function
stringlengths
11
56k
repo_name
stringlengths
5
60
features
sequence
def revert_image(self): log.info('download-revert', name=self.name) if self._download_state == ImageDownload.DOWNLOAD_SUCCEEDED: pass # TODO: Implement self._image_state = ImageDownload.IMAGE_INACTIVE returnValue('TODO: Implement this')
opencord/voltha
[ 73, 117, 73, 17, 1484694318 ]
def monitor_state_to_activate_state(self, state): if ':' in state: state = state.split(':')[-1] result = { 'enabling-software': ImageDownload.IMAGE_ACTIVATE, # currently enabling the software 'software-enabled': ImageDownload.IMAGE_ACTIVE, # successfully enabled the required software 'enable-software-failed': ImageDownload.IMAGE_INACTIVE, # unsuccessfully attempted to enable the required software revision 'activating-software': ImageDownload.IMAGE_ACTIVATE, # currently activating the software 'software-activated': ImageDownload.IMAGE_ACTIVE, # successfully activated the required software. The job terminated successfully 'activate-software-failed': ImageDownload.IMAGE_INACTIVE, # unsuccessfully attempted to activate the required software revision 'committing-software': ImageDownload.IMAGE_ACTIVATE, # currently committing the software 'software-committed': ImageDownload.IMAGE_ACTIVATE, # successfully committed the required software. The job terminated successfully 'commit-software-failed': ImageDownload.IMAGE_INACTIVE, # unsuccessfully attempted to commit the required software revision }.get(state.lower(), None) log.info('download-activate-state', result=result, state=state, name=self.name) assert result is not None, 'Invalid state' return result
opencord/voltha
[ 73, 117, 73, 17, 1484694318 ]
def execute(self): msg = self.xpybuild(shouldFail=False, args=[], buildfile='root.xpybuild.py') self.startProcess(self.output+'/build-output/test', [], stdout='test.out', stderr='test.err')
xpybuild/xpybuild
[ 7, 4, 7, 5, 1486396682 ]
def LOG_CRITICAL(msg, *args, **kwargs): # pragma: no cover logger.critical(msg, *args, **kwargs) logging.shutdown() sys.exit(1)
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def LOG_INFO(msg, *args, **kwargs): # pragma: no cover logger.info(msg, *args, **kwargs)
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def decorate(func): _STATIC_VARS.append((func, varname, value)) setattr(func, varname, copy(value)) return func
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def reset_static_vars(): for(func, varname, value) in _STATIC_VARS: setattr(func, varname, copy(value))
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def find_idx(name): for idx, field in enumerate(fields): if name == field: return idx return -1
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def add_pragmas(json_item, p4_object): json_item["pragmas"] = list(p4_object._pragmas)
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def get_padding_name(i): return "_padding_{}".format(i)
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def dump_headers(json_dict, hlir, keep_pragmas=False): headers = [] id_ = 0 for name, p4_header_instance in hlir.p4_header_instances.items(): if p4_header_instance.virtual: continue header_instance_dict = OrderedDict() header_instance_dict["name"] = name header_instance_dict["id"] = id_ id_ += 1 header_instance_dict["header_type"] =\ p4_header_instance.header_type.name header_instance_dict["metadata"] = p4_header_instance.metadata if keep_pragmas: add_pragmas(header_instance_dict, p4_header_instance) for p4_field in p4_header_instance.fields: if p4_field.default is not None and p4_field.default != 0: LOG_CRITICAL( "In file '{}' at line {}: " "non-zero metadata initialization is not supported by this " "backend; field '{}' cannot be initialized to {}".format( p4_header_instance.filename, p4_header_instance.lineno, str(p4_field), p4_field.default)) headers.append(header_instance_dict) json_dict["headers"] = headers
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def __init__(self, name, size, header_type): self.name = name self.size = size self.header_type = header_type self.ids = []
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def field_suffix(p4_field): suffix = p4_field.name if suffix == "valid": suffix = "$valid$" return suffix
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def header_type_field_offset(p4_header_type, fname): for idx, f in enumerate(p4_header_type.layout): if f == fname: return idx LOG_CRITICAL("No field {} in header type {}".format( # pragma: no cover fname, p4_header_type.name))
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def make_expression(op, L, R): e = OrderedDict( [("type", "expression"), ("value", OrderedDict( [("op", op), ("left", L), ("right", R)]))]) return e
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def format_hexstr(i): # Python appends a L at the end of a long number representation, which we # need to remove return hex(i).rstrip("L")
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def is_register_ref(obj): try: return (type(obj) is p4.p4_register_ref) except AttributeError: return False
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def build_match_value(widths, value): res = "" for width in reversed(widths): mask = (1 << width) - 1 val = value & mask num_bytes = (width + 7) / 8 res = "{0:0{1}x}".format(val, 2 * num_bytes) + res value = value >> width return "0x" + res
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def dump_one_parser(parser_name, parser_id, p4_start_state, keep_pragmas=False): parser_dict = OrderedDict() parser_dict["name"] = parser_name parser_dict["id"] = parser_id parser_dict["init_state"] = p4_start_state.name parse_states = [] accessible_parse_states = set() accessible_parse_states_ordered = [] def find_accessible_parse_states(parse_state): if parse_state in accessible_parse_states: return accessible_parse_states.add(parse_state) accessible_parse_states_ordered.append(parse_state) for _, next_state in parse_state.branch_to.items(): if isinstance(next_state, p4.p4_parse_state): find_accessible_parse_states(next_state) find_accessible_parse_states(p4_start_state) for p4_parse_state in accessible_parse_states_ordered: parse_state_dict = OrderedDict() parse_state_dict["name"] = p4_parse_state.name parse_state_dict["id"] = dump_one_parser.parse_state_id dump_one_parser.parse_state_id += 1 parser_ops = [] for parser_op in p4_parse_state.call_sequence: parser_op_dict = OrderedDict() op_type = parser_op[0] parameters = [] if op_type == p4.parse_call.extract: parser_op_dict["op"] = "extract" header = parser_op[1] param_dict = OrderedDict() if header.virtual: param_dict["type"] = "stack" param_dict["value"] = header.base_name else: param_dict["type"] = "regular" param_dict["value"] = header.name parameters.append(param_dict) elif op_type == p4.parse_call.set: parser_op_dict["op"] = "set" dest_field, src = parser_op[1], parser_op[2] assert(type(dest_field) is p4.p4_field and "parser assignment target should be a field") dest_dict = OrderedDict() src_dict = OrderedDict() dest_dict["type"] = "field" dest_dict["value"] = format_field_ref(dest_field) parameters.append(dest_dict) if type(src) is int or type(src) is long: src_dict["type"] = "hexstr" src_dict["value"] = format_hexstr(src) elif type(src) is p4.p4_field: src_dict = format_field_ref_expression(src, False) elif type(src) is tuple: src_dict["type"] = "lookahead" src_dict["value"] = list(src) elif type(src) is p4.p4_expression: src_dict["type"] = "expression" src_dict["value"] = dump_expression(src) else: # pragma: no cover LOG_CRITICAL("invalid src type for set_metadata: %s", type(src)) parameters.append(src_dict) else: # pragma: no cover LOG_CRITICAL("invalid