1, ''.join(line)
def _lookup_ctag(self, token):
entry = ctags.TagEntry()
if self._ctags.find(entry, token.encode(), 0):
return entry['file'].decode(), entry['lineNumber']
else:
return None, None
def _highlight_lines(self, tokensource):
"""
Highlighted the lines specified in the `hl_lines` option by
post-processing the token stream coming from `_format_lines`.
"""
hls = self.hl_lines
for i, (t, value) in enumerate(tokensource):
if t != 1:
yield t, value
if i + 1 in hls: # i + 1 because Python indexes start at 0
if self.noclasses:
style = ''
if self.style.highlight_color is not None:
style = (f' style="background-color: {self.style.highlight_color}"')
yield 1, f'<span{style}>{value}</span>'
else:
yield 1, f'<span class="hll">{value}</span>'
else:
yield 1, value
def wrap(self, source):
"""
Wrap the ``source``, which is a generator yielding
individual lines, in custom generators. See docstring
for `format`. Can be overridden.
"""
output = source
if self.wrapcode:
output = self._wrap_code(output)
output = self._wrap_pre(output)
return output
def format_unencoded(self, tokensource, outfile):
"""
The formatting process uses several nested generators; which of
them are used is determined by the user's options.
Each generator should take at least one argument, ``inner``,
and wrap the pieces of text generated by this.
Always yield 2-tuples: (code, text). If "code" is 1, the text
is part of the original tokensource being highlighted, if it's
0, the text is some piece of wrapping. This makes it possible to
use several different wrappers that process the original source
linewise, e.g. line number generators.
"""
source = self._format_lines(tokensource)
# As a special case, we wrap line numbers before line highlighting
# so the line numbers get wrapped in the highlighting tag.
if not self.nowrap and self.linenos == 2:
source = self._wrap_inlinelinenos(source)
if self.hl_lines:
source = self._highlight_lines(source)
if not self.nowrap:
if self.lineanchors:
source = self._wrap_lineanchors(source)
if self.linespans:
source = self._wrap_linespans(source)
source = self.wrap(source)
if self.linenos == 1:
source = self._wrap_tablelinenos(source)
source = self._wrap_div(source)
if self.full:
source = self._wrap_full(source, outfile)
for t, piece in source:
outfile.write(piece)
| (**options) |
10,124 | pygments.formatters.html | __init__ | null | def __init__(self, **options):
Formatter.__init__(self, **options)
self.title = self._decodeifneeded(self.title)
self.nowrap = get_bool_opt(options, 'nowrap', False)
self.noclasses = get_bool_opt(options, 'noclasses', False)
self.classprefix = options.get('classprefix', '')
self.cssclass = self._decodeifneeded(options.get('cssclass', 'highlight'))
self.cssstyles = self._decodeifneeded(options.get('cssstyles', ''))
self.prestyles = self._decodeifneeded(options.get('prestyles', ''))
self.cssfile = self._decodeifneeded(options.get('cssfile', ''))
self.noclobber_cssfile = get_bool_opt(options, 'noclobber_cssfile', False)
self.tagsfile = self._decodeifneeded(options.get('tagsfile', ''))
self.tagurlformat = self._decodeifneeded(options.get('tagurlformat', ''))
self.filename = self._decodeifneeded(options.get('filename', ''))
self.wrapcode = get_bool_opt(options, 'wrapcode', False)
self.span_element_openers = {}
self.debug_token_types = get_bool_opt(options, 'debug_token_types', False)
if self.tagsfile:
if not ctags:
raise RuntimeError('The "ctags" package must to be installed '
'to be able to use the "tagsfile" feature.')
