function
stringlengths 11
56k
| repo_name
stringlengths 5
60
| features
sequence |
---|---|---|
def resolve(self, user, notify=True):
self.resolved_at = timezone.now()
self.resolved_by = user
self.save(update_fields=('resolved_at', 'resolved_by'))
if notify:
chat.send((u'Issue <https://allmychanges.com{url}|#{issue_id}> '
u'for {namespace}/{name} was resolved by {username}.').format(
url=reverse('issue-detail', pk=self.id),
issue_id=self.id,
namespace=self.changelog.namespace,
name=self.changelog.name,
username=user.username))
if self.type == 'auto-paused':
changelog = self.changelog
with log.fields(changelog_id=changelog.id):
log.info('Resuming changelog updates')
changelog.resume()
if notify:
chat.send(u'Autopaused package {namespace}/{name} was resumed {username}.'.format(
namespace=changelog.namespace,
name=changelog.name,
username=user.username)) | AllMyChanges/allmychanges.com | [
3,
1,
3,
18,
1398338343
] |
def merge(user, light_user):
entries = LightModerator.objects.filter(light_user=light_user)
for entry in entries:
with log.fields(username=user.username,
light_user=light_user):
log.info('Transforming light moderator into the permanent')
Moderator.objects.create(
changelog=entry.changelog,
user=user,
from_light_user=light_user)
entries.delete() | AllMyChanges/allmychanges.com | [
3,
1,
3,
18,
1398338343
] |
def remove_stale_moderators():
LightModerator.objects.filter(
created_at__lte=timezone.now() - datetime.timedelta(1)).delete() | AllMyChanges/allmychanges.com | [
3,
1,
3,
18,
1398338343
] |
def namespace(self):
return self.changelog.namespace | AllMyChanges/allmychanges.com | [
3,
1,
3,
18,
1398338343
] |
def name(self):
return self.changelog.name | AllMyChanges/allmychanges.com | [
3,
1,
3,
18,
1398338343
] |
def description(self):
return self.changelog.description | AllMyChanges/allmychanges.com | [
3,
1,
3,
18,
1398338343
] |
def set_processing_status(self, status, level=logging.INFO):
self.log.append(status)
self.processing_status = status[:PROCESSING_STATUS_LENGTH]
self.updated_at = timezone.now()
self.save(update_fields=('processing_status',
'updated_at',
'log'))
key = 'preview-processing-status:{0}'.format(self.id)
cache.set(key, status, 10 * 60) | AllMyChanges/allmychanges.com | [
3,
1,
3,
18,
1398338343
] |
def schedule_update(self):
self.set_status('processing')
self.set_processing_status('Waiting in the queue')
self.versions.all().delete()
update_preview_task.delay(self.pk) | AllMyChanges/allmychanges.com | [
3,
1,
3,
18,
1398338343
] |
def create(self, *args, **kwargs):
version = super(VersionManager, self).create(*args, **kwargs)
changelog = kwargs.get('changelog')
if changelog:
version.associate_with_free_tags()
return version | AllMyChanges/allmychanges.com | [
3,
1,
3,
18,
1398338343
] |
def unreleased(self):
return self.filter(unreleased=True) | AllMyChanges/allmychanges.com | [
3,
1,
3,
18,
1398338343
] |
def __unicode__(self):
return self.number | AllMyChanges/allmychanges.com | [
3,
1,
3,
18,
1398338343
] |
def post_tweet(self):
if not settings.TWITTER_CREDS:
return
if self.unreleased:
raise RuntimeError('Unable to tweet about unreleased version')
if self.tweet_id:
return # because we already posted a tweet
ch = self.changelog
image_url = settings.BASE_URL + ch.get_absolute_url() \
+ '?snap=1&version=' + self.number
filename = sha1(image_url).hexdigest() + '.png'
full_path = os.path.join(settings.SNAPSHOTS_ROOT, filename)
result = envoy.run(
'{root}/makescreenshot --width 590 --height 600 {url} {path}'.format(
root=settings.PROJECT_ROOT,
url=image_url,
path=full_path))
if result.status_code != 0:
with log.fields(
status_code=result.status_code,
std_out=result.std_out,
std_err=result.std_err):
log.error('Unable to make a screenshot')
raise RuntimeError('Unable to make a screenshot')
with open(full_path, 'rb') as f:
from requests_oauthlib import OAuth1
auth = OAuth1(*settings.TWITTER_CREDS)
response = requests.post(
'https://upload.twitter.com/1.1/media/upload.json',
auth=auth,
files={'media': ('screenshot.png',
f.read(), 'image/png')})
media_id = response.json()['media_id_string']
url = settings.BASE_URL + self.get_absolute_url()
text = '{number} of {namespace}/{name} was released: {url} #{namespace} #{name} #release'.format(
number=self.number,
namespace=ch.namespace,
name=ch.name,
url=url)
response = requests.post(
'https://api.twitter.com/1.1/statuses/update.json',
auth=auth,
data={'status': text,
'media_ids': media_id})
if response.status_code == 200:
self.tweet_id = response.json()['id_str']
self.save(update_fields=('tweet_id',))
return full_path | AllMyChanges/allmychanges.com | [
3,
1,
3,
18,
1398338343
] |
def associate_with_free_tags(self):
# associate free tags with this version
for tag in self.changelog.tags.filter(version_number=self.number):
tag.version = self
tag.save(update_fields=('version',)) | AllMyChanges/allmychanges.com | [
3,
1,
3,
18,
1398338343
] |
def get_absolute_url(self):