parser operation: %s", op_type) parser_op_dict["parameters"] = parameters parser_ops.append(parser_op_dict) parse_state_dict["parser_ops"] = parser_ops transition_key = [] field_widths = [] for switch_ref in p4_parse_state.branch_on: switch_ref_dict = OrderedDict() if type(switch_ref) is p4.p4_field: field_widths.append(switch_ref.width) header = switch_ref.instance if header.virtual: switch_ref_dict["type"] = "stack_field" else: switch_ref_dict["type"] = "field" switch_ref_dict["value"] = format_field_ref(switch_ref) elif type(switch_ref) is tuple: field_widths.append(switch_ref[1]) switch_ref_dict["type"] = "lookahead" switch_ref_dict["value"] = list(switch_ref) else: # pragma: no cover LOG_CRITICAL("not supported") transition_key.append(switch_ref_dict) parse_state_dict["transition_key"] = transition_key transitions = [] for branch_case, next_state in p4_parse_state.branch_to.items(): transition_dict = OrderedDict() value, mask, type_ = None, None, None if branch_case == p4.P4_DEFAULT: type_ = "default" elif type(branch_case) is int: type_ = "hexstr" value = build_match_value(field_widths, branch_case) elif type(branch_case) is tuple: type_ = "hexstr" value, mask = (build_match_value(field_widths, branch_case[0]), build_match_value(field_widths, branch_case[1])) elif type(branch_case) is p4.p4_parse_value_set: type_ = "parse_vset" value = branch_case.name # mask not supported yet in compiler, even though it is # supported in bmv2 mask = None vset_bits = sum(field_widths) if value in dump_parsers.vset_widths: curr_bits = dump_parsers.vset_widths[value] if curr_bits != vset_bits: # pragma: no cover LOG_CRITICAL("when parser value set used multiple " "times, widths cannot clash") else: dump_parsers.vset_widths[value] = vset_bits else: # pragma: no cover LOG_CRITICAL("invalid parser branching") transition_dict["type"] = type_ transition_dict["value"] = value transition_dict["mask"] = mask if isinstance(next_state, p4.p4_parse_state): transition_dict["next_state"] = next_state.name else: # we do not support control flows here anymore transition_dict["next_state"] = None transitions.append(transition_dict) parse_state_dict["transitions"] = transitions if keep_pragmas: add_pragmas(parse_state_dict, p4_parse_state) parse_states.append(parse_state_dict) parser_dict["parse_states"] = parse_states return parser_dict
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def dump_parsers(json_dict, hlir, keep_pragmas=False): parsers = [] parser_id = 0 for name, p4_parse_state in hlir.p4_parse_states.items(): new_name = None if name == "start": new_name = "parser" elif "packet_entry" in p4_parse_state._pragmas: new_name = name if new_name: parsers.append(dump_one_parser( new_name, parser_id, p4_parse_state, keep_pragmas=keep_pragmas)) parser_id += 1 json_dict["parsers"] = parsers
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def process_forced_header_ordering(hlir, ordering): p4_ordering = [] for hdr_name in ordering: if hdr_name in hlir.p4_header_instances: p4_ordering.append(hlir.p4_header_instances[hdr_name]) elif hdr_name + "[0]" in hlir.p4_header_instances: hdr_0 = hlir.p4_header_instances[hdr_name + "[0]"] for index in xrange(hdr_0.max_index + 1): indexed_name = hdr_name + "[" + str(index) + "]" p4_ordering.append(hlir.p4_header_instances[indexed_name]) else: return None return p4_ordering
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def __init__(self, parse_state, prev_hdr_node, tag_stacks_index): self.current_state = parse_state self.prev_hdr_node = prev_hdr_node self.stacks = frozenset(tag_stacks_index.items())
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def __hash__(self): return hash((self.current_state, self.prev_hdr_node, self.stacks))
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def __str__(self): # pragma: no cover return "{}, {}, {}".format( self.current_state, self.prev_hdr_node, self.stacks)
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def walk_rec(hlir, parse_state, prev_hdr_node, tag_stacks_index, visited, recursion_states): assert(isinstance(parse_state, p4.p4_parse_state)) rec_state = State(parse_state, prev_hdr_node, tag_stacks_index) if rec_state in recursion_states: return recursion_states.add(rec_state) for call in parse_state.call_sequence: call_type = call[0] if call_type == p4.parse_call.extract: hdr = call[1] if hdr.virtual: base_name = hdr.base_name current_index = tag_stacks_index[base_name] if current_index > hdr.max_index: return tag_stacks_index[base_name] += 1 name = base_name + "[%d]" % current_index hdr = hlir.p4_header_instances[name] # takes care of loops in parser (e.g. for TLV parsing) elif parse_state in visited: return if hdr not in header_graph: header_graph.add_node(hdr) hdr_node = header_graph.get_node(hdr) if prev_hdr_node: prev_hdr_node.add_edge_to(hdr_node) else: header_graph.root = hdr prev_hdr_node = hdr_node for branch_case, next_state in parse_state.branch_to.items(): if not next_state: continue if not isinstance(next_state, p4.p4_parse_state): continue walk_rec(hlir, next_state, prev_hdr_node, tag_stacks_index.copy(), visited | {parse_state}, recursion_states)
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def dump_one_deparser(deparser_name, deparser_id, p4_start_state, hlir): deparser_dict = OrderedDict() deparser_dict["name"] = deparser_name deparser_dict["id"] = deparser_id deparser_id = deparser_id header_topo_sorting = produce_parser_topo_sorting(hlir, p4_start_state) deparser_order = [hdr.name for hdr in header_topo_sorting] deparser_dict["order"] = deparser_order dump_one_deparser.header_set.update(set(header_topo_sorting)) return deparser_dict
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def dump_deparsers(json_dict, hlir, p4_v1_1=False): deparsers = [] deparser_id = 0 for name, p4_parse_state in hlir.p4_parse_states.items(): new_name = None if name == "start": new_name = "deparser" elif "packet_entry" in p4_parse_state._pragmas: new_name = name if new_name: deparsers.append( dump_one_deparser(new_name, deparser_id, p4_parse_state, hlir)) deparser_id += 1 check_added_headers_in_parse_graph(hlir, dump_one_deparser.header_set, p4_v1_1=p4_v1_1) json_dict["deparsers"] = deparsers
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def get_nodes(pipe_ptr, node_set): if pipe_ptr is None: return if pipe_ptr in node_set: return node_set.add(pipe_ptr) for next_node in pipe_ptr.next_.values(): get_nodes(next_node, node_set)
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def get_table_match_type(p4_table): match_types = [] for _, m_type, _ in p4_table.match_fields: match_types.append(match_type_to_str(m_type)) if len(match_types) == 0: match_type = "exact" elif "range" in match_types: match_type = "range" elif "ternary" in match_types: match_type = "ternary" elif match_types.count("lpm") >= 2: # pragma: no cover LOG_CRITICAL("cannot have 2 different lpm matches in a single table") elif "lpm" in match_types: match_type = "lpm" else: # that includes the case when we only have one valid match and # nothing else match_type = "exact" return match_type
