index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
20,413
cron_descriptor.ExpressionDescriptor
format_time
Given time parts, will construct a formatted time description Args: hour_expression: Hours part minute_expression: Minutes part second_expression: Seconds part Returns: Formatted time description
def format_time( self, hour_expression, minute_expression, second_expression='' ): """Given time parts, will construct a formatted time description Args: hour_expression: Hours part minute_expression: Minutes part second_expression: Seconds part Returns: Formatted time description """ hour = int(hour_expression) period = '' if self._options.use_24hour_time_format is False: period = self._("PM") if (hour >= 12) else self._("AM") if period: # add preceding space period = " " + period if hour > 12: hour -= 12 if hour == 0: hour = 12 minute = str(int(minute_expression)) # Removes leading zero if any second = '' if second_expression is not None and second_expression: second = "{}{}".format(":", str(int(second_expression)).zfill(2)) return "{0}:{1}{2}{3}".format(str(hour).zfill(2), minute.zfill(2), second, period)
(self, hour_expression, minute_expression, second_expression='')
20,414
cron_descriptor.ExpressionDescriptor
generate_between_segment_description
Generates the between segment description :param between_expression: :param get_between_description_format: :param get_single_item_description: :return: The between segment description
def generate_between_segment_description( self, between_expression, get_between_description_format, get_single_item_description ): """ Generates the between segment description :param between_expression: :param get_between_description_format: :param get_single_item_description: :return: The between segment description """ description = "" between_segments = between_expression.split('-') between_segment_1_description = get_single_item_description(between_segments[0]) between_segment_2_description = get_single_item_description(between_segments[1]) between_segment_2_description = between_segment_2_description.replace(":00", ":59") between_description_format = get_between_description_format(between_expression) description += between_description_format.format(between_segment_1_description, between_segment_2_description) return description
(self, between_expression, get_between_description_format, get_single_item_description)
20,415
cron_descriptor.ExpressionDescriptor
get_day_of_month_description
Generates a description for only the DAYOFMONTH portion of the expression Returns: The DAYOFMONTH description
def get_day_of_month_description(self): """Generates a description for only the DAYOFMONTH portion of the expression Returns: The DAYOFMONTH description """ expression = self._expression_parts[3] if expression == "L": description = self._(", on the last day of the month") elif expression == "LW" or expression == "WL": description = self._(", on the last weekday of the month") else: regex = re.compile(r"(\d{1,2}W)|(W\d{1,2})") m = regex.match(expression) if m: # if matches day_number = int(m.group().replace("W", "")) day_string = self._("first weekday") if day_number == 1 else self._("weekday nearest day {0}").format(day_number) description = self._(", on the {0} of the month").format(day_string) else: # Handle "last day offset"(i.e.L - 5: "5 days before the last day of the month") regex = re.compile(r"L-(\d{1,2})") m = regex.match(expression) if m: # if matches off_set_days = m.group(1) description = self._(", {0} days before the last day of the month").format(off_set_days) else: description = self.get_segment_description( expression, self._(", every day"), lambda s: s, lambda s: self._(", every day") if s == "1" else self._(", every {0} days"), lambda s: self._(", between day {0} and {1} of the month"), lambda s: self._(", on day {0} of the month"), lambda s: self._(", {0} through {1}") ) return description
(self)
20,416
cron_descriptor.ExpressionDescriptor
get_day_of_week_description
Generates a description for only the DAYOFWEEK portion of the expression Returns: The DAYOFWEEK description
def get_day_of_week_description(self): """Generates a description for only the DAYOFWEEK portion of the expression Returns: The DAYOFWEEK description """ if self._expression_parts[5] == "*": # DOW is specified as * so we will not generate a description and defer to DOM part. # Otherwise, we could get a contradiction like "on day 1 of the month, every day" # or a dupe description like "every day, every day". return "" def get_day_name(s): exp = s if "#" in s: exp, _ = s.split("#", 2) elif "L" in s: exp = exp.replace("L", '') return ExpressionDescriptor.number_to_day(int(exp)) def get_format(s): if "#" in s: day_of_week_of_month = s[s.find("#") + 1:] try: day_of_week_of_month_number = int(day_of_week_of_month) choices = { 1: self._("first"), 2: self._("second"), 3: self._("third"), 4: self._("forth"), 5: self._("fifth"), } day_of_week_of_month_description = choices.get(day_of_week_of_month_number, '') except ValueError: day_of_week_of_month_description = '' formatted = "{}{}{}".format(self._(", on the "), day_of_week_of_month_description, self._(" {0} of the month")) elif "L" in s: formatted = self._(", on the last {0} of the month") else: formatted = self._(", only on {0}") return formatted return self.get_segment_description( self._expression_parts[5], self._(", every day"), lambda s: get_day_name(s), lambda s: self._(", every {0} days of the week").format(s), lambda s: self._(", {0} through {1}"), lambda s: get_format(s), lambda s: self._(", {0} through {1}") )
(self)
20,417
cron_descriptor.ExpressionDescriptor
get_description
Generates a humanreadable string for the Cron Expression Args: description_type: Which part(s) of the expression to describe Returns: The cron expression description Raises: Exception:
def get_description(self, description_type=DescriptionTypeEnum.FULL): """Generates a humanreadable string for the Cron Expression Args: description_type: Which part(s) of the expression to describe Returns: The cron expression description Raises: Exception: """ choices = { DescriptionTypeEnum.FULL: self.get_full_description, DescriptionTypeEnum.TIMEOFDAY: self.get_time_of_day_description, DescriptionTypeEnum.HOURS: self.get_hours_description, DescriptionTypeEnum.MINUTES: self.get_minutes_description, DescriptionTypeEnum.SECONDS: self.get_seconds_description, DescriptionTypeEnum.DAYOFMONTH: self.get_day_of_month_description, DescriptionTypeEnum.MONTH: self.get_month_description, DescriptionTypeEnum.DAYOFWEEK: self.get_day_of_week_description, DescriptionTypeEnum.YEAR: self.get_year_description, } return choices.get(description_type, self.get_seconds_description)()
(self, description_type=<DescriptionTypeEnum.FULL: 1>)
20,418
cron_descriptor.ExpressionDescriptor
get_full_description
Generates the FULL description Returns: The FULL description Raises: FormatException: if formatting fails
def get_full_description(self): """Generates the FULL description Returns: The FULL description Raises: FormatException: if formatting fails """ try: time_segment = self.get_time_of_day_description() day_of_month_desc = self.get_day_of_month_description() month_desc = self.get_month_description() day_of_week_desc = self.get_day_of_week_description() year_desc = self.get_year_description() description = "{0}{1}{2}{3}{4}".format( time_segment, day_of_month_desc, day_of_week_desc, month_desc, year_desc) description = self.transform_verbosity(description, self._options.verbose) description = ExpressionDescriptor.transform_case(description, self._options.casing_type) except Exception: description = self._( "An error occurred when generating the expression description. Check the cron expression syntax." ) raise FormatException(description) return description
(self)
20,419
cron_descriptor.ExpressionDescriptor
get_hours_description
Generates a description for only the HOUR portion of the expression Returns: The HOUR description
def get_hours_description(self): """Generates a description for only the HOUR portion of the expression Returns: The HOUR description """ expression = self._expression_parts[2] return self.get_segment_description( expression, self._("every hour"), lambda s: self.format_time(s, "0"), lambda s: self._("every {0} hours").format(s), lambda s: self._("between {0} and {1}"), lambda s: self._("at {0}"), lambda s: self._(", hour {0} through hour {1}") or self._(", {0} through {1}") )
(self)
20,420
cron_descriptor.ExpressionDescriptor
get_minutes_description
Generates a description for only the MINUTE portion of the expression Returns: The MINUTE description
def get_minutes_description(self): """Generates a description for only the MINUTE portion of the expression Returns: The MINUTE description """ seconds_expression = self._expression_parts[0] def get_description_format(s): if s == "0" and seconds_expression == "": return "" try: if int(s) < 20: return self._("at {0} minutes past the hour") else: return self._("at {0} minutes past the hour [grThen20]") or self._("at {0} minutes past the hour") except ValueError: return self._("at {0} minutes past the hour") return self.get_segment_description( self._expression_parts[1], self._("every minute"), lambda s: s, lambda s: self._("every {0} minutes").format(s), lambda s: self._("minutes {0} through {1} past the hour"), get_description_format, lambda s: self._(", minute {0} through minute {1}") or self._(", {0} through {1}") )
(self)
20,421
cron_descriptor.ExpressionDescriptor
get_month_description
Generates a description for only the MONTH portion of the expression Returns: The MONTH description
def get_month_description(self): """Generates a description for only the MONTH portion of the expression Returns: The MONTH description """ return self.get_segment_description( self._expression_parts[4], '', lambda s: datetime.date(datetime.date.today().year, int(s), 1).strftime("%B"), lambda s: self._(", every {0} months").format(s), lambda s: self._(", month {0} through month {1}") or self._(", {0} through {1}"), lambda s: self._(", only in {0}"), lambda s: self._(", month {0} through month {1}") or self._(", {0} through {1}") )
(self)
20,422
cron_descriptor.ExpressionDescriptor
get_seconds_description
Generates a description for only the SECONDS portion of the expression Returns: The SECONDS description
def get_seconds_description(self): """Generates a description for only the SECONDS portion of the expression Returns: The SECONDS description """ def get_description_format(s): if s == "0": return "" try: if int(s) < 20: return self._("at {0} seconds past the minute") else: return self._("at {0} seconds past the minute [grThen20]") or self._("at {0} seconds past the minute") except ValueError: return self._("at {0} seconds past the minute") return self.get_segment_description( self._expression_parts[0], self._("every second"), lambda s: s, lambda s: self._("every {0} seconds").format(s), lambda s: self._("seconds {0} through {1} past the minute"), get_description_format, lambda s: self._(", second {0} through second {1}") or self._(", {0} through {1}") )
(self)
20,423
cron_descriptor.ExpressionDescriptor
get_segment_description
Returns segment description Args: expression: Segment to descript all_description: * get_single_item_description: 1 get_interval_description_format: 1/2 get_between_description_format: 1-2 get_description_format: format get_single_item_description get_range_format: function that formats range expressions depending on cron parts Returns: segment description
def get_segment_description( self, expression, all_description, get_single_item_description, get_interval_description_format, get_between_description_format, get_description_format, get_range_format ): """Returns segment description Args: expression: Segment to descript all_description: * get_single_item_description: 1 get_interval_description_format: 1/2 get_between_description_format: 1-2 get_description_format: format get_single_item_description get_range_format: function that formats range expressions depending on cron parts Returns: segment description """ description = None if expression is None or expression == '': description = '' elif expression == "*": description = all_description elif any(ext in expression for ext in ['/', '-', ',']) is False: description = get_description_format(expression).format(get_single_item_description(expression)) elif "/" in expression: segments = expression.split('/') description = get_interval_description_format(segments[1]).format(get_single_item_description(segments[1])) # interval contains 'between' piece (i.e. 2-59/3 ) if "-" in segments[0]: between_segment_description = self.generate_between_segment_description( segments[0], get_between_description_format, get_single_item_description ) if not between_segment_description.startswith(", "): description += ", " description += between_segment_description elif any(ext in segments[0] for ext in ['*', ',']) is False: range_item_description = get_description_format(segments[0]).format( get_single_item_description(segments[0]) ) range_item_description = range_item_description.replace(", ", "") description += self._(", starting {0}").format(range_item_description) elif "," in expression: segments = expression.split(',') description_content = '' for i, segment in enumerate(segments): if i > 0 and len(segments) > 2: description_content += "," if i < len(segments) - 1: description_content += " " if i > 0 and len(segments) > 1 and (i == len(segments) - 1 or len(segments) == 2): description_content += self._(" and ") if "-" in segment: between_segment_description = self.generate_between_segment_description( segment, get_range_format, get_single_item_description ) between_segment_description = between_segment_description.replace(", ", "") description_content += between_segment_description else: description_content += get_single_item_description(segment) description = get_description_format(expression).format(description_content) elif "-" in expression: description = self.generate_between_segment_description( expression, get_between_description_format, get_single_item_description ) return description
(self, expression, all_description, get_single_item_description, get_interval_description_format, get_between_description_format, get_description_format, get_range_format)
20,424
cron_descriptor.ExpressionDescriptor
get_time_of_day_description
Generates a description for only the TIMEOFDAY portion of the expression Returns: The TIMEOFDAY description
def get_time_of_day_description(self): """Generates a description for only the TIMEOFDAY portion of the expression Returns: The TIMEOFDAY description """ seconds_expression = self._expression_parts[0] minute_expression = self._expression_parts[1] hour_expression = self._expression_parts[2] description = StringBuilder() # handle special cases first if any(exp in minute_expression for exp in self._special_characters) is False and \ any(exp in hour_expression for exp in self._special_characters) is False and \ any(exp in seconds_expression for exp in self._special_characters) is False: # specific time of day (i.e. 10 14) description.append(self._("At ")) description.append( self.format_time( hour_expression, minute_expression, seconds_expression)) elif seconds_expression == "" and "-" in minute_expression and \ "," not in minute_expression and \ any(exp in hour_expression for exp in self._special_characters) is False: # minute range in single hour (i.e. 0-10 11) minute_parts = minute_expression.split('-') description.append(self._("Every minute between {0} and {1}").format( self.format_time(hour_expression, minute_parts[0]), self.format_time(hour_expression, minute_parts[1]))) elif seconds_expression == "" and "," in hour_expression and "-" not in hour_expression and \ any(exp in minute_expression for exp in self._special_characters) is False: # hours list with single minute (o.e. 30 6,14,16) hour_parts = hour_expression.split(',') description.append(self._("At")) for i, hour_part in enumerate(hour_parts): description.append(" ") description.append(self.format_time(hour_part, minute_expression)) if i < (len(hour_parts) - 2): description.append(",") if i == len(hour_parts) - 2: description.append(self._(" and")) else: # default time description seconds_description = self.get_seconds_description() minutes_description = self.get_minutes_description() hours_description = self.get_hours_description() description.append(seconds_description) if description and minutes_description: description.append(", ") description.append(minutes_description) if description and hours_description: description.append(", ") description.append(hours_description) return str(description)
(self)
20,425
cron_descriptor.ExpressionDescriptor
get_year_description
Generates a description for only the YEAR portion of the expression Returns: The YEAR description
def get_year_description(self): """Generates a description for only the YEAR portion of the expression Returns: The YEAR description """ def format_year(s): regex = re.compile(r"^\d+$") if regex.match(s): year_int = int(s) if year_int < 1900: return year_int return datetime.date(year_int, 1, 1).strftime("%Y") else: return s return self.get_segment_description( self._expression_parts[6], '', lambda s: format_year(s), lambda s: self._(", every {0} years").format(s), lambda s: self._(", year {0} through year {1}") or self._(", {0} through {1}"), lambda s: self._(", only in {0}"), lambda s: self._(", year {0} through year {1}") or self._(", {0} through {1}") )
(self)
20,426
cron_descriptor.ExpressionDescriptor
number_to_day
Returns localized day name by its CRON number Args: day_number: Number of a day Returns: Day corresponding to day_number Raises: IndexError: When day_number is not found
@staticmethod def number_to_day(day_number): """Returns localized day name by its CRON number Args: day_number: Number of a day Returns: Day corresponding to day_number Raises: IndexError: When day_number is not found """ try: return [ calendar.day_name[6], calendar.day_name[0], calendar.day_name[1], calendar.day_name[2], calendar.day_name[3], calendar.day_name[4], calendar.day_name[5] ][day_number] except IndexError: raise IndexError("Day {} is out of range!".format(day_number))
(day_number)
20,427
cron_descriptor.ExpressionDescriptor
transform_case
Transforms the case of the expression description, based on options Args: description: The description to transform case_type: The casing type that controls the output casing Returns: The transformed description with proper casing
@staticmethod def transform_case(description, case_type): """Transforms the case of the expression description, based on options Args: description: The description to transform case_type: The casing type that controls the output casing Returns: The transformed description with proper casing """ if case_type == CasingTypeEnum.Sentence: description = "{}{}".format( description[0].upper(), description[1:]) elif case_type == CasingTypeEnum.Title: description = description.title() else: description = description.lower() return description
(description, case_type)
20,428
cron_descriptor.ExpressionDescriptor
transform_verbosity
Transforms the verbosity of the expression description by stripping verbosity from original description Args: description: The description to transform use_verbose_format: If True, will leave description as it, if False, will strip verbose parts Returns: The transformed description with proper verbosity
def transform_verbosity(self, description, use_verbose_format): """Transforms the verbosity of the expression description by stripping verbosity from original description Args: description: The description to transform use_verbose_format: If True, will leave description as it, if False, will strip verbose parts Returns: The transformed description with proper verbosity """ if use_verbose_format is False: description = description.replace(self._(", every minute"), '') description = description.replace(self._(", every hour"), '') description = description.replace(self._(", every day"), '') description = re.sub(r', ?$', '', description) return description
(self, description, use_verbose_format)
20,430
cron_descriptor.Exception
FormatException
Exception for cases when something has wrong format
class FormatException(Exception): """ Exception for cases when something has wrong format """ pass
null
20,432
cron_descriptor.Exception
MissingFieldException
Exception for cases when something is missing
class MissingFieldException(Exception): """ Exception for cases when something is missing """ def __init__(self, message): """Initialize MissingFieldException Args: message: Message of exception """ super(MissingFieldException, self).__init__( "Field '{}' not found.".format(message))
(message)
20,433
cron_descriptor.Exception
__init__
Initialize MissingFieldException Args: message: Message of exception
def __init__(self, message): """Initialize MissingFieldException Args: message: Message of exception """ super(MissingFieldException, self).__init__( "Field '{}' not found.".format(message))
(self, message)
20,434
cron_descriptor.Options
Options
Options for parsing and describing a Cron Expression
class Options(object): """ Options for parsing and describing a Cron Expression """ def __init__(self): self.casing_type = CasingTypeEnum.Sentence self.verbose = False self.day_of_week_start_index_zero = True self.use_24hour_time_format = False self.locale_location = None code, encoding = locale.getlocale() self.locale_code = code self.use_24hour_time_format = code in ["ru_RU", "uk_UA", "de_DE", "it_IT", "tr_TR", "cs_CZ", "ta_IN"]
()
20,435
cron_descriptor.Options
__init__
null
def __init__(self): self.casing_type = CasingTypeEnum.Sentence self.verbose = False self.day_of_week_start_index_zero = True self.use_24hour_time_format = False self.locale_location = None code, encoding = locale.getlocale() self.locale_code = code self.use_24hour_time_format = code in ["ru_RU", "uk_UA", "de_DE", "it_IT", "tr_TR", "cs_CZ", "ta_IN"]
(self)
20,437
cron_descriptor.Exception
WrongArgumentException
Exception for cases when wrong argument is passed
class WrongArgumentException(Exception): """ Exception for cases when wrong argument is passed """ pass
null
20,438
cron_descriptor.ExpressionDescriptor
get_description
Generates a human readable string for the Cron Expression Args: expression: The cron expression string options: Options to control the output description Returns: The cron expression description
def get_description(expression, options=None): """Generates a human readable string for the Cron Expression Args: expression: The cron expression string options: Options to control the output description Returns: The cron expression description """ descriptor = ExpressionDescriptor(expression, options) return descriptor.get_description(DescriptionTypeEnum.FULL)
(expression, options=None)
20,442
resampy.core
resample
Resample a signal x from sr_orig to sr_new along a given axis. Parameters ---------- x : np.ndarray, dtype=np.float* The input signal(s) to resample. sr_orig : int > 0 The sampling rate of x sr_new : int > 0 The target sampling rate of the output signal(s) If `sr_new == sr_orig`, then a copy of `x` is returned with no interpolation performed. axis : int The target axis along which to resample `x` filter : optional, str or callable The resampling filter to use. By default, uses the `kaiser_best` (pre-computed filter). parallel : optional, bool Enable/disable parallel computation exploiting multi-threading. Default: False. **kwargs additional keyword arguments provided to the specified filter Returns ------- y : np.ndarray `x` resampled to `sr_new` Raises ------ ValueError if `sr_orig` or `sr_new` is not positive TypeError if the input signal `x` has an unsupported data type. Examples -------- >>> import resampy >>> np.set_printoptions(precision=3, suppress=True) >>> # Generate a sine wave at 440 Hz for 5 seconds >>> sr_orig = 44100.0 >>> x = np.sin(2 * np.pi * 440.0 / sr_orig * np.arange(5 * sr_orig)) >>> x array([ 0. , 0.063, ..., -0.125, -0.063]) >>> # Resample to 22050 with default parameters >>> resampy.resample(x, sr_orig, 22050) array([ 0.011, 0.122, 0.25 , ..., -0.366, -0.25 , -0.122]) >>> # Resample using the fast (low-quality) filter >>> resampy.resample(x, sr_orig, 22050, filter='kaiser_fast') array([ 0.012, 0.121, 0.251, ..., -0.365, -0.251, -0.121]) >>> # Resample using a high-quality filter >>> resampy.resample(x, sr_orig, 22050, filter='kaiser_best') array([ 0.011, 0.122, 0.25 , ..., -0.366, -0.25 , -0.122]) >>> # Resample using a Hann-windowed sinc filter >>> import scipy.signal >>> resampy.resample(x, sr_orig, 22050, filter='sinc_window', ... window=scipy.signal.hann) array([ 0.011, 0.123, 0.25 , ..., -0.366, -0.25 , -0.123]) >>> # Generate stereo data >>> x_right = np.sin(2 * np.pi * 880.0 / sr_orig * np.arange(len(x))) >>> x_stereo = np.stack([x, x_right]) >>> x_stereo.shape (2, 220500) >>> # Resample along the time axis (1) >>> y_stereo = resampy.resample(x_stereo, sr_orig, 22050, axis=1) >>> y_stereo.shape (2, 110250)
def resample( x, sr_orig, sr_new, axis=-1, filter="kaiser_best", parallel=False, **kwargs ): """Resample a signal x from sr_orig to sr_new along a given axis. Parameters ---------- x : np.ndarray, dtype=np.float* The input signal(s) to resample. sr_orig : int > 0 The sampling rate of x sr_new : int > 0 The target sampling rate of the output signal(s) If `sr_new == sr_orig`, then a copy of `x` is returned with no interpolation performed. axis : int The target axis along which to resample `x` filter : optional, str or callable The resampling filter to use. By default, uses the `kaiser_best` (pre-computed filter). parallel : optional, bool Enable/disable parallel computation exploiting multi-threading. Default: False. **kwargs additional keyword arguments provided to the specified filter Returns ------- y : np.ndarray `x` resampled to `sr_new` Raises ------ ValueError if `sr_orig` or `sr_new` is not positive TypeError if the input signal `x` has an unsupported data type. Examples -------- >>> import resampy >>> np.set_printoptions(precision=3, suppress=True) >>> # Generate a sine wave at 440 Hz for 5 seconds >>> sr_orig = 44100.0 >>> x = np.sin(2 * np.pi * 440.0 / sr_orig * np.arange(5 * sr_orig)) >>> x array([ 0. , 0.063, ..., -0.125, -0.063]) >>> # Resample to 22050 with default parameters >>> resampy.resample(x, sr_orig, 22050) array([ 0.011, 0.122, 0.25 , ..., -0.366, -0.25 , -0.122]) >>> # Resample using the fast (low-quality) filter >>> resampy.resample(x, sr_orig, 22050, filter='kaiser_fast') array([ 0.012, 0.121, 0.251, ..., -0.365, -0.251, -0.121]) >>> # Resample using a high-quality filter >>> resampy.resample(x, sr_orig, 22050, filter='kaiser_best') array([ 0.011, 0.122, 0.25 , ..., -0.366, -0.25 , -0.122]) >>> # Resample using a Hann-windowed sinc filter >>> import scipy.signal >>> resampy.resample(x, sr_orig, 22050, filter='sinc_window', ... window=scipy.signal.hann) array([ 0.011, 0.123, 0.25 , ..., -0.366, -0.25 , -0.123]) >>> # Generate stereo data >>> x_right = np.sin(2 * np.pi * 880.0 / sr_orig * np.arange(len(x))) >>> x_stereo = np.stack([x, x_right]) >>> x_stereo.shape (2, 220500) >>> # Resample along the time axis (1) >>> y_stereo = resampy.resample(x_stereo, sr_orig, 22050, axis=1) >>> y_stereo.shape (2, 110250) """ if sr_orig <= 0: raise ValueError("Invalid sample rate: sr_orig={}".format(sr_orig)) if sr_new <= 0: raise ValueError("Invalid sample rate: sr_new={}".format(sr_new)) if sr_orig == sr_new: # If the output rate matches, return a copy return x.copy() sample_ratio = float(sr_new) / sr_orig # Set up the output shape shape = list(x.shape) # Explicitly recalculate length here instead of using sample_ratio # This avoids a floating point round-off error identified as #111 shape[axis] = int(shape[axis] * float(sr_new) / float(sr_orig)) if shape[axis] < 1: raise ValueError( "Input signal length={} is too small to " "resample from {}->{}".format(x.shape[axis], sr_orig, sr_new) ) # Preserve contiguity of input (if it exists) if np.issubdtype(x.dtype, np.integer): dtype = np.float32 else: dtype = x.dtype y = np.zeros_like(x, dtype=dtype, shape=shape) interp_win, precision, _ = get_filter(filter, **kwargs) if sample_ratio < 1: # Make a copy to prevent modifying the filters in place interp_win = sample_ratio * interp_win interp_delta = np.diff(interp_win, append=interp_win[-1]) scale = min(1.0, sample_ratio) time_increment = 1.0 / sample_ratio t_out = np.arange(shape[axis]) * time_increment if parallel: try: resample_f_p( x.swapaxes(-1, axis), t_out, interp_win, interp_delta, precision, scale, y.swapaxes(-1, axis), ) except numba.TypingError as exc: warnings.warn( f"{exc}\nFallback to the sequential version.", stacklevel=2) resample_f_s( x.swapaxes(-1, axis), t_out, interp_win, interp_delta, precision, scale, y.swapaxes(-1, axis), ) else: resample_f_s( x.swapaxes(-1, axis), t_out, interp_win, interp_delta, precision, scale, y.swapaxes(-1, axis), ) return y
(x, sr_orig, sr_new, axis=-1, filter='kaiser_best', parallel=False, **kwargs)
20,443
resampy.core
resample_nu
Interpolate a signal x at specified positions (t_out) along a given axis. Parameters ---------- x : np.ndarray, dtype=np.float* The input signal(s) to resample. sr_orig : float Sampling rate of the input signal (x). t_out : np.ndarray, dtype=np.float* Position of the output samples. axis : int The target axis along which to resample `x` filter : optional, str or callable The resampling filter to use. By default, uses the `kaiser_best` (pre-computed filter). parallel : optional, bool Enable/disable parallel computation exploiting multi-threading. Default: True. **kwargs additional keyword arguments provided to the specified filter Returns ------- y : np.ndarray `x` resampled to `t_out` Raises ------ TypeError if the input signal `x` has an unsupported data type. Notes ----- Differently form the `resample` function the filter `rolloff` is not automatically adapted in case of subsampling. For this reason results obtained with the `resample_nu` could be slightly different form the ones obtained with `resample` if the filter parameters are not carefully set by the user. Examples -------- >>> import resampy >>> np.set_printoptions(precision=3, suppress=True) >>> # Generate a sine wave at 100 Hz for 5 seconds >>> sr_orig = 100.0 >>> f0 = 1 >>> t = np.arange(5 * sr_orig) / sr_orig >>> x = np.sin(2 * np.pi * f0 * t) >>> x array([ 0. , 0.063, 0.125, ..., -0.187, -0.125, -0.063]) >>> # Resample to non-uniform sampling >>> t_new = np.log2(1 + t)[::5] - t[0] >>> resampy.resample_nu(x, sr_orig, t_new) array([ 0.001, 0.427, 0.76 , ..., -0.3 , -0.372, -0.442])
def resample_nu( x, sr_orig, t_out, axis=-1, filter="kaiser_best", parallel=False, **kwargs ): """Interpolate a signal x at specified positions (t_out) along a given axis. Parameters ---------- x : np.ndarray, dtype=np.float* The input signal(s) to resample. sr_orig : float Sampling rate of the input signal (x). t_out : np.ndarray, dtype=np.float* Position of the output samples. axis : int The target axis along which to resample `x` filter : optional, str or callable The resampling filter to use. By default, uses the `kaiser_best` (pre-computed filter). parallel : optional, bool Enable/disable parallel computation exploiting multi-threading. Default: True. **kwargs additional keyword arguments provided to the specified filter Returns ------- y : np.ndarray `x` resampled to `t_out` Raises ------ TypeError if the input signal `x` has an unsupported data type. Notes ----- Differently form the `resample` function the filter `rolloff` is not automatically adapted in case of subsampling. For this reason results obtained with the `resample_nu` could be slightly different form the ones obtained with `resample` if the filter parameters are not carefully set by the user. Examples -------- >>> import resampy >>> np.set_printoptions(precision=3, suppress=True) >>> # Generate a sine wave at 100 Hz for 5 seconds >>> sr_orig = 100.0 >>> f0 = 1 >>> t = np.arange(5 * sr_orig) / sr_orig >>> x = np.sin(2 * np.pi * f0 * t) >>> x array([ 0. , 0.063, 0.125, ..., -0.187, -0.125, -0.063]) >>> # Resample to non-uniform sampling >>> t_new = np.log2(1 + t)[::5] - t[0] >>> resampy.resample_nu(x, sr_orig, t_new) array([ 0.001, 0.427, 0.76 , ..., -0.3 , -0.372, -0.442]) """ if sr_orig <= 0: raise ValueError("Invalid sample rate: sr_orig={}".format(sr_orig)) t_out = np.asarray(t_out) if t_out.ndim != 1: raise ValueError( "Invalid t_out shape ({}), 1D array expected".format(t_out.shape) ) if np.min(t_out) < 0 or np.max(t_out) > (x.shape[axis] - 1) / sr_orig: raise ValueError( "Output domain [{}, {}] exceeds the data domain [0, {}]".format( np.min(t_out), np.max(t_out), (x.shape[axis] - 1) / sr_orig ) ) # Set up the output shape shape = list(x.shape) shape[axis] = len(t_out) if np.issubdtype(x.dtype, np.integer): dtype = np.float32 else: dtype = x.dtype y = np.zeros_like(x, dtype=dtype, shape=shape) interp_win, precision, _ = get_filter(filter, **kwargs) interp_delta = np.diff(interp_win, append=interp_win[-1]) # Normalize t_out if sr_orig != 1.0: t_out = t_out * sr_orig if parallel: try: resample_f_p( x.swapaxes(-1, axis), t_out, interp_win, interp_delta, precision, 1.0, y.swapaxes(-1, axis), ) except numba.TypingError as exc: warnings.warn( f"{exc}\nFallback to the sequential version.", stacklevel=2) resample_f_s( x.swapaxes(-1, axis), t_out, interp_win, interp_delta, precision, 1.0, y.swapaxes(-1, axis), ) else: resample_f_s( x.swapaxes(-1, axis), t_out, interp_win, interp_delta, precision, 1.0, y.swapaxes(-1, axis), ) return y
(x, sr_orig, t_out, axis=-1, filter='kaiser_best', parallel=False, **kwargs)
20,445
metevolsim.metevolsim
MCMC
The MCMC class runs a Monte-Carlo Markov Chain (MCMC) evolution experiment on a SBML model, with cycles of mutations and fixations depending on a given selection threshold. Attributes ---------- > sbml_filename : str Name of the SBML model file. > total_iterations : int > 0 Total number of MCMC iterations. > sigma : float > 0.0 Standard deviation of the Log10-normal mutational distribution. > selection_scheme : str Selection scheme ('MUTATION_ACCUMULATION'/'ABSOLUTE_METABOLIC_SUM_SELECTION'/ 'ABSOLUTE_TARGET_FLUXES_SELECTION'/'RELATIVE_TARGET_FLUXES_SELECTION'). > selection_threshold : str Selection threshold applied on the MOMA distance. > copasi_path : str Location of Copasi executable. > model : Model SBML Model (automatically loaded from the SBML file). > nb_iterations : int Current number of iterations. > nb_accepted : int Current number of accepted mutations. > nb_rejected : int Current number of rejected mutations. > param_metaid : str Last mutated parameter meta identifier. > param_id : str Last mutated parameter identifier. > param_value : float Last mutated parameter value. > param_previous : float Parameter value before mutation. > N_abund : float Number of variable species. > wild_type_abund : numpy array Wild-type abundances tracker. > wild_type_flux : numpy array Wild-type fluxes tracker. > mutant_abund : numpy array Mutant abundances tracker. > mutant_flux : numpy array Mutant fluxes tracker. > sum_abund : numpy array Sum of abundances tracker. > sqsum_abund : numpy array Square sum of abundances tracker. > sum_flux : numpy array Sum of fluxes tracker. > relsum_flux : numpy array Sum of fluxes relatively to the wild-type tracker. > sqsum_flux : numpy array Square sum of fluxes tracker. > relsqsum_flux : numpy array Square sum of fluxes relatively to the wild-type tracker. > mean_abund : numpy array Mean abundances tracker. > var_abund : numpy array Variance of abundances tracker. > CV_abund : numpy array Coefficient of variation of abundances tracker. > ER_abund : numpy array Evolution rate of abundances tracker. > mean_flux : numpy array Mean fluxes tracker. > var_flux : numpy array Variance of fluxes tracker. > CV_flux : numpy array Coefficient of variation of fluxes tracker. > ER_flux : numpy array Evolution rate of fluxes tracker. > previous_abund : numpy array Previous abundances tracker. > previous_flux : numpy array Previous fluxes tracker. > output_file : file Output file tracking each MCMC algorithm iteration. Methods ------- > __init__(sbml_filename, target_fluxes, total_iterations, sigma, selection_scheme, selection_threshold, copasi_path) MCMC class constructor. > initialize_output_file() Initialize the output file (write the header). > write_output_file() Write the current MCMC state in the output file. > update_statistics() Update statistics trackers for the current state. > compute_statistics() Compute final statistics. > write_statistics() Write final statistics in an output file (output/statistics.txt). > initialize() Initialize the MCMC algorithm. > reload_previous_state() Reload the previous MCMC state. > iterate() Iterate the MCMC algorithm.