# the name shouldn't contain any unicode or nonascii letters nor spaces
# otherwise, we need to encode tu utf-8 and quote_plus it.
return self.changelog.get_absolute_url() + '#' + self.name | AllMyChanges/allmychanges.com | [
3,
1,
3,
18,
1398338343
] |
def merge(user, light_user):
entries = UserHistoryLog.objects.filter(user=None,
light_user=light_user)
if entries.count() > 0:
with log.fields(username=user.username,
num_entries=entries.count(),
light_user=light_user):
log.info('Merging user history logs')
entries.update(user=user) | AllMyChanges/allmychanges.com | [
3,
1,
3,
18,
1398338343
] |
def write(user, light_user, action, description):
user = user if user is not None and user.is_authenticated() else None
return UserHistoryLog.objects.create(user=user,
light_user=light_user,
action=action,
description=description) | AllMyChanges/allmychanges.com | [
3,
1,
3,
18,
1398338343
] |
def new_code_for(user):
hash = md5(str(time.time()) + settings.SECRET_KEY).hexdigest()
try:
code = user.email_verification_code
code.hash = hash
code.save()
except EmailVerificationCode.DoesNotExist:
code = EmailVerificationCode.objects.create(
user=user,
hash=hash)
return code | AllMyChanges/allmychanges.com | [
3,
1,
3,
18,
1398338343
] |
def save(self, *args, **kwargs):
super(AutocompleteData, self).save(*args, **kwargs)
if self.words.count() == 0:
self.add_words() | AllMyChanges/allmychanges.com | [
3,
1,
3,
18,
1398338343
] |
def __init__(self, action: str = None) -> None:
super().__init__(prefix, action) | cloudtools/awacs | [
386,
98,
386,
14,
1364415387
] |
def __init__(self, resource: str = "", region: str = "", account: str = "") -> None:
super().__init__(
service=prefix, resource=resource, region=region, account=account
) | cloudtools/awacs | [
386,
98,
386,
14,
1364415387
] |
def test_parse_rank_score():
## GIVEN a rank score string on genmod format
rank_scores_info = "123:10"
variant_score = 10.0
family_id = "123"
## WHEN parsing the rank score
parsed_rank_score = parse_rank_score(rank_scores_info, family_id)
## THEN assert that the correct rank score is parsed
assert variant_score == parsed_rank_score | Clinical-Genomics/scout | [
122,
41,
122,
149,
1412930641
] |
def options(opt):
opt.load('hwaf-base', tooldir=_heptooldir)
opt.add_option(
'--with-cmake',
default=None,
help="Look for CMake at the given path")
return | hwaf/hwaf | [
10,
1,
10,
14,
1355159308
] |
def find_cmake(ctx, **kwargs): | hwaf/hwaf | [
10,
1,
10,
14,
1355159308
] |
def scoop_not_functional_check():
if scoop is not None and scoop.IS_RUNNING:
print('SCOOP mode functional!')
return False
else:
print('SCOOP NOT running!')
return True | SmokinCaterpillar/pypet | [
85,
18,
85,
2,
1379437560
] |
def set_mode(self):
super(MultiprocSCOOPNetqueueTest, self).set_mode()
self.mode = pypetconstants.WRAP_MODE_NETQUEUE
self.multiproc = True
self.freeze_input = False
self.ncores = 4
self.gc_interval = 3
self.niceness = check_nice(1)
self.use_pool = False
self.use_scoop = True
self.graceful_exit = False | SmokinCaterpillar/pypet | [
85,
18,
85,
2,
1379437560
] |
def test_niceness(self):
pass | SmokinCaterpillar/pypet | [
85,
18,
85,
2,
1379437560
] |
def set_mode(self):
super(MultiprocSCOOPSortLocalTest, self).set_mode()
self.mode = pypetconstants.WRAP_MODE_LOCAL
self.freeze_input = False
self.multiproc = True
self.ncores = 4
self.use_pool = False
self.use_scoop = True
self.graceful_exit = False | SmokinCaterpillar/pypet | [
85,
18,
85,
2,
1379437560
] |
def test_graceful_exit(self):
pass | SmokinCaterpillar/pypet | [
85,
18,
85,
2,
1379437560
] |
def set_mode(self):
super(MultiprocFrozenSCOOPLocalTest, self).set_mode()
self.mode = pypetconstants.WRAP_MODE_LOCAL
self.multiproc = True
self.freeze_input = True
self.ncores = 4
self.gc_interval = 3
self.niceness = check_nice(1)
self.use_pool = False
self.use_scoop = True
self.graceful_exit = False | SmokinCaterpillar/pypet | [
85,
18,
85,
2,
1379437560
] |
def test_niceness(self):
pass | SmokinCaterpillar/pypet | [
85,
18,
85,
2,
