input
stringlengths
11
7.65k
target
stringlengths
22
8.26k
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def get_iterations(self): """! @return (uint) Amount of iterations that were done by the EM algorithm.
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def get_evolution_means(self): """! @return (list) Mean of each cluster on each step of clustering.
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def get_evolution_covariances(self): """! @return (list) Covariance matrix (or variance in case of one-dimensional data) of each cluster on each step of clustering.
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def get_evolution_clusters(self): """! @return (list) Allocated clusters on each step of clustering.
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def notify(self, means, covariances, clusters): """! @brief This method is used by the algorithm to notify observer about changes where the algorithm should provide new values: means, covariances and allocated clusters.
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def show_clusters(clusters, sample, covariances, means, figure=None, display=True): """! @brief Draws clusters and in case of two-dimensional dataset draws their ellipses. @details Allocated figure by this method should be closed using `close()` method of this visualizer.
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def close(figure): """! @brief Closes figure object that was used or allocated by the visualizer.
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def animate_cluster_allocation(data, observer, animation_velocity = 75, movie_fps = 1, save_movie = None): """! @brief Animates clustering process that is performed by EM algorithm.
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def init_frame(): return frame_generation(0)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def frame_generation(index_iteration): figure.clf()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __draw_ellipses(figure, visualizer, clusters, covariances, means): ax = figure.get_axes()[0]
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __draw_ellipse(ax, x, y, angle, width, height, color): if (width > 0.0) and (height > 0.0): ax.plot(x, y, color=color, marker='x', markersize=6) ellipse = patches.Ellipse((x, y), width, height, alpha=0.2, angle=-angle, linewidth=2, fill=True, zorder=2, color=color) ax.add_patch(ellipse)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __init__(self, data, amount_clusters, means=None, variances=None, observer=None, tolerance=0.00001, iterations=100): """! @brief Initializes Expectation-Maximization algorithm for cluster analysis.
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def process(self): """! @brief Run clustering process of the algorithm.
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def get_clusters(self): """! @return (list) Allocated clusters where each cluster is represented by list of indexes of points from dataset, for example, two cluster may have following representation [[0, 1, 4], [2, 3, 5, 6]].
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def get_centers(self): """! @return (list) Corresponding centers (means) of clusters.
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def get_covariances(self): """! @return (list) Corresponding variances (or covariances in case of multi-dimensional data) of clusters.
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def get_probabilities(self): """! @brief Returns 2-dimensional list with belong probability of each object from data to cluster correspondingly, where that first index is for cluster and the second is for point.
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __erase_empty_clusters(self): clusters, means, variances, pic, gaussians, rc = [], [], [], [], [], []
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __notify(self): if self.__observer is not None: self.__observer.notify(self.__means, self.__variances, self.__clusters)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __extract_clusters(self): self.__clusters = [[] for _ in range(self.__amount_clusters)] for index_point in range(len(self.__data)): candidates = [] for index_cluster in range(self.__amount_clusters): candidates.append((index_cluster, self.__rc[index_cluster][index_point]))
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __log_likelihood(self): likelihood = 0.0
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __probabilities(self, index_cluster, index_point): divider = 0.0 for i in range(self.__amount_clusters): divider += self.__pic[i] * self.__gaussians[i][index_point]
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __expectation_step(self): self.__gaussians = [ [] for _ in range(self.__amount_clusters) ] for index in range(self.__amount_clusters): self.__gaussians[index] = gaussian(self.__data, self.__means[index], self.__variances[index])
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __maximization_step(self): self.__pic = [] self.__means = [] self.__variances = []
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __get_stop_condition(self): for covariance in self.__variances: if numpy.linalg.norm(covariance) == 0.0: return True
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __update_covariance(self, means, rc, mc): covariance = 0.0 for index_point in range(len(self.__data)): deviation = numpy.array([self.__data[index_point] - means]) covariance += rc[index_point] * deviation.T.dot(deviation)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __update_mean(self, rc, mc): mean = 0.0 for index_point in range(len(self.__data)): mean += rc[index_point] * self.__data[index_point]
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __normalize_probabilities(self): for index_point in range(len(self.__data)): probability = 0.0 for index_cluster in range(len(self.__clusters)): probability += self.__rc[index_cluster][index_point]
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __normalize_probability(self, index_point, probability): if probability == 0.0: return
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __verify_arguments(self): """! @brief Verify input parameters for the algorithm and throw exception in case of incorrectness.
