function
stringlengths 11
56k
| repo_name
stringlengths 5
60
| features
sequence |
---|---|---|
def get_readme():
with open('README.md') as file:
return file.read() | tylerbutler/engineer | [
23,
3,
23,
1,
1331695786
] |
def empty_ops(request):
return Filter() | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def single_ops(request):
return Filter({'roll': 27}) | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_getitem(self, empty_ops, single_ops):
with pytest.raises(KeyError):
empty_ops['roll'] | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_setitem(self, empty_ops):
assert repr(empty_ops) == "Filter([])"
empty_ops['meaning'] = 42 | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_delitem(self, empty_ops, single_ops):
with pytest.raises(KeyError):
del empty_ops['roll'] | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_length(self, empty_ops, single_ops):
assert len(empty_ops) == 0
assert len(single_ops) == 1 | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_keys(self, empty_ops, single_ops):
assert list(empty_ops.keys()) == []
assert list(single_ops.keys()) == ['roll'] | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_items(self, empty_ops, single_ops):
assert list(empty_ops.items()) == []
assert list(single_ops.items()) == [('roll', 27)] | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_values(self, empty_ops, single_ops):
assert list(empty_ops.values()) == []
assert list(single_ops.values()) == [27] | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_contains(self, single_ops):
assert 'foo' not in single_ops
assert 'roll' in single_ops | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_equality_inequality(self, empty_ops, single_ops):
assert empty_ops == {}
assert empty_ops != {'roll': 27}
assert single_ops != {}
assert single_ops == {'roll': 27} | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_get(self, single_ops):
assert single_ops.get('foo') is None
assert single_ops.get('foo', 42) == 42
assert single_ops.get('roll') == 27 | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_clear(self, single_ops):
assert len(single_ops.operations) == 1
single_ops.clear()
assert len(single_ops.operations) == 0 | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_pop(self, single_ops):
assert len(single_ops.operations) == 1 | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_popitem(self, single_ops):
assert len(single_ops.operations) == 1
assert single_ops.popitem() == ('roll', 27)
assert len(single_ops.operations) == 0 | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_update(self, empty_ops, single_ops):
assert len(empty_ops.operations) == 0
empty_ops.update(name="Bob Dole")
assert len(empty_ops.operations) == 1 | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_setdefault(self, empty_ops):
assert len(empty_ops.operations) == 0
empty_ops.setdefault('fnord', 42)
assert len(empty_ops.operations) == 1
assert empty_ops.operations['fnord'] == 42
empty_ops.setdefault('fnord', 27)
assert len(empty_ops.operations) == 1
assert empty_ops.operations['fnord'] == 42 | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_ops_shallow_copy(self, single_ops):
assert single_ops.operations == single_ops.copy().operations | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_operations_and_clean_merge(self):
comb = Filter({'roll': 27}) & Filter({'foo': 42})
assert comb.as_query == {'roll': 27, 'foo': 42} | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_operations_and_operator_overlap(self):
comb = Filter({'roll': {'$gte': 27}}) & Filter({'roll': {'$lte': 42}})
assert comb.as_query == {'roll': {'$gte': 27, '$lte': 42}} | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_paradoxical_condition(self):
comb = Filter({'roll': 27}) & Filter({'roll': {'$lte': 42}})
assert comb.as_query == {'roll': {'$eq': 27, '$lte': 42}} | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_operations_or_clean_merge(self):
comb = Filter({'roll': 27}) | Filter({'foo': 42})
assert comb.as_query == {'$or': [{'roll': 27}, {'foo': 42}]} | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def test_operations_hard_and(self):
comb = Filter({'$and': [{'a': 1}, {'b': 2}]}) & Filter({'$and': [{'c': 3}]})
assert comb.as_query == {'$and': [{'a': 1}, {'b': 2}, {'c': 3}]} | marrow/mongo | [
20,
3,
20,
20,
1455762934
] |
def __init__(self, client, config, serializer, deserializer) -> None:
self._client = client
self._serialize = serializer
self._deserialize = deserializer
self._config = config | Azure/azure-sdk-for-python | [
3526,
2256,
