function
stringlengths 18
3.86k
| intent_category
stringlengths 5
24
|
---|---|
def get_imdb_top_movies(num_movies: int = 5) -> tuple:
num_movies = int(float(num_movies))
if num_movies < 1:
return ()
base_url = (
"https://www.imdb.com/search/title?title_type="
f"feature&sort=num_votes,desc&count={num_movies}"
)
source = bs4.BeautifulSoup(requests.get(base_url).content, "html.parser")
return tuple(
get_movie_data_from_soup(movie)
for movie in source.find_all("div", class_="lister-item mode-advanced")
) | web_programming |
def get_openlibrary_data(olid: str = "isbn/0140328726") -> dict:
new_olid = olid.strip().strip("/") # Remove leading/trailing whitespace & slashes
if new_olid.count("/") != 1:
raise ValueError(f"{olid} is not a valid Open Library olid")
return requests.get(f"https://openlibrary.org/{new_olid}.json").json() | web_programming |
def summarize_book(ol_book_data: dict) -> dict:
desired_keys = {
"title": "Title",
"publish_date": "Publish date",
"authors": "Authors",
"number_of_pages": "Number of pages:",
"first_sentence": "First sentence",
"isbn_10": "ISBN (10)",
"isbn_13": "ISBN (13)",
}
data = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
data["Authors"] = [
get_openlibrary_data(author["key"])["name"] for author in data["Authors"]
]
data["First sentence"] = data["First sentence"]["value"]
for key, value in data.items():
if isinstance(value, list):
data[key] = ", ".join(value)
return data | web_programming |
def extract_user_profile(script) -> dict:
data = script.contents[0]
info = json.loads(data[data.find('{"config"') : -1])
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] | web_programming |
def __init__(self, username):
self.url = f"https://www.instagram.com/{username}/"
self.user_data = self.get_json() | web_programming |
def get_json(self) -> dict:
html = requests.get(self.url, headers=headers).text
scripts = BeautifulSoup(html, "html.parser").find_all("script")
try:
return extract_user_profile(scripts[4])
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3]) | web_programming |
def __repr__(self) -> str:
return f"{self.__class__.__name__}('{self.username}')" | web_programming |
def __str__(self) -> str:
return f"{self.fullname} ({self.username}) is {self.biography}" | web_programming |
def username(self) -> str:
return self.user_data["username"] | web_programming |
def fullname(self) -> str:
return self.user_data["full_name"] | web_programming |
def biography(self) -> str:
return self.user_data["biography"] | web_programming |
def email(self) -> str:
return self.user_data["business_email"] | web_programming |
def website(self) -> str:
return self.user_data["external_url"] | web_programming |
def number_of_followers(self) -> int:
return self.user_data["edge_followed_by"]["count"] | web_programming |
def number_of_followings(self) -> int:
return self.user_data["edge_follow"]["count"] | web_programming |
def number_of_posts(self) -> int:
return self.user_data["edge_owner_to_timeline_media"]["count"] | web_programming |
def profile_picture_url(self) -> str:
return self.user_data["profile_pic_url_hd"] | web_programming |
def is_verified(self) -> bool:
return self.user_data["is_verified"] | web_programming |
def is_private(self) -> bool:
return self.user_data["is_private"] | web_programming |
def test_instagram_user(username: str = "github") -> None:
import os
if os.environ.get("CI"):
return # test failing on GitHub Actions
instagram_user = InstagramUser(username)
assert instagram_user.user_data
assert isinstance(instagram_user.user_data, dict)
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 150
assert instagram_user.number_of_followers > 120000
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "[email protected]"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith("https://instagram.")
