function
stringlengths 11
56k
| repo_name
stringlengths 5
60
| features
sequence |
---|---|---|
def simple_separated_format(separator):
"""Construct a simple TableFormat with columns separated by a separator.
>>> tsv = simple_separated_format("\\t") ; \
tabulate([["foo", 1], ["spam", 23]], tablefmt=tsv) == 'foo \\t 1\\nspam\\t23'
True
""" # noqa
return TableFormat(None, None, None, None,
headerrow=DataRow('', separator, ''),
datarow=DataRow('', separator, ''),
padding=0, with_header_hide=None) | anlambert/tulip | [
2,
1,
2,
1,
1486498884
] |
def _isnumber(string):
"""
>>> _isnumber("123.45")
True
>>> _isnumber("123")
True
>>> _isnumber("spam")
False
>>> _isnumber("123e45678")
False
>>> _isnumber("inf")
True
"""
if not _isconvertible(float, string):
return False
elif isinstance(string, (_text_type, _binary_type)) and (
math.isinf(float(string)) or math.isnan(float(string))):
return string.lower() in ['inf', '-inf', 'nan']
return True | anlambert/tulip | [
2,
1,
2,
1,
1486498884
] |
def _isbool(string):
"""
>>> _isbool(True)
True
>>> _isbool("False")
True
>>> _isbool(1)
False
"""
return (type(string) is _bool_type or
(isinstance(string, (_binary_type, _text_type))
and string in ("True", "False"))) | anlambert/tulip | [
2,
1,
2,
1,
1486498884
] |
def _afterpoint(string):
"""Symbols after a decimal point, -1 if the string lacks the decimal point.
>>> _afterpoint("123.45")
2
>>> _afterpoint("1001")
-1
>>> _afterpoint("eggs")
-1
>>> _afterpoint("123e45")
2
"""
if _isnumber(string):
if _isint(string):
return -1
else:
pos = string.rfind(".")
pos = string.lower().rfind("e") if pos < 0 else pos
if pos >= 0:
return len(string) - pos - 1
else:
return -1 # no point
else:
return -1 # not a number | anlambert/tulip | [
2,
1,
2,
1,
1486498884
] |
def _padright(width, s):
"""Flush left.
>>> _padright(6, '\u044f\u0439\u0446\u0430') == '\u044f\u0439\u0446\u0430 '
True
""" # noqa
fmt = "{0:<%ds}" % width
return fmt.format(s) | anlambert/tulip | [
2,
1,
2,
1,
1486498884
] |
def _padnone(ignore_width, s):
return s | anlambert/tulip | [
2,
1,
2,
1,
1486498884
] |
def _visible_width(s):
"""Visible width of a printed string. ANSI color codes are removed.
>>> _visible_width('\x1b[31mhello\x1b[0m'), _visible_width("world")
(5, 5)
"""
# optional wide-character support
if wcwidth is not None and WIDE_CHARS_MODE:
len_fn = wcwidth.wcswidth
else:
len_fn = len
if isinstance(s, _text_type) or isinstance(s, _binary_type):
return len_fn(_strip_invisible(s))
else:
return len_fn(_text_type(s)) | anlambert/tulip | [
2,
1,
2,
1,
1486498884
] |
def _multiline_width(multiline_s, line_width_fn=len):
"""Visible width of a potentially multiline content."""
return max(map(line_width_fn, re.split("[\r\n]", multiline_s))) | anlambert/tulip | [
2,
1,
2,
1,
1486498884
] |
def _align_column_choose_padfn(strings, alignment, has_invisible):
if alignment == "right":
if not PRESERVE_WHITESPACE:
strings = [s.strip() for s in strings]
padfn = _padleft
elif alignment == "center":
if not PRESERVE_WHITESPACE:
strings = [s.strip() for s in strings]
padfn = _padboth
elif alignment == "decimal":
if has_invisible:
decimals = [_afterpoint(_strip_invisible(s)) for s in strings]
else:
decimals = [_afterpoint(s) for s in strings]
maxdecimals = max(decimals)
strings = [s + (maxdecimals - decs) * " "
for s, decs in zip(strings, decimals)]
padfn = _padleft
elif not alignment:
padfn = _padnone
else:
if not PRESERVE_WHITESPACE:
strings = [s.strip() for s in strings]
padfn = _padright
return strings, padfn | anlambert/tulip | [
2,
1,
2,
1,
1486498884
] |
def _more_generic(type1, type2):
types = {_none_type: 0,
_bool_type: 1,
int: 2,
float: 3,
_binary_type: 4,
_text_type: 5}
invtypes = {5: _text_type,
4: _binary_type,
3: float,
2: int,
1: _bool_type,
0: _none_type}
moregeneric = max(types.get(type1, 5), types.get(type2, 5))
return invtypes[moregeneric] | anlambert/tulip | [
2,
1,
2,
1,
1486498884
] |
def _format(val, valtype, floatfmt, missingval="", has_invisible=True):
"""Format a value according to its type.
Unicode is supported:
>>> hrow = ['\u0431\u0443\u043a\u0432\u0430', '\u0446\u0438\u0444\u0440\u0430'] ; \
tbl = [['\u0430\u0437', 2], ['\u0431\u0443\u043a\u0438', 4]] ; \
good_result = '\\u0431\\u0443\\u043a\\u0432\\u0430 \\u0446\\u0438\\u0444\\u0440\\u0430\\n------- -------\\n\\u0430\\u0437 2\\n\\u0431\\u0443\\u043a\\u0438 4' ; \
tabulate(tbl, headers=hrow) == good_result
True
""" # noqa
if val is None:
return missingval
if valtype in [int, _text_type]:
return "{0}".format(val)
elif valtype is _binary_type:
try:
return _text_type(val, "ascii")
except TypeError:
return _text_type(val)
elif valtype is float:
is_a_colored_number = (has_invisible and
isinstance(val, (_text_type, _binary_type)))
if is_a_colored_number:
raw_val = _strip_invisible(val)
formatted_val = format(float(raw_val), floatfmt)
return val.replace(raw_val, formatted_val)
else:
return format(float(val), floatfmt)
else:
return "{0}".format(val) | anlambert/tulip | [
2,
1,
2,
1,
1486498884
] |
def _prepend_row_index(rows, index):
"""Add a left-most index column."""
if index is None or index is False:
return rows
if len(index) != len(rows):
print('index=', index)
print('rows=', rows)
raise ValueError('index must be as long as the number of data rows')
rows = [[v]+list(row) for v, row in zip(index, rows)]
return rows | anlambert/tulip | [
2,
1,
2,
1,
1486498884
] |
def _normalize_tabular_data(tabular_data, headers, showindex="default"):
"""Transform a supported data type to a list of lists, and a list of headers.
Supported tabular data types:
* list-of-lists or another iterable of iterables
* list of named tuples (usually used with headers="keys")
* list of dicts (usually used with headers="keys")
* list of OrderedDicts (usually used with headers="keys")
* 2D NumPy arrays
* NumPy record arrays (usually used with headers="keys")
* dict of iterables (usually used with headers="keys")
* pandas.DataFrame (usually used with headers="keys")
The first row can be used as headers if headers="firstrow",
column indices can be used as headers if headers="keys".
If showindex="default", show row indices of the pandas.DataFrame.
If showindex="always", show row indices for all types of data.
If showindex="never", don't show row indices for all types of data.
If showindex is an iterable, show its values as row indices.
"""
try:
bool(headers)
except ValueError: # numpy.ndarray, pandas.core.index.Index, ...
headers = list(headers)
index = None
if hasattr(tabular_data, "keys") and hasattr(tabular_data, "values"):
# dict-like and pandas.DataFrame?
if hasattr(tabular_data.values, "__call__"):
# likely a conventional dict
keys = tabular_data.keys()
# columns have to be transposed
rows = list(izip_longest(*tabular_data.values()))
elif hasattr(tabular_data, "index"):
# values is a property, has .index => it's likely a
# pandas.DataFrame (pandas 0.11.0)
keys = list(tabular_data)
if tabular_data.index.name is not None:
if isinstance(tabular_data.index.name, list):
keys[:0] = tabular_data.index.name
else:
keys[:0] = [tabular_data.index.name]
# values matrix doesn't need to be transposed
vals = tabular_data.values
# for DataFrames add an index per default
index = list(tabular_data.index)
rows = [list(row) for row in vals]
else:
raise ValueError(
"tabular data doesn't appear to be a dict or a DataFrame")
if headers == "keys":
headers = list(map(_text_type, keys)) # headers should be strings
else: # it's a usual an iterable of iterables, or a NumPy array
rows = list(tabular_data)
if (headers == "keys" and not rows):
# an empty table (issue #81)
headers = []
elif (headers == "keys" and
hasattr(tabular_data, "dtype") and
getattr(tabular_data.dtype, "names")):
# numpy record array
headers = tabular_data.dtype.names
elif (headers == "keys"
and len(rows) > 0
and isinstance(rows[0], tuple)
and hasattr(rows[0], "_fields")):
# namedtuple
headers = list(map(_text_type, rows[0]._fields))
elif (len(rows) > 0
and isinstance(rows[0], dict)):
# dict or OrderedDict
uniq_keys = set() # implements hashed lookup
keys = [] # storage for set
if headers == "firstrow":
firstdict = rows[0] if len(rows) > 0 else {}
keys.extend(firstdict.keys())
uniq_keys.update(keys)
rows = rows[1:]
for row in rows:
for k in row.keys():
# Save unique items in input order
if k not in uniq_keys:
keys.append(k)
uniq_keys.add(k)
if headers == 'keys':
headers = keys
elif isinstance(headers, dict):
# a dict of headers for a list of dicts
headers = [headers.get(k, k) for k in keys]
headers = list(map(_text_type, headers))
elif headers == "firstrow":
if len(rows) > 0:
headers = [firstdict.get(k, k) for k in keys]
headers = list(map(_text_type, headers))
else:
headers = []
elif headers:
raise ValueError(
'headers for a list of dicts is not a dict or a keyword')
rows = [[row.get(k) for k in keys] for row in rows]
elif (headers == "keys"
and hasattr(tabular_data, "description")
and hasattr(tabular_data, "fetchone")
and hasattr(tabular_data, "rowcount")):
# Python Database API cursor object (PEP 0249)
# print tabulate(cursor, headers='keys')
headers = [column[0] for column in tabular_data.description]
elif headers == "keys" and len(rows) > 0:
# keys are column indices
headers = list(map(_text_type, range(len(rows[0]))))
# take headers from the first row if necessary
if headers == "firstrow" and len(rows) > 0:
if index is not None:
headers = [index[0]] + list(rows[0])
index = index[1:]
else:
headers = rows[0]
headers = list(map(_text_type, headers)) # headers should be strings
rows = rows[1:]
headers = list(map(_text_type, headers))
rows = list(map(list, rows))
# add or remove an index column
showindex_is_a_str = type(showindex) in [_text_type, _binary_type]
if showindex == "default" and index is not None:
rows = _prepend_row_index(rows, index)
elif isinstance(showindex, Iterable) and not showindex_is_a_str:
rows = _prepend_row_index(rows, list(showindex))
elif showindex == "always" or (_bool(showindex) and
not showindex_is_a_str):
if index is None:
index = list(range(len(rows)))
rows = _prepend_row_index(rows, index)
elif showindex == "never" or (not _bool(showindex) and
not showindex_is_a_str):
pass
# pad with empty headers for initial columns if necessary
if headers and len(rows) > 0:
nhs = len(headers)
ncols = len(rows[0])
if nhs < ncols:
headers = [""]*(ncols - nhs) + headers
return rows, headers | anlambert/tulip | [
2,
1,
2,
1,
1486498884
] |
def _expand_numparse(disable_numparse, column_count):
"""
Return a list of bools of length `column_count` which indicates whether
number parsing should be used on each column.