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __enter__(self): """ Syntax sugar which helps in celery tasks, cron jobs, and other scripts Usage: with Tenant.objects.get(schema_name='test') as tenant: # run some code in tenant test # run some code in previous tenant (public probably) """ connection = connections[get_tenant_database_alias()] self._previous_tenant.append(connection.tenant) self.activate() return self
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
async def handler(client, request): if request.path == "/v6/challenge": assert request.encode().decode() == CHALLENGE_REQUEST response = http.HTTPResponse(200) response.json = { "challenge": "vaNgVZZH7gUse0y3t8Cksuln-TAVtvBmcD-ow59qp0E=", "data": "dlL7ZBNSLmYo1hUlKYZiUA==" } return response else: assert request.encode().decode() == TOKEN_REQUEST response = http.HTTPResponse(200) response.json = { "device_auth_token": "device token" } return response
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __exit__(self, exc_type, exc_val, exc_tb): connection = connections[get_tenant_database_alias()] connection.set_tenant(self._previous_tenant.pop())
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def activate(self): """ Syntax sugar that helps at django shell with fast tenant changing Usage: Tenant.objects.get(schema_name='test').activate() """ connection = connections[get_tenant_database_alias()] connection.set_tenant(self)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def deactivate(cls): """ Syntax sugar, return to public schema Usage: test_tenant.deactivate() # or simpler Tenant.deactivate() """ connection = connections[get_tenant_database_alias()] connection.set_schema_to_public()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def save(self, verbosity=1, *args, **kwargs): connection = connections[get_tenant_database_alias()] is_new = self.pk is None has_schema = hasattr(connection, 'schema_name') if has_schema and is_new and connection.schema_name != get_public_schema_name(): raise Exception("Can't create tenant outside the public schema. " "Current schema is %s." % connection.schema_name) elif has_schema and not is_new and connection.schema_name not in (self.schema_name, get_public_schema_name()): raise Exception("Can't update tenant outside it's own schema or " "the public schema. Current schema is %s." % connection.schema_name) super().save(*args, **kwargs) if has_schema and is_new and self.auto_create_schema: try: self.create_schema(check_if_exists=True, verbosity=verbosity) post_schema_sync.send(sender=TenantMixin, tenant=self.serializable_fields()) except Exception: # We failed creating the tenant, delete what we created and # re-raise the exception self.delete(force_drop=True) raise elif is_new: # although we are not using the schema functions directly, the signal might be registered by a listener schema_needs_to_be_sync.send(sender=TenantMixin, tenant=self.serializable_fields()) elif not is_new and self.auto_create_schema and not schema_exists(self.schema_name): # Create schemas for existing models, deleting only the schema on failure try: self.create_schema(check_if_exists=True, verbosity=verbosity) post_schema_sync.send(sender=TenantMixin, tenant=self.serializable_fields()) except Exception: # We failed creating the schema, delete what we created and # re-raise the exception self._drop_schema() raise
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def serializable_fields(self): """ in certain cases the user model isn't serializable so you may want to only send the id """ return self
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _drop_schema(self, force_drop=False): """ Drops the schema""" connection = connections[get_tenant_database_alias()] has_schema = hasattr(connection, 'schema_name') if has_schema and connection.schema_name not in (self.schema_name, get_public_schema_name()): raise Exception("Can't delete tenant outside it's own schema or " "the public schema. Current schema is %s." % connection.schema_name) if has_schema and schema_exists(self.schema_name) and (self.auto_drop_schema or force_drop): self.pre_drop() cursor = connection.cursor() cursor.execute('DROP SCHEMA "%s" CASCADE' % self.schema_name)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def pre_drop(self): """ This is a routine which you could override to backup the tenant schema before dropping. :return: """