class MCMC: """ The MCMC class runs a Monte-Carlo Markov Chain (MCMC) evolution experiment on a SBML model, with cycles of mutations and fixations depending on a given selection threshold. Attributes ---------- > sbml_filename : str Name of the SBML model file. > total_iterations : int > 0 Total number of MCMC iterations. > sigma : float > 0.0 Standard deviation of the Log10-normal mutational distribution. > selection_scheme : str Selection scheme ('MUTATION_ACCUMULATION'/'ABSOLUTE_METABOLIC_SUM_SELECTION'/ 'ABSOLUTE_TARGET_FLUXES_SELECTION'/'RELATIVE_TARGET_FLUXES_SELECTION'). > selection_threshold : str Selection threshold applied on the MOMA distance. > copasi_path : str Location of Copasi executable. > model : Model SBML Model (automatically loaded from the SBML file). > nb_iterations : int Current number of iterations. > nb_accepted : int Current number of accepted mutations. > nb_rejected : int Current number of rejected mutations. > param_metaid : str Last mutated parameter meta identifier. > param_id : str Last mutated parameter identifier. > param_value : float Last mutated parameter value. > param_previous : float Parameter value before mutation. > N_abund : float Number of variable species. > wild_type_abund : numpy array Wild-type abundances tracker. > wild_type_flux : numpy array Wild-type fluxes tracker. > mutant_abund : numpy array Mutant abundances tracker. > mutant_flux : numpy array Mutant fluxes tracker. > sum_abund : numpy array Sum of abundances tracker. > sqsum_abund : numpy array Square sum of abundances tracker. > sum_flux : numpy array Sum of fluxes tracker. > relsum_flux : numpy array Sum of fluxes relatively to the wild-type tracker. > sqsum_flux : numpy array Square sum of fluxes tracker. > relsqsum_flux : numpy array Square sum of fluxes relatively to the wild-type tracker. > mean_abund : numpy array Mean abundances tracker. > var_abund : numpy array Variance of abundances tracker. > CV_abund : numpy array Coefficient of variation of abundances tracker. > ER_abund : numpy array Evolution rate of abundances tracker. > mean_flux : numpy array Mean fluxes tracker. > var_flux : numpy array Variance of fluxes tracker. > CV_flux : numpy array Coefficient of variation of fluxes tracker. > ER_flux : numpy array Evolution rate of fluxes tracker. > previous_abund : numpy array Previous abundances tracker. > previous_flux : numpy array Previous fluxes tracker. > output_file : file Output file tracking each MCMC algorithm iteration. Methods ------- > __init__(sbml_filename, target_fluxes, total_iterations, sigma, selection_scheme, selection_threshold, copasi_path) MCMC class constructor. > initialize_output_file() Initialize the output file (write the header). > write_output_file() Write the current MCMC state in the output file. > update_statistics() Update statistics trackers for the current state. > compute_statistics() Compute final statistics. > write_statistics() Write final statistics in an output file (output/statistics.txt). > initialize() Initialize the MCMC algorithm. > reload_previous_state() Reload the previous MCMC state. > iterate() Iterate the MCMC algorithm. """ ### Constructor ### def __init__( self, sbml_filename, objective_function, total_iterations, sigma, selection_scheme, selection_threshold, copasi_path ): """ MCMC class constructor. Parameters ---------- sbml_filename : str Path of the SBML model file. The SBML model is automatically loaded. objective_function : list of [str, float] Objective function (list of reaction identifiers and coefficients). total_iterations : int > 0 Total number of MCMC iterations. sigma : float > 0.0 Standard deviation of the Log10-normal mutational distribution. selection_scheme : str Selection scheme ('MUTATION_ACCUMULATION'/'ABSOLUTE_METABOLIC_SUM_SELECTION'/ 'ABSOLUTE_TARGET_FLUXES_SELECTION'/'RELATIVE_TARGET_FLUXES_SELECTION'). selection_threshold : float > 0.0 Selection threshold applied on the MOMA distance. copasi_path : str Location of Copasi executable. Returns ------- None """ assert os.path.isfile(sbml_filename), "The SBML file \""+sbml_filename+"\" does not exist. Exit." assert len(objective_function) > 0, "You must provide at least one reaction in the objective function. Exit." assert total_iterations > 0, "The total number of iterations must be a positive nonzero value. Exit." assert sigma > 0.0, "The mutation size 'sigma' must be a positive nonzero value. Exit." assert selection_scheme in ["MUTATION_ACCUMULATION", "ABSOLUTE_METABOLIC_SUM_SELECTION", "ABSOLUTE_TARGET_FLUXES_SELECTION", "RELATIVE_TARGET_FLUXES_SELECTION", "ABSOLUTE_ALL_FLUXES_SELECTION", "RELATIVE_ALL_FLUXES_SELECTION"], "The selection scheme takes two values only (MUTATION_ACCUMULATION / ABSOLUTE_METABOLIC_SUM_SELECTION / ABSOLUTE_TARGET_FLUXES_SELECTION / RELATIVE_TARGET_FLUXES_SELECTION / ABSOLUTE_ALL_FLUXES_SELECTION / RELATIVE_ALL_FLUXES_SELECTION). Exit." assert os.path.isfile(copasi_path), "The executable \""+copasi_path+"\" does not exist. Exit." #~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Main MCMC parameters # #~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.sbml_filename = sbml_filename self.total_iterations = total_iterations self.sigma = sigma self.selection_scheme = selection_scheme self.selection_threshold = selection_threshold self.copasi_path = copasi_path #~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) SBML model # #~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.model = Model(sbml_filename, objective_function, copasi_path) #~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Current state tracking # #~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.nb_iterations = 0 self.nb_accepted = 0 self.nb_rejected = 0 self.nb_unstable = 0 self.param_metaid = "_" self.param_id = "wild_type" self.param_value = 0.0 self.param_previous = 0.0 #~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 4) Statistics # #~~~~~~~~~~~~~~~~~~~~~~~~~~~# ### Array lengths ### self.N_abund = self.model.get_number_of_variable_species() self.N_flux = self.model.get_number_of_reactions() ### Arrays ### self.wild_type_abund = np.zeros(self.N_abund) self.mutant_abund = np.zeros(self.N_abund) self.wild_type_flux = np.zeros(self.N_flux) self.mutant_flux = np.zeros(self.N_flux) ### Sum vectors ### self.sum_abund = np.zeros(self.N_abund) self.relsum_abund = np.zeros(self.N_abund) self.sqsum_abund = np.zeros(self.N_abund) self.relsqsum_abund = np.zeros(self.N_abund) self.sum_flux = np.zeros(self.N_flux) self.relsum_flux = np.zeros(self.N_flux) self.sqsum_flux = np.zeros(self.N_flux) self.relsqsum_flux = np.zeros(self.N_flux) ### Final statistics ### self.mean_abund = np.zeros(self.N_abund) self.var_abund = np.zeros(self.N_abund) self.CV_abund = np.zeros(self.N_abund) self.ER_abund = np.zeros(self.N_abund) self.mean_flux = np.zeros(self.N_flux) self.var_flux = np.zeros(self.N_flux) self.CV_flux = np.zeros(self.N_flux) self.ER_flux = np.zeros(self.N_flux) #~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 5) Previous state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.previous_abund = np.copy(self.mutant_abund) self.previous_flux = np.copy(self.mutant_flux) #~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 6) Output file # #~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.output_file = open("output/iterations.txt", "w") self.output_file.close() ### Initialize the output file ### def initialize_output_file( self ): """ Initialize the output file (write the header). Parameters ---------- None Returns ------- None """ header = "nb_iterations nb_accepted nb_rejected param_metaid param_id param_previous param_val" for species_id in self.model.species: if not self.model.species[species_id]["constant"]: header += " "+species_id for reaction_id in self.model.reactions: header += " "+reaction_id header += " wild_type_absolute_sum mutant_absolute_sum absolute_sum_dist absolute_moma_dist relative_moma_dist absolute_moma_all_dist relative_moma_all_dist\n" self.output_file = open("output/iterations.txt", "a") self.output_file.write(header) self.output_file.close() ### Write the current MCMC state in the output file ### def write_output_file( self ): """ Write the current MCMC state in the output file. Parameters ---------- None Returns ------- None """ line = "" #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Write current MCMC state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# line += str(self.nb_iterations)+" " line += str(self.nb_accepted)+" " line += str(self.nb_rejected)+" " line += str(self.param_metaid)+" " line += str(self.param_id)+" " line += str(self.param_previous)+" " line += str(self.param_value) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Write steady-state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for species_id in self.model.species: if not self.model.species[species_id]["constant"]: line += " "+str(self.model.species[species_id]["mutant_value"]) for reaction_id in self.model.reactions: line += " "+str(self.model.reactions[reaction_id]["mutant_value"]) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Write scores # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# line += " "+str(self.model.wild_type_absolute_sum)+" "+str(self.model.mutant_absolute_sum)+" "+str(self.model.absolute_sum_distance)+" "+str(self.model.absolute_moma_distance)+" "+str(self.model.relative_moma_distance)+" "+str(self.model.absolute_moma_all_distance)+" "+str(self.model.relative_moma_all_distance) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 4) Write in file # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.output_file = open("output/iterations.txt", "a") self.output_file.write(line+"\n") self.output_file.close() ### Update statistics ### def update_statistics( self ): """ Update statistics trackers for the current state. Parameters ---------- None Returns ------- None """ ########### self.sum_abund += self.mutant_abund self.sqsum_abund += self.mutant_abund*self.mutant_abund for i in range(self.N_abund): if self.wild_type_abund[i] > 0.0: self.relsum_abund[i] += (self.mutant_abund[i]/self.wild_type_abund[i]) self.relsqsum_abund[i] += (self.mutant_abund[i]/self.wild_type_abund[i])*(self.mutant_abund[i]/self.wild_type_abund[i]) ########### self.sum_flux += self.mutant_flux self.sqsum_flux += self.mutant_flux*self.mutant_flux for i in range(self.N_flux): if self.wild_type_flux[i] > 0.0: self.relsum_flux[i] += (self.mutant_flux[i]/self.wild_type_flux[i]) self.relsqsum_flux[i] += (self.mutant_flux[i]/self.wild_type_flux[i])*(self.mutant_flux[i]/self.wild_type_flux[i]) ### Compute statistics for the current iteration ### def compute_statistics( self ): """ Compute final statistics. Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Compute mean # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.mean_abund = np.copy(self.sum_abund) self.mean_abund /= float(self.nb_iterations) ########### self.mean_flux = np.copy(self.sum_flux) self.mean_flux /= float(self.nb_iterations) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Compute variance # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.var_abund = np.copy(self.sqsum_abund) self.var_abund /= float(self.nb_iterations) self.var_abund -= self.mean_abund*self.mean_abund ########### self.var_flux = np.copy(self.sqsum_flux) self.var_flux /= float(self.nb_iterations) self.var_flux -= self.mean_flux*self.mean_flux #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Compute coefficient of variation # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.CV_abund = np.copy(self.sqsum_abund) self.CV_abund /= float(self.nb_iterations) self.CV_abund -= self.mean_abund*self.mean_abund for i in range(self.N_abund): if self.mean_abund[i] > 0.0: self.CV_abund[i] = np.sqrt(self.CV_abund[i])/self.mean_abund[i] else: self.CV_abund[i] = 0.0 ########### self.CV_flux = np.copy(self.sqsum_flux) self.CV_flux /= float(self.nb_iterations) self.CV_flux -= self.mean_flux*self.mean_flux for i in range(self.N_flux): if self.mean_flux[i] > 0.0: self.CV_flux[i] = np.sqrt(self.CV_flux[i])/self.mean_flux[i] else: self.CV_flux[i] = 0.0 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 4) Compute evolution rate # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.ER_abund = np.copy(self.relsqsum_abund) self.ER_abund /= float(self.nb_iterations) self.ER_abund -= (self.relsum_abund/float(self.nb_iterations))*(self.relsum_abund/float(self.nb_iterations)) self.ER_abund /= float(self.nb_iterations) ########### self.ER_flux = np.copy(self.relsqsum_flux) self.ER_flux /= float(self.nb_iterations) self.ER_flux -= (self.relsum_flux/float(self.nb_iterations))*(self.relsum_flux/float(self.nb_iterations)) self.ER_flux /= float(self.nb_iterations) ### Write statistics in a file ### def write_statistics( self ): """ Write final statistics in an output file (output/statistics.txt). Parameters ---------- None Returns ------- None """ f = open("output/statistics.txt", "w") f.write("species_id wild_type mean var CV ER\n") #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Write species statistics # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# index = 0 for species_id in self.model.species: if not self.model.species[species_id]["constant"]: line = species_id+" " line += str(self.wild_type_abund[index])+" " line += str(self.mean_abund[index])+" " line += str(self.var_abund[index])+" " line += str(self.CV_abund[index])+" " line += str(self.ER_abund[index])+"\n" index += 1 f.write(line) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Write fluxes statistics # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# index = 0 for reaction_id in self.model.reactions: line = reaction_id+" " line += str(self.wild_type_flux[index])+" " line += str(self.mean_flux[index])+" " line += str(self.var_flux[index])+" " line += str(self.CV_flux[index])+" " line += str(self.ER_flux[index])+"\n" index += 1 f.write(line) f.close() ### Initialize MCMC algorithm ### def initialize( self ): """ Initialize the MCMC algorithm. Parameters ---------- None Returns ------- None """ success = self.model.compute_wild_type_steady_state() assert success, "Wild-type model is not stable. Exit." success = self.model.compute_mutant_steady_state() assert success, "Wild-type model is not stable. Exit." self.model.compute_sum_distance() self.model.compute_moma_distance() self.initialize_output_file() self.wild_type_abund = self.model.get_wild_type_species_array() self.mutant_abund = self.model.get_mutant_species_array() self.wild_type_flux = self.model.get_wild_type_reaction_array() self.mutant_flux = self.model.get_mutant_reaction_array() ### Reload the previous MCMC state ### def reload_previous_state( self ): """ Reload the previous MCMC state. Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Restore the mutated parameter # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.model.set_mutant_parameter_value(self.param_metaid, self.param_previous) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Retrieve previous values # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.mutant_abund = np.copy(self.previous_abund) self.mutant_flux = np.copy(self.previous_flux) index = 0 for species_id in self.model.species: if not self.model.species[species_id]["constant"]: self.model.species[species_id]["mutant_value"] = self.mutant_abund[index] index += 1 index = 0 for reaction_id in self.model.reactions: self.model.reactions[reaction_id]["mutant_value"] = self.mutant_flux[index] index += 1 ### Iterate MCMC algorithm ### def iterate( self ): """ Iterate the MCMC algorithm. Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Save previous state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.previous_abund = np.copy(self.mutant_abund) self.previous_flux = np.copy(self.mutant_flux) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Introduce a new random mutation # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.param_metaid = self.model.get_random_parameter() self.param_id = self.model.parameters[self.param_metaid]["id"] self.param_previous, self.param_value = self.model.random_parameter_mutation(self.param_metaid, self.sigma) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Compute the new steady-state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# success = self.model.compute_mutant_steady_state() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 4) Evaluate model stability and select the new iteration event # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# if not success: self.reload_previous_state() self.nb_unstable += 1 self.param_metaid = "_" self.param_id = "_" self.param_value = 0.0 self.param_previous = 0.0 else: self.nb_unstable = 0 self.model.compute_sum_distance() self.model.compute_moma_distance() self.mutant_abund = self.model.get_mutant_species_array() self.mutant_flux = self.model.get_mutant_reaction_array() #-----------------------------------------------------------------# # 4.1) If the simulation is a mutation accumulation experiment, # # keep all the mutational events. # #-----------------------------------------------------------------# if self.selection_scheme == "MUTATION_ACCUMULATION": self.nb_iterations += 1 self.nb_accepted += 1 self.update_statistics() self.compute_statistics() #-----------------------------------------------------------------# # 4.2) If the simulation is a absolute metabolic sum selection # # experiment, keep only mutations for which the SUM distance # # is lower than a given selection threshold. # #-----------------------------------------------------------------# elif self.selection_scheme == "ABSOLUTE_METABOLIC_SUM_SELECTION" and self.model.absolute_sum_distance < self.selection_threshold: self.nb_iterations += 1 self.nb_accepted += 1 self.update_statistics() self.compute_statistics() elif self.selection_scheme == "ABSOLUTE_METABOLIC_SUM_SELECTION" and self.model.absolute_sum_distance >= self.selection_threshold: self.nb_iterations += 1 self.nb_rejected += 1 self.reload_previous_state() self.update_statistics() self.compute_statistics() self.param_metaid = "_" self.param_id = "_" self.param_value = 0.0 self.param_previous = 0.0 #-----------------------------------------------------------------# # 4.3) If the simulation is a absolute target fluxes selection # # experiment, keep only mutations for which the MOMA # # distance is lower than a given selection threshold. # #-----------------------------------------------------------------# elif self.selection_scheme == "ABSOLUTE_TARGET_FLUXES_SELECTION" and self.model.absolute_moma_distance < self.selection_threshold: self.nb_iterations += 1 self.nb_accepted += 1 self.update_statistics() self.compute_statistics() elif self.selection_scheme == "ABSOLUTE_TARGET_FLUXES_SELECTION" and self.model.absolute_moma_distance >= self.selection_threshold: self.nb_iterations += 1 self.nb_rejected += 1 self.reload_previous_state() self.update_statistics() self.compute_statistics() self.param_metaid = "_" self.param_id = "_" self.param_value = 0.0 self.param_previous = 0.0 #-----------------------------------------------------------------# # 4.4) If the simulation is a relative target fluxes selection # # experiment, keep only mutations for which the MOMA # # distance is lower than a given selection threshold. # #-----------------------------------------------------------------# elif self.selection_scheme == "RELATIVE_TARGET_FLUXES_SELECTION" and self.model.relative_moma_distance < self.selection_threshold: self.nb_iterations += 1 self.nb_accepted += 1 self.update_statistics() self.compute_statistics() elif self.selection_scheme == "RELATIVE_TARGET_FLUXES_SELECTION" and self.model.relative_moma_distance >= self.selection_threshold: self.nb_iterations += 1 self.nb_rejected += 1 self.reload_previous_state() self.update_statistics() self.compute_statistics() self.param_metaid = "_" self.param_id = "_" self.param_value = 0.0 self.param_previous = 0.0 #-----------------------------------------------------------------# # 4.5) If the simulation is a absolute ALL fluxes selection # # experiment, keep only mutations for which the MOMA # # distance is lower than a given selection threshold. # #-----------------------------------------------------------------# elif self.selection_scheme == "ABSOLUTE_ALL_FLUXES_SELECTION" and self.model.absolute_moma_all_distance < self.selection_threshold: self.nb_iterations += 1 self.nb_accepted += 1 self.update_statistics() self.compute_statistics() elif self.selection_scheme == "ABSOLUTE_ALL_FLUXES_SELECTION" and self.model.absolute_moma_all_distance >= self.selection_threshold: self.nb_iterations += 1 self.nb_rejected += 1 self.reload_previous_state() self.update_statistics() self.compute_statistics() self.param_metaid = "_" self.param_id = "_" self.param_value = 0.0 self.param_previous = 0.0 #-----------------------------------------------------------------# # 4.6) If the simulation is a relative ALL fluxes selection # # experiment, keep only mutations for which the MOMA # # distance is lower than a given selection threshold. # #-----------------------------------------------------------------# elif self.selection_scheme == "RELATIVE_ALL_FLUXES_SELECTION" and self.model.relative_moma_all_distance < self.selection_threshold: self.nb_iterations += 1 self.nb_accepted += 1 self.update_statistics() self.compute_statistics() elif self.selection_scheme == "RELATIVE_ALL_FLUXES_SELECTION" and self.model.relative_moma_all_distance >= self.selection_threshold: self.nb_iterations += 1 self.nb_rejected += 1 self.reload_previous_state() self.update_statistics() self.compute_statistics() self.param_metaid = "_" self.param_id = "_" self.param_value = 0.0 self.param_previous = 0.0 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 5) Check the number of iterations # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# print("> Current iteration = "+str(self.nb_iterations)+" (accepted = "+str(self.nb_accepted)+", rejected = "+str(self.nb_rejected)+", unstable = "+str(self.nb_unstable)+")") assert self.nb_unstable <= MAX_UNSTABLE_INTERATIONS, "Too many unstable trials. Exit." if self.nb_iterations == self.total_iterations: return True return False
(sbml_filename, objective_function, total_iterations, sigma, selection_scheme, selection_threshold, copasi_path)
20,446
metevolsim.metevolsim
__init__
MCMC class constructor. Parameters ---------- sbml_filename : str Path of the SBML model file. The SBML model is automatically loaded. objective_function : list of [str, float] Objective function (list of reaction identifiers and coefficients). total_iterations : int > 0 Total number of MCMC iterations. sigma : float > 0.0 Standard deviation of the Log10-normal mutational distribution. selection_scheme : str Selection scheme ('MUTATION_ACCUMULATION'/'ABSOLUTE_METABOLIC_SUM_SELECTION'/ 'ABSOLUTE_TARGET_FLUXES_SELECTION'/'RELATIVE_TARGET_FLUXES_SELECTION'). selection_threshold : float > 0.0 Selection threshold applied on the MOMA distance. copasi_path : str Location of Copasi executable. Returns ------- None