3526,
986,
1335285972
] |
def get_long_running_output(pipeline_response):
if cls:
return cls(pipeline_response, None, {}) | Azure/azure-sdk-for-python | [
3526,
2256,
3526,
986,
1335285972
] |
def get_long_running_output(pipeline_response):
deserialized = self._deserialize('LoadBalancer', pipeline_response)
if cls:
return cls(pipeline_response, deserialized, {})
return deserialized | Azure/azure-sdk-for-python | [
3526,
2256,
3526,
986,
1335285972
] |
def list_all(
self,
**kwargs: Any | Azure/azure-sdk-for-python | [
3526,
2256,
3526,
986,
1335285972
] |
def prepare_request(next_link=None):
# Construct headers
header_parameters = {} # type: Dict[str, Any]
header_parameters['Accept'] = self._serialize.header("accept", accept, 'str')
if not next_link:
# Construct URL
url = self.list_all.metadata['url'] # type: ignore
path_format_arguments = {
'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'),
}
url = self._client.format_url(url, **path_format_arguments)
# Construct parameters
query_parameters = {} # type: Dict[str, Any]
query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str')
request = self._client.get(url, query_parameters, header_parameters)
else:
url = next_link
query_parameters = {} # type: Dict[str, Any]
request = self._client.get(url, query_parameters, header_parameters)
return request | Azure/azure-sdk-for-python | [
3526,
2256,
3526,
986,
1335285972
] |
def list(
self,
resource_group_name: str,
**kwargs: Any | Azure/azure-sdk-for-python | [
3526,
2256,
3526,
986,
1335285972
] |
def prepare_request(next_link=None):
# Construct headers
header_parameters = {} # type: Dict[str, Any]
header_parameters['Accept'] = self._serialize.header("accept", accept, 'str')
if not next_link:
# Construct URL
url = self.list.metadata['url'] # type: ignore
path_format_arguments = {
'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'),
'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'),
}
url = self._client.format_url(url, **path_format_arguments)
# Construct parameters
query_parameters = {} # type: Dict[str, Any]
query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str')
request = self._client.get(url, query_parameters, header_parameters)
else:
url = next_link
query_parameters = {} # type: Dict[str, Any]
request = self._client.get(url, query_parameters, header_parameters)
return request | Azure/azure-sdk-for-python | [
3526,
2256,
3526,
986,
1335285972
] |
def main():
# 1. How many prime numbers are there?
# Hint: Check page 322
message = "Iymdi ah rv urxxeqfi fjdjqv gu gzuqw clunijh." # Encrypted with key "PRIMES"
#print(decryptMessage(blank, blank)) # Fill in the blanks
# 2. What are integers that are not prime called?
# Hint: Check page 323
message = "Vbmggpcw wlvx njr bhv pctqh emi psyzxf czxtrwdxr fhaugrd." # Encrypted with key "NOTCALLEDEVENS"
#print(decryptMessage(blank, blank)) # Fill in the blanks
# 3. What are two algorithms for finding prime numbers?
# Hint: Check page 323
# Encrypted with key "ALGORITHMS"
message = "Tsk hyzxl mdgzxwkpfz gkeo ob kpbz ngov gfv: bkpmd dtbwjqhu, eaegk cw Mkhfgsenseml, hzv Rlhwe-Ubsxwr."
#print(decryptMessage(blank, blank)) # Fill in the blanks | JoseALermaIII/python-tutorials | [
2,
3,
2,
10,
1475898535
] |
def set_calculator(eos_mod, kind, kind_opts):
assert kind in kind_opts, (
kind + ' is not a valid thermal calculator. '+
'You must select one of: ' + str(kind_opts))
eos_mod._kind = kind
if kind=='GammaPowLaw':
calc = _GammaPowLaw(eos_mod)
elif kind=='GammaShiftPowLaw':
calc = _GammaShiftPowLaw(eos_mod)
elif kind=='GammaFiniteStrain':
calc = _GammaFiniteStrain(eos_mod)
else:
raise NotImplementedError(kind+' is not a valid '+
'GammaEos Calculator.')
eos_mod._add_calculator(calc, calc_type='gamma')
pass | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def __init__(self, kind='GammaPowLaw', natom=1, model_state={}):
self._pre_init(natom=natom)
set_calculator(self, kind, self._kind_opts)
ref_compress_state='P0'
ref_thermal_state='T0'
ref_energy_type = 'E0'
refstate.set_calculator(self, ref_compress_state=ref_compress_state,
ref_thermal_state=ref_thermal_state,
ref_energy_type=ref_energy_type)
# self._set_ref_state()
self._post_init(model_state=model_state)
pass | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def _set_ref_state(self):
calc = self.calculators['gamma']
path_const = calc.path_const
if path_const=='S':
param_ref_names = []
param_ref_units = []
param_ref_defaults = []
param_ref_scales = []
else:
raise NotImplementedError(
'path_const '+path_const+' is not valid for ThermalEos.')
