function
stringlengths 11
56k
| repo_name
stringlengths 5
60
| features
sequence |
---|---|---|
def test_none_str(self):
assert convert_vector_catch('none') == 0 | mbedmicro/pyOCD | [
883,
424,
883,
228,
1382710205
] |
def test_none_b(self):
assert convert_vector_catch(b'none') == 0 | mbedmicro/pyOCD | [
883,
424,
883,
228,
1382710205
] |
def test_vc_str(self, vc, msk):
assert convert_vector_catch(vc) == msk | mbedmicro/pyOCD | [
883,
424,
883,
228,
1382710205
] |
def test_vc_b(self, vc, msk):
assert convert_vector_catch(vc) == msk | mbedmicro/pyOCD | [
883,
424,
883,
228,
1382710205
] |
def test_empty(self):
assert convert_session_options([]) == {} | mbedmicro/pyOCD | [
883,
424,
883,
228,
1382710205
] |
def test_unknown_option(self):
assert convert_session_options(['dumkopf']) == {} | mbedmicro/pyOCD | [
883,
424,
883,
228,
1382710205
] |
def test_bool(self):
assert convert_session_options(['auto_unlock']) == {'auto_unlock': True}
assert convert_session_options(['no-auto_unlock']) == {'auto_unlock': False}
assert convert_session_options(['auto_unlock=1']) == {'auto_unlock': True}
assert convert_session_options(['auto_unlock=true']) == {'auto_unlock': True}
assert convert_session_options(['auto_unlock=yes']) == {'auto_unlock': True}
assert convert_session_options(['auto_unlock=on']) == {'auto_unlock': True}
assert convert_session_options(['auto_unlock=0']) == {'auto_unlock': False}
assert convert_session_options(['auto_unlock=false']) == {'auto_unlock': False}
assert convert_session_options(['auto_unlock=anything-goes-here']) == {'auto_unlock': False} | mbedmicro/pyOCD | [
883,
424,
883,
228,
1382710205
] |
def test_noncasesense(self):
# Test separate paths for with and without a value.
assert convert_session_options(['AUTO_Unlock']) == {'auto_unlock': True}
assert convert_session_options(['AUTO_Unlock=0']) == {'auto_unlock': False} | mbedmicro/pyOCD | [
883,
424,
883,
228,
1382710205
] |
def test_int(self):
# Non-bool with no value is ignored (and logged).
assert convert_session_options(['frequency']) == {}
# Invalid int value is ignored and logged
assert convert_session_options(['frequency=abc']) == {}
# Ignore with no- prefix
assert convert_session_options(['no-frequency']) == {}
# Valid int
assert convert_session_options(['frequency=1000']) == {'frequency': 1000}
# Valid hex int
assert convert_session_options(['frequency=0x40']) == {'frequency': 64} | mbedmicro/pyOCD | [
883,
424,
883,
228,
1382710205
] |
def test_str(self):
# Ignore with no value
assert convert_session_options(['test_binary']) == {}
# Ignore with no- prefix
assert convert_session_options(['no-test_binary']) == {}
# Valid
assert convert_session_options(['test_binary=abc']) == {'test_binary': 'abc'} | mbedmicro/pyOCD | [
883,
424,
883,
228,
1382710205
] |
def __init__(self, args):
"""
Args:
args: parameters of the model
"""
self.args = args | Conchylicultor/MusicGenerator | [
295,
76,
295,
8,
1472483765
] |
def init_state(self):
""" Return the initial cell state
"""
return None | Conchylicultor/MusicGenerator | [
295,
76,
295,
8,
1472483765
] |
def get_module_id():
return 'rnn' | Conchylicultor/MusicGenerator | [
295,
76,
295,
8,
1472483765
] |
def build(self):
""" Initialize the weights of the model
"""
self.rnn_cell = tfutils.get_rnn_cell(self.args, "deco_cell")
self.project_key = tfutils.single_layer_perceptron([self.args.hidden_size, 1],
'project_key') | Conchylicultor/MusicGenerator | [
295,
76,
295,
8,
1472483765
] |
def get_cell(self, prev_keyboard, prev_state_enco):
""" a RNN decoder
See parent class for arguments details
"""
axis = 1 # The first dimension is the batch, we split the keys
assert prev_keyboard.get_shape()[axis].value == music.NB_NOTES
inputs = tf.split(axis, music.NB_NOTES, prev_keyboard)
outputs, final_state = tf.nn.seq2seq.rnn_decoder(
decoder_inputs=inputs,
initial_state=prev_state_enco,
cell=self.rnn_cell
# TODO: Which loop function (should use prediction) ? : Should take the previous generated input/ground truth (as the global model loop_fct). Need to add a new bool placeholder
)
# Is it better to do the projection before or after the packing ?
next_keys = []
for output in outputs:
next_keys.append(self.project_key(output))
next_keyboard = tf.concat(axis, next_keys)
return next_keyboard, final_state | Conchylicultor/MusicGenerator | [
295,
76,
295,
8,
1472483765
] |
def get_module_id():
return 'perceptron' | Conchylicultor/MusicGenerator | [
295,
76,
295,
8,
1472483765
] |
def build(self):
""" Initialize the weights of the model
"""
# For projecting on the keyboard space
self.project_hidden = tfutils.single_layer_perceptron([music.NB_NOTES, self.args.hidden_size],
'project_hidden')
# For projecting on the keyboard space
self.project_keyboard = tfutils.single_layer_perceptron([self.args.hidden_size, music.NB_NOTES],
'project_keyboard') # Should we do the activation sigmoid here ? | Conchylicultor/MusicGenerator | [
295,
76,
295,
8,
1472483765
] |
def get_module_id():
return 'lstm' | Conchylicultor/MusicGenerator | [
295,
76,
295,
8,
1472483765
] |
def build(self):
""" Initialize the weights of the model
"""
# TODO: Control over the the Cell using module arguments instead of global arguments (hidden_size and num_layer) !!
# RNN network
rnn_cell = tf.nn.rnn_cell.BasicLSTMCell(self.args.hidden_size, state_is_tuple=True) # Or GRUCell, LSTMCell(args.hidden_size)
if not self.args.test: # TODO: Should use a placeholder instead
rnn_cell = tf.nn.rnn_cell.DropoutWrapper(rnn_cell, input_keep_prob=1.0, output_keep_prob=0.9) # TODO: Custom values
rnn_cell = tf.nn.rnn_cell.MultiRNNCell([rnn_cell] * self.args.num_layers, state_is_tuple=True)
self.rnn_cell = rnn_cell
# For projecting on the keyboard space
self.project_output = tfutils.single_layer_perceptron([self.args.hidden_size, 12 + 1], # TODO: HACK: Input/output space hardcoded !!!
'project_output') # Should we do the activation sigmoid here ? | Conchylicultor/MusicGenerator | [
295,
76,
295,
8,
1472483765
] |
def __init__(self, *args, **kwargs):
pass | cuemacro/chartpy | [
510,
98,
510,
7,
1470261601
] |
def auto_set_key(self):
self.twitter = Twython(cc.TWITTER_APP_KEY, cc.TWITTER_APP_SECRET,
cc.TWITTER_OAUTH_TOKEN, cc.TWITTER_OAUTH_TOKEN_SECRET) | cuemacro/chartpy | [
510,
98,
510,
7,
1470261601
] |
def dict(self):
"""
Return a python dictionary which could be jsonified.