assert instagram_user.is_verified is True
assert instagram_user.is_private is False | web_programming |
def world_covid19_stats(url: str = "https://www.worldometers.info/coronavirus") -> dict:
soup = BeautifulSoup(requests.get(url).text, "html.parser")
keys = soup.findAll("h1")
values = soup.findAll("div", {"class": "maincounter-number"})
keys += soup.findAll("span", {"class": "panel-title"})
values += soup.findAll("div", {"class": "number-table-main"})
return {key.text.strip(): value.text.strip() for key, value in zip(keys, values)} | web_programming |
def save_image(image_url: str, image_title: str) -> None:
image = requests.get(image_url, headers=headers)
with open(image_title, "wb") as file:
file.write(image.content) | web_programming |
def random_anime_character() -> tuple[str, str, str]:
soup = BeautifulSoup(requests.get(URL, headers=headers).text, "html.parser")
title = soup.find("meta", attrs={"property": "og:title"}).attrs["content"]
image_url = soup.find("meta", attrs={"property": "og:image"}).attrs["content"]
description = soup.find("p", id="description").get_text()
_, image_extension = os.path.splitext(os.path.basename(image_url))
image_title = title.strip().replace(" ", "_")
image_title = f"{image_title}{image_extension}"
save_image(image_url, image_title)
return (title, description, image_title) | web_programming |
def fetch_bbc_news(bbc_news_api_key: str) -> None:
# fetching a list of articles in json format
bbc_news_page = requests.get(_NEWS_API + bbc_news_api_key).json()
# each article in the list is a dict
for i, article in enumerate(bbc_news_page["articles"], 1):
print(f"{i}.) {article['title']}") | web_programming |
def current_weather(q: str = "Chicago", appid: str = APPID) -> dict:
return requests.get(URL_BASE + "forecast", params=locals()).json() | web_programming |
def get_gifs(query: str, api_key: str = giphy_api_key) -> list:
formatted_query = "+".join(query.split())
url = f"https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}"
gifs = requests.get(url).json()["data"]
return [gif["url"] for gif in gifs] | web_programming |
def get_citation(base_url: str, params: dict) -> str:
soup = BeautifulSoup(requests.get(base_url, params=params).content, "html.parser")
div = soup.find("div", attrs={"class": "gs_ri"})
anchors = div.find("div", attrs={"class": "gs_fl"}).find_all("a")
return anchors[2].get_text() | web_programming |
def send_slack_message(message_body: str, slack_url: str) -> None:
headers = {"Content-Type": "application/json"}
response = requests.post(slack_url, json={"text": message_body}, headers=headers)
if response.status_code != 200:
raise ValueError(
f"Request to slack returned an error {response.status_code}, "
f"the response is:\n{response.text}"
) | web_programming |
def horoscope(zodiac_sign: int, day: str) -> str:
url = (
"https://www.horoscope.com/us/horoscopes/general/"
f"horoscope-general-daily-{day}.aspx?sign={zodiac_sign}"
)
soup = BeautifulSoup(requests.get(url).content, "html.parser")
return soup.find("div", class_="main-horoscope").p.text | web_programming |
def download_video(url: str) -> bytes:
base_url = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url="
video_url = requests.get(base_url + url).json()[0]["urls"][0]["src"]
return requests.get(video_url).content | web_programming |
def fetch_last_half_hour() -> str:
last_half_hour = requests.get(BASE_URL).json()["data"][0]
return last_half_hour["intensity"]["actual"] | web_programming |
def fetch_from_to(start, end) -> list:
return requests.get(f"{BASE_URL}/{start}/{end}").json()["data"] | web_programming |
def fetch_github_info(auth_token: str) -> dict[Any, Any]:
headers = {
"Authorization": f"token {auth_token}",
"Accept": "application/vnd.github.v3+json",
}
return requests.get(AUTHENTICATED_USER_ENDPOINT, headers=headers).json() | web_programming |
def stock_price(symbol: str = "AAPL") -> str:
url = f"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"
soup = BeautifulSoup(requests.get(url).text, "html.parser")
class_ = "My(6px) Pos(r) smartphone_Mt(6px)"
return soup.find("div", class_=class_).find("span").text | web_programming |
def fetch_pharmacy_and_price_list(drug_name: str, zip_code: str) -> list | None:
try:
# Has user provided both inputs?
if not drug_name or not zip_code:
return None
request_url = BASE_URL.format(drug_name, zip_code)
response = get(request_url)