If `disable_numparse` is a list of indices, each of those indices are
False, and everything else is True.
If `disable_numparse` is a bool, then the returned list is all the same.
"""
if isinstance(disable_numparse, Iterable):
numparses = [True] * column_count
for index in disable_numparse:
numparses[index] = False
return numparses
else:
return [not disable_numparse] * column_count | anlambert/tulip | [
2,
1,
2,
1,
1486498884
] |
def _build_simple_row(padded_cells, rowfmt):
"Format row according to DataRow format without padding."
begin, sep, end = rowfmt
return (begin + sep.join(padded_cells) + end).rstrip() | anlambert/tulip | [
2,
1,
2,
1,
1486498884
] |
def _append_basic_row(lines, padded_cells, colwidths, colaligns, rowfmt):
lines.append(_build_row(padded_cells, colwidths, colaligns, rowfmt))
return lines | anlambert/tulip | [
2,
1,
2,
1,
1486498884
] |
def _build_line(colwidths, colaligns, linefmt):
"Return a string which represents a horizontal line."
if not linefmt:
return None
if hasattr(linefmt, "__call__"):
return linefmt(colwidths, colaligns)
else:
begin, fill, sep, end = linefmt
cells = [fill*w for w in colwidths]
return _build_simple_row(cells, (begin, sep, end)) | anlambert/tulip | [
2,
1,
2,
1,
1486498884
] |
def _format_table(fmt, headers, rows, colwidths, colaligns, is_multiline):
"""Produce a plain-text representation of the table."""
lines = []
hidden = fmt.with_header_hide if (headers and fmt.with_header_hide) else []
pad = fmt.padding
headerrow = fmt.headerrow
padded_widths = [(w + 2*pad) for w in colwidths]
if is_multiline:
# do it later, in _append_multiline_row
pad_row = lambda row, _: row # noqa
append_row = partial(_append_multiline_row, pad=pad)
else:
pad_row = _pad_row
append_row = _append_basic_row
padded_headers = pad_row(headers, pad)
padded_rows = [pad_row(row, pad) for row in rows]
if fmt.lineabove and "lineabove" not in hidden:
_append_line(lines, padded_widths, colaligns, fmt.lineabove)
if padded_headers:
append_row(lines, padded_headers, padded_widths, colaligns, headerrow)
if fmt.linebelowheader and "linebelowheader" not in hidden:
_append_line(lines, padded_widths, colaligns, fmt.linebelowheader)
if padded_rows and fmt.linebetweenrows and "linebetweenrows" not in hidden:
# initial rows with a line below
for row in padded_rows[:-1]:
append_row(lines, row, padded_widths, colaligns, fmt.datarow)
_append_line(lines, padded_widths, colaligns, fmt.linebetweenrows)
# the last row without a line below
append_row(lines, padded_rows[-1], padded_widths, colaligns,
fmt.datarow)
else:
for row in padded_rows:
append_row(lines, row, padded_widths, colaligns, fmt.datarow)
if fmt.linebelow and "linebelow" not in hidden:
_append_line(lines, padded_widths, colaligns, fmt.linebelow)
if headers or rows:
return "\n".join(lines)
else: # a completely empty table
return "" | anlambert/tulip | [
2,
1,
2,
1,
1486498884
] |
def _pprint_file(fobject, headers, tablefmt, sep, floatfmt, file, colalign):
rows = fobject.readlines()
table = [re.split(sep, r.rstrip()) for r in rows if r.strip()]
print(tabulate(table, headers, tablefmt, floatfmt=floatfmt,
colalign=colalign), file=file) | anlambert/tulip | [
2,
1,
2,
1,
1486498884
] |
def parallelCCompile(self, sources, output_dir=None, macros=None, include_dirs=None, debug=0, extra_preargs=None, extra_postargs=None, depends=None):
# those lines are copied from distutils.ccompiler.CCompiler directly
macros, objects, extra_postargs, pp_opts, build = self._setup_compile(output_dir, macros, include_dirs, sources, depends, extra_postargs)
cc_args = self._get_cc_args(pp_opts, debug, extra_preargs)
# parallel code | peter-ch/MultiNEAT | [
319,
101,
319,
32,
1344853505
] |
def _single_compile(obj):
try: src, ext = build[obj]
except KeyError: return
self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts) | peter-ch/MultiNEAT | [
319,
101,
319,
32,
1344853505
] |
def getExtensions():
platform = sys.platform
extensionsList = []
sources = ['src/Genome.cpp',
'src/Innovation.cpp',
'src/NeuralNetwork.cpp',
'src/Parameters.cpp',
'src/PhenotypeBehavior.cpp',
'src/Population.cpp',
'src/Random.cpp',
'src/Species.cpp',
'src/Substrate.cpp',
'src/Utils.cpp']
extra = ['-march=native',
'-mtune=native',
'-g',
]
if platform == 'darwin':
extra += ['-stdlib=libc++',
'-std=c++11',]
else:
extra += ['-std=gnu++11']
is_windows = 'win' in platform and platform != 'darwin'
if is_windows:
extra.append('/EHsc')
else:
extra.append('-w')
prefix = os.getenv('PREFIX')
if prefix and len(prefix) > 0:
extra += ["-I{}/include".format(prefix)]
build_sys = os.getenv('MN_BUILD')
if build_sys is None:
if os.path.exists('_MultiNEAT.cpp'):
sources.insert(0, '_MultiNEAT.cpp')
extra.append('-O3')
extensionsList.extend([Extension('MultiNEAT._MultiNEAT',
sources,
extra_compile_args=extra)],
)
else:
print('Source file is missing and MN_BUILD environment variable is not set.\n'
'Specify either \'cython\' or \'boost\'. Example to build in Linux with Cython:\n'
'\t$ export MN_BUILD=cython')
exit(1)
elif build_sys == 'cython':
from Cython.Build import cythonize
sources.insert(0, '_MultiNEAT.pyx')
extra.append('-O3')
extensionsList.extend(cythonize([Extension('MultiNEAT._MultiNEAT',
sources,
extra_compile_args=extra)],
))
elif build_sys == 'boost':
is_python_2 = sys.version_info[0] < 3
sources.insert(0, 'src/PythonBindings.cpp')
if is_windows:
if is_python_2:
raise RuntimeError("Python prior to version 3 is not supported on Windows due to limits of VC++ compiler version")
libs = ['boost_system', 'boost_serialization']
if is_python_2:
libs += ['boost_python', "boost_numpy"]
else:
# with boost 1.67 you need boost_python3x and boost_numpy3x where x is python version 3.x
libs += ['boost_python36', "boost_numpy36"] # in Ubuntu 14 there is only 'boost_python-py34'
# for Windows with mingw
# libraries= ['libboost_python-mgw48-mt-1_58',
# 'libboost_serialization-mgw48-mt-1_58'],
# include_dirs = ['C:/MinGW/include', 'C:/Users/Peter/Desktop/boost_1_58_0'],
# library_dirs = ['C:/MinGW/lib', 'C:/Users/Peter/Desktop/boost_1_58_0/stage/lib'],
extra.extend(['-DUSE_BOOST_PYTHON', '-DUSE_BOOST_RANDOM', #'-O0',
#'-DVDEBUG',
])
exx = Extension('MultiNEAT._MultiNEAT',
sources,
libraries=libs,
extra_compile_args=extra)
print(dir(exx))
print(exx)
print(exx.extra_compile_args)
extensionsList.append(exx)
else:
raise AttributeError('Unknown tool: {}'.format(build_sys))
return extensionsList | peter-ch/MultiNEAT | [
319,
101,
319,
32,
1344853505
] |
def __init__(self, config=None, args=None):
# Init
self.config = config
self.args = args
# Init windows positions
self.term_w = 80
self.term_h = 24
# Space between stats
self.space_between_column = 3
self.space_between_line = 2
# Init the curses screen
self.screen = curses.initscr()
if not self.screen:
logger.critical("Cannot init the curses library.\n")
sys.exit(1)
# Load the 'outputs' section of the configuration file
# - Init the theme (default is black)
self.theme = {'name': 'black'}
# Load configuration file
self.load_config(config)
# Init cursor
self._init_cursor()
# Init the colors
self._init_colors()
# Init main window
self.term_window = self.screen.subwin(0, 0)
# Init edit filter tag
self.edit_filter = False
# Init kill process tag
self.kill_process = False
# Init the process min/max reset
self.args.reset_minmax_tag = False
# Init cursor
self.args.cursor_position = 0
# Catch key pressed with non blocking mode
self.term_window.keypad(1)
self.term_window.nodelay(1)
self.pressedkey = -1
# History tag
self._init_history() | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def is_theme(self, name):
"""Return True if the theme *name* should be used."""
return getattr(self.args, 'theme_' + name) or self.theme['name'] == name | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def _init_cursor(self):
"""Init cursors."""
if hasattr(curses, 'noecho'):
curses.noecho()
if hasattr(curses, 'cbreak'):
curses.cbreak()
self.set_cursor(0) | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def set_cursor(self, value):
"""Configure the curse cursor appearance.