self._ctags = ctags.CTags(self.tagsfile)
linenos = options.get('linenos', False)
if linenos == 'inline':
self.linenos = 2
elif linenos:
# compatibility with <= 0.7
self.linenos = 1
else:
self.linenos = 0
self.linenostart = abs(get_int_opt(options, 'linenostart', 1))
self.linenostep = abs(get_int_opt(options, 'linenostep', 1))
self.linenospecial = abs(get_int_opt(options, 'linenospecial', 0))
self.nobackground = get_bool_opt(options, 'nobackground', False)
self.lineseparator = options.get('lineseparator', '\n')
self.lineanchors = options.get('lineanchors', '')
self.linespans = options.get('linespans', '')
self.anchorlinenos = get_bool_opt(options, 'anchorlinenos', False)
self.hl_lines = set()
for lineno in get_list_opt(options, 'hl_lines', []):
try:
self.hl_lines.add(int(lineno))
except ValueError:
pass
self._create_stylesheet()
| (self, **options) |
10,125 | pygments.formatters.html | _create_stylesheet | null | def _create_stylesheet(self):
t2c = self.ttype2class = {Token: ''}
c2s = self.class2style = {}
for ttype, ndef in self.style:
name = self._get_css_class(ttype)
style = ''
if ndef['color']:
style += 'color: {}; '.format(webify(ndef['color']))
if ndef['bold']:
style += 'font-weight: bold; '
if ndef['italic']:
style += 'font-style: italic; '
if ndef['underline']:
style += 'text-decoration: underline; '
if ndef['bgcolor']:
style += 'background-color: {}; '.format(webify(ndef['bgcolor']))
if ndef['border']:
style += 'border: 1px solid {}; '.format(webify(ndef['border']))
if style:
t2c[ttype] = name
# save len(ttype) to enable ordering the styles by
# hierarchy (necessary for CSS cascading rules!)
c2s[name] = (style[:-2], ttype, len(ttype))
| (self) |
10,126 | pygments.formatters.html | _decodeifneeded | null | def _decodeifneeded(self, value):
if isinstance(value, bytes):
if self.encoding:
return value.decode(self.encoding)
return value.decode()
return value
| (self, value) |
10,127 | pygments.formatters.html | _format_lines |
Just format the tokens, without any wrapping tags.
Yield individual lines.
| def _format_lines(self, tokensource):
"""
Just format the tokens, without any wrapping tags.
Yield individual lines.
"""
nocls = self.noclasses
lsep = self.lineseparator
tagsfile = self.tagsfile
lspan = ''
line = []
for ttype, value in tokensource:
try:
cspan = self.span_element_openers[ttype]
except KeyError:
title = ' title="{}"'.format('.'.join(ttype)) if self.debug_token_types else ''
if nocls:
css_style = self._get_css_inline_styles(ttype)
if css_style:
css_style = self.class2style[css_style][0]
cspan = f'<span style="{css_style}"{title}>'
else:
cspan = ''
else:
css_class = self._get_css_classes(ttype)
if css_class:
cspan = f'<span class="{css_class}"{title}>'
else:
cspan = ''
self.span_element_openers[ttype] = cspan
parts = self._translate_parts(value)
if tagsfile and ttype in Token.Name:
filename, linenumber = self._lookup_ctag(value)
if linenumber:
base, filename = os.path.split(filename)
if base:
base += '/'
filename, extension = os.path.splitext(filename)
url = self.tagurlformat % {'path': base, 'fname': filename,
'fext': extension}
parts[0] = "<a href=\"%s#%s-%d\">%s" % \
(url, self.lineanchors, linenumber, parts[0])
parts[-1] = parts[-1] + "</a>"
# for all but the last line
for part in parts[:-1]:
if line:
# Also check for part being non-empty, so we avoid creating
# empty <span> tags
if lspan != cspan and part:
line.extend(((lspan and '</span>'), cspan, part,
(cspan and '</span>'), lsep))
else: # both are the same, or the current part was empty
line.extend((part, (lspan and '</span>'), lsep))
yield 1, ''.join(line)
line = []
elif part:
yield 1, ''.join((cspan, part, (cspan and '</span>'), lsep))
else:
yield 1, lsep
# for the last line
if line and parts[-1]:
if lspan != cspan:
line.extend(((lspan and '</span>'), cspan, parts[-1]))
lspan = cspan
else:
line.append(parts[-1])
elif parts[-1]:
line = [cspan, parts[-1]]
lspan = cspan
# else we neither have to open a new span nor set lspan
if line:
line.extend(((lspan and '</span>'), lsep))
yield 1, ''.join(line)
| (self, tokensource) |
10,128 | pygments.formatters.html | _get_css_class | Return the css class of this token type prefixed with
the classprefix option. | def _get_css_class(self, ttype):
"""Return the css class of this token type prefixed with
the classprefix option."""
