function
stringlengths
11
56k
repo_name
stringlengths
5
60
features
sequence
def _get_qos_queue(self, context, id): try: query = self._model_query(context, QosQueue) qos_queue = query.filter(QosQueue.id == id).one() except exc.NoResultFound: raise ext_qos.QosQueueNotFound(id=id) return qos_queue
eayunstack/neutron-qos
[ 2, 4, 2, 1, 1431059236 ]
def _aggregate_rate_of_qos_queue(self, qos_queue): if qos_queue.subqueues: return reduce( lambda x, y: x + y, [q.rate for q in qos_queue.subqueues]) else: return 0
eayunstack/neutron-qos
[ 2, 4, 2, 1, 1431059236 ]
def _check_queue_in_qos(self, qos_id, qos_queue): if qos_id != qos_queue.qos_id: raise ext_qos.QosQueueNotInQos( qos_id=qos_id, qos_queue_id=qos_queue.qos_id )
eayunstack/neutron-qos
[ 2, 4, 2, 1, 1431059236 ]
def allocate_tc_class_for_queue(context, qos_queue): if qos_queue.tc_class: return tc_class = None with context.session.begin(subtransactions=True): try: if qos_queue.id == qos_queue.qos.default_queue_id: tc_class = 65534 else: tc_class = QosDb._try_allocate_new_tc_class( context, qos_queue.qos) except ext_qos.AllocateTCClassFailure: QosDb._rebuild_tc_class_range(context, qos_queue.qos) if not tc_class: tc_class = QosDb._try_allocate_new_tc_class( context, qos_queue.qos) qos_queue.update({'tc_class': tc_class})
eayunstack/neutron-qos
[ 2, 4, 2, 1, 1431059236 ]
def _try_allocate_new_tc_class(context, qos): select_range = context.session.query( QosTcClassRange).join(Qos).with_lockmode('update').first() if select_range: new_tc_class = select_range['first'] if select_range['first'] == select_range['last']: LOG.debug("No more free tc class id in this slice, deleting " "range.") context.session.delete(select_range) else: # Increse the first class id in this range select_range['first'] = new_tc_class + 1 return new_tc_class raise ext_qos.AllocateTCClassFailure(qos_id=qos.id)
eayunstack/neutron-qos
[ 2, 4, 2, 1, 1431059236 ]
def _rebuild_tc_class_range(context, qos): LOG.debug("Rebuilding tc class range for qos: %s", qos.id) used_classes = sorted( [1, 65534] + [queue.tc_class for queue in qos.queues if queue.tc_class is not None]) for index in range(len(used_classes) - 1): if used_classes[index] + 1 < used_classes[index + 1]: tc_class_range = QosTcClassRange( qos_id=qos.id, first=used_classes[index] + 1, last=used_classes[index+1] - 1) context.session.add(tc_class_range)
eayunstack/neutron-qos
[ 2, 4, 2, 1, 1431059236 ]
def create_qos_queue_bulk(self, context, qos_queue): return self._create_bulk('qos_queue', context, qos_queue)
eayunstack/neutron-qos
[ 2, 4, 2, 1, 1431059236 ]
def update_qos_queue(self, context, id, qos_queue): qos_queue = qos_queue['qos_queue'] with context.session.begin(subtransactions=True): qos_queue_db = self._get_qos_queue(context, id) if id == qos_queue_db.qos.default_queue_id: raise ext_qos.QosQueueCannotEditDefault( qos_id=qos_queue_db.qos_id, qos_queue_id=id) new_rate = qos_queue.get('rate', qos_queue_db.rate) rate_delta = new_rate - qos_queue_db.rate if rate_delta: if qos_queue_db.subqueues: # Check new rate can afford its subqueues' need self._check_qos_queue_rate(qos_queue_db, 0, new_rate) if qos_queue_db.parent_queue: # Check parent queue can afford the delta self._check_qos_queue_rate(qos_queue_db.parent_queue, rate_delta) else: # Check parent qos can afford the delta self._check_qos_rate(qos_queue_db.qos, rate_delta) new_ceil = qos_queue.get('ceil', qos_queue_db.ceil) # New ceil should not exceed its parent's ceil if qos_queue_db.parent_queue: new_ceil = min(new_ceil, qos_queue_db.parent_queue.ceil) else: new_ceil = min(new_ceil, qos_queue_db.qos.rate) if new_ceil < qos_queue_db.ceil: # Ceil changed to a smaller value self._set_ceil_for_queues(new_ceil, qos_queue_db.subqueues) qos_queue_db.update(qos_queue) return self._make_qos_queue_dict(qos_queue_db)
eayunstack/neutron-qos
[ 2, 4, 2, 1, 1431059236 ]
def get_qos_queues(self, context, filters=None, fields=None, sorts=None, limit=None, marker=None, page_reverse=False): marker_obj = self._get_marker_obj(context, 'qos_queue', limit, marker) return self._get_collection( context, QosQueue, self._make_qos_queue_dict, filters=filters, fields=fields, sorts=sorts, limit=limit, marker_obj=marker_obj, page_reverse=page_reverse)
eayunstack/neutron-qos
[ 2, 4, 2, 1, 1431059236 ]
def get_qos_queue(self, context, id, fields=None): qos_queue = self._get_qos_queue(context, id) return self._make_qos_queue_dict(qos_queue, fields)
eayunstack/neutron-qos
[ 2, 4, 2, 1, 1431059236 ]
def _make_qos_filter_dict(self, qos_filter, fields=None): res = {'id': qos_filter.id, 'tenant_id': qos_filter.tenant_id, 'qos_id': qos_filter.qos_id, 'queue_id': qos_filter.queue_id, 'prio': qos_filter.prio, 'protocol': qos_filter.protocol, 'src_port': qos_filter.src_port, 'dst_port': qos_filter.dst_port, 'src_addr': qos_filter.src_addr, 'dst_addr': qos_filter.dst_addr} if qos_filter.custom_match is not None: res.update({'custom_match': qos_filter.custom_match}) return self._fields(res, fields)
eayunstack/neutron-qos
[ 2, 4, 2, 1, 1431059236 ]
def create_qos_filter_bulk(self, context, qos_filter): return self._create_bulk('qos_filter', context, qos_filter)
eayunstack/neutron-qos
[ 2, 4, 2, 1, 1431059236 ]
def update_qos_filter(self, context, id, qos_filter): qos_filter = qos_filter['qos_filter'] new_prio = qos_filter.get('prio', None) with context.session.begin(subtransactions=True): qos_filter_db = self._get_qos_filter(context, id) if qos_filter.get('queue_id', None) is not None: qos_queue_db = self._get_qos_queue(context, qos_filter['queue_id']) self._check_queue_in_qos(qos_filter_db.qos_id, qos_queue_db) if qos_queue_db.subqueues: raise ext_qos.QosQueueHasSub(qos_queue_id=qos_queue_db.id) if new_prio is not None and new_prio != qos_filter_db.prio: if self._same_prio_filter_in_qos(qos_filter_db.qos, new_prio): raise ext_qos.QosDuplicateFilterPrioValue(prio=new_prio) qos_filter_db.update(qos_filter) return self._make_qos_filter_dict(qos_filter_db)
eayunstack/neutron-qos
[ 2, 4, 2, 1, 1431059236 ]
def get_qos_filters(self, context, filters=None, fields=None, sorts=None, limit=None, marker=None, page_reverse=False): marker_obj = self._get_marker_obj(context, 'qos_filter', limit, marker) return self._get_collection( context, QosFilter, self._make_qos_filter_dict, filters=filters, fields=fields, sorts=sorts, limit=limit, marker_obj=marker_obj, page_reverse=page_reverse)
eayunstack/neutron-qos
[ 2, 4, 2, 1, 1431059236 ]
def get_qos_filter(self, context, id, fields=None): qos_filter = self._get_qos_filter(context, id) return self._make_qos_filter_dict(qos_filter, fields)
eayunstack/neutron-qos
[ 2, 4, 2, 1, 1431059236 ]
def _is_owner_floatingip(device_owner): return device_owner == n_constants.DEVICE_OWNER_FLOATINGIP
eayunstack/neutron-qos
[ 2, 4, 2, 1, 1431059236 ]
def _make_qos_filter_dict_for_agent(self, qos_filter): qos_filter_dict = {'prio': qos_filter.prio, 'src_addr': qos_filter.src_addr, 'dst_addr': qos_filter.dst_addr} if qos_filter.protocol: qos_filter_dict['protocol'] = qos_filter.protocol if qos_filter.src_port: qos_filter_dict['src_port'] = qos_filter.src_port if qos_filter.dst_port: qos_filter_dict['dst_port'] = qos_filter.dst_port return qos_filter_dict
eayunstack/neutron-qos
[ 2, 4, 2, 1, 1431059236 ]
def _get_qos_conf_scheme(self, context, qos): root_class = {'rate': qos.rate, 'ceil': qos.rate, 'subclasses': [], 'prio': 0} if qos.burst: root_class['burst'] = qos.burst if qos.cburst: root_class['cburst'] = qos.cburst scheme = {} effective_queues = {} for queue in qos.queues: if queue.attached_filters or queue.id == qos.default_queue_id: _queue = queue while _queue is not None: try: self.allocate_tc_class_for_queue(context, _queue) except ext_qos.AllocateTCClassFailure: LOG.warn("Failed to allocate tc class for queue %s.", _queue.id) # Don't apply any qos scheme for this qos because the # number of queues exceeds Linux's support(65535). # However, this should RARELY happen. return None if _queue.id not in effective_queues: effective_queues[_queue.id] = _queue _queue = _queue.parent_queue else: # Current queue and its ancestors are all recorded. _queue = None for queue in effective_queues.values(): scheme[queue.tc_class] = self._make_qos_queue_dict_for_agent(queue) if queue.parent_queue is None: root_class['subclasses'].append(queue.tc_class) # Add root class scheme[1] = root_class return scheme
eayunstack/neutron-qos
[ 2, 4, 2, 1, 1431059236 ]
def parallelwrite(slicenumber):
openconnectome/open-connectome
[ 39, 12, 39, 99, 1302639682 ]
def run(): flypool = multiprocessing.Pool(totalprocs) flypool.map(parallelwrite, totalslices, 16)
openconnectome/open-connectome
[ 39, 12, 39, 99, 1302639682 ]
def compute(self, *args, **kwargs): self.args = args self.kwargs = kwargs
radio-astro-tools/spectral-cube
[ 84, 57, 84, 183, 1397489630 ]
def test_save_to_tmp_dir(data_adv): pytest.importorskip('zarr') cube = DaskSpectralCube.read(data_adv) cube_new = cube.sigma_clip_spectrally(3, save_to_tmp_dir=True) # The following test won't necessarily always work in future since the name # is not really guaranteed, but this is pragmatic enough for now assert cube_new._data.name.startswith('from-zarr')
radio-astro-tools/spectral-cube
[ 84, 57, 84, 183, 1397489630 ]
def test_statistics(data_adv): cube = DaskSpectralCube.read(data_adv).rechunk(chunks=(1, 2, 3)) stats = cube.statistics() assert_quantity_allclose(stats['npts'], 24) assert_quantity_allclose(stats['mean'], 0.4941651776136591 * u.K) assert_quantity_allclose(stats['sigma'], 0.3021908870982011 * u.K) assert_quantity_allclose(stats['sum'], 11.85996426272782 * u.K) assert_quantity_allclose(stats['sumsq'], 7.961125988022091 * u.K ** 2) assert_quantity_allclose(stats['min'], 0.0363300285196364 * u.K) assert_quantity_allclose(stats['max'], 0.9662900439556562 * u.K) assert_quantity_allclose(stats['rms'], 0.5759458158839716 * u.K)