1379437560
] |
def set_mode(self):
super(MultiprocFrozenSCOOPSortNetlockTest, self).set_mode()
self.mode = pypetconstants.WRAP_MODE_NETLOCK
self.freeze_input = True
self.multiproc = True
self.ncores = 4
self.use_pool = False
self.use_scoop = True
self.port = (10000, 60000)
self.graceful_exit = False | SmokinCaterpillar/pypet | [
85,
18,
85,
2,
1379437560
] |
def test_graceful_exit(self):
pass | SmokinCaterpillar/pypet | [
85,
18,
85,
2,
1379437560
] |
def set_mode(self):
super(MultiprocFrozenSCOOPSortNetqueueTest, self).set_mode()
self.mode = pypetconstants.WRAP_MODE_NETQUEUE
self.freeze_input = True
self.multiproc = True
self.ncores = 4
self.use_pool = False
self.use_scoop = True
self.graceful_exit = False
#self.port = 'tcp://127.0.0.1:22334' | SmokinCaterpillar/pypet | [
85,
18,
85,
2,
1379437560
] |
def test_graceful_exit(self):
pass | SmokinCaterpillar/pypet | [
85,
18,
85,
2,
1379437560
] |
def set_mode(self):
super(MultiprocSCOOPNetlockTest, self).set_mode()
self.mode = pypetconstants.WRAP_MODE_NETLOCK
self.multiproc = True
self.freeze_input = False
self.ncores = 4
self.gc_interval = 3
self.niceness = check_nice(1)
self.use_pool = False
self.use_scoop = True
self.port = None
self.timeout = 1099.99
self.graceful_exit = False
# self.port = 'tcp://127.0.0.1:22334' | SmokinCaterpillar/pypet | [
85,
18,
85,
2,
1379437560
] |
def test_niceness(self):
pass | SmokinCaterpillar/pypet | [
85,
18,
85,
2,
1379437560
] |
def __init__(self, nrows, ncols, width, height, layout):
# style args can include height/width, nrows, ncols, shared,...
self.nrows = nrows
self.ncols = ncols
self.width = width
self.height = height
self.layout = layout
# get .canvas and .axes
self.get_tree_dims()
self.get_canvas_and_axes() | eaton-lab/toytree | [
133,
26,
133,
11,
1491841399
] |
def get_tree_dims(self):
"""
get height and width if not set by user
"""
if self.ncols * self.nrows < 4:
minx = 250
miny = 250
else:
minx = 200
miny = 140
# wider than tall
if self.layout in ("d", "u"):
self.width = (
self.width if self.width
else min(750, minx * self.ncols)
)
self.height = (
self.height if self.height
else min(750, miny * self.nrows)
)
else:
self.height = (
self.height if self.height
else min(750, minx * self.nrows)
)
self.width = (
self.width if self.width
else min(750, miny * self.ncols)
) | eaton-lab/toytree | [
133,
26,
133,
11,
1491841399
] |
def __init__(self, tree, axes, style):
# args includes axes
self.tree = tree
self.axes = axes
self.style = style
self.canvas = None
self.external_axis = False
# get the longest name for dimension fitting
self.lname = 0
if not all([i is None for i in self.style.tip_labels]):
self.lname = max([len(str(i)) for i in self.style.tip_labels])
# ntips and shape to fit with provided args
self.get_dims_from_tree_size()
# fills canvas and axes
self.get_canvas_and_axes()
# expand the domain/extents for the text
# self.fit_tip_labels()
# ticks for tree and scalebar
self.add_axes_style() | eaton-lab/toytree | [
133,
26,
133,
11,
1491841399
] |
def get_canvas_and_axes(self):
"""
"""
if self.axes is not None:
self.canvas = None
self.external_axis = True
else:
self.canvas = toyplot.Canvas(
height=self.style.height,
width=self.style.width,
)
self.axes = self.canvas.cartesian(
padding=self.style.padding
) | eaton-lab/toytree | [
133,
26,
133,
11,
1491841399
] |
def scores_to_probs(scores):
scores = numpy.array(scores)
scores -= scores.max()
probs = numpy.exp(scores, out=scores)
probs /= probs.sum()
return probs | forcedotcom/distributions | [
32,
24,
32,
16,
1360952494
] |
def print_histogram(probs, counts):
WIDTH = 60.0
max_count = max(counts)
print '{: >8} {: >8}'.format('Prob', 'Count')
for prob, count in sorted(zip(probs, counts), reverse=True):
width = int(round(WIDTH * count / max_count))
print '{: >8.3f} {: >8d} {}'.format(prob, count, '-' * width) | forcedotcom/distributions | [
32,
24,
32,
16,
1360952494
] |
def unif01_goodness_of_fit(samples, plot=False):
"""
Bin uniformly distributed samples and apply Pearson's chi^2 test.