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def dump_action_profile(pipe_name, action_profiles, p4_action_profile, keep_pragmas=False): # check that the same action profile is not referenced across multiple # control flows. This is somewhat of an artifical restriction imposed by the # pipeline abstraction in the JSON if p4_action_profile in dump_action_profile.referenced: if dump_action_profile.referenced[p4_action_profile] != pipe_name: LOG_CRITICAL("action profile {} cannot be referenced in different " "control flows".format(p4_action_profile.name)) else: dump_action_profile.referenced[p4_action_profile] = pipe_name act_prof_dict = OrderedDict() act_prof_dict["name"] = p4_action_profile.name act_prof_dict["id"] = dump_action_profile.act_prof_id dump_action_profile.act_prof_id += 1 act_prof_dict["max_size"] = p4_action_profile.size if p4_action_profile.selector is not None: p4_selector = p4_action_profile.selector selector = OrderedDict() if type(p4_selector.selection_key.algorithm) is list: # we already print a warning for this case in dump_calculations selector["algo"] = p4_selector.selection_key.algorithm[0] else: selector["algo"] = p4_selector.selection_key.algorithm elements = [] assert(len(p4_selector.selection_key.input) == 1) for field in p4_selector.selection_key.input[0].fields: element_dict = OrderedDict() if type(field) is not p4.p4_field: # pragma: no cover LOG_CRITICAL("only fields supported in field lists") element_dict["type"] = "field" element_dict["value"] = format_field_ref(field) elements.append(element_dict) selector["input"] = elements act_prof_dict["selector"] = selector if keep_pragmas: add_pragmas(act_prof_dict, p4_action_profile) action_profiles.append(act_prof_dict)
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def dump_one_pipeline(json_dict, pipe_name, pipe_ptr, hlir, keep_pragmas=False): def get_table_name(p4_table): if not p4_table: return None return p4_table.name def table_has_counters(p4_table): for name, counter in hlir.p4_counters.items(): if counter.binding == (p4.P4_DIRECT, p4_table): return True return False def table_direct_meters(p4_table): for name, meter in hlir.p4_meters.items(): if meter.binding == (p4.P4_DIRECT, p4_table): return name return None pipeline_dict = OrderedDict() pipeline_dict["name"] = pipe_name pipeline_dict["id"] = dump_one_pipeline.pipeline_id dump_one_pipeline.pipeline_id += 1 pipeline_dict["init_table"] = get_table_name(pipe_ptr) node_set = set() get_nodes(pipe_ptr, node_set) tables = [] action_profiles = [] for name, table in hlir.p4_tables.items(): if table not in node_set: continue table_dict = OrderedDict() table_dict["name"] = name table_dict["id"] = dump_one_pipeline.table_id dump_one_pipeline.table_id += 1 match_type = get_table_match_type(table) table_dict["match_type"] = match_type table_dict["type"] = get_table_type(table) if table_dict["type"] == "indirect" or\ table_dict["type"] == "indirect_ws": table_dict["action_profile"] = table.action_profile.name dump_action_profile(pipe_name, action_profiles, table.action_profile, keep_pragmas=keep_pragmas) table_dict["max_size"] = table.max_size if table.max_size else 16384 # TODO(antonin): update counters to be the same as direct meters, but # that would make the JSON non-backwards compatible table_dict["with_counters"] = table_has_counters(table) table_dict["direct_meters"] = table_direct_meters(table) table_dict["support_timeout"] = table.support_timeout key = [] for field_ref, m_type, mask in table.match_fields: key_field = OrderedDict() match_type = match_type_to_str(m_type) key_field["match_type"] = match_type if match_type != "valid": assert(isinstance(field_ref, p4.p4_field)) field_width = field_ref.width if field_width == p4.P4_AUTO_WIDTH: LOG_CRITICAL( "Cannot match on field '{}' as matching on " "variable-length fields is not supported".format( field_ref)) if match_type == "valid": if isinstance(field_ref, p4.p4_field): header_ref = field_ref.instance else: header_ref = field_ref assert(type(header_ref) is p4.p4_header_instance) key_field["target"] = header_ref.name else: key_field["target"] = format_field_ref(field_ref) if mask: if match_type == "valid": LOG_WARNING("a field mask does not make much sense for a " "valid match") field_width = 1 else: assert(isinstance(field_ref, p4.p4_field)) field_width = field_ref.width # re-using this function (used by parser) mask = build_match_value([field_width], mask) LOG_INFO("you are using a mask in a match table, " "this is still an experimental feature") else: mask = None # should aready be the case key_field["mask"] = mask key.append(key_field) table_dict["key"] = key table_dict["actions"] = [a.name for a in table.actions] next_tables = OrderedDict() if "hit" in table.next_: next_tables["__HIT__"] = get_table_name(table.next_["hit"]) next_tables["__MISS__"] = get_table_name(table.next_["miss"]) else: for a, nt in table.next_.items(): next_tables[a.name] = get_table_name(nt) table_dict["next_tables"] = next_tables # temporarily not covered by tests, because not part of P4 spec if hasattr(table, "default_action") and\ table.default_action is not None: LOG_INFO("you are using the default_entry table attribute, " "this is still an experimental feature") action, data = table.default_action default_entry = OrderedDict() for j_action in json_dict["actions"]: if j_action["name"] == action.name: default_entry["action_id"] = j_action["id"] default_entry["action_const"] = True if data is not None: default_entry["action_data"] = [format_hexstr(i) for i in data] default_entry["action_entry_const"] = False table_dict["default_entry"] = default_entry # TODO: temporary, to ensure backwards compatibility if hasattr(table, "base_default_next"): table_dict["base_default_next"] = get_table_name( table.base_default_next) else: # pragma: no cover LOG_WARNING("Your 'p4-hlir' is out-of-date, consider updating") if keep_pragmas: add_pragmas(table_dict, table) tables.append(table_dict) pipeline_dict["tables"] = tables pipeline_dict["action_profiles"] = action_profiles conditionals = [] for name, cnode in hlir.p4_conditional_nodes.items(): if cnode not in node_set: continue conditional_dict = OrderedDict() conditional_dict["name"] = name conditional_dict["id"] = dump_one_pipeline.condition_id dump_one_pipeline.condition_id += 1 conditional_dict["expression"] = dump_expression(cnode.condition) conditional_dict["true_next"] = get_table_name(cnode.next_[True]) conditional_dict["false_next"] = get_table_name(cnode.next_[False]) if keep_pragmas: add_pragmas(conditional_dict, cnode) conditionals.append(conditional_dict) pipeline_dict["conditionals"] = conditionals return pipeline_dict
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def index_OrderedDict(self, kf): idx = 0 for k, v in self.items(): if(k == kf): return idx idx += 1
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def field_list_to_learn_id(p4_field_list): ids = field_list_to_learn_id.ids if p4_field_list in ids: return ids[p4_field_list] idx = len(ids) + 1 ids[p4_field_list] = idx return idx
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def field_list_to_id(p4_field_list): ids = field_list_to_id.ids if p4_field_list in ids: return ids[p4_field_list] idx = len(ids) + 1 ids[p4_field_list] = idx return idx