radio-astro-tools/spectral-cube
[ 84, 57, 84, 183, 1397489630 ]
def test_statistics_consistency_casa(data_adv, tmp_path): # Similar to test_statistics but compares to CASA directly. cube = DaskSpectralCube.read(data_adv) stats = cube.statistics() make_casa_testimage(data_adv, tmp_path / 'casa.image') ia = casatools.image() ia.open(str(tmp_path / 'casa.image')) stats_casa = ia.statistics() ia.close() for key in stats: if isinstance(stats[key], u.Quantity): value = stats[key].value else: value = stats[key] assert_allclose(value, stats_casa[key])
radio-astro-tools/spectral-cube
[ 84, 57, 84, 183, 1397489630 ]
def sum_blocks_spectral(data_chunk): return data_chunk.sum(0)
radio-astro-tools/spectral-cube
[ 84, 57, 84, 183, 1397489630 ]
def test_apply_function_parallel_spectral_noncube_withblockinfo(data_adv): ''' Test receiving block_info information from da.map_blocks so we can place the chunk's location in the whole cube when needed. https://docs.dask.org/en/latest/array-api.html#dask.array.map_blocks ''' chunk_size = (-1, 1, 2) cube = DaskSpectralCube.read(data_adv).rechunk(chunks=chunk_size) sum_spectral_plane = cube.sum(axis=0).unitless_filled_data[:] # Each value should be different. This is important to check the right positions being used # for the check in sums_block_spectral assert np.unique(sum_spectral_plane).size == sum_spectral_plane.size def sum_blocks_spectral(data_chunk, block_info=None, comparison_array=None): chunk_sum = data_chunk.sum(0) # When the block_info kwarg is defined, it should not be None assert block_info is not None # Check the block location compared to `comparison_array` # Get the lower corner location in the whole cube. loc = [block_range[0] for block_range in block_info[0]['array-location']] # Should have 3 dimensions for the corner. assert len(loc) == 3 # Slice comparison array to compare with this data chunk thisslice = (slice(loc[1], loc[1] + chunk_sum.shape[0]), slice(loc[2], loc[2] + chunk_sum.shape[1]),) return chunk_sum == comparison_array[thisslice] # Tell dask.map_blocks that we expect the zeroth axis to be (1,) output_chunk_size = (1, 2) test = cube.apply_function_parallel_spectral(sum_blocks_spectral, return_new_cube=False, accepts_chunks=True, drop_axis=[0], # The output will no longer contain the spectral axis chunks=output_chunk_size, comparison_array=sum_spectral_plane) # Passed to `sum_blocks_spectral` # The total shape of test should be the (1,) + cube.shape[1:] assert test.shape == cube.shape[1:] # Test all True assert np.all(test.compute())
radio-astro-tools/spectral-cube
[ 84, 57, 84, 183, 1397489630 ]
def test_apply_function_parallel_shape(accepts_chunks): # regression test for #772 def func(x, add=None): if add is not None: y = x + add else: raise ValueError("This test is supposed to have add=1") return y fn = data.get_pkg_data_filename('tests/data/example_cube.fits', 'spectral_cube') cube = SpectralCube.read(fn, use_dask=True) cube2 = SpectralCube.read(fn, use_dask=False) # Check dask w/both threaded and unthreaded rslt3 = cube.apply_function_parallel_spectral(func, add=1, accepts_chunks=accepts_chunks) with cube.use_dask_scheduler('threads', num_workers=4): rslt = cube.apply_function_parallel_spectral(func, add=1, accepts_chunks=accepts_chunks) rslt2 = cube2.apply_function_parallel_spectral(func, add=1) np.testing.assert_almost_equal(cube.filled_data[:].value, cube2.filled_data[:].value) np.testing.assert_almost_equal(rslt.filled_data[:].value, rslt2.filled_data[:].value) np.testing.assert_almost_equal(rslt.filled_data[:].value, rslt3.filled_data[:].value)
radio-astro-tools/spectral-cube
[ 84, 57, 84, 183, 1397489630 ]
def test_cube_on_cube(filename, request): if 'image' in filename and not CASA_INSTALLED: pytest.skip('Requires CASA to be installed') dataname = request.getfixturevalue(filename) # regression test for #782 # the regression applies only to VaryingResolutionSpectralCubes # since they are not SpectralCube subclasses cube = DaskSpectralCube.read(dataname) assert isinstance(cube, (DaskSpectralCube, DaskVaryingResolutionSpectralCube)) cube2 = SpectralCube.read(dataname, use_dask=False) if 'image' not in filename: # 'image' would be CASA and must be dask assert not isinstance(cube2, (DaskSpectralCube, DaskVaryingResolutionSpectralCube)) with patch.object(cube, '_cube_on_cube_operation') as mock: cube * cube mock.assert_called_once() with patch.object(cube, '_cube_on_cube_operation') as mock: cube * cube2 mock.assert_called_once() with patch.object(cube2, '_cube_on_cube_operation') as mock: cube2 * cube mock.assert_called_once()
radio-astro-tools/spectral-cube
[ 84, 57, 84, 183, 1397489630 ]
def setUp(self): self.main_app = MainApp()
soar-telescope/goodman
[ 13, 11, 13, 54, 1468010085 ]
def __init__(self, env_var_base): self.ENV_VAR_BASE = env_var_base
femtotrader/ig-markets-stream-api-python-library
[ 255, 177, 255, 13, 1420221470 ]
def get(self, key, default_value=None): env_var = self._env_var(key) return os.environ.get(env_var, default_value)
femtotrader/ig-markets-stream-api-python-library
[ 255, 177, 255, 13, 1420221470 ]
def __unicode__(self): return u"%s: %s" % (self.team.name, self.name)
F483/bikesurf.org
[ 8, 5, 8, 60, 1413752765 ]
def main(dataset, blockl, local_dir=None, clobber=True): """ Split dataset into time chunks Parameters ---------- dataset : str Name of MS file to split blockl : int Number of time slots per chunk local_dir : str, optional Path to local directory for output of t1.copy(). The file is then copied to the original output directory clobber : bool, optional If True, existing files are overwritten """ if type(clobber) is str: if clobber.lower() == 'true': clobber = True else: clobber = False blockl = int(blockl) if blockl < 1: blockl = 1 # Get time per sample and number of samples t = pt.table(dataset, readonly=True, ack=False) for t2 in t.iter(["ANTENNA1","ANTENNA2"]): if (t2.getcell('ANTENNA1',0)) < (t2.getcell('ANTENNA2',0)): timepersample = t2[1]['TIME']-t2[0]['TIME'] # sec nsamples = t2.nrows() break t.close() nchunks = int(np.ceil((np.float(nsamples) / np.float(blockl)))) # Don't allow more than 15 chunks for performance reasons while nchunks > 15: blockl *= 2 nchunks = int(np.ceil((np.float(nsamples) / np.float(blockl)))) tlen = timepersample * np.float(blockl) / 3600.0 # length of block in hours tobs = timepersample * nsamples / 3600.0 # length of obs in hours # Copy to local directory if needed dataset_original = dataset if local_dir is not None: dataset = os.path.join(local_dir, os.path.basename(dataset_original)) os.system('/usr/bin/rsync -a {0} {1}'.format(dataset_original, local_dir)) files = [] for c in range(nchunks): chunk_file = '{0}_chunk{1}.ms'.format(os.path.splitext(dataset_original)[0], c) files.append(chunk_file) t0 = tlen * np.float(c) # hours t1 = t0 + tlen # hours if c == 0: t0 = -0.1 # make sure first chunk gets first slot if c == nchunks-1 and t1 < tobs: t1 = tobs + 0.1 # make sure last chunk gets all that remains split_ms(dataset, chunk_file, t0, t1, local_dir, clobber=clobber) if local_dir is not None and not os.path.samefile(dataset, dataset_original): shutil.rmtree(dataset) return {'files': '[{0}]'.format(','.join(files))}
revoltek/factor
[ 20, 12, 20, 24, 1409837156 ]
def test_0_new_account(self): '''create new account * 5000''' account_table_file = '/home/%s/.metaverse/mainnet/account_table' % common.get_username() origin_payload_size = database.get_payload_size(account_table_file) batch_amount = 5000 lastwords = [] for i in range(batch_amount): ec, message = mvs_rpc.new_account("Account_%s" % i, "123456") self.assertEqual(ec, 0, message) lastwords.append( message[-1] ) try: current_payload_size = database.get_payload_size(account_table_file) # each simple account record size < 300, but when getnew address, the account record will be create twice, so 600 is the reasonable record size. self.assertGreater(600 * batch_amount, current_payload_size - origin_payload_size, "each account record size shall be less than 600.") finally: for i in range(batch_amount): ec, message = mvs_rpc.delete_account("Account_%s" % i, "123456", lastwords[i]) self.assertEqual(ec, 0, message)
mvs-live/metaverse
[ 307, 120, 307, 61, 1477813012 ]
def __init__(self, _id, dp_id, conf): self.rules = [] self.exact_match = None self.dot1x_assigned = None self.meter = False self.matches = {} self.set_fields = set() self._ports_resolved = False # Tunnel info maintains the tunnel output information for each tunnel rule self.tunnel_dests = {} # Tunnel sources is a list of the sources in the network for this ACL self.tunnel_sources = {} # Tunnel rules is the rules for each tunnel in the ACL for each source self.dyn_tunnel_rules = {} self.dyn_reverse_tunnel_rules = {} for match_fields in (MATCH_FIELDS, OLD_MATCH_FIELDS): self.rule_types.update({match: (str, int) for match in match_fields}) conf = copy.deepcopy(conf) if isinstance(conf, dict): rules = conf.get('rules', []) elif isinstance(conf, list): rules = conf conf = {} else: raise InvalidConfigError( 'ACL conf is an invalid type %s' % _id) conf['rules'] = [] for rule in rules: normalized_rule = rule if isinstance(rule, dict): normalized_rule = rule.get('rule', rule) if normalized_rule is None: normalized_rule = {k: v for k, v in rule.items() if v is not None} test_config_condition(not isinstance(normalized_rule, dict), ( 'ACL rule is %s not %s (%s)' % (type(normalized_rule), dict, rules))) conf['rules'].append(normalized_rule) super().__init__(_id, dp_id, conf)