def __init__( self, sbml_filename, objective_function, total_iterations, sigma, selection_scheme, selection_threshold, copasi_path ): """ MCMC class constructor. Parameters ---------- sbml_filename : str Path of the SBML model file. The SBML model is automatically loaded. objective_function : list of [str, float] Objective function (list of reaction identifiers and coefficients). total_iterations : int > 0 Total number of MCMC iterations. sigma : float > 0.0 Standard deviation of the Log10-normal mutational distribution. selection_scheme : str Selection scheme ('MUTATION_ACCUMULATION'/'ABSOLUTE_METABOLIC_SUM_SELECTION'/ 'ABSOLUTE_TARGET_FLUXES_SELECTION'/'RELATIVE_TARGET_FLUXES_SELECTION'). selection_threshold : float > 0.0 Selection threshold applied on the MOMA distance. copasi_path : str Location of Copasi executable. Returns ------- None """ assert os.path.isfile(sbml_filename), "The SBML file \""+sbml_filename+"\" does not exist. Exit." assert len(objective_function) > 0, "You must provide at least one reaction in the objective function. Exit." assert total_iterations > 0, "The total number of iterations must be a positive nonzero value. Exit." assert sigma > 0.0, "The mutation size 'sigma' must be a positive nonzero value. Exit." assert selection_scheme in ["MUTATION_ACCUMULATION", "ABSOLUTE_METABOLIC_SUM_SELECTION", "ABSOLUTE_TARGET_FLUXES_SELECTION", "RELATIVE_TARGET_FLUXES_SELECTION", "ABSOLUTE_ALL_FLUXES_SELECTION", "RELATIVE_ALL_FLUXES_SELECTION"], "The selection scheme takes two values only (MUTATION_ACCUMULATION / ABSOLUTE_METABOLIC_SUM_SELECTION / ABSOLUTE_TARGET_FLUXES_SELECTION / RELATIVE_TARGET_FLUXES_SELECTION / ABSOLUTE_ALL_FLUXES_SELECTION / RELATIVE_ALL_FLUXES_SELECTION). Exit." assert os.path.isfile(copasi_path), "The executable \""+copasi_path+"\" does not exist. Exit." #~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Main MCMC parameters # #~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.sbml_filename = sbml_filename self.total_iterations = total_iterations self.sigma = sigma self.selection_scheme = selection_scheme self.selection_threshold = selection_threshold self.copasi_path = copasi_path #~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) SBML model # #~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.model = Model(sbml_filename, objective_function, copasi_path) #~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Current state tracking # #~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.nb_iterations = 0 self.nb_accepted = 0 self.nb_rejected = 0 self.nb_unstable = 0 self.param_metaid = "_" self.param_id = "wild_type" self.param_value = 0.0 self.param_previous = 0.0 #~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 4) Statistics # #~~~~~~~~~~~~~~~~~~~~~~~~~~~# ### Array lengths ### self.N_abund = self.model.get_number_of_variable_species() self.N_flux = self.model.get_number_of_reactions() ### Arrays ### self.wild_type_abund = np.zeros(self.N_abund) self.mutant_abund = np.zeros(self.N_abund) self.wild_type_flux = np.zeros(self.N_flux) self.mutant_flux = np.zeros(self.N_flux) ### Sum vectors ### self.sum_abund = np.zeros(self.N_abund) self.relsum_abund = np.zeros(self.N_abund) self.sqsum_abund = np.zeros(self.N_abund) self.relsqsum_abund = np.zeros(self.N_abund) self.sum_flux = np.zeros(self.N_flux) self.relsum_flux = np.zeros(self.N_flux) self.sqsum_flux = np.zeros(self.N_flux) self.relsqsum_flux = np.zeros(self.N_flux) ### Final statistics ### self.mean_abund = np.zeros(self.N_abund) self.var_abund = np.zeros(self.N_abund) self.CV_abund = np.zeros(self.N_abund) self.ER_abund = np.zeros(self.N_abund) self.mean_flux = np.zeros(self.N_flux) self.var_flux = np.zeros(self.N_flux) self.CV_flux = np.zeros(self.N_flux) self.ER_flux = np.zeros(self.N_flux) #~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 5) Previous state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.previous_abund = np.copy(self.mutant_abund) self.previous_flux = np.copy(self.mutant_flux) #~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 6) Output file # #~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.output_file = open("output/iterations.txt", "w") self.output_file.close()
(self, sbml_filename, objective_function, total_iterations, sigma, selection_scheme, selection_threshold, copasi_path)
20,447
metevolsim.metevolsim
compute_statistics
Compute final statistics. Parameters ---------- None Returns ------- None
def compute_statistics( self ): """ Compute final statistics. Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Compute mean # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.mean_abund = np.copy(self.sum_abund) self.mean_abund /= float(self.nb_iterations) ########### self.mean_flux = np.copy(self.sum_flux) self.mean_flux /= float(self.nb_iterations) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Compute variance # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.var_abund = np.copy(self.sqsum_abund) self.var_abund /= float(self.nb_iterations) self.var_abund -= self.mean_abund*self.mean_abund ########### self.var_flux = np.copy(self.sqsum_flux) self.var_flux /= float(self.nb_iterations) self.var_flux -= self.mean_flux*self.mean_flux #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Compute coefficient of variation # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.CV_abund = np.copy(self.sqsum_abund) self.CV_abund /= float(self.nb_iterations) self.CV_abund -= self.mean_abund*self.mean_abund for i in range(self.N_abund): if self.mean_abund[i] > 0.0: self.CV_abund[i] = np.sqrt(self.CV_abund[i])/self.mean_abund[i] else: self.CV_abund[i] = 0.0 ########### self.CV_flux = np.copy(self.sqsum_flux) self.CV_flux /= float(self.nb_iterations) self.CV_flux -= self.mean_flux*self.mean_flux for i in range(self.N_flux): if self.mean_flux[i] > 0.0: self.CV_flux[i] = np.sqrt(self.CV_flux[i])/self.mean_flux[i] else: self.CV_flux[i] = 0.0 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 4) Compute evolution rate # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.ER_abund = np.copy(self.relsqsum_abund) self.ER_abund /= float(self.nb_iterations) self.ER_abund -= (self.relsum_abund/float(self.nb_iterations))*(self.relsum_abund/float(self.nb_iterations)) self.ER_abund /= float(self.nb_iterations) ########### self.ER_flux = np.copy(self.relsqsum_flux) self.ER_flux /= float(self.nb_iterations) self.ER_flux -= (self.relsum_flux/float(self.nb_iterations))*(self.relsum_flux/float(self.nb_iterations)) self.ER_flux /= float(self.nb_iterations)
(self)
20,448
metevolsim.metevolsim
initialize
Initialize the MCMC algorithm. Parameters ---------- None Returns ------- None
def initialize( self ): """ Initialize the MCMC algorithm. Parameters ---------- None Returns ------- None """ success = self.model.compute_wild_type_steady_state() assert success, "Wild-type model is not stable. Exit." success = self.model.compute_mutant_steady_state() assert success, "Wild-type model is not stable. Exit." self.model.compute_sum_distance() self.model.compute_moma_distance() self.initialize_output_file() self.wild_type_abund = self.model.get_wild_type_species_array() self.mutant_abund = self.model.get_mutant_species_array() self.wild_type_flux = self.model.get_wild_type_reaction_array() self.mutant_flux = self.model.get_mutant_reaction_array()
(self)
20,449
metevolsim.metevolsim
initialize_output_file
Initialize the output file (write the header). Parameters ---------- None Returns ------- None
def initialize_output_file( self ): """ Initialize the output file (write the header). Parameters ---------- None Returns ------- None """ header = "nb_iterations nb_accepted nb_rejected param_metaid param_id param_previous param_val" for species_id in self.model.species: if not self.model.species[species_id]["constant"]: header += " "+species_id for reaction_id in self.model.reactions: header += " "+reaction_id header += " wild_type_absolute_sum mutant_absolute_sum absolute_sum_dist absolute_moma_dist relative_moma_dist absolute_moma_all_dist relative_moma_all_dist\n" self.output_file = open("output/iterations.txt", "a") self.output_file.write(header) self.output_file.close()
(self)
20,450
metevolsim.metevolsim
iterate
Iterate the MCMC algorithm. Parameters ---------- None Returns ------- None
def iterate( self ): """ Iterate the MCMC algorithm. Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Save previous state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.previous_abund = np.copy(self.mutant_abund) self.previous_flux = np.copy(self.mutant_flux) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Introduce a new random mutation # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.param_metaid = self.model.get_random_parameter() self.param_id = self.model.parameters[self.param_metaid]["id"] self.param_previous, self.param_value = self.model.random_parameter_mutation(self.param_metaid, self.sigma) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Compute the new steady-state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# success = self.model.compute_mutant_steady_state() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 4) Evaluate model stability and select the new iteration event # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# if not success: self.reload_previous_state() self.nb_unstable += 1 self.param_metaid = "_" self.param_id = "_" self.param_value = 0.0 self.param_previous = 0.0 else: self.nb_unstable = 0 self.model.compute_sum_distance() self.model.compute_moma_distance() self.mutant_abund = self.model.get_mutant_species_array() self.mutant_flux = self.model.get_mutant_reaction_array() #-----------------------------------------------------------------# # 4.1) If the simulation is a mutation accumulation experiment, # # keep all the mutational events. # #-----------------------------------------------------------------# if self.selection_scheme == "MUTATION_ACCUMULATION": self.nb_iterations += 1 self.nb_accepted += 1 self.update_statistics() self.compute_statistics() #-----------------------------------------------------------------# # 4.2) If the simulation is a absolute metabolic sum selection # # experiment, keep only mutations for which the SUM distance # # is lower than a given selection threshold. # #-----------------------------------------------------------------# elif self.selection_scheme == "ABSOLUTE_METABOLIC_SUM_SELECTION" and self.model.absolute_sum_distance < self.selection_threshold: self.nb_iterations += 1 self.nb_accepted += 1 self.update_statistics() self.compute_statistics() elif self.selection_scheme == "ABSOLUTE_METABOLIC_SUM_SELECTION" and self.model.absolute_sum_distance >= self.selection_threshold: self.nb_iterations += 1 self.nb_rejected += 1 self.reload_previous_state() self.update_statistics() self.compute_statistics() self.param_metaid = "_" self.param_id = "_" self.param_value = 0.0 self.param_previous = 0.0 #-----------------------------------------------------------------# # 4.3) If the simulation is a absolute target fluxes selection # # experiment, keep only mutations for which the MOMA # # distance is lower than a given selection threshold. # #-----------------------------------------------------------------# elif self.selection_scheme == "ABSOLUTE_TARGET_FLUXES_SELECTION" and self.model.absolute_moma_distance < self.selection_threshold: self.nb_iterations += 1 self.nb_accepted += 1 self.update_statistics() self.compute_statistics() elif self.selection_scheme == "ABSOLUTE_TARGET_FLUXES_SELECTION" and self.model.absolute_moma_distance >= self.selection_threshold: self.nb_iterations += 1 self.nb_rejected += 1 self.reload_previous_state() self.update_statistics() self.compute_statistics() self.param_metaid = "_" self.param_id = "_" self.param_value = 0.0 self.param_previous = 0.0 #-----------------------------------------------------------------# # 4.4) If the simulation is a relative target fluxes selection # # experiment, keep only mutations for which the MOMA # # distance is lower than a given selection threshold. # #-----------------------------------------------------------------# elif self.selection_scheme == "RELATIVE_TARGET_FLUXES_SELECTION" and self.model.relative_moma_distance < self.selection_threshold: self.nb_iterations += 1 self.nb_accepted += 1 self.update_statistics() self.compute_statistics() elif self.selection_scheme == "RELATIVE_TARGET_FLUXES_SELECTION" and self.model.relative_moma_distance >= self.selection_threshold: self.nb_iterations += 1 self.nb_rejected += 1 self.reload_previous_state() self.update_statistics() self.compute_statistics() self.param_metaid = "_" self.param_id = "_" self.param_value = 0.0 self.param_previous = 0.0 #-----------------------------------------------------------------# # 4.5) If the simulation is a absolute ALL fluxes selection # # experiment, keep only mutations for which the MOMA # # distance is lower than a given selection threshold. # #-----------------------------------------------------------------# elif self.selection_scheme == "ABSOLUTE_ALL_FLUXES_SELECTION" and self.model.absolute_moma_all_distance < self.selection_threshold: self.nb_iterations += 1 self.nb_accepted += 1 self.update_statistics() self.compute_statistics() elif self.selection_scheme == "ABSOLUTE_ALL_FLUXES_SELECTION" and self.model.absolute_moma_all_distance >= self.selection_threshold: self.nb_iterations += 1 self.nb_rejected += 1 self.reload_previous_state() self.update_statistics() self.compute_statistics() self.param_metaid = "_" self.param_id = "_" self.param_value = 0.0 self.param_previous = 0.0 #-----------------------------------------------------------------# # 4.6) If the simulation is a relative ALL fluxes selection # # experiment, keep only mutations for which the MOMA # # distance is lower than a given selection threshold. # #-----------------------------------------------------------------# elif self.selection_scheme == "RELATIVE_ALL_FLUXES_SELECTION" and self.model.relative_moma_all_distance < self.selection_threshold: self.nb_iterations += 1 self.nb_accepted += 1 self.update_statistics() self.compute_statistics() elif self.selection_scheme == "RELATIVE_ALL_FLUXES_SELECTION" and self.model.relative_moma_all_distance >= self.selection_threshold: self.nb_iterations += 1 self.nb_rejected += 1 self.reload_previous_state() self.update_statistics() self.compute_statistics() self.param_metaid = "_" self.param_id = "_" self.param_value = 0.0 self.param_previous = 0.0 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 5) Check the number of iterations # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# print("> Current iteration = "+str(self.nb_iterations)+" (accepted = "+str(self.nb_accepted)+", rejected = "+str(self.nb_rejected)+", unstable = "+str(self.nb_unstable)+")") assert self.nb_unstable <= MAX_UNSTABLE_INTERATIONS, "Too many unstable trials. Exit." if self.nb_iterations == self.total_iterations: return True return False
(self)
20,451
metevolsim.metevolsim
reload_previous_state
Reload the previous MCMC state. Parameters ---------- None Returns ------- None
def reload_previous_state( self ): """ Reload the previous MCMC state. Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Restore the mutated parameter # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.model.set_mutant_parameter_value(self.param_metaid, self.param_previous) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Retrieve previous values # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.mutant_abund = np.copy(self.previous_abund) self.mutant_flux = np.copy(self.previous_flux) index = 0 for species_id in self.model.species: if not self.model.species[species_id]["constant"]: self.model.species[species_id]["mutant_value"] = self.mutant_abund[index] index += 1 index = 0 for reaction_id in self.model.reactions: self.model.reactions[reaction_id]["mutant_value"] = self.mutant_flux[index] index += 1
(self)
20,452
metevolsim.metevolsim
update_statistics
Update statistics trackers for the current state. Parameters ---------- None Returns ------- None
def update_statistics( self ): """ Update statistics trackers for the current state. Parameters ---------- None Returns ------- None """ ########### self.sum_abund += self.mutant_abund self.sqsum_abund += self.mutant_abund*self.mutant_abund for i in range(self.N_abund): if self.wild_type_abund[i] > 0.0: self.relsum_abund[i] += (self.mutant_abund[i]/self.wild_type_abund[i]) self.relsqsum_abund[i] += (self.mutant_abund[i]/self.wild_type_abund[i])*(self.mutant_abund[i]/self.wild_type_abund[i]) ########### self.sum_flux += self.mutant_flux self.sqsum_flux += self.mutant_flux*self.mutant_flux for i in range(self.N_flux): if self.wild_type_flux[i] > 0.0: self.relsum_flux[i] += (self.mutant_flux[i]/self.wild_type_flux[i]) self.relsqsum_flux[i] += (self.mutant_flux[i]/self.wild_type_flux[i])*(self.mutant_flux[i]/self.wild_type_flux[i])
(self)
20,453
metevolsim.metevolsim
write_output_file
Write the current MCMC state in the output file. Parameters ---------- None Returns ------- None
def write_output_file( self ): """ Write the current MCMC state in the output file. Parameters ---------- None Returns ------- None """ line = "" #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Write current MCMC state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# line += str(self.nb_iterations)+" " line += str(self.nb_accepted)+" " line += str(self.nb_rejected)+" " line += str(self.param_metaid)+" " line += str(self.param_id)+" " line += str(self.param_previous)+" " line += str(self.param_value) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Write steady-state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for species_id in self.model.species: if not self.model.species[species_id]["constant"]: line += " "+str(self.model.species[species_id]["mutant_value"]) for reaction_id in self.model.reactions: line += " "+str(self.model.reactions[reaction_id]["mutant_value"]) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Write scores # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# line += " "+str(self.model.wild_type_absolute_sum)+" "+str(self.model.mutant_absolute_sum)+" "+str(self.model.absolute_sum_distance)+" "+str(self.model.absolute_moma_distance)+" "+str(self.model.relative_moma_distance)+" "+str(self.model.absolute_moma_all_distance)+" "+str(self.model.relative_moma_all_distance) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 4) Write in file # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.output_file = open("output/iterations.txt", "a") self.output_file.write(line+"\n") self.output_file.close()
(self)
20,454
metevolsim.metevolsim
write_statistics
Write final statistics in an output file (output/statistics.txt). Parameters ---------- None Returns ------- None
def write_statistics( self ): """ Write final statistics in an output file (output/statistics.txt). Parameters ---------- None Returns ------- None """ f = open("output/statistics.txt", "w") f.write("species_id wild_type mean var CV ER\n") #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Write species statistics # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# index = 0 for species_id in self.model.species: if not self.model.species[species_id]["constant"]: line = species_id+" " line += str(self.wild_type_abund[index])+" " line += str(self.mean_abund[index])+" " line += str(self.var_abund[index])+" " line += str(self.CV_abund[index])+" " line += str(self.ER_abund[index])+"\n" index += 1 f.write(line) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Write fluxes statistics # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# index = 0 for reaction_id in self.model.reactions: line = reaction_id+" " line += str(self.wild_type_flux[index])+" " line += str(self.mean_flux[index])+" " line += str(self.var_flux[index])+" " line += str(self.CV_flux[index])+" " line += str(self.ER_flux[index])+"\n" index += 1 f.write(line) f.close()
(self)
20,455
metevolsim.metevolsim
Model
The Model class loads, saves and manipulates SBML models. Manipulations include kinetic parameter mutations, steady-state computing, metabolic control analysis (MCA), species shortest paths and flux-drop analysis. Some constraints exist on the SBML model format: - Species and reactions identifiers must be specified and unique. - Kinetic parameters must be specified (globally, and/or for each reaction). All kinetic parameters will be mutable. - The meta-identifiers are rebuilt automatically by MetEvolSim to avoid collisions. Attributes ---------- > sbml_filename : str Name of the SBML model file. > reader : libsbml.SBMLReader SBML model reader. > wild_type_document : libsbml.SBMLDocument SBML document of the wild-type model. > mutant_document : libsbml.SBMLDocument SBML document of the mutant model. > wild_type_model : libsbml.Model Wild-type model. > mutant_model : libsbml.Model Mutant model. > copasi_path: str Location of Copasi executable. > species : dict List of species. > parameters : dict List of kinetic parameters. > reactions : dict List of reactions. > species_graph: networkx.Graph A networkx Graph describing the metabolite-to-metabolite network. > objective_function : list of [str, float] Objective function (list of reaction identifiers and coefficients). > wild_type_absolute_sum : float Sum of evolvable metabolic absolute abundances in wild-type. > mutant_absolute_sum : float Sum of evolvable metabolic abundances in mutant. > absolute_sum_distance : float Distance between wild-type and mutant absolute metabolic sums. > absolute_moma_distance : float Distance between the wild-type and the mutant, based on the Minimization Of Metabolic Adjustment on absolute target fluxes. > relative_moma_distance : float Distance between the wild-type and the mutant, based on the Minimization Of Metabolic Adjustment on relative target fluxes. > absolute_moma_all_distance : float Distance between the wild-type and the mutant, based on the Minimization Of Metabolic Adjustment on ALL absolute fluxes. > relative_moma_all_distance : float Distance between the wild-type and the mutant, based on the Minimization Of Metabolic Adjustment on ALL relative fluxes. Methods ------- > __init__(sbml_filename, objective_function, copasi_path) Constructor. > rebuild_metaids() Rebuild unique metaids for all model variables. > build_species_list() Build the list of metabolites. > build_parameter_list() Build the list of parameters. > build_reaction_list() Build the list of reactions. > get_number_of_species() Get the number of species. > get_number_of_variable_species() Get the number of variable species. > get_number_of_parameters() Get the number of parameters. > get_number_of_reactions() Get the number of reactions. > get_wild_type_species_value(species_id) Get wild-type species value. > get_mutant_species_value(species_id) Get mutant species value. > get_wild_type_parameter_value(param_metaid) Get wild-type parameter value. > get_mutant_parameter_value(param_metaid) Get mutant parameter value. > set_species_initial_value(species_id, value) Set a species initial value. > set_wild_type_parameter_value(param_metaid, value) Set wild-type parameter value. > set_mutant_parameter_value(param_metaid, value) Set mutant parameter value. > get_random_parameter() Get a random parameter. > deterministic_parameter_mutation(param_metaid, factor) Make a deterministic parameter mutation by a given log-scale factor, centered on the wild-type value. > random_parameter_mutation(param_metaid, sigma) Make a random parameter mutation by a given log-scale mutation size sigma, centered on the previous mutant value. > write_list_of_variables() Write the list of variable names, identifiers and compartment in the file "output/variables.txt". > write_wild_type_SBML_file() Write wild-type SBML file. > write_mutant_SBML_file() Write mutant SBML file. > create_wild_type_cps_file() Create ancestor CPS file. > create_mutant_cps_file() Create mutant CPS file. > edit_wild_type_cps_file(task) Edit ancestor CPS file to schedule steady-state calculation. > edit_mutant_cps_file(task) Edit mutant CPS file to schedule steady-state calculation. > run_copasi_for_wild_type() Run Copasi for the wild-type model. > run_copasi_for_mutant() Run Copasi for the mutant model. > parse_copasi_output(filename, task) Parse Copasi output file. > compute_wild_type_steady_state() Compute wild-type steady-state. > compute_mutant_steady_state() Compute mutant steady-state. > update_initial_concentrations() Update species initial concentrations. > compute_sum_distance() Compute the metabolic sum distance between the wild-type and the mutant. > compute_moma_distance() Compute the MOMA distance between the wild-type and the mutant, based on target fluxes (MOMA: Minimization Of Metabolic Adjustment). > compute_wild_type_metabolic_control_analysis() Compute and save the wild-type metabolic control analysis (MCA). > compute_mutant_metabolic_control_analysis() Compute and save the mutant metabolic control analysis (MCA). > build_species_graph(): Build the metabolite-to-metabolite graph (mainly to compute shortest paths afterward). > save_shortest_paths(filename): Save the matrix of all pairwise metabolites shortest paths (assuming an undirected graph). > flux_drop_analysis(drop_coefficient, filename, overwrite): Run a flux-drop analysis. Each flux is independently dropped by a factor "drop_coefficient" and the relative MOMA distance from wild-type target fluxes is computed. The result is saved in a file "filename", one flux per line.