"""
return {key: value.dict for key, value in self.items()} | ef-ctx/tornwamp | [
7,
3,
7,
1,
1415799047
] |
def __init__(self, websocket, **details):
"""
Create a connection object provided:
- websocket (tornado.websocket.WebSocketHandler instance
- details: dictionary of metadata associated to the connection
"""
self.id = create_global_id()
# set connection attributes, if any is given
for name, value in details.items():
setattr(self, name, value)
# meta-data
# TODO: update this
self.last_update = datetime.now().isoformat()
# communication-related
self._websocket = websocket
self.topics = {
"subscriber": {},
"publisher": {}
}
# when connection should be closed but something is left
self.zombie = False
self.zombification_datetime = None | ef-ctx/tornwamp | [
7,
3,
7,
1,
1415799047
] |
def peer(self):
try:
ip, port = self._websocket.ws_connection.stream.socket.getpeername()
except (AttributeError, OSError, socket.error) as error:
if not hasattr(error, 'errno') or error.errno in (errno.EBADF, errno.ENOTCONN):
# Expected errnos:
# - EBADF: bad file descriptor (connection was closed)
# - ENOTCONN: not connected (connection was never open)
ip = self._websocket.request.remote_ip
name = u"{0}:HACK|{1}".format(ip, self.id)
else:
# Rethrow exception in case of unknown errno
raise
else:
forwarded_ip = self._websocket.request.headers.get("X-Forwarded-For")
if forwarded_ip:
ip = forwarded_ip
name = u"{0}:{1}|{2}".format(ip, port, self.id)
return name | ef-ctx/tornwamp | [
7,
3,
7,
1,
1415799047
] |
def add_subscription_channel(self, subscription_id, topic_name):
"""
Add topic as a subscriber.
"""
self.topics["subscriber"][topic_name] = subscription_id | ef-ctx/tornwamp | [
7,
3,
7,
1,
1415799047
] |
def add_publishing_channel(self, subscription_id, topic_name):
"""
Add topic as a publisher.
"""
self.topics["publisher"][topic_name] = subscription_id | ef-ctx/tornwamp | [
7,
3,
7,
1,
1415799047
] |
def get_publisher_topics(self):
"""
Return list of topics to which this connection has subscribed.
"""
return list(self.topics["publisher"]) | ef-ctx/tornwamp | [
7,
3,
7,
1,
1415799047
] |
def topics_by_subscription_id(self):
return {subscription_id: topic for topic, subscription_id in self.get_topics().items()} | ef-ctx/tornwamp | [
7,
3,
7,
1,
1415799047
] |
def dict(self):
"""
Return dict representation of the current Connection, keeping only data
that could be exported to JSON (convention: attributes which do not
start with _).
"""
return {k: v for k, v in self.__dict__.items() if not k.startswith('_')} | ef-ctx/tornwamp | [
7,
3,
7,
1,
1415799047
] |
def __init__(self):
pass | lesommer/oocgcm | [
36,
12,
36,
27,
1458817850
] |
def map_apply(func,scalararray):
"""Return a xarray dataarray with value func(scalararray.data)
Parameters
----------
func : function
Any function that works on numpy arrays such that input and output
arrays have the same shape.
scalararray : xarray.DataArray
Returns
-------
out : xarray.DataArray
Methods
-------
uses dask map_block without ghost cells (map_overlap)
"""
data = scalararray.data
coords = scalararray.coords
dims = scalararray.dims
if is_daskarray(data):
_out = data.map_block(func)
else:
_out = func(data)
out = xr.DataArray(_out,coords,dims)
return out | lesommer/oocgcm | [
36,
12,
36,
27,
1458817850
] |
def is_numpy(array):
"""Return True if array is a numpy array
Parameters
----------
array : array-like
array is either a numpy array, a masked array, a dask array or a xarray.
Returns
-------
test : bool
"""
test = bool( isinstance(array,np.ndarray)
+ isinstance(array,np.ma.masked_array) )
return test | lesommer/oocgcm | [
36,
12,
36,
27,
1458817850
] |
def is_daskarray(array):
"""Return True if array is a dask array
Parameters
----------
array : array-like
Returns
-------
test : bool
"""
return isinstance(array,da.core.Array) | lesommer/oocgcm | [
36,
12,
36,
27,
1458817850
] |
def _append_dataarray_extra_attrs(xarr,**extra_kwargs):
"""Update the dictionnary of attributes a xarray dataarray (xarr.attrs).
Parameters
----------
xarr : xarray.DataArray
The function will add extra arguments to xarr.attrs
**extra_kwargs
not used
Returns
-------
da : xarray.DataArray
"""
if not(is_xarray(xarr)):
raise TypeError('except a xarray.DataArray')
for kwargs in extra_kwargs:
xarr.attrs[kwargs] = extra_kwargs[kwargs]
return xarr | lesommer/oocgcm | [
36,
12,
36,
27,
1458817850
] |
def _chunks_are_compatible(chunks1=None,chunks2=None,ndims=None):
"""Return True when two chunks are aligned over their common dimensions.
Parameters
----------
chunks1 : list-like of list-like object
chunks associated to a xarray data array
chunks2 : list-like of list-like object
chunks associated to a xarray data array
ndims : int
number of dimensions over which chunks should ne compared.
Returns
-------
test : bool
boolean value of the test.
"""
# TODO : not clear whether to compare a priori description of chunks
# (dictionnaries) or a posteriori values (tuple of tuples).
test = True
if (chunks1 is None) or (chunks2 is None):
if (chunks1 is None) and (chunks2 is None):
return True
else:
return False
for idim in range(ndims):
test *= chunks1[-idim-1] == chunks2[-idim-1]
return test | lesommer/oocgcm | [
36,
12,
36,
27,
1458817850
] |
def _assert_and_set_grid_location_attribute(xarr,grid_location=None):
"""Assert whether xarr holds an extra attribute 'grid_location' that
equals grid_location. If xarr does not have such extra-attribute, create
one with value grid_location.
Parameters
----------
xarr : xarray.DataArray
xarray dataarray that should be associated with a grid location
grid_location : str
string describing the grid location : eg 'u','v','t','f'...
"""
if xarr.attrs.has_key('grid_location'):
assert ( xarr.attrs['grid_location'] == grid_location )
else:
xarr.attrs['grid_location'] = grid_location | lesommer/oocgcm | [
36,
12,
36,
27,
1458817850
] |
def __init__(self):
Exception.__init__(self,"incompatible chunk size") | lesommer/oocgcm | [
36,
12,
36,
27,
1458817850
] |
def __init__(self, ctx: Context, client: BaseHTTPClientConnection):
self.ctx = ctx
self._client = client
self._ws = WSConnection(ConnectionType.SERVER) | asphalt-framework/asphalt-web | [
7,
1,
7,
1,
1430740193
] |
def begin_request(self, request: HTTPRequest):
trailing_data = self._client.upgrade()
self._ws.receive_bytes(trailing_data)
self._process_ws_events() | asphalt-framework/asphalt-web | [
7,
1,
7,
1,
1430740193
] |
def send_message(self, payload: Union[str, bytes]) -> None:
"""
Send a message to the client.