REANNZ/faucet
[ 480, 166, 480, 33, 1443148776 ]
def check_config(self): test_config_condition( not self.rules, 'no rules found for ACL %s' % self._id) for rule in self.rules: self._check_conf_types(rule, self.rule_types) for rule_field, rule_conf in rule.items(): if rule_field == 'cookie': test_config_condition( rule_conf < 0 or rule_conf > 2**16, 'rule cookie value must be 0-2**16') elif rule_field == 'actions': test_config_condition( not rule_conf, 'Missing rule actions in ACL %s' % self._id) self._check_conf_types(rule_conf, self.actions_types) for action_name, action_conf in rule_conf.items(): if action_name == 'output': if isinstance(action_conf, (list, tuple)): # New ordered format for subconf in action_conf: # Make sure only one specified action per list element test_config_condition( len(subconf) > 1, 'ACL ordered output must have only one action per element') # Ensure correct action format self._check_conf_types(subconf, self.output_actions_types) else: # Old format self._check_conf_types( action_conf, self.output_actions_types) elif action_name == 'ct': self._check_conf_types(action_conf, self.ct_action_types) # if clear set, make sure nothing else is if 'clear' in action_conf and action_conf['clear']: test_config_condition( len(action_conf) != 1, "no other parameters can be set when 'clear' set on " "conntrack ACL") else: test_config_condition( 'table' not in action_conf, "required parameter 'table' not set for conntrack ACL") test_config_condition( 'zone' not in action_conf, "required parameter 'zone' not set for conntrack ACL") if 'nat' in action_conf: self._check_conf_types(action_conf['nat'], self.ct_action_nat_types)
REANNZ/faucet
[ 480, 166, 480, 33, 1443148776 ]
def get_meters(self): """Yield meters for each rule in ACL""" for rule in self.rules: if 'actions' not in rule or 'meter' not in rule['actions']: continue yield rule['actions']['meter']
REANNZ/faucet
[ 480, 166, 480, 33, 1443148776 ]
def _resolve_ordered_output_ports(self, output_list, resolve_port_cb, resolve_tunnel_objects): """Resolve output actions in the ordered list format""" result = [] for action in output_list: for key, value in action.items(): if key == 'tunnel': tunnel = value # Fetch tunnel items from the tunnel output dict test_config_condition( 'dp' not in tunnel, 'ACL (%s) tunnel DP not defined' % self._id) tunnel_dp = tunnel['dp'] tunnel_port = tunnel.get('port', None) tunnel_id = tunnel.get('tunnel_id', None) tunnel_type = tunnel.get('type', 'vlan') tunnel_exit_instructions = tunnel.get('exit_instructions', []) tunnel_direction = tunnel.get('bi_directional', False) tunnel_maintain = tunnel.get('maintain_encapsulation', False) tunnel_reverse = tunnel.get('reverse', False) test_config_condition( tunnel_reverse and tunnel_direction, ('Tunnel ACL %s cannot contain values for the fields' '`bi_directional` and `reverse` at the same time' % self._id)) # Resolve the tunnel items dst_dp, dst_port, tunnel_id = resolve_tunnel_objects( tunnel_dp, tunnel_port, tunnel_id) # Compile the tunnel into an easy-access dictionary tunnel_dict = { 'dst_dp': dst_dp, 'dst_port': dst_port, 'tunnel_id': tunnel_id, 'type': tunnel_type, 'exit_instructions': tunnel_exit_instructions, 'bi_directional': tunnel_direction, 'maintain_encapsulation': tunnel_maintain, 'reverse': tunnel_reverse, } self.tunnel_dests[tunnel_id] = tunnel_dict result.append({key: tunnel_id}) elif key == 'port': port_name = value port = resolve_port_cb(port_name) test_config_condition( not port, 'ACL (%s) output port undefined in DP: %s' % (self._id, self.dp_id)) result.append({key: port}) elif key == 'ports': resolved_ports = [ resolve_port_cb(p) for p in value] test_config_condition( None in resolved_ports, 'ACL (%s) output port(s) not defined in DP: %s' % (self._id, self.dp_id)) result.append({key: resolved_ports}) elif key == 'failover': failover = value test_config_condition(not isinstance(failover, dict), ( 'failover is not a dictionary')) failover_dict = {} for failover_name, failover_values in failover.items(): if failover_name == 'ports': resolved_ports = [ resolve_port_cb(p) for p in failover_values] test_config_condition( None in resolved_ports, 'ACL (%s) failover port(s) not defined in DP: %s' % ( self._id, self.dp_id)) failover_dict[failover_name] = resolved_ports else: failover_dict[failover_name] = failover_values result.append({key: failover_dict}) else: result.append(action) return result
REANNZ/faucet
[ 480, 166, 480, 33, 1443148776 ]
def resolve_ports(self, resolve_port_cb, resolve_tunnel_objects): """Resolve the values for the actions of an ACL""" if self._ports_resolved: return for rule_conf in self.rules: if 'actions' in rule_conf: actions_conf = rule_conf['actions'] resolved_actions = {} test_config_condition(not isinstance(actions_conf, dict), ( 'actions value is not a dictionary')) for action_name, action_conf in actions_conf.items(): if action_name == 'mirror': resolved_port = resolve_port_cb(action_conf) test_config_condition( resolved_port is None, ('ACL (%s) mirror port is not defined in DP: %s' % (self._id, self.dp_id)) ) resolved_actions[action_name] = resolved_port elif action_name == 'output': resolved_action = self._resolve_output_ports( action_conf, resolve_port_cb, resolve_tunnel_objects) resolved_actions[action_name] = resolved_action else: resolved_actions[action_name] = action_conf rule_conf['actions'] = resolved_actions self._ports_resolved = True
REANNZ/faucet
[ 480, 166, 480, 33, 1443148776 ]
def get_num_tunnels(self): """Returns the number of tunnels specified in the ACL""" num_tunnels = 0 for rule_conf in self.rules: if self.does_rule_contain_tunnel(rule_conf): output_conf = rule_conf['actions']['output'] if isinstance(output_conf, list): for action in output_conf: for key in action: if key == 'tunnel': num_tunnels += 1 else: if 'tunnel' in output_conf: num_tunnels += 1 return num_tunnels
REANNZ/faucet
[ 480, 166, 480, 33, 1443148776 ]
def does_rule_contain_tunnel(rule_conf): """Return true if the ACL rule contains a tunnel""" if 'actions' in rule_conf: if 'output' in rule_conf['actions']: output_conf = rule_conf['actions']['output'] if isinstance(output_conf, (list, tuple)): for action in output_conf: for key in action: if key == 'tunnel': return True else: if 'tunnel' in output_conf: return True return False
REANNZ/faucet
[ 480, 166, 480, 33, 1443148776 ]
def _tunnel_source_id(source): """Return ID for a tunnel source.""" return tuple(sorted(source.items()))
REANNZ/faucet
[ 480, 166, 480, 33, 1443148776 ]
def verify_tunnel_rules(self): """Make sure that matches & set fields are configured correctly to handle tunnels""" if 'eth_type' not in self.matches: self.matches['eth_type'] = False if 'in_port' not in self.matches: self.matches['in_port'] = False if 'vlan_vid' not in self.matches: self.matches['vlan_vid'] = False if 'vlan_vid' not in self.set_fields: self.set_fields.add('vlan_vid') if 'vlan_pcp' not in self.matches: self.matches['vlan_pcp'] = False if 'vlan_pcp' not in self.set_fields: self.set_fields.add('vlan_pcp')
REANNZ/faucet
[ 480, 166, 480, 33, 1443148776 ]
def update_source_tunnel_rules(self, curr_dp, source_id, tunnel_id, out_port, output_table): """Update the tunnel rulelist for when the output port has changed""" src_dp = self.tunnel_sources[source_id]['dp'] dst_dp = self.tunnel_dests[tunnel_id]['dst_dp'] prev_list = self.dyn_tunnel_rules[tunnel_id].get(source_id, []) new_list = [] pcp_flag = valve_of.PCP_TUNNEL_FLAG if self.tunnel_dests[tunnel_id]['reverse']: pcp_flag = valve_of.PCP_TUNNEL_REVERSE_DIRECTION_FLAG if curr_dp == src_dp and curr_dp != dst_dp: # SRC DP: in_port, actions=[push_vlan, output, pop_vlans] # Ideally, we would be able to detect if the tunnel has an `allow` action clause. # However, this is difficult as a single ACL can have multiple rules using the same # tunnel, but with one instance requiring the `allow` clause and another, not. # This means it is easier to always append the `pop_vlans` in assumption that the # `allow` action does exist, and then optimize/reduce the redundant rules before # outputting the flowrule. # We also set the tunnel VLAN header with a PCP value indicating that we are in # the tunnel, which will save the VLANs from being reserved. new_list = [ {'vlan_vids': [{'vid': tunnel_id, 'eth_type': ether.ETH_TYPE_8021Q}]}, {'set_fields': [{'vlan_pcp': pcp_flag}]}, {'port': out_port}, {'pop_vlans': 1}] elif curr_dp == dst_dp and curr_dp != src_dp: # DST DP: in_port, vlan_vid, actions=[pop_vlan, additional_instructions, output] # If exit_instructions are applied, then we want to pop off the tunnel # VLAN header, then apply the additional instructions, then output if self.tunnel_dests[tunnel_id]['maintain_encapsulation']: # We wish to maintain tunnel encapsulation before outputting # So do not add the pop_vlans rule new_list = [] else: new_list = [{'pop_vlans': 1}] exit_instructions = self.tunnel_dests[tunnel_id].get('exit_instructions', []) new_list.extend(copy.copy(list(exit_instructions))) if out_port is None: # DP dest tunnel, so we fall through into the eth_dst output table new_list.append({'goto': output_table.table_id}) else: # Tunnel has port specified, so output to destination new_list.append({'port': out_port}) elif curr_dp == src_dp and curr_dp == dst_dp: # SINGLE DP: in_port, actions=[additional_instructions, out_port] exit_instructions = self.tunnel_dests[tunnel_id].get('exit_instructions', []) new_list.extend(copy.copy(list(exit_instructions))) if self.tunnel_dests[tunnel_id].get('maintain_encapsulation', False): # Maintain encapsulation implies we want the tunnel VID on the packet, # so ensure it is purposefully put onto the packet, even when # there would originally be no need to push on a tunnel VID new_list.extend([ {'vlan_vids': [{'vid': tunnel_id, 'eth_type': ether.ETH_TYPE_8021Q}]}, {'set_fields': [{'vlan_pcp': pcp_flag}]}]) if out_port is None: # DP dest tunnel, so we fall through into the eth_dst output table new_list.extend([{'goto': output_table.table_id}]) else: # Tunnel has port specified, so output to destination new_list.extend([{'port': out_port}]) else: # TRANSIT DP: in_port, vlan_vid, actions=[output] new_list = [{'port': out_port}] if new_list != prev_list: self.dyn_tunnel_rules[tunnel_id][source_id] = new_list return True return True