self._path_const = calc.path_const
self._param_ref_names = param_ref_names
self._param_ref_units = param_ref_units
self._param_ref_defaults = param_ref_defaults
self._param_ref_scales = param_ref_scales
pass | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def gamma_deriv(self, V_a):
gamma_deriv_a = self.calculators['gamma']._calc_gamma_deriv(V_a)
return gamma_deriv_a | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def __init__(self, eos_mod):
self._eos_mod = eos_mod
self._init_params()
self._path_const = 'S'
pass | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def path_const( self ):
return self._path_const | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def _init_params( self ):
"""Initialize list of calculator parameter names."""
pass | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def _calc_gamma(self, V_a):
pass | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def _calc_gamma_deriv(self, V_a):
pass | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def _calc_temp(self, V_a, T0=None):
pass | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def _calc_param_deriv(self, fname, paramname, V_a, dxfrac=1e-6):
scale_a, paramkey_a = self.get_param_scale(apply_expand_adj=True )
scale = scale_a[paramkey_a==paramname][0]
# print 'scale: ' + np.str(scale)
#if (paramname is 'E0') and (fname is 'energy'):
# return np.ones(V_a.shape)
try:
fun = getattr(self, fname)
# Note that self is implicitly included
val0_a = fun(V_a)
except:
assert False, 'That is not a valid function name ' + \
'(e.g. it should be press or energy)'
try:
param = core.get_params([paramname])[0]
dparam = scale*dxfrac
# print 'param: ' + np.str(param)
# print 'dparam: ' + np.str(dparam)
except:
assert False, 'This is not a valid parameter name'
# set param value in eos_d dict
core.set_params([paramname,], [param+dparam,])
# Note that self is implicitly included
dval_a = fun(V_a) - val0_a
# reset param to original value
core.set_params([paramname], [param])
deriv_a = dval_a/dxfrac
return deriv_a | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def __init__(self, eos_mod):
super(_GammaPowLaw, self).__init__(eos_mod)
pass | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def _calc_gamma(self, V_a):
V0, gamma0, q = self.eos_mod.get_param_values(
param_names=['V0','gamma0','q'])
gamma_a = gamma0 *(V_a/V0)**q
return gamma_a | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def _calc_temp(self, V_a, T0=None):
if T0 is None:
T0 = self.eos_mod.refstate.ref_temp()
# T0, = self.eos_mod.get_param_values(param_names=['T0'], overrides=[T0])
gamma0, q = self.eos_mod.get_param_values(
param_names=['gamma0','q'])
gamma_a = self._calc_gamma(V_a)
T_a = T0*np.exp(-(gamma_a - gamma0)/q)
return T_a | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def __init__(self, eos_mod):
super(_GammaShiftPowLaw, self).__init__(eos_mod)
pass | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def _calc_gamma(self, V_a):
V0, gamma0, gamma_inf, beta = self.eos_mod.get_param_values(
param_names=['V0','gamma0','gamma_inf','beta'])
gamma_a = gamma_inf + (gamma0-gamma_inf)*(V_a/V0)**beta
return gamma_a | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def _calc_temp(self, V_a, T0=None):
T0, = self.eos_mod.get_param_values(param_names=['T0'], overrides=[T0])
V0, gamma0, gamma_inf, beta = self.eos_mod.get_param_values(
param_names=['V0','gamma0','gamma_inf','beta'])
gamma_a = self._calc_gamma(V_a)
x = V_a/V0
T_a = T0*x**(-gamma_inf)*np.exp((gamma0-gamma_inf)/beta*(1-x**beta))
return T_a | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def __init__(self, eos_mod):
super(_GammaFiniteStrain, self).__init__(eos_mod)
pass | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def _calc_strain_coefs(self):
V0, gamma0, gammap0 = self.eos_mod.get_param_values(
param_names=['V0','gamma0','gammap0'])
a1 = 6*gamma0
a2 = -12*gamma0 +36*gamma0**2 -18*gammap0
return a1, a2 | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def _calc_gamma(self, V_a):
a1, a2 = self._calc_strain_coefs()
fstr_a = self._calc_fstrain(V_a)
gamma_a = (2*fstr_a+1)*(a1+a2*fstr_a)/(6*(1+a1*fstr_a+0.5*a2*fstr_a**2))
return gamma_a | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def _calc_temp(self, V_a, T0=None):
if T0 is None:
T0 = self.eos_mod.refstate.ref_temp()
a1, a2 = self._calc_strain_coefs()
fstr_a = self._calc_fstrain(V_a)
T_a = T0*np.sqrt(1 + a1*fstr_a + 0.5*a2*fstr_a**2)
return T_a | aswolf/xmeos | [
1,
1,
1,
1,
1465498574
] |
def paginate_items(items,size=100):
'''paginate_items will return a list of lists, each of a particular max
size
'''
groups = []
for idx in range(0, len(items), size):
group = items[idx:idx+size]
groups.append(group)
return groups | radinformatics/som-tools | [
7,
7,
7,
12,
1485049255
] |
def __init__(self, title=None, subtitle=None, translated_title=None): # noqa: E501
"""WorkTitleV30Rc2 - a model defined in Swagger""" # noqa: E501
self._title = None
self._subtitle = None
self._translated_title = None
self.discriminator = None
if title is not None:
self.title = title
if subtitle is not None:
self.subtitle = subtitle
if translated_title is not None:
self.translated_title = translated_title | Royal-Society-of-New-Zealand/NZ-ORCID-Hub | [
13,
7,
13,
28,
1486087622
] |
def title(self):
"""Gets the title of this WorkTitleV30Rc2. # noqa: E501
:return: The title of this WorkTitleV30Rc2. # noqa: E501
:rtype: TitleV30Rc2
"""
return self._title | Royal-Society-of-New-Zealand/NZ-ORCID-Hub | [
13,
7,
13,
28,
1486087622
] |
def title(self, title):
"""Sets the title of this WorkTitleV30Rc2.