# Is the response ok?
response.raise_for_status()
# Scrape the data using bs4
soup = BeautifulSoup(response.text, "html.parser")
# This list will store the name and price.
pharmacy_price_list = []
# Fetch all the grids that contains the items.
grid_list = soup.find_all("div", {"class": "grid-x pharmCard"})
if grid_list and len(grid_list) > 0:
for grid in grid_list:
# Get the pharmacy price.
pharmacy_name = grid.find("p", {"class": "list-title"}).text
# Get price of the drug.
price = grid.find("span", {"p", "price price-large"}).text
pharmacy_price_list.append(
{
"pharmacy_name": pharmacy_name,
"price": price,
}
)
return pharmacy_price_list
except (HTTPError, exceptions.RequestException, ValueError):
return None | web_programming |
def download_images_from_google_query(query: str = "dhaka", max_images: int = 5) -> int:
max_images = min(max_images, 50) # Prevent abuse!
params = {
"q": query,
"tbm": "isch",
"hl": "en",
"ijn": "0",
}
html = requests.get("https://www.google.com/search", params=params, headers=headers)
soup = BeautifulSoup(html.text, "html.parser")
matched_images_data = "".join(
re.findall(r"AF_initDataCallback\(([^<]+)\);", str(soup.select("script")))
)
matched_images_data_fix = json.dumps(matched_images_data)
matched_images_data_json = json.loads(matched_images_data_fix)
matched_google_image_data = re.findall(
r"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",",
matched_images_data_json,
)
if not matched_google_image_data:
return 0
removed_matched_google_images_thumbnails = re.sub(
r"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]",
"",
str(matched_google_image_data),
)
matched_google_full_resolution_images = re.findall(
r"(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]",
removed_matched_google_images_thumbnails,
)
for index, fixed_full_res_image in enumerate(matched_google_full_resolution_images):
if index >= max_images:
return index
original_size_img_not_fixed = bytes(fixed_full_res_image, "ascii").decode(
"unicode-escape"
)
original_size_img = bytes(original_size_img_not_fixed, "ascii").decode(
"unicode-escape"
)
opener = urllib.request.build_opener()
opener.addheaders = [
(
"User-Agent",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
" (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582",
)
]
urllib.request.install_opener(opener)
path_name = f"query_{query.replace(' ', '_')}"
if not os.path.exists(path_name):
os.makedirs(path_name)
urllib.request.urlretrieve(
original_size_img, f"{path_name}/original_size_img_{index}.jpg"
)
return index | web_programming |
def get_subreddit_data(
subreddit: str, limit: int = 1, age: str = "new", wanted_data: list | None = None
) -> dict:
wanted_data = wanted_data or []
if invalid_search_terms := ", ".join(sorted(set(wanted_data) - valid_terms)):
raise ValueError(f"Invalid search term: {invalid_search_terms}")
response = requests.get(
f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}",
headers={"User-agent": "A random string"},
)
if response.status_code == 429:
raise requests.HTTPError
data = response.json()
if not wanted_data:
return {id_: data["data"]["children"][id_] for id_ in range(limit)}
data_dict = {}
for id_ in range(limit):
data_dict[id_] = {
item: data["data"]["children"][id_]["data"][item] for item in wanted_data
}
return data_dict | web_programming |
def search_scraper(anime_name: str) -> list:
# concat the name to form the search url.
search_url = f"{BASE_URL}/search/{anime_name}"
response = requests.get(
search_url, headers={"UserAgent": UserAgent().chrome}
) # request the url.