:param payload: either a unicode string or a bytestring
"""
self._ws.send_data(payload)
bytes_to_send = self._ws.bytes_to_send()
self._client.write(bytes_to_send) | asphalt-framework/asphalt-web | [
7,
1,
7,
1,
1430740193
] |
def on_connect(self) -> None:
"""Called when the websocket handshake has been done.""" | asphalt-framework/asphalt-web | [
7,
1,
7,
1,
1430740193
] |
def PlotGene(label, X, Y, s=3, alpha=1.0, ax=None):
fig = None
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=(5, 5))
for li in np.unique(label):
idxN = (label == li).flatten()
ax.scatter(X[idxN], Y[idxN], s=s, alpha=alpha, label=int(np.round(li)))
return fig, ax | ManchesterBioinference/BranchedGP | [
25,
7,
25,
17,
1474552399
] |
def FitGene(g, ns=20): # for quick results subsample data
t = time.time()
Bsearch = list(np.linspace(0.05, 0.95, 5)) + [
1.1
] # set of candidate branching points
GPy = (Y[g].iloc[::ns].values - Y[g].iloc[::ns].values.mean())[
:, None
] # remove mean from gene expression data
GPt = monocle["StretchedPseudotime"].values[::ns]
globalBranching = monocle["State"].values[::ns].astype(int)
d = BranchedGP.FitBranchingModel.FitModel(Bsearch, GPt, GPy, globalBranching)
print(g, "BGP inference completed in %.1f seconds." % (time.time() - t))
# plot BGP
fig, ax = BranchedGP.VBHelperFunctions.PlotBGPFit(
GPy, GPt, Bsearch, d, figsize=(10, 10)
)
# overplot data
f, a = PlotGene(
monocle["State"].values,
monocle["StretchedPseudotime"].values,
Y[g].values - Y[g].iloc[::ns].values.mean(),
ax=ax[0],
s=10,
alpha=0.5,
)
# Calculate Bayes factor of branching vs non-branching
bf = BranchedGP.VBHelperFunctions.CalculateBranchingEvidence(d)["logBayesFactor"]
fig.suptitle("%s log Bayes factor of branching %.1f" % (g, bf))
return d, fig, ax | ManchesterBioinference/BranchedGP | [
25,
7,
25,
17,
1474552399
] |
def _div_maybe_zero(total_loss, num_present):
"""Normalizes the total loss with the number of present pixels."""
return tf.cast(num_present > 0, tf.float32) * tf.math.divide(
total_loss, tf.maximum(1e-5, num_present)) | googleinterns/wss | [
142,
21,
142,
9,
1597440534
] |
def compute_cam_v2(
end_points,
logits,
cls_label,
num_class=21,
use_attention=True,
attention_dim=128,
strides=(15, 16),
is_training=True,
valid_mask=None,
net='xception_65', | googleinterns/wss | [
142,
21,
142,
9,
1597440534
] |
def compute_self_att_v2(
end_points,
logits,
num_class=21,
attention_dim=128,
strides=(15, 16),
is_training=True,
linformer=True,
valid_mask=None,
factor=8,
downsample_type='nearest',
net='xception_65'):
"""Compute self-attention for segmentation head.
Args:
end_points: Network end_points (dict).
logits: The input seed for refinement. Used as ``value'' in self-attention.
Can be either logits, probability, or score map.
num_class: Number of classes including background
attention_dim: Embedding space dimension for key and query used in the
self-attention module
strides: Use feature maps from which stride to compute pixel similarity
is_training: Indicate training or inference mode
linformer: Adopt the idea from https://arxiv.org/abs/2006.04768 to reduce
memory usage in self-attention computation. But instead of learning the
downsample function, we use deterministic image downsample functions
valid_mask: To identity valid region of the input. It is used to avoid
attending to padding regions
factor: Downsample factor used in linformer mode
downsample_type: Use which downsample method to reduce the memory usage. Can
be either 'nearest' or 'bilinear'. Default: 'nearest'
net: Specify which network is used
Returns:
A list of computed Grad-CAMs or refined ones.
"""
# Sanity check: Make sure strides are sorted
strides = sorted(list(strides))[::-1]
conv_layer_list = []
for stride in strides:
conv_layer = end_points[net_to_stride_to_endpoints_name[net][stride]]
conv_layer_list.append(conv_layer)
# Resize to seed resolution first
h, w = preprocess_utils.resolve_shape(logits, 4)[1:3]
conv_layer_list = [
tf.compat.v1.image.resize_bilinear(
conv, (h, w), align_corners=True)
for conv in conv_layer_list
]
conv_layer_merged = tf.concat(conv_layer_list, axis=-1)
conv_layer_merged = tf.stop_gradient(conv_layer_merged)
score = tf.stop_gradient(logits)
# This tells us what input it is (decoder logits or Grad-CAM)
value_dim = tf.shape(score)[-1]
# Only valid when we use Linformer style to reduce size for key and value
if downsample_type == 'bilinear':
resize_fn = tf.compat.v1.image.resize_bilinear
else:
resize_fn = tf.compat.v1.image.resize_nearest_neighbor
scope = 'hyper_column'
with tf.variable_scope(scope):
with slim.arg_scope([slim.conv2d],
activation_fn=None,
normalizer_fn=None,
biases_initializer=None,
reuse=tf.AUTO_REUSE):
k = slim.conv2d(
conv_layer_merged, attention_dim, [1, 1], scope='key')
q = slim.conv2d(
conv_layer_merged, attention_dim, [1, 1], scope='query')
q = tf.reshape(q, [-1, h * w, attention_dim])
if valid_mask is not None:
valid_mask_q = tf.reshape(valid_mask, [-1, h * w, 1])
# Adopt idea from Linformer (https://arxiv.org/abs/2006.04768) to reduce the
# memory usage. Instead of learning a downsample function, we use determinstic
# image downsample methods (nearest neighbor or bilinear) to reduce the size
# of key and value.
if linformer:
k = resize_fn(
k, ((h // factor + 1), (w // factor + 1)), align_corners=True)
k = tf.reshape(k,
[-1, (h // factor + 1) * (w // factor + 1), attention_dim])
if valid_mask is not None:
valid_mask_k = tf.compat.v1.image.resize_nearest_neighbor(
valid_mask, ((h // factor + 1), (w // factor + 1)))
valid_mask_k = tf.reshape(
tf.cast(valid_mask_k, tf.float32),
[-1, (h // factor + 1) * (w // factor + 1), 1])
else:
k = tf.reshape(k, [-1, h * w, attention_dim])
valid_mask_k = tf.reshape(valid_mask, [-1, h * w, 1])
matmul_qk = tf.matmul(q, k, transpose_b=True)
scaled_att_logits = matmul_qk / math.sqrt(attention_dim)
# Masking
if valid_mask is not None:
final_mask = tf.matmul(valid_mask_q, valid_mask_k, transpose_b=True)
scaled_att_logits += (1 - final_mask) * -1e9
att_weights = tf.nn.softmax(scaled_att_logits, axis=-1)
if linformer:
value = resize_fn(
score, ((h // factor + 1), (w // factor + 1)), align_corners=True)
value = tf.reshape(value,
[-1, (h // factor + 1) * (w // factor + 1), value_dim])
else:
value = tf.reshape(score, [-1, h * w, value_dim])
att_score = tf.matmul(att_weights, value)
att_score = tf.reshape(att_score, tf.shape(score))
## Add skip-connection and 1x1 conv to convert score back to logit
att_score += score
if value_dim != num_class:
# Set an initial score for the background class. Since the score range of a
# class is [0, 2] after skip-connection, we use 2 minus the max class
# probability to set the initial background score for each pixel.
bg = 2 - tf.reduce_max(att_score, axis=3, keepdims=True)
att_score = tf.concat([bg, att_score], axis=-1)
out_att_logits = slim.conv2d(
att_score,
num_class, [1, 1],
scope='pixel_normalization',
activation_fn=None,
normalizer_fn=slim.batch_norm,
normalizer_params={'is_training': is_training},
reuse=tf.AUTO_REUSE)
return out_att_logits | googleinterns/wss | [
142,
21,
142,
9,
1597440534
] |
def prepend_ctes(self, prepended_ctes: List[InjectedCTE]):
self.extra_ctes_injected = True
self.extra_ctes = prepended_ctes
if self.compiled_sql is None:
raise RuntimeException(
'Cannot prepend ctes to an unparsed node', self
)
self.injected_sql = _inject_ctes_into_sql(
self.compiled_sql,
prepended_ctes,
)
self.validate(self.to_dict()) | fishtown-analytics/dbt | [
6645,
1178,
6645,
457,
1457577480
] |
def empty(self):
""" Seeds are never empty"""
return False | fishtown-analytics/dbt | [
6645,
1178,
6645,
457,
1457577480
] |
def _inject_ctes_into_sql(sql: str, ctes: List[InjectedCTE]) -> str:
"""
`ctes` is a list of InjectedCTEs like:
[
InjectedCTE(
id="cte_id_1",
sql="__dbt__CTE__ephemeral as (select * from table)",
),
InjectedCTE(
id="cte_id_2",
sql="__dbt__CTE__events as (select id, type from events)",
),
]
Given `sql` like:
"with internal_cte as (select * from sessions)
select * from internal_cte"
This will spit out:
"with __dbt__CTE__ephemeral as (select * from table),
__dbt__CTE__events as (select id, type from events),
with internal_cte as (select * from sessions)
select * from internal_cte"
(Whitespace enhanced for readability.)
"""
if len(ctes) == 0:
return sql
parsed_stmts = sqlparse.parse(sql)
parsed = parsed_stmts[0]
with_stmt = None
for token in parsed.tokens:
if token.is_keyword and token.normalized == 'WITH':
with_stmt = token
break
if with_stmt is None:
# no with stmt, add one, and inject CTEs right at the beginning
first_token = parsed.token_first()
with_stmt = sqlparse.sql.Token(sqlparse.tokens.Keyword, 'with')
parsed.insert_before(first_token, with_stmt)
else:
# stmt exists, add a comma (which will come after injected CTEs)
trailing_comma = sqlparse.sql.Token(sqlparse.tokens.Punctuation, ',')
parsed.insert_after(with_stmt, trailing_comma)
token = sqlparse.sql.Token(
sqlparse.tokens.Keyword,
", ".join(c.sql for c in ctes)
)
parsed.insert_after(with_stmt, token)
return str(parsed) | fishtown-analytics/dbt | [
6645,
1178,
6645,
457,
1457577480
] |
def compiled_type_for(parsed: ParsedNode) -> CompiledType:
if type(parsed) in COMPILED_TYPES:
return COMPILED_TYPES[type(parsed)]
else:
return type(parsed) | fishtown-analytics/dbt | [
6645,
1178,
6645,
457,
1457577480
] |
def smart_concat(v1, v2):
if isinstance(v1, tf.Tensor) or isinstance(v2, tf.Tensor):
return tf.concat([v1, v2], 0)
else:
return v1 + v2 | deepmind/sonnet | [
9523,
1351,
9523,
33,
1491219275
] |
def __init__(self,
num_spatial_dims: int,
output_channels: int,
kernel_shape: Union[int, Sequence[int]],
output_shape: Optional[types.ShapeLike] = None,
stride: Union[int, Sequence[int]] = 1,
rate: Union[int, Sequence[int]] = 1,
padding: str = "SAME",
with_bias: bool = True,
w_init: Optional[initializers.Initializer] = None,
b_init: Optional[initializers.Initializer] = None,
data_format: Optional[str] = None,
name: Optional[str] = None):
"""Constructs a `ConvNDTranspose` module.
Args:
num_spatial_dims: Number of spatial dimensions of the input.
output_channels: Number of output channels.
kernel_shape: Sequence of integers (of length num_spatial_dims), or an
integer representing kernel shape. `kernel_shape` will be expanded to
define a kernel size in all dimensions.
output_shape: Output shape of the spatial dimensions of a transpose
convolution. Can be either an iterable of integers or a
`TensorShape` of length `num_spatial_dims`. If a `None` value is given,
a default shape is automatically calculated.
stride: Sequence of integers (of length num_spatial_dims), or an integer.
`stride` will be expanded to define stride in all dimensions.
rate: Sequence of integers (of length num_spatial_dims), or integer that
is used to define dilation rate in all dimensions. 1 corresponds to
standard ND convolution, `rate > 1` corresponds to dilated convolution.
padding: Padding algorithm, either "SAME" or "VALID".
with_bias: Boolean, whether to include bias parameters. Default `True`.
w_init: Optional initializer for the weights. By default the weights are
initialized truncated random normal values with a standard deviation of
`1 / sqrt(input_feature_size)`, which is commonly used when the
inputs are zero centered (see https://arxiv.org/abs/1502.03167v3).
b_init: Optional initializer for the bias. By default the bias is
initialized to zero.
data_format: The data format of the input.
name: Name of the module.
"""
super().__init__(name=name)
if not 1 <= num_spatial_dims <= 3:
raise ValueError(
"We only support transpose convolution operations for "
"num_spatial_dims=1, 2 or 3, received num_spatial_dims={}.".format(
num_spatial_dims))
self._num_spatial_dims = num_spatial_dims
self._output_channels = output_channels
self._kernel_shape = kernel_shape
self._output_shape = output_shape
self._stride = stride
self._rate = rate
if padding == "SAME" or padding == "VALID":
self._padding = padding
else:
raise TypeError("ConvNDTranspose only takes string padding, please "
"provide either `SAME` or `VALID`.")
self._data_format = data_format
self._channel_index = utils.get_channel_index(data_format)
self._with_bias = with_bias
self._w_init = w_init
if with_bias:
self._b_init = b_init if b_init is not None else initializers.Zeros()
elif b_init is not None:
raise ValueError("When not using a bias the b_init must be None.") | deepmind/sonnet | [
9523,
1351,
9523,
33,
1491219275
] |
def _initialize(self, inputs):
utils.assert_rank(inputs, self._num_spatial_dims + 2)
self.input_channels = inputs.shape[self._channel_index]
if self.input_channels is None:
raise ValueError("The number of input channels must be known")
self._dtype = inputs.dtype
if self._output_shape is not None:
if len(self._output_shape) != self._num_spatial_dims:
raise ValueError(
"The output_shape must be of length {} but instead was {}.".format(
self._num_spatial_dims, len(self._output_shape)))
if self._channel_index == 1:
self._output_shape = [self._output_channels] + list(self._output_shape)
else:
self._output_shape = list(self._output_shape) + [self._output_channels]
self.w = self._make_w()
if self._with_bias:
self.b = tf.Variable(
self._b_init((self._output_channels,), self._dtype), name="b") | deepmind/sonnet | [
9523,
1351,
9523,
33,
1491219275
] |
def _get_output_shape(self, inputs):
input_shape = inputs.shape if inputs.shape.is_fully_defined() else tf.shape(
inputs)
if self._channel_index == 1:
input_size = input_shape[2:]
else:
input_size = input_shape[1:-1]
stride = utils.replicate(self._stride, self._num_spatial_dims, "stride")
output_shape = smart_lambda(lambda x, y: x * y, input_size, stride)
if self._padding == "VALID":
kernel_shape = utils.replicate(self._kernel_shape, self._num_spatial_dims,
"kernel_shape")
rate = utils.replicate(self._rate, self._num_spatial_dims, "rate")
effective_kernel_shape = [
(shape - 1) * rate + 1 for (shape, rate) in zip(kernel_shape, rate)
]
output_shape = smart_lambda(lambda x, y: x + y - 1, output_shape,
effective_kernel_shape)
return output_shape | deepmind/sonnet | [
9523,
1351,
9523,
33,
1491219275
] |
def __init__(self,
output_channels: int,
kernel_shape: Union[int, Sequence[int]],
output_shape: Optional[types.ShapeLike] = None,
stride: Union[int, Sequence[int]] = 1,
rate: Union[int, Sequence[int]] = 1,
padding: str = "SAME",
with_bias: bool = True,
w_init: Optional[initializers.Initializer] = None,
b_init: Optional[initializers.Initializer] = None,
data_format: str = "NWC",
name: Optional[str] = None):
"""Constructs a `Conv1DTranspose` module.