"""
samples = numpy.array(samples, dtype=float)
assert samples.min() >= 0.0
assert samples.max() <= 1.0
bin_count = int(round(len(samples) ** 0.333))
assert bin_count >= 7, 'WARNING imprecise test, use more samples'
probs = numpy.ones(bin_count, dtype=numpy.float) / bin_count
counts = numpy.zeros(bin_count, dtype=numpy.int)
for sample in samples:
counts[int(bin_count * sample)] += 1
return multinomial_goodness_of_fit(probs, counts, len(samples), plot=plot) | forcedotcom/distributions | [
32,
24,
32,
16,
1360952494
] |
def discrete_goodness_of_fit(
samples,
probs_dict,
truncate_beyond=8,
plot=False):
"""
Transform arbitrary discrete data to multinomial
and assess goodness of fit via Pearson's chi^2 test.
"""
assert len(samples) > 100, 'WARNING imprecision; use more samples'
counts = defaultdict(lambda: 0)
for sample in samples:
assert sample in probs_dict
counts[sample] += 1
items = [(prob, counts.get(i, 0)) for i, prob in probs_dict.iteritems()]
items.sort(reverse=True)
truncated = (truncate_beyond and truncate_beyond < len(items))
if truncated:
items = items[:truncate_beyond]
probs = [prob for prob, count in items]
counts = [count for prob, count in items]
return multinomial_goodness_of_fit(
probs,
counts,
len(samples),
truncated=truncated,
plot=plot) | forcedotcom/distributions | [
32,
24,
32,
16,
1360952494
] |
def schemamigration():
# turn ``schemamigration.py --initial`` into
# ``manage.py schemamigration cmsplugin_disqus --initial`` and setup the
# enviroment
from django.conf import settings
from django.core.management import ManagementUtility
settings.configure(
INSTALLED_APPS=INSTALLED_APPS,
ROOT_URLCONF=ROOT_URLCONF,
DATABASES=DATABASES,
TEMPLATE_CONTEXT_PROCESSORS=TEMPLATE_CONTEXT_PROCESSORS
)
argv = list(sys.argv)
argv.insert(1, 'schemamigration')
argv.insert(2, 'djangocms_inherit')
utility = ManagementUtility(argv)
utility.execute() | divio/djangocms-inherit | [
3,
18,
3,
8,
1391521515
] |
def __init__(self, cost_withGradients):
super(CostModel, self).__init__()
self.cost_type = cost_withGradients
# --- Set-up evaluation cost
if self.cost_type is None:
self.cost_withGradients = constant_cost_withGradients
self.cost_type = 'Constant cost'
elif self.cost_type == 'evaluation_time':
self.cost_model = GPModel()
self.cost_withGradients = self._cost_gp_withGradients
self.num_updates = 0
else:
self.cost_withGradients = cost_withGradients
self.cost_type = 'User defined cost' | SheffieldML/GPyOpt | [
858,
251,
858,
104,
1407923905
] |
def _cost_gp_withGradients(self,x):
"""
Predicts the time cost and its gradient of evaluating the function at x.
"""
m, _, dmdx, _= self.cost_model.predict_withGradients(x)
return np.exp(m), np.exp(m)*dmdx | SheffieldML/GPyOpt | [
858,
251,
858,
104,
1407923905
] |
def __init__(self, root, transforms=None):
super().__init__(root=root)
self.transforms = transforms
self._flow_list = []
self._image_list = [] | pytorch/vision | [
13447,
6560,
13447,
884,
1478733103
] |
def _read_flow(self, file_name):
# Return the flow or a tuple with the flow and the valid_flow_mask if _has_builtin_flow_mask is True
pass | pytorch/vision | [
13447,
6560,
13447,
884,
1478733103
] |
def __len__(self):
return len(self._image_list) | pytorch/vision | [
13447,
6560,
13447,
884,
1478733103
] |
def __init__(self, root, split="train", pass_name="clean", transforms=None):
super().__init__(root=root, transforms=transforms)
verify_str_arg(split, "split", valid_values=("train", "test"))
verify_str_arg(pass_name, "pass_name", valid_values=("clean", "final", "both"))
passes = ["clean", "final"] if pass_name == "both" else [pass_name]
root = Path(root) / "Sintel"
flow_root = root / "training" / "flow"
for pass_name in passes:
split_dir = "training" if split == "train" else split
image_root = root / split_dir / pass_name
for scene in os.listdir(image_root):
image_list = sorted(glob(str(image_root / scene / "*.png")))
for i in range(len(image_list) - 1):
self._image_list += [[image_list[i], image_list[i + 1]]]
if split == "train":
self._flow_list += sorted(glob(str(flow_root / scene / "*.flo"))) | pytorch/vision | [
13447,
6560,
13447,
884,
1478733103
] |
def _read_flow(self, file_name):
return _read_flo(file_name) | pytorch/vision | [
13447,
6560,
13447,
884,
1478733103
] |
def __init__(self, root, split="train", transforms=None):
super().__init__(root=root, transforms=transforms)
verify_str_arg(split, "split", valid_values=("train", "test"))
root = Path(root) / "KittiFlow" / (split + "ing")
images1 = sorted(glob(str(root / "image_2" / "*_10.png")))
images2 = sorted(glob(str(root / "image_2" / "*_11.png")))
if not images1 or not images2:
raise FileNotFoundError(
"Could not find the Kitti flow images. Please make sure the directory structure is correct."