# Is the response ok?
response.raise_for_status()
# parse with soup.
soup = BeautifulSoup(response.text, "html.parser")
# get list of anime
anime_ul = soup.find("ul", {"class": "items"})
anime_li = anime_ul.children
# for each anime, insert to list. the name and url.
anime_list = []
for anime in anime_li:
if not isinstance(anime, NavigableString):
try:
anime_url, anime_title = (
anime.find("a")["href"],
anime.find("a")["title"],
)
anime_list.append(
{
"title": anime_title,
"url": anime_url,
}
)
except (NotFoundErr, KeyError):
pass
return anime_list | web_programming |
def search_anime_episode_list(episode_endpoint: str) -> list:
request_url = f"{BASE_URL}{episode_endpoint}"
response = requests.get(url=request_url, headers={"UserAgent": UserAgent().chrome})
response.raise_for_status()
soup = BeautifulSoup(response.text, "html.parser")
# With this id. get the episode list.
episode_page_ul = soup.find("ul", {"id": "episode_related"})
episode_page_li = episode_page_ul.children
episode_list = []
for episode in episode_page_li:
try:
if not isinstance(episode, NavigableString):
episode_list.append(
{
"title": episode.find("div", {"class": "name"}).text.replace(
" ", ""
),
"url": episode.find("a")["href"],
}
)
except (KeyError, NotFoundErr):
pass
return episode_list | web_programming |
def get_anime_episode(episode_endpoint: str) -> list:
episode_page_url = f"{BASE_URL}{episode_endpoint}"
response = requests.get(
url=episode_page_url, headers={"User-Agent": UserAgent().chrome}
)
response.raise_for_status()
soup = BeautifulSoup(response.text, "html.parser")
try:
episode_url = soup.find("iframe", {"id": "playerframe"})["src"]
download_url = episode_url.replace("/embed/", "/playlist/") + ".m3u8"
except (KeyError, NotFoundErr) as e:
raise e
return [f"{BASE_URL}{episode_url}", f"{BASE_URL}{download_url}"] | web_programming |
def get_all_tweets(screen_name: str) -> None:
# authorize twitter, initialize tweepy
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_key, access_secret)
api = tweepy.API(auth)
# initialize a list to hold all the tweepy Tweets
alltweets = []
# make initial request for most recent tweets (200 is the maximum allowed count)
new_tweets = api.user_timeline(screen_name=screen_name, count=200)
# save most recent tweets
alltweets.extend(new_tweets)
# save the id of the oldest tweet less one
oldest = alltweets[-1].id - 1
# keep grabbing tweets until there are no tweets left to grab
while len(new_tweets) > 0:
print(f"getting tweets before {oldest}")
# all subsequent requests use the max_id param to prevent duplicates
new_tweets = api.user_timeline(
screen_name=screen_name, count=200, max_id=oldest
)
# save most recent tweets
alltweets.extend(new_tweets)
# update the id of the oldest tweet less one
oldest = alltweets[-1].id - 1
print(f"...{len(alltweets)} tweets downloaded so far")
# transform the tweepy tweets into a 2D array that will populate the csv
outtweets = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets]
# write the csv
with open(f"new_{screen_name}_tweets.csv", "w") as f:
writer = csv.writer(f)
writer.writerow(["id", "created_at", "text"])
writer.writerows(outtweets) | web_programming |
def get_apod_data(api_key: str, download: bool = False, path: str = ".") -> dict:
url = "https://api.nasa.gov/planetary/apod"
return requests.get(url, params={"api_key": api_key}).json() | web_programming |
def save_apod(api_key: str, path: str = ".") -> dict:
apod_data = get_apod_data(api_key)
img_url = apod_data["url"]
img_name = img_url.split("/")[-1]
response = requests.get(img_url, stream=True)
with open(f"{path}/{img_name}", "wb+") as img_file:
shutil.copyfileobj(response.raw, img_file)