Args:
output_channels: Number of output channels.
kernel_shape: Sequence of integers (of length 1), or an integer
representing kernel shape. `kernel_shape` will be expanded to define a
kernel size in all dimensions.
output_shape: Output shape of the spatial dimensions of a transpose
convolution. Can be either an integer or an iterable of integers or
`Dimension`s, or a `TensorShape` (of length 1). If a `None` value is
given, a default shape is automatically calculated.
stride: Sequence of integers (of length 1), or an integer. `stride` will
be expanded to define stride in all dimensions.
rate: Sequence of integers (of length 1), or integer that is used to
define dilation rate in all dimensions. 1 corresponds to standard 1D
convolution, `rate > 1` corresponds to dilated convolution.
padding: Padding algorithm, either "SAME" or "VALID".
with_bias: Boolean, whether to include bias parameters. Default `True`.
w_init: Optional initializer for the weights. By default the weights are
initialized truncated random normal values with a standard deviation of
`1 / sqrt(input_feature_size)`, which is commonly used when the
inputs are zero centered (see https://arxiv.org/abs/1502.03167v3).
b_init: Optional initializer for the bias. By default the bias is
initialized to zero.
data_format: The data format of the input.
name: Name of the module.
"""
super().__init__(
num_spatial_dims=1,
output_channels=output_channels,
kernel_shape=kernel_shape,
output_shape=output_shape,
stride=stride,
rate=rate,
padding=padding,
with_bias=with_bias,
w_init=w_init,
b_init=b_init,
data_format=data_format,
name=name) | deepmind/sonnet | [
9523,
1351,
9523,
33,
1491219275
] |
def __init__(self,
output_channels: int,
kernel_shape: Union[int, Sequence[int]],
output_shape: Optional[types.ShapeLike] = None,
stride: Union[int, Sequence[int]] = 1,
rate: Union[int, Sequence[int]] = 1,
padding: str = "SAME",
with_bias: bool = True,
w_init: Optional[initializers.Initializer] = None,
b_init: Optional[initializers.Initializer] = None,
data_format: str = "NHWC",
name: Optional[str] = None):
"""Constructs a `Conv2DTranspose` module.
Args:
output_channels: An integer, The number of output channels.
kernel_shape: Sequence of integers (of length 2), or an integer
representing kernel shape. `kernel_shape` will be expanded to define a
kernel size in all dimensions.
output_shape: Output shape of the spatial dimensions of a transpose
convolution. Can be either an integer or an iterable of integers or
`Dimension`s, or a `TensorShape` (of length 2). If a `None` value is
given, a default shape is automatically calculated.
stride: Sequence of integers (of length 2), or an integer. `stride` will
be expanded to define stride in all dimensions.
rate: Sequence of integers (of length 2), or integer that is used to
define dilation rate in all dimensions. 1 corresponds to standard 2D
convolution, `rate > 1` corresponds to dilated convolution.
padding: Padding algorithm, either "SAME" or "VALID".
with_bias: Boolean, whether to include bias parameters. Default `True`.
w_init: Optional initializer for the weights. By default the weights are
initialized truncated random normal values with a standard deviation of
`1 / sqrt(input_feature_size)`, which is commonly used when the
inputs are zero centered (see https://arxiv.org/abs/1502.03167v3).
b_init: Optional initializer for the bias. By default the bias is
initialized to zero.
data_format: The data format of the input.
name: Name of the module.
"""
super().__init__(
num_spatial_dims=2,
output_channels=output_channels,
kernel_shape=kernel_shape,
output_shape=output_shape,
stride=stride,
rate=rate,
padding=padding,
with_bias=with_bias,
w_init=w_init,
b_init=b_init,
data_format=data_format,
name=name) | deepmind/sonnet | [
9523,
1351,
9523,
33,
1491219275
] |
def setup_loader_modules(self):
return {x509: {"__opts__": {"fips_mode": False}}} | saltstack/salt | [
13089,
5388,
13089,
3074,
1298233016
] |
def setup_loader_modules(self):
self.file_managed_mock = MagicMock()
self.file_managed_mock.return_value = {"changes": True}
return {
x509: {
"__opts__": {"fips_mode": True},
"__salt__": {
"x509.get_pem_entry": x509_mod.get_pem_entry,
"x509.get_private_key_size": x509_mod.get_private_key_size,
},
"__states__": {"file.managed": self.file_managed_mock},
}
} | saltstack/salt | [
13089,
5388,
13089,
3074,
1298233016
] |
def test_private_key_fips_mode(self):
"""
:return:
"""
test_key = dedent(
"""
-----BEGIN PRIVATE KEY-----
MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDx7UUt0cPi5G51
FmRBhAZtZb5x6P0PFn7GwnLmSvLNhCsOcD/vq/yBUU62pknzmOjM5pgWTACZj66O
GOFmWBg06v8+sqUbaF9PZ/CxQD5MogmQhYNgfyuopHWWgLXMub2hlP+15qGohkzg
Tr/mXp2ohVAb6ihjqb7XV9MiZaLNVX+XWauM8SlhqXMiJyDUopEGbg2pLsHhIMcX
1twLlyDja+uDbCMZ4jDNB+wsWxTaPRH8KizfEabB1Cl+fdyD10pSAYcodOAnlkW+
G/DX2hwb/ZAM9B1SXTfZ3gzaIIbqXBEHcZQNXxHL7szBTVcOmfx/RPfOeRncytb9
Mit7RIBxAgMBAAECggEAD4Pi+uRIBsYVm2a7OURpURzEUPPbPtt3d/HCgqht1+ZR
CJUEVK+X+wcm4Cnb9kZpL7LeMBfhtfdz/2LzGagurT4g7nlwg0h3TFVjJ0ryc+G0
cVNOsKKXPzKE5AkPH7kNw04V9Cl9Vpx+U6hZQEHzJHqgP5oNyw540cCtJriT700b
fG1q3PYKWSkDwTiUnJTnVLybFIKQC6urxTeT2UWeiBadfDY7DjI4USfrQsqCfGMO
uWPpOOJk5RIvw5r0Of2xvxV76xCgzVTkgtWjBRMTEkfeYx3019xKlQtAKoGbZd1T
tF8DH0cDlnri4nG7YT8yYvx/LWVDg12E6IZij1X60QKBgQD7062JuQGEmTd99a7o
5TcgWYqDrmE9AEgJZjN+gnEPcsxc50HJaTQgrkV0oKrS8CMbStIymbzMKWifOj7o
gvQBVecydq1AaXePt3gRe8vBFiP4cHjFcSegs9FDvdfJR36iHOBIgEp4DWvV1vgs
+z82LT6Qy5kxUQvnlQ4dEaGdrQKBgQD175f0H4enRJ3BoWTrqt2mTAwtJcPsKmGD
9YfFB3H4+O2rEKP4FpBO5PFXZ0dqm54hDtxqyC/lSXorFCUjVUBero1ECGt6Gnn2
TSnhgk0VMxvhnc0GReIt4K9WrXGd0CMUDwIhFHj8kbb1X1yqt2hwyw7b10xFVStl
sGv8CQB+VQKBgAF9q1VZZwzl61Ivli2CzeS/IvbMnX7C9ao4lK13EDxLLbKPG/CZ
UtmurnKWUOyWx15t/viVuGxtAlWO/rhZriAj5g6CbVwoQ7DyIR/ZX8dw3h2mbNCe
buGgruh7wz9J0RIcoadMOySiz7SgZS++/QzRD8HDstB77loco8zAQfixAoGBALDO
FbTocfKbjrpkmBQg24YxR9OxQb/n3AEtI/VO2+38r4h6xxaUyhwd1S9bzWjkBXOI
poeR8XTqNQ0BR422PTeUT3SohPPcUu/yG3jG3zmta47wjjPDS85lqEgtGvA0cPN7
srErcatJ6nlOnGUSw9/K65y6lFeH2lIZ2hfwNM2dAoGBAMVCc7i3AIhLp6UrGzjP
0ioCHCakpxfl8s1VQp55lhHlP6Y4RfqT72Zq7ScteTrisIAQyI9ot0gsuct2miQM
nyDdyKGki/MPduGTzzWlBA7GZEHnxbAILH8kWJ7eE/Nh7zdF1CRts8utEO9L9S+0
lVz1j/xGOseQk4cVos681Wpw
-----END PRIVATE KEY-----"""
)
test_cert = dedent(
"""
-----BEGIN CERTIFICATE-----
MIIDazCCAlOgAwIBAgIUAfATs1aodKw11Varh55msmU0LoowDQYJKoZIhvcNAQEL
BQAwRTELMAkGA1UEBhMCQVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoM
GEludGVybmV0IFdpZGdpdHMgUHR5IEx0ZDAeFw0yMTAzMjMwMTM4MzdaFw0yMjAz
MjMwMTM4MzdaMEUxCzAJBgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEw
HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQwggEiMA0GCSqGSIb3DQEB
AQUAA4IBDwAwggEKAoIBAQDx7UUt0cPi5G51FmRBhAZtZb5x6P0PFn7GwnLmSvLN
hCsOcD/vq/yBUU62pknzmOjM5pgWTACZj66OGOFmWBg06v8+sqUbaF9PZ/CxQD5M
ogmQhYNgfyuopHWWgLXMub2hlP+15qGohkzgTr/mXp2ohVAb6ihjqb7XV9MiZaLN
VX+XWauM8SlhqXMiJyDUopEGbg2pLsHhIMcX1twLlyDja+uDbCMZ4jDNB+wsWxTa
PRH8KizfEabB1Cl+fdyD10pSAYcodOAnlkW+G/DX2hwb/ZAM9B1SXTfZ3gzaIIbq
XBEHcZQNXxHL7szBTVcOmfx/RPfOeRncytb9Mit7RIBxAgMBAAGjUzBRMB0GA1Ud
DgQWBBT0qx4KLhozvuWAI9peT/utYV9FITAfBgNVHSMEGDAWgBT0qx4KLhozvuWA
I9peT/utYV9FITAPBgNVHRMBAf8EBTADAQH/MA0GCSqGSIb3DQEBCwUAA4IBAQDx
tWvUyGfEwJJg1ViBa10nVhg5sEc6KfqcPzc2GvatIGJlAbc3b1AYu6677X04SQNA
dYRA2jcZcKudy6eolPJow6SDpkt66IqciZYdbQE5h9elnwpZxmXlJTQTB9cEwyIk
2em5DKpdIwa9rRDlbAjAVJb3015MtpKRu2gsQ7gl5X2U3K+DFsWtBPf+0xiJqUiq
rd7tiHF/zylubSyH/LVONJZ6+/oT/qzJfxfpvygtQWcu4b2zzME/FPenMA8W6Rau
ZYycQfpMVc7KwqF5/wfjnkmfxoFKnkD7WQ3qFCJ/xULk/Yn1hrvNeIr+khX3qKQi
Y3BMA5m+J+PZrNy7EQSa
-----END CERTIFICATE-----
"""
)
fp, name = tempfile.mkstemp()
with salt.utils.files.fopen(name, "w") as fd:
fd.write(test_key)
fd.write(test_cert)
ret = x509.private_key_managed(name)
self.file_managed_mock.assert_called_once()
assert (
self.file_managed_mock.call_args.kwargs["contents"].strip()
== test_key.strip()
) | saltstack/salt | [
13089,
5388,
13089,
3074,
1298233016
] |
def execute(self, src_proto_path, import_proto_path,
organization_name):
self._organization_name = organization_name
# Treat google.protobuf, google.iam as a common proto package, even
# though they are not included in the common-protos we generate.
#
# TODO (geigerj): remove 'google.iam' when it is included in the common
# protos package.
common_protos = [
'google.protobuf',
'google.iam',
'google.api',
'google.longrunning',
'google.rpc',
'google.type',
'google.logging.type',
]
tmpdir = os.path.join(
tempfile.gettempdir(), 'artman-python', str(int(time.time())))
new_proto_dir = os.path.join(tmpdir, 'proto')
new_src_path = set()
new_import_path = [new_proto_dir]
self._copy_and_transform_directories(
src_proto_path, new_proto_dir, common_protos, paths=new_src_path)
self._copy_and_transform_directories(
import_proto_path, new_proto_dir, common_protos)
# Update src_proto_path, import_proto_path
return list(new_src_path), new_import_path | googleapis/artman | [
133,
85,
133,
12,
1459375772
] |
def _transform(self, pkg, sep, common_protos):
"""Transform to the appropriate proto package layout.