REANNZ/faucet
[ 480, 166, 480, 33, 1443148776 ]
def HTML_WRAP(app): """ Wraps the Application object's results in HTML """ def gen(environ, start_response): """The standard WSGI interface""" iterator = app(environ, start_response) first_yield = iterator.next() yield "<html>\n" yield "<body>\n" yield first_yield for i in iterator: yield i yield "</body>\n" yield "</html>\n" return gen
sparkslabs/kamaelia_
[ 13, 3, 13, 2, 1348148442 ]
def normalizeEnviron(environ): """ Converts environ variables to strings for wsgi compliance and deletes extraneous fields. """ header_list = [] header_dict = environ['headers'] for key in header_dict: line = "%s: %s\n" % (key, header_dict[key]) header_list.append(line) environ['headers'] = ''.join(header_list) environ['peerport'] = str(environ['peerport']) environ['localport'] = str(environ['localport']) del environ['bad']
sparkslabs/kamaelia_
[ 13, 3, 13, 2, 1348148442 ]
def __init__(self, app_name, app, request, log_writable, WsgiConfig): super(_WsgiHandler, self).__init__() self.app_name = app_name self.request = request self.environ = request self.app = app #self.log_writable = log_writable self.log_writable = LogWritable.GetLogWritable('wsgi.log', self, '_signal-lw') self.status = self.response_headers = False self.wsgi_config = WsgiConfig
sparkslabs/kamaelia_
[ 13, 3, 13, 2, 1348148442 ]
def start_response(self, status, response_headers, exc_info=None): """ Method to be passed to WSGI application object """ #TODO: Add more exc_info support if exc_info: raise exc_info[0], exc_info[1], exc_info[2] self.status = status self.response_headers = response_headers return self.write
sparkslabs/kamaelia_
[ 13, 3, 13, 2, 1348148442 ]
def munge_headers(self): for header in self.environ["headers"]: cgi_varname = "HTTP_"+header.replace("-","_").upper() self.environ[cgi_varname] = self.environ["headers"][header] pprint.pprint(self.environ) pprint.pprint(self.environ["headers"])
sparkslabs/kamaelia_
[ 13, 3, 13, 2, 1348148442 ]
def initRequiredVars(self, wsgi_config): """ This method initializes all variables that are required to be present (including ones that could possibly be empty. """ self.environ["REQUEST_METHOD"] = self.request["method"] # Portion of URL that relates to the application object. self.environ["SCRIPT_NAME"] = self.app_name # Remainder of request path after "SCRIPT_NAME" self.environ["PATH_INFO"] = self.environ["uri-suffix"] # Server name published to the outside world self.environ["SERVER_NAME"] = self.server_name # Server port published to the outside world self.environ["SERVER_PORT"] = self.server_port #Protocol to respond to self.environ["SERVER_PROTOCOL"] = self.request["protocol"] #================================== #WSGI variables #================================== self.environ["wsgi.version"] = wsgi_config['WSGI_VER'] self.environ["wsgi.url_scheme"] = self.request["protocol"].lower() self.environ["wsgi.errors"] = self.log_writable self.environ["wsgi.multithread"] = False self.environ["wsgi.multiprocess"] = False self.environ["wsgi.run_once"] = True self.environ["wsgi.input"] = self.generateRequestMemFile()
sparkslabs/kamaelia_
[ 13, 3, 13, 2, 1348148442 ]
def unsupportedVars(self): """ Probably won't be used. This is just a list of environment variables that aren't implemented as of yet. """ consider = " **CONSIDER ADDING THIS -- eg: " self.environ["HTTP_REFERER"] = consider + "-" self.environ["SERVER_SIGNATURE"] = consider + "...." self.environ["SCRIPT_FILENAME"] = consider + \ "/usr/local/httpd/sites/com.thwackety/cgi/test.pl" self.environ["REQUEST_URI"] = consider + "/cgi-bin/test.pl" self.environ["SCRIPT_URL"] = consider + "/cgi-bin/test.pl" self.environ["SCRIPT_URI"] = consider + "http://thwackety.com/cgi-bin/test.pl" self.environ["REMOTE_ADDR"] = consider + "192.168.2.5" self.environ["REMOTE_PORT"] = consider + "56669" self.environ["GATEWAY_INTERFACE"] = consider + "CGI/1.1"
sparkslabs/kamaelia_
[ 13, 3, 13, 2, 1348148442 ]
def _getWsgiHandler(request): requested_uri = sanitizePath(request['raw-uri'], substituted_path) print requested_uri for url_item in urls.UrlList: print 'trying ' + url_item[0] if re.search(url_item[0], requested_uri): print url_item[0] + 'succesful!' u, mod, app_attr, app_name = url_item break module = _importWsgiModule(mod) app = getattr(module, app_attr) return _WsgiHandler(app_name, app, request, log_writable, WsgiConfig)
sparkslabs/kamaelia_
[ 13, 3, 13, 2, 1348148442 ]
def HTTPProtocol(): def foo(self,**argd): print self.routing return HTTPServer(requestHandlers(self.routing),**argd) return foo
sparkslabs/kamaelia_
[ 13, 3, 13, 2, 1348148442 ]
def __init__(self): super(WsgiError, self).__init__()
sparkslabs/kamaelia_
[ 13, 3, 13, 2, 1348148442 ]
def gc(test_result=True): """Site-wide garbage collections.""" def days_ago(days): return datetime.today() - timedelta(days=days) log.info('Collecting data to delete') logs = ( ActivityLog.objects.filter(created__lt=days_ago(90)) .exclude(action__in=amo.LOG_KEEP) .values_list('id', flat=True) ) for chunk in chunked(logs, 100): tasks.delete_logs.delay(chunk) two_weeks_ago = days_ago(15) # Hard-delete stale add-ons with no versions. No email should be sent. versionless_addons = Addon.unfiltered.filter( versions__pk=None, created__lte=two_weeks_ago ).values_list('pk', flat=True) for chunk in chunked(versionless_addons, 100): delete_addons.delay(chunk, with_deleted=True) # Delete stale FileUploads. stale_uploads = FileUpload.objects.filter(created__lte=two_weeks_ago).order_by('id') for file_upload in stale_uploads: log.info( '[FileUpload:{uuid}] Removing file: {path}'.format( uuid=file_upload.uuid, path=file_upload.path ) ) if file_upload.path: try: storage.delete(file_upload.path) except OSError: pass file_upload.delete() # Delete stale ScannerResults. ScannerResult.objects.filter(upload=None, version=None).delete() # Delete fake emails older than 90 days FakeEmail.objects.filter(created__lte=days_ago(90)).delete()
mozilla/olympia
[ 810, 542, 810, 201, 1391193855 ]
def __init__(self, layer): self.layer = layer self.template = loader.get_template( 'regulations/layers/definition_citation.html') self.sectional = False self.version = None self.rev_urls = SectionUrl() self.rendered = {} # precomputation for def_struct in self.layer['referenced'].values(): def_struct['reference_split'] = def_struct['reference'].split('-')
18F/regulations-site
[ 18, 45, 18, 34, 1417818160 ]
def __init__(self, aws_access_key_id=None, aws_secret_access_key=None, port=None, proxy=None, proxy_port=None, host=DefaultHost, debug=0, security_token=None, validate_certs=True): AWSAuthConnection.__init__(self, host, aws_access_key_id, aws_secret_access_key, True, port, proxy, proxy_port, debug=debug, security_token=security_token, validate_certs=validate_certs)
nanocell/lsync
[ 5, 2, 5, 3, 1359852579 ]
def make_request(self, action, path, headers=None, data='', params=None): if params: pairs = [] for key, val in params.iteritems(): if val is None: continue pairs.append(key + '=' + urllib.quote(str(val))) path += '?' + '&'.join(pairs) return AWSAuthConnection.make_request(self, action, path, headers, data)
nanocell/lsync
[ 5, 2, 5, 3, 1359852579 ]
def get_all_hosted_zones(self, start_marker=None, zone_list=None): """ Returns a Python data structure with information about all Hosted Zones defined for the AWS account. :param int start_marker: start marker to pass when fetching additional results after a truncated list :param list zone_list: a HostedZones list to prepend to results """ params = {} if start_marker: params = {'marker': start_marker} response = self.make_request('GET', '/%s/hostedzone' % self.Version, params=params) body = response.read() boto.log.debug(body) if response.status >= 300: raise exception.DNSServerError(response.status, response.reason, body) e = boto.jsonresponse.Element(list_marker='HostedZones', item_marker=('HostedZone',)) h = boto.jsonresponse.XmlHandler(e, None) h.parse(body) if zone_list: e['ListHostedZonesResponse']['HostedZones'].extend(zone_list) while 'NextMarker' in e['ListHostedZonesResponse']: next_marker = e['ListHostedZonesResponse']['NextMarker'] zone_list = e['ListHostedZonesResponse']['HostedZones'] e = self.get_all_hosted_zones(next_marker, zone_list) return e
nanocell/lsync
[ 5, 2, 5, 3, 1359852579 ]
def get_hosted_zone_by_name(self, hosted_zone_name): """ Get detailed information about a particular Hosted Zone. :type hosted_zone_name: str :param hosted_zone_name: The fully qualified domain name for the Hosted Zone """ if hosted_zone_name[-1] != '.': hosted_zone_name += '.' all_hosted_zones = self.get_all_hosted_zones() for zone in all_hosted_zones['ListHostedZonesResponse']['HostedZones']: #check that they gave us the FQDN for their zone if zone['Name'] == hosted_zone_name: return self.get_hosted_zone(zone['Id'].split('/')[-1])
nanocell/lsync
[ 5, 2, 5, 3, 1359852579 ]