del response
return apod_data | web_programming |
def get_archive_data(query: str) -> dict:
url = "https://images-api.nasa.gov/search"
return requests.get(url, params={"q": query}).json() | web_programming |
def add(*matrix_s: list[list[int]]) -> list[list[int]]:
if all(_check_not_integer(m) for m in matrix_s):
for i in matrix_s[1:]:
_verify_matrix_sizes(matrix_s[0], i)
return [[sum(t) for t in zip(*m)] for m in zip(*matrix_s)]
raise TypeError("Expected a matrix, got int/list instead") | matrix |
def subtract(matrix_a: list[list[int]], matrix_b: list[list[int]]) -> list[list[int]]:
if (
_check_not_integer(matrix_a)
and _check_not_integer(matrix_b)
and _verify_matrix_sizes(matrix_a, matrix_b)
):
return [[i - j for i, j in zip(*m)] for m in zip(matrix_a, matrix_b)]
raise TypeError("Expected a matrix, got int/list instead") | matrix |
def scalar_multiply(matrix: list[list[int]], n: int | float) -> list[list[float]]:
return [[x * n for x in row] for row in matrix] | matrix |
def multiply(matrix_a: list[list[int]], matrix_b: list[list[int]]) -> list[list[int]]:
if _check_not_integer(matrix_a) and _check_not_integer(matrix_b):
rows, cols = _verify_matrix_sizes(matrix_a, matrix_b)
if cols[0] != rows[1]:
raise ValueError(
f"Cannot multiply matrix of dimensions ({rows[0]},{cols[0]}) "
f"and ({rows[1]},{cols[1]})"
)
return [
[sum(m * n for m, n in zip(i, j)) for j in zip(*matrix_b)] for i in matrix_a
] | matrix |
def identity(n: int) -> list[list[int]]:
n = int(n)
return [[int(row == column) for column in range(n)] for row in range(n)] | matrix |
def transpose(
matrix: list[list[int]], return_map: bool = True
) -> list[list[int]] | map[list[int]]:
if _check_not_integer(matrix):
if return_map:
return map(list, zip(*matrix))
else:
return list(map(list, zip(*matrix)))
raise TypeError("Expected a matrix, got int/list instead") | matrix |
def minor(matrix: list[list[int]], row: int, column: int) -> list[list[int]]:
minor = matrix[:row] + matrix[row + 1 :]
return [row[:column] + row[column + 1 :] for row in minor] | matrix |
def determinant(matrix: list[list[int]]) -> Any:
if len(matrix) == 1:
return matrix[0][0]
return sum(
x * determinant(minor(matrix, 0, i)) * (-1) ** i
for i, x in enumerate(matrix[0])
) | matrix |
def inverse(matrix: list[list[int]]) -> list[list[float]] | None:
# https://stackoverflow.com/questions/20047519/python-doctests-test-for-none
det = determinant(matrix)
if det == 0:
return None
matrix_minor = [
[determinant(minor(matrix, i, j)) for j in range(len(matrix))]
for i in range(len(matrix))
]
cofactors = [
[x * (-1) ** (row + col) for col, x in enumerate(matrix_minor[row])]
for row in range(len(matrix))
]
adjugate = list(transpose(cofactors))
return scalar_multiply(adjugate, 1 / det) | matrix |
def _check_not_integer(matrix: list[list[int]]) -> bool:
return not isinstance(matrix, int) and not isinstance(matrix[0], int) | matrix |
def _shape(matrix: list[list[int]]) -> tuple[int, int]:
return len(matrix), len(matrix[0]) | matrix |
def _verify_matrix_sizes(
matrix_a: list[list[int]], matrix_b: list[list[int]]
) -> tuple[tuple[int, int], tuple[int, int]]:
shape = _shape(matrix_a) + _shape(matrix_b)
if shape[0] != shape[3] or shape[1] != shape[2]:
raise ValueError(
f"operands could not be broadcast together with shape "
f"({shape[0], shape[1]}), ({shape[2], shape[3]})"
)
return (shape[0], shape[2]), (shape[1], shape[3]) | matrix |
def main() -> None:
matrix_a = [[12, 10], [3, 9]]
matrix_b = [[3, 4], [7, 4]]
matrix_c = [[11, 12, 13, 14], [21, 22, 23, 24], [31, 32, 33, 34], [41, 42, 43, 44]]
matrix_d = [[3, 0, 2], [2, 0, -2], [0, 1, 1]]
print(f"Add Operation, {add(matrix_a, matrix_b) = } \n")
print(