ttypeclass = _get_ttype_class(ttype)
if ttypeclass:
return self.classprefix + ttypeclass
return ''
| (self, ttype) |
10,129 | pygments.formatters.html | _get_css_classes | Return the CSS classes of this token type prefixed with the classprefix option. | def _get_css_classes(self, ttype):
"""Return the CSS classes of this token type prefixed with the classprefix option."""
cls = self._get_css_class(ttype)
while ttype not in STANDARD_TYPES:
ttype = ttype.parent
cls = self._get_css_class(ttype) + ' ' + cls
return cls or ''
| (self, ttype) |
10,130 | pygments.formatters.html | _get_css_inline_styles | Return the inline CSS styles for this token type. | def _get_css_inline_styles(self, ttype):
"""Return the inline CSS styles for this token type."""
cclass = self.ttype2class.get(ttype)
while cclass is None:
ttype = ttype.parent
cclass = self.ttype2class.get(ttype)
return cclass or ''
| (self, ttype) |
10,131 | pygments.formatters.html | _highlight_lines |
Highlighted the lines specified in the `hl_lines` option by
post-processing the token stream coming from `_format_lines`.
| def _highlight_lines(self, tokensource):
"""
Highlighted the lines specified in the `hl_lines` option by
post-processing the token stream coming from `_format_lines`.
"""
hls = self.hl_lines
for i, (t, value) in enumerate(tokensource):
if t != 1:
yield t, value
if i + 1 in hls: # i + 1 because Python indexes start at 0
if self.noclasses:
style = ''
if self.style.highlight_color is not None:
style = (f' style="background-color: {self.style.highlight_color}"')
yield 1, f'<span{style}>{value}</span>'
else:
yield 1, f'<span class="hll">{value}</span>'
else:
yield 1, value
| (self, tokensource) |
10,132 | pygments.formatters.html | _lookup_ctag | null | def _lookup_ctag(self, token):
entry = ctags.TagEntry()
if self._ctags.find(entry, token.encode(), 0):
return entry['file'].decode(), entry['lineNumber']
else:
return None, None
| (self, token) |
10,133 | pygments.formatters.html | _wrap_code | null | def _wrap_code(self, inner):
yield 0, '<code>'
yield from inner
yield 0, '</code>'
| (self, inner) |
10,134 | pygments.formatters.html | _wrap_div | null | def _wrap_div(self, inner):
style = []
if (self.noclasses and not self.nobackground and
self.style.background_color is not None):
style.append(f'background: {self.style.background_color}')
if self.cssstyles:
style.append(self.cssstyles)
style = '; '.join(style)
yield 0, ('<div' + (self.cssclass and f' class="{self.cssclass}"') +
(style and (f' style="{style}"')) + '>')
yield from inner
yield 0, '</div>\n'
| (self, inner) |
10,135 | pygments.formatters.html | _wrap_full | null | def _wrap_full(self, inner, outfile):
if self.cssfile:
if os.path.isabs(self.cssfile):
# it's an absolute filename
cssfilename = self.cssfile
else:
try:
filename = outfile.name
if not filename or filename[0] == '<':
# pseudo files, e.g. name == '<fdopen>'
raise AttributeError
cssfilename = os.path.join(os.path.dirname(filename),
self.cssfile)
except AttributeError:
print('Note: Cannot determine output file name, '
'using current directory as base for the CSS file name',
file=sys.stderr)