)
for img1, img2 in zip(images1, images2):
self._image_list += [[img1, img2]]
if split == "train":
self._flow_list = sorted(glob(str(root / "flow_occ" / "*_10.png"))) | pytorch/vision | [
13447,
6560,
13447,
884,
1478733103
] |
def _read_flow(self, file_name):
return _read_16bits_png_with_flow_and_valid_mask(file_name) | pytorch/vision | [
13447,
6560,
13447,
884,
1478733103
] |
def __init__(self, root, split="train", transforms=None):
super().__init__(root=root, transforms=transforms)
verify_str_arg(split, "split", valid_values=("train", "val"))
root = Path(root) / "FlyingChairs"
images = sorted(glob(str(root / "data" / "*.ppm")))
flows = sorted(glob(str(root / "data" / "*.flo")))
split_file_name = "FlyingChairs_train_val.txt"
if not os.path.exists(root / split_file_name):
raise FileNotFoundError(
"The FlyingChairs_train_val.txt file was not found - please download it from the dataset page (see docstring)."
)
split_list = np.loadtxt(str(root / split_file_name), dtype=np.int32)
for i in range(len(flows)):
split_id = split_list[i]
if (split == "train" and split_id == 1) or (split == "val" and split_id == 2):
self._flow_list += [flows[i]]
self._image_list += [[images[2 * i], images[2 * i + 1]]] | pytorch/vision | [
13447,
6560,
13447,
884,
1478733103
] |
def _read_flow(self, file_name):
return _read_flo(file_name) | pytorch/vision | [
13447,
6560,
13447,
884,
1478733103
] |
def __init__(self, root, split="train", pass_name="clean", camera="left", transforms=None):
super().__init__(root=root, transforms=transforms)
verify_str_arg(split, "split", valid_values=("train", "test"))
split = split.upper()
verify_str_arg(pass_name, "pass_name", valid_values=("clean", "final", "both"))
passes = {
"clean": ["frames_cleanpass"],
"final": ["frames_finalpass"],
"both": ["frames_cleanpass", "frames_finalpass"],
}[pass_name]
verify_str_arg(camera, "camera", valid_values=("left", "right", "both"))
cameras = ["left", "right"] if camera == "both" else [camera]
root = Path(root) / "FlyingThings3D"
directions = ("into_future", "into_past")
for pass_name, camera, direction in itertools.product(passes, cameras, directions):
image_dirs = sorted(glob(str(root / pass_name / split / "*/*")))
image_dirs = sorted(Path(image_dir) / camera for image_dir in image_dirs)
flow_dirs = sorted(glob(str(root / "optical_flow" / split / "*/*")))
flow_dirs = sorted(Path(flow_dir) / direction / camera for flow_dir in flow_dirs)
if not image_dirs or not flow_dirs:
raise FileNotFoundError(
"Could not find the FlyingThings3D flow images. "
"Please make sure the directory structure is correct."
)
for image_dir, flow_dir in zip(image_dirs, flow_dirs):
images = sorted(glob(str(image_dir / "*.png")))
flows = sorted(glob(str(flow_dir / "*.pfm")))
for i in range(len(flows) - 1):
if direction == "into_future":
self._image_list += [[images[i], images[i + 1]]]
self._flow_list += [flows[i]]
elif direction == "into_past":
self._image_list += [[images[i + 1], images[i]]]
self._flow_list += [flows[i + 1]] | pytorch/vision | [
13447,
6560,
13447,
884,
1478733103
] |
def _read_flow(self, file_name):
return _read_pfm(file_name) | pytorch/vision | [
13447,
6560,
13447,
884,
1478733103
] |
def __init__(self, root, split="train", transforms=None):
super().__init__(root=root, transforms=transforms)
verify_str_arg(split, "split", valid_values=("train", "test"))
root = Path(root) / "hd1k"
if split == "train":
# There are 36 "sequences" and we don't want seq i to overlap with seq i + 1, so we need this for loop
for seq_idx in range(36):
flows = sorted(glob(str(root / "hd1k_flow_gt" / "flow_occ" / f"{seq_idx:06d}_*.png")))
images = sorted(glob(str(root / "hd1k_input" / "image_2" / f"{seq_idx:06d}_*.png")))
for i in range(len(flows) - 1):
self._flow_list += [flows[i]]
self._image_list += [[images[i], images[i + 1]]]
else:
images1 = sorted(glob(str(root / "hd1k_challenge" / "image_2" / "*10.png")))
images2 = sorted(glob(str(root / "hd1k_challenge" / "image_2" / "*11.png")))
for image1, image2 in zip(images1, images2):
self._image_list += [[image1, image2]]
if not self._image_list:
raise FileNotFoundError(
"Could not find the HD1K images. Please make sure the directory structure is correct."
) | pytorch/vision | [
13447,
6560,
13447,
884,
1478733103
] |
def __getitem__(self, index):
"""Return example at given index.
Args:
index(int): The index of the example to retrieve
Returns:
tuple: A 4-tuple with ``(img1, img2, flow, valid_flow_mask)`` where ``valid_flow_mask``
is a numpy boolean mask of shape (H, W)
indicating which flow values are valid. The flow is a numpy array of
shape (2, H, W) and the images are PIL images. ``flow`` and ``valid_flow_mask`` are None if
``split="test"``.