class Model: """ The Model class loads, saves and manipulates SBML models. Manipulations include kinetic parameter mutations, steady-state computing, metabolic control analysis (MCA), species shortest paths and flux-drop analysis. Some constraints exist on the SBML model format: - Species and reactions identifiers must be specified and unique. - Kinetic parameters must be specified (globally, and/or for each reaction). All kinetic parameters will be mutable. - The meta-identifiers are rebuilt automatically by MetEvolSim to avoid collisions. Attributes ---------- > sbml_filename : str Name of the SBML model file. > reader : libsbml.SBMLReader SBML model reader. > wild_type_document : libsbml.SBMLDocument SBML document of the wild-type model. > mutant_document : libsbml.SBMLDocument SBML document of the mutant model. > wild_type_model : libsbml.Model Wild-type model. > mutant_model : libsbml.Model Mutant model. > copasi_path: str Location of Copasi executable. > species : dict List of species. > parameters : dict List of kinetic parameters. > reactions : dict List of reactions. > species_graph: networkx.Graph A networkx Graph describing the metabolite-to-metabolite network. > objective_function : list of [str, float] Objective function (list of reaction identifiers and coefficients). > wild_type_absolute_sum : float Sum of evolvable metabolic absolute abundances in wild-type. > mutant_absolute_sum : float Sum of evolvable metabolic abundances in mutant. > absolute_sum_distance : float Distance between wild-type and mutant absolute metabolic sums. > absolute_moma_distance : float Distance between the wild-type and the mutant, based on the Minimization Of Metabolic Adjustment on absolute target fluxes. > relative_moma_distance : float Distance between the wild-type and the mutant, based on the Minimization Of Metabolic Adjustment on relative target fluxes. > absolute_moma_all_distance : float Distance between the wild-type and the mutant, based on the Minimization Of Metabolic Adjustment on ALL absolute fluxes. > relative_moma_all_distance : float Distance between the wild-type and the mutant, based on the Minimization Of Metabolic Adjustment on ALL relative fluxes. Methods ------- > __init__(sbml_filename, objective_function, copasi_path) Constructor. > rebuild_metaids() Rebuild unique metaids for all model variables. > build_species_list() Build the list of metabolites. > build_parameter_list() Build the list of parameters. > build_reaction_list() Build the list of reactions. > get_number_of_species() Get the number of species. > get_number_of_variable_species() Get the number of variable species. > get_number_of_parameters() Get the number of parameters. > get_number_of_reactions() Get the number of reactions. > get_wild_type_species_value(species_id) Get wild-type species value. > get_mutant_species_value(species_id) Get mutant species value. > get_wild_type_parameter_value(param_metaid) Get wild-type parameter value. > get_mutant_parameter_value(param_metaid) Get mutant parameter value. > set_species_initial_value(species_id, value) Set a species initial value. > set_wild_type_parameter_value(param_metaid, value) Set wild-type parameter value. > set_mutant_parameter_value(param_metaid, value) Set mutant parameter value. > get_random_parameter() Get a random parameter. > deterministic_parameter_mutation(param_metaid, factor) Make a deterministic parameter mutation by a given log-scale factor, centered on the wild-type value. > random_parameter_mutation(param_metaid, sigma) Make a random parameter mutation by a given log-scale mutation size sigma, centered on the previous mutant value. > write_list_of_variables() Write the list of variable names, identifiers and compartment in the file "output/variables.txt". > write_wild_type_SBML_file() Write wild-type SBML file. > write_mutant_SBML_file() Write mutant SBML file. > create_wild_type_cps_file() Create ancestor CPS file. > create_mutant_cps_file() Create mutant CPS file. > edit_wild_type_cps_file(task) Edit ancestor CPS file to schedule steady-state calculation. > edit_mutant_cps_file(task) Edit mutant CPS file to schedule steady-state calculation. > run_copasi_for_wild_type() Run Copasi for the wild-type model. > run_copasi_for_mutant() Run Copasi for the mutant model. > parse_copasi_output(filename, task) Parse Copasi output file. > compute_wild_type_steady_state() Compute wild-type steady-state. > compute_mutant_steady_state() Compute mutant steady-state. > update_initial_concentrations() Update species initial concentrations. > compute_sum_distance() Compute the metabolic sum distance between the wild-type and the mutant. > compute_moma_distance() Compute the MOMA distance between the wild-type and the mutant, based on target fluxes (MOMA: Minimization Of Metabolic Adjustment). > compute_wild_type_metabolic_control_analysis() Compute and save the wild-type metabolic control analysis (MCA). > compute_mutant_metabolic_control_analysis() Compute and save the mutant metabolic control analysis (MCA). > build_species_graph(): Build the metabolite-to-metabolite graph (mainly to compute shortest paths afterward). > save_shortest_paths(filename): Save the matrix of all pairwise metabolites shortest paths (assuming an undirected graph). > flux_drop_analysis(drop_coefficient, filename, overwrite): Run a flux-drop analysis. Each flux is independently dropped by a factor "drop_coefficient" and the relative MOMA distance from wild-type target fluxes is computed. The result is saved in a file "filename", one flux per line. """ ### Constructor ### def __init__( self, sbml_filename, objective_function, copasi_path ): """ Model class constructor. Parameters ---------- sbml_filename : str Path of the SBML model file. The SBML model is automatically loaded. objective_function : list of [str, float] Objective function (list of reaction identifiers and coefficients). copasi_path : str Location of Copasi executable. Returns ------- None """ assert os.path.isfile(sbml_filename), "The SBML file \""+sbml_filename+"\" does not exist. Exit." assert os.path.isfile(copasi_path), "The executable \""+copasi_path+"\" does not exist. Exit." #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Main SBML data # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.sbml_filename = sbml_filename self.reader = libsbml.SBMLReader() self.wild_type_document = self.reader.readSBMLFromFile(self.sbml_filename) self.mutant_document = self.reader.readSBMLFromFile(self.sbml_filename) self.wild_type_model = self.wild_type_document.getModel() self.mutant_model = self.mutant_document.getModel() self.copasi_path = copasi_path #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) List of model variables (species, reactions, parameters) # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.species = {} self.parameters = {} self.reactions = {} self.rebuild_metaids() self.build_species_list() self.build_parameter_list() self.build_reaction_list() self.replace_variable_names() self.write_list_of_variables() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Graph analysis # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.species_graph = nx.Graph() self.species_to_reaction = {} #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 4) Model evaluation # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.objective_function = objective_function self.wild_type_absolute_sum = 0.0 self.mutant_absolute_sum = 0.0 self.absolute_sum_distance = 0.0 self.absolute_moma_distance = 0.0 self.relative_moma_distance = 0.0 self.absolute_moma_all_distance = 0.0 self.relative_moma_all_distance = 0.0 for target_flux in objective_function: assert target_flux[0] in self.reactions ### Rebuilt the unique metaids for all the model variables ### def rebuild_metaids( self ): """ Rebuild the unique metaids for all model variables. Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Rebuild wild_type metaids # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# metaid = 0 for species in self.wild_type_model.getListOfSpecies(): species.setMetaId("_"+str(metaid)) metaid += 1 for parameter in self.wild_type_model.getListOfParameters(): parameter.setMetaId("_"+str(metaid)) metaid += 1 for reaction in self.wild_type_model.getListOfReactions(): for elmt in reaction.getListOfAllElements(): if elmt.getElementName() == "parameter" or elmt.getElementName() == "localParameter": parameter = elmt parameter.setMetaId("_"+str(metaid)) metaid += 1 for reaction in self.wild_type_model.getListOfReactions(): reaction.setMetaId("_"+str(metaid)) metaid += 1 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Rebuild mutant metaids # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# metaid = 0 for species in self.mutant_model.getListOfSpecies(): species.setMetaId("_"+str(metaid)) metaid += 1 for parameter in self.mutant_model.getListOfParameters(): parameter.setMetaId("_"+str(metaid)) metaid += 1 for reaction in self.mutant_model.getListOfReactions(): for elmt in reaction.getListOfAllElements(): if elmt.getElementName() == "parameter" or elmt.getElementName() == "localParameter": parameter = elmt parameter.setMetaId("_"+str(metaid)) metaid += 1 for reaction in self.mutant_model.getListOfReactions(): reaction.setMetaId("_"+str(metaid)) metaid += 1 ### Build the list of metabolites ### def build_species_list( self ): """ Build the species list. Parameters ---------- None Returns ------- None """ self.species = {} for species in self.wild_type_model.getListOfSpecies(): assert species.getId() not in list(self.species) self.species[species.getId()] = {} self.species[species.getId()]["metaid"] = species.getMetaId() self.species[species.getId()]["id"] = species.getId() self.species[species.getId()]["name"] = species.getName() if species.getName()=="": self.species[species.getId()]["name"] = "-" self.species[species.getId()]["compartment"] = species.getCompartment() self.species[species.getId()]["constant"] = species.getConstant() self.species[species.getId()]["boundary_condition"] = species.getBoundaryCondition() self.species[species.getId()]["initial_value"] = species.getInitialConcentration() self.species[species.getId()]["wild_type_value"] = species.getInitialConcentration() self.species[species.getId()]["mutant_value"] = species.getInitialConcentration() s1 = species.getAnnotationString().split("http://identifiers.org/kegg.compound/") s2 = "" if len(s1) == 1: s1 = species.getAnnotationString().split("https://identifiers.org/kegg.compound/") if len(s1) > 1: s2 = s1[1].split("\"/>\n")[0] if s2 != "": self.species[species.getId()]["kegg_id"] = "https://identifiers.org/kegg.compound/"+s2 else: self.species[species.getId()]["kegg_id"] = "-" ### Build the list of parameters ### def build_parameter_list( self ): """ Build the parameters list. Parameters ---------- None Returns ------- None """ self.parameters = {} #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Parse main parameters # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for parameter in self.wild_type_model.getListOfParameters(): if parameter.getValue() != 0.0 and str(parameter.getValue()) != "nan": assert parameter.getMetaId() not in list(self.parameters) self.parameters[parameter.getMetaId()] = {} self.parameters[parameter.getMetaId()]["metaid"] = parameter.getMetaId() self.parameters[parameter.getMetaId()]["id"] = parameter.getId() self.parameters[parameter.getMetaId()]["wild_type_value"] = parameter.getValue() self.parameters[parameter.getMetaId()]["mutant_value"] = parameter.getValue() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Parse parameters for each reaction # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for reaction in self.wild_type_model.getListOfReactions(): for elmt in reaction.getListOfAllElements(): if elmt.getElementName() == "parameter" or elmt.getElementName() == "localParameter": if elmt.getValue() != 0.0 and str(elmt.getValue()) != "nan": assert elmt.getMetaId() not in list(self.parameters) self.parameters[elmt.getMetaId()] = {} self.parameters[elmt.getMetaId()]["metaid"] = elmt.getMetaId() self.parameters[elmt.getMetaId()]["id"] = elmt.getId() self.parameters[elmt.getMetaId()]["wild_type_value"] = elmt.getValue() self.parameters[elmt.getMetaId()]["mutant_value"] = elmt.getValue() ### Build the list of reactions ### def build_reaction_list( self ): """ Build the reaction list. Parameters ---------- None Returns ------- None """ self.reactions = {} for reaction in self.wild_type_model.getListOfReactions(): assert reaction.getId() not in list(self.reactions) self.reactions[reaction.getId()] = {"wild_type_value":0.0, "mutant_value":0.0} self.reactions[reaction.getId()]["metaid"] = reaction.getMetaId() self.reactions[reaction.getId()]["id"] = reaction.getId() self.reactions[reaction.getId()]["name"] = reaction.getName() self.reactions[reaction.getId()]["compartment"] = reaction.getCompartment() ### Replace variable names by their identifiers to avoid collisions ### def replace_variable_names( self ): """ Replace variable names by their identifiers to avoid collisions. Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Replace variables names by identifiers in wild-type # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for species in self.wild_type_model.getListOfSpecies(): species_id = species.getId() assert species_id in self.species species.setName(species_id) for reaction in self.wild_type_model.getListOfReactions(): reaction_id = reaction.getId() assert reaction_id in self.reactions reaction.setName(reaction_id) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Replace species names by identifiers in mutant # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for species in self.mutant_model.getListOfSpecies(): species_id = species.getId() assert species_id in self.species species.setName(species_id) for reaction in self.mutant_model.getListOfReactions(): reaction_id = reaction.getId() assert reaction_id in self.reactions reaction.setName(reaction_id) ### Get the number of species ### def get_number_of_species( self ): """ Get the number of species. Parameters ---------- None Returns ------- int """ return len(self.species) ### Get the number of variable species ### def get_number_of_variable_species( self ): """ Get the number of variable species. Parameters ---------- None Returns ------- int """ count = 0 for species_id in self.species: if not self.species[species_id]["constant"]: count += 1 return count ### Get the number of parameters ### def get_number_of_parameters( self ): """ Get the number of kinetic parameters. Parameters ---------- None Returns ------- int """ return len(self.parameters) ### Get the number of reactions ### def get_number_of_reactions( self ): """ Get the number of reactions. Parameters ---------- None Returns ------- int """ return len(self.reactions) ### Get wild-type species value ### def get_wild_type_species_value( self, species_id ): """ Get the wild-type value of the species 'species_id'. Parameters ---------- species_id: str The identifier of the species (as defined in the SBML model). Returns ------- float """ assert species_id in list(self.species) return self.species[species_id]["wild_type_value"] ### Get mutant species value ### def get_mutant_species_value( self, species_id ): """ Get the wild-type value of the species 'species_id'. Parameters ---------- species_id: str The identifier of the species (as defined in the SBML model). Returns ------- float """ assert species_id in list(self.species) return self.species[species_id]["mutant_value"] ### Get wild-type parameter value ### def get_wild_type_parameter_value( self, param_metaid ): """ Get the wild-type value of the parameter 'param_metaid' Parameters ---------- param_metaid: str The meta identifier of the parameter (as defined in the SBML model). Returns ------- float """ assert param_metaid in list(self.parameters) assert self.parameters[param_metaid]["wild_type_value"] == self.wild_type_model.getElementByMetaId(param_metaid).getValue() return self.parameters[param_metaid]["wild_type_value"] ### Get mutant parameter value ### def get_mutant_parameter_value( self, param_metaid ): """ Get the mutant value of the parameter 'param_metaid' Parameters ---------- param_metaid: str The meta identifier of the parameter (as defined in the SBML model). Returns ------- float """ assert param_metaid in list(self.parameters) assert self.parameters[param_metaid]["mutant_value"] == self.mutant_model.getElementByMetaId(param_metaid).getValue() return self.parameters[param_metaid]["mutant_value"] ### Get wild-type reaction value ### def get_wild_type_reaction_value( self, reaction_id ): """ Get the wild-type value of the reaction 'reaction_id'. Parameters ---------- reaction_id: str The identifier of the reaction (as defined in the SBML model). Returns ------- float """ assert reaction_id in list(self.reactions) return self.reactions[reaction_id]["wild_type_value"] ### Get mutant reaction value ### def get_mutant_reaction_value( self, reaction_id ): """ Get the wild-type value of the reaction 'reaction_id'. Parameters ---------- reaction_id: str The identifier of the reaction (as defined in the SBML model). Returns ------- float """ assert reaction_id in list(self.reactions) return self.reactions[reaction_id]["mutant_value"] ### Get wild-type species values array ### def get_wild_type_species_array( self ): """ Get a numpy array of wild-type species abundances. Parameters ---------- None Returns ------- numpy array """ vec = [] for species_id in self.species: if not self.species[species_id]["constant"]: vec.append(self.species[species_id]["wild_type_value"]) return np.array(vec) ### Get mutant species values array ### def get_mutant_species_array( self ): """ Get a numpy array of mutant species abundances. Parameters ---------- None Returns ------- numpy array """ vec = [] for species_id in self.species: if not self.species[species_id]["constant"]: vec.append(self.species[species_id]["mutant_value"]) return np.array(vec) ### Get wild-type reaction values array ### def get_wild_type_reaction_array( self ): """ Get a numpy array of wild-type reaction fluxes. Parameters ---------- None Returns ------- numpy array """ vec = [] for reaction_id in self.reactions: vec.append(self.reactions[reaction_id]["wild_type_value"]) return np.array(vec) ### Get mutant reaction values array ### def get_mutant_reaction_array( self ): """ Get a numpy array of mutant reaction fluxes. Parameters ---------- None Returns ------- numpy array """ vec = [] for reaction_id in self.reactions: vec.append(self.reactions[reaction_id]["mutant_value"]) return np.array(vec) ### Set a species initial value ### def set_species_initial_value( self, species_id, value ): """ Set the initial concentration of the species 'species_id' in the mutant model. Parameters ---------- species_id: str Species identifier (as defined in the SBML model). value: float >= 0.0 Species abundance. Returns ------- None """ assert species_id in list(self.species) if value < 0.0: value = 0.0 self.species[species_id]["wild_type_value"] = value self.mutant_model.getListOfSpecies().get(species_id).setInitialConcentration(value) ### Set wild-type parameter value ### def set_wild_type_parameter_value( self, param_metaid, value ): """ Set the wild-type value of the parameter 'param_metaid'. Parameters ---------- param_metaid: str Parameter meta identifier (as defined in the SBML model). value: float Parameter value. Returns ------- None """ assert param_metaid in list(self.parameters) self.parameters[param_metaid]["wild_type_value"] = value self.wild_type_model.getElementByMetaId(param_metaid).setValue(value) ### Set mutant parameter value ### def set_mutant_parameter_value( self, param_metaid, value ): """ Set the mutant value of the parameter 'param_metaid'. Parameters ---------- param_metaid: str Parameter meta identifier (as defined in the SBML model). value: float Parameter value. Returns ------- None """ assert param_metaid in list(self.parameters) self.parameters[param_metaid]["mutant_value"] = value self.mutant_model.getElementByMetaId(param_metaid).setValue(value) ### Get a random parameter ### def get_random_parameter( self ): """ Get a kinetic parameter at random. Parameters ---------- None Returns ------- str """ param_index = np.random.randint(0, len(self.parameters)) param_metaid = list(self.parameters)[param_index] return param_metaid ### Make a deterministic parameter mutation by a given log-scale factor, ### ### centered on the wild-type value ### def deterministic_parameter_mutation( self, param_metaid, factor ): """ Mutate a given parameter 'param_metaid' by a given log10-scale factor. The mutation is centered on the wild-type value. x' = x*10^(factor) Parameters ---------- param_metaid: str Parameter meta identifier (as defined in the SBML model). factor: float Log10-scale factor. Returns ------- int, int """ assert param_metaid in list(self.parameters) wild_type_value = self.get_wild_type_parameter_value(param_metaid) mutant_value = wild_type_value*10.0**factor self.set_mutant_parameter_value(param_metaid, mutant_value) return wild_type_value, mutant_value ### Make a random parameter mutation by a given log-scale mutation size ### ### sigma, centered on the previous mutant value ### def random_parameter_mutation( self, param_metaid, sigma ): """ Mutate a given parameter 'param_metaid' through a log10-normal law of variance of sigma^2. x' = x*10^(N(0,sigma)) Parameters ---------- param_metaid: str Parameter meta identifier (as defined in the SBML model). sigma: float > 0.0 Log10-scale standard deviation. Returns ------- int, int """ assert param_metaid in list(self.parameters) assert sigma > 0.0 factor = np.random.normal(0.0, sigma, 1) wild_type_value = self.get_mutant_parameter_value(param_metaid) mutant_value = wild_type_value*10**factor[0] self.set_mutant_parameter_value(param_metaid, mutant_value) return wild_type_value, mutant_value ### Write the list of variables in various files ### def write_list_of_variables( self ): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Write the list of species # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# f = open("output/list_of_species.txt", "w") f.write("id metaid name compartment kegg_id\n") for species_id in self.species.keys(): f.write(species_id+" "+self.species[species_id]["metaid"]+" "+self.species[species_id]["name"]+" "+self.species[species_id]["compartment"]+" "+self.species[species_id]["kegg_id"]+"\n") f.close() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Write the list of parameters # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# f = open("output/list_of_parameters.txt", "w") f.write("id metaid\n") for parameter_metaid in self.parameters.keys(): f.write(self.parameters[parameter_metaid]["id"]+" "+parameter_metaid+"\n") f.close() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Write the list of reactions # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# f = open("output/list_of_reactions.txt", "w") f.write("id metaid name compartment\n") for reaction_id in self.reactions.keys(): f.write(reaction_id+" "+self.reactions[reaction_id]["metaid"]+" "+self.reactions[reaction_id]["name"]+" "+self.reactions[reaction_id]["compartment"]+"\n") f.close() ### Write the reaction to species map ### def write_reaction_to_species_map( self, filename ): """ Write the reaction-to-species map. For each reaction, the list of metabolites is written, line by line. The file also indicates if the metabolite is a substrate or a product of the reaction. Parameters ---------- filename: str Name of the output (txt file). Returns ------- None """ assert filename != "" f = open(filename, "w") for reaction in self.mutant_model.getListOfReactions(): reaction_id = reaction.getId() nb_reactants = reaction.getNumReactants() nb_products = reaction.getNumProducts() for i in range(nb_reactants): f.write(reaction_id+" substrate "+reaction.getReactant(i).getSpecies()+"\n") for i in range(nb_products): f.write(reaction_id+" product "+reaction.getProduct(i).getSpecies()+"\n") f.close() ### Write wild-type SBML file ### def write_wild_type_SBML_file( self ): """ Write the wild-type model in a SBML file. Parameters ---------- None Returns ------- None """ libsbml.writeSBMLToFile(self.wild_type_document, "output/wild_type.xml") ### Write mutant SBML file ### def write_mutant_SBML_file( self ): """ Write the mutant model in a SBML file. Parameters ---------- None Returns ------- None """ libsbml.writeSBMLToFile(self.mutant_document, "output/mutant.xml") ### Create wild-type CPS file ### def create_wild_type_cps_file( self ): """ Create a CPS file from the wild-type SBML file. Parameters ---------- None Returns ------- None """ cmd_line = self.copasi_path+" -i ./output/wild_type.xml" process = subprocess.call([cmd_line], stdout=subprocess.PIPE, shell=True) ### Create mutant CPS file ### def create_mutant_cps_file( self ): """ Create a CPS file from the mutant SBML file. Parameters ---------- None Returns ------- None """ cmd_line = self.copasi_path+" -i ./output/mutant.xml" process = subprocess.call([cmd_line], stdout=subprocess.PIPE, shell=True) ### Edit wild-type CPS file to schedule steady-state calculation ### def edit_wild_type_cps_file( self, task ): """ Edit wild-type CPS file to schedule steady-state calculation. Parameters ---------- task: str Define Copasi task (STEADY_STATE/MCA). Returns ------- None """ assert task in ["STEADY_STATE", "MCA"] f = open("./output/wild_type.cps", "r") cps = f.read() f.close() upper_text = cps.split("<ListOfTasks>")[0] lower_text = cps.split("</ListOfReports>")[1] edited_file = "" edited_file += upper_text if task == "STEADY_STATE": #~~~~~~~~~~~~~~~~~~# # Write the task # #~~~~~~~~~~~~~~~~~~# edited_file += ' <ListOfTasks>\n' edited_file += ' <Task key="Task_1" name="Steady-State" type="steadyState" scheduled="true" updateModel="false">\n' edited_file += ' <Report reference="Report_1" target="wild_type_output.txt" append="1" confirmOverwrite="1"/>\n' edited_file += ' <Problem>\n' edited_file += ' <Parameter name="JacobianRequested" type="bool" value="1"/>\n' edited_file += ' <Parameter name="StabilityAnalysisRequested" type="bool" value="1"/>\n' edited_file += ' </Problem>\n' edited_file += ' <Method name="Enhanced Newton" type="EnhancedNewton">\n' edited_file += ' <Parameter name="Resolution" type="unsignedFloat" value="1.0000000000000001e-12"/>\n' edited_file += ' <Parameter name="Derivation Factor" type="unsignedFloat" value="0.001"/>\n' edited_file += ' <Parameter name="Use Newton" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Integration" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Back Integration" type="bool" value="0"/>\n' edited_file += ' <Parameter name="Accept Negative Concentrations" type="bool" value="0"/>\n' edited_file += ' <Parameter name="Iteration Limit" type="unsignedInteger" value="50"/>\n' edited_file += ' <Parameter name="Maximum duration for forward integration" type="unsignedFloat" value="1000000000"/>\n' edited_file += ' <Parameter name="Maximum duration for backward integration" type="unsignedFloat" value="1000000"/>\n' edited_file += ' </Method>\n' edited_file += ' </Task>\n' edited_file += ' </ListOfTasks>\n' #~~~~~~~~~~~~~~~~~~# # Write the report # #~~~~~~~~~~~~~~~~~~# edited_file += ' <ListOfReports>\n' edited_file += ' <Report key="Report_1" name="Steady-State" taskType="steadyState" separator="&#x09;" precision="6">\n' edited_file += ' <Comment>\n' edited_file += ' Automatically generated report.