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def delete(self, force_drop=False, *args, **kwargs): """ Deletes this row. Drops the tenant's schema if the attribute auto_drop_schema set to True. """ self._drop_schema(force_drop) super().delete(*args, **kwargs)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def create_schema(self, check_if_exists=False, sync_schema=True, verbosity=1): """ Creates the schema 'schema_name' for this tenant. Optionally checks if the schema already exists before creating it. Returns true if the schema was created, false otherwise. """ # safety check connection = connections[get_tenant_database_alias()] _check_schema_name(self.schema_name) cursor = connection.cursor() if check_if_exists and schema_exists(self.schema_name): return False fake_migrations = get_creation_fakes_migrations() if sync_schema: if fake_migrations: # copy tables and data from provided model schema base_schema = get_tenant_base_schema() clone_schema = CloneSchema() clone_schema.clone_schema(base_schema, self.schema_name) call_command('migrate_schemas', tenant=True, fake=True, schema_name=self.schema_name, interactive=False, verbosity=verbosity) else: # create the schema cursor.execute('CREATE SCHEMA "%s"' % self.schema_name) call_command('migrate_schemas', tenant=True, schema_name=self.schema_name, interactive=False, verbosity=verbosity) connection.set_schema_to_public()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def get_primary_domain(self): """ Returns the primary domain of the tenant """ try: domain = self.domains.get(is_primary=True) return domain except get_tenant_domain_model().DoesNotExist: return None
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def reverse(self, request, view_name): """ Returns the URL of this tenant. """ http_type = 'https://' if request.is_secure() else 'http://' domain = get_current_site(request).domain url = ''.join((http_type, self.schema_name, '.', domain, reverse(view_name))) return url
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def get_tenant_type(self): """ Get the type of tenant. Will only work for multi type tenants :return: str """ return getattr(self, settings.MULTI_TYPE_DATABASE_FIELD)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def save(self, *args, **kwargs): # Get all other primary domains with the same tenant domain_list = self.__class__.objects.filter(tenant=self.tenant, is_primary=True).exclude(pk=self.pk) # If we have no primary domain yet, set as primary domain by default self.is_primary = self.is_primary or (not domain_list.exists()) if self.is_primary: # Remove primary status of existing domains for tenant domain_list.update(is_primary=False) super().save(*args, **kwargs)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def addOperators(self, num, target): """ Adapted from https://leetcode.com/discuss/58614/java-standard-backtrace-ac-solutoin-short-and-clear Algorithm: 1. DFS 2. Special handling for multiplication 3. Detect invalid number with leading 0's :type num: str :type target: int :rtype: List[str] """ ret = [] self.dfs(num, target, 0, "", 0, 0, ret) return ret
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def dfs(self, num, target, pos, cur_str, cur_val, mul, ret): if pos >= len(num): if cur_val == target: ret.append(cur_str) else: for i in xrange(pos, len(num)): if i != pos and num[pos] == "0": continue nxt_val = int(num[pos:i+1]) if not cur_str: self.dfs(num, target, i+1, "%d"%nxt_val, nxt_val, nxt_val, ret) else: self.dfs(num, target, i+1, cur_str+"+%d"%nxt_val, cur_val+nxt_val, nxt_val, ret) self.dfs(num, target, i+1, cur_str+"-%d"%nxt_val, cur_val-nxt_val, -nxt_val, ret) self.dfs(num, target, i+1, cur_str+"*%d"%nxt_val, cur_val-mul+mul*nxt_val, mul*nxt_val, ret)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def implementor(rpc_code, blocking=False): """ RPC implementation function. """ return partial(_add_implementor, rpc_code, blocking)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _add_implementor(rpc_code, blocking, fn): # Validate the argument types. if type(rpc_code) is not int: raise TypeError("Expected int, got %r instead" % type(rpc_code)) if type(blocking) is not bool: raise TypeError("Expected bool, got %r instead" % type(blocking)) if not callable(fn): raise TypeError("Expected callable, got %r instead" % type(fn)) # Validate the RPC code. if rpc_code in rpcMap: try: msg = "Duplicated RPC implementors for code %d: %s and %s" msg %= (rpc_code, rpcMap[rpc_code][0].__name__, fn.__name__) except Exception: msg = "Duplicated RPC implementors for code: %d" % rpc_code raise SyntaxError(msg) # TODO: use introspection to validate the function signature # Register the implementor. rpcMap[rpc_code] = (fn, blocking) # Return the implementor. No wrapping is needed! :) return fn