:param title: The title of this WorkTitleV30Rc2. # noqa: E501
:type: TitleV30Rc2
"""
self._title = title | Royal-Society-of-New-Zealand/NZ-ORCID-Hub | [
13,
7,
13,
28,
1486087622
] |
def subtitle(self):
"""Gets the subtitle of this WorkTitleV30Rc2. # noqa: E501
:return: The subtitle of this WorkTitleV30Rc2. # noqa: E501
:rtype: SubtitleV30Rc2
"""
return self._subtitle | Royal-Society-of-New-Zealand/NZ-ORCID-Hub | [
13,
7,
13,
28,
1486087622
] |
def subtitle(self, subtitle):
"""Sets the subtitle of this WorkTitleV30Rc2.
:param subtitle: The subtitle of this WorkTitleV30Rc2. # noqa: E501
:type: SubtitleV30Rc2
"""
self._subtitle = subtitle | Royal-Society-of-New-Zealand/NZ-ORCID-Hub | [
13,
7,
13,
28,
1486087622
] |
def translated_title(self):
"""Gets the translated_title of this WorkTitleV30Rc2. # noqa: E501
:return: The translated_title of this WorkTitleV30Rc2. # noqa: E501
:rtype: TranslatedTitleV30Rc2
"""
return self._translated_title | Royal-Society-of-New-Zealand/NZ-ORCID-Hub | [
13,
7,
13,
28,
1486087622
] |
def translated_title(self, translated_title):
"""Sets the translated_title of this WorkTitleV30Rc2.
:param translated_title: The translated_title of this WorkTitleV30Rc2. # noqa: E501
:type: TranslatedTitleV30Rc2
"""
self._translated_title = translated_title | Royal-Society-of-New-Zealand/NZ-ORCID-Hub | [
13,
7,
13,
28,
1486087622
] |
def to_str(self):
"""Returns the string representation of the model"""
return pprint.pformat(self.to_dict()) | Royal-Society-of-New-Zealand/NZ-ORCID-Hub | [
13,
7,
13,
28,
1486087622
] |
def __eq__(self, other):
"""Returns true if both objects are equal"""
if not isinstance(other, WorkTitleV30Rc2):
return False
return self.__dict__ == other.__dict__ | Royal-Society-of-New-Zealand/NZ-ORCID-Hub | [
13,
7,
13,
28,
1486087622
] |
def encode(self,input,errors='strict'):
return codecs.charmap_encode(input,errors,encoding_map) | ArcherSys/ArcherSys | [
3,
2,
3,
16,
1412356452
] |
def encode(self, input, final=False):
return codecs.charmap_encode(input,self.errors,encoding_map)[0] | ArcherSys/ArcherSys | [
3,
2,
3,
16,
1412356452
] |
def decode(self, input, final=False):
return codecs.charmap_decode(input,self.errors,decoding_table)[0] | ArcherSys/ArcherSys | [
3,
2,
3,
16,
1412356452
] |
def getregentry():
return codecs.CodecInfo(
name='cp852',
encode=Codec().encode,
decode=Codec().decode,
incrementalencoder=IncrementalEncoder,
incrementaldecoder=IncrementalDecoder,
streamreader=StreamReader,
streamwriter=StreamWriter,
) | ArcherSys/ArcherSys | [
3,
2,
3,
16,
1412356452
] |
def encode(self,input,errors='strict'):
return codecs.charmap_encode(input,errors,encoding_map) | ArcherSys/ArcherSys | [
3,
2,
3,
16,
1412356452
] |
def encode(self, input, final=False):
return codecs.charmap_encode(input,self.errors,encoding_map)[0] | ArcherSys/ArcherSys | [
3,
2,
3,
16,
1412356452
] |
def decode(self, input, final=False):
return codecs.charmap_decode(input,self.errors,decoding_table)[0] | ArcherSys/ArcherSys | [
3,
2,
3,
16,
1412356452
] |
def getregentry():
return codecs.CodecInfo(
name='cp852',
encode=Codec().encode,
decode=Codec().decode,
incrementalencoder=IncrementalEncoder,
incrementaldecoder=IncrementalDecoder,
streamreader=StreamReader,
streamwriter=StreamWriter,
) | ArcherSys/ArcherSys | [
3,
2,
3,
16,
1412356452
] |
def encode(self,input,errors='strict'):
return codecs.charmap_encode(input,errors,encoding_map) | ArcherSys/ArcherSys | [
3,
2,
3,
16,
1412356452
] |
def encode(self, input, final=False):
return codecs.charmap_encode(input,self.errors,encoding_map)[0] | ArcherSys/ArcherSys | [
3,
2,
3,