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def dump_actions(json_dict, hlir, p4_v1_1=False, keep_pragmas=False): actions = [] action_id = 0 table_actions_set = get_p4_action_set(hlir) for action in table_actions_set: action_dict = OrderedDict() action_dict["name"] = action.name action_dict["id"] = action_id action_id += 1 runtime_data = [] param_with_bit_widths = OrderedDict() for param, width in zip(action.signature, action.signature_widths): if not width: # pragma: no cover LOG_CRITICAL( "unused parameter '{}' in action '{}' definition".format( param, action.name)) param_with_bit_widths[param] = width param_dict = OrderedDict() param_dict["name"] = param param_dict["bitwidth"] = width runtime_data.append(param_dict) action_dict["runtime_data"] = runtime_data def is_stack_ref(call_idx, arg_idx, primitive_name): # legacy case if not hasattr(action, "stack_indices"): # pragma: no cover return (primitive_name in {"push", "pop"} and arg_idx == 0) stack_indices = action.stack_indices[call_idx] return (arg_idx in stack_indices) primitives = [] for call_idx, call in enumerate(action.flat_call_sequence): primitive_dict = OrderedDict() if p4_v1_1 and type(call[0]) is p4.p4_extern_method: primitive_name = "_" + call[0].parent.extern_type.name \ + "_" + call[0].name primitive_dict["op"] = primitive_name args = [call[0].parent.name] + call[1] else: primitive_name = call[0].name primitive_dict["op"] = primitive_name args = call[1] # backwards compatibility with older P4 programs if primitive_name == "modify_field" and len(args) == 3: LOG_WARNING( "Your P4 program uses the modify_field() action primitive " "with 3 arguments (aka masked modify), bmv2 does not " "support it anymore and this compiler will replace your " "modify_field(a, b, c) with " "modify_field(a, (a & ~c) | (b & c))") Lexpr = p4.p4_expression(args[0], "&", p4.p4_expression(None, "~", args[2])) Rexpr = p4.p4_expression(args[1], "&", args[2]) new_arg = p4.p4_expression(Lexpr, "|", Rexpr) args = [args[0], new_arg] primitive_args = [] for arg_idx, arg in enumerate(args): arg_dict = OrderedDict() if type(arg) is int or type(arg) is long: arg_dict["type"] = "hexstr" arg_dict["value"] = format_hexstr(arg) elif type(arg) is p4.p4_sized_integer: # TODO(antonin) arg_dict["type"] = "hexstr" arg_dict["value"] = format_hexstr(arg) elif type(arg) is p4.p4_field: arg_dict["type"] = "field" arg_dict["value"] = format_field_ref(arg) elif type(arg) is p4.p4_header_instance: arg_dict["type"] = "header" arg_dict["value"] = arg.name elif p4_v1_1 and type(arg) is p4.p4_header_stack: arg_dict["type"] = "header_stack" arg_dict["value"] = re.sub(r'\[.*\]', '', arg.name) elif type(arg) is p4.p4_signature_ref: arg_dict["type"] = "runtime_data" arg_dict["value"] = arg.idx elif type(arg) is p4.p4_field_list: # hack for generate_digest calls if primitive_name == "generate_digest": id_ = field_list_to_learn_id(arg) elif "clone" in primitive_name or\ primitive_name in {"resubmit", "recirculate"}: id_ = field_list_to_id(arg) arg_dict["type"] = "hexstr" arg_dict["value"] = format_hexstr(id_) elif type(arg) is p4.p4_field_list_calculation: arg_dict["type"] = "calculation" arg_dict["value"] = arg.name elif type(arg) is p4.p4_meter: arg_dict["type"] = "meter_array" arg_dict["value"] = arg.name elif type(arg) is p4.p4_counter: arg_dict["type"] = "counter_array" arg_dict["value"] = arg.name elif type(arg) is p4.p4_register: arg_dict["type"] = "register_array" arg_dict["value"] = arg.name elif type(arg) is p4.p4_expression: arg_dict["type"] = "expression" arg_dict["value"] = dump_expression(arg) elif is_register_ref(arg): arg_dict["type"] = "register" arg_dict["value"] = format_register_ref(arg) elif p4_v1_1 and type(call[0]) is p4.p4_extern_method: if arg == call[0].parent.name: arg_dict["type"] = "extern" arg_dict["value"] = arg else: # pragma: no cover LOG_CRITICAL("action arg type is not supported: %s", type(arg)) if (not p4_v1_1)\ and is_stack_ref(call_idx, arg_idx, primitive_name): assert(arg_dict["type"] == "header") arg_dict["type"] = "header_stack" arg_dict["value"] = re.sub(r'\[.*\]', '', arg_dict["value"]) primitive_args.append(arg_dict) primitive_dict["parameters"] = primitive_args primitives.append(primitive_dict) action_dict["primitives"] = primitives if keep_pragmas: add_pragmas(action_dict, action) actions.append(action_dict) json_dict["actions"] = actions
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def dump_checksums(json_dict, hlir): checksums = [] id_ = 0 for name, p4_header_instance in hlir.p4_header_instances.items(): for field_instance in p4_header_instance.fields: field_ref = format_field_ref(field_instance) field_name = '.'.join(field_ref) for calculation in field_instance.calculation: checksum_dict = OrderedDict() type_, calc, if_cond = calculation if type_ == "verify": # pragma: no cover LOG_WARNING( "The P4 program defines a checksum verification on " "field '{}'; as of now bmv2 ignores all checksum " "verifications; checksum updates are processed " "correctly.".format(field_name)) continue different_width = (calc.output_width != field_instance.width) if different_width: # pragma: no cover LOG_CRITICAL( "For checksum on field '{}', the field width is " "different from the calulation output width." .format(field_name)) # if we want the name to be unique, it has to (at least) include # the name of teh calculation; however do we really need the # name to be unique checksum_dict["name"] = "|".join([field_name, calc.name]) checksum_dict["id"] = id_ id_ += 1 checksum_dict["target"] = field_ref checksum_dict["type"] = "generic" checksum_dict["calculation"] = calc.name checksum_dict["if_cond"] = None if if_cond is not None: assert(type(if_cond) is p4.p4_expression) checksum_dict["if_cond"] = dump_expression(if_cond) checksums.append(checksum_dict) json_dict["checksums"] = checksums
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def dump_learn_lists(json_dict, hlir): learn_lists = [] learn_list_ids = field_list_to_learn_id.ids for p4_field_list, id_ in learn_list_ids.items(): learn_list_dict = OrderedDict() learn_list_dict["id"] = id_ learn_list_dict["name"] = p4_field_list.name elements = [] for field in p4_field_list.fields: element_dict = OrderedDict() if type(field) is not p4.p4_field: # pragma: no cover LOG_CRITICAL("only fields supported in field lists for now") element_dict["type"] = "field" element_dict["value"] = format_field_ref(field) elements.append(element_dict) learn_list_dict["elements"] = elements learn_lists.append(learn_list_dict) learn_lists.sort(key=lambda field_list: field_list["id"]) json_dict["learn_lists"] = learn_lists
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def dump_meters(json_dict, hlir, keep_pragmas=False): meters = [] id_ = 0 for name, p4_meter in hlir.p4_meters.items(): meter_dict = OrderedDict() meter_dict["name"] = name meter_dict["id"] = id_ id_ += 1 if p4_meter.binding and (p4_meter.binding[0] == p4.P4_DIRECT): meter_dict["is_direct"] = True meter_dict["binding"] = p4_meter.binding[1].name meter_dict["size"] = p4_meter.binding[1].max_size meter_dict["result_target"] = format_field_ref(p4_meter.result) else: meter_dict["is_direct"] = False meter_dict["size"] = p4_meter.instance_count meter_dict["rate_count"] = 2 # 2 rate, 3 colors if p4_meter.type == p4.P4_COUNTER_BYTES: type_ = "bytes" elif p4_meter.type == p4.P4_COUNTER_PACKETS: type_ = "packets" else: # pragma: no cover LOG_CRITICAL("invalid meter type") meter_dict["type"] = type_ if keep_pragmas: add_pragmas(meter_dict, p4_meter) meters.append(meter_dict) json_dict["meter_arrays"] = meters
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def dump_registers(json_dict, hlir, keep_pragmas=False): registers = [] id_ = 0 for name, p4_register in hlir.p4_registers.items(): if p4_register.binding and (p4_register.binding[0] == p4.P4_DIRECT): LOG_CRITICAL("'{}' is a direct register; direct registers are not " "supported by bmv2".format(name)) register_dict = OrderedDict() register_dict["name"] = name register_dict["id"] = id_ id_ += 1 if p4_register.layout is not None: # pragma: no cover LOG_CRITICAL("registers with layout not supported") register_dict["bitwidth"] = p4_register.width register_dict["size"] = p4_register.instance_count if keep_pragmas: add_pragmas(register_dict, p4_register) registers.append(register_dict) json_dict["register_arrays"] = registers
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def dump_force_arith(json_dict, hlir): force_arith = [] headers = ["standard_metadata", "intrinsic_metadata"] for header_name in headers: if header_name not in hlir.p4_header_instances: continue p4_header_instance = hlir.p4_header_instances[header_name] p4_header_type = p4_header_instance.header_type for field, _ in p4_header_type.layout.items(): force_arith.append([header_name, field]) json_dict["force_arith"] = force_arith