\n' edited_file += ' </Comment>\n' edited_file += ' <Footer>\n' edited_file += ' <Object cn="CN=Root,Vector=TaskList[Steady-State]"/>\n' edited_file += ' </Footer>\n' edited_file += ' </Report>\n' edited_file += ' </ListOfReports>\n' elif task == "MCA": #~~~~~~~~~~~~~~~~~~# # Write the task # #~~~~~~~~~~~~~~~~~~# edited_file += ' <ListOfTasks>\n' edited_file += ' <Task key="Task_1" name="Steady-State" type="steadyState" scheduled="false" updateModel="false">\n' edited_file += ' <Report reference="Report_1" target="" append="1" confirmOverwrite="1"/>\n' edited_file += ' <Problem>\n' edited_file += ' <Parameter name="JacobianRequested" type="bool" value="1"/>\n' edited_file += ' <Parameter name="StabilityAnalysisRequested" type="bool" value="1"/>\n' edited_file += ' </Problem>\n' edited_file += ' <Method name="Enhanced Newton" type="EnhancedNewton">\n' edited_file += ' <Parameter name="Resolution" type="unsignedFloat" value="1.0000000000000001e-12"/>\n' edited_file += ' <Parameter name="Derivation Factor" type="unsignedFloat" value="0.001"/>\n' edited_file += ' <Parameter name="Use Newton" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Integration" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Back Integration" type="bool" value="0"/>\n' edited_file += ' <Parameter name="Accept Negative Concentrations" type="bool" value="0"/>\n' edited_file += ' <Parameter name="Iteration Limit" type="unsignedInteger" value="50"/>\n' edited_file += ' <Parameter name="Maximum duration for forward integration" type="unsignedFloat" value="1000000000"/>\n' edited_file += ' <Parameter name="Maximum duration for backward integration" type="unsignedFloat" value="1000000"/>\n' edited_file += ' </Method>\n' edited_file += ' </Task>\n' edited_file += ' <Task key="Task_2" name="Metabolic Control Analysis" type="metabolicControlAnalysis" scheduled="true" updateModel="false">\n' edited_file += ' <Report reference="Report_1" target="wild_type_output.txt" append="1" confirmOverwrite="1"/>\n' edited_file += ' <Problem>\n' edited_file += ' <Parameter name="Steady-State" type="key" value="Task_1"/>\n' edited_file += ' </Problem>\n' edited_file += ' <Method name="MCA Method (Reder)" type="MCAMethod(Reder)">\n' edited_file += ' <Parameter name="Modulation Factor" type="unsignedFloat" value="1.0000000000000001e-09"/>\n' edited_file += ' <Parameter name="Use Reder" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Smallbone" type="bool" value="1"/>\n' edited_file += ' </Method>\n' edited_file += ' </Task>\n' edited_file += ' </ListOfTasks>\n' #~~~~~~~~~~~~~~~~~~# # Write the report # #~~~~~~~~~~~~~~~~~~# edited_file += ' <ListOfReports>\n' edited_file += ' <Report key="Report_1" name="Metabolic Control Analysis" taskType="metabolicControlAnalysis" separator="&#x09;" precision="6">\n' edited_file += ' <Comment>\n' edited_file += ' Automatically generated report.\n' edited_file += ' </Comment>\n' edited_file += ' <Header>\n' edited_file += ' <Object cn="CN=Root,Vector=TaskList[Metabolic Control Analysis],Object=Description"/>\n' edited_file += ' </Header>\n' edited_file += ' <Footer>\n' edited_file += ' <Object cn="String=&#x0a;"/>\n' edited_file += ' <Object cn="CN=Root,Vector=TaskList[Metabolic Control Analysis],Object=Result"/>\n' edited_file += ' </Footer>\n' edited_file += ' </Report>\n' edited_file += ' </ListOfReports>\n' edited_file += lower_text f = open("./output/wild_type.cps", "w") f.write(edited_file) f.close() ### Edit mutant CPS file to schedule steady-state calculation ### def edit_mutant_cps_file( self, task ): """ Edit mutant CPS file to schedule steady-state calculation. Parameters ---------- task: str Define Copasi task (STEADY_STATE/MCA). Returns ------- None """ assert task in ["STEADY_STATE", "MCA"] f = open("./output/mutant.cps", "r") cps = f.read() f.close() upper_text = cps.split("<ListOfTasks>")[0] lower_text = cps.split("</ListOfReports>")[1] edited_file = "" edited_file += upper_text if task == "STEADY_STATE": #~~~~~~~~~~~~~~~~~~# # Write the task # #~~~~~~~~~~~~~~~~~~# edited_file += ' <ListOfTasks>\n' edited_file += ' <Task key="Task_1" name="Steady-State" type="steadyState" scheduled="true" updateModel="false">\n' edited_file += ' <Report reference="Report_1" target="mutant_output.txt" append="1" confirmOverwrite="1"/>\n' edited_file += ' <Problem>\n' edited_file += ' <Parameter name="JacobianRequested" type="bool" value="1"/>\n' edited_file += ' <Parameter name="StabilityAnalysisRequested" type="bool" value="1"/>\n' edited_file += ' </Problem>\n' edited_file += ' <Method name="Enhanced Newton" type="EnhancedNewton">\n' edited_file += ' <Parameter name="Resolution" type="unsignedFloat" value="1.0000000000000001e-12"/>\n' edited_file += ' <Parameter name="Derivation Factor" type="unsignedFloat" value="0.001"/>\n' edited_file += ' <Parameter name="Use Newton" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Integration" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Back Integration" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Accept Negative Concentrations" type="bool" value="0"/>\n' edited_file += ' <Parameter name="Iteration Limit" type="unsignedInteger" value="50"/>\n' edited_file += ' <Parameter name="Maximum duration for forward integration" type="unsignedFloat" value="1000000000"/>\n' edited_file += ' <Parameter name="Maximum duration for backward integration" type="unsignedFloat" value="1000000"/>\n' edited_file += ' </Method>\n' edited_file += ' </Task>\n' edited_file += ' </ListOfTasks>\n' #~~~~~~~~~~~~~~~~~~# # Write the report # #~~~~~~~~~~~~~~~~~~# edited_file += ' <ListOfReports>\n' edited_file += ' <Report key="Report_1" name="Steady-State" taskType="steadyState" separator="&#x09;" precision="6">\n' edited_file += ' <Comment>\n' edited_file += ' Automatically generated report.\n' edited_file += ' </Comment>\n' edited_file += ' <Footer>\n' edited_file += ' <Object cn="CN=Root,Vector=TaskList[Steady-State]"/>\n' edited_file += ' </Footer>\n' edited_file += ' </Report>\n' edited_file += ' </ListOfReports>\n' elif task == "MCA": #~~~~~~~~~~~~~~~~~~# # Write the task # #~~~~~~~~~~~~~~~~~~# edited_file += ' <ListOfTasks>\n' edited_file += ' <Task key="Task_1" name="Steady-State" type="steadyState" scheduled="false" updateModel="false">\n' edited_file += ' <Report reference="Report_1" target="" append="1" confirmOverwrite="1"/>\n' edited_file += ' <Problem>\n' edited_file += ' <Parameter name="JacobianRequested" type="bool" value="1"/>\n' edited_file += ' <Parameter name="StabilityAnalysisRequested" type="bool" value="1"/>\n' edited_file += ' </Problem>\n' edited_file += ' <Method name="Enhanced Newton" type="EnhancedNewton">\n' edited_file += ' <Parameter name="Resolution" type="unsignedFloat" value="1.0000000000000001e-09"/>\n' edited_file += ' <Parameter name="Derivation Factor" type="unsignedFloat" value="0.001"/>\n' edited_file += ' <Parameter name="Use Newton" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Integration" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Back Integration" type="bool" value="0"/>\n' edited_file += ' <Parameter name="Accept Negative Concentrations" type="bool" value="0"/>\n' edited_file += ' <Parameter name="Iteration Limit" type="unsignedInteger" value="50"/>\n' edited_file += ' <Parameter name="Maximum duration for forward integration" type="unsignedFloat" value="1000000000"/>\n' edited_file += ' <Parameter name="Maximum duration for backward integration" type="unsignedFloat" value="1000000"/>\n' edited_file += ' </Method>\n' edited_file += ' </Task>\n' edited_file += ' <Task key="Task_2" name="Metabolic Control Analysis" type="metabolicControlAnalysis" scheduled="true" updateModel="false">\n' edited_file += ' <Report reference="Report_1" target="mutant_output.txt" append="1" confirmOverwrite="1"/>\n' edited_file += ' <Problem>\n' edited_file += ' <Parameter name="Steady-State" type="key" value="Task_1"/>\n' edited_file += ' </Problem>\n' edited_file += ' <Method name="MCA Method (Reder)" type="MCAMethod(Reder)">\n' edited_file += ' <Parameter name="Modulation Factor" type="unsignedFloat" value="1.0000000000000001e-09"/>\n' edited_file += ' <Parameter name="Use Reder" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Smallbone" type="bool" value="1"/>\n' edited_file += ' </Method>\n' edited_file += ' </Task>\n' edited_file += ' </ListOfTasks>\n' #~~~~~~~~~~~~~~~~~~# # Write the report # #~~~~~~~~~~~~~~~~~~# edited_file += ' <ListOfReports>\n' edited_file += ' <Report key="Report_1" name="Metabolic Control Analysis" taskType="metabolicControlAnalysis" separator="&#x09;" precision="6">\n' edited_file += ' <Comment>\n' edited_file += ' Automatically generated report.\n' edited_file += ' </Comment>\n' edited_file += ' <Header>\n' edited_file += ' <Object cn="CN=Root,Vector=TaskList[Metabolic Control Analysis],Object=Description"/>\n' edited_file += ' </Header>\n' edited_file += ' <Footer>\n' edited_file += ' <Object cn="String=&#x0a;"/>\n' edited_file += ' <Object cn="CN=Root,Vector=TaskList[Metabolic Control Analysis],Object=Result"/>\n' edited_file += ' </Footer>\n' edited_file += ' </Report>\n' edited_file += ' </ListOfReports>\n' edited_file += lower_text f = open("./output/mutant.cps", "w") f.write(edited_file) f.close() ### Run Copasi for the wild-type model ### def run_copasi_for_wild_type( self ): """ Run Copasi to compute the wild-type steady-state and update model state. Parameters ---------- None Returns ------- None """ if os.path.isfile("./output/wild_type_output.txt"): os.system("rm ./output/wild_type_output.txt") cmd_line = self.copasi_path+" ./output/wild_type.cps" process = subprocess.call([cmd_line], stdout=subprocess.PIPE, shell=True) ### Run Copasi for the mutant model ### def run_copasi_for_mutant( self ): """ Run Copasi to compute the mutant steady-state and update model state. Parameters ---------- None Returns ------- None """ if os.path.isfile("./output/mutant_output.txt"): os.system("rm ./output/mutant_output.txt") cmd_line = self.copasi_path+" ./output/mutant.cps" process = subprocess.call([cmd_line], stdout=subprocess.PIPE, shell=True) ### Parse Copasi output file ### def parse_copasi_output( self, filename, task ): """ Parse the Copasi output 'filename'. Parameters ---------- filename: str Name of the Copasi output (txt file). task: str Define Copasi task (STEADY_STATE/MCA). Returns ------- - boolean, list of [str, float] lists, list of [str, float] lists if task == "STEADY_STATE" - boolean, list of [str], list of [str], list of list of [str] if task == "MCA" """ assert os.path.isfile(filename), "The Copasi output \""+filename+"\" does not exist. Exit." assert task in ["STEADY_STATE", "MCA"] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Parse to extract the steady-state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# if task == "STEADY_STATE": concentrations = [] fluxes = [] parse_concentrations = False parse_fluxes = False f = open(filename, "r") l = f.readline() if "No steady state with given resolution was found!" in l: return False, concentrations, fluxes while l: if l == "\n" and parse_concentrations: parse_concentrations = False if l == "\n" and parse_fluxes: parse_fluxes = False if parse_concentrations: name = l.split("\t")[0] val = l.split("\t")[1] concentrations.append([name, val]) if parse_fluxes: name = l.split("\t")[0] val = l.split("\t")[1] fluxes.append([name, val]) if l.startswith("Species"): parse_concentrations = True if l.startswith("Reaction"): parse_fluxes = True l = f.readline() f.close() return True, concentrations, fluxes #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Parse to extract the MCA result # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# elif task == "MCA": colnames = [] rownames = [] unscaled = [] scaled = [] N = 0 f = open(filename, "r") l = f.readline() while l: if l.startswith("Unscaled concentration control coefficients"): l = f.readline() l = f.readline() l = f.readline() l = f.readline() colnames = l.strip("\n\t").split("\t") N = len(colnames) l = f.readline() for i in range(len(colnames)): colnames[i] = colnames[i].strip("()") while l != "\n": l = l.strip("\n\t").split("\t") rownames.append(l[0]) unscaled.append(l[1:(N+1)]) l = f.readline() if l.startswith("Scaled concentration control coefficients"): l = f.readline() l = f.readline() l = f.readline() l = f.readline() l = f.readline() while l != "\n": l = l.strip("\n\t").split("\t") scaled.append(l[1:(N+1)]) l = f.readline() break l = f.readline() f.close() return rownames, colnames, unscaled, scaled ### Compute wild-type steady-state ### def compute_wild_type_steady_state( self ): """ Compute and save the wild-type steady-state. Parameters ---------- None Returns ------- Boolean """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Compute the steady-state with Copasi # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.write_wild_type_SBML_file() self.create_wild_type_cps_file() self.edit_wild_type_cps_file("STEADY_STATE") self.run_copasi_for_wild_type() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Extract steady-state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# success, concentrations, fluxes = self.parse_copasi_output("./output/wild_type_output.txt", "STEADY_STATE") if not success: return False #assert success, "The model is unstable. Exit." #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Update model and lists # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.wild_type_absolute_sum = 0.0 for elmt in concentrations: species_id = elmt[0] species_value = float(elmt[1]) assert species_id in self.species if not self.species[species_id]["constant"]: self.species[species_id]["wild_type_value"] = species_value self.species[species_id]["mutant_value"] = species_value self.wild_type_absolute_sum += species_value for elmt in fluxes: reaction_id = elmt[0] reaction_value = float(elmt[1]) assert reaction_id in self.reactions self.reactions[reaction_id]["wild_type_value"] = reaction_value self.reactions[reaction_id]["mutant_value"] = reaction_value return True ### Compute mutant steady-state ### def compute_mutant_steady_state( self ): """ Compute and save the mutant steady-state. Parameters ---------- None Returns ------- Boolean """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Compute the steady-state with Copasi # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.write_mutant_SBML_file() self.create_mutant_cps_file() self.edit_mutant_cps_file("STEADY_STATE") self.run_copasi_for_mutant() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Extract steady-state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# success, concentrations, fluxes = self.parse_copasi_output("./output/mutant_output.txt", "STEADY_STATE") if not success: return False #assert success, "The model is unstable. Exit." #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Update model and lists # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.mutant_absolute_sum = 0.0 for elmt in concentrations: species_id = elmt[0] species_value = float(elmt[1]) assert species_id in self.species if not self.species[species_id]["constant"]: self.species[species_id]["mutant_value"] = species_value self.mutant_absolute_sum += species_value for elmt in fluxes: reaction_id = elmt[0] reaction_value = float(elmt[1]) assert reaction_id in self.reactions self.reactions[reaction_id]["mutant_value"] = reaction_value return True ### Update species initial concentrations ### def update_initial_concentrations( self ): """ Update initial concentrations in the mutant model. Parameters ---------- None Returns ------- None """ for species_item in self.species.items(): species_id = species_item[0] if not self.species[species_id]["constant"]: self.set_species_initial_value(species_id, self.species[species_id]["mutant_value"]) ### Compute the metabolic sum distance between the wild-type and the mutant ### def compute_sum_distance( self ): """ Compute the metabolic sum distance between the wild-type and the mutant. Parameters ---------- None Returns ------- None """ self.absolute_sum_distance = abs(self.wild_type_absolute_sum-self.mutant_absolute_sum) ### Compute the MOMA distance between the wild-type and the mutant ### def compute_moma_distance( self ): """ Compute the MOMA distance between the wild-type and the mutant, based on target fluxes. (MOMA: Minimization Of Metabolic Adjustment) Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Compute absolute and relative MOMA distance on target fluxes # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.absolute_moma_distance = 0.0 self.relative_moma_distance = 0.0 for target_flux in self.objective_function: reaction_id = target_flux[0] coefficient = target_flux[1] wild_type_value = self.reactions[reaction_id]["wild_type_value"] mutant_value = self.reactions[reaction_id]["mutant_value"] self.absolute_moma_distance += (wild_type_value-mutant_value)*(wild_type_value-mutant_value) self.relative_moma_distance += (wild_type_value-mutant_value)/wild_type_value*(wild_type_value-mutant_value)/wild_type_value self.absolute_moma_distance = np.sqrt(self.absolute_moma_distance) self.relative_moma_distance = np.sqrt(self.relative_moma_distance) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Compute absolute and relative MOMA distance on all the fluxes # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.absolute_moma_all_distance = 0.0 self.relative_moma_all_distance = 0.0 wild_type_flux_array = self.get_wild_type_reaction_array() mutant_flux_array = self.get_mutant_reaction_array() for i in range(self.get_number_of_reactions()): wild_type_value = wild_type_flux_array[i] mutant_value = mutant_flux_array[i] if wild_type_value > 1e-10: self.absolute_moma_all_distance += (wild_type_value-mutant_value)*(wild_type_value-mutant_value) self.relative_moma_all_distance += (wild_type_value-mutant_value)/wild_type_value*(wild_type_value-mutant_value)/wild_type_value self.absolute_moma_all_distance = np.sqrt(self.absolute_moma_all_distance) self.relative_moma_all_distance = np.sqrt(self.relative_moma_all_distance) ### Compute wild-type metabolic control analysis (MCA) ### def compute_wild_type_metabolic_control_analysis( self ): """ Compute and save the wild-type metabolic control analysis (MCA). Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Compute the steady-state with Copasi # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.write_wild_type_SBML_file() self.create_wild_type_cps_file() self.edit_wild_type_cps_file("MCA") self.run_copasi_for_wild_type() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Extract the MCA result # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# rownames, colnames, unscaled, scaled = self.parse_copasi_output("./output/wild_type_output.txt", "MCA") #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Write control coefficients data # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# f = open("./output/wild_type_MCA_unscaled.txt", "w") f.write("species_id species_value flux_id flux_value control_coef\n") for i in range(len(rownames)): for j in range(len(colnames)): species_id = rownames[i] flux_id = colnames[j] species_value = self.species[species_id]["wild_type_value"] flux_value = self.reactions[flux_id]["wild_type_value"] control_coef = unscaled[i][j] f.write(species_id+" "+str(species_value)+" "+flux_id+" "+str(flux_value)+" "+control_coef+"\n") f.close() f = open("./output/wild_type_MCA_scaled.txt", "w") f.write("species_id species_value flux_id flux_value control_coef\n") for i in range(len(rownames)): for j in range(len(colnames)): species_id = rownames[i] flux_id = colnames[j] species_value = self.species[species_id]["wild_type_value"] flux_value = self.reactions[flux_id]["wild_type_value"] control_coef = scaled[i][j] f.write(species_id+" "+str(species_value)+" "+flux_id+" "+str(flux_value)+" "+control_coef+"\n") f.close() ### Compute mutant metabolic control analysis (MCA) ### def compute_mutant_metabolic_control_analysis( self ): """ Compute and save the mutant metabolic control analysis (MCA). Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Compute the steady-state with Copasi # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.write_mutant_SBML_file() self.create_mutant_cps_file() self.edit_mutant_cps_file("MCA") self.run_copasi_for_mutant() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Extract the MCA result # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# rownames, colnames, unscaled, scaled = self.parse_copasi_output("./output/mutant_output.txt", "MCA") #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Write control coefficients matrices # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# f = open("./output/mutant_MCA_unscaled.txt", "w") for colname in colnames: f.write(" "+colname) f.write("\n") for i in range(len(rownames)): f.write(rowname) for elmt in unscaled[i]: f.write(" "+elmt) f.write("\n") f.close() f = open("./output/mutant_MCA_scaled.txt", "w") for colname in colnames: f.write(" "+colname) f.write("\n") for i in range(len(rownames)): f.write(rowname) for elmt in scaled[i]: f.write(" "+elmt) f.write("\n") f.close() ### Build the graph of species ### def build_species_graph( self ): """ Build the metabolite-to-metabolite graph (mainly to compute shortest paths afterward). Parameters ---------- None Returns ------- None """ self.species_graph.clear() self.species_to_reaction = {} #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Create nodes from species # # identifiers # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for species_id in self.species.keys(): self.species_graph.add_node(species_id) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Create edges from reactions # # (All the species involved in the # # reaction are connected) # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for reaction in self.wild_type_model.getListOfReactions(): list_of_metabolites = [] for reactant in reaction.getListOfReactants(): species_id = reactant.getSpecies() if species_id in self.species.keys(): list_of_metabolites.append(species_id) if species_id not in self.species_to_reaction.keys(): self.species_to_reaction[species_id] = [reaction.getId()] else: self.species_to_reaction[species_id].append(reaction.getId()) for product in reaction.getListOfProducts(): species_id = product.getSpecies() if species_id in self.species.keys(): list_of_metabolites.append(species_id) if species_id not in self.species_to_reaction.keys(): self.species_to_reaction[species_id] = [reaction.getId()] else: self.species_to_reaction[species_id].append(reaction.getId()) #for modifier in reaction.getListOfModifiers(): # list_of_metabolites.append(modifier.getSpecies()) for i in range(len(list_of_metabolites)): for j in range(i+1, len(list_of_metabolites)): self.species_graph.add_edge(list_of_metabolites[i], list_of_metabolites[j]) ### Save shortest path lengths matrix ### def save_shortest_paths( self, filename ): """ Save the matrix of all pairwise metabolites shortest paths (assuming an undirected graph). Parameters ---------- filename: str Name of the Copasi output (txt file). Returns ------- None """ assert filename != "" #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Extract shortest path lengths # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# sp = nx.shortest_path_length(self.species_graph) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Build the matrix of shortest paths # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# sp_dict = {} list_of_metabolites = [] header = "" for line in sp: sp_dict[line[0]] = {} list_of_metabolites.append(line[0]) header += line[0]+" " for species in line[1]: sp_dict[line[0]][species] = line[1][species] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Write the file # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# written_reactions = [] f = open(filename, "w") f.write(header.strip(" ")+"\n") for sp1 in list_of_metabolites: for reaction in self.species_to_reaction[sp1]: if reaction not in written_reactions: written_reactions.append(reaction) line = reaction for sp2 in list_of_metabolites: line += " "+str(sp_dict[sp1][sp2]) f.write(line+"\n") f.close() ### Run a flux-drop analysis ### ### (the approach temporarily modifies mutant's kinetic equations) ### def flux_drop_analysis( self, drop_coefficient, filename, overwrite ): """ Run a flux-drop analysis. Each flux is independently dropped by a factor "drop_coefficient" and the relative MOMA distance from wild-type target fluxes is computed. The result is saved in a file "filename", one flux per line. Parameters ---------- drop_coefficient: float Value of the drop coefficient (> 0.0). filename: str Name of the output (txt file). overwrite: bool Indicates if new data should overwrite or be appended to the file. Returns ------- None """ assert drop_coefficient > 0.0 assert filename != "" #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Initialize model states # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.compute_wild_type_steady_state() self.compute_mutant_steady_state() self.compute_moma_distance() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Open the output file depending on # # overwrite parameter # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# if overwrite or not os.path.isfile(filename): f = open(filename, "w") f.write("drop_value reaction dist\n") else: f = open(filename, 'a') #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Run the flux drop analysis # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for reaction in self.mutant_model.getListOfReactions(): reaction_id = reaction.getId() #if not reaction_id in fluxes_to_ignore: form_str_default = reaction.getKineticLaw().getFormula() form_str_edited = str(drop_coefficient)+" * "+form_str_default math_exp_default = libsbml.parseL3Formula(form_str_default) math_exp_edited = libsbml.parseL3Formula(form_str_edited) reaction.getKineticLaw().setMath(math_exp_edited) success = self.compute_mutant_steady_state() if success: self.compute_moma_distance() f.write(str(drop_coefficient)+" "+reaction_id+" "+str(self.relative_moma_distance)+"\n") f.flush() else: print(" >>> Failed to find steady-state for "+reaction_id) f.write(str(drop_coefficient)+" "+reaction_id+" NA\n") f.flush() reaction.getKineticLaw().setMath(math_exp_default) for species_id in self.species: self.species[species_id]["initial_value"] = self.species[species_id]["wild_type_value"] self.species[species_id]["mutant_value"] = self.species[species_id]["wild_type_value"] for parameter_metaid in self.parameters: self.set_mutant_parameter_value(parameter_metaid, self.get_wild_type_parameter_value(parameter_metaid)) for reaction_id in self.reactions: self.reactions[reaction_id]["mutant_value"] = self.reactions[reaction_id]["wild_type_value"] f.close()
(sbml_filename, objective_function, copasi_path)
20,456
metevolsim.metevolsim
__init__
Model class constructor. Parameters ---------- sbml_filename : str Path of the SBML model file. The SBML model is automatically loaded. objective_function : list of [str, float] Objective function (list of reaction identifiers and coefficients). copasi_path : str Location of Copasi executable. Returns ------- None
def __init__( self, sbml_filename, objective_function, copasi_path ): """ Model class constructor. Parameters ---------- sbml_filename : str Path of the SBML model file. The SBML model is automatically loaded. objective_function : list of [str, float] Objective function (list of reaction identifiers and coefficients). copasi_path : str Location of Copasi executable. Returns ------- None """ assert os.path.isfile(sbml_filename), "The SBML file \""+sbml_filename+"\" does not exist. Exit." assert os.path.isfile(copasi_path), "The executable \""+copasi_path+"\" does not exist. Exit." #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Main SBML data # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.sbml_filename = sbml_filename self.reader = libsbml.SBMLReader() self.wild_type_document = self.reader.readSBMLFromFile(self.sbml_filename) self.mutant_document = self.reader.readSBMLFromFile(self.sbml_filename) self.wild_type_model = self.wild_type_document.getModel() self.mutant_model = self.mutant_document.getModel() self.copasi_path = copasi_path #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) List of model variables (species, reactions, parameters) # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.species = {} self.parameters = {} self.reactions = {} self.rebuild_metaids() self.build_species_list() self.build_parameter_list() self.build_reaction_list() self.replace_variable_names() self.write_list_of_variables() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Graph analysis # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.species_graph = nx.Graph() self.species_to_reaction = {} #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 4) Model evaluation # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.objective_function = objective_function self.wild_type_absolute_sum = 0.0 self.mutant_absolute_sum = 0.0 self.absolute_sum_distance = 0.0 self.absolute_moma_distance = 0.0 self.relative_moma_distance = 0.0 self.absolute_moma_all_distance = 0.0 self.relative_moma_all_distance = 0.0 for target_flux in objective_function: assert target_flux[0] in self.reactions