f"Multiply Operation, {multiply(matrix_a, matrix_b) = } \n",
)
print(f"Identity: {identity(5)}\n")
print(f"Minor of {matrix_c} = {minor(matrix_c, 1, 2)} \n")
print(f"Determinant of {matrix_b} = {determinant(matrix_b)} \n")
print(f"Inverse of {matrix_d} = {inverse(matrix_d)}\n") | matrix |
def depth_first_search(grid: list[list[int]], row: int, col: int, visit: set) -> int:
row_length, col_length = len(grid), len(grid[0])
if (
min(row, col) < 0
or row == row_length
or col == col_length
or (row, col) in visit
or grid[row][col] == 1
):
return 0
if row == row_length - 1 and col == col_length - 1:
return 1
visit.add((row, col))
count = 0
count += depth_first_search(grid, row + 1, col, visit)
count += depth_first_search(grid, row - 1, col, visit)
count += depth_first_search(grid, row, col + 1, visit)
count += depth_first_search(grid, row, col - 1, visit)
visit.remove((row, col))
return count | matrix |
def __init__(self, row: int, column: int, default_value: float = 0) -> None:
self.row, self.column = row, column
self.array = [[default_value for c in range(column)] for r in range(row)] | matrix |
def single_line(row_vector: list[float]) -> str:
nonlocal string_format_identifier
line = "["
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector)
line += "]"
return line | matrix |
def __repr__(self) -> str:
return str(self) | matrix |
def validate_indicies(self, loc: tuple[int, int]) -> bool:
if not (isinstance(loc, (list, tuple)) and len(loc) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True | matrix |
def __getitem__(self, loc: tuple[int, int]) -> Any:
assert self.validate_indicies(loc)
return self.array[loc[0]][loc[1]] | matrix |
def __setitem__(self, loc: tuple[int, int], value: float) -> None:
assert self.validate_indicies(loc)
self.array[loc[0]][loc[1]] = value | matrix |
def __add__(self, another: Matrix) -> Matrix:
# Validation
assert isinstance(another, Matrix)
assert self.row == another.row and self.column == another.column
# Add
result = Matrix(self.row, self.column)
for r in range(self.row):
for c in range(self.column):
result[r, c] = self[r, c] + another[r, c]
return result | matrix |
def __neg__(self) -> Matrix:
result = Matrix(self.row, self.column)
for r in range(self.row):
for c in range(self.column):
result[r, c] = -self[r, c]
return result | matrix |
def __sub__(self, another: Matrix) -> Matrix:
return self + (-another) | matrix |
def __mul__(self, another: int | float | Matrix) -> Matrix:
if isinstance(another, (int, float)): # Scalar multiplication
result = Matrix(self.row, self.column)
for r in range(self.row):
for c in range(self.column):
result[r, c] = self[r, c] * another
return result
elif isinstance(another, Matrix): # Matrix multiplication
assert self.column == another.row
result = Matrix(self.row, another.column)
for r in range(self.row):
for c in range(another.column):
for i in range(self.column):
result[r, c] += self[r, i] * another[i, c]
return result
else:
raise TypeError(f"Unsupported type given for another ({type(another)})") | matrix |
def transpose(self) -> Matrix:
result = Matrix(self.column, self.row)
for r in range(self.row):
for c in range(self.column):
result[c, r] = self[r, c]
return result | matrix |
def sherman_morrison(self, u: Matrix, v: Matrix) -> Any:
# Size validation
assert isinstance(u, Matrix) and isinstance(v, Matrix)
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
v_t = v.transpose()
numerator_factor = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) | matrix |
def test1() -> None:
# a^(-1)
ainv = Matrix(3, 3, 0)
for i in range(3):
ainv[i, i] = 1
print(f"a^(-1) is {ainv}")
# u, v
u = Matrix(3, 1, 0)
u[0, 0], u[1, 0], u[2, 0] = 1, 2, -3