cssfilename = self.cssfile
# write CSS file only if noclobber_cssfile isn't given as an option.
try:
if not os.path.exists(cssfilename) or not self.noclobber_cssfile:
with open(cssfilename, "w", encoding="utf-8") as cf:
cf.write(CSSFILE_TEMPLATE %
{'styledefs': self.get_style_defs('body')})
except OSError as err:
err.strerror = 'Error writing CSS file: ' + err.strerror
raise
yield 0, (DOC_HEADER_EXTERNALCSS %
dict(title=self.title,
cssfile=self.cssfile,
encoding=self.encoding))
else:
yield 0, (DOC_HEADER %
dict(title=self.title,
styledefs=self.get_style_defs('body'),
encoding=self.encoding))
yield from inner
yield 0, DOC_FOOTER
| (self, inner, outfile) |
10,136 | pygments.formatters.html | _wrap_inlinelinenos | null | def _wrap_inlinelinenos(self, inner):
# need a list of lines since we need the width of a single number :(
inner_lines = list(inner)
sp = self.linenospecial
st = self.linenostep
num = self.linenostart
mw = len(str(len(inner_lines) + num - 1))
anchor_name = self.lineanchors or self.linespans
aln = self.anchorlinenos
nocls = self.noclasses
for _, inner_line in inner_lines:
print_line = num % st == 0
special_line = sp and num % sp == 0
if print_line:
line = '%*d' % (mw, num)
else:
line = ' ' * mw
if nocls:
if special_line:
style = f' style="{self._linenos_special_style}"'
else:
style = f' style="{self._linenos_style}"'
else:
if special_line:
style = ' class="linenos special"'
else:
style = ' class="linenos"'
if style:
linenos = f'<span{style}>{line}</span>'
else:
linenos = line
if aln:
yield 1, ('<a href="#%s-%d">%s</a>' % (anchor_name, num, linenos) +
inner_line)
else:
yield 1, linenos + inner_line
num += 1
| (self, inner) |
10,137 | pygments.formatters.html | _wrap_lineanchors | null | def _wrap_lineanchors(self, inner):
s = self.lineanchors
# subtract 1 since we have to increment i *before* yielding
i = self.linenostart - 1
for t, line in inner:
if t:
i += 1
href = "" if self.linenos else ' href="#%s-%d"' % (s, i)
yield 1, '<a id="%s-%d" name="%s-%d"%s></a>' % (s, i, s, i, href) + line
else:
yield 0, line
| (self, inner) |
10,138 | pygments.formatters.html | _wrap_linespans | null | def _wrap_linespans(self, inner):
s = self.linespans
i = self.linenostart - 1
for t, line in inner:
if t:
i += 1
yield 1, '<span id="%s-%d">%s</span>' % (s, i, line)
else:
yield 0, line
| (self, inner) |
10,139 | pygments.formatters.html | _wrap_pre | null | def _wrap_pre(self, inner):
style = []
if self.prestyles:
style.append(self.prestyles)
if self.noclasses:
style.append(self._pre_style)
style = '; '.join(style)
if self.filename and self.linenos != 1:
yield 0, ('<span class="filename">' + self.filename + '</span>')
# the empty span here is to keep leading empty lines from being
# ignored by HTML parsers
yield 0, ('<pre' + (style and f' style="{style}"') + '><span></span>')
yield from inner
yield 0, '</pre>'
| (self, inner) |
10,140 | pygments.formatters.html | _wrap_tablelinenos | null | def _wrap_tablelinenos(self, inner):
dummyoutfile = StringIO()
lncount = 0
for t, line in inner:
if t:
lncount += 1
dummyoutfile.write(line)
fl = self.linenostart
mw = len(str(lncount + fl - 1))
sp = self.linenospecial
st = self.linenostep
anchor_name = self.lineanchors or self.linespans
aln = self.anchorlinenos
nocls = self.noclasses
lines = []
for i in range(fl, fl+lncount):
print_line = i % st == 0
special_line = sp and i % sp == 0
if print_line:
line = '%*d' % (mw, i)
if aln:
line = '<a href="#%s-%d">%s</a>' % (anchor_name, i, line)
else:
line = ' ' * mw
if nocls:
if special_line:
style = f' style="{self._linenos_special_style}"'
else:
style = f' style="{self._linenos_style}"'
else:
if special_line:
style = ' class="special"'
else:
style = ' class="normal"'
if style:
line = f'<span{style}>{line}</span>'
lines.append(line)
ls = '\n'.join(lines)
# If a filename was specified, we can't put it into the code table as it
# would misalign the line numbers. Hence we emit a separate row for it.
filename_tr = ""
if self.filename:
filename_tr = (
'<tr><th colspan="2" class="filename">'
'<span class="filename">' + self.filename + '</span>'
'</th></tr>')
# in case you wonder about the seemingly redundant <div> here: since the
# content in the other cell also is wrapped in a div, some browsers in
# some configurations seem to mess up the formatting...
yield 0, (f'<table class="{self.cssclass}table">' + filename_tr +
'<tr><td class="linenos"><div class="linenodiv"><pre>' +
ls + '</pre></div></td><td class="code">')
yield 0, '<div>'
yield 0, dummyoutfile.getvalue()
yield 0, '</div>'
yield 0, '</td></tr></table>'
| (self, inner) |
10,142 | pygments.formatters.html | format_unencoded |
The formatting process uses several nested generators; which of
them are used is determined by the user's options.
