index
int64 0
731k
| package
stringlengths 2
98
⌀ | name
stringlengths 1
76
| docstring
stringlengths 0
281k
⌀ | code
stringlengths 4
1.07M
⌀ | signature
stringlengths 2
42.8k
⌀ |
---|---|---|---|---|---|
3,624 | mcwiki.page | from_markup | null | def from_markup(markup: str) -> "PageSection":
html = BeautifulSoup(markup, "html.parser")
content = html.find("div", "mw-parser-output").extract()
return PageSection(content)
| (markup: str) -> mcwiki.page.PageSection |
3,625 | mcwiki.page | load | null | def load(page: str) -> "PageSection":
if not page.startswith("http"):
page = BASE_URL + re.sub(r"[\s_]+", "_", page)
return from_markup(requests.get(page).text)
| (page: str) -> mcwiki.page.PageSection |
3,626 | mcwiki.page | load_file | null | def load_file(filepath: Union[str, Path]) -> "PageSection":
return from_markup(Path(filepath).read_text())
| (filepath: Union[str, pathlib.Path]) -> mcwiki.page.PageSection |
3,631 | meshio._mesh | CellBlock | null | class CellBlock:
def __init__(
self,
cell_type: str,
data: list | np.ndarray,
tags: list[str] | None = None,
):
self.type = cell_type
self.data = data
if cell_type.startswith("polyhedron"):
self.dim = 3
else:
self.data = np.asarray(self.data)
self.dim = topological_dimension[cell_type]
self.tags = [] if tags is None else tags
def __repr__(self):
items = [
"meshio CellBlock",
f"type: {self.type}",
f"num cells: {len(self.data)}",
f"tags: {self.tags}",
]
return "<" + ", ".join(items) + ">"
def __len__(self):
return len(self.data)
| (cell_type: 'str', data: 'list | np.ndarray', tags: 'list[str] | None' = None) |
3,632 | meshio._mesh | __init__ | null | def __init__(
self,
cell_type: str,
data: list | np.ndarray,
tags: list[str] | None = None,
):
self.type = cell_type
self.data = data
if cell_type.startswith("polyhedron"):
self.dim = 3
else:
self.data = np.asarray(self.data)
self.dim = topological_dimension[cell_type]
self.tags = [] if tags is None else tags
| (self, cell_type: str, data: list | numpy.ndarray, tags: Optional[list[str]] = None) |
3,633 | meshio._mesh | __len__ | null | def __len__(self):
return len(self.data)
| (self) |
3,634 | meshio._mesh | __repr__ | null | def __repr__(self):
items = [
"meshio CellBlock",
f"type: {self.type}",
f"num cells: {len(self.data)}",
f"tags: {self.tags}",
]
return "<" + ", ".join(items) + ">"
| (self) |
3,635 | meshio._mesh | Mesh | null | class Mesh:
def __init__(
self,
points: ArrayLike,
cells: dict[str, ArrayLike] | list[tuple[str, ArrayLike] | CellBlock],
point_data: dict[str, ArrayLike] | None = None,
cell_data: dict[str, list[ArrayLike]] | None = None,
field_data=None,
point_sets: dict[str, ArrayLike] | None = None,
cell_sets: dict[str, list[ArrayLike]] | None = None,
gmsh_periodic=None,
info=None,
):
self.points = np.asarray(points)
if isinstance(cells, dict):
# Let's not deprecate this for now.
# warn(
# "cell dictionaries are deprecated, use list of tuples, e.g., "
# '[("triangle", [[0, 1, 2], ...])]',
# DeprecationWarning,
# )
# old dict, deprecated
#
# convert dict to list of tuples
cells = list(cells.items())
self.cells = []
for cell_block in cells:
if isinstance(cell_block, tuple):
cell_type, data = cell_block
cell_block = CellBlock(
cell_type,
# polyhedron data cannot be converted to numpy arrays
# because the sublists don't all have the same length
data if cell_type.startswith("polyhedron") else np.asarray(data),
)
self.cells.append(cell_block)
self.point_data = {} if point_data is None else point_data
self.cell_data = {} if cell_data is None else cell_data
self.field_data = {} if field_data is None else field_data
self.point_sets = {} if point_sets is None else point_sets
self.cell_sets = {} if cell_sets is None else cell_sets
self.gmsh_periodic = gmsh_periodic
self.info = info
# assert point data consistency and convert to numpy arrays
for key, item in self.point_data.items():
self.point_data[key] = np.asarray(item)
if len(self.point_data[key]) != len(self.points):
raise ValueError(
f"len(points) = {len(self.points)}, "
f'but len(point_data["{key}"]) = {len(self.point_data[key])}'
)
# assert cell data consistency and convert to numpy arrays
for key, data in self.cell_data.items():
if len(data) != len(cells):
raise ValueError(
f"Incompatible cell data '{key}'. "
f"{len(cells)} cell blocks, but '{key}' has {len(data)} blocks."
)
for k in range(len(data)):
data[k] = np.asarray(data[k])
if len(data[k]) != len(self.cells[k]):
raise ValueError(
"Incompatible cell data. "
+ f"Cell block {k} ('{self.cells[k].type}') "
+ f"has length {len(self.cells[k])}, but "
+ f"corresponding cell data item has length {len(data[k])}."
)
def __repr__(self):
lines = ["<meshio mesh object>", f" Number of points: {len(self.points)}"]
special_cells = [
"polygon",
"polyhedron",
"VTK_LAGRANGE_CURVE",
"VTK_LAGRANGE_TRIANGLE",
"VTK_LAGRANGE_QUADRILATERAL",
"VTK_LAGRANGE_TETRAHEDRON",
"VTK_LAGRANGE_HEXAHEDRON",
"VTK_LAGRANGE_WEDGE",
"VTK_LAGRANGE_PYRAMID",
]
if len(self.cells) > 0:
lines.append(" Number of cells:")
for cell_block in self.cells:
string = cell_block.type
if cell_block.type in special_cells:
string += f"({cell_block.data.shape[1]})"
lines.append(f" {string}: {len(cell_block)}")
else:
lines.append(" No cells.")
if self.point_sets:
names = ", ".join(self.point_sets.keys())
lines.append(f" Point sets: {names}")
if self.cell_sets:
names = ", ".join(self.cell_sets.keys())
lines.append(f" Cell sets: {names}")
if self.point_data:
names = ", ".join(self.point_data.keys())
lines.append(f" Point data: {names}")
if self.cell_data:
names = ", ".join(self.cell_data.keys())
lines.append(f" Cell data: {names}")
if self.field_data:
names = ", ".join(self.field_data.keys())
lines.append(f" Field data: {names}")
return "\n".join(lines)
def copy(self):
return copy.deepcopy(self)
def write(self, path_or_buf, file_format: str | None = None, **kwargs):
# avoid circular import
from ._helpers import write
write(path_or_buf, self, file_format, **kwargs)
def get_cells_type(self, cell_type: str):
if not any(c.type == cell_type for c in self.cells):
return np.empty((0, num_nodes_per_cell[cell_type]), dtype=int)
return np.concatenate([c.data for c in self.cells if c.type == cell_type])
def get_cell_data(self, name: str, cell_type: str):
return np.concatenate(
[d for c, d in zip(self.cells, self.cell_data[name]) if c.type == cell_type]
)
@property
def cells_dict(self):
cells_dict = {}
for cell_block in self.cells:
if cell_block.type not in cells_dict:
cells_dict[cell_block.type] = []
cells_dict[cell_block.type].append(cell_block.data)
# concatenate
for key, value in cells_dict.items():
cells_dict[key] = np.concatenate(value)
return cells_dict
@property
def cell_data_dict(self):
cell_data_dict = {}
for key, value_list in self.cell_data.items():
cell_data_dict[key] = {}
for value, cell_block in zip(value_list, self.cells):
if cell_block.type not in cell_data_dict[key]:
cell_data_dict[key][cell_block.type] = []
cell_data_dict[key][cell_block.type].append(value)
for cell_type, val in cell_data_dict[key].items():
cell_data_dict[key][cell_type] = np.concatenate(val)
return cell_data_dict
@property
def cell_sets_dict(self):
sets_dict = {}
for key, member_list in self.cell_sets.items():
sets_dict[key] = {}
offsets = {}
for members, cells in zip(member_list, self.cells):
if members is None:
continue
if cells.type in offsets:
offset = offsets[cells.type]
offsets[cells.type] += cells.data.shape[0]
else:
offset = 0
offsets[cells.type] = cells.data.shape[0]
if cells.type in sets_dict[key]:
sets_dict[key][cells.type].append(members + offset)
else:
sets_dict[key][cells.type] = [members + offset]
return {
key: {
cell_type: np.concatenate(members)
for cell_type, members in sets.items()
if sum(map(np.size, members))
}
for key, sets in sets_dict.items()
}
@classmethod
def read(cls, path_or_buf, file_format=None):
# avoid circular import
from ._helpers import read
# 2021-02-21
warn("meshio.Mesh.read is deprecated, use meshio.read instead")
return read(path_or_buf, file_format)
def cell_sets_to_data(self, data_name: str | None = None):
# If possible, convert cell sets to integer cell data. This is possible if all
# cells appear exactly in one group.
default_value = -1
if len(self.cell_sets) > 0:
intfun = []
for k, c in enumerate(zip(*self.cell_sets.values())):
# Go for -1 as the default value. (NaN is not int.)
arr = np.full(len(self.cells[k]), default_value, dtype=int)
for i, cc in enumerate(c):
if cc is None:
continue
arr[cc] = i
intfun.append(arr)
for item in intfun:
num_default = np.sum(item == default_value)
if num_default > 0:
warn(
f"{num_default} cells are not part of any cell set. "
f"Using default value {default_value}."
)
break
if data_name is None:
data_name = "-".join(self.cell_sets.keys())
self.cell_data[data_name] = intfun
self.cell_sets = {}
def point_sets_to_data(self, join_char: str = "-") -> None:
# now for the point sets
# Go for -1 as the default value. (NaN is not int.)
default_value = -1
if len(self.point_sets) > 0:
intfun = np.full(len(self.points), default_value, dtype=int)
for i, cc in enumerate(self.point_sets.values()):
intfun[cc] = i
if np.any(intfun == default_value):
warn(
"Not all points are part of a point set. "
f"Using default value {default_value}."