def delete_hosted_zone(self, hosted_zone_id): uri = '/%s/hostedzone/%s' % (self.Version, hosted_zone_id) response = self.make_request('DELETE', uri) body = response.read() boto.log.debug(body) if response.status not in (200, 204): raise exception.DNSServerError(response.status, response.reason, body) e = boto.jsonresponse.Element() h = boto.jsonresponse.XmlHandler(e, None) h.parse(body) return e
nanocell/lsync
[ 5, 2, 5, 3, 1359852579 ]
def get_all_rrsets(self, hosted_zone_id, type=None, name=None, identifier=None, maxitems=None): """ Retrieve the Resource Record Sets defined for this Hosted Zone. Returns the raw XML data returned by the Route53 call. :type hosted_zone_id: str :param hosted_zone_id: The unique identifier for the Hosted Zone :type type: str :param type: The type of resource record set to begin the record listing from. Valid choices are: * A * AAAA * CNAME * MX * NS * PTR * SOA * SPF * SRV * TXT Valid values for weighted resource record sets: * A * AAAA * CNAME * TXT Valid values for Zone Apex Aliases: * A * AAAA :type name: str :param name: The first name in the lexicographic ordering of domain names to be retrieved :type identifier: str :param identifier: In a hosted zone that includes weighted resource record sets (multiple resource record sets with the same DNS name and type that are differentiated only by SetIdentifier), if results were truncated for a given DNS name and type, the value of SetIdentifier for the next resource record set that has the current DNS name and type :type maxitems: int :param maxitems: The maximum number of records """ from boto.route53.record import ResourceRecordSets params = {'type': type, 'name': name, 'Identifier': identifier, 'maxitems': maxitems} uri = '/%s/hostedzone/%s/rrset' % (self.Version, hosted_zone_id) response = self.make_request('GET', uri, params=params) body = response.read() boto.log.debug(body) if response.status >= 300: raise exception.DNSServerError(response.status, response.reason, body) rs = ResourceRecordSets(connection=self, hosted_zone_id=hosted_zone_id) h = handler.XmlHandler(rs, self) xml.sax.parseString(body, h) return rs
nanocell/lsync
[ 5, 2, 5, 3, 1359852579 ]
def __init__(self): super(Serializer, self).__init__({ 'find_isolate': evaluators.SequenceEvaluator( [find_isolate.Serializer(), TaskTransformer]), 'run_test': evaluators.SequenceEvaluator( [run_test.Serializer(), TaskTransformer]), 'read_value': evaluators.SequenceEvaluator( [read_value.Serializer(), TaskTransformer]), 'find_culprit': evaluators.SequenceEvaluator( [performance_bisection.Serializer(), AnalysisTransformer]), })
endlessm/chromium-browser
[ 21, 16, 21, 3, 1435959644 ]
def TaskTransformer(task, _, context): """Takes the form: { <task id> : { ... } } And turns it into: { 'state': { 'change': {...} 'quest': <string> 'index': <int> 'add_execution': { ... } } } """ if not context: return None input_data = context.get(task.id) if not input_data: return None result = { 'state': { 'change': task.payload.get('change'), 'quest': TASK_TYPE_QUEST_MAPPING.get(task.task_type), 'index': task.payload.get('index', 0), 'add_execution': input_data, } } context.clear() context.update(result)
endlessm/chromium-browser
[ 21, 16, 21, 3, 1435959644 ]
def __init__(self, row_splits, row_lengths=None, value_rowids=None, nrows=None, uniform_row_length=None, nvals=None, internal=False): """Creates a `RowPartition` from the specified encoding tensor(s). This constructor is private -- please use one of the following ops to build `RowPartition`s: * `RowPartition.from_row_lengths` * `RowPartition.from_value_rowids` * `RowPartition.from_row_splits` * `RowPartition.from_row_starts` * `RowPartition.from_row_limits` * `RowPartition.from_uniform_row_length` If row_splits is has a constant value, then all other arguments should have a constant value. Args: row_splits: A 1-D integer tensor with shape `[nrows+1]`. row_lengths: A 1-D integer tensor with shape `[nrows]` value_rowids: A 1-D integer tensor with shape `[nvals]`. nrows: A 1-D integer scalar tensor. uniform_row_length: A scalar tensor. nvals: A scalar tensor. internal: Private key value, required to ensure that this private constructor is *only* called from the factory methods. Raises: TypeError: If a row partitioning tensor has an inappropriate dtype. TypeError: If exactly one row partitioning argument was not specified. ValueError: If a row partitioning tensor has an inappropriate shape. ValueError: If multiple partitioning arguments are specified. ValueError: If nrows is specified but value_rowids is not None. """ if internal is not _row_partition_factory_key: raise ValueError("RowPartition constructor is private; please use one " "of the factory methods instead (e.g., " "RowPartition.from_row_lengths())") # Validate the arguments. if not isinstance(row_splits, ops.Tensor): raise TypeError("Row-partitioning argument must be a Tensor, got %r" % row_splits) if row_splits.dtype not in (dtypes.int32, dtypes.int64): raise ValueError("Row-partitioning argument must be int32 or int64") # Validate shapes & dtypes. row_splits.shape.assert_has_rank(1) row_splits.set_shape([None]) self._row_splits = row_splits # Store any cached tensors. These are used to avoid unnecessary # round-trip conversions when a RowPartition is constructed from # lengths or rowids, and we later want those lengths/rowids back. for tensor in [row_lengths, value_rowids, nrows, uniform_row_length, nvals]: if tensor is not None: if not isinstance(tensor, ops.Tensor): raise TypeError("Cached value must be a Tensor or None.") elif tensor.dtype != row_splits.dtype: raise ValueError(f"Inconsistent dtype for encoding tensors: " f"{tensor} vs {row_splits}") self._row_lengths = row_lengths self._value_rowids = value_rowids self._nrows = nrows self._uniform_row_length = uniform_row_length self._nvals = nvals
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def from_value_rowids(cls, value_rowids, nrows=None, validate=True, preferred_dtype=None, dtype=None, dtype_hint=None): """Creates a `RowPartition` with rows partitioned by `value_rowids`. This `RowPartition` divides a sequence `values` into rows by specifying which row each value should be added to: ```python partitioned_rows = [[] for _ in nrows] for (value, rowid) in zip(values, value_rowids): partitioned_rows[rowid].append(value) `` Args: value_rowids: A 1-D integer tensor with shape `[nvals]`, which corresponds one-to-one with `values`, and specifies each value's row index. Must be nonnegative, and must be sorted in ascending order. nrows: An integer scalar specifying the number of rows. This should be specified if the `RowPartition` may containing empty training rows. Must be greater than `value_rowids[-1]` (or greater than or equal to zero if `value_rowids` is empty). Defaults to `value_rowids[-1] + 1` (or zero if `value_rowids` is empty). validate: If true, then use assertions to check that the arguments form a valid `RowPartition`. preferred_dtype: Deprecated synonym of dtype_hint. dtype: Optional dtype for the RowPartition. If missing, the type is inferred from the type of `value_rowids`, dtype_hint, or tf.int64. dtype_hint: Optional dtype for the RowPartition, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so dtype_hint can be used as a soft preference. If the conversion to `dtype_hint` is not possible, this argument has no effect. Returns: A `RowPartition`. Raises: ValueError: If `nrows` is incompatible with `value_rowids`. #### Example: >>> print(RowPartition.from_value_rowids( ... value_rowids=[0, 0, 0, 0, 2, 2, 2, 3], ... nrows=4)) tf.RowPartition(row_splits=[0 4 4 7 8]) """ dtype_hint = _get_dtype_hint(preferred_dtype, dtype_hint) # Local import bincount_ops to avoid import-cycle since bincount_ops # imports ragged_tensor. from tensorflow.python.ops import bincount_ops # pylint: disable=g-import-not-at-top if not isinstance(validate, bool): raise TypeError("validate must have type bool") with ops.name_scope(None, "RowPartitionFromValueRowIds", [value_rowids, nrows]): value_rowids = cls._convert_row_partition( value_rowids, "value_rowids", dtype_hint=dtype_hint, dtype=dtype) if nrows is None: const_rowids = tensor_util.constant_value(value_rowids) if const_rowids is None: nrows = array_ops.concat([value_rowids[-1:], [-1]], axis=0)[0] + 1 const_nrows = None else: const_nrows = const_rowids[-1] + 1 if const_rowids.size > 0 else 0 nrows = ops.convert_to_tensor( const_nrows, value_rowids.dtype, name="nrows") else: nrows = ops.convert_to_tensor(nrows, value_rowids.dtype, "nrows") const_nrows = tensor_util.constant_value(nrows) if const_nrows is not None: if const_nrows < 0: raise ValueError("Expected nrows >= 0; got %d" % const_nrows) const_rowids = tensor_util.constant_value(value_rowids) if const_rowids is not None and const_rowids.size > 0: if not const_nrows >= const_rowids[-1] + 1: raise ValueError( "Expected nrows >= value_rowids[-1] + 1; got nrows=%d, " "value_rowids[-1]=%d" % (const_nrows, const_rowids[-1])) value_rowids.shape.assert_has_rank(1) nrows.shape.assert_has_rank(0) if validate: msg = ("Arguments to from_value_rowids do not form a valid " "RowPartition") checks = [ check_ops.assert_rank(value_rowids, 1, message=msg), check_ops.assert_rank(nrows, 0, message=msg), check_ops.assert_non_negative(value_rowids[:1], message=msg), _assert_monotonic_increasing(value_rowids, message=msg), check_ops.assert_less(value_rowids[-1:], nrows, message=msg), ] value_rowids = control_flow_ops.with_dependencies(checks, value_rowids) # Convert value_rowids & nrows to row_splits. # Note: we don't use segment_ids_to_row_splits() here because we want # to save the intermediate value `row_lengths`, so we can cache it. # TODO(b/116708836) Upgrade bincount to accept int64 so we can skip the # cast. value_rowids_int32 = math_ops.cast(value_rowids, dtypes.int32) nrows_int32 = math_ops.cast(nrows, dtypes.int32) row_lengths = bincount_ops.bincount( value_rowids_int32, minlength=nrows_int32, maxlength=nrows_int32, dtype=value_rowids.dtype) row_splits = array_ops.concat([[0], math_ops.cumsum(row_lengths)], axis=0) if const_nrows is not None: row_lengths.set_shape([const_nrows]) row_splits.set_shape([const_nrows + 1]) return cls( row_splits=row_splits, row_lengths=row_lengths, value_rowids=value_rowids, nrows=nrows, internal=_row_partition_factory_key)