0: invisible
1: visible
2: very visible
"""
if hasattr(curses, 'curs_set'):
try:
curses.curs_set(value)
except Exception:
pass | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def __catch_key(self, return_to_browser=False):
# Catch the pressed key
self.pressedkey = self.get_key(self.term_window)
if self.pressedkey == -1:
return -1
# Actions (available in the global hotkey dict)...
logger.debug("Keypressed (code: {})".format(self.pressedkey))
for hotkey in self._hotkeys:
if self.pressedkey == ord(hotkey) and 'switch' in self._hotkeys[hotkey]:
# Get the option name
# Ex: disable_foo return foo
# enable_foo_bar return foo_bar
option = '_'.join(self._hotkeys[hotkey]['switch'].split('_')[1:])
if self._hotkeys[hotkey]['switch'].startswith('disable_'):
# disable_ switch
if getattr(self.args, self._hotkeys[hotkey]['switch']):
enable(self.args, option)
else:
disable(self.args, option)
elif self._hotkeys[hotkey]['switch'].startswith('enable_'):
# enable_ switch
if getattr(self.args, self._hotkeys[hotkey]['switch']):
disable(self.args, option)
else:
enable(self.args, option)
else:
# Others switchs options (with no enable_ or disable_)
setattr(
self.args,
self._hotkeys[hotkey]['switch'],
not getattr(self.args, self._hotkeys[hotkey]['switch']),
)
if self.pressedkey == ord(hotkey) and 'sort_key' in self._hotkeys[hotkey]:
glances_processes.set_sort_key(
self._hotkeys[hotkey]['sort_key'], self._hotkeys[hotkey]['sort_key'] == 'auto'
)
# Other actions...
if self.pressedkey == ord('\n'):
# 'ENTER' > Edit the process filter
self.edit_filter = not self.edit_filter
elif self.pressedkey == ord('4'):
# '4' > Enable or disable quicklook
self.args.full_quicklook = not self.args.full_quicklook
if self.args.full_quicklook:
self.enable_fullquicklook()
else:
self.disable_fullquicklook()
elif self.pressedkey == ord('5'):
# '5' > Enable or disable top menu
self.args.disable_top = not self.args.disable_top
if self.args.disable_top:
self.disable_top()
else:
self.enable_top()
elif self.pressedkey == ord('9'):
# '9' > Theme from black to white and reverse
self._init_colors()
elif self.pressedkey == ord('e'):
# 'e' > Enable/Disable process extended
self.args.enable_process_extended = not self.args.enable_process_extended
if not self.args.enable_process_extended:
glances_processes.disable_extended()
else:
glances_processes.enable_extended()
elif self.pressedkey == ord('E'):
# 'E' > Erase the process filter
glances_processes.process_filter = None
elif self.pressedkey == ord('f'):
# 'f' > Show/hide fs / folder stats
self.args.disable_fs = not self.args.disable_fs
self.args.disable_folders = not self.args.disable_folders
elif self.pressedkey == ord('k'):
# 'k' > Kill selected process (after confirmation)
self.kill_process = not self.kill_process
elif self.pressedkey == ord('w'):
# 'w' > Delete finished warning logs
glances_events.clean()
elif self.pressedkey == ord('x'):
# 'x' > Delete finished warning and critical logs
glances_events.clean(critical=True)
elif self.pressedkey == ord('z'):
# 'z' > Enable or disable processes
self.args.disable_process = not self.args.disable_process
if self.args.disable_process:
glances_processes.disable()
else:
glances_processes.enable()
elif self.pressedkey == curses.KEY_LEFT:
# "<" (left arrow) navigation through process sort
next_sort = (self.loop_position() - 1) % len(self._sort_loop)
glances_processes.set_sort_key(self._sort_loop[next_sort], False)
elif self.pressedkey == curses.KEY_RIGHT:
# ">" (right arrow) navigation through process sort
next_sort = (self.loop_position() + 1) % len(self._sort_loop)
glances_processes.set_sort_key(self._sort_loop[next_sort], False)
elif self.pressedkey == curses.KEY_UP or self.pressedkey == 65:
# 'UP' > Up in the server list
if self.args.cursor_position > 0:
self.args.cursor_position -= 1
elif self.pressedkey == curses.KEY_DOWN or self.pressedkey == 66:
# 'DOWN' > Down in the server list
# if self.args.cursor_position < glances_processes.max_processes - 2:
if self.args.cursor_position < glances_processes.processes_count:
self.args.cursor_position += 1
elif self.pressedkey == ord('\x1b') or self.pressedkey == ord('q'):
# 'ESC'|'q' > Quit
if return_to_browser:
logger.info("Stop Glances client and return to the browser")
else:
logger.info("Stop Glances (keypressed: {})".format(self.pressedkey))
elif self.pressedkey == curses.KEY_F5:
# "F5" manual refresh requested
pass
# Return the key code
return self.pressedkey | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def disable_top(self):
"""Disable the top panel"""
for p in ['quicklook', 'cpu', 'gpu', 'mem', 'memswap', 'load']:
setattr(self.args, 'disable_' + p, True) | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def disable_fullquicklook(self):
"""Disable the full quicklook mode"""
for p in ['quicklook', 'cpu', 'gpu', 'mem', 'memswap']:
setattr(self.args, 'disable_' + p, False) | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def end(self):
"""Shutdown the curses window."""
if hasattr(curses, 'echo'):
curses.echo()
if hasattr(curses, 'nocbreak'):
curses.nocbreak()
if hasattr(curses, 'curs_set'):
try:
curses.curs_set(1)
except Exception:
pass
curses.endwin() | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def init_line(self):
"""Init the line position for the curses interface."""
self.line = 0
self.next_line = 0 | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def new_line(self, separator=False):
"""New line in the curses interface."""
self.line = self.next_line | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def separator_line(self, color='TITLE'):
"""New separator line in the curses interface."""
if not self.args.enable_separator:
return
self.new_line()
self.line -= 1
line_width = self.term_window.getmaxyx()[1] - self.column
self.term_window.addnstr(self.line, self.column,
unicode_message('MEDIUM_LINE', self.args) * line_width,
line_width,
self.colors_list[color]) | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def display(self, stats, cs_status=None):
"""Display stats on the screen.
:param stats: Stats database to display
:param cs_status:
"None": standalone or server mode
"Connected": Client is connected to a Glances server
"SNMP": Client is connected to a SNMP server
"Disconnected": Client is disconnected from the server
:return: True if the stats have been displayed else False if the help have been displayed
"""
# Init the internal line/column for Glances Curses
self.init_line_column()
# Update the stats messages
###########################
# Get all the plugins but quicklook and process list
self.args.cs_status = cs_status
__stat_display = self.__get_stat_display(stats, layer=cs_status)
# Adapt number of processes to the available space
max_processes_displayed = (
self.term_window.getmaxyx()[0]
- 11
- (0 if 'docker' not in __stat_display else self.get_stats_display_height(__stat_display["docker"]))
- (
0
if 'processcount' not in __stat_display
else self.get_stats_display_height(__stat_display["processcount"])
)
- (0 if 'amps' not in __stat_display else self.get_stats_display_height(__stat_display["amps"]))
- (0 if 'alert' not in __stat_display else self.get_stats_display_height(__stat_display["alert"]))
)
try:
if self.args.enable_process_extended:
max_processes_displayed -= 4
except AttributeError:
pass
if max_processes_displayed < 0:
max_processes_displayed = 0
if glances_processes.max_processes is None or glances_processes.max_processes != max_processes_displayed:
logger.debug("Set number of displayed processes to {}".format(max_processes_displayed))
glances_processes.max_processes = max_processes_displayed
# Get the processlist
__stat_display["processlist"] = stats.get_plugin('processlist').get_stats_display(args=self.args)
# Display the stats on the curses interface
###########################################
# Help screen (on top of the other stats)
if self.args.help_tag:
# Display the stats...
self.display_plugin(stats.get_plugin('help').get_stats_display(args=self.args))
# ... and exit
return False
# =====================================
# Display first line (system+ip+uptime)
# Optionally: Cloud on second line
# =====================================
self.__display_header(__stat_display)
self.separator_line()
# ==============================================================
# Display second line (<SUMMARY>+CPU|PERCPU+<GPU>+LOAD+MEM+SWAP)
# ==============================================================
self.__display_top(__stat_display, stats)
self.init_column()
self.separator_line()
# ==================================================================
# Display left sidebar (NETWORK+PORTS+DISKIO+FS+SENSORS+Current time)
# ==================================================================
self.__display_left(__stat_display)
# ====================================
# Display right stats (process and co)
# ====================================
self.__display_right(__stat_display)
# =====================
# Others popup messages
# =====================
# Display edit filter popup
# Only in standalone mode (cs_status is None)
if self.edit_filter and cs_status is None:
new_filter = self.display_popup(
'Process filter pattern: \n\n'
+ 'Examples:\n'
+ '- python\n'
+ '- .*python.*\n'
+ '- /usr/lib.*\n'
+ '- name:.*nautilus.*\n'
+ '- cmdline:.*glances.*\n'
+ '- username:nicolargo\n'
+ '- username:^root ',
popup_type='input',
input_value=glances_processes.process_filter_input,
)
glances_processes.process_filter = new_filter
elif self.edit_filter and cs_status is not None:
self.display_popup('Process filter only available in standalone mode')
self.edit_filter = False
# Display kill process confirmation popup
# Only in standalone mode (cs_status is None)
if self.kill_process and cs_status is None:
selected_process_raw = stats.get_plugin('processlist').get_raw()[self.args.cursor_position]
confirm = self.display_popup(
'Kill process: {} (pid: {}) ?\n\nConfirm ([y]es/[n]o): '.format(
selected_process_raw['name'], selected_process_raw['pid']
),
popup_type='yesno',
)
if confirm.lower().startswith('y'):
try:
ret_kill = glances_processes.kill(selected_process_raw['pid'])
except Exception as e:
logger.error('Can not kill process {} ({})'.format(selected_process_raw['name'], e))
else:
logger.info(
'Kill signal has been sent to process {} (return code: {})'.format(
selected_process_raw['name'], ret_kill
)
)
elif self.kill_process and cs_status is not None:
self.display_popup('Kill process only available in standalone mode')
self.kill_process = False
# Display graph generation popup
if self.args.generate_graph:
self.display_popup('Generate graph in {}'.format(self.args.export_graph_path))
return True | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def __display_top(self, stat_display, stats):
"""Display the second line in the Curses interface.
<QUICKLOOK> + CPU|PERCPU + <GPU> + MEM + SWAP + LOAD
"""
self.init_column()
self.new_line()
# Init quicklook
stat_display['quicklook'] = {'msgdict': []}
# Dict for plugins width
plugin_widths = {}
for p in self._top:
plugin_widths[p] = (
self.get_stats_display_width(stat_display.get(p, 0)) if hasattr(self.args, 'disable_' + p) else 0
)
# Width of all plugins
stats_width = sum(itervalues(plugin_widths))
# Number of plugin but quicklook
stats_number = sum(
[int(stat_display[p]['msgdict'] != []) for p in self._top if not getattr(self.args, 'disable_' + p)]
)
if not self.args.disable_quicklook:
# Quick look is in the place !
if self.args.full_quicklook:
quicklook_width = self.term_window.getmaxyx()[1] - (
stats_width + 8 + stats_number * self.space_between_column
)
else:
quicklook_width = min(
self.term_window.getmaxyx()[1] - (stats_width + 8 + stats_number * self.space_between_column),
self._quicklook_max_width - 5,
)
try:
stat_display["quicklook"] = stats.get_plugin('quicklook').get_stats_display(
max_width=quicklook_width, args=self.args
)
except AttributeError as e:
logger.debug("Quicklook plugin not available (%s)" % e)
else:
plugin_widths['quicklook'] = self.get_stats_display_width(stat_display["quicklook"])
stats_width = sum(itervalues(plugin_widths)) + 1
self.space_between_column = 1
self.display_plugin(stat_display["quicklook"])
self.new_column()
# Compute spaces between plugins
# Note: Only one space between Quicklook and others
plugin_display_optional = {}
for p in self._top:
plugin_display_optional[p] = True
if stats_number > 1:
self.space_between_column = max(1, int((self.term_window.getmaxyx()[1] - stats_width) / (stats_number - 1)))
for p in ['mem', 'cpu']:
# No space ? Remove optional stats
if self.space_between_column < 3:
plugin_display_optional[p] = False
plugin_widths[p] = (
self.get_stats_display_width(stat_display[p], without_option=True)
if hasattr(self.args, 'disable_' + p)
else 0
)
stats_width = sum(itervalues(plugin_widths)) + 1
self.space_between_column = max(
1, int((self.term_window.getmaxyx()[1] - stats_width) / (stats_number - 1))
)
else:
self.space_between_column = 0
# Display CPU, MEM, SWAP and LOAD
for p in self._top:
if p == 'quicklook':
continue
if p in stat_display:
self.display_plugin(stat_display[p], display_optional=plugin_display_optional[p])
if p != 'load':
# Skip last column
self.new_column()
# Space between column
self.space_between_column = 3
# Backup line position
self.saved_line = self.next_line | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def __display_right(self, stat_display):
"""Display the right sidebar in the Curses interface.
docker + processcount + amps + processlist + alert
"""
# Do not display anything if space is not available...
if self.term_window.getmaxyx()[1] < self._left_sidebar_min_width:
return
# Restore line position
self.next_line = self.saved_line
# Display right sidebar
self.new_column()
for p in self._right_sidebar:
if (hasattr(self.args, 'enable_' + p) or hasattr(self.args, 'disable_' + p)) and p in stat_display:
if p not in p:
# Catch for issue #1470
continue
self.new_line()
if p == 'processlist':
self.display_plugin(
stat_display['processlist'],
display_optional=(self.term_window.getmaxyx()[1] > 102),
display_additional=(not MACOS),
max_y=(
self.term_window.getmaxyx()[0] - self.get_stats_display_height(stat_display['alert']) - 2
),
)
else:
self.display_plugin(stat_display[p]) | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def display_plugin(self, plugin_stats, display_optional=True, display_additional=True, max_y=65535, add_space=0):
"""Display the plugin_stats on the screen.