)
data_name = join_char.join(self.point_sets.keys())
self.point_data[data_name] = intfun
self.point_sets = {}
# This used to be int_data_to_sets(), converting _all_ cell and point data.
# This is not useful in many cases, as one usually only wants one
# particular data array (e.g., "MaterialIDs") converted to sets.
def cell_data_to_sets(self, key: str):
"""Convert point_data to cell_sets."""
data = self.cell_data[key]
# handle all int and uint data
if not all(v.dtype.kind in ["i", "u"] for v in data):
raise RuntimeError(f"cell_data['{key}'] is not int data.")
tags = np.unique(np.concatenate(data))
# try and get the names by splitting the key along "-" (this is how
# sets_to_int_data() forms the key)
names = key.split("-")
# remove duplicates and preserve order
# <https://stackoverflow.com/a/7961390/353337>:
names = list(dict.fromkeys(names))
if len(names) != len(tags):
# alternative names
names = [f"set-{key}-{tag}" for tag in tags]
# TODO there's probably a better way besides np.where, something from
# np.unique or np.sort
for name, tag in zip(names, tags):
self.cell_sets[name] = [np.where(d == tag)[0] for d in data]
# remove the cell data
del self.cell_data[key]
def point_data_to_sets(self, key: str):
"""Convert point_data to point_sets."""
data = self.point_data[key]
# handle all int and uint data
if not all(v.dtype.kind in ["i", "u"] for v in data):
raise RuntimeError(f"point_data['{key}'] is not int data.")
tags = np.unique(data)
# try and get the names by splitting the key along "-" (this is how
# sets_to_int_data() forms the key
names = key.split("-")
# remove duplicates and preserve order
# <https://stackoverflow.com/a/7961390/353337>:
names = list(dict.fromkeys(names))
if len(names) != len(tags):
# alternative names
names = [f"set-key-{tag}" for tag in tags]
# TODO there's probably a better way besides np.where, something from
# np.unique or np.sort
for name, tag in zip(names, tags):
self.point_sets[name] = np.where(data == tag)[0]
# remove the cell data
del self.point_data[key]
| (points: 'ArrayLike', cells: 'dict[str, ArrayLike] | list[tuple[str, ArrayLike] | CellBlock]', point_data: 'dict[str, ArrayLike] | None' = None, cell_data: 'dict[str, list[ArrayLike]] | None' = None, field_data=None, point_sets: 'dict[str, ArrayLike] | None' = None, cell_sets: 'dict[str, list[ArrayLike]] | None' = None, gmsh_periodic=None, info=None) |
3,636 | meshio._mesh | __init__ | null | def __init__(
self,
points: ArrayLike,
cells: dict[str, ArrayLike] | list[tuple[str, ArrayLike] | CellBlock],
point_data: dict[str, ArrayLike] | None = None,
cell_data: dict[str, list[ArrayLike]] | None = None,
field_data=None,
point_sets: dict[str, ArrayLike] | None = None,
cell_sets: dict[str, list[ArrayLike]] | None = None,
gmsh_periodic=None,
info=None,
):
self.points = np.asarray(points)
if isinstance(cells, dict):
# Let's not deprecate this for now.
# warn(
# "cell dictionaries are deprecated, use list of tuples, e.g., "
# '[("triangle", [[0, 1, 2], ...])]',
# DeprecationWarning,
# )
# old dict, deprecated
#
# convert dict to list of tuples
cells = list(cells.items())
self.cells = []
for cell_block in cells:
if isinstance(cell_block, tuple):
cell_type, data = cell_block
cell_block = CellBlock(
cell_type,
# polyhedron data cannot be converted to numpy arrays
# because the sublists don't all have the same length
data if cell_type.startswith("polyhedron") else np.asarray(data),
)
self.cells.append(cell_block)
self.point_data = {} if point_data is None else point_data
self.cell_data = {} if cell_data is None else cell_data
self.field_data = {} if field_data is None else field_data
self.point_sets = {} if point_sets is None else point_sets
self.cell_sets = {} if cell_sets is None else cell_sets
self.gmsh_periodic = gmsh_periodic
self.info = info
# assert point data consistency and convert to numpy arrays
for key, item in self.point_data.items():
self.point_data[key] = np.asarray(item)
if len(self.point_data[key]) != len(self.points):
raise ValueError(
f"len(points) = {len(self.points)}, "
f'but len(point_data["{key}"]) = {len(self.point_data[key])}'
)
# assert cell data consistency and convert to numpy arrays
for key, data in self.cell_data.items():
if len(data) != len(cells):
raise ValueError(
f"Incompatible cell data '{key}'. "
f"{len(cells)} cell blocks, but '{key}' has {len(data)} blocks."
)
for k in range(len(data)):
data[k] = np.asarray(data[k])
if len(data[k]) != len(self.cells[k]):
raise ValueError(
"Incompatible cell data. "
+ f"Cell block {k} ('{self.cells[k].type}') "
+ f"has length {len(self.cells[k])}, but "
+ f"corresponding cell data item has length {len(data[k])}."
)
| (self, points: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], cells: dict[str, typing.Union[numpy._typing._array_like._SupportsArray[numpy.dtype[typing.Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[typing.Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[typing.Union[bool, int, float, complex, str, bytes]]]] | list[tuple[str, typing.Union[numpy._typing._array_like._SupportsArray[numpy.dtype[typing.Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[typing.Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[typing.Union[bool, int, float, complex, str, bytes]]]] | meshio._mesh.CellBlock], point_data: Optional[dict[str, Union[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]]] = None, cell_data: Optional[dict[str, list[Union[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]]]] = None, field_data=None, point_sets: Optional[dict[str, Union[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]]] = None, cell_sets: Optional[dict[str, list[Union[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]]]] = None, gmsh_periodic=None, info=None) |
3,637 | meshio._mesh | __repr__ | null | def __repr__(self):
lines = ["<meshio mesh object>", f" Number of points: {len(self.points)}"]
special_cells = [
"polygon",
"polyhedron",
"VTK_LAGRANGE_CURVE",
"VTK_LAGRANGE_TRIANGLE",
"VTK_LAGRANGE_QUADRILATERAL",
"VTK_LAGRANGE_TETRAHEDRON",
"VTK_LAGRANGE_HEXAHEDRON",
"VTK_LAGRANGE_WEDGE",
"VTK_LAGRANGE_PYRAMID",
]
if len(self.cells) > 0:
lines.append(" Number of cells:")
for cell_block in self.cells:
string = cell_block.type
if cell_block.type in special_cells:
string += f"({cell_block.data.shape[1]})"
lines.append(f" {string}: {len(cell_block)}")
else:
lines.append(" No cells.")
if self.point_sets:
names = ", ".join(self.point_sets.keys())
lines.append(f" Point sets: {names}")
if self.cell_sets:
names = ", ".join(self.cell_sets.keys())
lines.append(f" Cell sets: {names}")
if self.point_data:
names = ", ".join(self.point_data.keys())
lines.append(f" Point data: {names}")
if self.cell_data:
names = ", ".join(self.cell_data.keys())
lines.append(f" Cell data: {names}")
if self.field_data:
names = ", ".join(self.field_data.keys())
lines.append(f" Field data: {names}")
return "\n".join(lines)
| (self) |
3,638 | meshio._mesh | cell_data_to_sets | Convert point_data to cell_sets. | def cell_data_to_sets(self, key: str):
"""Convert point_data to cell_sets."""
data = self.cell_data[key]
# handle all int and uint data
if not all(v.dtype.kind in ["i", "u"] for v in data):
raise RuntimeError(f"cell_data['{key}'] is not int data.")
tags = np.unique(np.concatenate(data))
# try and get the names by splitting the key along "-" (this is how
# sets_to_int_data() forms the key)
names = key.split("-")
# remove duplicates and preserve order
# <https://stackoverflow.com/a/7961390/353337>:
names = list(dict.fromkeys(names))
if len(names) != len(tags):
# alternative names
names = [f"set-{key}-{tag}" for tag in tags]
# TODO there's probably a better way besides np.where, something from
# np.unique or np.sort
for name, tag in zip(names, tags):
self.cell_sets[name] = [np.where(d == tag)[0] for d in data]
# remove the cell data
del self.cell_data[key]
| (self, key: str) |
3,639 | meshio._mesh | cell_sets_to_data | null | def cell_sets_to_data(self, data_name: str | None = None):
# If possible, convert cell sets to integer cell data. This is possible if all
# cells appear exactly in one group.
default_value = -1
if len(self.cell_sets) > 0:
intfun = []
for k, c in enumerate(zip(*self.cell_sets.values())):
# Go for -1 as the default value. (NaN is not int.)
arr = np.full(len(self.cells[k]), default_value, dtype=int)
for i, cc in enumerate(c):
if cc is None:
continue
arr[cc] = i
intfun.append(arr)
for item in intfun:
num_default = np.sum(item == default_value)
if num_default > 0:
warn(
f"{num_default} cells are not part of any cell set. "
f"Using default value {default_value}."