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def rpc_bulk(orchestrator, audit_name, rpc_code, *arguments): # Get the implementor for the RPC code. # Raise NotImplementedError if it's not defined. try: method, blocking = rpcMap[rpc_code] except KeyError: raise NotImplementedError("RPC code not implemented: %r" % rpc_code) # This can't be done with blocking implementors! if blocking: raise NotImplementedError( "Cannot run blocking RPC calls in bulk. Code: %r" % rpc_code) # Prepare a partial function call to the implementor. caller = partial(method, orchestrator, audit_name) # Use the built-in map() function to issue all the calls. # This ensures we support the exact same interface and functionality. return map(caller, *arguments)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def rpc_send_message(orchestrator, audit_name, message): # Enqueue the ACK message. orchestrator.enqueue_msg(message)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __init__(self, orchestrator): """ :param orchestrator: Orchestrator instance. :type orchestrator: Orchestrator """ # Keep a reference to the Orchestrator. self.__orchestrator = orchestrator # Keep a reference to the global RPC map (it's faster this way). self.__rpcMap = rpcMap # Check all RPC messages have been mapped at this point. missing = MSG_RPC_CODES.difference(self.__rpcMap.keys()) if missing: msg = "Missing RPC implementors for codes: %s" msg %= ", ".join(str(x) for x in sorted(missing)) raise SyntaxError(msg)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def orchestrator(self): """ :returns: Orchestrator instance. :rtype: Orchestrator """ return self.__orchestrator
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def execute_rpc(self, audit_name, rpc_code, response_queue, args, kwargs): """ Honor a remote procedure call request from a plugin. :param audit_name: Name of the audit requesting the call. :type audit_name: str :param rpc_code: RPC code. :type rpc_code: int :param response_queue: Response queue identity. :type response_queue: str :param args: Positional arguments to the call. :type args: tuple :param kwargs: Keyword arguments to the call. :type kwargs: dict """ try: # Get the implementor for the RPC code. # Raise NotImplementedError if it's not defined. try: target, blocking = self.__rpcMap[rpc_code] except KeyError: raise NotImplementedError( "RPC code not implemented: %r" % rpc_code) # If it's a blocking call... if blocking: # Run the implementor in a new thread. thread = Thread( target = self._execute_rpc_implementor_background, args = ( Config._context, audit_name, target, response_queue, args, kwargs), ) thread.daemon = True thread.start() # If it's a non-blocking call... else: # Call the implementor directly. self.execute_rpc_implementor( audit_name, target, response_queue, args, kwargs) # Catch exceptions and send them back. except Exception: if response_queue: error = self.prepare_exception(*sys.exc_info()) try: self.orchestrator.messageManager.send( response_queue, (False, error)) except IOError: import warnings warnings.warn("RPC caller died!") pass
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _execute_rpc_implementor_background(self, context, audit_name, target, response_queue, args, kwargs): """ Honor a remote procedure call request from a plugin, from a background thread. Must only be used as the entry point for said background thread! :param context: Plugin execution context. :type context: PluginContext :param audit_name: Name of the audit requesting the call. :type audit_name: str :param target: RPC implementor function. :type target: callable :param response_queue: Response queue identity. :type response_queue: str :param args: Positional arguments to the call. :type args: tuple :param kwargs: Keyword arguments to the call. :type kwargs: dict """ Config._context = context self.execute_rpc_implementor( audit_name, target, response_queue, args, kwargs)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def execute_rpc_implementor(self, audit_name, target, response_queue, args, kwargs): """ Honor a remote procedure call request from a plugin. :param audit_name: Name of the audit requesting the call. :type audit_name: str :param target: RPC implementor function. :type target: callable :param response_queue: Response queue identity. :type response_queue: str :param args: Positional arguments to the call. :type args: tuple :param kwargs: Keyword arguments to the call. :type kwargs: dict """ try: # Call the implementor and get the response. response = target(self.orchestrator, audit_name, *args, **kwargs) success = True # Catch exceptions and prepare them for sending. except Exception: if response_queue: response = self.prepare_exception(*sys.exc_info()) success = False # If the call was synchronous, # send the response/error back to the plugin. if response_queue: self.orchestrator.messageManager.send( response_queue, (success, response))