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def from_row_splits(cls, row_splits, validate=True, preferred_dtype=None, dtype=None, dtype_hint=None): """Creates a `RowPartition` with rows partitioned by `row_splits`. This `RowPartition` divides a sequence `values` into rows by indicating where each row begins and ends: ```python partitioned_rows = [] for i in range(len(row_splits) - 1): row_start = row_splits[i] row_end = row_splits[i + 1] partitioned_rows.append(values[row_start:row_end]) ``` Args: row_splits: A 1-D integer tensor with shape `[nrows+1]`. Must not be empty, and must be sorted in ascending order. `row_splits[0]` must be zero. validate: If true, then use assertions to check that the arguments form a valid `RowPartition`. preferred_dtype: Deprecated synonym of dtype_hint. dtype: Optional dtype for the RowPartition. If missing, the type is inferred from the type of `row_splits`, dtype_hint, or tf.int64. dtype_hint: Optional dtype for the RowPartition, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so dtype_hint can be used as a soft preference. If the conversion to `dtype_hint` is not possible, this argument has no effect. Returns: A `RowPartition`. Raises: ValueError: If `row_splits` is an empty list. """ dtype_hint = _get_dtype_hint(preferred_dtype, dtype_hint) if not isinstance(validate, bool): raise TypeError("validate must have type bool") if isinstance(row_splits, (list, tuple)) and not row_splits: raise ValueError("row_splits tensor may not be empty.") if isinstance(row_splits, tensor_spec.TensorSpec): return cls(row_splits=row_splits, internal=_row_partition_factory_key) with ops.name_scope(None, "RowPartitionFromRowSplits", [row_splits]): row_splits = cls._convert_row_partition( row_splits, "row_splits", dtype_hint=dtype_hint, dtype=dtype) row_splits.shape.assert_has_rank(1) if validate: msg = "Arguments to from_row_splits do not form a valid RaggedTensor:" checks = [ check_ops.assert_rank(row_splits, 1, message=(msg + "rank")), _assert_zero(row_splits[0], message=(msg + "zero")), _assert_monotonic_increasing( row_splits, message=(msg + "monotonic")), ] row_splits = control_flow_ops.with_dependencies(checks, row_splits) return cls(row_splits=row_splits, internal=_row_partition_factory_key)
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def from_row_lengths(cls, row_lengths, validate=True, preferred_dtype=None, dtype=None, dtype_hint=None): """Creates a `RowPartition` with rows partitioned by `row_lengths`. This `RowPartition` divides a sequence `values` into rows by indicating the length of each row: ```python partitioned_rows = [[values.pop(0) for _ in range(length)] for length in row_lengths] ``` Args: row_lengths: A 1-D integer tensor with shape `[nrows]`. Must be nonnegative. validate: If true, then use assertions to check that the arguments form a valid `RowPartition`. preferred_dtype: Deprecated synonym of dtype_hint. dtype: Optional dtype for the RowPartition. If missing, the type is inferred from the type of `row_lengths`, dtype_hint, or tf.int64. dtype_hint: Optional dtype for the RowPartition, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so dtype_hint can be used as a soft preference. If the conversion to `dtype_hint` is not possible, this argument has no effect. Returns: A `RowPartition`. """ dtype_hint = _get_dtype_hint( preferred_dtype=preferred_dtype, dtype_hint=dtype_hint) if not isinstance(validate, bool): raise TypeError("validate must have type bool") with ops.name_scope(None, "RowPartitionFromRowLengths", [row_lengths]): row_lengths = cls._convert_row_partition( row_lengths, "row_lengths", dtype_hint=dtype_hint, dtype=dtype) row_lengths.shape.assert_has_rank(1) if validate: msg = "Arguments to from_row_lengths do not form a valid RowPartition" checks = [ check_ops.assert_rank(row_lengths, 1, message=msg), check_ops.assert_non_negative(row_lengths, message=msg), ] row_lengths = control_flow_ops.with_dependencies(checks, row_lengths) row_limits = math_ops.cumsum(row_lengths) row_splits = array_ops.concat([[0], row_limits], axis=0) return cls( row_splits=row_splits, row_lengths=row_lengths, internal=_row_partition_factory_key)
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def from_row_starts(cls, row_starts, nvals, validate=True, preferred_dtype=None, dtype=None, dtype_hint=None): """Creates a `RowPartition` with rows partitioned by `row_starts`. Equivalent to: `from_row_splits(concat([row_starts, nvals], axis=0))`. Args: row_starts: A 1-D integer tensor with shape `[nrows]`. Must be nonnegative and sorted in ascending order. If `nrows>0`, then `row_starts[0]` must be zero. nvals: A scalar tensor indicating the number of values. validate: If true, then use assertions to check that the arguments form a valid `RowPartition`. preferred_dtype: Deprecated synonym of dtype_hint. dtype: Optional dtype for the RowPartition. If missing, the type is inferred from the type of `row_starts`, dtype_hint, or tf.int64. dtype_hint: Optional dtype for the RowPartition, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so dtype_hint can be used as a soft preference. If the conversion to `dtype_hint` is not possible, this argument has no effect. Returns: A `RowPartition`. """ dtype_hint = _get_dtype_hint( preferred_dtype=preferred_dtype, dtype_hint=dtype_hint) if not isinstance(validate, bool): raise TypeError("validate must have type bool") with ops.name_scope(None, "RowPartitionFromRowStarts", [row_starts]): row_starts = cls._convert_row_partition( row_starts, "row_starts", dtype_hint=dtype_hint, dtype=dtype) row_starts.shape.assert_has_rank(1) # TODO(martinz): nvals and row_starts could be inconsistent at call time, # even though they eventually end up the same type. nvals = math_ops.cast(nvals, row_starts.dtype) if validate: msg = "Arguments to from_row_starts do not form a valid RaggedTensor" checks = [ check_ops.assert_rank(row_starts, 1, message=msg), _assert_zero(row_starts[:1], message=msg), _assert_monotonic_increasing(row_starts, message=msg), check_ops.assert_less_equal(row_starts[-1:], nvals, message=msg), ] row_starts = control_flow_ops.with_dependencies(checks, row_starts) row_splits = array_ops.concat([row_starts, [nvals]], axis=0) return cls(row_splits=row_splits, nvals=nvals, internal=_row_partition_factory_key)
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def from_row_limits(cls, row_limits, validate=True, preferred_dtype=None, dtype=None, dtype_hint=None): """Creates a `RowPartition` with rows partitioned by `row_limits`. Equivalent to: `from_row_splits(values, concat([0, row_limits], axis=0))`. Args: row_limits: A 1-D integer tensor with shape `[nrows]`. Must be sorted in ascending order. validate: If true, then use assertions to check that the arguments form a valid `RowPartition`. preferred_dtype: Deprecated synonym of dtype_hint. dtype: Optional dtype for the RowPartition. If missing, the type is inferred from the type of `row_limits`, dtype_hint, or tf.int64. dtype_hint: Optional dtype for the RowPartition, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so dtype_hint can be used as a soft preference. If the conversion to `dtype_hint` is not possible, this argument has no effect. Returns: A `RowPartition`. """ dtype_hint = _get_dtype_hint( preferred_dtype=preferred_dtype, dtype_hint=dtype_hint) if not isinstance(validate, bool): raise TypeError("validate must have type bool") with ops.name_scope(None, "RowPartitionFromRowLimits", [row_limits]): row_limits = cls._convert_row_partition( row_limits, "row_limits", dtype_hint=dtype_hint, dtype=dtype) row_limits.shape.assert_has_rank(1) if validate: msg = "Arguments to from_row_limits do not form a valid RaggedTensor" checks = [ check_ops.assert_rank(row_limits, 1, message=msg), check_ops.assert_non_negative(row_limits[:1], message=msg), _assert_monotonic_increasing(row_limits, message=msg), ] row_limits = control_flow_ops.with_dependencies(checks, row_limits) zero = array_ops.zeros([1], row_limits.dtype) row_splits = array_ops.concat([zero, row_limits], axis=0) return cls(row_splits=row_splits, internal=_row_partition_factory_key)