)
break
if data_name is None:
data_name = "-".join(self.cell_sets.keys())
self.cell_data[data_name] = intfun
self.cell_sets = {}
| (self, data_name: Optional[str] = None) |
3,640 | meshio._mesh | copy | null | def copy(self):
return copy.deepcopy(self)
| (self) |
3,641 | meshio._mesh | get_cell_data | null | def get_cell_data(self, name: str, cell_type: str):
return np.concatenate(
[d for c, d in zip(self.cells, self.cell_data[name]) if c.type == cell_type]
)
| (self, name: str, cell_type: str) |
3,642 | meshio._mesh | get_cells_type | null | def get_cells_type(self, cell_type: str):
if not any(c.type == cell_type for c in self.cells):
return np.empty((0, num_nodes_per_cell[cell_type]), dtype=int)
return np.concatenate([c.data for c in self.cells if c.type == cell_type])
| (self, cell_type: str) |
3,643 | meshio._mesh | point_data_to_sets | Convert point_data to point_sets. | def point_data_to_sets(self, key: str):
"""Convert point_data to point_sets."""
data = self.point_data[key]
# handle all int and uint data
if not all(v.dtype.kind in ["i", "u"] for v in data):
raise RuntimeError(f"point_data['{key}'] is not int data.")
tags = np.unique(data)
# try and get the names by splitting the key along "-" (this is how
# sets_to_int_data() forms the key
names = key.split("-")
# remove duplicates and preserve order
# <https://stackoverflow.com/a/7961390/353337>:
names = list(dict.fromkeys(names))
if len(names) != len(tags):
# alternative names
names = [f"set-key-{tag}" for tag in tags]
# TODO there's probably a better way besides np.where, something from
# np.unique or np.sort
for name, tag in zip(names, tags):
self.point_sets[name] = np.where(data == tag)[0]
# remove the cell data
del self.point_data[key]
| (self, key: str) |
3,644 | meshio._mesh | point_sets_to_data | null | def point_sets_to_data(self, join_char: str = "-") -> None:
# now for the point sets
# Go for -1 as the default value. (NaN is not int.)
default_value = -1
if len(self.point_sets) > 0:
intfun = np.full(len(self.points), default_value, dtype=int)
for i, cc in enumerate(self.point_sets.values()):
intfun[cc] = i
if np.any(intfun == default_value):
warn(
"Not all points are part of a point set. "
f"Using default value {default_value}."
)
data_name = join_char.join(self.point_sets.keys())
self.point_data[data_name] = intfun
self.point_sets = {}
| (self, join_char: str = '-') -> NoneType |
3,645 | meshio._mesh | write | null | def write(self, path_or_buf, file_format: str | None = None, **kwargs):
# avoid circular import
from ._helpers import write
write(path_or_buf, self, file_format, **kwargs)
| (self, path_or_buf, file_format: Optional[str] = None, **kwargs) |
3,646 | meshio._exceptions | ReadError | null | class ReadError(Exception):
pass
| null |
3,647 | meshio._exceptions | WriteError | null | class WriteError(Exception):
pass
| null |
3,660 | meshio._helpers | deregister_format | null | def deregister_format(format_name: str):
for value in extension_to_filetypes.values():
if format_name in value:
value.remove(format_name)
if format_name in reader_map:
reader_map.pop(format_name)
if format_name in _writer_map:
_writer_map.pop(format_name)
| (format_name: str) |
3,677 | meshio._helpers | read | Reads an unstructured mesh with added data.
:param filenames: The files/PathLikes to read from.
:type filenames: str
:returns mesh{2,3}d: The mesh data.
| def read(filename, file_format: str | None = None):
"""Reads an unstructured mesh with added data.
:param filenames: The files/PathLikes to read from.
:type filenames: str
:returns mesh{2,3}d: The mesh data.
"""
if is_buffer(filename, "r"):
return _read_buffer(filename, file_format)
return _read_file(Path(filename), file_format)
| (filename, file_format: Optional[str] = None) |
3,678 | meshio._helpers | register_format | null | def register_format(
format_name: str, extensions: list[str], reader, writer_map
) -> None:
for ext in extensions:
if ext not in extension_to_filetypes:
extension_to_filetypes[ext] = []
extension_to_filetypes[ext].append(format_name)
if reader is not None:
reader_map[format_name] = reader
_writer_map.update(writer_map)
| (format_name: str, extensions: list[str], reader, writer_map) -> NoneType |
3,688 | meshio._helpers | write | Writes mesh together with data to a file.
:params filename: File to write to.
:type filename: str
:params point_data: Named additional point data to write to the file.
:type point_data: dict
| def write(filename, mesh: Mesh, file_format: str | None = None, **kwargs):
"""Writes mesh together with data to a file.
:params filename: File to write to.
:type filename: str
:params point_data: Named additional point data to write to the file.
:type point_data: dict
"""
if is_buffer(filename, "r"):
if file_format is None:
raise WriteError("File format must be supplied if `filename` is a buffer")
if file_format == "tetgen":
raise WriteError(
"tetgen format is spread across multiple files, and so cannot be written to a buffer"
)
else:
path = Path(filename)
if not file_format:
# deduce possible file formats from extension
file_formats = _filetypes_from_path(path)
# just take the first one
file_format = file_formats[0]
try:
writer = _writer_map[file_format]
except KeyError:
formats = sorted(list(_writer_map.keys()))
raise WriteError(f"Unknown format '{file_format}'. Pick one of {formats}")
# check cells for sanity
for cell_block in mesh.cells:
key = cell_block.type
value = cell_block.data
if key in num_nodes_per_cell:
if value.shape[1] != num_nodes_per_cell[key]:
raise WriteError(
f"Unexpected cells array shape {value.shape} for {key} cells. "
+ f"Expected shape [:, {num_nodes_per_cell[key]}]."
)
else:
# we allow custom keys <https://github.com/nschloe/meshio/issues/501> and
# cannot check those
pass
# Write
return writer(filename, mesh, **kwargs)
| (filename, mesh: meshio._mesh.Mesh, file_format: Optional[str] = None, **kwargs) |
3,689 | meshio._helpers | write_points_cells | null | def write_points_cells(
filename,
points: ArrayLike,
cells: dict[str, ArrayLike] | list[tuple[str, ArrayLike] | CellBlock],
point_data: dict[str, ArrayLike] | None = None,
cell_data: dict[str, list[ArrayLike]] | None = None,
field_data=None,
point_sets: dict[str, ArrayLike] | None = None,
cell_sets: dict[str, list[ArrayLike]] | None = None,
file_format: str | None = None,
**kwargs,
):
points = np.asarray(points)
mesh = Mesh(
points,
cells,
point_data=point_data,
cell_data=cell_data,
field_data=field_data,
point_sets=point_sets,
cell_sets=cell_sets,
)
mesh.write(filename, file_format=file_format, **kwargs)
| (filename, points: Union[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], cells: dict[str, typing.Union[numpy._typing._array_like._SupportsArray[numpy.dtype[typing.Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[typing.Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[typing.Union[bool, int, float, complex, str, bytes]]]] | list[tuple[str, typing.Union[numpy._typing._array_like._SupportsArray[numpy.dtype[typing.Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[typing.Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[typing.Union[bool, int, float, complex, str, bytes]]]] | meshio._mesh.CellBlock], point_data: Optional[dict[str, Union[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]]] = None, cell_data: Optional[dict[str, list[Union[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]]]] = None, field_data=None, point_sets: Optional[dict[str, Union[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]]] = None, cell_sets: Optional[dict[str, list[Union[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]]]] = None, file_format: Optional[str] = None, **kwargs) |
3,694 | logging_tree.format | printout | Print a tree of loggers, given a `Node` from `logging_tree.nodes`.
If no `node` argument is provided, then the entire tree of currently
active `logging` loggers is printed out.
| def printout(node=None):
"""Print a tree of loggers, given a `Node` from `logging_tree.nodes`.
If no `node` argument is provided, then the entire tree of currently
active `logging` loggers is printed out.
"""
print(build_description(node)[:-1])
| (node=None) |
3,695 | logging_tree.nodes | tree | Return a tree of tuples representing the logger layout.
Each tuple looks like ``('logger-name', <Logger>, [...])`` where the
third element is a list of zero or more child tuples that share the
same layout.
| def tree():
"""Return a tree of tuples representing the logger layout.
Each tuple looks like ``('logger-name', <Logger>, [...])`` where the
third element is a list of zero or more child tuples that share the
same layout.