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __init__(self, cost_withGradients): super(CostModel, self).__init__() self.cost_type = cost_withGradients # --- Set-up evaluation cost if self.cost_type is None: self.cost_withGradients = constant_cost_withGradients self.cost_type = 'Constant cost' elif self.cost_type == 'evaluation_time': self.cost_model = GPModel() self.cost_withGradients = self._cost_gp_withGradients self.num_updates = 0 else: self.cost_withGradients = cost_withGradients self.cost_type = 'User defined cost'
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __init__(self): self.SOURCE_HTML_BASE_FOLDER_PATH = u"cameo_res\\source_html" self.PARSED_RESULT_BASE_FOLDER_PATH = u"cameo_res\\parsed_result" self.strWebsiteDomain = u"http://buzzorange.com/techorange" self.dicSubCommandHandler = { "index":self.downloadIndexPage, "tag":self.downloadTagPag, "news":self.downloadNewsPage } self.utility = Utility() self.db = LocalDbForTECHORANGE() self.driver = None
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _cost_gp(self,x): """ Predicts the time cost of evaluating the function at x. """ m, _, _, _ = self.cost_model.predict_withGradients(x) return np.exp(m)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def getUseageMessage(self): return ("- TECHORANGE -\n" "useage:\n" "index - download entry page of TECHORANGE \n" "tag - download not obtained tag page \n" "news [tag] - download not obtained news [of given tag] \n")
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _cost_gp_withGradients(self,x): """ Predicts the time cost and its gradient of evaluating the function at x. """ m, _, dmdx, _= self.cost_model.predict_withGradients(x) return np.exp(m), np.exp(m)*dmdx
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def getDriver(self): chromeDriverExeFilePath = "cameo_res\\chromedriver.exe" driver = webdriver.Chrome(chromeDriverExeFilePath) return driver
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def update_cost_model(self, x, cost_x): """ Updates the GP used to handle the cost. param x: input of the GP for the cost model. param x_cost: values of the time cost at the input locations. """ if self.cost_type == 'evaluation_time': cost_evals = np.log(np.atleast_2d(np.asarray(cost_x)).T) if self.num_updates == 0: X_all = x costs_all = cost_evals else: X_all = np.vstack((self.cost_model.model.X,x)) costs_all = np.vstack((self.cost_model.model.Y,cost_evals)) self.num_updates += 1 self.cost_model.updateModel(X_all, costs_all, None, None)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def initDriver(self): if self.driver is None: self.driver = self.getDriver()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def quitDriver(self): self.driver.quit() self.driver = None
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def runSpider(self, lstSubcommand=None): strSubcommand = lstSubcommand[0] strArg1 = None if len(lstSubcommand) == 2: strArg1 = lstSubcommand[1] self.initDriver() #init selenium driver self.dicSubCommandHandler[strSubcommand](strArg1) self.quitDriver() #quit selenium driver
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def downloadIndexPage(self, uselessArg1=None): logging.info("download index page") strIndexHtmlFolderPath = self.SOURCE_HTML_BASE_FOLDER_PATH + u"\\TECHORANGE" if not os.path.exists(strIndexHtmlFolderPath): os.mkdir(strIndexHtmlFolderPath) #mkdir source_html/TECHORANGE/ #科技報橘首頁 self.driver.get("https://buzzorange.com/techorange/") #儲存 html strIndexHtmlFilePath = strIndexHtmlFolderPath + u"\\index.html" self.utility.overwriteSaveAs(strFilePath=strIndexHtmlFilePath, unicodeData=self.driver.page_source)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def downloadTagPag(self, uselessArg1=None): logging.info("download tag page") strTagHtmlFolderPath = self.SOURCE_HTML_BASE_FOLDER_PATH + u"\\TECHORANGE\\tag" if not os.path.exists(strTagHtmlFolderPath): os.mkdir(strTagHtmlFolderPath) #mkdir source_html/TECHORANGE/tag/ strTagWebsiteDomain = self.strWebsiteDomain + u"/tag" #取得 Db 中尚未下載的 Tag 名稱 lstStrNotObtainedTagName = self.db.fetchallNotObtainedTagName() for strNotObtainedTagName in lstStrNotObtainedTagName: #略過名稱太長的 tag if len(strNotObtainedTagName) > 60: continue strTagUrl = strTagWebsiteDomain + u"/" + strNotObtainedTagName #tag 第0頁 intPageNum = 0 time.sleep(random.randint(2,5)) #sleep random time self.driver.get(strTagUrl) #儲存 html strTagHtmlFilePath = strTagHtmlFolderPath + u"\\%d_%s_tag.html"%(intPageNum, strNotObtainedTagName) self.utility.overwriteSaveAs(strFilePath=strTagHtmlFilePath, unicodeData=self.driver.page_source) #tag 下一頁 elesNextPageA = self.driver.find_elements_by_css_selector("div.nav-links a.next.page-numbers") while len(elesNextPageA) != 0: time.sleep(random.randint(2,5)) #sleep random time intPageNum = intPageNum+1 