Each generator should take at least one argument, ``inner``,
and wrap the pieces of text generated by this.
Always yield 2-tuples: (code, text). If "code" is 1, the text
is part of the original tokensource being highlighted, if it's
0, the text is some piece of wrapping. This makes it possible to
use several different wrappers that process the original source
linewise, e.g. line number generators.
| def format_unencoded(self, tokensource, outfile):
"""
The formatting process uses several nested generators; which of
them are used is determined by the user's options.
Each generator should take at least one argument, ``inner``,
and wrap the pieces of text generated by this.
Always yield 2-tuples: (code, text). If "code" is 1, the text
is part of the original tokensource being highlighted, if it's
0, the text is some piece of wrapping. This makes it possible to
use several different wrappers that process the original source
linewise, e.g. line number generators.
"""
source = self._format_lines(tokensource)
# As a special case, we wrap line numbers before line highlighting
# so the line numbers get wrapped in the highlighting tag.
if not self.nowrap and self.linenos == 2:
source = self._wrap_inlinelinenos(source)
if self.hl_lines:
source = self._highlight_lines(source)
if not self.nowrap:
if self.lineanchors:
source = self._wrap_lineanchors(source)
if self.linespans:
source = self._wrap_linespans(source)
source = self.wrap(source)
if self.linenos == 1:
source = self._wrap_tablelinenos(source)
source = self._wrap_div(source)
if self.full:
source = self._wrap_full(source, outfile)
for t, piece in source:
outfile.write(piece)
| (self, tokensource, outfile) |
10,143 | pygments.formatters.html | get_background_style_defs | null | def get_background_style_defs(self, arg=None):
prefix = self.get_css_prefix(arg)
bg_color = self.style.background_color
hl_color = self.style.highlight_color
lines = []
if arg and not self.nobackground and bg_color is not None:
text_style = ''
if Text in self.ttype2class:
text_style = ' ' + self.class2style[self.ttype2class[Text]][0]
lines.insert(
0, '{}{{ background: {};{} }}'.format(
prefix(''), bg_color, text_style
)
)
if hl_color is not None:
lines.insert(
0, '{} {{ background-color: {} }}'.format(prefix('hll'), hl_color)
)
return lines
| (self, arg=None) |
10,144 | pygments.formatters.html | get_css_prefix | null | def get_css_prefix(self, arg):
if arg is None:
arg = ('cssclass' in self.options and '.'+self.cssclass or '')
if isinstance(arg, str):
args = [arg]
else:
args = list(arg)
def prefix(cls):
if cls:
cls = '.' + cls
tmp = []
for arg in args:
tmp.append((arg and arg + ' ' or '') + cls)
return ', '.join(tmp)
return prefix
| (self, arg) |
10,145 | pygments.formatters.html | get_linenos_style_defs | null | def get_linenos_style_defs(self):
lines = [
f'pre {{ {self._pre_style} }}',
f'td.linenos .normal {{ {self._linenos_style} }}',
f'span.linenos {{ {self._linenos_style} }}',
f'td.linenos .special {{ {self._linenos_special_style} }}',
f'span.linenos.special {{ {self._linenos_special_style} }}',
]
return lines
| (self) |
10,146 | pygments.formatters.html | get_style_defs |
Return CSS style definitions for the classes produced by the current
highlighting style. ``arg`` can be a string or list of selectors to
insert before the token type classes.
| def get_style_defs(self, arg=None):
"""
Return CSS style definitions for the classes produced by the current
highlighting style. ``arg`` can be a string or list of selectors to
insert before the token type classes.