"""
root = ('', logging.root, [])
nodes = {}
items = list(logging.root.manager.loggerDict.items()) # for Python 2 and 3
items.sort()
for name, logger in items:
nodes[name] = node = (name, logger, [])
i = name.rfind('.', 0, len(name) - 1) # same formula used in `logging`
if i == -1:
parent = root
else:
parent = nodes[name[:i]]
parent[2].append(node)
return root
| () |
3,696 | mllabreva | list | null | def list():
print("1.linear regression\n2.kmeans\n3.knn\n4.housePriceLinear regression\n5.decision tree\n6.svm\n7.perceptron\n8.nbc\n9.comparision\n10.tensor flow")
| () |
3,697 | mllabreva | make | null | def make(int1):
if (int1==1):
print("import numpy as np \nimport pandas as pd\nimport pandas as pd\ndf = pd.read_csv('Salary.csv')\nprint(df.to_string())\nimport matplotlib.pyplot as plt\nfrom sklearn.linear_model import LinearRegression\nX = df.iloc[:, :-1].values # Features => Years of experience => Independent Variable\ny = df.iloc[:, -1].values # Target => Salary => Dependent Variable\nX\nfrom sklearn.model_selection import train_test_split\nimport sklearn.metrics as sm\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)\nfrom sklearn.linear_model import LinearRegression\nmodel = LinearRegression()\nmodel.fit(X_train, y_train)\npredictions = model.predict(X_test)\nimport seaborn as sns\nsns.distplot(predictions-y_test)\nplt.scatter(X_train, y_train, color='red')\nplt.plot(X_train, model.predict(X_train))\nr_sq = model.score(X_train, y_train)\nprint('coefficient of determination:', r_sq)\nprint('intercept:', model.intercept_)\nprint('slope:', model.coef_) \ny_pred = model.predict(X_train)\nprint('y='+str(float(model.coef_))+'X+'+str(float(model.intercept_)))\n")
elif(int1==2):
print("import pandas as pd\ndf = pd.read_csv('wine-clustering.csv')\ndf.head()\ndf.describe().T\ndf.info()\nimport seaborn as sns\nimport matplotlib.pyplot as plt\nsns.pairplot(df)\nfrom sklearn.cluster import KMeans\nselected_features = df[['OD280', 'Alcohol']]\nkmeans_obj = KMeans(n_clusters=3, random_state=42) \nkmeans_obj.fit(selected_features)\ny_kmeans = kmeans_obj.fit_predict(selected_features)\nprint(y_kmeans)\ncenters = kmeans_obj.cluster_centers_\nprint(centers)\nsns.scatterplot(x = selected_features['OD280'], y = selected_features['Alcohol'], hue=kmeans_obj.labels_)\nplt.scatter(kmeans_obj.cluster_centers_[:, 0], kmeans_obj.cluster_centers_[:, 1], s=200, c='red')\n")
elif(int1==3):
print("import numpy as np\nimport pandas as pd\ndata = pd.read_csv('breast-cancer-wisconsin-data_data.csv')\ndata.head()\ndata.columns\ndata = data.drop(['id', 'Unnamed: 32'], axis = 1)\ndata.shape\ndata.describe()\ndata.info()\ndata.columns\nX = data.loc[:, ['radius_mean', 'texture_mean', 'perimeter_mean','area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean','concave points_mean', 'symmetry_mean', 'fractal_dimension_mean','radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se','compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se','fractal_dimension_se', 'radius_worst', 'texture_worst','perimeter_worst', 'area_worst', 'smoothness_worst','compactness_worst', 'concavity_worst', 'concave points_worst','symmetry_worst', 'fractal_dimension_worst']]\ny = data.loc[:, 'diagnosis']\nX.head()\ny.head()\nfrom sklearn.model_selection import train_test_split\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)\nfrom sklearn.neighbors import KNeighborsClassifier\nknn_cfr = KNeighborsClassifier(n_neighbors=3)\nknn_cfr.fit(X_train, y_train)\ny_pred = knn_cfr.predict(X_test)\nfrom sklearn.metrics import accuracy_score\naccuracy_score(y_test, y_pred)\n")
elif(int1==4):
print("import numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\nimport seaborn as sns\ndata = pd.read_csv('kc_house_data.csv')\ndata.head()\ndata = data.drop(['id', 'date'], axis = 1)\ndata.head()\ndata.describe()\ndata['bedrooms'].value_counts().plot(kind='bar')\nplt.title('number of Bedroom')\nplt.xlabel('Bedrooms')\nplt.ylabel('Count')\nsns.despine()\nplt.figure(figsize=(10,10))\nsns.jointplot(x=data.lat.values, y=data.long.values, height=10)\nplt.ylabel('Longitude',fontsize=12)\nplt.xlabel('Latitude',fontsize=12)\nsns.despine()\nplt.show()\nplt.scatter(data.price,data.sqft_living)\nplt.title('Price vs Square Feet')\nplt.scatter(data.price,data.long)\nplt.title('Price vs Location of the area')\nplt.scatter(data.price,data.lat)\nplt.xlabel('Price')\nplt.ylabel('Latitude')\nplt.title('Latitude vs Price')\nplt.scatter(data.bedrooms,data.price)\nplt.title('Bedroom and Price ')\nplt.xlabel('Bedrooms')\nplt.ylabel('Price')\nsns.despine()\nplt.show()\nplt.scatter((data['sqft_living']+data['sqft_basement']),data['price'])\nplt.scatter(data.waterfront,data.price)\nplt.title('Waterfront vs Price ( 0= no waterfront)')\ny = data['price']\nX = data.drop(['price'],axis=1)\nfrom sklearn.model_selection import train_test_split\nx_train , x_test , y_train , y_test = train_test_split(X , y , test_size = 0.10,random_state =2)\nfrom sklearn.linear_model import LinearRegression\nreg = LinearRegression()\nreg.fit(x_train,y_train)\nreg.score(x_test,y_test)\n")
elif(int1==5):
print("import numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\ndf = pd.read_csv('adult.csv')\ndf.head()\ndf.columns\ndf.shape\ndf.isin(['?']).sum()\ndf['workclass'] = df['workclass'].replace('?', np.nan)\ndf['occupation'] = df['occupation'].replace('?', np.nan)\ndf['native-country'] = df['native-country'].replace('?', np.nan)\ndf.isin(['?']).sum()\ndf.isnull().sum()\ndf.dropna(how='any', inplace=True)\nprint(f'There are {df.duplicated().sum()} duplicate values')\ndf = df.drop_duplicates()\ndf.shape\ndf.columns\ndf.drop(['fnlwgt','educational-num','marital-status','relationship', 'race',], axis = 1, inplace = True)\ndf.columns\nX = df.loc[:,['age', 'workclass', 'education', 'occupation', 'gender', 'capital-gain','capital-loss', 'hours-per-week', 'native-country']]\ny = df.loc[:,'income']\nX.head()\ny.head()\nfrom sklearn.preprocessing import LabelEncoder\ny = LabelEncoder().fit_transform(y)\ny = pd.DataFrame(y)\ny.head()\nnumeric_features = X.select_dtypes('number')\ncategorical_features = X.select_dtypes('object')\ncategorical_features\nnumeric_features\nconverted_categorical_features = pd.get_dummies(categorical_features)\nconverted_categorical_features.shape\nall_features = [converted_categorical_features, numeric_features]\nnewX = pd.concat(all_features,axis=1, join='inner')\nnewX.shape\nnewX.columns\nfrom sklearn.model_selection import train_test_split\nX_train, X_test, y_train, y_test = train_test_split(newX, y, test_size=0.33, random_state=42)\nfrom sklearn.tree import DecisionTreeClassifier\nclf = DecisionTreeClassifier(max_depth=5)\nclf.fit(X_train, y_train)\ny_pred = clf.predict(X_test)\ny_test.shape\ny_pred.shape\npredictions_df = pd.DataFrame()\npredictions_df['precdicted_salary_class'] = y_pred\npredictions_df['actual_salary_class'] = y_test[0].values\npredictions_df\nfrom sklearn.metrics import accuracy_score\nprint(accuracy_score(y_pred,y_test))\nfrom sklearn.tree import plot_tree\nimport matplotlib.pyplot as plt\nplt.figure(figsize=(14,14))\nplot_tree(clf, fontsize=10, filled=True)\nplt.title('Decision tree trained on the selected features')\nplt.show()\n")
elif(int1==6):
print("import numpy as np\nimport pandas as pd\ndf = pd.read_csv('smaller_adult.csv')\ndf.head()\ndf.columns\ndf.shape\ndf.info()\ndf.describe()\ndf.isin(['?']).sum()\ndf.columns\ndf['workclass'] = df['workclass'].replace('?', np.nan)\ndf['occupation'] = df['occupation'].replace('?', np.nan)\ndf.isin(['?']).sum()\ndf.isnull().sum()\ndf.dropna(how='any', inplace=True)\nprint(f'There are {df.duplicated().sum()} duplicate values')\ndf = df.drop_duplicates()\ndf.shape\ndf.columns\nX = df.loc[:,['age', 'workclass', 'educational-num', 'occupation', 'gender', 'hours-per-week']]\ny = df.loc[:,'income']\nfrom sklearn.preprocessing import LabelEncoder\ny = LabelEncoder().fit_transform(y)\ny = pd.DataFrame(y)\ny.head()\nnumeric_features = X.select_dtypes('number')\ncategorical_features = X.select_dtypes('object')\ncategorical_features\nnumeric_features\nconverted_categorical_features = pd.get_dummies(categorical_features)\nconverted_categorical_features.shape\nall_features = [converted_categorical_features, numeric_features]\nnewX = pd.concat(all_features,axis=1, join='inner')\nnewX.shape\nnewX.columns\nfrom sklearn.model_selection import train_test_split\nX_train, X_test, y_train, y_test = train_test_split(newX, y, test_size=0.33, random_state=42)\nfrom sklearn.svm import SVC\nclf = SVC(kernel='linear', gamma = 'auto')\nclf.fit(X_train, y_train)\ny_pred = clf.predict(X_test)\npredictions_df = pd.DataFrame()\npredictions_df['precdicted_salary_class'] = y_pred\npredictions_df['actual_salary_class'] = y_test[0].values\npredictions_df\nfrom sklearn.metrics import accuracy_score\nprint(accuracy_score(y_pred,y_test))\n")
elif(int1==7):
print("import numpy as np\nimport pandas as pd\ndf = pd.read_csv('breast-cancer-wisconsin-data_data.csv')\ndf.head()\ndf.shape\ndf = df.drop(['id', 'Unnamed: 32'], axis = 1)\ndf.columns\ndf.describe()\ndf.info()\nX = df.loc[:, ['radius_mean', 'texture_mean', 'perimeter_mean','area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean','concave points_mean', 'symmetry_mean', 'fractal_dimension_mean','radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se','compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se','fractal_dimension_se', 'radius_worst', 'texture_worst','perimeter_worst', 'area_worst', 'smoothness_worst','compactness_worst', 'concavity_worst', 'concave points_worst','symmetry_worst', 'fractal_dimension_worst']]\ny = df.loc[:, 'diagnosis']\nfrom sklearn.model_selection import train_test_split\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)\nfrom sklearn.neural_network import MLPClassifier\nclf = MLPClassifier(random_state=1, max_iter=300).fit(X_train, y_train)\ny_pred = clf.predict(X_test)\ny_pred\nfrom sklearn.metrics import accuracy_score\naccuracy_score(y_test, y_pred)\n")
elif(int1==8):
print("from sklearn.datasets import load_iris\nfrom sklearn.datasets import load_diabetes\nfrom sklearn import metrics\nfrom sklearn.naive_bayes import GaussianNB\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.naive_bayes import GaussianNB\niris = load_iris()\nX = iris.data\ny = iris.target\nfrom sklearn.model_selection import train_test_split\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=1)\ngnb = GaussianNB()\ngnb.fit(X_train, y_train)\ny_pred = gnb.predict(X_test)\nfrom sklearn import metrics\nprint('Gaussian Naive Bayes model accuracy(in %):', metrics.accuracy_score(y_test, y_pred)*100)\n")