v = Matrix(3, 1, 0)
v[0, 0], v[1, 0], v[2, 0] = 4, -2, 5
print(f"u is {u}")
print(f"v is {v}")
print(f"uv^T is {u * v.transpose()}")
# Sherman Morrison
print(f"(a + uv^T)^(-1) is {ainv.sherman_morrison(u, v)}") | matrix |
def test2() -> None:
import doctest
doctest.testmod() | matrix |
def update_area_of_max_square(row: int, col: int) -> int:
# BASE CASE
if row >= rows or col >= cols:
return 0
right = update_area_of_max_square(row, col + 1)
diagonal = update_area_of_max_square(row + 1, col + 1)
down = update_area_of_max_square(row + 1, col)
if mat[row][col]:
sub_problem_sol = 1 + min([right, diagonal, down])
largest_square_area[0] = max(largest_square_area[0], sub_problem_sol)
return sub_problem_sol
else:
return 0 | matrix |
def update_area_of_max_square_using_dp_array(
row: int, col: int, dp_array: list[list[int]] | matrix |
def largest_square_area_in_matrix_bottom_up(
rows: int, cols: int, mat: list[list[int]]
) -> int:
dp_array = [[0] * (cols + 1) for _ in range(rows + 1)]
largest_square_area = 0
for row in range(rows - 1, -1, -1):
for col in range(cols - 1, -1, -1):
right = dp_array[row][col + 1]
diagonal = dp_array[row + 1][col + 1]
bottom = dp_array[row + 1][col]
if mat[row][col] == 1:
dp_array[row][col] = 1 + min(right, diagonal, bottom)
largest_square_area = max(dp_array[row][col], largest_square_area)
else:
dp_array[row][col] = 0
return largest_square_area | matrix |
def largest_square_area_in_matrix_bottom_up_space_optimization(
rows: int, cols: int, mat: list[list[int]]
) -> int:
current_row = [0] * (cols + 1)
next_row = [0] * (cols + 1)
largest_square_area = 0
for row in range(rows - 1, -1, -1):
for col in range(cols - 1, -1, -1):
right = current_row[col + 1]
diagonal = next_row[col + 1]
bottom = next_row[col]
if mat[row][col] == 1:
current_row[col] = 1 + min(right, diagonal, bottom)
largest_square_area = max(current_row[col], largest_square_area)
else:
current_row[col] = 0
next_row = current_row
return largest_square_area | matrix |
def make_matrix(row_size: int = 4) -> list[list[int]]:
row_size = abs(row_size) or 4
return [[1 + x + y * row_size for x in range(row_size)] for y in range(row_size)] | matrix |
def rotate_90(matrix: list[list[int]]) -> list[list[int]]:
return reverse_row(transpose(matrix))
# OR.. transpose(reverse_column(matrix)) | matrix |
def rotate_180(matrix: list[list[int]]) -> list[list[int]]:
return reverse_row(reverse_column(matrix))
# OR.. reverse_column(reverse_row(matrix)) | matrix |
def rotate_270(matrix: list[list[int]]) -> list[list[int]]:
return reverse_column(transpose(matrix))
# OR.. transpose(reverse_row(matrix)) | matrix |
def transpose(matrix: list[list[int]]) -> list[list[int]]:
matrix[:] = [list(x) for x in zip(*matrix)]
return matrix | matrix |
def reverse_row(matrix: list[list[int]]) -> list[list[int]]:
matrix[:] = matrix[::-1]
return matrix | matrix |
def reverse_column(matrix: list[list[int]]) -> list[list[int]]:
matrix[:] = [x[::-1] for x in matrix]
return matrix | matrix |
def print_matrix(matrix: list[list[int]]) -> None:
for i in matrix:
print(*i) | matrix |
def check_matrix(matrix: list[list[int]]) -> bool:
# must be
matrix = [list(row) for row in matrix]
if matrix and isinstance(matrix, list):
if isinstance(matrix[0], list):
prev_len = 0
for row in matrix:
if prev_len == 0:
prev_len = len(row)
result = True
else:
result = prev_len == len(row)
else:
result = True
else:
result = False
return result | matrix |
def spiral_print_clockwise(a: list[list[int]]) -> None:
if check_matrix(a) and len(a) > 0:
a = [list(row) for row in a]
mat_row = len(a)
if isinstance(a[0], list):
mat_col = len(a[0])
else:
for dat in a:
print(dat)
return