16,
1412356452
] |
def decode(self, input, final=False):
return codecs.charmap_decode(input,self.errors,decoding_table)[0] | ArcherSys/ArcherSys | [
3,
2,
3,
16,
1412356452
] |
def getregentry():
return codecs.CodecInfo(
name='cp852',
encode=Codec().encode,
decode=Codec().decode,
incrementalencoder=IncrementalEncoder,
incrementaldecoder=IncrementalDecoder,
streamreader=StreamReader,
streamwriter=StreamWriter,
) | ArcherSys/ArcherSys | [
3,
2,
3,
16,
1412356452
] |
def index( ) :
return "View Generator Service is Active!" | BioGRID/ORCA | [
1,
1,
1,
5,
1477719854
] |
def view( ) :
executor.submit(runTask)
return "" | BioGRID/ORCA | [
1,
1,
1,
5,
1477719854
] |
def runTask( ) :
cron = CRONTask.CRONTask( )
cron.run( )
cron.killPID( )
sys.exit(0) | BioGRID/ORCA | [
1,
1,
1,
5,
1477719854
] |
def get_proteins_for_db(fastafn, fastadelim, genefield):
"""Runs through fasta file and returns proteins accession nrs, sequences
and evidence levels for storage in lookup DB. Duplicate accessions in
fasta are accepted and removed by keeping only the last one.
"""
records = {acc: (rec, get_record_type(rec)) for acc, rec in
SeqIO.index(fastafn, 'fasta').items()}
proteins = ((x,) for x in records.keys())
sequences = ((acc, str(rec.seq)) for acc, (rec, rtype) in records.items())
desc = ((acc, get_description(rec, rtype)) for acc, (rec, rtype) in records.items() if rtype)
evid = ((acc, get_uniprot_evidence_level(rec, rtype)) for acc, (rec, rtype) in
records.items())
ensgs = [(get_ensg(rec), acc) for acc, (rec, rtype) in records.items()
if rtype == 'ensembl']
def sym_out():
symbols = ((get_symbol(rec, rtype, fastadelim, genefield), acc) for
acc, (rec, rtype) in records.items() if rtype)
othergene = ((get_other_gene(rec, fastadelim, genefield), acc) for acc, (rec, rtype) in records.items()
if not rtype and fastadelim and fastadelim in rec.description)
yield from symbols
yield from othergene
return proteins, sequences, desc, evid, ensgs, [x for x in sym_out()] | glormph/msstitch | [
5,
4,
5,
2,
1383224653
] |
def get_record_type(record):
dmod = get_decoy_mod_string(record.id)
test_name = record.id
if dmod is not None:
test_name = record.id.replace(dmod, '')
if test_name.split('|')[0] in ['sp', 'tr']:
return 'swiss'
elif test_name[:3] == 'ENS':
return 'ensembl'
else:
return False | glormph/msstitch | [
5,
4,
5,
2,
1383224653
] |
def get_description(record, rectype):
if rectype == 'ensembl':
desc_spl = [x.split(':') for x in record.description.split()]
try:
descix = [ix for ix, x in enumerate(desc_spl) if x[0] == 'description'][0]
except IndexError:
return 'NA'
desc = ' '.join([':'.join(x) for x in desc_spl[descix:]])[12:]
return desc
elif rectype == 'swiss':
desc = []
for part in record.description.split()[1:]:
if len(part.split('=')) > 1:
break
desc.append(part)
return ' '.join(desc) | glormph/msstitch | [
5,
4,
5,
2,
1383224653
] |
def get_genes_pickfdr(fastafn, outputtype, fastadelim, genefield):
"""Called by protein FDR module for both ENSG and e.g. Uniprot"""
for rec in parse_fasta(fastafn):
rtype = get_record_type(rec)
if rtype == 'ensembl' and outputtype == 'ensg':
yield get_ensg(rec)
elif outputtype == 'genename':
yield get_symbol(rec, rtype, fastadelim, genefield) | glormph/msstitch | [
5,
4,
5,
2,
1383224653
] |
def get_symbol(record, rectype, fastadelim, genefield):
if rectype == 'ensembl':
fields = [x.split(':') for x in record.description.split()]
sym = [x[1] for x in fields if x[0] == 'gene_symbol' and len(x) == 2]
elif rectype == 'swiss':
fields = [x.split('=') for x in record.description.split()]
sym = [x[1] for x in fields if x[0] == 'GN' and len(x) == 2]