elif(int1==9):
print("import numpy as np\nimport pandas as pd\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.neighbors import KNeighborsClassifier\nfrom sklearn.svm import SVC\nfrom sklearn.tree import DecisionTreeClassifier\nfrom sklearn.neural_network import MLPClassifier\nfrom sklearn.naive_bayes import GaussianNB\nnames = ['K-Nearest Neighbors','Linear SVM','Decision Tree','Multilayer Perceptron','Gaussian Naive Bayes']\nclassifiers = [KNeighborsClassifier(3),SVC(kernel='linear', C=0.025),DecisionTreeClassifier(max_depth=5),MLPClassifier(alpha=1, max_iter=1000),GaussianNB(),]\ndf = pd.read_csv('Iris.csv')\ndf.head()\ndf = df.drop('Id', axis = 1)\ndf.head()\nX= df.iloc[:, :-1]\nX.head()\ny = df.iloc[:, -1]\ny.head()\nfrom sklearn.preprocessing import LabelEncoder\ny = LabelEncoder().fit_transform(y)\ny = pd.DataFrame(y)\ny.head()\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)\nfor name, clf in zip(names, classifiers):\n clf.fit(X_train, y_train.values.ravel())\n score = clf.score(X_test, y_test)\n print('Classifier Name: ', name, 'Score: ', score)\n")
elif(int1==10):
print("import pandas as pd\nfrom sklearn.metrics import accuracy_score\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.metrics import accuracy_score\nfrom tensorflow.keras import Sequential\nfrom tensorflow.keras.layers import Dense\ndf = pd.read_csv('BankNote_Authentication.csv')\ndf.head()\nX = df.values[:, :-1]\ny = df.values[:, -1]\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)\nmodel = Sequential()\nmodel.add(Dense(7, input_shape=(X.shape[1],)))\nmodel.add(Dense(1, activation = 'sigmoid'))\nmodel.compile(optimizer='adam',loss='binary_crossentropy')\nmodel.fit(X_train, y_train, epochs=30, batch_size=32)\ny_pred = model.predict(X_test)\ny_pred\ny_pred = (y_pred>0.5).flatten().astype(int)\ny_pred\nprint(accuracy_score(y_test, y_pred))\n")
| (int1) |
3,698 | springserve | API |
Get the raw API object. This is rarely used directly by a client of this
library, but it used as an internal function
| def API(reauth=False):
"""
Get the raw API object. This is rarely used directly by a client of this
library, but it used as an internal function
"""
global _API, _ACCOUNT, _CONFIG_OVERRIDE, _TOKEN_OVERRIDE
if _API is None or reauth:
_msg.debug("authenticating to springserve")
try:
if _ACCOUNT:
_API = _lnk("springserve.{}".format(_ACCOUNT))
elif _CONFIG_OVERRIDE:
_API = SpringServeAPI(**_CONFIG_OVERRIDE)
elif _TOKEN_OVERRIDE:
_API = SpringServeAPITokenOverride(**_TOKEN_OVERRIDE)
else:
try:
_API = _lnk("springserve.{}".format("__default__"))
except:
# this is to keep backwards compatiblity
_API = _lnk.springserve
_API.headers.update({'springserve-sdk': __version__})
except Exception as e:
raise Exception("""Error authenticating: check your link.config to
make sure your username, password and url are
correct: {}""".format(e))
return _API
| (reauth=False) |
3,699 | requests_toolbelt.multipart.encoder | MultipartEncoder |
The ``MultipartEncoder`` object is a generic interface to the engine that
will create a ``multipart/form-data`` body for you.
The basic usage is:
.. code-block:: python
import requests
from requests_toolbelt import MultipartEncoder
encoder = MultipartEncoder({'field': 'value',
'other_field': 'other_value'})
r = requests.post('https://httpbin.org/post', data=encoder,
headers={'Content-Type': encoder.content_type})
If you do not need to take advantage of streaming the post body, you can
also do:
.. code-block:: python
r = requests.post('https://httpbin.org/post',
data=encoder.to_string(),
headers={'Content-Type': encoder.content_type})
If you want the encoder to use a specific order, you can use an
OrderedDict or more simply, a list of tuples:
.. code-block:: python
encoder = MultipartEncoder([('field', 'value'),
('other_field', 'other_value')])
.. versionchanged:: 0.4.0
You can also provide tuples as part values as you would provide them to
requests' ``files`` parameter.
.. code-block:: python
encoder = MultipartEncoder({
'field': ('file_name', b'{"a": "b"}', 'application/json',
{'X-My-Header': 'my-value'})
])
.. warning::
This object will end up directly in :mod:`httplib`. Currently,
:mod:`httplib` has a hard-coded read size of **8192 bytes**. This
means that it will loop until the file has been read and your upload
could take a while. This is **not** a bug in requests. A feature is
being considered for this object to allow you, the user, to specify
what size should be returned on a read. If you have opinions on this,
please weigh in on `this issue`_.
.. _this issue:
https://github.com/requests/toolbelt/issues/75
| class MultipartEncoder(object):
"""
The ``MultipartEncoder`` object is a generic interface to the engine that
will create a ``multipart/form-data`` body for you.
The basic usage is:
.. code-block:: python
import requests
from requests_toolbelt import MultipartEncoder
encoder = MultipartEncoder({'field': 'value',
'other_field': 'other_value'})
r = requests.post('https://httpbin.org/post', data=encoder,
headers={'Content-Type': encoder.content_type})
If you do not need to take advantage of streaming the post body, you can
also do:
.. code-block:: python
r = requests.post('https://httpbin.org/post',
data=encoder.to_string(),
headers={'Content-Type': encoder.content_type})
If you want the encoder to use a specific order, you can use an
OrderedDict or more simply, a list of tuples:
.. code-block:: python
encoder = MultipartEncoder([('field', 'value'),
('other_field', 'other_value')])
.. versionchanged:: 0.4.0
You can also provide tuples as part values as you would provide them to
requests' ``files`` parameter.
.. code-block:: python
encoder = MultipartEncoder({
'field': ('file_name', b'{"a": "b"}', 'application/json',
{'X-My-Header': 'my-value'})
])
.. warning::
This object will end up directly in :mod:`httplib`. Currently,
:mod:`httplib` has a hard-coded read size of **8192 bytes**. This
means that it will loop until the file has been read and your upload
could take a while. This is **not** a bug in requests. A feature is
being considered for this object to allow you, the user, to specify
what size should be returned on a read. If you have opinions on this,
please weigh in on `this issue`_.
.. _this issue:
https://github.com/requests/toolbelt/issues/75
"""
def __init__(self, fields, boundary=None, encoding='utf-8'):
#: Boundary value either passed in by the user or created
self.boundary_value = boundary or uuid4().hex
# Computed boundary
self.boundary = '--{}'.format(self.boundary_value)
#: Encoding of the data being passed in
self.encoding = encoding
# Pre-encoded boundary
self._encoded_boundary = b''.join([
encode_with(self.boundary, self.encoding),
encode_with('\r\n', self.encoding)
])
#: Fields provided by the user
self.fields = fields
#: Whether or not the encoder is finished
self.finished = False
#: Pre-computed parts of the upload
self.parts = []
# Pre-computed parts iterator
self._iter_parts = iter([])
# The part we're currently working with
self._current_part = None
# Cached computation of the body's length
self._len = None
# Our buffer
self._buffer = CustomBytesIO(encoding=encoding)
# Pre-compute each part's headers
self._prepare_parts()
# Load boundary into buffer
self._write_boundary()
@property
def len(self):
"""Length of the multipart/form-data body.
requests will first attempt to get the length of the body by calling
``len(body)`` and then by checking for the ``len`` attribute.
On 32-bit systems, the ``__len__`` method cannot return anything
larger than an integer (in C) can hold. If the total size of the body
is even slightly larger than 4GB users will see an OverflowError. This
manifested itself in `bug #80`_.
As such, we now calculate the length lazily as a property.
.. _bug #80:
https://github.com/requests/toolbelt/issues/80
"""
# If _len isn't already calculated, calculate, return, and set it
return self._len or self._calculate_length()
def __repr__(self):
return '<MultipartEncoder: {!r}>'.format(self.fields)
def _calculate_length(self):
"""
This uses the parts to calculate the length of the body.
This returns the calculated length so __len__ can be lazy.
"""
boundary_len = len(self.boundary) # Length of --{boundary}
# boundary length + header length + body length + len('\r\n') * 2
self._len = sum(
(boundary_len + total_len(p) + 4) for p in self.parts
) + boundary_len + 4
return self._len
def _calculate_load_amount(self, read_size):
"""This calculates how many bytes need to be added to the buffer.
When a consumer read's ``x`` from the buffer, there are two cases to
satisfy:
1. Enough data in the buffer to return the requested amount
2. Not enough data
This function uses the amount of unread bytes in the buffer and
determines how much the Encoder has to load before it can return the
requested amount of bytes.
:param int read_size: the number of bytes the consumer requests
:returns: int -- the number of bytes that must be loaded into the
buffer before the read can be satisfied. This will be strictly
non-negative
"""
amount = read_size - total_len(self._buffer)
return amount if amount > 0 else 0
def _load(self, amount):
"""Load ``amount`` number of bytes into the buffer."""
self._buffer.smart_truncate()
part = self._current_part or self._next_part()
while amount == -1 or amount > 0:
written = 0
if part and not part.bytes_left_to_write():
written += self._write(b'\r\n')
written += self._write_boundary()
part = self._next_part()
if not part:
written += self._write_closing_boundary()
self.finished = True
break
written += part.write_to(self._buffer, amount)
if amount != -1:
amount -= written
def _next_part(self):
try:
p = self._current_part = next(self._iter_parts)
except StopIteration:
p = None
return p
def _iter_fields(self):
_fields = self.fields
if hasattr(self.fields, 'items'):
_fields = list(self.fields.items())
for k, v in _fields:
file_name = None
file_type = None
file_headers = None
if isinstance(v, (list, tuple)):
if len(v) == 2:
file_name, file_pointer = v
elif len(v) == 3:
file_name, file_pointer, file_type = v
else:
file_name, file_pointer, file_type, file_headers = v
else:
file_pointer = v
field = fields.RequestField(name=k, data=file_pointer,
filename=file_name,
headers=file_headers)
field.make_multipart(content_type=file_type)
yield field
def _prepare_parts(self):
"""This uses the fields provided by the user and creates Part objects.
It populates the `parts` attribute and uses that to create a
generator for iteration.