"""
return super().__getitem__(index) | pytorch/vision | [
13447,
6560,
13447,
884,
1478733103
] |
def _read_16bits_png_with_flow_and_valid_mask(file_name):
flow_and_valid = _read_png_16(file_name).to(torch.float32)
flow, valid_flow_mask = flow_and_valid[:2, :, :], flow_and_valid[2, :, :]
flow = (flow - 2 ** 15) / 64 # This conversion is explained somewhere on the kitti archive
valid_flow_mask = valid_flow_mask.bool()
# For consistency with other datasets, we convert to numpy
return flow.numpy(), valid_flow_mask.numpy() | pytorch/vision | [
13447,
6560,
13447,
884,
1478733103
] |
def detectSignature(filename):
# the list contains all the accesses
rlist = AccList()
wlist = AccList()
accList = AccList() # all lines with "accList" are commentted out
# because the figure drawing using accList
# is replaced with rlist and wlist
# open the trace file
f = open(filename, 'r')
# skip the first several lines
# Maybe the skipped lines are table heads
for i in range(int(sig._format_prop['skip_lines'])):
line = f.readline() | yinyanlong/iosig | [
8,
3,
8,
5,
1393557818
] |
def generateCSVs(single_trace_filename):
"""Generate the Read/Write Bandwidth figures"""
trace_path, trace_filename = os.path.split(single_trace_filename)
# the list contains all the accesses
rlist = AccList()
wlist = AccList()
rlistEmpty = 1
wlistEmpty = 1
total_read_count = 0
total_write_count = 0
total_read_time = 0.0
total_write_time = 0.0
# Create and empty each CSV files, write the CSV title line
output = os.path.join(sig._out_path, trace_filename + ".read.rate.csv")
f = open(output, 'w')
f.write("Time,Rate\n")
f.close()
output = os.path.join(sig._out_path, trace_filename + ".write.rate.csv")
f = open(output, 'w')
f.write("Time,Rate\n")
f.close()
output = os.path.join(sig._out_path, trace_filename + ".read.interval.csv")
f = open(output, 'w')
f.write("Begin,End\n")
f.close()
output = os.path.join(sig._out_path, trace_filename + ".write.interval.csv")
f = open(output, 'w')
f.write("Begin,End\n")
f.close()
output = os.path.join(sig._out_path, trace_filename + ".read.hole.sizes.csv")
f = open(output, 'w')
f.write("Time,Size\n")
f.close()
# open the trace file
f = open(single_trace_filename, 'r')
# skip the first several lines
# Maybe the skipped lines are table heads
for i in range(int(sig._format_prop['skip_lines'])):
line = f.readline() | yinyanlong/iosig | [
8,
3,
8,
5,
1393557818
] |
def __init__(self, name: str, get_converter: t.Optional[t.Callable] = None) -> None:
self.__name__ = name
self.get_converter = get_converter | mitsuhiko/flask | [
62144,
15482,
62144,
6,
1270552319
] |
def __set__(self, obj: t.Any, value: t.Any) -> None:
obj.config[self.__name__] = value | mitsuhiko/flask | [
62144,
15482,
62144,
6,
1270552319
] |
def __init__(self, root_path: str, defaults: t.Optional[dict] = None) -> None:
dict.__init__(self, defaults or {})
self.root_path = root_path | mitsuhiko/flask | [
62144,
15482,
62144,
6,
1270552319
] |
def from_pyfile(self, filename: str, silent: bool = False) -> bool:
"""Updates the values in the config from a Python file. This function
behaves as if the file was imported as module with the
:meth:`from_object` function.
:param filename: the filename of the config. This can either be an
absolute filename or a filename relative to the
root path.
:param silent: set to ``True`` if you want silent failure for missing
files.
.. versionadded:: 0.7
`silent` parameter.
"""
filename = os.path.join(self.root_path, filename)
d = types.ModuleType("config")
d.__file__ = filename
try:
with open(filename, mode="rb") as config_file:
exec(compile(config_file.read(), filename, "exec"), d.__dict__)
except OSError as e:
if silent and e.errno in (errno.ENOENT, errno.EISDIR, errno.ENOTDIR):
return False
e.strerror = f"Unable to load configuration file ({e.strerror})"
raise
self.from_object(d)
return True | mitsuhiko/flask | [
62144,
15482,
62144,
6,
1270552319
] |
def from_file(
self,
filename: str,
load: t.Callable[[t.IO[t.Any]], t.Mapping],
silent: bool = False, | mitsuhiko/flask | [
62144,
15482,
62144,
6,
1270552319
] |
def from_json(self, filename: str, silent: bool = False) -> bool:
"""Update the values in the config from a JSON file. The loaded
data is passed to the :meth:`from_mapping` method.
:param filename: The path to the JSON file. This can be an
absolute path or relative to the config root path.
:param silent: Ignore the file if it doesn't exist.
.. deprecated:: 2.0.0
Will be removed in Flask 2.1. Use :meth:`from_file` instead.