elif fastadelim and fastadelim in record.description and genefield:
return record.description.split(fastadelim)[genefield]
else:
return 'NA'
try:
return sym[0]
except IndexError:
return 'NA' | glormph/msstitch | [
5,
4,
5,
2,
1383224653
] |
def test_bleuscore():
# dataset with two sentences
sentences = ["a quick brown fox jumped",
"the rain in spain falls mainly on the plains"]
references = [["a fast brown fox jumped",
"a quick brown fox vaulted",
"a rapid fox of brown color jumped",
"the dog is running on the grass"],
["the precipitation in spain falls on the plains",
"spanish rain falls for the most part on the plains",
"the rain in spain falls in the plains most of the time",
"it is raining today"]]
# reference scores for the given set of reference sentences
bleu_score_references = [92.9, 88.0, 81.5, 67.1] # bleu1, bleu2, bleu3, bleu4
# compute scores
bleu_metric = BLEUScore()
bleu_metric(sentences, references)
# check against references
for score, reference in zip(bleu_metric.bleu_n, bleu_score_references):
assert round(score, 1) == reference | matthijsvk/multimodalSR | [
51,
19,
51,
1,
1490812066
] |
def __init__(self, params_to_estimate, M, prior):
'''
Parent class for all PID interfaces.
Arguments:
* `params_to_estimate` : List of parameter names to be estimated
* `M` : The bioscrape Model object to use for inference
* `prior` : A dictionary specifying prior distribution.
Two built-in prior functions are `uniform_prior` and `gaussian_prior`.
Each prior has its own syntax for accepting the distribution parameters in the dictionary.
New priors may be added. The suggested format for prior dictionaries:
prior_dict = {'parameter_name': ['prior_name', prior_distribution_parameters]}
For built-in uniform prior, use {'parameter_name':['uniform', lower_bound, upper_bound]}
For built-in gaussian prior, use {'parameter_name':['gaussian', mean, standard_deviation, probability threshold]}
New PID interfaces can be added by creating child classes of PIDInterface class as shown for
Built-in PID interfaces : `StochasticInference` and `DeterministicInference`
'''
self.params_to_estimate = params_to_estimate
self.M = M
self.prior = prior
return | ananswam/bioscrape | [
14,
13,
14,
2,
1484639073
] |
def check_prior(self, params_dict):
'''
To add new prior functions: simply add a new function similar to ones that exist and then
call it here.
'''
lp = 0.0
for key,value in params_dict.items():
if 'positive' in self.prior[key] and value < 0:
return np.inf
prior_type = self.prior[key][0]
if prior_type == 'uniform':
lp += self.uniform_prior(key, value)
elif prior_type == 'gaussian':
lp += self.gaussian_prior(key, value)
elif prior_type == 'exponential':
lp += self.exponential_prior(key, value)
elif prior_type == 'gamma':
lp += self.gamma_prior(key, value)
elif prior_type == 'log-uniform':
lp += self.log_uniform_prior(key, value)
elif prior_type == 'log-gaussian':
lp += self.log_gaussian_prior(key, value)
elif prior_type == 'beta':
lp += self.beta_prior(key, value)
elif prior_type == 'custom':
# The last element in the prior dictionary must be a callable function
# The callable function shoud have the following signature :
# Arguments: param_name (str), param_value(float)
# Returns: log prior probability (float or numpy inf)
custom_fuction = self.prior[key][-1]
lp += custom_fuction(key, value)
else:
raise ValueError('Prior type undefined.')
return lp | ananswam/bioscrape | [
14,
13,
14,
2,
1484639073
] |
def gaussian_prior(self, param_name, param_value):
'''
Check if given param_value is valid according to the prior distribution.