"""
enc = self.encoding
self.parts = [Part.from_field(f, enc) for f in self._iter_fields()]
self._iter_parts = iter(self.parts)
def _write(self, bytes_to_write):
"""Write the bytes to the end of the buffer.
:param bytes bytes_to_write: byte-string (or bytearray) to append to
the buffer
:returns: int -- the number of bytes written
"""
return self._buffer.append(bytes_to_write)
def _write_boundary(self):
"""Write the boundary to the end of the buffer."""
return self._write(self._encoded_boundary)
def _write_closing_boundary(self):
"""Write the bytes necessary to finish a multipart/form-data body."""
with reset(self._buffer):
self._buffer.seek(-2, 2)
self._buffer.write(b'--\r\n')
return 2
def _write_headers(self, headers):
"""Write the current part's headers to the buffer."""
return self._write(encode_with(headers, self.encoding))
@property
def content_type(self):
return str(
'multipart/form-data; boundary={}'.format(self.boundary_value)
)
def to_string(self):
"""Return the entirety of the data in the encoder.
.. note::
This simply reads all of the data it can. If you have started
streaming or reading data from the encoder, this method will only
return whatever data is left in the encoder.
.. note::
This method affects the internal state of the encoder. Calling
this method will exhaust the encoder.
:returns: the multipart message
:rtype: bytes
"""
return self.read()
def read(self, size=-1):
"""Read data from the streaming encoder.
:param int size: (optional), If provided, ``read`` will return exactly
that many bytes. If it is not provided, it will return the
remaining bytes.
:returns: bytes
"""
if self.finished:
return self._buffer.read(size)
bytes_to_load = size
if bytes_to_load != -1 and bytes_to_load is not None:
bytes_to_load = self._calculate_load_amount(int(size))
self._load(bytes_to_load)
return self._buffer.read(size)
| (fields, boundary=None, encoding='utf-8') |
3,700 | requests_toolbelt.multipart.encoder | __init__ | null | def __init__(self, fields, boundary=None, encoding='utf-8'):
#: Boundary value either passed in by the user or created
self.boundary_value = boundary or uuid4().hex
# Computed boundary
self.boundary = '--{}'.format(self.boundary_value)
#: Encoding of the data being passed in
self.encoding = encoding
# Pre-encoded boundary
self._encoded_boundary = b''.join([
encode_with(self.boundary, self.encoding),
encode_with('\r\n', self.encoding)
])
#: Fields provided by the user
self.fields = fields
#: Whether or not the encoder is finished
self.finished = False
#: Pre-computed parts of the upload
self.parts = []
# Pre-computed parts iterator
self._iter_parts = iter([])
# The part we're currently working with
self._current_part = None
# Cached computation of the body's length
self._len = None
# Our buffer
self._buffer = CustomBytesIO(encoding=encoding)
# Pre-compute each part's headers
self._prepare_parts()
# Load boundary into buffer
self._write_boundary()
| (self, fields, boundary=None, encoding='utf-8') |
3,701 | requests_toolbelt.multipart.encoder | __repr__ | null | def __repr__(self):
return '<MultipartEncoder: {!r}>'.format(self.fields)
| (self) |
3,702 | requests_toolbelt.multipart.encoder | _calculate_length |
This uses the parts to calculate the length of the body.
This returns the calculated length so __len__ can be lazy.
| def _calculate_length(self):
"""
This uses the parts to calculate the length of the body.
This returns the calculated length so __len__ can be lazy.
"""
boundary_len = len(self.boundary) # Length of --{boundary}
# boundary length + header length + body length + len('\r\n') * 2
self._len = sum(
(boundary_len + total_len(p) + 4) for p in self.parts
) + boundary_len + 4
return self._len
| (self) |
3,703 | requests_toolbelt.multipart.encoder | _calculate_load_amount | This calculates how many bytes need to be added to the buffer.
When a consumer read's ``x`` from the buffer, there are two cases to
satisfy:
1. Enough data in the buffer to return the requested amount
2. Not enough data
This function uses the amount of unread bytes in the buffer and
determines how much the Encoder has to load before it can return the
requested amount of bytes.
:param int read_size: the number of bytes the consumer requests
:returns: int -- the number of bytes that must be loaded into the
buffer before the read can be satisfied. This will be strictly
non-negative
| def _calculate_load_amount(self, read_size):
"""This calculates how many bytes need to be added to the buffer.
When a consumer read's ``x`` from the buffer, there are two cases to
satisfy:
1. Enough data in the buffer to return the requested amount
2. Not enough data
This function uses the amount of unread bytes in the buffer and
determines how much the Encoder has to load before it can return the
requested amount of bytes.
:param int read_size: the number of bytes the consumer requests
:returns: int -- the number of bytes that must be loaded into the
buffer before the read can be satisfied. This will be strictly
non-negative
"""
amount = read_size - total_len(self._buffer)
return amount if amount > 0 else 0
| (self, read_size) |
3,704 | requests_toolbelt.multipart.encoder | _iter_fields | null | def _iter_fields(self):
_fields = self.fields
if hasattr(self.fields, 'items'):
_fields = list(self.fields.items())
for k, v in _fields:
file_name = None
file_type = None
file_headers = None
if isinstance(v, (list, tuple)):
if len(v) == 2:
file_name, file_pointer = v
elif len(v) == 3:
file_name, file_pointer, file_type = v
else:
file_name, file_pointer, file_type, file_headers = v
else:
file_pointer = v
field = fields.RequestField(name=k, data=file_pointer,
filename=file_name,
headers=file_headers)
field.make_multipart(content_type=file_type)
yield field
| (self) |
3,705 | requests_toolbelt.multipart.encoder | _load | Load ``amount`` number of bytes into the buffer. | def _load(self, amount):
"""Load ``amount`` number of bytes into the buffer."""
self._buffer.smart_truncate()
part = self._current_part or self._next_part()
while amount == -1 or amount > 0:
written = 0
if part and not part.bytes_left_to_write():
written += self._write(b'\r\n')
written += self._write_boundary()
part = self._next_part()
if not part:
written += self._write_closing_boundary()
self.finished = True
break
written += part.write_to(self._buffer, amount)
if amount != -1:
amount -= written
| (self, amount) |
3,706 | requests_toolbelt.multipart.encoder | _next_part | null | def _next_part(self):
try:
p = self._current_part = next(self._iter_parts)
except StopIteration:
p = None
return p
| (self) |
3,707 | requests_toolbelt.multipart.encoder | _prepare_parts | This uses the fields provided by the user and creates Part objects.
It populates the `parts` attribute and uses that to create a
generator for iteration.
| def _prepare_parts(self):
"""This uses the fields provided by the user and creates Part objects.
It populates the `parts` attribute and uses that to create a
generator for iteration.
"""
enc = self.encoding
self.parts = [Part.from_field(f, enc) for f in self._iter_fields()]
self._iter_parts = iter(self.parts)
| (self) |
3,708 | requests_toolbelt.multipart.encoder | _write | Write the bytes to the end of the buffer.
:param bytes bytes_to_write: byte-string (or bytearray) to append to
the buffer
:returns: int -- the number of bytes written
| def _write(self, bytes_to_write):
"""Write the bytes to the end of the buffer.
:param bytes bytes_to_write: byte-string (or bytearray) to append to
the buffer
:returns: int -- the number of bytes written
"""
return self._buffer.append(bytes_to_write)
| (self, bytes_to_write) |
3,709 | requests_toolbelt.multipart.encoder | _write_boundary | Write the boundary to the end of the buffer. | def _write_boundary(self):
"""Write the boundary to the end of the buffer."""
return self._write(self._encoded_boundary)
| (self) |
3,710 | requests_toolbelt.multipart.encoder | _write_closing_boundary | Write the bytes necessary to finish a multipart/form-data body. | def _write_closing_boundary(self):
"""Write the bytes necessary to finish a multipart/form-data body."""
with reset(self._buffer):
self._buffer.seek(-2, 2)
self._buffer.write(b'--\r\n')
return 2
| (self) |
3,711 | requests_toolbelt.multipart.encoder | _write_headers | Write the current part's headers to the buffer. | def _write_headers(self, headers):
"""Write the current part's headers to the buffer."""
return self._write(encode_with(headers, self.encoding))
| (self, headers) |
3,712 | requests_toolbelt.multipart.encoder | read | Read data from the streaming encoder.
:param int size: (optional), If provided, ``read`` will return exactly
that many bytes. If it is not provided, it will return the
remaining bytes.
:returns: bytes
| def read(self, size=-1):
"""Read data from the streaming encoder.
:param int size: (optional), If provided, ``read`` will return exactly
that many bytes. If it is not provided, it will return the
remaining bytes.
:returns: bytes
"""
if self.finished:
return self._buffer.read(size)
bytes_to_load = size
if bytes_to_load != -1 and bytes_to_load is not None:
bytes_to_load = self._calculate_load_amount(int(size))
self._load(bytes_to_load)
return self._buffer.read(size)
| (self, size=-1) |
3,713 | requests_toolbelt.multipart.encoder | to_string | Return the entirety of the data in the encoder.
.. note::
This simply reads all of the data it can. If you have started
streaming or reading data from the encoder, this method will only
return whatever data is left in the encoder.
.. note::
This method affects the internal state of the encoder. Calling
this method will exhaust the encoder.
:returns: the multipart message
:rtype: bytes
| def to_string(self):
"""Return the entirety of the data in the encoder.
.. note::
This simply reads all of the data it can. If you have started
streaming or reading data from the encoder, this method will only
return whatever data is left in the encoder.
.. note::
This method affects the internal state of the encoder. Calling
this method will exhaust the encoder.
:returns: the multipart message
:rtype: bytes
"""
return self.read()
| (self) |
3,714 | link.wrappers.springservewrappers | SpringAuth |
Does the authentication for Spring requests.
| class SpringAuth(AuthBase):
"""
Does the authentication for Spring requests.