Works with arbitrary separator (e.g., '/' for import statements,
'.' for proto package statements, os.path.sep for filenames)
"""
if sep != '.' and pkg.endswith('.proto'):
dotted = pkg[:-6].replace(sep, '.')
suffix = '.proto'
else:
dotted = pkg.replace(sep, '.')
suffix = ''
# Sanity check: Do not transform common protos.
for common_pkg in common_protos:
if dotted.startswith(common_pkg):
return pkg
# Special case: If the organization name is "google-cloud", then we
# have to ensure that "cloud" exists in the path. The protos
# themselves may not follow this.
if 'cloud' not in dotted and self._organization_name == 'google-cloud':
dotted = dotted.replace('google.', 'google.cloud.', 1)
# Transform into the ideal proto path.
# What essentially should happen here is that "{api}.{vN}" should
# change to "{api}_{vN}".
dotted = re.sub(r'\.v([\da-z_]*)([\d]+)\b', r'_v\1\2.proto', dotted)
# Edge case: Some internal customers use "vNalpha" and "vNbeta".
# Rather than make the regular expression more complicated, catch
# this as a one-off.
if re.search(r'\.v[\d]+alpha\b', dotted):
dotted = re.sub(r'\.v([\d]+)alpha\b', r'_v\1alpha.proto', dotted)
if re.search(r'\.v[\d]+beta\b', dotted):
dotted = re.sub(r'\.v([\d]+)beta\b', r'_v\1beta.proto', dotted)
if re.search(r'\.v[\d]+eap\b', dotted):
dotted = re.sub(r'\.v([\d]+)eap\b', r'_v\1eap.proto', dotted)
# Done; return with the appropriate separator.
return dotted.replace('.', sep) + suffix | googleapis/artman | [
133,
85,
133,
12,
1459375772
] |
def _copy_and_transform_directories(
self, src_directories, destination_directory, common_protos,
paths=None):
for path in src_directories:
protos = list(protoc_utils.find_protos([path], []))
for proto in protos:
src_base_dirs = self._extract_base_dirs(proto)
sub_new_src = os.path.join(
destination_directory,
self._transform(
src_base_dirs, os.path.sep, common_protos))
if paths is not None:
paths.add(sub_new_src)
dest = os.path.join(sub_new_src, os.path.basename(proto))
if not os.path.exists(dest):
self.exec_command(['mkdir', '-p', sub_new_src])
self._copy_proto(
proto, os.path.join(sub_new_src, dest), common_protos) | googleapis/artman | [
133,
85,
133,
12,
1459375772
] |
def execute(self, grpc_code_dir, gapic_code_dir):
"""Move the protos into the GAPIC structure.
This copies the ``x/y/z/proto/`` directory over to be a sibling
of ``x/y/z/gapic/`` in the GAPIC code directory. In the event of
an inconsistency on the prefix, the GAPIC wins.
Args:
grpc_code_dir (str): The location where the GRPC code was
generated.
gapic_code_dir (str): The location where the GAPIC code was
generated.
"""
# Determine the appropriate source and target directory.
# We can get this by drilling in to the GAPIC artifact until we get to
# a "gapic" directory that is outside "docs" and "tests".
src = self._get_proto_path(grpc_code_dir)
target = self._get_gapic_subdir_path(gapic_code_dir)
# Move the contents into the GAPIC directory.
self.exec_command(['mv', src, os.path.join(target, 'proto')])
# Create an __init__.py file in the proto directory.
# This is necessary for Python 2.7 compatibility.
self.exec_command([
'touch', os.path.join(target, 'proto', '__init__.py'),
])
# Remove the grpc directory.
self.exec_command(['rm', '-rf', grpc_code_dir])
# Clear out the grpc_code_dir, so future tasks perceive it as
# not being a thing anymore.
return {'grpc_code_dir': None} | googleapis/artman | [
133,
85,
133,
12,
1459375772
] |
def main(): # pragma: no cover
execute(os.environ, sys.argv[1:], sys.stdout) | google/gif-for-cli | [
2858,
162,
2858,
18,
1528989105
] |
def __init__(
self,
address: Address,
kwargs: Optional[Dict[str, Any]] = None,
msg_id: Optional[UID] = None,
reply_to: Optional[Address] = None,
reply: bool = False, | OpenMined/PySyft | [
8617,
1908,
8617,
143,
1500410476
] |
def payload(self) -> Payload:
kwargs_dict = {}
if hasattr(self.kwargs, "upcast"):
kwargs_dict = self.kwargs.upcast() # type: ignore
else:
kwargs_dict = self.kwargs # type: ignore
try:
# If it's not a reply message then load kwargs as a proper request payload.
if not self.reply:
return self.request_payload_type(**kwargs_dict)
# If it's a reply message, then load kwargs as a proper reply payload.
else:
return self.reply_payload_type(**kwargs_dict)
except PydanticValidationError:
raise BadPayloadException | OpenMined/PySyft | [
8617,
1908,
8617,
143,
1500410476
] |
def get_permissions(self) -> List:
"""Returns the list of permission classes applicable to the given message."""
raise NotImplementedError | OpenMined/PySyft | [
8617,
1908,
8617,
143,
1500410476
] |
def __init__(self, local_hostname, logger):
logger.debug("Creating CommandRunner with Args - local_hostname: {local_hostname}, logger: {logger}".format(**locals()))
self.local_hostname = local_hostname
self.logger = logger | teamclairvoyant/airflow-scheduler-failover-controller | [
220,
63,
220,
7,
1475000288
] |
def run_command(self, host, base_command):
self.logger.debug("Running Command: " + str(base_command))
if host == self.local_hostname or host in self.HOST_LIST_TO_RUN_LOCAL:
return self._run_local_command(base_command)
else:
return self._run_ssh_command(host, base_command) | teamclairvoyant/airflow-scheduler-failover-controller | [
220,
63,
220,
7,
1475000288
] |
def _run_local_command(self, base_command):
self.logger.debug("Running command as Local command")
output = os.popen(base_command).read()
if output:
output = output.split("\n")
self.logger.debug("Run Command output: " + str(output))
return True, output | teamclairvoyant/airflow-scheduler-failover-controller | [
220,
63,
220,
7,
1475000288
] |
def __init__(self, jvalue=None, **kwargs):
super(Sequential, self).__init__(jvalue, **kwargs) | intel-analytics/analytics-zoo | [
2553,
722,
2553,
534,
1493951250
] |
def is_built(self):
try:
self.get_output_shape()
return True
except:
return False | intel-analytics/analytics-zoo | [
2553,
722,
2553,
534,
1493951250
] |
def from_jvalue(jvalue, bigdl_type="float"):
"""
Create a Python Model base on the given java value
:param jvalue: Java object create by Py4j
:return: A Python Model
"""
model = Sequential(jvalue=jvalue)
model.value = jvalue
return model | intel-analytics/analytics-zoo | [
2553,
722,
2553,
534,
1493951250
] |
def __init__(self, input, output, jvalue=None, **kwargs):
super(Model, self).__init__(jvalue,
to_list(input),
to_list(output),
**kwargs) | intel-analytics/analytics-zoo | [
2553,
722,
2553,
534,
1493951250
] |
def new_graph(self, outputs):
value = callZooFunc(self.bigdl_type, "newGraph", self.value, outputs)
return self.from_jvalue(value) | intel-analytics/analytics-zoo | [
2553,
722,
2553,
534,
1493951250
] |
def unfreeze(self, names):
callZooFunc(self.bigdl_type, "unFreeze", self.value, names) | intel-analytics/analytics-zoo | [
2553,
722,
2553,
534,
1493951250
] |
def env(tmpdir, redis_cache):
basedir = tmpdir