Returns the log prior probability or np.Inf if the param_value is invalid.
'''
prior_dict = self.prior
if prior_dict is None:
raise ValueError('No prior found')
mu = prior_dict[param_name][1]
sigma = prior_dict[param_name][2]
if sigma < 0:
raise ValueError('The standard deviation must be positive.')
# Using probability density function for normal distribution
# Using scipy.stats.norm has overhead that affects speed up to 2x
prob = 1/(np.sqrt(2*np.pi) * sigma) * np.exp(-0.5*(param_value - mu)**2/sigma**2)
if prob < 0:
warnings.warn('Probability less than 0 while checking Gaussian prior! Current parameter name and value: {0}:{1}.'.format(param_name, param_value))
return np.inf
else:
return np.log(prob) | ananswam/bioscrape | [
14,
13,
14,
2,
1484639073
] |
def gamma_prior(self, param_name, param_value):
'''
Check if given param_value is valid according to the prior distribution.
Returns the log prior probability or np.inf if the param_value is invalid.
'''
prior_dict = self.prior
if prior_dict is None:
raise ValueError('No prior found')
alpha = prior_dict[param_name][1]
beta = prior_dict[param_name][2]
from scipy.special import gamma
prob = (beta**alpha)/gamma(alpha) * param_value**(alpha - 1) * np.exp(-1 * beta*param_value)
if prob < 0:
warnings.warn('Probability less than 0 while checking Exponential prior! Current parameter name and value: {0}:{1}.'.format(param_name, param_value))
return np.inf
else:
return np.log(prob) | ananswam/bioscrape | [
14,
13,
14,
2,
1484639073
] |
def log_uniform_prior(self, param_name, param_value):
'''
Check if given param_value is valid according to the prior distribution.
Returns the log prior probability or np.inf if the param_value is invalid.
'''
prior_dict = self.prior
if prior_dict is None:
raise ValueError('No prior found')
lower_bound = prior_dict[param_name][1]
upper_bound = prior_dict[param_name][2]
if lower_bound < 0 or upper_bound < 0:
raise ValueError('Upper and lower bounds for log-uniform prior must be positive.')
if param_value > upper_bound or param_value < lower_bound:
return np.inf
prob = 1/(param_value* (np.log(upper_bound) - np.log(lower_bound)))
if prob < 0:
warnings.warn('Probability less than 0 while checking Log-Uniform prior! Current parameter name and value: {0}:{1}.'.format(param_name, param_value))
return np.inf
else:
return np.log(prob) | ananswam/bioscrape | [
14,
13,
14,
2,
1484639073
] |
def __init__(self, params_to_estimate, M, prior):
self.LL_stoch = None
self.dataStoch = None
super().__init__(params_to_estimate, M, prior)
return | ananswam/bioscrape | [
14,
13,
14,
2,
1484639073
] |
def get_likelihood_function(self, params):
# Set params here and return the likelihood object.
if self.LL_stoch is None:
raise RuntimeError("Must call StochasticInference.setup_likelihood_function before using StochasticInference.get_likelihood_function.")
#Set params
params_dict = {}
for key, p in zip(self.params_to_estimate, params):
params_dict[key] = p
self.LL_stoch.set_init_params(params_dict)
#Prior
lp = self.check_prior(params_dict)
if not np.isfinite(lp):
return -np.inf
LL_stoch_cost = self.LL_stoch.py_log_likelihood()
ln_prob = lp + LL_stoch_cost
return ln_prob | ananswam/bioscrape | [
14,
13,
14,
2,
1484639073
] |
def __init__(self, params_to_estimate, M, prior):
self.LL_det = None
self.dataDet = None
super().__init__(params_to_estimate, M, prior)
return | ananswam/bioscrape | [
14,
13,
14,
2,
1484639073
] |
def get_likelihood_function(self, params):
if self.LL_det is None:
raise RuntimeError("Must call DeterministicInference.setup_likelihood_function before using DeterministicInference.get_likelihood_function.")