"""
def __init__(self, token):
# setup any auth-related data here
self.token = token
def __call__(self, r):
# modify and return the request
r.headers['Authorization'] = self.token
return r
| (token) |
3,715 | link.wrappers.springservewrappers | __call__ | null | def __call__(self, r):
# modify and return the request
r.headers['Authorization'] = self.token
return r
| (self, r) |
3,716 | link.wrappers.springservewrappers | __init__ | null | def __init__(self, token):
# setup any auth-related data here
self.token = token
| (self, token) |
3,717 | link.wrappers.springservewrappers | SpringServeAPI |
Wrap the Spring API
| class SpringServeAPI(APIRequestWrapper):
"""
Wrap the Spring API
"""
headers = { "Content-Type": "application/json" }
def __init__(self, wrap_name=None, base_url=None, user=None, password=None):
self._token = None
super(SpringServeAPI, self).__init__(wrap_name = wrap_name,
base_url=base_url,
user=user,
password=password,
response_wrapper =
SpringServeAPIResponseWrapper)
def authenticate(self):
"""
Write a custom auth property where we grab the auth token and put it in
the headers
"""
#it's weird i have to do this here, but the code makes this not simple
auth_json={'email':self.user, 'password':self.password}
#send a post with no auth. prevents an infinite loop
auth_response = self.post('/auth', data = json.dumps(auth_json), auth =
None)
_token = auth_response.json['token']
self._token = _token
self._wrapped.auth = SpringAuth(_token)
@property
def token(self):
"""
Returns the token from the api to tell us that we have been logged in
"""
if not self._token:
self._token = self.authenicate().token
return self._token
| (wrap_name=None, base_url=None, user=None, password=None) |
3,718 | link.link | __call__ |
When you call this Callable it will run the command. The command can
either be a string to run on the shell or a function to run in python
Right now it only supports string commands for the shell
| def __call__(self, command=None, wait=True):
"""
When you call this Callable it will run the command. The command can
either be a string to run on the shell or a function to run in python
Right now it only supports string commands for the shell
"""
cmd = command or self.command
if cmd:
p = Popen(cmd, shell=True)
if wait:
p.wait()
return p
| (self, command=None, wait=True) |
3,719 | link.link | __getattr__ |
wrap a special object if it exists
| def __getattr__(self, name):
"""
wrap a special object if it exists
"""
# first look if the Wrapper object itself has it
try:
return self.__getattribute__(name)
except AttributeError as e:
pass
if self._wrapped is not None:
# if it has a getattr then try that out otherwise go to getattribute
# TODO: Deeply understand __getattr__ vs __getattribute__.
# this might not be correct
try:
return self._wrapped.__getattr__(name)
except AttributeError as e:
try:
return self._wrapped.__getattribute__(name)
except AttributeError as e:
raise AttributeError("No Such Attribute in wrapper %s" % name)
# then it is trying to unpickle itself and there is no setstate
# TODO: Clean this up, it's crazy and any changes cause bugs
if name == '__setstate__':
raise AttributeError("No such attribute found %s" % name)
# call the wrapper to create a new one
wrapper = '%s.%s' % (self.wrap_name, name)
if self.wrap_name:
return lnk(wrapper)
raise AttributeError("No such attribute found %s" % name)
| (self, name) |
3,720 | link.link | __getitem__ | null | def __getitem__(self, name):
return self.__getattr__(name)
| (self, name) |
3,721 | link.wrappers.springservewrappers | __init__ | null | def __init__(self, wrap_name=None, base_url=None, user=None, password=None):
self._token = None
super(SpringServeAPI, self).__init__(wrap_name = wrap_name,
base_url=base_url,
user=user,
password=password,
response_wrapper =
SpringServeAPIResponseWrapper)
| (self, wrap_name=None, base_url=None, user=None, password=None) |
3,722 | link.wrappers.springservewrappers | authenticate |
Write a custom auth property where we grab the auth token and put it in
the headers
| def authenticate(self):
"""
Write a custom auth property where we grab the auth token and put it in
the headers
"""
#it's weird i have to do this here, but the code makes this not simple
auth_json={'email':self.user, 'password':self.password}
#send a post with no auth. prevents an infinite loop
auth_response = self.post('/auth', data = json.dumps(auth_json), auth =
None)
_token = auth_response.json['token']
self._token = _token
self._wrapped.auth = SpringAuth(_token)
| (self) |
3,723 | link.wrappers.apiwrappers | clear_session |
clears the session and reauths
| def clear_session(self):
"""
clears the session and reauths
"""
sess = requests.session()
sess.headers = self.headers
self._wrapped = sess
self._wrapped = self.authenticate()
| (self) |
3,724 | link.link | config | null | def config(self):
return self.__link_config__
| (self) |
3,725 | link.wrappers.apiwrappers | delete |
Make a delete call
| def delete(self, url_params='', data='', **kwargs):
"""
Make a delete call
"""
return self.request('delete', url_params = url_params, data = data,
**kwargs)
| (self, url_params='', data='', **kwargs) |
3,726 | link.wrappers.apiwrappers | get |
Make a get call
| def get(self, url_params = '', **kwargs):
"""
Make a get call
"""
return self.request('get', url_params = url_params, **kwargs)
| (self, url_params='', **kwargs) |
3,727 | link.wrappers.apiwrappers | patch |
Make a patch call
| def patch(self, url_params='', data='', **kwargs):
"""
Make a patch call
"""
return self.request('patch', url_params = url_params, data = data,
**kwargs)
| (self, url_params='', data='', **kwargs) |
3,728 | link.wrappers.apiwrappers | post |
Make a post call
| def post(self, url_params='', data='', **kwargs):
"""
Make a post call
"""
return self.request('post', url_params = url_params, data = data,
**kwargs)
| (self, url_params='', data='', **kwargs) |
3,729 | link.wrappers.apiwrappers | put |
Make a put call
| def put(self, url_params='', data='', **kwargs):
"""
Make a put call
"""
return self.request('put', url_params = url_params, data = data,
**kwargs)
| (self, url_params='', data='', **kwargs) |
3,730 | link.wrappers.apiwrappers | request |
Make a request. This is taken care af by the request decorator
| def request(self, method='get', url_params = '' , data = '', allow_reauth =
True, **kwargs):
"""
Make a request. This is taken care af by the request decorator
"""
if isinstance(url_params, dict):
#tricky, if its a dictonary turn it into a & delimited key=value
url_params = '&'.join([ '%s=%s' % (key, value) for key,value
in url_params.items()])
full_url = self.base_url + url_params
#turn the string method into a function name
_method = self._wrapped.__getattribute__(method)
resp = self.response_wrapper(response = _method(full_url, data = data,
**kwargs))
#if you get a no auth then retry the auth
if allow_reauth and resp.noauth():
self.authenticate()
return self.request(method, url_params, data, allow_reauth=False, **kwargs)
return resp
| (self, method='get', url_params='', data='', allow_reauth=True, **kwargs) |
3,731 | link.wrappers.apiwrappers | set_session_headers | null | def set_session_headers(self, name, value):
self._wrapped.headers[name]=value
| (self, name, value) |
3,732 | springserve | SpringServeAPITokenOverride |
Used to inject a token instead of having the SDK do auth
| class SpringServeAPITokenOverride(SpringServeAPI):
"""
Used to inject a token instead of having the SDK do auth
"""
def __init__(self, base_url=None, user=None, password=None, token=None):
self._token = token
super(SpringServeAPI, self).__init__(base_url=base_url,
user=user,
password=password)
def authenticate(self):
self._wrapped.auth = SpringAuth(self._token)
| (base_url=None, user=None, password=None, token=None) |
3,736 | springserve | __init__ | null | def __init__(self, base_url=None, user=None, password=None, token=None):
self._token = token
super(SpringServeAPI, self).__init__(base_url=base_url,
user=user,
password=password)
| (self, base_url=None, user=None, password=None, token=None) |
3,737 | springserve | authenticate | null | def authenticate(self):
self._wrapped.auth = SpringAuth(self._token)
| (self) |
3,747 | springserve | VDAuthError | null | class VDAuthError(Exception):
pass
| null |
3,748 | springserve._account | _AccountAPI | null | class _AccountAPI(_VDAPIService):
__API__ = "accounts"
| () |
3,749 | springserve | __init__ | null | def __init__(self):
self.account_id = None
| (self) |
3,750 | springserve._decorators | wrapped | null | def raw_response_retry(api_call, limit=4, sleep_duration=5, backoff_factor=2):
"""
Decorator for SpringServe API to handle retries (with exponential backoff) in the case
of a rate-limit or 5XX error.
Sleep duration and backoff factor control wait time between successive failures, e.g.
sleep_duration 3 and backoff_factor 2 means sleep 3s, 6s, 12s, 24s
:param int limit: Max number of retry attempts
:param int sleep_duration: Initial sleep time
:param float/int backoff_factor: Factor to increase sleep between successive retries.