:param plugin_stats:
:param display_optional: display the optional stats if True
:param display_additional: display additional stats if True
:param max_y: do not display line > max_y
:param add_space: add x space (line) after the plugin
"""
# Exit if:
# - the plugin_stats message is empty
# - the display tag = False
if plugin_stats is None or not plugin_stats['msgdict'] or not plugin_stats['display']:
# Exit
return 0
# Get the screen size
screen_x = self.term_window.getmaxyx()[1]
screen_y = self.term_window.getmaxyx()[0]
# Set the upper/left position of the message
if plugin_stats['align'] == 'right':
# Right align (last column)
display_x = screen_x - self.get_stats_display_width(plugin_stats)
else:
display_x = self.column
if plugin_stats['align'] == 'bottom':
# Bottom (last line)
display_y = screen_y - self.get_stats_display_height(plugin_stats)
else:
display_y = self.line
# Display
x = display_x
x_max = x
y = display_y
for m in plugin_stats['msgdict']:
# New line
try:
if m['msg'].startswith('\n'):
# Go to the next line
y += 1
# Return to the first column
x = display_x
continue
except:
# Avoid exception (see issue #1692)
pass
# Do not display outside the screen
if x < 0:
continue
if not m['splittable'] and (x + len(m['msg']) > screen_x):
continue
if y < 0 or (y + 1 > screen_y) or (y > max_y):
break
# If display_optional = False do not display optional stats
if not display_optional and m['optional']:
continue
# If display_additional = False do not display additional stats
if not display_additional and m['additional']:
continue
# Is it possible to display the stat with the current screen size
# !!! Crash if not try/except... Why ???
try:
self.term_window.addnstr(
y,
x,
m['msg'],
# Do not display outside the screen
screen_x - x,
self.colors_list[m['decoration']],
)
except Exception:
pass
else:
# New column
# Python 2: we need to decode to get real screen size because
# UTF-8 special tree chars occupy several bytes.
# Python 3: strings are strings and bytes are bytes, all is
# good.
try:
x += len(u(m['msg']))
except UnicodeDecodeError:
# Quick and dirty hack for issue #745
pass
if x > x_max:
x_max = x
# Compute the next Glances column/line position
self.next_column = max(self.next_column, x_max + self.space_between_column)
self.next_line = max(self.next_line, y + self.space_between_line)
# Have empty lines after the plugins
self.next_line += add_space | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def flush(self, stats, cs_status=None):
"""Clear and update the screen.
:param stats: Stats database to display
:param cs_status:
"None": standalone or server mode
"Connected": Client is connected to the server
"Disconnected": Client is disconnected from the server
"""
self.erase()
self.display(stats, cs_status=cs_status) | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def wait(self, delay=100):
"""Wait delay in ms"""
curses.napms(100) | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def get_stats_display_height(self, curse_msg):
"""Return the height of the formatted curses message.
The height is defined by the number of '\n' (new line).
"""
try:
c = [i['msg'] for i in curse_msg['msgdict']].count('\n')
except Exception as e:
logger.debug('ERROR: Can not compute plugin height ({})'.format(e))
return 0
else:
return c + 1 | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def __init__(self, *args, **kwargs):
super(GlancesTextbox, self).__init__(*args, **kwargs) | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def __init__(self, *args, **kwargs):
super(GlancesTextboxYesNo, self).__init__(*args, **kwargs) | nicolargo/glances | [
22397,
1365,
22397,
239,
1322988555
] |
def forwards(self, orm):
# Adding model 'Category'
db.create_table(u'core_category', (
(u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)),
('title', self.gf('django.db.models.fields.CharField')(max_length=75)),
))
db.send_create_signal(u'core', ['Category'])
# Adding model 'Source'
db.create_table(u'core_source', (
(u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)),
('type', self.gf('django.db.models.fields.CharField')(max_length=20)),
('title', self.gf('django.db.models.fields.CharField')(max_length=75)),
('author', self.gf('django.db.models.fields.CharField')(max_length=75)),
('year_published', self.gf('django.db.models.fields.PositiveIntegerField')()),
('more_info', self.gf('django.db.models.fields.URLField')(max_length=200, blank=True)),
('series_season', self.gf('django.db.models.fields.PositiveIntegerField')()),
('series_episode', self.gf('django.db.models.fields.PositiveIntegerField')()),
('description_E', self.gf('django.db.models.fields.TextField')(max_length=300)),
('description_D', self.gf('django.db.models.fields.TextField')(max_length=300)),
('image', self.gf('django.db.models.fields.files.ImageField')(max_length=100, blank=True)),
('image_credit', self.gf('django.db.models.fields.CharField')(max_length=75, blank=True)),
))
db.send_create_signal(u'core', ['Source'])
# Adding model 'Prediction'
db.create_table(u'core_prediction', (
(u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)),
('source', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['core.Source'])),
('category', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['core.Category'])),
('description_E', self.gf('django.db.models.fields.TextField')(max_length=300)),
('description_D', self.gf('django.db.models.fields.TextField')(max_length=300)),
('year_predicted', self.gf('django.db.models.fields.PositiveIntegerField')()),
('more_info', self.gf('django.db.models.fields.URLField')(max_length=200, blank=True)),
('headline_E', self.gf('django.db.models.fields.TextField')(max_length=300)),
('headline_D', self.gf('django.db.models.fields.TextField')(max_length=300)),
('image', self.gf('django.db.models.fields.files.ImageField')(max_length=100, blank=True)),
('image_credit', self.gf('django.db.models.fields.CharField')(max_length=75, blank=True)),
('username', self.gf('django.db.models.fields.CharField')(max_length=75)),
('creation_date', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)),
('edition_date', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)),
('published', self.gf('django.db.models.fields.BooleanField')(default=False)),
))
db.send_create_signal(u'core', ['Prediction'])
# Adding model 'Realisation'
db.create_table(u'core_realisation', (
(u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)),
('prediction', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['core.Prediction'])),
('description_E', self.gf('django.db.models.fields.TextField')(max_length=300)),
('description_D', self.gf('django.db.models.fields.TextField')(max_length=300)),
('year_introduced', self.gf('django.db.models.fields.PositiveIntegerField')()),
('more_info', self.gf('django.db.models.fields.URLField')(max_length=200, blank=True)),
('image', self.gf('django.db.models.fields.files.ImageField')(max_length=100, blank=True)),
('image_credit', self.gf('django.db.models.fields.CharField')(max_length=75, blank=True)),
('creation_date', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)),
('edition_date', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)),
('published', self.gf('django.db.models.fields.BooleanField')(default=False)),
))
db.send_create_signal(u'core', ['Realisation']) | jplusplus/dystopia-tracker | [
22,
1,
22,
15,
1395838587
] |
def compute_q_noisy_max(counts, noise_eps):
"""returns ~ Pr[outcome != winner].
Args:
counts: a list of scores
noise_eps: privacy parameter for noisy_max
Returns:
q: the probability that outcome is different from true winner.
"""
# For noisy max, we only get an upper bound.
# Pr[ j beats i*] \leq (2+gap(j,i*))/ 4 exp(gap(j,i*)
# proof at http://mathoverflow.net/questions/66763/
# tight-bounds-on-probability-of-sum-of-laplace-random-variables
winner = np.argmax(counts)
counts_normalized = noise_eps * (counts - counts[winner])
counts_rest = np.array(
[counts_normalized[i] for i in xrange(len(counts)) if i != winner])
q = 0.0
for c in counts_rest:
gap = -c
q += (gap + 2.0) / (4.0 * math.exp(gap))
return min(q, 1.0 - (1.0/len(counts))) | cshallue/models | [
6,
3,
6,
1,
1473384593
] |
def logmgf_exact(q, priv_eps, l):
"""Computes the logmgf value given q and privacy eps.
The bound used is the min of three terms. The first term is from
https://arxiv.org/pdf/1605.02065.pdf.
The second term is based on the fact that when event has probability (1-q) for
q close to zero, q can only change by exp(eps), which corresponds to a
much smaller multiplicative change in (1-q)
The third term comes directly from the privacy guarantee.
Args:
q: pr of non-optimal outcome
priv_eps: eps parameter for DP
l: moment to compute.
Returns:
Upper bound on logmgf
"""
if q < 0.5:
t_one = (1-q) * math.pow((1-q) / (1 - math.exp(priv_eps) * q), l)
t_two = q * math.exp(priv_eps * l)
t = t_one + t_two
try:
log_t = math.log(t)
except ValueError:
print("Got ValueError in math.log for values :" + str((q, priv_eps, l, t)))
log_t = priv_eps * l
else:
log_t = priv_eps * l
return min(0.5 * priv_eps * priv_eps * l * (l + 1), log_t, priv_eps * l) | cshallue/models | [
6,
3,
6,
1,
1473384593
] |
def sens_at_k(counts, noise_eps, l, k):
"""Return sensitivity at distane k.