This was removed early in 2.0.0, was added back in 2.0.1.
.. versionadded:: 0.11
"""
import warnings
from . import json
warnings.warn(
"'from_json' is deprecated and will be removed in Flask"
" 2.1. Use 'from_file(path, json.load)' instead.",
DeprecationWarning,
stacklevel=2,
)
return self.from_file(filename, json.load, silent=silent) | mitsuhiko/flask | [
62144,
15482,
62144,
6,
1270552319
] |
def get_namespace(
self, namespace: str, lowercase: bool = True, trim_namespace: bool = True | mitsuhiko/flask | [
62144,
15482,
62144,
6,
1270552319
] |
def new_flow():
'''Create a new flow
:status 200: Render the new flow template
:status 302: Try to create a new flow using the
:py:class:`~purchasing.conductor.forms.NewFlowForm`, redirect
to the flows list view if successful
'''
stages = Stage.choices_factory()
form = NewFlowForm(stages=stages)
if form.validate_on_submit():
stage_order = []
for entry in form.stage_order.entries:
# try to evaluate the return value as an ID
try:
stage_id = int(entry.data)
# otherwise it's a new stage
except ValueError:
new_stage = Stage.create(name=entry.data)
stage_id = new_stage.id
stage_order.append(stage_id)
Flow.create(flow_name=form.flow_name.data, stage_order=stage_order)
flash('Flow created successfully!', 'alert-success')
return redirect(url_for('conductor.flows_list'))
return render_template('conductor/flows/new.html', stages=stages, form=form) | codeforamerica/pittsburgh-purchasing-suite | [
18,
9,
18,
6,
1429573929
] |
def flows_list():
'''List all flows
:status 200: Render the all flows list template
'''
flows = Flow.query.order_by(Flow.flow_name).all()
active, archived = [], []
for flow in flows:
if flow.is_archived:
archived.append(flow)
else:
active.append(flow)
return render_template('conductor/flows/browse.html', active=active, archived=archived) | codeforamerica/pittsburgh-purchasing-suite | [
18,
9,
18,
6,
1429573929
] |
def begin(self):
self.append({'cbs': [], 'dirty': False}) | Suor/django-cacheops | [
1796,
209,
1796,
21,
1307190347
] |
def rollback(self):
self.pop() | Suor/django-cacheops | [
1796,
209,
1796,
21,
1307190347
] |
def mark_dirty(self):
self[-1]['dirty'] = True | Suor/django-cacheops | [
1796,
209,
1796,
21,
1307190347
] |
def __init__(self):
super(TransactionStates, self).__init__()
self._states = defaultdict(TransactionState) | Suor/django-cacheops | [
1796,
209,
1796,
21,
1307190347
] |
def is_dirty(self, dbs):
return any(self[db].is_dirty() for db in dbs) | Suor/django-cacheops | [
1796,
209,
1796,
21,
1307190347
] |
def queue_when_in_transaction(call):
if transaction_states[call.using]:
transaction_states[call.using].push((call, (), {}))
else:
return call() | Suor/django-cacheops | [
1796,
209,
1796,
21,
1307190347
] |
def __enter__(self):
entering = not transaction_states[self.using]
transaction_states[self.using].begin()
self._no_monkey.__enter__(self)
if entering:
on_commit(transaction_states[self.using].commit, self.using) | Suor/django-cacheops | [
1796,
209,
1796,
21,
1307190347
] |
def callproc(self, procname, params=None):
result = self._no_monkey.callproc(self, procname, params)
if transaction_states[self.db.alias]:
transaction_states[self.db.alias].mark_dirty()
return result | Suor/django-cacheops | [
1796,
209,
1796,
21,
1307190347
] |
def executemany(self, sql, param_list):
result = self._no_monkey.executemany(self, sql, param_list)
if transaction_states[self.db.alias] and is_sql_dirty(sql):
transaction_states[self.db.alias].mark_dirty()
return result | Suor/django-cacheops | [
1796,
209,
1796,
21,
1307190347
] |
def is_sql_dirty(sql):
# This should not happen as using bytes in Python 3 is against db protocol,
# but some people will pass it anyway
if isinstance(sql, bytes):
sql = sql.decode()
# NOTE: not using regex here for speed
sql = sql.lower()
for action in ('update', 'insert', 'delete'):
p = sql.find(action)
if p == -1:
continue
start, end = p - 1, p + len(action)
if (start < 0 or sql[start] not in CHARS) and (end >= len(sql) or sql[end] not in CHARS):
return True
else:
return False | Suor/django-cacheops | [
1796,
209,
1796,
21,
1307190347
] |
def test_reverse_rfc822_datetime():
dates = [
("Sat, 01 Jan 2011 00:00:00 -0000", datetime(2011, 1, 1, tzinfo=pytz.utc)),
("Sat, 01 Jan 2011 23:59:59 -0000", datetime(2011, 1, 1, 23, 59, 59, tzinfo=pytz.utc)),
("Sat, 01 Jan 2011 21:59:59 -0200", datetime(2011, 1, 1, 23, 59, 59, tzinfo=pytz.utc)),
]
for date_string, expected in dates:
yield assert_equal, inputs.datetime_from_rfc822(date_string), expected | flask-restful/flask-restful | [
6540,
1017,
6540,
137,
1350000531
] |
def test_urls():
urls = [
'http://www.djangoproject.com/',
'http://localhost/',
'http://example.com/',
'http://www.example.com/',
'http://www.example.com:8000/test',
'http://valid-with-hyphens.com/',
'http://subdomain.example.com/',
'http://200.8.9.10/',
'http://200.8.9.10:8000/test',
'http://valid-----hyphens.com/',
'http://example.com?something=value',
'http://example.com/index.php?something=value&another=value2',
'http://foo:[email protected]',
'http://foo:@example.com',
'http://foo:@2001:db8:85a3::8a2e:370:7334',
'http://foo2:qd1%[email protected]',
]
for value in urls:
yield assert_equal, inputs.url(value), value | flask-restful/flask-restful | [
6540,
1017,
6540,
137,
1350000531
] |
def test_bad_urls():
values = [
'foo',
'http://',
'http://example',
'http://example.',
'http://.com',
'http://invalid-.com',
'http://-invalid.com',
'http://inv-.alid-.com',
'http://inv-.-alid.com',
'foo bar baz',
u'foo \u2713',
'http://@foo:[email protected]',
'http://:[email protected]',
'http://bar:bar:[email protected]',
]
for value in values:
yield check_bad_url_raises, value | flask-restful/flask-restful | [
6540,
1017,
6540,
137,
1350000531
] |
def check_url_error_message(value):
try:
inputs.url(value)
assert False, u"inputs.url({0}) should raise an exception".format(value)
except ValueError as e:
assert_equal(six.text_type(e),
(u"{0} is not a valid URL. Did you mean: http://{0}".format(value))) | flask-restful/flask-restful | [
6540,
1017,
6540,
137,
1350000531
] |
def test_regex_good_input():
cases = (
'123',
'1234567890',
'00000',
)
num_only = inputs.regex(r'^[0-9]+$')
for value in cases:
yield assert_equal, num_only(value), value | flask-restful/flask-restful | [
6540,
1017,
6540,
137,
1350000531
] |
def test_regex_flags_good_input():
cases = (
'abcd',
'ABCabc',
'ABC',
)
case_insensitive = inputs.regex(r'^[A-Z]+$', re.IGNORECASE)
for value in cases:
yield assert_equal, case_insensitive(value), value | flask-restful/flask-restful | [
6540,
1017,
6540,
137,
1350000531
] |
def test_boolean_false(self):
assert_equal(inputs.boolean("False"), False) | flask-restful/flask-restful | [
6540,
1017,
6540,
137,
1350000531
] |
def test_boolean_true(self):
assert_equal(inputs.boolean("true"), True) | flask-restful/flask-restful | [
6540,
1017,
6540,
137,
1350000531
] |
def test_boolean_upper_case(self):
assert_equal(inputs.boolean("FaLSE"), False) | flask-restful/flask-restful | [
6540,
1017,
6540,
137,
1350000531
] |
def test_boolean_with_python_bool(self):
"""Input that is already a native python `bool` should be passed through
without extra processing."""
assert_equal(inputs.boolean(True), True)
assert_equal(inputs.boolean(False), False) | flask-restful/flask-restful | [
6540,
1017,
6540,
137,
1350000531
] |
def test_date_later_than_1900(self):
assert_equal(inputs.date("1900-01-01"), datetime(1900, 1, 1)) | flask-restful/flask-restful | [
6540,
1017,
6540,
137,
1350000531
] |
def test_date_input(self):
assert_equal(inputs.date("2008-08-01"), datetime(2008, 8, 1)) | flask-restful/flask-restful | [
6540,
1017,
6540,
137,
1350000531
] |
def test_natural(self):
assert_equal(3, inputs.natural(3)) | flask-restful/flask-restful | [
6540,
1017,
6540,
137,
1350000531
] |
def test_positive(self):
assert_equal(1, inputs.positive(1))
assert_equal(10000, inputs.positive(10000)) | flask-restful/flask-restful | [
6540,
1017,
6540,
137,
1350000531
] |
def test_positive_negative_input(self):
assert_raises(ValueError, lambda: inputs.positive(-1)) | flask-restful/flask-restful | [
6540,
1017,
6540,
137,
1350000531
] |
def test_int_range_inclusive(self):
int_range = inputs.int_range(1, 5)
assert_equal(5, int_range(5)) | flask-restful/flask-restful | [
6540,
1017,
6540,
137,
1350000531
] |
def test_int_range_high(self):
int_range = inputs.int_range(0, 5)
assert_raises(ValueError, lambda: int_range(6)) | flask-restful/flask-restful | [
6540,
1017,
6540,
137,
1350000531
] |
def test_invalid_isointerval_error():
try:
inputs.iso8601interval('2013-01-01/blah')
except ValueError as error:
assert_equal(
str(error),
"Invalid argument: 2013-01-01/blah. argument must be a valid ISO8601 "
"date/time interval.",
)
return
assert False, 'Should raise a ValueError' | flask-restful/flask-restful | [
6540,
1017,
6540,
137,
1350000531
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.