(self, sbml_filename, objective_function, copasi_path)
20,457
metevolsim.metevolsim
build_parameter_list
Build the parameters list. Parameters ---------- None Returns ------- None
def build_parameter_list( self ): """ Build the parameters list. Parameters ---------- None Returns ------- None """ self.parameters = {} #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Parse main parameters # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for parameter in self.wild_type_model.getListOfParameters(): if parameter.getValue() != 0.0 and str(parameter.getValue()) != "nan": assert parameter.getMetaId() not in list(self.parameters) self.parameters[parameter.getMetaId()] = {} self.parameters[parameter.getMetaId()]["metaid"] = parameter.getMetaId() self.parameters[parameter.getMetaId()]["id"] = parameter.getId() self.parameters[parameter.getMetaId()]["wild_type_value"] = parameter.getValue() self.parameters[parameter.getMetaId()]["mutant_value"] = parameter.getValue() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Parse parameters for each reaction # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for reaction in self.wild_type_model.getListOfReactions(): for elmt in reaction.getListOfAllElements(): if elmt.getElementName() == "parameter" or elmt.getElementName() == "localParameter": if elmt.getValue() != 0.0 and str(elmt.getValue()) != "nan": assert elmt.getMetaId() not in list(self.parameters) self.parameters[elmt.getMetaId()] = {} self.parameters[elmt.getMetaId()]["metaid"] = elmt.getMetaId() self.parameters[elmt.getMetaId()]["id"] = elmt.getId() self.parameters[elmt.getMetaId()]["wild_type_value"] = elmt.getValue() self.parameters[elmt.getMetaId()]["mutant_value"] = elmt.getValue()
(self)
20,458
metevolsim.metevolsim
build_reaction_list
Build the reaction list. Parameters ---------- None Returns ------- None
def build_reaction_list( self ): """ Build the reaction list. Parameters ---------- None Returns ------- None """ self.reactions = {} for reaction in self.wild_type_model.getListOfReactions(): assert reaction.getId() not in list(self.reactions) self.reactions[reaction.getId()] = {"wild_type_value":0.0, "mutant_value":0.0} self.reactions[reaction.getId()]["metaid"] = reaction.getMetaId() self.reactions[reaction.getId()]["id"] = reaction.getId() self.reactions[reaction.getId()]["name"] = reaction.getName() self.reactions[reaction.getId()]["compartment"] = reaction.getCompartment()
(self)
20,459
metevolsim.metevolsim
build_species_graph
Build the metabolite-to-metabolite graph (mainly to compute shortest paths afterward). Parameters ---------- None Returns ------- None
def build_species_graph( self ): """ Build the metabolite-to-metabolite graph (mainly to compute shortest paths afterward). Parameters ---------- None Returns ------- None """ self.species_graph.clear() self.species_to_reaction = {} #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Create nodes from species # # identifiers # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for species_id in self.species.keys(): self.species_graph.add_node(species_id) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Create edges from reactions # # (All the species involved in the # # reaction are connected) # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for reaction in self.wild_type_model.getListOfReactions(): list_of_metabolites = [] for reactant in reaction.getListOfReactants(): species_id = reactant.getSpecies() if species_id in self.species.keys(): list_of_metabolites.append(species_id) if species_id not in self.species_to_reaction.keys(): self.species_to_reaction[species_id] = [reaction.getId()] else: self.species_to_reaction[species_id].append(reaction.getId()) for product in reaction.getListOfProducts(): species_id = product.getSpecies() if species_id in self.species.keys(): list_of_metabolites.append(species_id) if species_id not in self.species_to_reaction.keys(): self.species_to_reaction[species_id] = [reaction.getId()] else: self.species_to_reaction[species_id].append(reaction.getId()) #for modifier in reaction.getListOfModifiers(): # list_of_metabolites.append(modifier.getSpecies()) for i in range(len(list_of_metabolites)): for j in range(i+1, len(list_of_metabolites)): self.species_graph.add_edge(list_of_metabolites[i], list_of_metabolites[j])
(self)
20,460
metevolsim.metevolsim
build_species_list
Build the species list. Parameters ---------- None Returns ------- None
def build_species_list( self ): """ Build the species list. Parameters ---------- None Returns ------- None """ self.species = {} for species in self.wild_type_model.getListOfSpecies(): assert species.getId() not in list(self.species) self.species[species.getId()] = {} self.species[species.getId()]["metaid"] = species.getMetaId() self.species[species.getId()]["id"] = species.getId() self.species[species.getId()]["name"] = species.getName() if species.getName()=="": self.species[species.getId()]["name"] = "-" self.species[species.getId()]["compartment"] = species.getCompartment() self.species[species.getId()]["constant"] = species.getConstant() self.species[species.getId()]["boundary_condition"] = species.getBoundaryCondition() self.species[species.getId()]["initial_value"] = species.getInitialConcentration() self.species[species.getId()]["wild_type_value"] = species.getInitialConcentration() self.species[species.getId()]["mutant_value"] = species.getInitialConcentration() s1 = species.getAnnotationString().split("http://identifiers.org/kegg.compound/") s2 = "" if len(s1) == 1: s1 = species.getAnnotationString().split("https://identifiers.org/kegg.compound/") if len(s1) > 1: s2 = s1[1].split("\"/>\n")[0] if s2 != "": self.species[species.getId()]["kegg_id"] = "https://identifiers.org/kegg.compound/"+s2 else: self.species[species.getId()]["kegg_id"] = "-"
(self)
20,461
metevolsim.metevolsim
compute_moma_distance
Compute the MOMA distance between the wild-type and the mutant, based on target fluxes. (MOMA: Minimization Of Metabolic Adjustment) Parameters ---------- None Returns ------- None
def compute_moma_distance( self ): """ Compute the MOMA distance between the wild-type and the mutant, based on target fluxes. (MOMA: Minimization Of Metabolic Adjustment) Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Compute absolute and relative MOMA distance on target fluxes # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.absolute_moma_distance = 0.0 self.relative_moma_distance = 0.0 for target_flux in self.objective_function: reaction_id = target_flux[0] coefficient = target_flux[1] wild_type_value = self.reactions[reaction_id]["wild_type_value"] mutant_value = self.reactions[reaction_id]["mutant_value"] self.absolute_moma_distance += (wild_type_value-mutant_value)*(wild_type_value-mutant_value) self.relative_moma_distance += (wild_type_value-mutant_value)/wild_type_value*(wild_type_value-mutant_value)/wild_type_value self.absolute_moma_distance = np.sqrt(self.absolute_moma_distance) self.relative_moma_distance = np.sqrt(self.relative_moma_distance) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Compute absolute and relative MOMA distance on all the fluxes # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.absolute_moma_all_distance = 0.0 self.relative_moma_all_distance = 0.0 wild_type_flux_array = self.get_wild_type_reaction_array() mutant_flux_array = self.get_mutant_reaction_array() for i in range(self.get_number_of_reactions()): wild_type_value = wild_type_flux_array[i] mutant_value = mutant_flux_array[i] if wild_type_value > 1e-10: self.absolute_moma_all_distance += (wild_type_value-mutant_value)*(wild_type_value-mutant_value) self.relative_moma_all_distance += (wild_type_value-mutant_value)/wild_type_value*(wild_type_value-mutant_value)/wild_type_value self.absolute_moma_all_distance = np.sqrt(self.absolute_moma_all_distance) self.relative_moma_all_distance = np.sqrt(self.relative_moma_all_distance)
(self)
20,462
metevolsim.metevolsim
compute_mutant_metabolic_control_analysis
Compute and save the mutant metabolic control analysis (MCA). Parameters ---------- None Returns ------- None
def compute_mutant_metabolic_control_analysis( self ): """ Compute and save the mutant metabolic control analysis (MCA). Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Compute the steady-state with Copasi # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.write_mutant_SBML_file() self.create_mutant_cps_file() self.edit_mutant_cps_file("MCA") self.run_copasi_for_mutant() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Extract the MCA result # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# rownames, colnames, unscaled, scaled = self.parse_copasi_output("./output/mutant_output.txt", "MCA") #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Write control coefficients matrices # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# f = open("./output/mutant_MCA_unscaled.txt", "w") for colname in colnames: f.write(" "+colname) f.write("\n") for i in range(len(rownames)): f.write(rowname) for elmt in unscaled[i]: f.write(" "+elmt) f.write("\n") f.close() f = open("./output/mutant_MCA_scaled.txt", "w") for colname in colnames: f.write(" "+colname) f.write("\n") for i in range(len(rownames)): f.write(rowname) for elmt in scaled[i]: f.write(" "+elmt) f.write("\n") f.close()
(self)
20,463
metevolsim.metevolsim
compute_mutant_steady_state
Compute and save the mutant steady-state. Parameters ---------- None Returns ------- Boolean
def compute_mutant_steady_state( self ): """ Compute and save the mutant steady-state. Parameters ---------- None Returns ------- Boolean """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Compute the steady-state with Copasi # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.write_mutant_SBML_file() self.create_mutant_cps_file() self.edit_mutant_cps_file("STEADY_STATE") self.run_copasi_for_mutant() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Extract steady-state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# success, concentrations, fluxes = self.parse_copasi_output("./output/mutant_output.txt", "STEADY_STATE") if not success: return False #assert success, "The model is unstable. Exit." #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Update model and lists # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.mutant_absolute_sum = 0.0 for elmt in concentrations: species_id = elmt[0] species_value = float(elmt[1]) assert species_id in self.species if not self.species[species_id]["constant"]: self.species[species_id]["mutant_value"] = species_value self.mutant_absolute_sum += species_value for elmt in fluxes: reaction_id = elmt[0] reaction_value = float(elmt[1]) assert reaction_id in self.reactions self.reactions[reaction_id]["mutant_value"] = reaction_value return True
(self)
20,464
metevolsim.metevolsim
compute_sum_distance
Compute the metabolic sum distance between the wild-type and the mutant. Parameters ---------- None Returns ------- None
def compute_sum_distance( self ): """ Compute the metabolic sum distance between the wild-type and the mutant. Parameters ---------- None Returns ------- None """ self.absolute_sum_distance = abs(self.wild_type_absolute_sum-self.mutant_absolute_sum)
(self)
20,465
metevolsim.metevolsim
compute_wild_type_metabolic_control_analysis
Compute and save the wild-type metabolic control analysis (MCA). Parameters ---------- None Returns ------- None
def compute_wild_type_metabolic_control_analysis( self ): """ Compute and save the wild-type metabolic control analysis (MCA). Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Compute the steady-state with Copasi # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.write_wild_type_SBML_file() self.create_wild_type_cps_file() self.edit_wild_type_cps_file("MCA") self.run_copasi_for_wild_type() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Extract the MCA result # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# rownames, colnames, unscaled, scaled = self.parse_copasi_output("./output/wild_type_output.txt", "MCA") #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Write control coefficients data # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# f = open("./output/wild_type_MCA_unscaled.txt", "w") f.write("species_id species_value flux_id flux_value control_coef\n") for i in range(len(rownames)): for j in range(len(colnames)): species_id = rownames[i] flux_id = colnames[j] species_value = self.species[species_id]["wild_type_value"] flux_value = self.reactions[flux_id]["wild_type_value"] control_coef = unscaled[i][j] f.write(species_id+" "+str(species_value)+" "+flux_id+" "+str(flux_value)+" "+control_coef+"\n") f.close() f = open("./output/wild_type_MCA_scaled.txt", "w") f.write("species_id species_value flux_id flux_value control_coef\n") for i in range(len(rownames)): for j in range(len(colnames)): species_id = rownames[i] flux_id = colnames[j] species_value = self.species[species_id]["wild_type_value"] flux_value = self.reactions[flux_id]["wild_type_value"] control_coef = scaled[i][j] f.write(species_id+" "+str(species_value)+" "+flux_id+" "+str(flux_value)+" "+control_coef+"\n") f.close()
(self)
20,466
metevolsim.metevolsim
compute_wild_type_steady_state
Compute and save the wild-type steady-state. Parameters ---------- None Returns ------- Boolean
def compute_wild_type_steady_state( self ): """ Compute and save the wild-type steady-state. Parameters ---------- None Returns ------- Boolean """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Compute the steady-state with Copasi # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.write_wild_type_SBML_file() self.create_wild_type_cps_file() self.edit_wild_type_cps_file("STEADY_STATE") self.run_copasi_for_wild_type() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Extract steady-state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# success, concentrations, fluxes = self.parse_copasi_output("./output/wild_type_output.txt", "STEADY_STATE") if not success: return False #assert success, "The model is unstable. Exit." #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Update model and lists # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.wild_type_absolute_sum = 0.0 for elmt in concentrations: species_id = elmt[0] species_value = float(elmt[1]) assert species_id in self.species if not self.species[species_id]["constant"]: self.species[species_id]["wild_type_value"] = species_value self.species[species_id]["mutant_value"] = species_value self.wild_type_absolute_sum += species_value for elmt in fluxes: reaction_id = elmt[0] reaction_value = float(elmt[1]) assert reaction_id in self.reactions self.reactions[reaction_id]["wild_type_value"] = reaction_value self.reactions[reaction_id]["mutant_value"] = reaction_value return True
(self)
20,467
metevolsim.metevolsim
create_mutant_cps_file
Create a CPS file from the mutant SBML file. Parameters ---------- None Returns ------- None
def create_mutant_cps_file( self ): """ Create a CPS file from the mutant SBML file. Parameters ---------- None Returns ------- None """ cmd_line = self.copasi_path+" -i ./output/mutant.xml" process = subprocess.call([cmd_line], stdout=subprocess.PIPE, shell=True)
(self)
20,468
metevolsim.metevolsim
create_wild_type_cps_file
Create a CPS file from the wild-type SBML file. Parameters ---------- None Returns ------- None
def create_wild_type_cps_file( self ): """ Create a CPS file from the wild-type SBML file. Parameters ---------- None Returns ------- None """ cmd_line = self.copasi_path+" -i ./output/wild_type.xml" process = subprocess.call([cmd_line], stdout=subprocess.PIPE, shell=True)
(self)
20,469
metevolsim.metevolsim
deterministic_parameter_mutation
Mutate a given parameter 'param_metaid' by a given log10-scale factor. The mutation is centered on the wild-type value. x' = x*10^(factor) Parameters ---------- param_metaid: str Parameter meta identifier (as defined in the SBML model). factor: float Log10-scale factor. Returns ------- int, int
def deterministic_parameter_mutation( self, param_metaid, factor ): """ Mutate a given parameter 'param_metaid' by a given log10-scale factor. The mutation is centered on the wild-type value. x' = x*10^(factor) Parameters ---------- param_metaid: str Parameter meta identifier (as defined in the SBML model). factor: float Log10-scale factor. Returns ------- int, int """ assert param_metaid in list(self.parameters) wild_type_value = self.get_wild_type_parameter_value(param_metaid) mutant_value = wild_type_value*10.0**factor self.set_mutant_parameter_value(param_metaid, mutant_value) return wild_type_value, mutant_value
(self, param_metaid, factor)
20,470
metevolsim.metevolsim
edit_mutant_cps_file
Edit mutant CPS file to schedule steady-state calculation. Parameters ---------- task: str Define Copasi task (STEADY_STATE/MCA). Returns ------- None
def edit_mutant_cps_file( self, task ): """ Edit mutant CPS file to schedule steady-state calculation. Parameters ---------- task: str Define Copasi task (STEADY_STATE/MCA). Returns ------- None """ assert task in ["STEADY_STATE", "MCA"] f = open("./output/mutant.cps", "r") cps = f.read() f.close() upper_text = cps.split("<ListOfTasks>")[0] lower_text = cps.split("</ListOfReports>")[1] edited_file = "" edited_file += upper_text if task == "STEADY_STATE": #~~~~~~~~~~~~~~~~~~# # Write the task # #~~~~~~~~~~~~~~~~~~# edited_file += ' <ListOfTasks>\n' edited_file += ' <Task key="Task_1" name="Steady-State" type="steadyState" scheduled="true" updateModel="false">\n' edited_file += ' <Report reference="Report_1" target="mutant_output.txt" append="1" confirmOverwrite="1"/>\n' edited_file += ' <Problem>\n' edited_file += ' <Parameter name="JacobianRequested" type="bool" value="1"/>\n' edited_file += ' <Parameter name="StabilityAnalysisRequested" type="bool" value="1"/>\n' edited_file += ' </Problem>\n' edited_file += ' <Method name="Enhanced Newton" type="EnhancedNewton">\n' edited_file += ' <Parameter name="Resolution" type="unsignedFloat" value="1.0000000000000001e-12"/>\n' edited_file += ' <Parameter name="Derivation Factor" type="unsignedFloat" value="0.001"/>\n' edited_file += ' <Parameter name="Use Newton" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Integration" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Back Integration" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Accept Negative Concentrations" type="bool" value="0"/>\n' edited_file += ' <Parameter name="Iteration Limit" type="unsignedInteger" value="50"/>\n' edited_file += ' <Parameter name="Maximum duration for forward integration" type="unsignedFloat" value="1000000000"/>\n' edited_file += ' <Parameter name="Maximum duration for backward integration" type="unsignedFloat" value="1000000"/>\n' edited_file += ' </Method>\n' edited_file += ' </Task>\n' edited_file += ' </ListOfTasks>\n' #~~~~~~~~~~~~~~~~~~# # Write the report # #~~~~~~~~~~~~~~~~~~# edited_file += ' <ListOfReports>\n' edited_file += ' <Report key="Report_1" name="Steady-State" taskType="steadyState" separator="&#x09;" precision="6">\n' edited_file += ' <Comment>\n' edited_file += ' Automatically generated report.\n' edited_file += ' </Comment>\n' edited_file += ' <Footer>\n' edited_file += ' <Object cn="CN=Root,Vector=TaskList[Steady-State]"/>\n' edited_file += ' </Footer>\n' edited_file += ' </Report>\n' edited_file += ' </ListOfReports>\n' elif task == "MCA": #~~~~~~~~~~~~~~~~~~# # Write the task # #~~~~~~~~~~~~~~~~~~# edited_file += ' <ListOfTasks>\n' edited_file += ' <Task key="Task_1" name="Steady-State" type="steadyState" scheduled="false" updateModel="false">\n' edited_file += ' <Report reference="Report_1" target="" append="1" confirmOverwrite="1"/>\n' edited_file += ' <Problem>\n' edited_file += ' <Parameter name="JacobianRequested" type="bool" value="1"/>\n' edited_file += ' <Parameter name="StabilityAnalysisRequested" type="bool" value="1"/>\n' edited_file += ' </Problem>\n' edited_file += ' <Method name="Enhanced Newton" type="EnhancedNewton">\n' edited_file += ' <Parameter name="Resolution" type="unsignedFloat" value="1.0000000000000001e-09"/>\n' edited_file += ' <Parameter name="Derivation Factor" type="unsignedFloat" value="0.001"/>\n' edited_file += ' <Parameter name="Use Newton" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Integration" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Back Integration" type="bool" value="0"/>\n' edited_file += ' <Parameter name="Accept Negative Concentrations" type="bool" value="0"/>\n' edited_file += ' <Parameter name="Iteration Limit" type="unsignedInteger" value="50"/>\n' edited_file += ' <Parameter name="Maximum duration for forward integration" type="unsignedFloat" value="1000000000"/>\n' edited_file += ' <Parameter name="Maximum duration for backward integration" type="unsignedFloat" value="1000000"/>\n' edited_file += ' </Method>\n' edited_file += ' </Task>\n' edited_file += ' <Task key="Task_2" name="Metabolic Control Analysis" type="metabolicControlAnalysis" scheduled="true" updateModel="false">\n' edited_file += ' <Report reference="Report_1" target="mutant_output.txt" append="1" confirmOverwrite="1"/>\n' edited_file += ' <Problem>\n' edited_file += ' <Parameter name="Steady-State" type="key" value="Task_1"/>\n' edited_file += ' </Problem>\n' edited_file += ' <Method name="MCA Method (Reder)" type="MCAMethod(Reder)">\n' edited_file += ' <Parameter name="Modulation Factor" type="unsignedFloat" value="1.0000000000000001e-09"/>\n' edited_file += ' <Parameter name="Use Reder" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Smallbone" type="bool" value="1"/>\n' edited_file += ' </Method>\n' edited_file += ' </Task>\n' edited_file += ' </ListOfTasks>\n' #~~~~~~~~~~~~~~~~~~# # Write the report # #~~~~~~~~~~~~~~~~~~# edited_file += ' <ListOfReports>\n' edited_file += ' <Report key="Report_1" name="Metabolic Control Analysis" taskType="metabolicControlAnalysis" separator="&#x09;" precision="6">\n' edited_file += ' <Comment>\n' edited_file += ' Automatically generated report.\n' edited_file += ' </Comment>\n' edited_file += ' <Header>\n' edited_file += ' <Object cn="CN=Root,Vector=TaskList[Metabolic Control Analysis],Object=Description"/>\n' edited_file += ' </Header>\n' edited_file += ' <Footer>\n' edited_file += ' <Object cn="String=&#x0a;"/>\n' edited_file += ' <Object cn="CN=Root,Vector=TaskList[Metabolic Control Analysis],Object=Result"/>\n' edited_file += ' </Footer>\n' edited_file += ' </Report>\n' edited_file += ' </ListOfReports>\n' edited_file += lower_text f = open("./output/mutant.cps", "w") f.write(edited_file) f.close()
(self, task)
20,471
metevolsim.metevolsim
edit_wild_type_cps_file
Edit wild-type CPS file to schedule steady-state calculation. Parameters ---------- task: str Define Copasi task (STEADY_STATE/MCA). Returns ------- None
def edit_wild_type_cps_file( self, task ): """ Edit wild-type CPS file to schedule steady-state calculation. Parameters ---------- task: str Define Copasi task (STEADY_STATE/MCA). Returns ------- None """ assert task in ["STEADY_STATE", "MCA"] f = open("./output/wild_type.cps", "r") cps = f.read() f.close() upper_text = cps.split("<ListOfTasks>")[0] lower_text = cps.split("</ListOfReports>")[1] edited_file = "" edited_file += upper_text if task == "STEADY_STATE": #~~~~~~~~~~~~~~~~~~# # Write the task # #~~~~~~~~~~~~~~~~~~# edited_file += ' <ListOfTasks>\n' edited_file += ' <Task key="Task_1" name="Steady-State" type="steadyState" scheduled="true" updateModel="false">\n' edited_file += ' <Report reference="Report_1" target="wild_type_output.txt" append="1" confirmOverwrite="1"/>\n' edited_file += ' <Problem>\n' edited_file += ' <Parameter name="JacobianRequested" type="bool" value="1"/>\n' edited_file += ' <Parameter name="StabilityAnalysisRequested" type="bool" value="1"/>\n' edited_file += ' </Problem>\n' edited_file += ' <Method name="Enhanced Newton" type="EnhancedNewton">\n' edited_file += ' <Parameter name="Resolution" type="unsignedFloat" value="1.0000000000000001e-12"/>\n' edited_file += ' <Parameter name="Derivation Factor" type="unsignedFloat" value="0.001"/>\n' edited_file += ' <Parameter name="Use Newton" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Integration" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Back Integration" type="bool" value="0"/>\n' edited_file += ' <Parameter name="Accept Negative Concentrations" type="bool" value="0"/>\n' edited_file += ' <Parameter name="Iteration Limit" type="unsignedInteger" value="50"/>\n' edited_file += ' <Parameter name="Maximum duration for forward integration" type="unsignedFloat" value="1000000000"/>\n' edited_file += ' <Parameter name="Maximum duration for backward integration" type="unsignedFloat" value="1000000"/>\n' edited_file += ' </Method>\n' edited_file += ' </Task>\n' edited_file += ' </ListOfTasks>\n' #~~~~~~~~~~~~~~~~~~# # Write the report # #~~~~~~~~~~~~~~~~~~# edited_file += ' <ListOfReports>\n' edited_file += ' <Report key="Report_1" name="Steady-State" taskType="steadyState" separator="&#x09;" precision="6">\n' edited_file += ' <Comment>\n' edited_file += ' Automatically generated report.\n' edited_file += ' </Comment>\n' edited_file += ' <Footer>\n' edited_file += ' <Object cn="CN=Root,Vector=TaskList[Steady-State]"/>\n' edited_file += ' </Footer>\n' edited_file += ' </Report>\n' edited_file += ' </ListOfReports>\n' elif task == "MCA": #~~~~~~~~~~~~~~~~~~# # Write the task # #~~~~~~~~~~~~~~~~~~# edited_file += ' <ListOfTasks>\n' edited_file += ' <Task key="Task_1" name="Steady-State" type="steadyState" scheduled="false" updateModel="false">\n' edited_file += ' <Report reference="Report_1" target="" append="1" confirmOverwrite="1"/>\n' edited_file += ' <Problem>\n' edited_file += ' <Parameter name="JacobianRequested" type="bool" value="1"/>\n' edited_file += ' <Parameter name="StabilityAnalysisRequested" type="bool" value="1"/>\n' edited_file += ' </Problem>\n' edited_file += ' <Method name="Enhanced Newton" type="EnhancedNewton">\n' edited_file += ' <Parameter name="Resolution" type="unsignedFloat" value="1.0000000000000001e-12"/>\n' edited_file += ' <Parameter name="Derivation Factor" type="unsignedFloat" value="0.001"/>\n' edited_file += ' <Parameter name="Use Newton" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Integration" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Back Integration" type="bool" value="0"/>\n' edited_file += ' <Parameter name="Accept Negative Concentrations" type="bool" value="0"/>\n' edited_file += ' <Parameter name="Iteration Limit" type="unsignedInteger" value="50"/>\n' edited_file += ' <Parameter name="Maximum duration for forward integration" type="unsignedFloat" value="1000000000"/>\n' edited_file += ' <Parameter name="Maximum duration for backward integration" type="unsignedFloat" value="1000000"/>\n' edited_file += ' </Method>\n' edited_file += ' </Task>\n' edited_file += ' <Task key="Task_2" name="Metabolic Control Analysis" type="metabolicControlAnalysis" scheduled="true" updateModel="false">\n' edited_file += ' <Report reference="Report_1" target="wild_type_output.txt" append="1" confirmOverwrite="1"/>\n' edited_file += ' <Problem>\n' edited_file += ' <Parameter name="Steady-State" type="key" value="Task_1"/>\n' edited_file += ' </Problem>\n' edited_file += ' <Method name="MCA Method (Reder)" type="MCAMethod(Reder)">\n' edited_file += ' <Parameter name="Modulation Factor" type="unsignedFloat" value="1.0000000000000001e-09"/>\n' edited_file += ' <Parameter name="Use Reder" type="bool" value="1"/>\n' edited_file += ' <Parameter name="Use Smallbone" type="bool" value="1"/>\n' edited_file += ' </Method>\n' edited_file += ' </Task>\n' edited_file += ' </ListOfTasks>\n' #~~~~~~~~~~~~~~~~~~# # Write the report # #~~~~~~~~~~~~~~~~~~# edited_file += ' <ListOfReports>\n' edited_file += ' <Report key="Report_1" name="Metabolic Control Analysis" taskType="metabolicControlAnalysis" separator="&#x09;" precision="6">\n' edited_file += ' <Comment>\n' edited_file += ' Automatically generated report.\n' edited_file += ' </Comment>\n' edited_file += ' <Header>\n' edited_file += ' <Object cn="CN=Root,Vector=TaskList[Metabolic Control Analysis],Object=Description"/>\n' edited_file += ' </Header>\n' edited_file += ' <Footer>\n' edited_file += ' <Object cn="String=&#x0a;"/>\n' edited_file += ' <Object cn="CN=Root,Vector=TaskList[Metabolic Control Analysis],Object=Result"/>\n' edited_file += ' </Footer>\n' edited_file += ' </Report>\n' edited_file += ' </ListOfReports>\n' edited_file += lower_text f = open("./output/wild_type.cps", "w") f.write(edited_file) f.close()