Args:
counts: an array of scores
noise_eps: noise parameter used
l: moment whose sensitivity is being computed
k: distance
Returns:
sensitivity: at distance k
"""
counts_sorted = sorted(counts, reverse=True)
if 0.5 * noise_eps * l > 1:
print("l too large to compute sensitivity")
return 0
# Now we can assume that at k, gap remains positive
# or we have reached the point where logmgf_exact is
# determined by the first term and ind of q.
if counts[0] < counts[1] + k:
return 0
counts_sorted[0] -= k
counts_sorted[1] += k
val = logmgf_from_counts(counts_sorted, noise_eps, l)
counts_sorted[0] -= 1
counts_sorted[1] += 1
val_changed = logmgf_from_counts(counts_sorted, noise_eps, l)
return val_changed - val | cshallue/models | [
6,
3,
6,
1,
1473384593
] |
def main(unused_argv):
##################################################################
# If we are reproducing results from paper https://arxiv.org/abs/1610.05755,
# download the required binaries with label information.
##################################################################
# Binaries for MNIST results
paper_binaries_mnist = \
["https://github.com/npapernot/multiple-teachers-for-privacy/blob/master/mnist_250_teachers_labels.npy?raw=true",
"https://github.com/npapernot/multiple-teachers-for-privacy/blob/master/mnist_250_teachers_100_indices_used_by_student.npy?raw=true"]
if FLAGS.counts_file == "mnist_250_teachers_labels.npy" \
or FLAGS.indices_file == "mnist_250_teachers_100_indices_used_by_student.npy":
maybe_download(paper_binaries_mnist, os.getcwd())
# Binaries for SVHN results
paper_binaries_svhn = ["https://github.com/npapernot/multiple-teachers-for-privacy/blob/master/svhn_250_teachers_labels.npy?raw=true"]
if FLAGS.counts_file == "svhn_250_teachers_labels.npy":
maybe_download(paper_binaries_svhn, os.getcwd())
input_mat = np.load(FLAGS.counts_file)
if FLAGS.input_is_counts:
counts_mat = input_mat
else:
# In this case, the input is the raw predictions. Transform
num_teachers, n = input_mat.shape
counts_mat = np.zeros((n, 10)).astype(np.int32)
for i in range(n):
for j in range(num_teachers):
counts_mat[i, int(input_mat[j, i])] += 1
n = counts_mat.shape[0]
num_examples = min(n, FLAGS.max_examples)
if not FLAGS.indices_file:
indices = np.array(range(num_examples))
else:
index_list = np.load(FLAGS.indices_file)
indices = index_list[:num_examples]
l_list = 1.0 + np.array(xrange(FLAGS.moments))
beta = FLAGS.beta
total_log_mgf_nm = np.array([0.0 for _ in l_list])
total_ss_nm = np.array([0.0 for _ in l_list])
noise_eps = FLAGS.noise_eps
for i in indices:
total_log_mgf_nm += np.array(
[logmgf_from_counts(counts_mat[i], noise_eps, l)
for l in l_list])
total_ss_nm += np.array(
[smoothed_sens(counts_mat[i], noise_eps, l, beta)
for l in l_list])
delta = FLAGS.delta
# We want delta = exp(alpha - eps l).
# Solving gives eps = (alpha - ln (delta))/l
eps_list_nm = (total_log_mgf_nm - math.log(delta)) / l_list
print("Epsilons (Noisy Max): " + str(eps_list_nm))
print("Smoothed sensitivities (Noisy Max): " + str(total_ss_nm / l_list))
# If beta < eps / 2 ln (1/delta), then adding noise Lap(1) * 2 SS/eps
# is eps,delta DP
# Also if beta < eps / 2(gamma +1), then adding noise 2(gamma+1) SS eta / eps
# where eta has density proportional to 1 / (1+|z|^gamma) is eps-DP
# Both from Corolloary 2.4 in
# http://www.cse.psu.edu/~ads22/pubs/NRS07/NRS07-full-draft-v1.pdf
# Print the first one's scale
ss_eps = 2.0 * beta * math.log(1/delta)
ss_scale = 2.0 / ss_eps
print("To get an " + str(ss_eps) + "-DP estimate of epsilon, ")
print("..add noise ~ " + str(ss_scale))
print("... times " + str(total_ss_nm / l_list))
print("Epsilon = " + str(min(eps_list_nm)) + ".")
if min(eps_list_nm) == eps_list_nm[-1]:
print("Warning: May not have used enough values of l")
# Data independent bound, as mechanism is
# 2*noise_eps DP.
data_ind_log_mgf = np.array([0.0 for _ in l_list])
data_ind_log_mgf += num_examples * np.array(
[logmgf_exact(1.0, 2.0 * noise_eps, l) for l in l_list])
data_ind_eps_list = (data_ind_log_mgf - math.log(delta)) / l_list
print("Data independent bound = " + str(min(data_ind_eps_list)) + ".")
return | cshallue/models | [
6,
3,
6,
1,
1473384593
] |
def random_uuid(x, cache=True):
import uuid
return str(uuid.uuid4()) | Parsl/parsl | [
369,
114,
369,
333,
1476980871
] |
def collect_activations(
model_path: str,
layers: List[str],
dataset: str,
data_format: str = None,
split: str = FULL,
batch_size: int = 128,
output_directory: str = 'results',
gpus: List[str] = None,
gpu_memory_limit: int =None,
allow_parallel_threads: bool = True,
backend: Union[Backend, str] = None,
debug: bool = False,
**kwargs | uber/ludwig | [
8787,
1030,
8787,
265,
1545955092
] |
def collect_weights(
model_path: str,
tensors: List[str],
output_directory: str = 'results',
debug: bool = False,
**kwargs | uber/ludwig | [
8787,
1030,
8787,
265,
1545955092
] |
def save_tensors(collected_tensors, output_directory):
filenames = []
for tensor_name, tensor_value in collected_tensors:
np_filename = os.path.join(
output_directory,
make_safe_filename(tensor_name) + '.npy'
)
np.save(np_filename, tensor_value.numpy())
filenames.append(np_filename)
return filenames | uber/ludwig | [
8787,
1030,
8787,
265,
1545955092
] |
def cli_collect_activations(sys_argv):
"""Command Line Interface to communicate with the collection of tensors and
there are several options that can specified when calling this function:
--data_csv: Filepath for the input csv
--data_hdf5: Filepath for the input hdf5 file, if there is a csv file, this
is not read
--d: Refers to the dataset type of the file being read, by default is
*generic*
--s: Refers to the split of the data, can be one of: train, test,
validation, full
--m: Input model that is necessary to collect to the tensors, this is a
required *option*
--t: Tensors to collect
--od: Output directory of the model, defaults to results
--bs: Batch size
--g: Number of gpus that are to be used
--gf: Fraction of each GPUs memory to use.
--dbg: Debug if the model is to be started with python debugger
--v: Verbose: Defines the logging level that the user will be exposed to
"""
parser = argparse.ArgumentParser(
description='This script loads a pretrained model and uses it collect '
'tensors for each datapoint in the dataset.',
prog='ludwig collect_activations',
usage='%(prog)s [options]')
# ---------------
# Data parameters
# ---------------
parser.add_argument(
'--dataset',
help='input data file path',
required=True
)
parser.add_argument(
'--data_format',
help='format of the input data',
default='auto',
choices=['auto', 'csv', 'excel', 'feather', 'fwf', 'hdf5',
'html' 'tables', 'json', 'jsonl', 'parquet', 'pickle', 'sas',
'spss', 'stata', 'tsv']
)
parser.add_argument(
'-s',
'--split',
default=FULL,
choices=[TRAINING, VALIDATION, TEST, FULL],
help='the split to obtain the model activations from'
)
# ----------------
# Model parameters
# ----------------
parser.add_argument(
'-m',
'--model_path',
help='model to load',
required=True
)
parser.add_argument(
'-lyr',
'--layers',
help='tensors to collect',
nargs='+',
required=True
)
# -------------------------
# Output results parameters
# -------------------------
parser.add_argument(
'-od',
'--output_directory',
type=str,
default='results',
help='directory that contains the results'
)
# ------------------
# Generic parameters
# ------------------
parser.add_argument(
'-bs',
'--batch_size',
type=int,
default=128,
help='size of batches'
)
# ------------------
# Runtime parameters
# ------------------
parser.add_argument(
'-g',
'--gpus',
type=int,
default=0,
help='list of gpu to use'
)
parser.add_argument(
'-gml',
'--gpu_memory_limit',
type=int,
default=None,
help='maximum memory in MB to allocate per GPU device'
)
parser.add_argument(
'-dpt',
'--disable_parallel_threads',
action='store_false',
dest='allow_parallel_threads',
help='disable TensorFlow from using multithreading for reproducibility'
)
parser.add_argument(
"-b",
"--backend",
help='specifies backend to use for parallel / distributed execution, '
'defaults to local execution or Horovod if called using horovodrun',
choices=ALL_BACKENDS,
)
parser.add_argument(
'-dbg',
'--debug',
action='store_true',
default=False,
help='enables debugging mode'
)
parser.add_argument(
'-l',
'--logging_level',
default='info',
help='the level of logging to use',
choices=['critical', 'error', 'warning', 'info', 'debug', 'notset']
)
args = parser.parse_args(sys_argv)
args.logging_level = logging_level_registry[args.logging_level]
logging.getLogger('ludwig').setLevel(
args.logging_level
)
global logger
logger = logging.getLogger('ludwig.collect')
print_ludwig('Collect Activations', LUDWIG_VERSION)
collect_activations(**vars(args)) | uber/ludwig | [
8787,
1030,
8787,
265,
1545955092
] |
def cli_collect_summary(sys_argv):
"""Command Line Interface to collecting a summary of the model layers and weights.
--m: Input model that is necessary to collect to the tensors, this is a
required *option*
--v: Verbose: Defines the logging level that the user will be exposed to
"""
parser = argparse.ArgumentParser(
description='This script loads a pretrained model '
'and prints names of weights and layers activations '
'to use with other collect commands',
prog='ludwig collect_summary',
usage='%(prog)s [options]'
)
# ----------------
# Model parameters
# ----------------
parser.add_argument(
'-m',
'--model_path',
help='model to load',
required=True
)
# ------------------
# Runtime parameters
# ------------------
parser.add_argument(
'-l',
'--logging_level',
default='info',
help='the level of logging to use',
choices=['critical', 'error', 'warning', 'info', 'debug', 'notset']
)
args = parser.parse_args(sys_argv)
args.logging_level = logging_level_registry[args.logging_level]
logging.getLogger('ludwig').setLevel(
args.logging_level
)
global logger
logger = logging.getLogger('ludwig.collect')
print_ludwig('Collect Summary', LUDWIG_VERSION)
print_model_summary(**vars(args)) | uber/ludwig | [
8787,
1030,
8787,
265,
1545955092
] |
def setup_loader(request):
setup_loader_modules = {pdbedit: {}}
with pytest.helpers.loader_mock(request, setup_loader_modules) as loader_mock:
yield loader_mock | saltstack/salt | [
13089,
5388,
13089,
3074,
1298233016
] |
def test_when_no_users_returned_no_data_should_be_returned(verbose):
expected_users = {} if verbose else []
with patch.dict(
pdbedit.__salt__,
{
"cmd.run_all": MagicMock(
return_value={"stdout": "", "stderr": "", "retcode": 0}
)
},
):
actual_users = pdbedit.list_users(verbose=verbose)
assert actual_users == expected_users | saltstack/salt | [
13089,
5388,
13089,
3074,
1298233016
] |
def test_when_verbose_and_single_good_output_expected_data_should_be_parsed():
expected_data = {
"roscivs": {
"unix username": "roscivs",
"nt username": "bottia",
"full name": "Roscivs Bottia",
"user sid": "42",
"primary group sid": "99",
"home directory": r"\\samba\roscivs",
"account desc": "separators! xxx so long and thanks for all the fish",
"logoff time": "Sat, 14 Aug 2010 15:06:39 UTC",
"kickoff time": "Sat, 14 Aug 2010 15:06:39 UTC",
"password must change": "never",
}
}
pdb_output = dedent(
r"""
Unix username: roscivs
NT username: bottia
User SID: 42
Primary Group SID: 99
Full Name: Roscivs Bottia
Home Directory: \\samba\roscivs
Account desc: separators! xxx so long and thanks for all the fish
Logoff time: Sat, 14 Aug 2010 15:06:39 UTC
Kickoff time: Sat, 14 Aug 2010 15:06:39 UTC
Password must change: never
"""
).strip()
with patch.dict(
pdbedit.__salt__,
{
"cmd.run_all": MagicMock(
return_value={"stdout": pdb_output, "stderr": "", "retcode": 0}
)
},
):
actual_data = pdbedit.list_users(verbose=True)
assert actual_data == expected_data | saltstack/salt | [
13089,
5388,
13089,
3074,
1298233016
] |
def __init__(self):
self._swaps = []
self._data = [] | xunilrj/sandbox | [
8,
4,
8,
117,
1469995922
] |
def WriteResponse(self):
print(len(self._swaps))
for swap in self._swaps:
print(swap[0], swap[1]) | xunilrj/sandbox | [
8,
4,
8,
117,
1469995922
] |
def Solve(self):
self.ReadData()
self.GenerateSwaps()
self.WriteResponse() | xunilrj/sandbox | [
8,
4,
8,
117,
1469995922
] |
def __init__(self):