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def dump_extern_instances(json_dict, hlir): extern_instances = [] id_ = 0 for name, p4_extern_instance in hlir.p4_extern_instances.items(): extern_instance_dict = OrderedDict() extern_instance_dict["name"] = name extern_instance_dict["id"] = id_ extern_instance_dict["type"] = p4_extern_instance.extern_type.name id_ += 1 attributes = [] for attribute, attr in p4_extern_instance.attributes.items(): attr_type = p4_extern_instance.extern_type.attributes[attribute].\ value_type.type_name if attr_type != "bit" and attr_type != "int": # pragma: no cover LOG_CRITICAL( "Attribute type '{}' not supported for the " "extern type '{}'. Supported values are bit and int". format(attr_type, p4_extern_instance.extern_type.name)) attribute_dict = OrderedDict() attribute_dict["name"] = attribute attribute_dict["type"] = "hexstr" attribute_dict["value"] = hex(attr) attributes.append(attribute_dict) extern_instance_dict["attribute_values"] = attributes extern_instances.append(extern_instance_dict) json_dict["extern_instances"] = extern_instances
p4lang/p4c-bm
[ 23, 30, 23, 3, 1438962502 ]
def setUp(self): super(AwsVpcS3EndpointTest, self).setUp() self.mock_vpc = mock.Mock() self.mock_vpc.region = REGION self.mock_run_cmd = self.enter_context( mock.patch.object(aws_vpc_endpoint.AwsVpcS3Endpoint, '_RunCommand'))
GoogleCloudPlatform/PerfKitBenchmarker
[ 1785, 474, 1785, 248, 1405617806 ]
def testEndPointIdNoVpc(self): # initialize with no VPC means no immediate lookups done endpoint = self._InitEndpoint(None) self.assertIsNone(endpoint.id) endpoint._RunCommand.assert_not_called()
GoogleCloudPlatform/PerfKitBenchmarker
[ 1785, 474, 1785, 248, 1405617806 ]
def testCreate(self): # shows that a call to .Create() will get the routing table info followed # by the create-vpc-endpoint call endpoint = self._InitEndpoint(VPC_ID) self.mock_run_cmd.reset_mock() self.mock_run_cmd.side_effect = [ [], # query for endpoint id [ROUTE_TABLE_ID], # query for route tables CREATE_RES, # _Create() [ENDPOINT_ID], # _Exists() ] endpoint.Create() calls = endpoint._RunCommand.call_args_list self.assertEqual(mock.call(QUERY_ENDPOINTS_CMD), calls[0]) self.assertEqual(mock.call(DESCRIBE_ROUTES_CMD), calls[1]) self.assertEqual(mock.call(CREATE_ENDPOINT_CMD), calls[2]) self.assertEqual(mock.call(QUERY_ENDPOINTS_CMD), calls[3]) self.assertEqual(ENDPOINT_ID, endpoint.id)
GoogleCloudPlatform/PerfKitBenchmarker
[ 1785, 474, 1785, 248, 1405617806 ]
def install(self, env): self.install_packages(env)
arenadata/ambari
[ 3, 7, 3, 3, 1478181309 ]
def pre_upgrade_restart(self, env, upgrade_type=None): import params env.set_params(params) if params.version and compare_versions(format_stack_version(params.version), '4.1.0.0') >= 0: stack_select.select_packages(params.version) # This is extremely important since it should only be called if crossing the IOP 4.2 boundary. # This is extremely important since it should only be called if crossing the HDP 2.3.4.0 boundary. if params.version and params.upgrade_direction: src_version = dst_version = None if params.upgrade_direction == Direction.UPGRADE: src_version = upgrade_summary.get_source_version("KAFKA", default_version = params.version) dst_version = upgrade_summary.get_target_version("KAFKA", default_version = params.version) else: # These represent the original values during the UPGRADE direction src_version = upgrade_summary.get_target_version("KAFKA", default_version = params.version) dst_version = upgrade_summary.get_source_version("KAFKA", default_version = params.version) if compare_versions(src_version, '4.2.0.0') < 0 and compare_versions(dst_version, '4.2.0.0') >= 0: # Upgrade from IOP 4.1 to 4.2, Calling the acl migration script requires the configs to be present. self.configure(env, upgrade_type=upgrade_type) upgrade.run_migration(env, upgrade_type)
arenadata/ambari
[ 3, 7, 3, 3, 1478181309 ]
def stop(self, env, upgrade_type=None): import params env.set_params(params) ensure_base_directories() daemon_cmd = format('source {params.conf_dir}/kafka-env.sh; {params.kafka_bin} stop') Execute(daemon_cmd, user=params.kafka_user, ) File (params.kafka_pid_file, action = "delete" )
arenadata/ambari
[ 3, 7, 3, 3, 1478181309 ]
def verify_ids(doc_iter, es_host, index, doc_type=None, step=100000, ): '''verify how many docs from input interator/list overlapping with existing docs.''' index = index doc_type = doc_type es = get_es(es_host) q = {'query': {'ids': {"values": []}}} total_cnt = 0 found_cnt = 0 out = [] for doc_batch in iter_n(doc_iter, n=step): id_li = [doc['_id'] for doc in doc_batch] # id_li = [doc['_id'].replace('chr', '') for doc in doc_batch] q['query']['ids']['values'] = id_li xres = es.search(index=index, doc_type=doc_type, body=q, _source=False) found_cnt += xres['hits']['total'] total_cnt += len(id_li) out.extend([x['_id'] for x in xres['hits']['hits']]) return out
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def wrapper(func): '''this wrapper allows passing index and doc_type from wrapped method.''' def outter_fn(*args, **kwargs): self = args[0] index = kwargs.pop('index', self._index) # pylint: disable=protected-access doc_type = kwargs.pop('doc_type', self._doc_type) # pylint: disable=protected-access self._index = index # pylint: disable=protected-access self._doc_type = doc_type # pylint: disable=protected-access return func(*args, **kwargs) outter_fn.__doc__ = func.__doc__ return outter_fn
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def __init__(self, client, index_name): self.client = client # synchronous self.index_name = index_name # MUST exist
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def doc_type(self): if int(self.client.info()['version']['number'].split('.')[0]) < 7: mappings = self.client.indices.get_mapping(self.index_name) mappings = mappings[self.index_name]["mappings"] return next(iter(mappings.keys())) return None
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def __init__(self, index, doc_type='_doc', es_host='localhost:9200', step=500, step_size=10, # elasticsearch.helpers.bulk number_of_shards=1, number_of_replicas=0, check_index=True, **kwargs): self.es_host = es_host self._es = get_es(es_host, **kwargs) self._host_major_ver = int(self._es.info()['version']['number'].split('.')[0]) if check_index: # if index is actually an alias, resolve the alias to # the real underlying index try: res = self._es.indices.get_alias(index=index) # this was an alias assert len(res) == 1, "Expecing '%s' to be an alias, but got nothing..." % index self._index = list(res.keys())[0] except NotFoundError: # this was a real index name self._index = index self._doc_type = None if doc_type: self._doc_type = doc_type else: # assuming index exists, get mapping to discover doc_type try: m = self.get_mapping() assert len(m) == 1, "Expected only one doc type, got: %s" % m.keys() self._doc_type = list(m).pop() except Exception as e: # pylint: disable=broad-except if check_index: logging.info("Failed to guess doc_type: %s", e) self.number_of_shards = number_of_shards # set number_of_shards when create_index self.number_of_replicas = int(number_of_replicas) # set number_of_replicas when create_index self.step = step or 500 # the bulk size when doing bulk operation. self.step_size = (step_size or 10) * 1048576 # MB -> bytes self.s = None # number of records to skip, useful to continue indexing after an error.