conffile = tmpdir.join('flask-resize-conf.py')
conffile.write(
""" | jmagnusson/Flask-Resize | [
47,
11,
47,
6,
1384049068
] |
def run(env, *args):
return subprocess.check_output(args, env=env).decode().splitlines() | jmagnusson/Flask-Resize | [
47,
11,
47,
6,
1384049068
] |
def test_bin_usage(env):
assert 'usage: flask-resize' in run(env, 'flask-resize', '--help')[0] | jmagnusson/Flask-Resize | [
47,
11,
47,
6,
1384049068
] |
def test_bin_list_images_empty(env):
assert run(env, 'flask-resize', 'list', 'images') == [] | jmagnusson/Flask-Resize | [
47,
11,
47,
6,
1384049068
] |
def test_bin_list_has_images(
env,
resizetarget_opts,
image1_name,
image1_data,
image1_key | jmagnusson/Flask-Resize | [
47,
11,
47,
6,
1384049068
] |
def test_bin_list_cache_empty(env, redis_cache):
assert run(env, 'flask-resize', 'list', 'cache') == [] | jmagnusson/Flask-Resize | [
47,
11,
47,
6,
1384049068
] |
def test_bin_list_has_cache(env, redis_cache):
redis_cache.add('hello')
redis_cache.add('buh-bye')
assert set(run(env, 'flask-resize', 'list', 'cache')) == \
{'hello', 'buh-bye'} | jmagnusson/Flask-Resize | [
47,
11,
47,
6,
1384049068
] |
def test_bin_clear_images(
env,
resizetarget_opts,
image1_name,
image1_data | jmagnusson/Flask-Resize | [
47,
11,
47,
6,
1384049068
] |
def test_bin_clear_cache(env, redis_cache):
redis_cache.add('foo bar')
assert run(env, 'flask-resize', 'clear', 'cache') == [] | jmagnusson/Flask-Resize | [
47,
11,
47,
6,
1384049068
] |
def test_bin_sync_cache(
env,
resizetarget_opts,
image1_name,
image1_data,
image1_key,
redis_cache | jmagnusson/Flask-Resize | [
47,
11,
47,
6,
1384049068
] |
def dict_for_mongo_without_userform_id(parsed_instance):
d = parsed_instance.to_dict_for_mongo()
# remove _userform_id since its not returned by the API
d.pop(ParsedInstance.USERFORM_ID)
return d | makinacorpus/formhub | [
1,
3,
1,
1,
1415368669
] |
def setUp(self):
MainTestCase.setUp(self)
self._create_user_and_login()
self._publish_transportation_form_and_submit_instance()
self.api_url = reverse(api, kwargs={
'username': self.user.username,
'id_string': self.xform.id_string
}) | makinacorpus/formhub | [
1,
3,
1,
1,
1415368669
] |
def test_api_with_query(self):
# query string
query = '{"transport/available_transportation_types_to_referral_facility":"none"}'
data = {'query': query}
response = self.client.get(self.api_url, data)
self.assertEqual(response.status_code, 200)
d = dict_for_mongo_without_userform_id(self.xform.surveys.all()[0].parsed_instance)
find_d = json.loads(response.content)[0]
self.assertEqual(sorted(find_d, key=find_d.get), sorted(d, key=d.get)) | makinacorpus/formhub | [
1,
3,
1,
1,
1415368669
] |
def test_handle_bad_json(self):
response = self.client.get(self.api_url, {'query': 'bad'})
self.assertEqual(response.status_code, 400)
self.assertEqual(True, 'JSON' in response.content) | makinacorpus/formhub | [
1,
3,
1,
1,
1415368669
] |
def test_api_with_query_start_limit(self):
# query string
query = '{"transport/available_transportation_types_to_referral_facility":"none"}'
data = {'query': query, 'start': 0, 'limit': 10}
response = self.client.get(self.api_url, data)
self.assertEqual(response.status_code, 200)
d = dict_for_mongo_without_userform_id(self.xform.surveys.all()[0].parsed_instance)
find_d = json.loads(response.content)[0]
self.assertEqual(sorted(find_d, key=find_d.get), sorted(d, key=d.get)) | makinacorpus/formhub | [
1,
3,
1,
1,
1415368669
] |
def test_api_count(self):
# query string
query = '{"transport/available_transportation_types_to_referral_facility":"none"}'
data = {'query': query, 'count': 1}
response = self.client.get(self.api_url, data)
self.assertEqual(response.status_code, 200)
find_d = json.loads(response.content)[0]
self.assertTrue(find_d.has_key('count'))
self.assertEqual(find_d.get('count'), 1) | makinacorpus/formhub | [
1,
3,
1,
1,
1415368669
] |
def test_api_decode_from_mongo(self):
field = "$section1.group01.question1"
encoded = _encode_for_mongo(field)
self.assertEqual(encoded, ("%(dollar)ssection1%(dot)sgroup01%(dot)squestion1" % \
{"dollar": base64.b64encode("$"), \
"dot": base64.b64encode(".")}))
decoded = _decode_from_mongo(encoded)
self.assertEqual(field, decoded) | makinacorpus/formhub | [
1,
3,
1,
1,
1415368669
] |
def testIncomplete(self):
self.fail("Add header tests for <CoreGraphics/CGPDFDictionary.h>") | albertz/music-player | [
483,
61,
483,
16,
1345772141
] |
def __init__(self, con, query_templates, schema, table, name, dtype, keys_per_column):
self._con = con
self._query_templates = query_templates
self.schema = schema
self.table = table
self.name = name
self.type = dtype
self.keys_per_column = keys_per_column
self.foreign_keys = []
self.ref_keys = [] | yhat/db.py | [
1220,
116,
1220,
33,
1414337817
] |
def __str__(self):
return "Column({0})<{1}>".format(self.name, self.__hash__()) | yhat/db.py | [
1220,
116,
1220,
33,
1414337817
] |
def _str_foreign_keys(self):
keys = []
for col in self.foreign_keys:
keys.append("%s.%s" % (col.table, col.name))
if self.keys_per_column is not None and len(keys) > self.keys_per_column:
keys = keys[0:self.keys_per_column] + ['(+ {0} more)'.format(len(keys) - self.keys_per_column)]
return ", ".join(keys) | yhat/db.py | [
1220,
116,
1220,
33,
1414337817
] |
def head(self, n=6):
"""
Returns first n values of your column as a DataFrame. This is executing:
SELECT
<name_of_the_column>
FROM
<name_of_the_table>
LIMIT <n>
Parameters
----------
n: int
number of rows to return
Examples
--------
>>> from db import DemoDB
>>> db = DemoDB()
>>> db.tables.Customer.City.head()
0 Sao Jose dos Campos
1 Stuttgart
2 Montreal
3 Oslo
4 Prague
5 Prague
Name: City, dtype: object
>>> db.tables.Customer.City.head(2)
0 Sao Jose dos Campos
1 Stuttgart
Name: City, dtype: object
"""
q = self._query_templates['column']['head'].format(column=self.name, schema=self.schema,
table=self.table, n=n)
return pd.read_sql(q, self._con)[self.name] | yhat/db.py | [
1220,
116,
1220,
33,
1414337817
] |
def unique(self):
"""
Returns all unique values as a DataFrame. This is executing:
SELECT
DISTINCT
<name_of_the_column>
FROM
<name_of_the_table>
Examples
--------
>>> from db import DemoDB
>>> db = DemoDB()
>>> db.tables.Customer.FirstName.unique().head(10)
0 Luis
1 Leonie
2 Francois
3 Bjorn
4 Franti\u0161ek
5 Helena
6 Astrid
7 Daan
8 Kara
9 Eduardo
Name: FirstName, dtype: object
>>> len(db.tables.Customer.LastName.unique())
59
"""
q = self._query_templates['column']['unique'].format(column=self.name, schema=self.schema,
table=self.table)
return pd.read_sql(q, self._con)[self.name] | yhat/db.py | [
1220,
116,
1220,
33,
1414337817
] |
def to_dict(self):
"""
Serialize representation of the column for local caching.
"""
return {'schema': self.schema, 'table': self.table, 'name': self.name, 'type': self.type} | yhat/db.py | [
1220,
116,
1220,
33,
1414337817
] |
Subsets and Splits