"""
style_lines = []
style_lines.extend(self.get_linenos_style_defs())
style_lines.extend(self.get_background_style_defs(arg))
style_lines.extend(self.get_token_style_defs(arg))
return '\n'.join(style_lines)
| (self, arg=None) |
10,147 | pygments.formatters.html | get_token_style_defs | null | def get_token_style_defs(self, arg=None):
prefix = self.get_css_prefix(arg)
styles = [
(level, ttype, cls, style)
for cls, (style, ttype, level) in self.class2style.items()
if cls and style
]
styles.sort()
lines = [
f'{prefix(cls)} {{ {style} }} /* {repr(ttype)[6:]} */'
for (level, ttype, cls, style) in styles
]
return lines
| (self, arg=None) |
10,148 | pygments.formatters.html | wrap |
Wrap the ``source``, which is a generator yielding
individual lines, in custom generators. See docstring
for `format`. Can be overridden.
| def wrap(self, source):
"""
Wrap the ``source``, which is a generator yielding
individual lines, in custom generators. See docstring
for `format`. Can be overridden.
"""
output = source
if self.wrapcode:
output = self._wrap_code(output)
output = self._wrap_pre(output)
return output
| (self, source) |
10,216 | wsdiff | RecordFormatter | null | class RecordFormatter(Formatter):
def __init__(self, side, diff):
self.side = side
if side == 'right':
diff = [(right, left, change) for left, right, change in diff]
self.diff = diff
def format(self, tokensource, outfile):
diff = iter(self.diff)
self.lines = []
for lineno, tokens in groupby(iter_token_lines(tokensource), key=lambda arg: arg[0]):
for (lineno_ours, diff_ours), (lineno_theirs, _diff_theirs), change in diff:
if lineno_ours == lineno:
break
else:
self.lines.append(f'<span class="wsd-lineno wsd-{self.side} wsd-empty"></span><span class="wsd-line wsd-{self.side} wsd-empty"></span>')
if not change:
change_class = ''
elif not lineno_ours or not lineno_theirs:
change_class = ' wsd-insert'
else:
change_class = ' wsd-change'
line = f'<span class="wsd-lineno wsd-{self.side}{change_class}">{lineno}</span><span class="wsd-line wsd-{self.side}{change_class}">'
parts = re.split(r'(\00.|\01|$)', diff_ours)
source_pos = 0
diff_markers = []
if lineno_theirs: # Do not highlight word changes if the whole line got added or removed.
for span, sep in zip(parts[0:-2:2], parts[1:-2:2]):
source_pos += len(span)
diff_markers.append((source_pos, sep))
diff_class = ''
source_pos = 0
for _lineno, ttype, value in tokens:
css_class = get_token_class(ttype)
while diff_markers:
next_marker_pos, next_marker_type = diff_markers[0]
if source_pos <= next_marker_pos < source_pos + len(value):
split_pos = next_marker_pos - source_pos
left, value = value[:split_pos], value[split_pos:]
line += f'<span class="wsd-{css_class}{diff_class}">{html.escape(left)}</span>'
source_pos += len(left)
diff_class = ' wsd-word-change' if next_marker_type.startswith('\0') else ''
diff_markers = diff_markers[1:]
else:
break
line += f'<span class="{css_class}{diff_class}">{html.escape(value)}</span>'
source_pos += len(value)
if css_class is not None:
line += '</span>'
line += '</span>'
self.lines.append(line)
for _ours_empty, (lineno_theirs, _diff_theirs), change in diff:
self.lines.append(f'<span class="wsd-lineno wsd-{self.side} wsd-empty"></span><span class="wsd-line wsd-{self.side} wsd-empty"></span>')
| (side, diff) |
10,217 | wsdiff | __init__ | null | def __init__(self, side, diff):
self.side = side
if side == 'right':
diff = [(right, left, change) for left, right, change in diff]
self.diff = diff
| (self, side, diff) |
10,218 | wsdiff | format | null | def format(self, tokensource, outfile):
diff = iter(self.diff)
self.lines = []
for lineno, tokens in groupby(iter_token_lines(tokensource), key=lambda arg: arg[0]):
for (lineno_ours, diff_ours), (lineno_theirs, _diff_theirs), change in diff:
if lineno_ours == lineno:
break
else:
self.lines.append(f'<span class="wsd-lineno wsd-{self.side} wsd-empty"></span><span class="wsd-line wsd-{self.side} wsd-empty"></span>')
if not change:
change_class = ''
elif not lineno_ours or not lineno_theirs:
change_class = ' wsd-insert'
else:
change_class = ' wsd-change'
line = f'<span class="wsd-lineno wsd-{self.side}{change_class}">{lineno}</span><span class="wsd-line wsd-{self.side}{change_class}">'
parts = re.split(r'(\00.|\01|$)', diff_ours)
source_pos = 0
diff_markers = []
if lineno_theirs: # Do not highlight word changes if the whole line got added or removed.