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def get_biothing(self, bid, only_source=False, **kwargs): rawdoc = self._es.get(index=self._index, id=bid, doc_type=self._doc_type, **kwargs) if not only_source: return rawdoc else: doc = rawdoc['_source'] doc["_id"] = rawdoc["_id"] return doc
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def exists(self, bid): """return True/False if a biothing id exists or not.""" try: doc = self.get_biothing(bid, stored_fields=None) return doc['found'] except NotFoundError: return False
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def mexists(self, bid_list): q = { "query": { "ids": { "values": bid_list } } } res = self._es.search(index=self._index, doc_type=self._doc_type, body=q, stored_fields=None, size=len(bid_list)) # id_set = set([doc['_id'] for doc in res['hits']['hits']]) # TODO: Confirm this line id_set = {doc['_id'] for doc in res['hits']['hits']} return [(bid, bid in id_set) for bid in bid_list]
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def count(self, q=None, raw=False): try: _res = self._es.count(index=self._index, doc_type=self._doc_type, body=q) return _res if raw else _res['count'] except NotFoundError: return None
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def count_src(self, src): if isinstance(src, str): src = [src] cnt_d = {} for _src in src: q = { "query": { "constant_score": { "filter": { "exists": {"field": _src} } } } } cnt_d[_src] = self.count(q) return cnt_d
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def create_index(self, mapping=None, extra_settings=None): if not self._es.indices.exists(index=self._index): body = { 'settings': { 'number_of_shards': self.number_of_shards, "number_of_replicas": self.number_of_replicas, } } extra_settings = extra_settings or {} body["settings"].update(extra_settings) if mapping: # the mapping is passed in for elasticsearch 6 # if the remote server is of elasticsearch version 7 or later # drop the doc_type first level key as it is no longer supported self._populate_es_version() if self._host_major_ver > 6: if len(mapping) == 1 and next(iter(mapping)) not in ('properties', 'dynamic', '_meta'): mapping = next(iter(mapping.values())) mapping = {"mappings": mapping} body.update(mapping) self._es.indices.create(index=self._index, body=body)
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def exists_index(self): return self._es.indices.exists(index=self._index)
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def index_bulk(self, docs, step=None, action='index'): self._populate_es_version() index_name = self._index doc_type = self._doc_type step = step or self.step def _get_bulk(doc): # keep original doc ndoc = copy.copy(doc) ndoc.update({ "_index": index_name, "_type": doc_type, "_op_type": action, }) if self._host_major_ver > 6: ndoc.pop("_type") return ndoc actions = (_get_bulk(doc) for doc in docs) num_ok, errors = helpers.bulk(self._es, actions, chunk_size=step, max_chunk_bytes=self.step_size) if errors: raise ElasticsearchException("%d errors while bulk-indexing: %s" % (len(errors), [str(e) for e in errors])) return num_ok, errors
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def delete_docs(self, ids, step=None): '''delete a list of docs in bulk.''' index_name = self._index doc_type = self._doc_type step = step or self.step def _get_bulk(_id): if self._host_major_ver >= 7: doc = { '_op_type': 'delete', "_index": index_name, "_id": _id } else: doc = { '_op_type': 'delete', "_index": index_name, "_type": doc_type, "_id": _id } return doc actions = (_get_bulk(_id) for _id in ids) return helpers.bulk(self._es, actions, chunk_size=step, stats_only=True, raise_on_error=False)
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def update(self, id, extra_doc, upsert=True): # pylint: disable=redefined-builtin '''update an existing doc with extra_doc. allow to set upsert=True, to insert new docs. ''' body = {'doc': extra_doc} if upsert: body['doc_as_upsert'] = True return self._es.update(index=self._index, doc_type=self._doc_type, id=id, body=body)
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def _get_bulk(doc): if self._host_major_ver >= 7: doc = { '_op_type': 'update', "_index": index_name, "_id": doc['_id'], "doc": doc } else: doc = { '_op_type': 'update', "_index": index_name, "_type": doc_type, "_id": doc['_id'], "doc": doc } if upsert: doc['doc_as_upsert'] = True return doc
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def get_mapping(self): """return the current index mapping""" if self._host_major_ver <= 6: m = self._es.indices.get_mapping( index=self._index, doc_type=self._doc_type, ) return m[self._index]["mappings"] elif self._host_major_ver == 7: m = self._es.indices.get_mapping( index=self._index ) # fake the mapping doc_type m = { self._doc_type: m[self._index]["mappings"] } return m else: raise RuntimeError(f"Server Elasticsearch version is {self._host_major_ver} " "which is unsupported when using old ESIndexer class")
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def get_mapping_meta(self): """return the current _meta field.""" m = self.get_mapping() doc_type = self._doc_type if doc_type is None: # fetch doc_type from mapping assert len(m) == 1, "More than one doc_type found, not supported when self._doc_type " + \ "is not initialized" doc_type = list(m.keys())[0] return {"_meta": m[doc_type]["_meta"]}
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def build_index(self, collection, verbose=True, query=None, bulk=True, update=False, allow_upsert=True): index_name = self._index # update some settings for bulk indexing body = { "index": { "refresh_interval": "-1", # disable refresh temporarily "auto_expand_replicas": "0-all", } } self._es.indices.put_settings(body=body, index=index_name) try: self._build_index_sequential(collection, verbose, query=query, bulk=bulk, update=update, allow_upsert=True) finally: # restore some settings after bulk indexing is done. body = { "index": { "refresh_interval": "1s" # default settings } } self._es.indices.put_settings(body=body, index=index_name) try: self._es.indices.flush() self._es.indices.refresh() except: # pylint: disable=bare-except # noqa pass time.sleep(1) src_cnt = collection.count(query) es_cnt = self.count() if src_cnt != es_cnt: raise IndexerException("Total count of documents does not match [{}, should be {}]".format(es_cnt, src_cnt)) return es_cnt
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def rate_control(cnt, t): delay = 0 if t > 90: delay = 30 elif t > 60: delay = 10 if delay: time.sleep(delay)
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def optimize(self, max_num_segments=1): '''optimize the default index.''' params = { "wait_for_merge": False, "max_num_segments": max_num_segments, } return self._es.indices.forcemerge(index=self._index, params=params)
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def doc_feeder_using_helper(self, step=None, verbose=True, query=None, scroll='10m', **kwargs): # verbose unimplemented step = step or self.step q = query if query else {'query': {'match_all': {}}} for rawdoc in helpers.scan(client=self._es, query=q, scroll=scroll, index=self._index, doc_type=self._doc_type, **kwargs): if rawdoc.get('_source', False): doc = rawdoc['_source'] doc["_id"] = rawdoc["_id"] yield doc else: yield rawdoc