(self, task)
20,472
metevolsim.metevolsim
flux_drop_analysis
Run a flux-drop analysis. Each flux is independently dropped by a factor "drop_coefficient" and the relative MOMA distance from wild-type target fluxes is computed. The result is saved in a file "filename", one flux per line. Parameters ---------- drop_coefficient: float Value of the drop coefficient (> 0.0). filename: str Name of the output (txt file). overwrite: bool Indicates if new data should overwrite or be appended to the file. Returns ------- None
def flux_drop_analysis( self, drop_coefficient, filename, overwrite ): """ Run a flux-drop analysis. Each flux is independently dropped by a factor "drop_coefficient" and the relative MOMA distance from wild-type target fluxes is computed. The result is saved in a file "filename", one flux per line. Parameters ---------- drop_coefficient: float Value of the drop coefficient (> 0.0). filename: str Name of the output (txt file). overwrite: bool Indicates if new data should overwrite or be appended to the file. Returns ------- None """ assert drop_coefficient > 0.0 assert filename != "" #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Initialize model states # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.compute_wild_type_steady_state() self.compute_mutant_steady_state() self.compute_moma_distance() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Open the output file depending on # # overwrite parameter # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# if overwrite or not os.path.isfile(filename): f = open(filename, "w") f.write("drop_value reaction dist\n") else: f = open(filename, 'a') #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Run the flux drop analysis # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for reaction in self.mutant_model.getListOfReactions(): reaction_id = reaction.getId() #if not reaction_id in fluxes_to_ignore: form_str_default = reaction.getKineticLaw().getFormula() form_str_edited = str(drop_coefficient)+" * "+form_str_default math_exp_default = libsbml.parseL3Formula(form_str_default) math_exp_edited = libsbml.parseL3Formula(form_str_edited) reaction.getKineticLaw().setMath(math_exp_edited) success = self.compute_mutant_steady_state() if success: self.compute_moma_distance() f.write(str(drop_coefficient)+" "+reaction_id+" "+str(self.relative_moma_distance)+"\n") f.flush() else: print(" >>> Failed to find steady-state for "+reaction_id) f.write(str(drop_coefficient)+" "+reaction_id+" NA\n") f.flush() reaction.getKineticLaw().setMath(math_exp_default) for species_id in self.species: self.species[species_id]["initial_value"] = self.species[species_id]["wild_type_value"] self.species[species_id]["mutant_value"] = self.species[species_id]["wild_type_value"] for parameter_metaid in self.parameters: self.set_mutant_parameter_value(parameter_metaid, self.get_wild_type_parameter_value(parameter_metaid)) for reaction_id in self.reactions: self.reactions[reaction_id]["mutant_value"] = self.reactions[reaction_id]["wild_type_value"] f.close()
(self, drop_coefficient, filename, overwrite)
20,473
metevolsim.metevolsim
get_mutant_parameter_value
Get the mutant value of the parameter 'param_metaid' Parameters ---------- param_metaid: str The meta identifier of the parameter (as defined in the SBML model). Returns ------- float
def get_mutant_parameter_value( self, param_metaid ): """ Get the mutant value of the parameter 'param_metaid' Parameters ---------- param_metaid: str The meta identifier of the parameter (as defined in the SBML model). Returns ------- float """ assert param_metaid in list(self.parameters) assert self.parameters[param_metaid]["mutant_value"] == self.mutant_model.getElementByMetaId(param_metaid).getValue() return self.parameters[param_metaid]["mutant_value"]
(self, param_metaid)
20,474
metevolsim.metevolsim
get_mutant_reaction_array
Get a numpy array of mutant reaction fluxes. Parameters ---------- None Returns ------- numpy array
def get_mutant_reaction_array( self ): """ Get a numpy array of mutant reaction fluxes. Parameters ---------- None Returns ------- numpy array """ vec = [] for reaction_id in self.reactions: vec.append(self.reactions[reaction_id]["mutant_value"]) return np.array(vec)
(self)
20,475
metevolsim.metevolsim
get_mutant_reaction_value
Get the wild-type value of the reaction 'reaction_id'. Parameters ---------- reaction_id: str The identifier of the reaction (as defined in the SBML model). Returns ------- float
def get_mutant_reaction_value( self, reaction_id ): """ Get the wild-type value of the reaction 'reaction_id'. Parameters ---------- reaction_id: str The identifier of the reaction (as defined in the SBML model). Returns ------- float """ assert reaction_id in list(self.reactions) return self.reactions[reaction_id]["mutant_value"]
(self, reaction_id)
20,476
metevolsim.metevolsim
get_mutant_species_array
Get a numpy array of mutant species abundances. Parameters ---------- None Returns ------- numpy array
def get_mutant_species_array( self ): """ Get a numpy array of mutant species abundances. Parameters ---------- None Returns ------- numpy array """ vec = [] for species_id in self.species: if not self.species[species_id]["constant"]: vec.append(self.species[species_id]["mutant_value"]) return np.array(vec)
(self)
20,477
metevolsim.metevolsim
get_mutant_species_value
Get the wild-type value of the species 'species_id'. Parameters ---------- species_id: str The identifier of the species (as defined in the SBML model). Returns ------- float
def get_mutant_species_value( self, species_id ): """ Get the wild-type value of the species 'species_id'. Parameters ---------- species_id: str The identifier of the species (as defined in the SBML model). Returns ------- float """ assert species_id in list(self.species) return self.species[species_id]["mutant_value"]
(self, species_id)
20,478
metevolsim.metevolsim
get_number_of_parameters
Get the number of kinetic parameters. Parameters ---------- None Returns ------- int
def get_number_of_parameters( self ): """ Get the number of kinetic parameters. Parameters ---------- None Returns ------- int """ return len(self.parameters)
(self)
20,479
metevolsim.metevolsim
get_number_of_reactions
Get the number of reactions. Parameters ---------- None Returns ------- int
def get_number_of_reactions( self ): """ Get the number of reactions. Parameters ---------- None Returns ------- int """ return len(self.reactions)
(self)
20,480
metevolsim.metevolsim
get_number_of_species
Get the number of species. Parameters ---------- None Returns ------- int
def get_number_of_species( self ): """ Get the number of species. Parameters ---------- None Returns ------- int """ return len(self.species)
(self)
20,481
metevolsim.metevolsim
get_number_of_variable_species
Get the number of variable species. Parameters ---------- None Returns ------- int
def get_number_of_variable_species( self ): """ Get the number of variable species. Parameters ---------- None Returns ------- int """ count = 0 for species_id in self.species: if not self.species[species_id]["constant"]: count += 1 return count
(self)
20,482
metevolsim.metevolsim
get_random_parameter
Get a kinetic parameter at random. Parameters ---------- None Returns ------- str
def get_random_parameter( self ): """ Get a kinetic parameter at random. Parameters ---------- None Returns ------- str """ param_index = np.random.randint(0, len(self.parameters)) param_metaid = list(self.parameters)[param_index] return param_metaid
(self)
20,483
metevolsim.metevolsim
get_wild_type_parameter_value
Get the wild-type value of the parameter 'param_metaid' Parameters ---------- param_metaid: str The meta identifier of the parameter (as defined in the SBML model). Returns ------- float
def get_wild_type_parameter_value( self, param_metaid ): """ Get the wild-type value of the parameter 'param_metaid' Parameters ---------- param_metaid: str The meta identifier of the parameter (as defined in the SBML model). Returns ------- float """ assert param_metaid in list(self.parameters) assert self.parameters[param_metaid]["wild_type_value"] == self.wild_type_model.getElementByMetaId(param_metaid).getValue() return self.parameters[param_metaid]["wild_type_value"]
(self, param_metaid)
20,484
metevolsim.metevolsim
get_wild_type_reaction_array
Get a numpy array of wild-type reaction fluxes. Parameters ---------- None Returns ------- numpy array
def get_wild_type_reaction_array( self ): """ Get a numpy array of wild-type reaction fluxes. Parameters ---------- None Returns ------- numpy array """ vec = [] for reaction_id in self.reactions: vec.append(self.reactions[reaction_id]["wild_type_value"]) return np.array(vec)
(self)
20,485
metevolsim.metevolsim
get_wild_type_reaction_value
Get the wild-type value of the reaction 'reaction_id'. Parameters ---------- reaction_id: str The identifier of the reaction (as defined in the SBML model). Returns ------- float
def get_wild_type_reaction_value( self, reaction_id ): """ Get the wild-type value of the reaction 'reaction_id'. Parameters ---------- reaction_id: str The identifier of the reaction (as defined in the SBML model). Returns ------- float """ assert reaction_id in list(self.reactions) return self.reactions[reaction_id]["wild_type_value"]
(self, reaction_id)
20,486
metevolsim.metevolsim
get_wild_type_species_array
Get a numpy array of wild-type species abundances. Parameters ---------- None Returns ------- numpy array
def get_wild_type_species_array( self ): """ Get a numpy array of wild-type species abundances. Parameters ---------- None Returns ------- numpy array """ vec = [] for species_id in self.species: if not self.species[species_id]["constant"]: vec.append(self.species[species_id]["wild_type_value"]) return np.array(vec)
(self)
20,487
metevolsim.metevolsim
get_wild_type_species_value
Get the wild-type value of the species 'species_id'. Parameters ---------- species_id: str The identifier of the species (as defined in the SBML model). Returns ------- float
def get_wild_type_species_value( self, species_id ): """ Get the wild-type value of the species 'species_id'. Parameters ---------- species_id: str The identifier of the species (as defined in the SBML model). Returns ------- float """ assert species_id in list(self.species) return self.species[species_id]["wild_type_value"]
(self, species_id)
20,488
metevolsim.metevolsim
parse_copasi_output
Parse the Copasi output 'filename'. Parameters ---------- filename: str Name of the Copasi output (txt file). task: str Define Copasi task (STEADY_STATE/MCA). Returns ------- - boolean, list of [str, float] lists, list of [str, float] lists if task == "STEADY_STATE" - boolean, list of [str], list of [str], list of list of [str] if task == "MCA"
def parse_copasi_output( self, filename, task ): """ Parse the Copasi output 'filename'. Parameters ---------- filename: str Name of the Copasi output (txt file). task: str Define Copasi task (STEADY_STATE/MCA). Returns ------- - boolean, list of [str, float] lists, list of [str, float] lists if task == "STEADY_STATE" - boolean, list of [str], list of [str], list of list of [str] if task == "MCA" """ assert os.path.isfile(filename), "The Copasi output \""+filename+"\" does not exist. Exit." assert task in ["STEADY_STATE", "MCA"] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Parse to extract the steady-state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# if task == "STEADY_STATE": concentrations = [] fluxes = [] parse_concentrations = False parse_fluxes = False f = open(filename, "r") l = f.readline() if "No steady state with given resolution was found!" in l: return False, concentrations, fluxes while l: if l == "\n" and parse_concentrations: parse_concentrations = False if l == "\n" and parse_fluxes: parse_fluxes = False if parse_concentrations: name = l.split("\t")[0] val = l.split("\t")[1] concentrations.append([name, val]) if parse_fluxes: name = l.split("\t")[0] val = l.split("\t")[1] fluxes.append([name, val]) if l.startswith("Species"): parse_concentrations = True if l.startswith("Reaction"): parse_fluxes = True l = f.readline() f.close() return True, concentrations, fluxes #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Parse to extract the MCA result # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# elif task == "MCA": colnames = [] rownames = [] unscaled = [] scaled = [] N = 0 f = open(filename, "r") l = f.readline() while l: if l.startswith("Unscaled concentration control coefficients"): l = f.readline() l = f.readline() l = f.readline() l = f.readline() colnames = l.strip("\n\t").split("\t") N = len(colnames) l = f.readline() for i in range(len(colnames)): colnames[i] = colnames[i].strip("()") while l != "\n": l = l.strip("\n\t").split("\t") rownames.append(l[0]) unscaled.append(l[1:(N+1)]) l = f.readline() if l.startswith("Scaled concentration control coefficients"): l = f.readline() l = f.readline() l = f.readline() l = f.readline() l = f.readline() while l != "\n": l = l.strip("\n\t").split("\t") scaled.append(l[1:(N+1)]) l = f.readline() break l = f.readline() f.close() return rownames, colnames, unscaled, scaled
(self, filename, task)
20,489
metevolsim.metevolsim
random_parameter_mutation
Mutate a given parameter 'param_metaid' through a log10-normal law of variance of sigma^2. x' = x*10^(N(0,sigma)) Parameters ---------- param_metaid: str Parameter meta identifier (as defined in the SBML model). sigma: float > 0.0 Log10-scale standard deviation. Returns ------- int, int
def random_parameter_mutation( self, param_metaid, sigma ): """ Mutate a given parameter 'param_metaid' through a log10-normal law of variance of sigma^2. x' = x*10^(N(0,sigma)) Parameters ---------- param_metaid: str Parameter meta identifier (as defined in the SBML model). sigma: float > 0.0 Log10-scale standard deviation. Returns ------- int, int """ assert param_metaid in list(self.parameters) assert sigma > 0.0 factor = np.random.normal(0.0, sigma, 1) wild_type_value = self.get_mutant_parameter_value(param_metaid) mutant_value = wild_type_value*10**factor[0] self.set_mutant_parameter_value(param_metaid, mutant_value) return wild_type_value, mutant_value
(self, param_metaid, sigma)
20,490
metevolsim.metevolsim
rebuild_metaids
Rebuild the unique metaids for all model variables. Parameters ---------- None Returns ------- None
def rebuild_metaids( self ): """ Rebuild the unique metaids for all model variables. Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Rebuild wild_type metaids # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# metaid = 0 for species in self.wild_type_model.getListOfSpecies(): species.setMetaId("_"+str(metaid)) metaid += 1 for parameter in self.wild_type_model.getListOfParameters(): parameter.setMetaId("_"+str(metaid)) metaid += 1 for reaction in self.wild_type_model.getListOfReactions(): for elmt in reaction.getListOfAllElements(): if elmt.getElementName() == "parameter" or elmt.getElementName() == "localParameter": parameter = elmt parameter.setMetaId("_"+str(metaid)) metaid += 1 for reaction in self.wild_type_model.getListOfReactions(): reaction.setMetaId("_"+str(metaid)) metaid += 1 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Rebuild mutant metaids # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# metaid = 0 for species in self.mutant_model.getListOfSpecies(): species.setMetaId("_"+str(metaid)) metaid += 1 for parameter in self.mutant_model.getListOfParameters(): parameter.setMetaId("_"+str(metaid)) metaid += 1 for reaction in self.mutant_model.getListOfReactions(): for elmt in reaction.getListOfAllElements(): if elmt.getElementName() == "parameter" or elmt.getElementName() == "localParameter": parameter = elmt parameter.setMetaId("_"+str(metaid)) metaid += 1 for reaction in self.mutant_model.getListOfReactions(): reaction.setMetaId("_"+str(metaid)) metaid += 1
(self)
20,491
metevolsim.metevolsim
replace_variable_names
Replace variable names by their identifiers to avoid collisions. Parameters ---------- None Returns ------- None
def replace_variable_names( self ): """ Replace variable names by their identifiers to avoid collisions. Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Replace variables names by identifiers in wild-type # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for species in self.wild_type_model.getListOfSpecies(): species_id = species.getId() assert species_id in self.species species.setName(species_id) for reaction in self.wild_type_model.getListOfReactions(): reaction_id = reaction.getId() assert reaction_id in self.reactions reaction.setName(reaction_id) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Replace species names by identifiers in mutant # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for species in self.mutant_model.getListOfSpecies(): species_id = species.getId() assert species_id in self.species species.setName(species_id) for reaction in self.mutant_model.getListOfReactions(): reaction_id = reaction.getId() assert reaction_id in self.reactions reaction.setName(reaction_id)
(self)
20,492
metevolsim.metevolsim
run_copasi_for_mutant
Run Copasi to compute the mutant steady-state and update model state. Parameters ---------- None Returns ------- None
def run_copasi_for_mutant( self ): """ Run Copasi to compute the mutant steady-state and update model state. Parameters ---------- None Returns ------- None """ if os.path.isfile("./output/mutant_output.txt"): os.system("rm ./output/mutant_output.txt") cmd_line = self.copasi_path+" ./output/mutant.cps" process = subprocess.call([cmd_line], stdout=subprocess.PIPE, shell=True)
(self)
20,493
metevolsim.metevolsim
run_copasi_for_wild_type
Run Copasi to compute the wild-type steady-state and update model state. Parameters ---------- None Returns ------- None
def run_copasi_for_wild_type( self ): """ Run Copasi to compute the wild-type steady-state and update model state. Parameters ---------- None Returns ------- None """ if os.path.isfile("./output/wild_type_output.txt"): os.system("rm ./output/wild_type_output.txt") cmd_line = self.copasi_path+" ./output/wild_type.cps" process = subprocess.call([cmd_line], stdout=subprocess.PIPE, shell=True)
(self)
20,494
metevolsim.metevolsim
save_shortest_paths
Save the matrix of all pairwise metabolites shortest paths (assuming an undirected graph). Parameters ---------- filename: str Name of the Copasi output (txt file). Returns ------- None
def save_shortest_paths( self, filename ): """ Save the matrix of all pairwise metabolites shortest paths (assuming an undirected graph). Parameters ---------- filename: str Name of the Copasi output (txt file). Returns ------- None """ assert filename != "" #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Extract shortest path lengths # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# sp = nx.shortest_path_length(self.species_graph) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Build the matrix of shortest paths # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# sp_dict = {} list_of_metabolites = [] header = "" for line in sp: sp_dict[line[0]] = {} list_of_metabolites.append(line[0]) header += line[0]+" " for species in line[1]: sp_dict[line[0]][species] = line[1][species] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Write the file # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# written_reactions = [] f = open(filename, "w") f.write(header.strip(" ")+"\n") for sp1 in list_of_metabolites: for reaction in self.species_to_reaction[sp1]: if reaction not in written_reactions: written_reactions.append(reaction) line = reaction for sp2 in list_of_metabolites: line += " "+str(sp_dict[sp1][sp2]) f.write(line+"\n") f.close()
(self, filename)
20,495
metevolsim.metevolsim
set_mutant_parameter_value
Set the mutant value of the parameter 'param_metaid'. Parameters ---------- param_metaid: str Parameter meta identifier (as defined in the SBML model). value: float Parameter value. Returns ------- None
def set_mutant_parameter_value( self, param_metaid, value ): """ Set the mutant value of the parameter 'param_metaid'. Parameters ---------- param_metaid: str Parameter meta identifier (as defined in the SBML model). value: float Parameter value. Returns ------- None """ assert param_metaid in list(self.parameters) self.parameters[param_metaid]["mutant_value"] = value self.mutant_model.getElementByMetaId(param_metaid).setValue(value)
(self, param_metaid, value)
20,496
metevolsim.metevolsim
set_species_initial_value
Set the initial concentration of the species 'species_id' in the mutant model. Parameters ---------- species_id: str Species identifier (as defined in the SBML model). value: float >= 0.0 Species abundance. Returns ------- None
def set_species_initial_value( self, species_id, value ): """ Set the initial concentration of the species 'species_id' in the mutant model. Parameters ---------- species_id: str Species identifier (as defined in the SBML model). value: float >= 0.0 Species abundance. Returns ------- None """ assert species_id in list(self.species) if value < 0.0: value = 0.0 self.species[species_id]["wild_type_value"] = value self.mutant_model.getListOfSpecies().get(species_id).setInitialConcentration(value)
(self, species_id, value)
20,497
metevolsim.metevolsim
set_wild_type_parameter_value
Set the wild-type value of the parameter 'param_metaid'. Parameters ---------- param_metaid: str Parameter meta identifier (as defined in the SBML model). value: float Parameter value. Returns ------- None
def set_wild_type_parameter_value( self, param_metaid, value ): """ Set the wild-type value of the parameter 'param_metaid'. Parameters ---------- param_metaid: str Parameter meta identifier (as defined in the SBML model). value: float Parameter value. Returns ------- None """ assert param_metaid in list(self.parameters) self.parameters[param_metaid]["wild_type_value"] = value self.wild_type_model.getElementByMetaId(param_metaid).setValue(value)
(self, param_metaid, value)
20,498
metevolsim.metevolsim
update_initial_concentrations
Update initial concentrations in the mutant model. Parameters ---------- None Returns ------- None
def update_initial_concentrations( self ): """ Update initial concentrations in the mutant model. Parameters ---------- None Returns ------- None """ for species_item in self.species.items(): species_id = species_item[0] if not self.species[species_id]["constant"]: self.set_species_initial_value(species_id, self.species[species_id]["mutant_value"])
(self)
20,499
metevolsim.metevolsim
write_list_of_variables
null
def write_list_of_variables( self ): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Write the list of species # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# f = open("output/list_of_species.txt", "w") f.write("id metaid name compartment kegg_id\n") for species_id in self.species.keys(): f.write(species_id+" "+self.species[species_id]["metaid"]+" "+self.species[species_id]["name"]+" "+self.species[species_id]["compartment"]+" "+self.species[species_id]["kegg_id"]+"\n") f.close() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Write the list of parameters # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# f = open("output/list_of_parameters.txt", "w") f.write("id metaid\n") for parameter_metaid in self.parameters.keys(): f.write(self.parameters[parameter_metaid]["id"]+" "+parameter_metaid+"\n") f.close() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Write the list of reactions # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# f = open("output/list_of_reactions.txt", "w") f.write("id metaid name compartment\n") for reaction_id in self.reactions.keys(): f.write(reaction_id+" "+self.reactions[reaction_id]["metaid"]+" "+self.reactions[reaction_id]["name"]+" "+self.reactions[reaction_id]["compartment"]+"\n") f.close()
(self)
20,500
metevolsim.metevolsim
write_mutant_SBML_file
Write the mutant model in a SBML file. Parameters ---------- None Returns ------- None
def write_mutant_SBML_file( self ): """ Write the mutant model in a SBML file. Parameters ---------- None Returns ------- None """ libsbml.writeSBMLToFile(self.mutant_document, "output/mutant.xml")
(self)
20,501
metevolsim.metevolsim
write_reaction_to_species_map
Write the reaction-to-species map. For each reaction, the list of metabolites is written, line by line. The file also indicates if the metabolite is a substrate or a product of the reaction. Parameters ---------- filename: str Name of the output (txt file). Returns ------- None
def write_reaction_to_species_map( self, filename ): """ Write the reaction-to-species map. For each reaction, the list of metabolites is written, line by line. The file also indicates if the metabolite is a substrate or a product of the reaction. Parameters ---------- filename: str Name of the output (txt file). Returns ------- None """ assert filename != "" f = open(filename, "w") for reaction in self.mutant_model.getListOfReactions(): reaction_id = reaction.getId() nb_reactants = reaction.getNumReactants() nb_products = reaction.getNumProducts() for i in range(nb_reactants): f.write(reaction_id+" substrate "+reaction.getReactant(i).getSpecies()+"\n") for i in range(nb_products): f.write(reaction_id+" product "+reaction.getProduct(i).getSpecies()+"\n") f.close()
(self, filename)
20,502
metevolsim.metevolsim
write_wild_type_SBML_file
Write the wild-type model in a SBML file. Parameters ---------- None Returns ------- None
def write_wild_type_SBML_file( self ): """ Write the wild-type model in a SBML file. Parameters ---------- None Returns ------- None """ libsbml.writeSBMLToFile(self.wild_type_document, "output/wild_type.xml")
(self)
20,503
metevolsim.metevolsim
SensitivityAnalysis
The SensitivityAnalysis class runs a sensitivity analysis by exploring a range of values for each kinetic parameter and tracking the change for all fluxes and species. Attributes ---------- > sbml_filename : str Path of the SBML model file. The SBML model is automatically loaded. > copasi_path : str Location of Copasi executable. > model : Model SBML model (automatically loaded). > factor_range : float > 0.0 Half-range of the log10-scaling factor (total range=2*factor_range) > factor_step : float > 0.0 Exploration step of the log10-scaling factor. x' = x*10^(factor) > param_index : int Current parameter index. > param_metaid : str Current parameter meta identifier. > param_id : str Current parameter identifier. > param_wild_type : float Current parameter wild-type value. > param_val : float Current parameter mutant value. > sigma : float > 0.0 Kinetic parameters mutation size. > nb_iterations : int > 0 Number of iterations of the multivariate random analysis. > iteration : int > 0 Current iteration of the multivariate random analysis. > OAT_output_file : file Output file for the One-at-a-time analysis. > random_output_file : file Output file for the multivariate random analysis. Methods ------- > __init__(sbml_filename, copasi_path) SensitivityAnalysis class constructor. > initialize_OAT_output_file() Initialize the One-At-a-Time sensitivity analysis output file (write the header). > initialize_random_output_file() Initialize the random sensitivity analysis output file (write the header). > write_OAT_output_file() Write the current One-At-a-Time sensitivity analysis state in the output file. > write_random_output_file() Write the current random sensitivity analysis state in the output file. > initialize_OAT_analysis(factor_range, factor_step) Initialize the One-At-a-Time sensitivity analysis algorithm. > initialize_random_analysis(sigma, nb_iterations) Initialize the random sensitivity analysis algorithm. > reload_wild_type_state() Reload the wild-type state into the mutant model. > next_parameter() Run a full parameter exploration for the next kinetic parameter. > next_iteration() Run the random parametric exploration for the next iteration. > run_OAT_analysis(factor_range, factor_step) Run the complete One-At-a-Time sensitivity analysis. > run_random_analysis(sigma, nb_iterations) Run the complete random sensitivity analysis.
