FStarDataSet-V2 / README.md
saikatc's picture
Update README.md
33e433e verified
|
raw
history blame
3.25 kB
metadata
license: cdla-permissive-2.0
task_categories:
  - text-generation
  - text2text-generation
  - other
tags:
  - code
  - fstar
  - popai
pretty_name: PoPAI-FStarDataSet-V2
size_categories:
  - 10K<n<100K
language:
  - code
  - fst

This dataset is the Version 2.0 of microsoft/FStarDataSet.

Data Source

In addition to the eight projects in microsoft/FStarDataSet, data from four more projects are included in this version.

  1. Starmad: a framework for doing proofs by stepwise refinement for concurrent programs in a weak memory model. Starmada is an experimental version of Armada implemented in F⋆, relying on various advanced features of F⋆’s dependent type system for more generic and abstract proofs.
  2. Zeta: a high performance, concurrent monitor for stateful services proven correct in F⋆ and its Steel concurrent separation logic
  3. Dice-star: a verified implementation of the DICE measured boot protocol for embedded devices
  4. Noise-star: a verified compiler for implementations of Noise protocols, a family of key-exchange protocols

Primary-Objective

Data Format

Each of the examples in this dataset are organized as dictionaries with the following schema

{
    "file_name": <str: Name of the file>,
    "name": <str: name of the example, can be used to uniquely identify the example>,
    "original_source_type": <str: actual source type, to be used for type checking>,
    "source_type": <str: modified source type, to be used to formulate prompt>,
    "source_definition": <str: target definition>,
    "source": <dict: contains metadata acout the source of this example, including project_name, git url, git sha, etc.>,
    "source_range": <dict: metadata containing start and end lines and columns of this definition in the source file>,
    "file_context": <str: extracted file context upto the point of current definition>, 
    "dependencies": <dict: build dependencies for this file>,
    "opens_and_abbrevs": <list[dict]: List of opened modules and abbreviated modules in the file, necessry for evaluating.>,
    "vconfig": <dict: variour buils configuration for this definition>,
    "interleaved": <bool: whether this definition is interleaved with another>,
    "verbose_type": <str: the verbose type of this definition as resolved by the type checker>,
    "effect": <str: effect>,
    "effect_flags": <list[str]: any effect flags>,
    "mutual_with": <list: if this definition is mutually recursive with other, list of those names>,
    "ideal_premises": <list[str]: Other definitions that are used in the ground truth definition>,
    "proof_features": <list[str]>,
    "is_simple_lemma": <bool/null>,
    "is_div": <bool: if this definition is divergent>,
    "is_proof": <bool>,
    "is_simply_typed": <bool>,
    "is_type": <bool/null>,
    "partial_definition": <str>,
    "completed_definiton": <str>,
    "isa_cross_project_example": <bool: if this example belongs to cross-project evaluation set>
}

Usage

Input

Output

Evaluation on this dataset