#this part is the only part that is called repeatedly
params_dict = {}
for key, p in zip(self.params_to_estimate, params):
params_dict[key] = p
self.LL_det.set_init_params(params_dict)
# Check prior
lp = 0
lp = self.check_prior(params_dict)
if not np.isfinite(lp):
return -np.inf
#apply cost function
LL_det_cost = self.LL_det.py_log_likelihood()
ln_prob = lp + LL_det_cost
return ln_prob | ananswam/bioscrape | [
14,
13,
14,
2,
1484639073
] |
def __init__(self, application):
"""
Default constructor
"""
super().__init__()
self.application = application
self.splash_screen = None
self.qt_app = QApplication([])
# self.qt_app.setOverrideCursor(QCursor(Qt.BlankCursor)) | tuturto/pyherc | [
43,
2,
43,
69,
1327858418
] |
def show_main_window(self):
"""
Show main window
"""
main_window = MainWindow(self.application,
self.application.surface_manager,
self.qt_app,
None,
Qt.FramelessWindowHint,
StartGameController(self.application.level_generator_factory,
self.application.creature_generator,
self.application.item_generator,
self.application.config.start_level))
self.splash_screen.finish(main_window)
main_window.show_new_game()
self.qt_app.exec_() | tuturto/pyherc | [
43,
2,
43,
69,
1327858418
] |
def __init__(self, application, surface_manager, qt_app, parent, flags,
controller):
"""
Default constructor
"""
super().__init__(parent, flags)
self.application = application
self.surface_manager = surface_manager
self.qt_app = qt_app
self.controller = controller
self.__set_layout() | tuturto/pyherc | [
43,
2,
43,
69,
1327858418
] |
def show_new_game(self):
"""
Show new game dialog
"""
app = self.application
start_dialog = StartGameWidget(generator=app.player_generator,
config=self.application.config.controls,
parent=self,
application=self.application,
surface_manager=self.surface_manager,
flags=Qt.Dialog | Qt.CustomizeWindowHint)
result = start_dialog.exec_()
if result == QDialog.Accepted:
player = start_dialog.player_character
intro_text = self.controller.setup_world(self.application.world,
player)
player.register_for_updates(self.map_window.hit_points_widget)
self.map_window.hit_points_widget.show_hit_points(player)
self.map_window.hit_points_widget.show_spirit_points(player)
self.map_window.message_widget.text_edit.setText(intro_text)
self.__show_map_window() | tuturto/pyherc | [
43,
2,
43,
69,
1327858418
] |
def __show_message_window(self, character):
"""
Show message display
:param character: character which events to display
:type character: Character
"""
messages_display = EventMessageDockWidget(self, character)
self.addDockWidget(Qt.BottomDockWidgetArea,
messages_display) | tuturto/pyherc | [
43,
2,
43,
69,
1327858418
] |
def test_create_queryset_with_host_string():
"""
Create a queryset with a host given as a string
"""
# When create a queryset
t = QuerySet("localhost", index="bar")
# And I have records
response = {
"took": 1,
"hits": {
"total": 1,
"max_score": 1,
"hits": [
{
"_index": "bar",
"_type": "baz",
"_id": "1",
"_score": 10,
"_source": {
"foo": "bar"
},
"sort": [
1395687078000
]
}
]
}
}
httpretty.register_uri(httpretty.GET, "http://localhost:9200/bar/_search",
body=json.dumps(response),
content_type="application/json")
# When I run a query
results = t[0:1]
# Then I see the response.
len(results).should.equal(1) | Yipit/pyeqs | [
207,
7,
207,
5,
1395330543
] |
def test_create_queryset_with_host_dict():
"""
Create a queryset with a host given as a dict
"""
# When create a queryset
connection_info = {"host": "localhost", "port": 8080}
t = QuerySet(connection_info, index="bar")
# And I have records
good_response = {
"took": 1,
"hits": {
"total": 1,
"max_score": 1,
"hits": [
{
"_index": "bar",
"_type": "baz",
"_id": "1",
"_score": 10,
"_source": {
"foo": "bar"
},
"sort": [
1395687078000
]
}
]
}
}
bad_response = {
"took": 1,
"hits": {
"total": 0,
"max_score": None,
"hits": []
}
}
httpretty.register_uri(httpretty.GET, "http://localhost:9200/bar/_search",
body=json.dumps(bad_response),
content_type="application/json")
httpretty.register_uri(httpretty.GET, "http://localhost:8080/bar/_search",
body=json.dumps(good_response),
content_type="application/json")
# When I run a query
results = t[0:1]
# Then I see the response.
len(results).should.equal(1)
results[0]["_source"]["foo"].should.equal("bar") | Yipit/pyeqs | [
207,
7,
207,
5,
1395330543
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.