class SensitivityAnalysis: """ The SensitivityAnalysis class runs a sensitivity analysis by exploring a range of values for each kinetic parameter and tracking the change for all fluxes and species. Attributes ---------- > sbml_filename : str Path of the SBML model file. The SBML model is automatically loaded. > copasi_path : str Location of Copasi executable. > model : Model SBML model (automatically loaded). > factor_range : float > 0.0 Half-range of the log10-scaling factor (total range=2*factor_range) > factor_step : float > 0.0 Exploration step of the log10-scaling factor. x' = x*10^(factor) > param_index : int Current parameter index. > param_metaid : str Current parameter meta identifier. > param_id : str Current parameter identifier. > param_wild_type : float Current parameter wild-type value. > param_val : float Current parameter mutant value. > sigma : float > 0.0 Kinetic parameters mutation size. > nb_iterations : int > 0 Number of iterations of the multivariate random analysis. > iteration : int > 0 Current iteration of the multivariate random analysis. > OAT_output_file : file Output file for the One-at-a-time analysis. > random_output_file : file Output file for the multivariate random analysis. Methods ------- > __init__(sbml_filename, copasi_path) SensitivityAnalysis class constructor. > initialize_OAT_output_file() Initialize the One-At-a-Time sensitivity analysis output file (write the header). > initialize_random_output_file() Initialize the random sensitivity analysis output file (write the header). > write_OAT_output_file() Write the current One-At-a-Time sensitivity analysis state in the output file. > write_random_output_file() Write the current random sensitivity analysis state in the output file. > initialize_OAT_analysis(factor_range, factor_step) Initialize the One-At-a-Time sensitivity analysis algorithm. > initialize_random_analysis(sigma, nb_iterations) Initialize the random sensitivity analysis algorithm. > reload_wild_type_state() Reload the wild-type state into the mutant model. > next_parameter() Run a full parameter exploration for the next kinetic parameter. > next_iteration() Run the random parametric exploration for the next iteration. > run_OAT_analysis(factor_range, factor_step) Run the complete One-At-a-Time sensitivity analysis. > run_random_analysis(sigma, nb_iterations) Run the complete random sensitivity analysis. """ ### Constructor ### def __init__( self, sbml_filename, copasi_path ): """ SensitivityAnalysis class constructor. Parameters ---------- sbml_filename : str Path of the SBML model file. The SBML model is automatically loaded. copasi_path : str Location of Copasi executable. Returns ------- None """ assert os.path.isfile(sbml_filename), "The SBML file \""+sbml_filename+"\" does not exist. Exit." assert os.path.isfile(copasi_path), "The executable \""+copasi_path+"\" does not exist. Exit." #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Main sensitivity analysis parameters # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.sbml_filename = sbml_filename self.copasi_path = copasi_path #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) SBML model # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.model = Model(sbml_filename, [], copasi_path) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) One-at-a-time analysis # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.factor_range = 0.0 self.factor_step = 0.0 self.param_index = 0 self.param_metaid = "wild_type" self.param_id = "wild_type" self.param_wild_type = 0.0 self.param_val = 0.0 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 4) Multivariate random analysis # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.sigma = 0.0 self.nb_iterations = 0.0 self.iteration = 0 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 5) Output files # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.OAT_output_file = open("output/OAT_sensitivity_analysis.txt", "w") self.OAT_output_file.close() self.random_output_file = open("output/random_sensitivity_analysis.txt", "w") self.random_output_file.close() ### Initialize the OAT output file ### def initialize_OAT_output_file( self ): """ Initialize the OAT output file (write the header). Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Write the header # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# header = "param_metaid param_id param_wild_type param_val param_dln" for species_id in self.model.species: if not self.model.species[species_id]["constant"]: header += " "+species_id for reaction_id in self.model.reactions: header += " "+reaction_id #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Write the wild-type steady-state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# first_line = "wild_type wild_type 0.0 0.0 0.0" for species_id in self.model.species: if not self.model.species[species_id]["constant"]: first_line += " "+str(self.model.species[species_id]["wild_type_value"]) for reaction_id in self.model.reactions: first_line += " "+str(self.model.reactions[reaction_id]["wild_type_value"]) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Save in output file # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.OAT_output_file = open("output/OAT_sensitivity_analysis.txt", "a") self.OAT_output_file.write(header+"\n"+first_line+"\n") self.OAT_output_file.close() ### Initialize the multivariate random output file ### def initialize_random_output_file( self ): """ Initialize the multivariate random output file (write the header). Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Write the header # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# header = "iteration" for species_id in self.model.species: if not self.model.species[species_id]["constant"]: header += " "+species_id for reaction_id in self.model.reactions: header += " "+reaction_id #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Write the wild-type steady-state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# first_line = "wild_type" for species_id in self.model.species: if not self.model.species[species_id]["constant"]: first_line += " "+str(self.model.species[species_id]["wild_type_value"]) for reaction_id in self.model.reactions: first_line += " "+str(self.model.reactions[reaction_id]["wild_type_value"]) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Save in output file # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.output_file = open("output/random_sensitivity_analysis.txt", "a") self.output_file.write(header+"\n"+first_line+"\n") self.output_file.close() ### Write the sensitivity analysis state in the OAT output file ### def write_OAT_output_file( self ): """ Write the current OAT sensitivity analysis state in the output file. Parameters ---------- None Returns ------- None """ line = "" #~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Write current OAT state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~# line += str(self.param_metaid)+" " line += str(self.param_id)+" " line += str(self.param_wild_type)+" " line += str(self.param_val)+" " line += str((self.param_val-self.param_wild_type)/self.param_wild_type) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Write steady-state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for species_id in self.model.species: if not self.model.species[species_id]["constant"]: wild_type_val = self.model.species[species_id]["wild_type_value"] mutant_val = self.model.species[species_id]["mutant_value"] dln_val = "NA" if wild_type_val != 0.0: dln_val = (mutant_val-wild_type_val)/wild_type_val line += " "+str(dln_val) for reaction_id in self.model.reactions: wild_type_val = self.model.reactions[reaction_id]["wild_type_value"] mutant_val = self.model.reactions[reaction_id]["mutant_value"] dln_val = "NA" if wild_type_val != 0.0: dln_val = (mutant_val-wild_type_val)/wild_type_val line += " "+str(dln_val) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Write in file # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.OAT_output_file = open("output/OAT_sensitivity_analysis.txt", "a") self.OAT_output_file.write(line+"\n") self.OAT_output_file.close() ### Write the sensitivity analysis state in the random output file ### def write_random_output_file( self ): """ Write the current multivariate random sensitivity analysis state in the output file. Parameters ---------- None Returns ------- None """ line = "" #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Write current multivariate random state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# line += str(self.iteration) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Write steady-state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for species_id in self.model.species: if not self.model.species[species_id]["constant"]: wild_type_val = self.model.species[species_id]["wild_type_value"] mutant_val = self.model.species[species_id]["mutant_value"] dln_val = "NA" if wild_type_val != 0.0: dln_val = (mutant_val-wild_type_val)/wild_type_val line += " "+str(dln_val) for reaction_id in self.model.reactions: wild_type_val = self.model.reactions[reaction_id]["wild_type_value"] mutant_val = self.model.reactions[reaction_id]["mutant_value"] dln_val = "NA" if wild_type_val != 0.0: dln_val = (mutant_val-wild_type_val)/wild_type_val line += " "+str(dln_val) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Write in file # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.random_output_file = open("output/random_sensitivity_analysis.txt", "a") self.random_output_file.write(line+"\n") self.random_output_file.close() ### Initialize OAT sensitivity analysis algorithm ### def initialize_OAT_analysis( self, factor_range, factor_step ): """ Initialize the OAT sensitivity analysis algorithm. Parameters ---------- factor_range : float > 0.0 Half-range of the log10-scaling factor (total range=2*factor_range) factor_step : float > 0.0 Exploration step of the log10-scaling factor. x' = x*10^(factor) Returns ------- None """ assert factor_range > 0.0, "The factor range 'factor_range' must be a positive nonzero value. Exit." assert factor_step > 0.0, "The factor step 'factor_step' must be a positive nonzero value. Exit." self.factor_range = factor_range self.factor_step = factor_step self.model.compute_wild_type_steady_state() self.model.compute_mutant_steady_state() self.initialize_OAT_output_file() self.param_index = 0 ### Initialize multivariate random sensitivity analysis algorithm ### def initialize_random_analysis( self, sigma, nb_iterations ): """ Initialize the multivariate random sensitivity analysis algorithm. Parameters ---------- sigma : float > 0.0 Kinetic parameters mutation size. nb_iterations : int > 0 Number of iterations of the multivariate random analysis. Returns ------- None """ assert sigma > 0.0, "The mutation size sigma must be positive. Exit." assert nb_iterations > 0, "The number of iterations must be positive. Exit." self.sigma = sigma self.nb_iterations = nb_iterations self.model.compute_wild_type_steady_state() self.model.compute_mutant_steady_state() self.initialize_random_output_file() self.iterations = 0 ### Reload the wild-type state into the mutant model ### def reload_wild_type_state( self ): """ Reload the wild-type state into the mutant model. Parameters ---------- None Returns ------- None """ for species_id in self.model.species: self.model.species[species_id]["initial_value"] = self.model.species[species_id]["wild_type_value"] self.model.species[species_id]["mutant_value"] = self.model.species[species_id]["wild_type_value"] #if not self.model.species[species_id]["constant"]: # self.model.set_species_initial_value(species_id, self.model.species[species_id]["mutant_value"]) for parameter_metaid in self.model.parameters: self.model.set_mutant_parameter_value(parameter_metaid, self.model.get_wild_type_parameter_value(parameter_metaid)) for reaction_id in self.model.reactions: self.model.reactions[reaction_id]["mutant_value"] = self.model.reactions[reaction_id]["wild_type_value"] ### Explore the next parameter (OAT analysis) ### def next_parameter( self ): """ Run a full parameter exploration for the next kinetic parameter. Parameters ---------- None Returns ------- bool Returns True if the last parameter has been explored. Returns False else. """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Get the next parameter # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.param_metaid = list(self.model.parameters)[self.param_index] self.param_id = self.model.parameters[self.param_metaid]["id"] self.param_wild_type = self.model.parameters[self.param_metaid]["wild_type_value"] self.param_val = 0.0 print("> Current parameter: "+str(self.param_id)) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Explore the upper range # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# factor = 0.0 while factor <= self.factor_range+self.factor_step/2.0: # +step/2 for precision errors self.param_val = self.param_wild_type*10**factor self.model.set_mutant_parameter_value(self.param_metaid, self.param_val) self.model.compute_mutant_steady_state() self.write_OAT_output_file() factor += self.factor_step self.reload_wild_type_state() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Explore the lower range # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# factor = -self.factor_step while factor >= -self.factor_range-self.factor_step/2.0: # -step/2 for precision errors self.param_val = self.param_wild_type*10**factor self.model.set_mutant_parameter_value(self.param_metaid, self.param_val) self.model.compute_mutant_steady_state() self.write_OAT_output_file() factor -= self.factor_step self.reload_wild_type_state() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 4) Increment the parameter index # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.param_index += 1 if self.param_index == len(self.model.parameters): return True return False ### Run the next iteration (multivariate random analysis) ### def next_iteration( self ): """ Run the next multivariate random iteration Parameters ---------- None Returns ------- bool Returns True if the last iteration has been done. Returns False else. """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Mutate each parameter at random with mutation size "sigma" # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# print("> Current iteration: "+str(self.iteration+1)+"/"+str(self.nb_iterations)) param_metaid = self.model.get_random_parameter() self.model.random_parameter_mutation(param_metaid, self.sigma) self.model.compute_mutant_steady_state() self.write_random_output_file() self.reload_wild_type_state() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Increment the current iteration # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.iteration += 1 if self.iteration == self.nb_iterations: return True return False ### Run the OAT sensitivity analysis ### def run_OAT_analysis( self, factor_range, factor_step ): """ Run the OAT sensitivity analysis algorithm. Parameters ---------- factor_range : float > 0.0 Half-range of the log10-scaling factor (total range=2*factor_range) factor_step : float > 0.0 Exploration step of the log10-scaling factor. x' = x*10^(factor) Returns ------- None """ assert factor_range > 0.0, "The factor range 'factor_range' must be a positive nonzero value. Exit." assert factor_step > 0.0, "The factor step 'factor_step' must be a positive nonzero value. Exit." self.initialize_OAT_analysis(factor_range, factor_step) stop_sa = False start_time = time.time() while not stop_sa: stop_sa = self.next_parameter() ongoing_time = time.time() estimated_time = (ongoing_time-start_time)*float(self.model.get_number_of_parameters()-self.param_index-1)/float(self.param_index+1) print(" Estimated remaining time "+str(int(round(estimated_time/60)))+" min.") ### Run the multivariate random sensitivity analysis ### def run_random_analysis( self, sigma, nb_iterations ): """ Run the multivariate random sensitivity analysis algorithm. Parameters ---------- sigma : float > 0.0 Kinetic parameters mutation size. nb_iterations : int > 0 Number of iterations of the multivariate random analysis. Returns ------- None """ assert sigma > 0.0, "The mutation size sigma must be positive. Exit." assert nb_iterations > 0, "The number of iterations must be positive. Exit." self.initialize_random_analysis(sigma, nb_iterations) stop_sa = False start_time = time.time() while not stop_sa: stop_sa = self.next_iteration() ongoing_time = time.time() estimated_time = (ongoing_time-start_time)*float(self.nb_iterations-self.iteration)/float(self.iteration+1) print(" Estimated remaining time "+str((round(estimated_time/60,2)))+" min.")
(sbml_filename, copasi_path)
20,504
metevolsim.metevolsim
__init__
SensitivityAnalysis class constructor. Parameters ---------- sbml_filename : str Path of the SBML model file. The SBML model is automatically loaded. copasi_path : str Location of Copasi executable. Returns ------- None
def __init__( self, sbml_filename, copasi_path ): """ SensitivityAnalysis class constructor. Parameters ---------- sbml_filename : str Path of the SBML model file. The SBML model is automatically loaded. copasi_path : str Location of Copasi executable. Returns ------- None """ assert os.path.isfile(sbml_filename), "The SBML file \""+sbml_filename+"\" does not exist. Exit." assert os.path.isfile(copasi_path), "The executable \""+copasi_path+"\" does not exist. Exit." #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Main sensitivity analysis parameters # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.sbml_filename = sbml_filename self.copasi_path = copasi_path #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) SBML model # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.model = Model(sbml_filename, [], copasi_path) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) One-at-a-time analysis # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.factor_range = 0.0 self.factor_step = 0.0 self.param_index = 0 self.param_metaid = "wild_type" self.param_id = "wild_type" self.param_wild_type = 0.0 self.param_val = 0.0 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 4) Multivariate random analysis # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.sigma = 0.0 self.nb_iterations = 0.0 self.iteration = 0 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 5) Output files # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.OAT_output_file = open("output/OAT_sensitivity_analysis.txt", "w") self.OAT_output_file.close() self.random_output_file = open("output/random_sensitivity_analysis.txt", "w") self.random_output_file.close()
(self, sbml_filename, copasi_path)
20,505
metevolsim.metevolsim
initialize_OAT_analysis
Initialize the OAT sensitivity analysis algorithm. Parameters ---------- factor_range : float > 0.0 Half-range of the log10-scaling factor (total range=2*factor_range) factor_step : float > 0.0 Exploration step of the log10-scaling factor. x' = x*10^(factor) Returns ------- None
def initialize_OAT_analysis( self, factor_range, factor_step ): """ Initialize the OAT sensitivity analysis algorithm. Parameters ---------- factor_range : float > 0.0 Half-range of the log10-scaling factor (total range=2*factor_range) factor_step : float > 0.0 Exploration step of the log10-scaling factor. x' = x*10^(factor) Returns ------- None """ assert factor_range > 0.0, "The factor range 'factor_range' must be a positive nonzero value. Exit." assert factor_step > 0.0, "The factor step 'factor_step' must be a positive nonzero value. Exit." self.factor_range = factor_range self.factor_step = factor_step self.model.compute_wild_type_steady_state() self.model.compute_mutant_steady_state() self.initialize_OAT_output_file() self.param_index = 0
(self, factor_range, factor_step)
20,506
metevolsim.metevolsim
initialize_OAT_output_file
Initialize the OAT output file (write the header). Parameters ---------- None Returns ------- None
def initialize_OAT_output_file( self ): """ Initialize the OAT output file (write the header). Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Write the header # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# header = "param_metaid param_id param_wild_type param_val param_dln" for species_id in self.model.species: if not self.model.species[species_id]["constant"]: header += " "+species_id for reaction_id in self.model.reactions: header += " "+reaction_id #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Write the wild-type steady-state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# first_line = "wild_type wild_type 0.0 0.0 0.0" for species_id in self.model.species: if not self.model.species[species_id]["constant"]: first_line += " "+str(self.model.species[species_id]["wild_type_value"]) for reaction_id in self.model.reactions: first_line += " "+str(self.model.reactions[reaction_id]["wild_type_value"]) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Save in output file # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.OAT_output_file = open("output/OAT_sensitivity_analysis.txt", "a") self.OAT_output_file.write(header+"\n"+first_line+"\n") self.OAT_output_file.close()
(self)
20,507
metevolsim.metevolsim
initialize_random_analysis
Initialize the multivariate random sensitivity analysis algorithm. Parameters ---------- sigma : float > 0.0 Kinetic parameters mutation size. nb_iterations : int > 0 Number of iterations of the multivariate random analysis. Returns ------- None
def initialize_random_analysis( self, sigma, nb_iterations ): """ Initialize the multivariate random sensitivity analysis algorithm. Parameters ---------- sigma : float > 0.0 Kinetic parameters mutation size. nb_iterations : int > 0 Number of iterations of the multivariate random analysis. Returns ------- None """ assert sigma > 0.0, "The mutation size sigma must be positive. Exit." assert nb_iterations > 0, "The number of iterations must be positive. Exit." self.sigma = sigma self.nb_iterations = nb_iterations self.model.compute_wild_type_steady_state() self.model.compute_mutant_steady_state() self.initialize_random_output_file() self.iterations = 0
(self, sigma, nb_iterations)
20,508
metevolsim.metevolsim
initialize_random_output_file
Initialize the multivariate random output file (write the header). Parameters ---------- None Returns ------- None
def initialize_random_output_file( self ): """ Initialize the multivariate random output file (write the header). Parameters ---------- None Returns ------- None """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Write the header # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# header = "iteration" for species_id in self.model.species: if not self.model.species[species_id]["constant"]: header += " "+species_id for reaction_id in self.model.reactions: header += " "+reaction_id #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Write the wild-type steady-state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# first_line = "wild_type" for species_id in self.model.species: if not self.model.species[species_id]["constant"]: first_line += " "+str(self.model.species[species_id]["wild_type_value"]) for reaction_id in self.model.reactions: first_line += " "+str(self.model.reactions[reaction_id]["wild_type_value"]) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Save in output file # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.output_file = open("output/random_sensitivity_analysis.txt", "a") self.output_file.write(header+"\n"+first_line+"\n") self.output_file.close()
(self)
20,509
metevolsim.metevolsim
next_iteration
Run the next multivariate random iteration Parameters ---------- None Returns ------- bool Returns True if the last iteration has been done. Returns False else.
def next_iteration( self ): """ Run the next multivariate random iteration Parameters ---------- None Returns ------- bool Returns True if the last iteration has been done. Returns False else. """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Mutate each parameter at random with mutation size "sigma" # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# print("> Current iteration: "+str(self.iteration+1)+"/"+str(self.nb_iterations)) param_metaid = self.model.get_random_parameter() self.model.random_parameter_mutation(param_metaid, self.sigma) self.model.compute_mutant_steady_state() self.write_random_output_file() self.reload_wild_type_state() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Increment the current iteration # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.iteration += 1 if self.iteration == self.nb_iterations: return True return False
(self)
20,510
metevolsim.metevolsim
next_parameter
Run a full parameter exploration for the next kinetic parameter. Parameters ---------- None Returns ------- bool Returns True if the last parameter has been explored. Returns False else.
def next_parameter( self ): """ Run a full parameter exploration for the next kinetic parameter. Parameters ---------- None Returns ------- bool Returns True if the last parameter has been explored. Returns False else. """ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Get the next parameter # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.param_metaid = list(self.model.parameters)[self.param_index] self.param_id = self.model.parameters[self.param_metaid]["id"] self.param_wild_type = self.model.parameters[self.param_metaid]["wild_type_value"] self.param_val = 0.0 print("> Current parameter: "+str(self.param_id)) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Explore the upper range # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# factor = 0.0 while factor <= self.factor_range+self.factor_step/2.0: # +step/2 for precision errors self.param_val = self.param_wild_type*10**factor self.model.set_mutant_parameter_value(self.param_metaid, self.param_val) self.model.compute_mutant_steady_state() self.write_OAT_output_file() factor += self.factor_step self.reload_wild_type_state() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Explore the lower range # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# factor = -self.factor_step while factor >= -self.factor_range-self.factor_step/2.0: # -step/2 for precision errors self.param_val = self.param_wild_type*10**factor self.model.set_mutant_parameter_value(self.param_metaid, self.param_val) self.model.compute_mutant_steady_state() self.write_OAT_output_file() factor -= self.factor_step self.reload_wild_type_state() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 4) Increment the parameter index # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.param_index += 1 if self.param_index == len(self.model.parameters): return True return False
(self)
20,511
metevolsim.metevolsim
reload_wild_type_state
Reload the wild-type state into the mutant model. Parameters ---------- None Returns ------- None
def reload_wild_type_state( self ): """ Reload the wild-type state into the mutant model. Parameters ---------- None Returns ------- None """ for species_id in self.model.species: self.model.species[species_id]["initial_value"] = self.model.species[species_id]["wild_type_value"] self.model.species[species_id]["mutant_value"] = self.model.species[species_id]["wild_type_value"] #if not self.model.species[species_id]["constant"]: # self.model.set_species_initial_value(species_id, self.model.species[species_id]["mutant_value"]) for parameter_metaid in self.model.parameters: self.model.set_mutant_parameter_value(parameter_metaid, self.model.get_wild_type_parameter_value(parameter_metaid)) for reaction_id in self.model.reactions: self.model.reactions[reaction_id]["mutant_value"] = self.model.reactions[reaction_id]["wild_type_value"]
(self)
20,512
metevolsim.metevolsim
run_OAT_analysis
Run the OAT sensitivity analysis algorithm. Parameters ---------- factor_range : float > 0.0 Half-range of the log10-scaling factor (total range=2*factor_range) factor_step : float > 0.0 Exploration step of the log10-scaling factor. x' = x*10^(factor) Returns ------- None
def run_OAT_analysis( self, factor_range, factor_step ): """ Run the OAT sensitivity analysis algorithm. Parameters ---------- factor_range : float > 0.0 Half-range of the log10-scaling factor (total range=2*factor_range) factor_step : float > 0.0 Exploration step of the log10-scaling factor. x' = x*10^(factor) Returns ------- None """ assert factor_range > 0.0, "The factor range 'factor_range' must be a positive nonzero value. Exit." assert factor_step > 0.0, "The factor step 'factor_step' must be a positive nonzero value. Exit." self.initialize_OAT_analysis(factor_range, factor_step) stop_sa = False start_time = time.time() while not stop_sa: stop_sa = self.next_parameter() ongoing_time = time.time() estimated_time = (ongoing_time-start_time)*float(self.model.get_number_of_parameters()-self.param_index-1)/float(self.param_index+1) print(" Estimated remaining time "+str(int(round(estimated_time/60)))+" min.")
(self, factor_range, factor_step)
20,513
metevolsim.metevolsim
run_random_analysis
Run the multivariate random sensitivity analysis algorithm. Parameters ---------- sigma : float > 0.0 Kinetic parameters mutation size. nb_iterations : int > 0 Number of iterations of the multivariate random analysis. Returns ------- None
def run_random_analysis( self, sigma, nb_iterations ): """ Run the multivariate random sensitivity analysis algorithm. Parameters ---------- sigma : float > 0.0 Kinetic parameters mutation size. nb_iterations : int > 0 Number of iterations of the multivariate random analysis. Returns ------- None """ assert sigma > 0.0, "The mutation size sigma must be positive. Exit." assert nb_iterations > 0, "The number of iterations must be positive. Exit." self.initialize_random_analysis(sigma, nb_iterations) stop_sa = False start_time = time.time() while not stop_sa: stop_sa = self.next_iteration() ongoing_time = time.time() estimated_time = (ongoing_time-start_time)*float(self.nb_iterations-self.iteration)/float(self.iteration+1) print(" Estimated remaining time "+str((round(estimated_time/60,2)))+" min.")
(self, sigma, nb_iterations)
20,514
metevolsim.metevolsim
write_OAT_output_file
Write the current OAT sensitivity analysis state in the output file. Parameters ---------- None Returns ------- None
def write_OAT_output_file( self ): """ Write the current OAT sensitivity analysis state in the output file. Parameters ---------- None Returns ------- None """ line = "" #~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Write current OAT state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~# line += str(self.param_metaid)+" " line += str(self.param_id)+" " line += str(self.param_wild_type)+" " line += str(self.param_val)+" " line += str((self.param_val-self.param_wild_type)/self.param_wild_type) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Write steady-state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for species_id in self.model.species: if not self.model.species[species_id]["constant"]: wild_type_val = self.model.species[species_id]["wild_type_value"] mutant_val = self.model.species[species_id]["mutant_value"] dln_val = "NA" if wild_type_val != 0.0: dln_val = (mutant_val-wild_type_val)/wild_type_val line += " "+str(dln_val) for reaction_id in self.model.reactions: wild_type_val = self.model.reactions[reaction_id]["wild_type_value"] mutant_val = self.model.reactions[reaction_id]["mutant_value"] dln_val = "NA" if wild_type_val != 0.0: dln_val = (mutant_val-wild_type_val)/wild_type_val line += " "+str(dln_val) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Write in file # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.OAT_output_file = open("output/OAT_sensitivity_analysis.txt", "a") self.OAT_output_file.write(line+"\n") self.OAT_output_file.close()
(self)
20,515
metevolsim.metevolsim
write_random_output_file
Write the current multivariate random sensitivity analysis state in the output file. Parameters ---------- None Returns ------- None
def write_random_output_file( self ): """ Write the current multivariate random sensitivity analysis state in the output file. Parameters ---------- None Returns ------- None """ line = "" #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 1) Write current multivariate random state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# line += str(self.iteration) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 2) Write steady-state # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# for species_id in self.model.species: if not self.model.species[species_id]["constant"]: wild_type_val = self.model.species[species_id]["wild_type_value"] mutant_val = self.model.species[species_id]["mutant_value"] dln_val = "NA" if wild_type_val != 0.0: dln_val = (mutant_val-wild_type_val)/wild_type_val line += " "+str(dln_val) for reaction_id in self.model.reactions: wild_type_val = self.model.reactions[reaction_id]["wild_type_value"] mutant_val = self.model.reactions[reaction_id]["mutant_value"] dln_val = "NA" if wild_type_val != 0.0: dln_val = (mutant_val-wild_type_val)/wild_type_val line += " "+str(dln_val) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # 3) Write in file # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# self.random_output_file = open("output/random_sensitivity_analysis.txt", "a") self.random_output_file.write(line+"\n") self.random_output_file.close()
(self)
20,524
pyobjectify.pyobjectify
Connectivity
An enumeration of the supported file connectivity types: - `ONLINE_STATIC` = The URL points to a static file on the Internet. - `LOCAL` = The URL is a path to a local file. For example, at the moment, a data stream from the Internet is not supported. The end-user does not have to interface with this, but it is provided for more granular operations.
class Connectivity(Enum): """ An enumeration of the supported file connectivity types: - `ONLINE_STATIC` = The URL points to a static file on the Internet. - `LOCAL` = The URL is a path to a local file. For example, at the moment, a data stream from the Internet is not supported. The end-user does not have to interface with this, but it is provided for more granular operations. """ ONLINE_STATIC = auto() LOCAL = auto()
(value, names=None, *, module=None, qualname=None, type=None, start=1)
20,525
pyobjectify.pyobjectify
InputType
An enumeration of the input types supported by pyobjectify. The end-user does not have to interface with this, but it is provided for more granular operations.
class InputType(Enum): """ An enumeration of the input types supported by pyobjectify. The end-user does not have to interface with this, but it is provided for more granular operations. """ JSON = auto() CSV = auto() TSV = auto() XML = auto() XLSX = auto()
(value, names=None, *, module=None, qualname=None, type=None, start=1)
20,526
pyobjectify.pyobjectify
Resource
The Resource class stores some metadata about the resource to simplify the code. The end-user does not have to interface with this, but it is provided for more granular operations.
class Resource: """ The Resource class stores some metadata about the resource to simplify the code. The end-user does not have to interface with this, but it is provided for more granular operations. """ def __init__(self, url, connectivity): url = url.replace("file://", "") self.url = url self.connectivity = connectivity if connectivity == Connectivity.ONLINE_STATIC: response = get(url) self.response = response self.plaintext = response.text elif connectivity == Connectivity.LOCAL: url = url.replace("file://", "") file_obj = open(url, "r") self.response = file_obj try: self.plaintext = file_obj.read() self.response.seek(0, 0) except Exception: # XLSX data does not like to be read self.plaintext = None def __eq__(self, other): # For Internet resources, # Resource.response may have stochastic attributes like time elapsed. # URL, connectivity type, plaintext should be enough to determine different Resources. return self.url == other.url and self.connectivity == other.connectivity and self.plaintext == other.plaintext
(url, connectivity)
20,527
pyobjectify.pyobjectify
__eq__
null
def __eq__(self, other): # For Internet resources, # Resource.response may have stochastic attributes like time elapsed. # URL, connectivity type, plaintext should be enough to determine different Resources. return self.url == other.url and self.connectivity == other.connectivity and self.plaintext == other.plaintext
(self, other)