strTagUrl = elesNextPageA[0].get_attribute("href") self.driver.get(strTagUrl) #儲存 html strTagHtmlFilePath = strTagHtmlFolderPath + u"\\%d_%s_tag.html"%(intPageNum, strNotObtainedTagName) self.utility.overwriteSaveAs(strFilePath=strTagHtmlFilePath, unicodeData=self.driver.page_source) #tag 再下一頁 elesNextPageA = self.driver.find_elements_by_css_selector("div.nav-links a.next.page-numbers") #更新tag DB 為已抓取 (isGot = 1) self.db.updateTagStatusIsGot(strTagName=strNotObtainedTagName) logging.info("got tag %s"%strNotObtainedTagName)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def limitStrLessThen128Char(self, strStr=None): if len(strStr) > 128: logging.info("limit str less then 128 char") return strStr[:127] + u"_" else: return strStr
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def downloadNewsPage(self, strTagName=None): if strTagName is None: #未指定 tag lstStrObtainedTagName = self.db.fetchallCompletedObtainedTagName() for strObtainedTagName in lstStrObtainedTagName: self.downloadNewsPageWithGivenTagName(strTagName=strObtainedTagName) else: #有指定 tag 名稱 self.downloadNewsPageWithGivenTagName(strTagName=strTagName)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def downloadNewsPageWithGivenTagName(self, strTagName=None): logging.info("download news page with tag %s"%strTagName) strNewsHtmlFolderPath = self.SOURCE_HTML_BASE_FOLDER_PATH + u"\\TECHORANGE\\news" if not os.path.exists(strNewsHtmlFolderPath): os.mkdir(strNewsHtmlFolderPath) #mkdir source_html/TECHORANGE/news/ #取得 DB 紀錄中,指定 strTagName tag 的 news url lstStrNewsUrl = self.db.fetchallNewsUrlByTagName(strTagName=strTagName) intDownloadedNewsCount = 0#紀錄下載 news 頁面數量 timeStart = time.time() #計時開始時間點 timeEnd = None #計時結束時間點 for strNewsUrl in lstStrNewsUrl: #檢查是否已下載 if not self.db.checkNewsIsGot(strNewsUrl=strNewsUrl): if intDownloadedNewsCount%10 == 0: #計算下載10筆news所需時間 timeEnd = time.time() timeCost = timeEnd - timeStart logging.info("download 10 news cost %f sec"%timeCost) timeStart = timeEnd intDownloadedNewsCount = intDownloadedNewsCount+1 time.sleep(random.randint(2,5)) #sleep random time self.driver.get(strNewsUrl) #儲存 html strNewsName = re.match("^https://buzzorange.com/techorange/[\d]{4}/[\d]{2}/[\d]{2}/(.*)/$", strNewsUrl).group(1) strNewsName = self.limitStrLessThen128Char(strStr=strNewsName) #將名稱縮短小於128字完 strNewsHtmlFilePath = strNewsHtmlFolderPath + u"\\%s_news.html"%strNewsName self.utility.overwriteSaveAs(strFilePath=strNewsHtmlFilePath, unicodeData=self.driver.page_source) #更新news DB 為已抓取 (isGot = 1) self.db.updateNewsStatusIsGot(strNewsUrl=strNewsUrl)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def write(): try: p = round(weather.pressure(),2) c = light.light() print('{"light": '+str(c)+', "pressure": '+str(p)+' }') except KeyboardInterrupt: pass
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def signal_handler_mapping(self): """A dict mapping (signal number) -> (a method handling the signal).""" # Could use an enum here, but we never end up doing any matching on the specific signal value, # instead just iterating over the registered signals to set handlers, so a dict is probably # better. return { signal.SIGINT: self._handle_sigint_if_enabled, signal.SIGQUIT: self.handle_sigquit, signal.SIGTERM: self.handle_sigterm, }
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __init__(self): self._ignore_sigint_lock = threading.Lock() self._threads_ignoring_sigint = 0 self._ignoring_sigint_v2_engine = False
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _check_sigint_gate_is_correct(self): assert ( self._threads_ignoring_sigint >= 0 ), "This should never happen, someone must have modified the counter outside of SignalHandler."
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _handle_sigint_if_enabled(self, signum, _frame): with self._ignore_sigint_lock: self._check_sigint_gate_is_correct() threads_ignoring_sigint = self._threads_ignoring_sigint ignoring_sigint_v2_engine = self._ignoring_sigint_v2_engine if threads_ignoring_sigint == 0 and not ignoring_sigint_v2_engine: self.handle_sigint(signum, _frame)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _toggle_ignoring_sigint_v2_engine(self, toggle: bool): with self._ignore_sigint_lock: self._ignoring_sigint_v2_engine = toggle
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _ignoring_sigint(self): with self._ignore_sigint_lock: self._check_sigint_gate_is_correct() self._threads_ignoring_sigint += 1 try: yield finally: with self._ignore_sigint_lock: self._threads_ignoring_sigint -= 1 self._check_sigint_gate_is_correct()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def handle_sigint(self, signum, _frame): raise KeyboardInterrupt("User interrupted execution with control-c!")