self._must_match_all_bonds: bool = True
self._smiles_with_h: bool = False
self._smiles_with_labels: bool = True
# A variant on matching is to consider all N and O as neutral forms during
# matching, and then as a post processing step, see whether a valid,
# neutral, molecule can be formed.
self._neutral_forms_during_bond_matching: bool = False
# If not a bond is being considered during matching.
self._consider_not_bonded = False
# Avoid destroying rings if not bonded is enabled.
# Note that only the ring atom count is considered.
self._ring_atom_count_cannot_decrease = True | google-research/google-research | [
27788,
6881,
27788,
944,
1538678568
] |
def must_match_all_bonds(self):
return self._must_match_all_bonds | google-research/google-research | [
27788,
6881,
27788,
944,
1538678568
] |
def must_match_all_bonds(self, value):
self._must_match_all_bonds = value | google-research/google-research | [
27788,
6881,
27788,
944,
1538678568
] |
def smiles_with_h(self):
return self._smiles_with_h | google-research/google-research | [
27788,
6881,
27788,
944,
1538678568
] |
def smiles_with_h(self, value):
self._smiles_with_h = value | google-research/google-research | [
27788,
6881,
27788,
944,
1538678568
] |
def smiles_with_labels(self):
return self._smiles_with_labels | google-research/google-research | [
27788,
6881,
27788,
944,
1538678568
] |
def smiles_with_labels(self, value):
self._smiles_with_labels = value | google-research/google-research | [
27788,
6881,
27788,
944,
1538678568
] |
def neutral_forms_during_bond_matching(self):
return self._neutral_forms_during_bond_matching | google-research/google-research | [
27788,
6881,
27788,
944,
1538678568
] |
def neutral_forms_during_bond_matching(self, value):
self._neutral_forms_during_bond_matching = value | google-research/google-research | [
27788,
6881,
27788,
944,
1538678568
] |
def consider_not_bonded(self):
return self._consider_not_bonded | google-research/google-research | [
27788,
6881,
27788,
944,
1538678568
] |
def consider_not_bonded(self, value):
self._consider_not_bonded = value | google-research/google-research | [
27788,
6881,
27788,
944,
1538678568
] |
def ring_atom_count_cannot_decrease(self):
return self._ring_atom_count_cannot_decrease | google-research/google-research | [
27788,
6881,
27788,
944,
1538678568
] |
def ring_atom_count_cannot_decrease(self, value):
self._ring_atom_count_cannot_decrease = value | google-research/google-research | [
27788,
6881,
27788,
944,
1538678568
] |
def __init__(self, hydrogens_attached, bonds_to_scores, matching_parameters):
"""Class to perform bonding assessments.
Args:
hydrogens_attached: a BondTopology that has all atoms, and the bonds
associated with the Hydrogen atoms.
bonds_to_scores: A dict that maps tuples of pairs of atoms, to a numpy
array of scores [0,3], for each possible bond type.
matching_parameters: contains possible optional behaviour modifiers.
Returns:
"""
self._starting_bond_topology = hydrogens_attached
self._natoms = len(hydrogens_attached.atoms)
self._heavy_atoms = sum(1 for atom in hydrogens_attached.atoms
if atom != dataset_pb2.BondTopology.ATOM_H)
self._contains_both_oxygen_and_nitrogen = False
# If the molecule contains both N and O atoms, then we can
# do more extensive atom type matching if requested.
if matching_parameters.neutral_forms_during_bond_matching:
self.set_contains_both_oxygen_and_nitrogen(hydrogens_attached)
# For each atom, the maximum number of bonds that can be attached.
self._max_bonds = np.zeros(self._natoms, dtype=np.int32)
if matching_parameters.neutral_forms_during_bond_matching and self._contains_both_oxygen_and_nitrogen:
for i in range(0, self._natoms):
self._max_bonds[i] = smu_utils_lib.ATOM_TYPE_TO_MAX_BONDS_ANY_FORM[
hydrogens_attached.atoms[i]]
else:
for i in range(0, self._natoms):
self._max_bonds[i] = smu_utils_lib.ATOM_TYPE_TO_MAX_BONDS[
hydrogens_attached.atoms[i]]
# With the Hydrogens attached, the number of bonds to each atom.
self._bonds_with_hydrogens_attached = np.zeros((self._natoms),
dtype=np.int32)
for bond in hydrogens_attached.bonds:
self._bonds_with_hydrogens_attached[bond.atom_a] += 1
self._bonds_with_hydrogens_attached[bond.atom_b] += 1
self._current_bonds_attached = np.zeros((self._natoms), dtype=np.int32)
# We turn bonds_to_scores into two arrays. So they can be iterated
# via itertools.
self._bonds = list(bonds_to_scores.keys())
self._scores = list(bonds_to_scores.values())
# Initialize for probability type accumulation
self._initial_score = 1.0
self._accumulate_score = operator.mul
# For testing, it can be convenient to allow for partial matches
# For example this allows matching C-C and C=C without the need
# to add explicit hydrogens
self._must_match_all_bonds = matching_parameters.must_match_all_bonds | google-research/google-research | [
27788,
6881,
27788,
944,
1538678568
] |
def set_initial_score_and_incrementer(self, initial_score, op):
"""Update values used for computing scores."""
self._initial_score = initial_score
self._accumulate_score = op | google-research/google-research | [
27788,
6881,
27788,
944,
1538678568
] |
def _place_bond(self, a1, a2, btype):
"""Possibly add a new bond to the current config.
If the bond can be placed, updates self._current_bonds_attached for
both `a`` and `a2`.
Args:
a1:
a2:
btype:
Returns:
Bool.
"""
if self._current_bonds_attached[a1] + btype > self._max_bonds[a1]:
return False
if self._current_bonds_attached[a2] + btype > self._max_bonds[a2]:
return False
self._current_bonds_attached[a1] += btype
self._current_bonds_attached[a2] += btype
return True | google-research/google-research | [
27788,
6881,
27788,
944,
1538678568
] |
def place_bonds_inner(self, state):
"""Place bonds corresponding to `state`.
No validity checking is done, the calling function is responsible
for that.
Args:
state: for each pair of atoms, the kind of bond to be placed.
Returns:
If successful, a BondTopology.
"""
self._current_bonds_attached = np.copy(self._bonds_with_hydrogens_attached)
result = dataset_pb2.BondTopology()
result.CopyFrom(self._starting_bond_topology) # only Hydrogens attached.
result.score = self._initial_score
# Make sure each atoms gets at least one bond
atom_got_bond = np.zeros(self._heavy_atoms)
for i, btype in enumerate(state):
if btype != dataset_pb2.BondTopology.BOND_UNDEFINED:
a1 = self._bonds[i][0]
a2 = self._bonds[i][1]
if not self._place_bond(a1, a2, btype):
return None
add_bond(a1, a2, btype, result)
atom_got_bond[a1] = 1
atom_got_bond[a2] = 1
result.score = self._accumulate_score(result.score,
self._scores[i][btype])
if not np.all(atom_got_bond):
return None
return result | google-research/google-research | [
27788,
6881,
27788,
944,
1538678568
] |
def get(ar,index):
l=len(ar);
if index<0:
return ar[l+index];
else:
return ar[index]; | ferventdesert/Hawk-Projects | [
148,
102,
148,
1,
1462091270
] |
def find(ar,filter):
for r in ar:
if filter(r):
return r;
return None; | ferventdesert/Hawk-Projects | [
148,
102,
148,
1,
1462091270
] |
def work2(x):
x.Enabled=not_repeat; | ferventdesert/Hawk-Projects | [
148,
102,
148,
1,
1462091270
] |
def is_operational(method):
# Decorator to check we are operational before provisioning.
def wrapper(*args, **kwargs):
instance = args[0]
if instance.operational:
try:
return method(*args, **kwargs)
except IOError as ioe:
LOG.error('IO Error detected: %s' % method.__name__)
LOG.error(str(ioe))
raise ioe
else:
LOG.error('Cannot execute %s. Not operational. Re-initializing.'
% method.__name__)
instance._init_bigips()
return wrapper | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def __init__(self, conf, registerOpts=True):
# The registerOpts parameter allows a test to
# turn off config option handling so that it can
# set the options manually instead.
super(iControlDriver, self).__init__(conf)
self.conf = conf
if registerOpts:
self.conf.register_opts(OPTS)
self.initialized = False
self.hostnames = None
self.device_type = conf.f5_device_type
self.plugin_rpc = None # overrides base, same value
self.agent_report_state = None # overrides base, same value
self.operational = False # overrides base, same value
self.driver_name = 'f5-lbaasv2-icontrol'
#
# BIG-IP containers
#
# BIG-IPs which currectly active
self.__bigips = {}
self.__last_connect_attempt = None
# HA and traffic group validation
self.ha_validated = False
self.tg_initialized = False
# traffic groups discovered from BIG-IPs for service placement
self.__traffic_groups = []
# base configurations to report to Neutron agent state reports
self.agent_configurations = {} # overrides base, same value
self.agent_configurations['device_drivers'] = [self.driver_name]
self.agent_configurations['icontrol_endpoints'] = {}
# to store the verified esd names
self.esd_names = []
# service component managers
self.tenant_manager = None
self.cluster_manager = None
self.system_helper = None
self.lbaas_builder = None
self.service_adapter = None
self.vlan_binding = None
self.l3_binding = None
self.cert_manager = None # overrides register_OPTS
# server helpers
self.stat_helper = stat_helper.StatHelper()
self.network_helper = network_helper.NetworkHelper()
# f5-sdk helpers
self.vs_manager = resource_helper.BigIPResourceHelper(
resource_helper.ResourceType.virtual)
self.pool_manager = resource_helper.BigIPResourceHelper(
resource_helper.ResourceType.pool)
try:
# debug logging of service requests recieved by driver
if self.conf.trace_service_requests:
path = '/var/log/neutron/service/'
if not os.path.exists(path):
os.makedirs(path)
self.file_name = path + strftime("%H%M%S-%m%d%Y") + '.json'
with open(self.file_name, 'w') as fp:
fp.write('[{}] ')
# driver mode settings - GRM vs L2 adjacent
if self.conf.f5_global_routed_mode:
LOG.info('WARNING - f5_global_routed_mode enabled.'