"""
def wrapped(*args, **kwargs):
sleeps = sleep_duration
num_attempts = 0
while num_attempts < limit:
# make the API call
resp = api_call(*args, **kwargs)
aws_check = (
# make sure it's the link response object
isinstance(resp, SpringServeAPIResponseWrapper) and
# HTTP status codes that are valid for retries
resp.status_code >= 500 and resp.status_code < 600 and
# content matches one of our error messages - note that ELB error
# messages will not be JSON (they are HTML strings) so cannot check
# resp.json attribute, as this will not always be valid
is_resp_in_elb_error_messages(resp)
)
rack_attack_check = (
isinstance(resp, SpringServeAPIResponseWrapper) and
resp.status_code == RACK_ATTACK_STATUS_CODE and
resp.content == RACK_ATTACK_MESSAGE
)
if aws_check or rack_attack_check:
_msg.warn("Encountered rate-limit (attempt {}), sleeping".format(num_attempts))
num_attempts += 1
time.sleep(sleeps)
sleeps *= backoff_factor
# call was either successful, or an error outside of the purview of this
# handler
else:
return resp
# We've hit max retry attempts, return anyways
return resp
return wrapped
| (*args, **kwargs) |
3,752 | springserve | _raw_bulk_delete | null | def _raw_bulk_delete(self, data, path_param="", reauth=False, files=None, **query_params):
params = _format_params(query_params)
if not files:
return API(reauth=reauth).delete(
_format_url(self.endpoint, path_param),
params=params,
data=_json.dumps(data)
)
m = MultipartEncoder(
fields=files
)
return API(reauth=reauth).delete(
_format_url(self.endpoint, path_param),
params=params,
headers={'Content-Type': m.content_type},
data=m
)
| (self, data, path_param='', reauth=False, files=None, **query_params) |
3,753 | springserve | build_response | null | def build_response(self, api_response, path_params, query_params, payload=''):
is_ok = api_response.ok
if not is_ok and api_response.status_code == 401:
raise VDAuthError("Need to Re-Auth")
if api_response.status_code == 204: # this means empty
resp_json = {}
else:
try:
resp_json = api_response.json
except:
resp_json = {"error": "error parsing json response"}
if isinstance(resp_json, list):
# wrap it in a multi container
return self.__RESPONSES_OBJECT__(self, resp_json, path_params,
query_params, self.__RESPONSE_OBJECT__,
is_ok, payload, self.account_id)
return self.__RESPONSE_OBJECT__(self, resp_json, path_params,
query_params, is_ok, payload,
self.account_id)
| (self, api_response, path_params, query_params, payload='') |
3,754 | springserve | bulk_delete |
Delete an object.
| def bulk_delete(self, data, path_param="", reauth=False, files=None, **query_params):
"""
Delete an object.
"""
global API
try:
return self.build_response(
self._raw_bulk_delete(data, path_param=path_param,
reauth=reauth, files=files,
**query_params),
path_param,
query_params
)
except VDAuthError as e:
# we only retry if we are redo'n on an auto reauth
if not reauth:
_msg.info("Reauthing and then retry")
return self.buck_delete(data, path_param, reauth=True,
files=files, **query_params)
# means that we had already tried a reauth and it failed
raise e
| (self, data, path_param='', reauth=False, files=None, **query_params) |
3,755 | springserve | delete | null | def delete(self, path_param="", reauth=False, **query_params):
global API
try:
params = _format_params(query_params)
return self.build_response(
API(reauth=reauth).delete(
_format_url(self.endpoint, path_param),
params=params,
),
path_param,
query_params
)
except VDAuthError as e:
# we only retry if we are redo'n on an auto reauth
if not reauth:
_msg.info("Reauthing and then retry")
return self.delete(path_param, reauth=True, **query_params)
# means that we had already tried a reauth and it failed
raise e
| (self, path_param='', reauth=False, **query_params) |
3,756 | springserve | get |
Make a get request to this api service. Allows you to pass in arbitrary
query paramaters.
Examples::
# get all supply_tags
tags = springserve.supply_tags.get()
for tag in tags:
print tag.id, tag.name
# get one supply tag
tag = springserve.supply_tag.get(1)
print tag.id, tag.name
# get by many ids
tags = springserve.supply_tags.get(ids=[1,2,3])
# get users that are account_contacts (ie, using query string # params)
users = springserve.users.get(account_contact=True)
| def get(self, path_param=None, reauth=False, **query_params):
"""
Make a get request to this api service. Allows you to pass in arbitrary
query paramaters.
Examples::
# get all supply_tags
tags = springserve.supply_tags.get()
for tag in tags:
print tag.id, tag.name
# get one supply tag
tag = springserve.supply_tag.get(1)
print tag.id, tag.name
# get by many ids
tags = springserve.supply_tags.get(ids=[1,2,3])
# get users that are account_contacts (ie, using query string # params)
users = springserve.users.get(account_contact=True)
"""
global API
try:
return self.build_response(
self.get_raw(path_param, reauth=reauth, **query_params),
path_param,
query_params
)
except VDAuthError as e:
# we only retry if we are redo'n on an auto reauth
if not reauth:
_msg.info("Reauthing and then retry")
return self.get(path_param, reauth=True, **query_params)
raise e
| (self, path_param=None, reauth=False, **query_params) |
3,758 | springserve | new |
Create a new object. You need to pass in the required fields as a
dictionary. For instance::
resp = springserve.domain_lists.new({'name':'My Domain List'})
print resp.ok
| def new(self, data, path_param="", reauth=False, **query_params):
"""
Create a new object. You need to pass in the required fields as a
dictionary. For instance::
resp = springserve.domain_lists.new({'name':'My Domain List'})
print resp.ok
"""
return self.post(data, path_param, reauth, **query_params)
| (self, data, path_param='', reauth=False, **query_params) |
3,759 | springserve | post | null | def post(self, data, path_param="", files=None, reauth=False, **query_params):
global API
try:
return self.build_response(
self._post_raw(data, path_param, reauth=reauth, files=files, **query_params),
path_param,
query_params,
payload=data
)
except VDAuthError as e:
# we only retry if we are redo'n on an auto reauth
if not reauth:
_msg.info("Reauthing and then retry")
return self.post(data, path_param, reauth=True, files=files, **query_params)
# means that we had already tried a reauth and it failed
raise e
| (self, data, path_param='', files=None, reauth=False, **query_params) |
3,760 | springserve | put | null | def put(self, path_param, data, reauth=False, **query_params):
global API
try:
return self.build_response(
self._put_raw(path_param, data, reauth=reauth, **query_params),
path_param,
query_params,
payload=data
)
except VDAuthError as e:
# we only retry if we are redo'n on an auto reauth
if not reauth:
_msg.info("Reauthing and then retry")
return self.put(path_param, data, reauth=True, **query_params)
raise e
| (self, path_param, data, reauth=False, **query_params) |
3,761 | springserve._common | _AdvertiserDomainListAPI | null | class _AdvertiserDomainListAPI(_VDAPIService):
__API__ = "advertiser_domain_lists"
__RESPONSE_OBJECT__ = _AdvertiserDomainListResponse
| () |
3,774 | springserve._common | _AppBundleListAPI | null | class _AppBundleListAPI(_VDAPIService):
__API__ = "app_bundle_lists"
__RESPONSE_OBJECT__ = _AppBundleListResponse
| () |
3,787 | springserve._common | _AppNameListAPI | null | class _AppNameListAPI(_VDAPIService):
__API__ = "app_name_lists"
__RESPONSE_OBJECT__ = _AppNameListResponse
| () |
3,800 | springserve._demand | _AudioCreativeAPI | null | class _AudioCreativeAPI(_VDAPIService):
__API__ = "audio_creatives"
| () |
3,813 | springserve._common | _BillAPI | null | class _BillAPI(_VDAPIService):
__API__ = "bills"
__RESPONSE_OBJECT__ = _BillResponse
def bulk_sync(self, ids, reauth=False, **query_params):
query_params['ids'] = ','.join(str(x) for x in ids)
return self.get('bulk_sync', reauth, **query_params)
| () |
3,820 | springserve._common | bulk_sync | null | def bulk_sync(self, ids, reauth=False, **query_params):
query_params['ids'] = ','.join(str(x) for x in ids)
return self.get('bulk_sync', reauth, **query_params)
| (self, ids, reauth=False, **query_params) |
3,827 | springserve._demand | _CampaignAPI | null | class _CampaignAPI(_VDAPIService):
__API__ = "campaigns"
| () |
3,840 | springserve._common | _ChannelIdListAPI | null | class _ChannelIdListAPI(_VDAPIService):
__API__ = "channel_id_lists"
__RESPONSE_OBJECT__ = _ChannelIdListResponse
| () |
3,853 | springserve._demand | _ConnectedDemandAPI | null | class _ConnectedDemandAPI(_VDAPIService):
__RESPONSE_OBJECT__ = _DemandTagResponse
__API__ = "connected_demand"
| () |
3,866 | springserve._supply | _ConnectedSupplyAPI | null | class _ConnectedSupplyAPI(_VDAPIService):
__API__ = "connected_supply"
| () |
3,879 | springserve._demand | _CreativeAPI | null | class _CreativeAPI(_VDAPIService):
__API__ = "creatives"
| () |
3,892 | springserve._common | _DealIdListAPI | null | class _DealIdListAPI(_VDAPIService):
__API__ = "deal_id_lists"
__RESPONSE_OBJECT__ = _DealIdListResponse
| () |
3,905 | springserve._demand | _DemandLabelAPI | null | class _DemandLabelAPI(_VDAPIService):
__API__ = "demand_labels"
| () |
3,918 | springserve._demand | _DemandPartnerAPI | null | class _DemandPartnerAPI(_VDAPIService):
__API__ = "demand_partners"
| () |
3,931 | springserve._demand | _DemandTagAPI | null | class _DemandTagAPI(_VDAPIService):
__RESPONSE_OBJECT__ = _DemandTagResponse
__API__ = "demand_tags"
| () |
3,944 | springserve._direct_connect | _DirectConnectionAPI | null | class _DirectConnectionAPI(_VDAPIService):
__API__ = "direct_connections"
| () |
3,957 | springserve._common | _DomainListAPI | null | class _DomainListAPI(_VDAPIService):
__API__ = "domain_lists"
__RESPONSE_OBJECT__ = _DomainListResponse
| () |
3,970 | springserve._common | _IpListAPI | null | class _IpListAPI(_VDAPIService):
__API__ = "ip_lists"
__RESPONSE_OBJECT__ = _IpListResponse
| () |
3,983 | springserve._common | _KeyAPI | null | class _KeyAPI(_VDAPIService):
__API__ = "keys"
__RESPONSE_OBJECT__ = _KeyResponse
| () |
3,996 | springserve._object_change_messages | _ObjectChangeMessagesAPI | null | class _ObjectChangeMessagesAPI(_VDAPIService):
__API__ = "object_change_messages"
| () |
4,009 | springserve._common | _ParameterListAPI | null | class _ParameterListAPI(_VDAPIService):
__API__ = "parameter_lists"
__RESPONSE_OBJECT__ = _ParameterListResponse
| () |
4,022 | springserve._common | _PlacementIdListAPI | null | class _PlacementIdListAPI(_VDAPIService):
__API__ = "placement_id_lists"
__RESPONSE_OBJECT__ = _PlacementIdListResponse
| () |
Subsets and Splits