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __init__(self, signum, signame): self.signum = signum self.signame = signame self.traceback_lines = traceback.format_stack() super(SignalHandler.SignalHandledNonLocalExit, self).__init__()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def handle_sigquit(self, signum, _frame): raise self.SignalHandledNonLocalExit(signum, "SIGQUIT")
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def handle_sigterm(self, signum, _frame): raise self.SignalHandledNonLocalExit(signum, "SIGTERM")
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def __new__(cls, *args, **kwargs): raise TypeError("Instances of {} are not allowed to be constructed!".format(cls.__name__))
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def reset_should_print_backtrace_to_terminal(cls, should_print_backtrace): """Set whether a backtrace gets printed to the terminal error stream on a fatal error. Class state: - Overwrites `cls._should_print_backtrace_to_terminal`. """ cls._should_print_backtrace_to_terminal = should_print_backtrace
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def reset_log_location(cls, new_log_location: str) -> None: """Re-acquire file handles to error logs based in the new location. Class state: - Overwrites `cls._log_dir`, `cls._pid_specific_error_fileobj`, and `cls._shared_error_fileobj`. OS state: - May create a new directory. - Overwrites signal handlers for many fatal and non-fatal signals (but not SIGUSR2). :raises: :class:`ExceptionSink.ExceptionSinkError` if the directory does not exist or is not writable. """ # We could no-op here if the log locations are the same, but there's no reason not to have the # additional safety of re-acquiring file descriptors each time (and erroring out early if the # location is no longer writable). try: safe_mkdir(new_log_location) except Exception as e: raise cls.ExceptionSinkError( "The provided log location path at '{}' is not writable or could not be created: {}.".format( new_log_location, str(e) ), e, ) pid = os.getpid() pid_specific_log_path = cls.exceptions_log_path(for_pid=pid, in_dir=new_log_location) shared_log_path = cls.exceptions_log_path(in_dir=new_log_location) assert pid_specific_log_path != shared_log_path try: pid_specific_error_stream = safe_open(pid_specific_log_path, mode="w") shared_error_stream = safe_open(shared_log_path, mode="a") except Exception as e: raise cls.ExceptionSinkError( "Error opening fatal error log streams for log location '{}': {}".format( new_log_location, str(e) ) ) # NB: mutate process-global state! if faulthandler.is_enabled(): logger.debug("re-enabling faulthandler") # Call Py_CLEAR() on the previous error stream: # https://github.com/vstinner/faulthandler/blob/master/faulthandler.c faulthandler.disable() # Send a stacktrace to this file if interrupted by a fatal error. faulthandler.enable(file=pid_specific_error_stream, all_threads=True) # NB: mutate the class variables! cls._log_dir = new_log_location cls._pid_specific_error_fileobj = pid_specific_error_stream cls._shared_error_fileobj = shared_error_stream
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _exiter(self) -> Optional[Exiter]: return ExceptionSink.get_global_exiter()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def get_global_exiter(cls) -> Optional[Exiter]: return cls._exiter
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def exiter_as(cls, new_exiter_fun: Callable[[Optional[Exiter]], Exiter]) -> Iterator[None]: """Temporarily override the global exiter. NB: We don't want to try/finally here, because we want exceptions to propagate with the most recent exiter installed in sys.excepthook. If we wrap this in a try:finally, exceptions will be caught and exiters unset. """ previous_exiter = cls._exiter new_exiter = new_exiter_fun(previous_exiter) cls._reset_exiter(new_exiter) yield cls._reset_exiter(previous_exiter)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def exiter_as_until_exception( cls, new_exiter_fun: Callable[[Optional[Exiter]], Exiter] ) -> Iterator[None]: """Temporarily override the global exiter, except this will unset it when an exception happens.""" previous_exiter = cls._exiter new_exiter = new_exiter_fun(previous_exiter) try: cls._reset_exiter(new_exiter) yield finally: cls._reset_exiter(previous_exiter)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _reset_exiter(cls, exiter: Optional[Exiter]) -> None: """Class state: - Overwrites `cls._exiter`. Python state: - Overwrites sys.excepthook. """ logger.debug(f"overriding the global exiter with {exiter} (from {cls._exiter})") # NB: mutate the class variables! This is done before mutating the exception hook, because the # uncaught exception handler uses cls._exiter to exit. cls._exiter = exiter # NB: mutate process-global state! sys.excepthook = cls._log_unhandled_exception_and_exit