' There will be no L2 or L3 orchestration'
' or tenant isolation provisioned. All vips'
' and pool members must be routable through'
' pre-provisioned SelfIPs.')
self.conf.use_namespaces = False
self.conf.f5_snat_mode = True
self.conf.f5_snat_addresses_per_subnet = 0
self.agent_configurations['tunnel_types'] = []
self.agent_configurations['bridge_mappings'] = {}
else:
self.agent_configurations['tunnel_types'] = \
self.conf.advertised_tunnel_types
for net_id in self.conf.common_network_ids:
LOG.debug('network %s will be mapped to /Common/%s'
% (net_id, self.conf.common_network_ids[net_id]))
self.agent_configurations['common_networks'] = \
self.conf.common_network_ids
LOG.debug('Setting static ARP population to %s'
% self.conf.f5_populate_static_arp)
self.agent_configurations['f5_common_external_networks'] = \
self.conf.f5_common_external_networks
f5const.FDB_POPULATE_STATIC_ARP = \
self.conf.f5_populate_static_arp
# parse the icontrol_hostname setting
self._init_bigip_hostnames()
# instantiate the managers
self._init_bigip_managers()
self.initialized = True
LOG.debug('iControlDriver loaded successfully')
except Exception as exc:
LOG.error("exception in intializing driver %s" % str(exc))
self._set_agent_status(False) | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def get_valid_esd_names(self):
LOG.debug("verified esd names in get_valid_esd_names():")
LOG.debug(self.esd_names)
return self.esd_names | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def _init_bigip_hostnames(self):
# Validate and parse bigip credentials
if not self.conf.icontrol_hostname:
raise f5ex.F5InvalidConfigurationOption(
opt_name='icontrol_hostname',
opt_value='valid hostname or IP address'
)
if not self.conf.icontrol_username:
raise f5ex.F5InvalidConfigurationOption(
opt_name='icontrol_username',
opt_value='valid username'
)
if not self.conf.icontrol_password:
raise f5ex.F5InvalidConfigurationOption(
opt_name='icontrol_password',
opt_value='valid password'
)
self.hostnames = self.conf.icontrol_hostname.split(',')
self.hostnames = [item.strip() for item in self.hostnames]
self.hostnames = sorted(self.hostnames)
# initialize per host agent_configurations
for hostname in self.hostnames:
self.__bigips[hostname] = bigip = type('', (), {})()
bigip.hostname = hostname
bigip.status = 'creating'
bigip.status_message = 'creating BIG-IP from iControl hostnames'
bigip.device_interfaces = dict()
self.agent_configurations[
'icontrol_endpoints'][hostname] = {}
self.agent_configurations[
'icontrol_endpoints'][hostname]['failover_state'] = \
'undiscovered'
self.agent_configurations[
'icontrol_endpoints'][hostname]['status'] = 'unknown'
self.agent_configurations[
'icontrol_endpoints'][hostname]['status_message'] = '' | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def _init_errored_bigips(self):
try:
errored_bigips = self.get_errored_bigips_hostnames()
if errored_bigips:
LOG.debug('attempting to recover %s BIG-IPs' %
len(errored_bigips))
for hostname in errored_bigips:
# try to connect and set status
bigip = self._open_bigip(hostname)
if bigip.status == 'connected':
# set the status down until we assure initialized
bigip.status = 'initializing'
bigip.status_message = 'initializing HA viability'
LOG.debug('initializing HA viability %s' % hostname)
LOG.debug('proceeding to initialize %s' % hostname)
device_group_name = None
if not self.ha_validated:
device_group_name = self._validate_ha(bigip)
LOG.debug('HA validated from %s with DSG %s' %
(hostname, device_group_name))
self.ha_validated = True
if not self.tg_initialized:
self._init_traffic_groups(bigip)
LOG.debug('known traffic groups initialized',
' from %s as %s' %
(hostname, self.__traffic_groups))
self.tg_initialized = True
LOG.debug('initializing bigip %s' % hostname)
self._init_bigip(bigip, hostname, device_group_name)
LOG.debug('initializing agent configurations %s'
% hostname)
self._init_agent_config(bigip)
# Assure basic BIG-IP HA is operational
LOG.debug('validating HA state for %s' % hostname)
bigip.status = 'validating_HA'
bigip.status_message = \
'validating the current HA state'
if self._validate_ha_operational(bigip):
LOG.debug('setting status to active for %s'
% hostname)
bigip.status = 'active'
bigip.status_message = \
'BIG-IP ready for provisioning'
self._post_init()
self._set_agent_status(True)
else:
LOG.debug('setting status to error for %s'
% hostname)
bigip.status = 'error'
bigip.status_message = 'BIG-IP is not operational'
self._set_agent_status(False)
else:
LOG.debug('there are no BIG-IPs with error status')
except Exception as exc:
LOG.error('Invalid agent configuration: %s' % exc.message)
raise | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def _init_bigip(self, bigip, hostname, check_group_name=None):
# Prepare a bigip for usage
try:
major_version, minor_version = self._validate_bigip_version(
bigip, hostname)
device_group_name = None
extramb = self.system_helper.get_provision_extramb(bigip)
if int(extramb) < f5const.MIN_EXTRA_MB:
raise f5ex.ProvisioningExtraMBValidateFailed(
'Device %s BIG-IP not provisioned for '
'management LARGE.' % hostname)
if self.conf.f5_ha_type == 'pair' and \
self.cluster_manager.get_sync_status(bigip) == \
'Standalone':
raise f5ex.BigIPClusterInvalidHA(
'HA mode is pair and bigip %s in standalone mode'
% hostname)
if self.conf.f5_ha_type == 'scalen' and \
self.cluster_manager.get_sync_status(bigip) == \
'Standalone':
raise f5ex.BigIPClusterInvalidHA(
'HA mode is scalen and bigip %s in standalone mode'
% hostname)
if self.conf.f5_ha_type != 'standalone':
device_group_name = \
self.cluster_manager.get_device_group(bigip)
if not device_group_name:
raise f5ex.BigIPClusterInvalidHA(
'HA mode is %s and no sync failover '
'device group found for device %s.'
% (self.conf.f5_ha_type, hostname))
if check_group_name and device_group_name != check_group_name:
raise f5ex.BigIPClusterInvalidHA(
'Invalid HA. Device %s is in device group'
' %s but should be in %s.'
% (hostname, device_group_name, check_group_name))
bigip.device_group_name = device_group_name
if self.network_builder:
for network in self.conf.common_network_ids.values():
if not self.network_builder.vlan_exists(bigip,
network,
folder='Common'):
raise f5ex.MissingNetwork(
'Common network %s on %s does not exist'
% (network, bigip.hostname))
bigip.device_name = self.cluster_manager.get_device_name(bigip)
bigip.mac_addresses = self.system_helper.get_mac_addresses(bigip)
LOG.debug("Initialized BIG-IP %s with MAC addresses %s" %
(bigip.device_name, ', '.join(bigip.mac_addresses)))
bigip.device_interfaces = \
self.system_helper.get_interface_macaddresses_dict(bigip)
bigip.assured_networks = {}
bigip.assured_tenant_snat_subnets = {}
bigip.assured_gateway_subnets = []
if self.conf.f5_ha_type != 'standalone':
self.cluster_manager.disable_auto_sync(
device_group_name, bigip)
# validate VTEP SelfIPs
if not self.conf.f5_global_routed_mode:
self.network_builder.initialize_tunneling(bigip)
# Turn off tunnel syncing between BIG-IP
# as our VTEPs properly use only local SelfIPs
if self.system_helper.get_tunnel_sync(bigip) == 'enable':
self.system_helper.set_tunnel_sync(bigip, enabled=False)
LOG.debug('connected to iControl %s @ %s ver %s.%s'
% (self.conf.icontrol_username, hostname,
major_version, minor_version))
except Exception as exc:
bigip.status = 'error'
bigip.status_message = str(exc)[:80]
raise
return bigip | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def _validate_ha(self, bigip):
# if there was only one address supplied and
# this is not a standalone device, get the
# devices trusted by this device.
device_group_name = None
if self.conf.f5_ha_type == 'standalone':
if len(self.hostnames) != 1:
bigip.status = 'error'
bigip.status_message = \
'HA mode is standalone and %d hosts found.'\
% len(self.hostnames)
raise f5ex.BigIPClusterInvalidHA(
'HA mode is standalone and %d hosts found.'
% len(self.hostnames))
device_group_name = 'standalone'
elif self.conf.f5_ha_type == 'pair':
device_group_name = self.cluster_manager.\
get_device_group(bigip)
if len(self.hostnames) != 2:
mgmt_addrs = []
devices = self.cluster_manager.devices(bigip)
for device in devices:
mgmt_addrs.append(
self.cluster_manager.get_mgmt_addr_by_device(
bigip, device))
self.hostnames = mgmt_addrs
if len(self.hostnames) != 2:
bigip.status = 'error'
bigip.status_message = 'HA mode is pair and %d hosts found.' \
% len(self.hostnames)
raise f5ex.BigIPClusterInvalidHA(
'HA mode is pair and %d hosts found.'