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def doc_feeder(self, step=None, verbose=True, query=None, scroll='10m', only_source=True, **kwargs): step = step or self.step q = query if query else {'query': {'match_all': {}}} _q_cnt = self.count(q=q, raw=True) n = _q_cnt['count'] n_shards = _q_cnt['_shards']['total'] assert n_shards == _q_cnt['_shards']['successful'] # Not sure if scroll size is per shard anymore in the new ES...should check this _size = int(step / n_shards) assert _size * n_shards == step cnt = 0 # t0 = time.time() # if verbose: # t1 = time.time() res = self._es.search(index=self._index, doc_type=self._doc_type, body=q, size=_size, search_type='scan', scroll=scroll, **kwargs) # double check initial scroll request returns no hits # assert len(res['hits']['hits']) == 0 assert not res['hits']['hits'] while True: # if verbose: # t1 = time.time() res = self._es.scroll(scroll_id=res['_scroll_id'], scroll=scroll) # if len(res['hits']['hits']) == 0: if not res['hits']['hits']: break else: for rawdoc in res['hits']['hits']: if rawdoc.get('_source', False) and only_source: doc = rawdoc['_source'] doc["_id"] = rawdoc["_id"] yield doc else: yield rawdoc cnt += 1 assert cnt == n, "Error: scroll query terminated early [{}, {}], please retry.\nLast response:\n{}".format(cnt, n, res)
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def get_id_list(self, step=None, verbose=True): step = step or self.step cur = self.doc_feeder(step=step, _source=False, verbose=verbose) for doc in cur: yield doc['_id']
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def get_docs(self, ids, step=None, only_source=True, **mget_args): ''' Return matching docs for given ids iterable, if not found return None. A generator is returned to the matched docs. If only_source is False, the entire document is returned, otherwise only the source is returned. ''' # chunkify step = step or self.step for chunk in iter_n(ids, step): if self._host_major_ver > 6: chunk_res = self._es.mget(body={"ids": chunk}, index=self._index, **mget_args) else: chunk_res = self._es.mget(body={"ids": chunk}, index=self._index, doc_type=self._doc_type, **mget_args) for rawdoc in chunk_res['docs']: if (('found' not in rawdoc) or (('found' in rawdoc) and not rawdoc['found'])): continue elif not only_source: yield rawdoc else: doc = rawdoc['_source'] doc["_id"] = rawdoc["_id"] yield doc
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def snapshot(self, repo, snapshot, mode=None, **params): body = { "indices": self._index, "include_global_state": False # there is no reason to include global state in our application # we want to separate the staging env from the production env # (global state includes index templates and ingest pipeline) # but this doesn't mean this setting has to be here # maybe move this line to where it belongs later } if mode == "purge": # Note: this works, just for small one when deletion is done instantly try: self._es.snapshot.get(repo, snapshot) # if we can get it, we have to delete it self._es.snapshot.delete(repo, snapshot) except NotFoundError: # ok, nothing to delete/purge pass try: return self._es.snapshot.create(repo, snapshot, body=body, params=params) except RequestError as e: try: err_msg = e.info['error']['reason'] except KeyError: err_msg = e.error raise IndexerException("Can't snapshot '%s': %s" % (self._index, err_msg))
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def get_repository(self, repo_name): try: return self._es.snapshot.get_repository(repo_name) except NotFoundError: raise IndexerException("Repository '%s' doesn't exist" % repo_name)
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def get_snapshot_status(self, repo, snapshot): return self._es.snapshot.status(repo, snapshot)
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def generate_es_mapping(inspect_doc, init=True, level=0): """Generate an ES mapping according to "inspect_doc", which is produced by biothings.utils.inspect module""" map_tpl = { int: {"type": "integer"}, bool: {"type": "boolean"}, float: {"type": "float"}, str: {"type": "keyword", "normalizer": "keyword_lowercase_normalizer"}, # not splittable (like an ID for instance) splitstr: {"type": "text"}, } # inspect_doc, if it's been jsonified, contains keys with type as string, # such as "<class 'str'>". This is not a real type and we need to convert them # back to actual types. This is transparent if inspect_doc isalready in proper format pat = re.compile(r"<class '(\w+)'>") def str2type(k): if isinstance(k, str): mat = pat.findall(k) if mat: return eval(mat[0]) # actual type else: return k else: return k inspect_doc = dict_walk(inspect_doc, str2type) mapping = {} errors = [] none_type = type(None) if init and "_id" not in inspect_doc: errors.append("No _id key found, document won't be indexed. (doc: %s)" % inspect_doc) for rootk in inspect_doc: if rootk == "_id": keys = list(inspect_doc[rootk].keys()) if str in keys and splitstr in keys: keys.remove(str) if not len(keys) == 1 or (keys[0] != str and keys[0] != splitstr): errors.append("_id fields should all be a string type (got: %s)" % keys) # it was just a check, it's not part of the mapping continue if rootk == "_stats": continue if isinstance(rootk, type(None)): # if rootk == type(None): # value can be null, just skip it continue # some inspect report have True as value, others have dict (will all have dict eventually) if inspect_doc[rootk] is True: inspect_doc[rootk] = {} keys = list(inspect_doc[rootk].keys()) # if dict, it can be a dict containing the type (no explore needed) or a dict # containing more keys (explore needed) if list in keys: # we explore directly the list w/ inspect_doc[rootk][list] as param. # (similar to skipping list type, as there's no such list type in ES mapping) # carefull: there could be list of list, if which case we move further into the structure # to skip them toexplore = inspect_doc[rootk][list] while list in toexplore: toexplore = toexplore[list] if len(toexplore) > 1: # we want to make sure that, whatever the structure, the types involved were the same # Exception: None is allowed with other types (translates to 'null' in ES) # other_types = set([k for k in toexplore.keys() if k != list and isinstance(k, type) and k is not type(None)]) # TODO: Confirm this line other_types = {k for k in toexplore.keys() if k != list and isinstance(k, type) and not isinstance(k, none_type)} # some mixes are allowed by ES if {int, float}.issubset(other_types): other_types.discard(int) # float > int toexplore.pop(int) if len(other_types) > 1: raise Exception("Mixing types for key '%s': %s" % (rootk, other_types)) res = generate_es_mapping(toexplore, init=False, level=level+1) # is it the only key or do we have more ? (ie. some docs have data as "x", some # others have list("x") # list was either a list of values (end of tree) or a list of dict. Depending # on that, we add "properties" (when list of dict) or not (when list of values) if type in set(map(type, inspect_doc[rootk][list])): mapping[rootk] = res else: mapping[rootk] = {"properties": {}} mapping[rootk]["properties"] = res elif set(map(type, keys)) == {type}: # it's a type declaration, no explore # typs = list(map(type, [k for k in keys if k is not type(None)])) # TODO: Confirm this line typs = list(map(type, [k for k in keys if not isinstance(k, none_type)])) if len(typs) > 1: errors.append("More than one type (key:%s,types:%s)" % (repr(rootk), repr(keys))) try: typ = list(inspect_doc[rootk].keys()) # ther can still be more than one type, if we have a None combined with # the "correct" one. We allow None as a combined type, but we want to ignore # it when we want to find the mapping if len(typ) == 1: typ = typ[0] else: # typ = [t for t in typ if t is not type(None)][0] # TODO: Confirm this line typ = [t for t in typ if not isinstance(t, none_type)][0] if typ is nan or typ is inf: raise TypeError(typ) mapping[rootk] = map_tpl[typ] except KeyError: errors.append("Can't find map type %s for key %s" % (inspect_doc[rootk], rootk)) except TypeError: errors.append("Type %s for key %s isn't allowed in ES mapping" % (typ, rootk)) elif inspect_doc[rootk] == {}: typ = rootk return map_tpl[typ] else: mapping[rootk] = {"properties": {}} mapping[rootk]["properties"] = generate_es_mapping(inspect_doc[rootk], init=False, level=level+1) if errors: raise MappingError("Error while generating mapping", errors) return mapping