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def from_uniform_row_length(cls, uniform_row_length, nvals=None, nrows=None, validate=True, preferred_dtype=None, dtype=None, dtype_hint=None): """Creates a `RowPartition` with rows partitioned by `uniform_row_length`. This `RowPartition` divides a sequence `values` into rows that all have the same length: ```python partitioned_rows = [[values.pop(0) for _ in range(uniform_row_length)] for _ in range(nrows)] ``` Note that either or both of nvals and nrows must be specified. Args: uniform_row_length: A scalar integer tensor. Must be nonnegative. The size of the outer axis of `values` must be evenly divisible by `uniform_row_length`. nvals: a non-negative scalar integer tensor for the number of values. Must be specified if nrows is not specified. If not specified, defaults to uniform_row_length*nrows nrows: The number of rows in the constructed RowPartition. If not specified, then it defaults to `nvals/uniform_row_length` (or `0` if `uniform_row_length==0`). `nrows` only needs to be specified if `uniform_row_length` might be zero. `uniform_row_length*nrows` must be `nvals`. validate: If true, then use assertions to check that the arguments form a valid `RowPartition`. preferred_dtype: Deprecated synonym of dtype_hint. dtype: Optional dtype for the RowPartition. If missing, the type is inferred from the type of `uniform_row_length`, dtype_hint, or tf.int64. dtype_hint: Optional dtype for the RowPartition, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so dtype_hint can be used as a soft preference. If the conversion to `dtype_hint` is not possible, this argument has no effect. Returns: A `RowPartition`. """ dtype_hint = _get_dtype_hint( preferred_dtype=preferred_dtype, dtype_hint=dtype_hint) if not isinstance(validate, bool): raise TypeError("validate must have type bool") if nrows is None and nvals is None: raise ValueError("Either (or both) of nvals and nrows must be specified") with ops.name_scope(None, "RowPartitionFromUniformRowLength", [uniform_row_length, nrows]): [uniform_row_length, nvals, nrows ] = _convert_all_to_tensors([(uniform_row_length, "uniform_row_length"), (nvals, "nvals"), (nrows, "nrows")], dtype=dtype, dtype_hint=dtype_hint) uniform_row_length.shape.assert_has_rank(0) # Find nrows. const_row_length = tensor_util.constant_value(uniform_row_length) if nrows is None: if const_row_length is None: # Avoid division by zero if uniform_row_length==0 (and nvals==0). rowlen_or_1 = math_ops.maximum( uniform_row_length, constant_op.constant(1, uniform_row_length.dtype)) nrows = nvals // rowlen_or_1 elif const_row_length == 0: nrows = constant_op.constant(0, dtype=uniform_row_length.dtype) else: nrows = nvals // const_row_length const_nrows = None if nrows is None else tensor_util.constant_value(nrows) const_nvals = None if nvals is None else tensor_util.constant_value(nvals) const_uniform_row_length = tensor_util.constant_value(uniform_row_length) checks = [] if const_nvals is None and const_nrows is not None and const_uniform_row_length is not None: const_nvals = const_nrows * const_uniform_row_length if nvals is not None and validate: checks.append(check_ops.assert_equal(nvals, const_nvals)) nvals = constant_op.constant(const_nvals, uniform_row_length.dtype) if nvals is None: nvals = nrows * uniform_row_length # Find row_splits. if const_nrows is not None and const_row_length is not None: row_splits = [v * const_row_length for v in range(const_nrows + 1)] row_splits = constant_op.constant(row_splits, uniform_row_length.dtype) else: row_splits = math_ops.range( nrows + 1, dtype=uniform_row_length.dtype) * uniform_row_length if validate: if (const_nrows is None or const_row_length is None or const_nvals is None): checks.append( check_ops.assert_equal( nrows * uniform_row_length, nvals, ("uniform_row_length", uniform_row_length, "times nrows", nrows, "must equal nvals", nvals))) else: if const_nrows * const_row_length != const_nvals: raise ValueError( "uniform_row_length=%d times nrows=%d must equal nvals=%d" % (const_row_length, const_nrows, const_nvals)) if uniform_row_length.shape.rank is None: checks.append( check_ops.assert_rank( uniform_row_length, 0, message="uniform_row_length must be a scalar.")) const_row_length = tensor_util.constant_value(uniform_row_length) if const_row_length is None: checks.append( check_ops.assert_greater_equal( uniform_row_length, constant_op.constant(0, uniform_row_length.dtype), message="uniform_row_length must be >= 0.")) else: if const_row_length < 0: raise ValueError("uniform_row_length must be >= 0.") row_splits = control_flow_ops.with_dependencies(checks, row_splits) return cls( row_splits=row_splits, uniform_row_length=uniform_row_length, nrows=nrows, nvals=nvals, internal=_row_partition_factory_key)
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def _convert_row_partition(cls, partition, name, dtype=None, dtype_hint=None): """Converts `partition` to Tensors. Args: partition: A row-partitioning tensor for the `RowPartition` being constructed. I.e., one of: row_splits, row_lengths, row_starts, row_limits, value_rowids, uniform_row_length. name: The name of the row-partitioning tensor. dtype: Optional dtype for the RowPartition. If missing, the type is inferred from the type of `uniform_row_length`, dtype_hint, or tf.int64. dtype_hint: Optional dtype for the RowPartition, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so dtype_hint can be used as a soft preference. If the conversion to `dtype_hint` is not possible, this argument has no effect. Returns: A tensor equivalent to partition. Raises: ValueError: if dtype is not int32 or int64. """ if dtype_hint is None: dtype_hint = dtypes.int64 if (isinstance(partition, np.ndarray) and partition.dtype == np.int32 and dtype is None): partition = ops.convert_to_tensor(partition, name=name) else: partition = ops.convert_to_tensor_v2( partition, dtype_hint=dtype_hint, dtype=dtype, name=name) if partition.dtype not in (dtypes.int32, dtypes.int64): raise ValueError("%s must have dtype int32 or int64" % name) return partition
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def dtype(self): """The `DType` used to encode the row partition (either int32 or int64).""" return self._row_splits.dtype
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def value_rowids(self): """Returns the row indices for this row partition. `value_rowids` specifies the row index fo reach value. In particular, `value_rowids[i]` is the row index for `values[i]`. Returns: A 1-D integer `Tensor` with shape `[self.nvals()]`. The returned tensor is nonnegative, and is sorted in ascending order. """ if self._value_rowids is not None: return self._value_rowids return segment_id_ops.row_splits_to_segment_ids(self._row_splits)
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def nrows(self): """Returns the number of rows created by this `RowPartition`. Returns: scalar integer Tensor """ if self._nrows is not None: return self._nrows nsplits = tensor_shape.dimension_at_index(self._row_splits.shape, 0) if nsplits.value is None: return array_ops.shape(self._row_splits, out_type=self.dtype)[0] - 1 else: return constant_op.constant(nsplits.value - 1, dtype=self.dtype)
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def row_starts(self): """Returns the start indices for rows in this row partition. These indices specify where the values for each row begin. `partition.row_starts()` is equal to `partition.row_splits()[:-1]`. Returns: A 1-D integer Tensor with shape `[self.nrows()]`. The returned tensor is nonnegative, and is sorted in ascending order. `self.row_starts()[0] == 0`. `self.row_starts()[-1] <= self.nvals()`. """ return self._row_splits[:-1]
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def row_lengths(self): """Returns the lengths of rows in this `RowPartition`. Returns: A 1-D integer Tensor with shape `[self.nrows]`. The returned tensor is nonnegative. `tf.reduce_sum(self.row_lengths) == self.nvals()`. """ if self._row_lengths is not None: return self._row_lengths splits = self._row_splits return splits[1:] - splits[:-1]
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def static_nrows(self): """The number of rows in this partition, if statically known. ```python self.row_lengths().shape == [self.static_nrows] self.row_starts().shape == [self.static_nrows] self.row_limits().shape == [self.static_nrows] self.row_splits().shape == [self.static_nrows + 1] ``` Returns: The number of rows in this partition as an `int` (if statically known); or `None` (otherwise). """ if self._row_splits is not None: nrows_plus_one = tensor_shape.dimension_value(self._row_splits.shape[0]) if nrows_plus_one is not None: return nrows_plus_one - 1 if self._row_lengths is not None: nrows = tensor_shape.dimension_value(self._row_lengths.shape[0]) if nrows is not None: return nrows if self._nrows is not None: return tensor_util.constant_value(self._nrows) return None
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def static_nvals(self): """The number of values in this partition, if statically known. ```python self.value_rowids().shape == [self.static_vals] ``` Returns: The number of values in this partition as an `int` (if statically known); or `None` (otherwise). """ if self._nvals is not None: nvals = tensor_util.constant_value(self._nvals) if nvals is not None: return nvals if self._value_rowids is not None: nvals = tensor_shape.dimension_at_index(self._value_rowids.shape, 0) if nvals.value is not None: return nvals.value return None
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def static_uniform_row_length(self): """The number of values in each row of this partition, if statically known. Returns: The number of values in each row of this partition as an `int` (if statically known); or `None` (otherwise). """ if self._uniform_row_length is not None: return tensor_util.constant_value(self._uniform_row_length) return None
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def is_uniform(self): """Returns true if the partition is known to be uniform statically. This is based upon the existence of self._uniform_row_length. For example: RowPartition.from_row_lengths([3,3,3]).is_uniform()==false RowPartition.from_uniform_row_length(5, nvals=20).is_uniform()==true RowPartition.from_row_lengths([2,0,2]).is_uniform()==false Returns: Whether a RowPartition is known to be uniform statically. """ return self._uniform_row_length is not None