% len(self.hostnames))
elif self.conf.f5_ha_type == 'scalen':
device_group_name = self.cluster_manager.\
get_device_group(bigip)
if len(self.hostnames) < 2:
mgmt_addrs = []
devices = self.cluster_manager.devices(bigip)
for device in devices:
mgmt_addrs.append(
self.cluster_manager.get_mgmt_addr_by_device(
bigip, device)
)
self.hostnames = mgmt_addrs
if len(self.hostnames) < 2:
bigip.status = 'error'
bigip.status_message = 'HA mode is scale and 1 hosts found.'
raise f5ex.BigIPClusterInvalidHA(
'HA mode is pair and 1 hosts found.')
return device_group_name | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def _init_agent_config(self, bigip):
# Init agent config
ic_host = {}
ic_host['version'] = self.system_helper.get_version(bigip)
ic_host['device_name'] = bigip.device_name
ic_host['platform'] = self.system_helper.get_platform(bigip)
ic_host['serial_number'] = self.system_helper.get_serial_number(bigip)
ic_host['status'] = bigip.status
ic_host['status_message'] = bigip.status_message
ic_host['failover_state'] = self.get_failover_state(bigip)
if hasattr(bigip, 'local_ip') and bigip.local_ip:
ic_host['local_ip'] = bigip.local_ip
else:
ic_host['local_ip'] = 'VTEP disabled'
self.agent_configurations['tunnel_types'] = list()
self.agent_configurations['icontrol_endpoints'][bigip.hostname] = \
ic_host
if self.network_builder:
self.agent_configurations['bridge_mappings'] = \
self.network_builder.interface_mapping | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def get_failover_state(self, bigip):
try:
if hasattr(bigip, 'tm'):
fs = bigip.tm.sys.dbs.db.load(name='failover.state')
bigip.failover_state = fs.value
return bigip.failover_state
else:
return 'error'
except Exception as exc:
LOG.exception('Error getting %s failover state' % bigip.hostname)
bigip.status = 'error'
bigip.status_message = str(exc)[:80]
self._set_agent_status(False)
return 'error' | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def recover_errored_devices(self):
# trigger a retry on errored BIG-IPs
try:
self._init_errored_bigips()
except Exception as exc:
LOG.error('Could not recover devices: %s' % exc.message) | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def generate_capacity_score(self, capacity_policy=None):
"""Generate the capacity score of connected devices."""
if capacity_policy:
highest_metric = 0.0
highest_metric_name = None
my_methods = dir(self)
bigips = self.get_all_bigips()
for metric in capacity_policy:
func_name = 'get_' + metric
if func_name in my_methods:
max_capacity = int(capacity_policy[metric])
metric_func = getattr(self, func_name)
metric_value = 0
for bigip in bigips:
if bigip.status == 'active':
global_stats = \
self.stat_helper.get_global_statistics(bigip)
value = int(
metric_func(bigip=bigip,
global_statistics=global_stats)
)
LOG.debug('calling capacity %s on %s returned: %s'
% (func_name, bigip.hostname, value))
else:
value = 0
if value > metric_value:
metric_value = value
metric_capacity = float(metric_value) / float(max_capacity)
if metric_capacity > highest_metric:
highest_metric = metric_capacity
highest_metric_name = metric
else:
LOG.warn('capacity policy has method '
'%s which is not implemented in this driver'
% metric)
LOG.debug('capacity score: %s based on %s'
% (highest_metric, highest_metric_name))
return highest_metric
return 0 | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def set_plugin_rpc(self, plugin_rpc):
# Provide Plugin RPC access
self.plugin_rpc = plugin_rpc | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def set_l2pop_rpc(self, l2pop_rpc):
# Provide FDB Connector with ML2 RPC access
if self.network_builder:
self.network_builder.set_l2pop_rpc(l2pop_rpc) | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def service_exists(self, service):
return self._service_exists(service) | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def get_all_deployed_loadbalancers(self, purge_orphaned_folders=False):
LOG.debug('getting all deployed loadbalancers on BIG-IPs')
deployed_lb_dict = {}
for bigip in self.get_all_bigips():
folders = self.system_helper.get_folders(bigip)
for folder in folders:
tenant_id = folder[len(self.service_adapter.prefix):]
if str(folder).startswith(self.service_adapter.prefix):
resource = resource_helper.BigIPResourceHelper(
resource_helper.ResourceType.virtual_address)
deployed_lbs = resource.get_resources(bigip, folder)
if deployed_lbs:
for lb in deployed_lbs:
lb_id = lb.name[len(self.service_adapter.prefix):]
if lb_id in deployed_lb_dict:
deployed_lb_dict[lb_id][
'hostnames'].append(bigip.hostname)
else:
deployed_lb_dict[lb_id] = {
'id': lb_id,
'tenant_id': tenant_id,
'hostnames': [bigip.hostname]
}
else:
# delay to assure we are not in the tenant creation
# process before a virtual address is created.
greenthread.sleep(10)
deployed_lbs = resource.get_resources(bigip, folder)
if deployed_lbs:
for lb in deployed_lbs:
lb_id = lb.name[
len(self.service_adapter.prefix):]
deployed_lb_dict[lb_id] = \
{'id': lb_id, 'tenant_id': tenant_id}
else:
# Orphaned folder!
if purge_orphaned_folders:
try:
self.system_helper.purge_folder_contents(
bigip, folder)
self.system_helper.purge_folder(
bigip, folder)
LOG.error('orphaned folder %s on %s' %
(folder, bigip.hostname))
except Exception as exc:
LOG.error('error purging folder %s: %s' %
(folder, str(exc)))
return deployed_lb_dict | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def get_all_deployed_listeners(self, expand_subcollections=False):
LOG.debug('getting all deployed listeners on BIG-IPs')
deployed_virtual_dict = {}
for bigip in self.get_all_bigips():
folders = self.system_helper.get_folders(bigip)
for folder in folders:
tenant_id = folder[len(self.service_adapter.prefix):]
if str(folder).startswith(self.service_adapter.prefix):
resource = resource_helper.BigIPResourceHelper(
resource_helper.ResourceType.virtual)
deployed_listeners = resource.get_resources(
bigip, folder, expand_subcollections)
if deployed_listeners:
for virtual in deployed_listeners:
virtual_id = \
virtual.name[len(self.service_adapter.prefix):]
l7_policy = ''
if hasattr(virtual, 'policiesReference') and \
'items' in virtual.policiesReference:
l7_policy = \
virtual.policiesReference['items'][0]
l7_policy = l7_policy['fullPath']
if virtual_id in deployed_virtual_dict:
deployed_virtual_dict[virtual_id][
'hostnames'].append(bigip.hostname)
else:
deployed_virtual_dict[virtual_id] = {
'id': virtual_id,
'tenant_id': tenant_id,
'hostnames': [bigip.hostname],
'l7_policy': l7_policy
}
return deployed_virtual_dict | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def purge_orphaned_nodes(self, tenant_members):
node_helper = resource_helper.BigIPResourceHelper(
resource_helper.ResourceType.node)
node_dict = dict()
for bigip in self.get_all_bigips():
for tenant_id, members in tenant_members.iteritems():
partition = self.service_adapter.prefix + tenant_id
nodes = node_helper.get_resources(bigip, partition=partition)
for n in nodes:
node_dict[n.name] = n
for member in members:
rd = self.network_builder.find_subnet_route_domain(
tenant_id, member.get('subnet_id', None))
node_name = "{}%{}".format(member['address'], rd)
node_dict.pop(node_name, None)
for node_name, node in node_dict.iteritems():
try:
node_helper.delete(bigip, name=urllib.quote(node_name),
partition=partition)
except HTTPError as error:
if error.response.status_code == 400:
LOG.error(error.response) | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def get_all_deployed_pools(self):
LOG.debug('getting all deployed pools on BIG-IPs')
deployed_pool_dict = {}
for bigip in self.get_all_bigips():
folders = self.system_helper.get_folders(bigip)
for folder in folders:
tenant_id = folder[len(self.service_adapter.prefix):]
if str(folder).startswith(self.service_adapter.prefix):
resource = resource_helper.BigIPResourceHelper(
resource_helper.ResourceType.pool)
deployed_pools = resource.get_resources(bigip, folder)
if deployed_pools:
for pool in deployed_pools:
pool_id = \
pool.name[len(self.service_adapter.prefix):]
monitor_id = ''
if hasattr(pool, 'monitor'):
monitor = pool.monitor.split('/')[2].strip()
monitor_id = \
monitor[len(self.service_adapter.prefix):]
LOG.debug(
'pool {} has monitor {}'.format(
pool.name, monitor))
else:
LOG.debug(
'pool {} has no healthmonitors'.format(
pool.name))
if pool_id in deployed_pool_dict:
deployed_pool_dict[pool_id][
'hostnames'].append(bigip.hostname)
else:
deployed_pool_dict[pool_id] = {
'id': pool_id,
'tenant_id': tenant_id,
'hostnames': [bigip.hostname],
'monitors': monitor_id
}
return deployed_pool_dict | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def purge_orphaned_pool(self, tenant_id=None, pool_id=None,
hostnames=list()):
node_helper = resource_helper.BigIPResourceHelper(
resource_helper.ResourceType.node)
for bigip in self.get_all_bigips():
if bigip.hostname in hostnames:
try:
pool_name = self.service_adapter.prefix + pool_id
partition = self.service_adapter.prefix + tenant_id
pool = resource_helper.BigIPResourceHelper(
resource_helper.ResourceType.pool).load(
bigip, pool_name, partition)
members = pool.members_s.get_collection()
pool.delete()
for member in members:
node_name = member.address
try:
node_helper.delete(bigip,
name=urllib.quote(node_name),
partition=partition)
except HTTPError as e:
if e.response.status_code == 404:
pass
if e.response.status_code == 400:
LOG.warn("Failed to delete node -- in use")
else:
LOG.exception("Failed to delete node")
except HTTPError as err:
if err.response.status_code == 404:
LOG.debug('pool %s not on BIG-IP %s.'
% (pool_id, bigip.hostname))
except Exception as exc:
LOG.exception('Exception purging pool %s' % str(exc)) | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def get_all_deployed_health_monitors(self):
"""Retrieve a list of all Health Monitors deployed"""
LOG.debug('getting all deployed monitors on BIG-IP\'s')
monitor_types = ['http_monitor', 'https_monitor', 'tcp_monitor',
'ping_monitor']
deployed_monitor_dict = {}
adapter_prefix = self.service_adapter.prefix
for bigip in self.get_all_bigips():
folders = self.system_helper.get_folders(bigip)
for folder in folders:
tenant_id = folder[len(adapter_prefix):]
if str(folder).startswith(adapter_prefix):
resources = map(
lambda x: resource_helper.BigIPResourceHelper(
getattr(resource_helper.ResourceType, x)),
monitor_types)
for resource in resources:
deployed_monitors = resource.get_resources(
bigip, folder)
if deployed_monitors:
for monitor in deployed_monitors:
monitor_id = monitor.name[len(adapter_prefix):]
if monitor_id in deployed_monitor_dict:
deployed_monitor_dict[monitor_id][
'hostnames'].append(bigip.hostname)
else:
deployed_monitor_dict[monitor_id] = {
'id': monitor_id,
'tenant_id': tenant_id,
'hostnames': [bigip.hostname]
}
return deployed_monitor_dict | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
def purge_orphaned_health_monitor(self, tenant_id=None, monitor_id=None,
hostnames=list()):
"""Purge all monitors that exist on the BIG-IP but not in Neutron"""
resource_types = [
resource_helper.BigIPResourceHelper(x) for x in [
resource_helper.ResourceType.http_monitor,
resource_helper.ResourceType.https_monitor,
resource_helper.ResourceType.ping_monitor,
resource_helper.ResourceType.tcp_monitor]]
for bigip in self.get_all_bigips():
if bigip.hostname in hostnames:
try:
monitor_name = self.service_adapter.prefix + monitor_id
partition = self.service_adapter.prefix + tenant_id
monitor = None
for monitor_type in resource_types:
try:
monitor = monitor_type.load(bigip, monitor_name,
partition)
break
except HTTPError as err:
if err.response.status_code == 404:
continue
monitor.delete()
except TypeError as err:
if 'NoneType' in err:
LOG.exception("Could not find monitor {}".format(
monitor_name))
except Exception as exc:
LOG.exception('Exception purging monitor %s' % str(exc)) | F5Networks/f5-openstack-agent | [
14,
37,
14,
83,
1444753730
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.