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def get_hub_db_conn(): return Database()
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def get_src_dump(): db = Database() return db[db.CONFIG.DATA_SRC_DUMP_COLLECTION]
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def get_src_build(): db = Database() return db[db.CONFIG.DATA_SRC_BUILD_COLLECTION]
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def get_data_plugin(): db = Database() return db[db.CONFIG.DATA_PLUGIN_COLLECTION]
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def get_cmd(): db = Database() return db[db.CONFIG.CMD_COLLECTION]
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def get_hub_config(): db = Database() return db[getattr(db.CONFIG, "HUB_CONFIG_COLLECTION", "hub_config")]
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def get_last_command(): cmds = list(sorted(get_cmd()._read().values(), key=lambda cmd: cmd["_id"])) return cmds[-1] if cmds else None
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def __init__(self): super(Database, self).__init__() self.name = self.CONFIG.DATA_HUB_DB_DATABASE self.host = self.CONFIG.HUB_DB_BACKEND["host"] self.client = Elasticsearch(self.host, serializer=_HubDBEncoder()) if not self.client.indices.exists(index=self.name): self.client.indices.create(index=self.name, body={ 'settings': { 'number_of_shards': 1, "number_of_replicas": 0, }, 'mappings': { "enabled": False } })
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def address(self): return self.host
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def _exists(self, _id): return self.client.exists(self.name, _id)
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def _write(self, _id, doc): assert doc.pop("_id", None) in (_id, None) self.client.index(self.name, doc, id=_id) self.client.indices.refresh(self.name)
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def create_collection(self, colname): return self[colname]
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def __init__(self, colname, db): self.name = colname self.db = db if not self.db._exists(colname): self._write({})
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def _read(self): return self.db._read(self.name)
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def _exists_one(self, _id): return str(_id) in self._read()
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def func(collection): collection[str(doc["_id"])] = doc
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def __getitem__(self, _id): return self.find_one({"_id": _id})
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def find(self, filter=None, projection=None, *args, **kwargs): if args or kwargs: raise NotImplementedError() results = [] logger = logging.getLogger(__name__) for doc in self._read().values(): _doc = dict(traverse(doc)) # dotdict _doc.update(dict(traverse(doc, True))) for k, v in (filter or {}).items(): if isinstance(v, dict) and "$exists" in v: logger.error("Ignored filter: {'%s': %s}", k, v) continue if _doc.get(k) != v: break else: # no break results.append(_pyobj(doc)) if projection: # used by BuildManager.build_info logger.error("Ignored projection: %s", projection) return results
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def replace_one(self, filter, replacement, upsert=False, *args, **kwargs): if args or kwargs: raise NotImplementedError() doc = self.find_one(filter) or {} if not (doc or upsert): raise ValueError("No Match.") _id = doc.get("_id") or filter["_id"] replacement["_id"] = _id self._write_one(replacement)
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def _update_one(self, doc, update, *args, **kwargs): if args or kwargs: raise NotImplementedError() if not len(update) == 1: raise ValueError("Invalid operator.") if next(iter(update)) not in ("$set", "$unset", "$push", "$addToSet", "$pull"): raise NotImplementedError(next(iter(update))) # https://docs.mongodb.com/manual/reference/operator/update/set/ # https://docs.mongodb.com/manual/reference/operator/update/unset/ # https://docs.mongodb.com/manual/reference/operator/update/push/ # https://docs.mongodb.com/manual/reference/operator/update/addToSet/ # https://docs.mongodb.com/manual/reference/operator/update/pull/ if "$set" in update: _update = json.loads(to_json(update["$set"])) _update = parse_dot_fields(_update) doc = update_dict_recur(doc, _update) elif "$unset" in update: for dotk, v in traverse(doc): if dotk in update["$unset"]: v["__REMOVE__"] = True doc = merge({}, doc) elif "$push" in update: for key, val in update["$push"].items(): if "." in key: # not all mongo operators are fully implemented raise NotImplementedError("nested key in $push: %s" % key) doc.setdefault(key, []).append(val) elif "$addToSet" in update: for key, val in update["$addToSet"].items(): if "." in key: # not all mongo operators are fully implemented raise NotImplementedError("nested key in $addToSet: %s" % key) field = doc.setdefault(key, []) if val not in field: field.append(val) else: # "$pull" in update: for key, val in update["$pull"].items(): if "." in key: # not all mongo operators are fully implemented raise NotImplementedError("nested key in $pull: %s" % key) if not isinstance(val, (str, int)): raise NotImplementedError("value or condition in $pull: %s" % val) if isinstance(doc.get(key), list): doc[key][:] = [x for x in doc[key] if x != val] self._write_one(doc)
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def update_many(self, filter, update, upsert=False, *args, **kwargs): docs = self.find(filter) if not docs and upsert: if any("." in k for k in filter): raise ValueError("dotfield in upsert.") docs = [filter] for doc in docs: self._update_one(doc, update, *args, **kwargs)
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def update(self, *args, **kwargs): # In the future, # Use replace_one(), update_one(), or update_many() instead. self.update_many(*args, **kwargs)
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def remove(self, query): # In the future, # Use delete_one() or delete_many() instead. docs = self.find(query) collection = self._read() for doc in docs: del collection[doc["_id"]] self._write(collection)
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]
def _pyobj(doc): # ES doc -> Python object for _, _doc in traverse(doc): if isinstance(_doc, dict): for k, v in list(_doc.items()): _doc[k] = _eval(v) elif isinstance(_doc, list): _doc[:] = map(_eval, _doc) return doc
biothings/biothings.api
[ 39, 25, 39, 80, 1452637246 ]