for span, sep in zip(parts[0:-2:2], parts[1:-2:2]):
source_pos += len(span)
diff_markers.append((source_pos, sep))
diff_class = ''
source_pos = 0
for _lineno, ttype, value in tokens:
css_class = get_token_class(ttype)
while diff_markers:
next_marker_pos, next_marker_type = diff_markers[0]
if source_pos <= next_marker_pos < source_pos + len(value):
split_pos = next_marker_pos - source_pos
left, value = value[:split_pos], value[split_pos:]
line += f'<span class="wsd-{css_class}{diff_class}">{html.escape(left)}</span>'
source_pos += len(left)
diff_class = ' wsd-word-change' if next_marker_type.startswith('\0') else ''
diff_markers = diff_markers[1:]
else:
break
line += f'<span class="{css_class}{diff_class}">{html.escape(value)}</span>'
source_pos += len(value)
if css_class is not None:
line += '</span>'
line += '</span>'
self.lines.append(line)
for _ours_empty, (lineno_theirs, _diff_theirs), change in diff:
self.lines.append(f'<span class="wsd-lineno wsd-{self.side} wsd-empty"></span><span class="wsd-line wsd-{self.side} wsd-empty"></span>')
| (self, tokensource, outfile) |
10,220 | pygments.lexer | RegexLexer |
Base for simple stateful regular expression-based lexers.
Simplifies the lexing process so that you need only
provide a list of states and regular expressions.
| class RegexLexer(Lexer, metaclass=RegexLexerMeta):
"""
Base for simple stateful regular expression-based lexers.
Simplifies the lexing process so that you need only
provide a list of states and regular expressions.
"""
#: Flags for compiling the regular expressions.
#: Defaults to MULTILINE.
flags = re.MULTILINE
#: At all time there is a stack of states. Initially, the stack contains
#: a single state 'root'. The top of the stack is called "the current state".
#:
#: Dict of ``{'state': [(regex, tokentype, new_state), ...], ...}``
#:
#: ``new_state`` can be omitted to signify no state transition.
#: If ``new_state`` is a string, it is pushed on the stack. This ensure
#: the new current state is ``new_state``.
#: If ``new_state`` is a tuple of strings, all of those strings are pushed
#: on the stack and the current state will be the last element of the list.
#: ``new_state`` can also be ``combined('state1', 'state2', ...)``
#: to signify a new, anonymous state combined from the rules of two
#: or more existing ones.
#: Furthermore, it can be '#pop' to signify going back one step in
#: the state stack, or '#push' to push the current state on the stack
#: again. Note that if you push while in a combined state, the combined
#: state itself is pushed, and not only the state in which the rule is
#: defined.
#:
#: The tuple can also be replaced with ``include('state')``, in which
#: case the rules from the state named by the string are included in the
#: current one.
tokens = {}
def get_tokens_unprocessed(self, text, stack=('root',)):
"""
Split ``text`` into (tokentype, text) pairs.