# horizotal printing increasing
for i in range(0, mat_col):
print(a[0][i])
# vertical printing down
for i in range(1, mat_row):
print(a[i][mat_col - 1])
# horizotal printing decreasing
if mat_row > 1:
for i in range(mat_col - 2, -1, -1):
print(a[mat_row - 1][i])
# vertical printing up
for i in range(mat_row - 2, 0, -1):
print(a[i][0])
remain_mat = [row[1 : mat_col - 1] for row in a[1 : mat_row - 1]]
if len(remain_mat) > 0:
spiral_print_clockwise(remain_mat)
else:
return
else:
print("Not a valid matrix")
return | matrix |
def spiral_traversal(matrix: list[list]) -> list[int]:
if matrix:
return list(matrix.pop(0)) + spiral_traversal(list(zip(*matrix))[::-1])
else:
return [] | matrix |
def __init__(self, row: int, col: int, graph: list[list[bool]]) -> None:
self.ROW = row
self.COL = col
self.graph = graph | matrix |
def is_safe(self, i: int, j: int, visited: list[list[bool]]) -> bool:
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
) | matrix |
def diffs(self, i: int, j: int, visited: list[list[bool]]) -> None:
# Checking all 8 elements surrounding nth element
row_nbr = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
col_nbr = [-1, 0, 1, -1, 1, -1, 0, 1]
visited[i][j] = True # Make those cells visited
for k in range(8):
if self.is_safe(i + row_nbr[k], j + col_nbr[k], visited):
self.diffs(i + row_nbr[k], j + col_nbr[k], visited) | matrix |
def is_safe(row: int, col: int, rows: int, cols: int) -> bool:
return 0 <= row < rows and 0 <= col < cols | matrix |
def depth_first_search(row: int, col: int, seen: set, mat: list[list[int]]) -> int:
rows = len(mat)
cols = len(mat[0])
if is_safe(row, col, rows, cols) and (row, col) not in seen and mat[row][col] == 1:
seen.add((row, col))
return (
1
+ depth_first_search(row + 1, col, seen, mat)
+ depth_first_search(row - 1, col, seen, mat)
+ depth_first_search(row, col + 1, seen, mat)
+ depth_first_search(row, col - 1, seen, mat)
)
else:
return 0 | matrix |
def find_max_area(mat: list[list[int]]) -> int:
seen: set = set()
max_area = 0
for row, line in enumerate(mat):
for col, item in enumerate(line):
if item == 1 and (row, col) not in seen:
# Maximizing the area
max_area = max(max_area, depth_first_search(row, col, seen, mat))
return max_area | matrix |
def binary_search(array: list, lower_bound: int, upper_bound: int, value: int) -> int:
r = int((lower_bound + upper_bound) // 2)
if array[r] == value:
return r
if lower_bound >= upper_bound:
return -1
if array[r] < value:
return binary_search(array, r + 1, upper_bound, value)
else:
return binary_search(array, lower_bound, r - 1, value) | matrix |
def mat_bin_search(value: int, matrix: list) -> list:
index = 0
if matrix[index][0] == value:
return [index, 0]
while index < len(matrix) and matrix[index][0] < value:
r = binary_search(matrix[index], 0, len(matrix[index]) - 1, value)
if r != -1:
return [index, r]
index += 1
return [-1, -1] | matrix |
def __init__(self, rows: list[list[int]]):
error = TypeError(
"Matrices must be formed from a list of zero or more lists containing at "
"least one and the same number of values, each of which must be of type "
"int or float."
)
if len(rows) != 0:
cols = len(rows[0])
if cols == 0:
raise error
for row in rows:
if len(row) != cols:
raise error
for value in row:
if not isinstance(value, (int, float)):
raise error
self.rows = rows
else:
self.rows = [] | matrix |
def columns(self) -> list[list[int]]:
return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] | matrix |
def num_rows(self) -> int:
return len(self.rows) | matrix |
def num_columns(self) -> int:
return len(self.rows[0]) | matrix |
def order(self) -> tuple[int, int]:
return (self.num_rows, self.num_columns) | matrix |