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def reset_interactive_output_stream( cls, interactive_output_stream, override_faulthandler_destination=True ): """Class state: - Overwrites `cls._interactive_output_stream`. OS state: - Overwrites the SIGUSR2 handler. This method registers a SIGUSR2 handler, which permits a non-fatal `kill -31 <pants pid>` for stacktrace retrieval. This is also where the the error message on fatal exit will be printed to. """ try: # NB: mutate process-global state! # This permits a non-fatal `kill -31 <pants pid>` for stacktrace retrieval. if override_faulthandler_destination: faulthandler.register( signal.SIGUSR2, interactive_output_stream, all_threads=True, chain=False ) # NB: mutate the class variables! cls._interactive_output_stream = interactive_output_stream except ValueError: # Warn about "ValueError: IO on closed file" when the stream is closed. cls.log_exception( "Cannot reset interactive_output_stream -- stream (probably stderr) is closed" )
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def exceptions_log_path(cls, for_pid=None, in_dir=None): """Get the path to either the shared or pid-specific fatal errors log file.""" if for_pid is None: intermediate_filename_component = "" else: assert isinstance(for_pid, Pid) intermediate_filename_component = ".{}".format(for_pid) in_dir = in_dir or cls._log_dir return os.path.join( in_dir, ".pids", "exceptions{}.log".format(intermediate_filename_component) )
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def log_exception(cls, msg): """Try to log an error message to this process's error log and the shared error log. NB: Doesn't raise (logs an error instead). """ pid = os.getpid() fatal_error_log_entry = cls._format_exception_message(msg, pid) # We care more about this log than the shared log, so write to it first. try: cls._try_write_with_flush(cls._pid_specific_error_fileobj, fatal_error_log_entry) except Exception as e: logger.error( "Error logging the message '{}' to the pid-specific file handle for {} at pid {}:\n{}".format( msg, cls._log_dir, pid, e ) ) # Write to the shared log. try: # TODO: we should probably guard this against concurrent modification by other pants # subprocesses somehow. cls._try_write_with_flush(cls._shared_error_fileobj, fatal_error_log_entry) except Exception as e: logger.error( "Error logging the message '{}' to the shared file handle for {} at pid {}:\n{}".format( msg, cls._log_dir, pid, e ) )
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _try_write_with_flush(cls, fileobj, payload): """This method is here so that it can be patched to simulate write errors. This is because mock can't patch primitive objects like file objects. """ fileobj.write(payload) fileobj.flush()
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def reset_signal_handler(cls, signal_handler): """Class state: - Overwrites `cls._signal_handler`. OS state: - Overwrites signal handlers for SIGINT, SIGQUIT, and SIGTERM. NB: This method calls signal.signal(), which will crash if not called from the main thread! :returns: The :class:`SignalHandler` that was previously registered, or None if this is the first time this method was called. """ assert isinstance(signal_handler, SignalHandler) # NB: Modify process-global state! for signum, handler in signal_handler.signal_handler_mapping.items(): signal.signal(signum, handler) # Retry any system calls interrupted by any of the signals we just installed handlers for # (instead of having them raise EINTR). siginterrupt(3) says this is the default behavior on # Linux and OSX. signal.siginterrupt(signum, False) previous_signal_handler = cls._signal_handler # NB: Mutate the class variables! cls._signal_handler = signal_handler return previous_signal_handler
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def trapped_signals(cls, new_signal_handler): """A contextmanager which temporarily overrides signal handling. NB: This method calls signal.signal(), which will crash if not called from the main thread! """ previous_signal_handler = cls.reset_signal_handler(new_signal_handler) try: yield finally: cls.reset_signal_handler(previous_signal_handler)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def ignoring_sigint(cls): """A contextmanager which disables handling sigint in the current signal handler. This allows threads that are not the main thread to ignore sigint. NB: Only use this if you can't use ExceptionSink.trapped_signals(). Class state: - Toggles `self._ignore_sigint` in `cls._signal_handler`. """ with cls._signal_handler._ignoring_sigint(): yield
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def toggle_ignoring_sigint_v2_engine(cls, toggle: bool) -> None: assert cls._signal_handler is not None cls._signal_handler._toggle_ignoring_sigint_v2_engine(toggle)
def dist(a, b): return sum((i-j)**2 for i, j in zip(a, b))
def _iso_timestamp_for_now(cls): return datetime.datetime.now().isoformat()