``stack`` is the initial stack (default: ``['root']``)
"""
pos = 0
tokendefs = self._tokens
statestack = list(stack)
statetokens = tokendefs[statestack[-1]]
while 1:
for rexmatch, action, new_state in statetokens:
m = rexmatch(text, pos)
if m:
if action is not None:
if type(action) is _TokenType:
yield pos, action, m.group()
else:
yield from action(self, m)
pos = m.end()
if new_state is not None:
# state transition
if isinstance(new_state, tuple):
for state in new_state:
if state == '#pop':
if len(statestack) > 1:
statestack.pop()
elif state == '#push':
statestack.append(statestack[-1])
else:
statestack.append(state)
elif isinstance(new_state, int):
# pop, but keep at least one state on the stack
# (random code leading to unexpected pops should
# not allow exceptions)
if abs(new_state) >= len(statestack):
del statestack[1:]
else:
del statestack[new_state:]
elif new_state == '#push':
statestack.append(statestack[-1])
else:
assert False, f"wrong state def: {new_state!r}"
statetokens = tokendefs[statestack[-1]]
break
else:
# We are here only if all state tokens have been considered
# and there was not a match on any of them.
try:
if text[pos] == '\n':
# at EOL, reset state to "root"
statestack = ['root']
statetokens = tokendefs['root']
yield pos, Whitespace, '\n'
pos += 1
continue
yield pos, Error, text[pos]
pos += 1
except IndexError:
break
| (*args, **kwds) |
10,221 | pygments.lexer | __init__ |
This constructor takes arbitrary options as keyword arguments.
Every subclass must first process its own options and then call
the `Lexer` constructor, since it processes the basic
options like `stripnl`.
An example looks like this:
.. sourcecode:: python
def __init__(self, **options):
self.compress = options.get('compress', '')
Lexer.__init__(self, **options)
As these options must all be specifiable as strings (due to the
command line usage), there are various utility functions
available to help with that, see `Utilities`_.
| def __init__(self, **options):
"""
This constructor takes arbitrary options as keyword arguments.
Every subclass must first process its own options and then call
the `Lexer` constructor, since it processes the basic
options like `stripnl`.
An example looks like this:
.. sourcecode:: python
def __init__(self, **options):
self.compress = options.get('compress', '')
Lexer.__init__(self, **options)
As these options must all be specifiable as strings (due to the
command line usage), there are various utility functions
available to help with that, see `Utilities`_.
"""
self.options = options
self.stripnl = get_bool_opt(options, 'stripnl', True)
self.stripall = get_bool_opt(options, 'stripall', False)
self.ensurenl = get_bool_opt(options, 'ensurenl', True)
self.tabsize = get_int_opt(options, 'tabsize', 0)
self.encoding = options.get('encoding', 'guess')
self.encoding = options.get('inencoding') or self.encoding
self.filters = []
for filter_ in get_list_opt(options, 'filters', ()):
self.add_filter(filter_)
| (self, **options) |
10,222 | pygments.lexer | __repr__ | null | def __repr__(self):
if self.options:
return f'<pygments.lexers.{self.__class__.__name__} with {self.options!r}>'
else:
return f'<pygments.lexers.{self.__class__.__name__}>'
| (self) |
10,223 | pygments.lexer | _preprocess_lexer_input | Apply preprocessing such as decoding the input, removing BOM and normalizing newlines. | def _preprocess_lexer_input(self, text):
"""Apply preprocessing such as decoding the input, removing BOM and normalizing newlines."""
if not isinstance(text, str):
if self.encoding == 'guess':
text, _ = guess_decode(text)
elif self.encoding == 'chardet':
try:
import chardet
except ImportError as e:
raise ImportError('To enable chardet encoding guessing, '
'please install the chardet library '
'from http://chardet.feedparser.org/') from e
# check for BOM first
decoded = None
for bom, encoding in _encoding_map:
if text.startswith(bom):
decoded = text[len(bom):].decode(encoding, 'replace')
break
# no BOM found, so use chardet
if decoded is None:
enc = chardet.detect(text[:1024]) # Guess using first 1KB
decoded = text.decode(enc.get('encoding') or 'utf-8',
'replace')
text = decoded
else:
text = text.decode(self.encoding)
if text.startswith('\ufeff'):
text = text[len('\ufeff'):]
else:
if text.startswith('\ufeff'):
text = text[len('\ufeff'):]
# text now *is* a unicode string
text = text.replace('\r\n', '\n')
text = text.replace('\r', '\n')
if self.stripall:
text = text.strip()
elif self.stripnl:
text = text.strip('\n')
if self.tabsize > 0:
text = text.expandtabs(self.tabsize)
if self.ensurenl and not text.endswith('\n'):
text += '\n'
return text
| (self, text) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.