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def with_row_splits_dtype(self, dtype): """Returns a copy of this RowPartition with the given `row_splits` dtype. Args: dtype: The dtype for `row_splits`. One of `tf.int32` or `tf.int64`. Returns: A copy of this RowPartition, with the `row_splits` cast to the given type. """ dtype = dtypes.as_dtype(dtype) if dtype not in (dtypes.int32, dtypes.int64): raise ValueError("dtype must be int32 or int64") if self.dtype == dtype: return self return RowPartition( row_splits=_cast_if_not_none(self._row_splits, dtype), row_lengths=_cast_if_not_none(self._row_lengths, dtype), value_rowids=_cast_if_not_none(self._value_rowids, dtype), nrows=_cast_if_not_none(self._nrows, dtype), uniform_row_length=_cast_if_not_none(self._uniform_row_length, dtype), internal=_row_partition_factory_key)
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def __repr__(self): if self._uniform_row_length is not None: return (f"tf.RowPartition(nrows={self._nrows}, " f"uniform_row_length={self._uniform_row_length})") else: return f"tf.RowPartition(row_splits={self._row_splits})"
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def has_precomputed_row_splits(self): """Returns true if `row_splits` has already been computed. If true, then `self.row_splits()` will return its value without calling any TensorFlow ops. """ return self._row_splits is not None
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def has_precomputed_value_rowids(self): """Returns true if `value_rowids` has already been computed. If true, then `self.value_rowids()` will return its value without calling any TensorFlow ops. """ return self._value_rowids is not None
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def has_precomputed_nvals(self): """Returns true if `nvals` has already been computed. If true, then `self.nvals()` will return its value without calling any TensorFlow ops. """ return self._nvals is not None
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def with_precomputed_row_lengths(self): """Returns a copy of `self` with `row_lengths` precomputed.""" return RowPartition( row_splits=self._row_splits, row_lengths=self.row_lengths(), value_rowids=self._value_rowids, nrows=self._nrows, nvals=self._nvals, uniform_row_length=self._uniform_row_length, internal=_row_partition_factory_key)
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def with_precomputed_nrows(self): """Returns a copy of `self` with `nrows` precomputed.""" return RowPartition( row_splits=self._row_splits, row_lengths=self._row_lengths, value_rowids=self._value_rowids, nrows=self.nrows(), nvals=self._nvals, uniform_row_length=self._uniform_row_length, internal=_row_partition_factory_key)
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def merge_precomputed_encodings(self, other, validate=True): """Returns a RowPartition that merges encodings from `self` and `other`. Requires that `self` and `other` describe the same partition. Args: other: A `RowPartition` that encodes the same partition as `self`. validate: If true, then add runtime checks to verify that `self` and `other` encode the same row partition. Returns: A `RowPartition`. """ # pylint: disable=protected-access if (self is other or # Fast path if row partitions are equal. (self._row_splits is other._row_splits and self._row_lengths is other._row_lengths and self._value_rowids is other._value_rowids and self._nrows is other._nrows and self._nvals is other._nvals and self._uniform_row_length is other._uniform_row_length)): return self # Merge the component tensors. We only need to validate one encoding. # We merge less-expensive encodings first (to avoid expensive validation). nrows, nrows_validated = _merge_tensors(self._nrows, other._nrows, "nrows", validate) nvals, _ = _merge_tensors(self._nvals, other._nvals, "nvals", validate) uniform_row_length, uniform_row_length_validated = _merge_tensors( self._uniform_row_length, other._uniform_row_length, "uniform_row_length", validate) if uniform_row_length_validated and nrows_validated: validate = False # Validation complete. row_splits, row_splits_validated = _merge_tensors(self._row_splits, other._row_splits, "row_splits", validate) if row_splits_validated: validate = False # Validation complete. row_lengths, row_lengths_validated = _merge_tensors(self._row_lengths, other._row_lengths, "row_lengths", validate) if row_lengths_validated: validate = False # Validation complete. value_rowids, value_rowids_validated = _merge_tensors( self._value_rowids, other._value_rowids, "value_rowids", validate) if value_rowids_validated and nrows_validated: validate = False # Validation complete. # TODO(edloper): If we make the row_splits encoding optional, then there # will be cases where we need to do validation at this point -- e.g. if # self has only row_splits and other has only value_rowids. But for # now, we are guaranteed to have done validation by this point. # Avoid creating new RowPartition objects if we don't need to. if (row_splits is self._row_splits and row_lengths is self._row_lengths and value_rowids is self._value_rowids and nrows is self._nrows and uniform_row_length is self._uniform_row_length): return self if (row_splits is other._row_splits and row_lengths is other._row_lengths and value_rowids is other._value_rowids and nrows is other._nrows and uniform_row_length is other._uniform_row_length): return other return RowPartition( row_splits=row_splits, row_lengths=row_lengths, value_rowids=value_rowids, nrows=nrows, uniform_row_length=uniform_row_length, nvals=nvals, internal=_row_partition_factory_key)
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def _type_spec(self): return RowPartitionSpec.from_value(self)
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def __init__(self, nrows=None, nvals=None, uniform_row_length=None, dtype=dtypes.int64): """Constructs a new RowPartitionSpec. Args: nrows: The number of rows in the RowPartition, or `None` if unspecified. nvals: The number of values partitioned by the RowPartition, or `None` if unspecified. uniform_row_length: The number of values in each row for this RowPartition, or `None` if rows are ragged or row length is unspecified. dtype: The data type used to encode the partition. One of `tf.int64` or `tf.int32`. """ # Wrap dimension sizes in 1D TensorShapes so the default implementations # of TypeSpec methods such as `is_compatile_with` will work. nrows = tensor_shape.TensorShape([nrows]) nvals = tensor_shape.TensorShape([nvals]) if not isinstance(uniform_row_length, tensor_shape.TensorShape): uniform_row_length = tensor_shape.TensorShape([uniform_row_length]) else: uniform_row_length = uniform_row_length.with_rank(1) self._nrows = nrows self._nvals = nvals self._uniform_row_length = uniform_row_length self._dtype = dtypes.as_dtype(dtype) if self._dtype not in (dtypes.int32, dtypes.int64): raise ValueError("dtype must be tf.int32 or tf.int64") # Check dimension consistency, & infer dimensions when possible. nrows = tensor_shape.dimension_value(nrows[0]) nvals = tensor_shape.dimension_value(nvals[0]) ncols = tensor_shape.dimension_value(uniform_row_length[0]) if nrows == 0: # no rows -> no values. if nvals is None: self._nvals = tensor_shape.TensorShape([0]) elif nvals != 0: raise ValueError("nvals=%s is not compatible with nrows=%s" % (nvals, nrows)) if ncols == 0: # there are no values in each row -> no values. if nvals is None: self._nvals = tensor_shape.TensorShape([0]) elif nvals != 0: raise ValueError("nvals=%s is not compatible with uniform_row_length" "=%s" % (nvals, uniform_row_length)) if ncols is not None and nvals is not None: if ncols != 0 and nvals % ncols != 0: raise ValueError("nvals=%s is not compatible with uniform_row_length" "=%s (doesn't divide evenly)" % (nvals, ncols)) if nrows is not None and nvals != ncols * nrows: raise ValueError("nvals=%s is not compatible with nrows=%s and " "uniform_row_length=%s" % (nvals, nrows, ncols)) if nrows is None and ncols != 0: self._nrows = tensor_shape.TensorShape([nvals // ncols]) if ncols is not None and nrows is not None and nvals is None: self._nvals = tensor_shape.TensorShape([ncols * nrows])
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def _serialize(self): return (self._nrows, self._nvals, self._uniform_row_length, self._dtype)
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def _deserialize(cls, serialization): # Remove TensorShape wrappers from serialization. (nrows, nvals, uniform_row_length, dtype) = serialization nrows = tensor_shape.dimension_value(nrows[0]) nvals = tensor_shape.dimension_value(nvals[0]) return cls(nrows, nvals, uniform_row_length, dtype)
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def nrows(self): return tensor_shape.dimension_value(self._nrows[0])
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def nvals(self): return tensor_shape.dimension_value(self._nvals[0])
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def uniform_row_length(self): return tensor_shape.dimension_value(self._uniform_row_length[0])
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def dtype(self): return self._dtype
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def _component_specs(self): row_splits_shape = tensor_shape.TensorShape( [tensor_shape.dimension_at_index(self._nrows, 0) + 1]) return tensor_spec.TensorSpec(row_splits_shape, self._dtype)
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def _from_components(self, tensor): return RowPartition.from_row_splits(tensor, validate=False)
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]
def from_value(cls, value): if not isinstance(value, RowPartition): raise TypeError("Expected `value` to be a `RowPartition`") return cls(value.static_nrows, value.static_nvals, value.static_uniform_row_length, value.dtype)
tensorflow/tensorflow
[ 171949, 87931, 171949, 2300, 1446859160 ]